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Preface

Thinking in terms of facts and rules is perhaps one of the most common
ways of approaching problem definition and problem solving both in everyday
life and under more formal circumstances. The best known set of rules, the
Ten Commandments have been accompanying us since the times of Moses;
the Decalogue proved to be simple but powerful, concise and universal. It
is logically consistent and complete. There are also many other attempts to
impose rule-based regulations in almost all areas of life, including professional
work, education, medical services, taxes, etc. Some most typical examples
may include various codes (e.g. legal or traffic code), regulations (especially
military ones), and many systems of customary or informal rules.
The universal nature of rule-based formulation of behavior or inference

principles follows from the concept of rules being a simple and intuitive yet
powerful concept of very high expressive power. Moreover, rules as such encode
in fact functional aspects of behavior and can be used for modeling numerous
phenomena.
There are two main types of rules depending on their origin: there are ob-

jective, physical rules defined for us by Nature and there are subjective, logical
rules defined by man. Physical rules describe certain natural phenomena and
behavior of various systems; they are known by observation and experience,
sometimes they can be proved, having objective nature they are independent
of our will, they are universal and normally cannot be changed. Logical rules
are those defined by man; they are usually subjective, local, subject to change
if necessary. Physical rules describe possible behavior — they can be used in
domains such as modeling, analysis and prediction of system behavior. Logical
rules are usually aimed at shaping the behavior of man, society or machine.
In any case definition of logical rules must respect the necessity of taking into
consideration physical rules which cannot be violated — physical rules are
superior with respect to logical ones.
Although rule-based systems are a tool omnipresent in science, technology

and everyday life, their encoding, analysis and design are seldom a matter of
deeper theoretical investigation; in most of the application areas they are just
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used (consciously or unconsciously) in a straightforward way, applied to solve
specific problem without paying attention to issues such as their properties,
language, optimization, etc.
The most thorough analyses of rules, inference, and rule-based systems

were performed in the domain of logic1. Although rule-based inference is not
the only possibility of reasoning, logical systems are mostly constructed as
composed of axioms (facts) and inference rules. Theoretical properties of such
systems, such as logical consistency and completeness are those recognized of
primary importance and investigated.
The rule-based approach for knowledge representation and reasoning has

been adapted from logic to Artificial Intelligence (AI) and Knowledge En-
gineering (KE) [39, 44, 125]. The so-called production systems [125] or rule-
based systems [44, 46] are sets of rules imitating logical implication. Even after
years of investigation of various other formalisms, rules proved to be generic,
core and very universal knowledge representation tool for the widest possible
spectrum of applications.
Rule-Based Systems (RBS) constitute a powerful tool for specification of

knowledge in design and implementation of knowledge-based systems (KBS) in
applied Artificial Intelligence and Knowledge Engineering. They provide also
a universal programming paradigm for domains such as system monitoring,
intelligent control, decision support, situation classification, system diagno-
sis and operational knowledge encoding. Apart from off-line expert systems
and deductive data-bases, one of the most useful and successful applications
consists in development of wide spectrum of control and decision support
systems [48].
In its basic version (considered here) a RBS for control or decision support

consists of a single-layer set of rules and a simple inference engine; it works by
selecting and executing a single rule at a time, provided that the preconditions
of the rule are satisfied in the current state. Possible applications include
direct control and monitoring of dynamical processes [66], meta-level control
(the so-called expert control), implementation of the low level part of any-
time reactive systems, generation of operational decision support, etc. A RBS
named Kheops [42], being one classical example of such systems was applied
in the TIGER system [88, 126] developed for gas turbine monitoring. Many
successful applications are reported in [51] and in [48].
The expressive power and scope of potential applications combined with

modularity make RBS a very general and readily applicable mechanism. How-
ever, despite a vast spread-out in working systems, their theoretical analysis
seems to constitute still an open issue with respect to analysis, design method-
ologies and verification of theoretical properties. Assuring reliability, safety,

1 The book focuses on classical First-Order Predicate Calculus, Resolution, theorem
proving and following tools, such as Prolog programing language and forward
chaining rule-based systems. The issues of λ-calculus and LISP are not mentioned
in this book.
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quality and efficiency of rule-based systems requires both theoretical insight
and development of practical tools. The general qualitative properties are
translated into a number of more detailed characteristics defined in terms of
logical conditions.
In fact, in order to assure safe and reliable performance, such systems

should satisfy certain formal requirements, including completeness and con-
sistency. To achieve a reasonable level of efficiency (quality of the knowledge-
base) the set of rules must be designed in an appropriate way. Several theo-
retical properties of rule-based systems seem to be worth investigating, both
to provide a deeper theoretical insight into the understanding of their ca-
pacities and assure their satisfactory performance, e.g. reliability and quality
[3, 48, 101, 103, 107, 123]. Some most typical issues of theoretical verification
include satisfaction of properties such as consistency, completeness, determin-
ism, redundancy, subsumption, etc. (see [3, 81, 101]). Several papers investigate
these problems presenting particular approaches [25, 103, 107, 123]. A selec-
tion of tools is presented in [109]. Some modern approaches include [6, 49, 132].
An interesting extension concerns analysis and verification of time-dependent
systems, especially real-time systems [17].
RBS provide a powerful tool for knowledge specification and development

of practical applications. However, although the technology of RBS becomes
more and more widely applied in practice, due to its relationship to first-order
logic and sometimes complex rule patterns and inference mechanisms, they
are still not well-accepted by industrial engineers. Further, the ‘correct’ use of
them requires much intuition and domain experience, and knowledge acqui-
sition still constitutes a bottleneck for many potential applications. Software
systems for development of RBS are seldom equipped with tools supporting
design of the knowledge-base; for some exceptions see [1, 4]. A recent, new
solution is proposed in [141]. However, a serious problem follows from the fact
that a complete analysis of properties remains still a problem, especially one
supporting the design stage rather than the final verification. This is partic-
ularly visible in case of more powerful knowledge representation languages,
such as ones incorporating the full first order logic formalism.
Contrary to RBS, Relational Data Base Systems (RDBS) [23, 30, 38, 131]

offer relatively simple, but matured data manipulation technology, employing
widely accepted, intuitive knowledge representation in tabular form. It seems
advantageous to make use of elements of this technology for simplifying certain
operations concerning RBS. Note that from practical point of view any row of
a RDBS table can be considered as a rule, provided that at least one attribute
has been selected as an output (and there is a so-called functional dependency
allowing for determination of the value of this attribute on the base of some
other attributes). Thus, it seems that merging elements of RBS and RDBS
technologies can constitute an interesting research area of potential practical
importance.
There exist numerous books and papers presenting the rule-based sys-

tems as a methodology for knowledge representation and inference with
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applications. Some best examples of such books include classical positions,
such as [39, 43] and [125] with respect to logical foundations [44, 46] and
[117] covering classical presentation, and [130] and [48] with respect to appli-
cations. A comprehensive, multi-author presentation of the most wide spec-
trum of issues concerning rule-based systems is perhaps covered by the hand-
book edited by J. Liebowitz [51]. Yet another, interesting and new one is the
work [102]. With respect to real-time systems the specific issues are presented
in [17]. All these positions cover certain aspects of rule-based systems and
present interesting and useful material on that methodology. However, one
main drawback common to such positions is that trying to be attractive they
present the material at rather popular level without going to more difficult
details. They also omit many particular issues important in practical imple-
mentations and applications. For example, no textbook on rule-based systems
explore the relationship between RDBS and attributive rule-based systems.
No books point to similarities in both of the technologies and analyze possi-
bilities of at least partial merging of them. Last but not least, they are full of
repetitions of a basic, well-known material which is presented in similar way
in other textbooks. Analyses and discussions focused on selected theoretical
or application-oriented details, providing in-depth analysis of more specific
problems can hardly be met in the books addressed to a wider audience.
This book addresses the methodology of rule-based systems in a relatively

complete and perhaps a bit complex way. The main aim is to present the
rule-based systems from logical perspective as viewed by the Author. Certain
Author’s concepts concerning rule-based systems are described in details. Al-
though the primary concern of this book may seem to be well-explored in the
domain literature, both the structure and the contents of the book attempt at
keeping individual, Author-shaped character, and present personal experience
of both theoretical and practical nature.
The concept of the book is as follows: to present in a single volume a spec-

trum of knowledge concerning rule-based systems, as understood in knowl-
edge engineering, but with going into details uncovered by other books on
that topic. The book covers areas such as: logical foundations of rule-based
systems (including knowledge representation and inference with propositional,
attribute-based and first-order logic), knowledge representation, inference and
inference control in rule-based systems (including extended forms of rules and
specialized inference control mechanisms), definitions and verification of for-
mal properties of rule-based systems assuring the correct work of them and
finally design issues (covering systematic design approach combined with on-
line verification). The discussion is presented at the conceptual level, then
logical definitions are systematically introduced and practical implementation-
oriented solutions are provided. In several, most distinctive cases, the discus-
sion is continued into details of implementation illustrated by working solu-
tions in Prolog.
Contrary to majority of textbooks on Artificial Intelligence, Knowledge

Engineering and Rule-Based Systems, which attempt at concise and compre-
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hensive presentation of a mixture of approaches sometimes completely differ-
ent from one another, this books follows in a consequent way a single line of
presentation: it starts the lecture at the very beginning — the propositional
calculus. It goes through logical languages for knowledge representation, in-
ference rules, principles and details of rule-based systems, until design and
verification issues. It offers also practical solutions illustrated with Prolog
code excerpts. Hence, apart from introducing and explaining many techni-
cal issues it provides practical instructions how to implement the ideas in an
efficient way.
The book presents also some ideology concerning design and development

of rule-based systems for practical applications. The principal lines distin-
guishing the presented material can be summarized as follows:

• knowledge algebraization — although rule-based systems were born in the
area of logic and inherit often the logical terminology, notation, and infer-
ence mechanisms, for practical applications they can be made ’as algebraic
as possible’, close to well-known and very efficient Relational Database
technology; this means that rules represented in attributive languages can
be presented in tabular form easy to analyze and manipulate by algebraic
means;

• hierarchical organization of knowledge — the initial problem-space can be
divided into local, specific contexts, each of them having precise logical
definition, and the contexts are organized in a tree-like structure; the de-
sign of the system and the final system components can reflect the problem
structure what makes it easier to analyze and design the rule-based system
thanks to decomposition into smaller parts;

• formalization of design and verification — whenever possible, the design
and verification process should be formal and the designed system should
provide required functionality preserving important characteristics, such as
consistency, completeness, etc.; in order to assure those characteristics an
attempt to put forward algebraic and graphical knowledge representation
enabling easy design (which should be ’almost mechanical’) is undertaken.

With respect to the principal guidelines assumed and presented above,
a number of specific solutions were proposed. The most important, original
issues addressed in this book include the following:

• presentation of logical languages for encoding rule-based systems with spe-
cial attention paid to attribute-based languages; four types of such lan-
guages were introduced and specific inference mechanisms were presented;

• presentation of logical inference method called backward dual resolution
(or dual resolution for short) which is especially convenient for analysis of
completeness and reduction of rules; it can also be applied in first-order
logic based systems for proving satisfaction of rules preconditions in case
of complex DNF-like formulae;
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• proposal of extended, frame-like form of inference rules containing nu-
merous components and allowing for dynamic memory modification and
encoding inference control in declarative rules;

• knowledge representation method in the form of Extended Tabular Sys-
tems (XTT) where knowledge is encoded in tabular components linked
into a tree structure for efficient control, and where non-atomic values of
attributes are allowed;

• logical definitions and practical approach to verification of certain impor-
tant formal properties of rule-based systems;

• a proposal of new rule-based systems designing paradigm incorporating
graphical knowledge representation and on-line verification;

• last but not least, practical aspects of encoding the ideas in Prolog as
a meta-level code.

The tabular systems discussed in this book can also be used as extended
RDB paradigm for unconditional knowledge specification. In such a way in-
stead of extensional data specification with atomic values of attributes, their
intensional definition can be provided. In the basic case, set and interval val-
ues of attributes can be used to cover a number of specific cases. Depending
on the knowledge representation language, also more complex structures (e.g.
records, objects, terms) can be used. In such a way data patterns, data covers
or data templates can be defined. Both representation and analysis can be
then much more concise and efficient.
The organization of this book is as follows. The book is divided into five

parts, each of them further divided into several chapters. The main parts
present material on (i) logical foundations of rule-based systems (Part I),
(ii) principles of rule-based systems structures, knowledge representation lan-
guages, inference and inference control (Part II), (iii) verification of formal
properties of rule-based systems (Part III), and (iv) design methodology for
efficient development of such systems and an extended example (Part IV).
Part V presents concluding remarks and information on selected systems and
web resources.
This book is addressed to researchers, students and engineers interested in

the rule-based systems technology in all aspects, including theoretical founda-
tions, languages, knowledge representation, inference, design and verification.
It should serve as a material for self-study, both systematic one, from the
bases, and as well as auxiliary material proposing more detailed, specific con-
cepts and solutions provided on demand. I hope it will provide an interesting
and useful material and perhaps a source of inspiration to those involved in
knowledge engineering theory and practice.
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Part I

Logical Foundations of Rule-Based Systems





1

Propositional Logic

Propositional Calculus is the simplest logical system, both with respect to
syntax as well as semantics. It uses simple logical formulae constructed from
propositional symbols and logical connectives only; no individual variables nor
quantifiers are allowed. Simultaneously, it introduces many basic ideas incor-
porated in any more advanced logical systems. It can also serve as a basic
model for rule-based systems.

The name Propositional Calculus (or Propositional Logic) comes from the
fact that this kind of logic is limited to use of propositions as the only means for
expressing knowledge about facts in some world under consideration. A state-
ment or a proposition is any finite declarative sentence. In classical logic any
proposition is either true or false, although in particular situation its current
logical value may be unknown.

1.1 Alphabet of Propositional Calculus

The alphabet of any formal language consists of a set of items (letters, sym-
bols) which are legal in this language. The alphabet of Propositional Calcu-
lus consists of symbols denoting propositions and logical connectives (logical
functions). As auxiliary symbols parentheses are also allowed. Moreover, two
special symbols for denoting a formula which is always true, say �, and a for-
mula which is always false, say ⊥ will be necessary. The complete alphabet is
specified as follows.

Definition 1. The alphabet of Propositional Calculus consists of:

• a set of propositional symbols

P = {p, q, r, . . . , p1, q1, r1, . . . , p2, q2, r2, . . .} ,

• a set of logical connectives, i.e. ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion), ⇒ (implication) and ⇔ (equivalence),

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
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4 1 Propositional Logic

• two special symbols, i.e. � denoting a formula always true, and ⊥ denoting
a formula always false.

Moreover, parentheses are used if necessary.

For practical applications propositional symbols can be assigned some spe-
cific meaning; depending on the context and current needs any such symbol
can be used to denote some declarative sentence having precisely defined
meaning. The sentence can be evaluated to be true or false in the world
under consideration. In this way the symbol is assigned the truth-value. How-
ever, when analyzing certain set of formulae one may think in abstract terms
and use propositional symbols without any specific meaning assigned. In such
a case it is said that such symbols are propositional variables — their meaning
is unknown and the only restriction is that after assigning a specific interpre-
tation they can be evaluated as true or false ones.

In order to assign some precise meaning to propositional symbol p, for
example ’It is cold’, the following notation can be used

p
def= ‘It is cold’ .

Note that any propositional variable can be assigned a unique meaning
only. Further, as we shall see, two propositional variables may be independent
or dependent on each other. For intuition, they are independent if the assigned
interpretations are independent; in such a case the variables can take logical
values independently on each other. They are dependent if the interpretation
of one of them known to be true (false) implies that the other interpretation
is known.

1.2 Syntax of Propositional Logic

The only legal expressions of Propositional Logic are well-formed formulae (or
formulae, for short), i.e. specific expressions constructed from the symbols of
the alphabet according to certain rules. A formula is an expression that can be
assigned a logical value (true or false). The formal definition of propositional
logic formulae is specified by defining the set of formulae FOR in the following
way.

Definition 2 (Propositional Logic formulae). Let P denote the set of
propositional symbols. The set of all propositional logic formulae FOR is de-
fined inductively as follows:

• two special formulae � ∈ FOR and ⊥ ∈ FOR;
• for any p ∈ P , p ∈ FOR;
• if φ ∈ FOR then (¬φ) ∈ FOR;
• if φ, ψ ∈ FOR then (ψ ∧ φ) ∈ FOR, (ψ ∨ φ) ∈ FOR, (ψ ⇒ φ) ∈ FOR

and (ψ ⇔ φ) ∈ FOR;
• no other item belongs to FOR.
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The elements of P ∪ {�,⊥} are also called atomic formulae or atoms for
short. All the formulae are constructed from atoms connected with use of log-
ical connectives. Despite the use of parentheses, the following order (priority)
of logical connectives is assumed:

• negation (¬),
• conjunction (∧),
• disjunction (∨),
• implication (⇒),
• equivalence (⇔).

Thus in certain cases parentheses can be omitted. For example, (¬φ)∧(¬ψ)
can be simplified to ¬φ∧¬ψ; similarly, (¬φ)∨(¬ψ) can be simplified to ¬φ∨¬ψ.
Further, φ ∨ (ψ ∧ ϕ) can be simplified to φ ∨ ψ ∧ ϕ. However, φ ∧ (ψ ∨ ϕ) is
different from φ ∧ ψ ∨ ϕ.

In case of more complex formulae it may be useful to put parentheses in
order to show the real structure of the formula.

Note that the above definition is recursive in fact. Having a well-formed
formula one can replace any propositional symbol (or a formula symbol) with
another well-formed formula; in this way a new well-formed formula is ob-
tained. Such a replacement will be called substitution.

Let φ and ϕ be two formulae. The replacement of φ by ϕ is denoted as
φ/ϕ. The simultaneous replacement of φ1, φ2, . . . , φn with ϕ1, ϕ2, . . . , ϕn is
denoted as {φ1/ϕ1, φ2/ϕ2, . . . , φn/ϕn}.

1.3 Semantics of Propositional Logic

In order to evaluate any Propositional Logic formula it is necessary to assign
a meaning to its symbols. In this way the interpretation of propositional vari-
ables is specified. Having defined the interpretation it is possible to decide
whether the statements are true or false. This process of establishing relation-
ship among symbols and their meaning is named assigning an interpretation
to propositional formulae. Assigning the truth value to a formula consists of
evaluating the truth value of its components and the whole formula at the end.

From mathematical point of view, in order to assign truth value to propo-
sitional symbols one has to define an appropriate mapping I. Let P be the set
of propositional symbols, and let {T,F} denote the set of truth values (true
and false, respectively).

Definition 3. An interpretation I is any function of the form

I : P −→ {T,F} . (1.1)

In case I(p) = T we shall say that p is true under interpretation I. This
can be also written as

|=I p ,
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which is read as ’p is satisfied under interpretation I’. On the other hand, if
I(p) = F we shall say that p is false under interpretation I. This can be also
written as


|=I p ,

which is read as ’p is false (unsatisfied) under interpretation I.
The definition of interpretation is extended over the set of all formulae

FOR in the following way.

Definition 4. Let I be an interpretation of propositional symbols in P . Let
FOR be the set of all formulae defined with symbols of P , and let φ, ψ and
ϕ be any formulae, φ, ψ, ϕ ∈ FOR. The truth value of formulae in FOR is
defined as follows:

• I(�) = T (|=I �),
• I(⊥) = F ( 
|=I ⊥),
• |=I ¬φ iff 
|=I φ,
• |=I ψ ∧ ϕ iff |=I ψ and |=I ϕ,
• |=I ψ ∨ ϕ iff |=I ψ or |=I ϕ,
• |=I ψ ⇒ ϕ iff |=I ϕ or 
|=I ψ,
• |=I ψ ⇔ ϕ iff |=I (ψ ⇒ ϕ) and |=I (ϕ ⇒ ψ).

According to the above rules any well-formed formula of FOR can be
assigned its truth value in a unique way, provided that initial interpretation
of propositional symbols is known. For practical purposes, the rules of the
above definition are usually presented in a readable tabular form.

The table defining negation is as follows

φ ¬φ

F T
T F

The table defining conjunction is as follows

φ ϕ φ ∧ ϕ

F F F
F T F
T F F
T T T

The table defining disjunction is as follows

φ ϕ φ ∨ ϕ

F F F
F T T
T F T
T T T
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The table defining implication is as follows

φ ϕ φ ⇒ ϕ

F F T
F T T
T F F
T T T

Finally, the table defining equivalence is as follows

φ ϕ φ ⇔ ϕ

F F T
F T F
T F F
T T T

Below some basic theoretical properties of well-formed formulae are given.

Definition 5. A formula φ ∈ FOR is consistent (satisfiable) iff there exists
an interpretation I under which the formula is satisfied, i.e.

|=I φ .

Definition 6. A formula φ ∈ FOR is falsifiable (invalid) iff there exists an
interpretation I under which the formula is false, i.e.


|=I φ .

Most of the formulae are both consistent and falsifiable; their truth value
depends on the specific interpretation. However, there are some formulae the
value of which is the same disregarding the interpretation.

Definition 7. A formula φ ∈ FOR is inconsistent (unsatisfiable) iff there
does not exist any interpretation I under which the formula is satisfied, i.e.


|=I φ

for any possible interpretation I. This will be denoted shortly as 
|= φ.

A typical example of an unsatisfiable formula is one of the form φ = ϕ∧¬ϕ.
No matter how complicated ϕ is, φ is always false.

Definition 8. A formula φ ∈ FOR is valid (is a tautology) iff for any inter-
pretation I the formula is satisfied; this is formally written as

|= φ .

A typical example of a tautology is a formula of the type φ = ϕ ∨ ¬ϕ. No
matter how complicated ϕ is, φ is always true.

The following lemma specifies some obvious observations following from
the definitions [16].
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Lemma 1. The well-formed formulae satisfy the following properties:

1. A formula is tautology iff its negation is unsatisfiable; a formula is unsat-
isfiable iff its negation is tautology.

2. If a satisfiable formula is true under a certain interpretation, then its
negation is false under the same interpretation; if a falsifiable formula is
false under a certain interpretation, then its negation is true under the
same interpretation.

3. Any tautology is consistent; any inconsistent formula is falsifiable.

Two logical formulae can be compared with respect to the interpretations
under which they are satisfied. Roughly speaking one of them may be more
general than the other which is more specific. A more general formula is
satisfied under any interpretation satisfying the more specific formula. A more
general formula is also said to logically follow from the less general one, while
the more specific formula logically entails the more general one.

Definition 9 (Logical consequence). Let φ, ϕ ∈ FOR are any formulae.
Formula ϕ logically follows from formula φ iff for any interpretation I satis-
fying φ, I also satisfies ϕ. This will be written shortly as

φ |= ϕ . (1.2)

If (1.2) holds, we shall also say that ϕ is a logical consequence of φ.
Two logical formulae can be different but simultaneously taking the same

logical value under any interpretation — such formulae will be said to be
logically equivalent.

Definition 10 (Logical equivalence). Formulae φ, ϕ ∈ FOR are logically
equivalent iff for any interpretation I there is:

|=I φ iff |=I ϕ . (1.3)

In this case we shall write φ |= ϕ and ϕ |= φ, or shortly, φ ≡ ϕ.

The semantics of certain formulae can be defined with use of a certain
basic set of logical connectives, e.g. negation and disjunction or negation and
conjunction. For convenience, usually negation, conjunction and disjunction
are used.

Below, some most common examples are presented:

• φ ⇒ ψ ≡ ¬φ ∨ ψ,
• φ ⇔ ψ ≡ (φ ⇒ ψ) ∧ (φ ⇐ ψ),
• φ|ψ ≡ ¬(φ∧ψ) — the so-called Sheffer function or NAND; another notation

is φ ∧ ψ,
• φ ↓ ψ ≡ ¬(φ∨ψ) — the so-called Pierce function or NOR; another notation

is φ ∨ ψ,
• φ ⊕ ψ ≡ (¬φ ∧ ψ) ∨ (φ ∧ ¬ψ) — exclusive-OR function or EX-OR,
• ¬φ ∨ ψ and φ ∨ ¬ψ — asymmetric difference functions.
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Generally, for n input propositional variables as many as 22n

different
functions specifying logical connectives can be defined; so, for n = 2 there
exist 16 different possibilities.

1.4 Rules for Transforming Propositional Formulae

Propositional formulae can be transformed from their initial form to another
one which is logically equivalent. It is important to specify the legal transfor-
mations, i.e. the ones preserving logical equivalence. Transformation to other
equivalent form is important for analysis and comparison of formulae.

The typical set of transformation rules is given below:

• ¬¬φ ≡ φ — double negation rule,
• φ ∧ ψ ≡ ψ ∧ φ — commutativity of conjunction,
• φ ∨ ψ ≡ ψ ∨ φ — commutativity of disjunction,
• (φ ∧ ϕ) ∧ ψ ≡ φ ∧ (ϕ ∧ ψ) — associativity of conjunction,
• (φ ∨ ϕ) ∨ ψ ≡ φ ∨ (ϕ ∨ ψ) — associativity of disjunction,
• (φ∨ϕ)∧ψ ≡ (φ∧ψ)∨ (ϕ∧ψ) — distributivity of conjunction with regard

to disjunction,
• (φ∧ϕ)∨ψ ≡ (φ∨ψ)∧ (ϕ∨ψ) — distributivity of disjunction with regard

to conjunction,
• φ ∧ φ ≡ φ — idempotency of conjunction,
• φ ∨ φ ≡ φ — idempotency of disjunction,
• φ ∧ ⊥ ≡ ⊥, φ ∧ � ≡ φ — identity laws for conjunction,
• φ ∨ ⊥ ≡ φ, φ ∨ � ≡ � — identity laws for disjunction,
• φ ∨ ¬φ ≡ � — excluded middle law,
• φ ∧ ¬φ ≡ ⊥ — inconsistency law,
• ¬(φ ∧ ψ) ≡ ¬(φ) ∨ ¬(ψ) — De Morgan’s law,
• ¬(φ ∨ ψ) ≡ ¬(φ) ∧ ¬(ψ) — De Morgan’s law,
• φ ⇒ ψ ≡ ¬ψ ⇒ ¬φ — contraposition law,
• φ ⇒ ψ ≡ ¬φ∨ψ — definition of implication with disjunction and negation

(elimination of implication).

1.5 Applications

The definition of interpretation as well as the transformation rules can be ap-
plied to verify some properties of formulae. There are the following main issues
which can be checked either with use of examining possible interpretations or
with use of successive formula transformation:

• tautology verification — checking if a formula is tautology,
• unsatisfiability verification — checking if a formula is unsatisfiable,
• logical equivalence verification — checking if two formulae are logically

equivalent,
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• logical consequence verification — checking if a formula logically follows
from another formula,

• satisfiability verification — checking if a formula is satisfiable.

Basically, there are two different approaches to the problems presented
above. The first approach is based on examining all possible interpretations; in
certain situations some interpretations can be omitted. In the other approach
the check is performed by applying the transformation rules. Below a simple
example of the two approaches is shown.

Example. Consider the following formula

φ = ((p ⇒ r) ∧ (q ⇒ r)) ⇔ ((p ∨ q) ⇒ r) .

The problem is to check if the formula is tautology. Let us apply the first
approach based on checking of all (23) possible interpretations.

For simplicity we change slightly the notation: instead of T we shall write
1 and instead of F we shall write 0. The process of checking all interpretations
can be presented in a transparent way in the following tabular form, the so-
called logical matrix of the formula (Table 1.1).

Table 1.1. Logical matrix for formula φ = ((p ⇒ r) ∧ (q ⇒ r)) ⇔ ((p ∨ q) ⇒ r)

p q r p ⇒ r q ⇒ r (p ⇒ r) ∧ (q ⇒ r) (p ∨ q) ⇒ r φ

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 0 0 0 1
0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1
1 1 0 0 0 0 0 1
1 1 1 1 1 1 1 1

The three leftmost columns specify all the eight possible different inter-
pretations (since there are three input propositional variables, there are as
many as 23 = 8 different interpretations). For any interpretation we have to
evaluate the components of the formula using the rules of Definition 4 and the
following tables. Finally we evaluate φ (the last column). Since disregarding
the interpretation the logical value of φ always equals true, the formula is
tautology.

Note that in an analogous way logical equivalence of formulae can be ver-
ified; in fact, formulae specifying columns 6 and 7 are checked to be logically
equivalent (for distinguishing them from the other previous columns, they are
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put in boldface). The same applies to verifying logical consequence, unsatisfi-
ability, etc.

Now let us apply the second method based on logical transformation rules.
For simplicity we shall keep the ⇔ connective and transform the components
on the left and on the right hand side. By elimination of implication the initial
formula can be transformed into the following form

φ ≡ ((¬p ∨ r) ∧ (¬q ∨ r)) ⇔ (¬(p ∨ q) ∨ r) .

enddocumentNow, after applying the rule of distributivity to the left hand
side we have

φ ≡ ((¬p ∧ ¬q) ∨ r) ⇔ (¬(p ∨ q) ∨ r).

Further, by applying the De Morgan’s law we obtain

φ ≡ (¬(p ∨ q) ∨ r) ⇔ (¬(p ∨ q) ∨ r).

Let us put ψ = (¬(p ∨ q) ∨ r); thus the analyzed formula takes the form

φ ≡ ψ ⇔ ψ,

which obviously is tautology.

1.6 Normal Forms and Special Forms of Formulae

In this section we recall some important definitions of specific forms of well-
formed formulae.

Definition 11. A literal is any propositional formula p or its negation ¬p.

Literals are the basic components of any formula that is more complex.
Two literals, say p and ¬p form the so-called complementary pair of literals.
A literal without negation will be called positive. A literal containing negation
will be called negative.

1.6.1 Minterms: Simple Conjunctive Formulae

An important concept is the one of a minterm [37]; in other words a simple
conjunctive formula, or a simple formula, for short [53]. Such formulae may
be used to define a state of a dynamic system or preconditions of a large class
of rules.

Definition 12. Let q1, q2, . . . , qn be some distinct literals. Any formula of the
form

φ = q1 ∧ q2 ∧ . . . ∧ qn (1.4)

will be called a minterm or a simple formula.
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The state (of a certain system) defined with the use of a simple formula
is defined in a unique way — there is no use of disjunction and neither of
any conditional statements. All the literals — either positive or negative —
express certain properties which are either true or false.

There are also two further observations about satisfiability of simple for-
mulae in propositional logic.

Lemma 2. A minterm (simple conjunctive propositional formula) φ is satis-
fiable iff it does not contain a pair of complementary literals.

Lemma 3. A minterm (simple conjunctive propositional formula) φ is unsat-
isfiable iff it contains at least one pair of complementary literals.

Note, that the use and therefore occurrence of negation sign in formulae
is to certain degree a matter of taste and, again to certain degree, can be
modified with regard to the current area of application and user’s preferences.
First, for simplifying the notation and obtaining nice theoretical properties
of a certain system one can often avoid the use of the negation symbol (¬)
in an explicit way or maybe only positive literals are taken into account1.
Whenever some kind of negation becomes necessary, implicit, material nega-
tion can be used. Instead of writing ¬high water level one can rather write
low water level, instead of ¬switch on one can put switch off, etc., i.e.
the negation can be often expressed implicitly.

More generally, in place of ¬p one can always put a new atom, say np,
which is logically equivalent to the negation of p with regard to the as-
sumed interpretation. However, note that such an approach may lead to cer-
tain problems concerning automated reasoning, if no auxiliary rules (defin-
ing all the interdependencies among facts) are defined. For example, no
purely logical inference engine will be capable of stating that a formula like
switch on ∧ switch off is always false2 — in such a case an auxiliary rea-
soning rule like, for example, switch on ⇒ ¬switch off should be provided
so as to assure the detection of inconsistency.

To summarize, any two complementary literals p and ¬p satisfy the fol-
lowing properties:

|= p ∨ ¬p

and

|= p ∧ ¬p .

The above properties are recognized at the syntactic level of analysis.
Two literals, say p and q can also be complementary only under specific,

assumed interpretation I. In such a case I(p) = T and I(q) = F or I(p) = F
and I(q) = T. This can be denoted as:

1 There are many examples of useful systems without explicit negation; the best-
known ones are logical AND/OR trees and the Assumption Based Truth Main-
tenance System (ATMS) of DeKleer [28].

2 It is false under any admissible interpretation.
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|=I p ∨ q

and

|=I p ∧ q .

The above properties are recognized only at the semantic level of analysis.
A minterm (simple formula) can be considered as a set of its literals.

Note that it may be convenient to apply the set notation directly to simple
formulae. Let for example φ and ψ be two simple formulae, φ = p1 ∧ p2 ∧
. . . pk, ψ = q1 ∧ q2 ∧ . . . ql, where both pi and qj are literals (either positive
or negative ones), i = 1, 2, . . . , k, j = 1, 2, . . . , l. Then we shall also write
[φ] = {p1, p2, . . . , pk} and [ψ] = {q1, q2, . . . , ql}, and, for example [φ] ∪ [ψ] =
{p1, p2, . . . , pk} ∪ {q1, q2, . . . , ql}.

Two minterms can be compared to each other — a minterm composed
of more literals than the other is more specific, while the one containing less
literals is more general ; a more general minterm is satisfied by a larger number
of possible interpretations. Consider two satisfiable minterms φ and ψ.

Definition 13. A minterm φ subsumes (or is more general than) minterm ψ
iff [φ] ⊆ [ψ].

Obviously, a more general minterm φ is a logical consequence of the more
specific one ψ. We have the following lemma.

Lemma 4. Let φ and ψ be two minterms. There is:

ψ |= φ iff [φ] ⊆ [ψ] . (1.5)

Obviously, logical consequence and subsumption are partial order relations.

1.6.2 Maxterms, Clauses and Rules

A clause is a disjunction of literals. Clauses are used in resolution theorem
proving [16, 39]. In propositional calculus a clause is also termed a maxterm
[37].

Definition 14. Let q1, q2, . . . , qn be some literals. Any formula of the form

ψ = q1 ∨ q2 ∨ . . . ∨ qn (1.6)

will be called a clause or a maxterm.

As in the case of simple formulae, there are also two further observations
about satisfiability of clauses in propositional logic.

Lemma 5. A clause (maxterm) ψ is falsifiable iff it does not contain a pair
of complementary literals.



14 1 Propositional Logic

Lemma 6. A clause (maxterm) ψ is tautology iff it contains at least one pair
of complementary literals.

Any clause ψ containing at least one positive literal can be transformed
into form of a rule (using the symbol of implication). Assume we are given
the following clause

ψ = ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk ∨ h1 ∨ h2 ∨ . . . ∨ hm (1.7)

where ¬p1,¬p2, . . . ,¬pk are all the negative literals of ψ. After applying De
Morgan’s law to the negative literals we obtain

¬(p1 ∧ p2 ∧ . . . ∧ pk) ∨ (h1 ∨ h2 ∨ . . . ∨ hm)

which can be further transformed to equivalent rule form as follows

p1 ∧ p2 ∧ . . . ∧ pk ⇒ h1 ∨ h2 ∨ . . . ∨ hm . (1.8)

Formula (1.8) constitutes the rule form equivalent to clause (1.7).
In logic, and especially in logic programming, a very important role is

played by somewhat restricted form of clauses, i.e. the Horn clauses.

Definition 15. Let p1, p2, . . . , pk be some positive literals and let h be any
literal (either positive or negative). Any formula of the form

ψ = ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pk ∨ h (1.9)

will be called a Horn clause.

A Horn clause is one containing at most one positive literal. According
to the above scheme, any Horn clause containing positive literal h can be
transformed into rule form, i.e.

p1 ∧ p2 ∧ . . . ∧ pk ⇒ h . (1.10)

Formula (1.10) constitutes the rule form equivalent to clause (1.9). Such rules
constitute an important form for knowledge representation — they constitute
the core of logic programming and rule-based systems.

Any clause can be considered as a set of its literals. Then it may be conve-
nient to apply the set notation directly to its elements. Let for example ψ be
a clause, ψ = p1∨p2∨ . . . pk, where pi are literals (either positive or negative),
i = 1, 2, . . . , k. In order to denote the set of literals of a clause we shall write
[ψ] = {p1, p2, . . . , pk}.

Two clauses can be compared to each other — a clause composed of more
literals than the other is more general, while the one containing less literals is
more specific; a more general clause is satisfied by a larger number of possible
interpretations. Consider two falsifiable clauses φ and ψ.
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Definition 16. A clause ψ subsumes (or is more specific than) clause ϕ iff
[ψ] ⊆ [ϕ].

Obviously, a more general clause ϕ is a logical consequence of the more
specific one ψ. We have the following lemma.

Lemma 7. Let ψ and ϕ be two clauses. There is:

ψ |= ϕ iff [ψ] ⊆ [ϕ] . (1.11)

Obviously, both logical consequence and subsumption are partial order rela-
tions.

1.6.3 Conjunctive Normal Form

Conjunctive Normal Form (CNF) is a form having the structure of a con-
junction of clauses. It is very regular and thus transparent. It may be used in
automated theorem proving with resolution.

Definition 17 (CNF). A formula Ψ is in Conjunctive Normal Form (CNF)
if it can be presented as

Ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn (1.12)

where ψ1, ψ2, . . . , ψn denote any clauses.

Thus in fact any formula in CNF constitutes a two-level structure: at the
first level one has a set of some clauses while at the second level the clauses
are connected with conjunction.

Any formula in CNF can be considered as a set of its clauses. Then it
may be convenient to apply the set notation directly to its elements. Let for
example Ψ be a formula in CNF, Ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn. In order to denote
the set of clauses we shall write [Ψ ] = {ψ1, ψ2, . . . , ψn}.

Basing on the structure of CNF the following simple observation can be
put forward. Since the formula is a conjunction of clauses, in order to demon-
strate its unsatisfiability it is enough to find a subset of these clauses which
is unsatisfiable. Thus, roughly speaking, when attempting at proving unsatis-
fiability of a formula it seems reasonable to transform it into an appropriate
CNF. In an extreme case it may contain a conjunction of complementary
literals, which would make the proof straightforward.

As may be observed, for a particular formula there may exist many dif-
ferent CNF which are equivalent. In fact, the CNF for an arbitrary formula
is not defined in a unique way. However, it is possible to choose one specific
form which is unique; it is the CNF composed of maximal clauses, i.e. ones
composed of all the propositional symbols occurring in the initial formula.
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Definition 18. Let Ψ denote a well-formed propositional formula of arbitrary
structure and let PΨ denote the set of all propositional symbols the formula
is built with. A maximal clause ψ is one composed of all the symbols of PΨ

(either negated or positive). A maximal CNF of Ψ is the formula defined as

maxCNF(Ψ) = ψ1 ∧ ψ2 ∧ . . . ∧ ψn (1.13)

where all the clauses ψ1, ψ2, . . . , ψn are maximal.

The maximal CNF form is also known as full conjunctive normal form or
conjunctive canonical form.

Maximal CNF of a formula can be obtained through transformation of the
initial formula to CNF; then, any clause ψ which is not a maximal one, i.e.
it lacks some propositional variable q, should be extended according to the
following scheme

ψ −→ ψ ∨ (q ∧ ¬q) −→ (ψ ∨ q) ∧ (ψ ∨ ¬q) .

In this way any clause can be extended to contain any missing propositional
symbol.

For technical applications it is useful to describe also minimal form of
a formula in CNF; such minimal forms are usually the base for technical
implementations.

Definition 19. A formula

Ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn

is in minimal CNF form iff there does not exist a logically equivalent formula
in CNF composed of m minterms where m < n.

It can be noticed that in general case the minimal CNF of a formula is
not defined in a unique way. The problem of minimal CNF and formulae
minimization is important for technical applications, since the number of el-
ements necessary to implement an appropriate circuit is maximally reduced.
Some methods of finding minimal forms with the so-called Karnaugh tables
are presented in [115].

1.6.4 Disjunctive Normal Form

Disjunctive Normal Form (DNF) is a form having the structure of a disjunc-
tion of simple formulae. It is also very regular and thus transparent. It may
be used in automated theorem proving with dual resolution [53,54,55,56], in
analysis of rule-based systems [57, 60] and for modeling states of dynamical
systems [53,57].
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Definition 20 (DNF). A formula Φ is in Disjunctive Normal Form (DNF)
if it can be presented as

Φ = φ1 ∨ φ2 ∨ . . . ∨ φn (1.14)

where φ1, φ2, . . . , φn denote any minterms (simple formulae).

Thus in fact any formula in DNF constitutes a two-level structure: at the
first level one has a set of some simple conjunctive formulae while at the
second level these formulae are connected with disjunction.

Any formula in DNF can be considered as a set of its minterms. Then it
may be convenient to apply the set notation directly to its elements. Let for
example Φ be a formula in DNF, Φ = φ1 ∨ φ2 ∨ . . . ∨ φn. In order to denote
the set of all the minterms of Φ we shall write [Φ] = {φ1, φ2, . . . , φn}.

Basing on the structure of DNF the following simple observation can be
put forward. Since the formula is a disjunction of conjunctive formulae, in
order to demonstrate its satisfiability it is enough to find a single minterm
component which is satisfiable. Further, in order to show that the formula is
tautology it is enough to find a subset of its minterm components which form
tautology. Thus, roughly speaking, when attempting to prove the validity of
a formula it seems reasonable to transform it into an appropriate DNF. In an
extreme case it may contain a disjunction of complementary literals, which
would make the proof straightforward.

As may be observed, for a particular formula there may exist many differ-
ent DNF equivalents. In fact, the DNF for an arbitrary formula is not defined
in a unique way. However, it is possible to choose the one specific form which
is unique; it is the DNF composed of maximal minterms, i.e. ones composed
of all the propositional symbols occurring in the initial formula.

Definition 21. Let Φ denote a well-formed propositional formula of arbitrary
structure and let PΦ denote the set of all propositional symbols the formula is
build with. A maximal minterm φ is one composed of all the symbols of PΦ

(either negated or positive). A maximal DNF of Ψ is the formula defined as

maxDNF(Ψ) = ψ1 ∨ ψ2 ∨ . . . ∨ ψn (1.15)

where all the minterms ψ1, ψ2, . . . , ψn are maximal.

The maximal DNF form is also known as full disjunctive normal form or
disjunctive canonical form.

Maximal DNF of a formula can be obtained through transformation of the
initial formula to DNF; then, any minterm ψ which is not a maximal one, i.e.
it lacks some propositional variable q, should be extended according to the
following scheme

ψ −→ ψ ∧ (q ∨ ¬q) −→ ψ ∧ q ∨ ψ ∧ ¬q .
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In this way any minterm can be extended to contain any missing proposi-
tional symbol.

For technical applications it is useful to describe also minimal form of
a formula in DNF; such minimal forms are usually the base for technical
implementations.

Definition 22. A formula

Φ = φ1 ∨ φ2 ∨ . . . ∨ φn

is in minimal DNF form iff there does not exist a logically equivalent formula
in DNF composed of m minterms where m < n.

It can be noticed that in general case the minimal DNF of a formula is
not defined in a unique way. The problem of minimal DNF and formulae
minimization will be discussed with respect to rule-based systems reduction.
We shall return to finding minimal forms of rule-based systems through gluing
rules in chapter 15 after introducing the so-called dual resolution method.

1.6.5 Transformation of a Formula into CNF/DNF

Any well-formed formula can be transformed into a logically equivalent CNF
or DNF. This is achieved by subsequent application of transformation rules
given in Sect. 1.4.

In order to transform any formula into an equivalent CNF or DNF the
following steps should be carried out:

1. Φ ⇔ Ψ ≡ (Φ ⇒ Ψ) ∧ (Ψ ⇒ Φ) — elimination of equivalence symbols,
2. Φ ⇒ Ψ ≡ ¬Φ ∨ Ψ — elimination of implications,
3. ¬(¬Φ) ≡ Φ — elimination of nested negations,
4. ¬(Φ ∨ Ψ) ≡ ¬Φ ∧ ¬Ψ — application of De Morgan’s law to move the

negation sign directly to propositional symbols,
5. ¬(Φ ∧ Ψ) ≡ ¬Φ ∨ ¬Ψ — application of De Morgan’s law to move the

negation sign directly to propositional symbols,
6. Φ ∨ (Ψ ∧ Υ ) ≡ (Φ ∨ Ψ) ∧ (Φ ∨ Υ ) — application of distributivity law for

transforming to CNF,
7. Φ ∧ (Ψ ∨ Υ ) ≡ (Φ ∧ Ψ) ∨ (Φ ∧ Υ ) — application of distributivity law for

transforming to DNF.

Example. The following formula will be transformed to DNF.

(p ∧ (p ⇒ q)) ⇒ q = ¬(p ∧ (p ⇒ q)) ⇒ q = ¬(p ∧ ¬(p ∨ q)) ∨ q

= (¬p ∨ ¬(¬p ∨ q)) ∨ q = (¬p ∨ p ∧ ¬q) ∨ q

= (¬p ∧ q ∨ ¬p ∧ ¬q ∨ p ∧ ¬q ∨ q ∧ p ∨ q ∧ ¬p)
= ¬p ∧ (q ∨ ¬q) ∨ p ∧ (q ∨ ¬q) = ¬p ∨ p = � .

The formula is tautology; the obtained DNF is �.
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1.6.6 Example

In this section let us consider a simple but complete example of formula analy-
sis; the initial version of the problem and its analysis comes from [115], al-
though we carry out a more complete analysis here. For given two formulae
we shall analyze the possibility of checking if one of them is the logical conse-
quence of the other. We shall apply the tabular method based on checking of
all possible interpretations and transformation to DNF, maximal DNF, and
minimal DNF.

Consider the following two formulae:

φ = (p ⇒ q) ∧ (r ⇒ s)

and
ϕ = (p ∨ r) ⇒ (q ∨ s) .

The basic task is to check whether

φ |= ϕ. (1.16)

Since there are as many as 4 propositional symbols, there exist 16 possible
interpretations. Let us examine the first approach based on extensive checking
of all the interpretations. We obtain the matrix given by (Table 1.2).

After short analysis of the columns representing φ and ϕ it is obvious that
in fact φ |= ϕ.

Table 1.2. Logical matrix for checking if φ |= ϕ, where φ = (p ⇒ q) ∧ (r ⇒ s) and
ϕ = (p ∨ r) ⇒ (q ∨ s)

p q r s p ⇒ q r ⇒ s φ p ∨ r q ∨ s ϕ

0 0 0 0 1 1 1 0 0 1
0 0 0 1 1 1 1 0 1 1
0 0 1 0 1 0 0 1 0 0
0 0 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 0 1 1
0 1 0 1 1 1 1 0 1 1
0 1 1 0 1 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 1 0 0
1 0 0 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1
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Now, let us transform φ to DNF; we obtain:

φ = (p ⇒ q) ∧ (r ⇒ s) = (¬p ∨ q) ∧ (¬r ∨ s)
= (¬p ∧ ¬r) ∨ (¬p ∧ s) ∨ (q ∧ ¬r) ∨ (q ∧ s) .

In this way we have obtained a DNF for φ. One can check that it is also
the minimal form of DNF for φ. The maximal form is given by:

maxDNF(φ) = (¬p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ s) ∨ (¬p ∧ ¬q ∧ r ∧ s)∨
(¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ ¬r ∧ s) ∨ (¬p ∧ q ∧ r ∧ s)∨
(p ∧ q ∧ ¬r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s) ∨ (p ∧ q ∧ r ∧ s) .

Now, let us transform ϕ to DNF; we obtain:

φ = (p ∨ r) ⇒ (q ∨ s) = ¬(p ∨ r) ∨ q ∨ s = (¬p ∧ ¬r) ∨ q ∨ s

= (¬p ∧ ¬r) ∨ q ∨ s .

In this way we have obtained a DNF for ϕ. One can check that it is also the
minimal form of DNF for ϕ. The maximal form is given by:

maxDNF(φ) = (¬p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ s) ∨ (¬p ∧ ¬q ∧ r ∧ s)∨
(¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ ¬r ∧ s) ∨ (¬p ∧ q ∧ r ∧ s)∨
(¬p ∧ q ∧ r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s)∨
(p ∧ q ∧ r ∧ s) ∨ (p ∧ q ∧ r ∧ ¬s) ∨ (p ∧ ¬q ∧ ¬r ∧ s)∨
(p ∧ ¬q ∧ r ∧ s) .

As it can be observed, due to uniqueness of the maximal DNF for any formula,
checking for logical entailment of these forms is straightforward. The necessary
and sufficient condition is that

[maxDNF(φ)] ⊆ [maxDNF(ϕ)] ,

i.e. all the maximal minterms of the more general formula must occur also in
the less general one.

This result suggests a simple method for checking if logical entailment
holds; unfortunately, this kind of check is computationally costly. In case of
more complex formulae the maximal DNF may appear to be very large. In
further sections a more efficient approach will be put forward.

1.7 Logical Consequence and Deduction

Let us recall the notion of logical consequence formally specified in Definition 9.
Formula ϕ is a logical consequence of formula φ iff ϕ is satisfied under any
interpretation satisfying φ (φ |= ϕ).
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Note that the relation of logical consequence is a partial order relation,
i.e. it is reflexive, antisymmetric and transitive [53]. The relation of logical
equivalence is an equivalence relation [53].

The concept of logical consequence is of primary importance in the whole
logic. One may say, that one of the main issues of interest in logic are methods
and rules for analysis of the relationship of logical consequence.

The most typical situation is as follows. There is specified certain knowl-
edge about a system under consideration, formalized as a set of assumptions
and observations, to be denoted by ∆. There is also some statement of inter-
est H, i.e. a hypothesis formalizing some further knowledge about the world.
The main problem of interest is to check if

∆ |= H , (1.17)

i.e. to check if the hypothesis logically follows from the accepted knowledge.
The process of showing that H is a valid consequence of ∆ is called theorem
proving .

There are two different approaches to theorem proving originating from
separate ideas. The first one is based on direct checking of all the possible
interpretations. In fact, it is enough to check only those under which ∆ is
true; for any such interpretation H must be true as well, so as to be a logical
consequence of the assumptions. We have shown an example application of
this approach in the first part of Sect. 1.6.6.

In the second approach the check is accomplished by applying some formal
rules (productions) to derive some or all of the formulae which are logical
consequences of ∆. A crucial issue here is that any derivation rule applied
must be sound, i.e. it must produce a formula being logical consequence of its
predecessor formulae.

Both of the approaches are potentially applicable, and both suffer from
combinatorial explosion. One can estimate that, in case of direct checking
of possible interpretations, in case of n propositional variables, there are as
many as 2n potential interpretations. This means that practical use of the
first approach is limited to formulae of some reasonably small dimension.

In case of the other approach, the combinatorial explosion occurs since
there are (i) many inference rules and, further, (ii) they can be applied in many
different ways each, what leads to producing many new formulae at every stage
of inference. The graph representing schematically the course of inference
is usually characterized by rapidly exploding number of nodes representing
newly generated formulae.

Finally, the check for logical entailment specified by formula (1.17) can be
rendered to the problem of proving that certain formula is valid (or inconsis-
tent). This is so thanks to the Deduction Theorems [16].

Theorem 1 (Deduction I). Formula H is a logical consequence of ∆ iff
formula ∆ ⇒ H is tautology; this is written shortly as:

∆ |= H iff |= (∆ ⇒ H) . (1.18)
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Theorem 2 (Deduction II). Formula H is a logical consequence of ∆ iff
formula ∆ ∧ ¬H is unsatisfiable; this is written shortly as:

∆ |= H iff 
|= (∆ ∧ ¬H) . (1.19)

The latter of the above theorems is frequently used in automated theorem
proving, especially ones based on the Resolution method.

1.8 Inference Modes: Deduction, Abduction
and Induction

In this section we refer to reasoning, logical inference, and especially various
modes of reasoning and inference rules.

There are a number of modes of reasoning; people apply perhaps more than
twenty somewhat different modes. Some of the modes are ‘logically correct’,
some are plausible or heuristic, some are more akin to guesswork; the reasoning
can be precise or vague, probabilistic, fuzzy, rough, uncertain, etc.

Some best known, named reasoning modes include the following:

• Generalization — reasoning from details to general statements.
• Specialization — reasoning from general statements to details.
• Classification — through pattern matching, similarity or distance analysis,

etc.
• Classical logical inference:

– deduction,
– abduction,
– induction.

• Consistency-based reasoning.
• Reasoning through analogy, case-based reasoning.
• Non-monotonic reasoning.
• Probabilistic reasoning.
• Heuristic reasoning, plausible reasoning.
• Imprecise reasoning, fuzzy reasoning, rough reasoning.
• Parametric reasoning, application of specialized numerical procedures

(Neural Networks, optimization, adaptation, etc.).
• Reasoning through narrowing.
• Reasoning through excluding.
• Application of search algorithms.

In logic the purely logical reasoning paradigms are in point of interest;
these are: deduction, abduction, and induction. The most important, and
perhaps the best known is deduction, as it is studied in practically all logic
handbooks and lectured on every course on logic [36,39,125].

Reasoning becomes ‘inference’ if it is performed according to a specific
scheme. Note that the term ‘inference’ or more precisely ‘logical inference’
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is quite a wide one. Inference is performed by generating new statements or
formulae from a certain initial set of assumptions and with the use of specific
set of inference rules. Inference rules define various schemes of production of
new formulae from ones assumed to form initial knowledge base or ones that
have been derived earlier.

The generic scheme for any inference (logical inference, if logical reason-
ing rules are applied) is as follows. There is a set of initial knowledge items
(formulae), say ∆, and a set of inference rules R. Every rule r ∈ R consists
of two parts: the premise or precondition α and the conclusion or thesis β.
Both the premise and the conclusion can be composed of a number of items,
i.e. α = {α1, α2, . . . , αm} and β = {β1, β2, . . . , βn}. A rule like that is usually
denoted as:

α −→ β,

i.e.
α1, α2, . . . , αm −→ β1, β2, . . . , βn

or in the vertical form as
α1, α2, . . . , αm

β1, β2, . . . , βn
.

Let Σ denote the current set describing the generated knowledge; in the be-
ginning one puts Σ = ∆. A single step of inference consists of:

• selecting a rule r ∈ R,
• checking if the rule is applicable to Σ,
• if so, generating the new knowledge Σ′.

A rule is applicable if its conditions are satisfied; a basic check may be
accomplished by verifying if α1, α2, . . . , αm ∈ Σ although in more complex
logics proof procedures may be required3. If so, the rule is applicable and new
knowledge is generated as Σ′ = Σ ∪ {β1, β2, . . . , βn}.

In case there exists a sequence of rules, such that after successive appli-
cation to ∆ some Σ was obtained, we say that Σ is derived from ∆; this is
written shortly as

∆ � Σ,

or ∆ �R Σ in case it is intended to underline that Σ was derived with a
specific set of rules. The process is called derivation (logical derivation).

1.8.1 Deduction Rules for Propositional Logic

Deduction [37, 39, 115, 125] is the best known method of logical inference.
Roughly speaking, deduction is performed by generation of new valid state-
ments from some initial statements known to be valid with use of valid in-
ference rules. The basic property of deduction is that from valid knowledge

3 Some more advanced checks may require substituting for variables based on uni-
fication or resolution theorem proving.
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only valid statements are obtained. Thus, the wide range of applications of
deduction contains tasks such as as theorem proving, hypotheses verification,
knowledge generation, question answering systems, deductive databases, etc.

As an example of a deductive rule consider the well-known modus ponens
scheme

α, α ⇒ β

β
,

where α and β are arbitrary formulae. This inference rule seems to be intu-
itively obvious, constitutes the most popular deductive inference paradigm.
Obviously, it is sound, but unfortunately incomplete — not all true state-
ments can be generated from the assumed set of axioms. To see that, consider
another sound inference paradigm, known as transition rule

α ⇒ β, β ⇒ γ

α ⇒ γ
.

Obviously, this inference paradigm is also valid, however, the final conclu-
sion cannot be obtained with the previous rule.

The general scheme of deductive inference can be codified as follows

A1, A2, . . . , Am, R

B1, B2, . . . , Bn
,

where A1, A2, . . . , Am are prerequisites, axioms, earlier generated facts or for-
mulae known to be valid, R is a set of inference rules, and B1, B2, . . . , Bn are
conclusions, such that

A1, A2, . . . , Am, R |= B1, B2, . . . , Bn .

What is important and characteristic for deduction rules and derivation
based on deduction is that whenever

∆ � Σ

then there is also
∆ |= Σ .

In other words, deduction is a valid inference procedure — from correct as-
sumptions only correct conclusions are derived.

A number of deduction rules are specified in literature. In automated the-
orem proving and AI the method of resolution [16, 39] or [37] gained a lot
of attention, for being based on a single and powerful rule, relatively easy to
implement.

Some of the most important deduction rules are the following:

• α

α ∨ β
— disjunction introduction,

• α, β

α ∧ β
— conjunction introduction,
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• α ∧ β

α
— conjunction deletion,

• α, α ⇒ β

β
— modus ponens (modus ponendo ponens),

• α ⇒ β, ¬β

¬α
— modus tollens (modus tollendo tollens),

• α ∨ β, ¬α

β
— modus tollendo ponens,

• α
⊕

β, α

¬β
— modus ponendo tollens,

• α ⇒ β, β ⇒ γ

α ⇒ γ
— transitivity rule,

• α ∨ γ, ¬γ ∨ β

α ∨ β
— resolution rule,

• α ∧ γ, ¬γ ∧ β

α ∧ β
— (backward) dual resolution (works backwards),

• α ⇒ β, γ ⇒ δ

(α ∨ γ) ⇒ (β ∨ γ)
— constructive dilemma law,

• α ⇒ β, γ ⇒ δ

(α ∧ γ) ⇒ (β ∧ δ)
— constructive dilemma law.

There are many other deduction rules, however, for the rest of the material
two rules are important. These are resolution and dual resolution. Both the
rules provide powerful inference paradigms.

1.8.2 Resolution Rule

Resolution rule constitutes a single and powerful inference rule of conceptually
simple scheme. It is very attractive, especially for automated theorem proving.
Below we explain a single step in resolution theorem proving, i.e. the resolution
rule and its application.

Let there be given two propositional clauses, C1 = φ∨q and C2 = ϕ∨¬q. It
is important that there is a pair of complementary literals q and ¬q, occurring
in the clauses. The resolution rule (or resolution principle) allows to generate
a new clause C = φ∨ϕ being a logical consequence of the parent clauses; the
complementary literals are removed.

Definition 23. Let C1 = φ∨q and C2 = ϕ∨¬q be two arbitrary clauses. The
Resolution Rule is an inference rule of the form

φ ∨ q, ϕ ∨ ¬q

φ ∨ ϕ
. (1.20)
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Obviously, the produced formula is a logical consequence of the parent for-
mulae. Further, note that at the level of propositional language the resolution
rule is equivalent to the rule expressing transitivity. In order to see that let
us transform the clauses to the following equivalent forms, i.e. C1 = ¬φ ⇒ q
and C2 = q ⇒ ϕ. Now, the resolution rule takes the form

¬φ ⇒ q, q ⇒ ϕ

¬φ ⇒ ϕ
.

The resulting formula can be further transformed so we have ¬φ ⇒ ϕ ≡ φ∨ϕ.
Resolution theorem proving consists of repeated steps of appropriate ap-

plication of the resolution rule. As it was mentioned, the method is especially
convenient for automated theorem proving. It has gained a great popularity
during the last thirty years. The resolution method ( [16, 36, 37, 39], for pre-
cise, logical treatment see as well [144]) combines in a single rule the power
of other rules, and due to its uniformity, can be easily implemented for auto-
mated theorem proving with computers.

Let us briefly recapitulate some essence of the resolution method. As pre-
sented in [16, 39], the idea of resolution theorem proving lies in refutation
of the negated formula to be proved. Without going into the very details,
resolution theorem proving proceeds as follows.

Let ∆ denote a set of given axioms (from logical point of view, a conjunc-
tion of them), and let H be a formula (e.g. a hypothesis) to be proved. Thus,
according to the Deduction Theorem (1) one is to prove that

∆ ⇒ H (1.21)

is a valid formula. In classical resolution method, instead of proving (1.21),
one takes the negation of it, i.e.

∆ ∧ ¬H (1.22)

and tries to show that (1.22) is unsatisfiable; this approach is based on the
Deduction Theorem (2). Then, (1.22) is transformed into CNF, i.e. to a set
(conjunction) of clauses (disjunctions of literals). Now, in order to show that
a set of clauses is unsatisfiable, one attempts to derive an empty clause ⊥
(here: always unsatisfiable) from it. The derivation is carried out with the
use of resolution rule, which preserves logical consequence. Thus, any newly
derived clause is a logical consequence of its parent clauses. If an empty for-
mula is eventually derived, the unsatisfiability of the initial set of clauses is
proved.

A great advantage of the classical resolution method lies in leaving the set
of axioms ∆ almost unchanged. In most of practical cases there is a set (con-
junction) of separate axioms, and each of them can be converted into clausal
form independently from the other. This approach saves computational ef-
fort and fits well into most of classical problems in a naturally efficient way.
Together with simplicity of the resolution rule, this constitutes probably the
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reason for the tremendous success and popularity of resolution theorem prov-
ing. However, from theoretical point of view, one can also try to prove validity
of (1.21) directly. Below, we present the basic idea for such an approach using
the idea of bd-resolution.

1.8.3 Dual Resolution Rule

Dual Resolution Method is a method of automated theorem proving analogous
to classical resolution; however, instead of starting from CNF and showing its
unsatisfiability, dual resolution starts with DNF and attempts at demonstrat-
ing that this formula is valid. The method is especially convenient for proving
generalization and completeness rather than automated theorem proving in
general; moreover, theorem proving as such is not a matter of primary inter-
est and importance in this work. However, it may be worthwhile to further
analyze the possibility of applying the method for general theorem proving,
since such a discussion seems to be ignored in literature4.

Since the method can be regarded as analogical (dual) to the classical
resolution method, the presentation refers to resolution theorem proving as a
kind of a ‘reference point’. A basic comparative analysis of these two methods
will be carried out as well.

The bd-resolution presented in this work is analogous to resolution method.
The main difference is that instead of checking unsatisfiability of a set of
clauses we rather try to prove validity of the given initial formula transformed
into disjunctive normal form. Thus, the initial form is in fact dual to the one
used in resolution method.

Further, the proposed method works in fact backwards. This means that
during the process of derivation one generates new formulae from parent for-
mulae starting from the initial formula to be proved — but with regard to
logical inference, it is the disjunction of parent formulae which is a logical
consequence of the derived formula! In other words, during generation of the
proof, one is to search for premises from which the formula to be proved fol-
lows. Therefore, at any step of reasoning the derivation process is reversed with
regard to finding logical consequences. The process of derivation is successful if
it eventually ends up with an empty formula �, which (here) is always true —
in this case, the initial formula, as a logical consequence of it, is proved.

As resolution rule, its dual version constitutes a single and powerful in-
ference rule of conceptually simple scheme. It is as simple as resolution, but
the preferable area of applications is different5. Below we explain a single
4 A short note on the consolution method, which in fact is logically equivalent to

dual resolution, is given in [8]; some discussion is given also in [7], however, it
does not explain why dual resolution is not used. A more detailed discussion of
possibility of application of dual resolution method to theorem proving is given
in [53].

5 In [7] one can find a short discussion why resolution is based on refutation and not
on affirmative theorem proving; one of the conclusions is that it is more convenient
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step of dual resolution theorem proving, i.e. the dual resolution rule and its
application.

Let there be given two propositional minterms, M1 = φ ∧ q and M2 =
ϕ∧¬q. It is important that there is a pair of complementary literals q and ¬q,
occurring in the minterms. The dual resolution rule (or dual resolution prin-
ciple) allows to generate a new minterm M = φ∧ϕ such that the disjunction
of the parent clauses is a logical consequence of it; the complementary literals
are removed.

Definition 24. Let M1 = φ ∧ q and M2 = ϕ ∧ ¬q be two arbitrary clauses.
The Dual Resolution Rule is an inference rule of the form

φ ∧ q, ϕ ∧ ¬q

φ ∧ ϕ
. (1.23)

Obviously, the produced formula is not a logical consequence of the parent
formulae! It is the disjunction of the parent formulae which is logical con-
sequence of the resulting formula. Thus the logical consequence goes in fact
backwards with respect to derivation direction. Let �DR stay for ‘derived with
dual resolution’. We shall prove the following theorem.

Theorem 3. If
M1 ∨ M2 �DR M ,

then
M |= M1 ∨ M2 .

Proof. Assume M = φ ∧ ϕ is satisfied under some arbitrary interpretation I.
For two complementary literals q, there must be either |=I q or |=I ¬q. If the
first possibility is true, then M1 = φ∧ q is satisfied, and so is M1 ∨M2. In the
other case, M2 = ϕ ∧ ¬q must be satisfied, and so must be M1 ∨ M2. ��

With respect to Theorem 3, the logical consequence shows backwards, and
thus the dual resolution rule is also termed backward dual resolution or bd-
resolution, for short [53–56]

Theorem proving with dual resolution is performed by appropriate applica-
tion of the dual resolution rule. As it was mentioned, the method is especially
convenient for completeness checking and proving that a DNF formula is more
general than another one, but it can also be applied for automated theorem
proving.

and follows from tradition. In fact, as pointed in Sect 1.8.2, the advantage is that
resolution allows to transform any of the axioms to clausal form separately, leaving
the structure of the initial conjunction. However, contrary to Bibel [7] we would
not call affirmative calculus a ‘heresy’; as it can be seen in this book, there are
areas of applications, where dual resolution seems to be a reasonable approach
— such an area is, for example, verification of completeness of a set of rules.
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Note that instead of converting a formula to its clausal form one can
transform the formula to a dual form, consisting of a disjunction of minterms,
i.e. the DNF. After negating the clausal form (i.e. the form used in resolution
theorem proving6 of (1.22) and successful application of De Morgan’s laws,
the dual form is obtained. Of course, it would be more reasonable to directly
convert (1.21) into the appropriate form.7

For further considerations we assume that the formula to be proved valid
(1.21) is in DNF. Thus, the formula can be written as

Φ = φ1 ∨ φ2 ∨ . . . ∨ φn . (1.24)

Now, we can state the following theorem.

Theorem 4. Let Φ be a DNF formula defined by (1.24). If an empty formula
� (always true) can be derived from Φ with dual resolution rule, then Φ is
valid (is a tautology).

Proof. By Theorem 3, for any simple formula φ derived from Φ there is φ |= Φ.
Consider some middle step of inference. We have the current formula Φi,

and φi derived from it by dual resolution. For the next step we use Φi+1 =
Φi ∨φi, and the next dual resolvent is φi+1, and the process goes on like that.

Obviously, by Theorem 3 φi |= Φi. Further, φi+1 |= Φi+1. Assume I is
any interpretation such that |=I φi+1; thus |=I Φi+1, i.e. |=I Φi ∨ φi. Now, if
|=I φi, then due to transitivity of logical entailment |=I Φi; if not, we have
directly |=I Φi. Hence φi+1 |= Φi. By induction with respect to the length of
the derivation we have φk |= Φ for any k. To conclude, if φk = �, then the
initial formula Φ is valid. ��

Now, in order to illustrate the possibility of theorem proving with the use
of bd-resolution let us present a simple example.

Example. We shall demonstrate the use of bd-resolution on a simple example
in order to provide some intuitions. Let us take the so-called implication dis-
tribution scheme (see, for example [39], p. 56). Using bd-resolution we shall
prove that implication distribution scheme for propositional formulae is in
fact a tautology. The analyzed scheme is as follows:

(p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)) . (1.25)

After transformation to DNF, one obtains from (1.25) a disjunction of
four simple formulae (see below, formulae 1 to 4); the derivation of an empty
formula (always true) can proceed as follows:

6 A method of transforming any formula to such a form is described in e.g. [16]
or [39]).

7 Such a transformation, analogous to the one applied in classical resolution, is de-
scribed in [7]; during the transformation Skolemization is used to remove universal
quantification [53].
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1. p ∧ q ∧ ¬r, (from (1.25))
2. p ∧ ¬q, (from (1.25))
3. ¬p, (from (1.25))
4. r, (from (1.25))
5. p ∧ q, (from 1. and 4.)
6. ¬q, (from 2. and 3.)
7. p, (from 5. and 6.)
8. �. (from 3. and 7.)

Thus, the initial formula (1.25) is valid. From this example one can see
that bd-resolution can be applied for efficient proving of formulae which are
easily transformed into disjunctive normal form.

1.9 Abduction and Induction

Apart from deduction, there are two other logical inference modes. These are
abduction and induction. They are not so popular as deduction and they do
not have the very basic property of deduction — they are not valid inference
paradigms. This means that the produced output rules are not necessarily
logical consequences of the input ones, and as such they constitute rather
some hypotheses than unconditionally true statements. However, despite the
problem of validity, they are interesting and useful schemes of reasoning.

1.9.1 Abduction

Abduction is another method of logical inference, however, many people do
not classify it as a strictly logical rule. The reason for that is the following:
abduction generates statements which are not necessarily true. In fact, ab-
duction provides hypotheses only, i.e. statements which are possible, potential
solutions, usually non-unique, and not necessarily correct.

In order to explain the basic idea of abduction it is enough to say that
abduction looks for certain assumption under which the specified conclusions
are true with respect to some known domain theory.

A simple example of abductive rule may be the following statement

α ⇒ β, β

α
.

It is to be read: if α implies β and β is true, then α is true. Obviously,
abduction is not a valid inference rule; in fact it generates only a hypothetical
justification for the observed facts. This means that the generated statements
certainly imply the observed ones, but there may be also other explanations
for the observed facts, while the generated statements do not hold.
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As an example consider the following scheme

rain ⇒ wet grass,wet grass
rain

.

Obviously, rain is a good reason for the grass being wet, but other ex-
planations are possible; one of them can be that the sprinkler has just been
used, another one can be the morning dew, etc. Abduction is a method used
in diagnoses generation, both in technical systems and in the case of hu-
man diagnosis. Finally, abduction has something in common with inverted
causal reasoning and guessing8. Abductive inference is applied in the so-called
backward-chaining rule-based systems.

The basic abductive inference paradigm can be formalized as follows. Let
A1, A2, . . . , An denote some set of assumptions (input knowledge), R be a set
of rules, B1, B2, . . . , Bm be some observed or deduced knowledge about the
considered system (output knowledge) and let Σ provide some additional ob-
servations (external knowledge). The basic formulation of abduction inference
rule can be stated as follows

B1, B2, . . . , Bm, R

A1, A2, . . . , An

which is interpreted as: given the observation (output) B1, B2, . . . , Bm and
the rules of R, find a possible set of assumptions A1, A2, . . . , An, such that

A1, A2, . . . , An ∪ R |= B1, B2, . . . , Bm.

Furthermore, the generated explanations A1, A2, . . . , An should be consistent
with the auxiliary observations (if any) , i.e. A1, A2, . . . , An ∪Σ ∪R 
|= ⊥, i.e.
consistency is preserved.

Note that abduction as defined above neither produces valid results
(A1, A2, . . . , An is by no means the logical consequence of B1, B2, . . . , Bm, R),
nor provides unique result; in fact, there may be several (or none) possible
results, satisfying the above conditions. Still, it seems to be widely applicable,
in tasks such as diagnostics.

The domain knowledge R is expressed with a set of production rules,
mostly of the form q1 ∧ q2 ∧ . . . qk −→ h. In such a case abductive inference
is performed by matching the knowledge represented with B1, B2, . . . , Bm

against specific rule conclusion and applying some backward chaining proce-
dure until desired results are generated. Such a mechanism is applied e.g. in
Prolog [19, 24, 105] or most of backward-chaining rule-based systems. More
complex systems may apply various strategies, both heuristic and based on op-
timality criteria, as well as auxiliary tools including testing and backtracking,
consistency verification or meta-knowledge application.
8 In fact, abduction was the favorite method used by Sherlock Holmes; contrary

to what was written in the famous books by Sir Arthur Conan-Doyle, he applied
abduction, and not deduction, to generate most of his so brilliant hypotheses so
well explaining the unsolved mysteries.
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The specific form of abduction makes it useful for tasks requiring hypothe-
ses generation. Some most typical application examples include hypotheses
generation, diagnostic inference, backward-chaining production systems, etc.

Various aspects and applications of abduction are discussed in [32].

1.9.2 Induction

Induction constitutes another inference paradigm, substantially different from
deduction and abduction. To explain the basic idea of inductive inference as-
sume that we observe several regularities representing facts, a relationship,
dependencies or rules describing some events or items of the observed world.
The task of inductive inference is to find a general theory covering (and im-
plying) the observed individual or particular cases. The observed cases may
be structured into positive and negative ones.

The generic induction task may be formalized as follows. Let Th denote
a known domain theory and let R be a certain hypothesis to be generated.
Further, let C1, C2, . . . , Ck denote observed specific cases. A general scheme
of induction rules is as follows

C1, C2, . . . , Ck;Th
R

,

where R is a general hypothesis rule, such that

Th ∪ R |= C1, C2, . . . , Ck ,

and perhaps many other new specific cases C 
∈ {C1, C2, . . . , Ck}.
A more specific formulation of induction, especially in the context of rule-

based systems, may be also as follows. Consider a set of examples in the form
of simple inference or classification rules, α1 |= h, α2 |= h, . . . , αk |= h. Each
of these examples corresponds to a single specific case Ci, as described above.
The rules provide information about decision, control action, classification etc.
h which is common for a number of cases specified by the precondition αi. It
is assumed that they are detailed examples which can be covered by a single
general rule. The induction task then lies in generating a rule constituting
a rule-base R according to the following scheme

α1 |= h, α2 |= h, . . . , αk |= h,Th
R

.

The generated rule R should explain all the specific observations in the context
of the assumed theory Th, i.e.

Th ∪ R |= (α1 |= h, α2 |= h, . . . , αk |= h) ,

for any i = 1, 2, . . . , k. Simultaneously, R should be more concise (more ab-
stract) than the detailed input rules.
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In order to provide some intuitions let us consider a simple example. Let
there be three observations, i.e.:

1) sparrow |= flies,
2) pigeon |= flies,
3) raven |= flies.

and some theory Th = {sparrow ⇒ bird,pigeon ⇒ bird, raven ⇒ bird, eagle ⇒
bird, . . . , ostrich ⇒ bird}. The induced general rule may be of the form

bird ⇒ flies.

Obviously, the rule explains and generalizes the above observations; it allows
to predict some property of an eagle and perhaps many other birds, as well.
However, induction as such is not a valid inference rule; applied to an ostrich
it does not work. This is due to over-generalization which is an immanent
feature of induction.

1.9.3 Deduction, Abduction
and Induction — Mutual Relationship

To provide some intuitions about mutual relationship between deduction, ab-
duction, and induction it may be convenient to consider classical black-box
scheme for inference: imagine a black-box model containing rules R provided
with some inputs Ai and producing outputs Bi. The task of deduction then
is to generate (deduce) Bi being given Ai. The task of abduction constitutes
an inverse problem: being given Bi find a possible explanation Ai, such that
it implies Bi with respect to rules R. The task of induction is more general:
being given specific inputs Ai and corresponding outputs Bi (forming the
cases Ci) find a general theory usually in a form of a set of rules R describing
all the observed cases; the theory provided with Ai should produce Bi and it
should cover all the cases used for induction of R. It should also cover some
new cases, since induction is the basic paradigm for learning systems [18].
Accessible background knowledge (if used) is denoted with Th.

In a number of specific applications induction is understood as genera-
tion of rules from a set of examples. This is, however, not the only induction
possibility. Some other cases may concern generalization operations such as
turning constants into variables, dropping conjunctive conditions or assigning
disjunctive condition (see [53]), domain specific operations such as admit-
ting interval instead of boundary values or turning an element or subfile into
a larger file, or applying other generalization schemes, such as bd-resolution,
described further in this chapter.

1.10 Generic Tasks of Propositional Logic

Propositional logic calculus is widely applied for modeling logical inference
and specifying knowledge in various domains. Although its expressive power
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is limited to propositional symbols (no individual variables and more complex
structures, such as terms are admitted) it can be used to encode practical
knowledge in mathematical, technical and natural sciences. It can also serve
as a generic tool for designing more elaborated, domain-specific languages.

Some generic tasks include specification and proving of theorems, verifi-
cation of completeness, finding specific equivalent forms, especially minimal
ones, and checking satisfiability of formulae. Below a short presentation of
problem statement for these tasks at the level of propositional calculus is
outlined.

1.10.1 Theorem Proving

Theorem proving is the most common task performed with propositional cal-
culus and perhaps any other logic. Let H denote a formula specifying a certain
theorem, and let ∆ be a set of initial knowledge (knowledge base). The task
is to prove that

∆ |= H .

Basic approaches to theorem proving follow from Theorems 1 and 2 pre-
sented in Sect. 1.7. In automated theorem proving methods based on reso-
lution (see Sect. 1.8.2) and on dual resolution (see Sect. 1.8.3) can be used.
There exist many books on automated theorem proving, e.g. [7, 16, 36, 37, 39]
and many other.

1.10.2 Tautology or Completeness Verification

Verification whether a formula is tautology may be regarded as a specific case
of theorem proving. The task can be formalized by proving that

|= H .

In the context of rule-based systems, H may denote a set of formulae
specifying the preconditions of rules operating in certain context. Such a set
of formulae should have at least one rule to serve any potential input. This
property is called completeness of a rule-based system.

Since in the above case H is naturally expressed in DNF, the dual resolu-
tion method constitutes a convenient tool for completeness verification [53,57].

1.10.3 Minimization of Propositional Formulae

Looking for minimal representation of a logical formula is an important en-
gineering task. This is applied in synthesis of electronic digital circuits, in
synthesis of rule-based systems, PLC control systems and query optimization.

The generic task can be formalized as follows. Let Ψ denote some well-
formed formula. The task is to find a formula Ψ ′, such that
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Ψ ′ ≡ Ψ

and being in certain sense minimal (a simplest possible).
The methods for minimization are based on reduction of the initial for-

mula; for intuition, this is done by appropriate transformation of the formula
with the use of laws preserving logical equivalence, especially ones allowing
for gluing components of the formula and by elimination of unnecessary com-
ponents. It will be shown that dual resolution is a convenient tool for formula
minimization.

The formula to be minimized is often presented in DNF. Then, the reduc-
tion is performed by subsequent application of dual resolution and elimination
of subsumed minterms. Finally, the procedure should arrive at a point where a
disjunction of some simplest (further irreducible) minterms is obtained. Such
minterms are called primary implicants. Formally, we have the following def-
inition.

Definition 25. A primary implicant of a formula Ψ is a minterm π such that:

• π |= Ψ ,
• there does not exist any minterm π′ simpler than π ([π′] ⊂ [π]) such that

π′ |= Ψ .

In fact, from logical point of view finding the minimal form of Ψ may be
accomplished by finding a minimal set of its primary implicants, such that
when put into a DNF they form a formula Ψ ′ which is logically equivalent
to Ψ . The practical aspects of solving this task with dual resolution will be
discussed in Chap. 15.
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Predicate Calculus

Predicate Calculus is the most popular logical system, useful to formulate
knowledge expressed with natural language (or restricted natural language),
in the field of mathematics and in many other domains including computer
science. In computer science Predicate Calculus is used for defining formal
specifications and properties of programs and their components, and as a ba-
sic knowledge representation language in Logic Programming and in Artificial
Intelligence. Thanks to its expressive power — which is obtained mainly due
to admission of individual variables, terms and quantifiers, the language allows
for practical formalization of quite complex knowledge.

Predicate Calculus (or First Order Predicate Calculus) inherits most of
the basic ideas incorporated in propositional calculus. However, its expressive
power is incomparably wider. Unfortunately, logical inference and theorem
proving in predicate calculus become much more difficult, as well.

The name Predicate Calculus (or First Order Predicate Calculus, FOPC,
for short) comes from the fact that this kind of logic is based on the use of
predicates as the means for expressing knowledge about facts in a certain world
under consideration. A predicate means a property or relation among some
objects which are the arguments of it. A basic statement in predicate calculus
is of the form p(t1, t2, . . . , tn) and it has the meaning that relation p holds
for objects t1, t2, . . . , tn; both names of precise objects as well as variables
denoting some or all objects can be used. Finally, the calculus is of first-order
since only basic objects can occur as arguments of relations and especially
undergo quantification.

2.1 Alphabet and Notation

The alphabet of first-order logic consists of symbols denoting objects, func-
tions and relations, logical connectives, quantifiers, and auxiliary elements,
like parentheses and comma. The elements of the alphabet are presented be-
low in detail.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 37–50 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Let there be given the following, pairwise disjoint four sets of symbols:

• C — a set of constant symbols (or constants, for short),
• V — a set of variable symbols (or variables, for short),
• F — a set of function (term) symbols,
• P — a set of relation (predicate) symbols.

All the sets are assumed to be countable (or finite, at least in specific
applications).

Constants denote specific objects, items, elements, values, phenomena, etc.
Variables are used to denote the same elements in case the precise name of
an element is currently not known, unimportant, or a class of elements is to
be represented.

2.1.1 The Role of Variables

The role of variables in first-order calculus is three-fold. It is worth examining
the role in some details here, since it will influence design and properties of
various classes of rule-based systems.

In short, variables place the role of:

• unknown but specific objects,
• place-holders,
• coreference constraints and data carriers.

First of all, variables may be used to denote unknown but specific objects;
some variable X ∈ V may denote an object the properties of which are spec-
ified without specifying the object by its name. This means that a class of
objects can be defined in an implicit way, or one may refer to a group of
objects using quantified variables.

Second, any functional and predicate symbol have assigned a constant
number of arguments they operate on; this is called the arity of a symbol.
Hence, the number of arguments cannot change — no argument can be miss-
ing. This means that if some of the arguments are unknown, variables must
be used in place of specific names.

Last but not least, variables play the role of coreference constraints and
data carriers. Two or more occurrences of the same variable in an expression
denote the same object; if any replacement of an occurrence of some variable
takes place, all the occurrences of this variable must be replaced with the same
symbol or value. In this way data may be passed from rule input to output
of the rule — a variable occurring in preconditions and conclusion of a rule
will carry its value over the rule after being unified with some values during
matching of preconditions against current state formula.

In the presented notation variables are denoted with single characters or
strings, always beginning with an upper case letter or underscore, constants
are denoted with any other strings of characters and special symbols or single
letters (most typically a sequence of lower-case letters and possibly underscore
characters; this convention is used in order to improve readability).
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2.1.2 Function and Predicate Symbols

Function symbols denote, in general, mappings; however, in logic they are
mostly applied to form record-like structures for representing more complex
objects. In this case, one can assume that a function maps its arguments into
the resulting structured object.

Predicate symbols are used to specify relations holding for certain objects.
It is assumed that for any functional symbol f ∈ F and any predicate

symbol p ∈ P there is a unique function defining its number of arguments
(arity) of the form a : F −→ {1, 2, 3, . . .} and a : P −→ {0, 1, 2, 3, . . .}1. If for
a certain function symbol f (predicate symbol p) the number of arguments is
n, f (p) is called an n-place or n-ary function (predicate) symbol.

Functions and predicates are to be denoted with any arbitrary characters
or strings; they are easily recognizable by their position in any expression.
Further, proper names are frequently used so as to provide some intuitions
and refer to some specific examples at hand. If necessary, indices can be oc-
casionally used, so as to provide relatively precise definitions and theorems.

2.2 Terms in First-Order Logic

In order to denote any object — represented by a constant, a variable, or as
a result of a mapping (a structured object), the notion of term is introduced.
The set of terms TER is defined recursively in the following manner:

Definition 26. The set of terms TER is one satisfying the following condi-
tions:

• if c is a constant, c ∈ C, then c ∈ TER;
• if X is a variable, X ∈ V , then X ∈ TER;
• if f is an n-ary function symbol, f ∈ F , and t1, t2, . . . , tn are terms, then

f(t1, t2, . . . , tn) ∈ TER;
• all the elements of TER are generated only by applying the above rules.

The definition above imposes that only the expressions belonging to one
of the above categories (i.e. constants, variables, and properly constructed
structured objects) are terms. Furthermore, all of the expressions satisfying
one of the above conditions are terms. Note that the definition is recursive,
i.e. in order to check if a certain expression is a term one is to check if one
of the above conditions holds; in case of the third possibility, the verifying
procedure must be applied recursively down to all the elements t1, t2, . . . , tn,
provided that f is an n-ary function symbol.

1 By convention, functional symbols of no arguments are considered to be constants.
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Assume that a, b, c ∈ C, X,Y,Z ∈ V , f, g ∈ F , and arity of f and g is 1
and 2, respectively. Then, all the following expressions are examples of terms:

• a, b, c;
• X,Y,Z;
• f(a), f(b), f(c), f(X), f(Y ), f(Z);

g(a, b), g(a,X), g(X, a), g(X,Y );
f(g(a, b)), g(X, f(X)), g(f(a), g(X, f(Z))).

Note that even for finite sets of constants, variables, and functions, it is
possible to build an infinite set of terms (see examples in [16]). Obviously, if
the set of functional symbols F is empty, the set of terms TER = C ∪ V .

2.2.1 Applications of Terms

Terms can be used to represent various complex data structures, such as
record-like objects, lists, trees, and many other. For intuition, let us show how
general and flexible terms are in structure construction with a few examples.

Consider a book as an object having title, author, publisher, place and a
year of publication. Further, let the author be a man having first name and
surname. A book can be represented as a complex term of the form:

book (book_title,
author(first_name,last_name),
publisher_name,
year_of_publication

)

Note that many structures used in electronic documents, mathematics,
formal languages and other systems are in fact terms. For example, in XML
the example concerning the specification of a book can be represented as

<book>
<book_title> Learning XML </book_title>
<author>

<first_name> Erik </first_name>
<last_name> Ray </last_name>

</author>
<publisher_name> O’Reilly & Associates, Inc. </publisher_name>
<year_of_publication> 2003 </year_of_publication>

</book>

where each field is declared in an explicit way by its name, beginning and
end with a pair <name> contents </name> and the contents is either atomic
value or another XML structure. Note that the internal structure of a tree is
preserved.

Consider another example concerning specification of mathematical for-
mulae. The following formula
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x
y√

1 + x
y

,

is in fact defined in LATEX as

\frac{
\frac{x}{y}

}
{
\sqrt{1+\frac{x}{y}}

}

where \frac is a two-argument symbol of division and \sqrt is a single argu-
ment symbol of

√
(.).

Next, consider a list structure, e.g. [red,green,blue,yellow]. A list is con-
structed as an ordered pair of two elements: its head, being the single first
element and its tail being the rest of the list (the definition is obviously re-
cursive). A list as the one above can be represented as the following term

list(red,list(green,list(blue,list(yellow,nil))))

where nil is an arbitrary symbol denoting an empty list. Note that a list
can be used to represent a set, a multi-set (or a bag — a set with repeated
elements) and a sequence.

Finally, consider a binary tree, for example of depth 2; it can be represented
by a term according to the following scheme

tree (
tree (left_left, left_right),
tree (right_left, right_right)

)

More complex trees can be represented with the use of lists, e.g. with a
structure of the form

tree (root,list_of_subtrees)

Terms can be also used to specify graphs (e.g. as a list of nodes and
another list of vertices), forests, relations, matrices, etc. In fact, expressive
power of terms highly overcomes the immediate expectations following their
definition. Some further examples will be presented in the part concerning
Prolog programming language.

2.3 Formulae

Formulae of first-order predicate logic are constructed in an analogous way
to propositional logic; the main difference lies in the introduction of variables
and quantifiers.

Predicate symbols are used to denote relations holding for certain objects.
For this purpose a set ATOM of atomic formulae, is defined as follows.
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Definition 27. The set ATOM is defined as one satisfying the following con-
ditions:

• if p is an n-ary predicate symbol, p ∈ P , and t1, t2, . . . , tn are terms,
then p(t1, t2, . . . , tn) ∈ ATOM ;

• all the elements of ATOM are generated by applying the above rule.

The elements of ATOM are called atomic formulae or atoms, for short.

Assume that p and q are predicate symbols of arity 1 and 2, respectively.
Then, taking into account the above examples of terms, the following expres-
sions are example atomic formulae:

• p(a), p(b), q(a, a), q(a, c);
• p(X), p(Y ), q(X,X), q(X,Z);
• p(f(a)), p(f(X)), q(f(g(a, b)), g(X, f(X))), q(g(f(a), g(X, f(Z))), a).

Atomic formulae are also referred to as facts, since they can be understood
as single statements, i.e. if p(t1, t2, . . . , tn) is an atomic formula, then it can
be read as ‘relation p holds for objects t1, t2, . . . , tn’.

More complex formulae can be created from the atomic ones with the use
of the logical connectives. The set of well-formed formulae is defined in the
following way.

Definition 28. The set of formulae FOR is defined to be one satisfying the
following conditions:

• ATOM ⊆ FOR;
• if Φ is a formula, Φ ∈ FOR, then ¬(Φ) ∈ FOR;
• if Φ and Ψ are formulae, Φ, Ψ ∈ FOR, then (Φ ∧ Ψ), (Φ ∨ Ψ), (Φ ⇒ Ψ),

(Φ ⇔ Ψ) ∈ FOR;
• if Φ ∈ FOR, X denotes a variable, then ∀X(Φ) ∈ FOR and ∃X(Φ) ∈ FOR;
• all the elements of FOR must be generated by applying the above rules.

The elements of FOR are called formulae.

If we have in mind a specific set of constant, variable, function or predicate
symbols occurring in some expression or a set of expressions E, we shall write
C(E), V (E), F (E), and P (E), respectively.

An occurrence of a variable in an expression (formula) can be free or
bound. The occurrence of variable X is bound if it is within the scope2 of
some quantifier ∀X or ∃X. An occurrence of a variable which is not bound
— i.e. one lying outside the scope of any quantifier referring to this variable
— is free.

A variable is bound in a formula if at least one of its occurrences is bound
in this formula. A variable is free in a formula if at least one of its occurrences
is free in this formula. A precise definition of free variables is given below.

2 The scope of quantifier ∀ (∃) in ∀X(Φ) (∃X(Φ)) is the formula Φ.
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Definition 29. Let t be a term, t ∈ TER, and let q be an atomic formula,
q ∈ ATOM. Let Φ and Ψ be some formulae, Φ, Ψ ∈ FOR. Further, let FV (E)
denote the set of free variables in expression E (here: formula or term). The
set FV (E) is defined as follows:

• if t ∈ V then FV (t) = {t};
• if t ∈ C then FV (t) = ∅;
• if t = f(t1, t2, . . . , tn) ∈ TER then FV (t) = FV (t1)∪FV (t2)∪. . .∪FV (tn);
• if q = p(t1, t2, . . . , tn) ∈ ATOM then FV (q) = FV (t1) ∪ FV (t2) ∪ . . . ∪

FV (tn);
• FV (¬Φ) = FV (Φ);
• V (Φ � Ψ) = FV (Φ) ∪ FV (Ψ) for any � ∈ {∧,∨,⇒,⇔};
• FV (∇X(Φ)) = FV (Φ) \ {X} for ∇ ∈ {∀,∃}.

Note that, according to the above definition, a variable can be both bound
and free in a certain formula. Such a case takes place if some occurrences are
bound and some of them are free. In such cases, in order to avoid ambiguities,
we shall assume that a consistent renaming of the bound occurrences is ap-
plied, so that the free occurrences of the variable are the only ones remaining.
Let for example Ψ = p(X)∨ (∀X q(X)). In Ψ the first occurrence of X is free,
while the second one is bound. Thus X is both free and bound in Ψ . After
renaming the bound occurrence of X with Y we have Ψ = p(X) ∨ ∀Y q(Y ),
and thus X is only free and Y is only bound in Ψ .

Of course, such a renaming procedure does not change the meaning of
the formula. Note also that although according to Definition 28 one can build
formulae like ∀XΨ or ∃XΨ where X does not occur in Ψ as a free variable, it is
impractical. A reasonable assumption is that if a certain variable is quantified
in a formula, it must be free within the scope of the quantifier [16].

Note that, roughly speaking, for any term or formula, the set of free vari-
ables of it can be easily obtained by deleting from the set of all variables
occurring in this term or formula the ones which are bound by the use of
quantifiers.

2.4 Special Forms of Formulae

In the preceding section a general definition of well-formed formulae in first-
order predicate calculus was given. According to this definition variety of
logical formulae can be generated. However, in practical applications, it seems
reasonable to define and make use of some restricted and uniform forms of
formulae, as in the case of propositional logic.

The aim of such an approach is twofold. First, it is easier to implement
computer programs dealing with limited forms of knowledge representation
and, obviously, the resulting implementations are far more efficient. Second,
theoretical properties of such restricted representations can be analyzed to a
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higher degree. Of course, the specific forms should not be too restrictive, so
as not to loose generality.

Below, the definitions of some most important restricted forms of formu-
lae are restated for first-order logic. Two of them, namely clauses and Horn
clauses are typical for the resolution method of theorem proving [16, 39, 114]
and Prolog programming language based on it [11,47,105,121]. Another two,
namely simple formulae and normal formulae are typical for dual resolution
theorem proving and modeling states and situations in dynamic systems.

Let us recall the definition of literals first.

Definition 30. Let p be an atomic formula, p ∈ ATOM. Then, both p and ¬p
are called literals; p is called a positive literal, while ¬p is called a negative
literal.

Thus a literal is an atom or a negated atom. Literals are components of
clauses and minterms (simple formulae).

Definition 31. Let q1, q2, . . . , qk be literals of FOPC. A formula

ϕ = q1 ∨ q2 ∨ . . . ∨ qk

is called a clause in FOPC.

Thus, a clause is a finite disjunction of literals.

Definition 32. Let p1, p2, . . . , pk be positive literals. A Horn clause in FOPC
is any clause of the form

ϕ = ¬p1 ∨ ¬p2 ∨ . . .¬pk ∨ q ,

where q is a literal (either positive or negative one).

In other words, a Horn clause is any clause with at most one positive literal.
Note also, that taking into account the De Morgan’s laws and the definition
of implication, a Horn clause can be represented as an implication of the form

ϕ = p1 ∧ p2 ∧ . . . ∧ pk ⇒ q .

Thus, a Horn clause can be regarded as a rule, having preconditions defined
by p1∧p2∧ . . .∧pk and conclusion q. In fact, an efficient reasoning mechanism
with the use of such rules is implemented within Prolog [19, 105,121].

Definition 33. Let q1, q2, . . . , qk be literals. Any formula of the form

φ = q1 ∧ q2 ∧ . . . ∧ qk

will be called an FOPC minterm or an FOPC simple formula.
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Thus, a simple formula is a finite conjunction of literals. From now on,
simple formulae will be most frequently denoted with the letters φ and ψ.
Simple formulae play an important role in representation of state of dynamic
systems; they are the core items for knowledge representation.

As in the case of propositional calculus, the use and therefore occurrence
of negation sign in formulae is to a certain degree a matter of specific formal-
ization of knowledge and can be modified with regard to the current area of
application and user’s preferences. For simplifying the notation one can often
avoid the use of the negation symbol (¬) in an explicit way. Instead of writing
¬high(X) one can rather write low(X), instead of ¬switch(on) one can put
switch(off), etc., i.e. the negation can be often expressed implicitly.

More generally, in place of ¬p one can always put a new atom, say np,
which is logically equivalent to the negation of p with regard to the assumed
interpretation. However, such an approach may lead to certain problems con-
cerning automated reasoning, if no auxiliary rules (defining all the interde-
pendencies among facts) are defined. For example, no purely logical inference
engine will be capable of stating that a formula like switch(on)∧switch(off)
is always false — in such a case an auxiliary reasoning rule like, for example,
switch(off) ⇒ ¬switch(on) should be provided so as to assure the detection
of inconsistency.

As in the case of propositional logic, both a clause and a simple formula can
be regarded as a set of its literals. It may be convenient then to apply the set
notation directly to simple formulae. Recall that the set of literals from which
a formula φ = q1∧q2∧ . . .∧qk is composed is denoted as [φ] = {q1, q2, . . . , qk}.

The definitions of Disjunctive Normal Form (DNF) and Conjunctive Nor-
mal Form (CNF) are analogous to the case of propositional calculus.

Definition 34. Let φ1, φ2, . . . , φn be some minterms (simple formulae). A
formula of the form

Φ = φ1 ∨ φ2 ∨ . . . ∨ φn

will be called an FOPC formula in Disjunctive Normal Form.

Definition 35. Let ψ1, ψ2, . . . , ψn be some clauses. A formula of the form

Ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn

will be called an FOPC formula in Conjunctive Normal Form.

Normal formulae can be regarded as sets of simple formulae. Again, the
set notation can be applied directly to normal formulae if necessary.

Any formula containing no quantifiers can be effectively transformed into
equivalent normal form (for the idea of such a transformation into conjunc-
tive normal form see, for example [16]; transformation into disjunctive normal
form is analogous (dual)). From now on, normal formulae will be most fre-
quently denoted with the letters Φ and Ψ . Normal formulae in the presented
approach correspond to the sets of clauses in resolution theorem proving.
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2.5 Semantics of First-Order Logic

Formulae of first-order predicate calculus can be assigned a truth-value by
defining an interpretation of the symbols of alphabet. In order to define an
interpretation, the following three elements must be defined:

• a nonempty set D called a universe; the elements of D are the objects of
some universe of discourse, in other words — the domain of interpretation;

• a mapping I which assigns meaning to constant, function, and predicate
symbols, by providing the current understanding of these symbols with
regard to the universe of discourse;

• a mapping v for assigning values to free variables.

Since in general free variables may occur in formulae, in order to be able to
proceed, such variables must be assigned a meaning; this is done by defining
a variable assignment.

Definition 36. A variable assignment v is any mapping v : V → D.

Let D be a nonempty (finite) set, and let v be some variable assignment
defined as above. Further, let I be a mapping of constant, function and pred-
icate symbols into D, functions defined on D and relations on elements of D,
respectively. The formal definition of interpretation is as follows.

Definition 37. An interpretation of expressions of first-order predicate calcu-
lus is any mapping I operating on terms and formulae, satisfying the following
conditions:

• for any constant c ∈ C, I(c) ∈ D;
• for any free occurrence of variable X ∈ V , I(X) = v(X), where v(X) ∈ D;
• for any function symbol f ∈ F of arity n, I(f) is a function of the type

I(f) : Dn → D ;

• for any predicate symbol p ∈ P of arity n, I(p) is a relation such that

I(p) ⊆ Dn ;

• for any term t ∈ TER, such that t = f(t1, t2, . . . , tn),

I(t) = I(f)(I(t1), I(t2), . . . , I(tn)) .

Given an interpretation I (and variable assignment v, if necessary) over
a domain D one can evaluate the truth-value of first order logic formulae. In
order to do that, the idea of satisfaction for formulae is defined. For intuition,
a formula is satisfied if and only if after consistent mapping of its elements
into the universe of discourse, a true statement is obtained. In other case the
formula is not satisfied, i.e. it represents a false statement with regard to the
assumed interpretation.
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As in the case of propositional calculus, the notion of satisfaction will be
denoted with the standard symbol |=. Thus, |=I,v Φ is to be read as ‘Φ is
true (is satisfied) under interpretation I for variable assignment v’. Similarly,

|=I,v Φ is to be read as ‘Φ is false (is not satisfied) under interpretation I and
variable assignment v’.

For simplicity, if either the variable assignment is not necessary (no free
variables occur since all the formulae are closed ones) or the variable assign-
ment is known by default, the explicit specification v may be omitted. The
formal definition stating when a formula is satisfied is given below.

Definition 38. Let I be an interpretation over domain D and let v be a vari-
able assignment. Moreover, let p(t1, t2, . . . , tn) be an atomic formula and let Φ
and Ψ denote two formulae. The following statements define the satisfaction
of formulae in FOR:

1. |=I,v p(t1, t2, . . . , tn) iff (if and only if) (I(t1), I(t2), . . . , I(tn)) ∈ I(p)
(recall that I(X) = v(X) for any free variable X ∈ VAR;

2. |=I,v ¬Φ iff 
|=I,v Φ;
3. |=I,v Φ ∧ Ψ iff both |=I,v Φ and |=I,v Ψ ;
4. |=I,v Φ ∨ Ψ iff |=I,v Φ or |=I,v Ψ ;
5. |=I,v Φ ⇒ Ψ iff 
|=I,v Φ or |=I,v Ψ ;
6. |=I,v Φ ⇔ Ψ iff |=I,v Φ and |=I,v Ψ , or, 
|=I,v Φ and 
|=I,v Ψ ;
7. |=I,v ∀XΦ iff for any d ∈ D and any variable assignment u such that

u(X) = d and u(Y ) = v(Y ) for any Y 
= X, there is |=I,u Φ;
8. |=I,v ∃XΦ iff there exists d ∈ D such that for variable assignment u

defined as u(X) = d and u(Y ) = v(Y ) for any Y 
= X, there is |=I,u Φ.

For convenience, one can say that ‘a formula is satisfied under a given
interpretation I’ or, equivalently, that ‘a given interpretation I satisfies a for-
mula’.

The following definitions are re-stated copies of appropriate definitions
introduced for propositional logic adapted for first-order logic.

Definition 39. A formula is consistent ( satisfiable) if and only if there ex-
ists an interpretation I over some domain D (and variable assignment v if
necessary) which satisfies this formula.

For simplicity, we shall also say that a formula is satisfiable, if given I and
D one can choose a variable assignment v, such that the formula is satisfied
under I.

Definition 40. A formula is inconsistent (unsatisfiable) if and only if there
does not exist any interpretation I and universe D (and variable assignment
v, if necessary) satisfying the formula.

Definition 41. A formula is valid ( tautology) if and only if for any inter-
pretation I over any domain D there exists a variable assignment v, such that
the formula is satisfied under the interpretation.
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Note that the above definition is equivalent to assuming that the free vari-
ables in a formula are implicitly existentially quantified; hence, for example,
any formula of the form p(X) ∨ ¬p(Y ) will be regarded as a valid one. Al-
though in further parts of this work we shall refer to variable assignments or
substitutions rather than to quantification, this kind of an implicit assump-
tion will be prevalent for most of this work. Recall that a tautology is denoted
as � while an unsatisfiable formula by ⊥.

Definition 42. A formula H is a logical consequence of formulae ∆1,∆2,
. . . ,∆n if and only if for any interpretation I satisfying ∆1∧∆2∧ . . .∧∆n for
some variable assignment v there exists a variable assignment u, such that H
is satisfied under interpretation I and variable assignment u.

Note that in most textbooks on logic and automated theorem proving the
above definition [16] refers in fact only to the so-called closed formulae, i.e.
ones with no free variables. In case free variables occur in a formula, one is to
specify the way of ‘understanding’ them. Here, contrary to the most common
approach [39], we insist on ‘understanding’ free variables as ones ‘existentially
quantified’ and so we follow Definition 41.

Definition 43. An interpretation I satisfying formula Φ is said to be a model
for Φ.

2.5.1 Herbrand Interpretation

To end with the basic notions of semantics we shall recall the ideas concerning
the interpretation within the set of symbols introduced by the language, i.e.
the Herbrand interpretation.

Definition 44. Let H0 = C(∆), i.e. H0 contains all the constants occurring
in some set of formulae ∆ (if C(∆) = ∅ then one defines H0 in such a way that
it contains a single arbitrary symbol, say H0 = {c}). Now, for i = 0, 1, 2, . . . ,
let Hi+1 = Hi ∪ {f(t1, t2, . . . , tn) : f ∈ F (∆) and t1, t2, . . . , tn ∈ Hi} (where
the arity of f is n). Then H∞ is called the Herbrand universe of ∆.

Obviously, the Herbrand universe for a certain set ∆ of formulae consists of
all the ground terms (ones with no variables in them) which can be constructed
with the use of the function symbols and constants occurring in the formulae
of ∆3. For simplicity, instead of H∞ we shall also write H.

Definition 45. Let ∆ be a set of formulae and let H be the Herbrand universe
of ∆. A set BH = {p(h1, h2, . . . , hn) : h1, h2, . . . , hn ∈ H, p ∈ P (∆)} (where
the arity of p is n) is called the Herbrand base or the atom set of ∆.

3 The intuition behind the Herbrand Universe is as follows: instead of considering
all possible universes, it is enough to restrict the analysis to such universes, that
the elements of them can be named with the use of the symbols of the language.
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Obviously, the Herbrand base for a given set ∆ of formulae is the set
of all the atomic formulae with no variables (ground atoms), which can be
constructed from the predicate symbols occurring in ∆ and ground terms
belonging to the Herbrand universe of ∆.

Definition 46. Let ∆ be a set of formulae and let H be the Herbrand uni-
verse of ∆. Any interpretation IH is called a Herbrand interpretation (H-
interpretation) if the following conditions are satisfied:

• for any constant c ∈ H, IH(c) = c;
• for any n-ary functional symbol f ∈ F (∆), and any h1, h2, . . . , hn ∈ H,

IH(f) : (h1, h2, . . . , hn) → f(h1, h2, . . . , hn) .

An H-interpretation is any interpretation mapping the ground terms into
the same ground terms. The importance of the concept of H-interpretations
follows from the fact that they ‘cover’ other interpretations in certain cases.
For example, given a ground formula and any interpretation I of this formula,
one can build a corresponding H-interpretation (see [16]) assigning the same
truth value to all the literals of the formula and to the formula as a whole.
For intuition, this follows from the fact that being given a set of constants
and function symbols occurring in a formula, one can ‘name’ only as many
objects as there are in the Herbrand universe.

Note that disregarding the variable assignment v, for any set of formulae ∆,
a given H-interpretation IH of ∆ can be conveniently represented by explicit
listing of the literals satisfied by the interpretation (evaluated to true under
this interpretation). Thus, the H-interpretation can be given as a set IH =
{q1, q2, . . . , qn, . . .}, where qi is either an element of HB or a negation of such
an element; of course, if some q ∈ IH , then ¬q 
∈ IH , since an interpretation
cannot simultaneously assign true and false to any formula.

Below we present a version of the Herbrand theorem [16]; in fact, the
presented theorem is a slightly generalized dual version of the original.

Theorem 5 (Herbrand Theorem). Let Ψ be a normal DNF formula and
ψ′ a ground simple formula. Then ψ′ |= Ψ if and only if there exists a ground
normal formula Ψ ′ being a substitution instance of Ψ , such that ψ′ |= Ψ ′.

Proof. Assume that ψ′ |= Ψ ′, where Ψ ′ is a ground substitution instance of
Ψ . Obviously, ψ′ |= Ψ since while passing from Ψ ′ to Ψ one is to turn some
constants into variables, and thus ‘improve’ the generality of the formula. Now
we shall prove the other part of the theorem.

If ψ′ is unsatisfiable, then any ground instance of Ψ satisfies the theorem.
Assume that ψ′ is satisfiable. Since ψ′ is a ground formula, it is enough to
consider only H-interpretations satisfying it (one cannot assign more objects
to the terms of ψ′ than one can find in the Herbrand universe of ψ′). Let I be
any Herbrand interpretation satisfying ψ′, i.e. such that |=I ψ′. Interpretation
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I takes as a universe H denoting the Herbrand universe of ψ′ (or a larger set),
I is any mapping satisfying the definition of interpretation and such that
all the literals of ψ′ are satisfied. Taking into account that ψ′ |= Ψ , there
exists a variable assignment u, such that for interpretation I with u there is
|=I,u Ψ . Now, let us replace the variables of Ψ with the elements of H to which
the variables are mapped with u; in this way Ψ ′ being a ground formula is
obtained. Obviously |=I Ψ ′. Since the choice of u is influenced only by the
selection of H (defined by ψ′) and the requirement that I should be chosen
so as to satisfy all the literals of ψ′ (invariant for single ψ′), once obtained,
the formula Ψ ′ will be satisfied under any interpretation satisfying ψ′. Hence
ψ′ |= Ψ ′. ��



3

Attribute Logic

Attribute Logic (AL, for short) is one based on the use of attributes for denot-
ing some properties of objects and a system under consideration. In order to
define characteristics of the system one selects some specific set of attributes
and assigns them some values. This way of describing an object and system
properties is both simple and intuitive.

Using logic based on attributes is one of the most popular approaches to
define facts about a certain system. This kind of logic is omnipresent in vari-
ous applications and domain-specific formalisms, such as attributive decision
tables, decision trees, attributive rule-based systems and even relational data-
bases. In fact, a table in relational database can be considered to represent
knowledge of an attributive logic formula.

In computer sciences attribute based languages are used for defining formal
specifications and properties of programs and their components. In relational
databases formulae of attributive logic are used to define selection criteria for
information retrieval and for the so-called θ-join operation for joining tables
[22]. Thanks to its expressive power — greater than in the case of propositional
calculus — attributive languages allow for practical formalization of quite
complex knowledge.

Attributive logic inherits most of the basic ideas incorporated in proposi-
tional calculus. However, its expressive power is grater, depending on the ad-
mitted values of attributes, relational symbols and variables. Unfortunately,
both syntax and semantics, as well as theorem proving in attributive calculi
become a bit more difficult, as well.

The name Attributive Logic (or Attribute-Based Logic) comes from the fact
that this kind of logic is based on the use of attributes that have some values
assigned as the means for expressing knowledge about facts in a world under
consideration. An attribute means a property or a characteristic feature taking
a certain defined or unknown value at a certain instant of time. For intuition,
a basic statement in attributive calculus is of the form 〈attribute〉(〈object〉) =
〈value〉 or A(o) = v and it has the meaning that attribute A for object o takes
value v. For example, Color(car) = red means that the color of a specific car

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 51–63 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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is red. In such a way, values of selected properties are assigned to an object
of interest.

There are various possibilities of defining attribute-based languages; de-
pending on the required expressive power, the following possibilities will be
considered:

• AAL — Atomic Attributive Logic, i.e. attributive logic with atomic values
of attributes only;

• SAL — Set Attributive Logic, i.e. attributive logic with set values of at-
tributes;

• VAAL — Variable Atomic Attributive Logic, i.e. attributive logic with
atomic values of attributes incorporating variables;

• VSAL — Variable Set Attributive Logic, i.e attributive logic with set values
of attributes incorporating variables.

Moreover, attribute-based languages may allow the use of other than equal-
ity relational symbols, i.e. >, ≥, etc.; however, this issue will not be described
here. Instead, we shall show a way of dealing with such relations through re-
placing the constraints based on different symbols with equality and using set
values.

3.1 Alphabet and Notation

The alphabet of attributive logic consists of symbols denoting objects, at-
tributes, constant values, variables, logical connectives, quantifiers, and auxil-
iary elements, like parentheses and comma. Below the elements of the alphabet
are presented in some details.

Let there be given the following, pairwise disjoint sets of symbols:

• O — a set of object name symbols,
• A — a set of attribute names,
• D — a set of attribute values names (the domains),
• V — a set of variable symbols (or variables, for short).

All the sets are assumed to be countable (or finite, at least in specific
applications).

Constant values belonging to domain D denote values of specific attributes
for given objects. Variables are used to denote the same elements in case the
precise name of an element is currently unknown, unimportant, or a class of
elements is to be represented.

It is further frequently assumed that the domain is divided into several
sets (disjoint or not), such that any of the sets defines the domain of some
attribute. More precisely, if the set of attributes is finite and given as

A = {A1, A2, . . . , An} ,

then also
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D = D1 ∪ D2 ∪ . . . ∪ Dn ,

where Di is the domain of attribute Ai, i = 1, 2, . . . , n.
For further use the following basic definition of attribute is assumed.

Definition 47. An attribute Ai is a function (or partial function) of the form

Ai : O → Di .

Such a definition of attribute requires that an attribute can take a single
value for an object at a time. An attribute can be a partial function, since not
all the attributes must be defined for all the objects. Such a definition is used
in the attributive languages operating on single values, i.e. AAL and VAAL
(see Sect. 3.2).

For more powerful languages, a more general definition of an attribute
(generalized attribute) is necessary; such an attribute can take several values
at a time.

Definition 48. A generalized attribute Ai is a function (or partial function)
of the form

Ai : O → 2Di .

The generalized attributes are used in languages such as SAL and VSAL
(see Sect. 3.2). If it does not introduce ambiguity, the qualifier generalized will
frequently be omitted.

3.1.1 The Role of Variables

The role of variables in attributive logic calculus is two-fold. It is worth ex-
amining the role in detail here, since it will influence design and properties of
various classes of rule-based systems.

In short, variables play the role of:

• undefined, unknown but specific values,
• coreference constraints and data carriers.

First of all, variables may be used to denote unknown but specific values;
a variable X ∈ V may denote a certain value, perhaps currently unknown.
It may be further specified by instantiation — replacing the variable with a
specific value.

Secondly, variables play the role of coreference constraints and data car-
riers. Two or more occurrences of the same variable in an expression denote
the same object; if any replacement of an occurrence of some variables takes
place, all the occurrences of this variable must be replaced with the same
symbol or value. In this way data may be passed from rule input to output
of the rule — a variable occurring in preconditions and conclusion of a rule
will carry its value over the rule after being unified with some values during
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matching of precondition. This is also the way of defining rules with conclu-
sions depending on the values of some attributes in the precondition part in
a certain functional way (as, e.g. in the case of defining tax on the base of the
income).

In the presented notation variables are denoted with single characters or
strings, always beginning with an upper case letter or underscore, constant
atomic values are denoted with any other strings and characters (usually as
d ∈ D) and set values in a similar way (e.g. t ⊆ D).

3.2 Atomic Formulae

Formulae of attributive logic are constructed in a way that is analogous to
propositional logic; the main difference lies in the introduction of variables.

Attribute symbols are used to denote properties of certain objects. To
denote the fact that a certain attribute takes a certain value one constructs
an atomic formula. The set ATOM being the set of atomic formulae, is defined
in the following way.

Definition 49 (AAL). Let o ∈ O be a certain object, Ai ∈ A be an attribute
and let d ∈ Di be a certain atomic value of the domain of Ai. Any expression
of the form

Ai(o) = d

is an atomic formula of AAL.

Definition 50 (SAL). Let o ∈ O be some object, Ai ∈ A be an attribute and
let t ⊆ Di be a certain subset of the domain of Ai. Any expression of the form:

Ai(o) = t

and
Ai(o) ∈ t

are atomic formulae of SAL.

Note that the definition of atomic formulae in SAL (50) covers the one in
AAL (49); in fact, any atomic value can be considered as a single-element set.
The vice versa is obviously not true. For simplicity, if the object is known,
the formulae are simplified to Ai = d, Ai = t or Ai ∈ t, respectively. Without
object specification, such simplified formulae are called selectors since they
can be used for selecting a set of objects satisfying the specific condition.
They are often denoted as [Ai = d] and [Ai = t] and [Ai ∈ t].

The cases of VAAL and VSAL, i.e. when variables are also allowed require
some extended definitions.
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Definition 51 (VAAL). Any atomic formula of AAL is also and atomic
formula of VAAL. Further, if o ∈ O is a certain object, Ai ∈ A is an attribute
and X ∈ V is a certain variable, then any expression of the form:

Ai(o) = X

is an atomic formula of VAAL.

Definition 52 (VSAL). Any atomic formula of SAL is also and atomic for-
mula of VSAL. Further, if o ∈ O is a certain object, Ai ∈ A is an attribute
and X ∈ V is a certain variable, then any expression of the form:

Ai(o) = X

and
Ai(o) ∈ X

is an atomic formula of VSAL.

It is also assumed that all atomic formulae must be defined as in one of the
above definitions, i.e. Def. 49, 50, 51 or 52; in other words no other expression
is an atomic formula.

Atomic formulae are also referred to as facts, since they can be understood
as single statements, i.e. if Ai(o) = d is an atomic formula, then it can be read
‘a fact that the value of attribute Ai for object o is d holds’.

3.3 Formulae in Attribute Logic

More complex formulae can be generated from the atomic ones with the use
of the logical connectives and quantifiers. The set of well-formed formulae
FOR is defined in the following way.

Definition 53. The set of formulae FOR is defined to be one satisfying the
following conditions:

• ATOM ⊆ FOR;
• if Φ is a formula, Φ ∈ FOR, then ¬(Φ) ∈ FOR;
• if Φ and Ψ are formulae, Φ, Ψ ∈ FOR, then

(Φ ∧ Ψ), (Φ ∨ Ψ), (Φ ⇒ Ψ), (Φ ⇔ Ψ) ∈ FOR;
• if Φ ∈ FOR, X denotes a variable, then ∀X(Φ) ∈ FOR and ∃X(Φ) ∈ FOR;
• all the elements of FOR must be generated by applying the above rules.

The elements of FOR are called formulae.

If we have in mind a specific set of constant values, variables, or object
names occurring in an expression or a set of expressions E, we shall write
D(E), V (E), and O(E), respectively.
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An occurrence of a variable in an expression (formula) can be free or
bound. The occurrence of variable X is bound if it is within the scope of some
quantifier ∀X or ∃X. An occurrence of a variable which is not bound — i.e.
one lying outside the scope of any quantifier referring to this variable — is free.

A variable is bound in a formula if at least one of its occurrences is bound
in this formula. A variable is free in a formula if at least one of its occurrences
is free in this formula. A precise definition of free variables is given below.

Definition 54. Let q be an atomic formula, q ∈ ATOM . Let Φ and Ψ be some
formulae, Φ, Ψ ∈ FOR. Further, let FV (E) denote the set of free variables
in expression E (here: formula or any value or variable). The set FV (E) is
defined as follows:

• if X ∈ V then FV (X) = {X},
• if d ∈ D then FV (d) = ∅,
• if t ⊆ D then FV (t) = ∅,
• if q is defined as Ai(o) = e or Ai(o) ∈ e, q ∈ ATOM then FV (q) = FV (e),
• FV (¬Φ) = FV (Φ),
• FV (Φ � Ψ) = FV (Φ) ∪ FV (Ψ) for any � ∈ {∧,∨,⇒,⇔},
• FV (∇X(Φ)) = FV (Φ) \ {X} for ∇ ∈ {∀,∃}.

The definition above may be considered to be to complex; it is put in such
a way in order to keep a unique way of defining the set of free variables in
case of AL and predicate logic.

Note that, according to the above definition, a variable can be both bound
and free in certain formula. Such a case takes place if some occurrences are
bound and some of them are free. In such cases, in order to avoid ambigu-
ities, we shall assume that a consistent renaming of the bound occurrences
is applied, so that the free occurrences of the variable are the only ones re-
maining. Let for example Ψ = ((A(o) = X) ∨ (∀XB(o) = X)). In Ψ the first
occurrence of X is free, while the second one is bound. Thus X is both free
and bound in Ψ . After renaming the bound occurrence of X with Y we have
Ψ = ((A(o) = X) ∨ ∀Y B(o) = Y ), and thus X is only free and Y is only
bound in Ψ .

Of course, such a renaming procedure does not change the meaning of the
formula. Note also that although according to Definition 54 one can build
formulae like ∀XΨ or ∃XΨ where X does not occur in Ψ as a free variable
(especially in the case of variable-free languages, i.e. AAL and SAL), it seems
to be impractical. A reasonable assumption is that if a certain variable is
quantified in a formula, it must be free within the scope of the quantifier [16].

Note that, roughly speaking, for any term or formula, the set of free vari-
ables of it can be easily obtained by deleting from the set of all variables oc-
curring in this term or formula the ones which are bound by use of quantifiers.
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3.4 Semantics of Attribute Logic

Formulae of attributive logic can be assigned truth-value by defining an in-
terpretation of the symbols of alphabet. In order to define an interpretation,
the following four elements must be defined:

• a nonempty set U called a universe; the elements of U are the objects of
a certain universe of discourse, in other words — the domain of interpre-
tation;

• a nonempty set Uo of objects of interest;
• a mapping I which assigns meaning to atomic constants, object and at-

tribute symbols, by providing the current understanding of these symbols
with regard to the universe of discourse;

• a mapping v for assigning values to free variables.

Since in general free variables may occur in formulae, in order to be able to
proceed, such variables must be assigned a meaning; this is done by defining
a variable assignment .

Definition 55. A variable assignment v is any mapping v : V → U ∪ 2U .

Let U be a nonempty (finite) set, and let v be some variable assignment
defined as above. Further, let I be a mapping of atomic constants, object and
attribute symbols into U , objects of Uo and functions on elements of Uo with
values in U , respectively. The formal definition of interpretation is as follows.

Definition 56. An interpretation of expressions of AL formula is any map-
ping I extended over formulae, satisfying the following conditions:

• for any constant symbol d ∈ D, I(d) ∈ U ;
• for any object symbol o ∈ O, I(o) ∈ Uo;
• for any free variable X ∈ V , I(X) = v(X), where v(X) ∈ U ∪ 2U ;
• for any set symbol t ⊆ D, I(t) ⊆ U ;
• for any attribute name Ai ∈ A, I(Ai) is a (partial) function of the type

I(Ai) : Uo → U ∪ 2U .

For the sake of consistency, it is assumed that if d ∈ t, then also I(d) ∈ I(t)
and vice versa.

Given an interpretation I (and variable assignment v, if necessary) over
a domain U one can evaluate the truth-value of AL formulae. In order to do
that, the idea of satisfaction for formulae is defined. For intuition, a formula
is satisfied if and only if after consistent mapping of its elements into the
universe of discourse, a true statement is obtained. In other case the formula
is not satisfied, i.e. it represents a false statement with regard to the assumed
interpretation.
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The notion of satisfaction will be denoted with the standard symbol |=.
Thus, |=I,v Φ is to be read as ‘Φ is true (is satisfied) under interpretation I
for variable assignment v’. Similarly, 
|=I,v Φ is to be read as ‘Φ is false (is not
satisfied) under interpretation I and variable assignment v’.

For simplicity, if either the variable assignment is not necessary (no free
variables occur since all the formulae are closed ones) or the variable assign-
ment is known by default, the explicit specification of v may be omitted. The
formal definition stating when a formula is satisfied is given below.

Definition 57. Let I be an interpretation over domain U and let v be a vari-
able assignment. Moreover, let Ai(o) = e be an atomic formula and let Φ and
Ψ denote two formulae. The following statements define the satisfaction of
formulae in FOR:

1. |=I,v Ai(o) = e iff (if and only if) I(Ai)(I(o)) = I(e) (recall that I(X) =
v(X) for any free variable X ∈ V ;

2. |=I,v Ai(o) ∈ e iff (if and only if) I(Ai)(I(o)) ∈ I(e) (recall that I(X) =
v(X) for any free variable X ∈ V ;

3. |=I,v ¬Φ iff 
|=I,v Φ;
4. |=I,v Φ ∧ Ψ iff both |=I,v Φ and |=I,v Ψ ;
5. |=I,v Φ ∨ Ψ iff |=I,v Φ or |=I,v Ψ ;
6. |=I,v Φ ⇒ Ψ iff 
|=I,v Φ or |=I,v Ψ ;
7. |=I,v Φ ⇔ Ψ iff |=I,v Φ and |=I,v Ψ , or, 
|=I,v Φ and 
|=I,v Ψ ;
8. |=I,v ∀XΦ iff for any u ∈ U ∪2U and any variable assignment w such that

w(X) = u and w(Y ) = v(Y ) for any Y 
= X, there is |=I,w Φ;
9. |=I,v ∃XΦ iff there exists u ∈ U ∪ 2U such that for variable assignment w

defined as w(X) = u and w(Y ) = v(Y ) for any Y 
= X, there is |=I,w Φ.

For convenience, one can say that ‘a formula is satisfied under a given
interpretation I’ or, equivalently, that ‘a given interpretation I satisfies a
formula’.

The following definitions are re-stated versions of appropriate definitions
introduced for propositional logic.

Definition 58. A formula is consistent ( satisfiable) if and only if there ex-
ists an interpretation I over some domain U (and variable assignment v if
necessary) which satisfies this formula.

For simplicity, we shall also say that a formula is satisfiable, if given I and
U one can choose a variable assignment v, such that the formula is satisfied
under I.

Definition 59. A formula is inconsistent (unsatisfiable) if and only if there
does not exist any interpretation I (and variable assignment v) satisfying the
formula.
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Definition 60. A formula is valid ( tautology) if and only if for any inter-
pretation I over any domain U there exists a variable assignment v, such that
the formula is satisfied under the interpretation.

Note that the above definition is equivalent to assuming that the free vari-
ables in a formula are implicitly existentially quantified; hence, for example,
any formula of the form Ai = Y ∨ ¬(Ai = X) will be regarded as a valid
one. Although in further parts of this work we shall refer to variable assign-
ments or substitutions rather than to quantification, this kind of an implicit
assumption will be prevalent for most of this work. Recall that a tautology is
denoted as � while an unsatisfiable formula by ⊥.

Definition 61. A formula H is a logical consequence of formulae ∆1,∆2,
. . . ,∆n if and only if for any interpretation I satisfying ∆1 ∧ ∆2 ∧ . . . ∧ ∆n

for a certain variable assignment v there exists a variable assignment w, such
that H is satisfied under interpretation I and variable assignment w.

Note that in most textbooks on logic and automated theorem proving the
above definition [16] refers in fact only to the so-called closed formulae, i.e.
ones with no free variables. In case free variables occur in a formula, one is to
specify the way of ‘understanding’ them. Here, contrary to the most common
approach [39], we insist on ‘understanding’ free variables as ones ‘existentially
quantified’ and so we follow Definition 60.

Definition 62. An interpretation I satisfying formula Φ is said to be a model
for Φ.

3.5 Issues Specific to Attribute-Based Logic

There are several issues specific to attribute-based logic. Unfortunately, they
are not covered by majority of textbooks on logic. Below, a selection of such
issues is presented in detail.

3.5.1 Internal Conjunction

First, consider the case of discrete, finite domains. Using the language of AAL
attributes can take only atomic values. After moving to a more expressive lan-
guage of SAL, attributes can take set values. This means that such an attribute
can take more than one value at a time for a given object. Such attributes
are specific1 but useful in numerous practical applications. Especially when
the set of values assigned to an object contains numerous values the notation
A(o) = t can be considered as a useful shorthand.

Consider a typical example of specifying foreign languages known by
people — most of the people do not know any foreign language, some of
1 Sometimes such attributes are called multiple valued attributes.
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them know one or two, but there are people who know ten or more lan-
guages. This problem encountered in classical RDBS with atomic values leads
to the so-called fourth normal form [23]. An atom specifying that an at-
tribute takes set value can be represented in a (logically equivalent) form
incorporating atomic values only. The set representation of several atomic
values is also referred to as internal conjunction. Thus instead of writing
kfl(doe) = english ∧ kfl(doe) = french ∧ kfl(doe) = spanish one can simply
write kfl(doe) = {english, french, spanish}, where kfl(X) stays for ‘knows-
foreign-languages(X)’.

In fact, in the atomic representation in AAL, where attributes can take
atomic values, a conjunctive formula as below can be transformed into a single
atom of SAL according to the following principle

[(Ai = d1) ∧ (Ai = d2) ∧ . . . ∧ (Ai = dj)] ≡ [Ai = t] ,

where t = {d1, d2, . . . , dj} is a subset of D2. An analogous extension applies
to interval representation. For example, Ai = [a, b] means that all the values
belonging to the interval [a, b] are covered (both in case of discrete and con-
tinuous domain of the attribute). In case of infinite set t, the atom Ai(o) = t
does not have finite internal conjunction form replacing it.

3.5.2 Internal Disjunction

A similar problem to the above occurs when one has to specify a long dis-
junctive formula specifying possible atomic values for the same object and
attribute. Let us introduce a new relational symbol ∈ having the obvious
meaning. In fact, in the atomic representation in AAL, where attributes can
take atomic values, a disjunctive formula as below can be transformed into a
single atom of SAL according to the following principle

[(Ai = d1) ∨ (Ai = d2) ∨ . . . ∨ (Ai = dj)] ≡ [Ai ∈ t] ,

where t = {d1, d2, . . . , dj} is a subset of D3. An analogous extension applies
to interval representation. For example, Ai ∈ [a, b] means that all the values
belonging to the interval [a, b] are possible values for Ai (both in case of
discrete and continuous domain of the attribute).

Note that the above transformation can be applied only in case of finite
domains. In case of infinite domains, both countable and continuous, the set
notation of SAL has no equivalent in the language of AAL. Hence, the expres-
sive power of SAL is higher than the one of AAL.

2 According to the rules of syntax defined above and for simplicity, the notation
Ai(o) = t is used throughout this book.

3 According to the rules of syntax defined above and for simplicity, the notation
Ai(o) ∈ t is used instead for convenience.
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3.5.3 Explicit and Implicit Negation

Although negation can be represented explicitly, it is often the case that the
explicit use of it is avoided. In such a case we say that we use only positive
representation and positive atomic formulae. A negated atomic formula can
be transformed into a positive one according to the following rule

¬(Ai = d) ≡ (Ai ∈ d) ,

where d is the complement of d, i.e. {d} ∪ d = Di, {d} ∩ d = ∅; in fact
d = D \ {d}. Unfortunately, for set values the transformation becomes more
clumsy and requires referring to specific values of t.

In case of internal disjunction we have the following transformation

¬(Ai ∈ t) ≡ (Ai ∈ t) ,

where t is the complement of t, i.e. t ∪ t = Di, t ∩ t = ∅; in fact t = D \ t.
Let denote any value of an appropriate domain4. Note that there is also

(Ai ∈ ) ≡ (Ai ∈ Di)

having the consequence that ¬(Ai ∈ ) ≡ (Ai ∈ ∅) (always false).
Specific problems may occur in case of set values being intervals. For ex-

ample, the negation of belonging to a convex interval situated somewhere in
a middle of the domain may lead to the sum of the left and right complement
of it. Let Di = [0, 10]. We have

¬(Ai ∈ [3, 7]) ≡ Ai ∈ [0, 3) ∪ (7, 10] ,

i.e. in case of intervals reduction of negation may lead to complex values, such
as sum of convex intervals (sometimes called non-convex intervals).

For the sake of simplicity, in this book we do not allow for relation symbols
different than equality (=) and ‘belongs to’ (∈), at least in the basic presen-
tation of attribute-based logic. However, depending on the current needs, one
can admit various notational possibilities extending the syntax (and seman-
tics) of the AL. For example, if the set of values for attribute Ai is an ordered
set, one can use typical algebraic symbols such as <, >, ≤, ≥. For instance, if
Di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then Ai ∈ {0, 1, 2, 3} can be denoted as Ai ≤ 3,
and Ai ∈ {3, 4, 5} can be denoted as 3 ≤ Ai ≤ 5. Further, Ai = {3, 4, 5} can
be denoted as Ai = [3, 5], etc. Such use of relational symbols for specification
of atomic formulae (or selectors) can be considered as popular shorthand and
in fact it is very common in the domain literature.

4 This is the convention used in Prolog programming language.
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3.6 Inference Rules Specific to Attributive Logic

Apart from the fact that all the logical equivalences and inference rules intro-
duced for propositional calculus are also valid for attribute-based logic, there
are some rules specific to logic based on attributes. These rules follow from
the properties and issues observed in the former section and from the inter-
pretation of AL formulae. Fortunately, all of them are simple and intuitive.

Firstly, consider two subset symbols s, t ⊆ D. Obviously, for any object
symbol o ∈ O and any attribute Ai ∈ A, if t is a subset of s the following rule
holds

Ai(o) = s

Ai(o) = t
. (3.1)

Rule (3.1) will be referred to downward consistency rule or subset consis-
tency rule. The proof of this rule follows immediately from the definition of
interpretation and the assumption that if d ∈ t, then also d ∈ s. The meaning
of the downward consistency rule is obvious — if an attribute takes values
from a certain set, then certainly its values stay within any subset of that set.

By analogy, consider two subset symbols s, t ⊆ D. Obviously, for any
object symbol o ∈ O and any attribute Ai ∈ A, if s is a subset of t the
following rule holds

Ai(o) ∈ s

Ai(o) ∈ t
. (3.2)

Rule (3.2) will be referred to upward consistency rule or superset consis-
tency rule. The proof of this rule follows immediately from the definition of
interpretation and the assumption that if d ∈ s, then also d ∈ t. The meaning
of the upward consistency rule is obvious — if an attribute takes values from
a certain set, then certainly its values stay within any superset of that set.

Third, consider again two subset symbols s, t ⊆ D. Obviously, for any ob-
ject symbol o ∈ O and any attribute Ai ∈ A, if the attribute takes value in s
and in t, then its value must be in s ∪ t. This observation takes the form of
the following rule

Ai(o) = s,Ai(o) = t

Ai(o) = s ∪ t
. (3.3)

Rule (3.3) will be referred to union consistency rule. The proof of this rule
follows immediately from the definition of interpretation and the properties of
(internal) conjunction. The meaning of this rule is obvious — if an attribute
takes values of a certain set and simultaneously of another set, then certainly
it takes the values of the sum of them.

Similarly, consider an analogous case of internal disjunction. Consider
again two subset symbols s, t ⊆ D. Obviously, for any object symbol o ∈ O
and any attribute Ai ∈ A, if the attribute takes value in s and in t, then its
value must be in s ∩ t. This observation takes the form of the following rule

Ai(o) ∈ s,Ai(o) ∈ t

Ai(o) ∈ s ∩ t
. (3.4)



3.6 Inference Rules Specific to Attributive Logic 63

Rule (3.4) will be referred to intersection consistency rule. The proof of
this rule follows immediately from the definition of interpretation and the
properties of (internal) disjunction. The meaning of this rule is obvious —
if an attribute takes values from a certain set and simultaneously belongs to
another set, then certainly it takes the values within the intersection of them.

Finally, consider some attribute Ai taking a set t value for certain object
o. Then, if t is decomposed into any sets t1, t2, . . . , tk summing up to t, the
value of Ai may be split over these subsets. Hence we have the following rule

Ai(o) = t, t = t1 ∪ t2 ∪ . . . ∪ tk
Ai(o) = t1 ∧ Ai(o) = t2 ∧ . . . ∧ Ai(o) = tk

. (3.5)

The above rule will be referred to as conjunctive decomposition rule. The
proof of it follows directly from the definition of interpretation. The rule can
be applied to decompose a single fact of SAL into a number of facts (in fact —
conjunction of them) incorporating smaller subsets of the attribute domain.
In case of finite domains, the decomposition may lead to atomic values, i.e.
to a formula of AAL.

To end up with this line, consider a certain attribute Ai taking its value for
certain object o within set t. Then, if t is decomposed into any sets t1, t2, . . . , tk
summing up to t, the value of Ai must be in one of these subsets.

Hence we have the following rule

Ai(o) ∈ t, t = t1 ∪ t2 ∪ . . . ∪ tk
Ai(o) ∈ t1 ∨ Ai(o) ∈ t2 ∨ . . . ∨ Ai(o) ∈ tk

. (3.6)

The above rule will be referred to as disjunctive decomposition rule. The
proof of it follows directly from the definition of interpretation. The rule can
be applied to decompose a single fact of SAL into a number of facts (in fact —
disjunction of them) incorporating smaller subsets of the attribute domain.
In case of finite domains, the decomposition may lead to atomic values, i.e.
to a formula of AAL.
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Resolution

The basic ideas concerning the resolution inference rule and resolution the-
orem proving were presented in one of the previous chapters. Here we shall
refer to some details of the resolution method as applied to first-order logic.

First, let us recapitulate the basic ideas concerning substitutions and uni-
fication of terms and atomic formulae.

4.1 Substitution and Unification

4.1.1 Substitutions

Substitution is an operation allowing to replace some variables occurring in
a formula with terms. The goal of applying a substitution is to make a certain
formula more specific so that it matches another formula. Typically, substi-
tutions are applied in resolution theorem proving for unification of formulae.
A substitution is defined as follows:

Definition 63. A substitution σ is any finite mapping of variables into terms
of the form

σ : V → TER.

Since substitutions are applied to more complex expressions, it is necessary
to extend the definition of substitutions on terms and formulae. This is done
in a straightforward way as follows:

Definition 64. Any substitution σ (σ : V → TER) is extended to operate on
terms and formulae so that a finite mapping of the form

σ : TER ∪ FOR → TER ∪ FOR

satisfying the following conditions is induced:

• σ(c) = c for any c ∈ C;
• σ(X) ∈ TER, and σ(X) 
= X for a certain finite number of variables only;

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 65–72 (2006)
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• if f(t1, t2, . . . , tn) ∈ TER, then

σ(f(t1, t2, . . . , tn)) = f(σ(t1), σ(t2), . . . , σ(tn));

• if p(t1, t2, . . . , tn) ∈ ATOM , then

σ(p(t1, t2, . . . , tn)) = p(σ(t1), σ(t2), . . . , σ(tn));

• σ(¬Φ) = ¬(σ(Φ)), for any formula Φ ∈ FOR;
• σ(Φ � Ψ) = σ(Φ) � σ(Ψ) for any two formulae Φ, Ψ ∈ FOR and for � ∈

{∧,∨,⇒,⇔};
• σ(∇X(Φ)) = ∇X(σ′(Φ)) for any formula Φ ∈ FOR and ∇ ∈ {∀,∃}; here

σ′(Y ) = σ(Y ) for any Y 
= X and σ′(X) = X.

Thus, a substitution σ is any finite mapping of variables into terms ex-
tended over terms and formulae in the above way. Any formula σ(Φ) resulting
from application of substitution σ to the variables of Φ will be denoted as Φσ
and it will be called a substitution instance or simply an instance of Φ. If no
variables occur in Φσ (or any other formula or term), it will be called a ground
instance (a ground formula or a ground term, respectively).

Note, that according to the above definition, substitutions in fact operate
only on free variables (they change only free variables, i.e. the ones that are
not quantified). For example, in resolution theorem proving all the quantifiers
(formally) are removed, and the resulting formulae are quantifier-free; thus
all the variables can be regarded as free variables, at least with regard to
substitutions application.

Since substitutions operate in fact on a finite number of variables only,
they can be conveniently denoted as sets of ordered pairs of variables and the
terms to be substituted for them. Hence, any substitution σ can be presented
as

σ = {X1/t1,X2/t2, . . . , Xn/tn} ,

where ti is a term to be substituted for variable Xi , i = 1, 2, . . . , n. If Φ is
a formula (or term) and σ is a substitution, then Φσ is the formula (or term)
resulting from simultaneous replacing the variables of Φ with the appropriate
terms of σ.

Since substitutions are mappings, a composition of substitutions is well
defined. Note that, having two substitutions, say σ and θ, the composed sub-
stitution σθ can be obtained from σ by simultaneous application of θ to all
the terms of σ, deletion of any pairs of the form X/t where t = X (iden-
tity substitutions), and enclosing all the pairs X/t of θ, such that σ does not
substitute for (operate on) X [16, 39].

Let σ={X1/t1,X2/t2, . . . , Xn/tn} and let θ = {Y1/s1, Y2/s2, . . . , Ym/sm}.
The composition of the above substitutions is obtained from the set

{X1/t1θ,X2/t2θ, . . . ,Xn/tnθ, Y1/s1, Y2/s2, . . . , Ym/sm}
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by:

• removing all the pairs Xi/tiθ where Xi = tiθ, and
• removing all the pairs Yj/sj where Yj ∈ {X1,X2, . . . , Xn}.
Example. Consider the following substitutions σ = {X/g(U), Y/f(Z), V/W,
Z/c} and θ = {Z/f(U),W/V,U/b}. The composition of them is defined as

σθ = {X/g(b), Y/f(f(U)), Z/c,W/V,U/b}.

Substitutions are in general mappings, but not one-to-one mappings;
hence, in general an inverse substitution for a given one may not exist. How-
ever, there exists a class of substitutions, the so-called renaming substitutions,
such that an inverse substitution always exists provided that they are one-to-
one mappings.

Definition 65. Substitution λ is a renaming substitution iff it is off the form

θ = {X1/Y1,X2/Y2, . . . , Xn/Yn} (4.1)

Moreover, it is a one-to-one mapping if Yi 
= Yj for i 
= j, i, j ∈ {1, 2, . . . , n}.
Assume λ is a renaming, one-to-one substitution given by (4.1). The in-

verse substitution for it is given by λ−1 = {Y1/X1, Y2/X2, . . . , Yn/Xn, }. The
composition of a renaming substitution and the inverse one leads to an empty
substitution, traditionally denoted with ε; we have λλ−1 = ε.

Let E denote an expression (formula or term), ε denote an empty substi-
tution, and let λ be a one-to-one renaming substitution; σ and θ denote any
substitution. The following properties are satisfied for any substitutions:

• E(σθ) = (Eσ)θ,
• σ(θγ) = (σθ)γ (associativity),
• Eε = E,
• εσ = σε = σ.

Note that, in general, the composition of substitutions is not commutative.

4.1.2 Unification

Finally, let us move onto unification.
Substitutions are applied to unify terms and formulae. Unification is a

process of determining and applying a certain substitution to a set of ex-
pressions (terms or formulae) in order to make them identical. We have the
following definition of unification.

Definition 66. Let E1, E2, . . . , En ∈ TER ∪ FOR are certain expressions.
We shall say that expressions E1, E2, . . . , En are unifiable if and only if there
exists a substitution σ, such that {E1, E2, . . . , En}σ = {E1σ,E2σ, . . . , Enσ}
is a single-element set.

Substitution σ satisfying the above condition is called a unifier (or a uni-
fying substitution) for expressions E1, E2, . . . , En.
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Note that if there exists a unifying substitution for some two or more
expressions (terms or formulae), then there usually exists more than one such
substitution. It is useful to define the so-called most general unifier (mgu, for
short), which, roughly speaking, substitutes terms for variables only if it is
necessary, leaving as much place for possible further substitutions, as possible.
The most general unifier is defined as follows.

Definition 67. A substitution σ is a most general unifier for a certain set of
expressions if and only if, for any other unifier θ of this set of expressions,
there exists a substitution λ, such that θ = σλ.

The meaning of the above definition is obvious. Substitution θ is not a
most general unifier, since it is a composition of some simpler substitution σ
with an auxiliary substitution λ.

In general, for arbitrary expressions there may exist an infinite number of
unifying substitutions. However, it can be proved that any two most general
unifiers can differ only with respect to variable names. This is stated with the
following theorem.

Theorem 6. Let θ1 and θ2 be two most general unifiers for a certain set of
expressions. Then, there exists a one-to-one renaming substitution λ such that
θ1 = θ2λ and θ2 = θ1λ

−1.

The proof can be found in [16].
As an example consider atomic formulae p(X, f(Y )) and p(Z, f(Z)). The

following substitutions are all most general unifiers:

• θ = {X/U, Y/U,Z/U},
• θ1 = {Z/X, Y/X},
• θ2 = {X/Y,Z/Y },
• θ3 = {X/Z, Y/Z}.

All of the above unifiers are equivalent — each of them can be obtained
from another one by applying a renaming substitution. For example, θ = θ1λ
for λ = {X/U}; on the other hand obviously θ1 = θλ−1.

4.1.3 Algorithm for Unification

It can be proved that if the analyzed expressions are terms or formulae, then
there exists an algorithm for efficient generating the most general unifier,
provided that there exists one; in the other case the algorithm terminates
after finite number of steps [16]. Thus, the unification problem is decidable.

The basic idea of the unification algorithm can be explained as a subse-
quent search through the structure of the expressions to be unified for in-
consistent relative components and replacing one of them, hopefully being
a variable, with the other.

In order to find inconsistent components it is useful to define the so-called
disagreement set. Let W ⊆ TER ∪ FOR be a set of expressions to be unified.



4.2 Clausal Form 69

A disagreement set D(W ) for a nonempty set W is the set of terms obtained
through parallel search of all the expressions of W (from left to right), which
are different with respect to the first symbol. Hence, the set D(W ) specifies all
the inconsistent relative elements met first during the search. The unification
algorithm [16] is as follows.

Unification Algorithm

1. Set i = 0, Wi = W , θi = ε.
2. If Wi is a singleton, then stop; θi is the most general unifier for W .
3. Find D(Wi).
4. If there are a variable X ∈ D(Wi) and a term t ∈ D(Wi), such that X

does not occur in t, then proceed; otherwise stop — W is not unifiable.
5. Set θi+1 = θ{X/t}, Wi+1 = Wi{X/t}.
6. Set i = i + 1 and go to 2.

Example. Consider two atomic formulae p(X, f(X,Y ), g(f(Y,X))) and p(c, Z,
g(Z)). The following steps illustrate the application of the unification algo-
rithm to these atomic formulae.

1. i = 0, W0 = {p(X, f(X,Y ), g(f(Y,X))), p(c, Z, g(Z))}, θ0 = {}.
2. D(W0) = {X, c}.
3. θ1 = {X/c}, W1 = {p(c, f(c, Y ), g(f(Y, c))), p(c, Z, g(Z))}.
4. D(W1) = {f(c, Y ), Z}.
5. θ2 = {X/c}{Z/f(c, Y )} = {X/c, Z/f(c, Y )},

W2 = {p(c, f(c, Y ), g(f(Y, c))), p(c, f(c, Y ), g(f(c, Y )))}.
6. D(W2) = {Y, c}.
7. θ3 = {X/c, Z/f(c, Y )}{Y/c} = {X/c, Z/f(c, c), Y/c},

W3 = {p(c, f(c, c), g(f(c, c))), p(c, f(c, c), g(f(c, c)))}.
8. Stop; the most general unifier is θ3 = {X/c, Z/f(c, c), Y/c}.

The unification algorithm has some important properties given by Theo-
rem 7.

Theorem 7. If W is a finite set of unifiable expressions, then the algorithm
always terminates at step 2 and it produces the most general unifier for W .
Moreover, if the expressions of W are not unifiable, then the algorithm termi-
nates at step 4.

The proof can be found in [16].

4.2 Clausal Form

For resolution theorem proving a key issue is to transform the original set of
formulae into the so-called clausal form i.e. a set of first-order clauses. The
procedure is similar to the one applied in case of propositional calculus; in fact
one should follow the sequence necessary to transform a formula to CNF. The
main difference with respect to propositional logic is that all the quantifiers
should also be eliminated.
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Apart from the rules coming directly from propositional calculus, there are
some new ones applicable to the formulae with quantifiers. Let Φ[X] mean that
variable X occurs in Φ, while Ψ is free from X. These new rules are as follows:

• ∀XΦ[X] ∧ Ψ ≡ ∀X(Φ[X] ∧ Ψ),
• ∀XΦ[X] ∨ Ψ ≡ ∀X(Φ[X] ∨ Ψ),
• ∃XΦ[X] ∧ Ψ ≡ ∃X(Φ[X] ∧ Ψ),
• ∃XΦ[X] ∨ Ψ ≡ ∃X(Φ[X] ∨ Ψ).

There are also the equivalents to extended De Morgan’s laws:

• ¬(∀XΦ[X]) ≡ ∃X(¬Φ[X]),
• ¬(∃XΦ[X]) ≡ ∀X(¬Φ[X]).

Moreover, universal quantifier distributes over conjunction while the exis-
tential one — over disjunction:

• ∀XΦ[X] ∧ ∀XΨ [X] ≡ ∀X(Φ[X] ∧ Ψ [X]),
• ∃XΦ[X] ∨ ∃XΨ [X] ≡ ∃X(Φ[X] ∨ Ψ [X]).

In the case of universal quantifier and disjunction, as well as in the case
of existential quantifier and conjunction, one has to rename variables and
proceed according to the following scheme:

• ∀XΦ[X] ∨ ∀XΨ [X] ≡ ∀XΦ[X] ∨ ∀Y Ψ [Y ] = ∀X∀Y (Φ[X] ∨ Ψ [Y ]),
• ∃XΦ[X] ∧ ∃XΨ [X] ≡ ∃XΦ[X] ∧ ∃Y Ψ [Y ] = ∃X∃Y (Φ[X] ∧ Ψ [Y ]).

The procedure allowing to transform any first-order logic formula to clausal
form, necessary for resolution theorem proving consists of subsequent elimina-
tion of equivalence and implication connectives, moving negation sign directly
before predicate symbols, moving all quantifiers into the front of a formula
(forming the so-called prenex ), and finally, transforming the rest into CNF
(the matrix ). The details are in any textbook on resolution theorem proving,
e.g. [16,37,39].

4.3 Resolution Rule

Resolution rule in first-order logic constitutes a single and powerful inference
rule of conceptually simple scheme, being an extension of the resolution rule in
propositional calculus. As in propositional logic it is very attractive, especially
for automated theorem proving. Below we explain a single step in resolution
theorem proving, i.e. the resolution rule and its application.

Let there be given two clauses, C1 = φ∨q1 and C2 = ϕ∨¬q2. It is important
that q1 and ¬q2 are either complementary literals or there exists a most general
unifier of the form (mgu) σ, such that q1σ and q2σ are identical, i.e. q1σ and
¬q2σ are complementary. The resolution rule (or resolution principle) allows
to generate a new clause C = φσ ∨ ϕσ being a logical consequence of the
parent clauses; the complementary literals are removed.
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Definition 68. Let C1 = φ ∨ q1 and C2 = ϕ ∨ ¬q2 be two arbitrary clauses.
Let σ be a mgu for q1 and q2. The Resolution Rule is an inference rule of the
form

φ ∨ q1, ϕ ∨ ¬q2

φσ ∨ ϕσ
. (4.2)

Obviously, the produced formula is a logical consequence of the parent
formulae; the proof is given in almost any handbook on resolution theorem
proving, e.g. [16]. Further, note that at the level of propositional language
the resolution rule is equivalent to the rule expressing transitivity. In order
to see that let us transform the clause to the following equivalent form, i.e.
C1 = ¬φ ⇒ q1 and C2 = q2 ⇒ ϕ. Next, let us apply the mgu σ to both of
the formulae; we obtain C1σ = ¬φσ ⇒ q1σ and C2σ = q2σ ⇒ ϕσ. Now, the
resolution rule takes the form

¬φσ ⇒ q1σ, q2σ ⇒ ϕσ

¬φσ ⇒ ϕσ
.

The resulting formula can be further transformed so we have ¬φσ ⇒ ϕσ =
φσ ∨ ϕσ.

As in the case of propositional calculus, resolution theorem proving is
carried out by appropriate application of the resolution rule. As it was men-
tioned, the method is especially convenient for automated theorem proving. It
has gained a great popularity during the last thirty five years. The resolution
method ( [16,37,39], for precise, logical treatment see as well [144]) combines
in a single rule the power of other rules, and due to its uniformity, can be
easily implemented for automated theorem proving with computers.

Unfortunately, the resolution rule stated as above does not provide a com-
plete tool for refutation. In certain cases it may happen that using the most
general unifiers does not lead to proving inconsistency; in such a case one
needs the factoring rule.

Let C be any clause such that two or more literals of C can be unified
with the most general unifier θ; in this case Cθ is a logical consequence of C
(C |= Cθ) and Cθ is called a factor of C. The rule

C

Cθ

is called factorization. Factorization is a complementary, but necessary rule
to assure completeness of resolution theorem proving.

Example. In order to illustrate application of resolution theorem proving let
us consider the following example:

There is a barber who was ordered to shave anyone who does not shave
himself. Should he shave himself or not?

This is the famous Russell antinomy — in fact the order is inconsistent. Con-
sider the following set of clauses being an equivalent of the problem statement.
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A. ∀X¬shaves(X,X) ⇒ shaves(barber ,X) — anyone who does not shave
himself is shaved by the barber.

B. ∀Y shaves(barber , Y ) ⇒ ¬shaves(Y, Y ) — anyone who is not shaved by the
barber shaves himself.

After transmitting to clausal form we have two clauses:

• C1 = shaves(X,X) ∨ shaves(barber ,X),
• C2 = ¬shaves(barber , Y ) ∨ ¬shaves(Y, Y ).

Let us instantiate the variables with substitution θ = {X/barber , Y/barber};
we have C1θ = shaves(barber , barber) and C2θ = ¬shaves(barber , barber).
Obviously, there is C1 |= C1θ and C2 |= C2θ. Finally, resolution rule can be
applied to produce the empty clause as follows

shaves(barber , barber),¬shaves(barber , barber)
⊥ .

Since the resolvent is a logical consequence of parent clauses, we have
C1, C2 |= ⊥, i.e. the initial statement is in fact inconsistent.

To conclude, resolution rule, augmented with factorization rule, constitute
a tool for theorem proving which is:

• based on refutation — an empty clause (always false) is to be derived from
assumptions completed with negated conclusion,

• sound — any conclusion derived with resolution (and factorization) is
sound,

• complete — in the sense that an empty clause can always be deduced from
an unsatisfiable set of clauses.

Resolution theorem proving is based on using the clausal form, i.e. quanti-
fier-free first-order CNF formula. Hence it is especially convenient for systems
which are or can be easily transformed into CNF. In rule-based systems res-
olution theorem proving finds the following applications:

• proving satisfaction of preconditions of rules in order to check if a selected
rule can be fired (see [142]),

• proving attainability of goals,
• checking for inconsistent rules.

Resolution is also the basic rule implemented in all Prolog systems.
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Dual Resolution

Dual resolution, or more precisely, backward dual resolution (bd-resolution,
for short) is an inference method dual to classical resolution. An interesting
fact is that this rule works backwards in the sense that the disjunction of
the parent formulae is a logical consequence of the inferred formula. The
logical foundations for dual resolution at the level of propositional logic were
presented in Chap. 1 in Subsect. 1.8.3. Here dual resolution in first-order logic
is presented in detail.

5.1 Minterm Form

For theorem proving with bd-resolution a key issue is to transform the orig-
inal set of formulae into the so-called minterm form i.e. a set of first-order,
quantifier-free minterms (simple conjunctive formulae). The procedure is anal-
ogous to the one applied in case of transforming a formula to DNF in proposi-
tional calculus; in fact one should follow the sequence necessary to transform
a formula to DNF. The main difference with respect to propositional logic is
that all the quantifiers should also be eliminated.

Apart from the rules coming directly from propositional calculus, there
are some new ones applicable to the formulae with quantifiers. These rules
are the same as in case of resolution, see Sect. 4.2.

The procedure allowing to transform any first-order logic formula to
minterm form, necessary for bd-resolution theorem proving is composed of
subsequent steps aimed at elimination of equivalence and implication con-
nectives, moving negation sign directly before predicate symbols, moving all
quantifiers into the front of a formula (forming the so-called prenex ), and fi-
nally, transforming the rest into DNF (the matrix ). The details are the same as
in the case of resolution and one can find them in any textbook on resolution
theorem proving, e.g. [16]. There are, however, two differences.

The first difference is that the matrix of the formula is to be transformed
into the DNF form rather than CNF. This may be inconvenient in case of large

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 73–88 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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sets of axioms which form a conjunction of statements from logical point of
view. Thus, bd-resolution theorem proving may be recommended either if the
initial form is ‘close to’ DNF, or for proving completeness (tautology) of a set
of formulae. The latter case is for example the case of proving completeness
of rule-based systems.

The second difference concerns elimination of universal quantifiers rather
than the existential ones. This can be done in a way analogous to skolemization
applied in classical resolution.

Let Q1X1 Q2X2 . . . QnXnΨ be the prenex normal form obtained from
the initial formula, where Qi, i = 1, 2, . . . , n are all the quantifiers and Ψ is
the quantifier-free matrix of the formula in DNF. Assume that Qi is the first
universal quantifier encountered when scanning the prefix of the formula from
left to the right. Now there are two possibilities:

1) If no existential quantifier occurs before Qi then all the occurrences of
variable Xi in Ψ are replaced with a new constant c (c cannot occur in Ψ)
and QiXi is removed from the prefix.

2) If Qk1 , Qk2 , . . . , Qkj
are all the existential quantifiers occurring before Qi,

then all the occurrences of Xi in Ψ are replaced with a term of the form
f(Xk1 ,Xk2 , . . . , Xkj

), where f is a new function symbol, and QiXi is re-
moved from the prefix.

In this way all the universal quantifiers are eliminated from the prefix, and,
since all the variables are existentially quantified, the prefix can be omitted.
From now on it is assumed that all the variables in the resulting minterm form
(DNF) are implicitly existentially quantified. It is important to note, that
although the quantifier-free formula obtained in this way is not necessarily
logically equivalent to the initial formula, they are simultaneously tautological
formulae.

Theorem 8. Let Ω be a logical formula and let Φ be its quantifier-free
minterm form. Ω is a tautology if and only if Φ is a tautology.

Proof. Let
Ω = Q1X1 Q2X2 . . . QnXnΨ .

Let us scan the prefix of Ω from left to right until the first universal quan-
tifier is encountered; let it be at position i and the encountered symbol is
QiXi = ∀Xi. In order to eliminate this quantifier and variable Xi we remove
the symbols QiXi from the prefix and substitute f(X1, . . . , Xi−1) for any
occurrence of Xi in Ψ — in this way we obtain a new formula Ωi, where

Ωi = ∃X1 . . . ∃Xi−1, Qi+1Xi+1, . . . , QnXnΨ{Xi/f(X1, . . . , Xi−1)} .

The main point is to prove that Ω is tautology iff Ωi is tautology.
Assume first that Ω is tautology. Thus, for any interpretation I, there

exist values of X1, . . . , Xi−1 such that for any value of Xi formula Qi+1Xi+1,
. . . , QnXnΨ is tautology. By hypothesis, assume that Ωi is not tautology.
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Hence, there exists an interpretation I ′ falsifying it. In other words, there
exist values of X1, . . . , Xi−1 and a value of f(X1, . . . , Xi−1) such that formula
Qi+1Xi+1, . . . , QnXnΨ is false. Obviously, this hypothesis is inconsistent with
the assumption that Ω is tautology, since for Xi = f(X1, . . . , Xi−1) it would
be false.

Now, assume that Ωi is tautology. Thus for any interpretation I, there
exist values of X1, . . . , Xi−1 such that Qi+1Xi+1, . . . , QnXnΨ{Xi/f(X1, . . . ,
Xi−1)} is true. By hypothesis, assume that Ω is not a tautology. Hence, there
exists an interpretation I ′ and some values of X1, . . . , Xi−1 as well as a value
of Xi such that Qi+1Xi+1, . . . , QnXnΨ is false. Obviously, this leads to incon-
sistency, since Ωi is true under any interpretation of f(X1, . . . , Xi−1).

The above line of reasoning should be applied inductively to eliminate
all universal quantifiers, when scanning the prefix of Ω for increasing values
of i. ��

The idea of the above proof is based on the proof of Theorem 4.1 con-
cerning properties of classical Skolemization for resolution theorem proving,
as presented in [16]. A proof of this theorem can also be found in [7].

5.2 Introduction to Dual Resolution

Consider for intuition the following simple example from [55]. Let there be
given a formula ψ, ψ = p(a) ∧ q(c) ∧ r(b) and another three formulae φ1 =
p(a) ∧ q(b), φ2 = p(X) ∧ ¬q(X) ∧ r(X) and φ3 = ¬p(Y ) ∧ r(Y ) (recall that
all the variables are denoted with capitals and are assumed to be implicitly
existentially quantified). The problem is to check if the disjunction of φ1, φ2

and φ3 ‘covers’ ψ, i.e. if any world satisfying ψ satisfies the disjunction of φ1,
φ2 and φ3. In other words, we check if the disjunction constitutes a formula
which is logical consequence of ψ. With use of the proposed approach we may
attempt to perform this check as follows.

Let us substitute b for X in φ2; φ2 is logical consequence of the resulting
formula; applying such a substitution will be called factorization. Further, we
can combine (analogically to resolution) the resulting formula with φ1 — by
‘resolving’ upon the pair q(b), ¬q(b) we obtain formula φ′ = p(a)∧ p(b)∧ r(b)
and the initial disjunction of φ1 and φ2 is logical consequence of φ′; note that
under assumption that φ′ is satisfied (all the components p(a), p(b) and r(b)
must be satisfied), the disjunction of φ1 and φ2 with b substituted for X must
be satisfied as well — this follows from the ‘key’ observation that from the
two literals q(b) and ¬q(b) at least one must be satisfied1. Similarly, we can
combine φ′ with φ3 after substituting b for Y ; we obtain φ′′ = p(a)∧ r(b) and

1 In fact, in classical logic — and so is our case — exactly one of them is satisfied;
however, one can develop further extensions of the discussed reasoning princi-
ple for which it would be enough to have at least one of the literals (formulae)
satisfied. This is so in case of the generalized bd-resolution presented in [53,55,56].
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the disjunction of φ3 and φ′ is logical consequence of φ′′. On the other hand
φ′′ is more general than ψ, thus the disjunction of initial formulae φ1, φ2 and
φ3 really ‘covers’ ψ.

Now let us consider the general case of bd-resolution. Let Ψ be a normal
formula, Ψ = ψ1∨ψ2∨. . .∨ψn, where ψk is a simple formula for k = 1, 2, . . . , n.
Using the set notation we can also write [Ψ ] = {ψ1, ψ2, . . . , ψn}. Further, let
ψi and ψj be some two simple formulae of Ψ , such that ψi = ψ′

i ∧ pi, and
ψj = ψ′

j ∧¬pj , where pi and pj are atomic formulae. If pi and pj are unifiable,
i.e. if there exists a substitution σ, such that piσ = pjσ, then it is possible to
build a new simple formula by combining together ψi and ψj .

In order to do that let us first apply σ to both ψi and ψj ; we obtain ψiσ =
ψ′

iσ∧piσ and ψjσ = ψ′
jσ∧¬pjσ. Note that applying the substitution to ψi and

ψj cannot increase their generality. Note also, that after applying the unifying
substitution, there is piσ = pjσ, i.e. we have arrived at a complementary pair
of literals within the above simple formulae. Now, since either piσ or ¬pjσ
must be false (under any interpretation), one can replace the disjunction of
(ψ′

iσ ∧ piσ) ∨ (ψ′
jσ ∧ ¬pjσ) with a conjunction of the form ψ′

iσ ∧ ψ′
jσ.

It can be seen that such a replacement cannot increase generality of the
initial formula, so the initial formula is logical consequence of the derived one.
This is so, since if the resulting formula is satisfied under a certain interpre-
tation, one of the simple formulae constituting the initial disjunction must be
satisfied as well (which one depends on the interpretation and the truth-value
of piσ under it). Thus, one can expect that the initial formula is at least as
general as the generated one, to be called a bd-resolvent.

In fact, starting from Ψ one can repeat the process in a recursive way, and
at any stage the initial formula is at least as general as the last bd-resolvent
generated, so the logical consequence relation is kept in the reversed order
with respect to the one of generation of new formulae.

If, after a finite number of steps one arrives at an empty formula (�, always
true, generated from a disjunction of the form p∨¬p), one can conclude that
the initial formula is satisfied under any interpretation, and as such is a valid
formula. This observation gives rise to a formal method of theorem proving.

5.3 Dual Resolution Rule

As the classical resolution rule, the dual resolution rule in first-order logic con-
stitutes a single and powerful inference rule of conceptually simple scheme.
Simultaneously, it constitutes an extension of the bd-resolution rule in propo-
sitional calculus, see Subsect. 1.8.3. As in propositional logic it is very attrac-
tive, especially for direct proving that a formula is tautology, in the case of
formulae in DNF form.

Below we explain a single step in bd-resolution theorem proving, i.e. the
bd-resolution rule and its application.
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Let there be given two minterms, M1 = φ ∧ q1 and M2 = ϕ ∧ ¬q2. It is
important that q1 and ¬q2 are either complementary literals or there exists
a most general unifier σ, such that q1σ and q2σ are identical, an so q1σ and
¬q2σ are complementary. The bd-resolution rule (or bd-resolution principle)
allows to generate a new simple formula M = φσ ∧ ϕσ; the complementary
literals are removed.

A graphical presentation is given below (Fig. 5.1).

φ ∧ q1 ϕ ∧ ¬q2

φσ ∧ ϕσ

σ σ

Fig. 5.1. A schematic presentation of dual resolution

What is important and constitutes a principal difference with respect to
classical resolution rule is that the disjunction of the parent minterms is a
logical consequence of the generated result; this is schematically presented
below (Fig. 5.2).

φσ ∧ ϕσ φ ∧ q1 ϕ ∧ ¬q2|= ∨

Fig. 5.2. Logical consequence in dual resolution

The basic rule of backward dual resolution is defined as follows.

Definition 69 (Dual Resolution Rule). Let M1 = φ∧q1 and M2 = ϕ∧¬q2

be two arbitrary minterms. Let σ be a mgu for q1 and q2. The Backward Dual
Resolution Rule is an inference rule of the form

φ ∧ q1, ϕ ∧ ¬q2

φσ ∧ ϕσ
. (5.1)

Obviously, the produced formula is not a logical consequence of the parent
formulae. In a sense the rule works backwards — the disjunction of the parent
minterms is a logical consequence of the result, i.e. there is M |= M1 ∨ M2.

Note that at the level of propositional language the bd-resolution rule is
‘syntactically similar’ to the so-called Consensus Rule. The rule is of the form

p ∧ q,¬q ∧ r

p ∧ r
.
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However, as mentioned above, the consensus rule stated as above is not a valid
inference rule.

As in the case of propositional calculus, bd-resolution theorem proving is
carried out by appropriate application of the bd-resolution rule. It seems nat-
ural that the method is especially convenient for automated theorem proving,
especially in the case the initial formula is in DNF. An example of practical
applications includes proving of completeness of rule-based systems.

By analogy to classical resolution theorem proving, in theorem proving
with bd-resolution factorization is also a necessary additional rule to assure
completeness.

Let M be any minterm such that two or more literals of M can be unified
with a most general unifier θ; in this case M is a logical consequence of Mθ
(Mθ |= M) and Mθ is called a factor of M . The rule

M

Mθ

is called factorization. Factorization is a complementary, but necessary rule
to assure completeness of bd-resolution theorem proving.

5.4 BD-Derivation

Now, let us define the way in which one can generate a sequence of bd-
resolvents starting from an initial normal formula

Ψ = ψ1 ∨ ψ2 ∨ . . . ∨ ψm (5.2)

i.e. the so-called bd-derivation. This is done in the following way.

Definition 70. A bd-derivation (or derivation, for short) of a simple formula
ψ from a normal formula Ψ given by (5.2) is any sequence of simple formulae
ψ1, ψ2, . . . , ψk, such that:

• for any j ∈ {1, 2, . . . , k} ψj is either a factor of some ψi or a bd-resolvent
of simple formulae ψi, ψi′ , where either i ≤ j or ψi ∈ Ψ and i′ ≤ j or
ψi′ ∈ Ψ ;

• ψ = ψk.

Formula ψ is said to be bd-derived from Ψ .

A formula ψ can be derived from some normal formula Ψ by generating
a sequence of simple formulae, such that any formula in the sequence is either
a factor of, or a bd-resolvent of some earlier generated formulae (or the ones
in Ψ); any formula in the sequence is said to be bd-derived from Ψ , and if ψ
appears as the last formula in the above sequence, then it is bd-derived from
Ψ as well. This will be denoted shortly as Ψ �DR ψ. For simplicity, in case of
no ambiguity, we shall also say that ψ is derived from Ψ and we shall write
Ψ � ψ.
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Example. In order to illustrate application of bd-resolution theorem proving
let us consider the following example extracted from [111].

As the original example is not a single-layered system, we present below
a ‘flattened’ version, equivalent with respect to completeness checking. There
are the following three rules for deciding about the STATUS of some person:

UNIV MEMBER(X) ∧ ENROLLED(X) ∧ HAS BS DEGREE(X) → STATUS(X, graduateStudent);

UNIV MEMBER(X) ∧ ENROLLED(X) ∧ ¬HAS BS DEGREE(X) → STATUS(X, undergraduate);

UNIV MEMBER(X) ∧ ¬ENROLLED(X) ∧ HAS BS DEGREE(X) → STATUS(X, staff);

¬ENROLLED(X) ∧ ¬HAS BS DEGREE(X) → STATUS(X,nonAcademic);

¬UNIV MEMBER(X) → STATUS(X,nonAcademic).

Using the bd-resolution one can produce most general formulae specifying
logical completeness of preconditions of the rules, i.e. showing that in any case
of input data at least one rule can be fired (as it covers the case). The proof
goes as follows.

By taking the preconditions of the first and second rules, one can generate
their bd-resolvent of the form

ψ1 = UNIV MEMBER(X) ∧ ENROLLED(X).

Similarly, taking the preconditions of first and third rules one can generate
bd-resolvent of the form

ψ2 = UNIV MEMBER(X) ∧ HAS BS DEGREE(X).

Note that ψ1∨ψ2 specifies the positive cases covered by the system (academic
persons). The system is specifically logically complete with respect to ψ =
ψ1 ∨ ψ2.

Now, apply the non-academic cases specification given by rules four and
five. For intuition, the above rules cover any non UNIV MEMBER nor anyone not
ENROLLED and such that HAS BS DEGREE is not satisfied.

By applying bd-resolution to ψ1 and precondition of the fourth rule one ob-
tains UNIV MEMBER(X)∧¬HAS BS DEGREE(X), and by further bd-resolving with
ψ2 one obtains UNIV MEMBER(X). Finally, after resolving the result with the
preconditions of the fifth rule one obtains the empty formula � (always true).
Hence, the disjunction of the preconditions of the above rules is tautology.

5.5 Properties of BD-Resolution

The presented inference method consists in automated deduction by bd-
resolution; it is analogous to the well known resolution method (for resolution
see e.g. [16,37,39]. Although the literature concerning resolution is abundant,
very little attention was paid to its dual version. The possibilities of using
such a dual method are just mentioned in some books; in [7] (Chapter IV.1)
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a common definition of resolution and its dual version are presented. Further,
in [8] a note on Consolution method following from Connection Graphs is
presented. However, it seems that the method of dual resolution was largely
ignored in the literature.

The presented reasoning method is similar to resolution, since a basic
step of reasoning is accomplished by ‘combining’ two selected formulae in
order to generate some outcome formula. Further, bd-resolution operates on
standardized formulae, namely the normal ones, and when used for theorem
proving, the goal is to arrive at an ‘empty’ formula. BD-resolution constitutes,
in fact, a single inference rule which is both sound and complete.

The discussed inference rule is in fact dual to the resolution rule — there
is a direct one-to-one mapping between clauses in resolution theorem proving
and minterms or simple formulae in bd-resolution, as well as between a resol-
vent obtained from two clauses, and a bd-resolvent obtained from the respec-
tive normal formulae. The mapping, roughly speaking, is based on replacing
disjunction with conjunction and positive literals with respective negative
ones, and vice versa. Simultaneously, bd-resolution works, in a sense, back-
wards, since in fact the input formula being a disjunction of simple formulae
is the logical consequence of the generated bd-resolvent, i.e. the direction of
logical inference (taking logical consequences) is opposite to the one of gener-
ating new formulae. Thus, it seems that the term backward dual resolution is
very close to the idea of the proposed method.

5.5.1 Soundness of BD-Resolution

Soundness of bd-resolution means, that whenever a formal bd-derivation of
a formula is found, then the disjunction of initial minterm formulae is logical
consequence of the derived formula.

First, let us present the following lemma.

Lemma 8. Let Φ be any formula (in minterm form) and let σ denote any
substitution. Then, if |=I Φσ, then, there is also |=I Φ.

Proof. Assume I is an interpretation satisfying the instance of Φ, i.e. there
is |=I Φσ. Assume σ is specified as σ = {X1/t1, . . . , Xn/tn}. Let U denote
the universe for I. Assume that I does not satisfy Φ; in such a case there
would not exist any mapping of variables of Φ into U such that Φ is satisfied.
However, such a mapping exists for Φσ, which is contradictory — it would
be enough to assign to X1, . . . , Xn the values to which terms t1, . . . , tn are
mapped with I. ��

The following theorem assures soundness of bd-resolution.

Theorem 9 (Soundness of bd-resolution rule). Let Ψ be a formula of
the form (5.2) and let ψi = φ ∧ q1 and ψj = ϕ ∧ ¬q2 be any two minterms of
Ψ . Moreover, let ψ = φσ ∧ ϕσ be the bd-resolvent of them. Then
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ψ |= ψi ∨ ψj (5.3)

and ψ |= Ψ .

Proof. First let us notice that for the formula Ψ , defined by (5.2) it is true
that ψi ∨ ψj |= Ψ . Thus, with regard to transitivity of logical consequence, it
is enough to prove that ψ |= ψi ∨ ψj .

Now, let us assume that ψ is satisfied under some interpretation I, i.e.
that |=I ψ. Then, obviously, |=I φσ and |=I ϕσ, since ψ is the conjunction
of them. Further, for the complementary literals q1σ and ¬q2σ there is either
(i) |=I q1σ and 
|=I ¬q2σ or (ii) 
|=I q1σ and |=I ¬q2σ. In case (i) there is
|=I φσ ∧ q1σ; in case (ii) we have |=I ϕσ ∧ ¬q2σ. Hence, no matter which is
the case, there is |=I (φσ∧ q1σ)∨ (ϕσ∧¬q2σ), i.e. |=I (ψi ∨ψj)σ. Further, by
lemma 8, |=I ψi ∨ ψj . ��

Now let us return to bd-derivation. The following theorem assures sound-
ness of bd-derivation.

Theorem 10 (Soundness of bd-derivation). Let Ψ be a formula of the
form (5.2) and let ψ be a simple formula obtained by bd-derivation from Ψ .
Then ψ |= Ψ .

Proof. Let ψ1, ψ2, . . . , ψk be the bd-derivation of ψ from Ψ . We have ψ = ψk

and any of the formulae ψi is a bd-resolvent or a factor of earlier generated
formulae (or the ones belonging to Ψ), i = 1, 2, . . . , k.

Let us build a sequence of normal formulae Ψ0, Ψ1, Ψ2, . . . , Ψk, such that
Ψ0 = Ψ , Ψ1 = Ψ0∨ψ1, Ψ2 = Ψ1∨ψ2, . . . , Ψ i = Ψ i−1∨ψi, . . . , Ψk = Ψk−1∨ψk,
i.e. at any stage we adjoin the newly generated formula by use of disjunction.
By the above theorem on soundness of bd-resolution rule we have ψi |= Ψi−1,
since ψi is a bd-resolvent of minterms from Ψi−1. Hence, obviously, for any two
formulae Ψ i = ψi ∨ Ψ i−1 and Ψ i−1 in the above sequence we have Ψ i |= Ψ i−1

for i = 1, 2, . . . , k; in fact, at any stage we join the current formula with a
less or equally general bd-resolvent. Further, ψ |= Ψk. Thus, with regard to
transitivity of logical consequence we conclude that ψ |= Ψ . ��

5.5.2 Completeness of BD-Resolution

BD-resolution rule for theorem proving, together with the factorization rule,
constitute a complete system of rules for theorem proving in first-order logic.
More precisely, the rules are complete with respect to proving logical complete-
ness of a (disjunctive) set of minterms, i.e. a formula in DNF. This means that
whenever such a formula is tautology, a derivation of an empty formula (one
always true) with bd-resolution exists. Moreover, and this is an even stronger
result, bd-resolution is complete with respect to proving logical consequence.
This means that whenever a simple formula φ is a logical consequence of
a normal formula Ψ , then it is always possible to prove it using bd-resolution.
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In order to prove the general theorem concerning completeness of bd-
resolution, let us first prove its initial version concerning completeness of bd-
resolution in case of ground formulae, i.e. ones with no variables.

Theorem 11 (Ground Completeness Theorem). Let Ψ be any ground
normal formula, and let φ be a simple formula. If

φ |= Ψ (5.4)

then there exists a bd-derivation of a ground simple formula ψ from Ψ , such
that

φ |= ψ . (5.5)

Moreover, if φ is satisfiable, then also

ψ ⊆ φ , (5.6)

i.e. the derived formula ψ subsumes (with empty substitution) φ.

Proof. If φ is unsatisfiable, then any bd-derivation satisfies the theorem; re-
lation (5.4) is trivially satisfied. Assume that φ is satisfiable (i.e. φ does not
contain any pair of complementary literals).

After [39]2, let us define the number of excess literals in Ψ as the number of
all literal occurrences minus the number of minterms (simple formulae) in Ψ .
Obviously, for n being the number of excess literals in any Ψ , there is n ≥ 0;
n = 0 means that all the simple formulae are just literals. The proof is done
by induction with regard to n.

Consider the case when n = 0 (all the simple formulae of Ψ are just
ground literals). Since φ |= Ψ , then either Ψ must contain at least one simple
formula — being in fact a ground literal q — such that q ∈ [φ], or Ψ must
contain a pair of ground complementary literals which bd-resolve giving the
empty formula � (always true); in either case the necessary bd-derivation
producing ψ exists — in the former one it is just ψ = q, while in the latter one
the bd-resolution of these two literals leading to the empty formula constitutes
the bd-derivation of interests.

Now, assume that the above theorem is true for all ground normal formulae
having less than n, n ≥ 1, excess literals. Let Ψ contain n excess literals. Thus
Ψ must contain at least one simple formula, say ϕ, having more than one
literal.

Let us select an arbitrary literal, say q, belonging to ϕ, and let us define
ϕq = ϕ\{q}. Note that, since ϕ |= ϕq, there is also Ψ |= (Ψ \ϕ)∪ϕq. Further,
since (Ψ \ ϕ) ∪ ϕq contains one less excess literal (i.e. n − 1), it must satisfy
the theorem, i.e. if φ |= (Ψ \ϕ)∪ϕq, then there exists a bd-derivation of some
ψϕ satisfying the theorem from it; let us label this bd-derivation bdd : ψϕ.

2 This and the following three proofs concerning completeness of bd-resolution
are based on the ideas of the appropriate proofs of completeness of resolution
presented in [39].
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On the other hand, Ψ |= (Ψ \ϕ)∪ {q}, and if φ |= (Ψ \ϕ)∪ {q}, there also
must exist a bd-derivation of some ψq satisfying the theorem from (Ψ \ϕ)∪{q};
let us label this bd-derivation bdd : ψq.

Now, if ϕq is not used for obtaining the former bd-derivation (bdd : ψϕ),
the derivation of ψ from Ψ exists; in fact, ψ = ψϕ. If not, one can construct
the bd-derivation as follows. Add q back to ϕq and all its descendants in the
bd-derivation. If an appropriate formula ψ is generated (either the empty one
or not), then the bd-derivation of interest exists. Otherwise, we arrive at a
ground simple formula consisting of a conjunction of ψϕ (which itself satisfies
the theorem) and the single literal q, i.e. we stop at ψϕ ∧ q. But now, one
can append the bd-derivation of the other simple formula (bdd : ψq), i.e. ψq

starting from (Ψ \ ϕ) ∪ (q ∧ ψϕ). Thus, the bd-derivation of a simple formula
satisfying the theorem exists, and finally ψ = ψq ∧ ψϕ. ��

From the above theorem one can learn that for the case of Ψ being a ground
normal formula the bd-resolution is complete in the wider sense. Note, that
we need not assume that φ is a ground formula; however, it can be seen, that
if φ is a satisfiable formula and Ψ is not a tautology, then at least a part of φ
must be ground (to cover the literals of ψ).

In the following part we shall attempt to generalize the result for Ψ being
any normal formula (not necessarily a ground one).

First, let us now restate the so-called lifting lemma [39] in a suitable form.

Lemma 9 (Lifting Lemma). Let ψ and φ be two simple formulae with
no variables in common (i.e. FV (ψ) ∩ FV (φ) = ∅), and let ψ′, φ′ be some
ground simple formulae, such that ψ′ = ψθ and φ′ = φθ for some (ground)
substitution θ. If ϕ′ is a bd-resolvent of ψ′ and φ′, then there exists a bd-
resolvent ϕ of ψ and φ and a substitution λ, such that ϕ′ = ϕλ, i.e. ϕ′ is a
substitution instance of ϕ.

Proof. Since ϕ′ is a bd-resolvent of ψ′ and φ′, then there must exist a pair of
complementary ground literals, say q′ and ¬q′, such that q′ ∈ ψ′ and ¬q′ ∈ φ′.
Further, ϕ′ = (ψ′ \ {q′}) ∪ (φ′ \ {¬q′}).

Let {p1, p2, . . . , pm} be all the literals of ψ which are mapped by θ to q′.
Similarly, let {¬q1,¬q2, . . . ,¬qn} be the set of all the literals of φ which are
mapped by θ to ¬q′. Let σp be the most general unifier for the first set of
literals, and let σq be the most general unifier for the second one. Further, let
σ = σp ∪ σq be the composite substitution. We put pσ = piσ, i = 1, 2, . . . ,m,
and qσ = qjσ, j = 1, 2, . . . , n.

From the definition of the most general unifier it follows that q′ must be
an instance of pσ and simultaneously q′ must be an instance of qσ; thus a
unifier for pσ and qσ exists. Let γ be the most general unifier for pσ and qσ.
Now let us define the bd-resolvent of ψ and φ as follows

ϕ = (ψσγ \ {p1, p2, . . . , pm}σγ) ∪ (φσγ \ {¬q1,¬q2, . . . ,¬qn}σγ) .
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Note, that with regard to the defined substitutions, ϕ′ can be written as
follows

ϕ′ = (ψθ \ {p1, p2, . . . , pm}θ) ∪ (φθ \ {¬q1,¬q2, . . . ,¬qn}θ) .

Since q′ is an instance of pσ and qσ, θ is a substitution composed of σγ
with some other substitution. Hence, ϕ′ is an instance of ϕ. ��

The above lifting lemma can be further generalized from a single bd-
resolvent case to bd-derivation, so that we obtain the so-called lifting theorem.

Theorem 12 (Lifting Theorem). Let Ψ be a normal formula and let Ψ ′

be a ground normal formula, such that Ψσ = Ψ ′ for some substitution σ. If
there exists a bd-derivation of a simple formula ψ′ from Ψ ′, then there exists
a bd-derivation of a simple formula ψ from Ψ , such that ψ′ is a substitution
instance of ψ (i.e. for some substitution σ′, there is ψσ′ = ψ′).

Proof. Any bd-derivation consists of a finite number of bd-resolution steps,
and any step is based on either bd-resolution or factorization (application of
a substitution). Since Ψ ′ is a ground formula, in fact no factorization takes
place. The case of bd-resolution is dealt with by use of the lifting lemma
(proved above). Thus, by simple induction with regard to the length of the
bd-derivation the proof of the theorem is straightforward. ��

The final theorem assuring completeness of bd-resolution can be stated as
follows.

Theorem 13 (Completeness Theorem). Let Ψ be any normal formula,
and let φ be some simple formula. Assume that Ψ and φ have no variables in
common, i.e. FV (Ψ) ∩ FV (φ) = ∅3. If

φ |= Ψ (5.7)

then there exists a bd-derivation of a simple formula ψ from Ψ , such that

φ |= ψ . (5.8)

Moreover, if φ is satisfiable, then there exists a substitution θ such that

[ψθ] ⊆ [φ] , (5.9)

i.e. the derived formula ψ subsumes φ.

Proof. In case φ is unsatisfiable, the theorem is trivially satisfied. Assume φ
is a satisfiable simple formula.

Assume that (5.7) holds, i.e. φ |= Ψ . Let σ be an arbitrary ground, one-
to-one substitution, such that FV (φσ) = ∅ and C(σ)∩ [C(Ψ)∪C(φ)] = ∅, i.e.

3 If not, a simple renaming of variables may be necessary.
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σ replaces all the variables of φ with new constants, not occurring in Ψ or φ.
Let φσ = φσ. Of course, φσ |= Ψ .

Now, by the version of Herbrand Theorem (Theorem 5 presented in
Sect. 2.5), if φσ |= Ψ , then there exists a ground substitution instance Ψ ′ of
Ψ , such that φσ |= Ψ ′. Further, by the Ground Completeness Theorem, there
exists a bd-derivation of ψ′ from Ψ ′, such that φσ |= ψ′ and also ψ′ ⊆ φσ. Now,
by the lifting theorem, there exists a bd-derivation of some formula ψσ from
Ψ , such that ψ′ |= ψσ and ψ′ is a substitution instance of ψσ. Hence φσ |= ψσ.
What we have proved is that for any σ satisfying the above assumption, there
exists a bd-derivation of some simple formula ψσ from Ψ , such that φσ |= ψσ

and φσ is a substitution instance of ψσ, i.e. for some substitution θ′ there is
ψσθ′ ⊆ φσ.

Let us notice that since Ψ and φ do not have variables in common, it is
possible to ‘mechanically’ replace the constants introduced to φ by σ with
the original variables, and repeat the bd-derivation keeping the variables un-
changed (i.e. if any of them occur in the derivation, no substitution can be
applied to alter these variables; this is possible, since the initial derivation
was performed with constants). Note that the required this time ψ (see (5.8))
can be obtained from ψσ by ‘mechanical’, consistent replacement of the intro-
duced by σ constants with the original variables (if any such constants appear
in ψσ). Hence ψσ is a substitution instance of ψ. The same applies to ψ′.
Hence φ |= ψ, and for some substitution θ, ψθ ⊆ φ. ��

Finally, the following corollary concerning completeness of bd-resolution
can be stated.

Corollary 1. Let Ψ be any normal formula. Assume that Ψ is tautology (true
under any interpretation). Then there exists a bd-derivation of an empty for-
mula � (always true) from Ψ .

Proof. To see that the above theorem holds it is enough to put φ = � in (5.7);
thus we have that if � |= Ψ (|= Ψ), i.e. Ψ is valid, by Theorem 13 there exists
a bd-derivation of an empty formula from it. ��

To conclude, bd-resolution rule, augmented with factorization rule, con-
stitute a tool for theorem proving which is:

• based on confirmation — an empty clause (always true one) is to be derived
from the initial formula to be proved tautology;

• sound — any conclusion derived with resolution (and factorization) is
sound in the sense that disjunction of parent minterms is a logical conse-
quence of their resolvent;

• complete — in the sense that an empty clause � can always be deduced
from a tautological set of minterms;

• complete with respect to logical consequence — in the sense that whenever
a simple formula φ is a logical consequence of some normal formula Ψ ,
a simple formula ψ, such that φ |= ψ can be derived from Ψ .
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The last statement is a general statement of completeness. It is equivalent
of the so-called Subsumption Theorem for classical resolution.

Bd-resolution theorem proving is based on using the minterm form, i.e.
quantifier-free first-order DNF formula. Hence it is especially convenient for
systems which are or can be easily transformed into DNF.

5.6 Generalized Dual Resolution Rule

The presented in Definition 69 inference rule is in fact a binary dual resolution
rule. It operates on two input formulae and produces a single output formula.
The necessary condition for combining the input formulae is that they contain
complementary literals, i.e. two literals forming a tautology. The existence of
this tautology was necessary to prove soundness of bd-resolution.

Note however, that the binary version of dual resolution can be generalized
over resolving more than two minterms, provided that the respective tautology
can be found. The generalized dual resolution operating on k input formulae
can be defined as follows.

Definition 71 (Generalized bd-resolution). Let M1 = φ1 ∧ ω1, M2 = φ2

∧ω2, . . . ,Mk = φk∧ωk be some simple conjunctive formulae, and let σ denote
a substitution. If the so-called completeness condition of the form

|= ω1σ ∨ ω2σ ∨ . . . ∨ ωkσ,

holds, i.e. the formula ω1σ∨ω2σ∨. . .∨ωkσ is a tautology, then, the generalized
dual resolution rule has the form

φ1 ∧ ω1, φ2 ∧ ω2, φk ∧ ωk

φ1σ ∧ φ2σ ∧ . . . ∧ φkσ
. (5.10)

The rule will be called a generalized backward dual resolution (generalized
bd-resolution) and the resulting formula is a generalized bd-resolvent of of M1,
M2, . . . ,Mk.

It can be observed that, as in the case of binary dual resolution, the dis-
junction of initial formulae is a logical consequence of the resulting generalized
dual resolvent.

Note that it may be useful to apply some substitution to the initial for-
mulae (factorization) before using generalized bd-resolution defined as above.
Further, formulae ω1, ω2, . . . , ωk need not be literals.

A very interesting case is the one when the formulae φ1, φ2, . . . , φk are
identical, i.e. there is φ1 = φ2 = . . . = φk = φ. In this case the generalized
dual resolution rule takes the form of the following gluing rule.

Definition 72 (Gluing rule). Let M1 = φ ∧ ω1, M2 = φ ∧ ω2, . . . ,Mk = φ
∧ ωk be some simple conjunctive formulae, and let σ denote a substitution.
If the so-called completeness condition of the form
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|= ω1σ ∨ ω2σ ∨ . . . ∨ ωkσ,

holds, i.e. the formula ω1σ∨ω2σ∨. . .∨ωkσ is a tautology, then, the generalized
dual resolution rule has the form

φ ∧ ω1, φ ∧ ω2, φ ∧ ωk

φσ
. (5.11)

This rule will be called a gluing rule and the resulting formula will be called
a gluing dual resolvent.

Note that, in case of the gluing rule, not only the disjunction of initial
formulae is a logical consequence of the resulting formula, but if σ is an empty
substitution or σ does not influence φ, then also the resulting dual resolvent
is a logical consequence of the input minterms. In fact, in such a case the rule
preserves logical equivalence between the input and output formulae. Hence,
the rule can be used for simplifying (reducing the size of) formulae. In further
chapters we shall see the application of this rule for reduction of rule-based
systems.

A further, useful generalization may be achieved by weakening the com-
pleteness condition (|= ω1σ ∨ ω2σ ∨ . . . ∨ ωkσ), which can take the form

ω ≡ ω1σ ∨ ω2σ ∨ . . . ∨ ωkσ ,

i.e. there must exist a formula ω logically equivalent to the disjunction ω1σ ∨
ω2σ ∨ . . . ∨ ωkσ and it can be used for replacing it. In such case the gluing
rule takes the following, weaker form

φ ∧ ω1, φ ∧ ω2, φ ∧ ωk

φσ ∧ ωσ
. (5.12)

As before, if σ is an empty substitution or σ does not influence φ, then log-
ical equivalence of input formulae disjunction and the resulting dual resolvent
is preserved.

Finally, note that both of the above rules can be defined to operate under
a specific interpretation (partial interpretation) referring to a certain specific
world under consideration. In this way operational forms of the dual resolution
principle for technical applications can be produced.

In order to provide intuitions on how the generalized dual resolution can be
applied in transformation of rule-based systems, consider the following simple
example of rule reduction. Consider the two following rules:

r1 : [color = white] ∧ [shape = circle] −→ [class = wheel ]

and
r2 : [color = black ] ∧ [shape = circle] −→ [class = wheel ].

Here φ = [shape = circle], ω1 = [color = white], ω2 = [color = black ], and,
finally, ω = [color ∈ {white, black }]. Obviously, these rules can be replaced
with logically equivalent rule r of the form
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r : [color ∈ {white, black }] ∧ [shape = circle] −→ [class = wheel ].

Further, if there are only two colors, i.e. black and white, then the rule can be
simplified to r : [shape = circle] −→ [class = wheel ], since under the assumed
interpretation formula ω is always true.

The application of dual resolution for reduction of rule-based systems is
discussed in Chap. 15. The schemes of possible reductions based on the glu-
ing rule are given there. The application of dual resolution to verification of
completeness is presented in Chap. 16.
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Basic Structure of Rule-Based Systems

Rules are omnipresent in our life, in science and technology. We have to behave
according to general rules of good behavior and specific rules applied in certain
situation, community or organization. Rules in science express usually general
laws, as in physics, for example, or allow to control technological processes in
industry. There are systems described with sets of formal and informal rules1,
some of them taking precise, written form, and some of them encoded in our
minds only.

Some most typical examples of rules and systems of rules are concerned
with well-defined domains, they are shaped historically, and their current writ-
ten form is the result of some long-lasting process.

Here are some examples:

• Law — it is divided into several domains, each of them has a certain
specific set of rules; the rules are codified with the use of a bit specific
language of law, enumerated, and put together so that they form the code
for the domain2.

• Traffic Code — a practical example of rules introduced to allow safe traffic
of cars and pedestrians.

• Army Code — army is an example of a very formal organization; every
situation and possible action are described with specific rules controlling
the individual and group behavior.

• Technical equipment — always behave according to predefined rules, speci-
fying in fact the control algorithm; for example, a vacuum cleaner behaves
in a simple way (it works when switched on and does not work, when
switched of), a refrigerator is a bit more complex (it also performs stabi-
lization of required temperature through switching on automatically when

1 A beautiful example of introducing codification into such informal domain as
personal contacts is the famous Bodziewicz Honorary Code.

2 A good example is the Napoleon Code which provided background for European
Law.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 91–96 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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the temperature inside is too high), while a lift behaves according to a cer-
tain set of rules and the current behavior depends on the status of control
buttons and perhaps weight and door detector.

• Physics — a beautiful example of a number of laws existing and acting
without our will, and such that we have no possibility of changing them
(they are just, since they apply equally to anyone), such as the law of
gravity, for example.

• Economy — there are also many rules, but usually of stochastic nature,
working only in mass process.

Rules are perhaps the most universal paradigm for defining law, describing
(dynamic) behavior, specifying control and decision algorithms.

6.1 Basic Concepts in Rule-Based Systems

Rule-Based Systems (RBS) provide a powerful tool for knowledge specification
and development of practical applications. However, although the technology
of RBS becomes more and more widely applied in practice, solutions based
on the use of rule-based systems are still not well-accepted by some indus-
trial engineers. This is so mainly due to their relationship to first-order logic
and sometimes complex rule patterns and inference mechanisms. Further, the
‘correct’ use of them requires much intuition and domain experience, and
knowledge acquisition still constitutes a bottleneck for many potential appli-
cations.

A serious problem concerning RBS is a consequence of the fact that a com-
plete analysis of properties remains still a problem, especially one supporting
the design stage rather than the final verification. This is particularly visible
in case of more powerful knowledge representation languages, such as ones
incorporating the full first order logic formalism.

Software systems for development of RBS are seldom equipped with tools
supporting design of the knowledge-base; for some exceptions see [1,4]. A re-
cent, solution is proposed in [141]. A complete, new solution and a tool under
the name Mirella has been presented in [92].

The basic form of any rule is as follows

rule : 〈preconditions〉 −→ 〈conclusions〉 (6.1)

where 〈preconditions〉 is a formula defining when the rule can be applied, and
〈conclusions〉 is the definition of the effect of applying the rule; it can be
logical formula, decision or action. The 〈preconditions〉 is also referred to as
the Left Hand Side of the rule, so one writes

LHS (rule) = 〈preconditions〉,
and the 〈conclusions〉 is also referred to as the Right Hand Side of the rules,
so one writes also
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RHS (rule) = 〈conclusions〉.
The most popular form of a rule has some number of atomic preconditions

(say n) and a single conclusion; such a rule can be expressed as

p1 AND p2 AND . . . AND pn −→ h (6.2)

In the above rule p1, p2, . . . , pn are atomic formulae of some accepted lan-
guage (e.g. propositional logic, attributive logic, first order logic) and h is the
conclusion, action or decision. There are also more complex forms of rules (to
be discussed later).

Depending on the accepted language, the rule can have different expres-
sive power. A very popular solution is based on the use of various forms of
attribute-based languages. This makes the notation similar to the one used in
Relational Database Systems (RDBS). However, contrary to Rule-Based Sys-
tems, Relational Data Base Systems offer relatively simple, but matured data
manipulation technology, employing widely accepted, intuitive knowledge rep-
resentation in tabular form. It seems advantageous to make use of elements
of this technology for simplifying certain operations concerning RBS.

Note, for example, that from practical point of view any row of a RDBS
table can be considered as a rule, provided that at least one attribute has
been selected as an output (and there is a so-called functional dependency
allowing for determination of the value of this attribute on the base of some
other attributes). Thus, it seems that merging elements of RBS and RDBS
technologies can constitute an interesting research area of potential practical
importance.

An idea suggested in this book is to investigate RBS by means of RDBS-
like tabular knowledge representation and algebraic rather than logical tools.
A relatively simple approach derived from first-order logic, but incorporated
into a RDBS-like framework, is also used in this work; details will be discussed
in Chap. 8. Further, a hierarchical structure (or even a network-like one) of the
RBS can be assumed. For an example, consider a two-level system structure
presented below.

The organization of the system is as follows:

• There is an upper level consisting of several contexts of work, defined
with formulae C1, C2, . . . , Cc; selection of the context depends on current
working conditions and the goal. Selection of the current context can be
performed by a meta-level decision mechanism, while switching among
contexts can be a side effect of lower level rule application.

• For any context Ci there is a simple, uniform (i.e. using the same scheme of
attributes), tabular RBS, similar to a decision table, with knowledge rep-
resentation based on attributes. When the context is selected, the system
identifies and applies a single rule; then the cycle is repeated.

The system is organized in a hierarchical way; in the simplest case above
one has just two-level specification. The upper level provides context selection
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Fig. 6.1. Graphical presentation of the idea of a hierarchical, two-level tabular
rule-based system

mechanism, while the lower level is responsible for rule selection and applica-
tion. A graphical presentation of the idea of hierarchical system is presented
in Fig. 6.1.

In general, one can consider any more complex scheme, including several
levels and numerous tables connected according to various patterns. Note that
such a multi-tabular system can be (at least potentially) reduced to one big
table, similarly as in the case of RDB systems. However, it would not be a
reasonable approach, both from the knowledge representation and the analy-
sis point of view — most of the attributes would be useless in most of the
rules. Instead, it seems much more appropriate to analyze any particular uni-
form tabular system within the appropriate context Ci. Thus, the discussion
presented in this work will often be restricted to the level of a single tab-
ular component; note however, that the meta-knowledge concerning context
switching can also be specified with use of appropriate tables.

A single-table system is assumed to be a forward-chaining one, operating
according to the following scheme: for given input situation, an applicable rule
is searched for, and if found, the rule is fired. The environment of the system
may be changed by the system itself, or changes may be due to dynamic
environment, as in the case of rule-based control systems [53,56]. For the idea
see Fig. 6.2.

In this work we shall also address the issues emerging during logical ver-
ification of theoretical properties especially in case of such single-layer rule-
based reactive systems; an intuitive, geometric interpretation of the work of
the system is presented in Fig. 6.3.

RBS defined and working as above constitute a class applicable in a wide
spectrum of control and decision support tasks [48, 53, 81]. The right-hand
side of any rule is normally a control action (sometimes also an assertion to
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Fig. 6.2. A general scheme of single-level rule-based system

Fig. 6.3. An abstract geometric presentation of the working scheme of a rule-based
control system

or deletion from the fact base) or decision; no direct chaining among the rules
takes place. Their standard working cycle proceeds as follows: the current
state of the input environment is observed, then a single rule matching the
input pattern is selected, and, finally, the selected rule is executed. The whole
cycle is repeated in a closed loop.

Systems as above form a class of simple forward reasoning expert sys-
tems with no chaining among rules (application of a single rule results in
conclusions/actions). Such systems were discussed in [53,57,81]; many exam-
ple applications are given in [48]. An important area of applications include
intelligent control systems with control knowledge specified as a RBS. They
can also constitute the lowest part of more complex, hierarchically structured
systems where they constitute the core inference tool for any context deter-
mined at higher level. For intuition, a system as the one presented in Fig. 6.3
is complete, if the rectangles referring to rule precondition formulae cover the
input space.

The tabular systems discussed further in this book can also be used as
extended RDB paradigm for unconditional knowledge specification. In such
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a way instead of extensional, data specification with atomic values of at-
tributes, their intensional definition can be provided. In the basic case, set
and interval values of attributes can be used to cover a number of specific
cases. Depending on the knowledge representation language, also more com-
plex structures (e.g. records, objects, terms) can be used. In such a way data
patterns or data data covers or data templates can be defined. Both representa-
tion and analysis can be then much more concise and efficient. An illustration
for this idea is presented in Fig. 6.4.

Fig. 6.4. Graphical presentation of the idea of data templates representation re-
placing extensional data specification

Note that there are many common points in the analysis of such inten-
sional, unconditional data representation and the verification of tabular RBS
properties. For example, checking for determinism of a rule based systems
requires verification if their precondition formulae are defining separate sets
of states; the same check can be performed to verify if certain data templates
describe disjoint sets of data. Analogous situation occurs in checks of com-
pleteness, etc. This allows to present and discuss the problems of analysis
simultaneously for data templates (extended database paradigm) end tabular
systems using a common model for data and knowledge.



7

Rule-Based Systems in Propositional Logic

Although Propositional Calculus is possibly the simplest logical system, both
with respect to syntax as well as semantics, it can serve as a practically use-
ful language for encoding rule-based systems. Obviously, since no individual
variables nor terms are allowed, knowledge representation capability is dras-
tically limited. Simultaneously, due to very simple knowledge representation,
knowledge processing requires only very simple mechanisms1, and as such —
reasoning with such rules can be relatively fast. Further, both analysis and
design of such systems are relatively simple. But what is most important, ma-
jority of the mechanisms incorporated in rule-based systems can be presented
and discussed with this simple model.

In this chapter we try to take the advantage of very simple form of propo-
sitional rule-based systems so as to introduce basic ideas incorporated in any
more advanced logical system with rule component. In fact, propositional rule-
based systems can also serve as a basic model for rule-based systems and most
of discussions around them.

Propositional rule-based systems can take various visual forms incorporat-
ing some structural representation. In this chapter, apart from pure rule-based
systems in the form of a set of rules (an ordered set of rules) we present some
other forms such as: decision lists, decision trees, binary decision diagrams,
and tabular systems.

7.1 Notation for Propositional Rule-Based Systems

Basically, the alphabet and symbols for defining propositional sets of rules
are the ones of Propositional Logic, as introduced in Chapter 1. Recall that
apart propositional logic formulae symbols, two special symbols for denoting
a formula which is always true, say �, and a formula which is always false, say

1 For example, since no variables are in use, no unification mechanism at the level
of terms is necessary — two propositional symbols are either identical or different.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 97–127 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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⊥, will be used. The atomic formulae will be denoted mostly with propositional
symbols such as p, q, r, etc. and we shall assume that a set P of such symbols
is defined as P = {p, q, r, . . . , p1, q1, r1, . . . , p2, q2, r2, . . .}.

As introduced in Chap. 1, in order to assign some precise meaning to
propositional symbol p, for example ‘It is cold’, the following notation can be
used

p
def= ‘It is cold’ .

Recall also that any propositional variable can be assigned a unique mean-
ing only in the considered application. Further, two propositional variables
may be independent or dependent on each other. They are independent if the
assigned interpretations (truth-value assignments) are independent; in such
a case the variables can take logical values independently on each other. They
are dependent if the interpretation of one of them known to be true (false)
implies that the other interpretation is known. For example, if p is assigned
the meaning as above, and q is assigned meaning as

q
def= ‘It is dark’ ,

the truth-assignment to p and q are independent — in real world it can be
simultaneously cold and dark, only cold, only dark, or none of these possibil-
ities. However, if r is assigned meaning as

r
def= ‘The temperature outside is minus 25 degrees Centigrade’ ,

then p and q are no longer independent formulae. Most of us agree that r
logically implies p, i.e.

r |= p .

In the following part it will be assumed that the considered atomic propo-
sitional formulae are independent, unless stated explicitly that some kind of
dependency takes place. In case logical implication holds, in most cases it will
be stated with an explicit rule of the form

r −→ p ,

or if for some reasons no explicit rule is present, the logical entailment symbol
will be used to state that r |= p.

7.2 Basic Propositional Rules

The most basic logical form of propositional rules is as follows

rule : p1 ∧ p2 ∧ . . . ∧ pn −→ h . (7.1)

Recall that such a form of a rule, defined previously by 1.10 is logically
equivalent to a Horn clause given by 1.9 provided that all the literals are
positive.
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The LHS (rule) = p1∧p2∧ . . .∧pn is a conjunction of propositional literals;
each pi may be a positive atom or a negated one. The LHS (rule) part of the
rule defines its preconditions, i.e. conditions which must simultaneously hold
to fire the rule. The RHS (rule) = h defines the conclusion of the rule which
is a single positive or negative literal.

A more complex rule may contain conclusion part composed of several
propositions. In such a case the rules are defined as follows

rule : p1 ∧ p2 ∧ . . . ∧ pn −→ h1 ∧ h2 ∧ . . . hk . (7.2)

As before, the LHS (rule) = p1∧p2∧. . .∧pn is a conjunction of propositional
literals. The RHS (rule) = h1 ∧ h2 ∧ . . . hk defines the conclusion of the rule
which is now a conjunction of positive or negative literals.

If the precondition part of a rule is composed of both positive and negative
literals, then it can be decomposed as follows

LHS (rule) = LHS+(rule) ∧ LHS−(rule) ,

where LHS+(rule) denotes the positive literals and LHS−(rule) — negative
ones. In certain systems only positive specifications of preconditions are al-
lowed (LHS (rule) = LHS+(rule)). This is a very typical simplification; nega-
tive literals, if necessary, are replaced with positive equivalents. Note however,
that in this approach at least some propositional symbols are no longer inde-
pendent.

A further simplification frequently met in practice is that the conclusion
part consists of a single literal. In fact, the rule specified with (7.2) can be
equivalently transferred to a set (logically: conjunction) of rules having single
conclusions (from logical point of view these are Horn clauses) of the following
form:

rule1 : p1 ∧ p2 ∧ . . . ∧ pn −→ h1 ,
rule2 : p1 ∧ p2 ∧ . . . ∧ pn −→ h2 ,
...
rulek : p1 ∧ p2 ∧ . . . ∧ pn −→ hk .

(7.3)

In fact, considering −→ as the equivalent of ⇒ (implication) one can write
(7.2) in the following form

¬(p1 ∧ p2 ∧ . . . ∧ pn) ∨ (h1 ∧ h2 ∧ . . . ∧ hk).

By subsequent application of the distributivity law one gets:

(¬(p1 ∧ p2 ∧ . . . ∧ pn) ∨ h1)∧
(¬(p1 ∧ p2 ∧ . . . ∧ pn) ∨ h2)∧
...
(¬(p1 ∧ p2 ∧ . . . ∧ pn) ∨ hk).

Finally, we can go back to the rule form:
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((p1 ∧ p2 ∧ . . . ∧ pn) −→ h1)∧
((p1 ∧ p2 ∧ . . . ∧ pn) −→ h2)∧
...
((p1 ∧ p2 ∧ . . . ∧ pn) −→ hk) ,

which is just another presentation of (7.3). The reverse transformation is also
straightforward — it is enough to inverse the procedure. Note that although
logical equivalence is kept, the operation of systems with rules of multi-literal
conclusions and their single-literal equivalent may not be the same. This de-
pends on the rule inference control mechanism. In case of rule defined by (7.2)
all the conclusions h1∧h2∧ . . . hk are deduced at once, simultaneously. In case
of the set of rules given by (7.3) it may be the case that only one rule (or a
subset of them) will be fired; in such a case not all the conclusions are stated
valid. Moreover, the cumulated result of executing the rules may depend on
the order of execution.

7.3 Propositional Rules
with Complex Precondition Formulae

In certain practical applications it may happen that the preconditions of rules
are defined as arbitrarily complex formulae of propositional logic. In such a
case, instead of the form given by (7.1) any rule can be represented as

rule : Φ −→ h . (7.4)

In this case checking satisfaction of the precondition formula Φ may be-
come a bit more complex. Thus, if such a rule appears it is customary to
simplify it by replacing with simple rules having the form defined by (7.1).

The first step is accomplished by transforming formula Φ to its Disjunctive
Normal Form (DNF), as defined by (Def. 20). The steps of the transformation
procedure are defined in Sect. 1.6.5. Now the rule looks as follows

rule : φ1 ∨ φ2 ∨ . . . ∨ φn −→ h .

Considering it as a logical implication, one can rewrite it as

rule : ¬(φ1 ∨ φ2 ∨ . . . ∨ φn) ∨ h ,

and after applying the De Morgan’s law we obtain

rule : (¬φ1 ∧ ¬φ2 ∧ . . . ∧ ¬φn) ∨ h .

Next, by applying the distributivity law it is possible to obtain the follow-
ing form:

rule : (¬φ1 ∨ h) ∧ (¬φ2 ∨ h) ∧ . . . ∧ (¬φn) ∨ h) ,
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which finally is equivalent to

rule : (φ1 ⇒ h) ∧ (φ2 ⇒ h) ∧ . . . ∧ (φn ⇒ h) .

Finally, the rule can be replaced with n simple rules of the form:

rule1 : φ1 −→ h ,
rule2 : φ2 −→ h ,
...
rulen : φn −→ h ,

(7.5)

where each φi is a simple conjunction of literals. The final set is of the form
given by (7.3).

7.4 Activation of Rules

Activation of rules depends on two main factors which are:

1) whether the preconditions of the rule are satisfied,
2) whether the rule is selected by the inference engine.

Rules are selected and examined by the inference engine according to some
specific, predefined algorithm; this may be for example linear scanning, linear
scanning in a closed loop, selection according to some preferences, parallel
execution, etc. A single rule, when examined is tested if the preconditions
of it are satisfied. If so the rule is executed (fired) or selected for further
examination in case several rules have satisfied preconditions at the same
time. Such rules having simultaneously satisfied preconditions form the so-
called conflict set, since in most systems only one rule may be fired at a time.

Let φ define the current state of the considered system; a state is defined as
a specification of all the facts which are true (positive) and false (negative) at
a precise instant of time. Hence the state-defining formula can be decomposed
into a conjunction of positive literals and another one composed of negative
literals; so we have

φ = φ+ ∧ φ− ,

where φ+ and φ− are the respective components of true and false atoms,
respectively.

Now the condition defining the possibility to fire a selected rule is as fol-
lows:

φ |= LHS (rule) (7.6)

which, according to the definition of satisfaction, can be split into the two
following simpler conditions:

φ+ |= LHS+(rule) , (7.7)

φ− |= LHS−(rule) . (7.8)
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Note that in practical solutions the formulae defining state are specified
as two separated lists (sets) of positive and negative atoms, [φ+] and [φ−],
respectively, where [φ] denotes the set of literals occurring in formula φ. Hence,
the above logical conditions of rule satisfaction can be replaced with simple
algebraic conditions of the form:

LHS+(rule) ⊆ [φ+] , (7.9)

LHS−(rule) ⊆ [φ−] . (7.10)

Taking into account that an atomic formula can be either true or false
in current state, one can also specify simple algebraic conditions (a kind of
a test) for excluding the application of a rule; they take the obvious form as
follows:

LHS+(rule) ∩ [φ−] 
= ∅ , (7.11)

LHS−(rule) ∩ [φ+] 
= ∅ . (7.12)

The above criteria (7.11) and (7.12) can be used for relatively fast elimi-
nation of candidate rules rather than checking for their satisfaction — in such
a case it is enough to find a single atom belonging to the opposite list rather
than checking if all of them are specified in the appropriate set.

7.5 Deducibility and Transitive Closure
of Fact Knowledge Base

Consider a set of propositional rules, say R = {r1, r2, . . . , rm}. For simplicity,
assume that any rule ri ∈ R is of the simplest form defined by (7.1). Let
there be also given a Fact Base (FB), FB = {q1, q2, . . . , qq} denoting a given
set of facts defined with literals q1, q2, . . . , qq; logically, it is assumed that the
conjunction of all the facts given by FB is true, i.e.

φ = q1 ∧ q2 ∧ . . . ∧ qq

holds.
In classical, forward-chaining systems the rules are applied by checking

if their preconditions are satisfied and firing. Whenever a rule is fired, its
conclusion is added to the current state. The satisfaction of rule preconditions
is defined by (7.6), and the practical tests are given thereafter.

We shall say that fact h is deducible from fact base FB by rule ri iff ri is
of the form

ri : p1 ∧ p2 ∧ . . . ∧ pn −→ h

and the rule is satisfied in the state defined by FB , i.e. there is LHS (ri) ⊆ FB .
Obviously, if the rule is considered as logical implication, this scheme of rule
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application is analogous to the well-known Modus Ponens rule. More precisely,
the operation of applying a rule to fact base can be specified as follows

q1 ∧ q2 ∧ . . . ∧ qq, p1 ∧ p2 ∧ . . . ∧ pn −→ h

q1 ∧ q2 ∧ . . . ∧ qq, h
(7.13)

provided that {p1, p2, . . . , pn} ⊆ {q1, q2, . . . , qq}. For practical reasons, the last
check is usually performed in the form specified by (7.9) and (7.10).

If a rule r is applicable to fact base FB i, as the result of application of
this rule a new fact base FB i+1 is obtained; we shall write

r : FB i −→ FB i+1 (7.14)

or simply r(FB i) = FB i+1. The new fact base is defined as

FB i+1 = FB i ∪ {h} (7.15)

or, if the rule has more conclusions, i.e. it is of the form (7.2), all of them are
added to the fact base

FB i+1 = FB i ∪ {h1, h2, . . . , hk} . (7.16)

The inference process in rule based systems consists of sequential selection,
matching, and application of rules to some initial fact base. Let us define the
mechanism of simple, flat inference engine, operating in one step through
applying all rules in turn to a given fact base; the conclusions which are
generated are added after applying the last rule to the initial base.

Definition 73. Let R be a finite set of propositional rules, R = {r1, r2,
. . . , rm} and let FB i and FB i+1 be two fact bases. We shall say that fact
base FB i+1 is a result of application of the set of rules R to FB i, and so we
shall write

FB i+1 = R(FB i) (7.17)

if

FB i+1 = FB i ∪ {h : for some r ∈ R,FB i |= LHS (r) and h ∈ RHS (r)}. (7.18)

So FB i+1 contains all the conclusions which can be produced from FB i

by applying the rules of R to FB i, including the facts of FB i.
In classical systems new facts are added to the fact base when they are

deduced. This enlarges the fact base so that perhaps new rules can be applied.

Definition 74. Let R be a finite set of propositional rules and let FB0 and
FBk be two fact bases. Fact base FBk is deducible from fact base FB0 with
rules of R if and only if there exists a finite sequence of rules r1, r2, . . . , rk ∈ R
together with a finite sequence of fact bases FB1,FB2, . . . ,FBk−1, such that:
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r1 : FB0 −→ FB1,
r2 : FB1 −→ FB2,
...
rk : FBk−1 −→ FBk .

(7.19)

Note that the process of generating new fact bases is monotonic, i.e. every
newly generated fact base must contain all the facts covered by any former
fact base. Obviously, if a sequence of fact bases is generated according to
(7.19), then there is

FB0 ⊆ FB1 ⊆ . . . ⊆ FBk .

Finally, since the number of rules is finite, and so is the number of propo-
sitional symbols used in a specific example, the process of generating new fact
bases is expected to stop at some point. We define the fixed-point for this
operation as follows.

Definition 75. Consider a finite set of propositional rules R which are applied
in turn to an initial fact base FB0. In this way a sequence of fact bases FB0 ⊆
FB1 ⊆ . . . ⊆ FBk is generated. The fact base being the fixed-point of this
operation is defined as

R(FBk) = FBk (7.20)

and it is such a set FBk that for any rule r ∈ R, r(FBk) = FBk. The fixed
point FBk will be denoted as R∗(FB0) or FB∗, for short.

For intuition, the fixed point FB∗ is the maximal set of facts which can
be deduced from the initial fact base with the rules of R — no more fact can
be deduced. The set is obtained by a level-saturation method. Further, for
monotonic systems this set is defined in a unique way.

Theorem 14. Consider a finite set of propositional rules R which are applied
in turn to an initial fact base FB0 so that the fixed point R∗(FB0) = FBk is
reached for some k. The set R∗(FB0) is defined in a unique way.

Proof. The proof is by induction with respect to the iteration number i. Con-
sider a fact base FB i obtained as the result of iteration i; the basic goal is to
show that FB i+1 obtained at the next iteration is defined in a unique way.

Recall that FB i+1 is generated according equation (7.18). Note that, since
all the rules operate on the same fact base FB i during one iteration, the set of
generated conclusions is independent on the order of rule application. Hence
FB i+1 is defined in a unique way.

By finite induction with i = 1, 2, . . . , k we conclude that also FBk must
be defined in a unique way. ��

Note that the inference process and reaching the medium fact bases FB i

as well as the final fixed point base FB∗ can usually be reached faster, in
a more efficient way than by a procedure operating level-by-level according
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to (7.18). The idea is that after selection and application of a rule r ∈ R to
some fact base FB the concluded facts are added immediately to the base, so
that r(FB) = FB ′, where FB ⊆ FB ′. Obviously, the new facts in FB ′ allow
for application of the same rules as applicable to FB , but perhaps some more
rules can also be applied. In this way, after one iteration starting at some fact
base FB i the resulting next stage base (FB i+1)′ can be bigger than the one
obtained according to 7.18. However, although depending on the order of rule
application one can obtain different medium-stage fact bases, the fixed point
FB∗ remains unique, and the same as previously.

We have the following Corollary of Theorem 14.

Corollary 2. The fixed point FB∗ is unique, independent from the rule order
and method of adding newly generated facts, provided that all the rules are ap-
plied in a systematic way (i.e. all the rules are applied during each iteration).

Proof. Let the inference process procedure produce the following sequence
of fact bases: FB0, (FB1)′, (FB2)′, . . . , (FBk)′. As shown above, one can al-
ways generate a corresponding sequence of fact bases FB0,FB1,FB2, . . . ,FBk

according to 7.18. Obviously, there is FB i ⊆ (FB i)′. Let the sequences be gen-
erated so long that FBk = FB∗, i.e. the fixed point is reached. At this point
it must be (FBk)′ = FBk, since FBk ⊆ (FBk)′, but simultaneously no big-
ger set than FBk can be generated — according to Definition 75, there is
r(FBk) = FBk for any rule r ∈ R. ��

The above properties of reaching the fixed point fact base which is defined
in a unique way is valid thanks to monotonicity of classical logical systems
and the deduction rules; in our case defined by (7.15) and (7.16). In the next
sections we discuss non-monotonic systems, where these properties do not
hold any longer.

7.6 Various Forms of Propositional Rule-Based Systems

In this section we shall present various visual forms of propositional rule-based
systems. Such forms incorporate elements of a structure which plays a double
role:

1) it provides an intuitive visualization of the system, usually oriented to-
wards some specific application (such as decision making);

2) it forces specific interpretation of the rules, especially with respect to (i)
the order of rules and (ii) the order of preconditions.

Five most typical representations will be discussed below. These are:

1) Decision Tables,
2) Decision Lists,
3) Decision Rules with control statements,
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4) Decision Trees,
5) Binary Decision Diagrams (BDD).

From logical point of view, all of the above forms model a set of rules
of the form given by (7.1) limited — for simplicity of the discussion — to
a single conclusion propositional symbol h, which may take value true or false
(1 or 0).

Note that the set of rules may, in general, incorporate rules with different
preconditions, and of different length of the LHS part. The discussion be-
low applies directly to such rules, however, for simplicity and elegance of the
presentation, it will be assumed that all the rules use the same propositional
symbols, ordered according to the same scheme, and different only with re-
spect to using the symbol of negation before the propositional symbol or not.
Hence, all the rules are assumed to be of the following scheme:

rule1 : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h1,

rule2 : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h2,

...

rulem : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #hm,

(7.21)

where # means nothing (so we have unnegated propositional symbol) or #
means ¬ (and so the following propositional symbol is negated).

A set of rules given by (7.21) with preconditions which differ only with
respect to using or not the negation sign will be referred to as canonical set
of rules, and if all the possible combinations of using the negation sign are
present (the disjunction of all the preconditions, i.e. LHS (rule1)∨LHS (rule2)∨
. . .LHS (rulek), is tautology) it will be referred to as complete or full canonical
set of rules.

Obviously, for any set of rules which is not in canonical form, one can
always construct a logically equivalent system in canonical form. The trans-
formation is basically the same as transformation of any logical formula in
CNF into a formula in maximal CNF (with maximal minterms). Each of the
rules can be transformed separately into an appropriate set of rules according
to the following principles:

1. For any rule with precondition formula φ identify all the propositional
symbols q1, q2, . . . , qj which do not occur in its precondition formula (ei-
ther negated or unnegated).

2. For any such symbol build a disjunction of the form (qi ∨ ¬qi), i = 1, 2,
. . . , j, which is obviously tautology.

3. Put all the tautological disjunctions into the precondition formula to build
an equivalent formula of the form φ∧(q1∨¬q1)∧(q2∨¬q2)∧. . .∧(qj∨¬qj).

4. Using the distributivity law transform the precondition formula to an
appropriate maxDNFform, and split the rule to 2j equivalent rules, as
explained in Sect. (7.3).
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5. Finally, order the literals in preconditions of the set of rules in a unique
way.

Let us explain the procedure with a simple but illustrative example. Con-
sider two rules specified as below:

rule1 : p −→ h,

rule2 : q −→ h.
(7.22)

The rules have completely independent preconditions. In order to trans-
form them to canonical form we complete the preconditions according to the
following scheme:

rule1 : p ∧ (q ∨ ¬q) −→ h,

rule2 : q ∧ (p ∨ ¬p) −→ h.
(7.23)

After applying the distributivity laws we obtain:

rule1 : (p ∧ q) ∨ (p ∧ ¬q) −→ h,

rule2 : (q ∧ p) ∨ (q ∧ ¬p) −→ h.
(7.24)

Finally after splitting the rules to ones with simple conjunctive precondi-
tions and ordering the literals in preconditions in a unique way we obtain:

rule1
1 : p ∧ q −→ h,

rule2
1 : p ∧ ¬q −→ h,

rule1
2 : p ∧ q −→ h,

rule1
2 : ¬p ∧ q −→ h.

(7.25)

Note that among the rules in canonical form, the first one and the third
one are identical; one of them can be deleted without influencing the logical
equivalence. Hence, the final set of canonical rules is of the form:

rule1
1 : p ∧ q −→ h,

rule2
1 : p ∧ ¬q −→ h,

rule1
2 : ¬p ∧ q −→ h.

(7.26)

To summarize, the following corollary can be formulated.

Corollary 3. Let PROP(φ) denote the set of different propositional symbols
occurring in formula φ. For any set of k rules of the form φi −→ h there exists
an equivalent set of rules in canonical form given by (7.21) where PROP(φ1)∪
PROP(φ2) ∪ . . .PROP(φk) = {p1, p2, . . . , pn}. The number of rules m in the
canonical form satisfies the inequality k ≤ m ≤ 2n.
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Note that, the above transformation does not make use of the RHS part
of the rules. Hence, in fact any set of rules (with different conclusions) can be
transformed to a canonical form with respect to preconditions.

Such a transformation, although always possible from computational point
of view, may lead to an unexpectedly large number of rules, limited by 2n,
where n is the number of propositional symbols in use. Hence, it seems rea-
sonable to keep together in one set rules operating in certain context, and
thus having similar preconditions by initial specification.

7.6.1 Example

Finally, consider a simple example of canonical set of propositional rules. Let
us consider the following formula2

(p ⇔ q) ∧ (r ⇔ s) .

Let us specify a set of rules for deciding if the above formula is satisfied.
Assuming we have one conclusion symbol h meaning that the formula is

satisfied, a single rule can be written as

(p ⇔ q) ∧ (r ⇔ s) −→ h .

In case we want to have a set of rules with preconditions being simple
conjunctive formulae, we have to transform the initial rule to a canonical set
of rules; it is of the following form:

rule0 : ¬p ∧ ¬q ∧ ¬r ∧ ¬s −→ h,

rule3 : ¬p ∧ ¬q ∧ r ∧ s −→ h,

rule12 : p ∧ q ∧ ¬r ∧ ¬s −→ h,

rule15 : p ∧ q ∧ r ∧ s −→ h .

(7.27)

The rules are enumerated in a way analogous to the construction of binary
numbers and their translation to decimal numbers; if pqrs is a sequence of
zeros and ones satisfying precondition formula of a rule, then the rule number
is calculated as p ∗ 23 + q ∗ 22 + r ∗ 21 + s ∗ 20.

Note that if we want to have a complete specification, we need extra 12
rules which are as follows:

2 The example is inspired by [2]; through the next subsections we shall continue
with this example on, so as to show some selected different forms of representation
of rule-based systems.
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rule1 : ¬p ∧ ¬q ∧ ¬r ∧ s −→ ¬h,

rule2 : ¬p ∧ ¬q ∧ r ∧ ¬s −→ ¬h,

rule4 : ¬p ∧ q ∧ ¬r ∧ ¬s −→ ¬h,

...

rule11 : p ∧ ¬q ∧ r ∧ s −→ ¬h,

rule13 : p ∧ q ∧ ¬r ∧ s −→ ¬h,

rule14 : p ∧ q ∧ r ∧ ¬s −→ ¬h.

(7.28)

In the above set rules with numbers 0, 3, 12 and 15 are omitted.
The above set of rules given by (7.27) and (7.28) is a complete, canonical

set of rules. Although mathematically elegant, it is certainly not minimal.
However, the problem of minimization will be discussed in a separate Chapter
further on.

7.6.2 Binary Decision Tables

Binary decision tables incorporate the basic ideas of propositional rule-based
systems in their basic form. A decision table represents in fact a set of simple
propositional rules grouped together and similar with respect to used precon-
ditions and conclusions or actions. In fact, typical decision tables make use of
a canonical set of rules, as defined by (7.21).

The rules covered by a decision table are put all together and form a kind
of decision unit designed to work in some assumed context situation.

A classical decision table is a table displaying sequences of conditions which
must hold for executing specific actions or drawing specific conclusions. The
sequences of conditions are displayed in a readable form, vertically in the
classical decision tables [120], as parts o columns of the decision table, or
horizontally, as parts of rows of the table.

A classical form of decision table [120] (Table 7.1) is the vertical one, where
condition i specifies the condition to be examined, and action i defines the
action to be executed. The values of logical conditions specified in the leftmost
column are specified with vij and in the basic form of decision tables can take
the following basic values:

• With respect to conditions:
– +, T or Y if the condition must hold for certain action to be executed;
– −, F or N if the condition cannot hold (if it holds, then the action

cannot be executed);
– or − if the execution of the action does not depend on the specific

condition.
With respect to conclusions:
– X or + if the action should be executed (or the conclusion should be

drawn);
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Table 7.1. The form of classical decision table with vertical rules

rule 1 rule 2 . . . rule m

condition 1 v11 v12 . . . v1m

condition 2 v21 v22 . . . v2m

...
...

...
...

condition n vn1 vn2 . . . vnm

action 1 w11 w12 . . . w1m

action 2 w21 w22 . . . w2m

action 1
...

...
...

action k wk1 wk2 . . . wkm

– or − if the action should be ignored.

The evaluation of the table proceeds as follows:

• any column of values specifying action prerequisites is traversed top-down,
and the defined sequence of true and false conditions is verified;

• if the pattern is matched by the current state, the actions specified below
are executed;

• next subsequent column of conditions is analyzed in a similar way.

Note that, when operating in a stable environment (most of the off-line, de-
cision support applications), the conditions can be evaluated once for process-
ing of all the table, and then only conditional sequences are matched against
the current pattern of true and false conditions. This can save time and re-
duce repeated computational effort, especially in case of large applications
and multiple users accessing the same data. However, in on-line, dynamic ap-
plications it is likely that for every rule the preconditions must be evaluated
immediately before its application. This is especially the case if one of the
formerly fired rules might influence the conditions directly through its actions
(or as a side-effect).

Note that in fact a table as above represents a set of propositional rules
displayed in a vertical manner. Consider a set of propositional rules defined
according to the scheme given by (7.2), i.e. each rule is of the form

rule : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h1 ∧ #h2 ∧ . . . #hk,

where # is nothing or # = ¬.
As we have mentioned, it is typically assumed that all the rules are some-

what similar, i.e. they use mostly the same preconditions (or their negations)
and the same conclusions, however, any two rules are obviously different at
least with respect to one symbol. Such a set of rules can be organized and
displayed in a nice, regular form of classical decision table (Table 7.2).
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Table 7.2. Vertical propositional decision table

rule 1 rule 2 . . . rule m

p1 v11 v12 . . . v1m

p2 v21 v22 . . . v2m

...
...

...
...

pn vn1 vn2 . . . vnm

h1 w11 w12 . . . w1m

h2 w21 w22 . . . w2m

...
...

...
...

hk wk1 wk2 . . . wkm

The main advantage of a table as the presented one follows from a simple
and intuitive interpretation. Further, the evaluation procedure can be speeded
up due to singular evaluation of conditions during each cycle. Furthermore,
tables can be organized in a hierarchical manner, i.e. certain action may re-
quire passing the analysis to a lower level i.e. a more specific table (an action
similar to the ‘go to’ instruction in some programming languages).

Decision tables can also be specified horizontally, in a way similar to the
way of displaying truth-tables in Chap. 1.

In such a case the table provides a single row defining the labels, and below
specification of the rules, line by line.

The basic scheme of such table is as follows (Table 7.3).

Table 7.3. The form of horizontal decision table

p1 p2 . . . pn h1 h2 . . . hk

v11 v12 . . . v1n w11 w12 . . . w1k

v21 v22 . . . v2n w21 w22 . . . w2k

...
... · · ·

...
...

... · · ·
...

vm1 vm2 . . . vmn wm1 wm2 . . . wmk

Now, continuing with the example started in the former section, reconsider
the rules specified by (7.27) and (7.28). These rules can be nicely represented
in a tabular form. Following is an appropriate decision table (Table 7.4).

The decision table (Table 7.4) provides a complete set of rules in a canon-
ical form for deciding for which interpretations the considered formula

(p ⇔ q) ∧ (r ⇔ s)

is satisfied.
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Table 7.4. Decision table for checking formula (p ⇔ q) ∧ (r ⇔ s)

RuleNo p q r s h

0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 1

7.6.3 Binary Decision Lists

Binary decision lists are perhaps some simplest decision structures incorporat-
ing specific rules and some control strategy. They take a simple and intuitive
graphical form of a list; such a list specifies a sequence of conditions to be
evaluated, coupled with a sequence of actions (or conclusions) to be executed
depending on if specific condition in the sequence is true or false.

In order to introduce the generic structure of a decision list, let us consider
first a simple, intuitive example. Assume one wants to take lift in order to go
to a desired floor. Obviously, he has to carry out a sequence of specific actions;
however, the actions and their execution depend on specific conditions.

Without going into very details, the specification of the required sequence
of actions may be as follow:

1. Check if you are at the desired floor — if so, stay there; if not — continue.
2. Go to the lift door (unconditional).
3. If the lift is waiting, go inside; if not, press the button and wait.
4. If you are inside, press the desired button and go.
5. If you arrive at certain floor, check if this is the desired floor and if so —

go out; if not, continue your travel.

Although the above specification is far from being perfect (e.g. complete)
it is enough to show the idea of a decision list. There is one principal line
(sequence) of actions, which are conditioned by results of simple checks. Per-
haps a more readable form of the above specification can be expressed as a
graphical chart (see Fig. 7.1).
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Fig. 7.1. An example decision list

As presented in the picture, the main sequence of actions is the one between
checking if one is at the desired floor (the top central box) and going out, and
staying at the desired floor (the bottom central box).

It may seem that specifying the logical structure of the rules defined with
the decision list is a straightforward task and it is as follows:

At the desired floor? −→ Stay there
¬(At the desired floor?) −→ Go to lift door

Lift is waiting? −→ Go inside and press desired button
¬(Lift is waiting?) −→ Press button and wait

Arrives at right floor? −→ Go out and stay there
¬(Arrives at right floor?) −→ Continue

(7.29)
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Note however, that a decision list actually incorporates two kinds of infor-
mation; these are:

1) logical information, specifying preconditions and actions or decisions in
the rule format;

2) control information, specifying where to go, after executing or not a specific
rule.

Hence, a pure set of rules of the form (7.21), i.e. one as above, cannot, in
general, replace a decision list without specifying the control mechanism for
the rules. And, basically, this can be done in three different ways:

1) by assuming a simple standard inference procedure, e.g. that the rules
are interpreted in turn and executed immediately if their conditions are
satisfied;

2) by specifying complete preconditions of any rule, i.e. not only the one
specified in a box, but also the part following from the context (the path
to the specific box); in such a case, the interpretation control mechanism
can be practically any systematic procedure;

3) by extending the rule format with control statements.

The first solution, although the simplest one, may not work appropriately
in certain cases. Note that in the discussed case of decision list there are two
loops going back to checking the condition again (the case of ‘Lift is waiting?’
with answer ‘No’, and the case of ‘Arrives at right floor’ with answer ‘No’). In
such a case there is no direct way to require execution of the loop, and going
to a next rule may lead to some results, which are difficult to predict.

The second possibility is based on specifying the complete precondition
formula, and does not make use of the intended context for a rule. A somewhat
simplified but complete specification of preconditions in the discussed example
may look as follows:

At the desired floor? −→ Stay there
¬(At the desired floor?) −→ Go to lift door

¬(At the desired floor?) ∧ Lift is waiting? −→ Go inside
and press desired button

¬(At the desired floor?) ∧ ¬(Lift is waiting?) −→ Press button and wait
Arrives at right floor? −→ Go out and stay there

¬(Arrives at right floor?) −→ Continue
(7.30)

For simplicity, it is assumed that the case ‘Arrives at the right floor?’ can
be checked only when in a lift, while ‘At the desired floor?’ only when outside
of the lift. This allows for shortening the preconditions.

Specifying full preconditions of the formulae leads to a safe definition of
the rules; this is so, since any rule can be fired only when all specific con-
ditions enabling activation of the rule are listed explicitly. However, usually
such a specification could be very long and in a non-trivial case this approach
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may turn out to be impractical. In more complex, especially dynamic systems,
the validity of preconditions of a rule is limited to being checked only within
an intended context, and design of the rule-based system is always hierarchi-
cal. Further, in case of dynamic systems, after executing a rule the context
changes, and some conditions may turn out not to be verifiable in it.

The third possibility seems to be the most efficient one in case of single-
level systems. The details are presented in the following section.

7.6.4 Binary Decision Rules with Control Statements

Consider a simple set of rules given by (7.21) i.e. one specified as below:

rule1 : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h1,

rule2 : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h2,

...

rulem : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #hm .

In order to provide some control information we shall extend the scheme
of the rules with appropriate Control Statements. Note that the precondition
formula of any rule can play the role of a filter or decision condition.

Hence, the control information provided with any rule is basically of two
types:

1) where to go if the preconditions were satisfied and the rule was fired;
2) where to go if the preconditions formula was not satisfied, and the rule

was not fired.

The phrase ‘where to go’ means in fact pointing to a specific rule. By
providing such information a network of rules is specified in fact.

The specification will be done with two keywords: next, followed by the
number (or identifier) of a rule which should be checked after a specific rule
is fired, and else followed by the number (or identifier) of a rule which should
be checked after a specific rule fails to be fired. A scheme of a single rule now
becomes modified as follows

rulei : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h1 next(j ) else(k) . (7.31)

The above specification of rulei means that if the rule is fired, the next
rule to be checked is rulej , in the other case the next rule to be examined is
rulek.

Now we can return to the example concerning using the lift in order to
arrive at a desired floor. The complete specification of rules with control state-
ments equivalent to the decision list is as follows:
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rule(1 ) : At the desired floor? −→ Stay there
next() else(2 ),

rule(2 ) : −→ Go to lift door
next(3 ) else(),

rule(3 ) : Lift is waiting? −→ Go inside and
press desired button
next(5 ) else(4 ),

rule(4 ) : −→ Press button and wait
next(3 ) else(),

rule(5 ) : Arrives at right floor? −→ Go out and stay there
next() else(6 ),

rule(6 ) : −→ Continue
next(5 ) else().

(7.32)

In the above specification next() (empty next) means that if the rule is
fired, no further rule is specified (perhaps the goal has been reached) and
else() (empty else) means that if the rule fails to be executed no next rule is
scheduled; note that the empty else part in the above specification occurs in
rules with empty preconditions, i.e. ones always satisfied. In fact, these are
complement rules which specify the action to be done in case the principal
action cannot be done directly.

Note also, that through incorporating the explicit control mechanism one
no longer has to check the negative (complementary) conditions, which were
simply eliminated. This is so, because now the rule operates according to the
scheme if 〈preconditions〉 then 〈conclusions〉 next 〈rule-j〉 else 〈rule-k〉, which
means that the preconditions are only checked ones, while the else part is
activated immediately after the check fails.

7.6.5 Binary Decision Trees

Decision trees are useful and intuitive means for specifying various decision
procedures. They use simple graphical form of representation (an acyclic, di-
rected graph), and evaluation of decision is a simple matter of traversing such
a tree along a given path. There are various forms of decision trees, such as
binary decision trees, attributive decision trees, decision trees for analysis of
first-order formulae, etc.

Decision trees constitute structures which are more general than decision
lists. In fact, a decision list is much like a simple decision tree built around
a single branch. Decision trees can encode a number of decision lists because
they allow branching. Decision trees are also hierarchical structures, the nodes
in a tree are ordered according to a pre-specified hierarchy.

Binary Decision Trees (BDT) are perhaps the best known and most pop-
ular decision structures used throughout the widest spectrum of computer
science and outside. For intuition, binary decision tree is a structure leading
through a series of simple tests to arrive at a certain decision. The tests are
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limited to evaluation of a propositional statement, which can be true or false,
and hence the trees are referred to as binary. In fact, under any decision node
(excluding the final decision nodes) there are exactly two branches, one refer-
ring to the case when the condition assigned to the node is true and the other
one referring to the case when the condition is false.

Let us introduce a formal definition of Binary Decision Tree, which is as
follows. Consider a set of propositional symbols P an a set of nodes of the
tree, say N . Let E ⊆ N × N be a binary relation over N .

Definition 76. A Binary Decision Tree T defined on N , E and P is an
acyclic, directed graph satisfying the following properties:

1. There is exactly one distinguished node n0 ∈ N having no parent node (no
entry); it is called the root node or the root of the tree; we shall write
n0 = root(T ).

2. Any other node has exactly one parent node.
3. Any node is assigned a single propositional symbol and it has either two

child nodes or none:
– if it has two child nodes, it is a condition node and there are two links

to child nodes, one referring to the case if the propositional symbol takes
true and the other one for the case it is false;

– if it has no child nodes, it is a decision node or a leaf node, and the
assigned to it propositional symbol indicates the decision.

Such a binary decision tree is used to specify a decision procedure; it allows
to arrive at a decision provided that an appropriate sequence of propositional
symbols can be evaluated. The tree is traversed top-down, according to some
pre-established order and at every node the appropriate propositional symbol
is evaluated; depending on the result (true or false) the appropriate branch
below is selected, and the next propositional symbol to which the branch
leads is evaluated in turn. The final decision is determined after arriving at
a leaf node.

Traversing the tree one has to follow a path in the tree leading from the
root node to one of the leaf nodes. It is useful to define the function of depth
for any node as follows.

Definition 77. The depth of a node in a binary decision tree is defined re-
cursively as follows:

• depth(n0) = 0,
• depth(n) = depth(parent(n)) + 1.

In order to show an example of a binary decision tree, let us consider once
again example (Subsect. 7.6.1) concerning decision procedure for evaluating
propositional formula of the form

(p ⇔ q) ∧ (r ⇔ s).
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Recall that we have proposed a set of rules (7.27) and (7.28) as well as
an appropriate decision table; now we shall show an appropriate decision tree
(Fig. 7.2).

The presented binary decision tree specifies a decision procedure for decid-
ing if the underlying formula given above is satisfied under the interpretation
specified with a given path — in fact any path from root to a leaf node defines
an interpretation of the formula under discourse. As there are 4 propositional
symbols, there are 24 = 16 possible interpretations and there are 16 different
paths ended with 16 leaf nodes. For simplicity, 0 defines a branch for which
the above proposition is false while 1 is the label for true.

Fig. 7.2. An example binary decision tree for determining the truth-value of formula
(p ⇔ q) ∧ (r ⇔ s)

Recall that decision tree is always a hierarchical decision structure; in fact,
any decision tree can be viewed as a structure composed of some smaller trees.
Note that any node of a decision tree can be considered as a root note for
a sub-tree beginning at this node. In this subtree one can distinguish further
sub-trees, and so on. In binary tree, below any node (apart from leaf nodes,
of course) one may speak about the left subtree and the right subtree.

Using the concept of a subtree, and knowing that in a binary tree there
are only left and right subtrees, the concept of a binary tree can be redefined
in a recursive mode as follows.

Definition 78. A binary decision tree is either:

• a single node n ∈ N assigned unnegated or negated decision defined by
propositional symbol p ∈ P ,

• a graph formed from a node ni ∈ N assigned a certain propositional symbol
p ∈ P , two subtrees, the left one and the right one, and two arcs labelled
with false and true leading from the node to these subtrees.
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Using the concept of term the two conditions can be restated as follows. Let
t/3 be a three-argument functional symbol — it will be used as the constructor
for the tree. A binary decision tree is a recursive structure defined as follows:

• t( , ,#p) is a tree,
• if tleft and tright are trees, then also t(tleft , tright , p) is a tree.

A binary decision tree provides a transparent and intuitive knowledge rep-
resentation. In fact, the tree shown in Fig. 7.2 is perfectly readable. On the
other hand such a graphical representation may be inefficient — some parts of
knowledge may be repeated. In fact, in the above example, there are repeated
subtrees. For example, the leftmost and rightmost subtree starting at the r
nodes (at the depth of 2) are identical. One may ask if the efficiency of repre-
sentation can be improved. And the answer is yes — the representation with
decision tree is not unique, and for a given tree one can find some minimal
forms of it.

Note that traversing a decision tree top-down along a certain path is in
fact equivalent to evaluating and firing a decision rule. The definition of the
rules can be formed when traversing the path in an obvious way. For example,
traversing the leftmost path in the tree presented in Fig. 7.2 is equivalent to
analyzing a rule of the form

¬p ∧ ¬q ∧ ¬r ∧ ¬s −→ h.

In fact, for any binary decision tree one can always form a set of rules
equivalent from logical point of view; the appropriate procedure can be out-
lined recursively as follows:

1. Start from the root node, and traverse any path separately from the root
to a certain leaf node; for each path a single separate rule is created.

2. When traversing a path, for any node on that path insert into the pre-
condition formula the propositional symbol assigned to that node; if you
select the branch labelled false, the propositional symbol should be pre-
ceded with negation sign, in case of selecting the branch labelled true,
the propositional symbol stays unnegated. All the literals forming a path
(apart from the one assigned to leaf node) are joined with conjunction.

3. For any path create a rule with the precondition formula defined as above,
and conclusion defined by the propositional symbol assigned to the leaf
node on the path; if the leaf node is false, the conclusion should be preceded
with negation sign.

One can check that the set of rules defined with (7.27) and (7.28) is a set
of rules logically equivalent to the decision procedure specified with the tree
given in Fig. 7.2.

Now consider some two paths leading to two neighboring leaves labelled
with 0. The paths leading to them are identical, apart from the last edges —
in fact one of them is labelled with 0 (for ¬s) and the other one with 1 (for s
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without negation). Note however, that disregarding the value taken by s, the
decision is the same h = 0). Thus it may be no sense in keeping two separate
branches leading to the same conclusion — they can be ‘glued’ together and
eliminated. The final decision label is moved up and the tree is simplified.

Consider for example the paths forming the two following rules:

rule4 : ¬p ∧ q ∧ ¬r ∧ ¬s −→ ¬h,

rule5 : ¬p ∧ q ∧ ¬r ∧ s −→ ¬h.
(7.33)

Obviously, the two rules have the same effect as a single rule of the form

rule4−5 : ¬p ∧ q ∧ ¬r −→ ¬h (7.34)

in which s do not occur. It can be observed that from logical point of view
such reduction of rules is based on application of backward dual resolution.

Now assume one repeats the procedure in a recursive way, bottom-up, until
no further reduction is possible. Recall that only ‘neighboring’ nodes can be
glued and reduced, and only if they have the same decision value. The reduced
in this way decision tree is presented in Fig. 7.3.

Fig. 7.3. The reduced binary decision tree

Such a reduction procedure has two important features:

1) For a determined order of propositions (and thus the structure of the tree)
it always leads to a minimal form when no longer reduction is possible.

2) The obtained in this way decision tree is equivalent to the initial one.

Consider also the reverse procedure of transforming a given set of decision
rules into an appropriate decision tree. Let there be given a set of propositional
decision rules of the form given by (7.21), i.e.:
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rule1 : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h1,

rule2 : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h2,

...

rulem : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #hm .

The following procedure allows to generate a binary decision tree equiva-
lent to the set of rules:

1. Establish an arbitrary order of propositional symbols occurring in the
preconditions, e.g. p1, p2, . . . pn; proceed from i = 1 to i = n according to
the order established.

2. For current value of i create a node labelled with pi and divide the current
set of rules into two separate subsets, one where pi occurs without negation
(positive rules) and one where pi occurs with negation (negative ones).
Remove pi from the precondition of the formulae, and draw two links to
child nodes (one for positive rules labelled with true and one for negative
ones, labelled with false). Repeat the procedure in a recursive way until
all pi are assigned to some nodes. The node generated for i = 1 is the root
node.

3. At the last step, create leaf nodes by assigning literals #hj to them.

Since at any step the set of rules is divided into two smaller subsets, and
one propositional symbol is removed, the procedure must stop at a certain
depth of the tree; in fact, for uniform set of rules as above, the generated tree
is of depth n. Every rule is mapped into a single path. Note that the generated
tree may have less than 2n different paths since the number of rules m may
be lower than 2n.

Finally, one may ask a question whether a binary decision tree is just
another way of specifying a set of propositional decision rules. As we have
shown, for any such tree one can easily find an equivalent set of rules, and
for any set of rules one can generate an appropriate decision tree. However,
there is one important point in the tree generation procedure. It is where
one has to establish the order of evaluation of the propositional symbols,
and in fact it refers to establishing a hierarchy in the set of conditions to be
evaluated. Hence, one may notice that a tree covers definition of the order
among propositional symbols implying the order of evaluation of them in case
of interpreting the tree, and influencing the minimal form when reducing the
tree. In fact, for a tree built on n propositional symbols, there may be as many
as n! different trees (with respect to the order). On the other hand, the order
of literals in precondition of a rule is typically ignored, as from logical point
of view they form conjunction which is commutative.
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7.6.6 Binary Decision Diagrams

Binary decision trees presented briefly in the former section constitute an
intuitive and very transparent means for describing decision procedures. As it
was shown, any such tree can be transformed into equivalent set of rules, so
that the rules allow to make the same decision under the same context. One of
the disadvantages of decision trees is that knowledge representation with them
may be inefficient. As it was shown, repeated subtrees can occupy quite a lot
of space. Even reduced trees can be quite large with respect to the encoded
information. The Ordered Binary Decision Diagrams (OBDD, for short) [2]
constitute perhaps the most concise structures encoding binary decision rules
in a graphical form. They can be considered as a certain evolution of classical
decision trees.

In order to present the basic idea of Ordered Binary Decision Diagrams
let us introduce some initial logical concepts first. After [2] by

p −→ h0, h1

we shall denote an if-then-else rule of the following form

if p then h0 else h1 .

From logical point of view such a rule can be considered equivalent to
(p∧ h0)∨ (¬p∧ h1). Here p is a logical condition, to be called test expression,
while h0 and h1 are conclusions taken in case of p being either true or false,
respectively.

There are two important remarks to be observed. First, this kind of rules
can be used as a basic construction for developing any more complex binary
decision tree. In fact, p can constitute a label assigned to a branching node,
while h0 and h1 can be interpreted as the choice of the appropriate left or
right subtree.

Second, any logical connective can be redefined with the use of the if-then-
else operator. For example, denoting true with 1 and false with 0 we have the
following equivalences:

p ∧ q ≡ p −→ q, 0,

p ∨ q ≡ p −→ 1, q

and
¬p ≡ p −→ 0, 1 .

Further, for any Boolean formula φ the following equivalence allows to
reduce the formula by eliminating a single propositional symbol

φ ≡ p −→ φ{p/1}, φ{p/0} (7.35)

where φ{p/t} denotes the formula obtained from φ by replacing all the occur-
rences of p with t. Equivalence (7.35) is known under the name of Shannon
expansion [2].
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By subsequent application of the Shannon expansion any logical formula
can be transformed into the so-called If-then-else Normal Form (INF), which
is a Boolean formula employing the if-then-else operator only. In practice,
this means that the formula is transformed into a set of components defining
a decision tree for checking satisfiability of the formula.

In order to show that let us apply the Shannon expansion to the formula
of Example (Sect. 7.6.1), i.e. the formula given by:

φ = (p ⇔ q) ∧ (r ⇔ s).

φ ≡ p −→ φ1, φ0

φ1 ≡ q −→ φ11, 0
φ0 ≡ q −→ 0, φ00

φ11 ≡ r −→ φ111, φ110

φ00 ≡ r −→ φ001, φ000

φ111 ≡ s −→ 1, 0
φ110 ≡ s −→ 0, 1
φ001 ≡ s −→ 1, 0
φ000 ≡ s −→ 0, 1.

(7.36)

In the above, for shortening the notation, φ{p/0} is denoted as φ0, φ{p/1}
is denoted as φ1, etc. Observe that what is generated with the above trans-
formation (7.36) is the specification of the reduced decision tree shown in
Fig. 7.3.

The presented above specification has one important feature: it presents
decomposition of the decision tree into elementary branching ‘constructions’
(corresponding to subtrees), each of them corresponding to single application
of Shannon expansion. Thus it seems relatively easy to identify identical sub-
trees in the main tree — it is enough to compare the appropriate formulae
of the φ-family. For example, φ000 is identical to φ110, but also φ00 and φ11

can be identified to be identical through recursive substitution of identical
formulae to the right-hand parts of appropriate equivalences, etc.

The main idea of Binary Decision Diagrams — in contrast to Binary Deci-
sion Trees — is that each separate component (subtree) is explicitly displayed
only once — repeated occurrences are simply ‘glued’ together. Since the order
of propositional variables is kept identical as in the original tree (in fact, any
path in the diagram can be mapped one-to-one to a path in the tree), the
diagram is also termed ordered.

After identification of identical subtrees the Shannon expansion defined by
(7.36) takes the following form:
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φ ≡ p −→ φ1, φ0

φ1 ≡ q −→ φ11, 0
φ0 ≡ q −→ 0, φ11

φ11 ≡ r −→ φ111, φ110

φ111 ≡ s −→ 1, 0
φ110 ≡ s −→ 0, 1.

(7.37)

Figure 7.4 shows an appropriate Ordered Binary Decision Diagram. The
negative branches are, by convention, represented with dashed lines, while the
positive ones — with solid lines.

Fig. 7.4. An example Ordered Binary Decision Diagram; case of formula φ = (p ⇔
q) ∧ (r ⇔ s)

Note that the representation based on the use of OBDD is much more
concise than the one with decision trees; in the presented example, instead
of 9 condition nodes in the case of decision tree, there are only six condition
nodes in the case of decision diagram. Moreover, 10 final decision nodes were
reduced to 2 in case of the diagrams.

Ordered Binary Decision Diagrams can also be reduced to a minimal form
[2]. It may happen, that an OBDD is non-minimal if one of the two following
situations takes place:

1. There are two distinct nodes that have the same propositional symbol
assigned and that also have the same low and high-successor subtrees;
such nodes can be glued together with their subtrees.

2. There is a node having the same low and high-successor; in this case the
test assigned to the node is redundant and it can be removed.

From logical point of view, the first case corresponds to a situation of
physical redundancy ; in fact, for two (or more) nodes, the specification of
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subtrees rooted at these nodes is identical. Practically, such a specification
can be encoded with a single model, and the code can be reused if necessary.

The second case means in fact that disregarding the result of the test, one
has to proceed the same way; in certain sense the test is redundant and — as
such — unnecessary. It can be removed, while its parent node becomes linked
directly to common child node.

The two possibilities of reduction are illustrated in Fig. 7.5.

(a)

(b)

Fig. 7.5. An example of reduction of an Ordered Binary Decision Diagram; case of
identical low and high successors for (a) a redundant node; (b) a single node

In the first case node q is displaced twice and it has the same subtree rooted
at it (physical redundancy). Hence one occurrence of it can be removed, and
the link(s) pointing to it should be redirected to the node left.

In the second case there are two links from the leftmost node q to the
same output. The test at this node is redundant (irrelevant). The node can
be removed, and the link pointing to it should be redirected to the output.

Ordered Binary Decision Diagrams constitute perhaps the most concise
representation for Boolean formulae and decision procedures based on binary
propositional logic. For any Boolean function there exists exactly one reduced
OBDD preserving the assumed order of propositional variables. It is stated
by the so-called Canonicity lemma proved in [2].

Lemma 10. For any n-argument Boolean function there is exactly one re-
duced OBDD preserving the assumed order of variables.

The proof can be found in [2]. The lemma states in fact, that having estab-
lished the order of propositional symbols, the representation of this function
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with an OBDD is defined in a unique way. Unfortunately, the size and shape
of the OBDD depends on the order of variables (and, needless to say, for n
variables there are n! different orderings), and, as shown in [2], in fact the
graph of the diagram is sensitive to the ordering to high degree.

Taking into account the above lemma, application of reduced OBDD in-
cludes the following activities:

• Checking if a Boolean formula is tautology (is always false); from the above
lemma it follows that the appropriate reduced OBDD is just terminal node
1 (0).

• Checking if a Boolean formula is satisfiable; in fact, it is enough to see
if at least one path in the appropriate OBDD leads to terminal node 1.
Moreover, all the interpretations satisfying the formula are defined with
appropriate paths leading to terminal node 1 — in order to find them it
is enough to search for all such paths in the OBDD.

• Comparing two (or more) formulae: in order to say if two formulae are
logically equivalent it is enough to transform them to reduced OBDD and
compare if the diagrams are identical.

From the point of view of designing decision structures, and especially
rule-based systems, the OBDD can also be used to determine some mini-
mal representations of such structures. Since any set of decision rules can be
considered to form a conjunction of them, it is relatively straightforward to
find the formula replacing the set of rules. Next the formula should be trans-
formed into a reduced OBDD. The minimal set of rules is defined then by all
the paths from the root node to terminal nodes. Alternatively, the initial set
of rules could be translated into a binary decision tree, and the tree could be
reduced to an OBDD.

Finding such minimal representation suffers from the following limitations:

• The final minimal form depends on the established ordering of proposi-
tional symbols; for different orderings, different minimal forms (also dif-
ferent with respect to size of the diagram) can potentially be found.

• The transformation to an OBDD (reduced OBDD) itself is a complex
computational procedure.

• This approach is limited to the case of propositional logic and a single
yes-no output.

Hence, although OBDD constitute an interesting concept from theoretical
point of view, their practical applications in the domain of knowledge engi-
neering seems to be intrinsically limited. However, certain ideas concerning
both ordering and reduction can be influencing for some more reach systems
with special attention paid to ones incorporating attribute-based logics.
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7.7 Dynamic and Non-Monotonic Systems

In case of more complex applications it may be the case that dynamic changes
of knowledge base are necessary to model the current state of knowledge. This
means that the inference process is no longer a monotonic one. New facts are
concluded to be true, while some other are no longer true, and as such, they
have to be deleted from the database. This may happen in the case of modeling
dynamic systems behavior or while performing non-monotonic reasoning in
case of incomplete initial information.

In case of dynamic rule-based systems the scheme of the rules is no longer
as simple as that of (7.1) or (7.2). In order to model dynamic changes in the
knowledge base two basic operations are necessary; these are:

1) retract(q) — which retracts (deletes) fact q from the knowledge base,
2) assert(q) — which asserts (adds) fact q to the knowledge base.

The basic scheme of a propositional rule which enables dynamic changes
of the knowledge base is as follows

rule : p1∧p2∧. . .∧pn −→ retract(d1, d2, . . . , dd), assert(h1, h2, . . . , hh). (7.38)

As in the former case of classical monotonic propositional rules given
by (7.1) and (7.2) the LHS (rule) = p1 ∧ p2 ∧ . . . ∧ pn is a conjunction of
propositional literals; each pi may be a positive atom or a negated one. The
LHS (rule) part of the rule defines its preconditions, i.e. conditions which
must simultaneously hold to fire the rule. On the other hand, now the
RHS (rule) = retract(d1, d2, . . . , dd), assert(h1, h2, . . . , hh) and it defines the
changes to be executed on the knowledge base if the rule is fired.

One typical application of such rules concerns modeling dynamic systems
with memory. As an example consider the well known SR trigger. It has two
binary inputs s (set) and r (reset) and one output q being equal to the state
of internal memory. The logical function describing its behavior is given by
the following equation

q′ = q ∧ ¬r ∨ s.

The dynamic behavior of the trigger can be described with the following
set of rules:

rule1 : q ∧ r ∧ ¬s −→ retract(q), assert(¬q),
rule2 : ¬q ∧ ¬r ∧ s −→ retract(¬q), assert(q) .

The interpretation of the rules is as follows. Rule1 says: if q is set to 1
(true), then it is reseted by r under absence of s. Rule2 says: if q is set to 0
(false), then it is set by s under the absence of r. As there are no more rules,
under any other combination the memory stays unchanged.
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Rule-Based Systems in Attributive Logic

Although the basic concepts of rule based systems can be nicely explained
at the level of propositional logic — as it was done in Chap. 7 — in case of
more realistic, practical applications propositional logic becomes too poor as a
language for knowledge encoding. Obviously, expressive power of propositional
languages is far too low for efficient knowledge representation. Hence, since
a more powerful language is necessary, one of the most obvious choices is
employing a wide spectrum of attributive languages.

The languages basing on the concept of attributes have a number of
characteristics, making them almost ideal tools for practical representation
and manipulation of knowledge; these include the following features:

• introducing variables — attributes play the role of variables; the same
attribute can take different values and there is no need to introduce new
propositional symbols;

• easy specification of constraints — since attributes play the role of
variables, using various relational symbols allows to specify almost any
constraints;

• parameterization — attributes may also play the role of parameters to
be instantiated at some desired point of inference.

The above characteristics contribute to increased expressive power —
as the result of introducing attributes (as variables) and domains for them.
Nevertheless, attributive languages stay intuitive and transparent.

In Chap. 3 we have introduced four different types of logical languages
based on the use of attributes; these are:

• AAL — Atomic Attributive Logic, i.e. attributive logic with atomic values
of attributes only.

• SAL — Set Attributive Logic, i.e attributive logic with set values of at-
tributes.

• VAAL — Variable Atomic Attributive Logic, i.e. attributive logic with
atomic values of attributes incorporating variables.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 129–153 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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• VSAL — Variable Set Attributive Logic, i.e attributive logic with set values
of attributes incorporating variables.

Obviously, there are many other possibilities of enhancing the expressive
power and knowledge representation capabilities. Some most frequently used
options include, but are not limited to, the following features:

• admission of various relational symbols, such as <, ≤, ∈, ⊆, etc.;
• explicit specification of type of attributes (variables), e.g. logical (yes/no)

values, nominal sets, integers, real numbers, etc.;
• incorporation of general and domain specific operations on attributes and

their values (e.g. calculation of functions).

In this Chapter we present various knowledge representation forms of rule-
based systems based on attributive logic. In particular, special attention is
paid to the following four most frequently used or most promising forms:

• Attributive Decision Tables (AD-Tables) and Extended Attributive Deci-
sion Tables (XAD-Tables),

• Attributive Decision Trees (AD-Trees) and Extended Attributive Decision
Trees (XAD-Trees),

• Tabular Trees (Tab-Trees, TT), and Extended Tabular Trees (XTT),
• Attributive Rule-Based Systems.

Attributive Decision Tables and Attributive Decision Trees constitute
some extensions of their propositional prototypes. Various forms of them are
used in information systems [106], machine learning [18], and other domains.

A concept of two-level, hierarchical tabular rule-based system was intro-
duced in [65]; the upper-level rules were devoted to switching to lower-level
tables. The rules of a lower-level table were destined to operate within a given
context.

Tabular-Trees constitute an extension of this idea and simultaneously an
interesting combination of decision trees and attributive decision tables; they
were first explicitly proposed in [141], and further discussed in [97]. They seem
to constitute an intuitive and transparent conceptual tool for highly efficient
presentation of rule-based knowledge in a hierarchical way which seems to be
most promising.

Recent developments [92] resulted in an elaborated version of Extended
Tabular Trees (XTT)1 and new graphical software tool called Mirella for
visual edition and analysis of attributive tabular rule-based systems.

8.1 Attributive Decision Tables

One of the main disadvantages of decision tables [120] or ones defined as by
Table (7.2) is the consequence of very limited possibilities of defining the pre-
1 The name eXtended Tabular Trees first appeared in [92] and is due to Grzegorz

Jacek Nalepa.
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conditions of actions with the use of binary values only, while in numerous
cases the use of values of attributes is much more convenient. A table incorpo-
rating attributes and providing specification of their values is an Attributive
Decision Table (AD-Table). Such tables are also called Object-Attribute-Value
Table (OAV Table, OAT) or decision tables, as well. In extended form, allow-
ing for non-atomic values of attributes they are called Extended Attributive
Decision Tables (XAD-Tables).

Below the AD-Tables and their extended form being XAD-Tables are pre-
sented in turn.

8.1.1 Basic Attributive Decision Tables

The AD-Tables in their basic form are very similar to relational database
tables, and in fact it is a RDB table with specific interpretation of certain
columns. The basic scheme of such a table is presented below (Table 8.1).
Here att stays for attribute and con for conclusion.

Table 8.1. Basic scheme of an attributive decision table

att 1 att 2 . . . att k con 1 con 2 . . . con m

v11 v12 . . . v1k w11 w12 . . . w1m

v21 v22 . . . v2k w21 w22 . . . w2n

...
...

...
...

...
...

vn1 vn2 . . . vnk wn1 wn2 . . . wnm

In the above table, the rows specify under what attribute values certain
conclusion may be drawn (or an action may be executed). Since both vij

and wij may take several values (not just true/false, or unimportant), the
approach is more general than the former one, based on classical tables. In
case of actions, the specific values may indicate if the action is to be applied
or not, but they can also specify a certain parameter of the action associated
with specific column.

The interpretation (and execution) of this table is straightforward: the
rows are examined in turn, and the current values of subsequent attributes
are determined; if they match the pattern specified in the examined row, the
actions specified in the right-hand part of the table are executed, and next
row is examined in turn. Of course, hierarchical organization of tables is also
possible.

The rules covered by a decision table are put all together and form a kind
of decision unit designed to work in a certain assumed context situation. The
conditional part of a table can also be empty — in such a case the table
specifies knowledge which is unconditionally true; this can be interpreted as
facts (from logical point of view) or as relational database tables describing
certain objects.
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8.1.2 Information Systems

In his seminal book, Pawlak [106] introduces the concept of information sys-
tems or attribute-value system, also determined as Knowledge Representation
System (or KR-system for short). Let us recall some basic definitions.

Let U denote a finite, nonempty set (of objects), to be called the universe.
Further, let A denote a finite set of primitive2 attributes. Every (primitive)
attribute Ai ∈ A is a function of the form

Ai : U → Di ,

where Di is the set of legal values of Ai, to be called the domain of Ai.

Definition 79 (Knowledge Representation System [106]). A Knowl-
edge Representation System (KR-System) is a pair S = (U,A).

Usually, the specification of a KR-System can be presented in the tabular
form, similar to the one of relational databases. This implies that the value
of every attribute for every object of U is given in an explicit way.

In his book, Pawlak [106] gives also a formal definition of a decision table.
Let K = (U,A) be a knowledge representation system, and let C ⊆ A and
H ⊆ A be two subsets of the set of all attributes, to be called conditional (con-
dition) and decision attributes. A KR-system with distinguished conditional
and decision attributes is called a decision table.

Definition 80 (Decision Table (Pawlak) [106]). A decision table is a four-
tuple T = (U,A,C,H).

Note that, according to the above definition, a decision table has condi-
tional part (the one with conditional attributes C) and decision (conclusion)
part (the one described with decision attributes H). Although not stated ex-
plicitly, both the definition of KR-system and the one of decision table seem
to allow only atomic values of attributes.

For the purpose of this book we shall introduce the following notation and
definition of XD-Tables, which, basically, are very much the same, as given
by Definition 80.

Consider a nonempty, finite set of attributes of interest, A = {A1, A2,
. . . , An}. For any attribute Ai let Di denote the domain of this attribute,
i = 1, 2, . . . , n. The domain can be a finite one, i.e. Di = {d1, d2, . . . , dmi}, or
infinite, e.g. Di ⊆ IR, where IR is the set of real numbers.

Attributes A1, A2, . . . , An denote some properties of interest, selected for
expressing the domain knowledge of the analyzed system, when operating in
a specific (local) context. They are aimed at representation of precondition

2 Pawlak [106] distinguishes between primitive attributes, which are here called
simply attributes, and sets of them (subsets of A) which he calls compound at-
tributes, to be called here also compound or meta attributes.
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knowledge for the rules. It is typically implicitly assumed that the attributes
are independent from one another.

Further, let us consider a specific set of attributes H = {H1,H2, . . . , Hm}
with the domains DH

1 ,DH
2 , . . . , DH

m where DH
h = {h1, h2, . . . , hmh}. These

attributes are aimed at describing the output of the rules, e.g. conclusions,
decisions or other output values.

In the basic statement, the structure of a single condition (atomic formula)
is as simple as an atomic formula of the AAL language, see Definition 49.
Hence, if u ∈ U denotes an object, Ai ∈ A is an attribute and d ∈ Di is an
atomic value of the domain of Ai, any expression of the form

Ai(u) = d

is an atomic formula. The decision statements are constructed in a similar
way, e.g. Hj(u) = h.

Tabular system can be used both for data templates representation and
for representation of rules. In the former case no decision attributes H are
present3; the particular rows of the table represent formulae describing indi-
vidual items. In case of rules, specific columns with the decision (conclusion)
attributes H are present, and the other attributes play the role of variables
used in the specification of preconditions.

In general, the tabular representation follows the pattern of RDB systems.
They can be used to represent both Data and Knowledge (D&K ), so they
provide a common representation for those two classes of information [61,62].
Below a brief note on the differentiation of data and knowledge is presented.

What is Data

An atomic data item is a certain piece of information represented in certain
accepted language, and is:

• as precise as possible (within the selected language),
• meaningful (having some interpretation),
• positive (no negation is used),
• unconditional.

Examples of data items include: propositional formula, ground atomic for-
mula of predicate calculus, O-A-V fact, Prolog fact, etc.

A data item is a conjunctive combination of atomic data items. Examples
of data items include: ground conjunctive formulae, records (of atomic data
items) in RDB, etc.

Data is a collection of data items. Examples include RDB system tables,
collections of ground conjunctive formulae, etc.

3 To be consistent, we should perhaps use the attributes of H to denote uncondi-
tional statements; here we selected A, used traditionally also in databases.
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Data and knowledge can also be differentiated by their intended interpre-
tation: a data item (such as an attribute value, record, table) is considered to
be data if the main intended use of it is to provide static, detailed and pre-
cise image of a fragment of real world while a knowledge item (such as fact,
simple conjunctive formula, DNF formula, and especially rules) is intended to
provide more general knowledge defining universal or local properties of the
world. From practical point of view, one can consider data to be the part of
knowledge that is unconditional and expressed with the finest granularity.

What is Knowledge

An atomic knowledge item is any data item and any more general elemen-
tary item of the accepted language, which:

• may contain variables/sets/intervals/structures (according to the selected
language),

• meaningful (having some interpretation),
• positive or negative,
• perhaps conditional.

Examples of atomic knowledge items include: atomic formula of predicate
calculus, extended O-A-V fact4, Prolog fact with variables, etc.

A knowledge item is a conjunctive combination of atomic knowledge
items. Examples of knowledge items include: conjunctive formulae, records
(of atomic knowledge items), etc.

Knowledge is a collection of knowledge items. Examples include rela-
tional database-like tables specifying data templates or rules, decision tables,
collections of logical formulae, Prolog programs.

If the specification contains variables (e.g. universally quantified, or defin-
ing some scope ones) or it is true only under certain conditions (e.g. takes
the form of rules, allows for deduction or any other form of inference), then it
should be normally considered to be knowledge. However, in the uniform, sim-
plified model proposed in this book explicit distinction is in fact not necessary.
A RDB table would be normally considered as data, but it may be considered
as most detailed knowledge as well. On the other hand, tabular system of data
templates can be considered as extensional specification of data.

8.1.3 Attributive Decision Tables with Atomic Values
of Attributes

Consider a set of rules, each of the form:

ri : (A1 = di1) ∧ (A2 = di2) ∧ . . . (An = din) −→
−→ H1 = hi1 ∧ H2 = hi2 ∧ . . . Hm = him.

4 O-A-V stays for Object-Attribute-Value.
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Now, taking into account the advantage of the uniform form of all the
rules in the system, the set of rules can be specified in a transparent, tabular
form (one resembling database format). The definition of (a basic form of) an
AD-Table follows.

Definition 81 (Attributive Decision Table). An AD-Table is a table of
the following form:

T =

rule A1 A2 . . . Aj . . . An H1 H2 . . . Hm

r1 d11 d12 . . . d1j . . . d1n h11 h12 . . . h1m

r2 d21 d22 . . . d2j . . . d2n h21 h22 . . . h2m

...
...

...
...

...
...

...
...

...
ri di1 di2 . . . dij . . . din hi1 hi2 . . . him

...
...

...
...

...
...

...
...

...
rk dk1 dk2 . . . dkj . . . dkn hk1 hk2 . . . hkm

(8.1)

The above table represents k uniformly structured decision rules.
Using the matrix notation one can also write T = [RΦH], where R is

the leftmost column vector of rule names, Φ is the matrix of conditional
attribute values, and H is the rightmost matrix specifying conclusions (de-
cisions). Further, the precondition matrix Φ can be (logically) written as
Φ = φ1 ∨ φ2 ∨ . . . ∨ φm, or in the matrix form as

Φ =








φ1

φ2

...
φk








,

where φi = (A1 = di1) ∧ (A2 = di2) ∧ . . . ∧ (An = din). From now on Φ will
denote the logical formula corresponding to tabular form Φ and vice versa.

8.1.4 Example: Opticians Decision Table

After [106]5 let us consider the following set of attributes for Opticians Deci-
sion System:

• A1 := age; D1 = {y, p, q}, where:
y — young,
p — pre-presbyotic,
q — presbyotic;

• A2 := spectacle; D2 = {m,h}, where:
m — myope,
h — hypermyope;

5 This example is originally due to Cendrowska, see [15].
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• A3 := astigmatic; D3 = {n, y}, where:
n — no,
y — yes;

• A4 := tear production rate; D4 = {r, n}, where:
r — reduced,
n — normal;

• D := type of contact lenses (decision attribute); DD = {H,S,N}, where:
H — Hard contact lenses,
S — Soft contact lenses,
N — No contact lenses.

Consider the Opticians Decision Table (Table 8.2), being a perfect example
of an AD-table.

Table 8.2. Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y m y n H
2 y n y n H
3 p m y n H
4 q m y n H

5 y m n n S
6 y n n n S
7 p m n n S
8 p n n n S
9 q n n n S

10 y m n r N
11 y m y r N
12 y n n r N
13 y n y r N
14 p m n r N
15 p m y r N
16 p n n r N
17 p n y r N
18 p n y n N
19 q m n r N
20 q m n n N
21 q m y r N
22 q n n r N
23 q n y r N
24 q n y n N

For intuition, this table can be regarded as a complete decision table since
for every possible combination of input attribute values there is a decision
provided. Further, the provided decision is unique in any case — the system is
said to be deterministic. The table can be viewed as a specification of a tabular
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rule based system. A brief analysis assures us that there are no redundant or
subsumed rules. We shall return to precise analysis of the system later on,
after defining formal properties of rule-based systems.

8.2 Extended Attributive Decision Systems

Encoding decision tables with the use of atomic values of attributes only
simplifies design and analysis of such systems. Any two rules can be easily
compared (e.g. if they are identical), and if the attributes are really functional
(for any object or input situation they take only a single value). Two rules with
different preconditions are sure to be deterministic (either first or the second
can be fired, but not both of them together). Moreover, for some analyzes and
operations on such systems one can apply simple relational algebra, as in the
case of relational databases [23].

Unfortunately, for a number of more complex, realistic applications, it is
not enough to stay at the level of atomic values only. There are at least the
following three reasons for that:

1) many attributes are in fact generalized attributes (pseudo-functions) —
they can take several values (a subset) from the domain at a certain instant
of time, i.e. they are mappings of the form Ai : U → 2Di (see Def. 48);

2) knowledge specification (both in case of rules and facts) with non-atomic
values can be far more concise than in the case of atomic values;

3) it is often impossible to specify precise definition of preconditions, and one
needs to have the possibility to specify attribute values as belonging to
intervals, subset of the domain, etc.

The main extension with respect to AD-Tables with atomic values consists
then of admitting non-atomic values of attributes, both in the conditional part
and in the conclusion part.

In principle, the value of an attribute can be any subset of its domain6, or
in general an element of a lattice. In case of sets we shall assume that only
finite domains will be considered. Hence, instead of a set of real numbers one
has to choose a discrete (and bounded) subset of it; since the approach is
computer-oriented, this assumption does not seem to be too restrictive.

The set domains can be of the following types:

• nominal sets — unordered sets of discrete elements,
• ordered sets — ordered sets of discrete elements,
• lattice — the sets with partial order relation forming a lattice structure.

In the class of ordered sets it is typical to distinguish a set of numbers, e.g.
a finite subset of integer numbers or real ones. Typically also one distinguishes
attributes taking logical values, such as true and false (also denoted with 1
and 0).

6 For simplicity, we do not allow here any structures, such as terms in FOPC.
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Now consider a basic fact of the SAL language defined by Definition 50,
i.e. one defined as below. Let u ∈ U be an object, Ai ∈ A be an attribute
and let t ⊆ Di be some subset of the domain of Ai. Two most typical atomic
formulae will be considered, i.e. the one with equation of the form

Ai(u) = t

and the one with ‘belongs to’ relation

Ai(u) ∈ t.

Both of the formulae are atomic formulae of SAL. On the base of atoms,
appropriate selectors can be constructed to form preconditions of the rules.

Consider a set of rules, each of the form

ri : (A1 ∈ ti1) ∧ (A2 ∈ ti2) ∧ . . . (An ∈ tin) −→
−→ H1 = hi1 ∧ H2 = hi2 ∧ . . . Hm = him.

Taking into account the advantage of the uniform form of all the rules in
the system, the set of rules can be specified in a transparent, tabular form (one
resembling database format). The definition of (a basic form of) a XAD-Table
follows.

Definition 82 (Extended Attributive Decision Table). An XAD-Table
is a table of the following form:

T =

rule A1 A2 . . . Aj . . . An H1 H2 . . . Hm

r1 t11 t12 . . . t1j . . . t1n h11 h12 . . . h1m

r2 t21 t22 . . . t2j . . . t2n h21 h22 . . . h2m

...
...

...
...

...
...

...
...

...
ri ti1 ti2 . . . tij . . . tin hi1 hi2 . . . him

...
...

...
...

...
...

...
...

...
rk tk1 tk2 . . . tkj . . . tkn hk1 hk2 . . . hkm

(8.2)

The above table represents k uniformly structured decision rules with non-
atomic values of attributes. The matrix notation can be also used as in the
case of AD-Tables.

The interpretation of set values of attributes is as follows. Let t be a subset
of the domain of attribute Ai, t = {d1, d2, . . . , dj}. In preconditions, a selector
like

Ai ∈ t

can be expressed as

Ai = d1 ∨ Ai = d2 ∨ . . . ∨ Ai = dj ,
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i.e it denotes the so-called internal disjunction (see Subsect. 3.5.2 on page
60). For the condition to be satisfied it is enough that Ai = d, where d ∈ t. In
case of attributes taking set values, it can also happen that Ai = t′ and for
satisfaction of the condition it is enough that t′ ∩ t 
= ∅.

On the other hand, in decision part of the XAD-table, an expression of
the form

Hi = t

means in fact internal conjunction (see Subsect. 3.5.1 on pate 59), i.e. it can
be interpreted as

Hi = d1 ∧ Hi = d2 ∧ . . . ∧ Hi = dn .

This interpretation follows from practical considerations — the precon-
ditions of the rule are usually aimed at specifying some wider context of
application, while its conclusions are as precise as necessary.

8.3 Example

Let us continue with the Opticians Decision Table presented in Subsect. 8.1.4.
It is not difficult to see, that the table can be represented in equivalent but
shorter form as follows (Table 8.3).

Table 8.3. A reduced form of the Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y — y n H
2 — m y n H

3 y — n n S
4 p — n n S
5 — n n n S

6 — — — r N
7 p n y — N
8 q m n — N
9 q n y — N

Moreover, even a more concise specification is possible (Table 8.4).
The final table is still equivalent to the initial one.

8.4 Attributive Rule-Based Systems

In this Section a general format of attributive decision rules for construction
of rule-based systems will be presented. As usual, consider a nonempty, finite
set of attributes of interest, A = {A1, A2, . . . , An}. For any attribute Ai let Di
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Table 8.4. The most reduced form of the Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y — y n H
2 — m y n H

3–4 {y, p} — n n S
5 — n n n S

6 — — — r N
7–9 {p, q} n y — N

8 q m n — N

denote the domain of this attribute, i = 1, 2, . . . , n. The domain, as indicated
before, can be a finite one, i.e. Di = {d1, d2, . . . , dmi}, or infinite, e.g. Di ⊆ IR,
where IR is the set of real numbers.

8.4.1 Rule Format

The most general form of a rule considered here is an extended form of the
rules discussed in Sect. 7.7. It is based on the basic rule format but includes
both control statement and dynamic operations definitions. Hence the rule
can operate on system memory and show where to pass control in an explicit
way.

Recall that in the case of propositional rules, the rule incorporating control
statement were specified by equation (7.31) as follows

rulei : #p1 ∧ #p2 ∧ . . . ∧ #pn −→ #h1 next(j ) else(k),

i.e. with the use of the next(j) part specifying which rule should be examined
immediately after successful execution of rule i, and with the else(k) part
specifying which rule should be tried in case of failure.

Moreover, the specification of dynamic operations was given by the retract
and assert parts by expression (7.38), and it took the following form

rule : p1 ∧ p2 ∧ . . . ∧ pn −→ retract(d1, d2, . . . , dd), assert(h1, h2, . . . , hh).

Now, the extended form of a rule in attributive languages may, in general,
incorporate the following components:

• a unique identifier of the rule; it can be the name or the number of the
rule, or both;

• context specification of a rule; it is a form of general preconditions, spec-
ifying a context in which the rule is expected to be meaningful; in fact,
contexts can be specified in a hierarchical way, but for simplicity only one
level of contexts is considered here;

• preconditions of the rule, specifying logical formula that has to be satisfied
in order for the rule to be executed;
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• dynamic operation specification with the use of the retract and assert
parts;

• conclusion, decision or action part being the final output of the rule;
• control specification with the use of the next and else parts.

The generic form of such a rule can be presented as follows:

rule(i) : ψ∧
A1 ∈ t1 ∧ A2 ∈ t2 ∧ . . . ∧ An ∈ tn
−→
retract(B1 = b1, B2 = b2, . . . , Bb = bb)
assert(C1 = c1, C2 = c2, . . . , Cc = cc)
H1 = h1,H2 = h2, . . . , Hh = hh

next(j ), else(k).

(8.3)

In the above specification:

• ψ is a formula defining the context in which the rule is designed to operate;
the context may also be specified outside for a group of rules forming
a decision table,

• A1 ∈ t1 ∧ . . . ∧ An ∈ tn is the regular precondition formula,
• B1 = b1, . . . , Bb = bb is the specification of the facts to be retracted from

the knowledge base,
• C1 = c1, . . . , Cc = cc is the specification of the facts to be asserted to the

knowledge base,
• H1 = h1, . . . ,Hh = hh is the specification of conclusions forming a direct

output of the rule (e.g. decisions to be displayed on the terminal or control
actions to be executed),

• next(j ), else(k) are the specifications of control.

In real rules some of the attributes in the precondition of the rule may
be omitted; this is equivalent to specifying conditions of the form Ai ∈ .
The specification of values of attributes B1 = b1, B2 = b2, . . . , Bb = bb,
C1 = c1, C2 = c2, . . . , Cc = cc and H1 = h1,H2 = h2, . . . , Hh = hh

concern attributes defined for the system, i.e. B1, B2, . . . , Bb, C1, C2, . . . , Cc,
H1, . . . , Hh ∈ A.

A general format of extended rule specification is also discussed in details
in Sect. 9.4.

8.4.2 Rule Firing

Examination and possible firing of a rule given by (8.3) is performed by the
rule interpreter according to the following specification:

1. As an initial condition, it must be checked if the context defining formula ψ
is satisfied — if so, proceed; if not then there is no use in further examining
the rule. The system must determine the current context and switch to
the group of rules designated to operate in this context. Note that there
are two basic possibilities of context checking:
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– checking the context any time a rule is considered for execution; we
shall refer to such an approach as permanent context checking ;

– checking the context once when entering a group of rules defined for a
specific context; we shall refer to such an approach as external context
checking.

2. Check if the preconditions of the rule are satisfied; if yes — proceed; if
no — go to the rule specified with the else part.

3. Retract all the facts that undergo the specification of the facts given in
the retract part.

4. Assert all the facts given in the assert part.
5. Execute the actions defined with the conclusion part or present the appro-

priate decisions to the user.
6. Go to the rule specified with the next part.

In case the next or the else parts are empty, a default behavior can be
assumed, e.g. the system can stop or go to examine next rule in the same table;
if the current rule is the last one in the currently explored table, the system can
either stop, try again beginning with the first rule in the table (e.g. monitor-
like system) or backtrack and pass control to the former table. The details are
domain-dependent and should be defined for any specific application.

For practical definition of certain details of operation, it should be stated
precisely what it means to ‘retract all the facts that undergo the specification
of the facts given in the retract part’. The very first understanding may be
that simply all the facts identical with the ones specified in the retract part of
the rule should simply be removed. However, taking into account the precisely
defined logical interpretation of the fact of the form

Ai = ti

one may conclude that the retracting procedure should proceed as follows:

1. Examine all the facts specified in the retract part of the rule in turn.
2. For any such fact of the form Bj = bj determine all the facts in the

knowledge base, defined with the use o the same attribute, i.e. of the form
Ai = ai, where Ai = Bj .

3. For any such fact check the following possibilities:
– if ai ⊆ bj then remove the fact Ai = ai from the knowledge base;
– if ai ∩ bj 
= ∅, then replace the fact Ai = ai in the database with

Ai = ai \ bj ;
– if ai ∩ bj = ∅, then leave the fact Ai = ai unchanged.

The system may have single-level construction, i.e. all the rules are con-
sidered to be of equal priority, or hierarchical — some of the rules may be
considered to be of higher priority than the other. In particular, such system
may be organized in several levels, where the rules at a higher level indicate
which group of rules at a lower level should be used. The problems of inference
control are discussed in Chap. 10.
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8.5 Extended Tabular Trees

Extended Tabular Trees [92] (XTT, for short) combine the idea of extended
attributive rule-based systems as presented in Chap. 8, Sects. 8.1–8.4, with
the idea of decision trees as presented in Subsection 7.6.2. This allows for rel-
atively high concentration of knowledge specification with extended attribut-
ive decision tables combined with the control capabilities incorporated in the
structure of decision trees. In fact, the Extended Tabular Trees seems to con-
stitute one of the most promising approaches to knowledge representation,
fitting well the requirements for knowledge specification, analysis, verification
and encoding control algorithms.

Let us present the anatomy of an XTT basic component for knowledge
representation. Such a component is composed of a number of rules, defined
as by (8.3), having the same structure of attributes and defined to operate in
the same context. Such a set of rules can be efficiently represented with the
use of a somewhat special table, being in fact an extension of (8.2).

In order to present the generic structure of an XTT knowledge represen-
tation component, let us introduce the following notions.

8.5.1 Cells

For intuition, a cell is the most atomic field for specification of information
in tables. A cell including specific value constitutes a specification of atomic
attributive formula of any of the introduced languages, i.e. an atom of AAL,
SAL, VAAL, or VSAL.

More precisely, let Aj be an attribute of interest and let Dj denote its
domain. Let also i ∈ {1, 2, . . . , k} denote some object or rule identifiers in
some table T .

Definition 83. A cell (in table T ) is a pair

(Aj , i).

A cell can be specified graphically — in this case it is represented as a
rectangular field on the intersection of the column labelled with attribute Aj

and the i-th row. A cell including a value — say tij — denotes in fact an
atomic formula of the form

Aj(i) ∈ tij

if belonging to preconditions or

Aj(i) = tij

if belonging to conclusions.
Basic operations on a cell include writing a certain value down into a cell,

removing the value, updating the value of a cell, and comparing the value of
one cell with the value of another cell or an externally provided value.
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8.5.2 Rules

Rules in tabular knowledge specification are equivalent to rows of the table.
In fact, each rule of the form given by specification (8.3) can be represented
with the use of a number of cells defining the preconditions and the output of
the rule. A single rule is represented as a single row having the form presented
in Table 8.5.

Table 8.5. The generic form of a rule in the XTT

Info Prec Retract Assert Decision Ctrl

I Ctx A1 . . . An B1 . . . Bb C1 . . . Cc H1 . . . Hh N E

i ψ ti1 . . . tin bi1 . . . bib ci1 . . . cic hi1 . . . hih gi ei

Note that, it seems convenient to deal with the rule number, context, next
and else specifications as values of certain specific attributes — this makes
the specification of the table uniform. Hence, in the above single-row table,
the columns are labeled with the following attributes:

• I — the rule identifier (in a table),
• Ctx — the context for the rule,
• A1–An — the precondition attributes,
• B1–Bb — the retract attributes,
• C1–Cc — the assert attributes,
• H1–Hh — the decision attributes,
• N — the control attribute indicating the next rule,
• E — the control attribute indicating the else rule.

The attribute may play a certain role — it can be used for specifying
preconditions of the rule, retract or assert part of the rule or the output
decision. Let

Roles = {Info,Preconditions ,Retract ,Assert ,Decision,Ctrl}
denote the set for defining the six possible placements — and thus roles — of
the attribute. Let also i ∈ {1, 2, . . . , k} denote rule identifier in a certain ta-
ble T . We shall introduce the notation allowing to address any cell in the rule.

The idea of the notation follows the standard path notation used in rela-
tional databases. In fact, it is a specification of a path leading the cell and
identifying it in a unique, systematic way. It is of the form

〈role〉.〈attribute〉,
where 〈role〉 ∈ {Info,Preconditions ,Retract ,Assert ,Decision,Ctrl} and
〈attribute〉 ∈ {I,Ctx , A1 − An, B1 − Bb, C1 − Cc,H1 − Hh, N,E}.
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Further, to denote the specification of value of a certain cell in rule i we
shall write

〈role〉.〈attribute〉(〈rule identifier〉) = 〈value〉.
For example, Info.I(i) = i, Info.Ctx (i) = ψ is a specification of rule con-

text, Preconditions .Aj(i) ∈ tij is a specification of precondition attribute re-
striction, Ctrl .N(i) = gi is a specification of the next rule, and Ctrl .E(i) = ei

is a specification of the else rule.

8.5.3 XT — Extended Table

Rules of similar scheme can be easily combined into a table. The Extended At-
tributive Table (XAT) (or Extended Table (XT), for short) takes the following
form (Table 8.6).

Table 8.6. The basic form of an XAT

Info Prec Retract Assert Decision Ctrl

I Ctx A1 . . . An B1 . . . Bb C1 . . . Cc H1 . . . Hh N E

1 ψ t11 . . . t1n bi1 . . . b1b c11 . . . c1c h11 . . . h1h g1 e1

2 ψ t21 . . . t2n b21 . . . b2b c21 . . . c2c h21 . . . h2h g2 e2

...
...

...
. . .

...
...
. . .

...
...
. . .

...
...
. . .

...
...

...
i ψ ti1 . . . tin bi1 . . . bib ci1 . . . cic hi1 . . . hih gi ei

...
...

...
. . .

...
...
. . .

...
...
. . .

...
...
. . .

...
...

...
k ψ tk1 . . . tkn bk1 . . . bkb cik . . . ckc hk1 . . . hkh gk ek

Note that the context specified by ψ is in fact the same for every rule in
the table; it may be convenient to specify it outside the table and remove the
Ctx column for simplicity.

In the most popular case also the values of the cells specifying the next and
the else rule may also stay empty — this means that after examining a rule,
perhaps the next one should be examined in turn, disregarding if the former
rule was fired or not. If there is no next rule in the table, the interpreter is to
stop and exit or perform other predefined or default actions.

The introduced above path notation can be extended onto tables in a
straightforward way. The specification of a path is leading to the cell and
identifying it in a unique, systematic way. It is of the form

〈table〉.〈role〉.〈attribute〉,
where 〈table〉 is a name of a table, 〈role〉 ∈ {Info,Preconditions ,Retract ,
Assert ,Decision,Ctrl} and 〈attribute〉 ∈ {I,Ctx , A1 − An, B1 − Bb, C1 − Cc,
H1 − Hh, N,E}.
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To denote the specification of value of a certain cell in table T we shall
write

〈table〉.〈role〉.〈attribute〉(〈rule identifier〉) = 〈value〉.
For example, T.Info.Ctx (i) = ψ is a specification of table and context

for rule i, T.Preconditions .Aj(i) ∈ tij is a specification of precondition at-
tribute restriction, T.Ctrl .N(i) = gi is a specification of the next rule, and
T.Ctrl .E(i) = ei is a specification of the else rule.

8.5.4 Connections and Their Properties

The extended tabular format provides an easy and intuitive way for specifi-
cation of rules in tabular form. However, only similar rules operating in the
same context can be put into a single table in a reasonable way. In more com-
plex systems, there is no use of putting all rules to a single table — contrary
to such a ‘flat’ approach, a number of tables with different structure can be
specified.

In case of a single table rule-base, it seems that basic inference control
paradigm can be specified in a relatively simple way. Typically, the rules are
interpreted top-down, i.e. from the first one down until the last one is reached.
Every time the preconditions of a rule are satisfied, the rule is fired. After a rule
is examined, and possibly — fired, the next rule is analyzed. After reaching
the last rule the process is stopped (in case of a single run) or it is continually
repeated from the beginning (in case of a loop, to be applied in monitoring
systems).

The basic inference scheme may be modified if the values of Ctrl .N and/or
Ctrl .E cells are non-empty. A nonempty value of the Ctrl .N cell means that
after successful rule firing, there is a jump to a specific rule. A nonempty value
of the Ctrl .E cell means that after examining a rule which cannot be fired,
there is a jump to a specific rule. This allows to specify almost any control
algorithm.

Having a number of such tables the Ctrl .N and/or Ctrl .E cells can be used
to specify switching among tables with the possibility to jump into a specific
rule inside a table. Hence, with the use of the control cells and assuming that
rules in a table are numbered, one can easily specify links between tables.

In order to specify a link, the following three elements are necessary:

1) starting point — in our case it is the value of the location of the Ctrl .N
and Ctrl .E cell,

2) end point — in our case it is a rule in a goal table,
3) definition of properties (if any) of the link.

In order to identify a rule in a unique way we adopt the path-dot notation;
a path 〈table〉.〈number〉 indicates a precise rule located in a table. Hence, in
order to specify the values of gi and ei (the next and the else rules) one should
use the name (identifier) of the goal table and the number of the rule inside
it. So, for example, T.i is the identifier of rule i in table T .
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As for the properties, there is one important characteristic to be taken into
account. This is the cut property, analogous to the cut predicate in Prolog,
see Subsect. 11.6.1 on page 182.

Assume that the control has been passed from table S, rule i to table T ,
rule j. Then, there is an attempt to check the preconditions of rule T.j and
fire it, which can be successful or not. Now, assume that there is no rule to be
executed after T.j, perhaps because the cells Ctrl .N and Ctrl .E of the rule
are empty and there is no other rule in table T . Should the inference control
mechanism stop and exit in such a case?

Basically, there are two possibilities. The link (S.i, T.j) can allow for back-
tracking, and we may assume that the system backtracks to table S and re-
sumes there, trying the next rules after rule S.i. Assume this is the default
mode of operation. The second possibility is to forbid backtracking, and then
the system is to stop operation. In the second case we would require an ex-
plicit specification of the cut as a property of the link. The cut is denoted
with ! as in the Prolog language. Hence, (S.i, T.j) specifies a link allow-
ing for backtracking (default), while (S.i, !, T.j) (or (S.i!, T.j)) specifies a link
with no-backtracking property. For simplicity, the ! symbol may be appended
directly to the values of the Ctrl .N and Ctrl .E cells.

8.6 Example: Thermostat

Let us consider a simple but illustrative rule-based control system for setting
the required temperature in a room, depending on the type of the day, season,
hours, etc. The example is based on [102] THERMOSTAT example7.

/* THERMOSTAT: A DEMONSTRATION RULE-BASE */
Rule: 1

if the day is Monday
or the day is Tuesday
or the day is Wednesday
or the day is Thursday
or the day is Friday
then today is a workday

Rule: 2
if the day is Saturday
or the day is Sunday
then today is the weekend

Rule: 3
if today is workday

7 An appropriate knowledge base is given in [102], pages 41–43; for convenience we
list it here once again. Note that, from the point of view of control theory the
specification is not one of a thermostat system (which has as a task temperature
stabilization at a certain set point, but it is a specification of set point selection
algorithm of a higher-level (adaptation) controller.
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and the time is ‘between 9 am and 5 pm’
then operation is ‘during business hours’

Rule: 4
if today is workday
and the time is ‘before 9 am’
then operation is ‘not during business hours’

Rule: 5
if today is workday
and the time is ‘after 5 pm’
then operation is ‘not during business hours’

Rule: 6
if today is weekend
then operation is ‘not during business hours’

Rule: 7
if the month is January
or the month is February
or the month is December
then the season is summer

Rule: 8
if the month is March
or the month is April
or the month is May
then the season is autumn

Rule: 9
if the month is June
or the month is July
or the month is August
then the season is winter

Rule: 10
if the month is September
or the month is October
or the month is November
then the season is spring

Rule: 11
if the season is spring
and operation is ‘during business hours’
then thermostat_setting is ‘20 degrees’

Rule: 12
if the season is spring
and operation is ‘not during business hours’
then thermostat_setting is ‘15 degrees’

Rule: 13
if the season is summer
and operation is ‘during business hours’
then thermostat_setting is ‘24 degrees’

Rule: 14
if the season is summer
and operation is ‘not during business hours’
then thermostat_setting is ‘27 degrees’
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Rule: 15
if the season is autumn
and operation is ‘during business hours’
then thermostat_setting is ‘20 degrees’

Rule: 16
if the season is autumn
and operation is ‘not during business hours’
then thermostat_setting is ‘16 degrees’

Rule: 17
if the season is winter
and operation is ‘during business hours’
then thermostat_setting is ‘18 degrees’

Rule: 18
if the season is winter
and operation is ‘not during business hours’
then thermostat_setting is ‘14 degrees’

Note that the presented rules can be divided in a natural way into groups
producing the same kind of decision, but the precise decision depends on
precise preconditions. Further, in the groups, the preconditions of the rules
employ the same linguistic variables, but different values of them. In fact, there
are four different groups of rules defining decisions whether today is workday
or weekend (rules 1 and 2), whether the time is during business hours or
not (rules 3–6), what season we have (rules 7–10), and finally indicating the
setting of the thermostat (rules 11–18).

For each group we can build a separate extended tabular system — this
seems to be a natural and efficient approach — since the rules use the same
variables, the specification of attributes in the table is just given once and all
the columns are necessary for any rule in a table. Further, using the next and
else specification of rules we can specify an efficient way of interpretation of
the rules.

Below, we shall provide specification of this rule-base using the XTT ap-
proach. We provide specification of the XT tables and connections among
them. For simplicity, the context for each table will be provided once, outside
of the table.

In order to make the tables concise we shall introduce the following short-
hand notation for attributes and their values.

Here is the list of attributes to be considered; the name of each attribute
starts with ‘a’:

• aDD — day,
• aTD — today,
• aTM — time,
• aOP — operation,
• aMO — month,
• aSE — season,
• aTHS — thermostat setting.
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In the specification, the following values of the attributes will be used; the
name of each set starts with ‘s’:

• sWD = {Monday, Tuesday, Wednesday, Thursday, Friday},
• sWK = {Saturday, Sunday},
• sSUM = {January, February, March},
• sAUT = {March, April, May},
• sWIN = {June, July, August},
• sSPR = {September, October, November},
• sum = ‘summer’,
• aut = ‘autumn’,
• win = ‘winter’,
• spr = ‘spring’,
• wd = ‘workday’,
• wk = ‘weekend’
• dbh = ‘during business hours’,
• ndbh = ‘not during business hours’.

Note that we have introduced set values for attributes such as aDD (day)
and aSE (season) — this allows to specify the so-called internal disjunction
in a very concise way.

For simple interpretation and analysis, the original numbering of rules is
kept over the tables.

For the rules 1 and 2 we have:

Table 8.7. Context 1: none. An XT for rules 1 nad 2

Info Prec Retract Assert Decision Ctrl

I aDD aTD aTD H N E

1 sWD — wd 2.3 1.2
2 sWK — wk 2.6 1.1

Specification of the retract part with the underscore means in fact that
any value of aTD should be removed (the variables should be cleared). The
same convention is applied in further tables.

Note also the way of specifying the else part of the rules — the provided
specification assures circular attempt at interpretation of the rules until the
value of aTD attribute is set. This is so since this value is necessary in further
inference. Once the value is successfully established, the control is passed to
the tables indicated in the next part. The specification of the next rules is
made in such a way that depending on the value of aTD it is passed to
precisely selected rules having a chance to be fired.

For rules 3, 4, 5, and 6 we have:
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Table 8.8. Context 2: aTD ∈ {wd, wk}. An XT for rules 3–6

Info Prec Retract Assert Decision Ctrl

I aTD aTM aOP aOP H N E

3 wd [9:00, 17:00] — dbh 3.7 2.4
4 wd [00:00, 09:00] — ndbh 3.7 2.5
5 wd [17:00, 24:00] — ndbh 3.7 2.6
6 wk — — ndbh 3.7 2.3

As before, note the way of specifying the else part of the rules — the
provided specification assures circular attempt at interpretation of the rules
until the value of aOP attribute is set. This is so since this value is necessary
in further inference. Once the value is successfully established, the control is
passed to the table indicated in the next part. The specification of the next
rules is the same over the whole column of Table 8.8, since in Table 8.9 we
have to start at the beginning.

For rules 7, 8, 9, and 10 we have:

Table 8.9. Context 3: none. An XT for rules 7–10

Info Prec Retract Assert Decision Ctrl

I aMO aSE aSE H N E

7 sSUM — sum 4.13 3.8
8 sAUT — aut 4.15 3.9
9 sWIN — win 4.17 3.10
10 sSPR — spr 4.11 3.7

For the final decision rules 11, 12, 13, 14, 15, 16, 17, and 18 we have:

Table 8.10. Context 4: aSE ∈ {spr, sum, aut, win} ∧ aOP ∈ {dbh, ndbh}. An XT
for rules 11–18

Info Prec Retract Assert Decision Ctrl

I aSE aOP aTHS N E

11 spr dbh 20 1.1 4.12
12 spr ndbh 15 1.1 4.13
13 sum dbh 24 1.1 4.14
14 sum ndbh 17 1.1 4.15
15 aut dbh 20 1.1 4.16
16 aut ndbh 16 1.1 4.17
17 win dbh 18 1.1 4.18
18 win ndbh 14 1.1 1.1
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In the tables 8.7–8.9 the output values are asserted to the global memory
since they are used during inference with the Table 8.10. The final, output
conclusion is produced with the rules of the Table 8.10 — it is materialized
as a setting of the working point for the thermostat system.

The system can be run occasionally, e.g. it can be activated after a specific
event such as passing through a specific value of time requiring changing
the settings, or it can work in the monitoring mode, repeating continually
execution of the rules. Here we have selected the second option, and thus
after successful setting of the desired thermostat temperature the control is
passed to the beginning; the same happens if no rule of the Table 8.10 is fired.
This period of evaluation of the rules may be quite long, e.g. it may take
one hour.

Finally, one can ask for explicit specification of links among the tables.
The specification follows from the declaration of the next and the else parts
of the rules. The declaration of the inter-tabular links is as follows:

(N, 1.1, !, 2.3) – after successful firing of rule 1 in Table 8.7 the control is
passed to rule 3 in Table 8.8; the ! means that there is no
use in backtracking (in fact, preconditions of rules 1 and 2
are mutually exclusive);

(N, 1.2, !, 2.6) – after successful firing of rule 2 in Table 8.7 the control is
passed to rule 6 in Table 8.8; the ! means that there is no
use in backtracking;

(N, 2.3, !, 3.7) – after successful firing of rule 3 in Table 8.8 the control is
passed to rule 7 in Table 8.9; the ! means that there is no
use in backtracking;

(N, 2.4, !, 3.7) – after successful firing of rule 3 in Table 8.8 the control is
passed to rule 7 in Table 8.9; the ! means that there is no
use in backtracking;

(N, 2.5, !, 3.7) – after successful firing of rule 3 in Table 8.8 the control is
passed to rule 7 in Table 8.9; the ! means that there is no
use in backtracking;

(N, 2.6, !, 3.7) – after successful firing of rule 3 in Table 8.8 the control is
passed to rule 7 in Table 8.9; the ! means that there is no
use in backtracking;

(N, 3.7, !, 4.13) – after successful firing of rule 7 in Table 8.9 the control is
passed to rule 13 in Table 8.10; the ! means that there is
no use in backtracking;

(N, 3.8, !, 4.15) – after successful firing of rule 8 in Table 8.9 the control is
passed to rule 15 in Table 8.10; the ! means that there is
no use in backtracking;

(N, 3.9, !, 4.17) – after successful firing of rule 9 in Table 8.9 the control is
passed to rule 17 in Table 8.10; the ! means that there is
no use in backtracking;
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(N, 3.10, !, 4.11) – after successful firing of rule 10 in Table 8.9 the control is
passed to rule 11 in Table 8.10; the ! means that there is
no use in backtracking;

(N, 4.11, !, 1.1) – after successful firing of rule 11 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.12, !, 1.1) – after successful firing of rule 12 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.13, !, 1.1) – after successful firing of rule 13 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.14, !, 1.1) – after successful firing of rule 14 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.15, !, 1.1) – after successful firing of rule 15 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.16, !, 1.1) – after successful firing of rule 16 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.17, !, 1.1) – after successful firing of rule 17 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(N, 4.18, !, 1.1) – after successful firing of rule 18 in Table 8.10 the control is
passed to rule 1 in Table 8.7; the ! means that there is no
use in backtracking;

(E, 4.18, !, 1.1) – after checking that firing of rule 18 in Table 8.10 is impossi-
ble the control is passed to rule 1 in Table 8.7; the ! means
that there is no use in backtracking.

The specification of the system with the use of the extended decision tables
seems to be both concise and easy to analysis; we return to verification and
design problems of such systems in further parts of the book.



9

Rule-Based Systems in First-Order Logic

First-Order Logic constitutes a really powerful language for specification of
rule-based systems. This is thanks to the expressive power of First-Order Pred-
icate Calculus (FOPC), including the possibility of using variables, structural
terms, and predicates of arbitrary arity. Further, negation can be used in ex-
plicit or implicit manner. Moreover, in definition of rules some meta-language
features, such as the concepts of retract and assert predicates and inference
control elements can also be used.

9.1 Basic Form of Rules

Let Φ and Ψ be any First Order Logic formulae of arbitrary complexity. In
fact, some most general form of rules can be as follows

rule : Φ −→ Ψ. (9.1)

Such a basic scheme can be used for expressing quite complex knowledge
in form of rules; however, for practical applications, and especially keeping in
mind the simplicity required for automated inference, it is assumed that the
basic form will be analogous to the one of propositional logic or attributive
logic rules.

Let q1, q2, . . . , qn and h be some literals of First Order Logic. The most
typical form of a rules is as follows

q1 ∧ q2 ∧ . . . qn −→ h. (9.2)

In the above rule it is assumed that individual atomic formulae used for
defining precondition formula may be individually negated (if necessary) and
that the only other logical connective used for defining precondition formula
is the conjunction. No quantifiers are used explicitly. The conclusion is com-
posed of a single literal, mostly positive one. Variables — if any — are as-
sumed to be universally quantified. Further, it is usually assumed that there is

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
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FV (h) ⊆ FV (q1) ∪ FV (q2) ∪ . . . FV (qn), i.e. having established the variables
in the preconditions, all the variables of conclusion are also defined.

9.2 FOPC Rule-Base Example: Thermostat

As for example, let us consider one of the possible specifications of the ther-
mostat example (see Sect. 8.6) as a First-Order Logic rule-base. For simplicity,
we shall use the names of the attributes as single argument predicates.

The specification p/k means that predicate p has k arguments. We have
the following predicates with assigned interpretations:

• aDD/1 — the day is,
• aTD/1 — today is wd (workday) or wk (weekend),
• aTM /1 — the time is; we use int(a, b) to say that the time is within the

interval determined by [a, b],
• aOP/1 — operation is dbh (during business hours) or ndbh (not during

business hours),
• aMO/1 — the month is,
• aSE/1 — the season is sum (summer), aut (autumn), win (winter) or spr

(spring),
• aTHS/1 — the thermostat setting is.

For defining sets we use the notation of lists; hence, instead of using con-
structs such as l(saturday , l(sunday , nil)) we simply put [saturday, sunday]
(see rule 2).

We have the following rules.

Rule 1 : aDD([monday , tuesday ,wednesday , thursday , friday ]) −→ aTD(wd).
Rule 2 : aDD([saturday , sunday ]) −→ aTD(wk).
Rule 3 : aTD(wd) ∧ aTM (int(9, 17)) −→ aOP(dbh).
Rule 4 : aTD(wd) ∧ aTM (int(0, 8)) −→ aOP(ndbh).
Rule 5 : aTD(wd) ∧ aTM (int(18, 24)) −→ aOP(ndbh).
Rule 6 : aTD(wk) −→ aOP(ndbh).
Rule 7 : aMO([january , february , december ]) −→ aSE (sum).
Rule 8 : aMO([march, april ,may ]) −→ aSE (aut).
Rule 9 : aMO([june, july , august ]) −→ aSE (win).
Rule 10 : aMO([september , october ,november ]) −→ aSE (spr).
Rule 11 : aSE (spr) ∧ aOP(dbh) −→ aTHS (20).
Rule 12 : aSE (spr) ∧ aOP(ndbh) −→ aTHS (15).
Rule 13 : aSE (sum) ∧ aOP(dbh) −→ aTHS (24).
Rule 14 : aSE (sum) ∧ aOP(ndbh) −→ aTHS (17).
Rule 15 : aSE (aut) ∧ aOP(dbh) −→ aTHS (20).
Rule 16 : aSE (aut) ∧ aOP(ndbh) −→ aTHS (16).
Rule 17 : aSE (win) ∧ aOP(dbh) −→ aTHS (18).
Rule 18 : aSE (win) ∧ aOP(ndbh) −→ aTHS (14).
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Note that instead of using implicit negation as in rule 4, we can also write

rule 4’ : aTD(wd) ∧ aTM (int(0, 8)) −→ ¬aOP(dbh).

Negation can also be used in preconditions; for example, instead of using
ndbh in rule 18 we could have

rule 18’ : aSE (win) ∧ ¬aOP(dbh) −→ aTHS (14).

In a more advanced formulation, instead of rules 4 and 5 one could perhaps
use a single rule of the form

rule (4 + 5) : aTD(wd) ∧ ¬aTM (int(9, 17)) −→ ¬aOP(dbh).

The advantages of using First-Order Logic are visible — the notation be-
comes concise, and the expressive power is high. Moreover, readability of the
code is close to natural language. The code becomes short, since unnecessary
conditions in preconditions can just be omitted. On the other hand, process-
ing full first order rules becomes a more complex task, and analysis of them
may become much more complex than in the case of attributive languages.

In the next section it is shown that the basic syntactic form of rules can
become much more complex, including specification of dynamic modification
of the fact base and control features.

9.3 Extended Form of FOPC Rules

In an extended, generalized form any of rules should contain several parts, i.e.
a part defining when it is possible to apply the particular rule (preconditions),
a part specifying the action to be taken (action), and a part specifying the
changes in the state description. The changes of current state formula can be
executed by retracting the facts which after the action specified by the rule
are no longer true (delete results) and the ones which become true as a result
of the action (add results). The idea of the transformation rules is based on
the STRIPS1 representation of operators (see [31,104]).

The basic format for any dynamic rule considered in this Chapter is as
follows:

if precondition(s)
then

do action(s)
retract delete result(s)
assert add result(s)

1 STRIPS stands for Stanford Research Institute Problem Solver; it was one of the
first rule-based planning systems; see [31].
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The interpretation of this scheme is straightforward: if precondition(s) is
(are) true (i.e. satisfied with regard to the current state), then the specified
action(s) is (are) to be executed, the knowledge base constituting the current
state formula is to be modified (updated) by retracting delete result(s) (the
ones which are no longer true) and asserting add result(s) (the ones which
become true).

In the presented scheme of rules the preconditions are specified with the
use of a First Order Logic formula; for simplicity, in most cases it is a simple
conjunctive formula (or a formula in DNF form). The preconditions specify
in fact a joint description of all the states for which the specified rule is
applicable. The delete results and add results are just sets (lists) of First Order
Logic facts.

Any of the rule components can contain parameters, i.e. variables. Since
the formulation of rules is normally quantifier-free, a note on quantification
of these variables may be in order. In general, from logical point of view one
can consider all variables in a rule to be universally quantified, similarly as in
the case of Prolog clauses. From practical point of view the variables denote
parameters to be instantiated before each application of a rule. This means
in fact that any rule with variables denotes a set of (or a general scheme of)
a number of applicable rules, each of them to be obtained from the general
scheme by appropriate substituting some terms for the variables — in this
way a concretization of the rule for execution is obtained.

The precise values of parameters may be selected by a user (or any domain-
specific selection mechanism) and then the preconditions are to be proved,
or — and this is a more frequent approach — the values of variables for which
preconditions are satisfied are found during the process of proving precondi-
tions (as a side effect of unification and factorization).

On the other hand, in the case of checking if the precondition formula
covers the current state formula, all the variables of preconditions may be
assumed to be existentially quantified, just for ‘adjusting’ the rule to the
current state and purposes. In order to fire a rule it is enough to find a single
instantiation of the variables so that preconditions are satisfied. The values
of the variables can be found by a rule matching mechanism, i.e. during the
process of verification if the rule can be applied, or they can be given by
meta-control mechanisms, e.g. a goal defining one or by the user.

For intuition, consider the so-called Block World example. There are some
blocks, say three, which can be placed on the floor or on one another. Assume
we have blocks labelled a, b and c. Some example states are presented in
Fig. 9.1.

Let us specify rules describing potential manipulations of these blocks.
A block can be moved from its location to another location. A location for a
block can be the floor (with unlimited space) or the top surface of another
block. Only one block can be moved at a time. Below, we specify three rules
describing possible state changes. These transformation rules define three pos-
sible actions which can be undertaken in the system.
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Fig. 9.1. Example states of the Block World

rule(1): clear(Y)
if on(X,Y) ∧ cleartop(X)
then

do move X to the floor
retract on(X,Y)
assert onfloor(X), cleartop(Y)

rule(2): puton(X,Y)
if onfloor(X) ∧ cleartop(X) ∧ cleartop(Y)
then

do move X from the floor onto Y
retract onfloor(X),cleartop(Y)
assert on(X,Y)

rule(3): move(X,Y,Z)
if on(X,Y) ∧ cleartop(X) ∧ cleartop(Z)
then

do move X from Y onto Z
retract on(X,Y),cleartop(Z)
assert on(X,Z), cleartop(Y)

One can see that these three operations — namely clear(X), puton(X,Y),
and move(X,Y,Z) — specify all the possible state changes, i.e. taking a block
from another one and putting it on the floor, taking a block from the floor
and putting it on the top of another one, and moving a block from some other
block onto a third one. By an appropriate sequence of these actions (with
appropriate parameters instantiation) one can achieve transformation of any
initial state of the system into a desired goal state.

Note that the scheme subsumes both the STRIPS format ( [31,104]), and
the typical formats of rules used in expert systems ( [46, 137]). In fact, it is
powerful enough for encoding even complex operations. However, for certain
specific purposes the above basic format may be insufficient. Thus, various
possible modifications and extensions can be applied; some most typical ones
are presented in the next section.
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9.4 Further Extensions in Rule Format

The given above basic format of transformation rules can be adjusted and
extended depending on and with regard to specific purposes. The most im-
portant modifications are presented below; however, one can introduce many
further elements which one finds necessary.

Firstly, rules can be usually grouped into some sets of them, designed to
be operating in a specific context. It may be convenient to specify the context
formula as an additional, excluded part of the information when the rule is
likely to be applied. Note, that with regard to the possibility of specifying
in preconditions any arbitrarily complex formula, the above modification can
be considered to introduce an artificial split of information covered by the
precondition formula; but in practice explicit definition of context can be
very useful, both for improving efficiency of rule execution and for analysis,
verification and design. This is so since when operating in certain context only
limited set of rules is to be further analyzed. The modification can consist of
adding a part of the form

if context formula

which itself can have more than one occurrence in the rule, e.g. for sub-
contexts, etc.

Secondly, for some rules and in certain systems, it may be convenient to
specify as an additional part the information when the rule certainly cannot be
used. Note, that with regard to the possibility of specifying in preconditions
any arbitrarily complex formula, the above modification can be considered
to introduce a redundant information. However, in certain cases it may be
profitable to prune (reject) some or most of the rules in a simple and efficient
manner, since finding that a rule is inapplicable can be sometimes much faster.
This is the case of rarely used rules, the use of which can be excluded by
a simple condition, e.g. a single fact. The modification can consist of adding
a part of the form

if not excluding condition(s)

which itself can have more than one occurrence in the rule. Further, let
us notice that the above modification can be included before the precondi-
tions — as for quick pruning of the rule in case of inapplicability, or after
preconditions — for some further refinement, when some of the parameters
have already been established during preconditions verification.

Thirdly, in certain systems it may be the case, that after application of
some rule operating in certain context it is very likely (or even sure) that the
next rule to be applied is determined in a unique way, or a subset of the set
of rules to be applied next can be given. In the first case the rule directly
points out to some other rule and we call it rule switching ; in the latter case
the rule points to some set of rules and we call it context switching. It may
be reasonable to specify this rule (these rules) explicitly, so as to enable the
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reasoning control mechanism to change the order of rule examination. The
rule interpretation mechanism is discussed later on. Now let us present the
additional part of the rules which looks as follows

next rule(s).

Such a specification can significantly speed up the execution of rules, and
thus improve the overall efficiency of the system.

It may be also the case that the next rule (rules) is (are) determined in
the case the current rule fails to be fired; the appropriate specification can
take the form

else rule(s).

In the above specifications the pointer to rule or rules can be implemented
through specification of rule number, unique rule name, or name of a set
of rules and a single rule to start within this set, as in the case of tabular
knowledge specification.

Fourthly, it may be useful to specify the resources necessary to execute the
action described by a rule. This may happen for example in case of parallel
rule execution — some rules may require exclusive use of certain resources
(they may block the use of certain resources by other rules). The information
may be necessary for the reasoning control mechanism in order to resolve some
potential conflicts. The possible modification may look as follows

resources resource(s).

The simplest way of specifying the resources is to provide a list (set) of
them, however, this part may also contain specialized routines for checking if
a conflict with regard to resources occurs, etc.

Finally, in monitoring systems with a human supervisor it may be useful to
specify an additional part containing a message for the operator. Thus some
of the rules may be equipped with the following part

output message(s).

The above information, sent to the console or an archive file, can be pa-
rameterized, i.e. contains knowledge of current process parameters.

After combining together the presented above possibilities and adding
a rule number to any of the rules, the following potential rule scheme is ob-
tained:

rule(n) name(parameters)
resources resource(s)

if context formula
and

if not excluding condition(s)
and

if precondition(s)
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and
if not detailed excluding condition(s)

then

do action(s)
retract delete result(s)
assert add result(s)
output message(s)

next rule(s)
else rule(s)

with the given above interpretation of the components.
In the next section a discussion of inference control problems is provided

and a way of executing such complex rules is outlined.
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Inference Control in Rule-Based Systems

The chapter is devoted to presentation of the issues concerning rule interpreta-
tion, inference control and conflict resolution strategies in rule-based systems.
A knowledge-based system is considered to be one composed of a set of com-
plex, frame-like rules, each of them having internal structure and different
components. Any of such rules can be regarded as a specialized procedure
being able to perform a specific task it is designed for, provided that it is
activated in a situation satisfying its preconditions. The problem of conflict
resolution arises in non-deterministic systems, when two or more rules can be
activated at a time.

The problem of conflict resolution is outlined and a review of conflict res-
olution strategies is provided. The conflict resolution problem is stated in
its basic and advanced form. In the basic form the solution is accomplished
by selection of a single rule to be executed. The discussed strategies include
ones based on linear order, linear order with immediate repetition from the
beginning, and priority-based ordering. The advanced form of the conflict res-
olution problem statement includes selection of the conflict set and rule/rules
selection and firing with possible passing the control to another mechanisms.

The discussion of reviewed strategies include several classifications, e.g.
into static vs. dynamic strategies, syntactic vs. semantic ones, direct vs. in-
direct, based on simple criteria, modifiable/adaptable and learning ones. The
strategies reviewed range from the simplest ones based on syntactic features
of the rules, through ones taking into account the context, various priority
evaluation mechanisms and adaptable features to strategies based on meta-
inference systems and learning. Some criteria determining intelligent conflict
resolution are put forward.

The main contribution of this chapter consists of providing a new conflict
resolution mechanism for rule-based systems including real-time control sys-
tems. The mechanism is based on the specific, frame-like structure of the rules.
This structure includes the most important part for control, i.e. built-in-rule
context-sensitive inference control part.
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The overall rule-selection strategy is two-fold: firstly, there exists an ex-
ternal, global rule interpreter responsible for selection of the conflict set and
conflict resolution (including matching the preconditions of the rules and fir-
ing them); secondly, depending on the context, the control can be passed to
a lower-level mechanism encoded directly in a rule.

An auxiliary control mechanism is provided through the assert/retract
parts of rules playing the role of a blackboard-type communication mecha-
nism. It is pointed out that the mechanism is flexible enough to imitate most
of the presented classical strategies, and simultaneously can constitute an ef-
ficient tool for on-line conflict resolution provided that the right cooperation
is ensured by expert control strategy.

10.1 Problem Statement

Consider a dynamic system composed of n rules. Conflict resolution problem
can be stated as follows: given a set of n rules, select a single rule to be applied
in the current state of the system under control/supervision.

The conflict resolution problem does not exist in deterministic systems
[53], i.e. ones for which only one rule can be applied in any state. The problem
occurs if more than one rule can be applied for a state, and, in most of
the systems a single rule is selected with respect to some auxiliary criteria,
different from the applicability ones. Depending on the complexity of the
structure of inference control mechanism two basic formulations, a basic and
an advanced one can be put forward.

10.1.1 Basic Problem Formulation

Consider a rule-based control system [53] composed of n rules r1, r2, . . . , rn.
Assume that the rules are ordered linearly according to their indices. The
conflict resolution problem is defined as the task of selecting exactly one rule
applicable in the current state. The selected rule should be applied and the
process is repeated from the beginning.

The basic strategies for approaching the above problem may vary depend-
ing on system specification and application. There are, however, two basic
possibilities:

1) a rule ri appropriate for achieving a currently desired goal can be selected
first; then an attempt to satisfy its preconditions can be undertaken; this
approach is mostly applied in planning systems;

2) the rules are sequentially tested for satisfaction of their preconditions, and
the first one with satisfied preconditions (and appropriate for the specific
task performed, if some additional requirements are specified) is selected
and executed.
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With respect to control and supervision problems mostly the second ap-
proach is applied.

There are four basic strategies for approaching the problem:

1) Closed-loop hierarchical linear strategy: a hierarchy amongst the
rules is assumed. The rules are tested sequentially until one with satis-
fied preconditions is found. Then the rule is executed and the process is
resumed from rule 1. In Prolog this would correspond to the run-find-
execute-!-run loop scheme.

2) Closed-loop linear strategy: the rules are ordered linearly and satisfi-
ability of their preconditions is tested sequentially in a closed loop. After
rule i rule number i + 1 is tested and possibly executed; after rule n rule
1 is taken into account. In Prolog this scheme would correspond to the
repeat-find-execute-fail loop format.

3) Linear strategy with rule-switching: linear interpretation from the
beginning to first executable rule (one with satisfied preconditions); then
the system jumps to a rule or rules indicated by the recently executed
rule. This kind of scheme consists of switching among rules. This approach
corresponds to the use of the next part in rules.

4) Linear strategy with context-switching: finally, linear rule examina-
tion may be combined with context switching, i.e. after a rule is executed,
the current situation of the system is evaluated, the current context (qual-
itative situation) is determined and a decision making mechanism switches
to the set of rules appropriate for this context.

Finally, in more complex systems a subset of the set of initial rules may
be selected (a set of rules for a specific context) and re-ordered according to
the priorities (stable or depending on current context). The rules are then
inspected with respect to any of the two above schemes.

The types of interpreters are schematically presented in the pictures
(Figs. 10.1 and 10.2).

Of course, the above approaches can be modified and extended with the
use of auxiliary reasoning control mechanisms, rule preselection tools, etc.,
admitting open-loop only, using cut operator to prohibit backtracking, etc.

10.1.2 Advanced Problem Formulation

The advanced form of the conflict resolution problem statement includes selec-
tion of the conflict set and rule/rules selection and firing with possible passing
the control to another mechanism. Again, consider a system composed of n
rules, say R = {r1, r2, . . . , rn}.

The advanced formulation of the conflict resolution task is as follows: select
a subset R′ ⊆ R of rules with satisfied preconditions, and if there are two or
more such rules select one satisfying some auxiliary criteria.
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(a) (b)

Fig. 10.1. Linear interpreters: a) Closed-loop hierarchical linear strategy; b) Closed-
loop linear strategy

(a) (b)

Fig. 10.2. Switching interpreters: (a) Rule switching; (b) Context switching

Thus the approach consists of two stages:

1) initial elimination of rules which cannot be applied,
2) selection of a rule which is best, appropriate or likely for performing the

current control task.

For the advanced case several classifications of conflict resolution strategies
can be put forward:

• static vs. dynamic strategies; static strategies are based on criteria constant
over time, while dynamic ones can take into account current context, time,
number of (successful) repetitions of a rule, etc.;

• syntactic vs. semantic strategies; the first one base on the ‘shape’ of the
rule preconditions, while the second ones may take into account the current
context, desired goal, and evaluable user-specified criteria;
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• direct vs. indirect strategies; the direct ones are based on simple compar-
ison of rules and ‘ordering factors’ assigned to them, e.g. priorities, while
the indirect strategies can be implemented with an auxiliary knowledge-
based system, meta-rules and complex inference schemes;

• strategies based on simple, constant criteria vs. ones modifiable/adaptable
and learning.

Depending on the problem, its specification and resources available various
strategies can be applied; no general criteria can be put forward. Compositions
of several strategies may also be useful.

10.2 Rule Interpretation Algorithm

Taking into account the basic formulation of the problem, the important com-
ponent of the strategy is the one for interpretation of a single selected rule.
A first rule to be executed can be defined in an arbitrary way or the set of
rules can be searched according to some order. The next rules can be indicated
by the next and else components. The algorithm for interpretation of a single
selected rule will be specified below.

Let φ be the state formula (the current knowledge base concerning state
of the system).

Below, a symbolic representation of components of the extended rule for-
mat is introduced:

rule(k) name(parameters)
resources {r1

k, r2
k, . . . , rr

k}
if Φc

and if not Φe
k

and if Φp
k

and if not Φf
k

then

do (a1
k, a2

k, . . . , aa
k)

retract {d1
k, d2

k, . . . , dd
k}

assert {h1
k, h2

k, . . . , hh
k}

output (m1
k,m2

k, . . . ,mm
k )

next (nk)
else (ek).

In the above specification k is the rule number (unique for any rule). The
resources necessary to apply rule k are denoted with {r1

k, r2
k, . . . , rr

k}, Φc is the
formula defining the context, Φe

k is a formula describing the initial excluding
conditions for fast pruning of candidate transformation rules, Φp

k is a formula
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describing the preconditions necessary for application of the rule (typically,
it is a DNF or simple conjunctive formula for the situation consisting of all
the states in which rule k can be applied), Φf

k is another auxiliary formula
describing excluding conditions for refined pruning of certain transformation
rules, (a1

k, a2
k, . . . , aa

k) is the sequence of actions to be executed, {d1
k, d2

k, . . . , dd
k}

is the set of delete conditions (in the form of literals) which are no longer
true after application of the rule, {h1

k, h2
k, . . . , hh

k} is a set (a simple formula)
containing all the literals which become true as a result of application of the
rule and are to be asserted to the knowledge base, (m1

k,m2
k, . . . ,mm

k ) are the
messages to be sent to the console, and finally (nk) is the number of the next
candidate rule which should be checked first for possible application after
rule k is fired; if it is impossible to fire the rule, rule number ek should be
checked next.

The generic algorithm for rule application is as follows:

1. Check if all the resources {r1
k, r2

k, . . . , rr
k} (if specified) are available. If

yes — proceed. If no — exit, the rule cannot be applied. Go to rule ek if
specified.

2. Check if Φc is satisfied in the state of the knowledge base defined by φ,
i.e. if there is φ |= Φc. If yes — proceed. If no — exit, the rule cannot be
applied. Go to another context.

3. Check if Φe
k is not satisfied i.e. φ 
|= Φe

k (if Φe
k is specified). If it is unsatis-

fied — proceed. In the other case — exit, the rule cannot be applied. Go
to rule ek if specified.

4. Check if Φp
k is satisfied, i.e. if φ |= Φp

k. If yes — proceed. If not — exit,
the rule cannot be applied. Go to rule ek if specified.

5. Let σ be the substitution obtained during the check in the preceding step,
i.e. one specifying all the necessary replacements of variables by terms in
Φp

k. Check if φ 
|= Φf
kσ. If Φf

kσ is not satisfied — proceed. In the other
case — exit, the rule cannot be applied. Go to rule ek if specified.

6. Apply all the actions defined by (a1
k, a2

k, . . . , aa
k) after substituting for any

variables the terms indicated by σ.
7. Delete from the current state formula all the facts matched by any of the

facts of {d1
k, d2

k, . . . , dd
k}σ.

8. Assert to the state formula all the facts included in {h1
k, h2

k, . . . , hh
k}σ.

9. Send to the output all the messages given by (m1
k,m2

k, . . . ,mm
k ), after sub-

stituting for the variables occurring in the messages the terms indicated
by σ.

10. Return control to the upper level mechanism, passing the next rule number
(nk) of a rule to be examined first (if specified).

The above algorithm outlines the generic one-step inference process, i.e.
application of a single extended rule to the current knowledge-base. During
the execution a general theorem proving mechanism may be necessary. In case
of complex rules one may apply the resolution theorem proving or theorem
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proving based on backward dual resolution. However, in typical cases theorem
proving is limited to formulae matching.

In most of practical applications, the Φ rules (defining context, excluding
conditions and preconditions) are limited to be simple conjunctive formulae. In
such cases the check for logical consequence can be performed by matching the
components (literals) of the formula to be proved against the components of
the knowledge base. Such a procedure consists of searching for an appropriate
substitution for direct proving of preconditions by appropriate instantiation
of rule parameters.

Note that if the next and the else part are specified, then in fact there is
no problem of conflict resolution provided that the initial rule to start with
is defined. In fact, it is not necessary to always define the control links in an
explicit way. If, for example the rules are linearly or hierarchically ordered,
then the lack of specification of the next or the else rule may be interpreted
by default as the request to go to the next rule within the order. Hence, the
proposed rule format together with the interpretation algorithm may solve
the conflict resolution problem in an operational way.

10.3 Inference Control at the Rules Level:
Advanced Problem

In this section some selected strategies of conflict resolution are outlined.
A good overview of some most popular approaches for control systems is
provided in [130]; the following strategies are listed:

1) rule ordering (a rule appearing earliest has the highest priority),
2) data ordering (a rule with the highest priority assigned to its conditions

has the highest priority),
3) size ordering (a rule with longest list constraining conditions has the high-

est priority),
4) specificity ordering (arrange rules whose conditions are super-set of an-

other rule,
5) context limiting (activating or deactivating groups of rules at any time to

reduce the occurrence of conflict).

The two first approaches belong to direct, static ordering strategies. The
third and the fourth ones constitute some specific cases of ordering possibilities
with mostly syntax-based priority evaluation mechanism. Only the fifth one
refers to semantics of the process but it is used to reduce the number of rules
in the conflict set, and not to select a unique rule.

In OPS5 rule-based programming system [12] two more complex strategies,
LEX and MEA, can be used. Roughly speaking, these strategies are imple-
mented in four subsequent steps: refraction (deleting all instantiations fired
previously), partial ordering based on recency (time tags corresponding to the
working memory elements used are considered), partial ordering with respect
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to specificity (rules with greatest number of tests are considered first), and,
finally, arbitrary selection. The MEA strategy considers the recency of the
first condition of rules most important. Note that strategies as the one used
for rule-based programming may be unsatisfactory or even inadmissible for
control of dynamic systems. For example, the refraction strategy may remove
some instantiation previously executed, while repetition of exactly the same
rule may be necessary to achieve certain goal via several similar moves.

Other strategies and problems of conflict resolution with respect to expert
systems are also discussed in [44,46,51]. Problems of real-time rule-based con-
trol issues referring to rule selection and control strategies are also discussed
in [48, 142]. In [53] a selection of reasoning control mechanisms with short
discussion are given.

10.3.1 A Simple Linear Strategy

Below, a simple linear strategy for conflict resolution is outlined.
Let us assume that in a knowledge based system (or its component desig-

nated to work in a given context) there are as many as n rules specified. The
reasoning control mechanism repeatedly performs the following actions:

• matches all the rules (in a certain established order) against the current
state formula;

• selects a subset of all the rules which satisfy the applicability conditions,
i.e. generates the so-called conflict set (the rules are selected with regard
to the points 1–4 of the algorithm presented in Sect. 10.2);

• resolves the conflict by selecting a single rule from the conflict set;
• applies the selected rule with regard to the points 5–8 of the algorithm

presented in Sect. 10.2;
• creates a hierarchy of rules for the next iteration with regard to information

given in the next part of the executed rule in the algorithm presented in
Sect. 10.2;

• goes to another iteration.

The basic assumption underlying the implementation of the above reason-
ing control mechanism is that at any stage only a single rule can be applied.
This is a natural assumption, since any rule changes the state of the system
in an independent way. However, in certain practical implementations, if the
rules do not affect directly the process, it is possible to select more than one
rule from the conflict set, ‘combine’ together the results of their applications,
and finally execute the resulting (from the combined rules) action1. However,
for the sake of simplicity we shall only consider the case of a single rule selec-
tion and application at a time.

Note that there are two basic possibilities. First, it may be the case that all
the rules are mutually exclusive, i.e. the satisfaction of applicability conditions

1 This in fact is the case of fuzzy controllers.
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for one of the rules automatically excludes all the other rules. In such a case
we shall say that the system is deterministic. We shall discuss such systems
more precisely in one of the next chapters. Here note only that in such a case
there is no need to apply any conflict resolution mechanism.

In the more complicated case, the conflict set may contain two or more
potentially applicable rules. Now, the task of the reasoning control mechanism
is to select and apply one of them. The above problem has no unique solution.

In practice, various approaches using different auxiliary information are
applied [130]. The most popular ones include the following:

• ordered execution of the rules from the knowledge base (only those of
them which have the conditional part satisfied); typically a linear order of
execution is followed; this include the case of the additional information
placed in the next part of the rules — the specified rules are examined
first, and the first one selected is applied; this is aimed at speeding up the
execution of some typical routines;

• various priority evaluation mechanisms can be applied so as to establish
the order of rules in the conflict set;

• a meta-knowledge system for selection of the rule to be applied can be
used; such a system can use typical expert systems approach and take into
account the current goal of reasoning, certain environmental conditions,
some statistics concerning the past system behavior, etc.;

• certain facts can be used as semaphores for blocking and enabling the
inference control mechanism to limit the subset of rules which can be
executed next.

In fact, the choice of detailed conflict resolution mechanism must depend
on the domain-specific knowledge — no general solution seems to be optimal.



11

Logic Programming and Prolog

Logic Programming constitutes perhaps one of the most brilliant ideas among
the concepts for programming languages, knowledge representation and infer-
ence. The idea is originally due to Robert Kowalski from the Kings College in
London [47]. It consists of direct application of a subset of First-Order Logic
for declarative encoding of knowledge and application of a specific strategy of
resolution theorem proving for inference. All together — declarative specifi-
cation of user knowledge joined with automated reasoning paradigm creates
an interesting and powerful programming language.

Prolog itself is perhaps the most beautiful, simple, yet powerful pro-
gramming language ever created by man. In its pure form there are no
‘instructions’ — contrary to classical programming languages, there are
no explicit constructions such as begin . . . end, goto, if . . . then . . . else,
case . . .of . . . end, while . . .do, for . . .do . . . , etc. Instead, Prolog uses
practically unchanged syntax of First-Order Predicate Calculus, which allows
for specification of rules in a similar to implication form.

And this is perhaps the most significant characteristic of Prolog — the
code in this language is practically composed from one type of rules, which
from logical point of view are Horn clauses.

The distinctive features of Prolog make it a noble, distinguished tool,
taking a very specific position among — or perhaps above — other, even most
advanced programming languages.

Among these features, the following ones seem to be of primary impor-
tance:

• declarative language — Prolog is a declarative programming language
versus most of the other languages being procedural ones;

• relational language — it is based on the concept of relation rather than
function; certainly, it is not a functional language, and hence, in its pure
form ‘procedures’ have no clearly defined input and output;

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 173–188 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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• multi-level language — Prolog programming can be done at different
levels — knowledge can be encoded directly as logical clauses or by meta-
programming one can specify both knowledge and inference rules;

• internal mechanisms — Prolog possesses three strong internal mecha-
nisms build into the inference engine; these are unification, resolution, and
SLD inference strategy ;

• no instructions — in the pure Prolog practically no instructions in the
classical sense are necessary.

Let us explain the intriguing features in detail.
First, Prolog is a declarative language, at least in its pure logic-program-

ming form. This means that one has to specify his knowledge concerning
specific domain, and then questions can be asked; the answers to them are de-
duced internally, and the user need not bother how it is done. By no means he
has to program procedures for calculating the answers. This is a very impor-
tant idea; in practical applications, however, a knowledge about controlling
the inference sometimes has to be also specified as a part of the program code.

Second, Prolog is based on the concepts of relation and logical formula
rather than the one of a function. This means that specification of knowledge
takes the ‘relational’ form. Predicates specifying relations can have numerous
arguments, but these arguments are not divided into input ones and output
ones; in principle, any of them can play both the roles, depending on the
current task to be solved.

Third, programming in Prolog can be performed at direct level, when
knowledge is encoded directly in the form of logical clauses to be interpreted
according to the built-in strategy or, using the idea of term, arbitrarily com-
plex knowledge structures can be encoded and using rule-based programming
any specific inference mechanism can be specified. Moreover, Prolog can ma-
nipulate its own code and in this way one can build self-modifying programs.

A unique, distinctive feature of Prolog is constituted by incorporation of
three very strong mechanisms in it. First, unification allows for term match-
ing by finding unifying substitutions. Arbitrarily complex structures can be
quickly compared and this feature allows for pattern matching when no pro-
gramming effort is required. Second, from facts and clauses new facts and
clauses can be deduced via resolution method. This means that new knowl-
edge, which is logical consequence of the one already specified can be produced
in an automatic way. Third, a depth-first search procedure with backtracking
mechanisms is incorporated in any implementation of Prolog which means
that search for solution can be accomplished by simple question asking. These
three mechanisms makes Prolog programming extremely efficient — in or-
der to replace a few lines of its code one must use sometimes hundreds of lines
of other, even high-level languages.

Finally, in pure logic programming, and in fact — in core of the applica-
tions built in Prolog — no ‘classical instructions’ are necessary. This follows
from the fact that Prolog is a declarative language and that the necessary
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interpretation skills are already built-in. In fact, although implementations
of Prolog can provide even around thousand specific predefined predicates,
one can start using this nice language without even looking at them.

There exist numerous books on Prolog. A concise but in-depth introduc-
tion to logical foundations of the language and its mechanism and perhaps the
best theoretical book is the one by Nilsson and Małuszyński [105]. A very inter-
esting, direct introduction to Prolog applications in AI is the book by Bratko
[11]. There are many other interesting positions, such as [10,19,24,82,84,121].
In the next sections we present a short introduction and show some solutions
for development of rule-based systems in Prolog.

11.1 Introductory Example

In order to quickly provide some intuitions on how Prolog code looks like
and what Prolog programming consists of let us have a look at the following
simple code.

male(adam).
male(bill).
male(chris).
male(danny).

female(ann).
female(mary).

father(adam,bill).
father(adam,chris).
father(adam,danny).
father(adam,ann).
father(adam,mary).

brother(X,B) :-
father(F,X),
father(F,B),
male(B),
B \== X.

A Prolog program consists of facts and rules. In the presented pro-
gram there are 11 facts and one rule. Specification of any fact is composed
of the name of the relation followed by its arguments (placed in parenthe-
ses, separated by comma). So for example male(adam) means ‘adam is a male’,
female(ann) means ‘ann is female’, and father(adam,bill) means ‘adam is the
father of bill’. A predicate symbol p having n arguments is denoted as p/n.

In general, there are the following rules concerning facts:

• fact has always a name of the relation,
• it can have arbitrary number of arguments (including zero),
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• it is followed by full stop,
• facts having the same name (predicate symbol) are put together in the

code,
• facts having the same name but different number of arguments are simply

different facts belonging to different groups.

Note also, that according to the convention names (constants) begin with
lower case letter, so we write ‘adam’ instead of ‘Adam’. Strings starting with
upper case letters are variables.

In the program above there is also one rule. Using basic facts one can
construct inference rules which in Prolog are called clauses. The only clause
in the code above states that B is the brother of X if F is the father of X,
the same F is the father of B, B is a male and B is different than X.

The formula brother(X,B) is called the head of the clause, while the other
atoms forming its definition are called the body of the clause. Instead of ‘:-’
one can also write (and read) if, and instead of the commas separating the
components of the body one can write (and read) and. Any clause is ended
with a full stop.

In this way one can specify practically arbitrary complex knowledge con-
cerning any domain. In order to run Prolog programs one has to ask ques-
tions and read the answers generated by the interpreter. For example, in the
case of the above program one can ask the following questions:

?- male(adam). — The answer is ‘yes’.
?- male(X). — The answers are: ‘X=adam’, ‘X=bill’, ‘X=chris’,

and finally ‘X=danny’.
?- father(adam,bill). — The answer is ‘yes’.
?- father(bill,adam). — The answer is ‘no’.
?- father(X,Y). — There will be five different answers where always

‘X=adam’ but Y will take values ‘bill’, ‘chris’,
‘danny’, ‘ann’, and ‘mary’.

In the above, ‘?-’ is the classical prompt of Prolog interpreter. In general,
if a ground fact can be found in the program, the answer is ‘yes’; in the other
case it is ‘no’. If the facts contain variables, the interpreter tries to find any
possible substitution for these variables so that a fact can be made true with
respect to the provided knowledge. To get all the answers one normally has
to prompt the interpreter by pressing the ‘;’ character (in logic programming
it plays the role of logical OR connective).

The most interesting, however, is the case of facts (with or without vari-
ables) which cannot be found directly in the program. In this case the inter-
preter tries to deduce them with the use of the clauses. Without going into
details, the procedure consists of looking for all the clauses allowing to deduce
a given goal fact. If the fact can be unified with the head of a clause, its proof
is replaced by a proof of the body of this clause.

In our example, to find all the brothers of bill we have to ask a question
of the form: brother(bill,B). The interpreter unifies this goal with the head
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of the clause; since it works, now the goal is to prove that bill and B have
the same father F (it works by proving father(F,bill) and father(F,B) for
F being ‘adam’, while B takes five different values. From these values only
three satisfy the condition male(B), and only two of them are different from
‘bill’. So the final answers found are ‘B=chris’ and ‘B=danny’.

The above example, although a very simple one, constitutes in fact a de-
ductive database. Facts are analogous to records in relational database. Groups
of facts with the same predicative symbol (and number of arguments) corre-
spond to tables of relational databases. Asking simple questions about such
facts is very much like performing the search on a relational database. Asking
more general questions, where to generate the answer deduction is required,
has no direct interpretation in classical databases. In fact, it is a powerful
operation of generating new knowledge from facts with the use of inference
rules.

11.2 Prolog Syntax

The basic syntax of Prolog is very much the same as the one of First Order
Predicate Calculus, but restricted to the Horn clauses only. All variables are
universally quantified (by default; no explicit quantifiers are used). Variable
names start with an upper case letter or an underscore. There is also the so
called universal variable, symbolized with ‘_’ (underscore), unifiable with any
term.

Objects are represented with terms, exactly as in the case of First Order
Logic. Terms were defined and discussed in Sect. 2.2. Let us recall shortly that
a term is any constant, any variable, and if f is a functional symbol of arity
n, then f(t1, t2, . . . , tn) is also a term, provided that t1, t2, . . . , tn are terms.

The basic concept for knowledge representation in Prolog are facts. From
logical point of view facts are atomic formulae. Any fact in Prolog is followed
by full stop.

Atomic formulae were discussed and defined in Sect. 2.3. Let us recall that
an atomic formula is always of the form p(t1, t2, . . . , tn), where p is predicate
symbol of arity n and t1, t2, . . . , tn are terms. To denote the fact that the
number of arguments of p is n we use the notation p/n.

The only more complex logical formulae in Prolog are Horn clauses. They
were defined in Sect. 2.4. Let us recall that a Horn clause is a disjunction of
literals with at most one positive literal. Let p1, p2, . . . , pk be positive literals.
A Horn clause is any clause of the form

¬p1 ∨ ¬p2 ∨ . . .¬pk ∨ q,

where q is a literal (either positive or negative one).
In other words, a Horn clause is any clause with at most one positive

literal. By the De Morgan’s laws and the definition of implication, a Horn
clause can be represented as an implication of the form
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p1 ∧ p2 ∧ . . . ∧ pk ⇒ q.

Thus, a Horn clause can be regarded as an inference rule, having precon-
ditions defined by p1 ∧ p2 ∧ . . . ∧ pk and conclusion q.

Assume q is a positive literal. Using the conventions of logic programming
the above clause can be presented as:

q ⇐ p1 ∧ p2 ∧ . . . ∧ pk.

In practice, in Prolog notation it is written as:

q if p1 and p2 and . . . and pk

or for the sake of conciseness as:

q :- p1, p2, . . . , pk.

Clauses with the same head predicate are grouped together and they con-
stitute a subprogram or a block of clauses. All variables are local in a clause.

11.3 Unification in Prolog

Unification is accomplished by finding replacement of variables with terms so
that two or more terms (atomic formulae) become identical. The specification
what term should be substituted for which variable is called a substitution.
Recall that any substitution σ can be presented as

σ = {X1/t1,X2/t2, . . . , Xn/tn},
where ti is a term to be substituted for variable Xi , i = 1, 2, . . . , n. If Φ is
a formula (or term) and σ is a substitution, then Φσ is the formula (or term)
resulting from replacing the variables of Φ with the appropriate terms of σ.

The details on substitution and unification were covered in Sect. 4.1. A uni-
versal algorithm for unification of terms (or atomic formulae) was presented
there in Subsect 4.1.3.

The unification algorithm in Prolog is practically identical, apart from
the so-called occur-check. In step 4 of the algorithm there is a check if the vari-
able to be substituted for does not occur in the term being substituted (if so,
we obtain in fact a cyclic expression, and both its usefulness and the dealing
with it become somewhat problematic). As this check is time-consuming (due
to its computational complexity) most of the practical implementations of
Prolog simply omit this step. It is thus the user’s task to write the program
in such a way, that occur-check is no longer necessary. Further, if one wants,
one may require the use of full algorithm with occur-check (if provided by the
implementation).

Practically, unification algorithms are usually very fast and they can op-
erate on arbitrarily complex structures, provided that the scheme of a term
is kept. The user does not perceive the work of unification mechanism unless
a special trace mode is switched on.
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11.4 Resolution in Prolog

Resolution is the basic step of inference during execution of a Prolog pro-
gram.

The logical foundations of resolution based inference and resolution the-
orem proving were presented in Sect. 4.3. In Prolog, resolution is applied
at any step of inference — from the clause defining the current goal and a
selected input clause coming from the program code, a new clause is deduced.
Below a scheme of this basic step is recapitulated.

Let P denote the Prolog program — it can be considered to be a conjunc-
tion of all its facts and clauses, so it constitutes a complex logical formula.
The question stated to the interpreter and constituting the current goal is
a formula to be proved from P ; let us denote the current goal as G. In fact,
the logical task is to show that

P |= G, (11.1)

i.e. that the goal G is a logical consequence of P .
In resolution theorem proving all the proofs are based on refutation. Hence

instead of (11.1) the task is stated so as to show that

P ∧ ¬G (11.2)

is unsatisfiable. In fact, the goal, from logical point of view is considered as
negated initial formula, added to the initial knowledge base as a special clause,
and it is attempted to prove that such a combination is unsatisfiable. This is
carried out by generating an empty formula as a consequence of (11.2).

Now, let q1, q2, . . . , qn be the set (logically: conjunction) of goals to be
proved at a certain step of reasoning. In logical convention, since all the proofs
with resolution are based on refutation, one has to prove that

¬(q1 ∧ q2 ∧ . . . ∧ qn) ∧ P

is unsatisfiable.
After applying the De Morgan’s law, the current goal can be represented

as a Horn clause of the form

¬q1 ∨ ¬q2 ∨ . . . ∨ ¬qn. (11.3)

Let
h :- p1, p2, . . . , pm.

be the selected program clause. Obviously, the aim is to apply resolution so
that a new goal is generated.

In logical notation the selected clause takes the form of a Horn clause, i.e.

h ∨ ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pm. (11.4)
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Prolog interpreters work in such a way that it is always the first (from
the left) goal to be unified with the head clause. Hence, if σ is the most general
unifier of q1 and h then a new clause can be generated be resolving clauses
(11.3) and (11.4). Formally, the resolution rule applied in Prolog takes the
following form

¬q1 ∨ ¬q2 ∨ . . . ∨ ¬qn , h ∨ ¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pm

(¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pm ∨ ¬q2 ∨ . . . ∨ ¬qn)σ
. (11.5)

In practice, a new set of goals

p1σ, p2σ, . . . , pmσ, q2σ, . . . , qnσ

is produced.
Note that the goal of such inference is to eventually end up with an empty

clause. The length of the goal sequence can be reduced only if resolving with
facts (a fact can be considered as a clause with empty body). Resolving with
a fact always reduces the length of the goal by one.

11.5 Prolog Inference Strategy

In fact the basic inference strategy implemented in standard Prolog is quite
simple. It is the so-called SLD-Strategy, which means that Prolog uses Lin-
ear refutation procedure for Definite clauses with Selection function.

Linear strategy means that the new resolvent can be produced only from
the one produced a step earlier; in fact the sequence of resolvents generated
during an attempt to produce the empty formula forms a line. At any step, the
current resolvent defining the goal is combined with one of the input program
clauses (a clause or a fact), so it is also an input strategy.

The selection function is a function choosing a subgoal from the current
resolvent to be used next. In standard implementations it is simple — always
the leftmost goal is processed first.

When looking for facts and clauses for one unifiable with the selected sub-
goal the natural top-down ordering is assumed. Hence, although from logical
point of view a program can be considered as a conjunction of clauses (the
order is unimportant), the order of clauses in a program may have significant
influence on the execution of practical programs.

Prolog interpreters explore all the solutions, so whenever a solution is
found (an empty clause is generated) the interpreter backtracks and explores
other possibilities. They are provided by different possibilities of selecting the
clause for resolution.

To summarize, the outline of the concept of Prolog interpreter is as
follows.

1. Let R be the current resolvent defining the goal; for the beginning let
R = G, where G is the user-defined goal. Further, initialize stack memory
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and empty it (the stack will be used to remember alternative resolving
possibilities).

2. If the current resolvent R is empty and the stack is empty then exit with
the output ‘True’ with the values of parameters of G; the program ends
with success since all the subgoals have been solved. No other inference
possibilities are available.

3. If the current resolvent R is not empty, R = q1, q2, . . . , qn then:
– take and remove from R the first subgoal, i.e. q1;
– find the first clause h :- p1, p2, . . . , pm such that q1 is unifiable with h;

let the mgu be σ;
– put on the stack any other clauses having head unifiable with q1 to-

gether with the current goal definition;
– generate the new resolvent R′ according to resolution rule (11.5);
– put R = R′ and go to 2.

4. If the current resolvent is empty but the stack contains other reasoning
possibilities then output ‘True’ with the values of parameters of G. Back-
track by removing the first clause and the corresponding goal from the
stack; put the goal for R and go to 2.

5. If the current resolvent is not empty, but it is impossible to unify the first
subgoal with any fact or clause head then:
– if the stack is not empty, backtrack and proceed as in 4;
– if the stack is empty output ‘False’ (if no solution was found earlier)

and exit.

In fact, Prolog interpreter performs a search for solutions. It employs
the depth-first search strategy with backtracking any time a solution is found
or no further resolvent can be found. The stack memory helps to organize the
search; on the top of the stack a new alternative search possibility is always
ready to explore (if only the stack is not empty).

11.6 Inference Control and Negation in Prolog

The search and inference strategy implemented in Prolog do a big work
for programmers; not only unification algorithm allows to compare structural
objects, but the resolution allows for exploring very long inference paths in
an automatic way. Further, the incorporated search strategy allows for explo-
ration of all the inference possibilities and thus all the solutions are found.

In practice, it may be useful to control the inference in a limited way. There
are two intrinsic standard predicates built in any Prolog implementation:

1) the cut predicate,
2) the fail predicate.

They are described below together with the not predicate which al-
lows to implement negation through the so-called Closed-World Assumption
(CWA) [39].
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11.6.1 The cut Predicate

The cut predicate is a standard predicate which helps avoiding exploration
of further inference possibilities, provided that the one currently explored
satisfies certain predicates. The cut predicate allows for pruning branches in
the search tree generated by the depth-first search algorithm. In practice, the
cut predicate is symbolized with the exclamation mark ‘!’.

Consider a clause of the form as below

h :- p1, p2, . . . , pi, pi+1, . . . , pm.

During execution of Prolog program it is possible to backtrack at any
atomic formula pi in the body of the clause, as well as for different variants
of h. Consider a clause

h :- p1, p2, . . . , pi, !, pi+1, . . . , pm.

with the cut predicate placed between atoms pi and pi+1. The cut divides the
clause into two parts, the one to the left of cut and the one to the right of it.
The operation of cut is simple: if the left-located atoms are proved, then by
‘passing through’ the cut all other possibilities for them are removed from the
stack memory. This means that during backtracking, there will be no explo-
ration of other variants for h, p1, p2, . . . , pi. On the other hand, backtracking
is still possible for goals defined with pi+1, . . . , up to pm. Hence cut predicate
can be used to restrict the search by avoiding exploration of all the inference
possibilities.

11.6.2 The fail Predicate

The fail predicate has a very simple role — it stops inference and forces
backtracking. This is so because fail is a predicate such that it is impossible
to unify it with any other predicate. So, for example, to ensure exploration
of all the possible executions of a clause we often place fail at the end of this
clause.

Practical applications of fail include implementation of loops in Prolog.
A typical scheme of such a loop is as follows.

loop :-
action,
fail.

loop.

In the construction above, after calling loop the operation defined by
action is executed. If there are any other possibilities of executing it, then
after fail they will be explored. In fact, this may be an infinite loop if there
are infinitely many possibilities of executing action. In case there are no other
such possibilities, the second clause for loop is executed; in practice it does
nothing, but it is necessary here to ‘close’ the loop, since without it the exe-
cution of the loop would end up with a failure.
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11.6.3 The not Predicate

Predicate not is in fact a meta-predicate — its argument is a predicate p, and
not(p) succeeds if an attempt to prove p fails. Hence, not is a predicate which
implements negation as a failure.

The concept of negation in Prolog is based on the so-called Closed-World
Assumption. The idea is as follows: positive knowledge about the world of
interest is stated explicitly. It takes the form of facts and rules (clauses in
Prolog). It is assumed that all the positive knowledge is available or can
be deduced; in other words, that the world is closed. In this case, if a certain
fact does not follow from the current state, it is assumed to be false. It does
not mean it is really false; the definition is operational — it provides a way to
decide whether something is false in the case the negation of it is not stated
in an explicit way.

Note that the definition of not can be expressed in Prolog-style code as
follows.

not(P):- P,!,fail.
not(_).

In the above code, if P succeeds, the execution of not fails; since in the
first clause cut is used, the second clause is not executed. On the other hand,
if an attempt to satisfy P fails, its negation can be assumed true thanks to
the second clause.

11.7 Dynamic Global Memory in Prolog

Programs in Prolog can easily access global memory. There are two basic
operations on it — one can assert new facts and the other can retract them.
The standard predicates assert/1 and retract/1 are in fact meta-predicates;
their arguments are facts.

The use of the above predicates is simple. In order to assert new fact p to
the global memory one uses the construction

assert(p).

In order to retract p from the global memory one uses the construction

retract(p).

Predicates assert and retract can be used in any place and they constitute
a part of the goal or body of certain clauses. At any stage of program exe-
cution all the clauses have access to the knowledge contained in the global
memory; a useful mechanism for communication among clauses without pa-
rameter passing is available in this way. The retract and assert operations
produce results which are not removed during backtracking.
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In order to clear the memory from all occurrences of predicate p containing
some parameters one has to repeat the retract operation until there is nothing
to be retracted. The predicate which performs clearing of the memory is called
retractall/1 ; its definition is as follows:

retractall(P):-
retract(P),
fail.

retractall(_).

One can notice that the defined as above retractall is a typical Prolog

loop. Most of the implementations of Prolog provide this predicate as a stan-
dard, built-in procedure.

11.8 Lists in Prolog

Lists are one of the most important structures in symbolic languages. In most
of the implementations of Prolog lists are standard structures and there are
numerous operations on them provided as built-in procedures. Lists can be
used to represent sets, sequences, and more complex structures, such as trees,
records, etc.

A list in Prolog is a structure of the form

[t1, t2, . . . , tn].

The order of elements of a list is important; the direct access is only to
the first element called the head, while the rest forms the list called the tail.

Lists in fact are also terms, and a list as above is equivalent to a term
defined as follows:

l(t1, l(t2, . . . l(tn, nil) . . .)),

where l is the list constructor symbol and nil is symbolic denotation of an
empty list.

In practical programming it is more convenient to use the bracket notation.
In order to distinguish the head and the tail of a list the following notation is
used

[H|T ].

If L = [a, b, c, d] then after unifying L with [H|T ] we obtain H = a (a single
element), and T = [b, c, d] (a list).

A list can have as many elements as necessary. An empty list is denoted
as [ ]. A list can have arguments of complex structures, i.e. terms, lists, etc.

Considering a list as a set one can define the following two important basic
operations.
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member(Element,[Element|_):- !.
member(Element,[_|Tail]):- member(Element,Tail).

select(Element,[Element|Tail],Tail).
select(Element,[Head|Tail],[Head|TaiE]):- select(Element,Tail,TaiE).

The operation of the above predicates is simple and similar; the basic idea
is common. The member/2 predicate checks if the first argument belongs to
the set represented by the second argument. This may be so if it is the first
element of the list or if it is a member of the tail of the list; the definition
is recursive. The select/3 predicate operates in a similar way, however, its
primary use consists in selecting an element of a set and returning the set
without the currently selected element. In fact, the select/3 predicate can be
considered as indeterministic choice — after backtracking it returns different
element of the set each time.

11.9 Rule Interpreters in Prolog

Prolog is one of the most elegant programming languages, but it is also one
of the most efficient ones. During designing the code, the programmer can
concentrate on the logical aspects of the task and not on the technical details
of the code.

Below, we shall show two very simple examples of rule interpreters written
in Prolog. The main goal is to show the way one can use Prolog as a meta-
interpreter.

Consider the following example table specifying the functional behavior of
full adder. The signals p and q are the inputs, c is the carry from previous
unit, s is the bit of the output and c′ is the output carry signal (Table 11.1).

Table 11.1. A table defining the full adder

No. p q c s c′

1 0 0 0 0 0
2 0 0 1 1 0
3 0 1 0 1 0
4 1 0 0 1 0
5 0 1 1 0 1
6 1 0 1 0 1
7 1 1 0 0 1
8 1 1 1 1 1
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Assume we would like to specify the behavior of the system with simple
rules of the form:

rule(<rule_number>,
<positive_preconditions>,
<negative_preconditions>,
<retract_facts>,
<assert_facts>,
<output>).

The above behavior can be specified with the following set of rules:

rule(1,[],[p,q,c],[negative(p),negative(q)],[],[negative(s)]).
rule(2,[c],[p,q],[negative(p),negative(q),positive(c)],

[negative(c)],[positive(s)]).
rule(3,[q],[p,c],[negative(p),positive(q)],[],[positive(s)]).
rule(4,[p],[c,q],[negative(q),positive(p)],[],[positive(s)]).
rule(5,[q,c],[p],[negative(p),positive(q)],[],[negative(s)]).
rule(6,[p,c],[q],[positive(p),negative(q)],[],[negative(s)]).
rule(7,[p,q],[c],[positive(p),positive(q),negative(c)],

[positive(c)],[negative(s)]).
rule(8,[p,q,c],[],[positive(p),positive(q)],[],[positive(s)]).

The system is initiated by providing the initial values of the lowest bits of
the numbers to be added by asserting them into the dynamic memory as for
example:

assert(positive(p)).
assert(negative(q)).
assert(negative(c)).
assert(position(1)).

The system is to react — for the given initial state only rule number 4 can
be executed. As the results of application of the rule the output for that bit is
produced as positive(s) and the carry bit remains unchanged. Then the next
input bits are put into the memory and the cycle is repeated.

The code of the rule interpreter is as follows:

run(N):-
retract(position(K)),
K =< N,
rule(_,Preconditions,NegativePreconditions,Retracts,Asserts,

Outputs),
satisfied(Preconditions),
unsatisfied(NegativePreconditions),
remove(Retracts),
add(Asserts),
output(Outputs),
!,
K1 is K + 1,
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assert(position(K1)),
run(N).

run(_):- clean.
clean:-

retractall(positive(_)),
retractall(negative(_)),
retractall(position(_)).

The interpreter starts with checking the bit position; after any cycle the
position is increased by 1 until it becomes bigger than the length of the added
digits; at the end of the run the memory is cleaned from positive and negative
facts. The basic cycle is as follows: a rule is read, it is checked if its posi-
tive preconditions are satisfied and simultaneously the negative ones must be
dissatisfied, and if so the memory is modified by retracting the old signals p
and q, and changing c if necessary (in fact it is performed by rule 2 and 7
only). The current bit with result is send to the output (here written). Af-
ter execution of the rule the stack is cleaned with the cut/1 predicate, the
position number is increased by 1 and the cycle is repeated.

Note that the inference control strategy is the closed-loop linear hierarchi-
cal control strategy, as described in Sect. 10.1.1

Note that, if properly initiated (all the signals and the initial bit position
must be defined) the system always finds a rule to be fired (it is complete) and
there is exactly one such rule (it is deterministic). It is complete, since there
are exactly 3 input binary signals and 8 (23) rules covering all possible input
states. Further, the preconditions of the rules are mutually exclusive, and so
the system is deterministic. The presented interpreter performs finitely many
times a loop of the type ‘end-calls-beginning’ with stack memory cleaning.

The auxiliary predicates are all listed below.

satisfied([]):- !.
satisfied([H|T]):-

positive(H),
satisfied(T).

unsatisfied([]):- !.
unsatisfied([H|T]):-

negative(H),
unsatisfied(T).

remove([]):- !.
remove([H|T]):-

retractall(H),
remove(T).

add([]):- !.
add([H|T]):-

assert(H),
add(T).
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output([]):- !.
output([H|T]):-

write(H),nl,
output(T).

All of the predicates constitute typical recursive definitions of operations
on lists. Note that they are of generic nature; by modifying the definitions of
positive/1 and negative/1 one can easily redefine them so that they operate
on attributive or even first order logic knowledge base.

Note that for various applications various inference control mechanisms
are adequate. It is easy to modify the scheme, so as to obtain various control
effects. For example, if one wants to execute all the rules with satisfied pre-
conditions, i.e the closed-loop linear strategy (see Sect. 10.1.1), one can modify
the loop so that the ‘repeat-fail’ scheme is used.

run(N):-
rule(_,Preconditions,NegativePreconditions,Retracts,Asserts,

Outputs),
retract(position(K)),
K =< N,
satisfied(Preconditions),
unsatisfied(NegativePreconditions),
remove(Retracts),
add(Asserts),
output(Outputs),
K1 is K + 1,
assert(position(K1)),
fail.

run(_):- clean.
clean:-

retractall(positive(_)),
retractall(negative(_)),
retractall(position(_)).

Prolog will be applied to show how rules and rule interpreters can be
implemented. More complex interpreter will be shown in one of the further
sections concerning design principles. It will also be applied to illustrate how
to construct modules for verification of rules.
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Principles of Verification
of Rule-Based Systems

Designing and implementation of rule-based systems is frequently considered
as a specific activity close to classical computer programming; however, there
are specific differences which make this activity a somewhat special domain
which requires separated approach and special attention must be paid to se-
lected issues. The most important differences with respect to classical pro-
gramming languages include the following features:

• design and development of a rule-based system can be and usually is split
into two almost separate activities, i.e. design of the rule-base (declarative
knowledge-base) and design and development of the inference engine;

• defining rules is in fact declarative programming ; to certain degree it can
be done independent of further inference mechanism and the way the rules
will be used;

• development of the inference mechanism is based on procedural program-
ming, separated from the knowledge-base development;

• declaratively encoded rules can be analyzed, verified, optimized, etc. as
a kind of high-level, abstract data;

• the inference mechanism must work for different knowledge-bases; its de-
sign should be ‘universal’.

Unlike writing an entire application all in a procedural language, rule-
based applications contain a clearly distinguished knowledge-base and a mod-
ule for interpreting the rules. The knowledge component can be exchanged,
modified, analyzed, etc. without influencing the inference engine. The sit-
uation is a bit similar to Relational Database Systems — the data in the
tables can be changed, it influences the results, but the procedures operating
on the data (queries, transactions, build-in procedures) remain unchanged.
In classical RDBS it is called logical independence and it follows from the
famous Codd’s postulates implemented in the ANSI-SPARC three level archi-
tecture [23]. In case of rule-based systems the situation is even more complex
due to complex form of the rules expressed in specific logic-based languages.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 191–198 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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The declarative knowledge specified with rules constitutes a principal com-
ponent responsible for the functional behavior of the system. As a separate
module it should be designed so that the implemented system behaves in
a desired way. In other words, this is the knowledge-base component which
is responsible for accomplishing functional requirements and assures required
services with satisfactory quality. As such, it should be validated, verified,
tested and perhaps optimized. These activities will be roughly explained and
issues of formal verification will be considered in details.

12.1 Validation, Verification, Testing
and Optimization of Rule-Based Systems

The quality of software is an important focus in todays applications. Although
there is no general agreement with respect to a unique, definite definition of
software quality, the following features seem to be decisive as for assuring
it [33]:

• Reliability — it is the capacity to assure the required level of functional
services during the specified period of work.

• Efficiency — it is evaluation of the level of functional services with respect
to required resources.

• Functional Capability — it is the capacity of satisfying user require-
ments with respect to the desired functions to be performed by the soft-
ware.

• Portability — it is the capability of work in different environments.
• Usability — it is the easiness of using the software.
• Maintenability — it says how easy the system is to maintain.

In case of knowledge-based systems and especially rule-based components
the above features give only a rough outline of what a quality knowledge-
base should be like. For example, usability seems to be less important or even
unimportant with respect to rule-based knowledge bases — it is user interface
component which has decisive influence on that feature.

In case of rule-based systems the overall quality seems to be influenced by
the following characteristic features:

• Reliability — the system should work and provide the required services
at the required level.

• Safety — the system should not only work, but work in a safe way; this
depends on elimination of potential failures and menaces on one hand, and
ability to operate in case of certain faults.

• Efficiency — it should work in the best possible way at the minimal
requirements of resources, e.g. memory, CPU time, etc.
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The above features are not completely independent from one another;
usually, assuring safety stays in opposite to efficiency. Reliability, on the other
hand, is close to safety of operation1.

Some further required features include also (at least to certain degree)
functional capability, portability and maintenability. However, in case of rule-
based systems these features are of somewhat specific nature.

For example, functional capability follows directly from the rule code since
in fact designing rule-based systems is very much like writing executable spec-
ifications2. Achieving high functional capability is more the problem of the
admitted knowledge specification language than the rules — if something can
be expressed in the language, an appropriate rule can be added to the knowl-
edge base.

Features as portability and maintenability on their turn, are achieved in
a direct way due to the declarative programming approach which is intrinsic
to rule-based systems design. They are also depending to certain degree on
the knowledge specification language in use. Hence in fact, they are rather
loosely related to the quality of the rule-base and the knowledge covered
by it.

In the further part the interest will be focused on and around features
such as safety, reliability and efficiency of rule bases and how these abstract,
far-reaching aims can be translated into local, verifiable characteristics.

12.2 Verification: from General Requirements
to Verifiable Characteristics

The expressive power of knowledge representation languages makes the scope
of potential applications combined with modularity of RBS a very general and
readily applicable mechanism. However, despite a vast spread-out in working
systems, their theoretical analysis seems to constitute still an open issue with
respect to analysis, design methodologies and verification of theoretical prop-
erties. Assuring reliability, safety and efficiency of rule-based systems requires
both theoretical insight and development of practical tools. The general quali-
tative properties are translated into a number of more detailed characteristics
defined in terms of logical conditions.

1 The best analogy to clearly show the meaning and scope of these notions may be
based on referring to an airplane: it is perfectly safe if it never starts — however,
it is not reliable since it does not do its duty; obviously, it would also be inefficient.
A reliable airplane performs according to desired schedule, it is safe if after any
take-off there is exactly one landing, and it is efficient if the cost per passenger
per one kilometer is lower than for other planes.

2 One may say: ‘You get whatever you want provided that you know how to ask
for that in the accepted language’.



194 12 Principles of Verification of Rule-Based Systems

In fact, in order to assure safe and reliable performance, such systems
should satisfy certain formal requirements, including completeness and con-
sistency. To achieve a reasonable level of efficiency (quality of the knowledge-
base) the set of rules must be designed in an appropriate way. Several theo-
retical properties of rule-based systems seem to be worth investigating, both
to provide a deeper theoretical insight into the understanding of their ca-
pacities and assure their satisfactory performance, e.g. reliability and safety
[3, 48, 101, 103, 107, 123]. Some most typical issues of theoretical verification
include satisfaction of properties such as consistency, completeness, determin-
ism, lack of redundancy or subsumption, etc. (see [3, 81, 101]). Several papers
investigate these problems presenting particular approaches [25,103,107,123].
A selection of tools is presented in [109]. Some modern approaches include
[6, 49,132].

The problems listed above become still more important in case of rule-
based methodology applied to on-line, real-time control of dynamic systems
(i.e. intelligent control, knowledge-based control) [48,124], especially if safety
issues are to be taken into account. Some of these problems may be of critical
nature; for example, in case of lack of completeness, for certain states of the
controlled system there are no rules to serve these states. This may make the
system unreliable or unsafe.

A recent painful example of such lacks in safety3 was the crash known as
The Warsaw Accident, when a plane hit on high speed into an earth bank after
successful landing under heavy weather conditions; switching to reverse thrust
and opening spoilers (both for efficient breaking down) were disabled by an
intelligent control system. For certain values of the speed of wheel spinning and
weight no action was designed to be undertaken. It can be argued that static
analysis of theoretical characteristics of such a system, in our case checking for
completeness, could perhaps throw some light on missing rules identification
and finding specification of gaps in the input state space served by the RBS
applied for control.

The approach presented in this book is based on selection of verifiable char-
acteristics (such as ones mentioned above) which are responsible for safety,
reliability and efficiency. Then the initial qualitative requirements are trans-
lated to and expressed with requirements for satisfaction of such precisely
defined characteristics. Each type of such characteristics is responsible for
certain types of failures — hence, if one is able to check that the required
characteristics are met, one may also be sure that the corresponding anom-
alies cannot occur. Below, taxonomies of such anomalies and characteristics
are discussed.

3 Caused in our rough and subjective interpretation by lack of completeness of the
control algorithm; in fact the detailed analysis is more complex [119].
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12.3 Taxonomies of Verifiable Features

In this section a new, generalized taxonomy of the issues concerning knowl-
edge verification is put forward. The taxonomy covers most of the specific
problems considered by other Authors, but groups together similar problems
by taking into account the approach to perform appropriate check and deal
with a specific anomaly. Further, logical definitions of specific anomaly classes
are provided.

12.3.1 Verification of RBS: a Short Review

In this section a short review of selected, most common anomalies is presented.
A kind of review of the theoretical problems specified by the authors with re-
spect to verification of RBS properties is provided. The discussion is based
mainly on the following positions [3,25,81,83,101,109,110,111,112,123]. How-
ever, contrary to typical presentations, the discussion is functionality-oriented,
i.e. we start from top-level, abstract characteristics required to achieve. Fur-
ther, practical experience and theoretical discussion as well as author’s former
papers are taken into account.

Some most general classification of theoretical issues which undergo theo-
retical analysis can be one referring to the degree of influence they may have
on system performance, and ranging from problems of efficiency and elegance
of knowledge representation (e.g. redundancy and subsumption) to certain
critical errors inside the encoded knowledge (e.g. incompleteness and incon-
sistency of specified knowledge). This point of view would be especially im-
portant when the analysis is to provide confidence about reliability and safety
of an on-line (or even real-time) KBS working in safety-critical environment.
On the other hand, reliability and safety are always to be considered w.r.t.
KBS and its environment considered as two factors having joint influence on
each other.

Note that, it is not the KBS itself, but always together with the controlled
system and its environment which makes danger, crush or failure to occur.
Thus, considering safety problems should be based on more global analysis
covering not only the software system but its potential interaction with the
environment. For example, redundancy, which is normally considered harm-
less, may slow down operation of a real-time critical system and lead to some
serious consequences since the output would be delayed; on the other hand,
even inconsistent or incomplete system can work well for a long time (even for
years), provided that no use of its knowledge leading to direct manifestation
of inconsistency is done or the uncovered inputs do not occur.

On the other hand, theoretical issues considered from the point of pure
KBS theory (such as correctness, incompleteness, inconsistency, consistency
with reality) may appear ‘mathematically elegant’ when analyzed at the level
of theoretical definitions, but may turn out to become less attractive and hard
to formalize when it comes to practical applications and efficient analysis.
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Especially purely logical approaches, e.g. ones based on automated theorem
proving, would seem promising, but are hardly applicable for realistic sys-
tems. The same applies to software verification in general case, where proving
consistency of final code with initial specification is a hard, tedious, usually
not a realistic task. But even if performed successfully, it is not the end of the
problems.

12.3.2 Functional Quality Assignment

The approach of this work is relatively simple and conservative, based on
good experience and success of RDB systems. Simultaneously, we try to be
constructive: an engineering approach is pursued. An attempt is made at
presentation of working classification of general issues of interest with respect
to theoretical analysis, each of them having relatively different origin and ways
to detect and deal with it.

Whenever appropriate, an idea of trouble detection procedure is outlined
and suggestions about potential solutions are given. Further, the nature of
potential problems is explained is case of omitting the analysis of a particular
problem. In order to stay close to both engineering intuition and potential
practical solutions, the discussion turns around simplified form of KBS, i.e.
tabular RBS as introduced in Chap. 8.

From the point of view of top-level, desired functional specification, the
following five characteristics are put forward:

• safety, i.e. the design of the rule-based system should assure that nothing
dangerous would ever happen;

• reliability, i.e. the system should work and achieve its goals, possibly under
any external circumstances;

• admissibility, i.e. the system should provide only admissible decisions or
conclusions and should satisfy any constraints imposed on it;

• quality, i.e. the system should satisfy certain standards, especially satisfy
explicit and implicit standards and user requirements;

• efficiency, i.e. the system should work in possibly most efficient way (per-
haps even optimal) and should be specified in an efficient way (e.g. with
the use of minimal number of rules, in the simplest form, etc.).

These top level characteristics appear to be both pairwise dependent and
perhaps inconsistent with one another, i.e. satisfaction of one may lead to
violating another one. For example, a safe plain would be one which never
flies, but such a plain would not be reliable, not to tell about efficiency. Fur-
ther, unfortunately, these characteristics are hardly expressible with the use
of a formal specification. Thus, instead, the approach pursued in this work
is based on translating them into quite technical, static analysis of selected
features which can be defined formally with the use of logical specification.
Below, a proposal of a general taxonomy is presented.
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12.4 A Taxonomy of Verifiable Characteristics

The technical classification of theoretical properties of databases (considered
within the extended paradigm, i.e. as data templates or knowledge facts),
tabular rule based system as well as first-order based ones should possibly
cover the complete spectrum of potential deficiencies. At the same time, the
structure of the taxonomy should reflect verification paradigms, i.e. features
analyzed with the same or similar tools should be grouped together. A pro-
posal of a new taxonomy constituting an attempt at satisfying these principles
and kept as transparent as possible is presented below. The proposal is based
on papers such as [3, 101, 109, 110, 111, 112] and on author’s recent propos-
als [63,65].

The proposed taxonomy is a hierarchical one (two-level), and functionally
similar detailed features are grouped together. The classification is applicable
both to facts representing unconditional knowledge and rules divided into
preconditions (LHS ) and conclusion (RHS ). The issues concerning various
anomalies can be grouped and presented as follows:

• Redundancy:
– identical rules,
– subsumed rules,
– equivalent rules,
– unusable rules (ones never fired).

• Consistency:
– indeterminism, ambiguous rules,
– conflict, ambivalent rules,
– logical inconsistency.

• Reduction:
– reduction of rules,
– canonical reduction of rules,
– specific reduction of rules,
– elimination of unnecessary attributes.

• Completeness:
– logical completeness,
– specific (physical) completeness,
– detection of incompleteness,
– identification of missing rules.

Recall that the above taxonomy is considered in the context of simple tab-
ular systems, i.e. no rule chaining problems are taken into account (such as
chains leading to contradiction, potential loops, dead-end condition, unreach-
able conclusion, etc.). Such problems usually require more complex analysis
(e.g. recursive analysis of potential chains of rules combined in our case with
potential inputs occurring at any stage; in a worst case scenario this may be
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equivalent to simulation of all potentially possible executions of the system,
and as such it may be computationally intractable4.

The proposed classification is somewhat general, but it covers many de-
tailed cases mentioned in the literature. For example, subsumption of rules
cover some four sub-cases of Redundancy in pairs of rules [101]. The case
of unnecessary IF conditions, as discussed in [81], is a specific case of rule
reduction discussed in this paper. On the other hand, as mentioned above,
some checks requiring recursive analysis are not considered here. Note that
in case of simple, reactive, forward-chaining systems it may be necessary to
apply the same rule (or a sequence of rules) many times in turn, until ex-
ternal event changes the input (for example, in a supervisory system waiting
for a special event). Further, a ‘circular’ rule may in fact be equivalent to
iteration which may be necessary to load a counter, etc. and finishes only
after expected amount of repetitions. Thus, ‘circular’ rules are not necessarily
considered harmful.

Let us briefly skim through the proposed taxonomy of anomalies. In the
next chapters, we shall analyze every class of problems in a brief way and we
shall point to the principal checking approach. If applicable, logical specifica-
tion of the appropriate condition to be verified will be provided.

4 Well, analysis of complete set of cases of execution can be performed for cer-
tain, not-too-large systems; this, in fact, is carried out by Prolog execution
mechanism, and was also implemented in several rule-based verification systems,
such as CHECK [103] w.r.t. circular rules detection or COVER [110] for defi-
ciency detection in backward chaining systems. Certainly, a system once checked
in a complete mode can be considered reliable and therefore can be safely used
in the future, perhaps in multiple copies. On the other hand, we believe that for
more complex systems, such complete checking is rather infeasible, especially if
the system incorporates a language equivalent to first-order logic with equality
and interpreted functions, but can be dealt with by keeping dynamic track of
executed rules and results obtained at subsequent stages of inference, i.e. it can
be performed on-line, during work of the system. This, however, would require
that appropriate procedures are built-in into the rule interpreter.
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Analysis of Redundancy

13.1 Redundancy of Knowledge Representation

The first group of anomalies in knowledge bases refers to issues concerning
redundancy of knowledge representation, i.e. whether and how the current
representation is inefficient through including unnecessary components. This
issue has mostly no influence on system correctness and its functionality and
potential or observed behavior. However, it can slow down its operation, and
become a source of problems during modification or extension of the knowl-
edge base. Redundancy in knowledge-bases (rule-bases) should be avoided
due to the same reasons as in the classical relational databases — redundancy
is a potential source of inconsistency when knowledge is updated. Last but
not least, redundant elements occupy memory and make any analysis more
difficult.

A general technique for dealing with redundant knowledge is to detect and
remove the redundant components. Let R be a formula denoting the logical
representation of a rule-base. There can be two points of view on redundancy:
the logical redundancy and the operational (functional) redundancy. Below
the appropriate definitions are given.

Definition 84. The knowledge base represented with R is logically redundant
if there exists R′ obtained from R by removing certain component r, and there
is R |= R′ and R′ |= R.

In other words, R is redundant if there is a possibility to reduce its size by
removing at least one component (e.g. a rule in case of rule-based systems)
and R′ obtained in this way is logically equivalent to the initial formula.

A simple illustration of logical redundancy is the case of identical rules.
Consider a rule base

R = r1 ∧ r2 ∧ . . . ∧ rm

where ri = φi −→ hi are some rules for i = 1, 2, . . . ,m. Let there be two rules
in R, say i and j, such that φi = φj and hi = hj ; obviously, ri is identical

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 199–206 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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to rj . Further, one of the rules can be removed from R so that R′ is obtained,
and R′ ≡ R.

Definition 85. The knowledge base represented with R is functionally redun-
dant (or operationally redundant) if there exists a component r in R such that
a new knowledge base R′ obtained from R by removing r behaves exactly as
R, i.e. for any input knowledge fact base FB , there is R(FB) ≡ R′(FB).

In other words, a rule base R is operationally redundant, if there exists a
rule r which can be removed from it without influencing its behavior. A simple
illustration of operational redundancy is the case of unusable rules. If one is
sure that rule r ∈ R will never be used (fired), then r can be removed from
R without modifying its functional capabilities (its work). A rule is unusable
(impossible to fire) if in any situation at least one of its literals occurring in
the precondition formula will never be satisfied. This is so in case of unique
predicate symbols (used only in this rule and not in the state descriptions or
other rules) or unique attribute in case of tabular systems.

Logical redundancy implies operational redundancy — a system which is
logically redundant is also operationally redundant. The example of unusable
rules (due to unique condition) shows that the vice-versa is not necessarily
true.

As for redundancy, the following issues have been identified so far:

• identical rules,
• subsumed rules,
• equivalent rules,
• unusable rules (ones never fired).

It is obvious that repeated, identical rules should be eliminated, as well
as redundant, equivalent data templates or rules; the latter may however be
difficult to identify without a theory supporting the proof of equivalence.
Redundant rules (not necessarily identical — see the further discussion) can
be detected and removed, leaving no more than one copy for each rule.

The most interesting is the case of subsumed, less general rules. A rule of
the form φ −→ h subsumes (is more general than, or is stronger than) a rule
φ′ −→ h′ if and only if it offers the possibility to draw stronger conclusions
from weaker prerequisites, i.e. iff φ′ |= φ and h |= h′. This case will be analyzed
in detail using both logical and algebraic approaches. Subsumed rules also can
be eliminated, which has no influence on logical inference capability. However,
in certain cases leaving a subsumed, more specific rule in knowledge base may
be purposeful, for example it may affect the conflict resolution mechanism
and inference control strategy [81].

The case of equivalent rules is analogous to the one of subsumed rules
and follows it logically. Two rules are equivalent if one of them subsumes the
other and vice-versa. Hence subsumption appears as generic, core issue since
it covers also identical rules and equivalent ones.
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A somewhat different case is the one of unusable rules (ones never fired).
Let r = φ −→ h be a rule suspected that it will never be fired. Such rules can
be discovered with the use of analysis of feasible input states.

There can be in general two cases:

1) the set of feasible input states is described with joint formula ∆; then one
is able to prove that ∆ 
|= φ, i.e. the preconditions of the formula are never
satisfied;

2) the infeasible states are described with a joint formula Γ ; then one is able
to prove that φ |= Γ , i.e. if the precondition formula is satisfied, then we
are in an infeasible state.

In general, such proofs are hard to complete; this is so since there is no
way to find formulae ∆ or Γ in a constructive way or they are too complex.

In literature one can meet certain simplified criteria, such as occurrence of
unique attribute or predicate symbol in preconditions of the rule.

Finally, when analyzing redundancy, there can be also the case of redun-
dancy within the preconditions of a rule. A typical such case happens if some
attributes are unnecessary. The case of unnecessary attributes (or too many
attributes), is not necessarily easy to identify — semantic, domain dependent
knowledge is necessary. Such a case is the consequence of existence of func-
tional dependencies among attributes, and since it is relatively well studied
in the theory of RDB, it will not be considered here.

13.2 Subsumption

Let us consider the most general case of subsumption; some particular defin-
itions are considered in [3, 103,123].

A rule subsumes another rule if the following conditions hold:

• the precondition part of the subsuming rule is weaker (more general) than
the precondition of the subsumed rule (the subsuming rule succeeds in
more situations than the subsumed one),

• the conclusion part of the subsuming rule is stronger (more specific) than
the conclusion of the subsumed rule (the subsuming rule provides more
information than the subsumed one).

Particular instances of subsumption follow from holding either the first or
the second condition, while keeping equivalence or identity of the other parts
of the rules. The case of redundant rules [3, 103, 123], i.e. when one of them
succeeds in the same situation as another rule and both the rules have the
same conclusions can be considered as the simplest case of subsumption.

Let the rules r and r′, satisfy the following assumption: φ′ |= φ and h |= h′.
The subsumed rule can be eliminated according to the following scheme
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r : φ −→ h
r′ : φ′ −→ h′

r : φ −→ h
.

For intuition, a subsumed rule can be eliminated because it produces
weaker results and requires stronger conditions to be satisfied; thus any of
such results can be produced with the subsuming rule.

13.2.1 Subsumption in First Order Logic

In order to detect subsumption in First-Order Logic one has to employ general
theorem proving procedures. For example, in case of rules having complex
precondition expressed in the DNF, backward dual resolution can be applied
in a straightforward way [53]. However, employing general proof procedure
for subsumption analysis is rather of theoretical interest than of practical
importance.

In case of simple rules having preconditions in form of simple conjunctive
formulae, using pattern matching algorithms based on unification seems to be
satisfactory.

Consider the following simple example which is aimed at illustrating the
idea. Let there be given two rules r1 and r2, where:

r1 : p(X) ∧ q(b) −→ h(X) ∧ g(b),
r2 : p(a) ∧ q(b) ∧ s(Y ) −→ h(a).

Now, for substitution σ = {X/a} we have LHS (r1)σ ⊆ LHS (r2). Hence
LHS (r2) |= LHS (r1) — the preconditions of r2 are in fact more detailed.
Simultaneously, RHS (r2) ⊆ RHS (r1σ) and hence RHS (r1) |= RHS (r1) —
the conclusion of r1 is stronger. Hence rule r2 is subsumed by rule r1. In fact,
having defined rule r1 , r2 is no longer necessary.

13.2.2 Subsumption in Tabular Systems

Consider now the case of simple tabular systems encoding rules in attributive
logic. Consider two rules, r and r′. The condition for subsumption in case of
tabular rule format takes the algebraic form t′j ⊆ tj , for j = 1, 2, . . . , n and
h′ ⊆ h. If it holds, then rule r′ can be eliminated according to the following
scheme:

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . tj . . . tn h
r′ t′1 t′2 . . . t′j . . . t′n h′

rule A1 A2 . . . Aj . . . An H
r t1 t2 . . . tj . . . tn h

.

For example, in the following tabular system the first rule subsumes the
second one:
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rule A1 A2 A3 A4 H

r 7 [2, 9] [3, 5] {r, g, b} {a, b, c}
r′ 7 [3, 5] 4 {b, r} {a, c}

The check is based on pure algebraic test specified with rule (3.2) pre-
sented in Sect. 3.6. In general case, the check for subsumption may require
m(m − 1)/2 comparisons among rules (where m is the number of rules in the
analyzed table), however most of them will fail quickly. In large tables, the
rules may be further structured w.r.t partition of certain attributes, so that
subsumption may be checked only within smaller subgroups of rules.

13.3 Verification of Subsumption
in XTT — a Prolog Code

Consider an example Prolog code for verification of subsumption of attribu-
tive rules encoded in the form of an XTT table.

The rule format is presented below.

% f(<attribute_name>,<value_type>,<value>)
% <value_type>: atomic, set, interval, ...

% rule format:
% rule(<table_number>,
% <rule_number>,
% [<precondition_list>],
% [<retract_list>],
% [<assert_list>],
% [<decision_list>],
% <next_table>,
% <next_rule in next_table>,
% ).

For practical examples of rule encoding see the Thermostat example pre-
sented in Chap. 20.

The following facts are declared as dynamic ones.

:- dynamic f/3.
:- dynamic rule/10.
:- dynamic set/2.

The following predicate vsu/1 performs verification of subsumption over
a table being its argument.

vsu(T):-
rule(T,N1,P1,R1,A1,D1,_,_),
rule(T,N2,P2,R2,A2,D2,_,_),
N1 \= N2,
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subsumes(P1,P2),
covers(R1,R2),
covers(A1,A2),
covers(D1,D2),
write(’*** Rule: ’),
write(T),write(’.’),write(N1), write(’ subsumes rule: ’),
write(T),write(’.’),write(N2), nl, fail.

vsu(T):-
write(’ No more subsumption of rules in table ’), write(T), nl.

The idea of the check is straightforward. The predicate vsu/1 reads pairs of
rules from table T and compares them. Subsumption holds iff preconditions P1
of some rule subsume preconditions P2 of another rule (subsumes(P1, P2)),
and simultaneously all the results of the first rule are stronger than the ones
of the other rule (covers(R1, R2), covers(A1, A2), covers(D1,D2)). The main
predicate is subsumes/2 for verification of subsumption amongst the precon-
ditions of rules, and covers/2 for verification of subsumption amongst the
conclusions, including the retract, assert and output components. They are
defined as follows.

Here are the definitions of auxiliary predicates:

subsumes([],_):- !.
subsumes([Fact|Facts],L):- sub(Fact,L), subsumes(Facts,L).

sub(Fact,L):-
retractall(f(_,_,_)),
assertlist(L),
valid(Fact).

assertlist([]):- !.
assertlist([F|R]):- assert(F), assertlist(R).

covers(_,[]):- !.
covers(L,[Fact|Facts]):- cov(L,Fact), covers(L,Facts).

cov(L,Fact):-
retractall(f(_,_,_)),
assert(Fact),
member(F,L),
valid(F).

In order to verify subsumption among preconditions one has to check if
any fact of the more general list (P1) is valid provided that the less general list
(P2) is valid; the check consists of asserting the list into the global memory
and subsequent recursive verification of all the facts of P1.

In order to verify that conclusions of the first rule cover the ones of the
second rule one has to check that the stronger conclusions cover any fact of
the conclusions of the second rule. The check is analogous, but this time the
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fact to be covered is asserted to the global knowledge base and a fact covering
it is sought in the covering list. This is so in order to use the same predicate
valid/1 which describes various possibilities of matching a fact against a fact
base in the memory; the difference follows from the interpretation of facts in
preconditions as internal disjunction and in conclusions as internal conjunc-
tion (see Sect. 3.5). The valid/1 predicate takes as its argument a single fact
(normally from the list of preconditions) and checks if it is satisfied in view
of the global fact base. It is defined as follows.

valid(f(A,atomic,V)) :- f(A,atomic,V),!.
valid(f(A,natomic,V)) :- f(A,atomic,W), V \== W, !.
valid(f(A,set,Set)) :-

f(A,atomic,V),
set(Set,SetValue),
member(V,SetValue),!.

valid(f(A,set,Set)) :-
f(A,set,SA),
set(SA,SAValue),
set(Set,SetValue),
subset(SAValue,SetValue),!.

valid(f(A,nset,Set)) :-
f(A,atomic,V),
set(Set,SetValue),
\+ member(V,SetValue),!.

valid(f(A,nset,Set)) :-
f(A,set,SA),
set(SA,SAValue),
set(Set,SetValue),
intersection(SAValue,SetValue,[]),!.

valid(f(A,interval,i(B,E))) :-
f(A,atomic,V),
V >= B,
V =< E,!.

valid(f(A,ninterval,i(B,_))) :-
f(A,atomic,V),
V < B,!.

valid(f(A,ninterval,i(_,E))) :-
f(A,atomic,V),
V > E,!.

valid(f(A,interval,i(B,E))) :-
f(A,interval,i(BB,EE)),
BB >= B,
EE =< E,!.

valid(f(A,ninterval,i(_,E))) :-
f(A,interval,i(BB,_)),
E < BB,!.

valid(f(A,ninterval,i(B,_))) :-
f(A,interval,i(_,EE)),
EE < B,!.
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The precise definition of valid/1 must be adjusted to the detailed form
of the attributive language in use. The provided code allows for use of indi-
vidual values, sets, intervals, also together with negated relation (natomic,
nset, and ninterval having the meaning of 
=, 
∈ (set) and 
∈ (interval)
respectively.
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Analysis of Indeterminism and Inconsistency

14.1 Indeterminism and Inconsistency of Rules

Problems of indeterminism or ambiguity, ambivalence and inconsistency of
rules refer to the generic topic of internal consistency of the rule-base. This
is the case when consistent application of the rules may lead to ambiguous
or inconsistent results. In the simplest case, different results may be inferred
when different inference control strategies are applied. In the most serious
case the inferred results may be logically inconsistent.

In general, one can consider the following cases of anomalies:

• indeterminism, ambiguous rules;
• conflict, ambivalent rules;
• logical inconsistency.

The lack of determinism or uniqueness may lead to ambiguous results.
Ambiguous results may take place in case when two (or more) rules can be
applied for the same input, but their outputs are different. Consider two rules
r1 and r2 belonging to the same rule-base, where r1 is of the form ψ1 −→ h1

and r2 is of the form ψ2 −→ h2.

Definition 86. Two rules r1 and r2 are ambiguous or form indeterministic
set of rules if there exists a state described by formula φ, such that simulta-
neously φ |= ψ1 and φ |= ψ2 and h1 
= h2.

In other words, ambiguous rules are ones which can be simultaneously
fired, but their conclusions are different.

It may be the case that such a result is harmless, or even intended, but
in case of reactive control systems the situation like that should be carefully
analyzed. From logical point of view, rules as above are potentially ambiguous
iff ψ1 ∧ ψ2 is a satisfiable formula. In this case one can say that logical or
potential indeterminism exists. If there exists a physical state for which the
rules can be fired, one can say that the rules are physically or practically
ambiguous.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 207–211 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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A more dangerous case is the one of conflicting, ambivalent rules, i.e. when
the simultaneously produced outputs both cannot be correct with respect to
the intended interpretation I (external world).

Definition 87. Two rules r1 and r2 are conflicting or form ambivalent set of
rules if there exists a state described by formula φ, such that simultaneously
φ |= ψ1 and φ |= ψ2 but 
|=I h1 ∧ h2 under the assumed interpretation I.

In other words, ambivalent (conflicting) rules can be simultaneously fired,
but their conclusions are in conflict — h1 and h2 cannot be simultaneously
true.

For example, there exist many devices which can be in one and only one
state at a certain instant of time, and concluding that such a device takes
simultaneously two different states leads to physical inconsistency. For exam-
ple, all the bistable elements, such as switches or relays, can be either on or
off. In the above case two ambivalent rules would be conflicting if apart from
overlapping preconditions also the formula h∧h′ would be unsatisfiable under
the assumed interpretation.

The conflict may become logical inconsistency if certain two conclusions
are logically inconsistent, either in direct case (if one is the negation of the
other), or in an indirect case (when assuming that both are simultaneously
true allows for formal demonstration that there is logical inconsistency).

Definition 88. Two rules r1 and r2 are inconsistent if there exists a state
described by formula φ, such that simultaneously φ |= ψ1 and φ |= ψ2 but

|= h1 ∧ h2.

In other words, ambivalent (conflicting) rules can be simultaneously fired,
but their conclusions are logically inconsistent; for example h1 = ¬h2 which
cannot be true under any interpretation.

For obvious reasons such problems should be detected and carefully ana-
lyzed.

Note that a common characteristic and partially the source of the above
problems follows from overlapping preconditions of the rules. Hence, the basic
verification procedure should be able to discover any pair of rules such that
their preconditions can be simultaneously satisfied.

From logical point of view, rules are potentially overlapping (with respect
to their preconditions) iff ψ1 ∧ψ2 is a satisfiable formula. In this case one can
say that logical or potential overlapping is observed. If there exists a physical
state for which the rules are both fire-able, one can say that the rules are
physically or practically overlapping.

14.2 Consistency Analysis

In this section the problem of determinism and two following issues, i.e. the
one of conflict and inconsistency are discussed.
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14.2.1 Determinism

A set of rules is deterministic iff no two different rules can succeed for the
same state. A set of rules which is not deterministic is also referred to as
ambiguous.

The idea of having a deterministic system is based on a priori elimination
of ‘overlapping’ rules, i.e. ones which operate on a common situation. The aim
of analysis is obvious — to detect (distinguish) the case of two or more rules
applicable the same situation.

Consider the following two rules:

r1 : ψ1 −→ h1,

r2 : ψ2 −→ h2.

From purely logical point of view the system is deterministic iff the con-
junction of the precondition formulae ψ1 ∧ ψ2 is unsatisfiable. For certain
technical systems it is enough to check that such a conjunction is unsatisfi-
able under a specific interpretation referring to the domain of interest [53].
A typical example is of the form ψ1 = switch(on) and ψ2 = switch(off ), and
obviously the formula ψ1 ∧ ψ2 is false under the intended interpretation —
the switch can be either on or off.

Consider now the case of attribute knowledge representation, as below

rule A1 A2 . . . Aj . . . An H

r1 t1,1 t1,2 . . . t1,j . . . t1,n h1

r2 t2,1 t2,2 . . . t2,j . . . t2,n h2

Calculation of ψ1 ∧ ψ2 is straightforward: for any attribute Aj there is an
atom of the form Aj = t1,j in ψ1 and Aj = t2,j in ψ2, i = 1, 2, . . . , n. Now,
one has to find the intersection of t1,j and t2,j — if at least one of them is
empty (e.g. two different values; more generally t1,j ∩ t2,j = ∅), then the rules
are disjoint. The check is to be performed for any pair of rules.

14.2.2 Conflict and Inconsistency

From practical point of view deterministic systems are easier for implementa-
tion. In case of indeterministic system there may be the case that two or more
rules are simultaneously applicable. It is the problem then of the so-called
conflict resolution mechanism to select a single rule to be fired. Note that if
a system is deterministic, no conflict resolution mechanism is necessary. On
the other hand, in certain systems indeterminism is inherent in the set of rules,
while conflict situations are to be solved with appropriate inference control
mechanism.

In design of knowledge rule-based systems one can encounter further the-
oretical problems; two most important ones following from the lack of deter-
minism are as follows (see also [103,123]):
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• Conflict — two (or more) rules are applicable to the same input situation
but the results are conflicting (under the assumed interpretation).

• Inconsistency — here understood as logical inconsistency (unsatisfiabil-
ity under any interpretation).

Note that problems of conflicting and inconsistent rules [103, 123] are
specific cases of indeterminism. In tabular systems with no explicit negation
purely logical inconsistency cannot occur; it always follows from the intended
interpretation and thus it falls into the class of conflicts.

The case of conflicting rules is a potential source of errors, e.g. ambivalent,
and therefore unpredictable behavior. Conflicting rules, however, are a sub-
class of indeterministic ones; thus, any pair of such rules will be eventually
discovered after checking for determinism; they should be further analyzed
by domain experts. This is so, since different conclusions of two overlapping
rules do not necessarily mean ‘real conflict’, i.e. both suggested solutions can
be admissible. This is the typical case of Decision Support Systems suggesting
one or several solutions valid for certain situation. Depending on the inference
strategy, either one of them (selected in an arbitrary way or according to some
predefined strategy) or even all of them can be applied. On the other hand,
a real conflict exists usually in case of unique decision to be undertaken, e.g.
if some resources are indivisible or some variables can be assigned a unique
value only.

14.3 Verification of Indeterminism: a Prolog Code

Consider an example Prolog code for verification of indeterminism of at-
tributive rules encoded in the form of an XTT table. The rule format is as
presented before. For practical examples of rule encoding see the Thermostat
example presented in Chapter 20.

The main verification predicate vnd/1 takes a table of rules as its argu-
ment; the core of its code is shown below.

vnd(T):-
rule(T,N1,P1,_,_,_,_,_),
rule(T,N2,P2,_,_,_,_,_),
N1 \== N2,
overlaps(P1,P2),
write(’*** Rule: ’),
write(T),write(’.’),write(N1), write(’ overlaps with rule: ’),
write(T),write(’.’),write(N2), nl, fail.

vnd(T):-
write(’No more overlapping of rules in table ’), write(T), nl.

The check is accomplished by verifying if the preconditions of the rules
overlaps. This is done recursively by the predicate overlaps/2. The different
alternative possibilities of overlapping for two atomic formulae are defined
with over/2 predicate.
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overlaps([],[]):- !. overlaps([F|Facts],[G|Gacts]):-
over(F,G),overlaps(Facts,Gacts).

over(f(A,atomic,V),f(A,atomic,V)):- !.
over(f(A,natomic,_),f(A,natomic,_)):- !.
over(f(A,natomic,V),f(A,atomic,W)):- V \== W,!.
over(f(A,atomic,V),f(A,natomic,W)):- V \== W,!.
over(f(A,atomic,V),f(A,set,S)):-

set(S,SetValue), member(V,SetValue), !.
over(f(A,set,S),f(A,atomic,V)):-

set(S,SetValue), member(V,SetValue), !.
over(f(A,set,S),f(A,set,Q)):-

set(S,SetValue), set(Q,QetValue),
member(V,SetValue), member(V,QetValue), !.

over(f(A,atomic,V),f(A,interval,i(B,E))):- B =< V, V =< E,!.
over(f(A,interval,i(B,E)),f(A,atomic,V)):- B =< V, V =< E,!.
over(f(A,interval,i(B,E)),f(A,interval,i(BB,EE))):-

BB =< E, B =< EE,!.
over(f(A,interval,i(BB,EE)),f(A,interval,i(B,E))):-

BB =< E, B =< EE,!.

The rules with overlapping preconditions are listed for further analysis. If
definitions of conflicting conclusions can be specified in a constructive way (e.g.
by enumeration of physically inconsistent cases), the above procedure can be
extended to perform the appropriate check on the conclusions of overlapping
rules as well.
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Reduction of Rule-Based Systems

Problems of minimal or maybe optimal representation refer to the possibility
of transformation of the initial knowledge table to some, possibly simplest,
form, i.e. simplification. This can be obtained through reduction of the table.
The reduced form, should, however, be logically equivalent to the input table.

Note that reduction understood in this way is different from simple elimi-
nation of unnecessary rules (e.g. subsumed or equivalent ones). In looking for
minimal representation of rules one can glue two or more rules so that a single,
more general rule is obtained. The gluing operation is the basic mechanism
for reduction.

The most important issues specific for finding a minimal representation
for a given set of rules are the following:

• reduction of rules to maximally reduced form,
• partial reduction of rules to canonical form,
• specific reduction of rules,
• elimination of unnecessary attributes.

Reduction of rule base to maximally reduced forms means replacing two or
more items with a single, equivalent rule by an operation resembling ‘gluing’
the preconditions of them. Note that from logical point of view all of the
activities referring to cleaning-up most of the anomalies do lead to logically
equivalent knowledge base, but a simpler (more elegant) one.

The reduction can be total (i.e. maximal; no further reduction is possible)
or partial. Such partial reduction of data templates or rules may lead to a
specific, unique form, called canonical form [64]1. It can be noticed that the
result of total reduction may be, in general case, not unique. It may be wise
then, to stop at a certain stage of partial reduction, but such that the result
would be defined in a unique way. More on that can be found in [64].

1 For intuition, a canonical form of a tabular system satisfies the condition that
the values appearing in any column do not overlap or are identical; the canonical
form may be unique for a specific tabular system [72–74].

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 213–218 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Specific partial reduction of data templates or rules is a kind of reduction
where two or more values, terms or formulae are replaced with another, more
general one. Normally, reduction leads to elimination of unnecessary terms or
formulae; in case of specific partial reduction the term or formula ‘survives’
but it is generalized w.r.t. the original one.

Elimination of unnecessary attributes may be performed either with the
use of semantic knowledge about functional dependencies or through total
reduction (if applicable). In such a case the output does not appear to depend
on some attribute(s), which disappear during the reduction process.

15.1 Generation of Minimal Forms
of Tabular Rule-Based Systems

Minimization of knowledge representation can be achieved by elimination of
redundant and subsumed rules and by appropriate joining together selected
rules which are in certain sense ‘complementary’. The main idea of the second
case is based on the principles of backward dual resolution and is referred to
as reduction of rules.

15.1.1 Total and Partial Reduction

Reduction of rules is an operation similar to finding minimal representation for
propositional calculus formulae or boolean combinatorial circuits. The main
idea of reduction of rules is to minimize the number of rules without influ-
encing the potential capabilities of the system for inferring new knowledge.
Efficient reduction may be accomplished by replacing a number of rules having
the same conclusions with a single equivalent rule.

Consider k rules with the same conclusion, such that their preconditions
differ only with respect to ωi, i = 1, 2, . . . , k, where ωi = (Aj ∈ tij) defines the
value of the same single attribute Aj . Assume that the following completeness
condition holds

|= ω1 ∨ ω2 ∨ . . . ∨ ωk.

With respect to the dual resolution principle the following reduction scheme
can be applied:

r1 : φ ∧ ω1 −→ h
r2 : φ ∧ ω2 −→ h
...
rk : φ ∧ ωk −→ h

r : φ −→ h
.

For intuition, the preconditions of the formulae are replaced by a joint
condition representing the disjunction of them; roughly speaking, the sets
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described with the preconditions are ‘glued’ together into a single set. The
resulting rule is logically equivalent to the set of initial rules.

Using the tabular knowledge representation, reduction takes the following
form:

rule A1 A2 . . . Aj . . . An H

r1 t1 t2 . . . t1j . . . tn h
r2 t1 t2 . . . t2j . . . tn h
...

...
...

...
...

...
rk t1 t2 . . . tkj . . . tn h

rule A1 A2 . . . Aj . . . An H

r t1 t2 . . . . . . tn h

provided that t1j ∪ t2j ∪ . . . ∪ tkj = Dj . Of course, the rules r1, r2, . . . , rk

are just some selected rows of the original table containing all the rules. If B
denotes the original table, its (maximally) reduced form will be denoted as
Red(B) = B∗.

Note that a strong requirement for reduction follows from the fact that
the values of attributes other than the reduced ones must be identical. This is
important if one insists on preserving logical equivalence between the initial
and generated table. In some cases, however, it may be of interest to produce
a new rule more general with respect to the selected attribute (i.e. making use
of gluing its partial values), while admitting a ‘slight’ restriction concerning
the rest of the preconditions. The following form of reduction can also be
proposed:

r1 : φ1 ∧ ω1 −→ h
r2 : φ2 ∧ ω2 −→ h
...
rk : φk ∧ ωk −→ h

r : φ1 ∧ φ2 ∧ . . . ∧ φk −→ h
.

This may be reasonable provided that formula φ1∧φ2∧. . .∧φk is useful and
not too restrictive, and may be applied in completeness verification. Note that
full logical equivalence may be no longer preserved, however, disjunction of
the preconditions of mother rules follows from the precondition of the reduced
formula. If the resulting reduced rule can be applied, then at least one of the
rules above can be applied as well, and the produced conclusion is of course
identical.

In general, the reduction can be total (maximal) or partial, depending on
the needs. The total reduction may result in several, different results, some-
times hard to compare. Partial reduction can be stopped at certain point, e.g.
when the canonical form is generated [64], which allows for easy comparison
of results and further algebraic operations.
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15.1.2 Specific Partial Reduction

In certain cases a complete reduction as shown above may turn out to be
inapplicable; however, it may still be possible to simplify the set of rules if only
the sub-formulae ωi, i = 1, 2, . . . , k can be replaced with a single equivalent
formula. In our case, a collection of certain elements can be always replaced
by a subset containing all of them (and nothing more), while a collection
of intervals can be replaced with their sum (which may be a single, convex
interval). In general, let us assume that ω1 ∨ ω2 ∨ . . . ∨ ωk |= ω, and ω |=
ω1 ∨ ω2 ∨ . . . ∨ ωk. The reduction can take the following logical form:

r1 : φ ∧ ω1 −→ h
r2 : φ ∧ ω2 −→ h
...
rk : φ ∧ ωk −→ h

r : φ ∧ ω −→ h
.

Formula ω must be expressible within the accepted language. In case of
a single attribute the internal disjunction can be applied just by specifying
the appropriate subset.

Using the tabular knowledge representation, partial reduction takes the
following form:

rule A1 A2 . . . Aj . . . An H

r1 t1 t2 . . . t1j . . . tn h
r2 t1 t2 . . . t2j . . . tn h
...

...
...

...
...

...
rk t1 t2 . . . tkj . . . tn h

rule A1 A2 . . . Aj . . . An H

r t1 t2 . . . t . . . tn h

provided that t1j ∪ t2j ∪ . . .∪ tkj = t. As above, the rules r1, r2, . . . , rk are just
some selected rows of the original table containing all the rules. Moreover, we
extend the notation on partial reduction as well, i.e. if B denotes the original
table, its (maximally) reduced form using also partial reduction whenever
possible will be denoted as Red(B) = B∗ (or Red(Φ) = Φ∗).

Note also that in the case of partial reduction generation of more restrictive
formulae is possible in a way analogous to the case of pure reduction. The
transformation takes the form:

r1 : φ1 ∧ ω1 −→ h
r2 : φ2 ∧ ω2 −→ h
...
rk : φk ∧ ωk −→ h

r : φ1 ∧ φ2 ∧ . . . ∧ φk ∧ ω −→ h
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and it may be reasonable if the formula φ1∧φ2∧ . . . ∧φk∧ω is not too restric-
tive. The idea of canonical form applies as well to specific partial reduction.

15.2 Reduction of Tabular Systems — a Prolog Code
Example

Consider an example Prolog code for computer-aided reduction of attribu-
tive rules encoded in the form of an XTT table. The pairs of rules that can
be reduced are listed as an output. The main predicate for checking reduction
possibility is vpr/1.

The rule format was presented before.

vpr(T):-rule(T,N1,P1,R1,A1,D1,_,_),
rule(T,N2,P2,R2,A2,D2,_,_),
N1 \== N2,
reduce(P1,P2,F),
R1==R2,A1==A2,D1==D2,
write(’*** Rule: ’),
write(T),write(’.’),write(N1),
write(’ may be glued with rule: ’),
write(T),write(’.’),write(N2),
write(’ reduced fact: ’), write(F), nl, fail.

vpr(T):-
write(’No more reduction of rules in table ’),
write(T), nl.

The main reduction predicate is reduce/3 which takes as arguments lists
of preconditions of the rules to be glued and produces a fact being the result
of gluing certain two facts selected from the preconditions lists.

Due to different types of facts there are different possibilities of reduction
— they are specified below with the red/3 predicate.

reduce([],[]):-!.
reduce(P1,P2,F):-

select(F1,P1,PF1),
select(F2,P2,PF2),
PF1==PF2,
red(F1,F2,F).

red(f(A,atomic,V),f(A,atomic,U),F):-
\+number(V),\+number(U),F=f(A,set,[V,U]),!.

red(f(A,atomic,V),f(A,set,S),F):-
set(S,SetValue), F=f(A,set,[V|SetValue]),!.

red(f(A,set,S),f(A,atomic,V),F):-
set(S,SetValue), F=f(A,set,[V|SetValue]),!.

red(f(A,set,S),f(A,set,Q),F):-
set(S,SetValue), set(Q,QetValue),
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union(SetValue,QetValue,UnionValue),
F=f(A,set,UnionValue),!.

red(f(A,atomic,V),f(A,interval,i(B,E)),F):-
number(V),V >= B, V=< E, F=f(A,interval,i(B,E)),!.

red(f(A,interval,i(B,E)),f(A,atomic,V),F):-
number(V),V >= B, V=< E, F=f(A,interval,i(B,E)),!.

red(f(A,interval,i(B,E)),f(A,interval,i(BB,EE)),F):-
BB =< E, E =< EE, BBB=min(B,BB),EEE=max(E,EE),
F=f(A,interval,i(BBB,EEE)),!.

red(f(A,interval,i(B,E)),f(A,interval,i(BB,EE)),F):-
B =< EE, EE =< E, BBB=min(B,BB),EEE=max(E,EE),
F=f(A,interval,i(BBB,EEE)),!.

The above code finds pairs of rules which are possible to be glued and
produces the glued fact; the other elements of the lists are kept unchanged.
This code can be combined with subsumption checking for elimination of less
general rules as well.



16

Analysis of Completeness

16.1 Completeness of Rules

The problem of completeness verification can be defined as checking if all pos-
sible inputs are served by at least one rule. Practically, this means that for
any combination of input values and conditions, preconditions of at least one
rule should be satisfied. If this is not the case, the system is in certain sense
incomplete. This may be a desired effect, but in most cases of practical dy-
namic systems (control, supervisory or decision support ones) incompleteness
means a design error — there is a gap in knowledge.

The most important issues concerning analysis of completeness include the
following ones:

• verification of logical completeness,
• verification of specific (physical) completeness,
• detection of incompleteness,
• identification of missing rules.

Apart from inconsistency analysis, verification of completeness seems to be
one of the most important issues for designing safe and reliable systems.

Logical (total) completeness means that the disjunction of preconditions of
all the rules form a tautology, i.e. no matter what input combination occurs,
it will be served.

Consider a set of rules of the form:

r1 : φ1 −→ h1,
r2 : φ2 −→ h2,
...
rm : φm −→ hm.

Definition 89. A set of rules R = {r1, r2, . . . , rm} is logically complete iff

|= φ1 ∨ φ2 ∨ . . . ∨ φm,

i.e. if the joint precondition formula is a tautology.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 219–228 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Logical completeness means that whatever the input is, preconditions of
at least one rule are satisfied. So at least one rule can be fired.

In practice, not all input states may be admissible, or the system may
be designed to work only for certain inputs (in a specific context). For most
of practical systems logical completeness constitutes a requirement which is
too strong. Specific (partial, physical) completeness means that the scope of
inputs such that the system is capable of dealing with is explicitly defined
with a formula (restricting conditions) specifying the admissible input space.

Definition 90. A set of rules R = {r1, r2, . . . , rm} is specifically complete
(physically complete) with respect to context defining formula Ψ iff

Ψ |= φ1 ∨ φ2 ∨ . . . ∨ φm,

i.e. if the joint precondition formula is satisfied within the predefined con-
text Ψ .

Specific completeness is close to practical understanding of completeness.
If all the physical input states that should be served with the rules are de-
fined with formula Ψ , then specific completeness with regard to Ψ means also
physical completeness with respect to all the states satisfying Ψ .

In both cases, if the system does not satisfy completeness requirements, it
may be of interest to determine gaps in the system input which is served by the
rules, i.e. to generate a specification of unserved inputs; this means that detec-
tion of incompleteness and subsequent identification of missing rules should
be carried out. Logically, one would have to find formulae φ′

1, φ
′
2, . . . , φ

′
k,

such that |= φ1 ∨ φ2 ∨ . . . ∨ φm ∨ φ′
1 ∨ φ′

2 ∨ . . . ∨ φ′
k, but such that also

(φ1 ∨ φ2 ∨ . . . ∨ φk) ∧ (φ′
1 ∨ φ′

2 ∨ . . . ∨ φ′
m) is never satisfied.

16.2 Verification of Completeness

Recall that a RBS is considered to be complete if there exists at least one
rule succeeding for any possible input state specification. Hence, a complete
system is one able to react for any input.

In literature [3, 103, 123] there are two basic approaches to completeness
verification. The most popular one is based on exhaustive enumeration of
possible input data and systematic inspection of a given set of rules versus
a table containing all possible parameters and conditions combinations. This
kind of approach can be called an exhaustive completeness check [3]. Some
examples of this approach are presented in [103,123].

The other approach is based on a run-time validation of the expert system
with the use of selected set of test cases [124]. Selected test problems should
also provide an exhaustive list of possible cases. Some other approaches of this
kind are also discussed in [3].
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In [53, 54, 56, 57] a more general, first-order logic based approach is pre-
sented. The approach does not require exhaustive enumeration and testing of
possible cases; instead, a proof-like procedure based on backward dual reso-
lution is put forward.

In the following subsection logical (total) completeness, specific (physical)
completeness and detection of missing rule preconditions will be discussed in
turn. In all subsections the same set of rules will be considered, i.e.:

r1 : φ1 −→ h1,
r2 : φ2 −→ h2,
...
rm : φm −→ hm,

or equivalently, given by (8.2) on page 138. Further, note that in fact only
preconditions of the rules are of interest for completeness verification.

16.2.1 Logical Completeness of Rule-Based Systems

The approach proposed here comes from purely logical analysis [54,60,67] and
does not require exhaustive enumeration of possible cases; instead a proof-like,
algebraic procedure is put forward.

Consider the joint disjunctive formula of rule precondition of the form

Φ = φ1 ∨ φ2 ∨ . . . ∨ φm.

The condition of logical completeness for the above system is:

|= Φ, (16.1)

which simply means that Φ is a tautology. In first order logic based systems
the proof can be performed directly with the use of backward dual resolu-
tion [53, 54]. However, recall that in tabular RBS the negation is usually not
present explicitly. This means that no tautology of the type α ∨ ¬α can be
present, and thus reduction to such type of tautology is not possible. Instead,
reduction taking into account limited domains of system attributes can take
place. However, contrary to the reduction operation aimed at minimizing the
number of rules (and thus applied only to rules having identical conclusions),
this time reduction can be applied to all the rule preconditions, disregarding
their conclusions. Thus, the purely logical condition (16.1) can be replaced by
a practical condition of the form

Red(Φ) = �� (16.2)

where Red(Φ) is the maximal reduction of table Φ and �� denotes an empty
table.
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16.2.2 Specific Completeness of Rule-Based Systems

In most of practical cases the analyzed system may be logically incomplete.
It can be designed to work in a certain limited context Ψ . The restrictions
may follow from physical limitations on system parameters, specific ‘local’
character of the situation to be served, a limited knowledge of the system
designer or may be the physical consequence of infeasibility of certain inputs.

Let Ψ denote the operating context for the above system. The specific
(partial) completeness condition can be stated as follows

Ψ |= Φ (16.3)

where Φ denotes the disjunction of precondition formulae. Again, from logical
point of view the verification could be purely logical and it could be proved by
means of automated deduction (e.g. by direct use of bd-resolution [53,54]).
However, taking into account the tabular knowledge representation, an alge-
braic method for specific completeness verification would be suggested.

First, instead of considering m rule preconditions, one can apply maximal
reduction of the formulae; most likely partial reduction will be applied, and
the operation will result with a smaller set of k rules. Formally, we have
Red(Φ) = Φ∗, where Φ∗ is the reduced k-rows table. As above, reduction
is carried out disregarding the rule conclusions (which are different from one
another), i.e. any two (or more) precondition formulae can be selected for
reduction.

Now, three outputs are possible: the resulting table can be empty (no
problem, full logical completeness holds), it can have exactly one row, or it
can have k rows, where k > 1.

The case when k = 1 is again simple: the completeness check expressed by
(16.3) can be replaced by

Ψ |= Φ∗. (16.4)

Since Φ∗ is a single-row formula (k = 1) the check of (16.4) is equiv-
alent to subsumption checking; thus it can be performed with the use of
Subsect. 13.2.2. If C consists of a several row table (logically: a disjunction
of several simple formulae), then the subsumption check must hold for any
row of Ψ .

The most complex is the case of Φ∗ being a table of more than one row (and
perhaps further irreducible). In such a case, the check should be performed
for any row separately, and all the rows of Ψ must be covered. Let Ψ be the
disjunction of the form Ψ = ψ1 ∨ ψ2 ∨ . . .∨ ψc, where ψi denotes the i-th row
of Ψ , i = 1, 2, . . . , c. The sufficient condition for partial completeness takes
the form

∀i ∈ {1, 2, . . . , c} ∃j ∈ {1, 2, . . . , k} : ψi |= φ∗
j (16.5)

where φ∗
j denotes the j − th row of table Φ∗. The geometric interpretation

of condition (16.5) is straightforward — any elementary context ψi must be
covered by precondition formula of a rule.
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Note that during reduction of the formulae also more specific formulae can
be used if necessary (i.e. subsumed ones). This may be crucial if some two
formulae taken together cover certain formula ψi, but they are irreducible
in a direct way (e.g. some of their conditions are different; in such a case
specialization of some conditions may be necessary to obtain identical parts
of the formulae).

An alternative approach may be based on splitting the context defining
formula Ψ into smaller parts, and this seems to be more straightforward solu-
tion from computational point of view. In such a case, the separation values of
selected attributes should be carefully selected so as to avoid too detailed split.
A reasonable solution may be accomplished by selecting the values occurring
in Φ∗, i.e. ones which still exist in the description language after maximal pos-
sible reduction. This means that characteristic values of attributes can guide
the split operation.

In practice, the splitting operation of every simple formula ψi (uncovered
by at least one φ∗

j ) can be performed by the procedure outlined below:

• for any attribute A consider all its values (sets or intervals) appearing both
in ψi and the table Φ∗; denote the values as V1, V2, . . . , Vm;

• generate partition of the domain of A as a collection of sets B = {B1, B2,
. . . , Bn} (the so-called blocks), such that Bi ∩ Bj = ∅ for i 
= j and
B1 ∪ B2 ∪ . . . ∪ Bn = Di, where i, j ∈ {1, 2, . . . , n}, the biggest ones but
such that for every Vi, i = 1, 2, . . . ,m there exist B1, B2, . . . , Bk ∈ B such
that Vi = B1 ∪B2 ∪ . . .∪Bk, i.e. every value Vi can be expressed as a sum
of a certain selection of blocks of B; generation of B for intervals can be
done by finding all intersections of the type Vi∩Vj , i, j ∈ {1, 2, . . . ,m}, but
for nominal sets also intersections of three, four, five, etc. sets should be
considered as possible candidates (any superset is immediately eliminated);

• split every value of selected attribute Aj in ψi into largest possible sets
being sums of blocks, say B1, B2, . . . , Bji and replace a particular row in
ψi with appropriate ji rows;

• repeat the procedure for every attribute A in ψi;
• for the resulting table being the output of the procedure apply the check

following from condition (16.5);
• the system is specifically complete if every row is covered by a row of Φ.

To illustrate the idea one can employ a simple graphical interpretation
for visualization of the completeness check. Every rule — being a row of the
table — forms a path covering a certain selection of attribute values in the n-th
dimensional attributes space (see Fig. 16.1). The values of specific attributes
generate partitions of the domains of attributes.

Further, note that after performing the reduction of rule preconditions
(if possible, a maximal one), the rules tend to cover bigger areas of selected
attributes. In some best cases, certain attributes may also turn out to be
unimportant, since all the values of them are covered.
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A1
A2

A3

A4

Fig. 16.1. The concept of attribute space and interpretation of a rule as a path
covering selection of values

Note that in case of finite domains, the split could be done by taking
into account single elements of the attribute domains; this, however, would
be equivalent to exhaustive enumeration of the input cases. The power of
the algebraic approach lies in operating on sets of input cases which can be
achieved by a high-level split (not too detailed one).

Finally, let us assume that the values of attributes to be covered were
split w.r.t the partition, e.g. given by boundary values induced by the values
appearing in rule preconditions and the constraints, after the rules have been
maximally reduced (in fact, the preconditions of rules were reduced to a mini-
mal number of maximally general formulae). Now, the check for completeness
consists of tracing if all the combinations resulting from the split of the con-
text constraint are covered by some of the ‘thickened’ paths generated by the
reduced set of rules.

The graphical interpretation is on the Fig. 16.2.
In general, the check may suffer from combinatorial explosion; however,

due to operating on blocks (sets, intervals) rather than on individual values,
the number of detailed checks is significantly reduced with respect to the
methods based on exhaustive enumeration.

16.2.3 Missing Precondition Identification

Determination of missing preconditions and thus missing rules can be based
on the above scheme for completeness verification. As before, assume that Ψ
is a tabular form of a formula specifying the required area to be covered with
preconditions of the rules. Further, let Red(Φ) = Φ∗ denote the maximally
reduced table of formulae preconditions. Considering any of the attributes, say
Ai, let Vi denote the set of characteristic values of this attribute, still occurring
in the preconditions after reduction. These may be boundary values defining
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A1
A2

A3

A4

Fig. 16.2. The idea of covering the attribute space with more general, reduced set
of rules

boundaries of intervals (in case of ordered attributes) or simple subsets of
attribute domain (in case of attributes for which their domain is an unordered
set). Note that the stronger reduction is possible, the less characteristic values
are still left.

Now let us use the values Vi to split the domain of any attribute into (pos-
sibly maximal) intervals or subsets. In case two intervals or subsets overlap,
a third interval or subset can be distinguished, so that the split forms a par-
tition — no two intervals/subsets overlap, and their sum gives the complete
domain.

A simplified graphical interpretation of the idea is presented in Fig. 16.3.

Fig. 16.3. Systematic checking for completeness with reduced rules in the space of
attributes
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The subareas of the attributes resulting after the split can be numbered in
an arbitrary way; thus, to any path corresponding to a rule there corresponds
a sequence of numbers listing the covered areas for subsequent attributes.
If the domain of attribute Ai is partitioned into ki subareas (and there are n
attributes), then any sequence is of the form α1α2 . . . αn (of length n), where
αi ∈ {1, 2, . . . , ki}; for some eliminated attribute Aj αj = . There are also
k1k2 . . . kn possible sequences.

Note that certain preconditions can cover more than one such sequence;
covering a sequence eliminates it from further consideration. The test for
covering is straightforward — it consists of a check for subsumption. All the
sequences which are not covered by any rule identify potential gaps in the
system, i.e. define the uncovered inputs (incompleteness).

The outlined method for determining missing preconditions (possible for
further analysis) is constructive, but in case of larger systems may suffer from
combinatorial explosion. This effect, however, is significantly minimized here
in comparison to the approaches based on direct exhaustive enumeration. This
is so because of the following reasons.

Firstly, maximally reduced form of precondition table Φ∗ is used only; this
restricts the division of any attribute to limited number of areas, and not to
all its possible values.

Secondly, the method is aimed at analyzing a local system, operating in
some well-defined, rather narrow context Ψ . This is possible thanks to intro-
duction of hierarchical structure of the system.

Thirdly, splitting Ψ is necessary only w.r.t. its rows which are not initially
covered by Φ∗. Finally, for reduced preconditions where the values of certain
attributes are unimportant (the attributes are eliminated), the number of
potential paths covered is multiplied by the factor equivalent to the number
of areas to which the attribute was split.

Note also, that from logical point of view, the way of determining precon-
ditions for missing rules may be considered to be equivalent to generating the
¬(Φ∗) formula.

16.3 Verification of Completeness
in XTT —
a Prolog Code

Consider an example Prolog code for verification of completeness of attribu-
tive rules encoded in the form of a XTT table. The uncovered states are listed
as an output. The simplest method based on determining all the input states
as result of Cartesian Product of the attribute domains is applied. The main
predicate for checking completeness is cmp/1.

cmp(T):-
scheme(T,Scheme),
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genstate(Scheme,State),
covered(T,State),
fail.

cmp(T):-
write(‘No more uncovered states by table’),
write(T), nl.

genstate(Scheme,State):-
Scheme = [A],!,domain(A,D),
member(V,D),State=[f(A,atomic,V)].

genstate(Scheme,State):-
Scheme = [A|Atts],
genstate(Atts,StateAtts),domain(A,D),
member(V,D),State=[f(A,atomic,V)|StateAtts].

covered(T,State):-
assertlist(State),
rule(T,_,P,_,_,_,_,_),
satisfied(P),
retractall(f(_,_,_)),!.

covered(T,State):-
write(‘Uncovered state: ’),write(State),
write(‘by table’), write(T),nl.

The possible input states are generated in turn to avoid memory over-
flow; they are also sequentially checked for covering by at least one rule. The
covering is translated to precondition satisfaction for at least one rule.

Predicate scheme/2 reads the scheme definition for table T (the sequence
of attributes used in preconditions). Then the predicate genstate/2 generates
all possible states and asserts them into the global memory. Finally, predicate
covered/2 checks if a given state is covered by a certain rule; if not, the state
is reported as an uncovered one.

The auxiliary predicates are specified below.

cmp(T):-
assertlist([]):- !.
assertlist([F|R]):- assert(F), assertlist(R).

satisfied([]) :- !.
satisfied([Fact|Facts]) :-

valid(Fact),
satisfied(Facts).

valid(f(A,atomic,V)) :- f(A,atomic,V),!.
valid(f(A,natomic,V)) :- f(A,atomic,W), V \== W, !.
valid(f(A,set,Set)) :-

f(A,atomic,V),
set(Set,SetValue),
member(V,SetValue),!.

valid(f(A,set,Set)) :-
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f(A,set,SA),
set(SA,SAValue),
set(Set,SetValue),
subset(SAValue,SetValue),!.

valid(f(A,nset,Set)) :-
f(A,atomic,V),
set(Set,SetValue),
\+ member(V,SetValue),!.

valid(f(A,nset,Set)) :-
f(A,set,SA),
set(SA,SAValue),
set(Set,SetValue),
intersection(SAValue,SetValue,[]),!.

valid(f(A,interval,i(B,E))) :-
f(A,atomic,V),
V >= B,
V =< E,!.

valid(f(A,ninterval,i(B,_))) :-
f(A,atomic,V),
V < B,!.

valid(f(A,ninterval,i(_,E))) :-
f(A,atomic,V),
V > E,!.

valid(f(A,interval,i(B,E))) :-
f(A,interval,i(BB,EE)),
BB >= B,
EE =< E,!.

valid(f(A,ninterval,i(_,E))) :-
f(A,interval,i(BB,_)),
E < BB,!.

valid(f(A,ninterval,i(B,_))) :-
f(A,interval,i(_,EE)),
EE < B,!.

A more advanced approach to verification of completeness may incorporate
the ideas of granular sets and granular relations [72, 73, 74]; instead of single
states blocks of states are analyzed at a time. In the above code one could
easily modify the definition of domains of attributes so that granular values
will be taken into account.
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An Introduction to Design
of Rule-Based Systems

This chapter presents basic methodological issues concerning the design of
rule-based systems1. The most common problems encountered during practi-
cal design and implementation are outlined. An outline of structural approach
to the design process is presented in brief.

17.1 Problems of Rule-Based Systems Design

Rule-based systems are used extensively in practical applications, especially in
domains such as automatic control, system monitoring, technical and medical
diagnosis, etc. [48,129].

Many modern applications in various domains are reported in [51]. The
rule-base technology is useful and efficient in numerous areas requiring sym-
bolic processing of knowledge. Its success is mostly due to extremely powerful
but simultaneously straightforward and transparent operational knowledge
specification.

However, although the rule-based programming paradigm seems relatively
conceptually simple, in case of realistic systems it is a hard and tedious task to
design and implement a rule-based system that works in a correct way. Prob-
lems occurs as the number of rules exceeds even relatively very low quantities.
It is hard to keep the rules consistent, to cover all operation variants and to
make the system work according to desired algorithm.

Particular problems concern the selection of knowledge representation
formalism as well as design of an appropriate rule-base and knowledge acqui-
sition. Further problems include building the inference engine and developing
control strategy.

1 I gratefully acknowledge that the analysis presented in this chapter was worked
out by Grzegorz J. Nalepa and his findings are presented in his Ph.D. thesis [92].
Moreover, I gratefully acknowledge that Sects. 17.2, 17.3, and 17.4 are largely
based on excerpts from his Ph.D. thesis [92].

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 231–240 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Last but not least there are problems with verification, validation and
testing of the knowledge-based systems [135]. Building a non-trivial system2

requires solving several methodological issues and the use of specific software
tools [51].

The main problems encountered in the development of knowledge-based
systems in general and expert systems or rule-based systems in particular are
located in the following areas:

• knowledge representation, which concerns selection of a proper language
for encoding the acquired knowledge;

• knowledge acquisition, which is the process of extracting domain knowledge
possessed by human expert;

• developing inference mechanism, which concerns design and implementa-
tion of an interpreter capable of rule execution;

• developing reasoning control, which concerns a meta-level knowledge for
organizing the search and order of rules during reasoning so as to perform
in an efficient way and avoid exponential explosion, dead-ends or infinite
loops, etc.;

• knowledge verification, which consists of checking certain characteristics
and correctness of the system knowledge base;

• explaining solutions, which concerns human/computer interaction, pre-
senting solutions to the user, as well as explanations why and how the
solutions have been found;

• developing man-machine interfaces, which concerns human/computer in-
teraction during design, knowledge acquisition, inference and verification.

In numerous knowledge-based systems the basic, core knowledge repre-
sentation is selected to be the one with rules. By using a rule-based system
specified in an appropriate logic-based language the knowledge base is defined
in a declarative manner. The basic language is normally one being equivalent
to attribute logic or some more elaborated versions of it. With respect to
inference mechanism usually forward chaining is used in monitoring and con-
trol systems, and backward chaining in diagnostic and some decision support
systems. Examples of some well-known solutions, both with respect to basic
theory and practical examples of such systems, are presented in the domain
literature [44,46,48,51,84,129].

A practical implementation of rule-based systems encounters two main
problems. The first one is known as the knowledge acquisition bottleneck and
it concerns the well-known difficulties with obtaining a precise knowledge
specification. Using specific knowledge representation structures and abstract

2 Some sources say that a non-trivial system is one having several hundreds of rules;
some others say that even fifty rules may be difficult to handle. Without referring
to the exact number of rules one may say that a non-trivial rule-based system is
one outperforming average human in a specific domain. Disregarding the number
of rules, this simultaneously means that the knowledge encoded in the system is
non-trivial.
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knowledge representation may be used to help to overcome this problem (see
Chap. 18). This is so thanks to systematic guiding the development of the
rule-base by introducing structure for ordering the design.

The second problem concerns the analysis, verification and validation of
knowledge. By making the analysis of the knowledge base a part of ongoing
knowledge acquisition and review process, expert system developers can mini-
mize the time and resources devoted to development of such systems. In order
to assure safe, reliable and efficient performance, analysis and verification of
selected qualitative properties should be carried out [3,6,20,21,22,81,101,109,
110,111,134,135,136]. Those properties include features such as, completeness,
consistency and determinism. However, verification of them after the design
of a rule-based system is both costly and late. The verification may be com-
plex, so in most of practical applications building, debugging and maintaining
the rule-base are the most costly activities. Below, a short analysis of these
problems from the Knowledge Engineering point of view is carried out.

17.2 Knowledge Engineering

Knowledge is a key issue in development of modern information systems.
The process of extracting and encoding domain knowledge held by human
experts is called knowledge engineering [50]. Given the state–of–the–science
in AI today, knowledge engineering remains a time–consuming and labor–
intensive process wherein an AI technologist, called a knowledge engineer,
must repeatedly interview one or more human experts over a long time period
to extract the heuristics to be encoded in the expert system knowledge base.

Knowledge engineering is essentially a process of acquisition and abstrac-
tion on one hand, and design and construction on the other. The knowledge
engineer must not only learn how the expert solves problems, but must learn it
to such a level of detail that he or she can in turn provide precise instructions
for a tabula rasa machine. This is not an easy task since human experts are of-
ten unaware of their own internal reasoning process and possessed skills. The
top-level expertise remains often unconscious and informalizable, especially
with respect to the origin of provided solutions.

That is why, when building and using expert systems, a number of impor-
tant people are involved:

• the human expert,
• the knowledge engineer,
• the system developer [89].

There are many factors that can make the knowledge engineering process
difficult [50]:

• miscommunication between human expert and knowledge engineer,
• a significant start–up time needed for the engineer to achieve a certain

level of experience with the domain,
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• limitations on availability of human experts,
• choosing best knowledge representation for the domain.

Knowledge base created during knowledge engineering process may prove
very useful for a number of other applications, than building an expert system:

• the knowledge base can be considered a model for validation of forecasts,
• the knowledge base can be seen as institutionalized archives of the domain,
• the knowledge base may also be a good training facility for other people

(i.e. new human experts).

17.2.1 Knowledge Acquisition

An appropriate knowledge representation formalism can be selected on the
base of analysis of the nature of knowledge to be encoded as well as particu-
lar excerpts of knowledge provided by human experts. Once the appropriate
knowledge representation scheme is selected, the process of knowledge acqui-
sition should be performed.

According to [14] knowledge acquisition is the transfer and transformation
of potential problem-solving expertise from a knowledge source to a program.
The objective of knowledge acquisition is to conceptualize what the expert
knows and how he or she solves problems.

A brief categorization of some kinds of knowledge includes:

• declarative knowledge, i.e. static statement of facts and rules, referred to
as ‘know that’ (facts or heuristics are good examples of this knowledge);

• procedural knowledge, i.e. operational knowledge (algorithms), refers to
‘know how’ (involves an automatic response to a stimulus);

• semantic knowledge which refers to the system under analysis, its proper-
ties and behavior; it can be described as deep knowledge an expert has,
often based on knowledge of model of the system; it is composed of different
facts, definitions, and relationships among them;

• episodic knowledge, refers to recorded observations and experimental in-
formation;

• meta-knowledge which allows an expert to choose a solution for the prob-
lem and evaluate its reliability, it also lets an expert detect an unsolvable
problem [116].

There are three distinct approaches to acquiring the relevant knowledge
from a particular domain:

1) The knowledge is extracted from a domain expert.
2) The builder of the knowledge base is a domain expert.
3) The system learns automatically from examples [44].

The first approach is commonly used, however it poses some difficulties.
There are several acquisition techniques (see [116]), such as:
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• interview where an expert acts as a lecturer and a knowledge engineer asks
questions to clarify understanding of the problem;

• domain and task analysis, an engineer obtains knowledge from direct ob-
servations of an expert performing his or her task;

• simulations, where an expert demonstrates his or her expertise in a com-
puter–simulated environment, which is fully controlled by an engineer;

• automated tools, where an expert may automate knowledge acquisition
process with certain computer–based tools, such as CASE tools.

These techniques involve many different skills of a knowledge engineer.
They may also require not just engineering but also a certain psychological
practice. The main way of extracting the knowledge from an expert is by
interview. This is prone to communication difficulties.

In the second approach a knowledge engineer becomes a domain expert,
or a domain expert becomes a knowledge engineer. The third approach takes
place when the system is able to learn and generate its own knowledge. This
approach is often used when the knowledge is unknown or difficult to express
explicitly.

17.2.2 Knowledge Verification

In order to assure safe, reliable and efficient performance, the analysis and
verification of selected qualitative properties should be carried out [3,20,21,22,
134,135]. Those properties include features such as, completeness, consistency
and determinism. The verification problems concerning rule-based systems are
discussed in detail in Chap. 12 and some following sections.

17.2.3 Knowledge Management

Knowledge management is a new term coined in the business organizations to
reflect some old concepts, such as sharing knowledge in a collaborative way to
stimulate new ideas, combined with modern computer-based intelligent tools
and methods [52]. It is strongly rooted in knowledge engineering, and these two
fields often overlap. Knowledge management however emphasizes the aspect
of sharing, applying, extending and maintaining knowledge obtained in the
engineering process.

17.3 Design of Rule-Based Systems:
Abstract Methodology

Practical design of non-trivial rule-based systems requires a systematic, struc-
tured and consistent approach. Such an approach is usually referred to as a de-
sign methodology. The basic elements distinguishing one methodology from
the other are the internal design process structure i.e. the way of structuring
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the design process and the components of the process. The structure can be
linear, linear with loops, hierarchical (top-down, bottom-up), etc. The com-
ponents may be various procedures, techniques, tools and documentation aids
to support and facilitate the process of design [23].

The methodological pyramid (see Fig. 17.1) introduced by Wielinga et al.
[140] is a convenient way to present what is involved in a methodology.

Fig. 17.1. The methodological pyramid

Based on the idea of methodological pyramid and the scope of the method-
ology, Liebowitz [51] places methodological approaches to expert systems de-
sign into three categories:

1) life-cycle,
2) focused,
3) full-fledged.

A classical life-cycle approach to the expert systems development process
presented in Fig. 17.2 is based on general software engineering concepts (the
so-called Cascade or Waterfall model). It was presented by Buchanan [14] and
often cited, e.g. in [46, 51] (an explicit verification at the formalization stage
is sometimes suggested [5]).

It consists of five stages (Fig. 17.2):

1. Identification includes identification of the class of problems the system
is expected to solve, including the data the system will work on, and
resources that are available.

2. Conceptualization consists of figuring the key concepts and relationships
between them, such as kinds of data, flow of information, and underlying
system structure.

3. Formalization involves the process of understanding, describing and for-
malizing the problem search space, and the way solutions are found; it
should include the verification of information about the system.
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Fig. 17.2. Expert system life cycle

4. Implementation aims at turning a formalization of knowledge into a
runnable program, including encoding rules and inference mechanism in
some kind of a lower level programming language.

5. Testing tries to evaluate the result of implementation and possibly detect
errors that were made during the design.

The focused methodologies are restricted to one or few stages of the design
process and are oriented towards in-depth support of specific design activities
included there. The main focus is typically on the knowledge acquisition phase
which constitutes a well-recognized bottleneck.

There are three main directions of approaching the problem:

1) attempting to build a formal frame (a model for the expert knowledge
using tools and techniques such as case analysis, interviews, protocols and
various forms, etc.);

2) direct transferring of the expert knowledge to the knowledge base;
3) constructing a domain-specific environment applicable in some narrow do-

main.

Several focused methodologies for building knowledge-based systems have
been studied and proposed as conceptual tools for simplifying the design of
such systems [27], with KADS [139] as a standard example. Such method-
ologies support mainly subsequent stages of the conceptual design in case of
large systems, while direct technical support of the logical design and during
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the implementation phase is mostly limited to providing a context-sensitive
syntax checking editors.

The motivation behind the KADS [139] framework is primarily the man-
agement of complexity. It is based on the following principles [46]:

• introduction of multiple models and layers to cope with the complexity of
knowledge engineering;

• reusability of generic model components, using top-down approach;
• differentiating simple models into more complex ones;
• the importance of structure-preserving transformation of models of exper-

tise into design and implementation.

The full-fledged approaches consist of adapting general software engineer-
ing tools and techniques to the specific task of knowledge-based systems de-
sign. Here the CommonKADS appears as the best known example [27]. The
methodology addresses problems with conceptual and logical analysis. It pro-
vides tools such as CommonKADS Workbench supporting different system
models and levels of development process. However, due to its general charac-
ter it does not provide practical implementation tools for rule-based system.

There exist other approaches, such as ψ-trees (presented in the next chap-
ter) which are based on introducing certain structure for organizing the knowl-
edge and guiding the design process. They put emphasis on proper formal-
ization, and suitable representation. They are especially useful in designing
technical systems in well-defined domains, such as control rule-based systems,
diagnostic or monitoring ones.

ψ-trees is a knowledge representation method created with a design ap-
proach in mind. It was discussed in [58,59]. It is based on a complex variant of
decision trees. It is focused on structuring the knowledge into modules, each
operating in the context defined by ψ. In ψ-trees a single node may have more
than two links which makes the decision process more realistic, and allows to
compare attributes with many different values at a single node. The struc-
ture of such trees is modular and hierarchical. An attempt to build a CASE
tool supporting ψ-trees was presented in [69]. The idea is novel, so it lacks
effective tools for practical implementation of rule-based system. The ψ-trees
based approach will be presented in Chap. 18.

17.4 Rule-Based Systems Design: Basic Stages

As it was mentioned before, in order to assure safe, reliable and efficient
performance, analysis and verification of selected qualitative properties should
be carried out [3,6,20,21,22,81,101,109,110,111,134,135,136]. These properties
include features such as, completeness, consistency and determinism. However,
verifying them after the design of a rule-based system is both costly and
late. Unfortunately, methodologies such as the ones mentioned above do not
support this stage in extent.



17.4 Rule-Based Systems Design: Basic Stages 239

Certain sources, such as [46], give only certain practical advice for avoiding
common problems in rule-based system development, such as:

• organize and group rules into rule sets,
• use incremental development process with testing and validating on early

stages,
• design for transparency from the beginning of the development process.

In some cases database design approach, presented in [23], could be adapted
for rule-based systems design. It is a top-down structured approach for ana-
lyzing and modeling a set of requirements for a database in a standardized
and organized manner.

In its standard form it consists of three main phases:

1. Conceptual design. This stage is focused on creating a conceptual model of
the system to be built, it is developed with strong reference to requirements
specification; the model is validated against these requirements; it is the
source of information for the logical design phase. Conceptual design stage
includes identification of important entities and relations among them,
their characteristics, etc. but typically does not define specific knowledge
representation or inference control mechanism.

2. Logical design. This stage concerns translation of the conceptual represen-
tation to the logical structure; results in the creation of the logical data
model of the problem. As the result — in case of rule-based systems —
a set of rules, specified in a selected abstract language is obtained.

3. Physical design. This is the phase during which implementation decisions
on how the logical structure will be implemented are made; the logical
design must be further translated into the language of selected implemen-
tation tool. There is a certain level of feedback with logical design phase.

Considering the internal structure it is also similar to the well-known wa-
terfall model of software development presented in Fig. 17.2; however, that
model is too abstract to prove useful during the rule-base design process. Con-
ceptual and logical design phases are iterative, with multiple refinements. To
some extent they may be seen as a learning process.

System designers learn to better understand the system they are building.
These phases are critical to the success of the system.

The design methodology proposed in this work uses some ideas taken from
the above approach. In Chap. 18 logical foundations are presented and the
concept of ψ-trees for efficient representation of the logical structures of the
system under design is put forward. Then, in Chap. 19 the core approach to
the design of XTT systems is presented. In the last Chap. 20 an example of
the design is presented.

This Section is devoted to outlining the main stages for design of rule-based
systems. Until now there is no unique, consistent and universal methodology
for designing such systems.
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However, it seems that the design process can be structured into interleav-
ing stages and it must cover the following principal phases:

1. Specification of the desired goal and functionality of the system.
2. Selection of knowledge representation language (e.g. propositional logic,

attributive logic, XTT, etc.).
3. Definition of an outline of the system structure and operation.
4. Definition of system components (e.g. XTT tables, rules) and relations/

connections among them.
5. Specification of inference control mechanism.
6. Knowledge acquisition and encoding.
7. Verification of formal properties and optimization of the code.
8. Implementation and testing and evaluation of work of the system with

regard to the specified goal and functionality.

Obviously, the above stages can interleave, and can be repeated, perhaps
following the spiral model of software development. Further, and it is perhaps
one of the most important issues, the design should be structured into a hi-
erarchical approach — the design activities should be split into several levels
of abstraction and at each level various degree of details is required.

Note, also, that the above activities belong to two different, separate
groups; these are the constructive activities concerning definition and devel-
opment of knowledge elements and inference mechanism and verification ac-
tivities oriented towards assuring correct work of the system. Now, in general,
these two stages can be organized in a classical way, i.e. one after another or
through interleaving (and this is the proposed approach to support design of
rule-based systems), so in the following two ways:

1) static, ex-post verification of the partially or completely developed system
in order to suggest improvements; such a procedure can be repeated in
several cycles;

2) on-line, dynamic support of design by instant detection of anomalies occur-
ring during the design process and generation of appropriate information
for the developer of the system.

The first approach is rather obvious and may be applied in a rather
straightforward way; in fact, to certain degree it is a part of todays prac-
tice in development of rule based systems. However, it suffers from obvious
disadvantages, including repetition of the design procedure. Moreover, errors
in design discovered after completing an edition of the knowledge base may
result in hard to deal with problems, and improvement of the rules may cause
new errors to appear.

The second approach, proposed initially in [58] and [59] seems to be much
more attractive and efficient. However, it requires development of a special
software tool supporting the design.

In the following sections an outline of selected stages is presented.
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Logical Foundations:
the Ψ -Trees Based Approach

This chapter is devoted to a presentation of a logically-founded framework
for design of rule-based systems. It is based on the use of the concept of
ψ-trees — a tool for structuring the design process. It is aimed at on-line,
dynamic support of design by instant detection of anomalies occurring during
the design process and generation of appropriate information for the developer
of the system.

The presented approach was proposed initially in [58] and [59]. It requires
development of a special software tool supporting the design.

In the following sections an outline of selected stages is presented.

18.1 An Intuitive Introductory Example

For intuition, let us consider a possible design process of a simple temperature
control system. This will be a rule based system capable of applying the two-
valued and three-valued switch type algorithms (relay type) if stabilization of
a standard temperature is required, or controlling the temperature towards
it maximal or minimal value if required. All of this takes place only if the
control of temperature is required.

In order to simplify systematic design we shall use a tree-like graphical
representation for displaying combinations of various conditions. The idea is
similar to standard binary decision trees; however, the proposed construction
is a bit more general and allows for use of any finite number of branching
conditions, description of the branching conditions with first order level lan-
guages, and hierarchical design. The idea of such a tree corresponding to a part
of the design process is presented on Fig. 18.1.

The outline of the design process can proceed as follows. We start with the
root node and select a certain predicate (or more complex set of formulae) to
define the initial branching.

A reasonable idea is to select a formula of relatively high level, i.e. defin-
ing as general conditions as possible, and providing contexts for further

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 241–249 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 18.1. An example ψ-tree for design

specification. In our case let it be the first condition specifying if the control is
required (control=on) or not (control = off). Now, leaving the left branch
temporarily pending, we further develop the right branch; note that now we
are in the context defined by the formula control = on. The next selected
formula may concern the mode of temperature regulation, i.e. if a steady
temperature is required (temp=std) either the minimal (temp=min) or the
maximal (temp=max) temperature should be achieved.

Now, continuing, leaving the two right branches temporarily pending (pos-
sibly for further continuation of design), we develop the left branch. Note,
however, that now the context is defined by the conjunction of formulae as-
signed to the branches on the path from the root node to the current leaf
node; in our case the formula is of the form control=on ∧ temp=std. Now we
have to select the controller type. Assume there are given two possibilities:
a two-level one (ctype=two) and a three-level one (ctype=three).

One can proceed with the design in an analogous way, but a reasonable
idea may be to split the tree into the mother initial tree and several subtrees
whose roots are joined to the leaves of the mother tree. In Fig. 18.1 we leave the
context defined by ψ = [(control = on) ∧ (temp = std) ∧ (ctype = three)]
and start development of a new, smaller child-tree for the context defined
by ψ. It will be referred to as a ψ-tree, and it describes the design process
for the context ψ. In our case the branching condition refers to the current
temperature, and we have three possibilities: t < α, (α ≤ t) ∧ (t ≤ β), and
β < t.

The final step is to assign to any leaf node a control action to be under-
taken. For example, for the final result of the partial design process presented
above (there are still pending leaf nodes to be developed), the following set of
rules may be generated:
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r1: ψ ∧ (t < α) −→ set(heat,on),
r2: ψ ∧ (α ≤ t) ∧ (t ≤ β) −→ set(heat,off), set(cool,off),
r3: ψ ∧ (β < t) −→ set(cool,on).

Obviously, when operating in the context defined by ψ, the preconditions
can be simplified to the formulae in parentheses.

Having in mind the above example it would be worthwhile to analyze some
steps of the design process. Firstly, the formula defining the branching con-
dition is selected to be possibly general and reasonable for the current design
context; although there is no unique, well defined selection procedure, this
seems to be a reasonable, expert-acquired way of design procedure. Secondly,
defining the precise branching alternatives we take care to cover all the ex-
isting possibilities; from logical point of view, under the assumed technical
interpretation I, the following conditions are satisfied:

|=I control = off ∨ control = on,
|=I temp = std ∨ temp = min ∨ temp = max,
|=I ctype = two ∨ ctype = three,
|=I (t < α) ∨ [(α ≤ t) ∧ (t ≤ β)] ∨ (β < t).

In other words, we attempt at satisfying the local completeness condition when
defining branching possibilities. Thirdly, we also try to define them so that
the alternative formulae do not overlap, i.e. no two of them can be satisfied
at the same time. In fact, from logical point of view we have:


|=I control = off ∧ control = on,

|=I temp = std ∧ temp = min,

|=I temp = min ∧ temp = max,

|=I temp = std ∧ temp = max,

|=I ctype = two ∧ ctype = three,

|=I (t < α) ∧ (α ≤ t) ∧ (t ≤ β),

|=I (α ≤ t) ∧ (t ≤ β) ∧ (β < t),

|=I (t < α) ∧ (β < t).

Such procedure is justified since we would like to obtain a complete and deter-
ministic set of rules. For intuition, as the precondition formulae are defined
by conjunctions of formulae assigned to branches on paths from the root to
the leaf nodes, at any node we cover all the reasonable branching possibil-
ities; hence completeness is assured. Simultaneously, no two ‘paths’ can be
validated as true at the same time, since they must be different at at least one
node and due to exclusion of the branching conditions they cannot be true
at the same time. These problems are referred to in certain detail throughout
this book.

Finally, by splitting the design tree into a mother tree and several child-
subtrees we achieve the possibility of performing hierarchical, two-level design.
First, we design the meta-rules, allowing for the so-called context-switching.
Executing such a rule defines a context (set of states) and a subset of all
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the rules such that only rules of the subset can be used for the currently
selected context. Then, we define the sets of rules for any specific context by
development of a ψ-tree for any context defined by ψ. Of course, this procedure
can be repeated at several levels.

To summarize, the essence of the lessons learnt from the intuitive example
can be summarized as follows:

• organize the design in a hierarchical way by defining different, separate but
complementary contexts of work and perform the design of a component
defining the work in any context separately,

• the basing underlying structure serving as a back-bone for the system can
be a tree or a graph (acyclic one); in the above example it was proposed
to use a specific tree, to be called ψ-tree,

• proceed in such a way that theoretical properties such as determinism
and completeness are preserved during design rather than employ separate
verification stage at the end.

These concepts will be further incorporated in the design of tabular rule-
based systems with the XTT model. Below the logical concept of ψ-trees
underlying the XTT model is outlined in some more detailed way.

18.2 The Ψ -Trees for Design Support

In this section basic concepts concerning a specific form of semantic trees (to
be called ψ-trees) used for design of complete sets of rules for some context ψ
are presented.

Let N denote a set of nodes. We assume the common definition of a tree
(there is a distinguished root node with no ancestor and any other node n′

belonging to the tree has exactly one ancestor). A tree will be denoted with
t, and t(N) will denote a tree built from nodes belonging to N ; the set of all
nodes of tree t(N) will be denoted with N(t). The root node of any tree t will
be denoted with root(t).

Now, let FOR denote a set of considered formulae, and let ψ denote a dis-
tinguished formula. By I we shall denote the intended interpretation.

Definition 91. Let f denote any mapping of the form f : N −→ FOR ∪{ψ}.
A ψ-tree is any finite tree t(N) satisfying the following auxiliary conditions:

• f(root(t(N))) = ψ,
• for any n ∈ N(t), f(n) ∈ FOR.

For intuition, a ψ-tree represents different (some or all) possible branchings
into different more detailed situations of the analyzed system for some stable
context defined by ψ. Any node n ∈ N(t) represents a situation described
with conjunction of all the formulae assigned to the nodes belonging to the
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path from root(t) to n (including ψ and f(n)). Such formulae will be denoted
with lower-case ψ or φ.

Roughly speaking, going down the tree along some path beginning in the
root node we add some new requirements (defined by the formulae met on the
way) to be satisfied in the described situation. Obviously, the greater the depth
of a node is, the ‘more particular’ situation is described by the appropriate
formula determined by the path from the root to this node. Finally, the paths
ending with the leaf nodes determine a set of ‘most detailed’ situations within
the context situation defined by ψ.

A ψ-tree can be used as a basic tool for guiding the generation of rules
precondition by domain expert. The idea is to develop such a tree in a top-
down mode in a systematic way. Alternative conditions referring to some
predicate or formula are represented by branching in the tree. Along the paths
from the root to leaves precondition formulae (conjunctions of the appropriate
conditions) are synthesized.

Now, the most important idea lies in such a generation of the ψ-tree that
the set of the most detailed situations described by all the formulae assigned
to paths ending with leaf nodes ‘cover’ the initial situation defined by the
context formula ψ. With respect to this problem the following definition is
proposed.

Definition 92. Let ψ1, ψ2, . . . , ψk denote all the conjunctive formulae as-
signed to all the paths from root(t) to the leaf nodes of some ψ-tree t. The
tree is referred to as a complete ψ-tree iff ψ |=I ψ1 ∨ ψ2 ∨ . . . ∨ ψk.

Note that this definition assures in fact the specific completeness of the
system (within the context defined by ψ). Further, the aim of the above de-
finition is obvious — any object of the considered system belonging to the
context defined by ψ will be eventually covered by the subsets of the universe
(more precisely, by at least one of them) defined with formulae ψ1, ψ2, . . . , ψk.
This is stated with the following proposition justifying the use of complete
ψ-trees for design of rule preconditions.

Proposition 1. A complete ψ-tree assures specific completeness of the devel-
oped rule-based system with respect to ψ.

With reference to the mentioned tool for proving completeness (i.e. bd-
resolution), the goal of developing ψ-trees is obvious; a structure of a complete
ψ-tree provides a straightforward strategy of bd-resolution theorem proof for
the condition defining completeness, i.e. iff ψ |=I ψ1 ∨ ψ2 ∨ . . . ∨ ψk. The
following proposition provides a sufficient condition for completeness of any
considered ψ-tree.

Proposition 2. A ψ-tree t is complete if the following conditions hold:

• for any non-leaf node n being an immediate ancestor (parent) of some leaf
nodes and a conjunctive formula ψ′ determined by the path from root to
this node there is
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ψ′ |=I ψ1 ∨ ψ2 ∨ . . . ∨ ψj , (18.1)

i.e. the formulae satisfy the completeness condition (18.1) and therefore it
is possible to resolve ψ1, ψ2, . . . , ψj generating formula ψ′ and,

• the generated reduced in such a way tree is still complete;

here ψ1, ψ2, . . . , ψj are the formulae assigned to all the child nodes of n.

The proof is by induction with respect to the tree size. The second condi-
tion is necessary only if some of the variables occurring in ψ′ occurs also in
the formulae ψ1, ψ2, . . . , ψj (resolving the formulae may require substituting
for a variable and thus, by influencing the path above, it may violate the
completeness of the tree resulting from bd-resolution application).

For intuition, the construction of a complete ψ-tree provides a strategy for
a proof (derivation) of the root context formula ψ from the set of all formulae
determined by the paths from root to leaf nodes.

Further, let us take a closer look at the step of developing a tree t′ from
a tree t by extending one of the leaf nodes belonging to t with a set of its
successors; in fact this is a basic step in the design process. The problem
is that not necessarily all the formulae ψi determined by some paths in the
extended tree must be satisfiable under the assumed set of interpretation I.
Let ψ∧ψ1, . . . , ψ∧ψi denote the satisfiable formulae, and let ψ∧ψi+1, . . . , ψ∧
ψj denote the unsatisfiable ones (here the context defined by ψ is taken into
account). Of course, there is no need to develop the initial tree t with respect
to nodes ni+1, . . . , nj being the final nodes described by the unsatisfiable
formulae ψ ∧ ψi+1, . . . , ψ ∧ ψj ; roughly speaking, pruning the unsatisfiable
paths corresponds to deleting unsatisfiable formulae in a disjunction (the one
of Def. 92). The ‘partially’ developed tree will be a complete tree as well; this
is a weaker version of Proposition 2.

Proposition 3. A ψ-tree t is complete if the following conditions hold:

• for any non-leaf node n (being an immediate ancestor of some leaf nodes)
and a conjunctive formula ψ′ determined by the path from root to this node
there exist formulae ψ1, ψ2, . . . , ψj such that

ψ′ |=I ψ1 ∨ ψ2 ∨ . . . ∨ ψj (18.2)

where ψ1, . . . , ψi are the formulae assigned to all the child nodes of n and
such that ψ ∧ ψl is satisfiable for l = 1, 2, . . . , i, and where ψ ∧ ψl are
unsatisfiable formulae for any l = i + 1, . . . , j;

• resolving (hypothetical) of the formulae assigned to leaf nodes given by
(18.2) leads to a reduced but still complete ψ-tree.

The above proposition may contribute to significant reduction of both
the length of precondition formulae and, with respect to size of the tree, the
number of rules as well.
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Further, the question of determinism should be raised. As follows from
the presented analysis, a sufficient condition for determinism is constituted
by unsatisfiability of the conjunction of any two precondition formulae. Note
that if any branching in the tree incorporates not only complete but exclusive
set of conditions, e.g. as in the introductory example (under the assumed
interpretation), then no two precondition formulae can be satisfied at the
same time. This can be recapitulated in the following proposition.

Proposition 4. A ψ-tree t defines a deterministic set of rules if one of the
following conditions hold:

• for any non-leaf node n,
ψi ∧ ψj (18.3)

is an unsatisfiable formula, i.e. no two formulae describing different paths
can be satisfied at the same time (i.e. exclusive branching conditions are
always specified; ψi and ψj are the formulae assigned to the child nodes of
n), or

• for any two paths going through a node with non-exclusive conditions im-
mediately below, exclusive conditions (for the paths) are added at some
node(s) below.

Thus, the ψ-tree can be used for simultaneous generation of not only com-
plete set of rules, but by considering exclusive conditions at any branching
node deterministic set of rules is obtained at the same time. In case over-
lapping conditions have to be used at some branching (e.g. for conditions
simplification), the specific paths may be marked during the design as ones
potentially referring to nondeterministic rules. A further check can be done
after the design.

In construction of deterministic and complete systems, an inevitable oc-
curring problem is the one of combinatorial explosion; obviously, a complete
and deterministic system with ground preconditions, and based on n logical
conditions (e.g atomic formulae) should have 2n rules. Note however, that in
our case this problem is significantly reduced. Firstly, the representation lan-
guage allows for representation of variables, so there is one rule for a subset
of the states encoded with ground formulae. Secondly, some of the potential
precondition formulae describe physically infeasible states, and thus they can
be omitted; the completeness is still assured by Proposition 2. Thirdly, we
discuss a theoretical approach and an ideal case; in a practical design one
can agree to partial completeness and incomplete determinism. Further, the
complexity problems can be significantly reduced by hierarchal design.

The problem of finding minimal representation (reduction) cannot be
solved directly during generation of the tree in a general way. This is because
only rules with the same conclusions are likely to be reduced; the conclusions,
however, are assigned to the precondition formulae after the tree is generated.
However, the use of ψ-trees for design allows for immediate local minimization
of the number of generated rules in a straightforward way.
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The main idea of minimization is based on joining two or more rules with
‘slightly different’ preconditions. The idea of local minimization refers to per-
forming this operation at any branching node, directly after developing it —
the current leaf nodes leading to the same rule action can be joined at once.
Or, even better, we simply do not perform ‘too detailed’ branching, that is
all! This seems to be reasonable and efficient enough in most cases, but in a
general case a post-design minimization may be necessary.

Note that if any path in the tree is assigned a different conclusion or action,
no reduction is possible. If two or more paths have the same conclusion, then
they should be analyzed for possible reduction. Both reduction and partial
reduction can be applied. Note that due to the completeness condition and
validity of bd-resolution, reduction of rules does not violate completeness —
the reduced set of rules must be complete as well. Further, if the set of rules
was deterministic, the reduced set of rules will be deterministic as well.

18.2.1 OSIRIS — a Design Tool

Based on the ideas presented above, an experimental tool for development of
rule-based systems named Osiris was designed and implemented [141]. This
tool was also described in [68] and [70]. In [141] a new idea for graphical repre-
sentation of combined tabular systems (and their parts) together with decision
trees was developed. This is the so-called tab-trees or tree-table representation.

The main idea of the tool lies in building a hierarchy of tabular systems
[71]. This hierarchy is based on the ψ-tree structure. Each row of a OAV table
is right connected to the other OAV table. Such a connection implies logical
AND relation in between.

The component tabular systems used in tree-table representation are di-
vided into two kinds: attribute tables and action tables. Attribute tables are
the attribute part of a classical OAT, Action tables are the action part. There
is one logical limitation. While attribute tables may have as many rows as
needed (the number of columns depends on the number of attributes), action
tables may have only one row; it means that the specified action, or set of
actions if there is more than one column, may have only one value set, which
preserves consistency.

An example of a tree-table representation is given in Figure 18.2. Please
note, that a tree-table representation is similar to Relational-Data-Base
(RDB) data representation scheme, but it is a perfect example of a ψ-tree, as
well.

The main features of the tree-table representation are:

• very simple, readable and engineers acceptable knowledge representation,
remaining in part the RDB tables, composed with

• hierarchical, tree-like representation,
• highly efficient way of visualization with high data density,
• power of the decision table representation,
• analogies to the RDB data representation scheme.
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Fig. 18.2. An example of a tree-table representation

The Osiris tool is a multi-module system designed for UNIX environments
(tested under Debian GNU/Linux, Sun Solaris 2.5). It consists of: a graphical
environment for computer aided development of rules, a code generator for
Kheops system, a validator, which provides completeness checking and a run-
time environment for created rules. The architecture of the Osiris and further
details are described in [141], and also in [68] and [70].
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Design of Tabular Rule-Based Systems
with XTT

In this chapter the main focus is paid to a new methodology for designing
tabular rule-based systems with the use of the XTT knowledge representation
paradigm1. From logical point of view, the structure of the design process
follows the line of the ψ-trees; the design is hierarchical and structured into
local components operating in well-specified contexts.

In order to facilitate the design we introduce the concept of Attribute
Relationship Diagrams (ARD) for defining the functional dependencies among
the attributes at an abstract level. The diagrams are used next to define the
precise XTT structure of the system. The main innovation put forward in this
chapter is introducing a combined ARD/XTT system as a design model for
local components. In this way the global structure of XTT (Extended Tabular
Trees) is generated. The material presented in this chapter is based on the
recent developments presented in [92] and in [100]. The consequent stages of
the design process are outlined in turn.

19.1 Principles the ARD/XTT Approach

The existing design methods and tools have limitations mostly in the following
three areas:

1) knowledge representation methods,
2) framework for analysis and verification of system properties,
3) integrated computer tools supporting the design process.

To overcome these limitations a new approach based on knowledge rep-
resentation with the eXtended Tabular Trees (XTT) is proposed and

1 I gratefully acknowledge that research for this chapter was undertaken by Grze-
gorz J. Nalepa and presented in his Ph.D. thesis [92]. Moreover, I gratefully
acknowledge that Sects. 19.1, 19.2, 19.3, 19.4, 19.5 and 19.6 are largely based on
excerpts from his Ph.D. thesis [92].

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 251–261 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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developed. XTT were discussed in detail in Chap. 8, Sect. 8.5. In [92] a com-
puterized tool called Mirella was presented and discussed. The architecture
and implementation of this tool composed of an integrated visual editor based
on the XTT approach, inference engine and verifier was also described there.

The ARD/XTT approach was invented with the goals to integrate the
system development process from the design to verification stages; further,
it supports the implementation through introducing the possibility of auto-
matic code generation. Basing on it, an integrated rule-based system design
and implementation process, supported by a computer tool, is offered in the
following sections.

In Sect. 20 all the presented ideas concerning ARD and XTT are illustrated
with an extended example.

19.2 Principles of the Integrated Design Process

The proposed approach follows the structural methodology for design of in-
formation systems. It is simultaneously a top-down approach, which allows
for incorporating hierarchical design — in fact, any tabular component can
be split into a network of more detailed components, and a network of com-
ponents can be grouped together to form a more abstract component. The
approach covers the stages of conceptual, logical and physical design. The
principles of the integrated design process are based on selected existing ap-
proaches to system design, presented in Chap. 17.

The approach proposed herein does not aim at covering the whole life-
cycle, as for example the one that can be found in [51], previously presented
on Fig. 17.2. However, it does aim at including all phases of the system life-
cycle from the design to implementation phase.

The following three design phases are identified:

1. Conceptual design, in which the basic structure of the system is identified,
along with data and control flow, as well as main operating contexts,
objects and their attributes; this allows for further defining the headers
of XTT tables;

2. Logical design, which involves building table rows (corresponding to rules)
and connecting tables; the XTT structure can be incrementally built,
analyzed, and possibly verified and even optimized on-line at this stage;

3. Physical design, in which a preliminary implementation is done by building
a Prolog code (or any other target language e. g. the one of Kheops [42],
since the approach is of generic character), which can be executed, com-
piled, debugged and possibly translated to system-specific representation.

This is a top-down approach. The names of design phases are similar to
Relational Data Base design phases [23], introduced in Sect. 17.1 on page 231.
However, the actual stages in each phase are different.

The issues that are not addressed by this process are:
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• inference engine building — the process is mainly aimed at designing and
testing the rule base, although a Prolog-based inference engine can easily
be developed (see Sect. 11.9); an example engine is provided in [92]; it can,
however, be replaced by another implementation, if needed;

• user interface building — a simple shell is provided with the inference en-
gine; it is sufficient for the current testing of the implementation; however,
it can easily be extended thanks to Prolog flexibility.

All of the stages discussed above are supported by Mirella, an integrated
CASE environment. In the following subsections the guidelines for each phase
are given.

An example schematically showing the subsequent design phases is pre-
sented in Fig. 19.1.

Fig. 19.1. Phases of the integrated design process

One of the most important features of this approach is the separation of
logical and physical design, which also allows for a transparent, hierarchical
design process.

19.3 Conceptual Design Phase with ARD Diagrams

The first phase of the system design process, the conceptual design, is the
most abstract one. It is based on the systems theory approach.
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It includes the following steps:

1. Defining the system goal, i.e. what the system is supposed to do in terms
of its principal functionalities.

2. Identifying the system inputs and outputs, as well as their constraints.
3. Identifying what is needed to give a description of system internal state

(or what information should be stored (memorized) inside the system) by
defining the conceptual variables for representing system parameters at
the abstract level.

4. Determining the functioning of the system, i.e. how the output is obtained
for a given input and memory state, and how the memory state should
change depending on the previous state and the input.

5. Identifying the internal system structure, along with the data and control
flow.

6. Defining the system attributes and their domains — they describe system
inputs, outputs and state.

7. Grouping the attributes needed to describe the system transition in each
of the subsystems. The groups serve as XTT table headers or schemas, see
Sect. 8.5.

These are the most general actions. They can be accomplished indepen-
dently, but in practice they are interleaved. Depending on the kind of the
system, they may be performed in different ways.

For performing efficient design at the conceptual stage a new kind of di-
agrams is proposed. These are the Attribute-Relationship Diagrams or ARD,
for short. They resemble the well-known Entity-Relationship Diagrams and
they are used to show the functional dependencies between attributes. Such
diagrams are developed top-down and they constitute the core tool for the
conceptual stage. The proposed notation and its use is introduced in the next
chapter, together with an example (see Chap. 20). At present, the ARD are de-
veloped by hand, although the process is partially supported by the Mirella

tool by the Attribute Creator.

19.3.1 Conceptual Modelling using ARD

The conceptual design of the RBS aims at modelling the most important fea-
tures of the system, i.e. attributes and functional dependencies among them.
During this design phase the ARD modelling method is used. ARD stands
for Attribute-Relationship Diagrams. It allows for specification of functional
dependencies of system attributes using a visual representation.

The concept of ARD constitutes a new idea, introduced for the purposes of
this book; it was simultaneously presented in [100]. An attempt of formulation
of ARD as a conceptual modelling tool for RBS is incorporated below.

The key underlying assumption in design of rule-based systems with knowl-
edge specification in attributive logics is that, similarly as in the case of Re-
lational Databases [23], the attributes are functionally dependent.
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Let X, Y denote some sets of attributes, X = {X1,X2, . . . , Xn} and Y =
{Y1, Y2, . . . , Ym}. We say that there is a functional dependency of Y from X,
which is denoted as X → Y , iff having established the values of attributes
from X all the values of attributes of Y are defined in a unique way. Further,
we are interested in the so-called full or complete functional dependencies,
i.e. ones such that there is X → Y but for any proper subset X ′ ⊂ X it is
not true that X ′ → Y ; in other words, all the values of attributes of X are
necessary to determine the values of Y .2 A basic ARD table for specification
of such a dependency is presented in Fig. 19.2.

Fig. 19.2. An ARD table: the basic scheme for X → Y

In the figure, the attributes on the left (i.e. the ones of X) are the indepen-
dent ones, while the ones on the right (the ones of Y ) are the dependent ones.
The sets of variables (e.g. X or Y ) will be referred to as conceptual variables
and they are specified with a set of detailed, atomic attributes.

An ARD diagram is a conceptual system model a certain level of abstrac-
tion. It is composed of one or several ARD tables. If there are more than one
ARD table, a partial order relation among the tables is represented with arcs.
For intuition, this partial order means that attributes which are dependent in
a preceding table must be established first, in order to be used as independent
attributes in the following table (i.e. a partial order of determining attribute
values is specified).

The ARD model is also a hierarchical model. The most abstract level 0
diagram shows the functional dependency of input and output system at-
tributes. Lower level diagrams are less abstract, i.e. they are closer to full
system specification. They contain also some intermediate conceptual vari-
ables and attributes.

As it was mentioned above, system attributes can be represented as con-
ceptual variables on the abstract levels. The conceptual variables are further
specified with one or more physical attributes on lower level (less abstract) dia-
grams. In the subsequent design stages physical attributes are directly mapped
into logical structure of the system and implementation. At the final, most
detailed specification no conceptual variables are allowed; all the attributes
must represent the physical (atomic) attributes of the system.

2 In case of a classical relational database table with the scheme specified with
attributes {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym} X will be considered as the key.
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The table heading contains the table identifier which is a path-dot con-
struction of the following recursive form:

• single number 0 is the label for the top-level single-table diagram,
• a sequence 0.[path].m is the label of the m-th table at the level length(path)+

1, where [path] is empty string, a single number or a sequence composed
of numbers separated with dots.

In fact, such an identifier construction defines a tree, and a particular identifier
specifies a path starting from the root and identifying a table component in
a unique way.

An ARD diagram of level i can be further transformed into a diagram of
level i + 1, which is more detailed (specific). Such a transformation includes
table expansion and/or attribute specification. Two basic transformations are
considered:

1. Horizontal split, where a table containing conceptual variables is expanded
into two tables, containing more detailed, intermediate conceptual vari-
ables or physical attributes,

2. Vertical split, where a table containing two (or more) dependent attributes
is expanded into two (or more) independent tables.

During the transformation a conceptual variable can be specified (substituted)
by more specific conceptual variables or a physical attribute, so that in the
last, most detailed level diagram, only physical attributes are present.

The final, most detailed ARD must satisfy certain criteria. An ARD dia-
gram can be considered correct iff it is consistent with the existing functional
dependencies of the attributes and the specification enables determining all
the values of (output) attributes once the input values are obtained. The
correctness of the final, most detailed level is translated into the following
conditions:

• all of the attributes are the physical attributes of the system (no conceptual
variables are allowed),

• all of the input attributes (the independent attributes in the tables to
which no arcs point to) are the system inputs (they are determined outside
of the system),

• any ARD table specifies a full functional dependency (local correctness
requirement), and

• for any path from the input to the output attributes no unestablishable
attribute occurs, i.e. when traversing such a path from the left to the right,
every attribute is either an input attribute or its first occurrence is as a
dependent attribute in some ARD table.

The conditions above assure the possibility of determining all the values
of all the attributes with respect to the functional dependencies among the
attributes.
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On the machine readable level ARD can be represented in an XML-based
ARDML (ARD Markup Language) suitable for data exchange operations, as
well as possibly transformations to other diagram formats.

19.3.2 Attributes Definition with the Attribute Creator

The Attribute Creator allows for defining system attributes and domain con-
straints. An example is shown in Fig. 19.3. Furthermore, using the defined
attributes, the process of building XTT tables is supported.

Fig. 19.3. Attribute creator

To summarize this phase it may be concluded that:

• the input of this phase is the general description of the system;
• the output of this phase is:

– an ARD conceptual diagram describing: input, output as well as main
system components and dependencies between them (this indicates
partially the the control strategy to be implemented);

– specification of system attributes, and attribute domains;
– design of attribute groups — XTT table headers.

The creation of the ARD conceptual diagram will be shown in Chap. 20
with the use of the thermostat example.
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19.4 Logical Design Phase with XTT

The logical design phase uses the results of the conceptual design.
It involves the following stages:

1. Specifying the full headers of the tables with appropriate attributes, i.e.
defining the structure of the XTT.

2. Defining the rules through filling the XTT tables with particular values.
Each table specifies the system behavior in a certain context.

3. Linking tables together with XTT connections, thus specifying inter-table
relations.

4. Building a hierarchical system design using tree facilities.
5. Refining attribute specification including constraints.
6. Generating Prolog prototype corresponding to the XTT structure.
7. Performing on-line local analysis and verification of system properties.

All of these stages are supported by the Mirella tool. The current version
of the system provides the following further functionality:

• object values are input in XTT cells;
• all of the attribute constraints are checked on-line;
• basic system validity, conforming to XTT syntax is controlled during the

design;
• a hierarchical system design is possible using tree, and context tables facil-

ities;
• system design may be saved in a XML-based, XTTML language (see [92]);
• a Prolog code, equivalent to visual representation, is dynamically gener-

ated;
• important formal system properties are verified on-line via an embedded

Prolog-based inference engine;
• Prolog-based system prototype is generated.

All the stages of this phase are supported by the Mirella tool. Particular
examples are given in Chap. 20; more examples are in [92].

To summarize this phase it may be concluded that:

• the input of this phase is the output of conceptual design;
• the output of this phase is:

– a full XTT-based system design,
– complete Prolog representation of the above,
– system description in XML-based format,
– system analysis reports and visualization of results.

This is the main design phase. The design process is hierarchical. The
presented stages can be schematically illustrated as in Fig. 19.4.

It is important that the proposed approach allows for verification and op-
timization during the stage of logical design. In fact, the issues of system



19.5 The Analysis and Verification Framework 259

Fig. 19.4. Phases of the integrated design process

analysis, optimization and verification play an important role in the inte-
grated design process. The integrated framework for early system analysis is
presented in the following section.

19.5 The Analysis and Verification Framework

During the logical design phase incremental rule-base synthesis is supported by
the on-line, Prolog-based system analysis and verification framework. The
framework allows for the implementation of different external verification and
analysis modules (plug-ins). Examples of such modules were presented in the
former part of this book devoted to verification problems. The framework can
be integrated with the XTT inference engine described in Sect. 20.

The external analysis, verification and optimization modules are imple-
mented in Prolog. They have direct access to the system knowledge base.
Each module reads the XTT rule base and performs the analysis of the given
property and produces a report. The report can be optionally visualized in
the Mirella Designer. Since the modules have the access to the Prolog-
based XTT system description, it is also possible to implement dynamic rule
correction algorithms.

Building a complete rule-based system analysis and verification suite is a
complex problem. It could be solved in many alternative ways. Several illus-
trative examples of analysis and verification plug-ins have been discussed in
Part III of this book.
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The following verification plug-in examples are available:

• subsumption,
• determinism,
• completeness.

An experimental plug-in supporting rule reduction is also available. All of
the plug-ins perform a local analysis by checking given properties in a given
table.

Using the approach presented above it is easy to implement another algo-
rithms for analysis, verification and optimization. Plug-ins can be called from
Mirella Designer at any moment during the logical design phase. The report
generated by the plug-in can be parsed so the results of the analysis can be
visualized in the Designer in real-time.

19.6 Implementation Phase

The final phase of the design process is the physical design, or implementation.
In this phase the following stages can be identified:

1. Testing the prototype via an inference engine shell.
2. Debugging the prototype by built-in SWI-Prolog both text-based and

visual tracer.
3. Generating stand-alone application prototype (or a rule-base to be used

with a specific rule interpreter).

These stages are described in more detail in the following subsections.

19.6.1 Testing the Prototype

Once the Prolog code has been generated it can be tested using the inference
engine shell provided with Mirella (see [92]); for an example implementation
see also the next section. The shell allows to input the initial data, which can
also be read from fact tables (see [92]). The system prototype can then be
executed in the shell. The examples are given in [92], where practical rule-
based systems implementations are studied. During the testing process the
code can also be debugged.

19.6.2 Debugging the Prototype

One of the reasons SWI-Prolog [138] has been chosen for Mirella is its
advanced features when it comes to debugging. SWI-Prolog has a 6-port
tracer, which extends the standard 4-port tracer described in [19] with two
additional ports. The optional unify port allows the user to inspect the result
after unification of the head. The exception port shows exceptions raised by
throw/1 or one of the built-in predicates.
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Fig. 19.5. Graphical Prolog tracer

The code can also be profiled by the built-in profiler which displays call and
time statistics of the program. It can also be visually traced by the graphical
tracer ; an example session is showed in Fig. 19.5. This stage is typical for
general Prolog code debugging.

19.6.3 Generating Stand-Alone Application

Finally, a stand-alone prototype can be generated using SWI compiler (see
Chapt. 9 in [138]). In this stage three components are linked together: the
XTT inference engine, the system rule base, the SWI runtime. Alternatively,
an independent rule base can be produced.

This approach allows for building stand-alone expert system applications,
running independently of Mirella, or SWI–Prolog environment on multiple
platforms, including: GNU/Linux, Unix, Windows, MacOS. Since GNU/Linux
is suitable for building embedded systems [90,91], the approach presented here
could eventually allow for building embedded rule-based systems.
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Design Example: Thermostat

In this chapter we return once again to the thermostat example rule-based
system [102] (see Sect. 8.6). Using this example it is shown how the design
approach based on the use of the XTT works and what the results are. We
end up with the Prolog implementation of this system.

The example is presented with some details paid to the following elements:

• Description — the system is briefly introduced.
• Rules — system rule-base in the original rule-based form is introduced

(control specification).
• Attributes — the specification of system attributes, domains and con-

straints is given.
• Attribute-Relationship Diagrams — the conceptual design with use of the

ARD is presented.
• Logical design — logical system design in XTT is presented.
• Physical design — Prolog code representing the logical structure gener-

ated by Mirella is shown.
• Implementation — example of Prolog code execution in the inference

engine is presented.
• Analysis and Remarks — results of system analysis (if applicable) and

observations made during the process of system design are given.

The first four stages are parts of the conceptual design. The second stage —
standard rule-base — is included in order to provide textual specification of
the control task; it takes the form of rules, however, in general, it can be in
any syntactic form of text. In more complex problems there will be no rule-like
specification, and the attributes, their values and domains, and dependencies
among attributes will have to be identified from the accessible specification
and knowledge of the domain experts.

The presented example illustrates design stages and the use of introduced
concepts. It exposes possible improvements in terms of knowledge representa-
tion density, as well as the design process itself.

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 263–275 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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20.1 Thermostat Control System

Description

Let us consider a simple but illustrative rule-based control system for setting
the required temperature in a room, depending on the day, season, hours, etc.
The example is based on Thermostat example found in [102]1.

The goal of the system is to set a temperature at a certain set point, which
is the output of the system. The input is the current time and date. The
temperature is set depending on the particular part of the week, season, and
working hours.

Rules

The original ( [102]) Thermostat system rule base follows:2

Rule 1 : if the day is Monday or the day is Tuesday or the day is Wednesday
or the day is Thursday or the day is Friday then today is a workday.

Rule 2 : if the day is Saturday or the day is Sunday then today is the
weekend.

Rule 3 : if today is workday and the time is ‘between 9 am and 5 pm’ then
operation is ‘during business hours’.

Rule 4 : if today is workday and the time is ‘before 9 am’ then operation
is ‘not during business hours’.

Rule 5 : if today is workday and the time is ‘after 5 pm’ then operation is
‘not during business hours’.

Rule 6 : if today is weekend then operation is ‘not during business hours’.
Rule 7 : if the month is January or the month is February or the month is

December then the season is summer.
Rule 8 : if the month is March or the month is April or the month is May

then the season is autumn.
Rule 9 : if the month is June or the month is July or the month is August

then the season is winter.
Rule 10 : if the month is September or the month is October or the month

is November then the season is spring.
Rule 11 : if the season is spring and operation is ‘during business hours’ then

thermostat setting is ’20 degrees’.

1 An appropriate knowledge base is given in [102], pages 41–43; for convenience we
list it in textual form here. Note that, from the point of view of control theory the
specification is not one of a thermostat system (which has as a task temperature
stabilization at a certain set point), but it is a specification of set point selection
algorithm of a higher-level (adaptation) controller.

2 One can be confused when looking at rules 7–10 defining season. They look strange
only if one lives on the northern hemisphere. However, the author of [102] lives
in Australia, which explains the ‘confusion’.
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Rule 12 : if the season is spring and operation is ‘not during business hours’
then thermostat setting is ‘15 degrees’.

Rule 13 : if the season is summer and operation is ‘during business hours’
then thermostat setting is ‘24 degrees’.

Rule 14 : if the season is summer and operation is ‘not during business hours’
then thermostat setting is ‘27 degrees’.

Rule 15 : if the season is autumn and operation is ‘during business hours’
then thermostat setting is ‘20 degrees’.

Rule 16 : if the season is autumn and operation is ‘not during business hours’
then thermostat setting is ‘16 degrees’.

Rule 17 : if the season is winter and operation is ‘during business hours’ then
thermostat setting is ‘18 degrees’.

Rule 18 : if the season is winter and operation is ‘not during business hours’
then thermostat setting is ‘14 degrees’.

There are certain patterns that may be observed in the rule-base. They will
be used in the following section containing the corresponding XTT structure.

Attributes

By analyzing the above textual specification of the desired operation of the
system the attributes can be identified and their domains can be determined.
The original basic list of attributes and their possible values are also given
in [102]. The attributes can be extracted from informal specification of the
rules presented in Sect. 8.6 or directly from the rules specified in natural
language, provided that this was the form of initial specification of the system
to be designed. They are shown in Table 20.1. The names of the attributes
are self-explanatory.

Considering system input, state and output, as well as rule-base, a formal
attribute specification, conforming to XTT method is shown in Table 20.2.

When comparing Tables 20.1 and 20.2, several design decisions can be
observed:

• time attribute has been defined as integer in order to allow arithmetic
comparison,

• operation attribute has been defined as boolean, due to its true/false
(boolean) use,

• today, season, operation attributes have been defined as ‘middle’ at-
tributes, since their values are inferred from input attribute values.

Let us show the use of Attribute-Relationship Diagram for designing the
conceptual structure of the system.

On the base of analysis of the textual specification of the rules one can
notice that the temperature setting (to be denoted by Temp can be established
if only current date (Date) and hour (Hour) are known. It means that there
is functional dependency of the form

Date,Hour → Temp.
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Table 20.1. Thermostat attributes

Name Symbol Values

day aDD Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday,
Sunday

today aTD workday, weekend

time aTM between 9am and 5pm, before
9am, after 5pm

month aMO January, February, March,
April, May, June, July,
August, September, October,
November, December

season aSE summer, autumn, winter, spring

operation aOP during business hours, not
during business hours

thermostat aTHS 14, 15, 16, 18, 20, 24, 27

Table 20.2. XTT Thermostat attributes specification

Name Subset Type Constraints

day input enumerative,
symbolic

{monday, tuesday, wednesday,
thursday, friday, saturday,
sunday}

time input integer 〈 0,24 〉

month input enumerative,
symbolic

{january, february, march,
april, may, june, july,
august, september, october,
november, december}

today middle enumerative,
symbolic

{workday, weekend}

season middle enumerative,
symbolic

{spring, summer, autumn,
winter}

operation middle boolean —

thermostat output enumerative,
integer

{14, 15, 16, 18, 20, 24, 27}
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This can be denoted with the following diagram presented in Fig. 20.1.

Fig. 20.1. The ARD diagram of level 0

The meaning of the diagram is as follows: at the most abstract level of
specification (heading: 0), the temperature (Temp, the right column) depends
on date and hour (Date and Hour, the left column). The names Date, Hour
and Temp are conceptual variables and they will be further specified with one
or more attributes.

The next step of the design consist of horizontal splitting of the top level
ARD — new, intermediate variables are introduced showing the operation of
the system in a more precise way. From the provided specification it can be
noticed that the temperature is determined by season and operation, and both
the attributes can be determined from date and hour. Hence, the following
functional dependencies hold:

aSE , aOP → aTHS

and
Date,Hour → aSE , aOP .

The next diagram is shown in Fig. 20.2.

Fig. 20.2. The ARD diagram of level 1

The meaning of the diagram is as follows: having the values of conceptual
variables Date and Hour the system can establish the values of season and op-
eration attributes (aSE and aOP) and having the values of these attributes
it can further establish the temperature, this time denoted as aTHS. The
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convention is that final attributes are denoted as aATTRIBUTE to indicate that
they are single attributes used in the logical and physical implementation3.

A further step of the conceptual design consists of vertical split which
can be performed since in the above functional dependency Date,Hour →
aSE , aOP there are two symbols on the right-hand side. The value of the
season (aSE) can be determined independently from operation (aOP). This is
shown in Fig. 20.3.

Fig. 20.3. The ARD diagram of level 2

A further design step consists of another horizontal split operation. Having
the date, the system can establish whether it is a working day or a weekend
which is denoted with attribute aTD. Further, depending on that knowledge
and taking into account the hour, the value of the aOP attribute denoting if
this is operation time or not can be established. This split is shown in the
next Fig. 20.4.

To complete the conceptual design all the conceptual variables must be
replaced with actual attributes; such attributes may be formed as a part of
the variable or may be equivalent to the variable as a whole.

For example, to determine if it is a working day or not, basically only
the name of the day is necessary (part of the full date); in another, more
elaborated approach, all the precise dates may be necessary, since apart from
Saturdays and Sundays there may be holidays on some other days as well.
Below, the first option is chosen. The final conceptual diagram is shown in
Fig. 20.5.

3 There is also another reason to start the names of the attributes will a lower
case letter ‘a’ — in Prolog strings starting with an upper case letter denote
variables. Further, the first letter denotes the role of the name, i.e. ’a’ stands for
an attribute, ‘s’ denotes a set while ‘i’ — an interval.



20.1 Thermostat Control System 269

Fig. 20.4. The ARD diagram of level 3

Fig. 20.5. The ARD diagram of level 4

In the above presentation the arrows show the partial order relation defin-
ing the order of inference. The dashed lines show how the split is performed.

Note also the accepted convention for enumerating the components. As the
design is performed top-down, any component keeps the number of its parent
node completed with its individual number — this is achieved by using the
path-dot expressions. Simultaneously, the number of positions indicates the
level of detail.

Note that in the final diagram a partial order relation among components,
following from the functional dependencies identified, is represented with the
use of arrows. This is an important piece of information and it will be further
used for specifying efficient control execution for the rules.

To summarize, at the end of the conceptual design stage the complete
ARD diagram is obtained (see Fig. 20.6).
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Fig. 20.6. The complete ARD diagram for levels 0 to 4

Each of the lowest-level components will be used to specify the scheme
of an XTT table in the logical design stage. The left-hand attributes form
the precondition part, while the right-hand ones refer to conclusion; it can
be further classified as final conclusion or assert (retract) attributes. In the
presented example four XTT tables are identified.
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Logical Design

In the presented example the rules can be divided in a natural way into groups
producing the same kind of decision, where the precise decision depends on
precise preconditions. Furthermore, in the groups the preconditions of the
rules employ the same linguistic variables, but different values. Hence, the
XTT tables can be formed directly from rules.

In general, the specification does not necessarily take the form of such
transparent rules. In such cases the use of ARD diagrams greatly simplifies
the design, and especially the identification of functional dependencies among
attributes.

As follows from the conceptual design stage and the obtained ARD dia-
gram, four different XTT tables will have to be designed. The design can be
performed directly on the base of identification of four groups of rules defin-
ing decisions whether today is workday or weekend (rules 1 and 2), whether
the time is during business hours or not (rules 3–6), deciding what season
do we have (rules 7–10), and finally indicating the setting of the thermostat
(rules 11–18).

For each group a separate XTT table can be built — this seems to be
a natural and efficient approach. Since the rules use the same variables, the
specification of attributes in the table is given just once and all the columns
are necessary for any rule in a table.

The logical design of the tables is presented in Sect. 8.6. The tables are
defined with the graphical editor tool of Mirella. This results in creating
the following tables:

• today table infers the value of today attribute, it is a root table;
• operation table checks the time of the day;
• season table infers the current season;
• temperature table makes the decision about thermostat temperature.

For continuing presentation of the example, below the tables imported
from Chap. 8 are recalled.

Table 20.3. Context 1: none. ARD component No.: 0.1.2.1

Info Prec Retract Assert Decision Ctrl

I aDD aTD aTD H N E

1 sWD — wd 2.3 1.2
2 sWK — wk 2.6 1.1
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Table 20.4. Context 2: aTD ∈ {wd, wk}. ARD component No.: 0.1.2.2

Info Prec Retract Assert Decision Ctrl

I aTD aTM aOP aOP H N E

3 wd [9:00, 17:00] — dbh 3.7 2.4
4 wd [00:00, 09:00] — ndbh 3.7 2.5
5 wd [17:00, 24:00] — ndbh 3.7 2.6
6 wk – — ndbh 3.7 2.3

Table 20.5. Context 3: none. ARD component No.: 0.1.1.1

Info Prec Retract Assert Decision Ctrl

I aMO aSE aSE H N E

7 sSUM — sum 4.13 3.8
8 sAUT — aut 4.15 3.9
9 sWIN — win 4.17 3.10
10 sSPR — spr 4.11 3.7

Table 20.6. Context 4: aSE ∈ {spr, sum, aut, win} ∧ aOP ∈ {dbh, ndbh}.
ARD component No.: 0.2.1.1

Info Prec Retract Assert Decision Ctrl

I aSE aOP aTHS N E

11 spr dbh 20 1.1 4.12
12 spr ndbh 15 1.1 4.13
13 sum dbh 24 1.1 4.14
14 sum ndbh 17 1.1 4.15
15 aut dbh 20 1.1 4.16
16 aut ndbh 16 1.1 4.17
17 win dbh 18 1.1 4.18
18 win ndbh 14 1.1 1.1

The tables have been designed on the base of the textual specification of
rules. The control part of the tables has been designed with taking into account
the partial order determined with ARD and so that the system works in a
robust and efficient way. Specification of the retract part with the underscore
means in fact that any value of aTD should be removed (the variables should
be cleared). The same convention is applied in further tables. More details
have been presented in Chap. 8.

The XTT structure for the thermostat system has been designed using
Mirella Designer. All of the tables and connections between them are shown
in Fig. 20.7.
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Fig. 20.7. Thermostat system design in Mirella

The order of execution was introduced in an arbitrary way, so that it is
consistent with the partial order specified with the ARD diagram presented
in Fig. 20.5.

Physical Design

The following Prolog rule-base has been generated by Mirella:

set(sWD,[monday,tuesday,wednesday,thursday,friday]).
set(sWK,[saturday,sunday]).
set(sSUM,[january,february,december]).
set(sAUT,[march,april,may]).
set(sWIN,[june,july,august]).
set(sSPR,[september,october,november]).

%%%Rulebase
%%%Table: today
rule(1,1,[f(aDD,set,sWD)],[f(aTD,set,_)],[f(aTD,atomic,wd)],

[],2,3).
rule(1,2,[f(aDD,set,sWK)],[f(aTD,set,_)],[f(aTD,atomic,wk)],

[],2,6).
%%%Table: operation
rule(2,3,[f(aTD,atomic,wd),f(aTM,interval,i(9,17))],

[f(aOP,atomic,_)],[f(aOP,atomic,yes)],[],3,7).
rule(2,4,[f(aTD,atomic,wd),f(aTM,interval,i(0,8))],

[f(aOP,atomic,_)],[f(aOP,atomic,false)],[],3,7).
rule(2,5,[f(aTD,atomic,wd),f(aTM,interval,i(18,24))],

[f(aOP,atomic,_)],[f(aOP,atomic,false)],[],3,7).
rule(2,6,[f(aTD,atomic,wk)],[f(aOP,atomic,_)],[f(aOP,atomic,no)],

[],3,7).
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%%%Table: season
rule(3, 7,[f(aMO,set,sSUM)],[f(aSE,atomic,_)],[f(aSE,atomic,sum)],

[],4,13).
rule(3, 8,[f(aMO,set,sAUT)],[f(aSE,atomic,_)],[f(aSE,atomic,aut)],

[],4,15).
rule(3, 9,[f(aMO,set,sWIN)],[f(aSE,atomic,_)],[f(aSE,atomic,win)],

[],4,17).
rule(3,10,[f(aMO,set,sSPR)],[f(aSE,atomic,_)],[f(aSE,atomic,spr)],

[],4,11).
%%%Table: temperature
rule(4,11,[f(aSE,atomic,spr),f(aOP,atomic,yes)],

[],[],[f(aTHS,atomic,20)],0,_).
rule(4,12,[f(aSE,atomic,spr),f(aOP,atomic,no)],

[],[],[f(aTHS,atomic,15)],0,_).
rule(4,13,[f(aSE,atomic,sum),f(aOP,atomic,yes)],

[],[],[f(aTHS,atomic,24)],0,_).
rule(4,14,[f(aSE,atomic,sum),f(aOP,atomic,no)],

[],[],[f(aTHS,atomic,17)],0,_).
rule(4,15,[f(aSE,atomic,aut),f(aOP,atomic,yes)],

[],[],[f(aTHS,atomic,20)],0,_).
rule(4,16,[f(aSE,atomic,aut),f(aOP,atomic,no)],

[],[],[f(aTHS,atomic,16)],0,_).
rule(4,17,[f(aSE,atomic,win),f(aOP,atomic,yes)],

[],[],[f(aTHS,atomic,18)],0,_).
rule(4,18,[f(aSE,atomic,win),f(aOP,atomic,no)],

[],[],[f(aTHS,atomic,14)],0,_).

The rule base presented above uses the rule format defined in the Sect. 13.3.
The rules of the last table (temperature) have modified the Next and Else

part — 0 means that the system stops after execution of a single cycle.

Implementation

An example execution, using the XTT inference engine is shown below. The
shell also serves as an environment for an interactive simulation.

Welcome to SWI-Prolog (Multi-threaded, Version 5.2.6)
?- [engine-xtt].
% engine-xtt compiled 0.00 sec, 9,784 bytes
Yes
?- go.
--- This is the XTT Prolog shell. ---
--- Enter "load", "run", "runbt", "quit" at the prompt. ---
>>> load.
--- Clearing old rule base ---
--- Enter rule file name: >>> therm-xtt.
% therm-xtt compiled 0.00 sec, 7,208 bytes
>>> run.
--- Running Engine ---
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*** Welcome to the Thermostat Rule-Base System ***
*** Provide the initial data ***
Month: [january--december]: >>> march.
Day: [monday--sunday]: >>> friday.
Hour: [0--24]: >>> 16.
+++ No output +++
*** Fired rule: 1/1 ***
+++ No output +++
*** Fired rule: 2/3 ***
+++ No output +++
*** Fired rule: 3/8 ***
+++ Rule out: f(aTHS, atomic, 20) +++
*** Fired rule: 4/15 ***
*** System HALTED ***

Using the initial data the system produces the decision (Rule out lines),
by firing a sequence of rules (Fired rule lines).

Analysis and Remarks

The specification of the system with the use of the XTT method seems to
be both concise and easy to analyze. The original Thermostat example is
specified in such way that the system has basic properties such as determinism,
completeness and lack of subsumption preserved.

However, the example reduction plug-in, provided with Mirella, is able
to detect a possible reduction:

?- vpr(4).
*** Rule: 4.11 may be glued with rule: 4.15

reduced fact: f(aSE, set, [spr, aut])
*** Rule: 4.15 may be glued with rule: 4.11

reduced fact: f(aSE, set, [aut, spr])
No more reduction of rules in table 4

The following rules:

rule(4,11,[f(aSE,atomic,spr),f(aOP,atomic,yes)],
[],[],[f(aTHS,atomic,20)],0,_).

rule(4,15,[f(aSE,atomic,aut),f(aOP,atomic,yes)],
[],[],[f(aTHS,atomic,20)],0,_).

could be substituted by a single rule with use of a non-atomic value:

rule(4,11,[f(aSE,set,[aut, spr]),f(aOP,atomic,yes)],
[],[],[f(aTHS,atomic,20)],0,_).

The XTT approach allowed for dividing the system knowledge base into
four interconnected modules. Non-atomic attribute values proved to be useful
in specifying precondition attribute values and in table reduction.
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Concluding Remarks

The book presents logical foundations for rule-based systems, as seen by the
Author. An attempt has been made to provide an in-depth discussion of log-
ical and other aspects of such systems, including languages for knowledge
representation, inference mechanisms, inference control, design and verifica-
tion. The ultimate goal was to provide a deeper theoretical insight into the
nature of rule-based systems and put together the most complete presentation
including details so frequently skipped in typical textbooks.

The book is divided into four main parts, each of them further divided
into several chapters.

The main parts present material on:

• logical foundations of rule-based systems (Part I);
• principles of rule-based systems structures, knowledge representation lan-

guages, inference and inference control (Part II);
• verification of formal properties of rule-based systems (Part III);
• design methodology for efficient development of such systems (Part IV).

Since ‘thinking in terms of facts and rules is perhaps one of the most
common ways of approaching problem definition and problem solving both in
everyday life and under more formal circumstances’ the book may be useful
to potentially wide audience, but it is aimed at providing specific knowledge
for graduate, post-graduate and Ph.D. students, as well as knowledge engi-
neers and research workers involved in the domain of AI. It also constitutes
a summary of the Author’s research and experience gathered through several
years of his research work.

As mentioned in the Introduction, this book addresses the methodology
of rule-based systems in a relatively complete and perhaps a bit complex,
formal way. The main aim was to present the rule-based systems from logical
perspective as viewed by the Author. Certain Author’s concepts concerning
rule-based systems were described in detail. Although the primary concern
of this book may seem to be well-explored in the domain literature, both
the structure and the contents of the book attempted at keeping individual,

A. Ligęza: Logical Foundations of Rule-Based Systems, Studies in Computational Intelligence
(SCI) 11, 277–279 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Author-shaped character, an express personal experience of both theoretical
and practical nature.

The concept of the book was to present in a single volume a spectrum of
knowledge concerning rule-based systems, as understood in knowledge engi-
neering, but also with going into details uncovered by other books on that
topic. The book covers areas such as: logical foundations of rule-based sys-
tems (including knowledge representation and inference with propositional,
attribute-based and first-order logic), knowledge representation, inference and
inference control in rule-based systems, including extended forms of rules and
specialized inference control mechanisms, definitions and verification of formal
properties of rule-based systems assuring the correct work of them and finally
design issues covering systematic design approach combined with on-line ver-
ification.

Some new concepts introduced in this book range from theoretical issues
such as backward dual resolution as a tool for analysis of rule-based systems
(especially for verification of completeness and reduction through gluing of
rules) to practical design-supporting tools such as:

• Attribute-Relationship Diagrams (ARD),
• eXtended Tabular Trees (XTT).

A number of detailed problems were presented in formal way, analyzed
and explained.

The concept of tabular systems discussed in this book seems to provide a
new quality in knowledge representation. Simultaneously, it constitutes a step
on the way to the postulated algebraization of knowledge. It also incorporates
possibility of hierarchical knowledge representation and hierarchical develop-
ment of a rule-based systems. Finally, it enables interleaving the stages of
verification and design, so that a possibly correct system is designed and de-
veloped. The proposed experimental tool integrates these features in a single
system and enables far going support of development of rule-based systems.

A dream of the Author would also be that this book serves as a source of
inspiration for further research in the domain of rule-based systems and in AI
as a whole. Although no new research directions have been explicitly defined
in the book, in several places a certain kind of problems and barriers on one
hand, and promises on the other, can be found between the printed lines of
the text.

It seems that the following research possibilities open a wide and attractive
research area for:

• development of the visual design procedures and development of sup-
porting tools [92, 93, 94, 98], especially ones incorporating capabilities of
reusability, pre-defined components, optimization of the designed code
and its reduction [75, 79, 80], library of cases and case-based reasoning
tools [143], verification [95], etc.;



21 Concluding Remarks 279

• further automatization of construction of rule-based systems, especially
combining development of such systems with learning and automatic
knowledge acquisition techniques [18];

• development of ’intelligent documents’ incorporating rule-based compo-
nent for knowledge specification and execution and capable of automatic
knowledge processing [76,77];

• application of the rule-based system methods and technology to knowledge
management [76,96,99];

• development of more elaborated knowledge representation and process-
ing formalism, e.g. ones based on the concept of granularity, and further
algebraization of knowledge processing [72,73,74,77,78];

• extension of the knowledge-representation formalism towards covering un-
certainty [13].

To conclude, the book is aimed at presenting specific knowledge but si-
multaneously inspiring further research. It is not a closed, well structured and
packed, textbook in its final form. Please find it open and inspiring, try to
see the problems emerging from the presented solutions. Critical and creative
thinking is always a necessary component of progress.
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Closing Remarks and Appendices



A

Selected Rule-Based Systems and Tools

In this appendix a list of some selected rule-based systems and tools is pro-
vided1. It is aimed as an introductory information on some systems belonging
to the class of AI tools incorporating rule-based technology.
Selected application tools are mentioned and some examples are pointed

to. They refer to some experimental tools, developed as a result of theoretical
research, and present some relatively new, distinguished features as well as the
established standards. For more ’classical’ examples one can also look into [51]
and [48, 81, 113, 122, 128, 129].

A.1 Related Work and Knowledge Verification Tools

A.1.1 Kheops System

Kheops [42] is a real-time rule-based system shell. It has a reactive, forward-
chaining interpreter. It is oriented toward time-critical, on-line applications.
Its distinctive features include the compilation of a rule-base to the form
of a specific decision tree which allows for checking some formal properties.
However, it has a poor user interface and lacks support for an interactive
system design.
Kheops is an advanced rule-base real time system. Its working idea is

relatively simply: it constitutes a reactive, forward interpreter. However, it
is relatively fast (response time can be below 15 milliseconds) and oriented
toward time-critical, on-line applications. Its distinctive features include com-
pilation of the rule-base to the form of specific decision tree which allows for
checking some formal properties (e.g. completeness) and allows for evaluation
of response time, dealing with time representation and temporal inference, and
incorporation of specialized forms of rules, including universal quantification
and C-expression. A detailed description of Kheops can be found in [42].
1 The list is provided courtesy of Grzegorz Jacek Nalepa, Ph.D. and it is mostly
based on an extract from his Ph.D. Thesis [92].
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A.1.2 Prologa

Prologa is an interactive design tool for computer supported construction
and manipulation of decision tables [133]. It is oriented towards decision-tables
based knowledge representation. It provides a design environment along with
some additional knowledge acquisition facilities. It allows for table verifica-
tion and detection of common anomalies such as the lack of consistency, or
redundant rules.
However, its knowledge representation method is limited to classic decision

tables only. Its expressive power is limited to the propositional-calculus-based
knowledge representation. The design support does not include a visual knowl-
edge representation, only a simple graphical table representation.

A.1.3 KbBuilder

Although the principal idea to include the verification stage into the design
process, as well as to support the design with flexible graphical environment
of the CAD/CASE type dates back to [58, 59], there exist only few papers
devoted to its further development, e.g. [65, 97]. A similar idea was present
in [118].
The tool [118] is an integrated environment for designing and verifying

Sphinx [1] knowledge bases. It provides a graphical user interface support-
ing creation of the knowledge base, along with local dynamic verification.
The approach is oriented towards application for backward-chaining systems
based on a simple attributive language. Further, its verification capabilities
are limited mostly to local properties of the so-called decision units.
The main differences between the XTT approach and the one of [118]

are that the approach found in KbBuilder is oriented towards applications
for backward-chaining systems, designed by Sphinx/Cake [86] tools. They
are based on simple attributive language and Horn-like clauses. Furthermore,
its verification capabilities are limited mostly to local properties of decision
units. On the other hand, XTT method is oriented towards forward-chaining
systems, and provides a more expressive attributive language, along with a
visual knowledge representation and design method. Mirella uses high-level
Prolog representation to encode and analyze the rule base. KbBuilder
uses low-level C++ implementation. Moreover, the set and definitions of the
formal properties are a bit different with respect to forward-chaining systems
in comparison with the ones considered here.
Automated computer tools performing verification of formal properties

are not that common as general expert systems development toolkits. An
overview of several well-known knowledge-based systems verification and vali-
dation suites can be found in [134]. A discussion of rule-based systems verifica-
tion tools is contained in [118]. Selected important tools are briefly introduced
below.
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A.1.4 KRUST

The system [26] refines rules considering rule priority and considering the flow
of control. The goal of the system is to identify possible faults and anomalies
by rule base refinement. Krust uses training examples to refine the system
being analyzed.

A.1.5 IN-DEPTH

It is an incremental verifier that can perform the incremental verification of
a knowledge base [85]. It was built to verify knowledge bases designed with
Milord expert systems development environment.

A.1.6 COVER

The system [108] uses multiple advanced verification techniques. Some of the
verification algorithms are implemented in Prolog. However, the verification
is possible only after a translation to Cover-specific language.

A.2 Expert Systems Shells

An expert system shell provides an inference engine with a user interface, and
supports the building of a system knowledge base. Some of the most important
shells are presented below [46].

A.2.1 OPS5

It is a classical rule-based language [12, 34]. It has simple inference control
algorithms and does not support complex data structures such as graphs or
trees. Ops 83 is a successor of Ops5. It is written in C and allows for the
integration of applications written in C. Ops 83 supports generalized forward
chaining. While it is currently rarely used, it has given foundation to more
advanced rule-based languages.

A.2.2 CLIPS

It is a rule-based object-oriented language [41]. Clips supports multiple rea-
soning and conflict resolution strategies. It is one of the most common expert
system development tools. Clips is an expert system shell, so it does not
provide any tools supporting the design of the knowledge base.
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A.2.3 Jess

The name stands for Java Expert System Shell [35]. It is inspired by Clips but
implemented in Java. Compared to Clips it adds several features and offers
superior performance. It is easy to integrate with Java-based web-enabled
applications.

A.2.4 Sphinx

Sphinx [1] is an integrated environment for expert systems development. It
uses backward-chaining inference engine, contains a shell (PCShell [87]) and
design tools named Cake [86]. Cake2 supports the process of knowledge base
design and simple verification.

A.2.5 Oryx/Mandarax

Mandarax [29] is an open source Java class library for deduction rules. It
provides an infrastructure for defining, managing and querying rule bases.
Mandarax includes open APIs to interface with relational databases and
XML, in particular RuleML. Oryx is a graphical user interface application to
design and maintain Mandarax knowledge bases.

A.2.6 G2

The system [40] is perhaps the most advanced tool for large-scale develop-
ments. It is an object-oriented graphical customizable software platform for
rapidly building expert manufacturing applications. It allows for building hi-
erarchical models of intelligent systems and for using mixed inference tech-
niques. It provides advanced tools and methods for data acquisition, sharing,
and management.

A.2.7 XpertRule

The tool [4] supports developing rule-based systems. It uses a simple visual
knowledge builder which maps knowledge modules to decision trees, which
constitute main knowledge representation units. It also provides additional
features, such as fuzzy reasoning.

A.2.8 ILOG

This integrated environment supports the development and optimization of
expert systems [45]. It uses internal knowledge representation language to de-
scribe rule-based system. Ilog products contain multiple development tools,
including Ilog JRules, a Java and XML-based library.
2 Cake is a registered trademark of AITech Artificial Intelligence Laboratory, Ka-
towice, Poland. The name stands for Computer-Aided Knowledge Engineering.
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A.3 Experimental Systems and New Developments

A.4 IxTeT System

IxTeT is another advanced tool developed for dealing with representation
and analysis of time-dependent knowledge. Its main functionality consists of
representation and dealing with temporal knowledge representation for moni-
toring dynamic changes. It can follow prespecified sequences of events in order
to ensure that a sequence is properly followed. It can also detect some fault
situations as specific predefined situations.

A.5 The Qualitative Engine CA-EN

Ca-En is a universal system for simulation and consistency-based diagnosis of
dynamic systems with use of qualitative models. The main application include
qualitative simulation; it can also be applied for partial diagnostic inference
based on inconsistency detection. A more detailed presentation can be found
in [127].

A.6 TIGER: a Real-Time Gas Turbine
Monitoring System

This is a large, real-domain application in knowledge-based monitoring, su-
pervision, and diagnosis. The system operates on-line, 24 hours a day, and
is applied for continuous monitoring, situation assessment and diagnosis of
gas turbines. Its distinctive features include application of the above tools,
i.e. Kheops, IxTeT, and Ca-En, systems, i.e. it is a multi-strategy, multi-
component system. Details about the Tiger system can be found in the lit-
erature quoted above (with respect to its components) and overall presenta-
tions are in recent presentation of the state-of-the-art concerning the Tiger
methodology and applications can be found in [127] and [88].

A.7 RuleML

RuleML [9] is an XML-based rule markup language devoted to knowledge
representation issues. RuleML encompasses a hierarchy of rules, including
reactive rules (event-condition-action rules), transformation rules (functional-
equational rules), derivation rules (implicational-inference rules), also ones
restricted to facts (‘premiseless’ derivation rules) and queries (‘conclusionless’
derivation rules), as well as integrity-constraints (consistency-maintenance
rules).
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The RuleML hierarchy of general rules branches into the two direct cate-
gories of reaction rules and transformation rules. On the next level, transfor-
mation rules specialize to the subcategory of derivation rules. Then, derivation
rules have further subsubcategories, namely facts and queries. Finally, queries
specialize to integrity constraints.
In order to represent different rule syntax and semantics RuleML has sev-

eral dialects, or sublanguages, including: Datalog and Hornlog. The former is
suitable for representing rules equivalent to Horn clauses.

A.8 VisiRule

VisiRule is a graphical tool for designing, developing and delivering business
rule and decision support applications. The user can draw a flowchart that
represents the decision logic. The main components of this tool are consti-
tuted by several predefined blocks, and the crucial components are Question
Boxes with various outputs defining answer possibilities. The system oper-
ates under Windows in the WIN-Prolog environment of LPA (Logic Pro-
gramming Associates. More information can be found in the WWW page
http://www.lpa.co.uk.
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Selected Web Resources

In this appendix a list of some selected resources concerning rule-based sys-
tems and tools is provided1.

B.1 Expert and Rule-Based Systems Resources

Expert System Shells

The site contains a variety of Expert System and Production Systems re-
sources.
http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/expert/0.
html

PD OPS5

Public domain implementation of an Ops5 interpreter.
http://www.idiom.com/free-compilers/TOOL/OPS5-1.html

CLIPS

Main page of Clips expert system shell.
http://www.ghg.net/clips/CLIPS.html

InfoSapient

InfoSapient is an Open Source for business rule management implemented
in Java. It employs XML for knowledge and rule representation.
http://info-sapient.sourceforge.net

1 The list is provided courtesy of Grzegorz Jacek Nalepa, Ph.D. and it is extracted
from his Ph.D. Thesis [92].
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JEOPS

JEOPS is a rule-based inference engine extending Java with a forward-
chaining inference engine.
http:www.di.ufpe.br/~jeops

Jess

Jess is a rule engine and scripting environment written entirely in Sun’s
Java language by Ernest Friedman-Hill at Sandia National Laboratories in
Livermore, CA. Jess was originally inspired by the Clips expert system shell,
but has grown into a complete, distinct, dynamic environment of its own.
http://herzberg.ca.sandia.gov/jess

Mandarax and Oryx

Mandarax is an open source Java class library for business (deduction)
rules. It provides an infrastructure for defining, managing and querying rule
bases.
http://mandarax.sourceforge.net

Oryx Standalone is a graphical user interface application to design and
maintain Mandarax knowledge bases.
http://www.jbdietrich.de

OFBiz Rule Engine

OFBiz is a set of tools for business applications. It contains Prolog-based
inference engine.
http://www.ofbiz.org

W4 Project

The W4 project aims at developing Standard Prolog inter-operable tools for
supporting distributed, secure, and integrated reasoning activities in the Se-
mantic Web.
http://centria.di.fct.unl.pt/~cd/projectos/w4

B.2 RBS-related XML Resources

RuleML

Rule Markup Language main page.
http://www.ruleml.org



B.3 Selected AI Links 291

Essential RuleML

A primer on RuleML.
http://www.ruleml.org/submission/essentialruleml.html

LogicML

LogicML is a simple rules markup language for reasoning on the web and
interchanging rules. RuleML was the primary reference language in creating
LogicML. LogicML includes elements for representing ruleflows. Ruleflow is
a distinct feature of commercial rule engine systems, which allows people to
author rule-base in the aspect of decision sequence.
http://machine-knows.etri.re.kr/bossam/docs/logicml.html

B.3 Selected AI Links

CMU Artificial Intelligence Repository

The AI Repository was established by Mark Kantrowitz in 1993 to collect
free software and materials of general interest to AI researchers, educators,
students, and practitioners.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/0.html

AI Depot

News, knowledge and discussion for the AI enthusiasts.
http://ai-depot.com/

AboutAI

An AI portal.
http://www.aboutai.net

Artificial Intelligence, History, Philosophy and Practice

A comprehensive collection of links.
http://www.tau.ac.il/humanities/philos/ai

Generation5

An AI portal.
http://www.generation5.org

KurzweilAI.Net

KurzweilAI.net features the big thoughts of today’s big thinkers examining
the confluence of accelerating revolutions that are shaping our future world,
and the inside story on new technological and social realities from the pioneers
actively working in these areas.
http://www.kurzweilai.net
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AI and VV

Comprehensive AI and verification and validation links.
http://membres.lycos.fr/hgwet/aistuff.htm

AI Wiki

This is a collaboratively created and edited area dedicated to all facets of
Artificial Intelligence
http://www.ifi.unizh.ch/ailab/aiwiki

eBook2U AI

A large collection of references to AI resources, projects and tools.
http://www.ebook2u.com/web/Computers/Artificial_Intelligence

PC AI

PCAI Artificial Intelligence: Free eMagazine, White Papers, Demos, Products,
Glossary, Links
http://www.pcai.com

B.4 Selected Prolog Compilers and Environments

SWI Prolog

A very popular, nice and powerful Prolog compiler. SWI-Prolog is a Free
Software Prolog compiler, licensed under the Lesser GNU Public License.
Together with its graphics toolkit Xpce, its development started in 1987 and
has been driven by the needs for real-world applications. Being free, small and
standard compliant, SWI-Prolog has become very popular for education.
http://www.swi-prolog.org

GNU Prolog

GNU Prolog is a free Prolog compiler with constraint solving over fi-
nite domains developed by Daniel Diaz. GNU Prolog accepts Prolog+
constraint programs and produces native binaries (like gcc does from a C
source). The obtained executable is then stand-alone. The performances of
GNU Prolog are very encouraging (comparable to commercial systems).
Beside the native-code compilation, GNU Prolog offers a classical interac-
tive interpreter (top-level) with a debugger. The Prolog part conforms to the
ISO standard for Prolog with many extensions very useful in practice. GNU
Prolog also includes an efficient constraint solver over Finite Domains (FD).
This opens constraint logic programming to the user combining the power of
constraint programming to the declarative nature of of logic programming.
http://pauillac.inria.fr/~diaz/gnu-prolog/
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XSB

XSB is a Logic Programming and Deductive Database system for Unix and
Windows. It is being developed at the Computer Science Department of the
Stony Brook University, in collaboration with Katholieke Universiteit Leuven,
Universidade Nova de Lisboa, Uppsala Universitet and XSB, Inc. XSB is li-
censed under GNU Lesser General Public License.
http://xsb.sourceforge.net

Amzi! Prolog + Logic Server

Offers embedding Prolog rule-based components in C/C++, Java, Delphi,
Visual Basic, Web Servers (Servlets, JSP, ASP.NET, CGI) and more; devel-
oping Unicode and/or ASCII logicbases; using the Amzi! Eclipse IDE with
source code debugger for local, embedded and remote Prolog components.
Free edition (180 days single PC license) is available.
http://www.amzi.com

LPA Prolog

LPA Prolog is a modern Prolog compiler and environment operating un-
der Windows. They offer also an expert system shell and a visual editor named
VisiRule.
http://www.lpa.co.uk

B.5 Books and Tutorials

Logic, Programming and Prolog

The classic book on logic programming by Ulf Nilsson and Jan Maluszynski,
previously published by John Wiley and Sons Ltd.
http://www.ida.liu.se/~ulfni/lpp

Adventure in Prolog

The book by Dennis Merritt, published on-line by Amzi! Inc.
http://www.amzi.com/AdventureInProlog/advtop.htm

Building Expert Systems in Prolog

The book by Dennis Merritt, published on-line by Amzi! Inc.
http://www.amzi.com/ExpertSystemsInProlog/xsiptop.htm

Prolog Programming A First Course

The course by Paul Brna is intended for undergraduate students who have
some programming experience and may even have written a few programs in
Prolog.
http://cblpc0142.leeds.ac.uk/~paul/prologbook
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Prolog programming

An on-line guide to Prolog by Roman Bartak.
http://kti.mff.cuni.cz/~bartak/prolog

Prolog tutorial

A very comprehensive tutorial by J.R.Fisher.
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

Quick Prolog

An introductory book about Prolog.
http://www.dai.ed.ac.uk/groups/ssp/bookpages/quickprolog/quickprolog.html

Learn Prolog Now

An on-line Prolog course.
http://www.coli.uni-sb.de/~kris/prolog-course

B.6 Selected Resources

WWW Library

Virtual Library The World Wide Web, Logic Programming resources and
links.
http://vl.fmnet.info/logic-prog

Prolog Information

Prolog programming Information.
http://www.programming-x.com/programming/prolog.html

Logic Programming

The web page is devoted to the development of the use of logic programming
and Prolog world-wide.
http://www.logic-programming.org

Prolog Links

A resource page for Prolog programmers.
http://www.codebox.8m.com/prolog.htm
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CMU Prolog Repository

The Prolog Repository is part of the CMU Artificial Intelligence Reposi-
tory. The goal of the Prolog Repository is to collect files and programs of
general interest to Prolog programmers. Information files include the FAQ
(Frequently Asked Questions) postings for the comp.lang.prolog newsgroup
and copies of the draft standard for Prolog.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/

ai-repository/ai/lang/prolog/0.html

AI Logic Programming

http://www.pcai.com/web/ai_info/logic_programming.html

B.G. Mirella

At the following address some details on Mirella, the system mentioned in
this book are available.
http://mirella.ia.agh.edu.pl
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