
Computational 
Protein Design

Ilan Samish Editor

Methods in 
Molecular Biology   1529



ME T H O D S I N MO L E C U L A R B I O L O G Y

Series Editor
John M. Walker

School of Life and Medical Sciences
University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651

http://www.springer.com/series/7657
http://www.springer.com/series/7657


Computational Protein Design

Edited by

Ilan Samish

Department of Plants and Environmental Sciences
Weizmann Institute of Science, Rehovot, Israel

Department of Biotechnology Engineering
Braude Academic College of Engineering, Karmiel, Israel

Amai Proteins Ltd., Ashdod, Israel



Editor
Ilan Samish
Department of Plants and Environmental Sciences
Weizmann Institute of Science, Rehovot, Israel

Department of Biotechnology Engineering
Braude Academic College of Engineering, Karmiel, Israel

Amai Proteins Ltd., Ashdod, Israel

ISSN 1064-3745 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-4939-6635-6 ISBN 978-1-4939-6637-0 (eBook)
DOI 10.1007/978-1-4939-6637-0

Library of Congress Control Number: 2016959982

© Springer Science+Business Media New York 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Humana Press imprint is published by Springer Nature
The registered company is Springer Science+Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.



Preface

The aim of this first-ever book entitled Computational Protein Design (CPD) is to bring the
latest know-how on the CPD methods in respect to the process, success, and pitfalls of the
field. The book is organized so as to introduce and present the general methodology and
main challenges followed by a description of specific software and applications. As seen in the
description below, there is more than one way to cluster the different chapters, each high-
lighting a different aspect of the field.

While there has not been a book dedicated to CPD, books on protein design have often
included chapters on CPD.Here, following a chapter on the framework of CPD (Chapter 1)
and a summary of past achievements and future challenges (Chapter 2), a chapter on the
experimental aspects of production of the designed protein is presented (Chapter 3).
Beyond the need to understand the experimental aspects of the computational endeavor,
this is to remind us that the final outcome of the computational process is the production of
a real protein.

It is widely considered that a global minimum energy conformation (GMEC) reflects
the actual native structure of the protein. The protein design process is intrinsically compu-
tationally intensive as sequence and structure space should be rigorously sampled in the
search for the GMEC of the requested target. Deterministic search methods (Chapter 4) of
which dead-end elimination (DEE) is among the first to be used, are guaranteed to find the
GMEC while stochastic methods are not guaranteed to find it. Other methods, e.g., the A*
search algorithm, were optimized to run in parallel taking advantage of the graphic proces-
sing unit (GPU) processor infrastructure (Chapter 13). Complementarily, the CPD effort
should consider the solvating milieu, e.g., via a geometric potential (Chapter 5). In addition,
the residue-level core building block focus of CPD should be analyzed and predicted in
respect to phylogenetic, structural, and energetic properties. These should be treated
according to the immediate and possibly changing microenvironment, e.g., as in protein–-
protein complexes (Chapter 6). The GMEC considers a single minimum conformation and
can be applied for the redesign of a given scaffold (Chapter 10), for requested functional
motifs (Chapter 11) or for emphasizing specific types of available data, e.g., evolutionary
information (Chapter 12). Yet, proteins within their native physiological surrounding are
dynamic ensembles intrinsically requiring conformational dynamics. As such, it is important
to a priori design the protein as a multistate entity (Chapter 7), a characteristic that can be
introduced via integrating to the design process methods that analyze dynamics such as
molecular dynamics (Chapter 8) or normal mode analysis (Chapter 9).

The computational design scheme can be tailored to specific types of proteins or
domains, which in turn should be assessed as to their resemblance to the requested domain
or specific designated characteristic. Examples include protein–protein interaction interfaces
(Chapter 14), drug-resistance mutations (Chapter 15), symmetric proteins of identical
sequence repeats (Chapter 16), self-assemblies exploiting synthetic amino acids (-
Chapter 17), oligomerized conformations of the defensins (Chapter 18), ligand-binding
proteins (Chapter 19), proteins with reduced immunogenicity (Chapter 20), antibodies
(Chapter 21), membrane curvature-sensing peptides (Chapter 22), and allosteric drug-
binding sites within proteins (Chapter 23). Taken together, these application focus areas

v
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present the breadth of the CPD field along with the intrinsic achievements and challenges
upon examining the “devil” in the details of key examples.

The general field of protein design, let alone the computational aspect of it, is expected
to present an exponential increase in quality and quantity alike. Such change is fostered by
the need to expand protein space for understanding biology, for applying biotechnology,
and for expanding pharmaceuticals from the common small molecules to biologics – specific
and side-effect-free proteins. Importantly, while scientific research of proteins is often
focused towards pharmaceutical applications, CPD presents the possibility to expand the
use of proteins in food-tech and white biotechnology, namely, the use of proteins for
industrial applications. In addition, the field is nurtured by the exponential increase in raw
sequence and structure data, and the increase in cost-effect computational hardware in
general and hardware tailored to protein application, in particular. Not less important is
the careful feedback loop of quantitative parameterization sequence and fold space followed
by software design that will efficiently test our parameterization and produce novel protein
design, which in turn can be materialized and characterized experimentally.

Karmiel, Israel Ilan Samish
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JUAN FERNÁNDEZ-RECIO � Joint BSC-CRG-IRB Research Program in Computational

Biology, Barcelona Supercomputing Center, Barcelona, Spain
VINCENT FRAPPIER � Department of Biochemistry, Massachusetts Institute of Technology,

Cambridge, MA; Faculty of Medicine and Health Sciences, University of Sherbrooke,
Sherbrooke, QC, Canada

PABLO GAINZA � Department of Computer Science, Duke University, Durham, NC, USA
WENXUN GAN � Research Center of Basic Medical Sciences and Cancer Institute and

Hospital, Tianjin Medical University, Tianjin, China
IVELIN GEORGIEV � Department of Computer Science, Duke University, Durham, NC, USA;

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda,
MD, USA

FABIAN GLASER � Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary
Center for Life Sciences and Engineering, Technion, Israel

KARL E. GRISWOLD � Thayer School of Engineering, Dartmouth, USA
NURIT HASPEL � Department of Computer Science, The University of Massachusetts Boston,

Boston, MA, USA
WENKANG HUANG � Department of Pathophysiology, Key Laboratory of Cell Differentiation

and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of
Medicine (SJTU-SM), Shanghai, China

OLGA IRANZO � Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313,
Marseille, France

ARMANDO J. DE JESUS � Department of Chemistry and Biochemistry, University of Colorado,
Boulder, CO, USA; The BioFrontiers Institute, University of Colorado, Boulder, CO, USA

SAGAR D. KHARE � Department of Chemistry and Chemical Biology, Center for Integrative
Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

DAISUKE KIHARA � Department of Biological Sciences, Purdue University, West Lafayette, IN,
USA; Department of Computer Science, Purdue University, West Lafayette, IN, USA

PATRICE KOEHL � Department of Computer Science and Genome Center, University of
California, Davis, CA, USA

KONRAD KRAWCZYK � Department of Statistics, University of Oxford, Oxford, UK
DAVID LA � Department of Biochemistry, University of Washington, Seattle, WA, USA
JIE LI � Computational and Systems Biology Group, Genome Institute of Singapore,

Agency for Science, Technology and Research, Singapore, Singapore
HAIYAN LIU � School of Life Sciences, Hefei National Laboratory for Physical Sciences at the

Microscales, University of Science and Technology of China, Hefei, Anhui, China; Hefei
Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China

ANNA LOWEGARD � Program in Computational Biology and Bioinformatics, Duke
University, Durham, NC, USA

BUYONG MA � Basic Science Program, Leidos Biomedical Research, Inc, Frederick, MD, USA;
Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA

DAVID D. MOWREY � Department of Biochemistry and Biophysics, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA

x Contributors



RAFAEL NAJMANOVICH � Department of Pharmacology and Physiology, Faculty of Medicine,
University of Montreal, Montreal, QC, Canada

RUTH NUSSINOV � Department of Human Genetics, Sackler School of Medicine, Sackler Inst.
of Molecular Medicine and Molecular Medicine, Tel Aviv University, Tel Aviv, Israel; Basic
Science Program, Cancer and Inflammation Program, Leidos Biomedical Research, Inc.,
National Cancer Institute, Frederick, MD, USA

ADEGOKE OJEWOLE � Program in Computational Biology and Bioinformatics, Duke
University, Durham, NC, USA

CHIARA PALLARA � Joint BSC-CRG-IRB Research Program in Computational Biology,
Barcelona Supercomputing Center, Barcelona, Spain

STEPHANIE M. REEVE � Department of Pharmaceutical Sciences, University of Connecticut,
Storrs, CT, USA

MIGUEL ROMERO-DURANA � Joint BSC-CRG-IRB Research Program in Computational
Biology, Barcelona Supercomputing Center, Barcelona, Spain

ANA C. A. ROQUE � UCIBIO, REQUIMTE, Departamento de Quı́mica, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

ILAN SAMISH � Department of Plants and Environmental Sciences, Weizmann Institute
of Science, Rehovot, Israel; Department of Biotechnology Engineering, Braude Academic
College of Engineering, Karmiel, Israel; Amai Proteins Ltd., Ashdod, Israel;
Dept of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel,
Israel; Amai Proteins Ltd., Ashdod, Israel
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Chapter 1

The Framework of Computational Protein Design

Ilan Samish

Abstract

Computational protein design (CPD) has established itself as a leading field in basic and applied science
with a strong coupling between the two. Proteins are computationally designed from the level of amino
acids to the level of a functional protein complex. Design targets range from increased thermo- (or other)
stability to specific requested reactions such as protein–protein binding, enzymatic reactions, or nanotech-
nology applications. The design scheme may encompass small regions of the proteins or the entire protein.
In either case, the design may aim at the side-chains or at the full backbone conformation. Herein, the main
framework for the process is outlined highlighting key elements in the CPD iterative cycle. These include
the very definition of CPD, the diverse goals of CPD, components of the CPD protocol, methods for
searching sequence and structure space, scoring functions, and augmenting the CPD with other optimiza-
tion tools. Taken together, this chapter aims to introduce the framework of CPD.

Key words Computational protein design, Protein structure prediction, Structural bioinformatics,
Computational biophysics, Synthetic biology, Negative design

“Most people make the mistake of thinking design is what it looks like. People think it’s

this veneer—that the designers are handed this box and told, ‘Make it look good!’

That’s not what we think design is. It’s not just what it looks like and feels like. Design

is how it works.”

Steve Jobs, Apple’s C.E.O in an interview to the New-York Times. Nov. 30th 2003,

The Guts of a New Machine

http://www.nytimes.com/2003/11/30/magazine/the-guts-of-a-new-machine.

html

1 Introduction

The aim of this chapter is to describe the essence of computational
protein design (CPD),which, as Steve Jobs explained (see exert above)
is “how it works”. Proteins, nature’s main structural building blocks,
workers, and nano-machines, were designed over 3 billion years of
evolution; optimizing the biological need for stable yet dynamic
function under diverse and changing ecological niches. Evolution
follows two approaches—the classical divergent evolution includes a
slow change in the sequence (evolutionary drift) followed by survival

Ilan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
DOI 10.1007/978-1-4939-6637-0_1, © Springer Science+Business Media New York 2017
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of the fittest proteins from the evolving genepool. The fittest are not
necessarily the strongest or the most stable as fitness requires being
sufficiently stable to accommodate function, often under more than
one condition; alongwith the ability to degrade the protein when it is
not needed or is damaged. In parallel, there are numerous examples of
convergent evolution where different evolutionary pathways lead to
functionally and structurally similar active sites. CPD follows both of
these evolutionary approaches thus narrowing the overall “survival of
the fittest” criterion from the organism to the protein level. Further-
more, different and complementary approaches are often applied to a
requested design with the methodology following the available tool-
box and scientific approach of the computational designer.

The field of CPD has been reviewed in the frame of the general
methodology [1–8] as well as specific methodological aspects such
as library-scale CPD [9], multistate approaches and backbone flex-
ibility [10–13], electrostatics [14], fragment databases [15], and
energy landscapes [16, 17]. Specific CPD applications and protein
family targets have been reviewed such as protein therapeutics [18],
ligand binding and enzyme catalysis [19–22], binding specificity
[23, 24], membrane proteins [25, 26], metalloproteins [27],
collagens [28], conformational switches [29], and protein–protein
interactions [30]. Numerous other aspects are presented as part of
this very book which is the first book with this title. Here I aim to
present the general framework of CPD.

2 CPD and In Vitro (Directed) Evolution

In many ways, CPD is the natural extension of noncomputational
protein design and in vitro evolution which have evolved over the
last half century [31]. Moreover, as complementary approaches,
the methods should not be viewed as “either/or” but rather as
different ways to reach a common goal with the ability to intertwine
several methods. For example, in several cases CPD partially
succeeded and was optimized by directed evolution which was
re-termed in this context as affinity maturation [32].

Rational protein design commonly relies on the biochemical
and biophysical know-how of the scientist who predicts one or
more specific mutation sites as the loci potentially leading to the
requested design. Saturated mutagenesis in which a specific locus is
mutated to several or all amino acids is often applied when the
target site is identified but the local-structure function relationships
of all residues is unknown, e.g. as applied for resolving the photo-
system II mechanism of acclimation to the ambient temperature
[33]. In other cases a full domain or a full protein is the design
target. In vitro evolution circumvents the challenging need to assess
each mutation discretely by applying an assay that can test many
genetic alterations at once with the post-factum analysis of the gene
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or amino acid sequence leading to the one or more sequences that
provide satisfactory results.

In vitro evolution, also termed “directed evolution,” consists of
consecutive rounds of error-prone polymerase chain reaction
(PCR) and DNA shuffling [34, 35]. It makes use of the two basic
principles of Darwinian evolution including an (accelerated) evolu-
tionary drift that diversifies the genepool and a focus on “survival of
the fittest” selection assays. Rational protein design and directed
evolution as well as the many methods which close the continuous
gap between these methodologies, may benefit from computational
methods powered by the relatively cheap in silico power. Moreover,
these methods are constrained by the availability of mass screening,
which is not accessible for many design targets. This chapter aims to
draw a common thread to the different pathways of CPD with an
emphasis on the challenges along the different milestones of the
process. The next chapter, which should be considered as a natural
follow-up to this one, is focused on specific solutions that were
applied to encounter these challenges, thus providing a case-study
approach to the achievements and challenges of the field.

3 Maturity of the CPD Field and the Lack of an Objective Assessment

The stage of the CPD field is still premature and evolving, e.g. this
is the first book with this title. The proof of the CPD success is
simply the growing number of available specific functional designed
proteins. In the related field of protein structure prediction John
Moult sparked an important revolution by establishing the Critical
Assessment of Structure Prediction (CASP) competition two dec-
ades ago [36]. In this competition there is an important separation
of jurisdiction between the software developers, users and the
judges; thus obtaining an objective critical assessment of the state
of different structure prediction subclasses and the strengths and
weaknesses of each method. Unfortunately, there is no such com-
petition in CPD resulting in the lack of fully objective comparisons
of the methods involved. Accordingly, this chapter aims to present
common themes found in different CPD methods in a qualitative
rather than quantitative manner.

While CPD is still evolving, success stories of computationally
designed proteins highlight the current success and future potential
of CPD. Actually, the very table of contents of this book (especially
part III of the book) provides a glimpse as to the scope of successful
CPD attempts. These encompass specific protein families such as
membrane curvature-sensing peptides, ligand-binding proteins, or
antibodies via designed structural motifs, e.g. symmetric proteins
or self-assemblies, and to the design of dynamic characteristics, e.g.
allosteric sites.

The success of specific CPD attempts and the lack of overall
uniformity in methodology is not necessarily a disadvantage. The
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plethora of computational available tools and methods highlight
the complexity of the field and the need for designated solutions for
specific subclasses; whether these are structural (e.g. specific folds)
or functional (e.g. stabilization). In essence, any characteristic
parametrization, whether statistical knowledge-based or energy-
based, can be inversely applied for CPD.

4 Definition of CPD

CPD can be defined in more than one way. This very statement is at
the heart of CPD, which defines a field with fuzzy borders that are
intimately connected to numerous other fields. Indeed, computa-
tional protein designs are often found in publications that do not
use this explicit term. When searching online databases for research
papers and reviews that mention this precise term till 2014, theWeb
of Science and PubMed databases show 260 and 170 publications,
respectively (Fig. 1). As a multidisciplinary field, some of the CPD
chemical and computational publications are not indexed in
PubMed thus resulting in a higher number of publications when
searching the Web of Science database. In this database, the trend

Fig. 1 Publications with the term “Computational Protein Design” as datamined
from the Web of Science (blue) and PubMed databases (pink). The graph is
meant to provide a rough estimation of the growth and changes in the field. It
includes only research papers and reviews and does not include CPD publica-
tions which do not mention the explicit searched term
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line exhibits a clear rise in the number of publications, yet with
quite a bit of variation between years, as typical for a yet young and
evolving field. Since 2009 every year there are over 20 publications
with over 30 publications in the last couple of years (2013–2014).

With this background in mind, CPD is defined as the computer-
aided rational (or semi-rational) design of a protein (or part thereof)
to fold to a requested structure or to facilitate a requested (possibly
novel) function or biophysical property (e.g. stability).

This definition encompasses a complex and nonlinear protocol
(see Fig. 2) which touches upon several multidimensional aspects of
the CPD field:

1. Resolution of the CPD output—The resolution of the CPD
output is not part of the definition and depends on the

CPD Protocol
Target 
objectives
• Structure
• Function
• Stability
• Size 
• Dynamics
• Required 

resolution

CPD
result
• Structure
• Function
• Stability
• Specificity

Optional 
semi-rational 
optimization

CPD 
components
• 3D (global)
• Fragments
• Sequence
• Negative 

rules
• Rotamers
• Flexibility

Energy
function
• Van der Waals
• Electrostatics
• Solvation
• H-bonding
• Conformation

probability
• Additional 
terms

Theoretical and 
experimental
validation

Success?

Search & 
sampling
• Stochastic
• Deterministic
• Generate

GMEC / 
ensemble

Fig. 2 A schematic description of the CPD protocol. First, careful characterization
of the target objectives is conducted in the level of structure, function, stability,
size, dynamics, and required resolution for the CPD result. Each CPD case-study
should have different weights on each of these aspects. Second, a decision is
taken as to which components are part of the CPD protocol—ranging from
quantitative description of global features (such as coiled-coils Crick parameters)
via usage of fragment and/or rotamer libraries to specific sequence features and
negative design rules. Third, an energy function is fit to the previous steps. The
energy function most commonly includes bonded- and nonbonded interactions
along with rotamer or other conformation probability and additional terms which
are case-study specific. Fourth, search and sampling methods fit for the CPD
required framework are chosen. These can be stochastic or deterministic,
generating a single design or an ensemble of designs. Fifth, the design output
coordinates and sequence are produced and assessed for structural features
such as stability and for functional features such as specificity. Next, the design
is validated theoretically by comparing it to known structures and quantitative
available parameterization followed by experimental production and characteri-
zation. If the design goal is not achieved, the design can benefit from other semi-
rational optimization methods such as in vitro evolution.

The Framework of Computational Protein Design 7



requested target. In some cases a sub-atomic design scheme is
required, e.g. a combination of quantum-mechanics calcula-
tions, while in others the structure resolution per se is not part
of the goal. Moreover, different parts of the design target may
be designed in different resolutions.

2. The target size of the CPD—CPD may target anything from a
small region to a full protein. How small of a region is still
regarded in the frame of CPD is an open question as a single
residue site-directed mutagenesis is commonly regarded as
protein engineering rather than design. Yet, design of a binding
site or designing a protein with altered specificity may include
very few amino acids.

3. The target identity of CPD—CPD may target a structure, a
function, or a biophysical property. Each of these end-points
dictate a different approach to the design scheme. The holy
grail of protein design, whether computational or not, is the
“inverse protein folding problem” defined in 1992 by Yue and
Dill [37]. Therein, the goal is to design a protein sequence that
will fold into a requested and defined structure. Nevertheless,
CPD may target aspects which are not a specific structure but
rather a specific characteristic thereof. Once there is a quantita-
tive parameterisation, whether an amino acid scale for e.g.
protein–protein interfaces or a defined deviation between
mesophiles and thermophiles, the targeted trait can be
designed with the aid of computation.

4. The level of “rationality” of CPD—CPD ranges from a sub-
atomic resolution target structure designed via a single
sequence to varying level of random mutations—from simulta-
neous saturation mutagenesis of designed residues and till
random mutagenesis or even DNA shuffling conducted in the
frame of directed evolution. Furthermore, the rational design
can be coupled to a less rational design in a stepwise fashion
with a first version of the requested protein designed ratio-
nally designed and subsequent steps designed with the aid of
high-throughput screening. In the case of protein–protein
interaction design, this process is termed “affinity maturation
[38].”

An interesting example demonstrating all of the points is one of
the first attempts to design an artificial enzyme in which Kemp
elimination catalysts were designed [39]. The first step of this
design protocol included quantum mechanics level transition-
state calculations to create an idealized active site of the requested
catalytic mechanism. The calculations suggested how to position
protein functional groups so as to maximize transition state stabili-
zation. The high-resolution rational approach was only for the
catalytic residues with the potential list of template protein scaffolds
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including about 100 proteins. These were narrowed down to 59
candidate enzymes using modeling and practical considerations. All
the designs were expressed and assayed as to their enzymatic
requested activity. The leading candidate was further optimized
using in vitro evolution. Structurally, only residues involved in the
catalytic mechanism were designed in high-resolution while the
final assay was a functional rather than a structural assay. Hence,
in this one example, the resolution and rationality of the design
protocol exhibited a large variation between the key catalytic resi-
dues and other parts of the enzyme.

5 Objectives of Computationally Designed Proteins

It is important to define the objectives underlying the development
and use of the field, namely, what are the computationally designed
proteins expected to achieve? Such goals include basic and applied
goals alike and can be divided by the type of basic understanding of
the protein and the type of application pursued:

1. Protein folding or the inverse folding problem—the entropic
hydrophobic effect [40] underlying protein folding is long
known, yet the details of protein folding are still not fully
elucidated. The inverse protein folding problem, namely, the
problem of finding which amino acid sequences fold into a
known three-dimensional (3D) structure [37, 41, 42] is in
essence the holy grail of protein design.

2. Specificity—The design of specific interactions (protein–protein
or protein–ligand) is related to the application of negative
design rules (described below). Here, one can a priori focus
the design efforts on regions that determine specificity, or,
alternatively, add similar templates (decoys or related mole-
cules) to examine the target affinity in respect to a background
of unwanted interactions.

3. Stability and extremophilicity—Our body invests energy in
maintaining a mesophilic mild environment for proteins
including narrow range of temperature, salt concentrations,
pH etc. Yet, designed proteins are often expected to function
in hostile environments whether these are fermenters in the
biotechnology industry where protein yield is a goal or whether
these are synthetic biology applications e.g. bio-detergents.
Concomitantly, the CPD approach provides a unique method
to study the very determinants underlying the requested
extremophile trait.

4. Synthetic biology—Natural proteins were optimized according
to the need of organisms and the constraints of the evolution-
ary process, e.g. not enabling large leaps at a time and not
focusing on traits that don’t affect organism survivability. In
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vitro evolution attempts to harness turbo-mode rules of evolu-
tion with new survival assays to produce proteins of interest.
Nevertheless, the process is still constrained by the aforemen-
tioned components. Taken together, CPD provides an impor-
tant toolbox for synthetic biology applications [43, 44].

5. Negative design rules—While the natural intuitive logic focuses
on the direct objective, often the unwanted objective is not less
important. CPD offers a focused path to study negative design
rules which are often overlooked due to methodological chal-
lenges in studying them. In other words, while the natural
focus of biology is answering the question “how do things
work?” this is often the easy question. The question that is
not less easy is: “how do things not work in the wrong direc-
tion?” The two questions are not two sides of the same coin but
rather two complementary fields that only when combined
answer the question of “how do things work in a living sys-
tem?” A good example of combining positive- and negative-
design rules in a related field encompasses the success of drugs
as given by the therapeutic index (TI). The index combines the
positive effect of manipulating the requested target with the
negative side-effects, generally expressed by the lethal-dose
(LD) which is usually due to lack of specificity and/or is due
to toxicity of the drug or metabolites or degradation products
thereof. (see Note 1)

In summary, while evolution (in vivo or in vitro) examines the
overall fitness of the organism, CPD enables a focused design with
positive and negative rules alike. These rules can be statistical
knowledge-based rules where the underlying physics is not fully
understood or may not be fully parameterized, or, alternatively,
biophysical rules underlying specific enthalphic or entropic contri-
butions, or lack of, to the requested design.

6 Structural Levels of CPD: Design Target and Design Building Block

The structural levels of CPD include two opposing aspects—the
structural level of the target of CPD and the building block to
achieve the CPD.

6.1 Structural Levels

of CPD: Design Target

The CPD procedure can be applied in many different structural
levels. This is not only a description of the final goal but also
strongly affects the CPD procedure as different structural levels
dictate different search and sampling strategies as well as different
scoring functions.

1. De novo CPD—The most classical CPD procedure is the so-
called de novo design where a totally new fold and/or function
are pursued, e.g. as is the case for the betadoublet beta-
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sandwich design of Richardson [45], the TOP7 design of Kuhl-
man and Baker [46], the helix-bundle designs of DeGrado and
coworkers (e.g. ref. 47), the transmembrane Zn2þ transporter
of DeGrado [48], or the recent enzyme designs of Baker (e.g.
ref. 49).

2. Core stabilization—The driving force for folding of soluble
proteins is the entropic hydrophobic effect in which the col-
lapse of the hydrophobic protein core maintains the disorder of
the aqueous solvent around the solvent accessible hydrophilic
amino acids of the protein. However, the hydrophobic effect
results in a molten globule which is later optimized for enthal-
pic contributions of specific interactions and packing. As this
process is often not optimized for stability, the design of better
protein cores is a long-standing approach within CPD
[50–52]. In general, most CPD attempts thus far included a
component of core stabilization. Other approaches to stabili-
zation include targeting the most unstable parts of the protein,
e.g. loops (see Note 2).

3. Solubilization of protein–solvent interface—One of the most
classic examples of genetic diseases, sickle-cell anemia, includes
a hydrophobic patch on the surface of the hemoglobin β-sub-
unit following a single Glu ! Val mutation. As such, main-
taining the solubility of the protein may assist in avoiding
aggregation. Likewise, membrane proteins were solubilized to
allow for the study of the membrane protein within an aqueous
milieu as well as in order to study the basic features of mem-
brane proteins e.g. references [53, 54].

4. Symmetry—The complexity of the CPD process can be largely
trimmed by adding symmetry to the structural design. This can
be done for symmetric proteins such as beta-propeller proteins
[55], for coiled coils [56], or crystallographic symmetry [57].

5. Binding site—The binding site is literally the heart of the
protein and usually requires special care which is different
from the general approaches to other CPD regions. These
range from quantum-mechanics optimization to grafting an
existing site to a de novo designed template. For example, a
binding site CPD includes many different case-studies such as
changing the bound metal, e.g. as done for ferritin [58], de
novo designed metal-binding [59] or nonbiological cofactor-
binding [60] proteins, and enzymes [19–22].

6. Protein–protein interactions (PPI)—While a binding site is
often specifically designed for a non-amino acid moiety, pro-
tein–protein interaction CPD include the stable or transient
interaction between spatial patches of amino acids that are on
the surface-accessible part of the protein [30]. Numerous case-
studies of PPI CPD were applied with altered specificity [61,
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62] and affinity [63]. Likewise, new PPI were designed for
binding a conserved surface of the influenza hemagglutinin
[32]. In this frame, the large field of antibody CPD (e.g.
[64]) is essentially the design of new PPI incorporating unique
features of the antibody such as the hyper-variable loops.

7. Dynamics—Proteins are often regarded as XYZ coordinates of
frozen structures with a global minimum energry conforma-
tion (GMEC) structure represented within PDB files. How-
ever, proteins are four-dimensional machines (space and time
dimensions) with intrinsic local flexibility and global dynamics.
A ligand-controlled conformational switch [65], an minimal
75-residue allosterically-regulated Kemp eliminase catalyst
[66], or a Zn2þ transporter [48] provide an example to CPD
focusing on such functional dynamics which must be a major
focus of any CPD involving dynamic function.

8. Membrane proteins and other “unique” protein groups—As pre-
sented in this book, many protein families have designated
CPD schemes which harness family-specific parameterization.
Perhaps the most important such group is membrane proteins
[25, 26], which constitute over a quarter of all genes, most
communication between cells and organelles and as such also
most drug targets. Thus far, this is the youngest and least
understood field in structural biology. Successful membrane
protein CPD includes a specific transmembrane integrin-
binding helix [67] and the Zn2þ transporter [48].

6.2 Structural Levels

of CPD: Design

Building Block

CPD requires designated software or the integration of existing
software in a manner tailored to the requested goal. Many chapters
in this book provide detailed examples to such tools. In this frame,
CPD can be applied in several structural levels—from optimization
of an active site by quantum mechanics to global geometric fea-
tures. Hierarchically, from small to large, the main structural fea-
tures include:

1. Rotamers and conformers—The basic building blocks of amino
acid side-chains and their role in structural bioinformatics are
reviewed elsewhere [68]. Briefly, the Dunbrack rotamer library
[69–71], representing the main side-chain conformations in a
backbone-dependent manner, became the standard lookup
tables scanned within the CPD procedure. As each side-chain
can accept only a discrete number of conformations repre-
sented in the rotamer library, these libraries are at the heart of
CPD. Alternatively, much larger conformer libraries, e.g. refer-
ence [72], can account for side-chain conformations which are
not at a local or global energy minimum. Unlike the average
side-chain conformation of rotamer libraries, here each con-
formation depicts a specific side-chain conformation from a
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high-resolution structure. Taken together, these side-chain
structural libraries are the three-dimensional natural extension
of sequence space to describe the possible structures at each
position.

2. Flexible backbone—Most often, while side-chain conformations
are thoroughly scanned via rotamer- or conformer-libraries, the
backbone conformation is copied from an existing structure.
Consequently, it is important to sample alternative local con-
formations via multistate approaches or the artificial introduc-
tion of backbone flexibility [10–13]. Such flexibility enables
not only the introduction of larger side-chains at each template
position, but also enables to fit the new structure to the newly
introduced local geometrical constraints.

3. Fragments—As the scientific committee still doesn’t know to
address the physics-based complexity of protein GMEC struc-
ture design sufficiently well, it is beneficial to reassemble known
high-resolution structural fragments in a knowledge-based
approach. The most famous such example is the Rosetta soft-
ware of the Baker lab with RosettaDesign [73] tailored for
CPD. Here, a nine-amino acid fragment library is used for
the initial construction of the designed region. Next, rotamer
library optimization and an energy function including local and
global features are applied. These include careful knowledge-
based pseudo-energetics of hydrogen bonds, solvation energy,
and the usual force-field components such as steric clash and
electrostatics.

4. Geometrical global features—Last but not least, the design of
domains and full proteins often applies equations addressing
global features. Perhaps the most known of these are the family
of coiled coils [56] comprising 10 % of proteins. Here, equa-
tions correlating sequence and helical bundle geometry are
useful for the de novo design of the protein fold [57, 74].
Other knowledge-based potentials include the Ez potential
for assessing the cross-membrane pseudo-energetics [75],
which was applied to design a transporter [48], or even equa-
tions assessing solvent accessibility.

7 Search and Sampling Procedures

The topic of search and sampling [68] in CPD is the beating heart
of the process. In analogy, all the above description composes the
ingredients of this blood but without proper circulation an insuffi-
cient number of components will be included in CPD; predisposing
the process to failure. Complimentary, efficient search and sampling
methods allow for higher resolution designs as additional layers of
information can be included in the design cycle. The topic requires
a book devoted to it and is introduced elsewhere [68] with specific
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focus areas described as focus areas in this book. Consequently, here
only a very brief description of the topic and related jargon is
presented. Search and sampling methods are grossly classified as
stochastic and deterministic. Deterministic methods have access to
the complete data and if they converge they are bound to find the
GMEC. These include dead-end elimination (DEE) which is often
combined with the A* search algorithm (DEE/A*), self-consistent
field method (SCMF), belief propagation, molecular dynam-
ics (MD), branching methods, graph decomposition, cost function
network (CFN) algorithms, Markov random field solvers (MRF)
and linear programming.

In contrast to deterministic methods, stochastic search meth-
ods have a random component andmay give a different answer each
run pending on the specific number produced by the random
number generator which is part of the algorithm. The most
known stochastic method is Monte Carlo (MC) where different
additional measures are applied to drive convergence and decrease
the number of random steps. These include biased MC, MC-
quench or combining sampling power of MC with the speed of
methods such as SCMF. The iterative stochastic elimination (ISE)
aims at producing a manageable high-scoring ensemble rather than
a single GMEC, such that the ensemble can be later searched with
other methods [7]. Alternatively, temperature is introduced to
control the distance between steps, as done in simulated annealing
(SA) or the replica exchange method (REM). Often, to avoid
convergence in the wrong local minima, occasional jumps (jump
walking or j-walking) are introduced. Biological methods such as
genetic algorithms (GA) aim to imitate the evolutionary process by
improving the population of results. Last but not least, often hier-
archical methods are applied for the different parts of the CPD
procedure, each fit for a different search space and resolution.

8 CPD as a Feedback Loop: Negative Design, Quality Assessment,
and Experimental Validation

CPD is not a standalone procedure for optimizing a target structure
or function. Not less important is the unwanted result. Indeed,
many successful CPD case-studies hardwired the so-called
negative-design into the CPD protocol [49, 76–83]. Negative
design may include unwanted conformation or binding partner or
even an unwanted structural characteristic. Next, the theoretical
model of CPD should be assessed with every possible type of
quality assessment (QA) tool, whether general for all proteins or
specific for the target protein family. Last, and most important, the
suggested sequence should be assessed experimentally with the
resulting experimental validation serving in a feedback iterative
loop to improve the CPD. Moreover, often the CPD is successful
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only to a certain limit or lacks the ability to score the best design
within an ensemble. In such cases there are two options—either
conducting experimental validation to many designs or adding an
additional method to optimize the design, e.g. directed evolution.

9 Notes

1. When considering negative design rules, a good practical exam-
ple of a positive vs. negative design metric is the common
pharmaceutical therapeutic index (TI). TI is composed of the
ratio between the lethal (or toxic) dose affecting 50 % of the
population (LD50 or TD50) and the effective dose for 50 % of
the population (ED50) i.e. TI ¼ TD50/ED50. In essence, this
is a ratio between the negative and positive effects. In molecular
terms, the drug can bind with very high affinity to the target
protein or, alternatively, the target protein may be well-
designed for drug binding. Yet, the drug may also bind to
other proteins, or, alternatively, the destruction of the protein’s
function may affect biochemical pathways that are beyond the
pathway that was the focus of the drug design. Interestingly,
while pharmaceutical companies focus energy on the study of
such side-effects, this is still not the common scheme in CPD.

2. Loop design is the most difficult part of the protein target to
design or to predict. Indeed, in protein structure prediction,
the loops usually account for most of the RMSD between the
model and the actual structure. To circumvent the challenge,
some designs, e.g. TOP7 [46] confined the loop regions to the
minimal length possible. The challenge includes several aspects:
First, loops have no periodic structure-confining constraints as
secondary structures exhibit. Second, loops are intrinsically
flexible and, for longer loops, may even be intrinsically disor-
dered. Third, loops are regularly part of soluble regions and do
not have a confining domain they adhere to or a knowledge-
based rule such as a hydrophobic core. Last, even short loops
may be highly dependent on the precise geometry of the sec-
ondary structures from which they stem. Structure prediction
software should give special attention to loops, though not all
do it as a separate entity within the modeling scheme. As with
other structure prediction tools, a consensus tool combining
orthogonal methods may provide better results than the indi-
vidual methods [84]. Designated tools focus efforts on the
unique properties of this region. For example, SuperLooper
[85] offers an online servers datamining a large (half-billion)
loop structures derived from structural data. A known tool
focusing on loop modeling is LoopBuilder [86] which tackles
the challenge by an extensive sampling of backbone conforma-
tions, side-chain addition, the use of a statistical potential to

The Framework of Computational Protein Design 15



select a subset of these conformations, and, finally, an energy
minimization and ranking with an all-atom force field.
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Chapter 2

Achievements and Challenges in Computational
Protein Design

Ilan Samish

Abstract

Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or
full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working
environment. This chapter describes the birth andmaturation of the field by presenting 101 CPD examples in
a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents
the plethora of CPD approaches with the hope of providing a “CPD 101”. These reflect on the broader
structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based
and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs
and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic
differential approaches towards different protein regions, (4) identification of key hot-spot residues and the
relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects,
(6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of
experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential
designs. Future challenges also include dissemination of CPD software to the general use of life-sciences
researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein
structure and function and the relationships between the two along with the application of such know-how for
the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to
nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.

Key words Computational protein design, Inverse folding problem, De novo design, Directed
evolution, Rational design, Synthetic biology, Negative design, Enzyme design, Protein–protein
interaction

“The abundance of substances of which animals and plants are composed of, the

remarkable processes whereby they are formed and then broken down again claimed

the attention of mankind, and hence from the early days they also persistently capti-

vated the interest of chemists. . . . To determine the structure of the molecule the chemist

proceeds in a similar way to the anatomist. By chemical actions he breaks the system

down into its components and continues with this division until familiar substances

emerge. Where this decomposition has taken different directions, the structure of the

original system can be inferred from the decomposition products. Usually, however, the

structure will only be finally elucidated by the reverse method, by building up the

molecule from the decomposition products or similar substances, i.e. by what is termed

synthesis. Nevertheless, the chemical enigma of Life will not be solved until organic

chemistry has mastered another, even more difficult subject, the proteins, in the same
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way as it has mastered the carbohydrates. It is hence understandable that the organic

and physiological chemists are increasingly turning their attention to it. . . .”

Emil Fischer, Nobel Lecture, December, 12th 1902

1 Introduction: The Birth of Computational Protein Design

In 1902 Emil Fischer’s Nobel lecture [1] presented the idea of
protein design (see exert). He emphasized that molecules can be
elucidated only by the reverse method, namely, design from decom-
position products, which in the case of proteins are the amino acids.
At the time Fischer stated that proteins are far more difficult than
carbohydrates, for which he received the Nobel. Indeed, it was only
in 1972 that Chris Anfinsen received a Nobel Prize for the “con-
nection between the amino acid sequence and the biologically
active conformation.” Anfinsen’s famous experiment included dena-
turing and renaturing ribonuclease A; thus setting the stage for the
sequence-structure–function relationships underlying protein sci-
ence [2]. In 1981 Drexler speculated that it should be possible to
design novel proteins and that such proteins could provide a general
capability for molecular manipulation [3]. In 1983 Pabo wrote about
designing proteins and peptides concluding that it may be difficult to
design proteins which carry out a particular function but the use of
pre-folded backbone configuration may be useful at this stage [4].
Pabo pointed at the so called inverse folding problem of using a
known backbone conformation on which new sequences can be
applied; thus modifying function. In agreement with Pabo, in 1987
Wodak reviewed the field with the title “computer-aided design in
protein engineering” where the key features of CPD were laid out in
a manner that is accurate till this very day, and not only in e.g. the
Wodak lab’s DESIGNER [5, 6] CPD software.

In 1985 DeGrado conducted what should be regarded as the
first CPD: a design, synthesis, and characterization of a 17-residue
helical peptide that was the tightest calmodulin-binding peptide
produced [7]. This first CPD attempt, described in more detail
below, includes many of the main features of current CPD including
the need to produce and characterize the suggested design, the
crosstalk between human and computer input and the iterative feed-
back process of the CPD scheme to learn and improve the design.

Other early attempts were “computer-aided” by visually inspect-
ing the protein for suggesting specific point mutations. For example,
in 1985 Rutter and coworkers replaced two glycines by alanines in
the binding site of trypsin, thus altering binding specificity [8].

While DeGrado and others used computer-aided protein
design in early days, according to PubMed, the term “protein
design” was introduced only in 1986 by Vonderviszt, Matrai, and
Simon [9]. As in the talk of Fischer, Simon’s paper did not focus on
the protein design per se. Rather, they implied the potential use of
analysis of protein environment trends as parameterization required
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for protein design. It took an additional decade for the term
“computational protein design” to enter the literature. In 1997,
Dahiyat, Sarisky, and Mayo introduced the term as part of a system-
atic design of a ββαmotif (Table 1) in which they designed 20 of the
28motif residues [18, 19]. Early attempts of CPD often did not use
this term despite describing science that is in the core of the CPD
field till this very day. In parallel, numerous CPD publications refer
to CPD with related terms that relate to protein design but do not
focus on the related computational methodology. These include
protein design, synthetic biology, rational design, and more.

Of special note is the fuzzy division between “protein design”
and CPD as often there is a significant contribution from computa-
tional tools to protein designs that are conducted with an expert
know-how that is formulated by computation. This review will
emphasize attempts of computer-assisted designs but will focus
on protein designs in which the computational part is central to
the design methodology.

Thus, in a century since Fischer’s visionary Nobel lecture,
science has moved from yearning to understanding protein struc-
ture by designing it from building blocks to applying a computa-
tional general design algorithm. Not less important, protein design
is often termed “the inverse folding problem” as the success of
using building blocks to fold a protein into a given structure
and function is the true proof that folding is well-understood.
Consequently, the know-how and success of CPD contribute
directly to that of protein structure prediction in healthy and
diseased proteins. Within these frameworks, the CPD field is
constantly growing into new basic- and applied-scientific research.

Here, rather than providing an overview of methodological
components [121, 122], the idea is to present CPD examples in
chronological order showing the achievements and pending chal-
lenges in a timeline perspective. In other words, rather than
providing a grocery list of available computationally assisted protein
design, this review is aimed towards presenting the state of the field
as it evolves on the chronological milestone road. Taken together,
these case-studies encompass the breadth of the CPD field, the
plethora of distinct flavors of it as well as the common threads of
success and pitfalls computational protein designers are encoun-
tered with (Table 1). The concluding remarks focus on the latter;
providing scientific questions for years to come.

2 The First Decade of Computational Protein Design, 1985–1994

In 1985 DeGrado, a leading pioneer in protein design, designed
with coworkers the tightest-binding peptide inhibitors of calmod-
ulin known till then [7]. Computationally, the 17-residue helical
peptide designs included computer-graphics based modeling of the
calmodulin target as well as computer modeling [123] of the
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Å
)

2
0
1
3
,
P
ro
ck
o
,
B
ak
er
,

JM
B
[1
0
9
]

9
1
.

D
e
n
o
vo

h
ig
h
-a
ffi
n
it
y

an
d
se
le
ct
iv
e

li
g
an
d
-b
in
d
in
g

p
ro
te
in

S
el
ec
ti
ve
,
h
ig
h
-a
ffi
n
it
y

b
in
d
er

o
f
th
e
st
er
o
id

d
ig
o
xi
g
en

in

L
ig
an
d
co
n
fo
rm

er
li
b
ra
ry
,

R
o
se
tt
aM

at
ch
,

R
o
se
tt
aD

es
ig
n
,
P
D
B

sc
af
fo
ld

sc
an
,
C
C
P
4

(s
h
ap
e
co
m
p
le
m
en

ta
ri
ty
)

X
-r
ay
,
S
E
C
,
C
D
,
A
U
C
,

fl
u
o
re
sc
en

ce
p
o
la
ri
za
ti
o
n
,
is
o
th
er
m
al

ti
tr
at
io
n
ca
lo
ri
m
et
ry

(I
T
C
),
ye
as
t
su
rf
ac
e

d
is
p
la
y

4
j8
t
(2
.0
5
Å
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Å
),
4
p
6
l

(2
.8

Å
),
2
m
u
z

(N
M
R
)

2
0
1
4
,
Jo
h
,
D
eG

ra
d
o

Sc
ie
n
ce

[1
1
7
]

(c
o
n
ti
n
u
ed

)

Achievements and Challenges in Computational Protein Design 41



Ta
bl
e
1

(c
on
ti
nu
ed
)

N
ov
el
ty

Ta
rg
et

C
om

pu
ta
ti
on
al

m
et
ho
ds

M
ai
n
ch
ar
ac
te
ri
za
ti
on

m
et
ho
ds

P
D
B
(Å
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calmodulin–peptide interaction focusing on electrostatic potential
surfaces and structural modeling. These included side-chain posi-
tioning using geometries taken from a known homologous struc-
ture of an intestinal calcium-binding protein, interactive computer
graphics, and minimization using the AMBER [124] force-field.
The acquired know-how of the calmodulin-peptide structure and
binding characterization was tested by iterative peptide synthesis
and characterization. Hence, this early attempt of CPD underscores
the need to integrate all available know-how and methods for the
requested target as well as the need to combine theory and experi-
ment in an interactive and iterative feedback loop.

In 1990 Hecht and Ogden and the Jane and David Richardson
lab designed a de novo four-helix bundle, termed Felix [10]. This is
an example in which protein design rather than CPD was the
leading method. Even for designing the hydrophobic core, the
authors write that: “Space-filling models of Felix were constructed
and the sequence was then modified to remove lumps or fill holes. This is
easier to do with physical models than on the computer.” Computa-
tionally, several structures were modeled followed by application of
molecular dynamics (MD). Positive- and negative-design rules were
conducted manually, including for residues preferring helicity, for
the radial distribution of hydrophobicity along the helices and for
helix capping. Hence, this case-study proves that it is required not
only to focus on the requested design combining existing and
newly found parameterization, but rather attention should be
devoted to the so-called negative design of avoiding unwanted
designs.

In 1991 Hellinga and coworkers used CPD software aimed at
sites with predefined geometry (DEZYMER [125]). They intro-
duced a copper-binding site into thioredoxin by mutating four
amino acids [11]. In the analysis of the design they concluded
that two residues are pivotal for the metal ligation while the two
other are pivotal for removing alternative modes of binding, thus
highlighting the need to focus on negative design.

In 1991 Wilson, Mace and Agard presented a generalized
model for altering substrate specificity [12]. Using a ΔΔG free
energy perturbation approach, the free energy of the free substrate,
free enzyme, and complex were computed separately as to non-
bonded and solvation energetics over the different potential con-
formations suggested by the PROPAK [126] rotamer-library based
CPD software. The approach was tested using a protease in which
the specificity for cleaving leucine was raised by three orders of
magnitude following a single mutation. While this CPD example
entails merely a single mutation, the components of the approach
include many of the later CPD methodology.

In 1992 Hurley and Matthews redesigned the core of bacterio-
phage T4 lysozyme [13]. This case-study, coming from the lab
most known for thoroughly studying the effect of mutation on
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protein structure and function, includes several insights. Only
nine solvent inaccessible amino acids were subjected to redesign.
Moreover, a core valine residue was not part of the redesign as it
binds structural water. The repacking was limited to residues
that are more hydrophobic compared to the wild-type residues. In
addition, as all potential sites occur in α-helical regions, no net
increase in the number of β-branched amino acids (Val and Ile)
was allowed. While each addition of a β-branched amino acid to a
helix has a small energetic cost of less than 0.5 kcal/mol, it was
feared that the accumulation of such residues will destabilize
the structure. For packing calculations, the Ponder and Richards
rotamer library [126] was used truncating rare (<5 %) rotamer
conformations. Hydrogens were omitted and reduced van der
Waals radius was applied to account for local relaxation. The free
energy was calculated with a standard local minimization as well as a
component accounting for the loss of side-chain conformational
entropy. Four amino-acids were mutated showing a similar stability
compared to the template structure (0.5 kcal/mol destabilization).
The destabilization of each single mutation was much larger thus
showing the overall cooperative nature of the overall core repacking
design.

In 1994 Jane and David Richardson, de novo designed beta-
doublet, a β-sandwich protein [14]. It is no surprise that such an
endeavor came from pioneers in visualization (Richardson diagram,
also known as ribbon diagram), parameterization, and quality con-
trol of protein structures. A four-stranded β-sheet dimer designed
from scratch included an intersubunit disulfide bridge. Internal
side chains were chosen for their statistical preference for β-sheet
formation and their ability to tightly pack in a protein core. This
knowledge-based parameterization was corroborated by side-chain
repacking of rotamers. This design scheme focused on negative
design, specifically disfavoring the Greek Key topology. To mini-
mize alternative folding modes, turns were shortened as much as
possible. Binding of 1-anilinonaphthalene-8-sulfonate (ANS) was
higher, compared to binding to well-folded proteins. Along with
low unfolding cooperativity and poor NMR characteristics,
this may indicate a loosely packed hydrophobic core or even a
molten-globule structure; highlighting the challenge of obtaining
thermostable de novo designed proteins, let alone those composed
of β-sheets.

3 The Second Decade of CPD, 1995–2004

Setting the framework for CPD, in 1995 DeGrado and coworkers
reviewed the hierarchic approach to protein design including helix
stabilization, coiled coils, four helix bundles, β-sheets, mixed α-β
structures, DNA-binding proteins, and functional proteins [127].
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The presented approach emphasized the need for quantitative
parameterization of the various levels of structure and function
within the design target. Such parameterization can be either
physics-based or knowledge-based. In either ways, it should be
integrated into quantitative potential (scoring) functions.

In 1995Desjarlais and Handel presented a novel computational
framework for the de novo design of hydrophobic cores [15]. The
CPD was conducted via the Repacking of Core (ROC) program,
later developed to their Sequence Prediction Algorithm (SPA)
[128]. The approach included two steps—a custom-made rotamer
library for hydrophobic residues (Val, Ile, Leu, Phe, and Trp) and a
genetic algorithm (GA) for optimizing sequence and structure
space of the designed protein. The method was exemplified on
the phage 434 Cro helical protein with five to eight amino acid
changes in the hydrophobic core. Two of the three attempted
designs resulted in a stable protein. This first study into a pivotal
protein region helped to substantiate the notion that the noncore
residues of a protein play a role in determining the uniqueness of
the folded structure [15].

In 1997 Desjarlais and Handel applied their ROC program for
the stabilization of a mainly β-sheet protein, ubiquitin [16]. Nine
designs with three to eight mutations each were experimentally
characterized. Unlike their 434 Cro [15] redesign, all ubiquitin
designs were less stable relative to the wild-type protein. The
authors postulate that this may be due to the fact that in contrast
to the α-helical 434 Cro protein, ubiquitin is mainly composed of
β-strand secondary structures which may dictate more stringent
packing requirements. One of the designs was structurally eluci-
dated confirming that the core side-chains had less favorable con-
formations and higher flexibility compared to the wild-type [17].

In 1997Dahiyat andMayo opened the field of full-protein fully
automated computational de novo protein design [18, 19]. The
CPD scheme was termed ORBIT [18] for Optimization of Rota-
mers by Iterative Techniques. The so called full sequence design 1
(FSD-1) was not a typical protein of over 200 amino acids, but
rather a small, 28-residue sequence; a length considered a peptide
rather than a protein. Nevertheless, the remarkable achievement
included a complex ββαmotif based on the polypeptide structure of
a zinc finger domain in which 20 of the 28 residues were subjected
to design. Moreover, while such a small DNA-binding motif is
folded in nature with the aid of a zinc ion, the zinc-ligating residues
(two cysteines and two histidines) were replaced in the design with
two phenylalanines, an alanine, and a lysine without the need for
the metal ion. As a side-remark, the use of a charged lysine in such a
core position highlights the need to take caution in stigmatizing
amino acids as “hydrophobic” or “hydrophilic” as in this case the
long hydrophobic neck of this charged residue filled the hydropho-
bic requirement within this position. The 1.9 � 1027 possible
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amino acid sequences were searched by application of the Dead End
Elimination (DEE) theorem [129]; highlighting the intertwined
connected between CPD and search and sampling methods [130].
FSD-1 displayed low identity to any other existing sequence, thus
establishing it as a ‘de novo’ design. In this fixed-backbone design,
an existing crystal-structure template was utilized in which eight
residues were left as is and the remaining 20 were subjected to
design. The hierarchical approach of confining key positions was
further confined by considering 7, 10, and 16 optional amino acids
for each core, surface, and boundary position, respectively. The
backbone dihedral angle further confined two positions to glycine,
thus de facto leaving 18 positions for CPD. The combined struc-
ture space defined by the accessible backbone-dependent Dunbrack
rotamer library [131] applied over the accessible fold space,
resulted in 1.1 � 1062 possible rotamer sequences. The experimen-
tal validation included Nucleic Magnetic Resonance (NMR) struc-
tural elucidation exhibiting 1.98 Å and 0.98 Å Cα-atom root means
square deviation (RMSD) between the design and the template
structure for the full and the core residues (residues 8 to 26),
respectively. The difference between these two numbers highlights
the intrinsic flexibility and disorder associated with nonsecondary
structure elements, especially when positioned at the edge of the
protein sequence.

In 1998 theMayo lab applied the ORBIT [18] for the design of
a hyperthermophilic Streptococcal protein G β1 domain [20]. The
stability enhancement stemmed from seven mutations which opti-
mized core packing, increased burial of hydrophobic surface area,
more favorable helix dipole interactions, and improvement of sec-
ondary structure propensity. The resulting protein displayed a
melting temperature above 100 �C and a 4.3 kcal/mol thermody-
namic stabilization compared to the wild-type at 50 �C. Structure,
activity, and binding to an antibody were similar to the wild-type
structure thus changing only the thermal stability of the protein.

In 1998 the Kim lab designed right-handed coiled coils apply-
ing backbone flexibility, hydrophobic-polar residue patterning for
the superhelical axis and the hydrophobic core along with modeling
of packing [21]. Backbone coordinates were determined by explor-
ing a parametric family of superhelical backbones described origi-
nally by Francis Crick. Negative design was applied by mimicking a
less-folded state via permutations on the mutation location and
calculating the energy gaps to such permutations. Dimeric, tri-
meric, and tetrameric bundles were designed. The tetramer was
structurally resolved exhibiting a striking 0.2 Å RMSD for the core
residues.

In 1998 the DeGrado lab de novo designed an antiparallel
three-helix bundle, α3C, in an iterative process with specific inter-
actions added incrementally [22]. In this design many steps were
designed rationally without the aid of the computer. Two rounds of
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core design were conducted fully by CPD. A previously designed
dimer (CoilSer) that was found to be a trimer was the initial
template for the design. In this structure, some hydrophobic Leu
residues adopt a less likely rotamer suggesting the availability of
better core packing. The trimer was trimmed by one turn. In the
first round, GlyAsn and ProGlyAsn loops were added to turn the
discrete helices into a single subunit. In the second round, helix
capping was introduced and in the third round nonnative charac-
teristics were eliminated by negative design. Specifically, the 17
residues of the hydrophobic core were repacked using 30 runs of
ROC followed by 30 runs of ROC for a subset of six residues.
Further, to avoid both clockwise and counterclockwise turning of
the helices within the trimer, charged residues were designed to
cause electrostatic repulsion and favor only one conformation. This
is a direct negative design step. Thus, the designed helix capping
interactions and electrostatic interactions between partially exposed
residues assisted in achieving a unique, native-like structure. In
1999, three surface exposed residues were changed thus designing
α3D in which the homology between the helices was decreased thus
simplifying structural elucidation [23].

In 1999 the Serrano lab redesigned the two-helix coiled-coil
interleukin-4 using GCN-4 as a template [24]. This is not a classical
CPD case-study but rather a computer-aided sequential rational
design where deep understanding of the binding interface enabled
grafting of the positive electrostatic convex binding site shape from
the four-helix-bundle protein to a new two-helix template. The
side-chains of the mutated positions were structurally predicted
via the rotamer-library-based software SMD [132]. Interestingly,
MD simulations were applied as in silico screening of the mutations
prior to decision on experimental characterization. Depending on
the size of the interleukin-4 binding site (to interleukin-4 receptor
alpha) grafted on the GCN4 template, the binding affinities ranged
from 2 mM to 5 μM.

In 2001 the Baker lab applied CPD to convert the monomeric
protein L to an obligate dimer by just three mutations [25]. The
design relied on a β-hairpin single mutation domain swapped dimer
in which a β-turn straightens and the C-terminal strand inserts into
the β-sheet of the partner. The Rosetta [133] module RosettaDe-
sign [134] focused on an eight-residue region and added just two
mutations to the domain swapping mutation resulting in an obli-
gate dimer.

In 2001 the Serrano lab applied PERLA [135] for the redesign
of their previously designed 20-residue β-sheet protein betanova
[136] aiming to create a set of double- and triple-mutations with
different folding stabilities so as to compare predicted and experi-
mental folding stabilities [26]. Briefly, PERLA includes a custom-
made rotamer library, an all-atom force-field, and a combination of
statistical terms including solvation and entropy. Relaxation of the
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local strains is achieved by sub-rotamer states and most parameters
are balanced with respected to a reference denatured state. DEE is
applied to prune the search space and then side-chain conforma-
tions are weighted using a mean-field approach. Here, two CPD
schemes were applied: First, four positions adjacent to aromatic
residues were discretely redesigned aiming at utilizing the Nuclear
Overhauser effects (NOEs) between the aromatic residues and the
new mutations for evaluating structural effects. Second, multiple-
residue mutations were designed with the most promising designed
experimentally characterized. Increase in core hydrophobicity or
van der Waals contacts stabilized the design. At one site the algo-
rithm did not predict a hairpin destabilization, possibly due to
alternative conformations. Alternatively, the sequence of folding
events should be taken into account along with the balance
between long-range electrostatic interactions and short-range van
der Waals interactions. β-sheet propensities were also shown to
correlate with stabilization. Some of the mutants stabilized the
design by 1 Kcal/mol. Taken together; this early study displays
the usage of CPD algorithms for the study of structure–stability
relationships and parameterization of their underlying causes.

In 2001 Bolon andMayo applied ORBIT [18] to computation-
ally design protozymes which are enzyme-like proteins exemplified
on a thioredoxin scaffold catalyzing a nucleophilic hydrolysis of p-
nitrophenol acetate [27]. ORBIT applies a force-field and DEE
theorem to compute sequences that are optimal for a given scaffold.
The use of an inert scaffold required the design of a new cleft, which
was relatively open to the surrounding milieu, thus possibly affect-
ing efficiency. The 94 non-glycine positions reflected 10101 rotamer
sequences that were scanned using the DEE algorithm within
ORBIT [18]. The rate enhancement of ~25-fold (KM ¼ 170 � 20
μM, kcat ¼ 4.6 � 0.2 � 10�4 s�1) is comparable to that of early
catalytic antibodies (Table 2).

In 2001 the Kim lab designed six dimeric coiled coils with a
range of stabilities by combining knowledge-based rules (specifi-
cally the a and d hydrophobic positions in the heptad repeat),
rotamer selection and sampling followed by minimization [28].
The first two parts address the large accessible search space while
the last one assists in achieving quantitative estimates of interaction
energies. For example, a hydrophobic Val was constrained to the
gauche (�) rotamer, which is known to be favored in this position.
In parallel to choosing a small subset of rotamers, subrotamers were
introduced by including þ/110� of the χ1 and χ2 rotamer posi-
tions. Interestingly, to address the difficulty of modeling solvent-
exposed charged residues, residues at the e and g positions of the
heptad repeat were truncated beyond the Cδ position. Minimiza-
tion was carried out without electrostatics but with an explicit
hydrogen-bonding term and the overall solvent-exposed residue
energetics were later fixed by an empirical solvation correction.
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The propensity of residues to be in helices was also added to the
equation. The designed structures displayed an impressive <0.7 Å
for all non-hydrogen atoms.

In 2002 the DeGrado lab computationally designed an A2B2

four-helix bundle protein binding diiron called DueFerro tetramer
orDFtet [29]. The de novo design focused on the gap between the
requested fold and alternative folds thus explicitly incorporating
positive- and negative-design considerations. The design was built
using a template of a previous design which was then elongated to
increase stability by extending the four-helix bundle Crick para-
meters. Residues were chosen to increase helical propensity, stabi-
lize one of the competing topologies via computing contact
energetics. The best four designs following 700,000 iterations of
sequence design were modeled structurally and the best design was
validated experimentally.

In 2002 the Serrano lab de novo designed 13 divergent spectrin
SH3 core sequences to determine their folding properties [30].
The PERLA-based [135] redesign included nine nonconsecutive
positions resulting in a larger buried hydrophobic volume.
The computational design over-packed the core resulting in an
expansion of the β-barrel. This was further validated by conducting
Ile ! Val mutations which all resulted in strain removal and stabi-
lization. Eleven of the 13 designs folded well with similar charac-
teristics to the folded wild-type. Two structurally resolved designs
were similar to the wild-type with small changes at a loop region
following discrepancies at the χ2 side-chain positions relative to the
design.

In 2002 Shifman and Mayo modulated calmodulin binding
specificity by CPD [31]. The calmodulin binding interface was
optimized to improve binding specificity towards one of its natural
targets, smooth muscle myosin light chain kinase (smMLCK).
ORBIT [18] considered 1022 sequences to optimize the calmodu-
lin–smMLCK interface. Thus, without considering negative design
explicitly, a design with eight mutations enabled similar binding
affinity to the target and 1.5- to 86-fold decreased affinity to six
other targets. In 2003 a follow-up included optimization of the
CPD for PPI [32]. First, the pairwise portion of the energy func-
tion was weighted to enhance intermolecular interactions and
attenuate intramolecular ones. Second, the large dielectric constant
(ɛ) routinely used, effectively underemphasized the long-range
electrostatics term in the energy function relative to more local
terms such as van der Waals and hydrogen bonding interactions.
Consequently, the dielectric constant at the boundary- and surface-
optimization region was lowered from 40r to 4r. Third, a romater
library that contained rotamers representing expansion about the
χ1 and χ2 angles was applied. Six designs were tested on eight
targets of which the best showed a specificity change of 0.9- to
155-fold. Hence, by optimizing the protein– protein binding, the

50 Ilan Samish



natural promiscuous binding was decreased. Yet, without direct
incorporation of negative design, this decrease displayed large vari-
ation among the alternative targets.

In 2002 Xencor applied the Protein Design Automation CPD
software (PDA [141]) and demonstrated it by redesigning 19
residues in the vicinity of β-lactamase’s active site to confer resis-
tance against antibiotic cefotexime [33]. The PDA defines a library
of mutant sequences at specific positions. After finding the global
minimum energy conformation (GMEC) an MC/SA search algo-
rithm is applied to find near-optimal sequences which are then
processed to generate a probability table of mutations at each
designed position. The CPD reduced the large sequence space to
a library of ~200,000 sequences which were experimentally
screened obtaining variants exhibiting a 1280-fold increase in cefo-
taxime resistance along with a 40-fold decrease in ampicillin
resistance.

In 2002 Xencor applied CPD to stabilize solubility and improve
thermosstability of the human growth hormone (hGH) [34] and to
stabilize the granulocyte-colony stimulation factor (G-CSF) [35].
In both cases, only core residues were redesigned. As the CPD
scheme of the two targets was similar, they are described here
together. In both cases, the DEE-based PDA CPD scheme was
applied. Interestingly, new terms for side-chain and backbone
entropies were added to the scoring function as a combined mea-
surable reflecting the loss of conformational entropy during core
packing of the designed core residues. Other scoring function
components such as polar hydrogen burial, dielectric constant,
and surface-based nonpolar exposure penalty were weighted into
a new scoring function. The 45 core residues were redesigned
resulting in 11mutations. Three designs were tested experimentally
achieving thermostabilization of 13–16 �C without compromising
biological activity. Similarly, the G-CSF was redesigned to improve
pharmacological properties for the prevention of chemotherapy-
related neutropenia [35]. Here, a homology model based on the
bovine structure was used as a template with 25–34 core residues
redesigned with PDA. Several mutants with 10–14 mutations were
experimentally characterized. Without compromising biological
activity, a thermostabilization of 13 �C and a tenfold improvement
in shelf-life was obtained.

In 2002 the Baker, Monnat and Stoddard labs designed an
artificial endonuclease by fusing the N-terminal domain of homing
endonuclease I-Dmol to an I-Crel monomer, creating a new
1400 Å2 interface between the domains [36]. The design, termed
E-Drel, for engineered I-Dmol/I-Crel, was initially modeled by
superimposing a single helix from the N-terminal domain of
I-Dmol on the same helix in I-Crel and linking the two domains
using a three-residue linker –NGN- which encourages β-turn forma-
tion. All interface positions were redesigned using RosettaDesign
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[134]. The relative contribution of side chains to the interface free
energy were evaluated by computational alanine scanning [142]. The
CPD focused on six residues exhibiting steric clashes in the original
model and extended to eight additional residues predicted to con-
tribute substantially to the interface free energy. One thousand
separate designs were conducted over two backbone models elim-
inating results that may affect the active site and reducing redundant
results. The 16 top-scoring designs, each with 8–12 interface muta-
tions were screened in vivo. The resulting structurally- and function-
ally characterized E-Drel enzyme bound the DNA target site with
nanomolar affinity and cleaves it at precisely the same rate as thewild-
type enzyme.

In 2003 the Wodak lab conducted automatic design of major
histocompatibility complex class I (MHC-I) 9-residue binding
peptides which impair CD8þ T-cell recognition [37]. While this
is a 9-amino acid peptide design rather than a protein design, it is
presented here as an early example of computationally designing
peptide–protein interactions. DESIGNER [5, 6], which combines
a fitness function with an optimization procedure selecting highly
scoring sequences. To select amino acid sequences with lowest free
energies, a DEE procedure was applied as well as a heuristic proce-
dure with 250,000 iterations. In an early ensemble-like approach,
DESIGNER was run on all six representative MHC-peptide com-
plexes available in the PDB. In addition, the top-scoring peptides
were scanned against peptides known to bind the sameMHC allele.
The six strongest binders not only bound MHC but also formed
stable complexes and three displayed significant inhibition of
CD8þ T-cell recognition.

In 2003 the Saven and DeGrado labs designed a water-soluble
analog of the pentameric phospholamban membrane protein [38].
Solubilization enables to study the protein, including ligand or
drug interaction, in the much friendlier soluble milieu. Here, 11
solvent-exposed residues were identified in the transmembrane
(TM) helix. Ten residues were redesigned using a pairwise potential
including intrahelical pairwise residue interactions, contribution to
the helix macrodipole, interhelical electrostatic interactions, solu-
bility, and sequence entropy. The water-soluble analog mimicked all
the TM protein characteristics including oligomerization state,
helical structure, and stabilization upon phosphorylation. A
truncated version of the helix bundle was resolved crystallographi-
cally [39] displaying a parallel tetramer, rather than an antiparallel
pentamer; suggesting that buried and interfacial hydrogen bonds
are pivotal for oligomerization.

In 2003 Havernek and Harbury approached molecular recogni-
tion by entwining positive- and negative-design using a multi-state
framework for engineering specificity in GCN4-based coiled-coils
[40]. Their approach selects sequences maximizing the transfer free
energy of a protein from a target conformation to a set of undesired
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competitor conformations. The algorithm identified three specificity
motifs that have not been observed in naturally occurring coiled
coils. Their genetic algorithm (GA) considered four states including
homodimer, heterodimer, aggregated-, and unfolded-state which
focus on homospecificity, solubility, and stability. Unlike previous
CPD approaches, they selected sequences that maximize the transfer
free energy from a target state to an ensemble of competitors, thus
requiring separate structural optimization for each state. Further,
they evaluated prediction by molecular mechanics with continuum
solvent allowing for direct prediction of observed free energies.
Seven of the eight engineered pairs showed ΔGspecificity values
exceeding the largest control value that was obtained fortuitously.

In 2003 the Saven and DeGrado labs designed a de novo
monomeric helical dinuclear metalloprotein [41]. The 114-residue
four-helix-bundle due ferro single-chain (DFSC) was modeled in
the backbone level using previous oligomeric structures and inter-
helical turns. While 26 residues were predetermined including
ligand-binding residues and one of the turns, all other 88 residues
were computationally designed using the Statistical Computation-
ally Assisted Design Strategy (SCADS [143]). The fixed positions
relied on previous designs of due ferro peptide ensembles [47,
144]. The software provides site-specific amino acid probabilities,
which are then used to guide sequence design. This successful
design was the first realization of complete de novo design, where
backbone structure, activity, and sequence are specified in the
design process. Several years later, the structure was solved combin-
ing NMR and unrestrained MD using nonbonded force-field for
the metal shell, followed by quantum mechanical/ molecular
mechanical dynamics used to relax the NMR-apparent local frus-
tration at the metal-binding site [42].

In 2003 Kuhlman, Dantas and coworkers at the Baker lab
presented a milestone in CPD—the first systematic de novo CPD
of a 93-residue α/β novel topology protein, which folded in
atomic-level accuracy (1.2 Å RMSD) to the design template [43].
The so called TOP7 protein includes four β-strands flanked by two
α-helices. The loops connecting the secondary structure elements
are very short thus contributing to the atomic-level accuracy of the
design. The starting models for the design were assembled from
three- and nine-residue fragments via the Rosetta package [133].
172 backbone-only models were generated, forming an ensemble
of structures that all fit the requested fold. The sequences were
generated using RosettaDesign [134] via a Monte Carlo (MC)
search protocol focusing on van der Waals and hydrogen-bonding
interactions within an implicit solvent. An additional reduction of
search complexity was attained by restricting the β-strand positions
to polar residues. With the Dunbrack rotamers [145] considered
for each position, the procedure included >10186 rotamer
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combinations. A simultaneous optimization of sequence and struc-
ture was conducted by using the Rosetta approach for backbone
optimization with each starting structure followed by 15 cycles of
sequence design and backbone optimization.

In 2003 the Desjarlais lab de novo designed a WW domain
using fully automated CPD emphasizing backbone flexibility
[44]. Here, the labs’ SPA [128] CPD software was coupled to a
sampling procedure integrating information from an ensemble of
backbone structures, thus setting the stage to multistate CPD. The
new procedure was termed SPANS for sequence prediction algo-
rithm for numerous states. The ensemble was generated by a simple
MC expansion of�5� perturbation of the backboneΦ andΨ angles
till a predetermined (0.3 Å) RMSD. Three antiparallel strands fold
into a β-sheet WW domain. The 34–40 amino acid WW domain
folds autonomously with two-state kinetics and is utilized as a
module to bind proline-containing regions. Two CPD approaches
were used, each with methods applied in many other applications.
First, SPANS-WW1 applied multiple “sub-rotamer” states which
were sampled stochastically. The Boltzmann weights of these states
were combined into one “super-rotamer” and included in the
partition function. Alternatively, SPANS-WW2 optimized each
canonical rotamter by torsion-space steepest-descent minimization.
Both designs exhibited WW domain biophysical characteristics yet
with decreased stability relative to the template, especially for
SPANS-WW1 which included a less-dispersed hydrogen-bond
network.

In 2003 the Baker lab applied RosettaDesign for the redesign of
nine different globular folds achieving, on average 65 % deviation
in sequence space with biochemical characteristics comparable with
their natural templates [45]. One of these designs, human procar-
boxypeptidase A2, was structurally resolved in 2007 enabling to
discretely analyze residues contributing to different types of hydro-
phobic packing: interhelical, inter-strand, and helix-strand packing
[46]. While the original redesign had numerous mutations and
10 kcal/mol increased stability, relative to the wild-type, mutating
merely four residues yielded a 5 kcal/mol stability increase.

In 2004 Kaplan and DeGrado designed a phenol-oxidase from
first principles [48] using a computationally designed four-helix-
bundle scaffold made out of four peptides of two kinds (A2B2) that
assemble in a noncovalent manner [29]. Specifically, positions 15
and 19 were mutated to small amino acids thus sculpting the diiron
binding pocket to bind the 4-aminophenol substrate. The resulting
quinone monoamine product was produced with a kcat/KM ¼
1500 M�1 min�1 with efficiency sensitive to the size of the binding
pocket, thus reporting on design specificity. Herein, although the
three-dimensional structure of the backbone and sequence of the
de novo designed scaffold protein was designed computationally,
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the subsequent introduction of catalytic activity was accomplished
without methods or by screening large number of variants.

In 2004 the Baker lab redesigned specificity of a protein–
protein interaction between a bacterial nonspecific DNase (colicin
E7) and its tightly bound inhibitor protein (immunity protein Im7)
pairs [49]. The structurally resolved binding pairs offer straightfor-
ward activity assays and the computational design focused on
destabilizing interactions with the wild-type partner while
stabilizing the mutant complex. Interface positions on both
binding partners were mutated and assessed as to their binding
free energies and specificity changes between cognate and noncog-
nate binding partners. Three positions were chosen for redesign in
the DNase and nine in the inhibitor. The designed cognate pairs
displayed low affinity relative to the wild-type pair, presumably due
to a new water network, which was not part of the modeling. This
suggsts focusing on explicit modeling of bound water in interface
design. Nevertheless, the redesigned interface was structurally
resolved displaying 0.62 Å RMSD between the model and the
actual structure. Focusing on the hydrogen bond network and
water therein, a 2006 follow-up study sampled alternate rigid
body orientations to optimize the interface interactions and then
utilized the resolved structure to further optimize the hydrogen
bonding network, thus increasing the specificity difference between
cognate to noncognate complexes by 300-fold [50].

In 2004 the DeGrado and Saven labs applied CPD to design a
water-soluble analog of the potassium channel KcsA [51]. Using
SCADS [143] and the previous solubilization application [38],
35 solvent-exposed residues were identified and subjected to muta-
tion. The first round of the water-soluble K-channel (Denoted
WSK-1) displayed high oligomers and thus additional mutations
were applied on two solvent-exposed hydrophobic patches. The
resulting WSK-3 structure mimics the TM structure in secondary
structure, tetrameric quaternary structure, and tight binding of a
toxin and a channel blocker.

4 The Current Decade of CPD, 2005–2014: From Enzymes to Membrane Proteins

In 2005 the Stoddard and Baker labs conducted thermostabiliza-
tion of the homodimeric hydrolase enzyme yeast cytosine deami-
nase (yCD), which converts cytosine to uracil [52]. Only three
mutations enabled an increase of 10 �C in the melting temperature.
All residues that were more than 4 Å from the active site and were
not involved in the dimer interface were subjected to CPD. Half of
the 65 residues were left unchanged following the redesign and half
of the remaining suggested mutations were solvent exposed. The
remaining suggested mutations were experimentally characterized
individually suggesting a triple mutant as the most thermostable
one.
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In 2005 Sauer and coworkers compared positive- and negative-
design strategies for reeingineering a homodimer into a
heterodimer [53]. Using the Stringent Starvation Protein B
(SspB) α/β-fold homodimer as a model system, stability-focused
(positive design) using the DEE search algorithm as implemented
in ORBIT [18] and specificity-focused (negative design) were
applied aiming to reengineer the homodimer into a heterodimer.
While the positive design yielded a more stable heterodimer, only
the incorporation of negative design yielded exclusive hetero-
dimerization. Eight interface residues (four from each subunit)
were subjected to design allowing for ten out of the 20 amino
acids in each position. The authors note that the greatest challenge
was modeling the energetic effects of destabilizing mutations in
competing state. This challenge was approached by capping
unfavorable van der Waals energies as an approximation for confor-
mational relaxation that would alleviate atomic overlaps. Notably,
in 2007 the Mayo lab used ORBIT [18] to design 13 and 11
residues on two monomer variants of streptococcal protein G—β1
domain (Gβ1) that were designed to heterodimerize [60]. Of the
24 positions, 15 “core” positions were restricted to seven hydro-
phobic residues and the rest to polar and charged residues. Apply-
ing such hydrophobic patches serves as negative designs
destabilizing the monomer state. This specific design was successful
in shifting a monomer to a dimer, albeit with a low binding
constant. Overall, these studies showed the challenges of PPI
design along with the importance of negative design, even at the
expense of stability.

In 2005 the DeGrado, Saven and Dutton lab de novo designed
a 40-residue redox-active minimal rubredoxin mimic [54]. This is
one of the first b-sheet CPD, let alone with the rubredoxin tetra-
hedral metal-binding motif. The last three strands of the Pyrococcus
furiosus rubredoxin were transformed using a twofold symmetric
axis containing the metal ion. A hairpin motif (tryptophan zipper)
was used to fuse the two sides. Other than the hairpin motif, active-
site Cys, two Gly and an Ile residue, all amino acids were designed
using SCADS [143]. The apoprotein and holoproteins were stable
with 16 Fe(II/III) functional cycles under aerobic conditions.

In 2005 the DeGrado lab applied CPD for a de novo four-helix
bundle protein that selectively binds two nonbiological cofactors
termed DPP-Fe for 5, 15-Di[(4-carboxymethylene-oxy)phenyl]
porphinato iron(III)-chloride [55]. Herein, the apoprotein folds
upon binding the cofactors. The four-helix bundle was designed to
maintain 17–19 Å between the metals, His-Fe coordinative inter-
actions, second shell hydrogen-bonding, minimal steric clashes and
D2 symmetry with sampling via MC/SA. Then, three rounds of
SCADS [143] sequence calculations were applied to 28 residues.

In 2006 Dmochowski, Saven, and coworkers designed ferritin-
like proteins (Dps) with increasingly hydrophobic cavities [56]. The
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resilience of the self-assembling complex to mutation which intui-
tively should denature the protein is striking. As many as 120
hydrophilic residues were mutated to hydrophobic or small
amino-acids. The Dps complex is a 12-subunit iron warehouse in
which each subunit is a four-helix-bundle with two helices facing
the interior large iron-binding cavity. The SCADS [143] software
extended for symmetric homo-oligomeric quaternary structures
[146] was applied forming Dps3, Dps7, and Dps10, each with
three, seven, and ten mutations in each of the dozen subunits.
Not only was the mutation per se taken into account but also
how much each residue is prone to an acceptable mutation.
Amino acids participating in salt bridges within the hydrophobic
core were not subjected to mutagenesis. The mutations increased
the percent of hydrophobic surface within the iron-binding cavity
from 52 % to 86 %. The high melting temperature of the complex
as well as iron-mineralization function were largely unchanged for
Dps3 and Dps3 and even Dps10 folded and assembled properly.
Taken together, this study questions the importance of the
hydrophilic surface for proper folding of proteins, let alone protein
complexes; thus opening the door for CPD of hydrophobic surface
regions.

In 2006 Quax, Serrano, and coworkers designed tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) variants
which initiated apoptosis exclusively via the DR5 receptor [57].
The DR5-selective TRAIL variants represent a reduced binding
promiscuity CPD approach which in this case potentially permits
tumor-selective therapies. The CPD scheme was straightforward
including protein modeling via WHATIF followed by refinement
via FOLD-X. Residues binding to nonconserved positions in the
different four potential receptors were mutated via FOLD-X to all
other amino acids obtaining 2720 models for the 34 designed sites.
The binding energy of the models was used to assess selectivity
yielding seven single-site variants for experimental validation.

In 2006 the Baker lab redesigned a cleavage specificity of the
intron-encoded homing endonuclease I-MsoI [58]. The CPD
aimed at changing one base pair in each recognition half site.
The CPD approach used as input the wild-type crystallographic
structure and considered (in turn) all symmetric base pair changes.
New side chains next to these base pairs were attempted listing the
predicted discrimination energy between the previous and new
recognition sites. The modeling of the DNA-protein interface
is challenging not only due to the highly charged electrostatic
environment possibly requiring bound water molecules, but also
as the binding may involve conformational changes in both binding
constituents. The redesigned enzyme cleaves the new recognition
site ~10,000 more effectively compared to the wild-type protein.

In 2006 Xencor Inc. designed antibody Fc variants with
enhanced Fcγ-receptor-mediated effector function [59]. A
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combination of “directed” diversity and “quality” diversity strate-
gies were applied within the CPD scheme of optimizing the IgG Fc
region for Fcγ-receptor affinity and specificity. Four positions were
mutated in different combinations. Where structural informa-
tion was available, substitutions that provide favorable interactions
were designed, and where such information was incomplete, calcu-
lations provided a quality set of variants enriched for stability and
solubility. At some positions, only residues with high propensity to
the core, surface and boundary of the protein were allowed, thus
focusing the search space sampled. The designed variants displayed
over 2 orders of magnitude enhancement of in vitro effector func-
tion, enabled efficacy against cells with low levels of target antigens
and resulted in increased cytotoxicity in vivo.

In 2007 the DeGrado lab designed a TM peptide that specifi-
cally targets a membrane protein [61]. The peptide was named
CHAMP for Computed Helical Anti Membrane-Protein Peptide.
The TM helices of the αIIbβ3 and αvβ3 integrins were the subject of
the design by replacing the β3 subunit with a new designed helix.
The two subunits form a parallel GASRight motif [147] which was
structurally modeled with the β3 subunit was redesigned. Five and
15 template backbones were tested for the design of the CHAMP
against the αIIb and αv helices, respectively. In the inner half of the
membrane only eight residues were considered. Repacking of prox-
imal positions was accomplished with a linearly dampened
Lennard-Jones potential with van der Waals radii scaled to 90 %,
as implemented in PROTCAD [29] and a membrane-depth depen-
dent knowledge-based potential. 10,000 iterations of an MC with
simulated annealing (MC/SA) were applied for the sequence and
rotamer space search and sampling, with the rotamers optimized
using DEE followed by exhaustive enumeration. The new designs
were tested in micelles, bacterial membranes, and mammalian cells.

In 2007 the Kuhlman lab focused on high-resolution design of
a protein loop [62]. Within the Rosetta software package a loop
design protocol was developed. The protocol iterates between
optimizing the sequence and conformation of a loop in search of
low-energy sequence–structure pairs. 10-residue loops were
designed for connecting the 2nd and 3rd strand of β-sandwich
protein tenascin-C. Loop templates were datamined from 142
12-residue loops found in the protein databank (PDB) that super-
impose the backbone atoms of the design target. These backbone
templates were redesigned with many undergoing four to five
mutations. Loops were filtered by searching for solvent accessible
surface area to a 0.5 Å radii probe and by searching for unsatisfied
hydrogen bonds. Two of three experimentally tested loop designs
were solved showing similar structures compared to the design
while a third design appeared in a significantly different structure;
thus highlighting the potential for loop design along with
the unique challenge in designing loops.
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In 2007 Lai and coworkers de novo designed a protein that
binds the erythropoietin receptor [63]. The CPD was based
on grafting discontinuous interaction epitopes. The erythropoie-
tin (EPO)—EPO-receptor complex structure was studied; iden-
tifying three key residues in EPO which were searched in the
PDB - yielding 1756 potential scaffold proteins onto which the
keystone residues were grafted. These were filtered for RMSD,
shape-complementarity, packing density, and high buried accessi-
ble surface area yielding 15 potential scaffolds for further analysis.
A fourth mutation was designed to eliminate a steric clash. The
novel triple mutant, composed of an unrelated protein, rat
PLCδ1-PH (pleckstrin homology domain of phospholipase C-δ
1) bound the EPO receptor with a KD of 24 nM in vitro and gave
an IC50 of 5.7 μM in a cell-based assay.

In 2007 the Mayo lab redesigned a 51-residue homeodomain
aiming at thermostability [64]. Different sequence optimization
algorithms were compared of which two were characterized.
Amino acids were divided into buried and solvent-exposed, and
further restricted at helix-capping sites. MC/SA yielded the
best solution. The successful design had a thermal denaturation
midpoint temperature of >99 �C.

In 2007 the DeGrado, Saven and Roder labs applied CPD for
the de novo design of a single-chain asymmetric diphenylporphyrin
four-helix bundle metalloprotein [65]. An MC/SA protocol was
applied given five constraints: (a) a metal-metal distance of
17–19 Å, (b) optimal His to Fe bonding interactions, (c) second-
shell His-Thr hydrogen bonding, (d) minimal steric clashes, and
(e) D2-symmetry. A previous four-chain design [55] was shortened
by four residues at each end and replaced by loops. A new program,
STITCH, identified loops within a nonredundant PDB set that
superimposed well on five amino acids at the helical ends. Iterative
cycles of SCADS [143] CPD chose the sequence for 100 of the 108
amino-acids, with eight keystone His and Thr residues fixed as
part of the cofactor ligation. The experimentally characterized
single-chain design demonstrated higher stability compared to the
four-chain previous design both apo- and holo-forms with the
latter increasing stability significantly.

In 2007 the Tidor computational lab and the Wittrup experi-
mental lab joined forces to apply CPD for the improvement of
antibody affinity [66]. The iterative CPD cycle focused on electro-
static binding contributions and single mutations. By combining
multiple designed mutations, a tenfold and 140-fold affinity
improvement was engineered to an anti-epidermal growth factor
antibody and to an anti-lysozyme antibody, respectively. Interest-
ingly, this study began by a general CPD approach that was in
general not successful and led to the understanding that for anti-
body designs the calculated electrostatic term (using Poisson-
Boltzmann continuum electrostatics calculations) for binding was
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a better predictor for affinity improvement compared to the total
calculated binding free energy. Thus, a full side-chain conforma-
tional search was maintained but only the electrostatic component
was applied for affinity improvement.

In 2008 the Schreiber and Edelman-Sobolev labs redesigned a
protein–protein interface between TEM1 β-lactamase and its inhib-
itor β-lacatamase inhibitor protein (BLIP) for high-affinity and
binding specificity using a novel method [67]. Their novel
PDBmodDesign method included replacing structural interface
modules with fragments taken from nonrelated proteins and rank-
ing the 107 starting templates with an accurate atom–atom contact
surface scoring function. The resulting high affinity and specificity
affirms their modularity approach.

In 2008 the Dmochowski, Saven and Christianson labs joined
forces to design a human H ferritin protein that will bind noble
metal ions Au3þ and Agþ, reduce the ions and form nanoparticles
within the protein’s cavity [68]. The study followed up on the
ferritin-like protein hydrophobic cavity design [56] and applied a
similar CPD methodology. Here, 192 mutations were designed in
the 24-subunit complex including four external- and four internal-
surface mutations for each subunit. Two His and two Cys on the
external surface were mutated to charged, polar, or small residues.
In parallel, three Glu and a Lys on the internal surface were all
mutated to Cys as an ion-binder residue. Combining positive- and
negative-design this was aimed to promote noble metal ion binding
in the cavity while avoiding such binding on the outside surface as
well as minimizing protein aggregation. Following experimental
difficulties of crystallization with gold ions, Hg2þ was used to
probe the metal–thiol interactions. Probably due to decrease in
aggregation, the outer-surface mutations stabilized the protein.
Strikingly, the internal-surface mutations kept this high stability
and exhibited Ag0 and Au0 nanoparticles upon soaking with their
respective ions. Indeed, the crystal structure proved the CPD
structure and requested function.

In 2008 Handel and coworkers redesigned BLIP to increase
affinity to SHV-1 which unlike TEM (presented in the previous
example), displays micromolar affinity, thus providing space for
affinity improvement [69]. The EGAD design software succeeded
to stabilize the interface by 10- to 1000-fold. The experimental
structures generally agreed with the computational designs, except
for salt-bridges. Additionally, the authors claim that the off-rotamer
conformational sampling could be improved by adding a short
minimization following the DEE rotamer search.

In 2008 the Saven, Therien, Blasie and DeGrado labs from the
University of Pennsylvania designed nanostructured metallopor-
phirin arrays from coiled coils [70]. Following a previous design of
a D2-symmetric α-helical coiled coil (34 residues for each helix) that
binds two nonbiological porphyrin cofactors [55], the four-helical
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coiled-coil was extended by three-heptad repeats, enabling the bind-
ing of four iron porphyrins. Three charge patterning mutations were
introduced to enforce an antiparallel orientation and two additional
mutations were introduced to improve electrostatic interactions with
the cofactor carboxylates. The resulting four-porphyrin complex was
experimentally characterized. The modular addition of heptad
repeats between the helical capping sections demonstrates the
robustness of the coiled-coil structure, as defined by the Crick para-
meters. This design introduces the feasibility of engineering electri-
cally and optically responsive multiporphyrin arrays.

In 2008 the Baker lab presented two computational enzyme
designs—a group of retro-aldolases [71] and a Kemp eliminase
[72], the latter with Tawfik. Both designs applied a similar scheme
for enzyme design without cofactors [148]. These computational
enzyme designs followed an algorithm presented in 2006, which
was successful in targeting ten different enzymes and identifying
the native site in the native scaffold and ranking it within the top
five designs for six of the ten reactions [149].

The retro-aldolase CPD strategy is described over 12 pages in
the supplementary material of the publication highlighting the
many aspects that must be addressed [71]. These range from the
quantum-mechanical (QM) structural description of the catalytic
sites to the computational and experimental ranking and validation
of the designs. Briefly, composite active-site descriptions of transi-
tion states were applied to generate candidate catalytic sites via
RosettaMatch [150] which fills a hash-table with catalytic amino-
acid rotamers for the proposed catalytic site constraints. The
remaining positions are redesigned to optimize the transition-
state binding affinity using RosettaDesign [134]. Following struc-
tural refinement, the potential designs are ranked based on the total
binding energy to the composite transition state as well as satisfac-
tion of specific catalytic geometry. Designs were filtered if the van
de Waals energetics was too high (>�5 kcal/mol), the binding
pocket was too buried or was not sufficiently accessible. This
CPD scheme resulted in 72 designs of which 32 displayed retro-
aldolase activity of up to 4 orders of magnitude kinetic acceleration.

The 2008 Kemp eliminase CPD by the labs of Baker and Tawfik
[72] achieved a 105 rate enhancement. In vitro evolution further
enhanced kcat/KM by >200-fold. The CPD scheme was similar to
the one of for the retro-aldolase. The successful designs showed
high shape-complementarity with several polar or charged catalytic
residues: out of 59 designs, 39 used Asp or Glu as a general base
while 20 used His-Asp or His-Glu as a catalytic dyad. Such variation
highlights the robustness of the CPD strategy which, in this case,
exhibits variability in the functionally accessible set of catalytic
residues. π-stacking interactions contributed towards stabilizing
the transition state. The collaboration between the CPD approach
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provided by the Baker lab and the directed evolution approach
provided by the Tawfik lab continued with subsequent directed
evolution efforts conducted by Khersonsky et al. [138–140].
Cumulatively, the latter efforts showed that CPD designs are highly
evolvable and can be optimized for catalytic efficiency, reduced
thermodynamic stability (which is often too high in computational
designs), optimization of the catalytic site microenvironment for
the required transition state preorganization, and the presentation
of key changes that provide feedback for deciphering mechanism
and further CPD efforts. While directed evolution is not the focus
of this chapter, the collaboration highlights the need to embed
within the CPD approach other fields in a multiple dimension
feedback approach. Fortunately for the CPD field, this Kemp elim-
inase computational design sparked an array of follow-up research
of which some is highlighted below [92, 93, 100, 151] with the key
kinetic parameters summarized in Table 2.

In 2009 the Baker lab focused on loop remodeling to alter
enzyme specificity [73]. Following benchmark tests on eight native
protein-ligand complexes, a critical loop in guanine deaminase was
redesigned such that it became 100-fold more active on ammelide
and 25,000–fold less active on guanine. The two to five residue
loop modeling succeeded in altering specificity. Nevertheless, it
should be noted that the absolute activity towards the new sub-
strate (kcat/KM ¼ 0.15 s�1 M�1) is still 7 orders of magnitude
lower than the activity of the wild-type enzyme towards its innate
substrate; highlighting the comprehensive evolution of enzymes
towards their functionality, which is likely to include far more
than one loop.

In 2009 the Shifman lab applied CPD for increasing the binding
specificity of calmodulin 900-folds [74]. Relying on the promiscu-
ous binding of calmodulin to both CaM-dependent protein kinase
II (CaMKII) and calcineurin (CaN), calmodulin was optimized to
bind the former. The ORBIT-based [18] CPD emphasized inter-
molecular interactions and showed that the specificity increase was
largely due to a decrease in binding to CaN.

In 2009 the Keating lab applied a computational framework for
desigin of protein-interaction specificity allowing for CPD of selec-
tive basic-region leucine zipper (bZIP) binding peptides [75]. The
20 bZIP transcription factor family share high sequence similarity
challenging specificity design. As shown by protein arrays, the CPD
succeeded in designing selectivity by optimizing the affinity and
specificity trade-off e.g. by sacrificing the stability score and by
introducing negative design to disfavor complexes with undesired
bZIP competitors. The bZIP microarray assay benefits from revers-
ible folding of short coiled coils, and data from previous array
measurements of many bZIP transcription factor pairs were critical
for developing predictive models. Their CPD framework is denoted
CLASSY for cluster expansion and linear programming-based
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analysis of specificity and stability [75]. The CLASSY multi-state
CPD applies integer linear programming followed by cluster expan-
sion in which a structure-based interaction model is converted into
a quick-to-evaluate sequence-based scoring function. Negative
design is integrated by applying CLASSY to the design-target and
to design-off-target states.

In 2009 the Baker lab conducted CPD on the monomeric
homing endonuclease I-AniI which cleaves at the center of a
20-base-pair DNA target site [76]. The pseudo-symmetrical
enzyme’s N- and C-terminal domains bind to the left (�) and
right (þ) DNA target sites in very different manners as reflected
by causes of CPD-based altered specificity: specificity on the (�) side
was achieved by modulating single-turnover conditions (KM) while
that in the (þ) side was achieved by modulating turnover number
(kcat). The Rosetta-based CPD scheme tailored for DNA–protein
interactions relied on their previous study [58]. Loop rebuilding
was used to model backbone shifts. In a feedback loop, the best
designs were reverted position by position to thewild-type sequence
to identify mutations that did not contribute significantly to the
energy or specificity. Multi-state design [40] to assess the specificity
offset between the altered and wild-type DNA target structure.
Further, a genetic algorithm was applied to evolve sequence for
preference of the target state compared to competitor states.

In 2009 the Donald lab conducted computational structure-
based redesign of the phenylalanine adenylation domain of
the nonribosomal peptide synthetase enzyme gramicidin S synthe-
tase A (GrsA-PheA) for a set of noncognate substrates for which the
wild-type enzyme has little or virtually no specificity [77].
Here the aim was increased specificity with the leading design
exhibiting 1/6 of the enzyme/wild-type substrate activity. The K*
algorithm [152] was applied on the active site, a generally consid-
ered optimized region which is not the classical target for most
CPD attempts. The double mutant selected showed a 19-fold
increase of kcat/Km for the new Leu substrate and a 27-fold
decrease of this measurable for the wild-type Phe substrate.
On top of two active-site mutations, so called “bolstering” muta-
tions were designed outside the active site aiming to stabilize the -
active-site mutant. Indeed, such mutations gave an additional
twofold increase in kcat/Km for the Leu substrate. Similarly, further
designs for charged substrates were also successful experimentally.

In 2010 the DeGrado, Saven and Therien labs applied CPD for
the design of an A2B2 four-helix bundle that selectively binds two
emissive abiological (porphinato)zinc chromophores of DPP-Zn
[78]. The positive and negative ligand-directed CPD is selective
and did not bind related chromophores such as DPP-Fe3þ.
To achieve the selective Zn-cofactor binding, a pentacoordinate
environment with one His ligand was designed, yielding C2 sym-
metry. One peptide chain included a His ligand while the other
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included a Thr ligand; thus applying a negative design element that
allows only the heterotetramer to bind the chromophore. SCADS
[143] was applied for the recursive design of 62 variable positions.
Cys (potentially making disulfide bridges), His (potentially ligand
binding) and Pro (potential helix-breaker) were excluded at all
positions, Met at interior positions. Three sequential rounds of
sequence CPD were applied and the resulting design was validated
experimentally.

In 2010 the Baker lab altered the cleavage specificity of the
I-Msol homing endonuclease for three contiguous base pair
substitutions [79]. Using a CPD scheme previously applied to the
protein [58, 76], concerted design for all simultaneous
substitutions was more successful than a modular approach against
individual substitutions, highlighting the importance of context-
dependent redesign and optimization of protein–DNA interac-
tions. In a CPD and structure determination feedback loop, a
structure of the CPD effort and its associated unanticipated shifts
in DNA conformation was utilized to create an endonuclease that
specifically cleaves a site with four contiguous base pair
substitutions.

In 2010 the Mayo lab changed the emission wavelength of red
fluorescent protein by CPD [80]. Herein, CPD was combined with
small experimental combinatorial libraries of mCherry mutants.
The library design procedure takes as input a list of scored
sequences, and two sets of constraints: a list of allowed sets of
amino acids, and a range of desired library sizes. The algorithm
generates a list of the combinatorial libraries that satisfy these
constraints, and then ranks the libraries by the degree to which
they reflect the energetic preferences present in the list of scored
sequences. Thus, CPD was used to perform an in silico prescreen to
eliminate sequences incompatible with the protein fold and gener-
ate combinatorial libraries amenable to rapid experimental screen-
ing. The successful 20–26 nm red-shifted mutants found
included targeted stabilization of the excited state via H-bonding
and π-stacking interactions as well as destabilization of the ground
state via hydrophobic packing. Overall, 13 residues were involved in
the design.

In 2010 Warshel suggested that the current computational
enzyme design approaches reflect incomplete understanding of
the details of the enzymatic system and/or inaccurate modeling
by the CPD algorithm [151]. Using his empirical valence bond
(EVB) simulations of the Baker and Tawfik Kemp eliminase [72],
his group showed that the attempt to predict the proper transition
state stabilization and related overall preorganization effect are not
likely to be achieved by gas phase models. Warshel showed that the
transition state design displays a charge distribution that makes it
hard to exploit the active site polarity, even with the ability to
quantify the effect of different mutations. Further, the directed
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evolution led to reduction of the solvation of the reactant state
rather than to the expected transition-state stabilization applied by
naturally evolved enzymes. This study highlights the need to care-
fully design the preorganized environment such that it will exploit
the small changes in charge distribution during the formation of
the transition state.

In 2010 the DeGrado, Therien, Blasie and Walker labs de novo
designed a TM diporphyrin-binding protein complex [81].
The design, termed PRIME (PoRphyrins InMEmbrane), positions
two non-natural iron diphenylporphyrins (Fe3þ DPP’s) sufficiently
close to provide a multicentered pathway for TM electron transfer.
Unlike previous TM to soluble solubilization efforts, here the
opposite path was applied with a four helix D2-symmetrical bundle
adapted for the membrane milieu. First, keystone cofactor-binding
residues (His and Thr) were designed within an idealized four-
porphyrin binding soluble four-helix bundle backbone template
[70]. Then, an all side-chain DEE followed by MC/Self-consistent
mean field (SCMF) approach was applied to explore the reduced
search space along with the Lazaridis implicit membrane solvation
(IMM1). The 24 positions were divided to four categories (buried,
mostly buried, mostly exposed and completely exposed). These
were given different degrees of side-chain conformational sampling
with conformations selected from a conformer library. Models were
ranked by oligomerization energy, i.e. the difference between the
energy of the complex and that of the monomeric state (a mem-
brane solvated helical state, with relaxed side chain conformations),
and the lowest energy model was extensively experimentally char-
acterized validating the design.

In 2010 the Kuhlman lab redesigned the binding of hyperplastic
discs protein to P21-activated kinase 1 kinase (PAK1) domain [82].
The Iterative Rosetta-basedDDMI (Dock,Design,Minimize Inter-
face) protocol was used for docking the scaffold on a chosen hotp-
sot. Next, loops of an MC-based sequence optimization and
backbone optimization by minimization were conducted. This
resulted with potential redesigned interfaces that were filtered by
knowledge-based criteria including binding energy density and the
number of unsatisfied polar interface residues. Of six experimentally
characterized designs, two aggregated and the rest had binding
affinities of up to 100 μM.

In 2010 the Mayo lab combined CPDwith experimental library
screening demonstrating the successful synergism of the two
approaches for thermostabilization of core positions of Gβ1, the
β1 domain of Streptococcal protein G [83]; a protein previously
designed by the lab to dimerize [60]. The lab’s previous Fast and
Accurate Side-chain Topology and Energy Refinement (FASTER)
CPD software for single-state design was expanded here for the
multistate design case. The combination enables the application of
multistate design methods to large conformational libraries,
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transformation of semi-rational CPD results to combinatorial
mutation libraries, and the experimental stability determination of
the designed libraries. The novel protein library design method
took into account the library size and possible sets of amino-acids
to best reflect the experimental results. The library design proce-
dure was called CLEARSS for Combinatorial Libraries Emphasiz-
ing And Reflecting Scored Sequences. Five experimental
crystallographic and NMR structures were used, each resulting in
a 24-member design library. The results enabled to characterize the
sequence space available for the multistate design.

In 2010 the Anderson and Donald lab applied CPD for the
prediction of drug resistance mutations in methicillin-resistant
Staphylococcus aureaus (MRSA) dihydrofolate reductase (DHFR)
[84]. Using ensemble-based CPD algorithm K* which includes
DEE search followed by energy minimization [152], potential
resistance mutations were predicted. The process incorporated
positive design to maintain catalytic function and negative design
to interfere with binding of a lead inhibitor. Interestingly, the wild-
type sequence was ranked low for both the natural ligand and the
inhibitor; suggesting that numerous sequences may have improved
binding to these ligands. Four of the ten top-ranking designs were
experimentally evaluated, of which three were shown to maintain
activity while lowering binding affinity 9- to 18-fold for the inhibi-
tor. The top-ranked double-mutant was crystallized; validating the
design by showing reduced hydrophobic interactions in one locus
and introducing a steric bulk in another.

In 2011 the DeGrado lab applied CPD to design virus-like
protein assemblies on carbon nanotube surfaces [85]. The surface
properties and symmetry were used to define the sequence and
superstructure of the designed surface-organizing peptides.
Single-walled carbon nanotubes were covered with virus-like coat-
ing converting the smooth surface into a highly textured assembly
with long-scale order, thus capable of e.g. directing the assembly of
gold nanoparticles into helical arrays along the nanotube axis.
Three selection rules were applied for the design, defining the
intrinsic recognition motif and its packing into higher-order assem-
bly in accord with the long-range order of the underlying surface.
First, a group compatible with the target surface was identified, in
this case avoiding a hydrophobic motif and using small residues Gly
or Ala. Second, intersubunit packing was defined in accordance
with the surface symmetry. The cylindrical nanotube suggested
rotational-screw symmetry in the form of coiled coils with a radius
of ~9 Å defining five to seven subunits. Third, designability of the
coiled coils was assessed by searching existing tertiary motifs. Four
designs were tested, sequences based on an existing protein
(domain swapped dimer) and a de novo coiled coil, each with Gly
or Ala as the nanotube-facing residue. Adding gold particles to the
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outer surface enabled transmission electron microscopy (TEM)
validation.

In 2011 the Baker lab took the challenge of PPI and designed a
protein that binds to the conserved stem surface of influenza
hemagglutinin [86]. The strategy focused on the design of shape-
complementarity with hot-spot-like residue interactions, with the
latter serving as anchors to the former. 865 potential scaffold
proteins were searched to support the disembodied hot-spot resi-
dues and the shape complementarity. The coarse-grain binding
modes were then refined by docking followed by scaffold redesign.
Selected designs included 51 and 37 designs with two and three
hot-spot residues, respectively. Designs that presented binding
were subjected to directed evolution for increased binding; result-
ing in mutations supporting interactions of filling a void in the
binding interface, favorable interactions in the unbound state,
electrostatic complementarity, and desolvation. Two binding pro-
teins displayed nanomolar affinity.

In 2011 the Baker lab applied a motif-based method to
computationally design protein–protein complexes with native-like
interface composition and interaction density as exemplified on the
Prb-Pdar heterodimer [87]. The tight dimer was further optimized
by directed evolution which surprisingly rotated one of the complex
partners by 180�, showing that the specificity of the binding patch
was not sufficient yet the binding hot-spot was sufficient to facilitate
the binding within a noncrowded pure protein environment. The
motif-based approach focused on a key polar aromatic residue (Trp or
Tyr) which facilitate packing and hydrogen bonding followed by
shape-complementarity. Here, the ankryn repeat which naturally
associates with an array of proteins served as one scaffold (redesigned
to Pdar). Each of several ankryn repeat protein structures was paired
with a set of 37 structurally diverse thermostable proteins applying a
surface feature-matching approach, PatchDock [153], followed by
rigid-body docking to generate a set of bound orientations with
shape-complementarity. The interface design started from screening
a well-packed hydrogen-bond containing aromatic pair followed by
expanding it to include a hydrophobic first shell of residues and a
polar secondary shell of residues protecting the hydrophobic patch
from the solvent. RosettaDesign was used to optimize residue iden-
tities at the interface periphery holding the hydrophobic inner
layer fixed. Further, global long-range electrostatic complementarity
was aimed at by biasing one partner to acidic residues and the other to
basic ones. Finally, natural parameterizations of native interfaces, e.g.
size, packing, void volume, and lack of steric clasheswere used to filter
the suggested designs. Notably, negative design was not applied in
any step, possibly facilitating the 180� flip of binding orientation in an
experimentally validated pair. Twelve designed pairs were experimen-
tally screened ofwhich five displayed a signal>2-fold over nonspecific
binding. Finally, a combination of phage and yeast displaywas applied
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to evolve tighter binding of the leading pair. Two mutations intro-
duced in this step improvedbinding from aKd of 130 nMto180 pM.

In 2011 the Kuhlman lab designed a symmetric homodimer
using β-strand assembly in which two solvent-exposed strands were
designed to form an antiparallel β-strand pairing [88]. Looking for
solvent exposed β-strands, automatic homodimer docking (similar
to the DDMI protocol) was applied with the β-strand part designed
with five rounds of symmetric sequence optimization and minimi-
zation at the interface; searching for an >850 Å2 buried interface
and minimizing unsatisfied buried polar atoms. Of the 5500 struc-
tures scanned, 1100 had an exposed β-strand. One structure, γ-
adaptin was chosen. Two mainly hydrophobic and two mainly polar
interface homodimers were characterized of which the former were
more successful emphasizing the difficulty in designing hydrogen-
bond networks. One promising structure βdimer1 was structurally
resolved showing that the design was successful.

In 2011 William Schief and coworkers applied CPD with flexi-
ble backbone remodeling and resurfacing for designing antigens
[89]. In this intriguing approach, an HIV 4E10 epitope structure
was implanted onto a new scaffold enabling antigen optimization.
The remodeling refers to replacing a backbone segment by a new
design. The resurfacing refers to redesigning the antigen surface
outside the target epitope to obtain variants that maintain only the
epitope. Briefly, their six-stage protocol includes segment selection
(length, secondary structure), de novo backbone CPD of the seg-
ment followed by sequence design and minimization. Next, designs
that did not meet energy, packing, and unsatisfied polar-atoms were
filtered and surface hydrophobic residues were replaced by polar
ones. Three designs of 16–17 remodeled segment were experimen-
tally characterized showing a viable epitope while maintaining sol-
ubility and binding affinity.

In 2011 Korendovych and DeGrado applied an alternative
minimalist approach to the Kemp eliminase design challenge [92].
Rather than conducting a comprehensive design of a full protein
from the QM-optimized active site to the rest of the enzyme, they
applied a single mutation in a minimal 75-residue allosterically
regulated catalyst, termedAlleyCat (for ALLostEricallY Controlled
cATalsyt), with activity (kcat/KM ¼ 5.8 � 0.3 M�1 s�1) compara-
ble to the original [72] Kemp eliminase design. The rationale was
that protein folding energetics can dehydrate a carboxylate side-
chain rendering it from the weakly basic aqueous state to a strongly
basic dehydrated state. The computational design scheme applied
on calmodulin C-terminal domain included in silico single-site Asp
or Glu mutagenesis scanning of the C-terminal domain cavity,
which naturally binds aromatic side-chains, suggesting that it can
bind the benzisoxazole substrate. Low energy models including the
point mutation which facilitated a cavity were next docked to the
substrate. This determined whether the C-H hydrogen would be
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appropriately positioned in the Michaelis complex. Finally, the Glu
carboxylate was virtually fused to the substrate and the resulting
“superrotamer” was optimized. Alternative mutations were used as
control.

In 2011 the Weiss and Saven labs applied SCADS [143] to
design a thermostable terpene synthase, an enzyme involved in
the synthesis of antibiotics, flavorings, and fragrances [90]. A
dozen mutations were selected for design in the tobacco 5-epi-
arisolochne synthase (TEAS) for the catalysis of carbocation cycli-
zation. All mutations were>12 Å from the substrate binding site so
as to minimize an effect on the functional site. Amino acids iden-
tities were prepatterned at the mutated sites based on the number
of Cβ atoms within 8 Å of the amino acids: for residues with 0–6 Cβ
atoms were constrained to charged, polar, and small residues. For
those with 7–8 Cβ atoms, aliphatic and aromatic residues were
added to the potential mutations enabling mutation to all residues
except Cys, Pro, His, and Thr. Last but not least, buried residues
with 10 or more Cβ atoms were allowed to mutate to eight rela-
tively hydrophobic residues. Mutations included both buried and
surface-exposed positions with the latter eliminating surface-
exposed hydrophobic patches and introducing salt bridges. The
design retained activity in 65 �C and denatured in 80 �C, which is
twice the temperature relative to the wild-type.

In 2011 the Nanda lab computationally designed an A:B:C-
type heterotrimer collagen [91]. They applied positive and negative
design constraints. A compositional constraint was used where all
triplets in the design contained Pro or hydroxy-Pro. The energy
score was constrained to allow the melting temperature to be above
26 �C. Specificity was enforced by optimizing the energy gap
between the design and the best competing stoichiometry. The
resulting empirical design displayed two of the nine available stoi-
chiometries (B:2C and 2B:C). The ABC design indicated multiple
species (due to permutations) which were removed upon increasing
the salt concentration to 100 mM.

In 2012 several labs from the University of Pennsylvania and
University of Pittsburgh applied Saven’s SCAD CPD software to
produce a water-soluble TM domain (α1 subunit) of the nicotinic
acetylcholine receptor [94]. The template used for the CPD was a
4-Å low-resolution cryo-electron microscope (EM) structure in
which hydrophobic residues with >40 % exposure to the mem-
brane region were redesigned using a molecular mechanics force
field entwined with an energy function that constrained the average
hydrophobicity of surface-exposed residues to that expected for an
average soluble protein of a similar size. In order to avoid spectral
over-crowding in NMR spectra used to solve the structure, residues
which were not highly favorable in a given site underwent an
additional round of CPD with an additional constraint imposed
so as to increase sequence diversity. In addition, a polyglycine linker
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was designed between the C-terminus of helix-4 and the N-
terminus of helix-1 using the loop builder in MODELLER [154].
The design was structurally resolved by NMR displaying high
resemblance to the TM domain of the bacterial pentameric
ligand-gated ion channel (GLIC); demonstrating the robustness
and general applicability of the CPD scheme. Two conformations
were resolved with overall dynamics that may be due to the dynamic
loops. Moreover, anesthetics were bound to the same residue as in
the bacterial GLIC validating the functionality of the solubilized
protein.

In 2012 Baker and coworkers redesigned a mononuclear zinc
adenosine deaminase metalloenzyme for organophospate hydroly-
sis of the RP isomer of a coumarinyl analog of the nerve agent,
cyclosarin [95]. First, a set of mononuclear zinc enzyme scaffolds
with at least one open coordinate state was extracted from the PDB.
The open coordinate state was utilized to ensure that structural zinc
is excluded from the set. Previous gas-phase quantum-mechanical
calculations of organophosphate hydrolysis were used to construct
models of the reaction transition state bond lengths and angles.
RosettaMatch [150] was used to search for hydrogen-bonding
interactions to the phosphoryl oxygen, the nucleophilic hydroxyl
moiety, and the leaving group oxygen. Next, RosettaDesign was
used for shape-complementarity interactions to the transition state.
These parameters along with the presence of a docking funnel
timed the results to 12 potential proteins, of which a
redesigned adenosine deaminase hydrolyzed the substrate
7-hydroxycoumarinyl phosphate (DECP). The eight-mutation
design exhibited activity that was sevenfold higher than that of
the buffer background. Directed evolution at eight positions
increased activity kinetics to levels identical to the wild-type
deaminase with over 140 catalytic turnovers per enzyme and high
stereospecificity. The directed evolution improvement of kcat was
post factum realized as an increase in the basicity of an active site
Glu residue.

In 2012 the Schief lab followed up on their previous epitope
grafting research [89, 155] and applied CPD with Rosetta to
design a new 2F5 HIV epitope with improved biophysical charac-
teristics followed by transplanting the linear epitope onto different
scaffolds [96]. Here, the epitope design used side-chain grafting
while backbone-grafting was applied to transplant the design onto
the new scaffold. Potential scaffolds were identified by searching
the PDB for the core Asp-Lys-Trp sequence of the epitope. Side-
chain grafting was conducted by binding interface optimization
followed by sequence design for epitope accommodation and
removal of extraneous interfacial interactions. The latter was facili-
tated also by initially changing the identity of all non-interacting
scaffold residues to glycines. During the automated CPD, residues
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within 4 Å of the epitope were allowed to change to any non-
cysteine residue while other residues were allowed to change to
small residues Gly, Ala, Ser, or Thr. For the backbone grafting, both
N-terminal to C-terminal and C-terminal to N-terminal were con-
sidered with a 3 Å-RMSD threshold of the epitope to the scaffold
set as an initial filter followed by a steric-clash filter. Loop
closure utilized a Rosetta low-resolution scoring function, cyclic
coordinate descent (CCD [156]) and MC sampling. Next, a
high-resolution scoring function was applied to catch problematic
conformations. Finally, a full-atom refinement was applied. For two
of the three cases tested experimentally, binding to the antibody
was increased 9- and 30-fold compared to side-chain grafting alone.

In 2012 Merski and Shoichet applied an alternative minimalist
approach by engineering a Met102 ! His mutation to the Leu99
! Ala cavity in T4 lysozyme [93]. Here, CPD was applied to
engineer subsequent mutations that increased activity fourfold to
kcat/KM ¼ 1.8 M�1 min�1. The absence of ordered water or
hydrogen bonds and the presence of a common catalytic histidine
base in complexes of the enzyme with product analogs facilitated
detailed analysis of the reaction mechanism and its optimization.
Notably, in this design some of the stabilizing mutations followed
previous studies on the T4 lysozyme showing that deep knowledge-
based understanding of the template, whether theoretical or exper-
imental, is key to the design efforts. In this iterative approach the
first designs had low stability of ΔΔG ¼ ~�7 kcal/mol relative to
wild-type T4 lysozyme while subsequent designs increased stability
to ΔΔG ¼ ~�2 kcal/mol with a significant increase in catalytic
activity.

In 2012 the Kortemme lab applied CPD to control protein
signaling by designing a GTPase/guanine nucleotide exchange
factor (GEF) orthogonal (non-cross-reacting) pair [97]. A new
interaction was designed while maintaining correct interface with
existing machinery. Integrating such a new protein pair into exist-
ing cellular circuitry requires consideration of certain design cri-
teria: Not only must the redesigned GTPase be activated by its
redesigned GEF partner, but it must also be protected from inad-
vertent activation by the wild-type GEF and all other endogenous
GEFs. Further, the redesigned GTPase must also preserve interac-
tions with both upstream regulators and downstream effectors.
Here, the known interface between the GTPase Cdc42 and ITSN
(GEF) was used as a template for the new design. Computational
alanine scanning was used followed by backbone design using the
computational second-site suppressor protocol [49]. These simula-
tions identified substitutions in one protein that are significantly
destabilizing to the complex formed with the wild-type partner but
can be compensated for by complementary changes in the partner.
Flexible backbone CPD used RosettaBackrub [157] and the
robotics-inspired local loop reconstruction method for peptide
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chains, called kinematic closure (KIC) [158]. One hundred result-
ing models were used as a backbone ensemble for interface redesign
using one interaction pair as an anchor followed by backbone
diversification. Then, soft and hard repulsive forces were applied
iteratively aiming at modeling conformational changes that initially
appear unfavorable but may be accommodated by subsequent
refinement. The experimentally validated design was proven struc-
turally and functionally. The interaction is activated exclusively by
the engineered cognate partner while maintaining ability to inter-
face with other GTPase signaling components in vitro. The orthog-
onality was also shown in mammalian cells.

In 2012 the Montelione and Baker labs applied new rules for
designing ideal protein structures applying CPD for the design of
five different folds [98]. Secondary structure connectivity rules were
derived from simulation and from datamining available structures.
For connecting two β-strands, 2- and 3-residue loops prefer L-
hairpins while 5-residue loops give rise to R-hairpins. For connect-
ing a β-strand to a α-helix, a parallel orientation is preferred for 2-
residue loops while an antiparallel one is preferred for 5-residue
loops. For the reverse connectivity (αβ), the general preference is
for parallel connectivity, especially for short 2-residue loops and
longer loops providing helix-capping. Similar rules were applied
for connecting three secondary structures. Negative design was
applied for local interactions and for the edge of β-strands, the
protein surface and high core packing. Five new folds were
designed, almost all with short 2- and 3-residue loops, 7-residue
β-strands, and 18-residue α-helices. Ab initio simulations of
200,000–400,000 structure predictions were performed to map
the folding energy landscape, selecting 10 % with well-funneled
landscapes. Five folds were experimentally determined displaying
1.1–2.0 Å RMSD as compared to their respective designs.

In 2012 Fallas and Hartgerink applied CPD for the design of
self-assembling, register-specific collagen heterotrimers focusing
on sequence-specific axial salt-bridges [99]. A collagen composed
of three distinct chains can trimerize in 27 unique combinations.
Axial rather than later contacts, stabilize the heterotrimeric collagen
target state. The energy score includes a component for the differ-
ence between the number of ionizable residues and the number of
salt-bridges which was searched using a genetic algorithm. An
automated sequence selection algorithm was successful as it bal-
ances between destabilization induced on triple helical assemblies
by changing conformationally restricted imino acids (Pro) to ioniz-
able residues and the stabilization conferred on the formation of
axial interstrand ionic interactions. For each mutation, the gap
between the target state and competing states was computed for
all 27 states. Experimental validation showed that this minimalist
function is sufficient, though could be optimized with the addition
of components such as electrostatic repulsion and specific local
energetic contributions.
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In 2012 the Mayo lab published an interesting story of applying
an iterative stepwise approach to computational enzyme design of
Kemp eliminases termedHG-1,HG-2, andHG-3 [100]. The paper
highlights the evolution of the CPD process with increasing success
following careful analysis of the result in the previous round, an
approach named the protein design cycle [141]. The motivation for
this study followed on the study of Warshel [151] showing that the
Kemp eliminase design of Baker and Tawfik [72] was not an ideal
enzyme and required a “shotgun” approach of selection, not to
mention benefiting from in vitro evolution. Interestingly, for the
case of HG-3, 17 rounds of directed evolution produced an enzyme
which accelerated the reaction by 6 � 108-fold, thus approaching
natural enzyme rates [101]. The directed evolution optimized
substrate-enzyme shape-complementarity, substrate-catalytic base
(Asp127) alignment and, above all, stabilization of a negative
charge in the transition state which emerged over the course of
the evolution, reminiscent of the serine-protease oxanion hole.

In 2012 four labs from four countries (Grzyb, Nanda, Lubitz,
and Noy) joined forces to compare computational and empirical
design of iron-sulfur cluster proteins [102]. Both approaches suc-
cessfully yielded a cluster-binding helical bundle. The CPD of a
several coiled coil iron-sulfur clusters (CCIS) aimed at increasing
stability of the reduced state of the [4Fe-4S] cluster by improving
packing, helix propensity, oligomerization prevention (by changing
surface net charge), and charge pairing optimization. Each of these
aims was tested in a different design. Structural modeling was
conducted by multiple-threading alignment within I-Tasser
[159], and CPD was conducted using ProtCad [160] using the
metal-first approach [161]. All CCIS designs were helical. The
design focusing on stabilizing the iron-sulfur cluster increased
helicity upon binding the cluster, showing the success of the design
within a marginally stable protein. In this case, attempts to improve
the CPD by intuitive modifications had limited success as to
improved stability of the [4Fe-4S] stability over redox cycling
suggesting that a different backbone scaffold should be attempted.

In 2012 the Saven and DeGrado labs applied CPD for design-
ing a protein crystal [103]. A three-helix coiled-coil was designed
de novo to form a polar and layered P6-space group crystal. An
ensemble of crystalline structure models consistent with the
required space group was constructed of which designable struc-
tures were datamined. These include minima structures in the
sequence-structure energy landscape. Within the 26-residue pep-
tide forming the C3-symmetry coiled coil, the eight interior posi-
tions (a and d in the heptad repeat) were hydrophobic Val and Leu
residues. The other 16 amino acids (not including Pro and Cys)
were allowed to be positioned in other places. 19,200 structures
were designed to construct a grid over R and θ, representing the
inter-protein distance and the angle of rotation around the
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superhelical angle, respectively. The final design included a par-
allel GX3G motif interfacing the coiled-coil interhelical contact
and an antiparallel GX3GX3A motif between the coiled coils.
Exploiting the symmetry of the honeycomb-like space group,
the resulting structure had sub-Å RMSD relative to the designed
model.

In 2012 the DeGrado lab altered the function of a de novo Due
Ferri four-helix bundle from catalyzing the O2-dependent two-
electron oxidation of hydroquinones to selectively catalyzing
N-hydroxylation of arylamines [104]. This was conducted by
remodeling the substrate access cavity and by introducing an addi-
tional His ligand to the metal-binding cavity. Further second- and
third-shell CPD was applied using the Molecular Software Library
(MSL [162]) to stabilize the catalytic core. The resulting design
had a 106-fold rate enhancement towards the altered function
relative to the previous one.

In 2013 the Hahn and Dokholyan labs applied CPD for the
rational design of a ligand-controlled protein conformational
switch [105]. Their unique topology design of a rapamycin-
regulated switch, denoted uniRapR, was utilized as a src kinase
activator. A high-affinity binding pocket of FK506-binding protein
and FKBP12-rapamycin were used with the two proteins connected
by a double linker. The first 20 residues of FKB12 were removed
making the N- and C-terminii close in space for insertion of the
regulatory domain to the other protein. The conformational
switching was assessed by replica-exchange and equilibrium discrete
molecular dynamics.

In 2013 the Therien, Saven and DeGrado labs joined forces and
computationally de novo designed a protein that selectively binds a
highly hyperpolarizable abiological chromophore [106]. The 109-
residue four-helix-bundle was designated SCRPZ-1 and SCRPZ-2 for
the dimeric and monomeric form, respectively. The protein binds
RuPZn, a hyperpolarizable super-molecular chromophore that
features highly conjugated (porphnato)zinc and (poly-pyridyl)
ruthenium. The antiparallel four helix bundle was designed to
accommodate the size of the chromophore and ligate the metal
ions. Loops for connecting the helices were selected from natural
proteins and spliced to accommodate the structure. The SCADS
[143] software was used in two rounds first placing the keystone
residues and then the other positions. 17 residues were allowed in
the helices. His and Cys were precluded as a negative design
approach to avoid unwanted metal ligations and disulfide bonds,
respectively. Likewise, Pro was precluded from the helices to avoid
unwanted kinks. For SCRPZ-2 the surface was then redesigned to
decrease hydrophobic patches and incorporate interhelical salt
bridges to increase bundle stability. A third design included Cys,
enabling binding onto functionalized silica surfaces. The protein
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structure, stability, and nonlinear optical functional elements were
proven with an array of experimental methods.

In 2013 the Liu and Saven labs applied CPD for the design of a
solubilized G-protein coupled receptor (GPCR)—the μ-opioid
receptor [107]. The pain and addiction receptor underwent 53
mutations on the exterior surface solubilizing it completely without
loss of structural characteristics and antagonist (naltrexone) bind-
ing affinity. Interestingly, the CPD was not conducted on a high-
resolution known structure but rather on a comparative model
using the β2 adrenergic receptor as a model with the subsequent
structure of the murine μ-opioid receptor validating the model.
Amino acids with >40 % solvent accessible surface area that were
within the TM region were targeted for redesign within the SCADS
framework [143] and the previous solubilization protocol [38]. To
account for solvation effects, an environmental effective energy was
employed based on the local density of Cβ atoms of each residue
and parameterized using a dataset of soluble proteins having up to
288 residues, the size of the TM domain of the targeted receptor. In
2014 five labs from theUSA and South Korea (Johnson, Lieu, Saven,
Park, Xi) joined forces and implemented this solubilized opioid
receptor within a graphene field effect transistor (GRET) biosensor
[108]. The receptor exhibited high sensitivity and selectivity for an
opioid receptor antagonist (naltrexone), with an impressive detec-
tion limit of 10 pg/mL. The approach is general and can be applied
for any GPCR, the family of proteins which form most drug targets
and which suffers from experimental challenges following their
intrinsic dynamics and embedment in the membrane.

In 2013 Baker and colleagues applied CPD for the design of a
de novo lysozyme inhibitor [109]. Unlike the dock and design
approach, e.g. the CPD of a weak affinity binder for PAK1 [82],
here a hot-spot centric CPD approach was applied. This
approach was previously applied to design proteins that bind the
erythropoietin receptor [63] or the influenza hemagglutinin [86].
Here, the challenge included targeting deeply recessed residues
within the charged active site of hen egg lysozyme (HEL). First a
dock-and design approach was pursued: Coarse-docking was con-
ducted on the HEL active site from a library of scaffold followed by
several rounds of refined docking using RosettaDesign. Designed
potentially binding proteins were analyzed as to binding energetics,
shape-complementarity, packing, and size, aiming at measurables
similar to native HEL complexes. The top 24 designs were dis-
played in a yeast library assessing binding affinity and specificity.
Interestingly, the top-binder appeared to bind via a patch that is
different than the one designed computationally, as evident from
error-prone PCR affinity maturation which yielded affinity increas-
ing mutations in other regions. Following these rarely reported
negative results, a hot-spot centric approach was applied: An exist-
ing HEL complex was studied with computational alanine scanning

Achievements and Challenges in Computational Protein Design 75



finding residues significantly contributing to binding and targeting
active site residues. The two binding residues (Arg and Tyr) were
held fixed and scaffolds were docked on them using PatchDock
[153] followed by RosettaDock refinement. The two binding resi-
dues were transplanted on the scaffold with the aid of rigid-body
minimization and the surrounding residues were designed with
RosettaDesign. The top 21 designs were experimentally tested for
affinity and specificity and the top design was optimized by error-
prone PCR in a yeast display framework. From analysis of the best
binder displaying low nanomolar affinity, it was concluded that
specific interactions across a rather large interface are pivotal. In
addition, it seems that the directed evolution experimental
approach corrected poor hydrogen-bonding and electrostatic
repulsion that was not sufficiently optimized by the CPD, suggest-
ing room for algorithmic improvement.

In 2013 Baker and coworkers applied CPD for the de novo
design of selective binders to the steroid digoxigenin (DIG), an
example of a small molecule to which a protein binder can be
designed [110]. The CPD of small molecule binders is challenging
and indeed only two of 17 designs bound the molecule. Deep
sequencing and library selections optimized the binding to pico-
molar levels. Three characteristics of naturally occurring binding
sites were aimed: shape complementarity, specific energetically
favorable hydrogen-bonds and van der Waals protein–ligand inter-
actions as well as a structural pre-organization in the unbound
protein state, which minimized entropy loss upon ligand binding.
RosettaMatch [150] was used to identify backbone constellations
in 401 protein scaffold structures where a DIG molecule and side
chain conformations interacting with DIG in a predefined geome-
try could be accommodated. Two successive rounds of sequence
design were used. The purpose of the first was to maximize binding
affinity for the ligand. The goal of the second was to minimize
protein destabilization due to aggressive scaffold mutagenesis while
maintaining the binding interface designed during the first round.
During the latter round, ligand–protein interactions were up-
weighted by a factor of 1.5 relative to intra-protein interactions to
ensure that binding energy was preserved. No more than five
residues were allowed to change from residue types observed in a
multiple sequence alignment (MSA) of the scaffold if (a) these
residues were present in the MSA with a frequency greater than
0.6, or (b) if the calculated ΔΔG for mutation of the scaffold
residue to alanine was large. Designs were evaluated as to their
interface energy, ligand solvent exposed surface area, ligand orien-
tation, shape-complementarity, and apo-protein binding site pre-
organization. The latter was enforced by explicitly introducing
second-shell amino acids. The binding affinity of the directed
evolution optimized design is similar to those of anti-digoxin
antibodies. As it is stable for extended periods and can be expressed
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at high levels in bacteria, the design has to potential to provide a
more cost-effective alternative for biotechnological and for thera-
peutic purposes as long as it can be made compatible with the
human immune response.

In 2014 the Baker lab designed a pH-sensitive Fc-domain IgG
binding protein using the hot-spot centric approach [111].
His-433 on the IgG domain was targeted as a pH-sensitive site
that should bind only under a specific pH range. Ensembles of
disembodied interaction residues were based on the IgG complex
with protein A. Scaffolds with high bacterial expression and solu-
bility that can host the keystone residues were then searched. The
rest of the interface was designed with RosettaDesign with ranking
assisted by shape-complementarity and computed binding energy.
Nine of 17 designs exhibited binding signals. At pH 8.2 the design
bound the target 500-fold more tightly compared to pH 5.5.

In 2014Liu,Chen and coworkers presented a newCPDmethod
with a comprehensive statistical energy function (SEF) and system-
atic integration of experimental selection for foldability which was
proven experimentally on two de novo structurally resolved designs
[112]. In this important paper they highlight some of the challenges
of existing rule-based or general-CPDmethods, the latter minimiz-
ing a general effective energy function. Challenges include low
success-rate on common targets, insufficient reflection of the diver-
sity in natural sequences sharing a common structure and lack of the
rich functional conformational dynamics in CPD results. While SEF
are an integral part of numerous CPD methods, a full-scale SEF for
automated CPD is not available as most general methods focus on
physics-based energy functions. SEFs share the spirit of rule-based
CPD, though the latter can include very few components which are
not well calibrated between them. As such, the rule-based design,
which often necessitates a human expert, receives here a systematic
and coherent formalism. The SEF components including single-
residue and pairwise terms with individual terms were determined
by the probability distributions of rotamer types and pairs of rota-
mer types. Complementary, structure properties considered for
single positions include secondary structure types, solvent accessi-
bility, and backbone Ramachandran angles. Structural properties of
pair terms also include the relative positioning in 3D space. Next, a
general strategy for selecting structure neighbors with adaptive
criteria (SSNAC) addressed the fact that some target properties are
at the boundary of predefined boundary intervals and the need to
treat multi-dimensional properties jointly. Small sample effects were
corrected. Further, the publication aimed to establish the general
applicability of an experimental approach assessing structural stabil-
ity by linking it to antibiotic resistance in bacterial cells expressing an
engineered TEM1-β-lactamase fused to the protein of interest.
Unstable proteins are prone to proteolysis leading toweak antibiotic
resistance. Comparing the SEF to fixed-backbone to
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RosettaDesign, the authors claim that the SEF captures energy
contributions that favor native sequences. The authors note that
the SEF approach cannot treat packing in the same level as physics-
based approaches, but seems to do a better job in capturing
topology-related features, especially for β-strand containing topol-
ogies. Four well-folded de novo proteins for three different targets
were obtained and two were structurally resolved validating the
promising approach.

In 2014 the Baker lab applied CPD for the design of hyper-stable
helical bundles [113]. Specifically, using Rosetta along with
parametric backbone generation an antiparallel, monomeric
untwisted three-helix bundle with 80-residue helices (18-residue
repeat) was designed as well as an antiparallel right-handed mono-
meric four-helix bundle and a parallel left-handed five-helix bundle.
While the classical coiled-coil structure is considered as a side-chain
‘knobs-into-holes’ structure, here the focus was on the less-
appreciated contribution of backbone strain. Within the coiled-coil
Crick parameters, a change of 2� in the helical twist and the coupled
supercoil parameter can dictate the coiled coil twisting or lack of it.
Within RosettaDesign, finer grid searches were undertaken in the
vicinity of these parameters, yieldingoptimizeddesigns.The resulting
designs denatured only in >95 �C with 0.4–1.1 Å RMSD between
the crystallographically resolved structures and the designs.

In 2014 Woolfson applied CPD for designing water-soluble
α-helical barrels [114]. These are coiled-coils with more than four
helices which form a central cavity. Within the abcdefg heptad
repeat of coiled coils positions gade determine the oligomer state.
As such, these positions were the focus of the design with specific
positions relating to the requested coiled coil type. A bZIP scoring
function was used to assess the fitness score of the homo-oligomer.
Sequential rules were applied to reduce the set to be sampled and
then Coiled Coil Builder (CCBuilder) was applied to construct the
requested full-atom models. This includes the SOCKET knobs-
into-holes packing assessment. Next, a genetic algorithm was
applied to optimize radius, pitch, and inter-helical rotational offset.
The designed pentamer, hexamer, and heptamer coiled coil were
resolved crystallographically with RMSDs of 0.67–1.77 Å between
the design and the actual structure.

In 2014 Negron and Keating combined the CLASSY [75]
multi-state CPD and the distance-scaled, finite-gas reference
(DFIRE [163]) state potential for de novo CPD of three coiled
coils consisting three orthogonal antiparallel homodimers [115].
The heptad repeat coiled coil structure enabled the multi-state
design scheme to provide a partition function between the stability
and the specificity gap; allowing for the design of novel and experi-
mentally prove 43-residue peptides folding into specific antiparallel
homodimers. As such, a synthetic coiled-coil toolkit is provided for
modular synthetic biology applications.
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In 2014 the Schief lab collaborated with Baker and others to
apply CPD for the important cause of epitope-focused vaccine
design [116]. Their 27-author study focused on inducing potent
neutralizing antibodies to small and stable CPD scaffolds which
present a respiratory syncytial virus (RSV) epitope. The fold-from-
loops (FFL) CPDRosetta protocol starts by identifying a functional
motif (epitope), which in this case was a helix-turn-helixmotif in the
RSV Fusion (F) glycoprotein, as identified from an antigen-
antibody crystal structure. The epitope was placed on a target
topology along with distance restraints of the scaffold, a thermally
stable three-helix bundle. Then, ab initio folding was applied to
build diverse backbone conformations consistent with the target
topology. Successful low-resolution designs were subjected to an
all-atom sequence design in which functional motif side chains were
recovered followed by three rounds of sequence design and
full-atom optimization. Last but not least, the 40,000 successful
designs were evaluated by structural metrics and 8 designs were
subjected to human-guided sequence design to correct potential
flaws. These included replacing surface residues outside the epitope
with the original template residues and designing larger hydropho-
bic residues at selected positions. One of the designs also underwent
resurfacing (described above). The successful design induced
neutralizing antibodies and was recognized by an existing antibody
against the epitope.

In 2014 the DeGrado lab joined forces with three other labs,
applying CPD for a de novo TM Zn2þ-transporting four-helix
bundle [117]. The protein was named ROCKER. The first shell
of the metal binding was inspired by a previous di-manganese four
helix bundle while the second shell was adapted from that soluble
structure for the TM milieu. A stochastic search over the helix-
bundle Crick parameters was applied for a D2-symmetric anti-
parallel tetrameric coiled-coil. A design alphabet was guided by
the membrane depth (using the Ez potential [164]) and functional
requirements of the different regions. Rotameric self and pair ener-
gies were compuated with a van der Waals radii reduced to 90 % of
their size with the optimal rotameric conformation searched using a
DEE/A* algorithm. 1008 resulting sequences had a preference for
an asymmetric state, excluding the transporter from being filled
with two ions. To confirm an asymmetric rather than symmetric
conformation, each of these sequences was subjected to the two-
state free-energy comparison evaluator algorithm VALOCIDY
(Valuation of Local Configuration Integral with Dynamics [165])
using independent MD trajectories. The protein was extensively
characterized structurally and functionally, confirming the CPD
models.

In 2014 Baker and coworkers applied CPD for reducing immu-
nogenicity by removing T-cell epitopes [118]. As proteins represent
the fastest-growing class of pharmaceuticals, their deimmunization
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is of growing need. MHC-II-binding short-sequence epitopes have
been characterized. Herein, a sliding window of 15-residues was
searched using a support vector machine (SVM) for T-cell epitopes.
These were searched and potential epitope sites were redesigned
without losing structure, stability, and function. As the deimmuni-
zation scores favor negatively charged residues, a net charge
constraint was added. First, they computationally recapitulated a
previous deimmunization effort. Second, the method was experi-
mentally validated on the superfolder green fluorescent protein
(sfGFP) by redesigning the top four predicted H-2-IAb epitopes.
The deimmunized protein designs failed to isolate T cells in mice
while maintaining function. Third, 5 mutations were aimed at
removing 3 epitopes in the toxin domain of the cancer therapeutic
HA22, a potential drug for refractory cell leukemia. Two of these
mutants lost 80 % of the cytotoxic effect while other mutants
displayed increased effect.

In 2014 Zhang, Tame and coworkers applied CPD for the
design of a self-assembling sixfold perfectly symmetric β-propeller
protein [119]. Visual examination of 174 β-propeller proteins was
applied to choose the most visually symmetric protein for design.
Therein, ancestor reconstruction of one of the six blades was
applied followed by reverse engineering of a 6-blade protein. The
process included docking of the blades and side-chain design in
which essential inter-blade interacting residues were left as is. The
actual design was experimentally proven to have an excellent
0.68 Å-backbone RMSD to the designed model.

In 2014 the Andre lab designed a leucine-rich repeat from the
ribonuclease inhibitor family with predefined geometry [120].
Designated software was utilized to determine the length, curva-
ture, and twist geometrical features. The protocol first defined the
desired protein geometry. Second, a library of structures of individ-
ual repeats was compiled from crystal structures of selected repeat
proteins. Third, self-compatible repeats capable of symmetrical
assembly were selected. Fourth, the inter-repeat interface was opti-
mized by cycles of docking and sequence optimization. Fifth, con-
secutive repeats were connected by loops. Last, capping was added
to most N- and C-terminal repeats. A five double-repeat protein
was confirmed to fold into a novel ring for the cap-less design and
to a well-defined repeat protein when the caps were included.

5 CPD Failed Efforts and Retractions

Description of achievements and challenges of CPD cannot be
complete without mentioning cases in which CPD publications
were retracted. Naturally, published science highlights success
stories rather than failures. Nevertheless, in some cases the failed
attempt to repeat a published study results in exposing an
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erroneous or disputed scientific publication. The need to analyze
and understand failed efforts was highlighted by Mayo [100] in his
description of an iterative design cycle: “Proteins from failed compu-
tational design efforts are typically discarded without comment or
investigation into the cause of failure. This situation is unfortunate,
because valuable information is lost when successful designs are
reported. Without detailed computational and/or experimental
analysis of failed designs, flaws in the design procedure cannot be
identified and remedied.”

The field of protein design had suffered from several such
incidents, partly as the proof of the output protein is not always
straightforward. The resulting retracted publications may be due to
innocent mistakes, insufficient validation or potentially even cheat-
ing in reporting the research. This section aims to present key
retractions without getting into the details underlying the retrac-
tions. Rather, such retractions remind us of the caution required in
reporting CPD studies and the need to unequivocally validate the
result of the CPD process.

In 2008 Dwyer, Looger, and Hellinga retracted [166] their
2004 Science [167] publication which attempted to describe the
first computational enzyme design, a triose phosphate isomerase
(TIM) in a computationally redesigned ribose-binding protein.
The retraction states that this is following a report that the provided
clones that were supposed to be clones of the designed enzyme
were actually clones of wild-type TIM impurity. In addition, a JMB
computational enzyme design publication by the same group was
retracted [168]. Following these retractions questions arose [169,
170] including over the validity of a 2003 Nature paper describing
computational redesign of ligand-binding specificities [171] and a
2004 PNAS paper describing the CPD of receptors for an organo-
phosphate surrogate of the nerve agent soman [172]. Notably,
these papers were not retracted. Importantly, Hellinga has
acknowledged responsibility for the two retractions and asked his
university to hold an inquiry regarding them [173].

Unfortunately, retractions in the field of protein design are not
limited to CPD. For example, following cross-contamination, in
2002 Fersht and coworkers have retracted [174] theirNature paper
[175] on the directed evolution of new catalytic activity using the
α/β-barrel scaffold.

In summary, these retractions following irreproducible results
and the heated debate that followed should remind us of the special
care required in experimentally characterizing and confirming that
the CPD product is indeed the designed protein.

Achievements and Challenges in Computational Protein Design 81



6 Concluding Remarks: Future Challenges

Many aspects of CPD has been reviewed in the past [121, 122,
176–182], yet a chronological case-study review of the field is
presented here for the first time. The field of CPD has undergone
a tremendous leap forward in the three decades in which it exists.
CPD demonstrates the ability to design functional and extremo-
phile complex proteins with great precision using a wide array of
tailored methods as well as imported methods from other fields.
Taken together, it seems that the achievements and challenges of
the CPD field reflect that of the broader structural bioinformatics
and computational biophysics [183] field.

Some of the pending challenges include:

1. Accessibility to the general relevant scientific community. Thus
far, the main efforts in the field of CPD were not distributed
among a large community but rather clustered in a small num-
ber of labs (see Table 3 for list of main labs and software
packages). Often, the CPD software packages are used solely
‘in-house’ and not utilized by the general community, even if
the software is open-source. CPD requires multidisciplinary
know-how in structural biology, biophysics, biochemistry,
software engineering, and a general nontrivial combination of
theory and experiment. As with other fields, it is expected that
with time more and more scientists will apply CPD for their
research and consequently use software developed by others.

2. Integration of knowledge-based and energy-based methods:
Ideally, all design algorithms will rely on physics to address
the enthalpic and entropic energetic contributions. Yet, within
the complex protein milieu and within the foreseeable future of
computer power, such a description is not practical in high
resolution. Currently, it seems that each design lab selects a
different method of integrating knowledge-based know-how
into the design—from selection of hydrophobic or helix-
forming amino acids to use of known structural motifs or
structural fragments. A systematic and comparative analysis of
the different design schemes may help determine better guide-
lines on this aspect.

3. Systematic differential approach towards different proteins
levels of organization, different protein regions, and the rela-
tionships between such regions. While often the design is split
to solvent-exposed and buried regions, the adaption of the
CPD algorithm to the local milieu of the target site is still not
optimized.

4. Assessment of electrostatics and solvation effects: Coupled to
the previous item, the local dielectric milieu and long-range
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electrostatic interactions are still not sufficiently modeled
within CPD software.

5. Integration of thermal plasticity and functional dynamics:
While a generalization, the incorporation of dynamics into
the design scheme is still not done, despite the hard-wired
dynamic functional profile of every protein as e.g. depicted by
quick Gaussian network models.

6. Negative design: Negative design, defined as a design aimed at
avoiding unwanted conformations or functions, must be an
explicit part of computational design. Since the 1991 thiore-
doxin redesign [11] and the betadoublet, a β-sandwich de novo
design [14], the negative design aspect has been in the fore-
front of the field. While the importance of negative design is
well acknowledged since early days of CPD [185], it is still not
explicitly integrated into design algorithms. In this respect, the
positive-design scheme explicitly or implicitly regards a refer-
ence state which can often be considered as a negative design
element. However, too often insufficient emphasis is given to
the definition of the reference state.

7. Systematic integration of experimental design approaches: the
theoretical rational design is moving towards integration with
experimental semi-rational design approaches such as directed
evolution. Yet, currently the number of designs benefiting from
the combination of approaches is still small. Moreover, there is
no systematic protocol for combining the two approaches or
even for reporting the stage to which each approach has
advanced the target design.

8. Objective cross-assessment of methods: To date, there has not
been an objective cross-assessment of the different available
methods, as done for e.g. structure prediction via the Critical
Assessment of Structure Prediction (CASP) competition [186]
which is running since 1995. Therein, the community is given a
mutual target to be submitted to assessors who are not
part of the competitors thus enabling objective analysis of
achievements and challenges in a method comparative manner.
Without such a community-wide objective assessment the
comparative analysis of CPD methods is often challenging
relying solely on reports by the respective authors for each
tool. Consequently, the identification of advantages and
disadvantages of each method and the cross-dissemination of
knowledge is hampered.

9. Definition of the reference state: In many cases the scoring
function consists of scoring the gap between the desired state
and the nondesired, e.g. denatured one. However, the refer-
ence state is still not sufficiently defined, let alone divided
between protein and cellular regions.
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10. In vivo CPD: Many designs are not stable and prone to aggre-
gation [111]. As seen from the case-studies presented, the vast
majority of designs were not characterized within an in vivo
setting, which is the ultimate natural environment of proteins.

Each of the above items deserves a separate chapter. Yet, after
highlighting some of the pending challenges, it is important to
emphasize that the hierarchical approach to CPD has advanced in
all levels—from large scaffold searches in the growing PDB to
quantum-mechanical optimization of enzymatic catalytic sites. In
parallel the richness in knowledge-based and physics-based meth-
odology sets the stage to comparative analysis of methods and the
dissemination of methods from the method creators to the general
community of protein scientists.
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Chapter 3

Production of Computationally Designed Small
Soluble- and Membrane-Proteins: Cloning, Expression,
and Purification

Barsa Tripathy and Rudresh Acharya

Abstract

This book chapter focuses on expression and purification of computationally designed small soluble proteins
and membrane proteins that are ordinarily difficult to express in good amounts for experiments. Over-
expression of such proteins can be achieved by using the solubility tag such as maltose binding protein (MBP),
Thioredoxin (Trx), and Gultathione-S-transferase (GST) fused to the protein of interest. Here, we describe
and provide the protocols for cloning, expression and purification of such proteins using the solubility tag.

Key words Cloning, Protein expression and purification, Designed proteins, Small proteins,
Solubility tags

1 Introduction

Insights into protein chemistry and advancement in the field of
computational biology have led to evolution of the field of
protein designing. The last decade has witnessed many impressive
designed, in silico proteins: water-soluble proteins [1–4],
water-soluble analogue of membrane protein [5], single pass mem-
brane proteins [6, 7]. These proteins are often small (~24–100
amino acid residues) with directed simple functions. In the future it
is likely that computational designwill not only advance the design of
soluble proteins, but also design of membrane proteins, that will
venture into the avenue of multiple span single chain proteins [~100
residues] to perform complex functions. Due to the difficulties in
over expressing such designed proteins, the experimental character-
izations become challenging. Even, naturally occurring small pro-
teins will encounter the same fate when tried to express
heterologously. These proteins either prove toxic to the cells or go
into inclusion bodies due to over expression and aggregation. Such
proteins when purified result in meager yields to be used for
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characterizations. This forms the bottleneck in the transition of in
silico work into in vitro work. To overcome these challenges, one can
screen for suitable host bacterial strain [8, 9], and further, the protein
of interest can be over-expressed by fusing with solubility tags such as
Maltose binding protein (MBP), Thioredoxin (TrX), and Glutathi-
one-S-transferase (GST) as well as solubility enhancing tags includ-
ing Small ubiquitin-like modifier (SUMO) protein and Halo Tag.
Several of these tags were successful in producing the protein of
interest at good yields, and the detailed usage of the tags has been
extensively reported in several articles [10–15]. In this chapter, we
will discuss the generalized strategies, and provide protocols that can
be used successfully to obtain good quantities of small sized proteins
by using the solubility tags.

2 Materials

All the solutions were prepared using Autoclaved Milli-Q water. All
necessary precautions were taken to avoid contamination.

2.1 Cloning

2.1.1 Restriction

Digestion

1. Insert.

2. Expression Vector (pMALc5X for MBP tag and pET42a for
GST tag).

3. Restriction Enzymes.

4. Calf Intestinal Phosphatase (CIP).

5. Water Bath.

2.1.2 For DNA

Gel Electrophoresis

and Gel Elution

1. Agarose

2. 1X TAE: 40 mM Tris-acetate, 1 mM EDTA pH 8.0.

First make 1000 ml of stock of 50X TAE buffer as follows:
Make a concentrated (50X) stock solution of TAE by weighing
out 242 g Tris base (FW ¼ 121.14) and dissolving in approxi-
mately 750 mL Milli-Q water. Carefully add 57.1 ml glacial
acid and 100 mL of 0.5 M EDTA (pH 8.0) and adjust the
solution to a final volume of 1 L. This stock solution can be
stored at room temperature. The pH of this buffer is not
adjusted and should be about 8.5.

Now to make 1000 ml of 1X TAE from 50X TAE stock
solutions, 20 ml stock of 50X is taken and 980 ml of Milli-Q
water is added to it.

3. 10 % Ethidium Bromide

4. Gel Elution (Commercially available kit)

2.1.3 Ligation 1. T4 Ligase

2. Thermocycler Machine
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2.2 Competent Cell

Preparation

1. LEMO 21 cell glycerol stock (New England Biolabs) (for alter-
native competent cells see Note 2).

2. 100 ml LB Agar
To make 100 ml of LB Agar, weigh 4 g of LB Agar powder and
dissolve in 60 ml of Milli-Q water. Adjust volume to 100 ml
and then autoclave it. After autoclave is complete, pour 25 ml
into each of the petri plates, and let them solidify. Store plates at
4 �C for further use.

3. 50 ml LB Broth
To make 50 ml of LB Broth, weigh 1.25 g of LB Broth powder
and dissolve it in 35 ml of Milli-Q water. Adjust volume to
50 ml and then autoclave it.

4. 200 ml LB Broth

5. 0.1 M CaCl2
First make a stock of 1 M CaCl2 by weighing 14.7 g
of CaCl2 (FW ¼ 147) and dissolve it in 80 ml of autoclaved
Milli-Q water. Adjust volume to 100 ml.

To make 0.1 M of CaCl2, take 5 ml of 1 M CaCl2 add 45 ml
of autoclaved Milli-Q water. Filter sterilize it and save it in a
sterile bottle and store at 4 �C. This solution should be prepared
freshly every time a batch of competent cells has to be prepared.

6. 0.1 M CaCl2þ 10 % (v/v) Glycerol
From the stock of 1 M CaCl2 take 5 ml and add 5 ml of
Glycerol to it. Adjust volume to 50 ml by adding autoclaved
Milli-Q water. Filter sterilize it and save it in a sterile bottle and
store at 4 �C. This solution should be prepared freshly every
time a batch of competent cells has to be prepared.

7. Liquid Nitrogen.

8. Shaker Incubator.

2.3 Transformation 1. Selection Plates.
Selection plates contain LB Agar and the required antibiotic.
To make selection plates, prepare and autoclave LB Agar. After
autoclave, when the agar cools down to an extent that the
temperature of the flask is bearable by cheek (cheek test), add
antibiotic to it as per prescribed concentration, mix well and
pour 25 ml into each plate. After it solidifies, store plates at
4 �C for further use.

2. L Shaped Spreader.

3. 50 ml LB Broth.

2.4 Screening 1. Taq Polymerase.

2. PCR Master Mix.

3. Insert Specific Forward and Reverse Primers.

4. Plasmid isolation (commercially available kit).

Production of Computationally Designed Small Soluble- and Membrane-Proteins. . . 97



2.5 Protein

Expression

1. 200 ml LB Broth.

2. Specific Antibiotics.

3. 0.5 M Rhamnose.

4. 1 M Isopropyl β-D-1-thiogalactopyranoside (IPTG).

5. UV–Vis Spectrophotometer.

2.6 SDS PAGE 1. 30 % Acrylamide/Bis-acrylamide Solution.

2. Tris–Cl Buffer, pH 8.8 : 1.5 M Tris–HCl, pH 8.8.

3. Tris–Cl Buffer, pH 6.8 : 0.5 M Tris–HCl, pH 6.8.

4. Sodium Dodecyl Sulfate (SDS) : 10 % (w/v) in water.

5. Ammonium per sulfate (APS) : 10 % (w/v) in water.

6. N,N,N 0,N 0-tetramethyl-ethylenediamine (TEMED).

7. SDS PAGE Running Buffer : 0.025 M Tris pH 8.3, 0.192 M
Glycine, 0.1 % SDS.

8. Gel Loading Buffer 5X : 0.3 M Tris–HCl pH 6.8, 0.1 % (w/v)
Bromophenol Blue, 10 % (w/v) SDS, 25 % (v/v) β-Mercap-
toethanol, 45 % (v/v) Glycerol.

9. Gel Staining Solution: 0.25 % (w/v) Coomassie brilliant blue,
10ml Acetic acid, 40ml water, 50ml methanol.

10. Gel De-staining solution: 10 ml Acetic acid, 40 ml Metha-
nol, 50 ml Water.

2.7 Cell Lysis 1. 5X Native Purification Buffer: 250 mM NaH2PO4 pH 8.0,
0.5 M NaCl.

Prepare 1 L of 5X Native Purification Buffer. To 900 ml of
autoclaved Milli-Q water, add 34.5 g of NaH2PO4, and 29.2 g
of NaCl. Adjust pH to 8 and bring final volume to 1 L. Further
tomake 100ml of 1XNative purification buffer, 80ml ofMilli-Q
water is added to 20 ml of 5X Native Purification buffer.

2. EDTA/EGTA free protease Inhibitor Cocktail.

3. 100 mM PMSF.
To prepare 100 mM PMSF, weigh 174.19 mg of PMSF
(FW ¼ 174.19) and dissolve in 10 ml of isopropanol. Keep
inverting and tapping till all the PMSF crystals completely
dissolve.

4. Lysis Buffer
The basic composition of the lysis buffers used for different
tags is the same, which is 1X Native Purification Buffer. For
both MBP and GST tag, the same composition is used.

5. Tip Sonicator.
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2.8 Protein

Purification

1. 10 ml purification column.

2. Wash Buffer.
The composition of wash buffer varies with the solubility tag
used. For GST tag, 50 mM Tris pH 7.4, 0.25 M NaCl, 1 mM
EDTA is used. For MBP tag, the 1X native purification buffer
can be used as wash buffer.

3. Elution Buffer.
Elution buffer composition also varies along with the solubility
tag. For GST tag, to the wash buffer 33 mM of reduced
glutathione is added. To prepare GST elution buffer, weigh
20.28 mg (FW ¼ 307.32) of reduced glutathione and add to
2 ml of wash buffer.

For MBP tag, 10 mM Maltose is required in the Elution
buffer. To prepare MBP elution buffer, add 7.2 mg of Maltose
to 2 ml of wash buffer for MBP Tag.

4. Reduced Glutathione solution.

5. Maltose.

3 Methods

3.1 Reverse

Translation

De novo designed proteins, or proteins for which it is very difficult
to get the full length DNA, reverse translation serves as an
extremely helpful tool. The amino acid sequence of the protein
can be reverse translated to the corresponding DNA sequence by
using the web-based application by Helix Systems called “DNA-
Works” [16]. The DNA sequence can be optimized for codon bias
so as to obtain high expression. DNAWorks also generates oligos
corresponding to the DNA sequence, which when assembled
through the PCR-based method can give rise to the complete
DNA sequence.

3.2 Construct Design The simplest of the construct design would be the insert (obtained
by using DNAWorks by Helix Systems) flanked at its 50 and 30 ends
by two different restriction enzyme sites, which would assist in
directional cloning. Those restriction enzyme sites should be pres-
ent in the multiple cloning site (MCS) of the vector as well. A few
(~6) bases should be added at both the 50 and 30 ends of the
construct to increase the efficiency of cleavage by the restriction
enzymes. Most of the expression vectors carry a protease site that
allows the protein of interest to be cleaved from the solubility tag.
There is a chance that after the cleavage with protease, some of the
amino acid residues of the cleavage site remain attached to the
protein of interest, which might be undesirable. To avoid this
problem, incorporating an additional protease site such as that of
Factor Xa (cleaves at the C terminal of the protease site, and leaves
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no stray residues attached to the protein of interest) at the 50 end of
the insert results in a clean release of only the protein of interest.
Additionally, a hexa-histidine (6�His) tag can also be inserted in
between the 50 end restriction site and protease site to assist in
affinity-based protein purification after solubility tag cleavage.

3.3 Cloning

3.3.1 Restriction

Digestion

The designed construct (herefrom referred to as insert) is doubly
digested using two different enzymes. Similarly, the expression
vector of our choice is doubly digested using the same enzymes
that were used for digesting the insert.

Recipe for restriction digestion

Insert Expression Vector

Vector 1 μg 1 μg

Buffer 1X 1X

Enzyme 1 1 Unit 2–5 Units

Enzyme 2 1 Unit 2–5 Units

Water Volume adjust Volume adjust

Total 30 μL 30 μL

1. The digestion mixes are left at 37 �C in a water bath for
3.5 hours.

2. After completion of 3.5 hours, a 1–2 unit of Calf intestinal
phosphate is added to the expression vector (see Note 1). It is
incubated at 37 �C on a water bath for another 30 min. The
insert digestion mix is left undisturbed.

3. After restriction digestion is complete the digestion mixes are
run on a 1 % agarose gel.

4. The bands corresponding to insert and linearized expression
vector are eluted from the gel.

5. The concentrations are measured using a spectrophotometer.
These concentrations are used in calculations required in the
next step of ligation.

3.3.2 Ligation The following formula is used to calculate the amount of insert
required given the amount of vector (100 ng).

Amount of Insert ¼ ng of vector � kb size of insert

kb size of vector

�molar ratio insert

Vector
:
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The following recipe is used for ligation when using T4 ligase.

Insert þ vector Vector (�ve control)

Vector 100 ng 100 ng

Insert As per formula –

Ligation Buffer 1X 1X

T4 Ligase 1 Unit 1 Unit

Water Volume adjustment Volume adjustment

Total 10 μL 10 μL

The ligation mix is kept at room temperature (25 �C) for
15 min.

3.4 Competent Cell

Preparation

Competent cell preparation is started 4 days prior to cloning
experiment.

DAY1: Required E. coli strains are streaked on fresh LB Agar plates
and incubated overnight at 37 �C.

DAY2: Preparation of 0.1 M CaCl2 and 0.1 M CaCl2 þ 10 %
glycerol solutions.

Setting up of 5 ml primary culture (picking up a single colony from
plate and inoculating the broth) and overnight incubation at
37 �C.

DAY3:

1. Secondary culture is set up (200 mL LB broth in 1 L flask)
by adding 1 % (v/v) of primary culture.

2. Incubation at 37 �C with shaking till OD reaches 0.4.

3. Cells are harvested by pouring culture into four 50 mL
falcon tubes and centrifuging at 1500 � g at 4 �C for
10 min.

4. Supernatant is discarded and pellet is washed with 5 mL of
pre-chilled 0.1 M CaCl2 per tube, till the pellet resuspends.
Centrifugation is repeated as above. The supernatant is care-
fully discarded.

5. The subsequent steps are done on ice. 5 ml of pre-chilled
0.1 M CaCl2 is added to the pellet and the cells are sus-
pended and left to incubate for 40 min. Centrifugation is
repeated as above but for only 5 min.

6. Supernatant is discarded and 2 mL of 0.1 M CaCl2 þ 10 %
glycerol solution is added to each tube. The cells are sus-
pended by swirling the contents of the tubes and are finally
poured into one.

7. The tube is allowed to sit on ice or kept in cold room
overnight.
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DAY4: 100 (in numbers) of 1.5 mL microcentrifuge tubes are
pre-chilled on ice. The cells in the falcon tube are resuspended and
100 μL is aliquot into each microcentrifuge tube. All the tubes are
flash frozen and stored at �80 �C for future usage.

3.5 Transformation

and Screening

1. Two microcentrifuge tubes containing 100 μL of competent
cells (DH5α) are taken out from �80 �C and kept in ice for
10 min.

2. All the 10 μL of the ligationmix � insertþvector and only vector
are added to the separate tubes containing competent cells.

3. The cells are then left to equilibrate with the DNA for
20–30 min.

4. The cells are then given heat shock at 42 �C for 60 s by putting
the tubes in water bath set at the said temperature.

5. The tubes are taken out and kept in ice for 2 min and then 1 ml
of LB broth is added to both tubes.

6. The tubes are then kept in shaker incubator at 37 �C for 1 h.

7. After 1 h, the cells are centrifuged, 900 μL of the supernatant
is discarded, and the pellet is resuspended in the remaining
supernatant and is plated on appropriate selection plates
(depending upon antibiotic resistant gene carried by the
expression vector) and left overnight at 37 �C.

8. Screening

The plates are checked for the appearance of colonies on the
plates.

1. A small amount of inoculum from each of these colonies (from
the insert þ vector plate) is then streaked into another plate.

2. Colony PCR is performed to verify the ligation of the insert
using primers specific for that insert.

Protocol for colony PCR is as follows:

Small amount of bacterial inoculum from the colonies are
smeared into PCR tubes (depending on number of colonies to be
screened) and to each of the tubes the following recipe is added.

2X PCR Mix 1X

Forward and reverse primer mix [10 μM] 1 μM

Taq polymerase 1–3 Units

Water Adjust volume

Total 10 μL

The colonies that give positive results are further validated by
isolating the plasmids and performing restriction digestion using
the same restriction enzymes used for cloning (following the
restriction digestion protocol 3.3.1).
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DNA sequencing is ultimately done to confirm the insert
sequence.

3.6 Protein

Expression

1. Transform (see step 4 of section 3.5) the plasmid carrying the
insert into LEMO21 cells (New England Biolabs) (see Note 2).
The cells are plated and the plate is left for overnight incubation
at 37 �C. A 20ml primary culture is set up the following day.

2. A 1 L secondary culture is set up the next morning. To the
culture, antibiotics (see Note 2) are added along with 2 mM
Rhamnose (see Note 3). 1% (v/v) primary culture is added to
the secondary culture and it is kept in a shaker incubator till
OD reaches 0.4–0.6.

3. At this OD, induction is done with 1 M IPTG such that the
working concentration of IPTG is 0.4 mM.

4. Post induction, the culture is kept back in shaker incubator for
4 hours at 37 �C.

5. After incubation, the cells are harvested by centrifuging at
1500 � g for 5 min. The cell pellets are stored at �80 �C for
further use.

3.7 Cell Lysis 1. 50 μL of EDTA/EGTA free Protease Inhibitor cocktail is
added to the harvested cells after thawing.

2. The pellet is resuspended in 10 ml of Lysis Buffer containing
1 mM working PMSF. It is left to incubate at ice for 30 min.

3. At 40 % amplitude, and a 5 s ON and 10 s OFF pulse, sonica-
tion is done for approximately 5 min. 5 μL of the lysate is then
stored to run on a SDS-PAGE gel later.

4. The remaining lysate is centrifuged at 15000 � g for 1 h to
pellet down cellular debris. The pellet is stored at�20 �C, after
taking out 5 μL of supernatant and a speck of pellet for running
on a SDS-PAGE gel. Ideally, most of the protein should be
present in the supernatant fraction.

5. However if the protein is still trapped in the pellet fraction a
different strategy is used to solubilize it. To the pellet, 5 ml of
Lysis buffer as mentioned earlier is added and the pellet is
resuspended. Now sonication is repeated for 5 min. 0.3 % (v/
v) SDS, 3 % (v/v) Triton X-100, and 30 mMCHAPS (v/v) are
added (see Note 4) [17] and left for overnight incubation on a
nutating mixer. The following morning the lysate is centri-
fuged at 15000 � g for 1 h again. 5 μL of supernatant and a
speck of pellet is saved for running on a gel and the remaining is
stored at �20 �C. This step should solubilize most of the
protein trapped in the pellet.

6. After confirming the presence of protein in the supernatant
fractions by running the samples on a 12 % acrylamide gel,
protein purification is followed.
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3.8 Protein

Purification

3.8.1 Column

Preparation

1. 1.5 ml of resin (50% ethanol slurry) (seeNote 5) is pipetted into
a 10 ml purification column [18]. The resin is allowed to settle
down either by gravity or by centrifugation at low RPM
(<1500 � g).

2. The supernatant is allowed to flow through the column and to
the resin 6 ml of water is added to wash the resin, by inverting
and tapping the resin few times. The resin is allowed to settle
and the supernatant is allowed to flow through the column.

3. 6 ml of lysis buffer is added next to equilibrate the resin. After
the resin settles down the supernatant is allowed to flow
through the column. This step is repeated twice. The column
is now ready for use.

3.8.2 Binding, Washing,

and Elution

1. All 10 ml of Supernatant containing the soluble protein is
added to the resin and left for overnight binding on a nutating
mixer at 4 �C (see Note 6).

2. The next day the column is fixed on a stand and the resin is
allowed to settle. The supernatant is allowed to flow through
the column and is collected in a separate tube. This flow
through constitutes the unbound fraction. 5 μL of this
unbound fraction is kept aside to run on a gel and the remain-
ing is stored at �20 �C.

3. Next, to the column 8 ml of Wash buffer is added and the resin
is allowed to settle down. The flow through collected is labeled
as Wash fraction 1 and stored at �20 �C. 5 μL of this wash
fraction 1 is kept aside to run on a gel. This process is
repeated thrice.

4. Finally to elute the protein, 0.5 ml of Elution buffer is added to
the resin and is allowed to stand for a minute. The eluted
fraction is then collected in a 1.5 ml microcentrifuge tube
separately labeled as Elute Fraction 1. Three more elute frac-
tions are collected by following the same procedure.

5. All the collected fractions are run on a 12 % gel to check for
presence of the protein of interest. The fractions containing the
protein of interest are pooled together and concentrated using
appropriate molecular weight cut off spin concentrator. Dialy-
sis against an appropriate storage buffer is followed afterwards
to get rid of the remaining glutathione/maltose. As per the
need, the solubility tag could be cleaved by specific prote-
ase (Factor Xa) action and further protein of interest is purified
using ion exchange chromatography/affinity chromatography
(in case 6 � His tag is present in the construct see section 3.2
Construct Design).
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4 Notes

1. Calf Intestinal Phosphate helps to chew the phosphate over-
hangs thereby inhibiting self ligation of vectors and facilitating
directional cloning of insert.

2. These cells are best suited to produce proteins that are toxic to
the cell and cannot be expressed in BL21(DE3) cells. After
transformation, these cells have to be plated on an agar plate
containing two antibiotics - chloramphenicol (for pLEMO)
and Ampicillin (for pMALc5X) / Kanamycin (for pET42a).
In parallel, protein over-expression with other competent cells
such as C41, C43, Rosetta could also be tried.

3. Rhamnose helps in tuning the protein expression and is specific
for LEMO 21 cells.

4. Alternatively 10 % SDS and 10 % Triton X-100 can also be used
to solubilize the protein trapped in the pellet.

5. For MBP tag Amylose resin is used and for GST tag, Glutathi-
one resin is used.

6. When using GST tag, adding 1 mM of Dithiothreitol (DTT) to
the lysate while it is kept for binding, increases specific binding
of GST to column.
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Chapter 4

Deterministic Search Methods for Computational Protein
Design

Seydou Traoré, David Allouche, Isabelle André, Thomas Schiex,
and Sophie Barbe

Abstract

One main challenge in Computational Protein Design (CPD) lies in the exploration of the amino-acid
sequence space, while considering, to some extent, side chain flexibility. The exorbitant size of the search
space urges for the development of efficient exact deterministic search methods enabling identification of
low-energy sequence-conformation models, corresponding either to the global minimum energy confor-
mation (GMEC) or an ensemble of guaranteed near-optimal solutions. In contrast to stochastic local search
methods that are not guaranteed to find the GMEC, exact deterministic approaches always identify the
GMEC and prove its optimality in finite but exponential worst-case time. After a brief overview on these
two classes of methods, we discuss the grounds and merits of four deterministic methods that have been
applied to solve CPD problems. These approaches are based either on the Dead-End-Elimination theorem
combined with A* algorithm (DEE/A*), on Cost Function Networks algorithms (CFN), on Integer
Linear Programming solvers (ILP) or on Markov Random Fields solvers (MRF). The way two of these
methods (DEE/A* and CFN) can be used in practice to identify low-energy sequence-conformation
models starting from a pairwise decomposed energy matrix is detailed in this review.

Key words Exact combinatorial optimization, Global minimum energy conformation, Near-optimal
solutions, Dead-end-elimination, Cost function network, Integer linear programming, Markov
random field

1 Introduction

Computational Protein Design (CPD) seeks to identify amino-acid
sequences that fold into stable known three-dimensional (3D)
scaffolds and possess desired biophysical and functional properties.
Achieving this goal requires facing several challenges. During the
CPD process, amino-acid residues in the protein sequence are
replaced by other possible amino acid types to find beneficial com-
bined mutations for the targeted properties. Beyond the sequence
identity, one has also to consider the conformational flexibility of
the biomolecular system which follows from degrees of freedom
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around chemical bonds. The search space defined by both sequence
identity and conformation grows exponentially with the number of
considered mutations and becomes quickly out of reach of compu-
tational approaches. In this regard, the conformational search space
is usually discretized using a set of side-chain conformations
defined by their inner dihedral angles, which are called rotamers
[1]. These low-energy side-chain conformations are derived from
statistical analysis of high-resolution crystal structures in the Pro-
tein Data Bank [2]. Additionally, an assumption of modest protein
backbone conformational flexibility is generally made. Numerous
CPD methods consider a fixed protein backbone or a limited set of
small changes. However, despite these simplifications, the size of
the search space is still excessively large. Hence, efficient mehods are
necessary to both evaluate sequence-conformation candidates
based on their energy and to search through the sequence-
conformation space a model of GMEC. In practice, an ensemble
of near-optimal solutions is also desirable.

The most basic CPD problem defined by a fixed backbone with
a corresponding set of positions and a rotamer library is formulated
as an optimization problem that consists in choosing combinations
of rotamers at designable specified positions such that the energy-
based objective function is minimized. The energetic assessment of
any combination of rotamers requires computationally efficient
energy functions while being sufficiently accurate to discriminate
between multiple sequence-conformation models. Energy func-
tions used in CPD have been reformulated in such a way that the
terms are pairwise decomposable [3]. From this formulation, the
energy of a given protein sequence-conformation model, defined
for each residue by a choice of one specific amino acid with an
associated rotamer, can be written as:

E ¼ E; þ
X
i

E irð Þ þ
X
i

X
j>i

E ir , j s
� � ð1Þ

where E is the potential energy of the protein, Eø is a constant
energy contribution capturing interactions between fixed parts of
the model, E(ir) is the energy contribution of rotamer r at position i
capturing internal interactions or interactions with fixed regions,
and E(ir, js) is the pairwise interaction energy between rotamer r at
position i and rotamer s at position j [4]. This pairwise decomposi-
tion makes the CPD problem more amenable to computational
optimization procedures. First, all the energy terms can be pre-
computed for each amino acid/rotamer (or E(ir, js) pair) indepen-
dently of each other and stored in an energy matrix. Hence, once a
specific rotamer has been chosen at each mutable amino-acid resi-
due, the energy of a model can be quickly computed as the above-
defined pairwise sum. Finally, to assess the fitness of the models, an
appropriate objective function has to be appropriately defined with
respect to the design purpose. Typically, to assess protein stability,
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a reference energy term is incorporated into the E(ir) term without
changing the form of the pairwise sum to take into account the
unfolded protein state. The rigid backbone discrete rotamer CPD
problem consists thus in identifying at each position i a pair from a
subsetDi of all (amino-acid, rotamer) such that the overall energy E
is minimized. In practice, based on knowledge of the molecular
system and specific design goals, each position can be fixed (Di is a
singleton), flexible (all pairs in Di have the same amino-acid type),
or mutable (the general situation).

The main trend over the last decade is to extend this already
difficult task to incorporate more and more flexibility to alleviate
the inaccuracy resulting from the simplifications introduced in the
modeling of the design problem. As an illustration, recent CPD
approaches allow for consideration of continuous rotamers [5],
flexible backbones or backbone ensembles [6], or both [7].

Despite its apparent simplicity, the rigid backbone discrete
rotamer CPD problem as defined above has been proven to be
NP-hard [8]. Even more, the problem has been shown hard to
approximate [9]. For these reasons, stochastic local search methods
based on Monte Carlo simulated annealing [10, 11], genetic algo-
rithms [12], and many other algorithms [13–15] have been exten-
sively developed to handle practical CPD optimization problems.
These methods have a random component, may give a different
answer for each run, and offer only asymptotic convergence. The
general strategy of Monte Carlo simulated annealing methods
(such as implemented into the well-known Rosetta modeling
suite [16]) is to iteratively propose a random rotamer substitution
(either the same amino acid or a new one) at a randomly picked
residue and then decide whether or not the proposed modification
should be accepted according to the Metropolis criterion [17]. A
rotamer substitution is always accepted if it lowers the energy of the
model while the acceptance or rejection of a modification that
increases the energy is based on Bolzmann’s relationship between
probability and energy differences at a given temperature for the
system. The substitution is accepted with Boltzmann probability or
rejected otherwise. The system is slowly cooled throughout the
run. The high initial temperature allows large jumps between
local energy minima in the energy landscape and its reduction
along the run gradually decreases the probability that move to a
higher energy will be accepted. As a stochastic local search proce-
dure, finding the GMEC is not guaranteed in finite time and the
routine may end up trapped in local minima. To try to circumvent
this, multiple independent runs are performed (each with a pre-
defined number of steps) to cover, as well as possible, a rugged
energy landscape. Genetic algorithms (such as implemented in
EGAD [18]) are related in some aspects to Monte Carlo
approaches. The main differences are that genetic algorithms
work on a population of models throughout the run and mimic
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genetic recombination and mutations to create new models from
parents. The population dynamics of genetic algorithms make
larger changes than Monte Carlo methods and thus, can more
rapidly overcome energy barriers. However, each cycle is computa-
tionally more expensive than in the Monte Carlo method. The
general procedure of genetic algorithm-based methods can be
described as follows: a population ofMmodels is generated before-
hand. It defines the parent models for the next evolutionary pro-
cess. Parent models are mutated with a given probability
distribution associated with rotamers and N best mutants are cho-
sen for recombination. A tournament selection technique (whereN
mutated models are picked at random) is applied to generate the
new population of models. The model with the lowest energy is
allowed to continue to the next generation. This selection step is
repeated M times to produce the whole population of the next
generation that will continue to the next round of mutation,
recombination, and selection. The overall procedure is repeated
until population equilibrium is reached. As in a Monte Carlo
simulated annealing method, a “heating and cooling” process can
be simulated by varying the number of modelsN, thus tailoring the
pressure of selection. Initial low N values allow a broad population
distribution and then, high N values restreint the variability of the
population after each generation. This process is repeated to
enhance the probability of finding lower minima.

These stochastic local search approaches have the advantage of
providing a best known model at any time; however, they neither
guarantee to find the GMEC nor a bounded energetic distance to
the optimal solution. Moreover, the accuracy of stochastic methods
also degrades as problem size increases [11]. In contrast, exact
deterministic methods are able to get rid of these deficiencies.
Since they can provably solve the problem to optimality, they
ensure that when a discrepancy is found between computational
and experimental results, the only possible culprit lies in the CPD
model, and not in the optimization algorithm. This guaranty is
fundamental in design cycles that go through modeling, solving,
protein synthesis, and experimental evaluation. For a long time
available deterministic methods have been extremely time-
consuming, thus preventing their use to handle complex CPD
problems. However, their advantages have motivated the recent
development of more efficient deterministic approaches that are
able to control the exponential explosion on increasingly large
design sizes.

In this chapter, we present four exact search methods for the
rigid backbone discrete rotamer problem, either based on the
Dead-End-Elimination theorem combined with A* algorithm
(DEE/A*), on Cost Function Networks algorithms (CFN), on
Integer Linear Programming solvers (ILP) or on Markov Random
Fields solvers (MRF). We then provide practical details to solve
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GMEC-based protein design problems as well as to enumerate
near-optimal solutions using two of these methods [3], the
DEE/A*, a well-established method in the CPD field and the
more recent CFN method. Using the size of the sequence-
conformation space as a proxy to the hardness of the problems for
these methods, recent experiments [19] on 35 designs of increasing
sizes showed that within 100 h, DEE/A* was able to tackle 18
problems with sizes up to 1088 but choked on some problems with
size 1047. Instead, CFN algorithms were able to solve 30 problems,
with sizes up to 1094 and started to choke only on problems of size
1061 (see Fig. 1).

Fig. 1 CPU-time for solving the GMEC using DEE/A* (osprey) and CFN (toulbar2). The graph shows the number
of Computational Protein Design instances solved to optimality by DEE/A* (in blue) and CFN (in green) (X-axis)
as a function of time allowed for solving each problem (Y-axis). The performance of the algorithms was
examined using a benchmark set of 30 CPD instances. This set comprises protein structures derived from the
PDB which were chosen for the high resolution of their 3D structures and their distribution of sizes and types.
Diverse sizes of sequence-conformation combinatorial spaces ranging from 1026 to 10249 were considered,
varying by the number of mutable residues, the number of alternative amino acid types at each position, and
the number of conformations for each amino acid (the Penultimate rotamer library was used). All computations
(toulbar2 and osprey) were performed on a single core of an AMD Operon 6176 at 2.3 GHz, 128 GB of RAM,
and a 100 h time-out
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2 Methods

2.1 DEE/A*-Based

Search Method

DEE/A* is the most widespread exact method in the CPD field.
The two steps involved in this framework can be summarized as
follows: (1) a preprocessing to reduce the search space, until a
fixpoint is reached and (2) the application of a search algorithm to
extract the optimum from the remaining space. The preprocessing
step mainly relies on the so-called Dead-End Elimination (DEE)
theorem [4, 20] and the A* algorithm is the most applied search
strategy by exact CPD solvers [21, 22].

DEE is a dominance analysis technique. The rotamer r at
position i (denoted by ir) is removed if there exists another rotamer
u at the same position such that [4] :

E irð Þ þ
X
j 6¼i

min
s

E ir ; j s
� �

> E iuð Þ þ
X
j 6¼i

max
s

E iu; j s
� � ð2Þ

This criterion, referred to as the Desmet criterion, guarantees that
the energy of any given conformation with rotamer r can be low-
ered if we substitute u for r, when such a rotamer exists. The
Desmet criterion has later been improved by the Goldstein criterion
that compares directly the energies of each rotamer within an
identical conformational context [23].

E irð Þ � E iuð Þ þ
X
j 6¼i

min
s

E ir ; j s
� �� E iu; j s

� �� �
> 0 ð3Þ

These two properties and various extensions of the DEE theorem
define the polynomial time algorithms that prune dominated values
[24–26].

However, although DEE has become a commonly used
method in CPD, it is an incomplete algorithm: that is, it cannot
solve all CPD instances. Therefore, DEE preprocessing is often
followed by an A* search that expands an energy sorted
sequence-conformation tree. Thence, the first complete sequence-
conformation reached by an A* search is the GMEC and the
following solutions are discovered in an increasing energy order
[22]. But, unfortunately, CPD is NP-hard and the search problem
may become intractable for A* when the DEE preprocessing step
does not reduce the search space sufficiently: the search becomes
either too slow or memory demanding.

The DEE/A* method is available for example in osprey, a well-
known program in the CPD field [27, 28] (see Note 1).

2.2 CFN-Based

Search Method

The CPD optimization problem, in its pairwise-decomposed form,
can be easily formulated as a Cost Function Network optimization
problem (CFN), also known as a Weighted Constraint Satisfaction
Problem (WCSP) (see Fig. 2).
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A CFN P is defined by a set of variables that are each involved
in a set of local cost functions [29]. Formally, a CFN P is a triple
P ¼ X ;D;Cð Þ where X ¼ 1; 2; ::;nf g is a set of n variables. Each
variable i ∈ X has a discrete domainDi ∈ D that defines the set of
values that it can take. A set of local cost functions C defines a
network over X. Each cost function cS ∈ C is defined over a subset
of variables S � X (called its scope), has a domain ∏

i ∈ S
Di and takes

integer values in {0, 1, 2,.., k}. The cost k represents a maximum
tolerable cost, and can be infinite or set to a finite upper bound.
Values or pairs of values that are forbidden by a cost function are
simply mapped to k. The global cost of a complete assignment A is
defined as the sum of all cost functions on this assignment (or k if
this sum is larger than k). The WCSP defined by P consists in
finding an assignment of all variables that minimizes this global
cost. Notice that it is usually assumed that C contains one constant
cost function, with an empty scope, denoted as c;. Since all cost
functions in a CFN are nonnegative, this constant cost function
c; ∈ C defines a lower bound on the optimization problem.

It is straightforward to map the CPD problem to the CFN
model. Every nonrigid residue i is represented by a variable i and

Fig. 2 Modeling of computational protein design problem (based on rigid
backbone and discrete rotamers) as a Cost Function Network. Each variable
amino acid residue is represented by a variable X (highlighted using different
colors). The set of rotamers available to the residue defines the domain of the
variable X. Each interaction energy term between pair of rotamers is represented
as a cost function
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the set of (amino acid, rotamer) pairs available to the residue defines
its domain Di. Then, each energy interaction term in E is repre-
sented as a cost function. The constant term Ec is captured as the
constant cost function with empty scope (c;) and terms E(ir) and E
(ir, js) are represented by unary and binary cost functions involving
the variables i and j of the corresponding residues. The mapping of
energy terms to positive integers is done by shifting and scaling
according to desired precision. The nonnegativity of cost functions
is enforced by simply subtracting the minimum of every cost func-
tion from its cost table. Such operations preserve the set of optimal
solutions. The joint cost distribution defined by the corresponding
CFN is then equal to the energy, up to a known constant shift. The
optimal solution of the CFN is an assignment that corresponds to a
GMEC for the CPD problem (when stability is the objective func-
tion). When the maximum number of available rotamers over all
residues is d, the resulting binary CFN takes space in O(n2d2).

The fundamental processing technique in CFN optimization is
the so-called Local Consistency filtering instead of dominance
analysis by DEE. Enforcing Local Consistency can reformulate an
initial CFN into an equivalent CFN, with the same variables and
scopes but possibly smaller domains (value deletion) and an
increased lower bound c; (lower bounding). By equivalent, we
mean that the new CFN will assign the same cost to any complete
assignment. This is obtained by the exclusive and repeated applica-
tion of local transformations of the CFN that shift cost (or energy)
between cost functions of intersecting scopes until a given local
consistency property is satisfied. Many of these local consistency
properties and associated polynomial time enforcing algorithms
have been defined [30–32]. Depending on the locality of the
property, which may apply to one variable, one cost function or
more, they are called Node, Arc, or higher order consistencies. As
an example, the node consistency of a variable i with associated cost
function ci requires that di contains at least one value v such that
ci vð Þ ¼ 0 and no value w such that that c;+ci wð Þ � k (the forbidden
cost). Equivalently, this means that there is at least one value that
does not increase cost locally and no value that would lead to
intolerable costs. If a variable does not satisfy these properties,
then by deleting values and shifting costs to c;, the variable can be
made node consistent. The amount of pruning therefore increases
with smaller values of the upper bound k. Arc consistencies are
defined similarly but are significantly more involved (see e.g.
[30–32]). Since they preserve equivalence, local consistency algo-
rithms are naturally incremental. This means they are not only
useful as a preprocessing mechanism but can also be very cheap to
maintain during search, usually within an exhaustive Depth First
Branch and Bound (DFBB) algorithm, which ensures that the
solution at the end of the search is the optimum. As search pro-
gresses, local consistency enforcing algorithms increasingly simplify
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the initial problem and strengthen the lower bound that is used to
prune during DFBB. Thence, the enforcing of local consistency
properties may lead to pruning during search and provide heuristics
to dynamically guide the search.

The very good performance of the CFN-based approaches as
available in the toulbar2 software [33, 34] (winner of the UAI
Inference Challenge in 2010 and 2014) on CPD problems has
been shown in recent publications [19, 35, 36] (see Note 2).

2.3 ILP-Based

Search Method

The rigid backbone discrete rotamer CPD problem can also be
represented as a zero/one linear program (01LP) problem [19,
35, 36] using the usual translation from CFN to ILP initially
proposed in [37], which has later been proposed for CPD in
[38]. A 01LP is defined by a linear criteria and a set of linear
constraints on Boolean variables. For every value/rotamer ir of
the variable/residue i, one Boolean variable dir is introduced. dir

indicates whether the rotamer ir is used (dir ¼ 1) or not (dir ¼ 0).
In order to enable the expression of the energy as a linear function
of variables, an extra Boolean variable pir j s is introduced for every
pair of rotamers (ir, js), capturing the fact that this pair of rotamers
is used. The energy can then be expressed directly as the linear
function to be minimized (the constant term can be ignored as it
cannot change the optimal solution):

X
i, r

E irð Þ � dir þ
X

i, r, j, s
E ir ; j s
� � � pir j s ð4Þ

Additional constraints enforce that exactly one rotamer is selected
for each variable position and that a pair is used if, and only if, the
corresponding values are used. Then, finding a GMEC reduces to
the following 01LP:

min
X
i, r

E irð Þ � dir þ
X

i, r, j, s
E ir ; j s
� � � pir j s ð5Þ

such that:

X
r

dir ¼ 1 8ið Þ ð6Þ
X
s

pir j s ¼ dir 8i, r, jð Þ ð7Þ

The resulting ILP contains O(n2d2) variables and O(n2d) con-
straints. Note that since the objective function is nonlinear, it is
fundamentally impossible to express it in 01LP without introdu-
cing a quadratic number of variables. Hence, this 01LP model
cannot be improved significantly in size.

This type of model can be handled by various ILP solvers such
as IBM ILOG cplex (see Note 3).
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2.4 MRF-Based

Search Method

The CPD problem can also be formulated as a probabilistic
graphical model [19, 39], such as a Markov random field [40]. In
this formalism, a concise description of a joint distribution of
probabilities over a set of variables is obtained through a factoriza-
tion in local terms, involving only few variables. For terms involving
at most two variables, if vertices represent variables and edges
represent terms, a factorization can be represented as a graph,
hence the name of graphical models. The same idea is used for
concisely describing a cost distribution in Cost Function Networks.

A discrete Markov Random Field (MRF) can be defined as a
pair (X, Φ) whereX ¼ 1; . . . ;nf g is a set of n random variables and
Φ is a set of potential functions. Each variable i ∈ X has a finite
domain Di of values that can be assigned to it. A potential function
ϕS ∈ Φ with scope S � X is a function ϕS : DS ! ℝ: A MRF
implicitly defines a nonnormalized probability distribution over
X. The probability of a given tuple t is defined as:

P tð Þ ¼
exp �P

ϕS ∈ ΦϕS t S½ �ð Þ
� �

Z
ð8Þ

where Z is a normalizing constant (the partition function).
From the sole point of view of optimization, the problem of

finding an assignment of maximum probability, also known as the
maximum a posteriori (MAP) assignment in a MRF or a minimum
cost solution of a CFN, is equivalent by monotonicity of the exp()
function. Only technical differences remain: CFNs are restricted to
nonnegative and usually integer costs. Being focused on optimiza-
tion, CFNs also emphasize the existence of a possibly finite upper
bound k that can be exploited for pruning.

The CPD problem can therefore directly be modeled as the
MAP problem in a MRF exactly as earlier described for CFN, using
additive potentials to capture energies (see for example [41]).

These models can be solved using MAP-MRF solvers such
as daoopt [33, 34] (winner of the Pascal Inference Challenge in
2011) (see Note 4) or the recent version of the mplp [34] solver
(see Note 5).

3 Practical Procedure

In this section, we describe procedures to solve the GMEC identi-
fication problem with the DEE/A* CPD-dedicated package, osprey
version 2.0 [27, 28] (see Note 1) and the CFN solver, toulbar2
version 0.9.6 (seeNote 2) from the energy matrix precomputed for
a protein design problem. In addition to the identification of the
GMEC, both methods can also enumerate an ensemble of subopti-
mal solutions within a given energy interval, which can be of
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interest for the experimental construction of rational protein
mutant libraries. The procedures to generate these suboptimal
sequence ensembles are also explained hereafter. Notice that the
toulbar2 CFN solver has been shown to outperform the DEE/A*
approachby several orders ofmagnitude for theGMEC identification
and also for producing a set of suboptimal solutions [19, 35, 36] (see
Fig. 1). In practice, this latter step has been found unattainable using
DEE/A* in numerous CPD cases [36]. All computational scripts
mentioned, as well as the CPD instance handled in the following
example, have beenmade available to the scientific community (in the
archive SpeedUp2 at the following address: http://genoweb.
toulouse.inra.fr/~tschiex/CPD/SpeedUp2.tgz). They assume the
use of a Linux/Unix environment using a sh (bash) shell.

Before using any of these exact deterministic optimization
methods, the pairwise decomposed energy matrix needs to be com-
puted and stored. This can be achieved using the patched and
compiled version of osprey 2.0 [27, 28], available in the Osprey2.0
directory of the SpeedUp2 archive, which works under most 64 bits
Linux systems with Java (6 or above) installed. The result is a binary
matrix file that will be later used to generate the input for toulbar2
solver. The command line for computing a pairwise energymatrix is:

java -cp Osprey2.0/src:Osprey2.0/src/mpiJava/lib/classes -Xmx2G

KStar -t 5 –c inp/KStar.cfg computeEmats inp/System.cfg inp/DEE.

cfg >out/matrix.out 2>&1 < /dev/null

mv dat/matrixEMmin_COM dat/matrixEMmin_COM.dat

The KStar.cfg file contains parameters to define the force field,
the weights of energy terms, and the path to the rotamers library.
The System.cfg file defines the input pdb model (parameter
pdbName) as well as the variable residues (parameter strandMut0:
list of pdb residue number with strand0 that indicates the range of
considered residues from the chain index 0 and the suffix 0 that is an
index on the molecular chain). The list of amino acids allowed at
each ith variable residue is defined by the resAllowedx_y parameters
from the DEE.cfg file (x is the chain number, and y is the ith
variable residue defined at strandMut0 for x ¼ 0). More details
can be found in osprey user manual (available in the SpeedUp2
archive as well as at the following URL http://www.cs.duke.edu/
donaldlab/osprey.php).

3.1 DEE/A*-Based

Optimization Using

osprey

1. The previously generated binary file can be handled internally
by osprey. The GMEC identification can be accomplished by the
following command line that produces a sequence-
conformation file in the conf_info directory:

java -cp Osprey2.0/src:Osprey2.0/src/mpiJava/lib/classes -

Xmx2G KStar –c inp/KStar.cfg doDEE inp/System.cfg inp/DEE.

cfg >doDEE.out 2>&1 < /dev/null
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2. For the generation of near-optimal solutions, it is necessary to
modify the initEw parameter from file inp/DEE.cfg. This
parameter defines the interval within which near-optimal solu-
tions are enumerated. Simply setting its value to 0.5 for exam-
ple will cause the previous command line to enumerate all
solutions within 0.5 kcal/mol of the GMEC.

3.2 CFN-Based

Optimization Using

toulbar2

Alternatively, the open source CFN solver toulbar2 can be used to
identify the GMEC or generate suboptimal solutions of the CPD
problem. By default, toulbar2maintains Existential Directional Arc
Consistency [42] for incremental lower bounding, dynamic value
ordering (based on minimum unary cost), and a variable ordering
heuristics (based on the median energy of terms involving a given
residue following preprocessing) combined with last conflict heur-
istics [43]. To use the toulbar2 solver, it is necessary to generate a
specific text file format defining a WCSP problem beforehand
(.wcsp file).

1. The translation of the energy matrix into a CFN
model can be accomplished by the command line below.
An additional text matrix file is generated, which is used there-
after to translate solutions into the osprey sequence-
conformation file format:

java -cp Osprey2.0/src/:Osprey2.0/src/mpiJava/lib/classes/

KStar -c inp/KStar.cfg writeWcsp inp/System.cfg inp/DEE.cfg

>writeWCSP.out

2. The CFN-based optimization using toulbar2 can be performed
by scripts/run_toulbar2.sh. The first step in this script is to
perform the computation of the GMEC, followed by the
extraction of the solution from the output and its translation
into osprey conformation file by the script scripts/sol2conf.pl).

name¼matrixEMmin

./bin/toulbar2 dat/$name.wcsp -l¼3 -m -d: -s > out/$name.

wcsp.opt.out

grep -A 1 "New solution" out/$name.wcsp.opt.out|tail -1 |sed -

re "s/^/ solution:/" > out/$name.wcsp.opt.sol

perl scripts/sol2conf.pl -mat¼dat/$name.quick -tbsol¼out/

matrixEMmin.wcsp.opt.sol

The file out/$name.wcsp.opt.sol contains the solution found by
toulbar2. The corresponding osprey conformation file is generated
at conf_file/$name.wcsp.opt.sol.conf.sorted

The second step in the scripts is the computation of the sub-
optimal ensemble. The cost of the GMEC is used to define the
upper bound below which suboptimal solutions are enumerated.
The threshold from the GMEC energy is controlled by ew
(0.5 kcal/mol in this example).
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ew¼‘bc -l<<<" 0.5 * 10^8"|awk ’{printf"%d",$0}’‘#kcal.mol-1

lb¼‘egrep "^Optimum:" out/${name}.wcsp.opt.out|awk ’{print

$2}’‘ # lowerbound

ub¼‘bc -l <<<" $lb þ $ew"‘ # upperbound

./bin/toulbar2 dat/$name.wcsp -d: -m -a -s -ub¼$ub >out/

$name.wcsp.enum 2>&1

perl scripts/sol2conf.pl -mat¼dat/$name.quick -tbsol¼out/

$name.wcsp.enum -useq

The sol2conf.pl script can be restricted to just produce the best
conformation for each sequence by using the useq flag. The asso-
ciated fasta file reporting sequences, energies, and the number of
occurrences for each sequence is also written.

The translation of the generated conformations to pdb struc-
tures files using osprey is performed by the following script. Its
argument is the conformation file. A single pdb file is generated
into the pdbs subdirectory for each line of the conformation file.

bash scripts/genstruct.sh conf_info/$name.wcsp.conf.sorted

4 Conclusion

The development of computational methods to guide the design of
novel proteins has come a long way in the last decade. Considerable
efforts have been accomplished to better account for many essential
aspects of the protein design problem going from a more realistic
physical modeling of the problem, the quantum modeling of the
reaction transition state, the treatment of limited molecular flexi-
bility, the development of more accurate energy functions, and a
more efficient optimization of the combinatorial sequence-
conformation space.

Regarding this latter area, exact deterministic methods have
shown to be very efficient to search the CPD sequence-
conformation space to provably identify the lowest-energy solu-
tion. In particular, we presented here three alternative exact deter-
ministic solvers, based on Cost Function Network algorithms
(CFN), Integer Linear Programming solvers (ILP), and Markov
Random Fields solvers (MRF), which have yet been little applied to
CPD but have demonstrated their ability to handle highly complex
CPD problems, thus offering novel computational solutions. In
particular, the CFN-based methods have led to tremendous
improvements compared to the CPD commonly used DEE/A*
algorithm (see Fig. 1). CFN methods not only enable quickly
identifying the GMEC solution but they are capable of enumerat-
ing all suboptimal solutions within a threshold of the optimum,
which is often out of reach of DEE/A* algorithm. This informa-
tion is of particular use for the rational construction of focused
protein sequence libraries. New CFN algorithmic developments
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targeted at CPD may even be able to push the computational
barrier to more complex design problems, either in terms of size
or definition (e.g., multistate). While restricted to fixed backbone/
rotamer-based designs, CFN-based methods also have the capacity
to replace DEE/A* in all existing deterministic CPD algorithms
that rely on the optimization on precomputed energy matrices,
including those targeted at continuous rotamers [5], flexible back-
bones or backbone ensembles [6], or both [7].

With continued development of methods that address the
points mentioned above, we are optimistic that further improve-
ments will help to increase reliability and accuracy of CPD meth-
ods, which can have an impact on the development of proteins and
catalysts for biotechnologies and nanotechnologies.

5 Notes

1. The osprey open source CPD-dedicated software is available at
http://www.cs.duke.edu/donaldlab/osprey.php/.

2. toulbar2 is an international collaborative CFN solver develop-
ment. It was the winning solver of the UAI Probabilistic Infer-
ence Challenge in 2010 and 2014 and it finished second in the
2011 PASCAL Probabilistic Inference Challenge (PIC) in the
“MAP” category. All sources are available on the git repository
at http://mulcyber.toulouse.inra.fr/projects/toulbar2. Spe-
cific CPD extensions are available in the “cpd” branch.

3. IBM ILOG cplex is free for academics as described on the
dedicated IBM academic initiative web site at http://www-
01.ibm.com/software/websphere/products/optimization/
academic-initiative/.

4. daoopt is the winning solver of the 2011 PASCAL Probabilistic
Inference Challenge (PIC) in the “MAP” category. It can be
downloaded at: https://github.com/lotten/daoopt. The
distributed version of daoopt is not the same as the PIC chal-
lenge version. It lacks the Dual Decomposition bound
strengthening component [33] that relies on private code.
This solver relies on Stochastic Local Search for finding initial
solutions followed by depth-first AND/OR search [44] and
mini-bucket lower bounds [45] for pruning. Mini-bucket
lower bounds require space and time in O(di) (where is a
user-controlled parameter).

5. The sources for the recent version 2 of the mplp (Message
Passing Linear Programming) implementation can be down-
loaded at http://cs.nyu.edu/~dsontag/. This solver uses a
Message Passing based bound and duality theory to identify
optimal solutions of a MAP-MRF problem through successive
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tightening of subsets of variables. The message passing used in
mplp defines reparametrizations of the underlying MRF. These
reparametrizations are similar to the reformulations done by
local consistencies in CFN [30, 46]. The solver is unique in all
the solvers considered in that it never uses branching but only
increasingly strong inference by applying reparametrizations to
set of variables that initially contain only pairwise potentials,
reasoning on stars [47], and are incrementally enlarged to
include several potentials and strengthen the corresponding
bound [34, 48].
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Chapter 5

Geometric Potentials for Computational Protein
Sequence Design

Jie Li and Patrice Koehl

Abstract

Computational protein sequence design is the rational design based on computer simulation of new protein
molecules to fold to target three-dimensional structures, with the ultimate goal of designing novel func-
tions. It requires a good understanding of the thermodynamic equilibrium properties of the protein of
interest. Here, we consider the contribution of the solvent to the stability of the protein. We describe
implicit solvent models, focusing on approximations of their nonpolar components using geometric
potentials. We consider the surface area (SA) model in which the nonpolar solvation free energy is expressed
as a sum of the contributions of all atoms, assumed to be proportional to their accessible surface areas
(ASAs). We briefly review existing numerical and analytical approaches that compute the ASA. We describe
in more detail the alpha shape theory as it provides a unifying mathematical framework that enables the
analytical calculations of the surface area of a macromolecule represented as a union of balls.

Key words Protein structure, Solvation free energy, Accessible surface area, Delaunay triangulation

1 Introduction

Proteins, the end products of the processing of the information
contained in the genome of any organism, are the biological
molecules whose chemical activities regulate most cellular pro-
cesses. It is fascinating to see how nature has arranged simple
atoms in such a way as to facilitate a myriad of activities. This
fascination has led many scientists to design and create their own
customized proteins to perform prescribed functions, defining a
research field of their own, protein design, also called protein
engineering. In this protocol, we cover the computational efforts
associated with this field, focusing on the implementation of
geometric potentials as a support to the task of identifying protein
sequences that are compatible with a given scaffold. We note that
those potentials have broader impacts in the general field of
molecular simulations.
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Protein design requires a good understanding of the relation-
ship between a protein sequence and its structure. Recent progress
in genomics and structural genomics has led to an explosion in the
amount of experimental data available on proteins. There are cur-
rently (as of March 2015) more than 90 million protein sequences
available in the UniProt database [1] and more than 100,000
protein structures in the Protein Data Bank [2]. The large gap
however between those two numbers, and the difficulties encoun-
tered while trying to decipher the relationship between a protein
sequence and its structure from those data, has led to the develop-
ment of many modeling initiatives to shed lights on these connec-
tions [3]. Probably, the most famous is the study of the protein-
folding problem—the “holy grail” for the structural biology com-
munity that focuses on proteins. Its elusive goal is to predict the
detailed three-dimensional structure of a protein from its sequence.
This “holy grail” is still considered out of reach [4–6], although
significant progress has been made recently for the prediction of
small, globular proteins [7–9]. Interestingly, the difficulties
encountered in trying to solve the protein-folding problem have
led to the development of an alternative route in which the quest is
reformulated as searching for protein sequences that fold into a
given stable conformation. This is the inverse folding problem [10,
11], whose successes have paved the way for efficient and successful
computer-based protein sequence design (for a nonexhaustive list
of recent successes in designing small proteins as well as large nano-
assemblies, see refs. 12–18).

All modeling investigations that consider the structure of a
protein require an understanding of the thermodynamic equilib-
rium properties of the protein, which are usually derived from a
sampling of its free energy surface. The “state” of a protein struc-
ture usually corresponds to a point or patch on this surface, with the
native state usually associated with a large patch, also referred to as
basin. Protein-folding studies are mostly interested in the structure
of this basin, while computational protein design studies focus on
how this basin changes as the sequence of the protein is changed.

The stability of the native state of a protein is measured as the
difference ΔG(P) in free energy between its native state, N, and a
reference, usually unfolded state, U:

ΔGU!N Pð Þ ¼ GN Pð Þ � GU Pð Þ ð1Þ
Note that “P” here refers to the “solvated” protein, i.e., accounts
for the protein and its surrounding solvent and ionic environment;
G refers to the Gibbs free energy of the system. A typical computa-
tional protein sequence design experiment starts from a known
protein structure template N and tests the “compatibility” of
many sequences for this template, searching for sequences that are
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both stable (positive design) and specific (negative design) to the
structure N. Two putative sequences P0 and P1 for N are compared
based on their stability, as defined by Eq. 1:

ΔΔGU!N P0 ! P1ð Þ ¼ ΔGU!N P1ð Þ � ΔGU!N P0ð Þ ð2Þ
To compute the free energy G of a protein, which is required in
Eqs. 1 and 2, we need to compute its internal energyU and entropy
S. In theory, the laws of quantum mechanics fully define the ener-
getics U of a molecule. In practice, however, only the simplest
system such as the hydrogen atom can be solved exactly, and
modelers of large molecular systems such as proteins must rely on
approximations. While some simulations remain anchored in quan-
tum mechanics [19, 20], most computational protein design stud-
ies rely on a space-filling representation of the molecule, in which
atoms are represented as hard spheres that interact through empiri-
cal or semiempirical “molecular force fields” [21]. In addition,
computational protein design usually relies on implicit solvent
models that reduce the protein-solvent interactions to their mean-
field characteristics, which are expressed as a function of the protein
degrees of freedom alone. These models represent the solvent as a
dielectric continuum that mimics the solvent-solute interactions,
including their nonpolar components (vdW contacts and the entro-
pic effects of creating a cavity in the solvent) and their polar com-
ponents (mostly through screening of electrostatics interactions).
This protocol focuses on approximations of the nonpolar compo-
nent using geometric potentials.

Eisenberg and McLachlan [22] computed the nonpolar part of
the free energy of solvation as the sum of the contributions from all
atoms of a protein P. The contribution of one atom is computed as
the product of its accessible surface area, ASA [23], with a surface
tensor factor referred to as Atomic Solvation Parameter, or ASP:

W np Pð Þ ¼
X
i

ASPi � ASAi ð3Þ

ASP is positive for nonpolar atoms and negative for polar atoms.
This model, referred to as SA (for Surface Area), is supported
indirectly by the observed linearity between the Gibbs free energy
and the surface area for transferring small compounds from non-
aqueous liquids to water. Similarly, the free energy of solvation
correlates with the sum of the transfer free energies of the constitu-
ent atomic groups. SA has become the method of choice for com-
puting the hydrophobic effects on proteins. It is interesting to recall
that Wnp accounts for cavity formation in water as well as the vdW
interactions between the protein and the solvent molecules. The
latter occurs within the first hydration shell around the protein, and
therefore is expected to be proportional to the accessible surface
area of the protein. Cavity formation, on the other hand, is

Geometric Potentials for Computational Protein Sequence Design 127



proportional to the volume of the protein. This apparent contra-
diction between a surface area model and a volume model is part of
the debate on the geometric nature of the nonpolar solvation
energy. Lum, Chandler and Weeks have unified these two models
by showing that Wnp scales with the volume of the solute for small
solutes, and is proportional to the surface area for large solutes
[24]. Their theory of hydrophobicity adds to the validation of the
surface area model for proteins.

The original approach of Lee and Richards computed the
accessible surface area of a protein by first cutting the molecule
with a set of parallel planes [25]. The intersection of a plane with an
atom is a circle that can be partitioned into accessible arcs on the
boundary and occluded arcs in the interior. The accessible surface
area of an atom is then the sum of the contributions of all its
accessible arcs. Shrake and Rupley proposed an alternative approach
based on numerical integration of the surface area using a Monte
Carlo method [26]. Implementations of their method include
applications of lookup tables [27], vectorized algorithms [28],
and parallel algorithms [29]. The surface area computed by numer-
ical integration however lacks accuracy. To improve the accuracy of
numerical methods, analytical approximations to the accessible
surface area were developed by treating multiple overlaps probabi-
listically [30, 31] or ignoring them altogether [32]. Better analyti-
cal methods describe the molecule as a geometric union of spheres,
and analytically compute the surface area [33–36]. Yet another
approach uses the inclusion–exclusion formula [37] and applies a
theorem, which states that overlaps of order five and above can
always be reduced to overlaps of order four or below [38]. Doing
the reduction correctly and efficiently is a difficult task. An exact
solution was later obtained by using the Alpha Shape Theory of
Edelsbrunner [39], which is the basis of the method described
below [40, 41].

2 Materials

To compute the surface-area-based solvation free energy of a pro-
tein (Eq. 3) requires knowledge of the coordinates of all atoms of
the protein, a program to compute accessible surface area, and the
values of the Atomic Solvation Parameters.

2.1 Atomic

Coordinates

The solvation free energy given by Eq. 3 can only be computed if
the 3D structure of the protein is known. If this structure has been
elucidated experimentally, it is made available freely in the Protein
Data Bank, PDB, accessible at www.rcsb.org [2]. In the database, it
is identified with a 4-character tag that can be recovered using their
search engine. The PDB file contains the information needed,
namely theX, Y, and Z coordinates of all atoms that were identified

128 Jie Li and Patrice Koehl

http://www.rcsb.org/


experimentally (see Note 1). If the structure has been generated
using a software resource for molecular simulation package, the 3D
coordinates of its atoms will be automatically available.

2.2 Atomic Radii Each atom in the protein is assigned a radius, usually taken to
correspond to its vdW radius. The vdW radii of individual atoms
have been well documented [42, 43]. Within proteins, however,
the positions of hydrogen atoms are not generally known. This
means that hydrogen atoms are usually subsumed into the
“heavy” atoms to which they are covalently linked, creating atomic
groups. The radius for an atomic group, such as the methyl group
(–CH3), applies to the group as a whole. Several sets of radii for
atomic groups are available in the literature, but there are apprecia-
ble differences among them (for review, see ref. 44). We list in
Table 1 the different chemical groups and the radii we recommend,
as defined by Chothia [45].

2.3 Software

Resources for

Computing Accessible

Surface Area

The different programs currently available differ in the methodol-
ogies they use and can be divided into two groups, those that rely
on numerical integration, and those that apply an analytical method
(see the discussion above). Table 2 lists the most common of those

Table 1
Atomic groups in proteins and their vdW radii and atomic solvation
parameters

Atomic group [44] Radii (Å) [45]
Atomic solvation
parameters (kcal/Å2) [49]

C3H0 1.76 36.0

C3H1 1.76 36.0

C4H1 1.87 36.0

C4H2 1.87 36.0

C4H3 1.87 36.0

N3H0 1.50 8.1

N3H1 1.65 8.1

N3H2 1.65 8.1

N4H3 1.50 �46.0

O1H0 1.40 �5.0

O2H1 1.40 8.1

S2H0 1.85 44.0

S2H1 1.85 44.0
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software resources, providing information on how to access them.
Our own analytical implementation based on the Alpha Shape
theory is listed (UnionBall; [40]).

2.4 Atomic Solvation

Parameters

Atomic solvation parameters (ASPs) are scaling factors that relate
surface areas to solvation energies. Eisenberg and McLachlan [22]
developed the surface-area-based solvation free energy model that
proposed to compute the ASPs from the experimental free energies
of transfer of analogs of amino acids from an hydrophobic environ-
ment (n-octanol) to an hydrophilic environment (water) [46].
They showed that only five classes of atoms are needed to obtain
a good fit between free energies computed from Eq. 1 and the
corresponding experimental free energies of transfer. The
corresponding ASP values, however, were deemed to be incorrect,
as the experimental transfer free energy values need to be corrected
to account for size and contact effects [47, 48]. We advocate the
use of the corresponding corrected values, as derived for example in
ref. 49. Those values are given in Table 1.

3 Methods

UnionBall is our software package that implements the Alpha
Shape theory for computing the accessible surface area and volume
of a union of balls [40]; its origins lie in the Alpha Shape package

Table 2
Standard packages for computing accessible surface areas of proteins

Package Availability Comments

ASV petitjeanmichel.free.fr/itoweb.
petitjean.spheres.html

Exact analytical method [58]
Free for academic use

Msroll biohedron.drupalgardens.com Exact analytical method [33]
Free for academic use

Naccess www.bioinf.manchester.ac.uk/naccess Numerical method
Free for academic use

PDBREMIX boscoh.github.io/pdbremix Includes pdbasa (numerical method)
Opensource

POPS http://mathbio.nimr.mrc.ac.uk/wiki/
Software

Analytical method based on approximate
probabilistic formula [59]

Opensource (GPL)

UnionBall Contact author: koehl@cs.ucdavis.edu Exact analytical method [40]
Opensource (LGPL)

This list is far from exhaustive. Note that many modeling software resources include their own implementation of a
numerical or analytical method for computing the accessible surface area
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[50, 51]. UnionBall takes as input a set of balls Bi in space, each
specified by the coordinates of its center zi and its radius ri. In the
case of a protein, the coordinates of the centers ci are extracted from
the corresponding PDB file (see Subheading 2), while the radii ri are
computed as the sum of the vdW radii corresponding to the atom
types (see Table 1) and the radiusRw of a probe, usually set to 1.4 Å
to correspond to the radius of a water molecule (see Note 2).

The computation is performed through three successive tasks,
namely (a) Construct the weighted Delaunay triangulation for the
balls, (b) Extract the dual complex, and (c) Compute the accessible
surface area of each atom using a reduced Inclusion–exclusion
equation that maps to the simplices of the dual complex. This
process is illustrated in 2D in Fig. 1. The three subsections below
provide the details needed to implement this procedure.

3.1 Delaunay

Triangulation of a

Union of Balls

Our implementation of the Delaunay triangulation is based on the
randomized incremental algorithm described in ref. 52. Following
the paper’s recommendations, we use a minimalist approach to
store the triangulation in a linear array of tetrahedrons.

For each tetrahedron, we store the indices of its four vertices,
the indices of the four neighboring tetrahedrons, and the position
of the opposite vertex in the vertex list of each neighboring tetra-
hedron. For each vertex, we use four double-precision real numbers
for the coordinates and the radius of the corresponding sphere. The
triangles and edges are implicit in this representation. We start the
procedure with an “infinite” tetrahedron defined by adding four
additional balls with their centers at “infinity” (in practice far
enough so that the centers of all balls fall inside the corresponding
“infinite” tetrahedron). The triangulation is then constructed
incrementally, by adding one ball at a time (see Note 3).

Let N be the number of balls, and let Di be the Delaunay
triangulation of the four balls at infinity together with B1, B2,
. . ., Bi.

The algorithm proceeds by iterating three steps:

For i from 1 to N do

1. Find tetrahedron t in Di-1 that contains the center ci of ball Bi.

2. Add ci to decompose t into four tetrahedrons.

3. Flip locally non-Delaunay triangles attached to ci.

End.

The first step is implemented using the jump-and-walk tech-
nique proposed by M€ucke and colleagues [53]. Note that in this
step, the ball may be discarded if it is found to be redundant. A ball
Bi is deemed to be redundant if it is fully included inside the union
of other balls. Step 3 follows the algorithm proposed by Edels-
brunner and Shah [52]. A flip in this step replaces two tetrahedrons
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by three or three tetrahedrons by two. The fact that any arbitrary
ordering of the flips will successfully repair the Delaunay triangula-
tion is nontrivial but has been established by Edelsbrunner and
Shah [52].

Once all the balls have been inserted, we remove all the tetra-
hedrons that have at least one vertex corresponding to one of the
balls placed at infinity.

The final Delaunay complexDT is fully defined by the list of the
tetrahedrons it contains. Each tetrahedron includes four facets, six
edges, and four vertices. The complete list of tetrahedrons, facets,
edges, and vertices defines the simplices ofDT. Note that most facets,
edges, and vertices are shared by two or more tetrahedrons. Finally,
the collection of facets that only belong to one tetrahedron in DT
forms the convex hull of the set of centers of the balls.

A) B)

C)

Fig. 1 Voronoi decomposition, Delaunay triangulation, and dual complex of a set of disks in the plane. Given a
finite set of disks (a), the Voronoi diagram decomposes the plane into regions, one per disk, such that any point in
the region Vi assigned to disk Bi is closer to that disk than to any other disk, where the distance from a pointM to
the disk Bi is defined as d M ; Bið Þ2 ¼ d M ; z ið Þ2 � r 2i , where zi and ri are the center and radius of Bi,
respectively. (b) The boundaries of those regions are shown as dashed lines. The dual Delaunay triangulation
is obtained by drawing edges between the centers of the circles corresponding to neighboring Voronoi regions. (c)
We restrict the Voronoi diagram to within the portion of the plane covered by the disks and get a decomposition of
the union into convex regions. To draw the dual complex of the disks we limit ourselves to edges and triangles
between centers whose corresponding restricted Voronoi regions have a nonempty common intersection
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3.2 Generating the

Dual Complex of a

Union of Balls

The Voronoi diagram is the dual of the Delaunay complex DT. It
divides the whole space into convex regions, Vi, one per ball Bi in
the union. The Voronoi region Vi associated with the ball Bi con-
sists of all points that are at least as close to the center of Bi as to any
other balls in the union, as illustrated in Fig. 1. It is a convex
polyhedron obtained as the common intersection of finitely many
closed half-spaces, one per ball Bj, such that the line segment
joining the centers of Bi and Bj belongs to DT. It follows that the
Voronoi regions decompose the union of balls Bi into convex
regions of the form Bi \ V i (see Fig. 1). Computing the surface
area of the union of balls can then be reformulated as computing
the surface areas of all convex regions Bi \ V i, which is a much
simpler problem, as those regions do not overlap. In addition, the
convex region Bi \ V i is fully defined by the ball Bi and its neigh-
boring balls Bj such that the Voronoi region Vj has a common facet
with Vi within the union of balls. Those balls Bj are readily identi-
fied as the line segment joining the centers of Bi and Bj forms an
edge in the dual complex K, a subset of the Delaunay triangulation
DT, defined below.

Given the Delaunay triangulationDT of the centers of the balls
in the union, we identify first all simplices in DT that are critical.
We call S a critical simplex of DT if the balls defining S have a
nonempty common intersection. Detailed expressions for the geo-
metric tests that establish if two, three, or four balls intersect or not
can be found in [50, 54]. The dual complexK � DT is then defined
as the list of all critical simplices in DT. Note that the simplices of
DT that do not belong to K are also interesting, as they define the
cavities and pockets within the union of balls [55–57].

3.3 Computing the

Individual Accessible

Surface Areas of the

Balls

A simplex S in the dual complexK can be interpreted abstractly as a
collection of balls with a nonempty intersection, one ball if it is a
vertex, two if it is an edge, etc. As such, it makes sense to speak
about A(S), the surface area of the intersection of the balls that
define S. The core result of the Alpha Shape theory of Edelsbrunner
[39] is that the surface area of a union of balls can be expressed
exactly as an inclusion–exclusion formula over all simplices in the
corresponding dual complex K:

A
[
i

Bi

 !
¼
X
S∈K

�1ð Þdim Sð ÞA Sð Þ ð4Þ

Here, dim(S) ¼ card(S) � 1, i.e., the number of balls in S minus 1.
This result overcomes past difficulties by implicitly reducing higher-
order to lower-order overlaps. An added advantage of Eq. 4 is that
the balls in each term form a unique geometric configuration so
that the analytic calculation of the surface area can be done without
case analysis.
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One way to arrive at this formula is to consider a ball Bi with
center zi and radius ri, and to observe that its contribution to the
total area of the union of balls is the area of the entire ball, 4πri

2,
minus the portion covered by caps of the form Bi \ Bj , such that
zizj forms an edge of the dual complex K. The surface area of this
portion is computed as the sum of the surface area of each cap,
minus the portion covered by the intersection of three caps of the
form Bi \ Bj \ Bk such that zizjzk forms a triangle of the dual
complex K. Finally, the surface area of this portion is the area of
the intersection of three caps, minus the portion covered by the
intersection of four caps of the form Bi \ Bj \ Bk \ Bl such that
zizjzkzl forms a tetrahedron of the dual complex K. The key to the
success of the Alpha Shape theory is that no additional higher terms
need to be considered. The whole procedure is illustrated in Fig. 2.

Finally, we note that detailed expressions for the surface areas of
the intersections of two, three, and four balls can be found in
ref. 40.

3.4 Computing the

Nonpolar Contribution

to the Solvation Free

Energy

The nonpolar part of the solvation free energy of the protein is
computed as a weighted sum of the accessible surface areas of all its
representing balls (see Eq. 2), where the weights are the Atomic
Solvation Parameters, defined in Table 1.

4 Notes

1. Unfortunately, PDB files can be difficult to process and it is
expected that you do a significant amount of preprocessing
prior to using the information they contain. As part of this
preprocessing, you should consider at least the following points.
(a) Identify the chain(s) you are interested in. The PDB file may
contain information about a protein complex, while you may be
only interested in one subunit. Note that each subunit is

Bi

zi;j

Bi

zi;j

zi;k

Bi

zi;j

zi;k
zi;lSi; j Si: jk Si: jkl

Fig. 2 Intersection of two (left), three (center), and four (right) spheres viewed on the flattened surface of a ball Bi
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identified with a chain label in the PDB file. Reversely, the PDB
file may contain the information about a protein in a monomeric
form, while you are interested in the biologically relevant multi-
meric form. PDB files usually contain information about the
mathematical operations that need to be performed to generate
the multimer, but it is left to you to perform those operations.
(b) Setting a rule for missing atoms. Experimental structures may
not be complete, as part of the structure may be too flexible to
be observed, such as flexible loops, or the terminal groups of
long amino acids at the surface of the proteins. You may ignore
those missing atoms, or decide to use a modeling program to
generate their possible location. (c) Dealing with alternate con-
figurations. In addition to missing atoms, the PDB file may
contain multiple conformations for some parts of the molecule.
These multiple conformations, mostly observed for side-chains,
relate to ambiguities in the experimental data. Usually, an occu-
pancy factor is provided for each conformation and it is usually
best to select the conformation with the highest factor. (d)
NMR structures: using the average model? NMR spectroscopy
provides indirect measurements on the protein structure of
interest, usually a set of short-range interatomic distances.
Many modeling techniques generate a collection of models for
the structure that are compatible with those distances, as well as
an average structure based on this collection. Both are usually
provided in the PDB. It is strongly recommended to use one of
the models instead of the average structure, as the latter is a
simple geometric mean of the models that often has poor
stereochemistry.

2. There is no real consensus in computational biology as to which
surface of the union of balls representing a protein best relates to
the physical properties of the molecule. Three models are widely
used, namely, the van der Waals surface, the molecular surface,
and the solvent accessible surface, with the latter usually preferred
for computing solvation free energies. Lee and Richards [25]
defined the solvent accessible surface of a molecule as the loci of
the center of a probe sphere with radius Rw as it rolls over the
van der Waals surface. The value ofRw is usually set to 1.4 Å as it
approximates the size of a water molecule. It can be shown that
the accessible surface is also the boundary of the union of balls
[Bw, where Bw are “hydrated” balls representing the atoms, i.e.,
the balls whose vdW radii have been increased by Rw. Note that
values for Rw vary from 1.2 to 1.8 Å in the literature.

3. The standard algorithm for building the Delaunay triangulation
of a set of balls proceeds incrementally, by adding one ball at a
time. Before starting the construction, the balls are re-indexed
with a random permutation of the order in which they appear in
the input file. The randomization preprocessing in this
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algorithm guarantees an expected theoretical running time of O
(Nlog(N) þ N2) in the worst case, where N is the number of
balls [52]. In practice, however, a very different behavior is
observed for a very large dataset. Inherent to their nature,
randomized algorithms access the data structures they maintain
randomly, and random access works poorly with memory hier-
archies available on modern computers. Virtual memory
operating systems cache recently used data in memory, under
the assumption that they are more likely to be used again soon.
Randomized algorithms violate this assumption; they conse-
quently perform poorly as the data structure exceeds the cache
size. A simple solution is to insert points in an order that
improves locality. Interestingly, the order in which atoms are
stored in a PDB file is inherently local. In most cases, two
consecutive atoms either belong to the same amino acid or to
two sequential amino acids that are in contact. The construction
of the Delaunay triangulation for a protein is therefore signifi-
cantly faster if the order of the atoms is not randomized [40].
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Chapter 6

Modeling Binding Affinity of Pathological Mutations
for Computational Protein Design

Miguel Romero-Durana*, Chiara Pallara*, Fabian Glaser,
and Juan Fernández-Recio

Abstract

An important aspect of protein functionality is the formation of specific complexes with other proteins,
which are involved in the majority of biological processes. The functional characterization of such interac-
tions at molecular level is necessary, not only to understand biological and pathological phenomena but also
to design improved, or even new interfaces, or to develop new therapeutic approaches. X-ray crystallogra-
phy and NMR spectroscopy have increased the number of 3D protein complex structures deposited in the
Protein Data Bank (PDB). However, one of the more challenging objectives in biological research is to
functionally characterize protein interactions and thus identify residues that significantly contribute to the
binding. Considering that the experimental characterization of protein interfaces remains expensive, time-
consuming, and labor-intensive, computational approaches represent a significant breakthrough in proteo-
mics, assisting or even replacing experimental efforts. Thanks to the technological advances in computing
and data processing, these techniques now cover a vast range of protocols, from the estimation of the
evolutionary conservation of amino acid positions in a protein, to the energetic contribution of each residue
to the binding affinity. In this chapter, we review several existing computational protocols to model the
phylogenetic, structural, and energetic properties of residues within protein–protein interfaces.

Key words Protein–protein interactions, Hot-spots identification, Interface prediction, Evolutionary
conservation, Protein–protein docking, Biomolecular dynamics simulation, In silico alanine scanning,
pyDock, AMBER package, ConSurf

1 Introduction

One of the current goals of proteomics is to predict and character-
ize protein–protein complex interfaces. Access to such information
is highly valuable as it helps to elucidate large protein interaction
networks, increases the current knowledge on biochemical path-
ways, improves comprehensive description of disease pathogenesis,
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and finally suggests putative new therapeutic targets [1–3].
Moreover, the use of computational approaches offers faster and
more cost-efficient procedures in comparison to experimental
methods such as co-immunoprecipitation, affinity chromatography,
yeast two-hybrid, or mass spectroscopy.

In this chapter, we review several computational methods that
exploit phylogenetic, structural, and energetic properties of inter-
face residues for the computational design of protein complexes or
the characterization of pathological mutations involved in pro-
tein–protein interfaces. First, we describe two methods that do
not need the structure of the protein–protein complex, namely
ConSurf [4–7] and Normalized Interface Propensity (NIP) [8].
ConSurf identifies functionally and structurally important
residues (e.g., involved in enzymatic activity, in ligand binding or
protein-protein interactions) [9] on a protein by estimating the
degree of conservation of each amino acid site among their close
sequence homologues. NIP computes the tendency of a given resi-
due to be located at the interface, from rigid-body docking poses
evaluated by pyDock scoring function [10] (based on accessible
surface area-based desolvation, coulombic electrostatics, and van
der Waals energy). Then, we describe two other protocols which
require previous knowledge of the complex structure: residue con-
tribution to binding energy computed with pyDock, and in silico
Alanine (Ala) scanning, based on molecular dynamics simulations
withAMBER14package [11] and binding energy calculations using
theMM-GBSAmethod [12]. The use of thesemethods is illustrated
on one example, theMEK1-BRAF complex (PDB ID 4MNE) [13],
in which several pathological mutations are annotated [14].

2 Materials

2.1 ConSurf Server 1. ConSurf Server is a bioinformatics tool that estimates the
evolutionary conservation of amino acid positions in protein
molecules based on the phylogenetic relations among close
homologous sequences. It can be found at http://consurf.
tau.ac.il.

2.2 PyDock 1. PyDock is docking package freely available to academic users.
Go to pyDock download web page http://life.bsc.es/pid/
pydock/get_pydock.html [15] and fill in the form with the
requested information. pyDock team will quickly send you a
copy of the application and instructions to install it.

2.3 FTDock 1. From the FTDock [16] web page http://www.sbg.bio.ic.ac.
uk/docking/download.html, download file gnu_licen-
sed_3D_Dock.tar.gz to the folder of your choice.

2. From the FFTW web page http://www.fftw.org/download.
html, download file fftw-2.1.5.tar.gz.
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3. Move to the folder where you have downloaded the file fftw-
2.1.5.tar.gz and unpack the package with the following
commands:

cd folder-where-fftw-2.1.5.tar.gz-has-been-downloaded
gunzip fftw-2.1.5.tar.gz
tar xvf fftw-2.1.5.tar

4. Move into directory fftw-2.1.5 and compile the library:

cd fftw-2.1.5
./configure
make

5. Move to the folder where you have downloaded gnu_licen-
sed_3D_Dock.tar.gz and unpack FTDock package.

6. Move to the unpacked folder 3D_Dock/progs. Edit fileMakefile
and set the correct complete path to the fftw-2.1.5 directory.
This is done by setting the variable FFTW_DIR on line 15. You
should also check the value of the CC_FLAGS variable, and
make it fit to your system (e.g., for a x86_64 Linux system,
CC_FLAGS variable has been modified and set to ’-O -m64’.

7. Type the following command:

make

8. You should now have the executable files ftdock, build, and
randomspin available. Optional: Edit your .bashrc file to include
3D_Dock/progs folder in your system path (PATH variable).

2.4 UCSF Chimera

Molecular Viewer

UCSF Chimera [17] is a highly extensible program for interactive
visualization, molecular structure analysis and high-quality images
generation. Here are the instructions to install UCSF Chimera
Molecular viewer:

1. Go to UCSF Chimera Molecular viewer web page at http://
www.cgl.ucsf.edu/chimera.

2. Go to the download session, by clicking on Download in the
menu on the top-left of the web page, and select the UCSF
Chimera Molecular viewer installer appropriate for you
platform.

3. Install UCSF Chimera Molecular viewer on your computer
following the platform specific installation instructions avail-
able on the same page.

2.5 AMBER Package AMBER is a package of programs for molecular dynamics simula-
tions of proteins and nucleic acids. It is distributed in two parts:
AmberTools14 and Amber14. Here are the instructions to install
AMBER package:

l Go to the AMBER web page at http://ambermd.org/
#Amber14.
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l After filling the registration form located on its own section at
http://ambermd.org/AmberTools14-get.html, download
AmberTools14 clicking on the Download button.

l Download the Amber 14 License Agreement, print this form, fill
it in, sign and return it to the address given at the bottom of the
license agreement. Once the order is processed, download the
AMBER program package following the download information
you will receive via e-mail.

l Install AMBER on your machine and compile the source code
format using Fortran 95, C or Cþþ compilers following the
instructions in the Amber Reference Manual at http://
ambermd.org/doc12/Amber14.pdf.

3 Methods

3.1 Analysis of

Residue Conservation

by ConSurf

1. Go to ConSurf web server page at http://consurf.tau.ac.il.
Then, ConSurf web server will ask you several questions
regarding the computation you want to run.

2. To the question Analyze Nucleotides or Amino Acids? select
Amino-Acids option.

3. To the question Is there a known protein structure? select Yes
option.

4. Provide the PDB ID (e.g., 4MNE) of the structure you want to
analyze or upload your own PDB file, browsing to its location.
Press Next button.

5. Select the chain identifier of the molecule to be analyzed.

6. Indicate whether there is a multiple sequence alignment (MSA)
to upload. If there is not, ConSurf server will generate it. You
may set the parameters ConSurf server will use to generate the
MSA. For this work, ConSurf server has been run with default
parameters.

7. At the bottom of the page, fill the Job title field to identify the
job.

8. Fill the User E-Mail field, check the Send a link to the results by
e-mail check-box and click the submit button. Thus, ConSurf
server will send you an e-mail with a link to the results when it
has finished.

9. Open the e-mail sent by ConSurf and go to the results page
link.

10. Click on the Download all Consurf outputs in a click! link, save
the ConSurf results file and unzip it.

11. Open consurf.grades file. From all the columns of the file, focus
on three: 3LATOM, SCORE, and COLOR. The 3LATOM
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column contains an id code of the analyzed residues. The
SCORE column contains the computed normalized conserva-
tion score. Lower scores (more negative) correspond to more
conserved residues, while higher scores (more positive) corre-
spond to less conserved residues. A similar information is
shown in column COLORwhere, in order to ease visualization
of the results, the continuous conservation scores have been
partitioned into nine different bins, with bin 9 representing the
most conserved positions and bin 1 the most variable positions.
It is important to remark that neither the SCORE values nor
the COLOR values indicate absolute magnitudes of conserva-
tion, but rather the relative degree of conservation of a given
residue in the specific protein under study (i.e., neither SCORE
nor COLOR values of residues of different proteins are gener-
ally comparable).

12. ConSurf provides two PDB files where the SCORE and
COLOR values are assigned to the bfactor field. This is quite
useful in order to get a picture of which residues are more
conserved. With your favorite molecular visualization applica-
tion open *.pdb_With_Conservation_Scores.pdb and *.pdb_A-
TOMS_section_With_Consurf files for displaying SCORE and
COLOR values, respectively (see Fig. 1).

3.2 Prediction of

Binding Hot-Spots by

NIP

NIP computation can be divided in four different steps: (1) initial
setup, where the receptor and ligand PDB files of the complex are
preprocessed in order to generate the input files that FTDock and
pyDock require, (2) sampling phase, where FTDock generates a set

Fig. 1 MEK1–BRAF interface characterization. MEK1 and BRAF interface characterization using different
computational techniques (first and second line, respectively): ConSurf evolutionary conservation, pyDock NIP
calculation, pyDock binding energy decomposition, binding free energy change (ΔΔG) estimated by in silico
alanine scanning
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of docking poses, (3) scoring phase, where pyDock dockser module
scores and ranks the poses generated by FTDock, and (4) NIP
computation, where the first 100 ranked docking poses (those
with lower binding energy) are selected from the whole set of
generated docking poses, and pyDock patch module is used to
compute the NIP values.

Next, we describe each one of these phases in more detail.

1. Initial setup.

(a) Create a project folder and move to it.

(b) From the PDB website, download the receptor and ligand
structures, e.g., download the PDB files of receptor
(3EQI) and ligand (4MNE) into the project_folder (see
Note 1).

(c) Create pyDock ini file: open your favorite text editor and
create the file 4mne.ini as shown in Fig. 2.

(d) Run pyDock setup module:

pydock3 4mne setup

(e) pyDock setup module should have generated several new
files (see Table 1).

2. FTDock sampling.

(a) Run FTDock:

ftdock -static 4mne_rec.pdb -mobile 4mne_lig.pdb -cal-
culate_grid 0.7 -angle_step 12 -internal -15 -surface 1.3 -
keep 3 -out 4mne.ftdock

(b) When FTDock is finished, you should have a new file
named 4mne.ftdock in the folder.

3. Scoring.

In this phase, the docking poses generated in the sampling
phase are scored and ranked with pyDock dockser module.

Fig. 2 Example of pyDock input file. The input file is typically divided into two
sections, [receptor] and [ligand], designed to specify the variables related to the
receptor and ligand, respectively. The pdb line defines the PDB file name. The
mol line specifies the original chain name in each PDB file, whereas the newmol
indicates the new one in the pyDock output files. Please be aware that the
newmol chain names must be different for the receptor and the ligand
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(a) Run pyDock rotftdock module:

pydock3 4mne rotftdock

(b) There should be now a new file 4mne.rot. Each line in this
file represents a rotation and translation matrix. FTDock
4mne.rot file should have 10,000 different lines.

(c) Score and rank FTDock poses by running pyDock dockser
module:

pydock3 4mne dockser

Table 1
pyDock modules input and output files.

Module name Input files Output files

setup docking_name.ini docking_name_rec.pdb
docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber

rotftdock docking_name_rec.pdb
docking_name_lig.pdb

docking_name.rot

rotzdock docking_name_rec.pdb
docking_name_lig.pdb

docking_name.rot

dockser docking_name_rec.pdb
docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot

docking_name.ene

patch docking_name_rec.pdb
docking_name_lig.pdb
docking_name.rot
docking_name.ene

docking_name.recNIP
docking_name.rec.pdb.nip
docking_name.ligNIP
docking_name.lig.pdb.nip

bindEy docking_name.ini docking_name_rec.pdb
docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot
docking_name.ene

resEnergy docking_name_rec.pdb
docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot

docking_name.receptor.residueEne
docking_name.ligand.residueEne
docking_name.receptor.atomEne
docking_name.ligand.atomEne
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(d) Once dockser module has finished, it should have created
file 4mne.ene with 10002 different lines (see Note 2 for a
detailed description of this file).

4. NIP computation.

(a) Run pyDock patch module:

pydock3 4mne patch

(b) 4mne.recNIP and 4mne.ligNIP files should have been
created. These files show the computed NIP value for
each residue of receptor and ligand, respectively. Those
residues with NIP values greater than 0.2 are predicted to
be hot-spots.

(c) For visualization proposes, patch module output includes
two PDB files, with extension *.pdb.nip, where the NIP
values have been assigned to the bfactor field. With your
favorite molecular visualization application open *_rec.
pdb.nip or *_lig.pdb.nip files for displaying the NIP values
of receptor and ligand, respectively (see Fig. 1).

3.3 Computation of

Binding Energy per

Residue with pyDock

1. Create a folder for computing residue binding energy.

2. From the PDB website, download the structure of a
protein-protein complex, e.g., BRAF/MEK1 (PDB ID
4MNE).

3. Create pyDock ini file: Open your favorite text editor and
create the 4mne.ini file specifying receptor and ligand subunits.

4. Compute pyDock binding energy by running the following
command:

pydock3 4mne bindEy
5. pyDock should have generated several new files. Please see

Table 1 to confirm.

6. Run pyDock residue energy module:

pydock3 4mne resEnergy
7. The module should have created for ligand and receptor

*.atomEne and *.residueEne files with the contribution to the
binding energy of each individual atom and residue,
respectively.

8. You may get a graphical representation of the residue binding
energy (see Fig. 1), by assigning the binding energy values given
in *.residueEne files to the bfactor field of the corresponding
PDB file of the target molecules.

3.4 In-Silico Alanine

Scanning with AMBER

The Alanine scanning workflow can be divided into three different
steps: (1) the preparation of the PDB files for both the wild type
and the mutated structures, (2) the molecular dynamics simulation
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of the wild type complex and (3) the binding free energy calculation
on both the wild type and the mutated structures.

1. Wild type and mutated structures PDB files preparation.

(a) Start a new session of UCSF Chimera Molecular viewer
and open 4MNE PDB file clicking on File ! Fetch by ID
entering 4mne as PDB ID in the new window and then
clicking on the Fetch button. Delete all chains but A and B,
and all existing water molecules from the system.

(b) Build missing segments starting the Chimera interface to
MODELLER. Click on Tools ! Structure Editing !
Model/Refine Loops. In the new window, select all missing
structure as model/remodel option and one as both num-
ber of residues adjacent to missing region allowed to move
and number of models to generate. Write the MODEL-
LER license key and start the rebuilding by clicking on
OK. The MODELLER license key is freely available only
for academic use and can be requested at the MODEL-
LER web page https://salilab.org/modeller/registration.
html, filling up the license agreement and clicking on
agreed and accepted button.

(c) Save the PDB files of the complex and each subunit in the
wild type form. Go to File ! SavePDB. In the new win-
dow enter MEK1-BRAF.pdb as file name of the refined
complex structure and finally click on Save. Select each
subunit of the complex by its chain name from Select !
Chain.Go to File! SavePDB, specify the subunit new file
name (i.e.,MEK1.pdb for chain A and BRAF.pdb for chain
B), pick the save selected atom only option and finally click
on Save.

(d) Save the complex and the subunit PDB files for each
mutant. Start a new session of UCSF Chimera Molecular
viewer, open MEK1-BRAF.pdb file, select only one resi-
due to be mutated then go to Tools! Structure Editing!
Rotamers, choose ALA as rotamer type and click on OK.
Save the resulting mutated complex structure going to
File ! Save PDB and specifying the mutation in the new
file name (e.g., MEK1-BRAF_F468A.pdb). Finally, select
the mutated subunit structure only and save it in a sepa-
rate file (e.g., BRAF_F468A.pdb). Repeat the same proto-
col for each BRAF and MEK1 residue to be mutated.

e) Edit all MEK1-BRAF.pdb and MEK1.pdb files (both wild
type and mutated). Rename MG residue to MG2 and
convert ACP molecule to ATP.

2. Molecular dynamics simulation.
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(a) Download the ATP molecule parameters from the
AMBER parameter database (see Note 3). Go to the
AMBER parameter database web page at http://www.
pharmacy.manchester.ac.uk/bryce/amber/. Search the
row ATP (revised phosphate parameters) in the Cofactors
table and save the PREP and FRCMOD files as ATP.prep
and ATP.frcmod, respectively.

(b) Modify the ATP atom names in your PDB file to match
the atom names in theATP.prep file so that LEaPAMBER
tool will be able to match them up.

(c) Create the input files for the MD simulation (topology
and coordinate files) using LEaP AMBER tool. Run the

Fig. 3 Example of AMBER LEaP input file to build topology and coordinates files of wild type solvated system.
The source command tells LEaP AMBER tool to execute the start-up script for ff99SB and GAFF force fields.
First, ATP parameters are loaded and checked, then MEK1-BRAF.pdb file is loaded into a new unit called
4mne, the structure is checked (i.e., close contacts and bond distances, bond and angle parameters) and the
total charge is computed. Then, the system is solvated by adding a truncated octahedral 12 Å box of TIP3P
water molecules around the protein, and neutralized by adding four Naþ ions. Finally, the topology and
coordinate files are saved in the prmtop and inpcrd AMBER format, respectively
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input script tleap-solv.in (shown in Fig. 3, see Note 4)
using the following command:

$AMBERHOME/bin/tleap -f tleap-solv.in > tleap-solv.
out

Flag -f tells tleap to execute the start-up script after-
specified.

(d) Run a short solvent minimization step using AMBER
pmemd input script min_solv.in (shown in Fig. 4) and
the following input command:

$AMBERHOME/bin/pmemd -i min_solv.in -o min_-
solv.out -c MEK1-BRAF_solv.inpcrd -p MEK1-BRAF_-
solv.prmtop -r MEK1-BRAF_min.rst -ref MEK1-
BRAF_solv.inpcrd

Flag -i specifies the input file, -o the output file, -c the
coordinate file, -p the parameter and topology file, -r the
output restart file with coordinates and velocities, and -ref
the reference coordinates file for positional restraints, if
this option is specified in the input file.

(e) Run a 5-step equilibration by which the system tempera-
ture is raised from 0 to 300 K, and a gradual relaxation is
performed by progressively releasing the initially set posi-
tional restraints. The following protocol should be used:

Fig. 4 Example of AMBER pmemd input file for solvent minimization. In the input
file, imin ¼ 1 specifies that minimization instead of molecular dynamics will be
performed, the parameter maxcyc specifies the total number of minimization
cycles to be run while ncyc specify the number of steepest descent minimization
followed by maxcyc-ncyc steps of conjugate gradient minimization, drms sets
the convergence criterion for the energy gradient (in Å). The parameter ntb ¼ 1
means that a period boundary will be set around the system to maintain a
constant volume while cut sets the cutoff value (in Å) applied for non-bonded
interactions. The flag ntr ¼ 1 indicates that the positional restraint method is
applied for the energy minimization, restraintmask specifies the atoms to be
restrained (in this cases all but water and ions molecule) and finally restraint_wt
defines the restraints strength in terms of force constant in kcal mol�1 Å�2

applied on each restrained atom
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l As a first equilibration step, run a 40-ps simulation in
isovolume condition applying harmonic restraints to all
the protein atoms and heating the system to 300 K.
Run equil1.in input script (shown in Fig. 5) using the
following command:

$AMBERHOME/bin/pmemd -i equil1.in -o equil1.
out -c MEK1-BRAF_min.rst -p MEK1-BRAF_solv.
prmtop -r MEK1-BRAF_eq1.rst -ref MEK1-BRAF_-
min.rst -x MEK1-BRAF_eq1.mdcrd

Fig. 5 Example of AMBER pmemd input file for first step equilibration. In the input
file, imin ¼ 0 specifies that molecular dynamics instead of minimization will be
performed, the parameters irest ¼ 0 and ntx ¼ 1 indicate that only coordinates
but no velocity information will be taken from the previous restart file, the flag
ntc ¼ 2 indicates that all bonds involving H-bonds are constrained by the SHAKE
algorithm to eliminate high frequency oscillations in the system while ntf ¼ 2
means that all types of forces in the force filed are being calculated except bond
interaction involving H-atoms. The parameters temp0 and tempi define the initial
and the temperature at which the system is to be kept, respectively; ntt ¼ 3
indicates that the temperature Langevin thermostat will be used while
gamma_ln¼1.0 sets the collision frequency to 1 fs. The flag nstlim defines
the number of simulation steps, dt defines the length of each frame (set at 2 fs,
here) while ntwx, ntwr, ntpr define the frequency of data deposition (coordinates,
energy, and restart, respectively). Finally ig ¼ �1 sets the random seed based
on the current date and time and hence will be different for every run. The
meaning of the rest of the parameters listed in the input file was previously
explained
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l Perform an additional 20-ps step in isothermal-
isovolume condition reducing the harmonic restraints
to all the protein atoms from 25 to 10 kcal/(mol Å2).
Run equil2.in input script (shown in Fig. 6) using the
following command:

$AMBERHOME/bin/pmemd -i equil2.in -o equil2.
out -c MEK1-BRAF_eq1.rst -p MEK1-BRAF_solv.
prmtop -r MEK1-BRAF_eq2.rst -ref MEK1-BRA-
F_eq1.rst -x MEK1-BRAF_eq2.mdcrd

l Run another 20-ps step applying the harmonic
restraints only to the backbone atoms. Run equil3.in
input script (shown in Fig. 7) using the following
command:

$AMBERHOME/bin/pmemd -i equil3.in -o equil3.
out -c MEK1-BRAF_eq2.rst -p MEK1-BRAF_solv.
prmtop -r MEK1-BRAF_eq3.rst -ref MEK1-BRA-
F_eq2.rst -x MEK1-BRAF_eq3.mdcrd

l Run further 20-ps step decreasing protein backbone
restraints to 5 kcal/(mol Å2). Run equil4.in input
script (shown in Fig. 8) using the following command:

$AMBERHOME/bin/pmemd -i equil4.in -o equil4.
out -c MEK1-BRAF_eq3.rst -p MEK1-BRAF_solv.

Fig. 6 Example of AMBER pmemd input file for the second step equilibration. In
the input file, the flags ntx ¼ 5 and irest ¼ 1 mean that velocity and coordinate
information will be taken from the previous restart file. The meaning of the rest
of the parameters listed in the input file was previously explained
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Fig. 7 Example of AMBER pmemd input file for the third step equilibration. In the
input file the flags ntb ¼ 2 and ntp ¼ 1 indicate that constant pressure instead
of constant volume is applied. The meaning of the rest of the parameters listed in
the input file was previously explained

Fig. 8 Example of AMBER pmemd input file for the fourth step equilibration. The
meaning of all the parameters listed in the input file was previously explained
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prmtop -r MEK1-BRAF_eq4.rst -ref MEK1-BRA-
F_eq3.rst -x MEK1-BRAF_eq4.mdcrd

l Run the last step of the equilibration consisting on
100-ps unrestrained MD simulation in isothermal-
isobaric condition. Run equil5.in input script (shown
in Fig. 9, see Note 5) using the following command:

$AMBERHOME/bin/pmemd -i equil5.in -o equil5.
out -c MEK1-BRAF_eq4.rst -p MEK1-BRAF_solv.
prmtop -r MEK1-BRAF_eq5.rst -ref MEK1-BRA-
F_eq4.rst -x MEK1-BRAF_eq5.mdcrd

(f) Finally, perform 5-ns MD unrestrained simulation
keeping the same system condition as the last equilibra-
tion step. Run prod.in input script (shown in Fig. 10, see
Note 6) using the following command:

$AMBERHOME/bin/pmemd -i prod.in -o prod.out -c
MEK1-BRAF_eq5.rst -p MEK1-BRAF_solv.prmtop -r
MEK1-BRAF_prod.rst -ref MEK1-BRAF_eq5.rst -x
MEK1-BRAF_prod.mdcrd

3. Binding free energy calculation.

(a) Build the topology and coordinate files of the unsolvated
wild type (WT) structure for both the complex and its
single subunits using tleap-WT.in input file (shown in

Fig. 9 Example of AMBER pmemd input file for the fifth step equilibration. In the
input file, the flag ntr ¼ 0 indicates that the positional restraint method is turned
off. The meaning of the rest of the parameters listed in the input file was
previously explained
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Fig. 11). Run LEaP AMBER tool using the following
command:

$AMBERHOME/bin/tleap -f tleap-WT.in > tleap-WT.
out

(b) For each mutation studied, build the topology and coor-
dinate files of the mutated structure for both the complex
and mutated subunit using tleap-mut.in input file (shown

Fig. 10 Example of AMBER pmemd input file for unrestrained MD. The meaning
of all the parameters listed in the input file was previously explained

Fig. 11 Example of AMBER LEaP input file to build topology and coordinates files
of wild type dry systems
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in Fig. 12). Run LEaP AMBER tool using the following
command:

$AMBERHOME/bin/tleap -f tleap-mut.in > tleap-mut.
out

Fig. 12 Example of AMBER LEaP input file to build topology and coordinates files
of mutated dry systems. Here, F468 BRAF residue is taken as example

Fig. 13 Example of MMPBSA.py input file to perform alanine scanning
calculation. The input file is typically divided into four sections (&general, &gb,
&pb, &alanine_scanning). The &general section is designed to specify generic
variables related to the overall calculation. For instance, the flag startframe and
endframe specifies the frame from which to begin and to stop extracting
snapshots, respectively, the parameter interval indicates the offset from which
to choose frames from the trajectory file, verbose ¼ 1 means that complex,
ligand, and receptor energy terms will be printed in the output file. The &gb and
&pb section markers tells the script to perform MM-GBSA and MM-PBSA
calculations with the given values defined within those sections (i.e., the
variables saltcon and istrng that specify the salt concentration and the ionic
strength, respectively). Finally the &alanine_scanning section marker initializes
alanine scanning in the script. Please be aware that given the higher
computational costs of MM-PBSA calculation, only MM-GBSA calculation is
performed in this work
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(c) Perform alanine scanning calculation on 200 snapshots
extracted from the last 2 ns of each MD trajectory. Run
mmpbsa.in input file forMMPBSA.py script in AMBER14
(shown in Fig. 13) using the following command:

$AMBERHOME/bin/MMPBSA.py -i mmpbsa.in -sp
MEK1-BRAF_solv.prmtop -cp MEK1-BRAF.prmtop -rp
MEK1-BRAF.prmtop -lp MEK1-BRAF.prmtop -y
MEK1-BRAF_prod.mdcrd -mc MEK1-BRAF_F468A.
prmtop -ml BRAF_F468A.prmtop

Flag -i specifies the input file, -sp the solvated WT
complex topology file, -cp the unsolvated WT complex
topology file, -rp the unsolvated WT receptor topology
file, -lp the unsolvated WT ligand topology file, -y the
complex trajectory file to analyze, -mc the unsolvent
mutated complex topology file and -ml the unsolvated
mutated subunit topology file. Please be aware that as
MEK1 is the first molecule in the complex, for alanine
scanning calculations the unsolvated mutated subunit
topology file will be specified with the flag -mr.

(d) Extract the ΔΔG of binding related to the specific muta-
tions estimated as the difference between the binding ΔG
of the WT and that of the mutated complex. All these data
are easily available in the final output file, FINAL_RE-
SULTS_MMPBSA.dat, including all the wild type and
mutated system average binding energies (reported as
van der Waals, electrostatic, and nonpolar energy contri-
butions), as shown in Fig. 14.

(e) You may get a graphical representation of the ΔΔG of
binding (see Fig. 1), by assigning the values given in
FINAL_RESULTS_MMPBSA.dat file to the bfactor
field of the corresponding PDB file of the complex
structure.

4 Notes

1. As there is no unbound structure for the ligand yet, the ligand
structure contained on the complex PDB file (4MNE) is used
here instead for illustration purposes. However, in a standard
NIP computation, unbound structures should be used.

2. The principal columns of the 4mne.ene file are:

l Conf: Conformation number of the docking pose as in the
last column of the rot file.

l Ele: Electrostatic energy of the pose.

l Desolv: Desolvation energy of the pose.
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Fig. 14 Extract from the MMPBSA.py FINAL_RESULTS_MMPBSA.dat output file. The file includes all the
average energies, standard deviations, and standard error of the mean for GB followed by PB calculations (if
calculated). After each section, the ΔG of binding is given along with the error values. After each method, the
ΔΔG of binding is reported, corresponding to the relative effect the mutation has on the ΔG of binding for the
complex. The specific mutation is also printed at the end of the file. Here, F468 residue alanine scanning is
taken as example
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l VDW: van der Waals energy of the pose.

l Total: Total docking energy of the pose, computed as ele þ
Desolv þ 0.1 * VDW (note a 0.1 weight for VDW).

l RANK: Pose rank according to its computed total binding
energy.

3. Files from the PDB may contain bound ligands, cofactors or
nonstandard residues whose parameters are not available in the
AMBER parameters database. In this case you should make use
of the Antechamber tools, which ship with AmberTools, to
create PREP and FRCMOD files. For more information, see
the ANTECHAMBER tutorial (http://ambermd.org/
tutorials/basic/tutorial4b/) and the AMBER manual.

4. LEaP AMBER tool renumbers PDB residues starting from 1.
Thus, the original numeration of your PDB file may not be
always kept.

5. Since your system may not start from an equilibrium state,
additional time steps may be required during the minimization
and equilibration steps of the MD simulation. One can check
for equilibrium by verifying whether properties, such as poten-
tial energy, temperature, or pressure, no longer change in any
systematic fashion and are just fluctuating around a mean value.

6. To guarantee reliable results in the in silico Alanine scanning
calculation, RMSD simulation should be highly equilibrated.
Ideally one should probably run a much longer production run
than 5 ns (i.e., 20 ns).
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Chapter 7

Multistate Computational Protein Design with Backbone
Ensembles

James A. Davey and Roberto A. Chica

Abstract

The ability of computational protein design (CPD) to identify protein sequences possessing desired
characteristics in vast sequence spaces makes it a highly valuable tool in the protein engineering toolbox.
CPD calculations are typically performed using a single-state design (SSD) approach in which amino-acid
sequences are optimized on a single protein structure. Although SSD has been successfully applied to the
design of numerous protein functions and folds, the approach can lead to the incorrect rejection of desirable
sequences because of the combined use of a fixed protein backbone template and a set of rigid rotamers.
This fixed backbone approximation can be addressed by using multistate design (MSD) with backbone
ensembles. MSD improves the quality of predicted sequences by using ensembles approximating confor-
mational flexibility as input templates instead of a single fixed protein structure. In this chapter, we present a
step-by-step guide to the implementation and analysis of MSD calculations with backbone ensembles.
Specifically, we describe ensemble generation with the PertMin protocol, execution of MSD calculations for
recapitulation of Streptococcal protein G domain β1 mutant stability, and analysis of computational predic-
tions by sequence binning. Furthermore, we provide a comparison between MSD and SSD calculation
results and discuss the benefits of multistate approaches to CPD.

Key words Single-state design, Multistate analysis, Multistate design, PertMin, Protein stability
prediction, Receiver operating characteristic, Protein G

1 Introduction

The continued development of computational protein design
(CPD) methodologies has led to an increasing number of designed
proteins possessing unique structural [1–3] and functional [4–7]
characteristics. CPD is a powerful tool for protein engineering
because it enables the identification of sequences displaying desired
properties in spaces astronomically larger (>1080 sequences) [8]
than those that can be tested experimentally. CPD simulations are
typically performed using a single-state design (SSD) approach in
which amino-acid sequences are optimized on a single protein
structure. Most SSD procedures consist of three steps: (1) a side-
chain placement step where discrete side-chain rotamers are

Ilan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
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threaded onto specified positions on a fixed protein backbone
template, (2) an energy calculation where interaction energies
between pairs of rotamers and between each rotamer and the
backbone template are computed using a potential energy function,
and (3) a sequence optimization step where combinations of rota-
mers are optimized using a search algorithm that explores both
rotamer and sequence space to identify optimal sequences. At the
conclusion of this process, a list of sequences is generated (Fig. 1a)
with each sequence being ranked according to a score value that
reflects its stability on the target protein structure.

Although SSD has been successfully applied to the design of
numerous protein functions and folds, the approach is susceptible
to false negative predictions that result from the combined use of a
fixed protein backbone template and a set of rigid rotamers to
model mutant protein structures. This fixed backbone approxima-
tion leads to the incorrect rejection of desirable sequences that
would be accepted if the backbone geometry was allowed to relax
or if a slightly different rotamer configuration was allowed [9].
To address the fixed backbone approximation, several strategies
have been developed including the use of softer repulsive potential
energy terms [10–12], flexible backbone algorithms [13–15],
iterative energy minimization [16, 17], and continuous rotamer
optimization [18]. Recently, multistate design (MSD) with back-
bone ensembles approximating protein conformational flexibility

Fig. 1 Single-state and multistate design. In single-state design (a), a single
backbone template (circle) is used to score and rank sequences (1, 2, and 3)
according to their predicted stability (arrow). Application of an arbitrary energy
cutoff (dotted line) results in acceptance of sequence 3 as stable and rejection of
sequences 1 and 2 as unstable. In multistate design (b), an ensemble of four
backbone structures (diamond, circle, pentagon, and triangle) is used to score
and rank sequences. Predicted stability (arrow) is computed as the Boltzmann
weighted average energy across all members of the ensemble for each
sequence. Application of the same energy cutoff as in single-state design
(dotted line) results in sequences 2 and 3 being accepted and sequence 1
being rejected
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has emerged has a useful alternative to these methods [19, 20].
In MSD, sequence optimization is guided by energy contributions
of multiple protein structures simultaneously, enabling the evalua-
tion of sequences in the context of an ensemble of backbone
templates. MSD simulations consist of multiple independent
single-state calculations in which rotamers for a specific amino-
acid sequence are optimized in the context of each backbone
template included in the ensemble. Individual SSD scores obtained
on each template are then combined into a single fitness value for
each amino-acid sequence that represents its predicted stability
across the ensemble. MSD optimization algorithms [21–23]
attempt to improve this fitness value as a function of amino-acid
sequence to identify optimal sequences. Thus, MSD differs from
SSD by its use of an energy combination function to compute
sequence fitness and a modified search algorithm to find optimal
sequences in the context of multiple backbone templates. Because
multiple backbones are used to inform sequence selection in MSD,
combinations of rotamers that would be rejected in SSD because
they cause steric clashes in a single fixed backbone template can be
accepted if they have a stabilizing effect in at least one of the
backbone templates included in the ensemble (Fig. 1b). In this
way, MSD with backbone ensembles leads to fewer false negatives
and improved overall prediction accuracy [20].

An alternate approach to MSD that can be used to evaluate
fitness of amino-acid sequences across multiple backbone templates
is multistate analysis (MSA). MSA involves the combination of
scores obtained from parallel SSD simulations into a single fitness
value for each sequence that is computed post-CPD. The resulting
fitness values are then used to re-rank sequences (Fig. 2). By
employing alternate backbones as input templates to these parallel
SSD calculations, MSA can be used to identify the most favorable
template to score each sequence [24] or to evaluate how well each
sequence stabilizes an ensemble of backbone templates. MSA dif-
fers from MSD by its sequence optimization procedure, which is
not informed by the energetic contributions of multiple backbones.
Instead, sequence optimization in MSA is performed as in SSD and
only the use of an energy combination function to compute
sequence fitness distinguishes it from SSD. Because of this, MSA
has the benefit of being less computationally demanding thanMSD
but has the drawback of potentially constraining explored sequence
space since sequence optimization is not guided by multiple states.

In order to implement MSD or MSA, multiple backbone tem-
plates are required. These templates can be obtained from available
x-ray or NMR structures or can be generated in silico from the
atomic coordinates of a single protein. Several computational
methods have been developed to generate backbone ensembles
for use in MSD [19, 25]. In this chapter, we will focus on the
coordinate perturbation followed by energy minimization
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(PertMin) protocol that we recently developed [20]. In this proce-
dure, small coordinate perturbations are introduced into a starting
protein structure to generate a set of randomly perturbed struc-
tures. An energy minimization procedure is then applied to the
perturbed structures, which minimize to different local minima
that become accessible because of diverging trajectories (Fig. 3a).
PertMin thus exploits the initial condition sensitivity of energy
minimization [26]. A benefit of the PertMin protocol is that struc-
tural deviation from the input structure and ensemble diversity (i.e.,
structural deviation between ensemble members) can be controlled
by the number of minimization steps (Fig. 3b). While PertMin does
not allow for a large area of protein conformational space to be
explored, it enables the rapid and tunable generation of ensemble
backbones having high coordinate similarity to their progenitor
structure and low potential energy. Thus, application of PertMin
ensembles in MSD results in improved prediction accuracy com-
pared to SSD by reducing the number of false negatives and
increasing the number of true positives [20].

Fig. 2 Multistate approaches to computational protein design. In MSD (a), sequence optimization is guided by
the energetic contributions of multiple protein structures simultaneously. Thus, sequence optimization and
scoring are performed concertedly, resulting in a list of sequences that are ranked according to their predicted
stability across the ensemble of three structures. In MSA (b), multiple independent SSD calculations are
performed in parallel using alternate backbones as input templates. The sequence scores obtained from each
SSD calculation are combined post-CPD into a fitness value for each sequence across the ensemble of three
structures. Sequences are then re-ranked based on their fitness values, generating a new ranked list of scored
sequences
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In this chapter, we provide a step-by-step guide to the implemen-
tation and analysis of MSD calculations with backbone ensembles.
To facilitate this explanation, we present an example involving the
recapitulation of a training set of 84 Streptococcal protein G domain
β1 (Gβ1) mutant sequences of known stability (Table 1) [19].
A specific focus is placed on the generation of backbone ensembles
using the PertMin protocol and on their application in both MSD
andMSA. An analysis of CPD predictions and a comparison between
SSD, MSA, and MSD calculation results are presented.

Fig. 3 The PertMin protocol. (a) PertMin functions by introducing small random coordinate perturbations into
an input protein structure (white diamond) to yield a set of perturbed structures (black diamonds). This
perturbation step is followed by energy minimization (arrows) of each perturbed structure into different local
minima surrounding the input structure. (b) In PertMin, a higher number of energy minimization steps
(represented by circles) leads to increased root-mean-square coordinate deviation from the input structure
and greater ensemble diversity (represented by the circle arc). (c) The PertMin algorithm
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Table 1
Gβ1 training set sequences

Stabilizinga Destabilizingb Unfoldedc Nonnatived

FLIAAFAIWFVe FIIAAFAIWFV FIVAAFAVWFI FAFAAFFIWFA

FLIAAFALWFI FIIAAFAIWFI FLIAAFAVWLV FALAAFFIWFA

FLFAAFALWFI FIVAAFAIWFV FLVAAFAVWIV FAFAAIFIWFA

FLVAAFAIWFV FILAAFAIWFV FLLAAFAVWLV FAFAALFIWFA

FLIAAFAVWFV FIVAAFAIWFI FIIAAFAVWFV FALAAIFIWFA

FLFAAFAIWFV FILAAFAVWFV FLIAAFAIWIV FALAALFIWFA

FLFAAFAIWFI FIIAAFAVWFI FLIAAFAIWLV FAFAAFFLWFA

FLIAAFAIWFI FIVAAFAVWFV FLIAAFAIWVV FALAAFFLWFA

FLIAAFALWFV FLIAAFAVWIV FLIAAFALWIV FAFAAIFLWFA

FLVAAFAIWFI FILAAFAIWFI FLIAAFALWLV FAFAALFLWFA

FLVAAFALWFI FILAAFAVWFI FLIAAFALWVV FALAAIFLWFA

FLLAAFAIWFV FLLAAFAVWVV FLIAAFAVWVV FALAALFLWFA

FLFAAFALWFV FLLAAFAIWIV FAFAAFFIWFV

FLIAAFAVWFI FLLAAFAIWLV FALAAFFIWFV

FLLAAFAVWFV FLLAAFAIWVV FAFAAIFIWFV

FLVAAFAVWFV FLLAAFALWIV FAFAALFIWFV

FLVAAFALWFV FLLAAFALWLV FALAAIFIWFV

FLLAAFALWFI FLLAAFALWVV FALAALFIWFV

FLVAAFAVWFI FLLAAFAVWIV FAFAAFFLWFV

FLLAAFAIWFI FLVAAFAIWIV FALAAFFLWFV

FLLAAFALWFV FLVAAFAIWLV FAFAAIFLWFV

FLFAAFAVWFV FLVAAFAIWVV FAFAALFLWFV

FLFAAFAVWFI FLVAAFAVWLV FALAAIFLWFV

FLLAAFAVWFI FLVAAFAVWVV FALAALFLWFV

All sequences are from [19]
aStabilizing sequences consist of 24 Gβ1 mutants whose stability is approximately equal to or greater than that of the wild

type (WT)
bDestabilizing sequences consist of 12 Gβ1 mutants whose stability is lower than that of the WT
cUnfolded sequences consist of 24 Gβ1 mutants that do not fold
dNonnative sequences consist of 24 Gβ1 mutants postulated to adopt an alternate protein fold
eAmino-acid sequences of Gβ1 mutants show residue identity at core positions in this order: positions 3, 5, 7, 20, 26, 30,

34, 39, 43, 52, and 54
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2 Materials

Ensemble generation and data analysis were performed by single-
threaded calculations on an AMD Athlon II personal computer. All
CPD simulations were conducted on a Linux cluster consisting of
Intel Xeon and AMD Opteron x86-64 CPUs. The PertMin proto-
col was implemented using the Molecular Operating Environment
(MOE) software package [27] and CPD calculations were run
using PHOENIX [4, 19, 28]. Parsing and analysis of CPD results
were done using Python 2.7 and Microsoft Excel 2007. Input
coordinates for the Gβ1 fold were retrieved from the Protein
Data Bank (PDB ID: 1PGA) [29]. Gβ1 training set sequences
and their stabilities were retrieved from [19].

3 Methods

3.1 Structure

Preparation

for Single-State

Design

1. Retrieve the Gβ1 crystal structure from the Protein Data Bank
(PDB ID: 1PGA) [29].

2. Remove water molecules included in the crystal structure.

3. Prepare the Gβ1 structure for calculation by adding hydrogens,
counter-ions, and solvent using MOE [27] (see Note 1).

4. Energy minimize the prepared Gβ1 structure with 50 steps of
conjugate gradient energy minimization [30].

The resulting energy minimized structure will be used as the
input backbone template for SSD.

3.2 Ensemble

Preparation

Preparation of a backbone ensemble to be used as input to MSA
andMSD calculations is carried out with the PertMin protocol [20]
(Fig. 3c).

1. Perturb all atoms of the unminimized Gβ1 structure prepared
with added hydrogens, counter-ions, and solvent by introdu-
cing random Cartesian coordinate perturbations of � 0.001 Å
along each axis.

2. Energy minimize the perturbed Gβ1 structure with 50 itera-
tions of truncated Newton energy minimization [31].

3. Evaluate the resulting minimized structure to ensure that it
meets user-specified criteria. In this case, a protein backbone
atom coordinate root-mean-square (RMS) deviation from
the 1PGA crystal structure of 0.3 Å or more is required.
If the structure meets this requirement, add it to the PertMin
ensemble. If not, discard it and modify the energy minimiza-
tion procedure accordingly (see Note 2).

4. Repeat steps 1 through 3 until the PertMin ensemble contains
64 structures.
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The 64-member PertMin ensemble prepared as described
above has an average backbone atom RMS coordinate deviation
from the 1PGA crystal structure of 0.46 � 0.02 Å and an ensemble
diversity (backbone atoms) of 0.25 � 0.04 Å.

3.3 Computational

Protein Design

Calculations

SSD, MSA, and MSD calculations to recapitulate the known stabil-
ity of the Gβ1 training set sequences (Table 1) were conducted
using the PHOENIX protein design software [4, 19, 28].

1. Design Gβ1 core residues (positions 3, 5, 7, 30, 34, 39, 52, and
54) with amino-acid types found at these positions in the
training set of 84 mutant Gβ1 sequences (Fig. 4). For Gβ1
core residues A20, A26, and W43, allow conformation to vary
but not amino-acid identity.

2. Thread amino-acid side-chain rotamers onto backbone tem-
plate(s) at these positions using the Dunbrack backbone-
dependent rotamer library with expansions of � 1 standard
deviation around χ1 and χ2 [32]. The crystallographic
conformer found at these positions is also included.

3. Evaluate interaction energies between pairs of rotamers and
between each rotamer with the backbone template using a
physics-based four-term potential energy function that
includes (a) a van der Waals term from the Dreiding II force
field with atomic radii scaled by 0.9 [33], (b) a direction-
specific hydrogen-bond term having a well depth of 8.0 kcal/
mol [11], (c) an electrostatic energy term modeled using Cou-
lomb’s law with a distance-dependent dielectric of 40, and (d) a
surface area-based solvation penalty term [34, 35].

4. Apply a 1000 kcal/mol potential energy penalty against the
crystallographic conformer found at each designed position.
Application of this penalty ensures adequate sampling away
from the wild-type sequence.

Fig. 4 Computational design of Gβ1 core residues. (a) Designed Gβ1 core residues. (b) Wild-type (square) and
mutant (diamond) residues included in calculations are shown for each designed position (circle). The total
searched sequence space during calculation consists of 5184 possible sequences
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5. For SSD and MSA, optimize sequences on a single backbone
template at a time using the FASTER (Fast and accurate
side-chain topology and energy refinement) algorithm
[36, 37]. For MSD, optimize sequences in the context of the
PertMin ensemble using a modified version of the FASTER
algorithm, MSD-FASTER [21].

6. After SSD calculations are completed, compute fitness values
for MSA as the Boltzmann weighted average of individual
sequence energies obtained on all backbones included in the
PertMin ensemble (see Note 3). For MSD, the Boltzmann
weighted average fitness is computed during sequence
optimization.

Following CPD, a rank ordered list of scored sequences is
obtained (Fig. 5). In SSD, sequences are ranked according to
their score, which is the potential energy on a single backbone
template. In MSA and MSD, sequences are ranked according to
their fitness value, which is the Boltzmann weighted average energy
across all backbone templates included in the PertMin ensemble.
Because fitness is evaluated concertedly to sequence optimization in
MSD but not in MSA, where fitness is instead computed post-CPD
(Fig. 2), sequence ranking and fitness values obtained by these
multistate approaches are not identical (Fig. 5).

Fig. 5 Ranked lists of scored sequences obtained by various computational protein design methods. The wild-
type (WT) and top 25 mutant sequences predicted by SSD, MSA, and MSD are shown. Numbers represent
single-state score or multistate fitness values for each sequence
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Sequence energy distributions (Fig. 6) show that more favor-
able energies are obtained for a larger number of sequences by the
multistate approaches than by SSD, with average sequence energies
of �40, �46, and �50 kcal/mol obtained by SSD, MSA, and
MSD, respectively. The lower energies obtained by multistate
approaches result from their ability to identify better backbone
templates to score each sequence than the single template used in
SSD [20, 24]. This is exemplified by the greater number of
sequences that are scored with an energy lower than 0 kcal/mol
by the multistate approaches (50 and 63 % for MSA and MSD,
respectively) than by SSD (31 %), highlighting how multistate
approaches help to address the fixed backbone approximation.

3.4 Energy Analysis

of Predicted

Sequences

In this section, the top 100 sequences predicted by the various
CPD methods will be analyzed with the sequence binning proce-
dure [20]. In this procedure, sequences from each rank-ordered list
are binned as either stable or unstable by comparing their energy
value relative to that of the wild-type (WT) sequence. The energy of
the WT is used as the cutoff because the WT is known to be stable
in the context of the Gβ1 fold and because all CPD methods used
here are expected to rank the WT sequence favorably. Stabilizing
sequences are thus expected to be ranked ahead of the WT while
destabilizing, unfolded, and nonnative sequences (Table 1) are
expected to be ranked below the WT.

1. Compute the energy difference (ΔE) between each sequence
included in the top 100 and the WT. WT energy values
obtained by SSD, MSA, and MSD are �69.8, �73.6, and
�74.5 kcal/mol, respectively (Table 2).

2. Bin sequences as potential positives or negatives if their ΔE
value is lower or greater than 0 kcal/mol, respectively.

Fig. 6 Sequence energy distributions. Distributions depict the number of sequences predicted by SSD (a), MSA
(b), and MSD (c) with energy values grouped in incremental bins of 1 kcal/mol. The average sequence energy
is indicated by a dotted black line. The fraction of the pie charts in black (31, 50, and 63 % for SSD, MSA, and
MSD, respectively) corresponds to the percentage of the 5184 total possible sequences with predicted energy
below 0 kcal/mol
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3. From the set of potential positive sequences, identify true and
false positive sequences. True positives are the 24 stabilizing
sequences of the training set while false positives include the 12
destabilizing, 24 unfolded, and 24 nonnative sequences
(Table 1). Because the experimental stability of the remaining
5099 designed sequences is unknown, they are not considered
in our binning procedure.

4. From the set of potential negative sequences, identify true and
false negative sequences. True negatives include the destabiliz-
ing, unfolded, and nonnative sequences of the training set
while false positives are the stabilizing sequences (Table 1).

5. Compute the success rate of the binning procedure, which is
the percentage of correctly binned sequences (true positives
and true negatives) out of the complete training set. For this
sequence binning analysis, the WT sequence is not included in
the binning statistic.

6. Perform steps 1 through 5 using a series of cutoff values
ranging from �90 to þ90 kcal/mol in 1 kcal/mol increments.
Build receiver operating characteristic (ROC) curves by plot-
ting the true positive ratio (fraction of true positives out of the
positives) as a function of the false positive ratio (fraction of
false positives out of the negatives) for every possible cutoff
value.

Sequence binning results shown in Fig. 7 demonstrate that
MSD is the only method that can score all 84 training set sequences
below 0 kcal/mol. In contrast, SSD and MSA score fewer of the
training set sequences below 0 kcal/mol (68 and 82 %, respec-
tively). The multistate methods correctly reject a higher number
of the 60 true negatives (Table 1, destabilizing, unfolded, and
nonnative sequences) and correctly accept a higher number of the
true positives (Table 1, stabilizing sequences), compared to SSD
(Table 2). As a result, fewer false negatives are predicted by MSA

Table 2
Sequence binning results

Binning statistics SSD MSA MSD

Success rate (%) 70 85 88

Cutoff (kcal/mol) �69.8 �73.6 �74.5

True positives 12 17 18

False negatives 12 7 6

False positives 13 6 4

True negatives 47 54 56
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and MSD than by SSD, an expected result given that they help to
address the fixed backbone approximation. Additionally, the suc-
cess rates of multistate methods are greater than that of SSD, with
theMSD success rate being the highest (88 %). The number of false
negative predictions made by MSD increases if the ensemble does
not cover a sufficient structure space to score training set sequences,
resulting in decreased average binning success rates (see Note 4).

Although the binning profiles described above demonstrate the
utility of using the WT sequence energy as the cutoff, ROC curves
were generated to help determine if there is an ideal cutoff to be
used. An ideal ROC has a true positive ratio approaching 1 and a
false positive ratio approaching 0 across a broad range of cutoffs,
resulting in a large area under the curve. Our data demonstrates
that this desirable binning behavior is obtained for multistate meth-
ods but not for SSD (Fig. 8), further demonstrating the improved
accuracy of MSA and MSD calculations relative to SSD.

3.5 Predicted

Sequence Space

Analysis

In this section, diversity of the top 100 sequences predicted by the
various CPD methods will be analyzed. To do so, the frequency of
amino-acid residues found at each designed position as well as the
number of identical sequences in the top 100 sequences predicted
by each method will be compared.

1. Extract the list of top 100 sequences predicted by SSD, MSA,
and MSD.

Fig. 7 Sequence binning analysis. Gβ1 training set sequences predicted by SSD (a), MSA (b), and MSD (c)
calculations are binned according to their energy difference from the wild-type (WT) sequence. Sequences
with lower energy than the WT (ΔE < 0 kcal/mol) are potential positive sequences while sequences with
higher energy than the WT (ΔE > 0 kcal/mol) are potential negative sequences. Sequences are colored
according to their experimental stability, with sequences having stability greater than or approximately equal
to the WT in green (stabilizing), sequences having lower stability than the WT in yellow (destabilizing),
sequences that do not fold in red (unfolded), and sequences postulated to adopt a nonnative fold in blue
(nonnative). Positive ΔE values are capped atþ14 kcal/mol, even if the predicted energy difference is greater
than this value. The fraction of the pie charts in black (68, 82, and 100 % for SSD, MSA, and MSD,
respectively) corresponds to the percentage of the 84 training set sequences with predicted energy below
0 kcal/mol

172 James A. Davey and Roberto A. Chica



2. Use the Weblogo server (http://weblogo.berkeley.edu/) [38]
to compute the frequency of each amino-acid type found at
each designed position in the top 100 sequences.

3. Compare sequence logos obtained from the top 100 sequences
predicted by each CPD method.

As shown in Fig. 9, amino-acid diversity at each designed
position of Gβ1 is nearly identical in the top 100 sequences pre-
dicted byMSA andMSD. However, sequence diversity obtained by
SSD is significantly different, in particular at positions 5, 30, and
52. For example, many sequences predicted by SSD contain an Ile
at position 5 or 52, or do not include Leu or Ile substitutions at
position 30, in contrast with sequences predicted by the multistate
methods. The highly similar amino-acid diversity at each designed
position obtained by the multistate methods suggests that their top
100 sequences are nearly identical. To verify whether this is true, we
compared the overlap in identical sequences contained in the top
100 sequences predicted by the various CPD methods. We found
that MSA and MSD share 89 of their top 100 ranked sequences,
confirming that these methods predict nearly identical top 100
sequences. In contrast, MSA and MSD share a much lower number
of their top 100 sequences with SSD (54 or 51, respectively).

4 Conclusions

We have described three CPD methods that can be used for the
prediction of mutant sequence stabilities. Of these, the multistate
approaches result in improved prediction accuracy by addressing
the fixed backbone approximation via the incorporation of back-
bone ensembles that simulate protein conformational flexibility.

Fig. 8 Receiver operating characteristic (ROC) curves. ROC curves for SSD (a), MSA (b), and MSD (c)
calculations were produced by binning Gβ1 training set sequences with respect to an energy cutoff between
�90 and þ90 kcal/mol that was increased in 1 kcal/mol increments. ROC curves for SSD and MSA do not
reach true and false positive ratios of 1.0 because the energy of some training set sequences was predicted to
be greater than þ90 kcal/mol. The diagonal gray line indicates random sequence binning
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Superior prediction accuracy is afforded by improved sequence
scoring that results in fewer false negative predictions. We also
described the PertMin ensemble generation method, which is
easy to implement, computationally inexpensive, and generally
applicable for the creation of backbone ensembles to be used in
multistate CPD methods. Because of the benefits highlighted
above, multistate CPD with PertMin backbone ensembles repre-
sents a valuable addition to the protein engineering toolbox.

5 Notes

1. Gβ1 structure preparation requires the addition of hydrogen
atoms to the 1PGA crystal structure, as well as the inclusion of
counter-ions and solvent water molecules. Hydrogen atoms
were added at pH 7 using the Protonate3D utility [39] included
in MOE [27], which facilitates the optimal placement of hydro-
gens by considering multiple configurations and protonation
states. Hydrogen configurations were adjusted by Unary Qua-
dratic Optimization using a 12-6 Lennard-Jones potential and a
distance-dependent dielectric of 1. Alternatively, hydrogens can

Fig. 9 Amino-acid diversity found at Gβ1 designed positions in the top 100
ranked sequences predicted by various computational protein design methods.
Sequence logos for SSD (a), MSA (b), and MSD (c), are shown with amino-acid
substitution frequency proportional to letter height. Designed positions are
indicated by numbers. Sequence logos were prepared using WebLogo 2.8.2 [38]
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be added using other tools such as Reduce [40] or MolProbity
[41]. Following hydrogen addition, MOE was used to add
counter-ions (Naþ and Cl�) to neutralize surface charges and
water molecules to give a box with a depth of a 6 Å around the
protein surface in a periodic boundary.

2. Ensemble properties, such as its RMS backbone coordinate
deviation from the input structure (deviation) or backbone
coordinate similarity between ensemble members (diversity),
can be tuned by altering the PertMin protocol. For example,
when generating a 30-member Gβ1 ensemble, the choice of
energy minimization algorithm can influence ensemble proper-
ties. Energy minimization with the truncated Newton algo-
rithm produces an ensemble with higher deviation (Fig. 10a)

Fig. 10 Tuning of PertMin ensemble properties. Various 30-member Gβ1 ensembles were prepared with
variations on the following PertMin protocol: Cartesian coordinate perturbations of � 0.001 Å along each axis
followed by 50 iterations of truncated Newton energy minimization in the absence of water solvent molecules.
Effect of energy minimization algorithm and number of iterations on ensemble root-mean-square (RMS)
coordinate deviation (a) and diversity (b). Effect of type and size of random perturbations on ensemble
deviation (c) and diversity (d). Effect of system size and energy minimization RMS gradient on ensemble
deviation (e) and diversity (f). To increase system size, protein structures were solvated in a box of water
molecules with a depth of 3 Å. In order to compare systems of different sizes, they should occupy regions on
the potential energy surface located at similar distances to the nearest minimum. Therefore, energy
minimizations were terminated at specific RMS gradients (e and f) instead of at specific numbers of
minimization iterations
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and diversity (Fig. 10b) than the one produced with conjugate
gradient minimization. This is because truncated Newton is a
second-order energy minimization algorithm that is more sen-
sitive to initial conditions [42] than conjugate gradient, which
is first order. In addition, average deviation and diversity
increase with the number of minimization iterations, regardless
of minimization algorithm, to a maximum value that is depen-
dent on the location of energy minima on the protein potential
energy surface.

Different types of perturbations (torsion or Cartesian)
applied to the input structure coordinates will yield ensembles
with similar average deviation (Fig. 10c) and diversity
(Fig. 10d). Perturbation magnitude does not significantly
affect deviation or diversity when kept at values below or
equal to 0.1 Å or degree. This is because small perturbations
result in similar perturbed structures occupying the same
region of the potential energy surface, making accessible the
same local minima. When the perturbation is sufficiently large
(1 Å or degree), another region of the potential energy surface
and a different set of local minima become accessible, resulting
in ensembles with larger deviation and diversity.

System size, i.e., the number of atoms subjected to energy
minimization, will also affect the rate at which ensemble devia-
tion (Fig. 10e) and diversity (Fig. 10f) increase. The more
atoms are included in the energy minimization calculation,
for example by addition of solvent molecules, the fewer num-
ber of iterations are required to produce the same amount of
deviation and diversity. In all cases, whether altering the energy
minimization protocol, perturbation method, or system size, a
maximum deviation and diversity is reached. This is because
PertMin generates structures at local minima, which are fixed
on the potential energy surface specific to the system.

3. The Boltzmann weighted average is calculated for an ensemble
containing n members with the following equation:

E ¼
Pn

i¼1
Ei �e �Ei=kTð Þ

Pn

i¼1
e �Ei=kTð Þ , where k is the Boltzmann constant, T is

the temperature (300 K in this case), and E is the energy.
Evaluation of sequence fitness as the Boltzmann weighted
average ensures that sequences that stabilize a majority of
ensemble members are not penalized if they destabilize a few.
Alternatively, the energy of a sequence on its most favorable
scoring state can also be used as its fitness value [24].

4. The number of backbone templates included in an ensemble
(i.e., ensemble size) can affect predictions made by MSD. For
example, MSD performed using a 128-member PertMin
ensemble results in the most favorable WT sequence fitness
(Fig. 11a), the highest success rate (Fig. 11b), and the lowest
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number of false negatives (Fig. 11c). As the ensemble size
decreases, fitness of the WT sequence increases in energy, aver-
age success rate decreases, and the number of false negative
sequences increases. Nevertheless, MSD using 64-member
ensembles gives results similar to those obtained with the
128-member ensemble. While we recommend using an ensem-
ble containing at least 64 templates, MSD with a small
4-member ensemble is still preferable to SSD with a single
backbone template because it results in a higher success rate
and fewer false negatives.
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Chapter 8

Integration of Molecular Dynamics Based Predictions
into the Optimization of De Novo Protein Designs:
Limitations and Benefits

Henrique F. Carvalho, Arménio J.M. Barbosa, Ana C.A. Roque,
Olga Iranzo*, and Ricardo J.F. Branco*

Abstract

Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of
proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de
novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a
molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be
introduced to some useful open-source computational tools, including the GROMACS molecular dynam-
ics simulation software package and ProDy for protein structural dynamics analysis.

Key words Protein essential dynamics, Principal component analysis, Normal mode analysis, Elastic
network models, Internal molecular dynamics

1 Introduction

The design of innovative and versatile biocatalysts that are more
robust and catalytically proficient than the native ones found in
Nature for specific bioconversion in a given reactional media has
long been pursued [3]. The discovery of enzymatic activity dates
back to the end of nineteenth century, with the isolation and charac-
terization of amylase and urease enzymes. Since then, it has been
realized that enzymes are highly efficient nanoscale machines, which
are able to outperform chemical reactions specifically as no other
catalyst-based system developed so far, with rate enhancements
(kcat/knon) up to 1019-fold relative to the uncatalyzed reaction [2].

Naively, one can think that it would be easy and straightforward
to recapitulate the mode of action, as well as catalytic features of
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natural enzymes into a given protein scaffold of interest by simply
applying the mechanistic rules and structural constraints theoreti-
cally predicted for efficient biocatalysis. However, reality has proved
to be much more complex and even when all catalytic determinants
are gathered in a perfect theoretical active site model—theozyme,
term coined by the seminal work of Houk’s lab in 1998 [3], the few
successful cases of de novo protein design showed a considerable
gap between their catalytic efficiency (kcat/KM of
104–105 M�1 s�1) and those from the natural occurring enzymes
(kcat/KM of 106–108 M�1 s�1) [17]. This gap corresponds to more
than four orders of magnitude away from the diffusion rate limit.

Several strategies have been implemented to circumvent this
apparent theoretical design paradox of low activity, namely the inte-
gration of molecular dynamics (MD) based predictions into the
state-of-the-art protein design protocols [18]. The flexibility shown
by protein structures is essential, allowing conformational changes
during catalysis which are required for the substrate binding, product
release, or for many other functional related motions, as in the case
of Candida antarctica Lipase B loop movement that is responsible
for the solvent accessibility to the active site [4]. However, there is a
hierarchy of motions from low-frequency interdomain hinge
motions to high-frequency bond vibrational motions that occur at
considerable different range, in the femtosecond time scale, that
needs to be considered. The preorganized enzyme active site drives
the Michaelis-Menten complex formation toward the most reactive
set of conformations around the transition state to maximize cata-
lytic efficiency. This means that the protein scaffold cannot be treated
as a rigid body and has an intrinsic dynamics that has to be taken into
account during the computationally driven protein design [1].

1.1 Turning a Protein

Design into an Active

Enzyme

The de novo protein design strategy, has been applied successfully
to only few biotransformations, like the one applied to the quan-
tum mechanics-based (QM) active site design of a Kemp eliminase,
a biocatalyst that performs a reaction not catalyzed by any other
naturally occurring enzyme [5]. This strategy starts with the defini-
tion of the most suitable catalytic mechanism and plausible transi-
tion state (TS) geometry for a given reaction—theozyme. Then,
the corresponding transition state geometry will be quantum-
mechanically determined either using small gas phase models or
more accurately, using hybrid QM/MM approachs that take also
into account the impact of the protein environment on the active
site’s electronic structure, calculated at lower molecular mechanical
(MM) level. This precisely depicted TS model at atomic level might
then be crafted in the protein scaffold using a MM modeling
software such as RosettaMatch [6]. This step searches for putative
protein scaffold candidates that are able to host the theozyme
model, ensuring the TS conformation to be placed in the correct
geometry and protein neighborhood that maximize its stabiliza-
tion, without substantial steric clashes or electrostatic conflicts.
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Finally, the new competent catalytic pocket needs to be redesigned
to maximize the stability of the entire active-site conformation, the
integrity of the TS geometry, and the affinity for the substrate to
bind efficiently through RosettaEnzDes software module [6].

However, experimental characterization of computationally
designed enzymes has shown some limitations caused essentially
by nonoptimal polar interactions with the substrate, inactive con-
formation of the substrate in the bound state, or simply inadequate
solvent-mediated contacts to promote the stabilization of the
protein-substrate complex [1]. At this stage, knowledge from MD
reveals to be essential to iteratively improve protein designs effi-
ciency. A systematic population analysis of the most stable substrate
binding modes, essential dynamics, and preferential molecular
interactions might reveal structural limitations of a putative scaffold
and shed light on the MD-assisted design refinement, leading to
more active enzymes.

2 Materials

Useful links for accessing open-source software and webservers
undermentioned:

1. GROMACS (http://www.gromacs.org/).

2. Propka (http://propka.ki.ku.dk/).

3. PDB (http://www.rcsb.org/pdb/home/home.do).

4. ProDy (http://prody.csb.pitt.edu/).

5. Bio3D (http://thegrantlab.org/bio3d/index.php).

6. VMD (http://www.ks.uiuc.edu/Research/vmd/).

7. Pymol (https://www.pymol.org/).

3 Methods

Molecular dynamics simulation of a protein in explicit water
solvent.

3.1 Preparation of

Protein Structure for

a MD Simulation

3.1.1 Check and Clean

Up the Protein Structure

of Interest

In order to obtain a reliable result and avoid computational bias,
the protein structure and simulation conditions have to be carefully
inspected and set up. This protocol was developed to work on a
Linux environment with the open-source simulation package
GROMACS 4.6.1 version installed. Due to the continuous devel-
opment of simulation software, some command line might have to
be rephrased in future releases, whenever necessary. The standard
MD protocol used here for a case study example is described as
follows:
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1. For the MD protocol description, the crystallographic struc-
ture of a xylanase from B. circulans (PDB code 3LB9) [7] was
selected and downloaded from the RCSB Protein Data Bank
[8] in the corresponding *.pdb file format, which will be
referred thereafter as PROTEIN for convenience.

2. The RCSB_PROTEIN.pdb structure has to be first inspected
with a visualization software such as the PyMOL Molecular
Graphics System Version 1.2 Schrödinger, LLC. The remark of
“MISSING” residues or side chain atoms in the PDB file, as
well as any other “HETATM” cocrystalized with the protein
structure, has to be taken into account. For the MD simulation
of an unbounded protein structure, all the crystallographic
water molecules and ligands were discarded and only the
three-dimensional coordinates of the bare protein structure
were saved separately in a new PROTEIN.pdb file.

3. Before setting up the simulation box, the corresponding pKa
of chargeable amino acids and terminal groups must be
checked out, as well as the number of structural cysteine sulfur
bridges must be determined. The protonation state of titratable
side chains and N-/C-terminus, including Arg, Lys, His, Glu,
and Asp, might be determined based on the pKa prediction
using, for example, the Propka software, available at the web-
server (http://propka.ki.ku.dk/) [9].

3.1.2 Setting Up the

Simulation System

and Input Files

1. To convert the PROTEIN.pdb structure into the compatible
file format of GROMACS, the pdb2gmx command was used to
generate the corresponding coordinate file PROTEIN.gro, the
topology file PROTEIN.top, and the position constraints file
PROTEIN.itp for the equilibration phase. Additionally, the
solvent water model SPCE and the protonation state of titrable
amino acid and terminals of the protein chain might be called
by using the –water and –inter flags, respectively. The unified-
atom GROMOS force field 53A6 implemented in GROMACS
[10] was used in this protocol workflow.

$ pdb2gmx –f [PROTEIN.pdb] –o [PROTEIN.gro] –p [PROTEIN.top] –i [PROTEIN.
itp] –water [spce] –inter
$4 #Gromos96 ff53A6 force field selection

Note: “#” symbol stands for a programming line annotation, which
should not be parsed into the command line at the prompt.

2. In order to resize and center the protein structure in an explicit
solvent box, the coordinates file PROTEIN.gro will be rewrit-
ten by the editconf tool of GROMACS software package. The
indication of the box symmetry was added with the –bt flag, as
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well as the minimum offset distance (in nm) between the
protein surface and the box edges was defined by the –d flag.
This set up prevents unrealistic interactions of the protein with
surrounding images, due to the periodic boundary conditions.
To efficiently reduce the computational costs of simulation, the
rhombic octahedron box fits better the globular shape of PRO-
TEIN in use, optimizing the number of water molecules to be
simulated together with the protein solute.

$ editconf –f [PROTEIN.gro] –o [PROTEIN.gro] –bt [octahedron] –d [1.2]

The PROTEIN.gro input file will then be overwritten and new
box dimensions updated accordingly at the end of input file. To
avoid file name conflicts a sequential numbering of input files
might be given. Otherwise, the GROMACS code automatically
renames the old files with the prefix “#”.

3. Then, the new PROTEIN.gro coordinate file centered in the
new solvent box size will be filled with a pre-equilibrated box,
containing 216 water molecules, by calling the genbox tool of
GROMACS simulation software package.

$ genbox –cp [PROTEIN.gro] –cs [spc216.gro] –p [PROTEIN.top] –o [PROTEIN.gro]

4. For neutralizing the total formal charge of the system, the
addition of counterions is needed. In this case, the GROMACS
preprocessor script grompp is required to generate first the
GROMACS portable binary run input PROTEIN.tpr file. A
set of exemplary input template_*.mdp files specific for each
phase of the simulation run can be accessed from Subheading 4.
These files define explicitly the appropriate set of parameters to
be used, in a sequential order, along the entire simulation
process, including: (a) energy minimization; (b) equilibration;
and (c) MD production phases.

$ grompp –f [template_*.mdp] –c [PROTEIN.gro] –p [PROTEIN.top] –o [PROTEIN.tpr]

5. The genion tool will then replace an equal number of water
molecules in the coordinate file by the corresponding number
of chosen counterions defined interactively by the selection of
the group of atoms for replacement. The –pname (-np) and
–nname (-nn) flags stand for the nature (and number) of
positive or negative counterions to be added, respectively.
The topology and coordinates files will be automatically
updated accordingly.
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$ genion –s [PROTEIN.tpr] –o [PROTEIN.gro] –p [PROTEIN.top] –g [PROTEIN.log]
–pname/-nname [NA]/[CL] –np/-nn ["x"] # "x" is the total charge of the system.

$ 15 # group of SOL for replacement

3.1.3 Running the MD

Simulation for Trajectory

Production

1. With the aim to mitigate bad contacts or any atomic clashes due
to inappropriate side chains configuration, a preliminary energy
minimization divided into two sequential cycles and using
different minimization algorithms was required.

; 1st Step energy minimization with the Steepest Descend algorithm
$ grompp –f [template_em1.mdp] –c [PROTEIN.gro] –p [PROTEIN.top] –o
[PROTEIN_em1.tpr]
$ mdrun –v –s [PROTEIN_em1.tpr] –c [PROTEIN_em1.gro] –e [PROTEIN_em1.edr] –g
[PROTEIN_em1.log]
; 2nd Step energy minimization with the Conjugated Gradient algorithm
$ grompp –f [template_em2.mdp] –c [PROTEIN_em1.gro] –p [PROTEIN.top] –o [PRO-
TEIN_em2.tpr]
$ mdrun –v –s [PROTEIN_em2.tpr] –c [PROTEIN_em2.gro] –e [PROTEIN_em2.edr] –g
[PROTEIN_em2.log]

2. After the energy convergence of two preliminary minimization
cycles, the system was then coupled to a thermostat (e.g., the
V-rescale modified Berendsen) and to a barostat, according to
the specifications defined on the input template_*mdp file. The
equilibration phase was carried out in three sequential simula-
tion steps, of 100 ps each, in an isothermal-isobaric NPT
ensemble. A positional restrain was imposed to the protein
backbone heavy atoms, defined by the –DPOSRES flag of the
corresponding template_eq1-3.mdp files. The imposed har-
monic force constants for the positional restrain are written in
the PROTEIN.itp file and changed stepwise from 1000/100/
10 kJ/mol.

; 1st Equilibration Step
$ grompp –f [template_eq1.mdp] –c [PROTEIN_em2.gro] –p [PROTEIN.top] –o
[PROTEIN_eq1.tpr]
$ mdrun –v –s [PROTEIN_eq1.tpr] –c [PROTEIN_eq1.gro] -e [PROTEIN_eq1.edr] -g
[PROTEIN_eq1.log]
$ perl -pi -e ’s/ 1000/ 100/g’ PROTEIN.itp
; 2nd Equilibration Step
$ grompp –f [template_eq2.mdp] –c [PROTEIN_eq1.gro] –p [PROTEIN.top] –o
[PROTEIN_eq2.tpr]
$ mdrun –v –s [PROTEIN_eq2.tpr] –c [PROTEIN_eq2.gro] -e [PROTEIN_eq2.edr] -g
[PROTEIN_eq2.log]
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$ perl -pi -e ’s/ 100/ 10/g’ PROTEIN.itp
; 3rd Equilibration Step
$ grompp –f [template_eq3.mdp] –c [PROTEIN_eq2.gro] –p [PROTEIN.top] –o
[PROTEIN_eq3.tpr]
$ mdrun –v –s [PROTEIN_eq3.tpr] –c [PROTEIN_eq3.gro] -e [PROTEIN_eq3.edr] -g
[PROTEIN_eq3.log]

Equilibration phase is intended to gradually adjust the temper-
ature and pressure of the system preventing any unphysical and
irreversible structural deformation or unfolding event that
could compromise the canonical ensemble of protein confor-
mations sampled during the simulation trajectory.

3. Finally, the system is equilibrated and production phase takes
place freely, without any positional constraint.

$ grompp –f [template_md1.mdp] –c [PROTEIN_eq3.gro] –p [PROTEIN.top] –o
[PROTEIN_md1.tpr]
$ mdrun –v –s [PROTEIN_md1.tpr] –c [PROTEIN_md1.gro] -e [PROTEIN_md1.edr]
-g [PROTEIN_md1.log] –cpo state.cpt

3.2 Essential

Dynamics Analysis

of Designed Proteins

This type of analysis can be performed for any protein of interest
from which a Molecular Dynamics (MD) simulation trajectory is
available, using software packages such as ProDy or Bio3D [11,
12]. The advantage of using such software packages stands for the
ease of integration, manipulation, and comparison of data obtained
from different models. These tools are usually open-source and
require basic skills and familiarity with programming languages as
Python or R.

3.2.1 Preparation of Files

for Essential Dynamics

Analysis: Concatenation

of Trajectory Files

The results presented were obtained from a 20 ns MD simulation of
B. circulans xylanase (PDB ID: 3LB9). For other proteins, simply
replace the term PROTEIN for the PDB Identifier code or name
attributed to the protein of interest. If multiple trajectory files (*.trr
or *.xtc format) are used, it is necessary to first concatenate them
using, for example, the GROMACS suit of tools for analysis, namely
the trjcat script. More information on trjcat can be found here:
ftp://ftp.gromacs.org/pub/manual/manual-4.6.7.pdf, Section D.
93. In this example, three consecutive equilibration steps with
100 ps each (PROTEIN_eq1-3.trr) are concatenated with a produc-
tion phase trajectory file (PROTEIN_md1.trr), being specified as
input files with the -f flag. The output file name (PROTEIN_concate-
nated.xtc) isspecifiedwiththe -oflag.Toconcatenatethecorresponding
*.trr or *.xtc files in a sorted order, a new start time for each file is
required. This can be performed interactively by using the -settime flag

Integration of Molecular Dynamics Based Predictions. . . 187

ftp://ftp.gromacs.org/pub/manual/manual-4.6.7.pdf


and then specifying the correspondent starting time of each trajectory
fragment in a row.

Commands can be executed either interactively on the prompt
or in a bash or shell script launched by the user as described in the
following boxes:

$trjcat -f PROTEIN_eq1.trr PROTEIN_eq2.trr PROTEIN_eq3.trr PROTEIN_md1.trr -o
PROTEIN_concatenated.xtc -settime
$0 #start time for eq1 trajectory fragment
$100 #start time for eq2 trajectory fragment
$200 #start time for eq3 trajectory fragment
$300 #start time for md1 trajectory fragment

The resulting concatenated *.xtc file now contains the entire
simulation, i.e., all the written frames of the MD simulation trajec-
tory, which can then be used for further analysis.

3.2.2 Processing

of Trajectory Files

The trjconv tool is another useful postprocessing tool implemented
in GROMACS that may be used for several purposes, including
extracting specific frames from trajectory or simply correcting
computational artifacts caused by the use of periodic boundary
conditions. More information on it should be found here: ftp://
ftp.gromacs.org/pub/manual/manual-4.6.7.pdf, Section D. 94.
In this example, a script was used to obtain a trajectory file of the
protein that will be suitable for further analysis:

1. Obtain a reference frame of the system (0) from the concate-
nated input trajectory file (PROTEIN_concatenated.xtc), by
defining the same starting and final time with -b and -e flags,
respectively. The option -pbc whole is used to correct periodicity
artifacts like broken molecules at the edges of solvent box
replicas:

$trjconv -f PROTEIN_concatenated.xtc -o PROTEIN_concatenated_0ps.gro -b 0.0 -e 0.0 -
s PROTEIN_md1.tpr -pbc whole
$0 #group of atoms for output corresponding to the entire system, including solvent and solutes

2. Removal of jumps caused by the periodic boundary conditions
from the trajectory, by using the option -pbc nojump and setting
the correct time step between frames (ps) with the -timestep flag,
corresponding to the continuous integration time in
fentoseconds.
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$trjconv -f PROTEIN_concatenated.xtc -s PROTEIN_concatenated_0ps.gro -o
PROTEIN_nojump.xtc -pbc nojump -timestep 2
$0 #group of atoms for output

3. Solvent molecules can be discarded, since in this example the
analysis is only focused on the protein structure (1):

$trjconv -f PROTEIN_nojump.xtc -o PROTEIN_nojump.gro -b 0.0 -e 0.0 -s PROTEIN_con-
catenated_0ps.gro
$1 #group of atoms for output corresponding to the protein

4. Centering the protein atoms in the box (1) with the -center flag:

$trjconv -f PROTEIN_nojump.xtc -s PROTEIN_nojump.gro -o PROTEIN_center.xtc -
center -timestep 2
$1 #group of atoms for centering
$1 #group of atoms for output

A new centered reference frame is also acquired, corresponding
to the first frame of centered trajectory:

$trjconv -f PROTEIN_center.xtc -o PROTEIN_center.gro -b 0.0 -e 0.0 -s PROTEIN_no-
jump.gro
$1 #group of atoms for output

The resulting reference frame (PROTEIN_center.gro) and tra-
jectory file (PROTEIN_center.xtc) may be used for further analysis.

3.2.3 Inspection of

Trajectories

Trajectory files can be inspected with molecular visualization soft-
ware such as VMD [13] (http://www.ks.uiuc.edu/Research/
vmd/). A full description of the type of analysis typically implemen-
ted is beyond the scope of this protocol. In this case, only the
portion of the trajectory where RMSD converged to a structural
stabilization plateau is considered for further analysis (Fig. 1). This
can be evaluated by the least-squares fitting of the protein backbone
atoms of each frame to a given reference structure, usually the initial
one, to discount the diffusional protein movements in solution,
namely the typical global rotational and translational movements.
VMD is also helpful to generate a trajectory file in *.dcd format
with the corresponding segment of the trajectory. The
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PROTEIN_trajectory.dcd file is required for further analysis since
ProDy exclusively works with this type of trajectory file (see below).
The first frame (PROTEIN_1st_frame.pdb) can be also extracted
from the trajectory and used as a reference structure.

3.3 Essential

Dynamics Analysis

of MD Trajectories

Using ProDy

3.3.1 Calculation

of Essential Modes

Starting from a reference structure PROTEIN_1st_frame.pdb and a
trajectory file PROTEIN_trajectory.dcd, Essential Dynamics Anal-
ysis can be carried out with the available tools in ProDy. [11] ProDy
requires installation of other software; instructions for download
and documentation can be found here: http://prody.csb.pitt.edu/.
The following example is executed using the IPython interactive
command shell [14].

1. Import of all related content from ProDy:

$from prody import *
$from pylab import *

2. Defining the reference structure:

$PROTEIN_EDA ¼ parsePDB(’PROTEIN_1st_frame.pdb’)

3. Defining the trajectory file:

$trajectory_EDA¼ parseDCD(’PROTEIN_trajectory.dcd’)

4. Restrict the analysis only to the subset of Cα atoms of the
reference structure:

$trajectory_EDA.setAtoms(PROTEIN_EDA.calpha)
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ED Mode 1

E
D

 M
od

e 
2

R
M

S
D

 (
A

)

Trajectory Analysis

Section 3.2.3 Section 3.3.2

Visualization of ED Mode 1 Projection of trajectory frames along ED Mode 1 and 2

0 -0.5
-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

5,000 10,000 15,000 20,000

Fig. 1 Essential modes analysis for the example of the xylanase structure from B. circulans (PDB code 3LB9)
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5. Defining the atom reference coordinates:

$trajectory_EDA.setCoords(PROTEIN_EDA)

6. Superposition of all trajectory frames onto the reference
structure:

$trajectory_EDA.superpose()

7. Defining the class for Essential Dynamics Analysis:

$eda¼EDA(’PROTEIN_EDA’)

8. Construction of the 3N � 3N covariance matrix of atomic
coordinates over f trajectory frames, where N in this example
is the number of Cα atoms. Each frame corresponds to snap-
shot conformations contained in the *.dcd file, being super-
posed to the reference coordinate set, as in step 7):

$eda.buildCovariance(trajectory_EDA)

9. Calculation of the n (e.g., n ¼ 3) essential modes by diagona-
lization of the covariance matrix to obtain eigenvectors with
nonzero eigenvalues:

$eda.calcModes(n)

10. Saving the model and an *.nmd file containing n essential
modes for visualization in VMD with the normal mode wiz-
ard plugin (NMWiz):

$saveModel(eda)
$writeNMD(’PROTEIN_EDA.nmd’, eda[:n], PROTEIN_EDA.calpha)

3.3.2 Essential Modes

Analysis

The obtained essential modes can be additionally analyzed with
available ProDy built-in functions (Fig. 1). The following examples
can be used to quantitatively describe them.

1. Projection of the trajectory frames onto the first n<3 essential
modes. The projection of the trajectory frames onto the first
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essential modes provides a description of the conformational
space explored during simulation time:

$traj_frames¼Trajectory(’PROTEIN_trajectory.dcd’)
$traj_frames.link(PROTEIN_EDA)
$traj_frames.setCoords(PROTEIN_EDA)
$traj_frames.setAtoms(PROTEIN_EDA .calpha)
$showProjection(traj_frames, eda[:n])

2. Fractional variance of the first n modes. Fractional variance
corresponds to the ratio between the variance obtained along
an essential mode to the trace of the covariance matrix:

$calcFractVariance(eda[:n])

3. Collectivity degree k of essential mode n [15]. The collectivity
degree is used as a measure of the number of atoms affected by a
given essential mode. It ranges from k ¼ 1 for global transla-
tions of the protein to k ¼ N�1 if only one Cα atom is affected:

$calcCollectivity(eda[n])

3.4 Comparative

Analysis of Essential

Modes

The previous section concerns to the single description of essential
modes from a designed protein. However, of particular importance
is to compare them with other sets of modes, as the ones obtained
from a MD trajectory of the native protein or from different
trajectory files of the same MD simulation varying in length or
start time (Subheading 3.4.1). It can also be relevant to check for
the correspondence between the conformational space described by
the first essential modes and the modes describing the structural
fluctuations observed experimentally from an ensemble of native
crystallographic or NMR structures (Subheading 3.4.2). This pro-
vides insights on the ability of the designed protein to effectively
reproduce the dynamical properties observed experimentally. One
can also check if coarse-grained Elastic Network Models, such as
the Anisotropic Network Model (ANM) implemented in ProDy,
are able to capture the conformational space explored by either the
native or designed protein during the simulation trajectory (Sub-
heading 3.4.3, Fig. 2).

3.4.1 Comparison

Between Essential Modes

from Two Distinct

Trajectories

This step requires prior calculation of essential modes from a sec-
ond reference structure PROTEIN2_1st_frame.pdb and second
trajectory file PROTEIN2_trajectory.dcd, as described in Subhead-
ing 3.3.1. A requirement for the second reference structure PRO-
TEIN2 is to contain the same number of N atoms as the reference
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structure of PROTEIN. Therefore, the second reference structure
can be the same as PROTEIN_1st_frame.pdb, if the trajectory to be
analyzed is from the same simulation run and starting frame but
with different lengths. Therefore, steps 1–10 of Subheading 3.3.1
might also be considered here for the calculation of the Essential
Modes of the second trajectory. At the end, two distinct sets of
modes are obtained, eda and eda2, that can be used in comparison
functions built-in on ProDy. The following is not an exhaustive list
of comparison functions:

1. Calculation of the overlap, or correlation cosine, between eda n
mode and eda2 m mode, as given by the dot product of the
respective eigenvectors after normalization. This value is equal
to 1 if modes n and m are identical:

$calcOverlap(eda[:n], eda2[:m])

A normalized table with overlap between eda modes <n and
eda2 modes <m can also be obtained:

$showOverlapTable(eda[:n], eda2[:m])

2. Calculation of the subspace overlap between edamodes<n and
eda2 modes <m, as given by the Root Mean Square Inner
Product value [16]:

$calcSubspaceOverlap(eda[:n], eda2[:m])

3. Projection of the trajectory (or trajectory2) onto the subspace
defined by eda mode n and eda2 mode m. Dispersion of the
frames along the diagonal indicates close correspondence
between mode n and m:

$showCrossProjection(traj_frames, eda[n], eda2[m])

The corresponding correlation coefficient can also be
calculated:

$eda_eda2_corr¼calcCrossProjection(traj_frames, eda[n], eda2[m])
$print(np.corrcoef(eda_eda2_corr))
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4. Comparison of normalized square fluctuations of eda mode n
and eda2 mode m. Cα atoms are sorted by index value:

$showNormedSqFlucts(eda[n], eda2[m])
$legend()

The corresponding plot of scaled square fluctuations can also
be obtained. Legend contains the respective scaling factor:

$showScaledSqFlucts(eda[n], eda2[m])
$legend()

3.4.2 Comparison

Between Essential Modes

and Principal Components

from an Ensemble of

Structures

This step requires an ensemble of protein structures, corresponding
to either a set of native i crystallographic or NMR-derived struc-
tures. Principal Component Analysis (PCA) is employed to extract
the modes of structural variation occurring within the structural
set, which can then be used to compare directly with the essential
modes using the built-in functions implemented in ProDy. It
should be noted that reliable results can only be obtained for a
sufficiently large number of i and with significant similarity with the
chosen reference structure.

1. Defining the set of structures to be analyzed. In this example,
each structure is identified by its corresponding PDB Identifier
code (PDB_ID). ProDy can download directly the respective
*.pdb files from the PDB database, or read them from a given
working directory, as follows:

$structures¼[’PDB_ID1’, ’PDB_ID2’, . . ., ’PDB_IDi’]
$pdb_structures¼fetchPDB(*structures, compressed¼False)

2. Defining the class of conformational ensemble:

$ensemble_PCA¼PDBEnsemble(’PROTEIN’)

3. Defining the reference structure and chain:

$reference¼parsePDB(’reference.pdb’, subset¼’calpha’)
$reference_chain¼reference.getHierView().getChain(’X’)
$ensemble_PCA.setAtoms(reference)
$ensemble_PCA.setCoords(reference)
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Note: ’X’ is the chain identifier of the reference structure

4. Iterative superpositioning of the ensemble. All structures are
first superposed to the reference structure and then iteratively
superposed to the mean coordinates until convergence to elim-
inate rigid-body rotational and translational differences:

$for pdb_structure in pdb_structures:
$structure_pca¼parsePDB(pdb_structure, subset¼’calpha’)
$mappings¼mapOntoChain(structure_pca,reference_chain)
$atommap¼mappings[0][0]
$ensemble_PCA.addCoordset(atommap,weights¼atommap.getFlags(’mapped’))
$ensemble_PCA.iterpose()

5. Defining the class for Principal Component Analysis:

$pca¼PCA(’PROTEIN’)

6. Construction of the 3N � 3N covariance matrix of atomic
coordinates over i structures, where N is the number of Cα
atoms:

$pca.buildCovariance(ensemble_PCA)

7. Calculation of the n principal components by diagonalization
of the covariance matrix to obtain eigenvectors with nonzero
eigenvalues:

$pca.calcModes(n)

8. Saving the model and a *.nmd file containing n principal com-
ponents for visualization in VMD with NMWiz:

$saveModel(pca)
$writeNMD(’PROTEIN_PCA.nmd’, pca[:n], ensemble_PCA)

9. The set of pca modes is ready to be further analyzed as in
Subheading 3.3.2 and compared with eda modes as in Sub-
heading 3.4.1. Both sets of modes can also be visualized in
VMD by loading the respective PROTEIN_EDA.nmd and
PROTEIN_PCA.nmd files with the NMWiz.
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3.4.3 Comparison

Between Essential Modes

and Modes Derived from

the Anisotropic Network

Model

In this step, the calculation of ANM of the designed protein is
performed for comparison with the essential modes derived from
a trajectory of the same protein (Fig. 2), as follows:

1. Defining the structure for ANM calculation. The model con-
siders only the Cα atoms:

$PROTEIN_anm¼ parsePDB(’PROTEIN.pdb’, subset¼’calpha’)

2. Defining the class for ANM analysis:

$anm¼ANM(’PROTEIN’)

3. Construction of the Hessian matrix of atomic coordinates.

$anm.buildHessian(PROTEIN_anm)

4. Calculation of n normal modes by diagonalization of the Hes-
sian matrix. Only modes with nonzero eigenvalues are
obtained:

$anm.calcModes()

5. Saving the model and a *.nmd file containing n normal modes
for visualization in VMD with NMWiz:

$saveModel(anm)
$writeNMD(’PROTEIN_ANM.nmd’, anm[:n], PROTEIN_anm)
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Fig. 2 ANM normal mode analysis for the example of the xylanase structure from B. circulans (PDB code 3LB9)
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6. In the same routine for pca modes, anm normal modes can be
further analyzed as in Subheading 3.3.2 and compared with
edamodes as in Subheading 3.4.1. Both sets of modes can also
be visualized in VMD by loading the respective PROTEI-
N_EDA.nmd and PROTEIN_ANM.nmd files with the
NMWiz.

4 Notes

Input parameter files used for the MD simulations (command lines
starting with “;” are comments):

1st Minimization Step: input template_em1.mdp file

title ¼ Energy Minimization; Title of run
; Parameters describing what to do, when to stop and what to save
integrator ¼ steep; Algorithm (steep ¼ steepest descent minimization)
emtol ¼ 1000.0; Stop minimization when the maximum force < 10.0 kJ*mol-1*nm-1
emstep ¼ 0.01; Energy step size in nm
nsteps ¼ 2000; Maximum number of (minimization) steps to perform
energygrps ¼ system; Which energy group(s) to write to disk
; Parameters describing how to find the neighbors of each atom and how to calculate the
interactions
nstlist ¼ 10; Frequency to update the neighbor list and long range forces
ns_type ¼ grid; Method to determine neighbor list (simple, grid)
rlist ¼ 1.0; Cut-off for making neighbor list (short range forces)
coulombtype ¼ PME; Treatment of long range electrostatic interactions
rcoulomb ¼ 1.0; long range electrostatic cut-off
vdwtype ¼ cut-off; Treatment of van der Walls interactions
rvdw ¼ 1.4; long range Van der Waals cut-off
pbc ¼ xyz; Periodic Boundary Conditions (yes/no)
fourierspacing ¼ 0.12
fourier_nx ¼ 0
fourier_ny ¼ 0
fourier_nz ¼ 0
pme_order ¼ 4
ewald_rtol ¼ 1e-5
optimize_fft ¼ yes
tcoupl ¼ no
pcoupl ¼ no
gen_vel ¼ no

2nd Minimization Step: input template_em2.mdp file

title ¼ Energy Minimization; Title of run
; Parameters describing what to do, when to stop, and what to save
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integrator ¼ cg; Algorithm (steep ¼ steepest descent minimization)
emtol ¼ 400.0; Stop minimization when the maximum force < 10.0 kJ*mol-1*nm-1
emstep ¼ 0.01; Energy step size in nm
nsteps ¼ 1000; Maximum number of (minimization) steps to perform
energygrps ¼ system; Which energy group(s) to write to disk
; Parameters describing how to find the neighbors of each atom and how to calculate the
interactions
nstlist ¼ 10; Frequency to update the neighbor list and long range forces
ns_type ¼ grid; Method to determine neighbor list (simple, grid)
rlist ¼ 1.0; Cut-off for making neighbor list (short range forces)
coulombtype ¼ PME; Treatment of long range electrostatic interactions
rcoulomb ¼ 1.0; long range electrostatic cut-off
vdwtype ¼ cut-off; Treatment of van der Walls interactions
rvdw ¼ 1.4; long range Van der Waals cut-off
pbc ¼ xyz; Periodic Boundary Conditions (yes/no)
fourierspacing ¼ 0.12
fourier_nx ¼ 0
fourier_ny ¼ 0
fourier_nz ¼ 0
pme_order ¼ 4
ewald_rtol ¼ 1e-5
optimize_fft ¼ yes
tcoupl ¼ no
pcoupl ¼ no
gen_vel ¼ no

1st – 3rd Equilibration Step: input template_eq*.mdp file

title ¼ Protein-ligand complex NPT equilibration phase
define ¼ -DPOSRES; position restrain the protein and ligand
; Run parameters
integrator ¼ md; leap-frog integrator
nsteps ¼ 50000; 0.002 * 50000 ¼ 100 ps
dt ¼ 0.002; 2 fs
; Output control
nstxout ¼ 1000; save coordinates every 2 ps
nstvout ¼ 1000; save velocities every 2 ps
nstenergy ¼ 2000; save energies every 4 ps
nstlog ¼ 1000; update log file every 2 ps
energygrps ¼ Protein Non-protein
; Bond parameters
continuation ¼ yes; first dynamics run
constraint_algorithm ¼ lincs; holonomic constraints
constraints ¼ all-bonds; all bonds (even heavy atom-H bonds) constrained
lincs_iter ¼ 1; accuracy of LINCS
lincs_order ¼ 4; also related to accuracy
; Neighborsearching
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ns_type ¼ grid; search neighboring grid cells
nstlist ¼ 10; 20 fs
rlist ¼ 1.0; short-range neighborlist cutoff (in nm)
rcoulomb ¼ 1.0; short-range electrostatic cutoff (in nm)
vdwtype ¼ cut-off
rvdw ¼ 1.4; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype ¼ PME; Particle Mesh Ewald for long-range electrostatics
pme_order ¼ 4; cubic interpolation
fourierspacing ¼ 0.16; grid spacing for FFT
ewald_rtol ¼ 1e-5
optimize_fft ¼ yes
; Berendsen temperature coupling is on
tcoupl ¼ V-rescale; modified Berendsen thermostat
tc-grps ¼ Protein non-protein; two coupling groups - more accurate
tau_t ¼ 0.1 0.1; time constant, in ps
ref_t ¼ 300 300; reference temperature, one for each group, in K
; Pressure coupling is on
pcoupl ¼ Berendsen; pressure coupling is on for NPT
pcoupltype ¼ isotropic; uniform scaling of box vectors
tau_p ¼ 0.6; time constant, in ps
ref_p ¼ 1.0; reference pressure, in bar
compressibility ¼ 4.5e-5; isothermal compressibility of water, bar^-1
; Periodic boundary conditions
pbc ¼ xyz; 3-D PBC
; Dispersion correction
DispCorr ¼ EnerPres; account for cut-off vdW scheme
; Velocity generation
gen_vel ¼ yes; assign velocities from Maxwell distribution
gen_temp ¼ 300; temperature for Maxwell distribution
gen_seed ¼ -1; generate a random seed

Production Step: input template_md1.mdp file

title ¼ Protein-ligand complex NPT nonconstraint explicit solvent md simulation
; Run parameters
integrator ¼ md; leap-frog integrator
nsteps ¼ 10000000; 0.002 * 10000000 ¼ 20000 ps (20 ns)
dt ¼ 0.002; 2 fs
; Output control
nstcomm ¼ 1
nstxout ¼ 1000; save coordinates in .trr output every 2 ps
nstvout ¼ 1000; save velocities in .trr output every 2 ps
nstenergy ¼ 2000; save energies every 4 ps
nstlog ¼ 1000; update log file every 2 ps
nstfout ¼ 0; do not collect forces
energygrps ¼ Protein Non-protein
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; Bond parameters
continuation ¼ yes; first dynamics run
constraint_algorithm ¼ lincs; holonomic constraints
constraints ¼ hbonds
lincs_iter ¼ 1; accuracy of LINCS
lincs_order ¼ 4; also related to accuracy
; Neighborsearching
ns_type ¼ grid; search neighboring grid cells
nstlist ¼ 1.0; 2 fs
rlist ¼ 1.0; short-range neighborlist cutoff (in nm)
rcoulomb ¼ 1.0; short-range electrostatic cutoff (in nm)
vdwtype ¼ cut-off
rvdw ¼ 1.4; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype ¼ PME; Particle Mesh Ewald for long-range electrostatics
pme_order ¼ 4; cubic interpolation
fourierspacing ¼ 0.12; grid spacing for FFT
fourier_nx ¼ 0
fourier_ny ¼ 0
fourier_nz ¼ 0
ewald_rtol ¼ 1e-5
optimize_fft ¼ yes
; Berendsen temperature coupling is on
tcoupl ¼ V-rescale; modified Berendsen thermostat
tc-grps ¼ Protein non-protein; two coupling groups - more accurate
tau_t ¼ 0.1 0.1; time constant, in ps
ref_t ¼ 300 300; reference temperature, one for each group, in K
; Pressure coupling is on
pcoupl ¼ Berendsen; pressure coupling is on for NPT
pcoupltype ¼ isotropic; uniform scaling of box vectors
tau_p ¼ 0.6; time constant, in ps
ref_p ¼ 1.0; reference pressure, in bar
compressibility ¼ 4.5e-5; isothermal compressibility of water, bar^-1
; Periodic boundary conditions
pbc ¼ xyz; 3-D PBC
; Dispersion correction
DispCorr ¼ EnerPres; account for cut-off vdW scheme
; Velocity generation
gen_vel ¼ no; assign velocities from Maxwell distribution
gen_temp ¼ 300; temperature for Maxwell distribution
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Chapter 9

Applications of Normal Mode Analysis Methods
in Computational Protein Design

Vincent Frappier, Matthieu Chartier, and Rafael Najmanovich

Abstract

Recent advances in coarse-grained normal mode analysis methods make possible the large-scale prediction
of the effect of mutations on protein stability and dynamics as well as the generation of biologically relevant
conformational ensembles. Given the interplay between flexibility and enzymatic activity, the combined
analysis of stability and dynamics using the Elastic Network Contact Model (ENCoM) method has ample
applications in protein engineering in industrial and medical applications such as in computational antibody
design. Here, we present a detailed tutorial on how to perform such calculations using ENCoM.

Key words Normal mode analysis, Protein stability, Protein dynamics, Mutations, Vibrational
entropy, Protein engineering

1 Introduction

Protein engineering aims at modulating the physico-chemical and
biological properties of proteins through chemical modifications
for industrial and medical applications. Such modifications include
derivatizing surface residues and the introduction of mutations.
Industrial applications often require mutations that confer
increased efficiency in conditions drastically different than physio-
logical as well as improved resistance to denaturation [1]. In a
visionary article in 1983, Kevin Ulmer proposed that the integra-
tion of experimental approaches in protein chemistry, X-ray crystal-
lography, and computer modeling held the key to understand and
engineer protein structure and function [2]. Over 30 years later,
much progress has been made but we are far from truly under-
standing protein function and structure to the point where we can
engineer de novo functions. Traditionally, protein engineering
involved structure-guided design through site-directed mutagene-
sis. While this approach is still used [3, 4], new methodologies such
as directed evolution are commonly used today. Directed evolution
is an experimental approach mimicking biological evolution where
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a large number of random mutants are produced and evolutionary
pressure is applied in which successive rounds of selection are used
to favor the emergence of desired phenotypes [5]. In that respect
and depending on the goal, promiscuity in terms of binding or
catalysis often simplifies the engineering task [6]. Otherwise,
directed evolution can be sensitive to local minima of the fitness
landscape [7, 8]. The late physicist Richard Feynman stated “what I
cannot create, I do not understand.” Directed evolution shows that
it is possible to create new proteins without full understanding.
However, in the spirit of Ulmer, the true potential of protein
engineering will be achieved once we understand enough of the
principles underlying protein structure and function to perform ab
initio protein design.

Computational approaches have been used to identify muta-
tions that change protein affinity [9], function [10], and stability
[11]. However, most computational methods that focus on the
impact of mutations on protein stability are biased toward predict-
ing destabilizing mutations. This bias comes at times as an artifact
of machine learning, but it can also be caused by the inherent
difficulty of modeling stabilizing mutations. Therefore, most
computational methods currently available fail to correctly predict
stabilizing mutations [12, 13]. Another important point to
consider is that changes in thermodynamic stability may have a
detrimental effect on enzymatic activity [14–19]. A striking
example comes from the comparison of mesophilic enzymes with
their more stable thermophilic counterparts that exhibit lower
enzyme efficiency at room temperatures [20]. This loss of efficiency
is often associated with a rigidification of the structure [21, 22].
More generally, dynamics affects molecular recognition [9, 23–26]
and catalytic rates [27, 28]. It is especially true for antibodies [29]
where a rigidification of the complementarity determining region
(CDR) is observed during the maturation process [30] and crucial
to obtain high affinity specific molecules [31]. Allosteric mutations
that improve binding affinity [32] in therapeutic antibodies high-
light the importance of assessing the impact of mutations on
protein dynamics. Finally, describing a protein as the conforma-
tional ensemble rather than a single structure has been shown to
improve the prediction of the effect of mutations [33, 34] and
improved the outcome of protein design protocols [35].

The evaluation of dynamic properties of proteins in a high-
throughput context is not a trivial task. Experimental procedures
(NMR or crystallographic b-factors) can be time-consuming and
despite tremendous advances in molecular dynamic simulations, the
ability to assess the effect of a mutation on dynamic properties of
proteins is still computationally demanding, particularly for the long
timescales associated with protein function [36]. Thus, evaluating
several hundredmutants would seem unrealistic without specialized
hardware. Normal mode analysis (NMA) provides an alternative.

204 Vincent Frappier et al.



It is a computational approach that predicts vibrational frequencies
and movements of a system around an equilibrium state using a
harmonic potential. The fundamentals of NMA have been exten-
sively reviewed [37, 38] and classically is applied on all atoms of the
structure with a molecular dynamics force field after initial minimi-
zation. Pioneering work by Tirion [39] showed that it is possible to
reproduce the slow dynamics of proteins with a single-parameter
potential by considering the structure as already in its equilibrium
conformation and building a mass-spring system, removing the
requirement for minimization. Tama et al. [40] showed that it is
possible to replace all atoms of a residue by a single mass generally
centered at the position of the alpha carbon, drastically reducing
computational time. The speed of such coarse-grained NMA
methods made possible their use in many applications to explore
conformational space in small molecule docking [41, 42], to predict
conformational changes [43] and in structural refinement [44, 45].
However, most coarse-grained methods do not account for the
nature of amino acids by using spring constants that are indepen-
dent of residue type. We recently introduced a coarse-grained NMA
method called ENCoM [46], which uses a potential based on STeM
[47] considering bond stretching, angle bending, dihedral rotation,
and long-range interactions. Crucially, ENCoM adds an additional
factor to the long-range interactions using the surface area in con-
tact and the type of heavy atoms in contact. Thus, unlike other
coarse-grained NMA methods, ENCoM calculations are affected
by the specific amino acid nature of the protein in addition to its
structure. Compared to the Anisotropic Network Model (ANM),
one of the most used coarse-grained NMAmethods [48], ENCoM
shows an increased predictive power for conformational change
between crystal structures of bound and unbound enzymes with
an average increase in squared overlap of 28 % for 117 coupled
movements and 60 % for 236 cases of coupled loop movements.

With ENCoM, we also introduced a novel application for
coarse-grained NMA methods in the prediction of the effect of
mutations on protein stability and dynamic properties. Predicted
vibrational entropy differences (ΔSvib) upon mutation were ana-
lyzed for 303 manually curated mutations [49] and compared to
several existing methods, notably FoldX3.0 (beta 3.0) [50],
Rosetta [51], DMutant [52], and PoPMusic [49]. Although not
the overall best predictive method, ENCoM proved to be the most
self-consistent and least biased. ENCoM and DMutant gave the
best predictive power on the subset of 45 stabilizing mutations
versus other methods that predicted as good or worse than a
random model. Classic coarse-grained NMA models predicted
every mutation as neutral and did not have any predictive power.
The combination of ENCoMwith enthalpy-based methods such as
Rosetta and FoldX was synergistically beneficial [53]. As a proof of
concept for the prediction of the effect of mutations on function,
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ENCoM predicted the effect of the G121V mutation on E. coli
DHFR consistent with S2 differences NMR results [54]. Despite
having a modest effect on protein stability (0.77 kcal/mol [55])
and being 15 Å away from the binding site, this mutation disrupts
enzyme efficiency by 200-fold through allosteric effects. More
recently, ENCoM was used to show that thermophile proteins are
on average more rigid than their mesophile counterpart and used
ΔSvib to guide the selection of mutations observed between such
proteins with potential uses in protein engineering [22].

In the following sections, we demonstrate how to use ENCoM
to predict the effect of mutations on thermal stability and dynamics
as well as to generate conformational ensembles (Fig. 1). The
ability to perform large-scale combined predictions of the effect
of mutations on stability and dynamics offers great possibilities in
protein engineering. Likewise, the generation of biologically realis-
tic conformational ensembles has ample applications in protein
engineering and beyond.

Fig. 1 Uses of ENCoM in protein engineering. The wild-type nuclease from
Staphylococcus aureus (1EY0) used in the text is shown in (a). The protein
structure is represented as an elastic network model using ENCoM algorithm
(b), where amino acids are represented by masses (green spheres) and
interactions by springs (yellow sticks). The Eigenvectors representing the
seventh and tenth modes are shown in red and blue respectively. The mutation
T41I (shown as stick in c) increases the thermal stability and rigidifies the protein
in the regions identified in blue (c). A conformational ensemble of 11
conformations of the wild-type nuclease generated using the seventh and tenth
modes are shown in (d)
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2 Materials

For this tutorial it will be necessary to have some basic knowledge
of command line environments and to install software (seeNote 1).
At the moment ENCoM does not work under the Windows
operating system. Thus, for the tutorial below it is necessary to
use a Unix-based operating system (Linux or Mac OS). Please make
sure your system has up-to-date versions of Python and Perl.

The ENCoM Source code can be found at http://bcb.med.
usherbrooke.ca/encom or through GitHub at https://github.
com/NRGlab/ENCoM. Code can be compiled by the following
instructions in the Readme file (seeNote 2). ENCoM is used for the
prediction of the effect of mutations and to generate conforma-
tional ensembles. Precompiled executables of FoldX3 can be found
at: http://foldx.crg.es (see Note 3). FoldX3 is used exclusively for
the prediction of the effect of mutations. Instructions to download
and install Modeller can be found at https://salilab.org/modeller/
download_installation.html. PyMOL is used for molecular visuali-
zations. Instructions for installation on different operating systems
can be found at http://www.pymolwiki.org/index.php/Category:
Installation. Alternatively, the PyMOL source code can be found at:
http://sourceforge.net/projects/pymol (see Note 4). All scripts
required for the protocols used below can be found at http://
bcb.med.usherbrooke.ca/encom.

3 Methods

The evaluation of the effect of mutations on protein thermody-
namic stability is achieved by a linear combination of the predic-
tions of ENCoM and FoldX. The prediction of the effect of
mutations on protein dynamic on the other hand uses ENCoM
exclusively. ENCoM is also used to generate ensembles of realistic
protein conformations. The following protocols can be carried out
in standard computers and do not require any specialized hardware.
Execution times can vary from a few minutes to a few hours
depending on the type of hardware used, the size of the protein,
and the number of mutations to evaluate or conformations to
generate. The entire protocol can also be automatically executed
through the ENCoM Server [53] at http://bcb.med.usherbroke.
ca/encom. The advantage of running oneself the protocols is to
overcome restrictions that are in place in the ENCoM Server such
as the possibility to model and predict the effect of double (or
more) mutants, the manner in which conformations are modeled
using Modeller, and to explore combinations of modes that gener-
ate larger conformational ensembles than allowed in the web-
server. Results obtained through the ENCoM Server interface can
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serve to validate results obtained using the protocols below as the
user learns how to use ENCoM.

We will be using the structure of the Staphylococcus aureus
Thermonuclease (PDB ID 1EY0) as an example. However, any
protein structure or model can be used (see Note 5).

During the protocol, we will be using software that can be
installed in different directories depending on the computer. The
FoldX3 installation folder will be referred to as FoldX/, ENCoM
installation folder will be referred to as ENCoM/, and the perl and
python scripts will be referred to as script/. The user should make
sure to recognize what are the appropriate directories in their
installation and replace the names accordingly. Text in italic follow-
ing the > symbols represent command lines that are to be entered
in a terminal.

3.1 Preparing

Working Environment

In order to run ENCoM, is it better to create a work directory
within which we will place the PDB formatted file containing the
coordinates of the protein and prepare it:

1. Create a folder named work in which you will be working and
change the working directory:

> mkdir work

> cd work

2. Download the 1EY0 structure from the PDB website using this
address http://www.rcsb.org/pdb/files/1EY0.pdb and name
it 1ey0_nc.pdb; alternatively, use the command line below:

> curl http://www.rcsb.org/pdb/files/1EY0.pdb >

1ey0_nc.pdb

3. Clean the PDB file by removing heteroatoms, water molecules,
alternative conformations, and hydrogen atoms, changing neg-
ative residue numbers or residues with non-numeric characters,
removing multiple models and adding a chain identifier Z if
none is present using this command (see Note 6). The cleaned
structure is now called 1ey0.pdb.

> perl script/clean_pdb.pl 1ey0_nc.pdb 1ey0.pdb

3.2 FoldX3 Thermal

Stability Predictions

Thermal stability predictions involve a linear combination of
FoldX3 predictions and ENCoM. ENCoM. As noted above, users
must download FoldX3 and install it first. Once this is done follow
the steps below:

1. In order to preprocess the protein structure we start with the
following command

> echo 1ey0.pdb > list.txt
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2. Copy the rotabase.txt file found within the FoldX3 software
into the working directory:

> cp FoldX/rotabase.txt ./

3. Launch FoldX3 repair function. This will generate a file named
RepairPDB_1ey0.pdb.

> FoldX/foldx3b6 -runfile ./script/repair.txt

4. Write this filename in a list using

> echo RepairPDB_1ey0.pdb > list.txt

5. Open the file named individual_list.txt using any plain text
editor (in the following command line we use nano) and write
mutations that are to be evaluated using the following nomen-
clature: One letter code wild-type residue, chain, position in the
structure sequence, and one letter code mutated residues, fol-
lowed by a semicolon. For example, tomutate threonine 41 to an
isoleucine in the 1EY0 structure, writeTA41I;. For this protocol,
please write in the individual_list.txt file on different lines the
two following mutants: TA41I; andDA21K; (seeNote 7).

> nano individual_list.txt

6. Launch the FoldX3 mutation function. The file Dif_BuildMo-
del_RepairPDB_1ey0.fxout created in the working directory
will have the difference in folding energy between WT and
mutated forms (see Note 8).

> FoldX/foldx3b6 -runfile script/run.txt.

3.3 Effect

of Mutations on

Protein Stability

and Dynamics

The ENCoM predictions can then be calculated as follows:

1. Generate the structure of the T41I and D21Kmutants in chain
A with the following command lines, where 1ey0 represents the
filename, 41 or 21 the positions to mutate, ILE or LYS the new
residues at these positions in chain A. The resulting modeled
mutant structures will be in files 1ey0ILE41A.pdb and
1ey0LYS21A.pdb. In the command line below, the last two
arguments represent the input PDB file containing the wild-
type coordinates and the filename for the mutant coordinates
respectively.

> python script/mutate_model.py 1ey0 41 ILE A 1ey0.pdb

1ey0ILE41A.pdb

> python script/mutate_model.py 1ey0 21 LYS A 1ey0.pdb

1ey0LYS21A.pdb

2. Calculate the normal modes and mode amplitudes for the wild-
type andmutant structures generated in the previous step using
the following command. The .cov files represent the entropy for
each residue and the .eigen files contain the eigenvalues (mode
frequencies) and eigenvectors (normal modes) of the different
vibrational modes. These files will be used to compare dynam-
ics between structures (see Note 9).
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> ./ENCoM/bin/build_encom -i 1ey0.pdb -cov wt.cov -o

wt.eigen

> ./ENCoM/bin/build_encom -i 1ey0ILE41A.pdb -cov

TA41I.cov -o TA41I.eigen

> ./ENCoM/bin/build_encom -i 1ey0LYS21A.pdb -cov

DA21K.cov -o DA21K.eigen

3. The following command will use the files produced above to
calculate the differences in dynamics between each mutant and
the wild type, as well as the predicted ΔΔG for each mutation.
The predicted ΔΔG is a linear combination of ENCoM and
FoldX calculated earlier (seeNote 10). The order of .cov files for
the -mutl argument must be the same that the one in indivi-
dual_list.txt.

> perl script/compare_cov.pl -FoldX Dif_BuildModel_-

RepairPDB_1ey0.fxout -wt wt.cov -mutl TA41I.cov DA21K.

cov.

4. The command script will generate a PyMOL session script
called Diff.pml that colors every amino acid in function of ΔS
for residue in each mutant, where blue represents a rigidifica-
tion of the structure and red a gain in flexibility (see Note 11).
It can be viewed using:

> pymol Diff.pml

3.4 Generation of

Conformational

Ensembles

In addition to the prediction of the effect of mutations on stability
and dynamics, ENCoM can be used to generate conformational
ensembles:

1. The following script generates multiple conformations using
ENCoM. In the case below, we are using the wild type and use
the eigenvectors previously calculated in Subheading 3.3, step
2 (file wt.eigen). The same could be done for a mutant, using
the appropriate mutant structure and calculated eigenvectors.
The file all_conformations.pdb contains all the exhaustively
generated models using the 10th and the 12th slowest vibra-
tional modes (parameter –ml) with a maximum RMSD distor-
tion of 2 Å (parameter –md) and a minimum RMSD distortion
of 1 Å (parameter –step) per mode. Remember that the first six
modes represent rotations and translations; thus, the smallest
value for any argument passed via –ml should be 7, represent-
ing the slowest, most global mode of movement.

> ENCoM/bin/build_grid_rmsd -i 1ey0.pdb -ieig wt.eigen

-md 2 -step 1 -p all_conformations.pdb -ml 10 12

2. Each individual mode can be viewed using the motion func-
tion. For example, the mode 10 can be given by

> ENCoM/bin/motion -i 1ey0.pdb -m 10 -ieig wt.eigen -

p motion_10.pdb
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3. Cartesian space NMA methods such as ENCoM generated
conformations that are linear combinations of movements
(translations of atomic coordinates) along different modes.
Thus, the structures generated do not respect bond angles
and distances. Conformations represent distorted physically
unrealistic structures. Modeller is used to rebuild physically
realistic structures using each distorted NMA structure as a
template. The rebuilt model will be found in the folder called
models. This is done with the command below.

> perl script/rebuild.pl -i all_conformations.pdb -

script script/rebuild.py

4 Notes

1. All software employed in the protocols are free at least for
nonprofit users. ENCoM is free for everyone and distributed
under the GNU General Public License.

2. Users need to have the GNU GSL library installed, more
information can be found at http://www.gnu.org/software/
gsl/.

3. FoldX is developed and maintained by the research group of
Dr. Luis Serrano at the GRG. Users need to make an account
and accept a yearly-renewable Licence. FoldX needs to be
downloaded anew every year to work with the newly renewed
license.

4. Homebrew installation is recommended for Mac OS, particu-
larly for Mac OS 10.10 Yosemite. Binary distributions are
recommended for Linux.

5. Experimentally determined protein structures can be found on
the PDB depository (http://www.rcsb.org/). If the desired
structure is not available, servers such as I-Tasser or Robetta
can be used to generate homology models. It is important to
note that PDB X-ray structures represent the asymmetric unit
that may or may not correspond to the biological unit (quater-
nary structure). Users can download experimentally verified or
predicted biological units from any of the PDB depositories.

6. Alternatively, you can manually curate your PDB file by analyz-
ing the structure in PyMOL, making modifications and saving
the modified structure or by editing the file directly in a text
editor.

7. Multiple mutations can be specified by separating them with a
comma in the same line, i.e., TA41I,DA21K; will evaluate a
double mutant whereas if these two mutations appear in indi-
vidual lines, two single mutants will be predicted.
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8. This is a relative score representing the ΔΔG of folding; nega-
tive values are associated with stabilizing mutations.

9. The first six modes are rotation and translation modes. They
should not be considered.

10. Energy is calculated as previously done [22, 46, 53] with
higher values corresponding to more rigid structures.

11. The colors are scaled by the maximum absolute difference or
three times the standard deviation, whichever is smaller.
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Chapter 10

Computational Protein Design Under a Given Backbone
Structure with the ABACUS Statistical Energy Function

Peng Xiong, Quan Chen*, and Haiyan Liu*

Abstract

An important objective of computational protein design is to identify amino acid sequences that stably fold
into a given backbone structure. A general approach to this problem is to minimize an energy function in
the sequence space. We have previously reported a method to derive statistical energies for fixed-backbone
protein design and showed that it led to de novo proteins that fold as expected. Here, we present the usage
of the program that implements this method, which we now name as ABACUS (A Backbone-based Amino
aCid Usage Survey).

Key words Protein design, Statistical energy function, Backbone structure, Mutation analysis

1 Introduction

In protein design, one tries to determine the amino acid sequence
of a protein so that it can fold into a certain structure and/or carry
out a particular function. A number of successful examples of
designed proteins have been reported with rule-based approaches
[1–3]. Another type of approach, which is more general, is to
computationally optimize the amino acid sequence to minimize
an effective energy function [4–6]. Thus, this process can be
referred to as automatic design. The quality or accuracy of the
energy function is vital in automatic protein design. The energy
function should measure or score the compliance of any arbitrary
amino acid sequence with respective design objectives. For the
objective of designing proteins to fold stably into a given backbone
structure, the energy function should measure the free energy of
the target conformation relative to alternative conformations,
folded or not, as a function of the amino acid sequence. Such a
relative free energy cannot be determined exactly. As a result, all
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current models are highly approximate. For example, in principle,
both the target conformation and alternative conformations are
involved in defining the relative free energy. Yet, in practice, alter-
native conformations are seldom considered explicitly. Despite the
fact that the first example of an automatically designed protein to
fold expectedly was reported more than a decade ago [4], the
accuracy of energy functions for protein design remains to be the
major bottleneck of protein design [7]. Recently, we have reported
a new strategy to construct statistical energy function (SEF) for
protein design [8]. To evaluate the SEF theoretically, ab initio
structure predictions were applied to sequences designed for 40
native backbones of different fold classes. It was shown that a
significantly higher ratio of target-like structures was predicted for
sequences designed by the SEF compared with previous methods
[8]. Experimentally, one designed protein was verified to fold as
expected. In addition, to improve foldability, three other well-
folded proteins were obtained as mutants of the original designed
sequences as selected with a directed evolution approach [8, 9].
The structure of such a mutant was solved and turned out to agree
with the design target [8]. We now call this approach ABACUS,
acronym for a backbone-based amino acid usage survey. In this
protocol, we will describe in detail the usage of the program that
implements the ABACUS SEF combined with van derWaals energy
terms [10]. This program may be used to redesign complete or
partial amino acid sequences under a given fixed backbone struc-
ture. It may also be used to analyze the amino acid preferences at a
particular position of a protein as determined by its local structural
environment and its interactions with other residues of the protein.

2 Materials

The program is written in Java and it should be able to run on any
platform that has a proper Java environment setup (version 1.6.0 or
above). In this protocol, we assume that the program is executed on
a computer running the Linux operating system, using bash for
command and shell script interpretation, and having java version
1.6.0 or above installed (seeNote 1). It should be quite straightfor-
ward to adapt the process to other computer platforms. Commands
and filenames are in italic and case sensitive.

1. Download the program and its associated preprocessed train-
ing data from the web page http://biocomp.ustc.edu.cn/
Download.html. The programs were coded in Java. Compiled
java classes are provided for anonymous download. For inter-
ested readers, source code can be provided on request.

2. Extract the package from the downloaded file ABACUS.tar.gz
with the command

tar -xvzf ABACUS.tar.gz
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3. Extract the preprocessed training data from the downloaded
file ABACUS.db.tar.gz with the command

tar -xvzf ABACUS.db.tar.gz

4. Change to directory ABACUS and run the shell script to set up
environmental variables like command search paths and so on:

source setup.sh

Add ABACUS/bin to your command search path with
command

export PATH¼${PATH}:${ABACUSPATH}/bin

The script setup.sh will also add the necessary setup commands
to .bashrc under your home directory. If that is not what you want,
you may edit the script to remove corresponding lines.

3 Method

3.1 Definition

of the Energy Function

Since the work we reported in ref. 8, we have introduced several
small modifications of the ABACUS. These modifications are
described here and they reflect what have been implemented in
the current version of the program.

1. The total energy comprises the SEF part and the van der Waals
part. The SEF part is defined as a function of the rotamer
sequence, and is a summation of single residue terms and
pairwise terms,

ESEF r1; r2; . . . ; rLð Þ ¼
XL
i¼1

Ei rið Þ þ
XL
i¼1

X

j > i,
j in contact with i

w i; jð ÞEij ri; rj
� �

ð1Þ

in which L is the length of the protein, ri is the rotamer choice
at site i. The energy terms Ei(ri) and Eij(ri, rj) are the same as in
ref. 8. Compared with ref. 8, the main change in Eq. (1) is the
additional weight w(i,j) that controls the contribution of dif-
ferent types of pairwise terms. The reasoning behind this
weight is that strong coupling between multiple sites may
cause the sum of pairwise interactions to significantly overesti-
mate the overall interaction. For example, when the pairwise
interactions (i,j) and (j,k) are strong and there is lack of average
over j, the statistical term (i,k) may show strong interactions
even when the actual interaction is weak. Because this problem
originated from the lack of average, it mainly concerns posi-
tions that are close to each other in the primary sequence. We
assumed that the weight w(i,j) depends solely on the separation
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between i and j in primary sequence, and determined its respec-
tive values as below based on single site redesign,

wt i; jð Þ ¼
0:5, if

��i � j
�� � 2

0:6, if 2 <
��i � j

�� � 4

1:0, if
��i � j

�� > 4

8<
: ð2Þ

2. Another change from ref. 8 is that a revised pseudo residue
model is used to estimate the exposure to solvent of a position
in a backbone structure. As in 3, all residue positions are sub-
stituted with the same fictitious residue with a pseudo side-
chain. In contrast to the pseudo side chain proposed in ref 3
and used in ref. 8, the revised pseudo residue comprises three
linearly connected atoms (noted as CB, CG, and CD). The
bond lengths are 1.7 Å for CA-CB, 1.5 Å for CB-CG, and
1.7 Å for CG-CD. The CA-CB-CG and CB-CG-CD bond
angles are 109.5�. The dihedral angle N-CA-CB-CG is 90�.
The van der Waals radii of these pseudo atoms are 3.2 Å. Then,
the solvent accessible surface area (SASA) of each atom in this
model is calculated. For each residue position, SASAres is calcu-
lated as a weighted sum of the SASA of its pseudo side-chain
atoms.

SASAres ¼ 0:4� SASA CBð Þ þ 0:56� SASA CGð Þ þ 1:0
� SASA CDð Þ: ð3Þ

As in ref. 8, the SASAres is transformed into a solvent accessibil-
ity index (SAI) based on the relative rank among all positions in
the training data set. Geometry of the pseudo sidechain and the
weights in Eq. (3) have been optimized so that the resulting
SAI for a position contains maximally residue-type information
in the training data set.

3. As in ref. 8, van der Waals energies may be combined, with
weights, with the SEF. The weights of the van der Waals terms
depend solely on the solvent accessibility of the positions
involved. Instead of categorizing the positions into three
discrete categories and use one van der Waals weight for each
category, in the current program the following continuous
function is employed to determine the van der Waals weight
based on SAI:

weight ið Þ ¼ 0:05þ 0:48

1þ e
SAI ið Þ�0:4

0:07

: ð4Þ

The energy table of Lennard-Jones potential of all pairs is
calculated and saved before sequence design.
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3.2 Preparation

of the Input Backbone

Structure

1. Prepare the target backbone structure as a normal PDB file. For
the current implementation, all residues must have the same
chain ID even if the chain is actually discontinuous or there are
multiple chains. In our example, the target backbone will
be specified in the input PDB file 1ubq.pdb. Put this file in an
empty directory and change to that directory.

2. Preprocess the input PDB file with the shell script ABACU-
S_prepare. For example, run the command ABACUS_prepare
1ubq.pdb.

This script first runs a program to check the input PDB file
to make sure that it contains a single chain ID (seeNote 2), and
that there is no missing backbone atom for every position. In
addition, any nonstandard residue or cysteine residue will be
replaced by alanine (cysteine is not yet supported by the current
implementation of the van der Waals energy term). A new file
1ubq.noCys.pdb will be generated. This file should be kept in
the same directory as the input backbone file, as subsequent
commands may use it as intermediate input.

3. Calculate the residue-wise properties for the input backbone,
including secondary structure type, SAI, backbone torsion
angles, and so on. Operations in this step should have been
automatically carried out by ABACUS_prepare, so no addi-
tional command needs to be run. The shell script ABACU-
S_prepare will execute a program to generate another structure
file (for example, 1ubq.psd) in which all side chains have been
substituted by the pseudo residue. Again in script ABACU-
S_prepare, this structure file is used as input to the program
STRIDE [11] (modified here to accommodate the weighted
sum of atomic SASA and named as psdSTRIDE under ${ABA-
CUSPATH}/bin) to calculate the residue-wise properties and
the result is in file 1ubq.str.

3.3 Calculation

of Energy Tables

The various energy terms are calculated and stored as energy tables
in files before sequence design. These are the computationally most
expensive steps. Depending on the size of the problem and the
computer hardware, the calculations will take some time to finish.

1. Generate SEF energy tables with the shell script ABA-
CUS_S1S2. For example, the command

ABACUS_S1S2 1ubq.pdb

will generate two files: 1ubq.pa contains energy tables for the
single residue terms; 1ubq.sm contains energy tables for the
pairwise terms.

2. Generate van der Waals energy tables with the command ABA-
CUS_vdwEtable. For example, run the command

ABACUS_vdwEtable 1ubq.pdb
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Or you may need to specify a resFile before this step (see step 1
of Subheading 3.4 below), and run

ABACUS_vdwEtable 1ubq.pdb 1ubq.resFile

The file 1ubq.resFile specifies which positions will be redesigned
and what would be the allowed residue types at each position (see
below). If this file is not provided, all positions will be considered
for redesign and all residue types will be allowed. This command
generates a file 1ubq.etable that stores the van der Waals energy
table and another intermediate file that will also be used in
subsequent sequence design.

3.4 Sequence

Optimization

In addition to the target backbone structure, the input PDB file
may also contain residue types and side chain configurations for
some residue positions. This information may either be maintained
or discarded during sequence optimization. This can be specified in
an input resFile (see Note 3). Sequence optimization is carried out
usingMonte Carlo simulated annealing. This is a random optimizer
so each optimization run starts from a randomized starting
sequence. Consequently, different runs generate similar (sequence
identity above 80 %) but not exactly the same set of results.

1. Edit the resFile (for example, 1ubq.resFile). In this file, each line
refers to a backbone position. The first field of the line indicates
the peptide chain ID of the position as in the input PDB file (if
the input PDB file does not contain chain ID, use “_” as chain
ID here). The second field indicates the residue ID of the
position in the input PDB. The third field is either a lower
case keyword, or an uppercase string comprising the one letter
code of allowed amino acid residue types at this position. For
this field, the keyword “all” means that all residue types except
cysteine are allowed. The keyword “native” means the residue
type from the input PDB file will be kept (the rotamer type may
change in design). The resFile should be provided to the com-
mand ABACUS_vdwEtable that constructs the van der Waals
energy table (see step 2 of Subheading 3.3 above). If a resFile
has indeed been provided in that step, positions not mentioned
in this resFile will not be redesigned (i.e., has the same effect as
the “native” keyword). For example, a resFile may contain the
following lines

A 11 all

A 12 AILVF

A 13 DEKRQN

A 14 DEKRQN

A 15 APGS

A 16 native
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With this file provided to ABACUS_vdwEtable, positions
11–15 of chain A will be redesigned with respective sets of
allowed residue types by ABACUS_design (see below). For
the remaining positions the input residue types will be
maintained.

2. Generate optimized sequences with the command ABACUS_-
design. For example,

ABACUS_design 1ubq.pdb 20

will use the input backbone in 1ubq.pdb and design 20
sequences. Other files required by this command will be auto-
matically searched in the directory that contains 1ubq.pdb. The
results will be stored as 20 structure files in PDB format (file-
names 1ubq.design_001.pdb to 1ubq.design_020.pdb) and as 20
sequence files in fasta format (filenames 1ubq.design_001.fasta
to 1ubq.design_001.fasta)
The command

ABACUS_design 1ubq.pdb 20 tag

will do the same (replace “tag” with arbitrary tag string to tag
your results), except that the result files will contain the string
“tag” in their filenames, e.g., 1ubq.design_tag_001.pdb and
1ubq.design_tag_001.fasta. Use a different tag string in later
runs ofABACUS_design if you do not want earlier results to be
overwritten.

3. Visualize the design results with appropriate third-party tools.
For example, the designed sequences may be visualized with
the sequence logo generator [12] (http://weblogo.berkeley.
edu/logo.cgi). From the sequence logo, one may check in
the designed sequences which positions are highly conserved,
and which are variable and to what extent. From our own
experiences, we suggest that users of our program pay close
attention to positions that are variable and contain both hydro-
phobic and hydrophilic amino acid types in different designed
sequences. Such design results indicate that the residue types at
these positions are underdetermined by theABACUS. It could
mean that the residue types at these positions are indeed under-
determined by their structural environment. In such a case, it
should be just fine to choose any residue type for these posi-
tions. Alternatively, it could mean that the different ABACUS
terms strongly “disagree” with each other on the amino acid
preferences of these positions. Then inaccuracies in the differ-
ent ABACUS terms, namely, the exaggeration or underestima-
tion of certain interaction term relative to other interaction
terms, would be exemplified at such positions. Based on bio-
physics intuitions, if such a position is on the surface, those
sequences having a hydrophobic residue designed at this posi-
tion and having a long fragment of successive hydrophobic

Computational Protein Design Under a Given Backbone Structure. . . 223

http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi


residues around the position should be considered as disfa-
vored, as such sequences may lead to low solubility. Occasion-
ally, a position in the interior of the protein would be designed
as a polar residue, probably because the random sequence
optimization has been trapped in a local minimum. Such
sequences should usually also be discarded. An alternative
choice is to specify the allowed residue types for such positions
and rerun the design program.

A utility script is provided to single out surface positions
designed as hydrophobic residues, interior positions designed
as hydrophilic residues, or positions designed as residues of
especially unfavorable single residue SEF energies. For exam-
ple, run the command

ABACUS_suspiciousSites 1ubq.pdb 1ubq.design_001.pdb

or

ABACUS_suspiciousSites 1ubq.pdb 1ubq.design_001.

fasta

The doubtful sites, if any, can be found in a file named 1ubq.
singleMutationScan. If suspicious sites are found in a designed
sequence, it is up to the user to decide, based on the context,
whether the sequence is worth further analysis, or another
sequence should be selected, or, alternatively, the sequences
should be redesigned with the respective positions constrained
to a certain subset of residue types.

3.5 Analysis of SEF

Energy Changes

Associated with Single

Mutations

The script ABACUS_singleMutationScan is used to calculate the
change of the various SEF energy terms associated with all possible
single mutations. For example, the command ABACUS_singleMu-
tationScan 1ubq.pdb output.txt will calculate the changes in the
single residue and the pairwise SEF terms associated with all possi-
ble single mutations. If you would like to restrict the single muta-
tion to be at a particular position, add the position ID to the
command line. For example,

ABACUS_singleMutationScan 1ubq.pdb output.txt 34

In output.txt, the field "delta S1" represents single residue
terms, the field "delta S2" represents pairwise terms, and the field
"delta SEF" represents the total SEF.

This command does not analyze van der Waals energy terms.
Please also seeNote 4 for suggested sequences of commands to

execute for some typical applications of ABACUS.

4 Summary

Energy function plays the most critical role in computational pro-
tein design. As other statistical energy functions, ABACUS aims to
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quantify how amino acid choices are constrained by target struc-
tures using information extracted from the large amount of known
sequence-structure data of natural proteins. It requires no sequence
or structural homology between design targets and training pro-
teins. Thus, it can be applied to general designable backbone
structures. In ref. 8, we have reported several well-folded de novo
proteins designed with the method, some as mutants generated
through directed evolution of designs that initially did not fold
well. Since then, we have further refined the computational model
in light of the directed evolution results. With the updated model,
we have been able to design sequences that are well folded from the
beginning for more target backbone structures, including those
considered in ref. 8. We hope that the current protocol will be
able to assist other researchers to use ABACUS as a helpful tool in
their protein engineering efforts.

5 Notes

1. The current implementation has not yet been optimized for
memory consumption. If you run into errors with messages
like “java.lang.OutOfMemoryError: java heap space,” you may
need to enlarge the maximum internal memory of the Java
virtual machine in relevant bash scripts.

2. In the current implementation, the input backbone must con-
tain a single peptide chain. However, continuity of the peptide
backbone is not assumed or required. Thus, if your design
target comprises two or more chains, you may give them the
same chain ID but make sure that every residue has a unique
residue ID and has complete backbone atom coordinates. Side
chain coordinates are ignored, so incomplete side chain coor-
dinates are tolerated.

3. Several temporary files and result files will be generated in the
directory containing the target PDB file. Consequently, it is
suggested that the target PDB file is placed in a fresh new
directory when starting a project. If different resFiles are used
to constrain designs on the same target PDB file, these designs
should be carried out with different working directories (that is
the directory containing the target PDB file).

4. The sequence of commands for typical tasks can be like these. If
you want to design new sequences, use these commands
sequentially:

ABACUS_prepare -> ABACUS_S1S2 ->ABACUS_vdwEtable ->

ABACUS_design
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If you want to find out suspicious sites in a (designed) PDB
structure, use the following order of commands:

ABACUS_prepare -> ABACUS_S1S2 -> ABACUS_ suspicious-

Sites

If you want to carry out single mutation analysis, use the
following order of commands:

ABACUS_prepare -> ABACUS_S1S2 -> ABACUS_singleMuta-

tionScan
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Chapter 11

Computational Protein Design Through Grafting and
Stabilization

Cheng Zhu, David D. Mowrey, and Nikolay V. Dokholyan

Abstract

Computational grafting of target residues onto existing protein scaffolds is a powerful method for the
design of proteins with novel function. In the grafting method side chain mutations are introduced into a
preexisting protein scaffold to recreate a target functional motif. The success of this approach relies on two
primary criteria: (1) the availability of compatible structural scaffolds, and (2) the introduction of mutations
that do not affect the protein structure or stability. To identify compatible structural motifs we use the
Erebus webserver, to search the protein data bank (PDB) for user-defined structural scaffolds. To identify
potential design mutations we use the Eris webserver, which accurately predicts changes in protein stability
resulting from mutations. Mutations that increase the protein stability are more likely to maintain the
protein structure and therefore produce the desired function. Together these tools provide effective
methods for identifying existing templates and guiding further design experiments. The software tools
for scaffold searching and design are available at http://dokhlab.org.

Key words Scaffold search, Refinement, Stabilization, Mutation, Free energy, Protein design

1 Introduction

The goal of the protein design field is to engineer proteins with
novel function with implications for developing new enzymes,
biosensors, and therapeutics [1–4]. One approach to protein design
is grafting, which has been successful in the developing of novel
inhibitors [2, 5], biomarkers [6], enzymes [7], and antigens [8]. In
the grafting approach one identifies an existing structural scaffold
that can host a specific motif and replaces residues to match a
desired active site or binding motif. This approach relies on the
availability of potential scaffolds into which design mutations can
be introduced. To this end, several methods have been developed
to identify these scaffolds including Multigraft Match [9],
GRAFTER [10], and MaDCaT [11]. These approaches rely on
matching of backbone atoms, Cα-Cβ vectors, or Cα distance
maps to identify potential scaffolds. In our approach we use the
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DOI 10.1007/978-1-4939-6637-0_11, © Springer Science+Business Media New York 2017

227

http://dokhlab.org/


Erebus webserver, which allows greater user flexibility in matching
user-specified atom types and residues, while maintaining high
speed and accuracy [12] .

Having obtained a viable scaffold onto which target residues
can be introduced, a further challenge is to determine a priori
whether desired mutations will distort the original protein scaffold
or even completely destabilize the protein structure. To improve
thermodynamic stabilities of designed proteins, we use the protein
stability prediction software Eris [13]. Eris has been shown to
effectively predict effects of mutations, even for the more challeng-
ing case of small to large mutations, without the need for compu-
tationally intensive molecular dynamics simulations.

The overall workflow for our protein design protocol is com-
posed of three major steps. In the first step we identify protein
scaffolds for redesign using the Erebus. In the second step we
submit the structure to the Chiron webserver for pre-relaxation
prior to introducing mutations. In the final step we use the Eris
webserver to identify potential redesign sequences. The theory and
protocol for each of these methods are outlined in the following
sections.

1.1 Identify Protein

Scaffolds for Redesign

The identification of promising candidates for redesign makes use
of the Erebus substructure search [12]. Provided with a query
structure Erebus scans the protein data bank (PDB) for matching
structural scaffolds [14]. Atom pairs of target structures in the
structural database matching the name, residues, and distances in
the query structure are collected to create the candidate substruc-
tures. The best substructures are selected based on their final
weights representing the agreement between query and target
structures. The final weights are calculated according to the follow-
ing equation:

W ¼ ∏N
i¼1Wi

� �1=N ∏M
j¼1 1� wj

� �

where the final weight (W) is the geometric mean of the weights
(Wi) for each of the N atom pairs. The product is multiplied by an
additional penalty (wj) for each of the M missing atoms. Individual
weights (Wi) for each atom pair are calculated according to the
formula:

Wi ¼ e�
Δqi�Δtjð Þ2

σ2

Where the term (Δqi � Δtj) represents the difference in distances
between atom pairs i and j in the query (q) and target (t) structures,
and σ2 is a user-defined precision parameter.
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1.2 Protein

Preparation

As steric clashes are common structural artifacts observed in homol-
ogy models and low-resolution crystal structures [15, 16], we first
relax structures using Chiron before proceeding to Eris. In this
method, a clash is defined as any atomic overlap resulting in energy
greater than 0.3 kcal/mol (0.5 kBT). Structural relaxation in
Chiron is achieved by performing a series of short (~10 ps) discrete
molecular dynamics simulations [17, 18], using a high heat
exchange rate (5 fs) between the protein and the thermal bath.
The exchange rate is used to effectively quench large atomic velo-
cities resulting from large van der Waals clashes, which could result
in broken bonds. To prevent large structural distortions, we also
constrain backbone and Cβ atoms with a harmonic potential. The
algorithm alternates between high temperature (0.7 ε/kB, ~350 K)
and low temperature (0.5 ε/kBT, ~250 K) simulations until the
overall clash score is less than 0.02 kcal/mol/contact. Pre-relaxing
the structures in this way significantly improves sidechain packing of
the protein core, which improves the accuracy of ΔΔG evaluations.

1.3 Protein Redesign Protein redesign of preexisting scaffolds is accomplished using Eris
[13]. Eris introduces a mutation or set of mutations into a protein
structure and calculates free energies for both mutant (ΔGMUT)
and native (ΔGNAT) structures. For free energy calculations rapid
side-chain repacking and backbone relaxation are performed
around the mutation site(s) using a Monte Carlo algorithm. The
free energies are the result of a weighted sum of van der Waals
forces, solvation, hydrogen bonding, and backbone-dependent sta-
tistical energies derived from the Medusa force field [19]. The final
prediction of protein stability induced by mutations is expressed as
the ΔΔG (ΔGMUT � ΔGNAT). Weighting parameters for free
energy calculations were independently trained on 34 high-
resolution X-ray protein structures and tested on a large dataset of
595 mutants where we found significant agreement between pre-
dicted and measured ΔΔG values (R2 ¼ 0.75) [13]. Furthermore,
Eris can model the backbone flexibility, which is crucial for ΔΔG
estimation of small-to-large mutations [20].

2 Software Requirements

The webservers of Erebus, Chiron, and Eris (ddgmodule) are freely
available on our group page (http://dokhlab.org). The current
version of Eris (ddg, scan and design module) also supports
Linux/Unix-like platforms with the C and Cþþ compilers
installed. It has been tested on Linux, Microsoft Windows (with
the Linux port Cygwin), and Mac OS X. Our methods usually
require a molecular viewer for preparation of crystal structures
and analysis of results. For these purposes PyMol (http://pymol.
org), an Open Source molecular viewer available on Windows, Mac
OS X, and Linux, is used [21].
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3 Methods

3.1 Erebus: Structure

Search and Grafting

Erebus is a protein substructure search server (http://Erebus.
dokhlab.org). It searches the entire PDB database for a match to
a user-defined substructure, which can be any atoms from the
backbone (N, Cα, O) or functional sites (see the following exam-
ple). Erebus reads ATOM and HETATM records for atom coordi-
nates in the PDB format and will only match atoms in a target
substructure with atom names exactly matching those in the query
structure [3, 4]. This feature is useful for identifying proteins that
have the same catalytic sites, bind to similar small molecules or have
the same backbone structures.

As an example, we used the copper-binding site in Cu/Zn
superoxide dismutase (SOD1) to prepare the query structure and
to find similar metal binding sites in PDB.

1. Create a file containing the atoms for the substructure query in
PDB format. In our example these atoms are the Nδ or Nε
atoms of H46, H48, H63, and H120 forming the copper-
binding site in SOD1 (an example of the file is below). We
saved this file as Cu_His.pdb:

ATOM 2 ND1 HIS A 46 11.519 -11.568 8.749 1.00 9.92 N

ATOM 4 NE2 HIS A 48 13.185 -15.110 8.862 1.00 11.95 N

ATOM 6 NE2 HIS A 63 10.975 -13.745 10.609 1.00 8.89 N

ATOM 8 NE2 HIS A 120 12.452 -13.024 6.807 1.00 2.00 N

END

2. Upload the query PDB file to the to Erebus server (Fig. 1).

3. After uploading the query PDB structure the user will have the
option to adjust parameters for each atom in the search. Adjus-
table parameters include:

‘Residue Name’: Under the ‘Residue Name’ column the user
can specify the particular residue to match via a dropdown
menu or may specify ANY to return matches from any
residue.

‘Matching precision’ or σ: This is a user-defined precision
parameter (see Subheading 1.1). Smaller values for σ result
in smaller deviations between the query and the targets.

‘Minimumweight’ orW: This parameter measures howwell the
query and target structure match (see Subheading 1.1).
Values for W range from 0 to 1, where smaller W means a
worse match (the RMSD is bigger) andW ¼ 1 is an identi-
cal match. The user can define the minimum acceptableW.

4. For this example Erebus finds over 100 matching structures in
the PDB. These structures are ranked based on their RMSD to
the query structure (Fig. 2). For each match the user can
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download a summary text file (TXT) and a structural model
(PyMOL). The structural model file (.pml) is used to visualize
the match between query and target structures (Fig. 3).

Erebus identified several protein families containing copper-
binding site, including superoxide dismutase, laccase, and multi-
copper oxidase. Several iron and zinc binding sites were also found.

Fig. 1 The Erebus Web interface. Users may either upload a query PDB file or paste query coordinates into the
field below in PDB format. Clicking a residue name under the ‘Residue Name’ column brings up a menu
allowing the user to specify the particular residue to match. The ‘ANY’ selection allows for matches to any
residue

Fig. 2 Results from the Erebus scaffold search. The results are sorted by weight and root mean square
deviation (RMSD) to the query structure
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3.2 Chiron:

Preparation of Input

Structures: Minimizes

Steric Clashes Before

Redesign

Chiron estimates the quality of a structure with respect to clashes
and minimizes clashes using a series of short discrete molecular
dynamics simulations [17, 18]. For homology models and low-
resolution crystal structures in which structural artifacts often
exist, Chiron is a useful refinement tool.

The Chiron webserver is freely available at http://chiron.
dokhlab.org. After logging into the server, the user will be directed
to the task submission page by clicking ‘Submit Task’ in the left
panel. The user provides a structural model in PDB format or a
PDB ID. During relaxation all backbone and Cβ atoms are con-
strained. To constrain all side-chain atoms not involved in steric
clashes check the ‘Constrain Sidechain’ box (Fig. 4).

Results of the calculation can be accessed from the ‘Home/
Overview’ page. Chiron outputs a refined structural model
({JOBID}.pdb) and the record of clashes ({JOBID}.py).

As an example, we submitted the crystal structure of Cu/Zn
superoxide dismutase (SOD1, PDB ID: 1SPD) to the Chiron
server. The resulting files are 12489.pdb and 12489.py. The fol-
lowing steps can be applied to visualize the clashes before and after
the refinement:

1. Open 12489.pdb with PyMOL.

2. In the PyMOL command prompt, type ‘run {Path}/ {JOBID}.
py’ and enter, omitting the quotation marks. The path to the .
py should be indicated. In the provided example the command
is ‘run ~/user/12489.py’

The script generates two structural models: i-12489 is the
structure of SOD1 before refinement and f-12489 is the structure

Fig. 3 Comparison of the copper binding site in the query structure (a) and one
target structure (b). The query is based on the crystal structure of SOD1 (1SPD)
and the target is a laccase (2XUW). The copper-interacting atoms (Nδ or Nε of
histidine) are shown in blue color

232 Cheng Zhu et al.

http://chiron.dokhlab.org/
http://chiron.dokhlab.org/


after refinement. The steric clashes are represented as color-coded
(rainbow spectrum) cylinders of different radii. The clashes with
higher repulsion energy are denoted as cylinders of larger radii. For
SOD1, Chiron refinement successfully reduced the number of
clashes and eliminated all major clashes (Fig. 5).

3.3 Eris: Identify

Mutations That

Stabilize a Protein

Scaffold

Eris has three modules: ddg, scan, and design. The ‘ddg’ module
exhaustively calculates the ΔΔG for individual mutations. The
‘scan’ module is used to rapidly search for stabilizing single muta-
tions at a specified site. The ‘design’ function identifies the lowest-
energy sequence for a given backbone, which can be a complete
protein structure or a user-defined region in the whole structure. In
the following section we elaborate the methods and procedures for
each module.

Fig. 4 Image of the Chiron Web interface
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3.3.1 Installation and

Preparation for Input Files

The Eris package is available at http://moleculesinaction.com.
Installation instructions are provided with the package (seeNote 1).

The input file for all three modules should be in the PDB
format. Currently, the Eris server will only read the first chain of a
PDB file (see Note 2). Eris also renumbers the index of the first
residue as 1. The common flags in Eris for command line usage are
listed in Table 1.

3.3.2 ddg: An Estimation

of ΔΔG for Given Mutations

For a single mutation or multiple substitutions, Eris-ddg repacks
the sidechain 20 times using simulated annealing and computes
stabilities by averaging all the conformations for both wild type and

Fig. 5 Resolution of clashes using the Chiron webserver. Structures of SOD1 (PDB ID: 1SPD) are shown (a)
before and (b) after refinement by Chiron. Colored cylinders connect atoms involved in clashes. The color and
thickness of the cylinder denote the energy associated with the clash. Comparing panel a to panel b
demonstrates that Chiron greatly reduces the number of clashes, and eliminates the large steric clashes

Table 1
Eris usage flags

Flag Usage

-w Specify the working directory

-j Specify the ‘JOBID’

-f Flexible backbone (Not valid in ‘scan’ mode)

-r Provide random seeds in Monte Carlo simulation

-m Specify the mutation(s) for ΔΔG evaluations in ‘ddg’ mode

-s Specify the site(s) in ‘scan’ mode

-d Specify the path to a ‘DesignTable’ in ‘design’ mode

-h Print the help, then exit

-v Verbose output
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mutant. The stability change, ΔΔG, is computed as the difference
between the average stabilities of mutant and native structure
(ΔGMUT � ΔGNAT).

As an example, we calculate the stability change induced by
Y36E mutation in protein kinase B (PDB ID: 1UNP).

1. Submit the job:

$ eris ddg –m {MUTATION} –w {DIRECTORY} –j {JOBID}
INPUT.pdb

MUTATION is a comma-delimited string of all mutations to
be performed in a particular eris run in the format {native
residue}{residue number}{target residue}. For example to
change an alanine dipeptide to a serine dipeptide the input
would be A1S, A2S.
In our case we used the following command line and the results
were kept in a folder called ‘Eris_ddg’:

$ ~/Eris/eris ddg -m Y36E -w ~/Eris_ddg -j 1UNP_Y36E ~/
Eris_ddg /1UNP.pdb

2. Analyzing the results:

A summary of the results can be found in ~/Eris_ddg/
eris_ddg.txt, which looks like:

1UNP_Y36E ddg ~/Eris_ddg/1UNP.pdb Y36E 9.95
9.95 7.11 0.11 2.84 0 0.81 0.05 0.40 0.46 -4.62 3.37

The job (JOBID ¼ 1UNP_Y36E) is the ‘ddg’ calculation for
input structural model of 1UNP.pdb. The mutation (Y36E) is
the substitution of Tyrosine at position 36 to Glutamic acid.
The total ΔΔG equals to 9.95, i.e., destabilizing. In the second
line the total stability change and its decomposition are illu-
strated (see Note 3).

Structure files of both native and mutant proteins for each of
the 20 rounds of calculation are stored in PDB format in the
folder ~/Eris_ddg/1UNP_Y36E.

3.3.3 Scan: Search

for Stabilizing Mutations

In the scan module a native amino acid at a specified site is sub-
stituted to all other 19 types of amino acids and only the stabilizing
substitution (ΔΔG < 0) are kept. If positions are not explicitly
specified using ‘-s’, then all the residues are scanned.

As an example, we used Eris-scan to find stabilizing mutations
at position 37 in protein kinase B (PDB ID: 1UNP).

1. Submit the job:

$ eris scan –s {SITE} –w {DIRECTORY} –j {JOBID} INPUT.
pdb
SITE is a comma-delimited string of integers specifying the
residue positions to be scanned. Residue positions are deter-
mined from their order in the PDB file and Eris-scan
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renumbers the index of the first residue as 0 (‘-sN’ means the
scan is performed on the Nþ1 site).

In our case we used the following command line and the
results were kept in a folder called ‘Eris_scan’:

$ ~/Eris/eris scan -s 36 -w ~/Eris_scan -j 1UNP ~/Eris_scan
/1UNP.pdb

2. Analyzing the results:

The stabilizing mutations were listed in ‘Eris_scan/1UNP/
output/ddgStabilizing.dat’, which looks like:

K37L -3.04264 -0.0944399 -0.0642849 -1.14021 0 -0.132146. . .
K37V -2.11104 0.0127475 -0.064736 -1.33434 0 0.0623585. . .
K37Q -0.111982 -0.878894 0.05282570.354524 0 0.0364916. . .
K37N -0.817968 0.106138 -0.10984 -0.245153 0 0.0981676. . .
. . .

Each line in the ddgStabilizing.dat specifies the stabilizing
single mutations (see Note 4). In the same line, the numbers
starting from the second column correspond to the total sta-
bility change and its decomposition.

The atomic structures of repacked conformations are stored
in the same folder. The calculation results for all 19 substitu-
tions were stored in ddgAll.dat.

3.3.4 Design: Find the

Optimal Amino Acid

Sequence for the Given

Protein Backbone

In the ‘design’ module, users specify the protein segments to
optimize and which subset of amino acids can be used to substitute
the original one (polar, hydrophobic or user-defined subsets).
The search can be performed using either a fixed backbone proto-
col (C, O, CA, and N positions fixed during design), or a flexible
backbone protocol (allowing small adjustments of the backbone
atoms to minimize energy). Eris-design then searches the lowest-
energy sequence that satisfies the constraints listed in the design
table.

Before submitting the ‘design’ job, the user should prepare a
design table in .txt format. The design table consists of two col-
umns: the first column (Index) specifies the mutation sites and the
second column (Keyword) defines the subset of amino acids for
substitution.

Values in the index column can be a single integer (m), a set of
integers separated by commas (m,n,..), a range defined as m � n
(m < n), or a mixture such as (a�b,c,d,e�f). The "DEFAULT"
keyword can be used to represent all residues that have not been
explicitly specified.

The keyword column takes as an argument one of a list of
predefined flags. The flags and definitions are listed in Table 2.

For clarity an example design table for protein kinase B (PDB
ID: 1UNP) is shown below:
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#Index Keyword

DEFAULT NATAA

4-10 ALLAA

102, 112 PIKAA STYWL

50,69-76 HYDPH QEND

This design table will perform all-amino substitutions for resi-
dues 4 through 10, substitute residues 102 and 112 with Ser, Thr,
Tyr, Trp, and Leu. And substitute residues 50 and 69 through 76
with hydrophobic amino acids. The QEND flag serves to denote
the end of the design table

1. Submit the job:

$ eris design –d {DesignTable} –w {DIRECTORY} –j {JOBID}
STUCTURE.pdb

In our case we used the following command line and the results
were kept in a folder called ‘Eris_design’ (see Note 5):

$ ~/Eris/eris design -d ~/DesignTable.txt -w ~/Eris_design -j
1UNP ~/Eris_design/1UNP.pdb

2. Analyzing the results
The output of Eris-design is a PDB file of redesigned structural
model and its free energy. In this module 20 rounds of Monte

Table 2
Keywords and definitions for Eris design table

Flag

ALLAA All available amino acids and the corresponding rotamers

NATAA Fixed with native amino acid, but with all its available rotamers

NAROT Fix the amino acid in its native rotamer but with sub-rotamer
allowed

FIXNR Fix the amino acid in its native rotamer without sub-rotamer
motion

POLARa Polar amino acids and their rotamers

HYDPHb Hydrophobic amino acids

AROMAc Aromatic amino acids

PIKAA User selected amino acids represented by single letter

aPOLAR includes: SER, THR, GLN, GLU, ASN, ASP, LYS, ARG, HIS
bHYDPH includes: GLY, ALA, MET, VAL, LEU, ILE, PHE, TYR, TRP, PRO, CYS
cAROMA includes: PHE, TYR, TRP, HIS
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Carlo simulations are performed. The results are given as
design.run [00-19] and kept in Eris_design/1UNP/design.
In each ".run" file, the first 20 lines record the temperature,
Monte Carlo acceptance rate, total energy and its decomposi-
tions. The following lines are in PDB format so that the user
can open it with PyMOL.

For example, design.run00 looks like:

0 10 0.763302 222.253 -409.689 371.847 319.997. . .
1 6.35799 0.70095 120.507 -402.49 196.314 296.97. . .

. . .

19 0.101625 0.0279097 -184.007 -464.69 8.64136 316.316. . .
ATOM 1 N ASP A 1 31.522 1.268 -6.333 1.00 0.00 N
ATOM 2 CA ASP A 1 30.972 2.648 -6.220 1.00 0.00 C

. . .

ATOM 1245 2HH2 ARG A 119 22.086 -5.596 -26.587 1.00 0.00 H
TER

3.3.5 An Online Server

for ‘ddg’ Calculations

A Web-based Eris server for ΔΔG estimation is freely accessible
online (http://eris.dokhlab.org). The users can follow the simple
procedures listed below to submit their own task after registration:

1. Use the ‘Submit a Task’ bar on the left to submit the protein
structure file. It can be a PDB ID or your own .pdb file. Eris
only recognizes the first chain by reading the ‘TER’ line in a .
pdb file.

2. Click on any residue site and choose the amino acids you want
to substitute (Fig. 6).

3. Choose ‘Fixed Backbone’ or ‘Flexible Backbone’ and choose
whether you want to include a pre-relaxation of backbone
structure. Pre-relaxation remarkably improves the prediction
accuracy when a high-resolution protein structure is not avail-
able. Alternatively the users can use Chiron to minimize steric
clashes in the input structure (see Note 6).

4 Notes

1. After installation, typing “eris” without any command line
arguments will display the brief help information. Typing
“eris �h” will bring more detailed instructions.

2. The Eris webserver only reads the first chain of the provided
PDB file. To modify the protein chains, the user can apply the
‘alter chain’ and ‘alter resi’ command in PyMOL for this modi-
fication (http://www.pymolwiki.org).
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3. The energy decomposition of total ΔΔG is composed of ten
values. From left to right they are van der Waals attraction, van
der Waals repulsion, solvation, backbone hydrogen bonds,
backbone–side chain hydrogen bonds, side chain–side chain
hydrogen bonds, backbone dependent statistical energy for
amino acid, backbone-dependent statistical energy of the rota-
mer, reference energy of the unfolded states, and the correction
for reference energy, respectively [19].

4. Eris-scan does not support flexible-backbone protocol and the
Monte Carlo simulation is performed only once. Due to the
limitations of the fixed-backbone method and sampling ineffi-
ciency, atomic clashes may not be resolved during structure
minimization. These clashes can be identified by checking the
van der Waals repulsion energy terms in the results. We find
that the predictions are relatively more accurate for buried
residues than exposed residues.

5. Eris uses a Monte Carlo algorithm for identifying changes in
ΔΔG. As such there is a certain amount of stochasticity in the
results. We suggest that the user run the calculation multiple
times to check for convergence in the distribution of energies.
Performing multiple rounds of Eris calculation can be per-
formed using the following bash script.

CUR_DIR¼‘pwd‘

for i in {1..N}; do

Fig. 6 Image of the Eris Web interface. Clicking on a residue results in a pop-up window allowing the user to
select the target residue
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~/eris ddg -m Y36E -w $CUR_DIR -j 1UNP_Y36E_${i} -r
$RANDOM $CUR_DIR/1UNP.pdb

done

6. If there is difficulty with formatting or running the calculations
it is suggested that the user submits the structural model to
Chiron first. The server will both reformat the file to be com-
patible with Eris and fix clashes that could produce problems
with the Eris calculations.
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Chapter 12

An Evolution-Based Approach to De Novo Protein Design

Jeffrey R. Brender, David Shultis, Naureen Aslam Khattak,
and Yang Zhang

Abstract

EvoDesign is a computational algorithm that allows the rapid creation of new protein sequences that are
compatible with specific protein structures. As such, it can be used to optimize protein stability, to resculpt
the protein surface to eliminate undesired protein-protein interactions, and to optimize protein-protein
binding. A major distinguishing feature of EvoDesign in comparison to other protein design programs is
the use of evolutionary information in the design process to guide the sequence search toward native-like
sequences known to adopt structurally similar folds as the target. The observed frequencies of amino acids
in specific positions in the structure in the form of structural profiles collected from proteins with similar
folds and complexes with similar interfaces can implicitly capture many subtle effects that are essential for
correct folding and protein-binding interactions. As a result of the inclusion of evolutionary information,
the sequences designed by EvoDesign have native-like folding and binding properties not seen by other
physics-based design methods. In this chapter, we describe how EvoDesign can be used to redesign proteins
with a focus on the computational and experimental procedures that can be used to validate the designs.

Key words Protein design, Evolutionary profile, Protein structure modeling, Experimental protein
validation, Recombinant expression, Circular dichroism, Nuclear magnetic resonance

1 Introduction

Computational protein design has expanded in recent years from
the prediction of the effects of single site mutations to the complete
redesign of entire proteins, including the alteration of protein-
protein binding affinity and specificity [1–4], enzymatic activity
[5, 6], and even the creation of new folds [7] and functions [8]
that are not seen in nature. On the theoretical side, protein design
has been used to find the sequence constraints necessary to gener-
ate specific folds or functions [9–11]. Through the use of these
constraints, fundamental questions in protein evolution have been
addressed by distinguishing what is physically possible from what is
actually observed in evolution [10, 12].

However, full protein redesign beyond the mutation of a few
hot spot residues, called de novo design, is computationally difficult,
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which is reflected in the relatively low successful percentage of
successful designs. Most algorithms for de novo protein design
approach the problem as reverse ab initio protein folding, evaluat-
ing the energy of the sequence according to all-atom physical
potentials. Several problems become apparent in the naı̈ve applica-
tion of this approach: (1) A very large number of sequences must be
considered, which limits the force field to only approximate energy
terms that can be rapidly calculated; (2) there is a mismatch
between the low-resolution models generated in the sequence
search and the all-atom physical potentials used for evaluation. To
make the design simulation computationally tractable, the possible
conformations of the side-chains of the protein are restricted to a
limited set of discrete rotamer conformations. The small steric
clashes that necessarily result from this approximation force the
use of dampened potentials that may miss subtle interactions that
exist in the native protein [13, 14]; (3) the sequence search is
considered only with the protein in isolation, not as the protein
actually exists in the cellular context. This causes subtle problems in
the real-life application of the designed proteins, particularly with
respect to aggregation, as the highly hydrophobic sequences
favored by folding energetics generally adopt highly compact
sequences in silico but tend to aggregate in reality when actually
expressed [15].

One approach to handle these challenges is to increase the
accuracy of the design process by attempting to model physical
reality at a higher resolution. In this spirit, design methodologies
have been created that explicitly consider multiple conformations
of the folded protein using ensemble techniques for multistate
design [16–18] or that explicitly consider the unfolded state during
the design process [18]. Alternatively, other design methodologies
have been created that recognize the inherent inaccuracy of the
force fields and attempt to diminish the effects of known inaccura-
cies. One example is the use of soft-core potentials that lessen
repulsive interactions, preventing strongly unfavorable interactions
that can be alleviated by small backbone motions from overriding
the other terms [19]. Another example of this approach is the
inclusion of additional terms in the force field that consider factors
relevant to real proteins that are missing in the simulation, for
example, the explicit consideration of inappropriate hydrophobic
surfaces to limit aggregation in the designed sequences [18, 20].
The ongoing development of these methods has contributed
greatly to the field and has led to some spectacular successes.
However, complete de novo protein design is still a difficult process
with routine application still in the future.

An alternative approach, based on hard-won knowledge from
protein fold-recognition and structure prediction [21–24], is to
recognize that evolution implicitly encodes information on protein
folds and binding interactions that greatly exceeds our ability to
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describe it through reductionist, physics-based methods. This
evolution-based method approach to protein design differs from
the physics-based methods in that most energy terms are not
dependent on the full-atom representation of each tested sequence,
whose inaccuracy is a significant source of error. Instead, the
sequence space search is constrained by the sequence and structural
profiles collected from structurally analogous families, assisted
by neural network predictions of local structural features,
including secondary structure, backbone torsion angle, and solva-
tion [25, 26].

2 Methods

2.1 EvoDesign:

Evolution-Based

Method to Design

Protein Folds and

Interactions

The principle of EvoDesign follows the critical lessons learned from
threading-based protein structure prediction methods, i.e., to use
the reliable “finger-print” of nature of multiple proteins from the
same family in the form of structural profile information to guide
the simulation to the sequence search. It first collects a set of
proteins with similar folds to the target scaffold structure from
the PDB library by the structural alignment program TM-align
[27], using a TM-score cutoff value to define structural similarity
(Fig. 1) [28]. In the second step, this set of structurally similar folds
is used to create a position specific scoring matrix M(p, a) for
evaluating potential sequences [29, 30].

To create the position specific scoring matrix, first a multiple
sequence alignment (MSA) is generated according to the pair-wise
structural alignments between the structural analogs identified in
the first step and the target structure (Fig. 1). An L � 20 matrix
(where L ¼ length of the protein) is then created according to

M p; að Þ ¼
X20
x¼1

w p; xð Þ � B a; xð Þ ð1Þ

where x represents a particular amino acid, B(a, x) is the BLO-
SUM62 substitution matrix [31] for amino acid x to amino acid a,
and w(p, x) is the frequency of the amino acid x appearing at
position p in the MSA created by TM-align. The matrix M(p, a)
serves as a structural profile to guide the sequences toward native-
like sequences known to adopt structurally similar folds as the
target (Fig. 1).

While the structural profile as given by the position specific
scoringmatrixM(p, a) is efficient in guiding the global fold, optimi-
zation on the profile alone can result in singularities (i.e., disjointed
“islands”) in local sequences. To smoothen these singularities, back
propagation neural network predictors are used to estimate the
secondary structure (SS), solvent accessibility (SA), and torsion
angles (φ/ψ) of the sequence. Unlike other predictors for these
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Fig. 1 Overview of the EvoDesign method showing the construction of the structural profile, the Monte Carlo
search in sequence space, and the final selection of the sequences by sequence clustering
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properties [32–34], these single-sequence-based predictors do not
require a computationally expensive PSI-BLAST search, which con-
siderably speeds up prediction at little cost in accuracy [25].

The evolutionary potential in EvoDesign is defined as the
maximum score of the optimal alignment path between the decoy
and target structure obtained by Needleman-Wunsch dynamic
programming, giving the energy function:

Eevolution ¼
X
max

M p; að Þ þ w1ΔSS pð Þ þ w2ΔSA pð Þ þ w3 Δφ pð Þ þ Δψ pð Þð Þ½ �;

ð2Þ
where ΔSS, ΔSA, Δφ, and Δψ are the difference in secondary
structure, solvent accessibility and torsion angles between the tar-
get assignments, and the predictions from the decoy sequences.
The weighting factors (wi) are decided by the relative accuracy of
the single-sequence-based predictions for each term on a training
set [25].

A physics-based potential can be used to predict potential
favorable and unfavorable interactions among side-chains, such as
steric interactions, which may be missed by the evolutionary-based
terms defined above. While our computational benchmark results
indicate the evolution-based energy function alone is sufficient to
design protein sequences, adding a physics-based energy term from
FoldX [35] improved the atomic packing of the local structures
based on both computational structure prediction and experimen-
tal structure validations [25]. In this case, a full-atom representa-
tion of the sequence is needed which is created by SCWRL [36].

The final force field for single-chain protein design in EvoDe-
sign is given by the weighted Z-scores of the evolution and physics-
based terms:

E ¼ w4
Eevoluation � Eevoluationh i

δEevoluation
þ w5

EfoldX � EfoldXh i
δEfoldX

; ð3Þ

where h. . .i and δ indicate the average and standard deviation of the
energy terms.

To actually generate the designed sequences, Monte Carlo
searches are performed starting from 10 random sequences that
are updated by random residue mutations (Fig. 1). Due to the
imprecision of the force field, the lowest energy states do not always
correspond to the best sequence design. Instead of simply focusing
on the lowest energy sequence, the sequences from all 10 runs are
pooled and the sequence with the maximum number of neighbors
is identified using the SPICKER clustering algorithm [37] where
the pair-wise distance between sequences is measured by the sum of
the BLOSUM62 substitution scores [38].

The above procedure finds sequences compatible with the
target structure. To introduce new or altered functionality into
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the protein, the affinity of existing protein-protein interfaces can be
improved by EvoDesign or new interfaces created though the
optimization of non-native complexes created by docking. To
modify interfaces, EvoDesign uses a multiscale approach incorpor-
ating a variety of features at different levels of structural resolution
(Fig. 2).

Similar to the design of protein folds with EvoDesign, a key
feature of the binding potential is the mixture of physics-based and
evolutionary terms in the energy function [39]. For interface mod-
ification, the evolutionary terms are created from the structural
alignment of similar interfaces from the nonredundant COTH
structural library of dimeric proteins [40] by the IAlign program

Fig. 2Multiscale approach to predicting protein binding affinity using features derived from interface structural
profiles, WT and mutant sequences, and physics-based scoring of the structures of the wild-type and mutant
complexes. (1) Interface profile scores derived by structural alignment of structurally similar interfaces using
an interface similarity cutoff to define the aligned sequences that are used to build the profile. (2) Physics-
based scores are formed at the residue or atomic level formed by modeling the mutant monomeric protein and
complex and evaluating the difference in energy. (3) Sequence features are formed by the difference between
the WT and mutant sequences in the number of hydrophobic (V, I, L, M, F, W, or C), aromatic (Y, F, or W),
charged (R, K, D, or E), hydrogen bond acceptors (D, E, N, H, Q, S, T, or Y), and hydrogen bond donating
residues (R, K, W, N, Q, H, S, T, or Y) along with difference in amino acid volume calculated from the sequence
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[41]. A series of interface similarity cutoffs has been used to define
three separate interface structure profiles along with different
metrics designed to assess the accuracy of the profiles relative to
the other terms [39]. The interface profiles scores are then com-
bined with physics-based all-atom and residue level docking scores.
Finally, sequence-based scores based on phamacophore count dif-
ferences between the native and designed sequences are calculated
to complete the multiscale approach. A random forest method
trained to predict the experimental affinity changes (ΔΔG) asso-
ciated with single and multiple mutations at the interface is used for
the final interface energy score. This energy score has a correlation
to the experimental ΔΔG values equivalent or superior to the best
state-of-the-art mutation prediction programs (Pearson’s correla-
tion coefficient ¼ 0.83 for a 5 fold cross validated set) but is fast
enough to calculate the thousands of potential mutations necessary
for protein design. The interface energy is then added to the regular
EvoDesign scoring potential, using a user-defined weighting func-
tion to balance fold stability and protein-protein affinity.

2.2 Using the

EvoDesign Server

Design Program

The EvoDesign program can be used as a server at http://zhanglab.
ccmb.med.umich.edu/EvoDesign. The only input to the server is a
PDB format file of the target structure, which can be either a full-
atomic or backbone only model. In either case, the backbone of the
protein structure should be complete without breaks in the chain.
Currently, the server is limited to design of one protein chain only.

There are three user-defined parameters to control the design
simulation. The first parameter is the fold-similarity cutoff used for
defining the structural profile (Eq. 1). By default, this is set to the
relatively high value of a TM score of 0.7, which is relaxed if less
than ten structural analogues are found in the PDB. This value can
be adjusted to a higher or lower value; lower values incorporate
more sequence and structural variability in constructing the profile
while higher values incorporate less. The usual result is that higher
cutoffs penalize deviations from the native sequence more strongly,
which may or may not be desirable for the particular application.
The second parameter controls whether the FoldX force field is
used in the simulation or not. Inclusion of FoldX usually results in
only a marginal improvement in the folding when validated by
structure prediction (see the next section) [25], most likely due to
the fact that the side-chains are modeled by a different force field
from the SCWRL force field used for scoring. Including FoldX in
the simulation requires that the full atomic model of each sequence
be constructed, which is the most computationally demanding step
in the simulation. For this reason, the FoldX force field is turned off
by default. The last parameter does not affect the design simulation
but controls whether structure prediction is performed for each of
the designed sequences through the creation of I-TASSER models
(see Subheading 2.3.1).
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By default, the EvoDesign server operates without any residue
restrictions on the design process. In many cases, it desirable to
freeze certain residues in the design process, such as those involved
in disulfide bond formation or in ligand binding. Taken further, in
other cases, it is useful to redesign only the surface of the protein
while keeping the inner core constant. An option is therefore
provided to specify a set of residues (by residue number) which
should be kept the same as in the input structure. It is also some-
times desirable to restrict the use of some residues completely or at
certain positions. A prime example is cysteine residues on the
surface, which can easily be oxidized to form intermolecular disul-
fide bonds that lead to a loss of activity through aggregation.

The output of the server is ten sequences in decreasing order of
cluster size from the clusters generated by the SPICKER algorithm.
For each sequence, the sequence identity to the native sequence is
calculated along with the predicted normalized relative error for
the secondary structure, solvent accessibility, and torsion angles.
Each property is calculated by a high accuracy predictor using PSI-
BLAST profiles along with neural network predictors (PSSPred for
secondary structure prediction [42], ANGLOR for torsion angle
prediction [32], and the method of SOLVE for solvent accessibility
[43], respectively). The normalized relative error (NRE) is
reported for each prediction, which is defined by [25].

NRE ¼ EDS� ETS

ETS
; ð4Þ

where EDS refers to “error of designed sequence,” i.e., the mis-
match between the predicted structure feature from the designed
sequence and the target structure. ETS refers to “error of target
sequence” that is defined similarly to EDS but for the target
sequence. The NRE defined thus accounts for the uncertainty
from the structure feature predictors. Finally, I-TASSER models
of each of the designed sequences are provided if user selects the
third option on I-TASSER modeling. The I-TASSER models rep-
resent a partial validation of the success of the design simulation as
described below.

2.3 Computational

Validation of Protein

Designs

No computational design method is perfect, and validation remains
an essential part of the design processes. Validating experimentally
that the designed protein sequence successfully folds to the desired
structure requires both successfully expressing the protein and
successfully determining the structure. A full structure determina-
tion at the atomic level through either NMR spectroscopy or X-ray
crystallography is a time-consuming and difficult task. Even sim-
pler, less precise experimental methods for determining protein
structure, such as comparing the secondary structure of the native
and designed proteins through circular dichroism CD (see
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Subheading 2.4.7) and recognition of the presence of folded ter-
tiary structure through 1D NMR (see Subheading 2.4.8), still
require that the protein be successfully expressed. Compared to
computational techniques, protein expression is relatively expen-
sive, limited in throughput, and in some cases may be challenging
to achieve. Before expression, it is therefore desirable to know
which designed sequences are most likely to fold to the target
structure. The first step is to visually confirm that the design
sequences are compatible with the structure. Specifically, it is a
good idea to look for buried charges without salt-bridges and
buried side-chains without hydrogen bonding partners before pro-
ceeding. The EvoDesign program uses a fixed backbone approxi-
mation in its calculations. High energies from van der Waals clashes
can usually be relieved by small changes in the backbone [44, 45].
However, buried charges and missing hydrogen bonds are much
harder to compensate for by small structural movements. Since
even one missed hydrogen bond or buried charge is enough to
completely destabilize a structure, any designs possessing these
features should be eliminated from consideration.

It is, however, not possible to tell reliably if a protein will fold
correctly by simple visual analysis. Accurate structure prediction of
designed sequences is therefore central to the EvoDesign method-
ology, as it allows a much larger number and variety of sequences to
be tested for correct folding than can be experimentally checked.
EvoDesign currently employs I-TASSER, which is a hierarchical
approach to protein structure modeling that constructs protein
3D models by reassembling continuous fragments excised from
the multiple threading templates [43, 46–48]. I-TASSER has
been extensively tested in both benchmarking [46, 47, 49] and
blind tests [50–53]. In particular, the community-wide CASP
(Critical Assessment of protein Structure Prediction) experiment
is designed to benchmark the state-of-the-art of protein structure
predictions every two years since 1994 [54–56]. I-TASSER was
tested (as “Zhang-server”) in the 7–11th CASP competitions in
2006–2015. Figure 3 shows the histogram of the Z-score of the
GDT-score, which measures the significance of the model predic-
tions by each group of automated structure predictors compared to
the average performance, in the latest 11th CASP competition. The
data shows the advantage of the I-TASSER in comparison to other
state-of-the-art protein structure prediction methods, provided
that the protein is already known to fold to a specific structure.

2.3.1 Estimating

Structural Fidelity and

Foldability of Designed

Sequences Using I-TASSER

The I-TASSER-based structure prediction of designed sequences in
EvoDesign seeks to answer two related but distinct questions. First,
does the designed sequence fold to any structure at all or is it only
partially or completely unfolded when expressed? Second, given
that the protein folds, does it fold to the correct structure? If a
designed sequence is known to fold, there is considerable evidence
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from the benchmark and blind tests described above that I-
TASSER could, with some confidence, tell if it will fold to its target
structure. However, the ability of template-based protein structure
programs to determine whether or not a given sequence can fold
correctly to any structure at all has been tested much less extensively
(see Note 1).

In an early test, I-TASSER was shown to cleanly distinguish
native sequences from random sequences with similar sequence
identity and secondary structural propensity [38]. For a more
stringent benchmark test, we recently tested 16 successfully
designed sequences that are known to match their target structure
and 29 unsuccessful sequences that were known to either fold to a
different structure or were unable to fold at all in the literature
[25]. As shown in Fig. 4, I-TASSER successfully captured the
deviation of the structures of the designed sequences from the
target structure. Furthermore, the confidence level (C-score) [57]
of the I-TASSER prediction is roughly correlated with the chance
of success of the design: a C-score below �1.5 indicates an almost
certain failure and a C-score above 0 indicates a very strong possi-
bility of success. I-TASSER prediction on designed sequences can
therefore allow a winnowing out of poorly designed sequences
without resorting to the lengthy procedure of expressing and
experimentally determining the structures of designed proteins at
each step.

2.4 Experimental

Validation of Designed

Sequences

True validation of the designed protein requires that protein be
characterized experimentally for structurally fidelity and activity.
The processes listed below have been employed in the EvoDesign

Fig. 3 Histogram of the Z-scores of all automated protein structure predictors in
the CASP11 experiment. The first bin contains groups that have Z-score below 0.
Data are taken from official CASP webpage at URL http://www.predictioncenter.
org/casp11/zscores_final.cgi?model_type¼first&gr_type¼server_only
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studies [25, 58], aiming to ensure that the designed proteins are
thermodynamically stable, soluble, and adopt the desired fold. In
all cases, the same tests should be performed with the wild-type
protein as well for a control.

2.4.1 Expression

and Purification

of Designed Proteins

Before a protein can be characterized experimentally, the pure
protein must be generated in sufficient quantities for the experi-
ments. This is done through a process called recombinant expres-
sion, which involves incorporating the DNA sequence of the
designed protein into the genome of another organism and using
that organism’s protein production process to generate the target
protein. Since there are many variations on the technique and the
specifics of the process can vary with the protein being produced, a
comprehensive description of the technique is not given here.
Instead, key considerations are outlined in a basic manner for
those unfamiliar with process. For further, more depth treatment
readers are encouraged to consult several excellent reviews on this
topic [59].

2.4.2 Choice of Host Cell The first decision that must be made in setting up a recombinant
protein expression system is the choice of the host cell whose
protein synthesis machinery will produce the target protein. This
choice is one of the most critical ones as the choice of the expression
organism defines the scope of the project, the reagents and equip-
ment needed, and the final outcome of the expression process [59].
Each protein expression has advantages and disadvantages. In most
cases, bacterial expression systems are favored as they are low cost,

Fig. 4 Divergence in the confidence score of the I-TASSER models for
successfully and unsuccessfully designed sequences. Approximate cutoff
values are indicated by the arrows. A C-score < �1.5 indicates a high
probability that the design will not be folded correctly and a C-score > 0
indicates a high probability that the design will fold to the target structure
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easy to manipulate genetically, scale easily from small- to large-scale
expression, and can easily incorporate isotopic labels for NMR
studies. The main disadvantage of bacterial expression is that
eukaryotic posttranslational modifications such as glycosylation
and phosphorylation are not performed. In the case that these
posttranslational modifications are essential, a eukaryotic host cell
such as yeast or insect cells must usually be used and the process
becomes considerably more complex.

Disulfide bond formation is also more difficult in bacteria,
although this may be overcome in most cases by selecting a bacterial
strain such as the Orgami cell line that have mutations in the
thioredoxin reductase and glutathione reductase genes, which cre-
ates an oxidative environment that greatly enhances disulfide bond
formation in the cytoplasm [60]. Expression can vary greatly for
different bacterial strains. For this reason, different specialized
strains of bacteria have been created to optimize the expression of
recombinant proteins. Most specialized bacterial strains for
expression start with the BL21 genetic background that is deficient
in the Ion and ompT proteases that can lead to improper cleavage
of the protein product. Other bacterial strains attempt to minimize
the difference in codon usage between the natural codon usage of
the bacteria and the codon usage required to express the protein.

Recombinant expression of proteins can lead to a high demand
for specific tRNAs that are normally produced in only small
amounts by the bacteria. Depletion of these low abundance
tRNAs can cause translation to stall on the ribosome, leading to
premature release from the ribosome and the generation of
truncated versions of the protein [61]. From our studies [25, 58,
62], we recommend for routine use of the Rosetta 2 bacterial cell
line that combines the protease mutations found in the BL21 strain
along with additional modifications that allow the bacteria to gen-
erate low abundance tRNAs more efficiently and mutations that
allow tunable expression through mutations in the Lac permease
gene (see below). However, alternate strains may be considered in
certain situations such as the Rosetta-gami strain, which adds the
disulfide-bond promoting mutations of the Orgami strain to the
Rosetta background.

2.4.3 Selection

of Expression Vector

Once the host cell is selected, the next step is to create the vector
that introduces the foreign DNA into host cell. This is typically a
bacterial plasmid that contains several elements besides the DNA
encoding the target protein. The first element is a gene for antibi-
otic resistance which provides a growth selection mechanism for
discovery; only those bacteria that have incorporated the plasmid
into their genome can grow in the presence of the antibiotic. The
second is the promoter system, which ties the expression of the
target protein to another protein whose expression is essential for
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the cell and whose expression can be readily induced at a specific
time. Triggering expression at a specific time is essential as bacteria
continue to grow during incubation and the time at which the
protein is lysed determines the overall yield and final purity of the
product. If the cell density is too low, the yield of expressed protein
is naturally low. On the other hand, too high of cell density can also
result in decreased yields and purity from loss of the plasmid from
the bacteria [63], metabolism of the antibiotic within the medium,
and death of the bacteria from lack of dissolved oxygen [64].
Typically, this is done through the use of the Lac operon, in
which protein expression can be induced at a specific time period
during growth with the lactose analog isopropyl β-D-1-thiogalacto-
pyranoside (IPTG).

2.4.4 Purification

of Expressed Protein

Once expressed, the expressed protein still needs to be purified
from the other proteins in the bacterial cell. Although this may be
accomplished using the sequence of the designed protein without
modification using multiple steps of column chromatography, it is
easier to fuse the designed sequence to other protein domains to
make purification easier. In many cases, the expressed protein is not
soluble at the very high concentrations generated during expres-
sion. In this situation, the expressed protein accumulates in an
insoluble form in the bacteria as particles known as inclusion bod-
ies. The formation of inclusion bodies can make purification easier
or more difficult. The inclusion bodies generally contain the
expressed protein in highly pure form with only a small amount
of the other proteins of the host cell mixed in, a clear advantage for
the purification process. On the other hand, proteins within inclu-
sion bodies must be first disaggregated and then refolded with urea,
which may prove a difficult process [65]. If the stability of the
protein is unknown, such as the case with designed proteins, it is
often easier to try to purify already folded, soluble proteins.

To enhance the solubility of proteins during purification, a
solubility tag such as the Mocr domain [66] can be fused to the
target protein. This domain is usually fused N-terminal to the
designed sequence. Since it is localized to the N-terminus, the
Mocr domain is therefore synthesized first and folds into its native
form before the translation of the designed sequence, stabilizing
the designed domain’s folding process. Moreover, the high nega-
tive charge on the Mocr domain increases the solubility during the
purification process by preventing self-association by electrostatic
repulsion. Along with the solubility tag, another sequence that
specifically binds a particular column can be incorporated to assist
purification. A common choice is the His tag, six consecutive
histidine residues that strongly bind nickel (Ni) columns. A prote-
ase cleavage site is often placed between the Mocr domain with the
His tag and the sequence of the designed protein so that the two

Evolutionary Approach to Protein Design 255



domains can be separated. The expressed protein with the Mocr/
His tag will bind the Ni column; most other bacterial proteins will
not. The Mocr/His domain is then cleaved from the target
sequence by the addition of a protease specific to the cleavage site
and passed through the Ni column again. This time, the target
protein does not bind the Ni column but all other nickel-binding
proteins will remain bound to the column. The end result of this
process is a highly pure protein in a soluble form.

2.4.5 Confirmation

of Protein Solubility

In addition to adopting a stable folded conformation, many pro-
teins must be soluble in water to perform their biological function.
This requirement constrains the design process, as sequences that
are optimized only for stability of the folded conformation may not
be optimized for solubility. A key advantage of the EvoDesign
method is that the structural profiles implicitly include all the
constraints involved in determining the sequences that are compat-
ible with a specific fold, not just those concerned with fold stability.
As a result, sequences designed by EvoDesign are significantly more
native-like in composition than those designed by physics only
methods [25], which tend to overemphasize hydrophobic residues
on the surface more than is found in native proteins [20, 38, 67].
Consequently, aggregation by the coalescence of exposed hydro-
phobic patches is a common source of failure in physics-based
design [20].

As aggregation generally makes a protein useless for most
applications, the oligomeric state of the protein should be deter-
mined before proceeding at the highest concentration used for the
other biophysical experiments. Typically, this is around 100 μM for
a 100-residue domain. The limiting factor is usually sensitivity of
the 1D NMR experiment for tertiary structure estimation and
sensitivity of the urea denaturation experiment used for the deter-
mination of protein stability (see Note 2). An approximate concen-
tration range may be established by measuring the signal-to-noise
ratio at different concentrations of the native protein. The signal of
both experiments is actually more sensitive to the total concentra-
tion by weight than the molar concentration. The 100 μM value
may need to be adjusted upward or downward for proteins signifi-
cantly shorter or longer than 100 residues.

The presence of aggregation is most readily determined quan-
titatively by dynamic light scattering, which measures the hydrody-
namic radius of proteins in solution, or from a correctly calibrated
analytical size exclusion column. In the absence of either instru-
ment, aggregation may be measured semiquantitatively by the
absorbance at 400 nm. At this wavelength range, the protein does
not absorb light and increases in absorbance are due to Raleigh
scattering, which is proportional to the sixth power of the particle
radius. A comparison to the corresponding absorbance at 400 nm
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of the native protein provides a qualitative estimate of the amount
of aggregation in the sample (see Note 3).

2.4.6 Confirmation

of Structural Fidelity

X-ray crystallography remains the gold standard for confirming
whether a protein design has the desired structure. However, not
all well-folded proteins crystallize and the expense of X-ray crystal-
lography severely restricts the number of designs that can be stud-
ied. From a functional perspective, absolute structural fidelity is not
necessary in many cases and small changes on the atomic scale are
tolerated if the protein is stable, soluble, and functional. To test a
larger number of sequences, faster low-resolution biophysical tech-
niques can be used to eliminate obviously badly designed sequences
[68, 69].

2.4.7 Confirmation

of Secondary Structure

Secondary structure is the most basic building block of protein
structure. The existence of severely incorrect secondary structure
in the designed protein therefore very strongly implicates a failed
design. Since each secondary structure element (α-helix, β-sheet,
and random coil) has a distinct circular dichroism (CD) spectra, the
relative fractions of each in a protein can be estimated from a CD
spectra by fitting to a reference set of proteins with known CD
spectra and secondary structure [70]. The accuracy of this proce-
dure is typically around �5 %, with α-helical content determined
more precisely than either random coil or beta sheet content. If
available, infrared (IR) spectra can also be used in a similar manner
to characterize the secondary structure, as it has been shown that
IR and CD are largely complementary and a combination of the
two techniques gives a more accurate picture of the secondary
structure than either technique alone [71].

2.4.8 Confirmation

of Existence of Tertiary

Structure

The existence of tertiary structure has traditionally been defined in
a qualitative way from the appearance of the 1D 1HNMR spectra of
the protein. A protein that is poorly folded, without extensive
contacts within the protein core, has a distinctive 1D NMR spectra
characterized by the lack of highly shielded peaks in the region of
the spectra from �1 to 0.5 ppm and poor dispersion of the signal
within the amide region (see Fig. 5) [72, 73]. While this method is
standard in the protein design field [68, 69], it is subjective and
qualitative. A more objective and quantitative method is to use the
autocorrelation of a 1D 1H [74] or unassigned 3D 15N NOESY-
HSQC NMR spectrum [75], which have been shown to accurately
distinguish folded and unfolded proteins. A comparison of the
binding of the dye SYPROOrange, which binds to exposed hydro-
phobic surfaces, to the native sequence can provide an additional
test for a misfolded protein structure [76].

2.4.9 Confirmation

of Fold Stability

The free energy of folding can be measured using chemical dena-
turation with urea, with denaturation measured by the decrease in
secondary structure as determined by CD [25]. As the
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concentration of urea is increased, the protein unfolds, in most
cases by a two-step process without a significant population of
partially unfolded intermediates. The first step of determining the
stability is to measure the CD signal without denaturant (CDfolded),
where it is assumed to be completely folded, and at a high concen-
tration of denaturant, where it is assumed to be completely folded
(CDunfolded). If unfolding is a two-step process, the CD signal as a
function of the urea concentration is [77]:

CD ureað Þ ¼ f unfolded ureað ÞCDunfolded þ f folded ureað ÞCDfolded; ð5Þ
where ffolded(urea) and funfolded(urea) refer to the fractions of
folded and unfolded proteins respectively, at a given urea concen-
tration. Since the equilibrium constant can be calculated directly
from fraction of folded and unfolded proteins, the Gibbs free

Fig. 5 NMR spectra of folded (with asterisk) and unfolded designed proteins. The
folded designs have a wider range of chemical shift values in the amide region of
the spectrum (7–10 ppm) and have chemical shift values below 0.5 ppm
indicating side-chains strongly shielded from solvent, as would be expected in
a well-packed protein core
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energy of unfolding can be calculated for each urea concentration
[77]:

K ureað Þ ¼ f unfolded ureað Þ
1� f unfolded ureað Þ ð6Þ

ΔG ureað Þ ¼ �RT ln K ureað Þ ¼ �RT ln
f unfolded ureað Þ

1� f unfolded ureað Þ
� �

ð7Þ

The relevant free energy is the free energy of unfolding in the
absence of denaturant, which can be obtained by linear extrapola-
tion of the free energy to zero urea concentration.

3 Conclusions

Using an evolution-based approach, we have successfully designed,
expressed, and experimentally characterized a number of single
domain proteins [25, 58]. In the first benchmark test, we used
EvoDesign to redesign 87 globular proteins randomly collected
from the PISCES server. I-TASSER was then used to test the
fidelity of the predicted structure to the target. Although all homol-
ogous templates have been excluded from the I-TASSER template
library, out of the 87 designed sequences, 80 % were predicted to
fold to structure with an RMSD of <2.0 Å to the target scaffold,
and 42.5 % were predicted to fold to an essentially identical struc-
ture with an RMSD < 1.0 Å. This was a clear difference from
designed sequences created using only the FoldX force field, for
which only 54 % of the predicted structures have an RMSD < 2.0 Å
to the target structure, and only 31 % have an RMSD < 1.0 Å.

In a separate test, we redesigned five globular proteins by
EvoDesign and used the experimental validation procedures
described in Subheading 2.4 to confirm the success of the designs.
All five proteins were successfully expressed using the expression
system in Subheading 2.4.3 and were soluble to at least 70 μM.
Further, all five designed proteins have secondary structure consis-
tent with the target protein (<12 % difference). Three out of the
five had a compact tertiary structure confirmed by NMR (Subhead-
ing 2.4.8, Fig. 5), for an overall success rate of 60 %. One of the
three, the Phox homology domain of the cytokine-independent
survival kinase (CISK-PX), could be crystallized and its structure
compared to the native protein [78]. Despite having only 32 %
sequence identity, the structure of the designed protein showed a
very close similarity to the target with a RMSD of 1.54 Å and a TM
score of 0.90 to the target template. The RMSD and TM score
between the I-TASSER model and the X-ray crystal structure of
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CISK-PX are 1.32 Å and 0.91, respectively. Most of the difference
between the two structures was in a loop that is disordered in the
original structure.

Finally, we have shown that EvoDesign can be used to create
functional complexes for the X-linked inhibitor of apoptosis pro-
teins (XIAP) with improved properties by designing a peptide-
protein complex involved in apoptosis inhibition [58]. The XIAP
protein inhibits apotosis by binding caspase-9, an activity that is in
turn regulated by the second mitochondria-derived activator of
caspases (SMAC). The designed XIAP protein by EvoDesign
binds SMAC but does not possess affinity for caspase-9. As such,
the designed protein can serve as a SMAC sink, altering the normal
protein-protein interaction network involved in cell death. The
circular dichroism and isothermal calorimetry data showed that
the designed XIAP domain was more stable than WT-XIAP and
bound the SMAC derived peptide with a Kd of 167 � 67 nM,
which compares favorably with the 80 � 25 nM Kd found for
WT-XIAP. Interestingly, a designed version of XIAP with native
interface residues actually showed worse binding (Kd of 352 � 79
nM) and stability than the fully designed sequence, highlighting
the efficiency of evolution-based full protein design.

4 Notes

1. The distinction between these two questions becomes clear
when the nature of the benchmarks is considered. Due to the
experimental requirements of structure determination, the
benchmark test largely consists of proteins that can be success-
fully expressed, successfully purified, and are stable for a pro-
longed period of time at high concentration. In addition, the
protein also must be crystallized in the case of X-ray structures,
which is a rather severe restriction for proteins with large
unfolded regions as the disordered regions have poor crystal
contacts which interferes with the crystallization process [79].
Even if the protein can be crystallized, the disordered regions
will have poor electron density and will therefore not be resolved
in the structure. Similarly, the structure of unfolded proteins is
difficult to determine by NMR due to the lack of long-range
NOE constraints and poor chemical shift dispersion [80]. These
experimental constraints suggest that though the PDB library is
largely complete with respect to the possible universe of mono-
meric folded domains [81, 82], it is still biased toward compact
folded structures, as proteins that are intrinsically unstable or
unfolded are difficult to observe. The PDB library should there-
fore not be considered as completely representative of the con-
formational ensembles, folded or not, that all protein sequences
can adopt.
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2. The signal-to-noise ratio in an NMR experiment depends on a
number of factors including the field strength of the NMR
spectrometer (higher magnetic fields give higher resolution
spectra and hence higher signal-to-noise ratios), the size of the
protein (larger proteins give rise to broader signals), and other
factors such as conformational exchange (transitions between
conformations under certain timescales give rise broader sig-
nals). The signal-to-noise ratio in a CD spectrum also depends
on a variety of factors, including the transparency of the buffer in
the far UV region of the spectrum (180–260 nm), the path-
length of the cuvette, and the age of the xenon lamp used to
acquire the spectrum. Of these factors, the transparency of the
buffer usually has the most impact. A buffer strongly absorbing
in the UV serves as an inner filter that attenuates the incoming
light reaching the protein. Phosphate buffers are optimal for CD
due to their transparency in the far UV region of the spectrum,
although Tris buffers are nearly as good. Chloride ions absorb in
this region and the proteins in NaCl solutions should be dia-
lyzed against an equivalent of concentration of NaF. Finally,
many additives used to stabilize proteins, such as glycerol, argi-
nine, and Triton-X, absorb strongly in the UV and are incom-
patible with CD spectroscopy for this reason.

3. An alternative wavelength can be used if the protein possesses a
cofactor such as FAD or FMN that absorbs in the visible light
range.
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Chapter 13

Parallel Computational Protein Design

Yichao Zhou, Bruce R. Donald, and Jianyang Zeng

Abstract

Computational structure-based protein design (CSPD) is an important problem in computational biology,
which aims to design or improve a prescribed protein function based on a protein structure template. It
provides a practical tool for real-world protein engineering applications. A popular CSPD method that
guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination
(DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in
exponential time in the worst case, which may become the computation bottleneck of large-scale computa-
tional protein design process. To address this issue, we extend and add a new module to the OSPREY
program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013)
to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By
exploiting the modern GPU computational framework and optimizing the computation of the heuristic
function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude
speedups in large protein design cases with a small memory overhead comparing to the traditional A* search
algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be config-
ured to run in a bounded-memory mode to tackle the problems in which the conformation space is too
large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A*
algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer
pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer
(Hallen et al., Proteins 81:18–39, 2013) to also consider continuous backbone and side-chain flexibility.

Key words Protein design, A*, Dead-end elimination, GPGPU, CUDA, Parallel computing

1 Introduction

1.1 Structure-Based

Computational Protein

Design

Computational structure-based protein design (CSPD) is an impor-
tant task in computational biology. In this problem, we want to find
new amino acid sequences that have the prerequisite features to
perform certain desired functions by substituting a number of
residues from a wild-type protein structure with new amino acids.
CSPD has many exciting real-world applications in protein engi-
neering, such as design of protein–protein interactions [1], drug
design [2], drug resistance prediction [3, 4], vaccine development
[5, 6], and enzyme synthesis [7].

Ilan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
DOI 10.1007/978-1-4939-6637-0_13, © Springer Science+Business Media New York 2017
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The CSPD problem can be formulated into finding a sequence
of side-chain conformations based on a given energy function so
that the energy of the resulting protein structure is minimized.
Such an optimal solution is often called the global minimum energy
conformation (GMEC). In an ideal case, we hope to consider all
possible backbone positions and continuous side-chain conforma-
tions for searching the GMEC solution. However, it is almost
impossible to sample over all these parameters with high precision
because of the huge computational burden. Therefore, simplified
protein design models with reasonable assumptions are often used.
In practice, we often ignore the displacement of the backbone
structure to assume a rigid backbone, and limit the rotational
degrees of freedom of side-chain conformations to a set of common
discrete conformations, called rotamer library.

Having the rigid backbone structure and discrete side-chain
conformation assumptions, the protein design problem can be
formulated into a combinatorial optimization problem. Equation 1
defines the objective function of this problem:

ET Að Þ ¼ E0 þ
X
ir∈A

E1 irð Þ þ 1

2

X
ir∈A

X
j s∈A

E2 ir; j sð Þ; ð1Þ

where A represents a conformation in the search space, i.e., a set of
discrete side-chain rotamers of all residues, ET(A) represents the
total energy of conformationA, E0 represents the backbone energy,
E1(ir) represents the self-energy term of residue ir which is the sum
of its intra-energy and residue-to-backbone energy, and E2(ir, js)
represents the pairwise energy between rotamer ir and js.

Unfortunately, even under the rigid backbone and discrete
side-chain conformation assumptions, finding the GMEC solution
has still been proven as an NP-hard problem [8, 9], which means
that most likely there does not exists an algorithm that can guaran-
tee to solve it in polynomial time. The solutions to this issue can be
divided into two categories. One common scheme is to apply
heuristic algorithms in hopes of generating high-quality solutions
[10–13]. The weakness of this scheme is that these algorithms often
provide no guarantee of solution quality, as they may be trapped
into local optima.

The alternatives to the heuristic algorithms are the provable
algorithms, which can assure to output the GMEC solution.
Examples are integer linear programming [14], branch-and-
bound [15, 16], tree decomposition [17], dead-end elimination
[18, 19], and A* tree search [20–22]. Among them, the combina-
tion of dead-end elimination and A* tree search has been popularly
used to solve the design problem [23]. The major advantage of this
pipeline is that it not only guarantees to find the global minimum
energy conformation solution, but also is to output all the subopti-
mal solutions in a gap-free sorted order in an efficient way. This is an
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important feature because suboptimal solutions are necessary to
fight against the errors in the energy functions and from the
model assumptions (e.g., rigid backbone structure) for real-world
applications.

In our protein design pipeline, a set of predefined dead-end
elimination criteria [24, 25] is first applied to prune all the rotamers
that can be proved not to be in the GMEC solution. After that, A*
tree search algorithm is applied to traverse the remaining confor-
mation space to find the GMEC solution (and other suboptimal
solutions within a given energy cutoff from the GMEC solution).
Although A* search guided by an admissible heuristic function
usually only needs to visit a small portion of search space to find
the optimal solution, it can still run in exponential time in the
worst-case scenario due to the difficulty of this problem. Our tool
gOSPREY provides an effective method to address this computa-
tional bottleneck by fully exploiting the massively parallel compu-
tational power on the GPU platform to accelerate the
computational protein design process.

1.2 General-Purpose

Computing on a

Graphic Processing

Unit

In recent years, the general-purpose computing on a graphic pro-
cessing unit is becoming popular in numerous scientific computa-
tion scenarios. The main difference between a traditional CPU
computational framework and a GPU computation framework
lies in the way they deal with a computational task. CPUs are
often optimized to efficiently execute the input instructions one
by one with little parallelism, while GPUs are designed to process
thousands of similar tasks simultaneously in an efficient fashion.

Because of such design difference, each core of a GPU is
simpler and more efficient than that of a CPU. Therefore, the
overall throughput of a GPU platform can be much higher than a
CPU platform if the intrinsic parallelism has been fully exploited
[26, 27]. Furthermore, a GPU platform usually has its own mem-
ory system with high memory bandwidth that is independent of the
normal memory system used by the CPU platform. Such a design
scheme may require data to be transferred back and forth between
CPU and GPU through a slow interface called the PCI-E bus. Our
algorithm implemented in gOSPREY is a pure GPU algorithm, thus
we only need to transfer the initial input data and the final output
results between CPU and GPU, in which the data transferring time
is generally a negligible overhead compared to the large amount of
time spent in the floating-point arithmetic operations require by A*
search.
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2 Materials

2.1 Hardware gOSPREY requires a NVIDIA’s CUDA-capable GPU to enable its
GPU acceleration feature. The minimum requirement of the
CUDA compute-capability of the GPU is version 1.2.

2.2 Software Currently gOSPREY depends on the following software
environment:

l Linux operation system.

l NVIDIA CUDA SDK.

l Java Development Kit 1.7.

l gcc-4.7 or newer.

l CMake 2.8 or newer.

2.3 Installation In order to install gOSPREY, the user needs to enter the working
directory and execute the following commands:

$ git clone https://github.com/zhou13/gOSPREY.git

$ cd gOSPREY

$ mkdir build

$ cd build

$ cmake -DCMAKE_INSTALL_PREFIX¼/usr ..

$ make

$ sudo make install

After that, if everything goes smoothly, the user should be able
to find that osprey.jar has been generated under the build
directory and the library libMSAStar.so has been installed to
the system’s library directory.

3 Methods

3.1 The Algorithm In order to find the global minimum energy conformation
(GMEC) solution, we often need to search over a large conforma-
tional space. To reduce the search space and speed up the design
process, our search scheme follows a popular protein design pipe-
line in the literature [20]: First, a set of dead-end elimination
criteria is applied to prune the rotamers that are provably not part
of the optimal solution and thus can significantly reduce the mag-
nitude of the search space. Then, a combinatorial optimization
algorithm, namely A* tree search, is used to traverse the remaining
conformational space and guarantees to find the GMEC solution.

In the traditional A*-based tree search algorithm for protein
design, an A* search tree is visited for searching the global optimal
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solution. An example of the A* search tree is shown in Fig. 1a. Each
internal node of the tree represents a partial conformation in which
the side-chain conformations of some residues have not been
decided yet, while each leaf node represents a full conformation,
in which the side-chain rotamer conformations of all residues have
been determined. Thus, computing the global minimum energy
conformation is equivalent to finding the leaf node with the mini-
mum energy function value in the last layer.

In order to traverse this search tree efficiently, the A* search
algorithm with an admissible heuristic function is usually used [28].
The traditional A* search algorithm uses a priority queue to decide
which node should be visited next. In the priority queue, nodes are
sorted according to the following heuristic function:

f xð Þ ¼ g xð Þ þ h xð Þ; ð2Þ
where g(x) represents the energy term among the residues that have
already been decided and h(x) represents the lower bound of the
energy term that involves the undecided residues. Intuitively, the
heuristic function f(x) provides a quantified estimation about
whether the children of node x have low energy values. Therefore,
A* search can give higher priority to these nodes with lower f(x)
values during the node expansion process. In our protein design
problem, the functions of g(x) and h(x) are defined as follows:

root
a b

a

a1 a2 a3

Priority
Queue

a

a2a1 a3

f(a1) f(a2) f(a3)

PUSH

EXTRACT

EXPAND

COMPUTE

PUSH

Fig. 1 An illustration of the traditional A* tree search algorithm. (a) An example of the A* search tree at a
certain time. Nodes in dark shade represent the nodes that have already been expanded and visited. Nodes in
light shade represent the frontier nodes which are stored in the priority queue and waiting to be expanded. The
node labeled with a is the node with minimum heuristic function value in the priority queue and thus is
currently being expended. (b) The workflow of the node expansion operation for current node a
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g xð Þ ¼ E0 þ
X

i∈D xð Þ
E1 isð Þ þ 1

2

X
i∈D xð Þ

X
j∈D xð Þ

E2 ir; j sð Þ

h xð Þ ¼
X

i∈U xð Þ
mins E1 isð Þ þ

X
j∈D xð Þ

E2 ir; j sð Þ þ
X

k∈U xð Þ
minuE2 is; kuð Þ

0
@

1
A;

ð3Þ
where D(x) represents the set of residues whose side-chain rotamer
conformations have already been decided and U(x) represents the
set of residues whose side-chain rotamer conformations are still
undecided.

In the A* search process, the root node is placed in the priority
queue initially. In each round, the A* algorithm extracts the node
with the minimum f(x) value, expands its child nodes, computes
their heuristic function values, and pushes them back to the priority
queue. These steps are repeated until a leaf node is extracted. If the
heuristic function is admissible, which is the case for Eq. 3, we can
prove that the A* search algorithm can find the global optimal
solution in our protein design problem [28]. Figure 1b gives an
example of the node expansion operation in the traditional A*
search algorithm.

From Fig. 1b, we know that the calculation of heuristic func-
tion f(x) for each expanded node is simply a series of independent
arithmetic operations, which can be directly parallelized on a GPU
platform. However, the degree of the parallelism is still limited by
the number of children for each node, which is equal to the number
of rotamers for each residue in the protein design problem. In
general, this number is far smaller than the number of cores in a
normal GPU processor, thus the parallelization of the heuristic
function calculation alone does not fully exploit the parallelism of
a GPU.

To further speedup the search process, gOSPREY creates
another level of parallelism to exploit the computational power of
a GPU platform. Instead of using only one priority queue to
perform node expansion, the parallel A* search algorithm allocates
hundreds of priority queues in parallel to accelerate the A* search
process. Figure 2 provides an example of the parallel node expan-
sion operations in our algorithm.

Our GPU-based A* search algorithm first launches k threads to
extract the nodes with the minimum f(·) values from k independent
priority queues in parallel, where k is a parameter that can be set by
the user. Then each thread expands the child nodes of each
extracted node in parallel. After that, the GPU-based A* algorithm
launches p threads to compute the heuristic function values for each
expanded node, where p is the number of total expanded nodes.
Finally, the algorithm launches k threads to push these expanded
nodes with the computed f(·) values back to the k priority queues.
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The parameter k can affect the performance of gOSPREY. If we
increase the value of k, we can further exploit the parallelism of the
GPU platform. However, it may also increase the number of nodes
that need to be expanded before finding the global optimal solu-
tion, which may lead to an extra memory overhead. In Subhead-
ing 3.3, we will provide a simple method to choose a suitable k for
individual GPU platforms.

3.2 Performance

Evaluation

Here, we cite the test results from [29] to show the performance of
our GPU-based protein design algorithm in gOSPREY. In this test,
we used the CPU Intel Xeon E5-1620 3.6 GHz with 16GB mem-
ory and the GPU Tesla K20c with 2496 CUDA cores and 4.8G
global memory. We evaluated both running time and memory
usage of gOSPREY on several native sequence recovery problems.
Figure 3 shows the comparison results between the traditional
single-thread CPU-based A* search algorithm and the massively
parallel GPU-based A* search algorithm implemented in gOSPREY.
For more details about the comparison results with other protein
design frameworks, please refer to the original paper [29].

As shown in Fig. 3, the GPU acceleration achieved by gOSPREY
was remarkable. Our GPU-based A* search algorithmwas about 40
times faster than the traditional single-thread A* search algorithm
on the large design problems. In addition, our benchmark tests
showed that the GPU-based A* search had good scalability.

root
a b

a

a1 a2

c

c1 c2

b

b1 b2 b3

Priority
Queue2

Priority
Queue1

Priority
Queue3

a b c

a1 b2 c2b1 c1a2 b3

f (a1) f (a2) f (b1) f (b2) f (b3) f (c1) f (c2)

PUSH

EXTRACT

EXPAND

COMPUTE

PUSH

Fig. 2 The illustration of the parallel node expansion operations in our parallel A* search algorithm. (a) An
example of the A* search tree at a certain time. The meaning of a is as same as that of Fig. 1a except that now
the algorithm is expanding nodes a, b, and c in parallel. The nodes labeled with a, b, and c are the nodes with
the minimum heuristic function values in their respective priority queues. (b) The workflow on how multiple
nodes are expanded simultaneously
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The larger the size of the problem, the more speedup that GPU-
based A* algorithm can achieve. For small design problems,
launching the GPU code and copying the input and output data
caused considerable overhead and thus the power of parallelism in
the GPU platform was not fully exploited.

The result about the memory overhead of our GPU-based
protein design algorithm was also promising. On small problems,
the GPU-based A* search algorithm with 4992 priority queues
used about six times more memory then the single-thread A*
implementation. However, when the magnitude of the problems
scaled up, the memory overhead gradually diminished. In the
largest problem, the massively parallel GPU-based A* search algo-
rithm only expanded 0.12 times more nodes than the CPU-based
algorithm. The significant improvement in running time and the
negligible memory overhead shown in this test made the GPU
acceleration in gOSPREY an appealing and practical tool for solving
the large protein design problems.

As shown in Fig. 3b, the GPU-based A* search algorithm with
4992 priority queues expanded more nodes than the A* search
algorithm with 768 priority queues. This meant that the number
of parallel priority queues should not be set to be too large, as this
may result in an unacceptable memory overhead. In the next sec-
tion, we will describe how to choose the appropriate number of
parallel priority queues based on the available hardware
environment.
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Fig. 3 Semi-log plots about the ratios of speedups and memory overhead of our GPU-based A* search
algorithm. The x axes represent the magnitude of the design problem, while the y axes of a and b represent
the ratios of speedups and memory overhead of our GPU-based algorithm comparing to the traditional
sequential A* search algorithm, respectively. The circle and square marks represent the results of our GPU-
based A* search algorithm with 768 and 4992 parallel priority queues, respectively
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3.3 Usage Examples As gOSPREY is built based on OSPREY originally developed from
the Donald lab [20], most of the configuration of gOSPREY is as
same as that of OSPREY. Therefore, in this section we will mainly
focus on the feature of gOSPREY, i.e., how to use the GPU acceler-
ation feature of gOSPREY. For the guide and tutorial about how to
set up other parameters, please refer to the original manual of
OSPREY which is stored in doc/manual.pdf.

1. The first thing that the user needs to do is to know the hardware
specification of the GPU system. This can be queried by a simple
program called deviceQuery in the NVIDIA CUDA Samples,
which is usually installedwith theCUDASDK.ThedeviceQuery
program can be found in $PATH_TO_CUDA_SAMPLE/1_Utili-
ties/deviceQuery. The user may need to compile it manually
using themake command.Here is anexampleof thedeviceQuery
result:

$ ./deviceQuery

deviceQuery Starting. . .

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla K20m"

CUDA Driver Version / Runtime Version 5.5 / 5.5

CUDA Capability Major/Minor version number: 3.5

Total amount of global memory: 5120

MBytes (5368512512 bytes)

(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores

GPU Clock rate: 706 MHz

(0.71 GHz)

Memory Clock rate: 2600 Mhz

Memory Bus Width: 320-bit

L2 Cache Size: 1310720

bytes

..........

Concurrent copy and kernel execution: Yes with 2

copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device PCI Bus ID / PCI location ID: 2 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with

device simultaneously) >

deviceQuery, CUDA Driver ¼ CUDART, CUDA Driver Version ¼ 5.5,

CUDA Runtime Version ¼ 5.5, NumDevs ¼ 1, Device0 ¼ Tesla K20m

Result ¼ PASS
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Here we need to care about:

(a) “(13) Multiprocessors, (192) CUDA Cores/MP” tells us
that this GPU has 13 multi-processors, and each of them
has 192 CUDA cores. In total, we have 13* 192¼2496
CUDA cores.

(b) “Total amount of global memory” tells us the size of the
global memory in the GPU.

2. The user also needs to configure the parameter files of gOSPREY
in order to use the GPU acceleration. An OSPREY workspace
usually contains three configuration files: KStar.cfg, System.
cfg, and DEE.cfg. For GPU acceleration, the user needs to
modify KStar.cfg. Here is a list of options that are new to
OSPREY and the user needs to append them to KStar.cfg:

enableAStarJava false

enableAStarNativeC false

enableAStarCUDA true

maxNativeCPUMemory 5032706048

maxNativeGPUMemory 5032706048

numGPUWorkGroup 26

numGPUWorkItem 192

numGPUWorkItem2 192

shrinkRatio 0.5

There are three different A* engines in the gOSPREY program:
enableAStarJava indicates whether the original Java A* engine
from OSPREY is enabled; enableAStarNativeC indicates
whether our A* engine with the optimized computation of the
heuristic function implemented in C programming language,
which should be hundreds of times faster than the original Java
A* engine, is enabled; enableAStarCUDA indicates whether our
GPU-based A* engine is enabled, the performance benchmark of
which is shown in Subheading 3.2.

In KStar.cfg, maxNativeCPUMemory and maxNativeG-
PUMemory set the maximum CPU and GPU memory that gOS-
PREY can occupy, respectively. For maxNativeGPUMemory, setting
the value to 80 % of the global memory size of the GPU indicated
by the deviceQuery program is a safe choice.

The parameters numGPUWorkGroup and numGPUWorkItem
together determine the number of parallel priority queues used in
gOSPREY. In most case, it is reasonable to set numGPUWorkItem to
be the number of CUDA cores per multi-processor. numGPU-
WorkGroup can be set to be one to two times the number of
multiprocessors in the GPU platform. Parameter numGPUWorkI-
tem2 determines the block size of CUDA when computing the
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heuristic functions in parallel. In general, it can be set to be the
same value as numGPUWorkItem.

Finally, shrinkRatio determines the fraction of frontier
nodes kept in the memory-bounded A* search. After the memory
occupied by the GPU-based A* search algorithm exceeds maxNa-
tiveCPUMemory or maxNativeGPUMemory, gOSPREY will dis-
card a percentage of unpromising nodes in the priority queues
depending on the value of shrinkRatio. Setting this parameter
to be less than 1 enables this feature so that A* can continue to run
even after the number of expanded nodes exceeds the global
memory.

4 Notes

1. Our GPU-based A* search algorithm can also output all the
suboptimal solutions within a given energy cutoff from the
GMEC solution in a gap-free sorted order, using the same
setting as in OSPREY [20].

2. gOSPREY can be combined with the iMinDEE [18] and DEE-
Per [30] to further consider continuous backbone and side-
chain flexibility, using the same framework as in OSPREY [20].

3. In gOSPREY, the GPU-based A* search algorithm only performs
the single-precision floating-point arithmetic operations and
typically runs for a limited period of time. Thus, the features of
NVIDIA’s expensive video cards Titan and Tesla, such as ECC
memory and high-performance double-precision floating-point
support, are not so useful to the program. Therefore, if the
budget is the main concern, the high-end GeForce GTX video
cards are a great choice for gOSPREY, and should have compara-
ble or even better performance than the expensive Tesla and
GeForce Titan cards.
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Chapter 14

BindML/BindMLþ: Detecting Protein-Protein Interaction
Interface Propensity from Amino Acid Substitution Patterns

Qing Wei, David La, and Daisuke Kihara

Abstract

Prediction of protein-protein interaction sites in a protein structure provides important information for
elucidating the mechanism of protein function and can also be useful in guiding a modeling or design
procedures of protein complex structures. Since prediction methods essentially assess the propensity of
amino acids that are likely to be part of a protein docking interface, they can help in designing protein-
protein interactions. Here, we introduce BindML and BindMLþ protein-protein interaction sites predic-
tion methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in
known protein-protein complexes using phylogenetic substitution models. BindMLþ is an extension of
BindML for distinguishing permanent and transient types of protein-protein interaction sites. We devel-
oped an interactive web-server that provides a convenient interface to assist in structural visualization of
protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of
interest. BindML and BindMLþ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/
bindml/plus/.

Key words Protein-protein interaction, Protein docking, Interface residues, Protein binding site
prediction, Bioinformatics, Protein interaction design, Protein interaction propensity

1 Introduction

Protein-protein interactions (PPIs) are critical for mediating many
biological functions in the cell. The plethora of knowledge divulged
by the complexity of new PPI networks are continuing to be
unraveled [1, 2] and tertiary structures of protein complexes
are progressively determined and accumulated in databases [3].
However, the rapid accumulation and availability of sequence and
structural data for individual proteins makes computational predic-
tion of PPIs, including protein docking structure prediction [4]
and prediction of PPI sites [5–7], invaluable for investigating a
large number of interacting proteins that do not have solved struc-
tures of complexes. PPI site prediction is useful in guiding protein
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docking prediction [8] and for artificially designing of protein-
protein interfaces [9].

We have previously developed BindML (Binding site prediction
by Maximum Likelihood), a method to predict protein-protein
interaction sites using phylogenetic substitution models [10].
BindML takes a protein structure and multiple sequence alignment
(MSA) information to predict protein-protein interaction sites of a
given protein surface. Protein-protein interaction site is predicted
based on amino acid substitutions observed at a local region around
a surface amino acid in question. Through a large performance
benchmark, we demonstrated that BindML performed favorably
against other existing methods.

Furthermore, we developed an extended framework named
BindMLþ [11], which utilizes mutation patterns specific for per-
manent and transient interaction sites to distinguish these two
types. Proteins interact with each other with different affinities for
specific functional reasons. Some protein pairs, for example oligo-
meric enzyme complex structures, interact tightly and permanently,
while other proteins that are involved in signaling pathways have a
mechanism for dissociation after binding, which helps to regulate
protein activity at specific times (transient interaction). Distinguish-
ing between the two interaction types provides clues for functions
of interacting proteins and has important implications for further-
ing the understanding of the functional diversity exhibited in PPI
networks. Being able to distinguish permanent and transient inter-
action will be the basis for controlling interaction affinity of design-
ing protein interactions.

BindML and BindMLþ are unique in that they use solely
interaction site specific mutation patterns, i.e., evolutionary infor-
mation, in comparison with existing methods that consider features
of amino acids, including physicochemical properties [12–15],
geometric features of surface shape [15, 16]. Our methods are
also unique among methods that use a MSA of a query protein to
identify structurally or functionally important regions, because
most of such methods are based on the traditional principle that
important regions of a protein are conserved in its MSA. BindML
and BindMLþ use mutation patterns observed in a MSA, i.e.,
regions in a MSA which do not exhibit apparent conservation and
identify hidden structures of mutation events in protein sequences.
In this sense, BindML and BindMLþ are in common in their
philosophy with correlated mutation analyses, which are used for
predicting physically contacting residues [17–19] or functional
residues [20] in proteins.

In this chapter, we present a web-based graphical user interface
for BindML and BindMLþ that assists in the prediction and struc-
tural visualization of protein-protein interactions sites. The web
server provides convenient interactive tools to help identify
protein-protein interaction site predictions and to intuitively locate
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and associate top scoring predictions to an evaluated protein
structure. BindML and BindMLþ are freely available online as
interactive web servers at http://kiharalab.org/bindml/ and
http://kiharalab.org/bindml/plus/.

2 Algorithms

In this section, we briefly explain the essence of the BindML [10]
and BindMLþ [11] algorithms. For more details, please refer to the
original papers.

2.1 BindML

Algorithm

A structure of the target protein in the PDB format and
corresponding MSA of its family including the target sequence
are taken as the input for the BindML algorithm (Fig. 1). The
main BindML algorithm starts with generating patches on the
protein surface. For each surface residue, a patch is defined as
neighboring residues within a 15.0 Å radius sphere. The β-carbon

Fig. 1 The steps of the BindML algorithm
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of a given amino acid (α-carbon is used for glycine) is selected as
the representative point when computing the distance between
amino acids. For a patch, all corresponding residues in MSA are
concatenated together. The essence of the BindML algorithm is to
concatenate surface amino acid residues in a surface patch into a
“mini-”MSA (a patch MSA) and judge whether the patch MSA is
more likely to occur at protein binding interface or not. A modified
version of the PHYML (ver. 2.4.5) program [21] computes the
likelihood that a patch MSA comes from protein binding interface
(PBI) and non-protein binding interface (NPBI) by constructing
phylogenetic trees using amino acid similarity matrices computed
for residues at PBI and NPBI, respectively. More concretely,
PHYML computes the likelihood of having the input patch MSA
following the PBI amino acid similarity matrix (Eq. 1) or NPBI
amino acid similarity matrix (Eq. 2) given the initial tree topology.
Finally, the difference of the likelihood under PBI and NPBI mod-
els provides a score used to predict PPI sites (Eq. 3). For a patch
MSA, Pi, which has residue i at the center,

LNPBI ¼ log Prob Pi, T
NPBI
i

�
�MNPBI

� �� � ð1Þ

LPBI ¼ log Prob Pi, T
PBI
i

�
�M PBI

� �� � ð2Þ

dL ¼ LNPBI � LPBI ð3Þ
where MNPBI and MPBI are the amino acid similarity matrices of
NPBI and PBI, respectively, and Ti

NPBI and Ti
PBI are tree generated

with MNPBI and MPBI, respectively, for the input patch MSA. The
distance likelihood (dL) score is the difference between the log
likelihood of the patch MSA being NPBI and PBI. Once all dL
scores are calculated, these scores are recast into Z-scores and
mapped to corresponding residues. Lower negative scores indicate
higher likelihood of PBI mutation patterns, while higher scores
show a smaller likelihood.

2.2 BindMLþ
Algorithm

BindMLþ is an extension of BindML, which further predicts
whether a predicted PBI site in a query protein performs permanent
or transient interaction (Fig. 2). The first step of BindMLþ is to
predict PBI in the protein surface using BindML as described in the
previous section. Then, in the subsequent step, the identified PBI
site is classified into either permanent or transient interface. In the
first step, once dL scores (Eq. 3) for all surface patches are calculated,
these scores are recast into Z-scores and a threshold (0 is used for the
website) is placed. A lower (negative) Z-score indicates larger likeli-
hood of PBImutation patterns. In BindMLþ, any center residue of a
patch with a score that is equal to or smaller than the given threshold
value is included in a PBI site for the subsequent step.
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Next, each predicted PBI residue is classified into either perma-
nent or transient, using an amino acid substitution matrix com-
puted fromMSAs observed at permanent interaction sites (PERM)
and another matrix computed from MSAs at transient interaction
sites (TRAN). These two matrices capture characteristic amino acid
substitution patterns at permanent and transient interaction sites,
respectively. Using these two matrices, similar to Eq. 2, the likeli-
hood that each patch-MSA centered at residue i in a predicted PBI
site is from permanent or transient interface (LPERM(i) and
LTRAN(i)) is computed, respectively, and the difference between
LPERM(i) and LTRAN(i) score, which is named the interface type
likelihood (tL) score, is computed:

tL ið Þ ¼ LPERM ið Þ � LTRAN ið Þ ð4Þ
For a residue with a tL Z-score above zero it is more likely to be
permanent, whereas a lower value below zero suggests that it is
more likely to be transient.

Then, BindMLþ will discriminate the interaction type of the
query protein into either the permanent or the transient type using
a logistic regression model (LRM). LRM is a binary classifier that
tries to fit a set of features using a logit function. Features used in
the LRM are based on the tL score and additional related scores of
residues at the predicted PBI site. For the details, please refer to the
original paper [11].

Fig. 2 The steps of BindMLþ algorithm
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3 Input and Output of the Servers

3.1 Input Data Both BindML and BindMLþ need four input data to execute.
Figure 3 shows the screen capture of the input windows at the
top page of BindML.

1. User’s email address: An email address is needed for receiving
notifications when a submission is processed and completed. An
email with the result page URL will be sent to this address.

2. A target PDB file: A query of BindML/BindMLþ is a protein
tertiary structure in the PDB format. The PDB file can contain
chains that are not the target of binding site prediction because
in the next step the chain ID of the target will be specified.

3. Specify a chain ID: users need to specify the chain ID in the PDB
file. If there are no chain IDs in your PDB, put the underscore
“_” instead.

4. Upload a MSA file: This is an optional input to use when users
want to use their ownMSA. AMSA file to upload must be in the
FASTA format and the query PDB sequence is needed to be
included in the MSA. Example input files are provided at the
bottom of the submission page. If the MSA filed is left empty,
the server will execute a search against the Pfam database [22].
Two Pfam databases will be searched. First, Pfam-A will be
searched and Pfam-B will only be searched when Pfam-A does
not return a match to the query protein sequence. If neither of
them matches, an HMMER search [23] will be used to include
weak matches from the Pfam database. Finally, the server auto-
matically generates the MSA with the MUSCLE multiple
sequence alignment program [24] using the full-length
sequences of proteins included in the retrieved Pfam profile.

Fig. 3 Input data submission window for BindML

284 Qing Wei et al.



3.2 Output Page

with Case Studies

After a submission, an email will be sent to the user when the
computation is completed, which includes a link to the result
page of the query. Computatation takes typically a few minutes
but can take longer depending mainly on the size (length) of the
query protein and the number of sequences in the MSA of the
query. Below we explain how the results are presented.

3.2.1 BindML Output

Page

The interactive BindML result page consists of an integrative
structural-level view and a residue-level table with associated pre-
diction scores (Fig. 4). The left panel shows the query protein
structure with the JSmol structure viewer (http://wiki.jmol.org/
index.php/Jmol_Javascript_Object), where residues are colored
based on the Z-score of the dL score (Eq. 3). The color ranges
from red to blue, where red indicates strong predictions of binding
site residues while blue represents residues predicted to be at non-
protein binding surface. To visualize prediction, the dL Z-score of
each residue is written at the B-factor column in the PDB file of the
query protein, and JSmol colors residues by reading the dL Z-score
as B-factor values. The modified PDB file can be downloaded. The
last line of the structure panel shows the MSA found for the query
protein in the Pfam database. The structure can be rotated and
zoomed in/out. All options of different visualization offered by
JSmol are available by right click on the structure panel.

Fig. 4 Example of result page of BindML. PDB entry, 4MDH chain A was used
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The right panel shows the detailed list of prediction scores for
each residue. Only surface residues are listed. The third row, the dL
score, corresponds to Eq. 3, and the final prediction is determined
using the dL Z-score. Predicted protein binding site residues, i.e.,
residues that have negative dL Z-scores, are highlighted in gray, and
those with a high confident score, i.e., dL Z-score < �2.0, are
colored in red. Amino acid residues in the first row can be clicked
and mapped on the left panel with a volume representation.

The example shown in Fig. 4 is the prediction computed for
cytoplasmic malate dehydrogenase, A-chain (PDB code: 4MDH).
The structure panel visualizes structures of a complex of chains A
and B that are contained in the PDB file, but the prediction was
computed only for chain A, the colored chain on the right-hand
side, without considering the docking conformation with chain B.
Apparently, the prediction captures protein binding interface resi-
dues of chain A very well with high confidence (red) and surface
residues that are not involved in interaction are correctly captured
(blue). The area under the curve (AUC) value of this prediction is
0.826. In the left panel, TYR17 is shown in a volume representation,
which was invoked by clicking the residue in the table. The MSA
used for this prediction is a Pfam entry, PF02866, as indicated at the
bottomof the left panel. Thematch of the query to the Pfam entry is
significant with a very low E-value of 2.0 � 10�50. The entry ID is
linked to its Pfam page where users can retrieve sequences in the
MSA and related information. PF02866 is aMSA for lactate/malate
dehydrogenase, alpha/beta C-terminal domain, which agrees with
the name of the query protein.

3.2.2 BindMLþ Output

Page

The BindMLþ result page essentially shares the same layout with
the BindML result page (Fig. 5). The additional information

Fig. 5 Example of BindMLþ prediction
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predicted by BindMLþ, prediction of permanent or transient inter-
actions, is shown in the twomore rows (tL score and tL Z-scores) in
the right-hand side table. As described in Subheading 2.2, pre-
dicted interface resisdues are classified into either permanent or
transent types by their tL Z-scores. Residues with tL Z-scores
greater than or equal to zero correpond to permanent binding
site predictions, while tL Z-scores below zero represent transient
binding site predictions. In the table, predicted protein binding site
residues, which have negative dL Z-score values, are shown in gray
columns. When the binding site predictions are confident (dL
Z-score < �2.0), letters in the colums are colored in the same
way as the BindML output page. Classification of permanent and
transient interactions for residues at predicted binding sites (i.e.,
those highlighted in gray columns) is colored with red or blue, for
permanent or transient interactions, respectively.

The top of the BindMLþ result page shows the overall predic-
tion of interaction types, either permanent or transient with a
confidence score. Note that this overall classification of interaction
is computed using information of predicted interaction types of
individual residues thus, it is possible that individual residues have
different predicted types than the overall interaction type. The
overall classification has a score that ranges from 0.0 to 1.0 with
1.0 being the highest confidence. This score is based on the output
of the logistic regression used in the interaction type classification.

In a BindMLþ page, the structural view on the left of the page
visualizes predicted interaction types of individual residues in col-
ors, permanent (red) to transient (blue), according to the tL
Z-score in the table. The source of the visualized structure in the
PDB format, which can be downloaded, has the predicted binding
interface scores (dL Z-scores) mapped to the B-Factors and the
interaction type score, tL Z-scores, mapped to the occupancy field.

The protein used as an example in Fig. 5 is staphostatin-
staphopain complex (PDB ID: 1pxv). This protein has a permanent
interaction. BindMLþ correctly predicted its interaction type as
permanent with a score of 0.274. The structure panel in Fig. 4
shows binding interface residues of staphostatin (chain on the left)
to its inhibitor, staphopain (smaller gray structure on the right side
of the complex), are almost all predicted to have permanent inter-
action (red), while the opposite side of the residues is predicted to
have transient interaction properties (blue). Ala283 is emphasized
in volume representation. This is a successful example of prediction
with the area under the curve (AUC) value of 0.84 for binding
residue prediction with 63 predicted binding interface residues out
of 73 predicted to have permanent interaction.
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4 Conclusion

BindML and BindMLþ provide prediction of residues at protein
binding interface for a query protein structure entirely from evolu-
tionary information embedded in the MSA of the protein. The
algorithms are based on a novel idea of constructing a phylogenetic
tree of mini-MSA of local surface regions of the query protein. The
performance of these two methods were rigorously benchmarked
and compared favorably with related existing methods [10, 11].
The methods can be applied for experimentally solved high-
resolution structures, computationally modeled structures, and
artificially designed proteins. Also, the methods will be useful in
designing protein-protein interactions at desired sites in the query
protein and controlling strength of interactions.
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Chapter 15

OSPREY Predicts Resistance Mutations Using Positive
and Negative Computational Protein Design

Adegoke Ojewole*, Anna Lowegard*, Pablo Gainza, Stephanie M. Reeve,
Ivelin Georgiev, Amy C. Anderson, and Bruce R. Donald

Abstract

Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both
existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases
of drug development would enable the design of novel antibiotics that are robust against not only known
resistant mutants, but also against those that have not yet been clinically observed. Computational
structure-based protein design (CSPD) is a transformative field that enables the prediction of protein
sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of
CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational
protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749–754, 2015), we used
our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict
resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-
resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competi-
tive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since
that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of
backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous
rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-
mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a
protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a
combination of positive and negative design to predict active site escape mutations that maintain the
enzyme’s catalytic function but selectively ablate binding of an inhibitor.

Key words OSPREY, Computational protein design, Positive and negative design, Antibiotic resis-
tance prediction
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1 Introduction

Antibiotic resistance is an unfortunate consequence of evolutionary
pressures on drug targets. In particular, selective pressures from
competitive inhibitors that target enzymes elicit single nucleotide
polymorphisms that give rise to amino acid changes that preserve
catalytic function in the target but disrupt inhibitor binding. Dihy-
drofolate reductase (DHFR) in Staphylococcus aureus is a clinically
important example of this mode of resistance. A single amino acid
polymorphism in DHFR confers resistance to trimethoprim, a
commonly prescribed antibiotic [1]. This and other drug-resistant
strains—collectively referred to as methicillin-resistant Staphylococ-
cus aureus (MRSA)—cause pneumonia as well as skin, bloodstream,
and surgical site infections. Additional mutations in MRSA DHFR
(SaDHFR) result in even higher levels of drug resistance.

Successfully predicting resistance-conferring SaDHFR muta-
tions before they emerge can enable the development of more
robust inhibitors. However, because 20 amino acids can occur at
every residue position, the combinatorially large number of candi-
date sequences that must be evaluated for resistance far exceeds the
capabilities of current experimental methods. Fortunately, compu-
tational structure-based protein design (CSPD) is a practical alter-
native strategy to predict drug resistance over a large set of
mutations.

OSPREY (Open Source Protein REdesign for You) [2, 3, 4, 5, 6,
7, 8, 9] is a state-of-the-art, free, and open source suite of compu-
tational protein design algorithms. To date, a number of research
groups have successfully used OSPREY to perform biomedically
important protein designs. For example, we previously used OSPREY

to predict escape mutations in SaDHFR that confer resistance to a
lead inhibitor [10]. More recently, we used OSPREY to predict escape
mutations that grant SaDHFR resistance to a different experimen-
tal inhibitor, compound 1; we showed that two novel, predicted
mutants (V31L and V31G) were selected in resistance selection
experiments along with an additional compensating mutation
(F98Y) [11]. Additionally, we used OSPREY to alter the specificity
of Gramicidin S Synthetase A [12, 13], to design epitope-specific
HIV antibody probes [14], to design peptides to inhibit the inter-
action between the protein CAL and cystic fibrosis transmembrane
conductance regulator (CFTR) [15], and to screen inhibitors of a
leukemia-associated protein–protein interaction [16]. Further-
more, the Vaccine Research Center (VRC) used OSPREY to design
HIV antibodies that are easier to induce [17]. In [18], we collabo-
rated with the VRC to use OSPREY to design broader and more
potent anti-HIV antibodies. Finally, Bailey-Kellogg and colleagues
used OSPREY to optimize stability and immunogenicity of therapeu-
tic proteins [19, 20, 21].
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OSPREY is based on the following principles:

(a) Accurate modeling of flexibility in the protein (backbone and
side-chains) and ligand captures conformational changes
induced by amino acid mutations. Other CSPD algorithms
typically represent amino acid side-chain rotational isomers
(rotamers) as discrete points in χ-angle space, resulting in
sub-optimal design predictions [4, 6]. OSPREY overcomes the
limitations imposed by discrete rotamers by implementing
continuous rotamers: continuous regions of χ-angle space
that more accurately reflect empirically observed side-chain
placements [2, 4, 15]. In contrast to protein designs using
discrete rotamers, those using continuous rotamers find
lower energy conformations and different sequences, leading
to more accurate biological predictions [4, 6].

(b) Ensemble-based design enables more accurate predictions of
binding free energy. Traditional protein design methods
focus on locating the global minimum energy conformation
(GMEC). However, a protein in solution exists not as a single
low-energy structure but as a thermodynamic ensemble of
conformations. Since a thermodynamic ensemble of low-
energy conformations governs protein-ligand binding [22],
models that only consider the GMECmay incorrectly predict
binding [15]. OSPREY improves upon GMEC-based protein
design by using the K∗ algorithm [2, 3], which efficiently
approximates the association constant, Ka, of a protein-
ligand complex using structural ensembles. In particular,
K∗ only considers the most probable low-energy conforma-
tions and discards the high energy conformations that are
rarely populated by either the protein or the ligand.

(c) Mathematical guarantees of accuracy. Because CSPD algo-
rithms must search vast sequence and conformation spaces,
computational complexity remains a limiting factor in pro-
tein design. Accordingly, CSPD programs must rely on a
simplified input model, which defines a computationally
tractable simplification of the protein design space. Briefly,
the input model consists of the initial protein structure(s),
the permitted set of mutations to the wild type structure, the
allowed protein flexibility, and an energy function to rank the
generated conformations. Nevertheless, protein design
remains NP-hard [23]. Because of this complexity, heuristic
search methods based on stochastic optimization, such as
Monte Carlo [24, 25], are often used. However, these meth-
ods cannot guarantee to find the lowest energy conforma-
tions nor sequences. In contrast, OSPREY uses provable
algorithms to determine the lowest energy conformations
satisfying the input model. As a consequence, OSPREY
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determines protein sequences that satisfy the design objective
with mathematical guarantees of accuracy (up to the accuracy
of the input model). Crucially, this means that discrepancies
between experimental results and predictions by OSPREY are
attributable solely to errors in the input model; when using
OSPREY any such discrepancies are substantially easier to
resolve by making corrections to the input model. On the
other hand, the causes of erroneous design predictions are
much more difficult to ascertain when using heuristic
methods.

Below, we describe the specific application of OSPREY to predict
novel, viable resistance mutations that arise in SaDHFR in response
to our novel propargyl-linked antifolate inhibitor, compound 1
(Fig. 1a) [26, 11]. The combination of positive and negative design
(to maintain native substrate binding and to abrogate inhibitor
binding, respectively) in OSPREY is sufficient to predict novel escape
mutations in this system (Fig. 1b, c). We use this specific example
to illustrate the more general problem of predicting resistance in
drug targets in other systems. These extensions may require the

Fig. 1 Positive design to maintain SaDHFR:dihydrofolate binding and negative design to destabilize SaDHFR:
compound 1 binding using OSPREY. (a ) Compound 1, an experimental SaDHFR inhibitor. (b ) OSPREY positive
design objective. OSPREY predicts mutations (pink) of SaDHFR (gray) that maintain binding of dihydrofolate
(green) in the SaDHFR active site. These mutations allow SaDHFR to preserve its catalytic activity. The co-
factor NADPH is shown in black. (c ) OSPREY negative design objective. OSPREY predicts mutations that destabilize
the binding of an inhibitor (compound 1) to SaDHFR. OSPREY predicts SaDHFR candidate escape mutations that
bind dihydrofolate but selectively disrupt binding of compound 1
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modeling of backbone flexibility [5], multi-state specificity [7],
faster energy functions [9], or efficient sparse approximations [8],
all of which are available in OSPREY.

We begin with a detailed description of the input model for
OSPREY’s positive and negative design steps. The input model consists
of 3D structures (determined by nuclear magnetic resonance, X-ray
crystallography, or homology modeling), the allowable set
of mutations, protein and ligand flexibility parameters, and an energy
function (Fig. 2a, b). To predict candidate resistance mutations [i.e.,
those that bind SaDHFR’s natural substrate but not compound 1
(Fig. 1a)], we perform positive (Fig. 2a) and negative (Fig. 2b)
designs using structures of SaDHFR:dihydrofolate:NADPH and

Fig. 2 Processing of positive and negative design input models in OSPREY. (a ) Input model for positive design.
The 3D structure is a model of SaDHFR bound to dihydrofolate and NADPH. (b ) Input model for negative
design. The 3D structure is a model of SaDHFR bound to compound 1 (Fig. 1a) and NADPH. (c ) Pruning,
search, and ensemble scoring algorithms in OSPREY. (d ) iMinDEE continuous rotamer pruning removes rotamers
that provably do not belong to the ensemble of lowest energy conformations. (e ) A∗ conformation enumera-
tion generates an ensemble of conformations in a gap-free, energetically increasing order. (f ) K∗ ensemble
scoring approximates Boltzmann-weighted partition functions for the bound and unbound states and subse-
quently approximates the association constant, Ka, with mathematical guarantees of accuracy relative to the
input model. (g ) Prediction of resistance mutations in OSPREY. (Top Left) Positive design K∗ scores, K+

∗,
generated by OSPREY for each sequence. (Top Right) Negative design K∗ scores, K�

∗, generated by OSPREY for
each sequence. (Middle) A ratio of the positive design score to the negative design score, K∗

þ=K�
∗, for each

sequence. (Bottom) Sequences are sorted in decreasing order of K∗ score ratios. The top predicted mutants,
which have the highest ratio of scores, are evaluated experimentally
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SaDHFR:compound 1:NADPH, respectively. Since crystal struc-
tures of these complexes were unavailable, we created the respective
homology models from [1] and PDB ID 3FQC [27]. Having con-
structed these models, we considered a sequence space consisting of
the most prevalent modes of mutational resistance: single nucleotide
polymorphisms to active site residues [28]. These residues are also
subject to OSPREY’s flexibility model, which specifies the empirically
determined set of energetically favorable protein side-chain and
ligand rotational isomers in a rotamer library [29]. For improved
prediction accuracy, OSPREY’s continuous rotamer model extends this
rigid definition of a rotamer to a bounded, yet continuously flexible
region of side-chain conformation space [4]. Ligands (dihydrofolate
and compound 1), which are also modeled using continuous rota-
mers, are further allowed rigid body rotational and translational
degrees of freedom within the active site. Together, the 3D struc-
tures, allowable mutations, and protein and ligand flexibility para-
meters define the conformation space for all candidate resistant
mutants. The fourth component of the input model, a computation-
ally efficient all-atom residue-pairwise energy function, is used to
evaluate structures in this conformation space. Several energy func-
tions are available in OSPREY [6], but usually, and for this example, the
energy function consists of the Amber96 [30] energy function for
van der Waals, electrostatic, and dihedral energies and the EEF1
solvation model [31].

Having presented the components of the input model, we now
describe the use of OSPREY to predict novel SaDHFR escape muta-
tions. For each mutation defined in the input model, OSPREY per-
forms a positive design step to predict the mutant’s binding affinity
for SaDHFR’s natural substrate (dihydrofolate) and a negative
design step to predict its affinity for compound 1. Mutants with
both tight binding affinity for dihydrofolate and poor binding
affinity for compound 1 are selected as the best candidate mutants.
We discuss OSPREY’s procedure to predict binding affinity below.

Positive design and negative design are performed and scored
separately for each candidate mutant using the iMinDEE [4], A∗

[2, 32], and K∗ [2, 3, 15] algorithms in OSPREY (Fig. 2c). In a pre-
processing step, the iMinDEE algorithm (Fig. 2d) efficiently
prunes rotamers that are provably incompatible with the ensemble
of lowest energy conformations. Importantly, iMinDEE extends
the provable guarantees of the original dead-end elimination algo-
rithms [33, 34] to OSPREY’s continuous rotamer model, allowing
both biophysically accurate protein modeling and an exponential
reduction in the size of the conformation space. Subsequently, the
A∗ algorithm (Fig. 2e) enumerates the remaining conformations
in gap-free energetically increasing order, starting from the global
minimum energy conformation (GMEC). The K∗ module
(Fig. 2f) of OSPREY approximates a Boltzmann-weighted partition
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function, q, from this energetically ordered ensemble, S, of
conformations:

q ¼
X

s2S
expð�Es=RT Þ

where Es is the energy of conformation s 2 S, T is the temperature
in Kelvin, and R is the gas constant. To efficiently approximate the
full partition function q defined over all conformations in S, K∗

halts A∗ conformation enumeration when the partial partition
function q∗, computed from the ensemble of lowest energy con-
formations in S, is provably within a factor εof q. The user specifies ε
ahead of time as part of the input model. In practice, K∗ achieves a
provably accurate ε-approximation to q using only a small fraction
of the lowest energy conformations in S. Subsequently K∗ approx-
imates the association constant,Ka, for a protein-ligand complex as
the ratio of ε-approximated partition functions for the bound and
unbound states:

q∗PL
q∗P q

∗
L

where PL, P, and L represent the protein-ligand complex, the
unbound protein, and unbound ligand, respectively. For each can-
didate mutant, separate positive and negative design K∗ scores are
computed (Fig. 2g, Top). Since a higher K∗ score denotes tighter
predicted binding affinity, a resistant mutant would have a high
positive design score (for dihydrofolate) and a low negative design
score (for compound 1). Therefore, mutants were ranked by their
ratio of positive to negative design scores. Mutants with both a
higher rank than the wild type and a good positive design score
relative to the wild type were considered candidate resistant
mutants. Among this set of mutants, a higher ratio of scores indi-
cates a greater degree of predicted resistance to compound 1
(Fig. 2g, Middle). On the other hand, mutants such as L20F,
which have high positive to negative design score ratios but low
positive design scores, are not considered viable, due to low pre-
dicted affinity for dihydrofolate. The top-ranked predicted resis-
tance mutations according to our protocol were recommended for
creation and experimental testing.

In summary, we combined positive and negative protein design
with the state-of-the-art algorithms in OSPREY to predict viable
mutations in SaDHFR that confer resistance to our potent com-
petitive inhibitors [11, 26]. Table 1 shows predictions and experi-
mental characterizations for wild type SaDHFR (Sa(WT)DHFR)
and OSPREY’s four top-ranked resistance mutations. Each of these
mutants (V31L, V31I, L5I, and L5V) had not only higher positive
to negative design K∗ score ratios than Sa(WT)DHFR, but also a
comparable or tighter predicted binding affinity for dihydrofolate
than Sa(WT)DHFR. To test our top resistance predictions, we
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created these SaDHFR SNP mutants using site-directed mutagen-
esis. An evaluation of Michaelis–Menten kinetics confirmed that
our top four predicted mutant enzymes are catalytically competent,
exhibiting small losses in kcat/ KM. Furthermore, the resistance of
our top four mutants, as measured by fold loss in Ki relative to the
wild type, correlates perfectly with our predicted K∗ ratio rank (see
[11] for details).

Since these predictions were made in [11], we have substan-
tially improved OSPREY’s capabilities with the following algorithmic
enhancements: improved backbone flexibility [5], multi-state spec-
ificity [7], fast sparse approximations [8], partitioned rotamers for
improved energy bounds [35], and a computationally efficient
representation of molecular-mechanics and quantum-mechanical
energy functions [9]. In the following Materials and Methods
sections, with this system as an example, we present a protocol to
predict the same SaDHFR escape mutations using the most recent
release of OSPREY. The Methods section describes how to install and
set up OSPREY (Subheading 3.1), how to perform positive and
negative design in OSPREY (Subheading 3.2), how to predict resis-
tant mutants using OSPREY’s positive and negative design scores
(Subheading 3.3.1), and how to visualize the PDB files that repre-
sent OSPREY’s structural ensemble predictions (Subheading 3.3.2).
Importantly, the paradigm described here is applicable to the pre-
diction of novel escape mutations to any antibacterial, antiviral, or
antineoplastic drug. In all these cases, the combination of positive
and negative design in OSPREY can be used to model selective
pressure by inhibitors on other protein targets.

Table 1
K∗ resistance prediction (columns 1–5) and experimental characterization (columns 6–7) of wild type
and mutant SaDHFR enzymes from [11]

Enzyme

K∗

ratio
rank

K∗ positive-
to-negative
design ratio

K∗ positive
design
(dihydrofolate)
score

K∗ negative
design
(compound 1)
score kcat=K M

Fold loss
(K mut

i =K wt
i Þ

compound 1

Sa(WT)DHFR 18 1.96 E+06 7.16 E+42 3.66 E+36 6.1�0.3 N/A

Sa(V31L)DHFR 1 7.11 E+21 2.16 E+41 3.04 E+19 1.60�0.06 58

Sa(V31l)DHFR 2 5.95 E+21 4.87 E+36 8.18 E+14 1.74�0.07 36

Sa(L5l)DHFR 3 1.71 E+15 6.06 E+39 3.54 E+24 2.24�0.1 4.4

Sa(L5V)DHFR 4 1.16 E+14 4.01 E+44 3.44 E+30 1.8�0.1 1.9

298 Adegoke Ojewole et al.



2 Materials

2.1 Operating

System Environment

1. An operating system that supports the Java programming
language.

2. Java Runtime Environment (JRE) 7.0 or later.

3. Python version 2.7 (required for post-processing scripts).

2.2 Input Files The input files can be downloaded at: http://www.cs.duke.edu/
donaldlab/Supplementary/mimb2015/OSPREY-V2.2B-MIMB2
015.zip and consist of the following:

1. Homology model for positive design: structure of SaDHFR in
complex with dihydrofolate, SaDHFR:DHF:NADPH (see
Notes 1, 2, 3, and 4).

2. Homology model for negative design: structure of SaDHFR in
complex with compound 1, SaDHFR:compound 1:NADPH
(see Notes 1, 2, 3, and 4).

3. Two expanded amino acid rotamer libraries:

LovellRotamer-wt-pos.dat and LovellRotamer-wt-
neg.dat

4. Two generic rotamer libraries for non-amino acids:

GenericRotamers-fol.dat and GenericRotamers-
pye.dat for dihydrofolate and Compound1, respectively.

5. Shell scripts necessary to run software.

6. A Python script to analyze the output.

7. Other default data files also found in the OSPREY software package.

2.3 OSPREY Suite

of Algorithms

1. OSPREY 2.2 software package, available at
http://www.cs.duke.edu/donaldlab/osprey.php

2.4 Other Software 1. PyMOL 1.6 or later, available at

http://www.pymol.org/

2. AmberTools (see Note 3), available at

http://ambermd.org/AmberTools14-get.html

3 Methods

3.1 OSPREY

Installation

1. Download the OSPREY version 2.2 suite of protein design algo-
rithms (Subheading 2.3, item 1).

2. After downloading the OSPREY software package from the above
source, unzip the file to a desired location using the following
command:

# tar -xvfz OSPREY.tar.gz
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3. Next, add the third-party libraries provided with OSPREY to your
classpath:

# libpath¼/whatever/OSPREY/lib
# export CLASSPATH¼$CLASSPATH:$libpath/architec-ture-rules-3.0.0-M1.
jar:$libpath/commons-logging-1.1.1.jar:$libpath/colt-1.2.0.jar:$lib
path/commons-math3-3.0.jar:$libpath/commons-beanutils-1.6.jar:$libpath
/jdepend-2.9.1.jar:$libpath/commons-collections-2.1.jar:$libpath/jop
timizer.jar:$libpath/commons-digester-1.6.jar:$libpath/junit-3.8.1.
jar:$libpath/commons-io-1.4.jar:$libpath/log4j-1.2.14.jar:$libpath/
commons-lang-2.5.jar:$libpath/xml-apis-1.0.b2.jar

4. Now, change directories to the OSPREY directory and create a
new directory, bin.

5. Finally, change directories to the src directory and run the
following command:
# javac -d ../bin *.java

3.2 Design In this section, we describe how to run positive and negative design
in OSPREY. Nine active site residues were chosen to be continuously
flexible within 9∘ of the rotamers in the Penultimate Rotamer
Library [29] and mutable up to one nucleotide substitution: L5
{L/V/I/R/Q}, V6{V/A/L/I/F/D/G}, L20{L/V/I/F/S}, L28
{L/V/M/W/F/S}, V31{V/A/I/F/L/D/G}, T46{T/A/R/I/
K/S}, I50{I/V/L/M/F/N/S/T}, L54{L/R/Q/V}, and F92
{F/V/L/I/Y/S/C}. We also apply this flexibility model to rota-
mers of the ligands (i.e., dihydrofolate and compound 1), whose
motions also include rigid body translations and rotations in the
active site. To empirically determine a ligand rotamer library for
compound 1, we began by modeling roughly 10,000 of its binding
conformations to SaDHFR. Next, we used OSPREY’s MinDEE/A*
algorithm [2] to determine the lowest energy binding conforma-
tions beneath a steric threshold. This process yielded 1660 binding
poses for compound 1 (see GenericRotamers-pye.dat in the
OSPREY negative design directory in Subheading 3.2.1). The collec-
tion of mutable and flexible residues, including the ligands, resulted
in a total of 47 sequences. This set of sequences is used in the
following positive and negative designs.

3.2.1 Obtaining Input

Files for Design

1. Download the required files for this section, described in
Subheading 2.2.

2. Extract the file to create the project directory:

# unzip OSPREY-V2.2B-MIMB2015.zip

The base directory created is OSPREY-V2.2B-MIMB2015. Its
sub-directory, OSPREY-INPUT, is the parent directory for the posi-
tive design directory, OSPREY-INPUT/pos-design, and the neg-
ative design directory, OSPREY-INPUT/neg-design.
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3.2.2 Running Positive

Design in OSPREY

This section describes how to run the provided scripts (Subheading
2.2, item 5) to complete the positive design. The PDB file
pos-design.pdb (Subheading 2.2, item 1) consists of all amino
acids within an 8 Å radius of dihydrofolate, DHF (see Note 5).

1. Change to the directory where the files for positive design are
located:

OSPREY-INPUT/pos-design

2. Run the provided shell script for positive design.

#./runPositiveDesign.sh

3.2.3 Running Negative

Design in OSPREY

This section describes how to run the provided scripts (Subhead-
ing 2.2, item 5) to complete the negative design. The PDB file
neg-design.pdb (Subheading 2.2, item 2) consists of all amino
acids within an 8 Å radius of compound 1, PYE (see Note 5).

1. Change to the directory where the files for positive design are
located:

OSPREY-INPUT/negative-design

2. Run the provided shell script for negative design.

#./runNegativeDesign.sh

3.3 OSPREY Output

3.3.1 Predicting

Resistance from the Ratio

of OSPREY Positive to

Negative Design Scores

This section describes how to rank sequences by their predicted
resistance to compound 1. A python script is provided to complete
this process (Subheading 2.2, item 5).

1. Move to the OSPREY-INPUT directory.

2. Run the provided Python script:

# python summarizeResults.py

Each row of output is formatted as follows: mutation, positive
design score (log scale), negative design score (log scale), and ratio
of design scores (log scale). The mutations are ordered by increas-
ing order of score ratios. So, the mutation in the last line of the
output has the highest positive to negative design ratio. (SeeNote 6
for the interpretation of a positive or negative designK∗ score of 0).
From this list, the top candidate resistant mutants are those with
both a high positive design score (i.e., high predicted binding affinity
for dihydrofolate relative to the wild type) and a high positive to
negative design score ratio (see Note 7).

3.3.2 Structural Analysis

of OSPREY Output

The script in Subheading 3.3.1 ranks sequences by increasing order
of positive to negative design score ratios. Candidate resistant
mutants, which have high positive design scores and high score
ratios, can be identified visually in this list. Below, we describe how
to view the lowest energy structures from each sequence.

OSPREY Predicts Resistance Mutations Using Positive and Negative Computational. . . 301



After completing positive and negative design (Subhead-
ings 3.2, step 2 and 3.2, step 3) OSPREY outputs the PDB files for
the top ten conformations for each sequence. This section describes
these PDB files and how to view them. Each PDB file name takes on
one of the following formats:

n_aaaaaaaaa_0_m.pdb
n_X_1_m.pdb
n_aaaaaaaaaX_2_m.pdb

where n is an index assigned to each sequence andm is a three digit
number ranking one sequence’s set of ten conformations from
lowest to highest energy. Each string of a’s corresponds to an
amino acid sequence (e.g., LVLLVTILF). X represents the non-
amino acid ligand (i.e., dihydrofolate or compound 1). The first
format corresponds to SaDHFR unbound to the ligand (either
dihydrofolate for the positive design or compound 1 for the nega-
tive design). The second format corresponds to the ligand
unbound to SaDHFR. Finally, the third format corresponds to
SaDHFR in complex with the ligand.

1. Change directories into OSPREY/pos-design/ksConfs

This directory contains all of the PDB files output for the
positive design (Subheading 3.2, step 2).

2. Open and view the PDB files using PyMOL (Subheading 2.4,
item 1). Several files can be opened and viewed simultaneously.

3. Change directories into OSPREY/neg-design/ksConfs

This directory contains all of the PDB files output for the
positive design (Subheading 3.2, step 3).

4. Open and view the PDB files using PyMOL (Subheading 2.4,
item 1). Several files can be opened and viewed simultaneously.

4 Notes

1. In this example, we modeled the inputs for both the positive
and negative design steps from structures of related ligands
bound to SaDHFR. Other 3D protein structures (i.e., deter-
mined by NMR and X-ray crystallography) are also viable input
structures for OSPREY.

2. A structure of dihydrofolate (DHF) or compound 1 bound to
SaDHFR was not available when the original predictions were
made. As a result, the bound complex of SaDHFR:DHF:
NADPH (positive design) was modeled on the coordinates of
a single mutant Sa(F98Y)DHFR bound to folate and NADPH
[1]. (The structure upon which the model is based was not
deposited in the Protein Data Bank.) The structure for
SaDHFR:compound 1:NADPH (negative design) was
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modeled using the bound structure of a related SaDHFR
inhibitor (PDB ID 3FQC, [27]).

3. It is often necessary to alleviate steric clashes in the input
structures prior to running OSPREY. This is achieved by
performing an energy minimization step using AmberTools
(See Subheading 2.4, item 2). This process is detailed in the
Antechamber tutorial:

http://ambermd.org/tutorials/basic/tutorial4b/

4. To parameterize a non-protein compound in the input struc-
ture into an OSPREY-compatible format, replace the antechamber
command in the Antechamber Tutorial with the following
command:

# antechamber -i x.pdb -fi pdb -o x.prepi
-fo prepi -c bcc -s 2

and append the contents of output file x.prepi (where x is the
base name of the.pdb file containing only the coordinates of the
non-protein compound), starting from This is a remark
line, to the file all_nuc94_and_gr.in, which is part of
OSPREY’s input model. Next, create a file named

GenericRotamers.dat

to store rotamers for the compound. To determine rotamers
for the compound, open the structure in Pymol and use the
Wizard > Measurement tool in PyMOL (see Subheading 2.4,
item 1). Add rotamers in the format specified in the OSPREY

manual (see Note 8). Reference this file in System.cfg using
the grotFilei keyword.

5. To create an 8 Å shell of a protein for your own designs, use
PyMOL (see Subheading 2.4, item 1).

6. Resistance (i.e., positive to negative design ratio) rankings in
which either the positive or negative design K∗ score is 0 are
handled specially. Mutations for which only the negative design
score is 0 receive a score ratio of infinity. Mutations for which
either only the positive design score is 0 or both positive and
negative design scores are 0 receive a design ratio of 0.

7. A candidate resistant mutant has both a high positive design
score (indicating of high predicted binding affinity for dihy-
drofolate) and a low negative design score (denoting low pre-
dicted binding affinity for compound 1). Mutants with a high
positive to negative design score ratio but a low positive design
score (such as L20F) relative to the wild type are not considered
viable, as they are predicted to bind dihydrofolate poorly.

8. To perform your own protein designs using OSPREY, please refer
to the user manual found in the OSPREY software download
from Subheadings 2.3 and 3.1.
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9. The results presented in [11] were performed using OSPREY

1.1a. This can lead to slightly different results than those in
the newer version of OSPREY. To reproduce the results in [11]
exactly, please download the code from:

http://www.cs.duke.edu/donaldlab/Supplementary/mimb2
015/OSPREY-V2010-MIMB2015.zip

10. Nevertheless, for future predictions, we recommend using the
latest version of OSPREY for improved accuracy and speed.
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Part III

Computational Protein Design of Specific Targets



Chapter 16

Evolution-Inspired Computational Design of Symmetric
Proteins

Arnout R.D. Voet, David Simoncini, Jeremy R.H. Tame,
and Kam Y.J. Zhang

Abstract

Monomeric proteins with a number of identical repeats creating symmetrical structures are potentially very
valuable building blocks with a variety of bionanotechnological applications. As such proteins do not occur
naturally, the emerging field of computational protein design serves as an excellent tool to create them from
nonsymmetrical templates. Existing pseudo-symmetrical proteins are believed to have evolved from oligo-
meric precursors by duplication and fusion of identical repeats. Here we describe a computational workflow
to reverse-engineer this evolutionary process in order to create stable proteins consisting of identical
sequence repeats.

Key words Symmetrical proteins, Repeat proteins, Rosetta, Evolution, Ancestral reconstruction,
Computational protein design

1 Introduction

During the last few years, the field of bionanotechnology has
emerged as an important contributor to nanotechnological
research by constructing nanodevices from biological components.
The target areas of this emerging research discipline range from the
development of biopharmaceutical nanodevices for dedicated drug
delivery to the construction of microelectronics through the com-
bination of metallo-chemistry with bio-macromolecular design.

Symmetrical protein assemblies are an interesting class of
proteins that lend themselves to this type of application. However
there are no examples of monomeric perfectly symmetrical
naturally occurring proteins to be used as structural frameworks
for such design [1].

Structural analysis of many thousands of proteins has indicated
that the majority share commonmolecular architectures at different
levels [2]. Moreover, many proteins appear to consist of tandem
repeats of domains or subdomains [3]. Proteins consisting of such
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repeated motifs exhibit repeated secondary and tertiary structure,
creating symmetrical configurations.

This general principle of motif reuse arises from the fact that
evolution is driven in part by the duplication of genetic material,
and this duplication is sometimes followed by fusion to create
tandemly repeated coding sequences [4, 5]. Such genes (and the
encoded proteins) will initially show perfectly repeating sequences,
but, under the influence of genetic drift and evolutionary pressure,
they evolve more diversified repeats as the new protein optimizes its
functionality (see Fig. 1). On a three-dimensional level, however,
the overall tertiary structure retains a highly conserved secondary
structure with repeated motifs, reflecting the ancestral genetic
element.

Classical examples of symmetrical proteins include the Ankyrin,
Armadillo, HEAT, TPR, and LRR repeats that create overall a linear
or toroidal shape depending on the number of tandem repeats.
However, repeats can also be observed in globular proteins, such as
trefoils and TIM-barrels, which exhibit pseudo-rotational symme-
try with a fixed number of repeats (three- and eightfold respec-
tively) [6]. Given the symmetrical nature of repeat proteins, they

Fig. 1 Reverse engineering evolution to create symmetrical proteins. The protein evolutionary theory of
duplication and fusion (shown on the top row) suggests that genes for pseudo-symmetrical proteins originate
from a smaller ancestral coding fragment. This fragment encodes a polypeptide that can assemble as a
multimer (A1). After duplication and fusion of the ancestral gene, a monomeric symmetrical protein is
produced with the same topology (A2). Subsequent genetic drift and natural selection diversify the amino
acid sequence (A3). Computationally reverse-engineering this evolutionary process is shown on the bottom
row. Starting from a naturally occurring protein (B1) with multiple domains of similar fold but different
sequence, a monomeric perfectly symmetrical protein (B2) is designed that may, if desired, be cleaved into
a self-assembling fragment (B3)
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are ideal starting points for engineering protein assemblies that can
be designed with a module-based approach [7, 8]. Thus, not
surprisingly, symmetrical proteins have been targeted by several
groups for protein design. For example DARPINs are designer
proteins based on the Ankyrin repeat with a variety of functions
[9]. Recently, Baker and coworkers made great process in the
computational design of repeat proteins with toroidal symmetry
[10, 11].

Other successes in symmetric protein design include work by
Lanci et al. to build protein crystal lattices from symmetrical assem-
blies of coiled-coil motifs, and the creation of an alpha-barrel
protein by Woolfson and coworkers [12, 13]. Furthermore, two
groups independently produced symmetrical trefoil proteins named
Symfoil and ThreeFoil [14, 15].

However applications can be envisaged for repeat proteins with
different rotational symmetry, and the beta-propeller family is of
interest since it provides templates with 4–10 repeats arranged in a
pseudo-symmetrical fashion about a central point. Beta-propeller
proteins are named because of their roughly circular, propeller-like
architecture, with each domain or “blade” forming a fan-like struc-
ture [16]. These proteins are widely distributed and play numerous
roles in cells from each Kingdom of Life; propeller proteins include
enzymes and membrane channels, but a very large number have
ligand binding functions, either carrying simple ligands such as
metal ions or as scaffolds in protein networks, holding different
partner proteins together. Nature has clearly selected propeller
proteins to carry out these different roles due to the versatility of
the fold and its modular structure. This endorsement by natural
selection makes propellers interesting building blocks for the artifi-
cial engineering of proteins with chosen properties. Recently a
symmetrical self-assembling protein called Pizza6 was computa-
tionally designed using a natural nonsymmetric six-bladed propeller
protein as the template [17]. Pizza6 contains six identical copies of
a 42-residue “blade”. It was designed by reversing the evolutionary
mechanism of duplication and fusion, turning back time by calcu-
lating the most likely ancestral sequences. Working on the principle
that a stable, symmetrical ancestor must have existed in the past,
such sequences provide an excellent starting point for finding per-
fectly symmetrical variants of existing pseudo-symmetrical proteins.
While the propeller protein Pizza6 was designed as a test of this
principle, the same method can be used to derive repeat sequences
from any template protein built from nonidentical but related
domains or subdomains of the same fold. Recently, we have
reported the biomineralization of a CdCl2 nanocrystal by a Pizza
variant with an engineered metal binding site [18]. We anticipate
that in the future new symmetrical proteins may be designed, using
the method proposed here, to biomineralize different nanocrystals
for specific applications.
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2 Materials

Due to the computational nature of this approach, up-to-date
hardware is required which can run current, supported versions of
the correct software.

2.1 Hardware

Dependencies

Recommended hardware specifications are a workstation with at
least 8GB of RAM and one of the following operating systems:
GNU/Linux (any 64-bit distribution should be suitable, Red Hat
and Ubuntu are popular and recommended), Mac OS X v10.6 or
later, Windows 7 or later.

2.2 Software

Dependencies

As protein structures will be analyzed and designed a protein visu-
alization tool, preferably with stereographic rendering options, will
need to be installed. Examples of such software are Chimera or
Pymol [19, 20].

1. A structural alignment program to align the amino acid
sequences by superpositioning protein backbones in 3D space
is preferable to simple amino acid sequence alignments. A good
example is STRAP [21].

2. The “evolutionary” relationship and distance between the
repeating motifs can be represented by a phylogenetic tree.
These can be created from the sequence alignments using
locally installed software or webservers. An example is
PHYLIP [22].

3. The creation of the “putative ancestral” consensus sequences
requires specialized bioinformatics algorithms. Several choices
are available, either installed locally or available from a webser-
ver such as the FastML server [23].

4. The bio-macromolecular modeling suite Rosetta is required for
the modeling of the protein structures and the scoring of the
designed sequences [24]. Rosetta bundles a variety of model-
ing methods including structure prediction, protein and small
molecule docking, backbone modeling and protein and
enzyme design. Additionally, PyRosetta, the python interface
to Rosetta is required by our sequence mapping tool [25]. It
requires Python version 2.6 or later to be installed with shared
libraries enabled.

5. Finally the “Sequence Mapping Tool” itself is required for
computational scoring of the designed sequences against the
designed backbone.

This tool is written in Python and aims at mapping an amino
acid sequence (the putative ancestral sequences) onto a protein
backbone (the desired symmetrical backbone conformation). It
takes an input protein structure in PDB format and a sequence
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in FASTA format (or a list of sequences in multi-FASTA for-
mat). It builds a model PDB file with each sequence, and out-
puts the models together with the corresponding Rosetta
scores. Optionally the protein may be relaxed after the
mapping, and the desired number of relaxed structures may
be set. The relaxation is handled by the default Rosetta Fas-
tRelax protocol, with the latest “Talaris2014” scoring func-
tion. The full python script can be found in Subheading 4 (see
Note 1).

3 Methods

The design protocol can be divided into the following consecutive
computational stages (see Fig. 2). The output sequences should be
tested experimentally by standard protein expression and purifica-
tion approaches, which will not be covered here.

3.1 Selection of the

Nonsymmetrical

Parent Template

1. First the 3D structures of tandem repeat proteins exhibiting the
pseudo symmetry of choice should be retrieved from the Pro-
tein Databank (PDB) (see Fig. 2a and Note 2). The most
straightforward method to find templates of the desired fold
and symmetry is to use databases, such as the Structure Classi-
fication of Protein (SCOP), which assign known structures to
different classes [26].

2. The sequences of potential templates should be carefully ana-
lyzed to identify a protein with optimal sequence and structural
features. Ideally the different repeats are closely related, with
obvious sequence similarity and without significant insertions
or deletions per sequence. The most straightforward method is
by visualization of the protein structures and utilizing
structure-based alignment algorithms to check the level of
structural and sequential conservation (see Fig. 2b andNote 3).

3.2 Generation

of “Ancestral”

Consensus Sequences

1. Once the pseudo-symmetrical parent template has been
selected, the individual repeats should be isolated into separate
structural files (PDB format) and corresponding sequence files.
This can be easily performed manually using a simple molecular
visualizer (see Note 4).

2. In order to create a consensus sequence, the sequences of the
individual repeats must be aligned (see Note 5). As these
sequences will be later mapped in 3D on the backbone, the
alignment should preferably be performed using a 3D struc-
tural alignment algorithm. The alignment can be manually
edited to remove insertions or deletions (see Fig. 2c, d). The
alignment should be saved in the appropriate format (ALN) to
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be used as input for the phylogenetic tree and ancestral
sequence reconstruction steps.

3. A phylogenetic tree must be created from the aligned
sequences (see Fig. 2e). Each branch point or “node” of the
tree represents a divergence in sequence between the different
domains, and an “ancestral” consensus sequence must be
determined for each node. While for studies of evolution it is
important to derive the most accurate tree possible, for the
purpose of protein design the correct rooting of the tree is less
important since a number of possible ancestral sequences are
used (see Note 6).

4. Finally the alignment of the sequence repeats and the derived
phylogenetic tree are used to predict the so-called ancestral
sequences at the different nodes of the tree (see Fig. 2f).

Fig. 2 Flowchart of the evolution-inspired computational procedure to design symmetrical proteins. Starting
from the protein structure database (a), a suitable parent repeat protein with the correct symmetry is identified
(b). The individual repeats are isolated and aligned using a structure-based alignment protocol (c). This serves
as the input for the amino acid sequence alignment (d), which will also produce a phylogenetic tree of the
different repeats (e). The alignment and the phylogenetic tree are used together to create putative ancestral
consensus sequences (f). From the structurally aligned repeat structures a backbone motif is selected (g) to
create the desired symmetrical protein backbone (h). This backbone serves as the template to score and rank
the putative ancestral sequences (f) using a 3D computational protein design tool based on Rosetta (i). The top
sequences can then be experimentally validated (j)
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While the algorithm will produce a top-scoring result, it is
better to collect many possible ancestral sequences as proceed-
ing from a single result is unlikely to yield the desired symmet-
rical and stably folding sequence. The derived consensus
sequences are stored in a multi FASTA format file.

3.3 Generation of 3D

Templates

1. The ideal fully symmetrical template backbone has to be chosen
from the models of individual repeat motifs (that were aligned
in Subheading 3.2, step 2). First, any models with insertions or
deletions compared to the reconstructed ancestral sequences
should be removed. Secondly, models with any distinctly
unique backbone conformations compared to the other repeats
should be discarded (see Note 7). The final repeat structure is
identified as the one with the highest homology to the
sequence of the ancestral sequences (see Fig. 2g).

2. To avoid steric clashes of the polypeptide termini during assem-
bly of the complete symmetrical backbone template by dock-
ing, the first or last amino acid residue of the selected repeat
model should be removed. Preferably this residue should not
contribute to the inter-domain packing, and lie in a loop
region. Due to its small size and flexibility, glycine is a good
choice for re-connecting the separate copies of the isolated
repeat if the deleted side-chain is not conserved and makes no
inter-domain interactions (see Note 8).

3. To create a fully symmetrical backbone model from the single
repeat structures, Rosetta’s SymmetryDocking function can be
used with the default parameters, and the symmetry operator
of the protein being designed (see Fig. 2g). The 10,000
individual structures should be ranked and the top solutions
should be visually investigated. The top solution should have a
perfectly symmetrical backbone with the desired topology
(see Note 9).

4. The output structures of the docking algorithm however con-
sist of multiple chains. Clipping the fitted repeat model by one
residue may result in a salt bridge interaction between the N-
and C-termini of adjacent chains. This gap can be easily
repaired by re-introducing one amino acid residue and linking
the chains together, resulting in a perfectly symmetrical model
with the chosen number of identical repeats. (If the residue
omitted prior to the SymmetryDocking step was a conserved
one, the same side-chain will be re-introduced in the next step.)

5. Finally, the ancestral consensus sequences are mapped onto the
symmetrical template backbone utilizing the python script for
PyRosetta, ranking each sequence according to the predicted
energy (see Fig. 2h).
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6. The top scoring sequence and model should be visually
inspected. Ideally there should be no obvious deviation from
the template backbone, or internal voids. Numerous validation
tools have been developed by structural biologists to assess the
stability of a given protein model, and identify significant devia-
tions from usual geometrical features. Any output model
should be subjected to an array of these tests in order to
identify possible high-energy distortions (see Note 10).

7. The sequences of the top-ranked models chosen for experi-
mental testing are now back-translated into a suitable DNA
sequence, codon optimized for expression in the chosen
expression system. Numerous companies provide gene synthe-
sis services and can assist with back-translation from a desired
protein sequence. It may be helpful to introduce silent restric-
tion sites to allow for simple deletion or introduction of one or
more repeats from the coding sequence. These sites also allow
simple cassette mutagenesis (see Note 11).

4 Notes

1. The following script is required for mapping the sequence on
the protein backbone followed by scoring using PyRosetta. It
can be downloaded from “http://www.riken.jp/zhangiru/soft
ware.html”

To see a description of the available options:

> python sequence_mapping.py –help

To run with default options (single relaxation per sequence):

> python sequence_mapping.py ‐‐backbone input_backbone.pdb ‐‐

sequences input_sequences.fasta

To run with multiple relaxations per sequence:

> python sequence_mapping.py ‐‐backbone input_backbone.pdb ‐‐

sequences input_sequences.fasta ‐‐nstruct n

To run without any relaxation :

> python sequence_mapping.py ‐‐backbone input_backbone.pdb ‐‐sequences input_sequences.

fasta ‐‐no_relax

The sequence_mapping.py source :

#!/usr/bin/env python

import os

import optparse

import re

from rosetta import *

from toolbox import *
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one_to_three ¼ {’A’: ’ALA’,

’R’: ’ARG’,

’N’: ’ASN’,

’D’: ’ASP’,

’C’: ’CYS’,

’E’: ’GLU’,

’Q’: ’GLN’,

’G’: ’GLY’,

’H’: ’HIS’,

’I’: ’ILE’,

’L’: ’LEU’,

’K’: ’LYS’,

’M’: ’MET’,

’F’: ’PHE’,

’P’: ’PRO’,

’S’: ’SER’,

’T’: ’THR’,

’W’: ’TRP’,

’Y’: ’TYR’,

’V’: ’VAL’,

}

def sequence_mapping(pdb_file, sequence_file, score_file, relax, jobs):

if os.path.exists( os.getcwd() þ ’/’ þ pdb_file ) and pdb_file:

init()

pose ¼ Pose()

score_fxn ¼ create_score_function(’talaris2014’)

if (relax):

refinement ¼ FastRelax(score_fxn)

pose_from_pdb(pose, pdb_file)

if os.path.exists( os.getcwd() þ ’/’ þ sequence_file ) and sequence_file:

fid ¼ open(sequence_file,’r’)

fod ¼ open(score_file,’w’)

data ¼ fid.readlines()

fid.close()

sequences ¼ []

read_seq ¼ False

for i in data:

if not len(i):

continue

elif i[0] ¼¼ ’>’:

read_seq ¼ True

fasta_line ¼ re.split(’:|\sþ|\||\crn’,i[1:])

name_cpt¼0

while (name_cpt<len(fasta_line) and not fasta_line[name_cpt]):

name_cptþ¼1

if name_cpt<len(fasta_line):

job_output ¼ fasta_line[name_cpt]

else:

print ’Error: Please enter an identifier for sequences in your fasta file’
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exit(1)

elif read_seq:

seq¼list(i)

resn¼1

for j in i:

if j!¼’\n’ and resn<¼pose.total_residue():

mutator ¼ MutateResidue( resn , one_to_three[j] )

mutator.apply( pose )

resnþ¼1

elif resn>pose.total_residue():

print ’WARNING: couldn\’t mutate residue number

’þstr(resn)þ’, sequence too long for backbone. . .’

resnþ¼1

if (relax):

jd ¼ PyJobDistributor(job_output, jobs, score_fxn)

jd.native_pose ¼ pose

scores ¼ [0]*(jobs)

counter ¼ 0

decoy¼Pose()

while not jd.job_complete:

decoy.assign(pose)

resn¼1

refinement.apply(decoy)

jd.output_decoy(decoy)

scores[counter]¼score_fxn(decoy)

counterþ¼1

for i in range(0, len(scores)):

fod.writelines(job_output þ ’_’ þ str(iþ1) þ ’ :

’þstr(scores[i])þ’\n’)

else:

pose_packer ¼ standard_packer_task(pose)

pose_packer.restrict_to_repacking()

packmover ¼ PackRotamersMover(score_fxn, pose_packer)

packmover.apply(pose)

fod.writelines(job_outputþ’ : ’þstr(score_fxn(pose))þ’\n’)

pose.dump_pdb(job_outputþ’_1.pdb’)

else:

print ’Bad fasta format’

exit(1)

fod.close()

else:

print ’Please provide a valid sequence file, ’þsequence_fileþ’ doesn\’t exist’

else:

print ’Please provide a valid backbone file, ’þpdb_fileþ’ doesn\’t exist’

parser¼optparse.OptionParser()

parser.add_option(’‐‐backbone’, dest ¼ ’pdb_file’,

default ¼ ’’,

help ¼ ’the backbone in PDB format’ )
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parser.add_option(’‐‐sequences’, dest ¼ ’seq_file’,

default ¼ ’’,

help ¼ ’the sequences to map’ )

parser.add_option(’‐‐out’, dest ¼ ’score_out’,

default ¼ ’scores.sc’,

help ¼ ’the score file to output’ )

parser.add_option(’‐‐clean’, action¼"store_true", dest ¼ ’clean_pdb’,

default ¼ False,

help ¼ ’makes the pdb Rosetta friendly’ )

parser.add_option(’‐‐no_relax’,action¼"store_false", dest ¼ ’relax’,

default ¼ True,

help ¼ ’no relaxation after sequence mapping’ )

parser.add_option(’‐‐nstruct’, dest ¼ ’jobs’,

default ¼ ’1’,

help ¼ ’number of relaxations per sequence’ )

(options,args) ¼ parser.parse_args()

pdb_file¼options.pdb_file

sequence_file ¼ options.seq_file

score_file¼options.score_out

clean_pdb¼options.clean_pdb

relax¼options.relax

jobs¼int(options.jobs)

if clean_pdb:

cleanATOM( pdb_file )

sequence_mapping(pdb_file[:-4]þ’.clean.pdb’, sequence_file, score_file, relax, jobs)

else:

sequence_mapping(pdb_file, sequence_file, score_file, relax, jobs)

2. This method is suitable for different symmetrical assemblies
including globular symmetrical proteins such as the beta-
propeller family, the TIM barrel family, trefoil family, and
beta-plaits. However toroidal repeating proteins which do
not have point symmetry, such as the ARM, ANK, and LRR
proteins, can also be designed according this approach.
For such proteins special attention should be paid to the back-
bone creation, and whether capping ends are required (see
Note 3). In the case of nonrotational symmetry, the end
domains will be more exposed to solvent than the central
domains and this may require the introduction of more hydro-
philic domains, or even a different fold, in order to produce a
stable soluble protein. Such capping ends may therefore need
to be excluded from the design of the central repeating motif.

3. While the protocol described above only utilizes a single pro-
tein for the generation of both the putative ancestral consensus
sequences and the backbone template onto which they are
mapped, it is perfectly suited to work with multiple parent
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structures, as the domain structures and sequences are treated
as individual input components.

4. At the alignment stage it may be a good idea to investigate the
alignment of double repeats as well. From a structural point of
view it may appear that every repeat is related to each other
(A1A2A3. . .). However it is possible that in fact the structure is
more properly considered as being constructed from tandem
repeats of related motifs and can be described as
A1B1A2B2A3B3. . ., where A and B are similar but nevertheless
distinct. An example of such a case is the ribonuclease inhibitor
belonging to the Leucine Rich Repeat family. This can easily be
identified from the phylogenetic tree where all the repeats are
classified as belonging to one motif type or the other. Within
the phylogenetic tree, capping domains at the N and C termini
are also found to be more distant from the central repeats.

5. During the alignment step, small insertions or deletions will
often be observed for a number of repeats. Care must be taken
to prevent any register shift during the 3D sequence mapping
and scoring procedure, which essentially requires that the
sequences all match in a one-to-one fashion. Whether to
remove or maintain any observed insertion or deletion is a
fundamental decision in the backbone design, and all ancestral
sequences must have an unambiguous mapping onto the
backbone.

6. While correctly rooting a phylogenetic tree is important when
analyzing genetic sequences from an evolutionary perspective,
here the method was only utilized to create a variety of putative
ancestral consensus sequences, which are later scored against
the desired backbone. Variety is essential to cover a sufficient
region of sequence-space to give a reasonable chance of finding
a high scoring sequence. Therefore it is not necessary to obtain
a rigorously accurate tree. Variety may be increased by utilizing
homologous motif sequences from one or more repeats found
in other proteins. In this case, all the input sequences should
preferably be equally homologous.

7. Rather than working with only one repeat structure, multiple
repeats can be created as well to create multiple backbone
templates, each with minor differences, which can all be used
for the mapping. In the final stage the best combination of
backbone and sequence can be selected.

8. In a case where the selected template has an unusual residue
(such as a much larger side-chain) compared to the consensus
sequences, then this residue should be introduced by manual
mutation before creating the perfectly symmetric backbone
structure.
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9. Another option to create a symmetric template backbone is to
employ Rosetta Remodel. This is also a more suitable method if
the fold does not exhibit point symmetry. For more informa-
tion on this method, and how it has been used in the successful
design of repeat proteins, we refer the reader to Parmeggiani
et al. 2015 [9].

10. While the Rosetta scoring function is a good method for
scoring the sequences on the 3D templates, other methods
are available as well. The final structures must be inspected
for internal voids (which do not contain conserved water
molecules) either visually or utilizing RosettaHoles. The struc-
tures can be subjected to molecular dynamics simulations to
test their structural integrity. Less time-consuming assessment
of model quality include secondary and tertiary structure pre-
diction from the sequence. Large deviations from the original
experimental structure taken from PDB would require a restart
with an adaptation of the protocol such as a different treatment
of insertions/deletions at the alignment stage or the selection
of a different template structure for the creation of the sym-
metric backbone.

11. During the back-translation step it is a good idea to diversify
the coding sequence of each protein repeat as much as possible
while avoiding codons likely to be highly detrimental to trans-
lation. This will assist the introduction of mutations by site-
directed mutagenesis, and the sequencing of longer repeat
genes. By introducing silent restriction sites at equivalent posi-
tions within the repeats, genes with a different number of
repeats can be easily created by restriction digest and re-
ligation.
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Chapter 17

A Protocol for the Design of Protein and Peptide
Nanostructure Self-Assemblies Exploiting Synthetic
Amino Acids

Nurit Haspel, Jie Zheng, Carlos Aleman, David Zanuy,
and Ruth Nussinov

Abstract

In recent years there has been increasing interest in nanostructure design based on the self-assembly
properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the proper-
ties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred
conformational states. The design includes functional synthetic materials and biological macromolecules.
Autonomous biological building blocks with available 3D structures provide an extremely rich and useful
resource. Structural databases contain large libraries of protein molecules and their building blocks with a
range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues
or short peptides into these building blocks can greatly expand the available chemical space and enhance the
desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-
assembling building blocks, based on our recent works. We focus on the principles of nanostructure design
with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids
and synthetic polymers.

Key words Nanostructures, Self-assembly, Peptide-based nanodesign, Synthetic amino acids,
Beta-helical proteins, Computational nanodesign, Amyloid peptides, Hybrid materials

1 Introduction

Nanotechnology aims to design novel materials and molecular
devices, often by exploiting the natural ability of molecules to
self-assemble into larger, ordered structures at the nanoscale.
Nanotechnology applications include targeted drug delivery
systems, computational devices, and scaffolding tissues [1–3].
In nature, protein domains often self-assemble, spontaneously orga-
nizing in stable higher-order structures through noncovalent
interactions. These molecules may create large complexes of well-
defined structures and functions. The shapes, sizes, and functions of
these structures are determined by the amino acid sequence of these
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proteins [4, 5]. In recent years there has been much focus on the
experimental and computational design of self-assembled nanoma-
terials based on the self-assembly properties of proteins. Exploiting
the natural ability of macromolecules to self-assemble can be a very
useful approach in the design and construction of novel molecular
structures [5–8]. Much work has been done in recent years in the
design and construction of nanostructures using DNA, RNA, and
protein segments [9–14]. Advances in peptide synthesis and molec-
ular engineering techniques have made self-assembly of peptide
segments a favorable route by which to obtain nanostructures
[5, 15–17], particularly those consisting of single or associated
tubes, fibers, and vesicles.

Computational methods have become a powerful tool in nano-
biology and nanostructure design. The use of advanced simulation
methods and efficient modeling algorithms, in addition to the
rapidly increasing amount of data in DNA, RNA, and protein
databases, can considerably accelerate the design process via fast
probing of many possible models in a high-throughput cost-
effective way, aiming to experimentally test only feasible models.
In this chapter we describe a computational and experimental
protocol, based on our previous and current work. We first intro-
duce a protocol for designing self-assembled nanostructures from
naturally occurring protein motifs, followed by structural enhance-
ment by synthetic amino acids. Next, we introduce a related
method to construct nanostructures based on amyloid peptides.
Finally, we introduce a protocol to design hybrid materials based on
the conjunction of functional amyloids and synthetic polymers.

2 Computational Nanodesign

Construction of stable nanostructures using natural building
blocks is a reasonable and promising strategy toward precisely and
quantitatively controlling the supramolecular assemblies. A build-
ing block is a well-defined secondary structural unit which, if cut
from the protein chain and placed in solution, is still likely to have a
conformation similar to the one it has when embedded in the native
protein structure. The Protein Data Bank (PDB) is populated by an
extensive repertoire of building blocks, with different shapes, sizes,
and chemical properties which can be used in rational design of
protein-based nanostructures [18]. Some naturally occurring pro-
teins contain a tubular or fibrillar motif in their folds. A good
example of tubular proteins is the β-helix protein fold. The fold of
β-helical proteins contains a repetitive helical strand-loop motif
[19], where each repeat contributes a strand to one or more parallel
β-sheet(s). The left-handed β-helical fold is especially suitable: the
tubular structure is regular and symmetrical and is often stabilized
by a network of interactions between similar residues in consecutive
coils [20] (see Fig. 1).
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The common types of interactions in β-helices include:

1. Asparagine (or glutamine) ladders that stabilize the helical struc-
ture through hydrogen bonds between residues in consecutive
rungs (Fig. 1a).

2. Stacking of aromatic (Phe, Tyr, His) and aliphatic (Pro) rings
(Fig. 1b).

3. Hydrophobic interactions (especially Val, Ile, Leu) (Fig. 1c).

The tubular nature of left-handed β-helical proteins makes
them excellent candidates to be used as building blocks to construct
fibrillar or tubular nanostructures without the need to perform
many structural manipulations. In addition, their helical and sym-
metric structure makes them good candidates to be excised and
tested as modules.

In our work [21] we presented a general approach to the design
of nanostructures based on the potential assembly property of
protein segments, in which the segments are taken from naturally
occurring proteins and have preferred conformational tendencies.
We designed nanoconstructs based on left-handed β-helical pro-
teins by selecting short (two turns), repetitive motifs and extracting
the corresponding coordinates from the PDB [22]. We assembled
copies of the motifs on top of one another so that the assembled
nanotube had an almost perfect equilateral triangular shape, with
each side being ~18 Å. We simulated the nanostructures using

Fig. 1 An example of β-helical proteins and their typical interactions. (a) An
example of an asparagine ladder. (b) An example of aromatic ring stacking. (c)
An example of hydrophobic residue interactions
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molecular dynamics (MD) to test their structural stability over
time. Figure 2 illustrates a schematic flowchart of the process.
Our design principle is that if the nanostructures can preserve
their tube organization and motif association during the simula-
tions, they are promising candidates for experiment. Otherwise, if
the nanostructures cannot preserve their original organization in
the simulations, they are unlikely to preserve their organization in
experiment as well. For those unstable nanostructures, in a
subsequent stage (see next sections) we reduced the conformational
freedom by introducing restricted synthetic residues in strategic
positions to improve the structural stability of the designed nanos-
tructures. For a successful design, it is desirable that the substitu-
tions retain both favorable packing interactions and hydrogen
bonding with the neighboring residues. Of the 17 systems that
we tested, the construct based on the assembly of copies of residues

Fig. 2 A schematic procedure of the construction of a nanotube using the naturally occurring protein building
block from a β-helix (taken from galactoside acetyltransferase, PDB code: 1KRR). Top: (a) The trimeric crystal
structure of galactoside acetyltransferase (GAT) from E. coli, with three left-handed parallel β-helix domains.
(b) The monomeric structure of GAT (circled) taken from the trimeric GAT structure. (c) A single building motif
(circled) taken from the monomeric 1KRR structure with selected residues 131–165. (d) A nanotubular
structure obtained by stacking four repetitive building motifs on top of each other. Bottom: An example of
one of the Histidine mutants
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131–165 of galactoside acetyltransferase from E. coli (PDB code:
1krr, chain A) was very stable over the simulation time under all of
the tested temperature and ionic strength conditions. Figure 2
shows the sequence and structure of the 1krr system. To assess
the structural stability of our tested models, we looked at the
retention of the structural organization over time. We largely
focused on the organization of the loop regions since these are
typically the least stable. We also studied the effect of specific amino
acids and chemical interactions on the conformational stability of
the structure, focusing again on loop regions. Through mutational
study, we found that apart from the characteristic inter-strand
interactions of β-helical proteins, the presence of proline residues
around the loop areas greatly contributes to the retention of the
loop structure and hence to the stability of the overall conforma-
tion. In addition, in many cases we found a relatively large number
of glycines in loop regions. These glycines were involved in hydro-
gen bonds with the side chains of other residues in their vicinity and
hence contributed to maintaining the conformation of the loops.
We next aimed to further enhance the stability of the system by
inserting specific point mutations using noncoding amino acids
whose structures are available. The choice of such conformationally
restricted residues and the positions of insertion were guided by our
mutational observations on the stabilizing effects of naturally
occurring residues on the entire system. This work is described in
more details below.

We next aimed to modify the 1krr-based nanostructure [23]
toward useful biological functions. The original construct is charac-
terized by an internal hydrophobic core, containingmainly valine and
isoleucine residues, rendering it inappropriate for the transfer of
matter or charge. Since the hollow space inside the structure was
narrow and unsuitable for the transport of large molecules, charge
transfer seemed to be a feasible application.However, to allow charge
transfer we had to modify the chemistry of the internal core of the
structure. Charge can be transferred through π-electron stacking or
through H1 transfer. Although charge transfer cannot be modeled
through classical mechanics, this methodology was appropriate to
assess its feasibility. We considered two different scenarios for charge
transfer: (1) formation of ladders of π-electron-rich functional groups
by substituting some of the original residues in the interior of the
construct by other residues capable of π-stacking; and (2) the genera-
tion of proton transfer environment through a network of salt
bridges, reminiscent of the serine protease catalytic triad. The two
necessary conditions to achieve this goal are:

1. The mutated structures must still retain their tubular structures
in the simulation.

2. There must be a side-chain distribution that allows these chemi-
cal processes.
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To create a ladder of π-stacking residues and to test whether
this would affect the structural organization, we inserted a row of
histidine residues in each of the three beta-sheets, one sheet at a
time (see Fig. 2b for an illustration of an example, the histidine
mutant) and simulated the mutated structures. Histidine is an
aromatic amino acid capable of π-stacking. Its side chain is fairly
similar to the size of valine and isoleucine so no drastic steric
hindrance or structural changes were expected to occur. The pKa
of histidine is six, so in a physiological pH it can assume both a
neutral and a charged form with a relatively high probability. More-
over, its neutral form corresponds to equilibrium between two
states: one with d hydrogen (ND) protonated and the other with
e hydrogen (NE) protonated. This allowed us to test different
possible combinations of ionization states. Naturally, we could
not sample all possible ionization states due to computational
time limitations, but we tried to sample as many as possible as
well as different combinations of ionization states. We identified a
position where, despite the insertion of histidine, the simulated
nanostructures retained their initial organization to a reasonable
extent and created a configuration made of networks of neutral
histidine, charged histidine, and aspartate, imitating the serine
protease catalytic triad. We suggested a structure with a π-stacked
row of alternatively neutral and charged histidine residues that
interact with a row of aspartate residues through salt bridges, and
thus provided the conditions for creating a nanosystem potentially
capable of charge transfer.

2.1 Nonstandard

Amino Acids

The catalog of amino acids available nowadays for materials sciences
applications has rapidly expanded. Only in natural structures, there
can be found more than 700 different amino acids [24, 25] (most
of them, also L-amino acids) beyond the 20 genetically coded
L-amino acids that are contained in proteins. Furthermore, many
others have been imagined and synthesized by organic chemists
[24–28]. All those compounds are named under a common desig-
nation of nonproteinogenic or noncoded amino acids (nc-aa).
Although they are not involved in ribosomal synthesis of native
peptides and proteins, several naturally occurring peptides and
proteins contain nc-aa [29, 30]. The majority are the results of
post-translational modifications that active proteins undergo upon
release from the ribosome. Most of these chemical modifications
have been found to play crucial roles in both the regulation of
metabolic routes and genomic expression. The part played by
citrullination (conversion of arginine residue to citrulline) in the
relaxation of chromatin and the modulation of the pluripotency of
stem cells is especially noteworthy [26].

Currently the use of such molecules stretches over almost all
fields of applied natural sciences. They are applied to improve the
pharmacological profile of natural peptides endowed with
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biological activity [31, 32] (to confer resistance against enzymatic
degradation, enhance membrane permeability, or increase selectiv-
ity and affinity for a particular receptor), and are responsible for the
development of nonpeptidic drugs [33]. On the other hand, nc-aa
have recently been used in biotechnology for protein reengineering
[34, 35]. Thus, proteins containing such residues can acquire new
chemical features such as fluorescence [36, 37], redox-activity [38],
photosensitivity [37, 39], and specific chemical reactivity [40].
Those new spectroscopic properties [41] can be used as biosensors,
spectroscopic or biophysical probes, or even for building new
nanosystems for drug delivery and diagnosis through imaging to
be used in medicine [34, 40, 42, 43]. Other applications of Nc-aa
are their use in nanobiology to promote the self-assembly of nanos-
tructures [44, 45] or for developing bioinspired synthetic organic
polymers that emulate the shape and properties of natural peptides
and proteins [46, 47].

2.2 Structurally

Restricted Amino

Acids

Practical use of nc-aa is frequently hampered by the high degree of
dispersion that their relevant conformational data present. The
most accurate information is extracted from first principle calcula-
tions, which are typically reported in physical chemistry journals,
whereas their synthetic details are dispersed among specialized
journals of organic chemistry. Moreover, spectroscopic and struc-
tural studies of small peptide containing nc-aa are generally per-
formed by organic and peptide chemists and their findings are away
from biology specialized journals. However, most applications of
nc-aa are developed and tried by researcher working on fields
related with medicine, protein science, or materials engineering.
The lag of systematically correlated information and the great
potential applicability of nc-aa led us to integrate these diverse
existing contributions into a unified and simple informatics tool
that should facilitate the universal use of nc-aa in practical applica-
tions. This new database contains the conformational descriptors of
any nc-aa ever studied and any relevant bibliographic information
about already reported practical uses. The NCAD (Non-Coded
Amino acids Database) [48] is a database designed to identify the
most suitable nc-aa for any given structural motif, compatibility
required for any use in both life and materials sciences. Our tool
integrates all structural and energetic descriptors previously
reported using quantum mechanics calculations for each nc-aa. A
summary of the information integration in the database is pre-
sented in Fig. 3. Per each amino acid NCAD contains its complete
structural profile, which includes a detailed description of each
minimum energy conformation (dihedral angles, three-
dimensional structure, relative energy, etc.) and, if available, all
the bibliographic information related to experimental data,
included all reported applications (both in bioscience and materials
science).
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Since simulations can quickly probe many models and provide
potentially good candidate nanostructures in terms of structural
stability and minimum free energy for experimental test, they could
accelerate the design process.

2.2.1 Application to

β-Helices Motifs

To enhance the thermodynamic stability of a given β-helical repeat
sequence, we engineered chemically constrained residues with
backbone conformational tendencies similar to those of natural
amino acids in the most mobile (loop) regions. Among the
synthetic residues that our group has prepared and studied, here
we focused on 1-aminocyclopropanecarboxylic acid (Ac3c), a sim-
ple cyclic R,R-dialkylated amino acid with strong stereochemical
constraints induced by the highly strained cyclopropane ring.
We also tested its double-phenyl derivative, 1-amino-2,2-diphenyl-
cyclopropanecarboxylic acid (c3Dip), a cyclopropane analogue of
phenylalanine bearing two germinal phenyl rings. However, this
substitution was unsuccessful, due to the steric effects induced by
the residue side chain size.

Fig. 3 Schematic representation of the information flown in the NCAD database
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2.2.2 Survey of Ac3c

Derivatives

Ac3c is the simplest achiral C-α-tetra-substituted α-amino acid with
Cα↔Cα cyclization (Fig. 4). The stereochemical constraints of this
amino acid are produced by the unfavorable steric interaction of the
two β-methylene groups and by the three-membered ring rigidity.
The conformational preferences of Ac3c were characterized by
energy computations of the monopeptide [49–51] and X-ray dif-
fraction analyses [52–55] of a variety of peptides of this residue up
to the tetramer level. These studies illustrated that the Ac3c amino

ac3c

c3Phe

c3diPhe

c3dip

Fig. 4 Illustration of the noncoding amino acids used in this study
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acid prefers the “bridge” region of the Ramachandran map, i.e., φ,
ψ � �80�, 0�, which corresponds to position i + 2 of type I/I0 and
type II/II0 β-turns. Theoretical studies indicated that the tendency
of Ac3c to adopt a small value of ψ is due to the hyper-conjugation
between the lone pairs of the carbonyl oxygen of the residue and
some adjacent molecular orbitals associated with the C-β-C-β0 bond
[56]. This conjugative ability of the Ac3c cyclopropyl moiety was
demonstrated by X-ray crystallography. The N-Cα and Cα-C bond
lengths are significantly shortened compared to Cα-tri-substituted
and Cα-tetra-substituted α-amino acids [57], and the mean exocy-
clic N-Cα-C bond angle is significantly larger (116–118�) than the
tetrahedral angle (109.5�). Thus, the strong tendency of Ac3c to
adopt β-turn conformations is enhanced by specific intra-residue
electronic interactions.

Incorporation of selectively oriented side-chain substituents
into conformationally restricted amino acids allows increased
control of the backbone fold [58]. Cyclopropane analogues of
phenylalaline are particularly attractively because the rigidly ori-
ented phenyl side groups may interact with the backbone sterically
and electronically through the aromatic π-orbitals [53, 55, 59].
The side chain orientation of 1-amino-2-phenylcyclopropanecar-
boxylic acid (c3Phe) stereoisomers drastically affects the backbone
conformational preferences, with a tendency to adopt folded con-
formations [56, 60, 61]. This tendency was observed in the stereo-
isomers of 1-amino-2,3-diphenylcyclopropanecarboxylic acid with
the phenyl substituents in a trans relative disposition (c3DiPhe)
[59, 62] in both solid state and solution. A cyclopropane analogue
of phenylalanine bearing two geminal phenyl side substituents was
recently incorporated into Pro-c3Dip. X-ray diffraction analysis
showed that the (S)-Pro-(R)-c3Dip stereoisomer adopts two con-
secutive γ-turns stabilized by intramolecular hydrogen bonds [63].
The ability of c3Dip to adopt a γ-turn and to induce this structural
motif in neighboring amino acids was explained by calculations
[64]. The dihedral angle ψ values for all cyclopropane analogues
of phenylalanine are close to 0� due to the presence of hyper-
conjugative effects [56, 62, 64]. It is worth noting that interesting
supramolecular structures have been characterized for peptides
rich in c3Dip [65, 66]. Here we focused on Ac3c, the simplest
Cα-tetra-substituted cyclic R-amino acid promoting β-turn-type
conformations, and c3Dip (Fig. 4), in which the Ac3c conforma-
tional preferences are guided toward the γ-turn. Force field para-
meters for Ac3c and its derivatives were explicitly developed
[50, 51].

To test our design principle, we built two nanotubes using two
different motifs of 1krr and 1hv9, both of which adopt similar left-
handed β-helical conformation. When submitting the two nano-
tubes to MD simulations, it can be seen clearly in Fig. 5 that the
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1krr nanotube with four repeat β-helical units can well preserve its
original tubular structure and display high structural stability
(Fig. 5a, b). Moreover, 1krr nanotube bundle—containing three
β-helical segments forming a trimeric structure along a threefold
screw axis—can retain both the individual tubular structure and the
overall trimeric structure. Conversely, the 1HV9 nanotube
completely lost the initial, compact nanotubular structure, and all
β-helical units started to separate from each other (Fig. 5c). Further
structural analysis has determined the most unstable residues at the
turn region. Based on our design principle, we replaced two turn
residues of Asn5 and Ala27 with the conformationally restricted
1-aminocyclopropanecarboxylic acid (Ac3c) residue, and the
mutated 1hv9 nanotube were able to retain its original tubular
structures and displayed very high structural stability (Fig. 5d).
Compared to the unstable wild-type 1hv9 nanotube, the enhanced
stability originates not only from the increasing number of hydro-
gen bonds and hydrophobic contacts between each building
subunit, but also from the reduced flexibility in the loop regions
induced by Ac3c within each building subunit. Thus, the Ac3c
geometrical confinement effect is sequence-specific and position-
specific.

Fig. 5 MD simulations of different nanotubes constructed by left-handed β-helical motifs. (a) 1krr nanotube
and (b) 1krr nanotube bundle display high structural stability. (c) 1hv9 nanotube is not structurally stable.
(d) Introduction of the conformationally restricted Ac3c residue in loop regions greatly enhances the stability of
1hv9 nanotube. Ac3c is displayed as a green stick
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2.2.3 Simulation Protocol Calculations were performed by using the NAMD package [67].
All of the atoms of the system were considered explicitly, and the
energy was calculated by using the CHARMM22 force field [68].
Water molecules were represented explicitly, by using the TIP3
model [69]. The simulations were performed by using the NVT
ensemble in an orthorhombic simulation box. We chose constant
volume simulations because all of the trajectories were obtained at
high temperature. By these means, we could ensure that proper
density distribution would not be lost due to thermal effects.
Periodic boundary conditions were applied by using the nearest
image convention. The box size was adjusted to fit the complex
size, so that infinite dilution conditions would be maintained. The
box dimensions were adjusted to (50 � 50 � 70 Å3) to ensure
infinite dilution. Each system contained approximately
15,000–20,000 atoms, including the solvent. The starting molec-
ular structures were built by using the INSIGHTII molecular
package (2000, Accelrys, San Diego, CA). For any given arrange-
ment, we fixed the inter-turn distance of adjacent repetitive units to
match the inter-strand distance within each unit, which was approx-
imately 4.5 Å. The charge of all potential titratable groups was fixed
to those values corresponding to neutral pH, such that all aspartic
acid side chains were represented in their anionic form and all lysine
side chains in their acidic positively charged form. Both peptide
edges were capped to avoid interactions between adjacent termini.

2.2.4 The Simulation

Conditions

We performed the simulations under the following conditions:

1. No ions in the solution, 300 K.

2. No ions in the solution, 360 K.

3. Ionic strength of 0.23 % w/w, 300 K (approx. 8 ions).

4. Ionic strength of 0.5 % w/w, 300 K (approx. 16 ions).

5. Ionic strength of 0.8 % w/w, 300 K (approx. 24 ions).

In the case of ionized solution, we kept the overall charge of the
system neutral for the use of EWALD particle mesh summation
[70] to calculate the electrostatic charges. The ions were chloride
and sodium.

Before running each molecular dynamics simulation, the
potential energy of each system was minimized by using 5000
conjugate gradient steps. The heating protocol included 15 ps of
increasing the temperature of the system from 0 K to the final
temperature of 300 K (or 18 ps of increasing the temperature
from 0 to 360 K) plus 100 ps of an equilibration period. We
perform the simulations at 300 and 360 K in order to enhance
the stability differences between the models by means of thermal
stress. Furthermore, using high temperature allowed us to infer
some kinetic tendencies. Residue-based cutoff was applied at 14 Å,
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i.e., if any two molecules have any atoms within 14 Å, the interac-
tion between them is evaluated. A numerical integration time step
of 1 fs was used for all of the simulations. The nonbonded pair list
was updated every 20 steps, and the trajectories were saved every
1000 steps (1 ps) for subsequent analysis. Each simulation was run
for a period of 20 ns. Potentially stable systems were run for an
additional 20 ns.

We have used this protocol for a few years [21, 23, 71–76] and
observed that its results correspond to experimental observations
[77–80].

2.2.5 Structural Analysis We calculated the structural conservation in the following ways:

l Conservation of the size of the structure with respect to the
minimized structure: the trajectories were aligned with the
initial structure, and the RMSD was calculated with respect to
C-α atoms.

l Conservation of the loops was defined as the RMSD of the Cα
of each residue of the loop with respect to the initial minimized
structure. In addition, the distribution of the backbone dihedral
angles was plotted.

l Sequence alignment and analysis were performed with the
CLUSTALX software [81].

3 Introduction to Hybrid Materials Based on Amyloid-PLA Conjugates

Hybrid materials are one of the most active areas in biomaterials
science. This is because by combining different types of molecules it
is possible to merge their properties into new useful chimeric
compounds. In the particular case of peptide-polymer conjugates,
which result from the covalent integration of a peptide with a
synthetic polymer block, they are especially attractive because this
kind of hybrid macromolecules combines unique properties that
come from the precise chemical structure and functionality of pep-
tides and the stability, functions, and processability of synthetic
polymers [82, 83]. The conformational profile of peptide-polymer
hybrid compounds has a crucial importance due to its influence on
many other parameters such as binding affinity and bioactivity. The
conformational landscape of new conjugated macromolecules can-
not be understood only in terms of a simple addition of their parts;
rather, the dynamic interactions between them should also be
considered. Thus, conformational exploration needs to be carried
out for the whole system and for its separate components, and the
results have to be compared. The huge number of feasible combi-
nations of the conformational states of each of the molecular
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components dramatically increases the complexity of the problem.
Theoretical chemistry tools provide a feasible approach for confor-
mational exploration, since they allow performing the search in a
faster, more efficient manner. Diblock copolymers that covalently
link proteins and synthetic polymers are among the most promising
chimeras, being the subject of intense research using both synthetic
and theoretical approaches.

Self-aggregating proteins are found in several pathological pro-
cesses and are also a target in material science due to their ability to
spontaneously form ordered materials with useful physicochemical
and mechanical properties [84]. Arginine-Vasopressin (hereafter
Vas) and Neuromedin-K (also known as Neurokinin B, and hereaf-
ter abbreviated Neuro) are among those peptides that are known to
self-aggregate. Vas is a peptidic human hormone involved in the
pathogenesis of neurohypophyseal diabetes insipidus (NDI) by
aggregating into amyloid-like microfibrils; Neuro is a member of
the tachykinins protein family that plays an important role as a
neurotransmitter and neuroregulator with the ability to form fibrils
resembling amyloids [84]. Neuro has been shown to decrease
neuronal damage caused by beta-amyloid protein aggregation by
interfering in this molecular process. These two peptides have an
intrinsic ability to form self-aggregating self-structured biomater-
ials both in vivo and in vitro; however, immunological problems
may arise due to their proteinogenic nature. On the other hand,
poly(R-lactic acid) (R-PLA, also known as PDLA) is a semi-
crystalline biodegradable and biocompatible polyester that has
physicochemical properties suitable for making release-controlled
systems and tissue engineering scaffolds. These features make R-
PLA a suitable candidate for introducing biocompatible compo-
nents by conjugating it to these other molecules. Formation of
hybrid conjugates by combining peptides (and proteins) with syn-
thetic polymers result in chimeras (i.e., artificial biomolecules) with
a useful set of features, where each component has different sets of
properties. The capability of peptides and proteins to self-organize
into supra-molecular arrangements complements the inherent ten-
dency of R-PLA to similarly self-organize at the supra-molecular
level. This polyester has a crystallinity of around 37 %, a glass
transition temperature between 60 and 65 �C and a melting tem-
perature between 173 and 178 �C. The fusion of such properties
may lead to novel macromolecules capable of self-aggregation and
self-organizing while preserving the key properties of biodegrad-
ability and biocompatibility [85].

In a recent work [86] we used computational methods to
characterize the conformational preferences of two new hybrid
materials derived from the conjugation of Vas and Neuro to a 150
residues-long R-PLA chain. Determination of the influence of the
polymer component on the conformational preferences of the
peptide component is a key question for peptide-mediated
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self-aggregation, since the conformation of the peptide has a strong
impact on such processes. Our study focused on the hypothesis that
noncovalent self-aggregation involving tight binding to a hairpin-
like backbone conformation enables amyloid formation. Thus, the
conformational profiles of the free peptides were first assessed so it
can be compared with the conformational profile of the polymer-
linked peptide. The comparison between the free peptides and the
peptides linked to a model polymer provided an initial benchmark
for studying novel potentially self-aggregating materials. Our
approach relied on the premise that similar conformational behav-
ior of the free and the polymer-linked peptides, is expected to lead
to similar properties. Next we investigated the properties of the
polymer when isolated and when conjugated to the peptides to
ascertain that it also retains its global properties. Here, we briefly
describe the conformational characterization of two amyloidogenic
peptides and two new chimeric molecules combining the properties
of amyloidgenic peptides and polymers. The study of these specific
cases allowed us to model new peptide-polymer chimeras based on
general trends observed in studies such as the one presented here.
This work set the path for further theoretical and experimental
work not only to address the peptide and polymer self-aggregation
but also to develop new biomaterials with advanced properties.

Details of the preparation and characterization at the molecular
level of the peptide-polymer conjugates resulting from the combi-
nation of FF and poly(L-lactide) (PLA), hereafter denoted FF-PLA
were described elsewhere [87]. Conjugates based on biodegradable
PLA, which is obtained from renewable resources, are expected to
present important medical and biotechnological applications. PLAs
are produced by ring-opening polymerization (ROP) of lactides
and the lactic acid monomers used are obtained from the fermen-
tation of sugar feed stocks. The different stereoisomeric PLA
grades, which are produced from L-, D-, and D,L-lactides, can be
used in biomedical devices (e.g., scaffolds and drug delivery sys-
tems) in which they slowly hydrolyze back to lactic acid and reenter
the Krebs cycle. Fan et al. [88] described the synthesis of L-phenyl-
alanine-terminated PLA, F-PLA, using a three-step process: (1)
hydroxyl-terminated PLA was synthesized through the ROP of
L-lactide; (2) the hydroxyl end group of PLA was blocked with
Boc-L-phenylalanine; and (3) the free amino end group was
obtained by removal of the t-butoxycarbonyl group. The resulting
F-PLA conjugate was employed as macroinitiator for the synthesis
of poly(L-lactide)-b-poly(L-lysine) block copolymers.

We prepared and characterized F-PLA and FF-PLA using
an alternative process [87] to the one discussed above [88].
Accordingly, the polymer was grown from the peptide segment,
which was used as initiator of the polymerization reaction (Fig. 6a).
This conjugate exhibited relatively high molecular weights (i.e.,
49,000 and 66,000 g/mol and polydispersity of 1.41 and 1.48
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for F-PLA and FF-PLA, respectively) and a yield of ~70 % for the
PLA component. A suitable choice of the reaction time and
temperature avoided thermal degradation of the biomaterial.
The degree of crystallinity was around 30–33 % for the two
hybrids, which is consistent with the relatively long segments
arranged in a 107 helical conformation identified by FTIR spec-
troscopy. Circular dichroism (CD) spectroscopy was used to
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Fig. 6 (a) Synthesis of F–PLA and FF–PLA conjugates initiated by L-
phenylalanine (H–Phe–OH) and L,L-diphenylalanine (H–Phe–Phe–OH). Taken
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(b) Chemical structure of PEDOT-RGED
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examine the possible interactions between the peptide and poly-
mer fragments in the conjugates, with the results indicating the
absence of interaction between the two fragments for F-PLA and
very weak for FF-PLA.

To gain microscopic information about the level organization
of the fragments and the level of interaction among them, MD
simulations were performed on a model conjugate formed by a 40
residues-long tail of PLA linked to the C-terminus of a diphenyla-
lanine peptide. Simulations, which were performed in 1,1,1,3,3,3-
hexafluuoroisopropanol to facilitate the comparison with available
experimental data, evidenced that the peptide fragment retains the
intrinsic conformational preferences of diphenylalanine. This con-
clusion was in agreement with the relatively scarce interactions
found between the FF and PLA blocks by CD spectroscopy.
Indeed, the existent interactions were restricted to hydrogen
bonds between the nonterminal phenylalanine residue and the L-
lactide unit immediately after it. Thus, PLA tends to organize
independently, which is essential for the construction of peptide
guided assemblies.

Similar conclusions were reached in a previous study devoted to
the hybrid amphiphile formed by the conjugation of a hydrophobic
peptide with four phenylalanine (Phe) residues and hydrophilic
poly(ethylene glycol) (PEG), hereafter denoted FFFF-PEG. This
polymer is widely used in biomedicine because its properties as
steric stabilizer, which help to encapsulate insoluble small mole-
cules such as drugs, prevent or hinder their uptake, and facilitate
their slow release. Experimental results reported by Castelletto and
Hamley [89] revealed that FFFF-PEG tends to aggregate via
hydrophobic interactions, even at moderately low concentrations,
with a characteristic critical aggregation concentration. Above it, β-
sheet organizations are detectable even before straight fibril struc-
tures start growing and depositing. These aggregates are much
shorter than those observed for amyloid peptides though. Finally,
PEG crystallization does not disrupt local β-sheet structure, even
though on longer length scales the β-sheet fibrillar structure might
be perturbed by the formation of spherulites from PEG crystalliza-
tion. Theoretical studies using a combination of quantum mechan-
ical calculations and atomistic molecular dynamics simulations
allowed us to conclude that the two counterparts of FFFF-PEG
amphiphile tend to organize as independent modules [90], as was
also proved for FF-PLA.

Recently our lab has developed a new strategy for the prepara-
tion of peptide-polymer conjugates. This approach is based on the
concept of chemical similarity of the two components of the conju-
gate. In order to achieve this similarity, exotic amino acids bearing
the chemical characteristics of the polymer are designed and, sub-
sequently, synthesized (e.g., Fig. 6). For example, synthetic amino
acids bearing a 3,4-ethylenedioxythiophene (EDOT) were
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prepared to produce conjugates with poly(3,4-ethylenedio-
xithiophene) [91, 92], abbreviated PEDOT. The latter is among
the most successful electroactive conducting polymers due to its
excellent electrochemical and thermal properties, high conductiv-
ity, good environmental stability in its doped state, mechanical
flexibility, relative ease of preparation, and fast doping-undoping
process [93, 94]. We showed that the conjugates obtained by
linking such synthetic amino acids with PEDOT (named
PEDOT-I and PEDOT-II in Scheme 1) exhibit electrochemical
and electrical activity. Furthermore, cell adhesion and prolifera-
tion assays showed that the behavior of both PEDOT-I and
PEDOT-II as cellular matrices is better than is PEDOT counter-
part, the latter being a well-known electro-biocompatible material
[91, 95].

Inspired by such results, we have recently used the strategy
based on chemical similarity to design an electroactive Arg-Gly-Asp
(RGD)-based peptide-PEDOT conjugate. For this purpose, the
Gly residue of the RGD sequence has been replaced by amino
acids bearing a 3,4-ethylenedioxythiophene as a side group [96].
The resulting sequence, hereafter denoted RGED has been
attached to the end of PEDOT chains forming the PEDOT-
RGED conjugate (Fig. 6b). This conjugate, which has been found
to combine the cell adhesive activity of the RGD sequence with the
electrochemical activity of PEDOT, behaves as an excellent soft
bioelectroactive support for tissue regeneration through
electrostimulation.

From a theoretical point of view, studies on PEDOT-I, PEDOT-
II and PEDOT-RGED pointed that they differ from FF-PLA and
FFFF-PEG. PEDOT is a relatively rigid polymer and the most rele-
vant properties of the electroactive conjugates refer to electron delo-
calization and electronic transitions. The conformational flexibility of
the amino acids and the RGED peptide were examined using quan-
tummechanical methods [92, 96]. The most stable conformers were
coupled to a small PEDOT chain and the electronic properties in
different environments were predicted using methods such as time-
dependent density functional theory, and TD-DFT calculations to
rationalize experimental observations.

3.1 Amyloid Peptides Amyloid peptides, regardless of their sizes, functions, and
sequences, have great potential as building blocks in the creation
of dysfunctional/functional nanostructures, because they have nat-
ural ability to self-assemble into nanofibrillar structures and can be
easily modified with various functional groups. Under the disease
conditions, amyloid peptides can misfold and self-assemble into
different dysfunctional nanostructures at the intermediate and
final aggregation stages including linear, micelles, and annular orga-
nizations [97–99]. These dysfunctional amyloid nanostructures are
known to be associated with more than 20 neurodegenerative
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diseases, including Alzheimer’s, Parkinson’s, Huntington’s, type II
diabetes, and prion diseases [100–103]. Dysfunctional amyloid
nanostructures adopt different structural morphologies, but they
all contain certain degrees of cross-β-sheet structures, suggesting
that amyloid oligomerization/fibrillization proceeds through dif-
ferent assembly pathways [104]. On the other hand, amyloid pep-
tides can also form functional nanostructures, which help to
regulate biological functions in synapse formation [105], hormone
reservoir manufacture [84], and antimicrobial properties [106,
107]. Amyloid fibrils as final aggregation products of different
amyloid peptides are robust, with mechanical strength similar to
spider silk [108] and structural stability similar to barnacle cement
[109]. Amyloid fibrils are also highly resistant to degradation and
damage by proteases [110], UV light exposure [111], and high
temperature of water [112, 113]. Thus amyloid fibers have been
functionalized for applications in metal nanowires [114–116], tis-
sue engineering [117, 118], and drug and gene delivery [119, 120].

Both dysfunctional and functional amyloid nanostructures are
biologically important for different applications. Thus, obtaining
atomic-level structures of amyloid aggregates is an important step
towards not only understanding amyloid functions and its underly-
ing aggregation principles, but also structural-based design of func-
tional amyloids. Different experimental techniques are used to
probe structural information and biological function of amyloid-
osis. Solid-state NMR and X-ray diffraction are good approaches
for resolving atomic-level structural information [78, 121, 122],
but the nature of protein aggregation (noncrystallization and insol-
ubility of fibrils, small sizes, short-lived states, involvement of cell
membrane) renders these experimental studies extremely challeng-
ing [123, 124]. AFM and EM techniques can provide morpholog-
ical images at nanoscale [125–127], but detailed structural and
kinetic information are not reliable, even though EM is now
approaching atomic scale resolution. The difficulties and limitations
of these experimental methods in structural determination have
inspired intensive computational studies to complement experi-
ments. Most computer simulations of amyloid-forming peptides
fall into two levels, atomic and coarse-grained with explicit and
implicit solvent models [128]. All-atom molecular dynamics
(MD) simulations have been applied to study relatively small amy-
loid oligomers by testing different candidate β-sheet arrangements
of preformed oligomers mimicking possible nucleus seeds at the
very early stage of amyloid formation [72, 129–131]. This
approach can determine the most stable conformation for minimal
nucleus seeds at the lowest free energy state, but cannot provide the
aggregation scenario of amyloid intermediates/fibril growth since
aggregation is an extremely slow process on the timescale of min-
utes to days, which is typically beyond the timescale of nanoseconds
for conventional MD simulations. To overcome computational
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limitations, alternative computer simulations using low-resolution
models (e.g., coarse-grained protein models and implicit solvent
models) have been used to directly study the formation of oligo-
mers (small species) and even fibrils (large species) [123, 132].
These simulations can qualitatively provide information on the
kinetic pathways of protein aggregation, but cannot adequately
capture different detailed interactions, such as hydrophobic inter-
actions, electrostatic interactions, and hydrogen bonding. Once the
amyloid structures are determined, structure-based design of func-
tional amyloids becomes achievable. Experimental and theoretical
methods have strengths and weaknesses, but a combination of
experimental, theoretical, and computational methods can capture
amyloid nanostructures at different length and time scales.

3.1.1 General Protocol From a computational point of view, amyloid oligomers should be
(meta)stable in solution so that they do have enough time to
interact with the cell membrane and impair the cells by either
forming specific-ion-leakage channel or thinning/damaging cell
membrane. If the oligomers are unstable, they quickly disassociate
into monomers or aggregate into mature fibrils, which have been
shown to have less damage to cells. Thus, identification of stable
oligomers that are able to retain their initial structural organization
at the lowest free energy state in simulations is the first step to
correlate amyloid structures with their biological functions. In this
section, we present a general computational protocol of our
peptide-packing program, which is used to predict atomic struc-
tures of amyloid fibrils/oligomers. Figure 7 depicts the overview of

MM-GBSW Score/Rank

Structure refinement

Backbone refinement

Side chain refinement

Rigid-body packing 

Peptide translation

Peptide rotation

Explicit-solvent MD

Fig. 7 An overview of the peptide packing procedure
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the protocol workflow of the peptide packing program, consisting
of the following steps:

1. Rigid-body packing. The rigid-body packing module is used for
“coarse” structural prediction: (a) The building block can be
either amyloid monomer or oligomer. (b) The assembly symme-
try should be given. (c) The key peptide-peptide reaction coor-
dinates should be predefined. For a twofold symmetry, the
displacement and orientation of one β-sheet with respect to the
other are key coordinates; for a threefold symmetry, the rotation
of β-sheet with respect to the others is a key coordinate, and for a
spherical symmetry, peptide self-rotation, peptide-to-peptide
displacement and orientation, and layer-to-layer orientation are
key coordinates. (d) The distance between β-sheets should be set
to 10 Å, which corresponds to the average distance in a cross-β
structure; the distance between β-strands should be 4.7 Å, which
allows chains to form hydrogen bonds. (e) A local energy mini-
mization is used to remove any steric clash. (f) Hydrophobic
contacts, hydrogen bonding, shape-complementary parameters
are calculated and used as criteria to tune rigid-body movement
for optimizing backbone-backbone and side chain–side chain
interactions.

2. Structural refinement. Peptide flexibility presents a major
challenge in molecular docking and assembly [133], because
peptide flexibility, including backbone and side chain move-
ments significantly extends the search space for optimal struc-
ture of the assembly. In this module, a Monte Carlo
Minimization (MCM) method will be used to handle backbone
and side chain flexibility. Each MCM cycle consists of (a) rigid
body perturbation (i.e., peptide translation and peptide rota-
tion), (b) backbone and side chain optimization (i.e., torsion
angle rotation), and (c) steepest descent minimization.

3. Molecular mechanic generalized-born surface area (MM-GBSA).
The MM-GBSW method has been implemented in the peptide
packing program and used to score and rank all peptide assem-
blies in terms of free energy. The MM-GBSA approach, com-
bined the molecular mechanics with the implicit solvent
generalized-born method and CHARMM force field [68, 134]
can accurately reproduce the folding and assembly of membrane
proteins in aqueous solution and in heterogeneous biological
membranes [135], but is much less computationally demanding
due to the largely reduced number of degrees of freedom.
The free energy of the system (G) is computed by G ¼ Gpolar +
Gnonpolar + Emm � TS, where a polar solvation energy (Gpolar)
is computed by the GB model; a nonpolar solvation energy
(Gnonpolar) is computed from a solvent-accessible surface area
model; a molecular mechanics energy (Emm) is a sum of bonds,
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angles, torsions, van der Waals, and electrostatic interactions;
and the entropy effect by solute vibration is estimated by the
normal mode calculation.

4. Explicit-solvent molecular dynamics (MD) simulations. Once
amyloid nanostructured aggregates are obtained from steps
1–3, they are subject to explicit-solvent MD simulations to
validate their structural stability. In general, amyloid aggregates
are solvated in a TIP3P water cubic box with a margin of at least
15 Å from any edge of the water box to any peptide atom. Water
molecules within 2.4 Å of the amyloid aggregates are removed
to avoid initial overlapping. The systems are then neutralized by
adding counter ions of Cl� and Na+ to reach ionic strength of
interest (i.e., 100 ~ 150 mM). The resulting systems are mini-
mized in energy for 5000 steps with peptides restrained, fol-
lowed by additional 5000 steps of minimization for the whole
system to remove unfavorable contacts between solvent and
peptides. Next, the systems are subject to 1 ns MD run with
harmonica constrained on the backbone atoms of the peptides.
The production runs are carried out in the NPT ensemble (i.e.,
1 atm and 300 K). Constant pressure and temperature in the
system are maintained by an isotropic Langevin barostat and a
Langevin thermostat, respectively. Long-range electrostatics
interactions are treated by the particle mesh Ewald summethod,
while short-range van derWaals (VDW) interactions are typically
evaluated by a switching method with a twin range cutoff of 10
and 12 Å. The integration time step is 2 fs with the RATTLE
algorithm applied to constrain bonds involving hydrogen atoms.
Periodic boundary condition with the minimum image conven-
tion is applied to all directions. All models are run twice to
validate simulation convergence by using the same starting coor-
dinates but different initial velocities assigned by the Maxwell-
Boltzman distribution. In our studies, all MD simulations are
performed by the NAMD program [67] with all-atom
CHARMM27 force field [134].

3.1.2 Representative

Example of A β Micelles

We have used the peptide packing program, combined with struc-
tural information available from experiments, to determine a series
of atomic structures of amyloid-β (Aβ) linears [136, 137], micelles
[138], triangulars [139], snowflakes [140], annulars [141], and
globulomers [142] (Fig. 8), hIAPP stacking-sandwich oligomers
[143] and wrapping-cord triangular oligomers [144], and Tau
octamers with three- and four-repeat segments [145–147]. These
oligomers vary considerably in β-sheet packing and orientation, but
all display high structural stability, reflecting a highly polymorphic
nature of amyloids in a rugged energy landscape along different
aggregation pathways. In addition, structural analysis also reveals
that different β-sheet associations provide different driving forces to

344 Nurit Haspel et al.



stabilize intra-sheet organization via Asn/Gln ladders, aromatic
stacking, and continuous hydrogen bonding.

Here we presented a protocol to construct more complex Aβ
micelles as an example. Figure 9 shows a three-step procedure to
build a micelle. First, single Aβ25–35 peptide was aligned to the z axis
with a minimal distance of ~4 Å from the origin of the Cartesian
coordinate. Second, the peptide was replicated and rotated along
the y axis at every 30� to form a semi-circle by seven A, B, C, D, E,

Fig. 8 Atomic structures of amyloid oligomers formed by Aβ peptides. Each structure is computationally
optimized and determined from thousands of conformers at the lowest energy state. Aβ oligomers include (a)
single-layer linears; (b, c) double-layered linear, dimeric pentamers stacked in an antiparallel fashion via
either C-terminal-C-terminal (CC) or N-terminal-N-terminal (NN) interface; (d, e) threefold triangular 18-mers
with loop-next-to-tail or loop-next-to-strand organization; (f) double-layered annular 60-mer with the CC
interface; (g) micelle with antiparallel peptide orientation
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F, G peptides with the same parallel orientation in the xz plane.
Then, peptides of B, D, and F are rotated additional 15� along the
z axis so that peptides of A, C, E, and G and peptides of B, D, and F
are located in different planes. For the antiparallel packing, peptides
of A, C, E, and G were reversed to impose opposite orientation
relative to peptides of B, D, and F. Finally, five peptides of B, C, D,
E, and F (exclusion of A and G) were rotated and copied along the
z axis at every 30� to form a micelle consisting of different circle
layers, namely B, C, D, E, and F layers. Each layer consists of
12 peptides except A and G layers, leading to total 62 peptides in
the micelle. Four micelle structures were subject to “coarse” struc-
ture optimization by using energy minimization with generalized
born of a simple switching function (GBSW) implicit solvent model
[148]. For each “coarse-optimized” micelle, we further refined the
structure by adjusting peptide self-rotating angle (Φ) along the
helical axis and peptide displacement between different layers (λ),
i.e., each peptide was rotated along its helical axis at every 15o to
avoid side-chain clash, while peptides of A, C, E, and G were moved
with respect to peptides of B, D, F along the opposite direction.
The structure-refining procedure generated 504 distinct structures
for each “coarse-optimized” micelle. A total of 2016 micelles were
energy-minimized by using 300 steps of steepest decent with back-
bone constrained, followed by 200 steps conjugate and 300 steps
steep decent minimization without position constrains in the pres-
ence of the GBSW implicit solvent. Four different lowest-energy
micelles, one from each category (i.e., parallel or antiparallel

Fig. 9 A three-step strategy to construct Aβ25–35 micelles with parallel and antiparallel peptide orientations
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orientations with N- or C-terminal exposed to solvent)), were
selected and subject to explicit-solvent MD simulation for examin-
ing their structural and energetic aspects at the early stage of
aggregation process. Collective MD simulations identified the Aβ
micelles with antiparallel orientations as not only with high struc-
tural stability, but also high binding affinity to an antibody, suggest-
ing that these Aβ micelles may present more biologically relevant
species.
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Chapter 18

Probing Oligomerized Conformations of Defensin
in the Membrane

Wenxun Gan, Dina Schneidman, Ning Zhang, Buyong Ma,
and Ruth Nussinov*

Abstract

Computational prediction and design of membrane protein–protein interactions facilitate biomedical
engineering and biotechnological applications. Due to their antimicrobial activity, human defensins play
an important role in the innate immune system. Human defensins are attractive pharmaceutical targets due
to their small size, broad activity spectrum, reduced immunogenicity, and resistance to proteolysis. Protein
engineering based modification of defensins can improve their pharmaceutical properties. Here we present
an approach to computationally probe defensins’ oligomerization states in the membrane. First, we develop
a novel docking and rescoring algorithm. Then, on the basis of the 3D structure of Sapecin, an insect
defensin, and a model of its antimicrobial ion-channel, we optimize the parameters of our empirical scoring
function. Finally, we apply our docking program and scoring function to the hBD-2 (human β-defensin-2)
molecule and obtain structures of four possible oligomers. These results can be used in higher level
simulations.

Key words Molecular docking, Empirical scoring function, Human defensin, Membrane protein,
Peptide design, Protein–protein interaction

1 Introduction

Prediction and design of membrane protein–protein interactions
have the potential to facilitate biomedical engineering for medical
and biotechnological applications [1]. Computational study for
weakly stable β-structures in membrane is important to engineer
the biophysical properties including oligomerization state [2].
Defensins are crucial to innate immunity. They contribute to the
antimicrobial action of granulocytes in the mucosa in the small
intestine, in the epithelial host defense in the skin and elsewhere
[3, 4]. They have antiviral activity against both enveloped and
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non-enveloped viruses [5], and they are important in HIV infection
[6]. The oligomerization of defensins either forms of ion pores in
bacterial membranes or aggregate into positively charged patches
which disrupt the integrity of the lipid bilayer [7–9].

Humans express two types of defensins, α and β. Three human
β-defensins: hβ-defensin-1, -2, and -3, have similar sequences,
however, different properties [10]. It has been reported that several
molecules can induce or enhance the production of defensins, for
example, NOD2/CARD15 [11], TLR2 and TLR4 [12], and
IL-12/IL-23/IL-27 [13]. Inducible hBD-2 could play a critical
role in the protection of M. pneumoniae infection [14]. Human
defensins also have complex roles in tumor growth, tumor moni-
toring, and cancer treatment [15]. hBD-2 exerts its growth
suppression effect toward human melanoma cells via downregula-
tion of B-Raf, cyclin D1, and cyclin E expression, upregulation of
p21(WAF1) expression and activation of pRB [16]. hBD-2 may
also control cell growth via arrest of G1/S transition and pRB
activation [17]. Due to their well-established antimicrobial proper-
ties, defensins are also being investigated as therapeutics agents,
especially as potential source to combat resistant bacteria. Human
defensins are also attractive pharmaceutical targets due to their
small size, broad activity spectrum, reduced immunogenicity and
resistance to proteolysis [10, 18, 19].

Defensins perform their biological functions through three
mechanisms: (1) Direct binding and modulation of host cell surface
receptors and disruption of intracellular signaling which can inhibit
viral replication [20]; (2) an indirect antiviral mechanism, where
they function as chemokines to augment and alter adaptive immune
responses; and (3) membrane disruption and pore formation [7–9].
The membrane-bound structure and topology of a human α-defen-
sin indicate membrane pores consisting of dimers [21].

The characteristic folds of defensins are β-sheets stabilized with
three disulfide bonds (Fig. 1). Their structural features, such as the
helical N-terminal domains and oligomerization at the membrane
surface, may modulate the efficiency of membrane insertion and
selectivity for microbial or host-cell membranes. Both defensin-
2 and -3 can interact with membranes as extended β-sheet plat-
forms that present amphipathic helices for insertion into the lipid
bilayer [22]. Nonetheless, many questions regarding the antiviral
activities of defensins remain. Although significant mechanistic
data are known for α-defensins, molecular details for β-defensins
inhibition are mostly lacking [5]. The typical β-defensin action
mechanism is not yet established, and one of the main challenges
for the activation mechanism of the defense is the assembly in the
membrane and the mechanism of membrane disruption.

Computational approaches have been employed to explore the
dimerization of human β-defensin-2 [23], and to design sequences
de novo based on flexible templates [24]. Here we present a
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computational protocol to probe possible oligomerization states of
defensin in the membrane. We evaluate candidate states by a multi-
ple protein–protein docking protocol. We focus on two β-defen-
sins, one is the insect defensin Sapecin and another is human β-
defensin-2 (hBD-2). The reason for choosing the two systems are
(1) experimental information is available for possible protein–pro-
tein interactions and protein–membrane interactions for the insect
Sapecin [25](Notes 1 and 2); and (2) human β-defensin-2 (hBD-
2) is biologically important. Understanding the mechanism is a
necessary first step to design novel antimicrobial peptides.

2 Methods

The system-specific docking protocol uses the following strategies:

2.1 Dock Sapecin

Using SymmDock

to Test Its Trimeric

Assembly

SymmDock is a program to dock proteins and generate protein
oligomers in Cn symmetries (n � 2) [26, 27]. The program can
run through a webserver http://bioinfo3d.cs.tau.ac.il/
SymmDock/ or a standalone version. The program can be installed
in unix environment by running ./install_SymmDock.pl from the
directory with SymmDock program files.

1. Download experimental pdb structures of Sapecin (1l4v) and
defensing-2 (1FD4). Prepare a pdb file with the molecule you
want to dock: unit.pdb (remove hydrogen atoms if the pdb
structure of the protein is obtained by NMR).

Do the docking using SymmDock program

Get the information about desolvation
energy and interface-area

Generate the PDB files of
candidate structures 

Integrate binding energy, desolvation energy and 
interface-area, rescore using our scoring function

Calculate the binding energy
using Dcomplex program 

Optimize parameters

Docking and ranking HBD2 oligomers

High level simulations to evaluate mebrane
disruption of HBD2 oligomers

Fig. 1 Flowchart for the strategy to investigate the defensin oligomerization in membrane. The ribbon structure
in left corner highlights three disulfide bonds in human defensin
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2. Create parameter file by running the script: buildParams.pl n
unit.pdb, where n ¼ the number of symmetric units and unit.
pdb is the name of the PDB file of one unit. The script will create
parameter file named params.txt. All the parameters are
explained within the parameter file.

3. Create the Connolly surface for the molecule by running the
script: runMSPoint.pl.

4. Additional input may include potential binding site residues for
the molecule, which reduces running time and improve the
docking quality. The format of the active site file is as follows:
each line includes residue number and chain id for one residue.
For example

347 A

348 A

The name of the file with the binding site residues is specified
in the parameter file. Add or uncomment the activeSiteParams
line: activeSiteParams siteFile.txt 2 0.7.

Binding site residues can be used in the matching and scoring
stage. The integer parameter of activeSiteParams can control the
usage of the binding site in the matching stage: (0) don’t use,
(1) use only for first base point, (2) use for both base points. The
last parameter (0.7 here) is for the scoring stage, which specifies
the minimal ratio of the active site score in the results. Docking
solutions with smaller ratios are discarded.

5. Running the symmetry dock program: symm_dock.Linux
<params_file> <output_file>

The params_file is the parameter file “params.txt” that was
previously created by “buildParams.pl”. output_file is the name
of the file that will include the results, which contain the ranking
and transformation matrix to create docked pdb structures.

Each line represents one solution, with the following format:

# |score | pen. |int. area| as1 | as2 | desolv. | Transformation

1 | 6967 |�2.72 | 1761.00 | 0 | 0 | 461.34 |�2.04�1.07�2.82
34.36 2.80 19.23

#—trans number

score—geometric score

pen.—maximal surface penetration of surface points

int. area—buried surface area of the interface

as1—geometric score based only on residues that were given as
potential binding site for one side of the interface

as2—geometric score based only on residues that were given as
potential binding site for other side of the interface

desolv.—DeLisi desolvation energy [28]
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Transformation—transformation matrix to generate oligomer
structure: three rotational angles and three translational
parameters

6. Generating docked PDB files by running: transOutput.pl output
file n1 n2.

The output file is the file created by the program earlier. n1
and n2 are the numbers of transformations to generate. For
example running: “transOutput.pl output.txt 1 10” will create
PDB files with the first ten transformations. The script generates
a file named result.transNumber.pdb, where ‘number’ is the
transformation number.

2.2 Rescore the

Docking Solution

Using DFIRE2 to

Evaluate the

Protein–Protein

Interaction Energy

1. DFIRE2 is a program to calculate protein–protein interactions
using knowledge-based functions [29, 30], which is available
from http://sparks-lab.org/. For each solution generated from
Symmetry docking, DFIRE2 energy can be evaluated by run-
ning: DFIRE dfire_pair.lib result.transNumber.pdb.

2. Refine the scoring function for defensin assembly in the mem-
brane using experimental information as a guide. Normal dock-
ing and scoring functions are designed for interactions in
aqueous solution or in the crystal complex. In order to reevalu-
ate the docking solutions specifically for defensin in the mem-
brane environment, we re-designed the scoring function to rank
the docked defensin oligomer as:

Emembrane ¼ binding‐energy*a þ desolvation‐energy*b
þ interface‐area*c

Where the parameters a, b, and c are to be optimized from
docking of the Sapecin trimer in the membrane to fit experimen-
tal observations. The binding energy is calculated with the
DFIRE2, and the desolvation energy and the interface area are
calculated with the SymmDock. Based on extensive docking of
the Sapecin and re-ranking of the solution to fit experimental
binding modes, we obtained the optimized parameters: a ¼ 1,
b ¼ 0.006, and c ¼ 0.003 (Note 3).

2.3 Docking and

Ranking the Human

Defensin-2 Oligomers

1. Repeat the symmetry docking procedure using human β-defen-
sin-2 (hBD-2) dimer structure as input to construct hBD-
2 octamers.

2. Using the optimized scoring function to evaluate the hBD-2-
octamer in the membrane. The flowchart of the computational
approaches is in Fig. 1. (Notes 4 and 5)
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3 Notes

1. NMR experiments have indicated the likely oligomeric state for
Sapecin in the membrane, with Asp4 and Arg23 intermolecular
interactions [25]. Our docking and rescoring has identified the
two best solutions that have arrangements similar to the con-
formers suggested from experiment (Fig. 2).

2. In solution, the NMR structure for hBD-2 does not show
oligomerization. However, crystal structures of defensins indi-
cate dimerization and higher oligomerization states [31, 32]. A
crystal packing pattern of human defensin might also provide
information regarding pore formation in the membrane. A pore
formed by an octameric assembly could accommodate four
water molecules [31]. The question is, though, if the assembly
will re-arrange in the membrane. We try to use the parameters
developed from docking of Sapecin to investigate the potential
oligomerization states of the hBD-2 in the membrane.

3. We apply the scoring functions developed from the Sapecin
oligomer to probe the oligomerization of hBD-2. The new
scoring function clearly helps to identify possible channel form-
ing oligomers. The 20 top ranking octamers have many candi-
date structures with appropriate channel forming orientations
(Table 1 and Fig. 3).

4. High level simulations, for example, explicit water molecular
dynamics simulations can be performed using the selected
hBD-2 oligomers to examine oligomer stability and membrane
disruption. Our studies of a similar protein, the pg-1 monomer
and dimer, on the membrane surface [33] or in the membrane

Fig. 2 Two best conformations with the highest ranking in optimized score function, which fit NMR observa-
tion, the numbers indicate the ranking from the initial symmetry docking

358 Wenxun Gan et al.



[34], have shown that MD simulations are a powerful tool to
investigate membrane disruption by antimicrobial peptides.

5. The outlined approach may not be restricted to symmetric olig-
omerization. Other protein–protein docking programs can also
be used for protein engineering. Such programs include, but not
limited to, PatchDock [35] and FireDock [36].

Table 1
Top 20 ranked hBD2 octamers from symmdock with new scoring function

Rank Score (new ranking) Result (symmetry dock ranking)

1 14.42336 result.103.pdb

2 13.41008 result.216.pdb

3 12.74822 result.172.pdb

4 12.48742 result.74.pdb

5* 12.48012 result.193.pdb

6 12.3413 result.97.pdb

7 12.02262 result.170.pdb

8 11.99962 result.251.pdb

9 11.91628 result.151.pdb

10 11.77326 result.133.pdb

11 11.53318 result.9.pdb

12* 11.4873 result.270.pdb

13 11.33686 result.175.pdb

14 11.27296 result.295.pdb

15 11.23988 result.429.pdb

16 11.14096 result.23.pdb

17 11.09774 result.255.pdb

18* 11.07944 result.87.pdb

19* 11.06372 result.124.pdb

20 10.91142 result.298.pdb

The conformers with * are pore-forming octamers
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4 Conclusion

Re-parameterizing symmetry dock for membrane environment can
provide insight into the oligomerization structures of the mem-
brane damaging antibacterial defensin in membrane. If combined
with high level simulations in further optimization of protein struc-
ture and sequence, the integrated approach could be a valuable
method in computational protein design (Notes 4 and 5).
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Chapter 19

Computational Design of Ligand Binding Proteins

Christine E. Tinberg and Sagar D. Khare

Abstract

The ability to design novel small-molecule binding sites in proteins is a stringent test of our understanding
of the principles of molecular recognition, and would have many practical applications, in synthetic biology
and medicine. Here, we describe a computational method in the context of the macromolecular modeling
suite Rosetta to designing proteins with sites featuring predetermined interactions to ligands of choice. The
required inputs for the method are a model of the small molecule and the desired interactions (e.g.,
hydrogen bonding, electrostatics, steric packing), and a set of crystallographic structures of proteins
containing existing or predicted binding pockets. Constellations of backbones surrounding the putative
pocket are searched for compatibility with the desired binding site conception using RosettaMatch and
surrounding amino acid side chain identities are optimized using RosettaDesign. Validation of the design is
performed using metrics that evaluate the interface energy of the predicted binding pose, the preformation
of key binding site features in the apo-state, and the local compatibility of the designed sequence changes
with the wild type backbone structure, and top-ranking candidate designs are generated for experimental
validation. This approach can allow for the creation of novel binding sites and for the rational tuning of
specificity for congeneric ligands by altering the programmed interactions by design, thus offering a general
computational protocol for construction and modulation of protein–small molecule interfaces.

Key words Protein design, Rosetta software, Ligand binding, Small molecule binding, Steroid
binding

1 Introduction

The ability to de novo design binding sites for small molecules with
programmable binding affinities and selectivities encoded by pre-
defined interactions will have many practical applications in syn-
thetic biology and medicine, including the construction of small
molecule-responsive genetic circuits, novel biosensors, and thera-
peutic scavengers for preventing drug overdoses. Current
approaches for designing ligand binding proteins for medical [1]
and biotechnological uses rely upon raising antibodies against a
target antigen in immunized animals [2, 3] and/or performing
laboratory directed evolution of proteins with an existing low
affinity for the desired ligand [4–6], both of which offer incomplete
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control over molecular details. Computational design could
provide a general, complementary approach for small molecule
recognition in which design features and selectivity are rationally
programmed.

Recent advances in computational protein design have resulted
in novel enzymes with bio-orthogonal functions [7–9], but the
catalytic efficiencies of these designed biocatalysts are modest
compared to those of their natural counterparts [10]. One reason
for the low efficiencies is inaccurate modeling of protein–ligand
interactions: crystal structures of several designed enzymes
bound to substrate analogs show that although many of the
designed residues adopt their modeled conformations, the ligands
and some key catalytic side chains are oriented differently than in
the computational models [11]. Achieving accuracy in the compu-
tational design of protein–ligand interfaces would, therefore, also
aid in the design of high efficiency novel biocatalysts.

Native protein–small molecule interfaces are defined by three
main characteristics: (1) highly optimized specific interactions
between protein and ligand, such as hydrogen bonding, electro-
static, and van der Waals interactions, (2) high overall shape com-
plementarity, and (3) pre-organization of interacting side chains in
binding competent conformations in the unbound protein state
[12]. Guided by these observations, we developed a method in the
framework of the macromolecular modeling software Rosetta to
introduce preselected interactions to a chosen ligand (the steroid
digoxigenin, DIG) in a set of scaffold proteins. The protocol
described below uses DIG as an example, but can, in principle, be
extended to any small molecule (Note 1). Methodological chal-
lenges and the caveats associated with the choice of ligand with
varying physiochemical properties (high charge, high flexibility) are
likely to determine generalizability; these are also described in
Subheading 3.

2 Methods

Starting from a model of the small molecule of choice (DIG)
interacting with protein side chain functional groups and a set of
Protein Data Bank (PDB) files with existing or predicted binding
pockets, we computationally generate a design model and evaluate
it. The overall workflow involves the following steps:

1. Generation of ligand and ligand conformer library.

2. Protein scaffold selection.

3. Geometric placement of ligand using a set of preselected
interactions.

4. Rosetta sequence design.
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5. Evaluation of designs.

6. Compatibility of designed sequence with local backbone
structure.

7. Final Design Selection.

8. Protein expression, experimental characterization, and affinity
maturation (not discussed here).

2.1 Generation

of Models for the

Ligand and Ligand

Conformer Library

The three-dimensional structure of the ligand of choice can be
obtained from a small molecule (e.g., Cambridge Crystallographic
Database) or macromolecular (e.g., PDB) structure database.
The latter is generally preferable as this describes a protein-bound
structure and is likely to not suffer from artifacts arising from
packing in a small molecule crystal. In our case, the three-
dimensional structure of DIG (Fig. 1a) was obtained from PDB
file 1LKE [13]. Because our experimental validation and selection
methods relied on the presence of a linker that connects the DIG
molecule (Fig. 1b) to either biotin or carrier protein, we included
this linker in our ligand model. Linker atoms were added to DIG

Fig. 1 Generating the desired binding site model. (a) The structure of DIG and its binding mode in an
engineered lipocalin that binds the small molecule with high affinity (PDB code: 1LKE). (b) One of the binding
conceptions for DIG in which polar amino acid side chain groups make defined hydrogen bonds to DIG and
aromatic side chain groups make steric interactions. (c) In the modeled disambiguated active sites, all
possible functional group orientations that can make the desired interaction (hydrogen bond in the case
depicted) are considered. (d) Side chain dihedral angles are also sampled to generate these disambiguated
binding sites
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using the Build functionality of MacPyMOL (Schrödinger, LLC).
A ligand conformer library was generated by sampling conforma-
tions around the relevant degrees of freedom, in our case C3–O5
and N1–C26 bonds (Fig. 1) at �60� � 30�, 60� � 30�, and 180�

� 30�. Conformers were rejected if there were significant clashes
within the molecule by using an intra_fa_rep cutoff value of 0.25
Rosetta energy units (Reu). User inputs in choosing the internal
degrees of freedom of the small molecule and the fine-ness of the
sampling these conformations is desirable. Ligand ensembles can be
generated from Rosetta or custom software such as Omega.
Desired interactions with the ligand also should be identified at
this stage. We chose hydrogen bonds and hydrophobic interactions
as these were observed in crystal structures of DIG bound proteins
(Fig. 1b) and idealized binding sites incorporating these functional
groups along with compatible geometries were enumerated using
RosettaMatch (Fig. 1c, d; also see below).

2.2 Scaffold

Selection

A set of several hundred scaffolds for use as input structures is
typically generated. It is desirable that this set contains a variety of
structural and functional classes for maximizing diversity of candi-
date designs. In our case with DIG, we included periplasmic bind-
ing proteins and lipid-binding proteins [8, 9, 14], as well as 344
structural homologs [15] of a subset of highly expressing scaffolds
(PDB codes 1m4w, 1oho, 1a53, 1thf, 1dl3, and 1e1a) having a
DALI Z-score cutoff value of eight from the input search model.
These six scaffolds were chosen because of previous enzyme-design
successes in these fold classes [8, 9, 14] and/or because of their
thermostability, as directed evolution experiments have shown that
more stable scaffolds can acquire new functions more easily than
their less stable counterparts [16, 17]. The homolog subset com-
prised 8 Concanavalin A-like lectins/glucanases (homologs of
1m4w fromNonomurea flexuosa), 91 cystatin-like proteins (homo-
logs of 1oho from Pseusomonas putida), 208 TIM β/α-barrels (28
homologs of 1a53 from Sulfobus solfataricus, 46 unique homologs
of 1thf from Thermotoga maritima, and 134 unique homologs of
1dl3 from Thermotoga maritima), and 37 6-bladed β-propeller
proteins (homologs of 1e1a from Loligo vulgaris). All of these
proteins are enzymes that bind small molecule substrates, but not
all proteins contain a bound ligand in their crystallographic struc-
tures. All 401 scaffolds comprise <350 amino acids, have been
expressed previously in E. coli, and were stripped of their cognate
bound small molecules and water molecules before use. To identify
residue positions to be used for matching (see below) in the homo-
log scaffolds, each homolog crystal structure was superimposed on
that of its parent scaffold using the CEAlign plug-in of the PyMOL
molecular visualization program, and then homolog residue posi-
tions within 5.0 Å of any ligand heavy atom present in the parent
scaffold were identified. For PDBs 1a53, 1dl3, and 1oho, ligands
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present in the crystal structures were used in this search. For 1m4w,
1e1a, and 1thf, ligand positions from the computational design
models of a retroaldolase (RA60) [8], a Diels-Alderase (DA_20)
[9], and a Kemp Eliminase (KE_007) [14] were used, respectively.

2.3 Geometric

Placement of Ligand

Using a Set

of Preselected

Interactions

Geometric criteria for enforcing binding site interactions can be
obtained from existing structures that feature the ligand, or from
quantum mechanical or molecular mechanics-based calculations as
performed for theozymes. The former approach has the advantage
that existing binding modes may have a higher chance of being
recapitulated by design whereas the latter allow for sampling novel
binding modes, and would be the preferred choice when no bound
structures are available. For DIG, these binding interactions were
determined by inspecting structures of digoxin bound to the anti-
digoxigenin antibody 26-10, PDB ID 1IGJ [18], and of digoxi-
genin bound to the engineered lipocalin DigA16, PDB ID 1LKE
[13]. From these structures we defined five interface criteria: (1)
hydrogen bond between the lactone carbonyl oxygen and a Tyr side
chain, (2) hydrogen bond between the O2 hydroxyl and a histidine
or Tyr side chain, (3) hydrogen bond between the O3 hydroxyl and
a His or Tyr side chain, (4) hydrophobic packing interaction on the
top face of the ligand, and (5) hydrophobic packing interaction on
the bottom face of the ligand (Fig. 1c). Two active site configura-
tions were specified: one having Tyr, Tyr, His, Phe/Tyr, and Phe/
Tyr/Trp satisfying design criteria 1–5 (DIG_yyhff), and one having
Tyr, His, His, Phe/Tyr/Trp, and Tyr/Trp satisfying design criteria
1–5 (DIG_yhhff).

Geometric criteria were defined using six degrees of freedom
between the ligand and the desired interacting side chain using a
matching constraints file [19]. Extra rotamer sampling (two half
step standard deviations) was performed around all side chain
torsion angles (Fig. 1d). To enforce burial of the lactone head
group within a binding pocket, we considered only those residue
positions in the binding site that had a minimum of 14 neighboring
residues during matching for constraint 1 (hydrogen bond to the
lactone carbonyl oxygen). A neighbor was defined as a residue
having Cα within 10 Å of the Cα of the binding site position
under consideration. Secondary matching [19] was used for con-
straints 3, 4, and 5. To eliminate high-energy rotamer conforma-
tions, a maximum Dunbrack energy (fa_dun) cutoff of 4.5 Reu
(unweighted) was used while building rotamers for all constraints.
Using these matching criteria, 29,274 and 30,861 matches were
found for the two different binding conceptions, DIG_yyhff and
DIG_yhhff, respectively (Fig. 2).

2.4 Rosetta

Sequence Design

Active site amino acid sequences of each match are designed to
maximize binding affinity to the ligand according to the Rosetta
energy function [19, 20]. Design moves are followed by steepest
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descent gradient minimization in which side chain degrees of
freedom and the relative orientation of the ligand with respect to
the protein are allowed to minimize freely [21] but backbone
minimization is restricted such that Cα atoms were only allowed
to move �0.05 Å from their pre-minimization positions. Internal
torsions of the ligand can be allowed to minimize but typically are
constrained to be within 5� of their initial values (Note 2).

Two successive rounds of sequence design can be used to
generate designs. The purpose of the first round is to maximize
binding affinity for the ligand [19]. To prevent destabilization
of the apo-protein that can result from mutating potentially
stabilizing residues having side chains important for core packing,
aromatic residues in the scaffold can be allowed to mutate to other
aromatics during this round of design. A RosettaScripts XML file
entitled ligdes.xml for running the first round of sequence design is
provided.

After the first round, a second round of binding site sequence
design is performed on the output from the first round. The goal of
this round is to optimize protein stability while maintaining the
binding interface designed during the first round as much as

Fig. 2 Matching binding sites to scaffolds. (a) A set of scaffolds with varying topology are chosen from the PDB
and, (b) Backbone constellations compatible with the envisioned binding sites as well as space for the ligand
molecule are searched in the scaffold set using the RosettaMatch algorithm. A diversity of scaffold topologies
and high stability are generally desirable for higher success rates
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possible. Ligand–protein interactions are up-weighted by a factor
of 1.5 relative to intra-protein interactions during sequence opti-
mization in attempt to ensure that the interface binding affinity is
maintained, and two different criteria are used to optimize protein
stability: (1) native scaffold residues identities are favored by 1.5
Rosetta energy units (Reu), and (2) no more than five residues are
allowed to change from identities observed in a multiple sequence
alignment (MSA) if (a) these residues are present in the MSA with a
frequency greater than 0.6 as specified by a position-specific
sequence matrix (PSSM) and, (b) if the calculated ΔΔG for muta-
tion of the scaffold residue to alanine was greater than 1.5 Reu in
the context of the wild type scaffold sequence. The ΔΔG for
mutation to alanine can be estimated as described [22] and PSSM
files can be generated using NCBI PSI-BLAST. RosettaScripts
XML files, ligdes_fix_cst.xml and ligdes_flex_hb.xml, respectively,
are provided.

2.5 Evaluation

of Designs

Designs passing the filters encoded in the XML files (see attached
files), including the calculated interface energy (Fig. 3a), are
subjected to several additional filtering criteria (also see Notes 3
and 4). High shape complementary (Fig. 3b) is enforced by reject-
ing designs having Sc < 0.6. Shape complementary is computed
using the CCP4 package v.6.0.2 [23] using the Sc program [24]
and the Rosetta radii library. A common feature of the many high-
affinity protein small molecule interfaces, e.g., engineered DIG-
binding lipocalin DigA16 (PDB IDs ILKE and 1KXO) [13] and
the anti-DIG 26-10 antibody (PDB IDs 1IGJ and 1IGI) [18], is
that the binding site is largely pre-organized; there are very few
structural changes between the bound and unbound forms of the
proteins. We therefore attempt to enforce pre-organization of the
binding-competent conformation of the apo-protein by two
metrics: (1) introducing second-shell amino acids that hold the
preselected residues in place via hydrogen bonding or sterics
using Foldit [25], and (2) eliminating designs having Boltzmann-
weighted side chain probabilities [26] <0.1 for more than one of
the key binding residues (Fig. 3c).

2.6 Compatibility

of Designed Sequence

with Local Backbone

Structure

Binding site pre-organization would be further compromised if
substitution of amino acid side chains during (fixed backbone)
design leads to a change in the backbone conformational preference
in regions sequence-local to the sites of substitution. Therefore, we
developed a metric to estimate the impact of design on local back-
bone structure and use this metric to discard designs that are
predicted to lead to backbone structure changes (Fig. 3d). Using
the structure prediction modules of Rosetta [27], we generate a set
of 9-mer fragment structures for each designed and wild type
scaffold sequence and compare the average RMSD of these frag-
ments to those of the scaffold backbone structures. If the average

Computational Design of Ligand Binding Proteins 369



RMSD of conformations predicted in these fragments (200
9-mers) near any designed position is greater (>0.8 Å) for the
designed sequence than the wild type scaffold sequence, we flag
that region of the designed protein as unlikely to adopt the local
backbone conformation of the scaffold protein and reject that
designed protein.

2.7 Final Design

Selection

Following automated filtering, all designs are inspected manually
using Foldit [25] and some ligand-proximal residues are manually
reverted back to their native scaffold identity to increase the likeli-
hood of design stability. Typically, for every binding site concep-
tion, a total of ~10–20 designs are selected with each design
featuring ~5–20 substitutions compared to the wild type scaffold.
Finally, synthetic genes corresponding to these designed proteins
can be ordered and the designs can be experimentally tested and
evaluated as described elsewhere [28].

Fig. 3 Design Selection Criteria. (a) Interface energy as calculated by the Rosetta energy function, (b)
Geometric shape complementarity between the molecular surfaces of the ligand and the protein cavity, (c)
Pre-organization of key side chain groups is a strong predictor of design success, and (d) The compatibility of
the designed sequence to adopt the scaffold backbone
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3 Notes

While the ultimate goal of computational design methods is to
automate all design steps, in practice most protocols rely upon the
chemical intuition and domain knowledge of the user. Our method
is no exception and so below we give some suggestions about
aspects that need to be considered by the user while evaluating
the designs generated by the protocol described above.

1. The Rosetta force field, as other molecular mechanics force
fields, does not accurately model all interactions of protein
functional groups, especially functional interactions that are
introduced to encode selectivity at the expense of local instabil-
ities. Furthermore, accurate modeling of charge–charge interac-
tions in proteins and between protein functional groups and
ligands remains a challenge. Therefore, the design of proteins
to bind charged ligands is generally considerably more difficult
than for polar and hydrophobic ligands. Even for the latter, it
may be necessary to treat the pre-defined binding interactions
with geometrical restraints to ensure binding selectivity. The
weights used in the geometrically defined restraints will be sys-
tem dependent and may require tuning.

2. In the generation of the ligand ensemble or during minimiza-
tion with Rosetta, it is useful to vary some internal torsional
angles of a ligand model, but the resulting conformations may
not be the global energy minimum conformations of the ligand.
The Rosetta force field has several database-derived terms that
make it suitable for protein design but these terms are generally
inapplicable to scoring ligand conformational ensembles. Fur-
thermore, ligand conformational entropy loss upon binding is
largely ignored in the method. Therefore, the design of highly
flexible ligands is likely more difficult than design with rigid
ones. Practically, ensembles that are too large may be expensive
to deal with computationally, but significant errors can be
accrued if the sampling is too coarse. Therefore, the variance in
the conformational ensembles of the ligand models should be
chosen carefully and tuned to strike a balance between chemical
accuracy and computational cost.

3. A metric that is currently evaluated by human intuition in our
protocol is whether the ligand can enter the designed active site
and that access to the active site has not been blocked by new
mutations introduced in the design protocol. Conformational
changes upon substrate binding are not modeled and system-
dependent knowledge of the dynamics of the closure and open-
ing of the active site should be kept in mind when picking out
scaffolds for design and/or evaluating designs by inspection.
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4. Chemical intuition is almost always required to evaluate the
goodness of designs and the goal of all protocols is generally to
provide the user with as many “good” designs with their plausi-
ble binding modes. With continuing method developments,
computational algorithms will increase the fraction of “good”
designs, but the need for solid chemical intuition is unlikely to
diminish.
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Chapter 20

EpiSweep: Computationally Driven Reengineering
of Therapeutic Proteins to Reduce Immunogenicity
While Maintaining Function

Yoonjoo Choi, Deeptak Verma, Karl E. Griswold, and Chris Bailey-Kellogg

Abstract

Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins
of these highly effective therapeutics render them subject to immune surveillance within the patient’s body.
When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that
can manifest a range of clinical complications including rapid drug clearance, loss of functionality and
efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-
immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical
application; critically, the deimmunization process must also maintain the desired therapeutic activity.
To meet the growing need for effective, efficient, and broadly applicable protein deimmunization

technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly
integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based
assessment of the impacts of mutations on protein stability and function, in order to select combinations of
mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and
high-level function. The methods are applicable both to the design of individual functionally deimmunized
variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After
validating EpiSweep in a series of retrospective case studies providing comparisons to conventional
approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in
prospective application to deimmunization of a number of different therapeutic candidates. We conclude
that our broadly applicable computational protein design algorithms guide the engineer towards the most
promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development
of new protein drugs by shortening time frames and improving hit rates.

Key words Biologics, Therapeutic proteins, Computational protein design, Protein engineering,
Immunogenicity, T cell epitope, Deimmunization, Combinatorial library, Pareto optimization

1 Introduction

Protein drugs are the most advanced tools in physicians’ arsenal of
therapeutic agents, and these complex molecular entities continue
to improve outcomes for a range of familiar diseases as well as yield
new treatment options for previously intractable illnesses [1].

Ilan Samish (ed.), Computational Protein Design, Methods in Molecular Biology, vol. 1529,
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One critical barrier to the development and clinical translation of
therapeutic proteins is their susceptibility to immune surveillance
within the patient’s body, a process fundamentally driven by molec-
ular recognition of immunogenic peptide fragments known as
T cell epitopes. Upon eliciting an immune response, therapeutic
proteins may cause a range of clinical complications including rapid
drug clearance, loss of functionality and efficacy, delayed infusion-
like allergic reactions, more serious anaphylactic shock, and even
induced autoimmunity [2, 3].

To mitigate protein immunogenicity, biomolecular engineers
have previously sought to identify highly immunogenic T cell epi-
topes and delete them by mutagenic substitution of key amino acid
residues [4–6]. However, experimental strategies for T cell epitope
deletion are time- and labor-intensive, costly, and not universally
successful. These limitations have led to the application of
computational T cell epitope predictors as tools to accelerate the
deimmunization process [7–9]. Yet prediction and mutagenic dele-
tion of T cell epitopes is not sufficient for therapeutic protein
deimmunization. Specifically, efficacious protein drugs require a
folded, stable, and active structure; thus combinations of epitope-
deleting mutations must be selected for compatibility with each
other and with the native protein architecture and function. Func-
tional deimmunizing mutations can be selected purely experimen-
tally [10], or guided by analysis of homolog sequences [11–14] and
structural energies [15–18].

To create the next generation of computational tools for
therapeutic protein deimmunization, we have integrated computa-
tional T cell epitope prediction with computational analysis of the
structural and functional consequences of epitope-deleting muta-
tions [11, 13, 18–21]. As opposed to serial application of T cell
epitope predictors followed by bioinformatics-based or experimen-
tal mutation analysis, our protein design algorithms simultaneously
optimize therapeutic candidates for both low immunogenicity and
high-level stability and activity. Furthermore, they do so over an
entire protein, considering the global implications of mutations on
immunogenicity and function. Finally, by employing a powerful
combinatorial optimization framework, our methods are guaran-
teed to generate globally optimal protein designs (with respect to
the implemented predictors).

Here, we provide a step-by-step guide to the application of the
EpiSweep suite of deimmunization algorithms, as introduced in
our series of algorithmic papers [11, 13, 18, 19, 21] and prospec-
tively applied in our series of experimental papers [12, 14, 22–25].
To assess immunogenicity, the software utilizes any pocket profile-
based epitope predictor; we illustrate here with the publicly avail-
able ProPred matrices [26]. To gauge the structural and functional
acceptability of epitope deleting mutations, it employs either
sequence-based design or structure-based design, with score
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functions in the form of one- and two-body potentials based either
on amino acid statistics or structural energy evaluations. To gener-
ate designs for experimental evaluation, it either optimizes single
variants to be tested individually, or entire combinatorial libraries to
be subjected to screening or selection techniques. The design
process is based on a “sweep” approach that maps the Pareto
optimal frontier of the design space, identifying those designs that
best optimize epitope score and multi-body potentials simulta-
neously, with no other single design better than the selected ones
in terms of both objectives.

2 Materials

2.1 Software EpiSweep brings together a number of different protein analysis
techniques within a powerful combinatorial optimization process.
Many, and for some design problems, all of the steps may be
performed on a standard desktop machine; for some larger design
tasks, a computer cluster may be required to achieve satisfactory run
times. Necessary software components are as follows:

1. The EpiSweep software.

(a) Make a root directory (e.g., [/home/user/episweep]).
Henceforth, directories and file names are in [italics]; cus-
tomize as desired.

(b) Download the EpiSweep suite (available by registration at
http://www.cs.dartmouth.edu/~cbk/episweep/). EpiS-
weep Python modules are in [episweep/episweep], data files
required to run EpiSweep are in [episweep/data], all pre-
processing and postprocessing scripts described here are in
[episweep/bin], other files including configuration files of
third party programs are in [episweep/misc] and lysostaphin
protein example files are in [episweep/targets/lst_cwbd].

2. Python 2.6 or higher, not Python 3.x (https://www.python.org).

3. IBM ILOG CPLEX API; freely available for academic
research through the Academic initiative program (http://
www-01.ibm.com/software/commerce/optimization/cple
x-optimizer/). Ensure that the Python modules are installed
and accessible from the Python interpreter, setting the
PYTHONPATH environment variable if necessary.

4. Set environment variables so that the EpiSweep modules can be
imported. Under Bash, add the following lines to the [.bashrc]
file; apply analogous commands for other shells.

export EPISWEEP¼/home/user/episweep
export PYTHONPATH¼$PYTHONPATH:$EPISWEEP
export PATH¼$PATH:$EPISWEEP/bin
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5. Rotamer-based design and structure-based library design use
third-party programs to generate potentials used by EpiSweep.

(a) For extracting a rotamer potential:

l OSPREY 2.x [27, 28] (http://www.cs.duke.edu/
donaldlab/osprey.php).

l Java JDK 1.6.x (or higher) (http://www.java.com).

l Compile OSPREY and add the OSPREY binary files to
the Java CLASSPATH in [.bashrc].

export CLASSPATH¼/home/user/OSPREY/
bin:$CLASSPATH

l Compile the OSPREY energy converter.

$ javac $EPISWEEP/bin/eMatrixConverter.java

l Add the OSPREY energy converter to the Java CLAS-
SPATH in [.bashrc].

export CLASSPATH¼$EPISWEEP/bin:
$CLASSPATH

(b) For extracting a structure-based sequence potential:

l CLEVER 1.0 [29, 30] (http://keatinglab.mit.edu).

Add to [.bashrc] an environment variable referencing
the CLEVER installation.

export PATH¼$PATH:/home/user/clever1.0/
compiled

l Rosetta suite (3.4 or higher) [31, 32] (https://www.
rosettacommons.org/software), if using it to generate
structures for CLEVER training.

6. The epitope analysis and postprocessing procedures demon-
strated here are performed with R scripts and, when a structure
is available, PyMOL [33]. The EpiSweep output files are in
comma-separated values (CSV) format, so custom analysis pro-
cedures can readily be developed in any programming language
or with spreadsheet software.

(a) R 3.x or higher (http://www.r-project.org).

(b) PyMOL 1.4 or higher (http://sourceforge.net/projects/
pymol/).

2.2 Background Files Background files are required by EpiSweep for preprocessing and
performing epitope analysis on target specific files. The files can be
downloaded from their respective sources and should be placed in
[episweep/data]. The pre- and postprocessing scripts described
below look for background files in this directory. For correct read-
ability by EpiSweep, the files should follow specific formats
described in Subheading 4.
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1. propred.csv: T cell epitope score matrices, in CSV format (see
Note 1); demonstrated here with ProPred [26] (http://www.
imtech.res.in/raghava/propred).

2. mccaldon.csv: Amino acid background threshold frequencies
for filtering mutations from the MSA, in CSV format
(see Note 2). For the example presented here, the threshold
values are obtained from the McCaldon scale [34].

2.3 Target Specific

Files

Target specific data files include the sequence, structure, and other
information for the protein of interest. For the example presented
here, the files are stored in [episweep/targets/lst_cwbd]:

1. Target amino acid sequence, in FASTA format (see Note 3).

2. Target structure in the Protein Data Bank (PDB) format if
structure-based design is to be performed (see Note 4).

3. Multiple sequence alignment (MSA) of target homologs, in
FASTA format (see Note 5), if an amino acid potential is to be
constructed or conservation is to be used to determined allowed
mutations.

4. Any additional prior knowledge regarding mutational con-
straints for the target protein, in CSV format (see Note 6).

3 Methods

EpiSweep can employ sequence potentials (“sequence-based”
design) or rotamer potentials (“rotamer-based” design) for design-
ing deimmunized protein variants. Sequence potentials can be
generated from sequence analysis (for example, using an MSA) or
structural analysis (for example, using CLEVER [29, 30]), whereas
rotamer potentials can be derived from rotameric structural analysis
(for example, using OSPREY [27, 28]). EpiSweep can also con-
struct a combinatorial library of variants (“library-based design”)
using multiple sets of amino acids at specific positions. These sets of
amino acids are referred to as “tubes” and the potentials derived as
tube potentials. Tube potentials are derived from averaged
sequence potentials, which in turn can be either be MSA-based or
structure-based. Once sequence, rotamer, or tube potentials are
derived for a specific target, EpiSweep can design individual variants
at specified mutational loads, or combinatorial libraries of specified
sizes and numbers of mutated positions.

The methods are illustrated with case study application to a
domain from a therapeutic protein that we have been developing
[24, 25, 35]: the cell wall binding domain (CWBD) of Staphylococ-
cus simulans lysostaphin (LST). Lysostaphin is a potent anti-
staphylococcal enzyme, effective even against drug-resistant
S. aureus strains [36]. It is a two-domain enzyme with a cell wall
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binding domain that targets the bacterial peptidoglycan and a
catalytic domain that cleaves the cell wall. Unfortunately, due to
its bacterial origin, its immunogenicity has kept it out of clinical
application.

Using background and target specific files, the following steps
design deimmunized protein variants using EpiSweep (Fig. 1).
First, create design specifications for the type of design and experi-
mental construction to be performed—sequence-based, rotamer-
based, or library-based. The design specification indicates what to
consider at each position (allowed amino acids, rotamers, or tubes),
which pairs of positions to score, and the scoring potentials to use.
It also specifies parameters controlling the EpiSweep design
process—number of mutated sites, epitope scoring matrix, and so
forth. The EpiSweep process generates sets (“frontiers”) of Pareto
optimal and (if desired) increasingly suboptimal designs, trading off
epitope content for potential score. The resulting designs are ana-
lyzed with postprocessing scripts in order to help select those for
experimental evaluation.

3.1 Design

Specification

An EpiSweep design problem is specified in a CSV-format file that
lists the input files (both background and target-specific), the
mutational choices, the scoring potential, and parameters
controlling the design process. Example design specification files
are provided for each lysostaphin example within corresponding
folders located at [episweep/targets/].

1. EpiSweep can design individual variants and protein libraries
based on sequence, structure or rotamer information. This
specification starts by specifying the basis for design (sequence,
rotamer, or tube).

design, rotamer

2. Target sequence in FASTA format (see Note 3):

wt_seq, lst_cwbd.fasta

3. Target structure in PDB format, if available (see Note 4):

structure, lst_cwbd.pdb

4. MSA of homologs in FASTA format, if available (see Note 5):

msa, lst_cwbd_MSA.fasta

5. Target-specific mutational constraints file, if available (see
Note 6):

mut_constraint, lst_cwbd_mut_constraints.csv

6. Epitope score matrix file (background file, in [episweep/data];
seeNote 1) and threshold value. In this example, the threshold
value of the scoring matrix is top 5%.

epitope_score, propred.csv
epitope_threshold, 5
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(E) EpiSweep (F) Pareto 
frontiers

(G) Design 
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Target 
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Calculate rotamer
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Calculate 
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Fig. 1 Overview of the EpiSweep design strategy. (a) Collect target-specific information, including protein
sequence, structure, homologs and knowledge-based mutational constraints. (b–d) Specify the details of the
design problem. (b) Identify design choices and scoring potentials according to design strategy:
(b.1) Sequence, (b.2) Rotamer, or (b.3) Library. (c) Restrict pair potentials to positions deemed worthy of
scoring, according to sequence/structure analysis. (d) Provide other optimization parameters controlling
mutational load, epitope scoring, etc. (e) Apply EpiSweep to design Pareto frontiers trading off epitope
score and potential score. (g) Analyze designs to select those worthy of experimental construction and
evaluation
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7. Position-specific design choices (see Note 7):

choices, lst_cwbd_rot_choices.csv

8. Position pairs to evaluate in CSV format (see Note 8):

pairs, lst_cwbd_pairs.csv

9. Scoring potential, in either CSV format for sequence potential
and tube potential (see Note 9) or binary format for rotamer
potential (see Note 10):

(a) For sequence potential:

seq_potential, lst_cwbd_seq_pot.csv

(b) For rotamer potential:

rot_potential, lst_cwbd_rot_pot.dat

(c) For tube potential, which also needs the originating
sequence potential:

seq_potential, lst_cwbd_seq_pot.csv
tube_potential, lst_cwbd_tube_pot.csv

10. Optimization parameters. For all design problems, give the
number of optimal/suboptimal curves (default optimal curves
¼ 1) and the mutational load.

num_curves, 5
mut_load, 8

In this example, the number of curves to be generated is 5 (one
Pareto optimal and four suboptimal) and the number of
allowed mutations (mutated positions for library design) is 9.
The mutational load can also be given as a range, in which case
all loads in the range will be designed:

mut_load, 4-8

For library design, also specify the minimum and maximum
number of variants.

library_size, 10000-20000

11. Finally, the filename for the EpiSweep output, in which the
designs will be listed (see Note 11):

design_output, lst_cwbd_plans.csv

3.2 Design

Specification

Generation

While all of the files in the design specification can be generated
manually, EpiSweep provides a rich set of tools to help. An EpiS-
weep design specification generator is a simple Python script, in
which a Design object is created and its methods are invoked in
order to identify allowed mutations, generate scoring potentials,
generate input files for external programs, etc. The following
Python commands, from [lst_cwbd_design_spec_gen.py], illustrate
the case study example.
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1. Import EpiSweep library and initialize a Design object.

from episweep import *
design ¼ Design()

2. Load the design specification CSV file.

design.load_spec(‘design_spec.csv’)

3. Allowed mutation choices (see Note 7 for format) can be
extracted from the MSA of the target using the following filters.

(a) Initialize the filter based on the wild type sequence and the
MSA FASTA file.

design.initialize_filter()

(b) Filter theMSA to a subset of diverse, non-gappy sequences,
with at least a specified identity to the wild type, at most
another specified identity to others in the set, and at most a
given fraction of gaps:

design.msa_filter(low_thresh¼0.30, high_thresh¼0.95,
fraction_gap_allowed¼0.25)

(c) Only keep amino acids that are sufficiently frequent in the
(filtered) MSA relative to background frequencies. In this
example, the McCaldon scale [34] of amino acid composi-
tion is used, according to the background file in [episweep/
data].

design.background_frequency_filter(input¼‘mccal-
don.csv’)

(d) Only keep amino acids that by themselves contribute to
removing predicted epitopes. In this example, the epitope
prediction allows only those mutations which can remove
at least one predicted epitope.

design.epitope_score_filter(min_epi_del¼1)

(e) Apply mutational constraints (the file specified in Subhead-
ing 3.1, step 5; see Note 6).

design.apply_mutational_constraints()

4. Pairs whose interactions should be scored can be extracted
either from the target MSA or the target protein structure
(see Note 8).

(a) Use MSA amino acid pair frequencies and χ2 statistics [37].

design.chisquare_pair_calculator()

(b) Use contacts in the structure. Residues whose Cβ atom (Cα
for glycine) distances are within a distance cutoff value are
defined as a pair. In this example (and by default), the
distance cutoff value is 8 Å.

design.structure_pair_calculator(cutoff¼8)
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5. Construct the scoring potential file, which is in CSV format for
sequence-based design (see Note 9) or in binary format for
rotamer-based design (see Note 10). For library-based design,
first construct a sequence potential, and then construct the tube
potential from it.

(a) MSA-based sequence potentials.

l Generate a sequence potential from the target MSA.

design.generate_seq_potential()

l Finish editing the [lst_cwbd_design_spec_gen.py] file.
Save and run the script.

$ python lst_cwbd_design_spec_gen.py

l The resulting potentials will be stored in [lst_cwbd_seq_
pot.csv].

(b) Structure-based sequence potentials, via CLEVER.

l Prepare the CLEVER configuration file. A target name
must be specified and the output file is [lst_cwbd_CLE-
VER_design.dat] (seeNote 12), which contains a list of
amino acid choices and pair information.

design.CLEVER_design_file_maker(output¼‘lst_
cwbd_CLEVER_design.dat’)

l Finish editing the [lst_cwbd_design_spec_gen.py] file.
Save and run the script to generate the [lst_cwbd_CLE-
VER_design.dat] file.

$ python lst_cwbd_design_spec_gen.py

l Generate random sequences by providing the design
configuration file [lst_cwbd_CLEVER_design.dat] and
using CLEVER sequence generator script [GenSeqs].
In this example, 6000 random sequences (seeNote 13)
are generated and saved in [train6000.seq]. This step
also assigns zero energy values to each protein next to
its sequence (see Note 14).

$ GenSeqs -n 6000 -d lst_cwbd_CLEVER_design.
dat -s train6000.seq

l Use [mutate_pdb.py], providing the design spec file
[design_spec.csv] and the random sequence file
[train6000.seq]. This script creates a PDB file for each
sequence, with file names in a sequential order (here 1.
pdb, 2.pdb, . . . , 6000.pdb).

$ mutate_pdb.py –i design_spec.csv –s train6000.
seq

l Design structures and extract energies for the resulting
sequences using any protein design program. For
example, if employing Rosetta, use the fixbb program
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to design each structure and relax to minimize them.
The calculated energies will be used in CLEVER
model training in the following steps.

l Enter calculated structure energy values into
[train6000.seq] in the specified format (see Note 14),
i.e., replace the zero values for each designed sequence
in the initial file with their calculated energy values.
Save this new file as [train6000_energy.seq]. An exam-
ple file with this name and substituted energy values is
provided for reference.

l Estimate amino acid energies using the CLEVER script
[CETrFile], providing the sequence list with energy
values and the configuration file. The output file
[lst_cwbd_CLEVER.log] is the standard output of the
script.

$ CETrFile -d lst_cwbd_CLEVER_design.dat -s
train6000_energy.seq -l lst_cwbd_CLEVER.log

l Convert the output file [lst_cwbd_CLEVER.log] to a
structure-based sequence potential using the script
[clever_log_converter.py], providing the log file. The
output is a sequence potential file [lst_cwbd_seq_pot.
csv] in CSV format (see Note 9).

$ clever_log_converter.py –i lst_cwbd_CLEVER.
log –o lst_cwbd_seq_pot.csv

(c) Rotamer potentials, via OSPREY.

l Prepare the OSPREY configuration files (seeNote 15).
[KStar.cfg] contains path information of OSPREY and
rotamer libraries, and has to be separately prepared. An
example file is provided in [episweep/misc/osprey]. The
other two configuration files can be generated by the
design object. The ‘target’ argument to the method is
used to indicate final output file names. The following
example generates [lst_cwbd.DEE.cfg], which contains
amino acid choices at each position, and [lst_cwbd.
System.cfg], which has structure information.

design.OSPREY_config_maker(target¼‘lst_cwbd’)

l Finish editing the [lst_cwbd_design_spec_gen.py] file.
Save and run the script.

$ python lst_cwbd_design_spec_gen.py

l RunOSPREY, providing all the configuration files. For
example, the following script runs OSPREY using
8 threads and 30 GB of memory. The standard output
including rotamer choices after rotamer pruning will
be saved in [lst_cwbd_DEE.log].
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$ java -Xmx30000M KStar -t 8 -c KStar.cfg
lst_cwbd.System.cfglst_cwbd.DEE.cfg doDEE >
lst_cwbd_DEE.log

l Extract rotamer choices from the standard output file
using the script [extract_rotamer_choice.py], providing
the output log file [lst_cwbd_DEE.log]. The output file
[lst_cwbd_rotamer_choice.csv] lists rotamer choices in
EpiSweep CSV format (see Note 7).

$ extract_rotamer_choice.py –i lst_cwbd_DEE.log
–o lst_cwbd_rotamer_choice.csv

l OSPREY generates an energy matrix file [lst_cwbd_0.
dat] and a reference energy file [lst_cwbd.eref.dat] in
Java binary format. Convert the output energy matrix
files to a binary file [lst_cwbd_rot_pot.dat] (see Note
10) using the converter [eMatrix_converter.class].

$ java eMatrix_converter –i lst_cwbd_0.dat –r
lst_cwbd.eref.dat –o lst_cwbd_rot_pot.dat

(d) Tube potentials.
l Generate a sequence potential via step 5a or b.

l Generate “tubes” [20] from the allowed mutations,
using either degenerate oligonucleotides or combina-
torial sets of amino acids. To specify tube generation
parameters, see Note 16.

design.generate_tube()

l Generate tube potentials from the sequence potential
and the previously generated tubes.

design.generate_tube_potential()

l Finish editing the [lst_cwbd_design_spec_gen.py] file.
Save and run the script to generate and save tubes in
[lst_cwbd_tube_choices.csv] and tube potentials in
[lst_cwbd_tube_pot.csv].

$ python lst_cwbd_design_spec_gen.py

3.3 EpiSweep

Execution

EpiSweep execution only requires the design specification [design_-
spec.csv] file. The optimizer will set up an integer program to design
variants or libraries according to the specification, and save the
designs in the specified output file.

$ sweep.py design_spec.csv

3.4 Design Analysis 1. Assess overall predicted immunogenicity of the wild type.

(a) Predict epitopes, using script [epitopes.py], providing the
design spec file [design_spec.csv], design index number
(0 for wild type) and output filename. The output file is
saved in CSV format (see Note 17).
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$ epitopes.py –i design_spec.csv –n 0 -o lst_cwbd_epi-
tope.csv

(b) Plot the epitope “hits” (Fig. 2a), using script [epitope_map.
R], providing the epitope prediction output file.

$ epitope_map.R –i lst_cwbd_epitope.csv –o lst_cwbd_e-
pitope.pdf

(c) If a structure is available, visualize epitopes as “sausage” in
PyMOL (Fig. 2b), using the script [sausage_epitope.py]; see
Note 18.

PyMOL> from episweep import *
PyMOL> sausage(spec¼“design_spec.csv”, palet-
te¼“white red”, overlap¼True)
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Fig. 2 Representation of epitope map: (a) sequence representation and (b) structure representation (rendered
by PyMOL). The target protein shown here is the cell-wall binding domain of lysostaphin (PDB code: 4LXC
chain A 403~493). In the sausage representation, the redder, the higher the epitope content
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2. Plot the Pareto optimal frontiers (Fig. 3a for a rotamer-based
individual design and Fig. 4a for a structure-based library
design), using [pareto_curve.R] with the design spec file
[design_spec.csv].

$ pareto_curve.R –i design_spec.csv –o lst_cwbd_design_-
pareto.pdf

3. Predict epitopes for a variant of interest and compare to wild
type.

(a) Generate an epitope map [lst_cwbd_var.csv], using script
[epitopes.py], providing the design spec file [design_spec.
csv], design index number (design number 4 in this case)
and output filename.

$ epitopes.py –i design_spec.csv –n 4 -o lst_cwbd_var_-
epitope.csv

(b) Plot differential epitope maps of individual designs
(Fig. 3b). Use script [epitope_deletion_map.R], providing
epitope prediction files of the wild type and the particular
variant.

$ epitope_deletion_map.R -w lst_cwbd_epitope.csv -v
lst_cwbd_var_epitope.csv -o epitope_deletion_map.pdf

4. Enumerate and analyze the variants comprising a designed com-
binatorial library.

(a) Extract a specific design from the Pareto frontier and enu-
merate a random subset or all designs (complete enumera-
tion is potentially very time consuming), generating a CSV
format file of individual variant designs [lib_plan_enumer-
ated.csv] (see Note 11). In this example, library design
index 10 is selected from the library Pareto frontier
(Fig. 4a) and 5000 variants are randomly sampled.

$ enumerate_library.py –i design_spec.csv –n 10 –e
5000 –o lib_plan_enumerated.csv

(b) Score and plot the variants (Fig. 4b), using script [plot_
enumerated_lib.R].

$ plot_enumerated_lib.R –i lib_plan_enumerated.csv
–o lib_plan_enumerated.pdf

4 Notes

1. The file for the epitope scoring matrices starts with a line
indicating the name of MHC alleles to be evaluated, and then
score entries followed by threshold values.

Name

Matrix
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Fig. 3 Postprocessing results plots. Default scripts with default options were used. (a) Pareto optimal variants
of the lysostaphin cell-wall binding domain from rotamer-based design (five mutations, one Pareto optimal
and four suboptimal curves). The wild type is the black solid circle. The Pareto frontier is depicted with red
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for this figure) is further analyzed for epitope mapping. (b) An example epitope map of the design compared to
the target wild type. Red lines are epitopes of the wild type and blue lines are deleted epitopes. The broken red
line is the newly introduced epitope by the mutation. The mutated positions are marked at the bottom.
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Fig. 4 Structure-based library designs. (a) Pareto curve, with each red point representing a library. The wild
type is shown by a black solid circle. (b) Enumeration of the blue circled library from (a), with 5000 randomly
selected variants illustrated by small black solid circles
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Threshold values

where

(a) Name is for the user’s reference and can be an arbitrary
string (e.g., HLA-DRB1*0101).

(b) Matrix has 20 rows (amino acids in alphabetical order by
1-letter code), each with nine comma separated columns
(peptide positions, P1 through P9) of position-specific
floating point values.

(c) Given a query peptide, the position-specific values are
summed and then the sum is compared to one of the
threshold values. The peptide is considered a hit if the
sum is higher than the assigned threshold value.

(d) Our previous studies have been performed at a 5% thresh-
old and the epitope predictions shows good correlations
with experimental IC50 values [14, 22, 23].

(e) Many studies have aimed to remove predicted T-cell epi-
topes of the eight most common human leukocyte anti-
gen (HLA)-DR alleles (HLA-DR*0101, 0301, 0401,
0701, 0801, 1101, 1301, and 1501) [38].

2. The background amino acid frequency file is in two-column
CSV format, with each row listing an amino acid and its thresh-
old amino acid composition (%).

Ex: A,0.083

3. FASTA file format for the target is as follows:

>Sequence Name

ACDEFGHIKLMNPQRSTVWY

The first line is an identifier and the next lines contain a
sequence of standard 20 amino acids without gaps (one letter
code).

4. The structure should be in standard Protein Data Bank file
format (http://www.wwpdb.org/documentation/file-for
mat). Since the starting position of the sequence assumed to
be 1, ensure that the structure follows the same numbering and
has exactly the same residues.

5. The MSA contains multiple entries, each is in FASTA format
(see Note 3).

>Sequence 1

ACDEFGHIKLMNPQRSTVWY

>Sequence 2

A-DEFGHIKLMNPQ–TVWY

All the sequences must be of the same length. The first
sequence must be the target sequence (gaps “–” are allowed
here). A set of homologs can be obtained from numerous
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resources such as PSI-BLAST (http://blast.ncbi.nlm.nih.gov)
and Pfam (http://pfam.xfam.org/).

6. A mutational constraints file specifies allowed/disallowed
amino acids (one letter code) at each position. The file has
four columns: position, exclusively allowed amino acids (only
these are allowed for this position), allowed amino acids (listed
amino acids are allowed but others are also possible) and dis-
allowed amino acids (other amino acids are possible but the
listed one are disallowed). For example, if tryptophan (W) is
disallowed for the first position, only proline (P) is allowed for
the second position, no restriction for the third position and
asparagine (N) and phenylalanine (F) are allowed but not
cysteine (C) for the tenth position, the file is written as follows:

1,,,W

2,P,,

3,,,

4,,NF,C

If a position is missing or left blank like position 3, it is consid-
ered unconstrained. If this file is not given, all the positions are
considered unconstrained.

7. A choice file is a two or three-column CSV file.

(a) For sequence and tube choices, this file has to have two
columns, position and choice.

Ex (sequence choice): 1,A

Ex (tube choice, degenerate oligonucleotide in lower

case): 1,rvt

Ex (tube choice, combinatorial amino acids in upper case):

1,AV

(b) For rotamer choice, this file must have three columns:
position, choice, and rotamer index.
Ex (rotamer choice): 1,A,2

8. The pair information is used to specify residue-residue interac-
tions to be scored. The pair information file is in two-column
CSV format: position 1, position 2.

Ex:

2,3

3,5

. . .

Note that the row is commutative (e.g., one can write a row as
‘3,5’ or ‘5,3’), yet only one must be given.

9. Amino acid or tube score potential files can be prepared in the
following CSV format:

(a) For one-body score potential values: position, amino acid
or tube, score

Ex: 2,G,-0.34
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(b) For two-body score potential values: position 1, amino
acid or tube 1, position 2, amino acid or tube 2, score
Ex: 5,D,30,K,-0.377637

10. A binary score potential file has the following binary format
(Big-endian):

(a) [4-byte unsigned integer] The number of residues, n.

l The following elements are iterated for n times.

l [4-byte unsigned integer] The number of mutations
at this position, p.

[1-byte character] Amino acid, a.

[4 byte unsigned integer] The number of degenerate
elements (e.g., rotamers), r.

(b) [4-byte float] One-body score (p, a, r) values.

(c) [4-byte float] Two-body score (p1, a1, r1: p2, a2, r2) values.

11. The result output file is in CSV format and columns are as
follows:

(a) Design index (sequential integer numbers, 0 for wild
type).

(b) Curve identification (0: wild type, 1: Pareto optimal and
>1 for suboptimal designs).

(c) Epitope score.

(d) Potential score (the lower the better by convention).

(e) Mutations made (“|” separated).

l Ex. Empty for the wild type.

l D13E (single mutation, D to E at position 13).

l D13E|F45W (double mutation).

l Y5rvt (a tube with the degenerate codon ‘rvt’,
lower-case, encoding for amino acids N, T, S, D,
A, and G).

l Y5YV (a combinatorial tube YV encoding for com-
binatorial amino acids Y and V).

(f) Sequence. For individual designs, a full sequence is
shown. For library designs, ‘*’ is present where tubes
are incorporated.
Ex:

KTNKHGTLYKSE*GSFTPNTDIITRTTGPFTSMPQ*GV*KAGQT*HY-

DEVMKQ*GHVWVGYTGN*G*RIYLPV

KTNKHGTLYK*E*GSFTPNTDIITRTTGPFTSMPQSGV*KAGQT*HY-

DEVMKQ*GHVWVGYTGN*G*RIYLPV

KTNKHGTLYKSE*GSFTPNTDIITRT

TGPFTSMPQ*GV*KAGQT*HYDEVMKQ*GHVWVGYTGN*G*RIYLPV
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12. CLEVER [29, 30] can be used to develop a sequence poten-
tial that represents structure-based energy terms, via a cluster
expansion technique. CLEVER requires a list of possible
amino acids at each position with the pair information. After
training with energy data, CLEVER generates an output log
file listing one-body and two-body scores, which can be con-
verted into EpiSweep sequence potentials. Example configu-
ration files are provided in [episweep/misc/clever] and a
converter to EpiSweep format is in [episweep/bin]. The
CLEVER configuration file is a plain text file that contains
allowed amino acids at each position and pair information.
The file has the following format:

#design_start

[Space separated allowed amino acids for all positions] Ex: 1 A

C D

#design_end

#cluster_start

[A list of single positions line by line] Ex: 1

[A list of pairs line by line] Ex: 1 3

#cluster_end

13. The following equation [21] provides an approximate num-
ber n of sequences to generate for CLEVER model training,
based on the number of positions l, choices per position m,
and pairs p. Please note that more sequences results in a
better-trained model.

n ¼ l �m+p �m2

14. The random sequence file is a plain text file each of which line
has the following format:

[Energy value] [A space-separated sequence of amino acids]

Ex: 0.000 A C D E F G H I K L M N P Q R S T V W Y

Initially an energy value of 0.000 is assigned to each sequence.
After calculating energy values for each sequence using mod-
eling software, the zero entries need to be substituted for new
energy values. For example, if the calculated energy value of
the designed structure for the above sequence is -5.000, the
substituted value would be:
Ex: -5.000 A C D E F G H I K L M N P Q R S T V W Y

15. OSPREY 2.0 or higher [27, 28] can be used to calculate
structure-based rotamer energies. Note that OSPREY distin-
guishes protonation of histidine (HIP: double protonated
histidine; positively charged, HID: delta protonated, HIE:
epsilon protonated). The PDB structure file must contain all
hydrogen atoms. Many programs can add hydrogen atoms to
a PDB format structure, e.g., PyMol [33], AMBER [39], and
TINKER [40]. The OSPREY rotamer-energy matrix needs to
be converted to an appropriate format (see Note 10). There
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are three configuration files required to run OSPREY; exam-
ple configuration files are provided in [episweep/misc/osprey],
and the design generator can produce [System.cfg] and [DEE.
cfg] for a design spec.

(a) KStar.cfg: contains the system path of OSPREY and the
rotamer library.

(b) System.cfg: contains information of the protein (struc-
ture filename, protein length, etc.).

(c) DEE.cfg: specifies output file names and detailed para-
meters including force field and mutation choices gener-
ated from the filtering process.

16. Library parameters that can be specified for tube construction
are discussed with respect to this example:

design.generate_tube(method¼‘degenerate’, restrict_
tube_size¼50, avoid_aa¼[‘C’, ‘P’], avoid_stop_codon¼
True, junk_percent¼0.34, junk_type¼‘deimmunizing’)

(a) Method: EpiSweep designs combinatorial libraries to be
constructed by incorporating at specific positions either
degenerate oligonucleotides (method¼‘degenerate’) or
combinations of specific mutations (meth-
od¼‘combinatorial’). A “tube” considered at a position
is the corresponding set of amino acids, either encoded
by the degenerate oligonucleotide or listed as point
mutations.

(b) Tube size restriction: The number of amino acids
encoded within a tube can be restricted by a user speci-
fied value. Content in the tubes from the ‘combinatorial’
method should be restricted to a small number (e.g., 3)
since possible combinations grow exponentially with
increasing number of amino acid choices. Content in
‘degenerate’ tubes is restricted by the genetic code and
thus the tube size restriction can be relaxed (e.g., 50).

(c) Amino acids restriction: A tube can be excluded if it
encodes for undesired amino acids (e.g., ‘C’ or ‘P’).

(d) Stop codon allowance: A degenerate tube encoding for a
stop codon can be eliminated.

(e) Junk percent: Degenerate tubes that encode for addi-
tional amino acids (due to degeneracy) beyond the
desired ones are removed if there are too many undesired
ones (called junk). For example, if the desired choices are
{D,G,V} then a tube encoding for {D,E,G,V}, due to
degeneracy in the genetic code, includes E as junk. The
default fraction of junk allowed is 1/3; this can be
changed using the junk_percent parameter. The junk
within a degenerate tube can be further restricted so
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that only ‘deimmunizing’ junk (i.e., deletes an epitope,
as in design.epitope_score_filter) is allowed, or that
‘nondeimmunizing’ junk is also allowed.

17. The output file of epitope prediction is saved in CSV format
and columns are as follows:

(a) Start position.

(b) Peptide (nonamer).

(c) End position.

(d) Hits (Binary, Allele specific).

(e) Total hits.

18. The script runs inside the PyMOL command line interface.
The main function of the script is ‘sausage’, which takes three
arguments.

(a) Design spec: the EpiSweep design specification file
(mandatory).

(b) Palette: color set (optional). Default: “white red”, i.e.,
the redder, the higher the epitope score.

(c) Overlap: if this argument is false, only the first residue of
each epitope is highlighted, colored by how many epi-
topes start at that frame; else, all residues in each epitope
are highlighted, with each position colored by howmany
epitopes include it. Default: True.

Acknowledgments

This work was supported by NIH grant R01-GM-098977 to KEG
and CBK. We also gratefully acknowledge computational resources
provided by NSF grant CNS-1205521.

References

1. Aggarwal SR (2014) What’s fueling the bio-
tech engine-2012 to 2013. Nat Biotechnol
32:32–39

2. De Groot AS, Scott DW (2007) Immunoge-
nicity of protein therapeutics. Trends Immunol
28(11):482–490

3. Schellekens H (2002) Bioequivalence and the
immunogenicity of biopharmaceuticals. Nat
Rev Drug Discov 1(6):457–462

4. Cizeau J, Grenkow DM, Brown JG, Entwistle
J, MacDonald GC (2009) Engineering and
biological characterization of VB6-845, an
anti-EpCAM immunotoxin containing a T-
cell epitope-depleted variant of the plant toxin
bouganin. J Immunother 32(6):574–584

5. Harding FA, Liu AD, Stickler M, Razo OJ,
Chin R, Faravashi N, Viola W, Graycar T,
Yeung VP, Aehle W (2005) A β-lactamase
with reduced immunogenicity for the targeted
delivery of chemotherapeutics using antibody-
directed enzyme prodrug therapy. Mol Cancer
Ther 4(11):1791–1800

6. Warmerdam PA, Plaisance S, Vanderlick K,
Vandervoort P, Brepoels K, Collen D, De
Maeyer M (2002) Elimination of a human T-
cell region in staphylokinase by T-cell screening
and computer modeling. Thromb Haemost 87
(4):666–673

7. De Groot A, Knopp P, Martin W (2004) De-
immunization of therapeutic proteins by T-cell
epitope modification. Dev Biol 122:171–194

396 Yoonjoo Choi et al.



8. De Groot AS, Moise L (2007) Prediction of
immunogenicity for therapeutic proteins: state
of the art. Curr Opin Drug Discov Devel 10
(3):332

9. Moise L, Song C, Martin WD, Tassone R, De
Groot AS, Scott DW (2012) Effect of HLADR
epitope de-immunization of Factor VIII
in vitro and in vivo. Clin Immunol 142
(3):320–331

10. Cantor JR, Yoo TH, Dixit A, Iverson BL, For-
sthuber TG, Georgiou G (2011) Therapeutic
enzyme deimmunization by combinatorial T-
cell epitope removal using neutral drift. Proc
Natl Acad Sci 108(4):1272–1277

11. He L, Friedman AM, Bailey-Kellogg C (2012)
A divide-and-conquer approach to determine
the Pareto frontier for optimization of protein
engineering experiments. Proteins 80
(3):790–806

12. Osipovitch DC, Parker AS, Makokha CD, Des-
rosiers J, Kett WC, Moise L, Bailey-Kellogg C,
Griswold KE (2012) Design and analysis of
immune-evading enzymes for ADEPT therapy.
Protein Eng Des Sel 25(10):613–624

13. Parker AS, Zheng W, Griswold KE, Bailey-
Kellogg C (2010) Optimization algorithms
for functional deimmunization of therapeutic
proteins. BMC Bioinformatics 11(1):180

14. Salvat RS, Parker AS, Choi Y, Bailey-Kellogg C,
Griswold KE (2015) Mapping the pareto opti-
mal design space for a functionally deimmu-
nized biotherapeutic candidate. PLoS
Comput Biol 11(1):e1003988

15. Choi Y, Griswold KE, Bailey-Kellogg C (2013)
Structure-based redesign of proteins for mini-
mal T-cell epitope content. J Comput Chem 34
(10):879–891

16. King C, Garza EN, Mazor R, Linehan JL,
Pastan I, Pepper M, Baker D (2014) Removing
T-cell epitopes with computational protein
design. Proc Natl Acad Sci 111
(23):8577–8582

17. Mazor R, Eberle JA, Hu X, Vassall AN, Onda
M, Beers R, Lee EC, Kreitman RJ, Lee B, Baker
D (2014) Recombinant immunotoxin for can-
cer treatment with low immunogenicity by
identification and silencing of human T-cell
epitopes. Proc Natl Acad Sci 111
(23):8571–8576

18. Parker AS, Choi Y, Griswold KE, Bailey-
Kellogg C (2013) Structure-guided deimmu-
nization of therapeutic proteins. J Comput Biol
20(2):152–165

19. Parker AS, Griswold KE, Bailey-Kellogg C
(2011) Optimization of therapeutic proteins
to delete T-cell epitopes while maintaining

beneficial residue interactions. J Bioinform
Comput Biol 9(02):207–229

20. Parker AS, Griswold KE, Bailey-Kellogg C
(2011) Optimization of combinatorial muta-
genesis. J Comput Biol 18(11):1743–1756

21. Verma D, Grigoryan G, Bailey-Kellogg C
(2015) Structure-based design of combinato-
rial mutagenesis libraries. Protein Sci 24
(5):895–908

22. Salvat RS, Choi Y, Bishop A, Bailey‐Kellogg C,
Griswold KE (2015) Protein deimmunization
via structure‐based design enables efficient epi-
tope deletion at high mutational loads. Bio-
technol Bioeng 71(24):4869–4880

23. Salvat RS, Parker AS, Guilliams A, Choi Y,
Bailey-Kellogg C, Griswold KE (2014) Com-
putationally driven deletion of broadly
distributed T cell epitopes in a biotherapeutic
candidate. Cell Mol Life Sci 71
(24):4869–4880

24. Blazanovic K, ZhaoH, Choi Y, Li W, Salvat RS,
Osopovitch DC, Fields J, Moise L, Berwin BL,
Fiering SN, Bailey-Kellogg C, Griswold KE
(2015) Structure-based design of lysostaphin
yields potent and deimmunized anti-
staphylococcal therapies. Mol Ther Methods
Clin Dev 2:15021

25. Zhao H, Verma D, Li W, Choi Y, Fiering SN,
Bailey-Kellogg C, Griswold KE (2015) Deple-
tion of T cell epitopes in lysostaphin mitigates
anti-drug antibody response and enhances
antibacterial efficacy in vivo. Chem Biol 22
(5):629–639

26. Singh H, Raghava G (2001) ProPred: predic-
tion of HLA-DR binding sites. Bioinformatics
17(12):1236–1237

27. Chen C-Y, Georgiev I, Anderson AC, Donald
BR (2009) Computational structure-based
redesign of enzyme activity. Proc Natl Acad
Sci 106(10):3764–3769

28. Gainza P, Roberts KE, Donald BR (2012) Pro-
tein design using continuous rotamers. PLoS
Comput Biol 8(1), e1002335

29. Grigoryan G, Reinke AW, Keating AE (2009)
Design of protein-interaction specificity gives
selective bZIP-binding peptides. Nature 458
(7240):859–864

30. Grigoryan G, Zhou F, Lustig SR, Ceder G,
Morgan D, Keating AE (2006) Ultra-fast eval-
uation of protein energies directly from
sequence. PLoS Comput Biol 2(6), e63

31. Rohl CA, Strauss CE, Misura KM, Baker D
(2004) Protein structure prediction using
Rosetta. Methods Enzymol 383:66–93

32. Simons KT, Kooperberg C, Huang E, Baker D
(1997) Assembly of protein tertiary structures

EpiSweep: Computational Design of Deimmunized Proteins 397



from fragments with similar local sequences
using simulated annealing and Bayesian scoring
functions. J Mol Biol 268(1):209–225

33. Schrödinger. The PyMOL molecular graphics
system.

34. McCaldon P, Argos P (1988) Oligopeptide
biases in protein sequences and their use in
predicting protein coding regions in nucleotide
sequences. Proteins 4(2):99–122

35. Zhao H, Blazanovic K, Choi Y, Bailey-Kellogg
C, Griswold KE (2014) Gene and protein
sequence optimization for high-level produc-
tion of fully active and aglycosylated lysosta-
phin in Pichia pastoris. Appl Environ
Microbiol 80(9):2746–2753

36. Kokai-Kun JF (2012) 10 Lysostaphin: a silver
bullet for staph. Antimicrobial Drug Discov
22:147

37. Larson SM, Di Nardo AA, Davidson AR
(2000) Analysis of covariation in an SH3

domain sequence alignment: applications in
tertiary contact prediction and the design of
compensating hydrophobic core substitutions.
J Mol Biol 303(3):433–446

38. Southwood S, Sidney J, Kondo A, del Guercio
M-F, Appella E, Hoffman S, Kubo RT, Ches-
nut RW, Grey HM, Sette A (1998) Several
common HLA-DR types share largely overlap-
ping peptide binding repertoires. J Immunol
160(7):3363–3373

39. Weiner PK, Kollman PA (1981) AMBER:
assisted model building with energy refine-
ment. A general program for modeling mole-
cules and their interactions. J Comput Chem 2
(3):287–303

40. Ponder JW, Richards FM (1987) An efficient
newton-like method for molecular mechanics
energy minimization of large molecules.
J Comput Chem 8(7):1016–1024

398 Yoonjoo Choi et al.



Chapter 21

Computational Tools for Aiding Rational Antibody Design

Konrad Krawczyk, James Dunbar, and Charlotte M. Deane

Abstract

Antibodies are a group of proteins responsible for mediating immune reactions in vertebrates. They are able
to bind a variety of structural motifs on noxious molecules tagging them for elimination from the organism.
As a result of their versatile binding properties, antibodies are currently one of the most important classes of
biopharmaceuticals. In this chapter, we discuss how knowledge-based computational methods can aid
experimentalists in the development of potent antibodies. When using common experimental methods for
antibody development, we often know the sequence of an antibody that binds to our molecule, antigen, of
interest. We may also have a structure or model of the antigen. In these cases, computational methods can
help by both modeling the antibody and identifying the antibody–antigen contact residues. This informa-
tion can then play a key role in the rational design of more potent antibodies.

Key words Antibodies, Antibody modeling, Rational antibody design, Antibody–antigen interac-
tions, Antibody VH–VL orientation, CDR loop modeling

1 Introduction

Antibodies are proteins instrumental in mediating adaptive
immune responses in vertebrates. An organism has a rich repertoire
of antibodies, recognizing different structural motifs, called anti-
gens [1]. Antibodies can therefore be described as a structural
scaffold that houses a binding site specific for a particular antigen
[2] (see Fig. 1 for an overview of antibody structure). Upon antigen
exposure in an organism, an immune response introduces muta-
tions in antibodies at the antigen recognition site, the paratope,
which aim to increase the specificity and affinity toward a structural
motif on the antigen, the epitope. Biologically, antibodies recog-
nize non-self molecules that they tag for removal from the organ-
ism. However, the binding versatility of antibodies means that they
can be engineered against an arbitrary epitope, a property that has
received a lot of attention from the pharmaceutical industry [3].

Development of antibody-based drugs has been an important
driver of the biopharmaceutical industry in recent decades [4]. The
exploitation of antibody properties has resulted in a large
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proportion of blockbuster drugs in recent years being antibody-
derived [4–6]. Such development was made possible by our increas-
ing understanding of antibody binding properties and the progress
of experimental pipelines aiming to harness the underlying biology
[7]. In order to develop an antibody for a target antigen, the most
common protocol is to start with a library of candidate antibodies,
all of which are potential binders. Those molecules from the set
that bind to a target antigen are then mutated to give rise to a new
generation of antibodies that are again tested for the quality of
binding in an iterative manner. Such a procedure is very costly
in time and material resources. Therefore, such experimental
pipelines are now commonly supplemented by computational
techniques [7].

The biological and structural properties of antibodies mean
that they are well equipped for artificial design. Existence of a well
defined scaffold which houses the binding site appears ideal for
protein design. However, antibody–antigen complexes are asym-
metric as opposed to general protein–protein binding which
requires a customized approach, different from this of traditional
protein design [8, 9]. Ideally, computational antibody design tech-
nology would, given an antigen sequence, be able to predict an

Fig. 1 Schematic of an antibody molecule (IgG isotype). The molecule consists of four polypeptide chains, two
heavy (green) and two light (cyan). The variable domains, VH and VL, associate to form variable regions (Fv).
The Fv, along with the first constant domains, CH1 and CL1, are known as antigen binding fragments (Fab).
The remaining heavy constant domains associate to form the crystallizable or constant fragment (Fc). The
complementarity determining regions (CDRs) mediate antigen binding. Three are located on each of the VH
domain (H1, H2, and H3) and the VL domain (L1, L2, and L3). Between them they form the majority of the
antigen binding site. The remaining portions of the VH and VL domains are called the framework (FR) regions
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antibody sequence that binds to that antigen with high specificity
and affinity [10]. Solving such a problem is beyond the reach of
current computational techniques [7]. Here we consider instead
the subproblems, which arise out of the common experimental
methods for antibody development.

The goal of artificial antibody design is to produce molecules,
which would bind specifically to a certain antigen with a very high
affinity [11, 12]. The two most widely used methods to achieve this
goal are the humanization-based [13] techniques and phage-display
[14, 15], both summarized in Fig. 2. The former relies on raising
antibodies in an animal, say mouse, and then engineering those
molecules so that they do not elicit an immune response in the host
species (human) but still bind to their respective antigen. The latter

Fig. 2 Simplified descriptions of experimental antibody design pipelines. (a) Humanization technology. A
mouse is injected with an antigen, prompting it to raise antibodies against it. The antibody producing B-cells
are collected for in-vitro processing, where mouse CDRs are grafted onto a human framework. (b) Phage
display. An appropriate antibody library is selected. The antibody variable fragments are expressed on the
phage coating, and panned against immobilized antigens. Those antibodies that did not bind are washed off.
The remaining, binding, antibodies are mutated and re-expressed on phage coating, starting another round of
the process
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method is a two-tier process where the two steps are antibody
library construction and an iterative process of antibody mutation
and good binder selection. In both pipelines, knowledge of specific
residues that bestow structural or antigen-binding properties is
crucial. Such information can be provided by currently available
computational techniques for rational antibody design.

In this chapter, we describe computational methods facilitating
rational antibody design starting from a sequence of the antibody
to be engineered and a structure of its cognate antigen. The first
step is to produce a model of the antibody in question. In the
second step, the structural antibody information obtained in
the first stage would be exploited to collect antibody–antigen con-
tact information that could be used to guide rational antibody
design. Here one predicts an epitope, paratope and performs
antibody–antigen docking. The details of the constituent steps
can be found in the following sections.

2 Knowledge-Based Modeling of Antibodies

Structural information is valuable for guiding rational antibody
engineering decisions. Often an experimental structure is unavail-
able for each (or any) desired mutant of an antibody sequence.
Computational analysis of the rapidly increasing number of
known structures [16] has allowed the field to improve the accuracy
with which an Fv can be modeled [17]. Such analysis also contri-
butes to a developing structural toolbox for mutagenesis that gives
insight as to how specific amino-acid changes may influence anti-
body structure.

Prediction of the antibody variable region can be divided into
several steps (see Fig. 3):

l Annotation of the antibody sequence with a numbering
scheme.

l Selection of templates for the VH and VL domain framework
regions (FRs).

l Selection of non-CDRH3 loop templates.

l Prediction of the CDRH3 loop.

l Prediction or optimization of the VH–VL orientation.

The order in which these steps are performed varies with the
antibody modeling protocol used. Many of the commercial and
academic modeling protocols have been compared in the second
antibody modeling assessment (AMAII) [17] and are described in
corresponding publications.

Here, we describe the individual aspects listed above and
explain how changes in these elements of structural variation
could be introduced (or conserved) during a rational design
process.
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2.1 Annotation of the

Antibody Sequence

(Numbering Schemes)

Antibody numbering schemes are useful tools to annotate structur-
ally equivalent residue positions within an antibody sequence. Thus,
properties such as amino-acid preferences, structural influence of
residues, and importance for antigen binding can be analyzed
consistently. Multiple numbering schemes exist, all with their rela-
tivemerits based on application. They vary in the nomenclature they
use to label positions and the locations along the sequence at which
they allow insertions and deletions. The features of the Kabat [18],
Chothia [19], Enhanced Chothia [20], IMGT [21], and AHo [22]
schemes are summarized in Table 1.

Fig. 3 Antibody modeling. The major steps in antibody modeling. Firstly an appropriate template is selected
based on sequence similarity. This is followed by VH–VL orientation optimization and CDR loop modeling.
Finally, the packing of the entire molecule is optimized
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A numbering scheme can be applied to an antibody sequence
using an alignment to a consensus sequence. The IMGT Domain-
GapAlign tool [23] provides an online service (seeNote 1) to apply
the IMGT scheme to nucleotide and amino-acid sequences.
ABnum [20] is able to apply Kabat, Chothia, and Enhanced
Chothia to Ig amino-acid sequences. It is available as an online
service (see Note 2) and as a stand-alone program under license.
PyIgClassify [24] includes an online tool (see Note 3) to annotate
antibody sequences with the AHo numbering scheme. It is able to
classify different structural regions of the antibody. Commercial
antibody discovery packages also integrate the ability to apply
common antibody numbering schemes.

Once a numbering scheme has been applied, the antibody
sequence can be divided into Complementarity Determining
Regions (CDRs) and Framework Regions (FRs) according to one
of many different characterizations [18, 19, 25–27].

2.2 Selection of

Templates for the VH

and VL Domains

As the FRs of the VH and VL domains are relatively conserved in
sequence and structure, predicting their structure is often a simple
task. A high quality prediction may aim to model FRs to within at
least 1 Å backbone root mean square deviation (RMSD). Typically,
a template with greater than 80 % sequence identity over the FR
will yield such accuracy for each domain. Indeed, almost all predic-
tions made in AMAII [17] predicted VH and VL FRs to well within
1 Å backbone RMSD (means of 0.65 and 0.5 Å respectively).

Modeling protocols select VH and VL FR templates from
databases of known and often curated structures. Publically

Table 1
Different antibody numbering schemes, their features and tools that can be used to apply them
to a sequence

Scheme Publicly available numbering tool Scheme features

Kabat Abnum (http://www.bioinf.org.uk/
abs/abnum)

Based on analysis of VH and VL sequences

Chothia Abnum Places the VH CDR1 indel at the structurally
correct position compared to Kabat

Enhanced
Chothia

Abnum Places framework indels at structurally correct
positions compared to Chothia

IMGT DomainGapAlign (http://www.imgt.
org/3Dstructure-DB/cgi/
DomainGapAlign.cgi)

Numbering is equivalent for VH and VL
domains. CDR indels are labeled
symmetrically about the middle of the CDR

Aho PyIgClassify (http://dunbrack2.fccc.
edu/PyIgClassify)

Numbering is equivalent for VH and VL
domains. CDR indels are labeled
symmetrically about the middle of the CDR.
More possible positions than in IMGT
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available tools to perform this step of the prediction procedure
include IGBLAST (see Note 4) that identifies similar structures
directly from the Protein Data Bank [28] and SAbDab’s [16]
template search tool (see Note 5) that ranks known structures by
sequence identity over a specified region.

2.3 Selection of Non-

CDRH3 Loop

Templates

Despite their variability in sequence, a comparatively small set of
different structural conformations are observed for five of the six
CDR loops (L1, L2, L3, H1, and H2) [19, 27, 29–33]. These
conformations are referred to as canonical classes. In many cases,
the shape of a CDR loop can be recognized by the presence of
certain amino-acids at particular structurally determining residue
positions (SDRs) [30, 31]. Residues at other positions in the CDR
loop can change to a number of different amino-acids without
influencing the conformation. Rational engineering decisions to
introduce mutations at CDR positions should consider their ability
to influence the loop conformation.

It is not clear whether a number of possible CDR loop con-
formations have reached, or will reach, saturation. Al-Lazikani
et al.’s 1997 study [19] found 25 possible conformations whilst a
2011 study by North et al. [27] found that the repertoire had
increased to 72 conformations as the structural coverage of
sequence space had grown. Recent methods for clustering antibody
CDRs continuously monitor the redundant set of structures avail-
able from the PDB [16, 34]. The SAbDab interface (see Note 5)
allows for the current antibody CDR space to be clustered at
different cut-offs of structural similarity.

The most recent canonical classification of CDRs was per-
formed by North et al. [27]. The authors’ PyIgClassify tool [24]
provides an online interface (see Note 3) and commercial licenses
for databases that can be used to predict the canonical conforma-
tion of each AHo-North CDR loop from sequence. Such a method
provides the ability to assess the structural influence of introducing
mutations to CDR sequences. Prediction of the non-CDRH3
loops using canonical classification is commonly used by antibody
modeling protocols (recently assessed in [17]).

An alternative approach to non-CDRH3 prediction is to treat it
as any other loop modeling problem; that is, to do without the
canonical CDR structure paradigm. Choi and Deane demonstrated
that FREAD [35], a successful database loop prediction technique,
is able to produce accurate predictions of CDR structures without
explicit consideration of CDR classification [36]. FREAD is avail-
able as an online tool (see Note 6) with the option to use either
immunoglobulin, membrane protein, or a general database to make
predictions.
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2.4 Prediction of

the CDRH3 Loop

Prediction of the CDRH3 loop is more challenging than the other
five CDRs due to larger variation in both its length and sequence.
As the loop often plays a major role in antigen association, accurate
CDRH3 modeling is a crucial step in structure-based rational
engineering. As with general loop prediction methods there are
two approaches that are generally taken: template/database meth-
ods or ab initio methods.

Although canonical structures do not exist for CDRH3 in the
same sense as for the other CDRs, a degree of structural classifica-
tion is observed. For example, CDRH3 structures can be classified
as bulged or non-bulged in the torso region of the loop [27, 37,
38]. Rules primarily based around the presence of asparagine at
Chothia position 101 show some success at guiding the choice of
CDRH3 conformation [37, 38]. Such sequence-based rules are
used in modeling protocols such as PIGs (see Note 7) [39] to filter
a structure database for potential templates.

In comparison, the FREAD algorithm uses both sequence- and
environment-specific information to select loop decoys. It is able to
make accurate CDRH3 predictions [36]. However, FREAD, like
other template-based methods, may not always provide a predic-
tion for a given CDRH3 as no template exists.

Given that reliable templates are often unavailable, ab initio
prediction of CDRH3 is required. Such prediction methods must
be able to generate good loop decoys and to discriminate them
from decoys that are less good. For example, the Kotai Antibody
Builder [40] uses Spanner to build loop decoys and ranks them
with the OSCAR energy function. Rosetta Antibody [51, 69, 70]
uses a Monte-Carlo-based procedure followed by Cyclic Coordi-
nate Descent (CCD) to build loops. Here, decoys are considered
better if they minimize the Rosetta Energy Function.

CDRH3 prediction remains the biggest challenge for accurate
antibody modeling. Better modeling accuracy may be achieved in
the future by prediction methods that use a hybrid between
template-based and ab initio approaches.

2.5 Prediction or

Optimization of the

VH–VL Orientation

In addition to CDR diversity, significant quaternary structural vari-
ation is found between antibody Fvs [16], primarily differences in
orientation between the VH and VL domains. The orientation
between VH and VL affects the relative placement of binding
residues and thus the shape of the paratope. Changes in antigen
affinity have been attributed to rearrangements in the VH–VL
orientation [41–47]. Therefore, understanding what determines
this property can both improve modeling accuracy and inform
rational engineering decisions.

‘Different approaches can be taken to predict the VH–VL
orientation. The simplest is to copy the orientation from a
known structure with high sequence similarity. Sequence
similarity can be calculated using the whole Fv region or just at
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positions that are known to frequently make contacts between VH
and VL [39, 48, 49]. Alternatively, an energy function can be used
to select the conformation from a set of known structures [50] or
to iteratively optimize it during the prediction procedure [51].

The ABangle methodology [52] describes the VH–VL orienta-
tion in an absolute sense using a torsion angle, two tilt angles, two
twist angles, and a distance. ABangle (see Note 8) can be used to
compare individual structures or sets of structures to each other.
Using this technique, different residues have been found to affect
orientation in different directions [52].

Knowledge about which residues influence the orientation has
improved the accuracy with which the VH–VL orientation can be
predicted. Abhinandan and Martin [53] used a neural network to
predict a torsion angle between VH and VL. Bujotzek et al. [54]
used a random forest algorithm based on the identity of influential
residues to predict the ABangle orientation measures. This method
allows the geometry of Fv to be fully constructed.

3 Identifying Antibody–Antigen Contact Residues

Over the course of an immune response, antibodies are mutated to
bind an antigen with high affinity and specificity. As a result of this
one-sided accelerated evolution, an antibody interface is signifi-
cantly different from that of non-immune protein–protein inter-
faces [55].

The goal of antibody–antigen contact residue prediction is to
identify the residues on the antibody to mutate in order to increase
the specificity and/or affinity against an arbitrary target (antigen).
In 2007, Lippow et al. introduced the first successful approach,
which achieved this [10]. Starting from a solved antibody–antigen
complex, the authors introduced an exhaustive set of point muta-
tions to the CDRs, evaluating each mutant using the CHARMM
energy function. Several of the energetically favorable point-
mutants were experimentally synthesized and some had higher
binding affinities than the original antibody. A few of the point
mutations were combined to generate double and triple mutants
that achieved an even larger increase in binding affinity.

The method by Lippow et al. served primarily as a proof of
concept as for any realistic applications, one cannot assume the
existence of a solved antibody–antigen complex. There exist other
computational design technologies, however their applicability
remains to be tested in the lab [8, 9]. Nevertheless, advances in
the last 10 years have increased our ability to tackle computational
antibody design starting from a more realistic setup, which is
mutating a sequence of an antibody, with respect to a known
structure of the antigen. Computational techniques which can aid
in tackling this problem can be divided into three categories:
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Paratope prediction: predict the residues on the antibody which are
in contact with the antigen.

Epitope prediction: predict the residues on the antigen which are in
contact with the antibody.

Antibody–antigen docking: given a structure/model of an antibody
and a structure/model of an antigen, aim to re-create the structural
complex that they form.

We describe how the methods above can aid in rational anti-
body design in the sections that follow.

3.1 Paratope

Prediction

Only a small number of mutations to an antibody in its binding site
can lead to a radical change in specificity and affinity toward an
antigen. Therefore, identifying paratope residues can greatly reduce
the mutagenesis choices one would have to perform experimentally.

CDRs contain about 80 % of the paratope, thus CDR identifi-
cation methods can be regarded as a form of an antibody binding
site predictor [56]. These include the traditional CDR definitions
such as Chothia [29], Kabat [18], IMGT [21] or Contact [25] as
well as the more structurally informed Paratome (see Note 9)
[56, 57]. Such annotations can be created using the Paratome
online tool [57] or as described in Subheading 2.1.

Nevertheless, CDR regions still contain many residues that do
not constitute part of a paratope (only around 15 residues out of
the approximately 45 in the CDRs are paratope residues). There-
fore from a mutagenesis point of view, it might be more beneficial
to know fewer paratope residues but with greater confidence.
Examples of paratope predictors which aim to perform such high-
precision antibody-contact residue identification are proABC
(see Note 10) [58] and Antibody i-Patch (see Note 11) [55].

The first method, proABC is a random-forest-based algorithm,
which only requires sequence information at input. Antibody i-Patch
uses both sequence and structural information. Antibodyi-Patch uses
antibody-specific statistics for its predictions. In contrast to Paratome
and the CDR definition methods which indicate the extent of the
general binding region, Antibody i-Patch assigns a contact likelihood
score to each residue, allowing the user to choose a cutoff so as to
achieve higher precision or better coverage (see Fig. 4 for an exam-
ple). By doing so, one can differentiate between higher and lower
confidence predictions, that might provide a better guide for artificial
antibody design.

Predictions from Antibody i-Patch can be used to guide muta-
genesis or as constraints for other computational antibody design
methodologies. It was demonstrated that the residues with higher
Antibody i-Patch scores are more important energetically. There-
fore, when engineering an antibody, one might first introduce
mutations to the regions with high Antibody i-Patch scores. This

408 Konrad Krawczyk et al.



might accelerate the process of increasing the specificity and affinity
toward an antigen since it greatly reduces the combinatorial space,
which would need to be explored by mutagenesis of all the residues
in the CDRs.

Antibody i-Patch predictions of paratope residues successfully
make use of the antibody–antigen specific statistics. However, the
asymmetric nature of the antibody–antigen interaction made it
impossible to make this methodology directly applicable to provide
results for the related problem of epitope prediction. Furthermore,
other paratope prediction methods, such as Paratome or CDR
identification methods, are not directly informative of the epitope.
Therefore, epitope predictors have developed into a separate field,
using different methodologies to those of paratope prediction.

3.2 Epitope

Prediction

Identifying epitopes can provide valuable insight into the pathoge-
nicity of autoimmune diseases as well as characterization of immu-
nogenic motifs [59, 60].

The majority of epitope prediction methods focus on the iden-
tification of immunogenic portions of antigens, attempting to
define a structural motif capable of eliciting immune responses
and thus, acting as an antibody target. In an effort to construct a
map of known immunogenic motifs, databases such as the Confor-
mational Epitope Database or the Immune Epitope Database have
curated sequence and structural information related to epitopes
from a variety of publicly available sources [61–63].

The majority of epitope prediction methods to date do not
require any antibody information on input, operating on the
assumption that there exist structural/sequential motifs that are
inherently more immunogenic. However, it has been demonstrated
that epitope residues are not distinguishable from the rest of the

Fig. 4 Paratope prediction. Left: An example of a CDR annotation method. Right: An example annotation using
the paratope prediction method Antibody i-Patch
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protein surfaces [64]. This result suggests that there might be no
particular structural motif capable of eliciting an immune response.
Figure 5 shows many different antibody/lysozyme structures and
how their binding sites cover almost the entire surface of lysozyme.
This suggests that virtually any protein surface can form a portion
of some epitope.

Recently, including antibody information in predicting epi-
topes has been shown to outperform methods, which ignore anti-
body information [65, 66]. A combined computational/
experimental protocol demonstrated the utility of exploiting anti-
body information in distinguishing different epitopes (seeNote 12)
[65]. Another method, EpiPred, also demonstrated the utility of
using antibody information without using experimental input,
thus making it suitable for purely computational applications
(see Note 13) [66]. EpiPred is a combination of geometric fitting
and antibody-specific statistical potentials. It uses the structure of
an antibody and the structure of the antigen as input. It outputs a
ranked list of epitopes, deemed to be specific for the input antibody.

Epitope predictions obtained in this way can be used to inform
antibody design directly. For instance, it might be the case that an
antibody needs to bind in a specific spot on a therapeutic target
(antigen), in order to prevent a pathogenic interaction from occur-
ring. Scores of an antibody with respect to a certain epitope from
antibody-specific predictors might indicate whether a given anti-
body is suitable for the destined binding site. On the other hand,
epitope predictions might be used as information for more
sophisticated computational antibody design methods, such as
antibody–antigen docking.

Fig. 5 Epitope prediction. Lysozyme and its binding antibodies. A structural
overlay of many of the different antibodies, which bind to distinct sites on the
hen egg-white lysozyme (in green). The many possible binding sites suggest that
antibodies can bind to virtually any site on a target protein
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3.3 Antibody–

Antigen Docking

The paratope and epitope prediction methods described in the
previous sections attempt to identify a subset of residues which
form the antibody–antigen interface. However, they do not provide
any information about the pairwise relationships between the resi-
dues on the antibody and the antigen. From an antibody engineer-
ing perspective such information might be very valuable since, it
can directly indicate not only the positions on the antibody one
needs to mutate but also the identity of the substitutions. This
problem can be approached using antibody–antigen docking.

The field of antibody–antigen docking is a subset of the more
general problem of protein–protein docking. Here, given unbound
structures of two interacting proteins, one aims to recreate the
complex between the two. There are two elements in docking—
decoy generation and decoy ordering. In decoy generation, one pro-
duces a series of decoys—poses of one protein with respect to the
other. In decoy ordering, the different poses are sorted so as to
reflect the algorithm’s score of which ones are the most likely to
resemble the native complex.

Though antibody–antigen docking is a subset of the general
protein docking problem, recent research has shown that antibo-
dy–antigen complexes are radically different from the general pro-
tein–protein complexes and as such require different
methodologies [63, 64]. Using this concept antibody–antigen-
specific docking methods have been developed which outperform
more general methods [64, 65]. Such methods use antibody-
specific information to constrain the decoy generation as well as
antibody-specific methods to re-order decoys (see Note 14).

Since knowledge of the approximate binding interface increases
the accuracy of pose generation, one should provide paratope and
epitope information to a docking algorithm (see Note 15). Para-
tope prediction can be obtained by CDR identification methods or
by more sophisticated methods such as Antibody i-Patch [55].
Epitope data are often available for common targets, via resources
such as IEDB or relatively cheap experimental epitope mapping.
If the epitope is not known, one needs to provide a prediction,
which can be obtained using tools such as EpiPred [66].

Thus far there exists only one antibody–antigen-specific decoy
generator, the antibody mode of ClusPro [67]. However, as the
decoy generation algorithm one might also use a generic docking
method as it appears that the crucial step for antibody–antigen
docking is the reordering of decoys [55, 66]. The method should
be fast so as to be able to provide results for many different variants
of an antibody over the course of a virtual screening campaign.
An example of such a method is the Fast-Fourier-Transform-based
ZDOCK [68]. This decoy generation algorithm is capable of pro-
ducing close-to-native antibody–antigen poses; however, as a result
of non-antibody protein biases, they are not the top results in the
ZDOCK output. Thus, the different poses of the antibody with
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respect to the antigen need to be ordered using antibody–antigen-
specific statistics. This can be achieved by an antibody-specific
decoy reordering tool DockSorter [55]. This program removes
the non-antibody protein biases that might be introduced by the
decoy generation algorithm. In turn, DockSorter introduces
antibody-specific scoring to produce a re-ordered list of decoys,
bringing more native-like antibody–antigen decoys to the top of
the results list.

4 Conclusions

The holy grail of computational antibody design is to produce an
antibody sequence, which would bind an arbitrary antigen with
high affinity and specificity. The current state of the art is far from
being able to provide a solution to this problem, meaning that
computational methods instead should be used to aid experimental
pipelines. Nevertheless, as outlined in this chapter, computational
methods are becoming more accurate and increasingly applicable to
realistic antibody-design problems. We are now capable of creating
antibody models with high accuracy. Such models can in turn be
used as inputs to antibody contact prediction methods, which
require structural information. Various statistics obtained from
epitope predictors, paratope predictors, and antibody–antigen
docking can indicate an initial set of mutagenesis choices one
might wish to make whilst designing an antibody. Even though
this is still a far-cry from being able to rapidly develop antibody
therapeutics, the tools are already useful as an adjunct to experi-
mental techniques.

5 Notes

1. The online IMGT DomainGapAlign service can be accessed
via: http://www.imgt.org/3Dstructure-DB/cgi/DomainGap
Align.cgi.

2. The online antibody numbering service, Abnum, can be
accessed via: http://www.bioinf.org.uk/abs/abnum.

The service can be queried programmatically through an easy-
to-use URL api.

3. The CDR clustering by the Dunbrack Lab can be accessed via:

http://dunbrack2.fccc.edu/PyIgClassify.

4. The antibody sequence analysis suite IgBlast can be accessed
via: http://www.ncbi.nlm.nih.gov/igblast.

5. Structural Antibody Database (SAbDab) template search tool,
CDR clustering as well as other relevant antibody-related tools

412 Konrad Krawczyk et al.

http://www.imgt.org/3Dstructure-DB/cgi/DomainGapAlign.cgi
http://www.imgt.org/3Dstructure-DB/cgi/DomainGapAlign.cgi
http://www.bioinf.org.uk/abs/abnum
http://dunbrack2.fccc.edu/PyIgClassify
http://www.ncbi.nlm.nih.gov/igblast


can be accessed via: http://opig.stats.ox.ac.uk/webapps/
sabdab.

Other notable online antibody resources are Abysis: http://
www.bioinf.org.uk/abysis/ and DIGIT: http://circe.med.
uniroma1.it/digit/help.php. Furthermore, Andrew Martin’s
Antibody resource pages provide a plethora of useful informa-
tion on antibodies: http://www.bioinf.org.uk/abs/. In order
to gather more detailed information on the antibody’s cognate
antigen, we suggest the Immune Epitope Database (http://
www.iedb.org/) and the Conformational Epitope Database
(http://immunet.cn/ced/). The IEDB resource has many
analysis and prediction services, accessible via: http://tools.
immuneepitope.org/main/.

6. Database-search-based loop modeling software FREAD can be
accessed via an online service: http://opig.stats.ox.ac.uk/
webapps/fread.

User submits a structure without the loop coordinates,
together with the loop sequence that should be modeled. If
the service finds appropriate templates in its database, the gap
in the submitted structure will be returned with the loop
modeled. The method might fail for longer loops as those are
rare and thus there are not enough suitable fragments in the
database to model these.

7. Antibody modeling service PIGS is accessible online via:
http://circe.med.uniroma1.it/pigs.

One might also wish to employ one of the complementary
antibody modeling services such as RosettaAntibody (http://
rosie.rosettacommons.org/antibody) or Kotai Antibody
Builder (http://kotaiab.org/).

8. Vh/Vl domain orientation analysis software Abangle is accessi-
ble online via: http://opig.stats.ox.ac.uk/webapps/abangle.

9. The Paratome online service can be accessed via: http://
ofranservices.biu.ac.il/site/services/paratome/index.html.

10. The proABC antibody contact prediction service can be
accessed via: http://circe.med.uniroma1.it/proABC/.

11. Antibody i-Patch is available through the SAbDab suite, as well
as a binary distribution that can be downloaded from https://
www.stats.ox.ac.uk/research/proteins/resources.

12. The epitope prediction from sequence can be accessed via:
http://ofranservices.biu.ac.il/site/services/epitope/index.
html.

13. The epitope prediction from structure using EpiPred can be
performed by downloading the corresponding binary from:
https://www.stats.ox.ac.uk/research/proteins/resources.
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14. Currently, the Antibody mode of ClusPro is the only antibody-
specific decoy generation method (SnugDock being for local
docking [69]). The online service is accessible via: http://
cluspro.bu.edu/login.php.

15. Most docking methods allow for constraining the exploration
to only part of the binding partner. Notable examples here are
ZDOCK and PatchDock. Constraining the search space of
these rigid-body docking methods can provide a good cover-
age of the local conformations, which can be sorted by
antibody-specific method such as DockSorter. This can be
further refined using more computationally expensive
flexible-docking method SnugDocky.
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Chapter 22

Computational Design of Membrane Curvature-Sensing
Peptides

Armando Jerome de Jesus and Hang Yin

Abstract

Computer simulations have become an indispensable tool in studying molecular biological systems. The
unmatched spatial and temporal resolution that it offers enables for microscopic-level views into the
dynamics and mechanics of biological systems. Recent advances in hardware resources have also opened
up to computer simulations the investigation of longer timescale biological processes and larger systems.
The study of membrane proteins or peptides especially benefits from simulations due to difficulties related
to crystallization of such proteins in a membrane environment. In this chapter, we outline the method of
molecular dynamics and how it is applied to simulations that involve a peptide and lipid bilayers. In
particular, the simulation of a membrane-curvature sensing peptide is examined, and ways of employing
computational simulations to design such peptides are discussed.

Key words Molecular dynamics, Protein–lipid interactions, Membrane curvature, Curvature-sensing
peptides, CHARMM

1 Introduction

Recently, numerous investigations have uncovered the active role of
membrane curvature in controlling cellular organization and activ-
ity [1–6]. The picture that these studies paint is a departure from
the traditional view of curvature as a passive geometric characteris-
tic of the membrane. In cell signaling and trafficking, membrane
shape has been revealed to play an important role [7–9]. Aside from
this effect of curvature on protein function, it is also known that
certain proteins generate membrane curvature or aggregate on
curved membranes [9–15]. Examples of such proteins include:
the C2B domain of synaptotagmin-I [16], the Golgi-associated
ArfGAP1 lipid packing sensor (ALPS) [17], and the Bin-Amphi-
physin-Rvs (BAR) domain of amphiphysin [18]. Cellular signaling
functions ascribed to highly curved bilayer assemblies have also
been implicated in health and disease [19–22]. Exosomes and
microvesicles, assemblies that range in size from 30 to 1000 nm,
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have been implicated in numerous diseases such as cancer [23–28],
HIV [29–31], and neurodegenerative diseases [32, 33]. Due to the
important role that membrane curvature plays, curvature sensors
such as a synaptotagmin-1-derived cyclic peptide and the effector
domain of myristoylated alanine-rich protein kinase C (MARCKS-
ED) [34, 35] have become important tools in targeting highly
curved bilayer structures. The low molecular weight of these pep-
tides makes it easier for their large scale production compared to
large proteins. However, to design further improvements for these
curvature sensors, the mechanics and kinetics of their action need
to be studied and understood. Some proposals to explain
curvature-sensing implicate the electrostatic interactions that
occur between anionic lipid-enriched membranes and the concave
surfaces of the protein or peptide [15, 36]. Another proposed
mechanism involves the peptides that sense the surface defects
arising from membrane curvature [17, 37–40], which usually
entails certain residues of the peptide sensor to be inserted into
the defects. Our previous work on MARCKS-ED [41] shows this
possibility with the Phe residues acting, not only as the inserting
residues but also to retain the peptide attachment to the bilayer.

Investigation of the mechanisms and dynamics of proteins is
essential to studying how to generate new protein designs. For this
purpose, a microscopic-level view into the movements and interac-
tions of individual atoms is invaluable. In this regard, molecular
dynamics (MD) simulations have become an indispensable method
to explore the dynamics of biomolecular systems. Indeed, as a
technique, MD has become a key tool in structural biology
[42–46]. It enables an atomistic-level view of processes at a resolu-
tion, both spatially and temporally, that is currently inaccessible by
experimental means. In our aforementioned study, MD simulations
showed that the aromatic Phe residues, due to their hydrophobic
character, were able to insert themselves into the bilayer interface
within the first nanosecond of the simulation (temporal resolution).
The simulations are also able to show that despite the presence of
numerous Lys residues that can be visualized as interacting exten-
sively with the bulk solvent, the Phe residues were able to stay
buried to keep the MARCKS-ED peptide attached to the mem-
brane (spatial resolution). This high-resolution level of understand-
ing of the parameters influencing curvature sensing is essential to
the design of peptides that are characterized by improved binding
to highly curved structures.

In the context of using MARCKS-ED as a model membrane
curvature sensor, the road to designing other similar curvature-
sensing peptides can take the path of either replacing certain resi-
dues to increase the hold of the peptide on a curved bilayer or
changing the chirality of the component residues to improve the
resistance of the peptide to proteolytic processes [47–50].
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2 Materials

To perform the simulations described in this chapter, software
packages developed for molecular dynamics simulations are
required. CHARMM [51], AMBER [52], GROMOS [53], and
NAMD [54] are among the widely used programs that perform
MD simulations. These programs also require topology and param-
eter files that are associated with the building of structures and the
evaluation of the potential energy function.

The topology file contains the definitions for different atom
types that comprise molecules (e.g., the atom type for a methyl
carbon is different from a methylene carbon and both are different
from an aromatic carbon). It also has the “structures” for different
molecules typically used in biomolecular simulations such as those
of individual amino acids and lipid molecules. These structures
found in the topology files are essentially statements of atom
types that comprise a molecule and statements of the connectivities
of these atoms. The parameter file contains the force constants and
equilibrium values needed to evaluate the different terms that
comprise the force field equation (e.g., bond strengths, energies
arising from dihedral angle configurations). The force field is the
function used by MD programs to calculate the potential energy of
the system. Further discussion of the force field is found below.

For solved protein structures, initial coordinates can be
obtained from the Protein Data Bank. Lipid libraries offer initial
structures for lipid molecules that will be needed in constructing a
lipid bilayer. In addition, visualization programs are also essential.
Examples of such programs are VMD [55], Rasmol [56], and
Pymol [57]. In terms of hardware requirements, Unix machines
are typically used.

3 Methods

3.1 The Method

of Molecular Dynamics

The method of molecular dynamics treats each particle of the
system as spheres which, based on their interactions with other
particles in the system, move in accordance with Newtonian laws
of motion [58–60]. These laws enable for a time-dependent picture
of the system to be taken and thus, system kinetics to be observed.
Knowledge of the forces acting on each particle of the system allow
for the integration of the equations of motion which eventually
results to a trajectory of the system to be computed and collected.

3.1.1 Overview

of Running an MD

Simulation

A typical MD run is summarized by the following steps [46,
59–61]:

1. Set up the system by initializing the positions and velocities of
the atoms.
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2. Calculate the forces on each atom.

3. Move each atom according to the calculated forces by integrat-
ing Newton’s second law.

4. Advance simulation time.

Steps 2–4 are iterated until enough data has been accumulated.
Each step is discussed in more detail below.

Initializing the Positions

and Velocities of Atoms

For modeling proteins or peptides with solved structures, the initial
configuration can be obtained from the Protein Data Bank.
However, the absence of a structure deposited in the PDB does
not necessarily mean that a particular sequence cannot be assigned
initial coordinates. In some situations there are available means to
fill in the missing information.

In cases where there is an absence of coordinates for a small
number of atoms, internal coordinates can be used. Internal coor-
dinates uses an atom’s relation to other atoms, instead of using
absolute Cartesian coordinates, to specify position [59].

Sometimes, knowledge of the secondary structure can also be
used to initialize the atom positions. As an example, this method
can be used to build Trp-Ala-Leu peptides (known as WALP [62]
or WALP-like peptides [63]). These are model transmembrane
peptides that have been widely used in studies of hydrophobic
mismatch and are known to assume an alpha-helical secondary
structure. Even in the absence of deposited structures for WALP
or WALP-like peptides, initial positions can still be assigned to the
component atoms by using a combination of data obtained from
internal coordinates and the properties of an α-helix (such as the
values for the backbone dihedral angles, Ф and ψ).

Initial atom positions are, however, not enough to begin an
MD procedure. The initial velocities of the atoms need to be
assigned as well. This is typically done by random assignment of
velocities based on a distribution such as the Maxwell-Boltzmann
distribution [59],

p vixð Þ ¼ mi

2πkBT

� �1=2

exp �1

2

miv
2
ix

kBT

� �
ð1Þ

where the velocity of atom i, vi, is assigned based on its mass, mi,
and the temperature of the system, T.

Calculating the Forces

Acting on Each Particle

Once the position and velocity of each atom is known, the force
acting on each one is calculated. The system configuration arising
from the positions of the particles results to a potential energy, V,
for the system. The force acting on each particle can then be
calculated as the gradient of the potential energy.
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F ¼ �∇V Rð Þ ð2Þ
In turn, the potential energy is calculated based on a set of

functions that is known as a force field.

Moving the Particles The positions of atoms are advanced at every time step by numeri-
cally integrating Newton’s equations of motion. These algorithms
are based on using a Taylor series expansion of atomic coordinates
around time t. An example of a commonly used algorithm is called
the velocity Verlet algorithm [64],

r t þ Δtð Þ ¼ r tð Þ þ v tð ÞΔtþ 1

2m
F tð ÞΔt2

v t þ Δtð Þ ¼ v tð Þ þ 1

2

1

m
F tð Þ þ 1

m
F t þ Δtð Þ

� �
Δt

ð3Þ

which computes the atomic positions and velocities at the next time
step (r t þ Δtð Þ and v t þ Δtð Þ, respectively) in terms of the current
positions, velocities and accelerations (r(t), v(t) and 1

m F tð Þ).

Advancing the Simulation

Time

The errors in the positions and velocities obtained from the velocity
Verlet algorithm (as well as from other similar, Taylor-series based
algorithms) arise from the size of the time step, Δt. These errors are
in the order O Δt4

� �
for the positions and O Δt2

� �
for the velocities

[60]. Thus, a balancing act between lessening errors and achieving
a reasonable sampling of phase space needs to be made. The size of
Δt is limited by the fastest molecular motions which, in a typical
MD simulation, involves the vibration of the bond connecting
hydrogen to a heavier atom. The time step size sufficient for sam-
pling these X–H bond vibrations is ~1 fs. To increase the time step,
constraints can be applied to bonds to fix their lengths to equilib-
rium values. These constraints are typically applied to X–H bonds
and their use enables the time step to be increased to 2 fs.

3.1.2 The Force Field The force field is typically composed of terms that calculate the
bonded and non-bonded interactions as shown in the CHARMM
force field below [65]:

V Rð Þ ¼
X
bonds

Kb b � b0ð Þ2 þ
X
angles

K θ θ � θ0ð Þ2

þ
X

dihedrals

X
n

K χ 1þ cos nχ � δð Þ½ � þ
X

impropers

K imp ω� ω0ð Þ2

þ
X
UB

KUB S � S0ð Þ2 þ
X

nonbond

ϵij
σij
rij

� 	12
� 2

σij
rij

� 	6
� �

þ qiqj
4πϵ0rij


 �

þ
X

residues

U CMAP φ;ψð Þ

ð4Þ
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In the CHARMM force field (Eq. 4), the bonded terms include
bond, angle, dihedral, improper dihedral, and Urey–Bradley con-
tributions. Most are harmonic in form with Kb, Kθ, Kimp, and KUB

representing the bond, angle, improper dihedral and Urey-Bradley
force constants, respectively, and the zero-subscripted variables
representing the equilibrium values. The Urey-Bradley term
involves three bonded atoms A-B-C where S is the distance
between A and B. The improper dihedral term controls the chirality
of atoms A, B, and D connected to a central atom, C. The dihedral
term is a sinusoidal expression where δ stands for the phase shift and
n is the multiplicity that specifies the number of cosine terms that
define the sinusoid. Figure 1 draws a schematic for these bonded
terms. The non-bonded terms represent the Coulombic interac-
tions between point charges qi and qj found at a distance rij from
each other with ϵ0 being the permittivity of free space. The
Lennard-Jones term models the van der Waals interaction between
two atoms i and j separated by a distance rij, where σij equilibrium
distance between the two atoms with an energy of ϵij. The last term,
the CMAP correction, corrects for small systematic errors for the
dihedral backbone energy term.

3.1.3 Maintaining

Temperature and Pressure

Absent any additional modifications, the process of solving New-
ton’s equations of motion for a system ofN particles in a volume V
will produce a trajectory of states that have the same average energy,
E, that is, a microcanonical ensemble will be generated [60].

Fig. 1 Interactions among bonded atoms that are calculated by the bonded terms
present in a typical force field. These bonded terms represent energy changes
associated with stretching of bonds between two atoms, bending of angles
defined by three atoms, rotation along a bond that connects a pair of bonded
atoms and out-of-plane motions
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However, experiments are typically performed under conditions of
constant temperature and pressure. Thus, a computational method
to maintain constant temperature or pressure conditions should be
used. This would enable sampling from the canonical (constant
number of particles, volume and temperature or NVT) and the
isothermal-isobaric (constant number of particles, pressure and
temperature or NPT constant pressure) ensembles. Thermostats
used to maintain constant temperature conditions generally employ
some means of scaling the velocities of the particles comprising the
system. The most common algorithms used are based on the
Nosé–Hoover extended system method [66, 67]. As the name
suggests, this approach calls for extending the real system by a
heat bath where the temperature of the system is maintained by
means of heat exchanges with the heat reservoir. The heat bath,
which has a fictitious coordinate, s, and a fictitious mass, Q, is
treated as an additional degree of freedom in the energy function.
Q is the coupling parameter that controls the heat exchange
between the heat bath and the real system. A small value of Q
results in rapid temperature fluctuations in the system.

In instances where constant pressure conditions are required,
the volume of the system is allowed to fluctuate. An extended
system approach analogous to that used for thermostats can also
be employed where a piston with a mass and coordinate, both of
which are fictitious, is coupled to the real system. The motion of
this piston follows Langevin dynamics and is coupled to the system
with a collision frequency parameter [68].

3.1.4 Periodic Boundary

Conditions

Despite the advances in the size of systems being simulated, the
number of particles comprising the model system will always be
significantly smaller than those found in real-life samples. This
system size limitation can create artificial boundary effects. A com-
mon approach to deal with the artifacts arising from artificial
boundary effects is to use periodic boundary conditions. In apply-
ing this method, the system being simulated (considered as the
primary cell) is replicated infinitely in three dimensions such that
each atom in the primary cell has an image in the other replicated
boxes. When an atom leaves the primary cell along one direction, its
image atom from the opposite side of the central box will enter.
Figure 2 presents a schematic for how this process, called image
centering, is performed.

3.1.5 Treatment of Long-

Ranged Forces

During the performance of MD simulations, the bulk of the
computational expense is allocated to the calculation of non-
bonded forces. For a system with N atoms, the number of bonded
terms that need to be calculated are on the order O Nð Þ. However,
for non-bonded interactions, the number of terms scales to the
orderO N 2

� �
since these interactions are calculated for every pair of
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atoms in the system [59]. For vdW interactions, it can be seen from
the Lennard-Jones potential that these interactions decrease rapidly
with distance. One of the most popular methods for approximating
these non-bonded interactions is through the use of cutoffs. Inter-
actions between atoms that are beyond a cutoff distance are set to
zero. The minimum image convention is also applied if PBCs are
used. In this convention, an atom interacts with, at most, only one
image of each atom in the system. This prevents the atom from
interacting with its own image or with another atom twice. This
method thus limits the cutoff distance to one half the length of the
primary cell. Electrostatic interactions, however, do not fall off as
rapidly as Lennard-Jones interactions and the use of the minimum
image convention can lead to artifacts when dealing with electro-
statics. To deal with this, lattice methods such as the Ewald sum-
mation are employed which enables electrostatics interactions to be
calculated in full without distance cutoffs [43, 59, 60].

3.2 Constructing a

Model Biomolecular

System

In this section, the construction of a model biomolecular system
will be discussed in the context of the Chemistry at HARvard
Molecular Mechanics (CHARMM) program. A full discussion of
the outline of a generic CHARMM project can be found in one of
the CHARMM papers [65]. A good resource for familiarizing
oneself with CHARMM can also be found online at http://www.
charmmtutorial.org. A short discussion of the main parts of a
typical CHARMM input file is presented below.

Fig. 2 A schematic of periodic boundary conditions in two dimensions. During
the course of simulations, particles can move out of the central primary box. At
regular intervals, periodic boundary conditions are applied and image centering
is performed such that atoms that are found to have moved out of the central box
in one direction have their images enter the box from the opposite direction
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3.2.1 The Typical

CHARMM Input File

1. Loading the topology and parameter files. These files, as men-
tioned above, are necessary for building structures and evaluat-
ing the potential energy function (Note 1). These are read in
by the following statements:

open read card unit 10 name @TOPOLOGY_FILENAME

read rtf card unit 10

open read card unit 20 name @PARAMETER_FILENAME

read para card unit 20

The symbol @ is used to signify a variable name. Its use in this
context means that the name of the file that will be accessed is
contained in the variable TOPOLOGY_FILENAME. The unit desig-
nation simply assigns the file name to a Fortran logical unit
number.

2. Generating the protein structure file (PSF). The PSF contains
the list of all the atom types present in the model system
together with a list of all bonds, angles, torsions and improper
torsions. The PSF can be generated by reading in a PSF file:

open read card unit 10 name @PSF_FILENAME

read para card unit 10

or by using the GENERATE statement of CHARMM after
reading in the sequence of residues. This is especially true if the
PSF file is not available. Note that the sequence refers not just
to the amino acid residues but to all of the molecules that
compose the system. For example, to generate the PSF for a
system with two DPPC molecules, the following statements
can be used if the PSF text file is not available.

read sequence card

* title

* ! End of title

2 ! number of residues

DPPC DPPC !residues specified

generate PC6 setup ! this is the command that actually sets up

the PSF

PC6 is the segment ID name that one assigns to this part of the
PSF. Note that the “!” is a comment symbol in a CHARMM
input file that goes through the end of the line. If a sequence of
amino acid residues were specified, it is typical to see the first
and last keywords as shown below

generate PEPT setup first @presn last @presc

where @presn and @presc refer to patch residues, which are
partial structures that can be added on to a stand-alone residue.
An example of using a patch residue is one that connects two
cysteine residues to create a disulfide bond. In the example
above, the patches are used to cap the termini of the peptide
sequence. An example of a standard N-terminus is the proto-
nated amine while a standard C-terminus is a deprotonated
carboxylic acid.

Computational Design of Membrane Curvature-Sensing Peptides 425



3. Reading in the coordinates. Coordinates can be read from a
PDB file (Note 2)

open read card unit 10 name @PDB_FILENAME

read coor pdb unit 10

or from a CHARMM coordinate file via the following:
open read card unit 10 name @CRD_FILENAME

read coor card unit 10

4. Set up the images for periodic boundary conditions. If PBCs are
employed for the simulation, the crystal and imagemodules of
CHARMM provides for the interface to set up PBCs.

crystal define @crystaltype @A @B @C @alpha @beta @gamma

crystal build cutoff @cutoffval nope 0

image byresidue xcen 0.0 ycen 0.0 zcen 0.0 select water end

image bysegment xcen 0.0 ycen 0.0 zcen 0.0 select protein end

The first line specifies the crystal symmetry (@crystaltype)
with the other variables providing the necessary information
about the length of the sides of the crystal and the values of the
corresponding angles. For a cubic crystal type, @A¼@B¼@C while
@alpha¼@beta¼@gamma¼90. The second line initiates the building
of image atoms. The cutoff parameter value, @cutoffval, indi-
cates the number of layers of image atoms that will be built.

The two lines with the image command controls how mole-
cules are centered when the primary box is rebuilt after a certain
number of simulation steps. The third line specifies that water
molecules are shifted on a molecule by molecule basis when
periodic boundary conditions are applied. Doing the same
byresidue shifts to protein segments will essentially cause the
protein to break, thus, proteins are shifted on a segment by
segment basis.

5. Specify the treatment of non-bonded interactions. This section of
a CHARMM input file details the type of switching that will be
employed for non-bonded interactions and whether an Ewald
summation will calculate electrostatic interactions. A sample
statement is shown below.

nbonds atom vatom -

ctonnb 10.0 ctofnb 12.0 -

ewald pmew fftx @fftx ffty @ffty fftz @fftz kappa .34 spline

order 6

The first line contains directions for how cutoffs are handled, in
this case atom-based cutoffs are used for electrostatics and van
der Waals interactions (vatom). The second line specifies the
cutoff distances within which interactions between atoms will
be calculated. Lennard-Jones interactions are varied by a
switching function between the ctonnb and ctofnb values. The
third line provides the necessary information for doing the
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Ewald summation, in particular via the particle-mesh Ewald
algorithm (pmew), to calculate electrostatics without use of cut-
offs. The keywords fftx, fftx, and fftz control the grid sizes
for use in the particle mesh Ewald summation (Note 3).

6. Have the system undergo molecular dynamics simulation. This
section spells out the commands and parameters that control
the dynamics run of the system.

DYNA CPT leap restart nstep @nstep timestep 0.002 -

iunrea 11 iunwri 12 iuncrd 13 -

nsavc 100 -

PCONS pint pref 1.0 pmxx 0. pmyy 0. pmzz @Pmass pgamma 20.0 -

HOOVER reft @temp tmass 2000.0 tbath @temp firstt @temp

The DYNA keyword directs CHARMM to start a dynamics sim-
ulation of the system. The first line contains information on
which ensemble to maintain (CPT or constant pressure and
temperature), the integration algorithm to be used (the leap-
frog algorithm), whether to use a previous simulation as a
starting point (restart) (Note 4), the number of time steps
(nstep) (Note 5), and the size of the time step (timestep). If a
previous simulation is used as a starting point, the restart file
written at the end of that previous simulation needs to be
accessed. The second line points to the unit number of files
that will be read if the simulation is restarted from a previous
one (iunrea), where to write the restart file information from
the current simulation (iunwri) and the destination for the
trajectory file (iuncrd). The trajectory file contains the coordi-
nates of all the atoms collected at regular intervals. The fre-
quency of saving coordinates to the trajectory file is given by
the nsavc keyword. In this case, coordinates will be collected at
every 100 time steps and saved (Note 6). The fourth line
contains the parameters that will be used for pressure control
of the system while the last line contains the same information
for temperature control.

3.2.2 Constructing

a Lipid Bilayer

or Protein–Lipid Bilayer

System

Constructing a lipid bilayer system with or without a protein or
peptide follows the same general procedure. A general method is
outlined below for building the model systems. This method was
developed by Benoit Roux (http://thallium.bsd.uchicago.edu/
RouxLab/membrane.html) and is also discussed in more detail
elsewhere [69]. A Web-based method with a graphical user inter-
face can also be utilized (http://www.charmm-gui.org/) [70, 71].
This latter method was developed by the group of Wonpil Im and
follows the same general outline as Roux’s technique. The method,
in summary, involves a bilayer that is constructed around the pro-
tein or peptide that is being simulated. The component lipids are
randomly selected from a library of individual lipid molecules that
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was extracted from an equilibrated and hydrated bilayer. The water
layer surrounding the lipid bilayer is built from smaller boxes of
water molecules (Note 7). If an equilibrated lipid bilayer is avail-
able, another method of incorporating the protein or peptide
involves the deletion of a certain number of lipids whose total
cross-sectional area would match that of the protein or simply to
remove lipid molecules whose atoms overlap with an inserted pro-
tein [44, 72].

1. Determining the size of the primary simulation box. The lateral
size (size along the xy-plane) of the primary simulation box
is determined by two components: the number of lipids on
one leaflet and the cross-sectional area of the protein. The lipid
component of the box size depends on the number and type of
lipid molecules that comprises the lipid bilayer. Each
lipid type has a characteristic head group cross sectional area.
Suggested values for lipid head group areas can be found in
http://www.charmm-gui.org/?doc¼input/membrane_only&s
tep¼1. In the presence of protein or peptide, the cross-sectional
area of this inclusion also needs to be calculated. This is done by
using a probe of a certain size (typically, the size of a methylene
group for a peptide that is embedded in a bilayer) tomeasure the
solvent-accessible surface area of the protein. This latter calcula-
tion is performed by the CHARMM input file, sys1.inp, in
Roux’s method.

2. Building the bilayer structure. After the lateral size of the pri-
mary box has been determined, the bilayer system can be
constructed. The protein is placed in the center of the primary
box. Dummy atoms are then introduced into the system; each
will be replaced by a lipid molecule further on. These are placed
randomly around the protein and in the top and bottom leaflet
of the bilayer. The vertical placement of these dummy atoms is
dependent on the length of the acyl chain of the lipids com-
prising the bilayer. This procedure is performed by the input
file sys2.inp. After the placement of the dummy atoms, a mini-
mization procedure is then performed (via sys3.inp) to find the
spatial distribution of dummy atoms around the protein with
the lowest energy. After the spatial distribution of the dummy
atoms in the bilayer has been determined, each dummy atom is
then consecutively replaced by a lipid randomly selected from a
library of lipid molecules. Afterwards, systematic rotations and
translations of the lipid molecules are done in order to remove
bad contacts. These latter steps are performed using the input
file sys4.inp. At this time, the system is composed of the pro-
tein/peptide and the lipid bilayer. The input file sys5.inp then
performs energy minimization procedures on the system.
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3. Adding the water layer. The assembly of the water layer is done
by input files sys6.inp, sys7.inp, and sys8.inp. Starting from a
small box of water molecules, a sheet of water boxes that would
cover the lateral area of the primary box is first assembled (sys6.
inp). This sheet of water is then replicated vertically until the
height of the stacked water layers is at least equal to the desired
height of the primary simulation box (sys7.inp). Finally, the
water boxes are fitted on each side of the lipid bilayer (sys8.inp).

4. Minimizing the energy of the full system and addition of ions. A
series of energy minimization procedures is then initialized
(sys9.inp to sys18.inp). If the total charge of the system is not
equal to zero, ions are added in order to neutralize the charge.
This is done in order to make use of the particle mesh Ewald
summation algorithm for calculating electrostatic interactions.

3.2.3 Generating

a Curved Bilayer

The generation of curved bilayers in silico is essential for computa-
tional investigations into the interaction of curvature-sensing pep-
tides with curved membranes. One method involves simulating a
bilayer with a known curvature-generating protein such as BAR
[73] and using the resulting curved bilayer with the protein
removed [74]. Another method introduces an asymmetry across
the bilayer, in particular by using a heterogeneous distribution of
single-tailed and double-tailed lipids in the two bilayer leaflets [75].
In our laboratory, the method that was used involves increasing the
lipid density by the gradual compression of a flat lipid bilayer along
the x- and y-axes [76]. This technique is summarized below.

1. Construct a flat lipid bilayer. The method outlined above is
used for this step.

2. Scaling of the system along the xy plane. The scaling of coordi-
nates entails multiplying the x- and y-coordinates of each parti-
cle by the same factor. Using a factor greater than one has the
effect of moving each particle outwards, that is, away from the
z-axis while using a factor less than one moves each particle
closer to the z-axis. It is the latter that causes a compression of
the system along the xy plane, and thus, an increase in the
lateral lipid density. To maintain the compression of particles,
the scaling of coordinates needs an accompanying scaling of the
primary box dimensions in order to maintain both the overall
density of the system and the volume of the primary box size.
The x-y dimensions are each scaled by the same factor used for
the particle coordinates and the z-dimension is multiplied by
the square of the reciprocal of the scaling factor. To avoid
sudden changes in the bilayer structure, the compression is
performed gradually by using small changes in the scaling
factor. In our work, the coordinates are scaled in increments
of 2 % as outlined in the steps below.
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3. Multiply the x- and y-coordinates of each particle by 0.98 (i.e.,
a 2 % compression).

4. Multiply the x- and y-dimensions of the primary box by 0.98
and multiply the z-dimension by 1/(0.98)2.

5. Perform an energy minimization.

6. Let the system undergo a dynamics procedure for 5 ps.

7. Repeat steps 3–6 where during each iteration, decrease the
scaling factor by another 2 %.

8. A compression to 76 % of the original lateral area of the simu-
lation box typically translates to a 4- to 6-Å decrease in the
radius of curvature of the bilayer (where the ideal flat bilayer is
assumed to have an infinite radius of curvature).

Figure 3a shows a diagram of the coordinate scaling procedure
and Fig. 3b shows the curvedmembranes resulting from an increase
in the lateral density of the lipids brought about by coordinate
scaling.

For this section, the work done on a peptide segment of the effector
domain of myristoylated alanine-rich C kinase (MARCKS-ED) will

Fig. 3 Panel (a) shows a diagram of how the coordinate scaling procedure is performed leading to an increase
in the lateral density of particles. Panel (b) shows the increase in membrane curvature caused by the increase
in lateral density of lipids. The large balls represent the interfacial region of the lipid bilayer, with the red-
colored ones representing carbonyl oxygens in the lipid molecule and orange ones representing phosphorus
atoms
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3.2.4 Simulating and

Designing Curvature-

Sensing Peptides

be described. The MARCKS-ED peptide has 25 residues with the
following sequence: KKKKKRFSFKKSFKLSGFSFKKNKK. As
mentioned beforehand, the typical starting point for protein struc-
tures is the Protein Data Bank. However, in the MARCKS-ED
peptide, predominant secondary structures are absent [35]. Due
to this and the relative shortness of the sequence, building the
peptide from scratch is sufficient. To build the peptide, the
sequence of residues is specified in the CHARMM input file.
Based on internal coordinates, the CHARMM program will con-
struct a straight chain of the residues as shown in Fig. 4 where the
backbone atoms are red. To create the initial structure for
MARCKS-ED, the text below can be used in a CHARMM input
file. This will give a segment ID (segid) of MRX to the peptide and
will cap the termini with the standard N- and C-terminus.

read sequence card

* MARCKS-ED

*

25

lys lys lys . . . ! specify the rest of the residue sequence

generate MRX setup first NTER last CTER

To construct the coordinates, the internal coordinate (IC)
module of CHARMM is accessed

ic para

ic seed 1 N 1 CA 1 C

ic fill

ic build

The icpara command fills in missing information from the IC
tables in the topology files with values from the parameter file. The
ic seed command specifies the positions of the three atoms speci-
fied (i.e., the N, CA and C atoms of residue 1, in this instance). The
first atom is placed at the origin, the second on the x-axis and the
third, on the xy-plane. Since the atomic coordinates of three atoms
are now known, the other missing IC values can be filled with the
command ic fill and ic build (Note 8).

Further modifications to the initial structure can be made if
other characteristics are known. For example, if this stretch of
peptide were to be simulated as an alpha helix, the dihedral angles
of the backbone atoms would be modified to have values

Fig. 4 CPK representation of the MARCKS-ED peptide after being built using
internal coordinates
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characteristic of an alpha helix. The MARCKS-ED peptide is placed
around the depth of the interfacial region of the bilayer due to the
fact that the peptide is known to respond and interact with the
bilayer interface [41]. MD simulations of this peptide confirm a
“boat conformation” where the hydrophilic Lys residues at the
ends of the peptide are stretched towards the bulk solvent while
the central stretch containing the Phe residues are buried into the
bilayer [41, 77]. A snapshot of this conformation is shown in Fig. 5.

One modification to the design of the MARCKS-ED peptide
can come in the form of using the enantiomeric D-form of the
peptides. The use of the D-isomer is desirable in some cases since
they are less prone to proteolytic processes in vivo. In studies done
in our laboratory, D-MARCKS-ED has been shown to also sense
membrane curvature [41]. The CHARMM topology files contains
the internal coordinates for the L-form of the different amino acids,
thus, modifications to the topology files are necessary to simulate D-
amino acids. Recall that the chirality is controlled by the improper
dihedral. To change the chirality of an L-amino acid to the D-form,
two improper dihedral entries in the internal coordinate (IC) table
are changed. These IC table entries pertain to two sets of four
atoms: the backbone atoms N, C, Cα and side chain atom Cβ and
the backbone atoms N, C, Cα and the attached Hα. In particular,
the modification is to switch the sign of the improper dihedral angle
for these two sets of atoms. An example is shown for alanine. The
relevant IC table entry for L-ala is

IC N C *CA CB 1.4592 114.4400 123.2300 111.0900 1.5461

IC N C *CA HA 1.4592 114.4400 -120.4500 106.3900 1.0840

The corresponding entry for D-ala is

IC N C *CA CB 1.4592 114.4400 -123.2300 111.0900 1.5461

IC N C *CA HA 1.4592 114.4400 120.4500 106.3900 1.0840

It is also typical in modifying peptides to change certain resi-
dues to effect some change in function. For the MARCKS-ED

Fig. 5 The MARCKS-ED peptide adopting a “boat” conformation after a period of
dynamics. The hydrophilic Lys residues (orange balls) are pointed towards the
bulk solvent while the Phe residues (blue balls) remain buried in the interfacial
region of the lipid bilayer
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peptide, it was shown that Phe residues play a major role in the
attachment of the peptide to the lipid bilayer, in particular, through
its interactions with the interfacial region of the bilayer. A change
that could be explored in the design of this peptide is to change the
Phe residues to other residues. Examples of such replacement
residues are Tyr and Trp, which are known to also interact with
the bilayer interface [78, 79].

4 Notes

1. A typical CHARMM installation will contain topology and
parameter files that contain the required information for
amino acids, lipids, water or sugars. In cases where small
organic molecules need to be included the simulation system,
the CHARMM General Force Field for organic molecules
(CGENFF program: http://cgenff.paramchem.org/) can be
utilized to generate initial topologies and parameters for these
small molecules [80, 81].

2. Most PDB files do not contain coordinates for hydrogen atoms
due to the resolution limits of X-ray crystallography. In these
cases, CHARMM facilities such as HBUILD can be used to
add coordinates for the hydrogen atoms.

3. The grid size value should be greater than or equal to the
corresponding cell dimension and should preferably be com-
posed of prime factors 2 or 3.

4. For simulations that do not start from a previous one, the
ISEED keyword is typically added followed by a number
(e.g., iseed 31514495). The number serves as the seed
used by CHARMM in assigning velocities.

5. Simulations can be performed in two ways. For example, a 1-ns
simulation can be obtained from a single simulation run of
500,000 time steps (assuming a 0.002-fs time step size). The
same total simulation time can also be obtained from ten
successive simulations (each of which, except the first one,
started from the preceding simulation) of 50,000 time steps.
Assuming identical initial conditions, both options will give
similar results. However, it is good practice to use the second
option and break down long simulations into shorter ones.
This lessens the impact of possible problems in computing
resources. For instance, when the nodes running the simula-
tion in a supercomputer cluster break down, data from the
middle of a long single simulation might not get saved and
might entail restarting the simulation from an earlier time step.

6. The trajectory file is typically the largest that will be generated
by an MD run as it contains multiple sets or frames of the
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coordinates of the whole system. Thus, as simulation systems
get larger and time scales become longer, a decision has to be
made on the frequency of writing the coordinates to the trajec-
tory file in order to manage disk storage more efficiently. This
would depend on what information is desired from the simula-
tion. The initial runs can be made with a lower nsavc number
and could be checked if lessening the frequency of saving
coordinates will not lead to a meaningful loss of detail in the
desired information. After this check, a higher value for nsavc

may be used if appropriate.

7. Both of these methods for constructing protein–lipid bilayer
systems involve separate steps that generate intermediate struc-
tures. It is always good to visually check these intermediate
structures (via VMD or Rasmol) to confirm that the system is
being built correctly.

8. Though the ic build statement will provide coordinates for
missing hydrogen atoms, it is often the case that an additional
statement (hbuild select all end) is typically added after
ic build.
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Chapter 23

Computational Tools for Allosteric Drug Discovery:
Site Identification and Focus Library Design

Wenkang Huang, Ruth Nussinov, and Jian Zhang

Abstract

Allostery is an intrinsic phenomenon of biological macromolecules involving regulation and/or signal
transduction induced by a ligand binding to an allosteric site distinct from a molecule’s active site. Allosteric
drugs are currently receiving increased attention in drug discovery because drugs that target allosteric sites
can provide important advantages over the corresponding orthosteric drugs including specific subtype
selectivity within receptor families. Consequently, targeting allosteric sites, instead of orthosteric sites, can
reduce drug-related side effects and toxicity. On the down side, allosteric drug discovery can be more
challenging than traditional orthosteric drug discovery due to difficulties associated with determining the
locations of allosteric sites and designing drugs based on these sites and the need for the allosteric effects to
propagate through the structure, reach the ligand binding site and elicit a conformational change. In this
study, we present computational tools ranging from the identification of potential allosteric sites to the
design of “allosteric-like” modulator libraries. These tools may be particularly useful for allosteric drug
discovery.

Key words Allosteric site, Allosteric modulator, Allosteric drug discovery, Allostery, Allosteric drug
design

1 Introduction

Allostery, which is also known as allosteric regulation, is an essential
biological phenomenon that plays significant roles in signal trans-
duction pathways, metabolic processes, and genomic transcription
[1, 2]. Perturbation at an allosteric site can rapidly shift the equilib-
rium of a protein conformational ensemble towards another state,
thereby inducing local conformation change at an active site [3–5].
Potential perturbations include the binding of small molecules/
ions and local chemical modifications [6–8]. Thus, allostery is the
most direct mechanism for regulating the function of biological
macromolecules. Insight into allostery can lead to new ideas for
method development in allosteric drug discovery [9, 10].
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Unlike orthosteric drugs, which compete with the substrates of
target proteins at the active sites, allosteric drugs bind at a location
other than an active site and influence the affinity or catalytic
efficiency of biological macromolecules through the propagation
of a perturbation signal [11–14]. Allosteric drugs have several
advantages relative to orthosteric drugs. First, according to
sequence conservation analyses [15, 16], allosteric sites are signifi-
cantly less conserved than orthosteric sites; this phenomenon
allows allosteric modulators to selectively target specific subtypes
within receptor families [17, 18], resulting in higher selectivity and
fewer side effects than orthosteric drugs. Second, allosteric drugs
do not block substrate-protein interactions, and there is an upper
bound to allosteric regulation. In addition, allosteric modulators
can enhance the efficiency of orthosteric drugs [19]. For instance,
the allosteric modulator GNF-2 binds to the myristate-binding site
of T315I human Bcr-Abl. GNF-2 and the substrate-competitive
inhibitor imatinib exhibit additive inhibitory activity against this
mutated Bcr-Abl; as a result, a combination of these two drugs can
be used to overcome drug resistance in cases of chronic myeloge-
nous leukemia (CML) [20]. Thus, the identification of modulators
targeting allosteric sites receives increasing attention in the field of
drug discovery, and several allosteric drugs have been approved by
the US FDA [21, 22]. For example, Genzyme’s plerixafor is an
allosteric antagonist of the C-X-C chemokine receptor type 4
(CXCR4) that enhances the mobilization of hematopoietic stem
cells (HSCs).

Allosteric drug discovery also presents new challenges relative
to traditional drug discovery approaches. The identification and
characterization of drug binding sites is the first step of structure-
based drug discovery. However, the locations of allosteric sites
remain unclear for most drug targets [23]. Moreover, the discovery
of allosteric modulators is hampered by several obstacles, such as
the low affinities and unknown structural features of potential small
allosteric molecules. In our prior work, we summarized the proper-
ties of allosteric sites [24] and allosteric modulators [25] and
developed an allosteric site identification method named Allosite
[26]. In addition, a preliminary filter for allosteric modulator dis-
covery was also established. In this protocol, we introduce practical
guidelines describing how to obtain predictions for allosteric sites
and build a focused library of “allosteric-like” molecules.

1.1 Theory The fundamental strategy for Allosite is to use the topology and
physiochemical properties of protein pockets to build a classification
model relating allosteric sites to other sites. We have extracted 90
nonredundant allosteric protein–allosteric modulator co-crystals
from the AlloSteric Database [27, 28]. After feature selection, 21
pocket descriptors were characterized for each pocket identified by
FPocket [29]. The classification model for allosteric site
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identification was then trained and tested using a support vector
machine [30]. In a cross-validation test, the success metrics for the
Support Vector Machine (SVM) model were a sensitivity of ~83 %
and a specificity of ~96 %.We havemade the finalmodel available on
the Allosite Web server.

To reveal the structural specificity of allosteric modulators,
3916 known structurally diverse allosteric modulators in the Allo-
steric Database were compared with compounds from other data-
bases (the Accelrys Available Chemicals Directory, the Accelrys
Comprehensive Medicinal Chemistry database, the Chinese Natu-
ral Product Database, DrugBank, the MDDR database, and the
NCI Open Database). Interestingly, relative to other modulators,
allosteric modulators exhibit higher structure rigidity, with less
rotatable bonds and more rings from ring systems. In addition,
higher hydrophobicity is also observed for allosteric modulators;
this finding is consistent with the hydrophobic characteristics of
allosteric sites [25]. In summary, we established the following rule
for differentiating allosteric modulators from other modulators: (1)
molecular weight (MW) � 600; (2) number of rotatable bonds
(nRB) � 6; (3) 2 � number of rings (nR) � 5; (4) number of
rings in the largest ring Systems (nRIS) ¼ 1 or 2; and (5)
3 � SlogP � 7.

2 Materials

2.1 Software

for Visualizing Protein

Structures

The PyMOL molecular graphics system is required for visualizing
PDB files and allosteric sites. This system, which is a open-source
software, is available at http://www.pymol.org.

2.2 Browser The Allosite server requires a Web browser with JavaScript and
cookies enabled. A recommendation to ensure that protein struc-
tures can be visualized correctly is to use the latest version of Firefox
or Chrome to access Allosite.

3 Methods

In the following subsections, we first describe the individual steps
that the Allosite server uses to identify allosteric sites and then
describe how to construct focused libraries for the screening of
allosteric modulators with a preliminary filter.

3.1 Input File

Preparation

Allosite utilizes a method based on the proteins’ three-dimensional
structures, which can be obtained from the Protein Data Bank
database (see Note 1). If there is no crystal structure for the query
protein, homology modeling methods will be helpful for building
the protein’s 3D structure. The following considerations should be
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taken into account to ensure the quality of the prediction. (1) We
recommend using an X-ray structure with a resolution <2.5 Å

´
. (2)

There should be no missing loops in the main chain of the protein.
(3) Small molecules, ions and solvents within the PDB structure
will automatically be removed.

3.2 Job Submission The Allosite Web server is freely available for use at http://mdl.
shsmu.edu.cn/AST. Jobs can be submitted either by “PDB ID” or
by “PDB File” (see Fig. 1). In “PDB ID” mode, users can specify
their input by simply entering the 4-character PDB ID of their
query protein. Users with their own experimental/model-based
structures can choose the “PDB File” mode to browse their local
hard drives and provide a protein structure file. A submitted query
protein structure should be in standard PDB format. Another
parameter, “Job Name”, must be set before running the job; this
parameter can then be used to check the status of the job and
retrieve calculated results for the job at any time. After “Job
Name” has been specified, users can click “Run” and select PDB
chain(s) to submit the job (see Note 2).

3.3 Retrieving

the Results

Once the job has been submitted, detailed job information, includ-
ing a unique Job ID, will appear on the “Select PDB chains” page.
Users can also track the progress of a job or access the results page
from the “Job Queue” page by searching for their Job ID. The
status of a job is refreshed in the “Job List” every 10 s until the
“Finished” button appears. The “Finished” button indicates that
the job has finished, and results can be viewed by clicking this
button. The Allosite approach features rapid calculation times that
depend on the size of the query protein. A typical Allosite job for a
400-residue protein will require ~15 s.

3.4 Analyzing

the Results

The job will redirect to the calculation result page after the “Fin-
ished” button has been clicked. The GLmol applet will load auto-
matically and provide a default color-coded representation of the
query protein. The predicted allosteric site can be viewed in the
GLmol applet by clicking the “Show Pocket” button. The pre-
dicted allosteric site is displayed as white spheres, and allosteric
site residues are represented using a stick model. The result page
also contains the following pocket properties for the predicted
allosteric site: “Pocket Volume”, “Pocket Total SASA”, “Pocket
Polar SASA”, and “Pocket Druggability Score”. A representative
run of an Allosite job provides 0–4 potential allosteric sites.

3.5 Analyzing the

Results Using PyMOL

Result files can be downloaded for offline analysis by clicking the
“Download Report” link. After tar archives have been extracted,
three files are obtained: a structure file for the query protein, site
information for the predicted results, and a .pml PyMOL script for
visualization. Users can then analyze the predicted allosteric site in
PyMOL (see Fig. 2).
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Fig. 1 The Web interface and workflow of Allosite
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3.6 Designing Focus

Libraries of Allosteric

Modulators

Based on our prior work, molecules that satisfy the following
criteria are more likely to be allosteric modulators: (1)
MW � 600; (2) RBN � 6; (3) 2 � nR � 5; (4) nRIS ¼ 1 or 2;
and (5) 3 � SlogP � 7. To fetch potential allosteric modulators
from a database of chemical molecules, we developed a Web server
that can be accessed at http://mdl.shsmu.edu.cn/ASD/. For each
job, users can upload their molecular database of interest with
either 2D or 3D structures. Three file types are acceptable for
uploading: MOL, SDF, and SMILES. When our Web server com-
pletes a job, users are redirected to a results page where they can
click “Download” to download molecules that have passed the
“allosteric-like” filter. Histograms indicate the distribution of five
calculated molecular properties. The filter’s local script runs quickly
and is recommended for users who intend to filter large molecular
databases.

4 Notes

1. Many proteins have multiple structures in the PDB database that
have been generated in different crystal environments. If a pro-
tein has multiple conformation states (such as a protein kinase
with active and inactive states [13]), diverse conformations can

Fig. 2 An analysis of Allosite results using PyMOL. The allosteric pocket is represented by white points. Red
lines are used to highlight residues in this site
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be separately submitted to the Allosite server to obtain robust
results. Moreover, these crystal conformations only represent
small proportions of the conformational ensembles of allosteric
proteins. Therefore, it is difficult to identify cryptic allosteric
sites in proteins because these sites are transient during confor-
mational changes and invisible to conventional X-ray crystal
structures [31]. Molecular dynamics (MD) simulations are
widely used for conformational ensemble sampling and for gen-
erating representative structures from diverse conformations
[32]. Thus, users can predict cryptic allosteric sites with Allosite
if representative conformations are chosen as inputs.

2. One class of allosteric modulators binds to a pocket emerging
from multimerization or protein–protein interactions, but these
modulators do not directly inhibit protein interaction [33]. To
identify interfacial allosteric sites, multiple chains should be
chosen at the “PDB chain selection” step.
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