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Preface

Mathematical Control Theory is a branch of Mathematics having as one of its
main aims the establishment of a sound mathematical foundation for the con-
trol techniques employed in several different fields of applications, including
engineering, economy, biology and so forth. The systems arising from these ap-
plied Sciences are modeled using different types of mathematical formalism,
primarily involving Ordinary Differential Equations, or Partial Differential
Equations or Functional Differential Equations. These equations depend on
one or more parameters that can be varied, and thus constitute the control as-
pect of the problem. The parameters are to be chosen so as to obtain a desired
behavior for the system. From the many different problems arising in Control
Theory, the C.I.M.E. school focused on some aspects of the control and opti-
mization of nonlinear, not necessarily smooth, dynamical systems. Two points
of view were presented: Geometric Control Theory and Nonlinear Control
Theory. The C.I.M.E. session was arranged in five six-hours courses delivered
by Professors A.A. Agrachev (SISSA-ISAS, Trieste and Steklov Mathematical
Institute, Moscow), A.S. Morse (Yale University, USA), E.D. Sontag (Rutgers
University, NJ, USA), H.J. Sussmann (Rutgers University, NJ, USA) and V.I.
Utkin (Ohio State University Columbus, OH, USA).

We now briefly describe the presentations.
Agrachev’s contribution began with the investigation of second order in-

formation in smooth optimal control problems as a means of explaining the
variational and dynamical nature of powerful concepts and results such as
Jacobi fields, Morse’s index formula, Levi-Civita connection, Riemannian cur-
vature. These are primarily known only within the framework of Riemannian
Geometry. The theory presented is part of a beautiful project aimed at inves-
tigating the connections between Differential Geometry, Dynamical Systems
and Optimal Control Theory.

The main objective of Morse’s lectures was to give an overview of a va-
riety of methods for synthesizing and analyzing logic-based switching con-
trol systems. The term “logic-based switching controller” is used to denote a
controller whose subsystems include not only familiar dynamical components
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(integrators, summers, gains, etc.) but logic-driven elements as well. An im-
portant category of such control systems are those consisting of a process to
be controlled, a family of fixed-gain or variable-gain candidate controllers, and
an “event-drive switching logic” called a supervisor whose job is to determine
in real time which controller should be applied to the process. Examples of
supervisory control systems include re-configurable systems, and certain types
of parameter-adaptive systems.

Sontag’s contribution was devoted to the input to state stability (ISS) par-
adigm which provides a way of formulating questions of stability with respect
to disturbances, as well as a method to conceptually unify detectability, in-
put/output stability, minimum-phase behavior, and other systems properties.
The lectures discussed the main theoretical results concerning ISS and related
notions. The proofs of the results showed in particular connections to relax-
ations for differential inclusions, converse Lyapunov theorems, and nonsmooth
analysis.

Sussmann’s presentation involved the technical background material for a
version of the Pontryagin Maximum Principle with state space constraints and
very weak technical hypotheses. It was based primarily on an approach that
used generalized differentials and packets of needle variations. In particular, a
detailed account of two theories of generalized differentials, the “generalized
differential quotients” (GDQs) and the “approximate generalized differential
quotients” (AGDQs), was presented. Then the resulting version of the Maxi-
mum Principle was stated.

Finally, Utkin’s contribution concerned the Sliding Mode Control concept
that for many years has been recognized as one of the key approaches for the
systematic design of robust controllers for complex nonlinear dynamic sys-
tems operating under uncertainty conditions. The design of feedback control
in systems with sliding modes implies design of manifolds in the state space
where control components undergo discontinuities, and control functions en-
forcing motions along the manifolds. The design methodology was illustrated
by sliding mode control to achieve different objectives: eigenvalue placement,
optimization, disturbance rejection, identification.

The C.I.M.E. course was attended by fifty five participants from several
countries. Both graduate students and senior mathematicians intensively fol-
lowed the lectures, seminars and discussions in a friendly and co-operative
atmosphere.

As Editors of these Lectures Notes we would like to thank the persons and
institutions that contributed to the success of the course. It is our pleasure
to thank the Scientific Committee of C.I.M.E. for supporting our project: the
Director, Prof. Pietro Zecca and the Secretary, Prof. Elvira Mascolo for their
support during the organization. We would like also to thank Carla Dionisi
for her valuable and efficient work in preparing the final manuscript for this
volume.
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Our special thanks go to the lecturers for their early preparation of the
material to be distributed to the participants, for their excellent performance
in teaching the courses and their stimulating scientific contributions.

We dedicate this volume to our teacher Prof. Roberto Conti, one of the
pioneers of Mathematical Control Theory, who contributed in a decisive way
to the development and to the international success of Fondazione C.I.M.E.

Siena and Firenze, May 2006 Paolo Nistri
Gianna Stefani
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Preface

These notes are based on the mini-course given in June 2004 in Cetraro,
Italy, in the frame of a C.I.M.E. school. Of course, they contain much more
material that I could present in the 6 h course. The idea was to explain a
general variational and dynamical nature of nice and powerful concepts and
results mainly known in the narrow framework of Riemannian Geometry.
This concerns Jacobi fields, Morse’s index formula, Levi-Civita connection,
Riemannian curvature and related topics.

I tried to make the presentation as light as possible: gave more details in
smooth regular situations and referred to the literature in more complicated
cases. There is an evidence that the results described in the notes and treated
in technical papers we refer to are just parts of a united beautiful subject to
be discovered on the crossroads of Differential Geometry, Dynamical Systems,
and Optimal Control Theory. I will be happy if the course and the notes
encourage some young ambitious researchers to take part in the discovery and
exploration of this subject.
Acknowledgments. I would like to express my gratitude to Professor
Gamkrelidze for his permanent interest to this topic and many inspiring
discussions and to thank participants of the school for their surprising and
encouraging will to work in the relaxing atmosphere of the Mediterranean
resort.

1 Lagrange Multipliers’ Geometry

1.1 Smooth Optimal Control Problems

In these lectures we discuss some geometric constructions and results emerged
from the investigation of smooth optimal control problems. We will consider
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problems with integral costs and fixed endpoints. A standard formulation of
such a problem is as follows: Minimize a functional

J t1t0 (u(·)) =

t1∫

t0

ϕ(q(t), u(t)) dt, (1)

where
q̇(t) = f(q(t), u(t)), u(t) ∈ U, ∀t ∈ [t0, t1], (2)

q(t0) = q0, q(t1) = q1. Here q(t) ∈ R
n, U ⊂ R

k, a control function u(·) is
supposed to be measurable bounded while q(·) is Lipschitzian; scalar function
ϕ and vector function f are smooth. A pair (u(·), q(·)) is called an admissible
pair if it satisfies differential (2) but may violate the boundary conditions.

We usually assume that Optimal Control Theory generalizes classical Cal-
culus of Variations. Unfortunately, even the most classical geometric varia-
tional problem, the length minimization on a Riemannian manifold, cannot
be presented in the just described way. First of all, even simplest mani-
folds, like spheres, are not domains in R

n. This does not look as a serious
difficulty: we slightly generalize original formulation of the optimal control
problem assuming that q(t) belongs to a smooth manifold M instead of R

n.
Then q̇(t) is a tangent vector to M , i.e., q̇(t) ∈ Tq(t)M and we assume that
f(q, u) ∈ TqM, ∀q, u. Manifold M is called the state space of the optimal
control problem.

Now we will try to give a natural formulation of the length minimiza-
tion problem as an optimal control problem on a Riemannian manifold M .
Riemannian structure on M is (by definition) a family of Euclidean scalar
products 〈·, ·〉q on TqM, q ∈ M , smoothly depending on q. Let f1(q), . . . , fn(q)
be an orthonormal basis of TqM for the Euclidean structure 〈·, ·〉q selected in
such a way that fi(q) are smooth with respect to q. Then any Lipschitzian
curve on M satisfies a differential equation of the form:

q̇ =
n∑
i=1

ui(t)fi(q), (3)

where ui(·) are measurable bounded scalar functions. In other words, any
Lipschitzian curve on M is an admissible trajectory of the control system (3).

The Riemannian length of the tangent vector
n∑
i=1

uifi(q) is
(

n∑
i=1

u2
i

)1/2

.

Hence the length of a trajectory of system (3) defined on the segment [t0, t1]

is �(u(·)) =
∫ t1
t0

(
n∑
i=1

u2
i (t)
)1/2

dt. Moreover, it is easy to derive from the

Cauchy–Schwarz inequality that the length minimization is equivalent to the

minimization of the functional J t1t0 (u(·)) =
∫ t1
t0

n∑
i=1

u2
i (t) dt. The length mini-

mization problem is thus reduced to a specific optimal control problem on the
manifold of the form (1), (2).
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Unfortunately, what I have just written was wrong. It would be correct
if we could select a smooth orthonormal frame fi(q), q ∈ M, i = 1, . . . , n.
Of course, we can always do it locally, in a coordinate neighborhood of M
but, in general, we cannot do it globally. We cannot do it even on the two-
dimensional sphere: you know very well that any continuous vector field on
the two-dimensional sphere vanishes somewhere. We thus need another more
flexible formulation of a smooth optimal control problem.

Recall that a smooth locally trivial bundle over M is a submersion π :
V → M , where all fibers Vq = π−1(q) are diffeomorphic to each other and,
moreover, any q ∈ M possesses a neighborhood Oq and a diffeomorphism
Φq : Oq × Vq → π−1(Oq) such that Φq(q′, Vq) = Vq′ , ∀q′ ∈ Oq. In a less
formal language one can say that a smooth locally trivial bundle is a smooth
family of diffeomorphic manifolds Vq (the fibers) parameterized by the points
of the manifold M (the base). Typical example is the tangent bundle TM =⋃
q∈M

TqM with the canonical projection π sending TqM into q.

Definition. A smooth control system with the state space M is a smooth
mapping f : V → TM , where V is a locally trivial bundle over M and f(Vq) ⊂
TqM for any fiber Vq, q ∈ M . An admissible pair is a bounded1 measurable
mapping v(·) : [t0, t1] → V such that t �→ π(v(t)) = q(t) is a Lipschitzian
curve in M and q̇(t) = f(v(t)) for almost all t ∈ [t0, t1]. Integral cost is a

functional J t1t0 (v(·)) =
t1∫
t0

ϕ(v(t)) dt, where ϕ is a smooth scalar function on V .

Remark. The above more narrow definition of an optimal control problem
on M was related to the case of a trivial bundle V = M × U, Vq = {q} × U .
For the length minimization problem we have V = TM, f = Id, ϕ(v) =
〈v, v〉q, ∀v ∈ TqM, q ∈ M .

Of course, any general smooth control system on the manifold M is locally
equivalent to a standard control system on R

n. Indeed, any point q ∈ M
possesses a coordinate neighborhood Oq diffeomorphic to R

n and a mapping
Φq : Oq × Vq → π−1(Oq) trivializing the restriction of the bundle V to Oq;
moreover, the fiber Vq can be embedded in R

k and thus serve as a set of
control parameters U .

Yes, working locally we do not obtain new systems with respect to those
in R

n. Nevertheless, general intrinsic definition is very useful and instructive
even for a purely local geometric analysis. Indeed, we do not need to fix spe-
cific coordinates on M and a trivialization of V when we study a control
system defined in the intrinsic way. A change of coordinates in M is actually
a smooth transformation of the state space while a change of the trivialization
results in the feedback transformation of the control system. This means that
an intrinsically defined control system represents actually the whole class of

1 The term “bounded” means that the closure of the image of the mapping is
compact.
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systems that are equivalent with respect to smooth state and feedback trans-
formations. All information on the system obtained in the intrinsic language
is automatically invariant with respect to smooth state and feedback trans-
formations. And this is what any geometric analysis intends to do: to study
properties of the object under consideration preserved by the natural trans-
formation group.

We denote by L∞([t0, t1];V ) the space of measurable bounded mappings
from [t0, t1] to V equipped with the L∞-topology of the uniform conver-
gence on a full measure subset of [t0, t1]. If V were an Euclidean space, then
L∞([t0, t1];V ) would have a structure of a Banach space. Since V is only
a smooth manifold, then L∞([t0, t1];V ) possesses a natural structure of a
smooth Banach manifold modeled on the Banach space L∞([t0, t1]; RdimV ).

Assume that V → M is a locally trivial bundle with the n-dimensional
base and m-dimensional fibers; then V is an (n+m)-dimensional manifold.

Proposition 1.1. Let f : V → TM be a smooth control system; then the
space V of admissible pairs of this system is a smooth Banach submanifold of
L∞([t0, t1];V ) modeled on R

n × L∞([t0, t1]; Rm).

Proof. Let v(·) be an admissible pair and q(t) = π(v(t)), t ∈ [t0, t1]. There
exists a Lipschitzian with respect to t family of local trivializations Rt : Oq(t)×
U → π−1(Oq(t)), where U is diffeomorphic to the fibers Vq. The construction
of such a family is a boring exercise which we omit.

Consider the system

q̇ = f ◦Rt(q, u), u ∈ U. (4)

Let v(t) = Rt(q(t), u(t)); then Rt, t0 ≤ t ≤ t1, induces a diffeomorphism of
an L∞-neighborhood of (q(·), u(·)) in the space of admissible pairs for (4) on
a neighborhood of v(·) in V. Now fix t̄ ∈ [t0, t1]. For any q̂ close enough to
q(t̄) and any u′(·) sufficiently close to u(·) in the L∞-topology there exists
a unique Lipschitzian path q′(·) such that q̇′(t) = f ◦ Rt(q′(t), u′(t))), t0 ≤
t ≤ t1, q

′(t̄) = q̂; moreover the mapping (q̂, u′(·)) �→ q′(·) is smooth. In other
words, the Cartesian product of a neighborhood of q(t̄) in M and a neighbor-
hood of u(·) in L∞([t0, t1], U) serves as a coordinate chart for a neighborhood
of v(·) in V. This finishes the proof since M is an n-dimensional manifold and
L∞([t0, t1], U) is a Banach manifold modeled on L∞([t0, t1],Rm). �

An important role in our study will be played by the “evaluation map-
pings” Ft : v(·) �→ q(t) = π(v(t)). It is easy to show that Ft is a smooth
mapping from V to M . Moreover, it follows from the proof of Proposition 1.1
that Ft is a submersion. Indeed, q(t) = Ft(v(·)) is, in fact a part of the coor-
dinates of v(·) built in the proof (the remaining part of the coordinates is the
control u(·)).

1.2 Lagrange Multipliers

Smooth optimal control problem is a special case of the general smooth con-
ditional minimum problem on a Banach manifold W. The general problem
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consists of the minimization of a smooth functional J : W → R on the level
sets Φ−1(z) of a smooth mapping Φ : W → N , where N is a finite-dimensional
manifold. In the optimal control problem we have W = V, N = M ×M, Φ =
(Ft0 , Ft1).

An efficient classical way to study the conditional minimum problem is
the Lagrange multipliers rule. Let us give a coordinate free description of this
rule. Consider the mapping

Φ̄ = (J, Φ) : W → R ×N, Φ̄(w) = (J(w), Φ(w)), w ∈ W.

It is easy to see that any point of the local conditional minimum or maxi-
mum (i.e., local minimum or maximum of J on a level set of Φ) is a crit-
ical point of Φ̄. I recall that w is a critical point of Φ̄ if the differential
DwΦ̄ : TwW → TΦ̄(w) (R ×N) is not a surjective mapping. Indeed, if DwΦ̄
were surjective then, according to the implicit function theorem, the image
Φ̄(Ow) of an arbitrary neighborhood Ow of w would contain a neighborhood
of Φ̄(w) = (J(w), Φ(w)); in particular, this image would contain an interval
((J(w) − ε, J(w) + ε), Φ(w)) that contradicts the local conditional minimality
or maximality of J(w).

The linear mapping DwΦ̄ is not surjective if and only if there exists a
nonzero linear form �̄ on TΦ̄(w) (R ×N) which annihilates the image of DwΦ̄.
In other words, �̄DwΦ̄ = 0, where �̄DwΦ̄ : TwW → R is the composition of
DwΦ̄ and the linear form �̄ : TΦ̄(w) (R ×N) → R.

We have TΦ̄(w) (R ×N) = R×TΦ(w)N . Linear forms on (R ×N) constitute
the adjoint space (R ×N)∗ = R⊕T ∗

Φ(w)N , where T ∗
Φ(w)N is the adjoint space

of TΦ(w)M (the cotangent space to M at the point Φ(w)). Hence � = ν ⊕ �,
where ν ∈ R, � ∈ T ∗

Φ(w)N and

�̄DwΦ̄ = (ν ⊕ �) (dwJ,DwΦ) = νdwJ + �DwΦ.

We obtain the equation
νdwJ + �DwΦ = 0. (5)

This is the Lagrange multipliers rule: if w is a local conditional extremum,
then there exists a nontrivial pair (ν, �) such that (5) is satisfied. The pair
(ν, �) is never unique: indeed, if α is a nonzero real number, then the pair
(αν, α�) is also nontrivial and satisfies (5). So the pair is actually defined up
to a scalar multiplier; it is natural to treat this pair as an element of the
projective space P

(
R ⊕ T ∗

Φ(w)N
)

rather than an element of the linear space.
The pair (ν, �) which satisfies (5) is called the Lagrange multiplier associ-

ated to the critical point w. The Lagrange multiplier is called normal if ν �= 0
and abnormal if ν = 0. In these lectures we consider only normal Lagrange
multipliers, they belong to a distinguished coordinate chart of the projective
space P

(
R ⊕ T ∗

Φ(w)N
)
.
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Any normal Lagrange multiplier has a unique representative of the form
(−1, �); then (5) is reduced to the equation

�DwΦ = dwJ. (6)

The vector � ∈ T ∗
Φ(w)N from (6) is also called a normal Lagrange multiplier

(along with (−1, �)).

1.3 Extremals

Now we apply the Lagrange multipliers rule to the optimal control problem.
We have Φ = (Ft0 , Ft1) : V → M ×M . Let an admissible pair v ∈ V be a
critical point of the mapping

(
J t1t0 , Φ
)
, the curve q(t) = π(v(t)), t0 ≤ t ≤ t1

be the corresponding trajectory, and � ∈ T ∗
(q(t0),q(t1))

(M ×M) be a normal
Lagrange multiplier associated to v(·). Then

�Dv (Ft0 , Ft1) = dvJ
t1
t0 . (7)

We have T ∗
(q(t0),q(t1))

(M ×M) = T ∗
q(t0)

M ×T ∗
q(t1)

M , hence � can be presented
in the form � = (−λt0 , λt1), where λti ∈ T ∗

q(ti)
M, i = 0, 1. Equation (7) takes

the form
λt1DvFt1 − λt0DvFt0 = dvJ

t1
t0 . (8)

Note that λt1 in (8) is uniquely defined by λt0 and v. Indeed, assume that
λ′t1DvFt1−λt0DvFt0 = dvJ

t1
t0 for some λ′t1 ∈ T ∗

q(t1)
M . Then (λ′t1−λt1)DvFt1 =

0. Recall that Ft1 is a submersion, hence DvFt1 is a surjective linear map and
λ′t1 − λt1 = 0.

Proposition 1.2. Equality (8) implies that for any t ∈ [t0, t1] there exists a
unique λt ∈ T ∗

q(t)M such that

λtDvFt − λt0DvFt0 = dvJ
t
t0 (9)

and λt is Lipschitzian with respect to t.

Proof. The uniqueness of λt follows from the fact that Ft is a submersion
as it was explained few lines above. Let us proof the existence. To do that
we use the coordinatization of V introduced in the proof of Proposition 1.1,
in particular, the family of local trivializations Rt : Oq(t) × U → π−1(Oq(t)).
Assume that v(t) = Rt(q(t), u(t)), t0 ≤ t ≤ t1, where v(·) is the referenced
admissible pair from (8).

Given τ ∈ [t0, t1], q̂ ∈ Oq(τ) let t �→ Qt
τ (q̂) be the solution of the differential

equation q̇ = Rt(q, u(t)) which satisfies the condition Qτ
τ (q̂) = q̂. In particular,

Qt
τ (q(τ)) = q(t). Then Qt

τ is a diffeomorphism of a neighborhood of q(τ) on
a neighborhood of q(t). We define a Banach submanifold Vτ of the Banach
manifold V in the following way:

Vτ = {v′ ∈ V : π(v′(t)) = Qt
τ (π(v′(τ))), τ ≤ t ≤ t1}.
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It is easy to see that Ft1
∣∣∣
Vτ

= Qt1
τ ◦ Fτ

∣∣∣
Vτ

and J t1τ

∣∣∣
Vτ

= aτ ◦ Fτ , where

aτ (q̂) =
t∫
τ

ϕ (Φt(Qt
τ (q̂), u(t))) dt. On the other hand, the set {v′ ∈ V :

v′|[t0,τ ] ∈ Vτ
∣∣
[t0,τ ]

} is a neighborhood of v in V. The restriction of (8) to
Vτ gives:

λt1Dv

(
Qt1
τ ◦ Fτ

)
− λt0DvFt0 = dvJ

τ
t0 + dv (aτ ◦ Fτ ) .

Now we apply the chain rule for the differentiation and obtain:

λτDvFτ − λt0DvFt0 = dvJ
τ
t0 ,

where λτ = λt1Dq(τ)Q
t1
τ − dq(τ)aτ . �

Definition. A Lipschitzian curve t �→ λt, t0 ≤ t ≤ t1, is called a normal
extremal of the given optimal control problem if there exists an admissible
pair v ∈ V such that equality (9) holds. The projection q(t) = π(λt) of a
normal extremal is called a (normal) extremal path or a (normal) extremal
trajectory.

According to Proposition 1.2, normal Lagrange multipliers are just points
of normal extremals. A good thing about normal extremals is that they satisfy
a nice differential equation which links optimal control theory with a beautiful
and powerful mathematics and, in many cases, allows to explicitly characterize
all extremal paths.

1.4 Hamiltonian System

Here we derive equations which characterize normal extremals; we start from
coordinate calculations. Given τ ∈ [t0, t1], fix a coordinate neighborhood O in
M centered at q(τ), and focus on the piece of the extremal path q(·) which
contains q(τ) and is completely contained in O. Identity (9) can be rewritten
in the form

λtDvFt − λτDvFτ = dvJ
t
τ , (10)

where q(t) belongs to the piece of q(·) under consideration. Fixing coordinates
and a local trivialization of V we (locally) identify our optimal control problem
with a problem (1), (2) in R

n. We have T ∗
R
n ∼= R

n×R
n = {(p, q) : p, q ∈ R

n},
where T ∗

q R
n = R

n×{q}. Then λt = {p(t), q(t)} and λtDvFt· = 〈p(t),DvFt·〉 =
Dv〈p(t), Ft〉.

Admissible pairs of (2) are parameterized by q̂ = Fτ (v′), v′ ∈ V, and
control functions u′(·); the pairs have the form: v′ = (u′(·), q′(·; q̂, u′(·))), where
∂
∂tq

′(t; q̂, u′(·)) = f (q′(t; q̂, u′(·)), u′(t)) for all available t and q′(τ ; q̂, u(·)) = q̂.
Then Ft(v′) = q′(t; q̂, u′(·)).
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Now we differentiate identity (10) with respect to t: ∂
∂tDv〈p(t), Ft〉 = ∂

∂tdvJ
t
τ

and change the order of the differentiation Dv
∂
∂t 〈p(t), Ft〉 = dv

∂
∂tJ

t
τ . We com-

pute the derivatives with respect to t at t = τ :

∂

∂t
〈p(t), Ft〉

∣∣
t=τ

= 〈ṗ(τ), q̂〉 + 〈p(τ), f(q̂, u′(τ))〉, ∂

∂t
J tτ
∣∣
t=τ

= ϕ(q̂, u′(τ)).

Now we have to differentiate with respect to v′(·) = (u′(·), q′(·)). We however
see that the quantities to differentiate depend only on the values of u′(·) and
q′(·) at τ , i.e., on the finite-dimensional vector (u′(τ), q̂). We derive:

ṗ(τ) +
∂

∂q
〈p(τ), f(q(τ), u(τ))〉 =

∂ϕ

∂q
(q(t), u(t)),

∂

∂u
〈p(τ), f(q(τ), u(τ))〉 =

∂ϕ

∂u
(q(τ), u(τ)),

where v(·) = (q(·), u(·)).
Of course, we can change τ and perform the differentiation at any available

moment t. Finally, we obtain that (10) is equivalent to the identities

ṗ(t) +
∂

∂q
(〈p(t), f(q(t), u(t))〉 − ϕ(q(t), u(t))) = 0,

∂

∂u
(〈p(t), f(q(t), u(t))〉 − ϕ(q(t), u(t))) = 0,

which can be completed by the equation q̇ = f(q(t), u(t)). We introduce a
function h(p, q, u) = 〈p, f(q, u)〉 − ϕ(q, u) which is called the Hamiltonian of
the optimal control problem (1), (2). This function permits us to present the
obtained relations in a nice Hamiltonian form:

⎧⎪⎪⎨
⎪⎪⎩
ṗ = −∂h

∂q
(p, q, u)

q̇ =
∂h

∂p
(p, q, u)

,
∂h

∂u
(p, q, u) = 0. (11)

A more important fact is that system (11) has an intrinsic coordinate free
interpretation. Recall that in the triple (p, q, u) neither p nor u has an intrinsic
meaning; the pair (p, q) represents λ ∈ T ∗M while the pair (q, u) represents
v ∈ V . First we consider an intermediate case V = M×U (when u is separated
from q but coordinates in M are not fixed) and then turn to the completely
intrinsic setting.

If V = M×U , then f : M×U → TM and f(q, u) ∈ TqM . The Hamiltonian
of the optimal control problem is a function h : T ∗M × U → R defined by
the formula h(λ, u) = λ(f(q, u)) − ϕ(q, u), ∀λ ∈ T ∗

qM, q ∈ M, u ∈ U . For

any u ∈ U we obtain a function hu
def
= h(·, u) on T ∗M . The cotangent bundle

T ∗M possesses a canonical symplectic structure which provides a standard
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way to associate a Hamiltonian vector field to any smooth function on T ∗M .
We will recall this procedure.

Let π : T ∗M → M be the projection, π(T ∗
qM) = {q}. The Liouville

(or tautological) differential 1-form ς on T ∗M is defined as follows. Let
ςλ : Tλ(T ∗M) → R be the value of ς at λ ∈ T ∗M , then ςλ = λ ◦ π∗,
the composition of π∗ : Tλ(T ∗M) → Tπ(λ)M and the cotangent vector
λ : Tπ(λ)M → R. The coordinate presentation of the Liouville form is:

ς(p,q) = 〈p, dq〉 =
n∑
i=1

pidqi, where p = (p1, . . . , pn), q = (q1, . . . , qn). The

canonical symplectic structure on T ∗M is the differential 2-form σ = dς; its

coordinate representation is: σ =
n∑
i=1

dpi ∧ dqi. The Hamiltonian vector field

associated to a smooth function a : T ∗M → R is a unique vector field a on
T ∗M which satisfies the equation σ(·,a) = da. The coordinate representation

of this field is: a =
n∑
i=1

(
∂a
∂pi

∂
∂qi

− ∂a
∂qi

∂
∂pi

)
. Equations (11) can be rewritten in

the form:
λ̇ = hu(λ),

∂h

∂u
(λ, u) = 0. (12)

Now let V be an arbitrary locally trivial bundle over M . Consider the Carte-
sian product of two bundles:

T ∗M ×M V = {(λ, v) : v ∈ Vq, λ ∈ T ∗
qM, q ∈ M}

that is a bundle over M whose fibers are Cartesian products of the correspon-
dent fibers of V and T ∗M . Hamiltonian of the optimal control problem takes
the form h(λ, v) = λ(f(v)) − ϕ(v); this is a well-defined smooth function on
T ∗M ×M U . Let p : T ∗M ×M V → T ∗M be the projection on the first factor,
p : (λ, v) �→ λ. Equations (11) (or (12)) can be rewritten in the completely
intrinsic form as follows: (p∗σ)v(·, λ̇) = dh. One may check this fact in any
coordinates; we leave this simple calculation to the reader.

Of course, by fixing a local trivialization of V , we turn the last relation
back into a more convenient to study (12). A domain D in T ∗M is called
regular for the Hamiltonian h if for any λ ∈ D there exists a unique solution
u = ū(λ) of the equation ∂h

∂u (λ, u) = 0, where ū(λ) is smooth with respect
to λ. In particular, if U is an affine space and the functions u �→ h(λ, u) are
strongly concave (convex) and possess minima (maxima) for λ ∈ D, then D
is regular and ū(λ) is defined by the relation

h(λ, ū(λ)) = max
u∈U

h(λ, u)
(
h(λ, ū(λ)) = min

u∈U
h(λ, u)

)
.

In the regular domain, we set H(λ) = h(λ, ū(λ)), where ∂h
∂u (λ, ū(λ)) = 0. It

is easy to see that (12) are equivalent to one Hamiltonian system λ̇ = H(λ).
Indeed, the equality d(λ,ū(λ))h = dλhū(λ) + ∂hū(λ)

∂u du = dλhū(λ) immediately
implies that H(λ) = hū(λ)(λ).
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1.5 Second Order Information

We come back to the general setting of Sect. 2 and try to go beyond the
Lagrange multipliers rule. Take a pair (�, w) which satisfies (6). We call such
pairs (normal) Lagrangian points. Let Φ(w) = z. If w is a regular point of
Φ, then Φ−1(z) ∩ Ow is a smooth codimension dimN submanifold of W, for
some neighborhood Ow of w. In this case w is a critical point of J

∣∣
Φ−1(z)∩Ow

.

We are going to compute the Hessian of J
∣∣
Φ−1(z)

at w without resolving
the constraints Φ(w) = z. The formula we obtain makes sense without the
regularity assumptions as well.

Let s �→ γ(s) be a smooth curve in Φ−1(z) such that γ(0) = w. Differenti-
ation of the identity Φ(γ(s)) = z gives:

DwΦγ̇ = 0, D2
wΦ(γ̇, γ̇) +DwΦγ̈ = 0,

where γ̇ and γ̈ are the first and the second derivatives of γ at s = 0. We also
have:

d2

ds2
J(γ(s))|s=0 = D2

wJ(γ̇, γ̇) +DwJγ̈
eq.(6)
= ,

D2
wJ(γ̇, γ̇) + �DwΦγ̈ = D2

wJ(γ̇, γ̇) − �D2
wΦ(γ̇, γ̇).

Finally,
Hessw(J

∣∣
Φ−1(z)

) = (D2
wJ − �D2

wΦ)
∣∣
kerDwΦ

. (13)

Proposition 1.3. If quadratic form (13) is positive (negative) definite, then
w is a strict local minimizer (maximizer) of J

∣∣
Φ−1(z)

.

If w is a regular point of Φ, then the proposition is obvious but one can
check that it remains valid without the regularity assumption. On the other
hand, without the regularity assumption, local minimality does not imply non-
negativity of form (13). What local minimality (maximality) certainly implies
is nonnegativity (nonpositivity) of form (13) on a finite codimension subspace
of kerDwΦ (see [7, Ch. 20] and references there).

Definition. A Lagrangian point (�, w) is called sharp if quadratic form (13)
is nonnegative or nonpositive on a finite codimension subspace of kerDwΦ.

Only sharp Lagrangian points are counted in the conditional extremal
problems under consideration. Let Q be a real quadratic form defined on a
linear space E. Recall that the negative inertia index (or the Morse index)
indQ is the maximal possible dimension of a subspace in E such that the
restriction of Q to the subspace is a negative form. The positive inertia index
of Q is the Morse index of −Q. Each of these indices is a nonnegative integer
or +∞. A Lagrangian point (�, w) is sharp if the negative or positive inertia
index of form (13) is finite.

In the optimal control problems, W is a huge infinite dimensional manifold
while N usually has a modest dimension. It is much simpler to characterize
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Lagrange multipliers in T ∗N (see the previous section) than to work directly
with J

∣∣
Φ−1(z)

. Fortunately, the information on the sign and, more generally,
on the inertia indices of the infinite dimensional quadratic form (13) can also
be extracted from the Lagrange multipliers or, more precisely, from the so
called L-derivative that can be treated as a dual to the form (13) object.

L-derivative concerns the linearization of (6) at a given Lagrangian point.
In order to linearize the equation we have to present its left- and right-hand
sides as smooth mappings of some manifolds. No problem with the right-hand
side: w �→ dwJ is a smooth mapping from W to T ∗W. The variables (�, w) of
the left-hand side live in the manifold

Φ∗T ∗N = {(�, w) : � ∈ T ∗
Φ(w), w ∈ W} ⊂ T ∗N × W.

Note that Φ∗T ∗N is a locally trivial bundle over W with the projector π :
(�, w) �→ w; this is nothing else but the induced bundle from T ∗N by the
mapping Φ. We treat (6) as the equality of values of two mappings from
Φ∗T ∗N to T ∗W. Let us rewrite this equation in local coordinates.

So let N = R
m and W be a Banach space. Then T ∗N = R

m∗×R
m (where

TzN = R
m∗ × {z}), T ∗W = W∗ × W, Φ∗T ∗N = R

m∗ × R
m × W. Surely,

R
m∗ ∼= R

m but in the forthcoming calculations it is convenient to treat the
first factor in the product R

m∗×R
m as the space of linear forms on the second

factor. We have: � = (ζ, z) ∈ R
m∗ × R

m and (6) takes the form

ζ
dΦ

dw
=
dJ

dw
, Φ(w) = z. (14)

Linearization of system (14) at the point (ζ, z, w) reads:

ζ ′
dΦ

dw
+ ζ

d2Φ

dw2
(w′, ·) =

d2J

dw2
(w′, ·), dΦ

dw
w′ = z′. (15)

We set

L0
(�,w)(Φ̄) = {�′ = (ζ ′, z′) ∈ T�(T ∗N) : ∃w′ ∈ W s.t. (ζ ′, z′, w′) satisfies (15)}.

Note that subspace L0
(�,w)(Φ̄) ⊂ T�(T ∗N) does not depend on the choice of

local coordinates. Indeed, to construct this subspace we take all (�′, w′) ∈
T(�,w)(Φ∗T ∗N) which satisfy the linearized (6) and then apply the projection
(�′, w′) �→ �′.
Recall that T�(T ∗N) is a symplectic space endowed with the canonical sym-
plectic form σ� (cf. Sect. 1.4). A subspace S ⊂ T�(T ∗N) is isotropic if σ�|S = 0.
Isotropic subspaces of maximal possible dimension m = 1

2 dimT�(T ∗N) are
called Lagrangian subspaces.

Proposition 1.4. L0
(�,w)(Φ̄) is an isotropic subspace of T�(T ∗N). If dim

W < ∞, then L0
(�,w)(Φ̄) is a Lagrangian subspace.
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Proof. First we will prove the isotropy of L0
(�,w)(Φ̄). Let (ζ ′, z′), (ζ ′′, z′′) ∈

T�(T ∗N). We have σ�((ζ ′, z′), (ζ ′′, z′′)) = ζ ′z′′ − ζ ′′z′; here the symbol ζz
denotes the result of the application of the linear form ζ ∈ R

m∗ to the vector
z ∈ R

n or, in the matrix terminology, the product of the row ζ and the
column z. Assume that (ζ ′, z′, w′) and (ζ ′′, z′′, w′′) satisfy (15); then

ζ ′z′′ = ζ ′
dΦ

dw
w′′ =

d2J

dw2
(w′, w′′) − ζ

d2Φ

dw2
(w′, w′′). (16)

The right-hand side of (16) is symmetric with respect to w′ and w′′

due to the symmetry of second derivatives. Hence ζ ′z′′ = ζ ′′z′. In other
words, σ�((ζ ′, z′), (ζ ′′, z′′)) = 0. So L0

(�,w)(Φ̄) is isotropic and, in particular,

dim
(
L0

(�,w)(Φ̄)
)
≤ m.

Now show that the last inequality becomes the equality as soon as W is
finite dimensional. Set Q = d2J

dw2 − ζ d
2Φ
dw2 and consider the diagram:

ζ ′
dΦ

dw
−Q(w′, ·) left←− (ζ ′, w′)

right−→
(
ζ ′,

dΦ

dw
w′
)
.

Then L0
(�,w)(Φ̄) = right(ker(left)). Passing to a factor space if necessary we

may assume that ker(left) ∩ ker(right) = 0; this means that:

dΦ

dw
w′ & Q(w′, ·) = 0 ⇒ w′ = 0. (17)

Under this assumption, dimL0
(�,w)(Φ̄) = dim ker(left). On the other hand,

relations (17) imply that the mapping left : R
m∗ × W → W∗ is surjective.

Indeed, if, on the contrary, the map left is not surjective then there exists
a nonzero vector v ∈ (W∗)∗ = W which annihilates the image of left; in
other words, ζ ′ dΦdwv − Q(w′, v) = 0, ∀ζ ′, w′. Hence dΦ

dwv = 0 & Q(v, ·) =
0 that contradicts (17). It follows that dimL0

(�,w)(Φ̄) = dim(Rm∗ × W) −
dimW∗ = m. �

For infinite dimensional W, the space L0
(�,w)(Φ̄) may have dimension

smaller than m due to an ill-posedness of (15); to guarantee dimension m

one needs certain coercivity of the form ζ d
2Φ
dw2 . I am not going to discuss here

what kind of coercivity is sufficient, it can be easily reconstructed from the
proof of Proposition 1.4 (see also [5]). Anyway, independently on any coerciv-
ity one can take a finite dimensional approximation of the original problem
and obtain a Lagrangian subspace L0

(�,w)(Φ̄) guaranteed by Proposition 1.4.
What happens with these subspaces when the approximation becomes better
and better, do they have a well-defined limit (which would be unavoidably
Lagrangian)? A remarkable fact is that such a limit does exist for any sharp
Lagrangian point. It contains L0

(�,w)(Φ̄) and is called the L-derivative of Φ̄
at (�, w). To formulate this result we need some basic terminology from set
theoretic topology.
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A partially ordered set (A,≺) is a directed set if ∀α1, α2 ∈ A ∃β ∈ A such
that α1 ≺ β and α2 ≺ β. A family {xα}α∈A of points of a topological space X
indexed by the elements of A is a generalized sequence in X . A point x ∈ X is
the limit of the generalized sequence {xα}α∈A if for any neighborhood Ox of
x in X ∃α ∈ A such that xβ ∈ Ox, ∀β � α; in this case we write x = lim

A
xα.

Let w be a finite dimensional submanifold of W and w ∈ w. If (�, w) is
a Lagrangian point for Φ̄ = (J, Φ), then it is a Lagrangian point for Φ̄|w. A
straightforward calculation shows that the Lagrangian subspace L0

(�,w)(Φ̄|w)
depends on the tangent space W = Tww rather than on w, i.e., L0

(�,w)(Φ̄|w) =
L0

(�,w)(Φ̄|w′) as soon as Tww = Tww′ = W . We denote ΛW = L0
(�,w)(Φ̄|w).

Recall that ΛW is an m-dimensional subspace of the 2m-dimensional space
T�(T ∗N), i.e., ΛW is a point of the Grassmann manifold of all m-dimensional
subspaces in T�(T ∗N).

Finally, we denote by W the set of all finite dimensional subspaces of
TwW partially ordered by the inclusion “⊂”. Obviously, (W,⊂) is a directed
set and {ΛW }W∈W is a generalized sequence indexed by the elements of
this directed set. It is easy to check that there exists W0 ∈ W such that
ΛW ⊃ L0

(�,w)(Φ̄), ∀W ⊃ W0. In particular, if L0
(�,w)(Φ̄) is m-dimensional,

then ΛW0 = L0
(�,w)(Φ̄), ∀W ⊃ W0, the sequence ΛW is stabilizing and

L0
(�,w)(Φ̄) = lim

W
ΛW . In general, the sequence ΛW is not stabilizing, never-

theless the following important result is valid.

Theorem 1.1. If (�, w) is a sharp Lagrangian point, then there exists
L(�,w)(Φ̄) = lim

W
ΛW .

We omit the proof of the theorem, you can find this proof in paper [5]
with some other results which allow to efficiently compute lim

W
ΛW . Lagrangian

subspace L(�,w)(Φ̄) = lim
W
ΛW is called the L-derivative of Φ̄ = (J, Φ) at the

Lagrangian point (�, w).
Obviously, L(�,w)(Φ̄) ⊃ L0

(�,w)(Φ̄). One should think on L(�,w)(Φ̄) as on a
completion of L0

(�,w)(Φ̄) by means of a kind of weak solutions to system (15)
which could be missed due to the ill-posedness of the system.

Now we should explain the connection between L(�,w)(Φ̄) and
Hessw(J

∣∣
Φ−1(z)

). We start from the following simple observation:

Lemma 1.1. Assume that dimW < ∞, w is a regular point of Φ and
kerDwΦ ∩ ker(D2

wJ − �D2
wΦ) = 0. Then

ker Hessw(J
∣∣
Φ−1(z)

) = 0 ⇔ L(�,w)(Φ̄) ∩ T�(T ∗
zN) = 0,

i.e., quadratic form Hessw(J
∣∣
Φ−1(z)

) is nondegenerate if and only if the sub-
space L(�,w)(Φ̄) is transversal to the fiber T ∗

zN .
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Proof. We make computations in coordinates. First, T�(T ∗
zN) = {(ζ ′, 0) :

ζ ′ ∈ R
n∗}; then, according to (15), (ζ ′, 0) ∈ L(�,w)(Φ̄) if and only if there

exists w ∈ W such that
dΦ

dw
w′ = 0,

d2J

dw2
(w′, ·) − �

d2Φ

dw2
(w′, ·) = ζ ′

dΦ

dw
. (18)

Regularity of w implies that ζ ′ dΦdw �= 0 and hence w′ �= 0 as soon as ζ ′ �= 0.
Equalities (18) imply: d2J

dw2 (w′, v) − � d
2Φ
dw2 (w′, v) = 0, ∀v ∈ ker dΦ

dw , i.e., w′ ∈
ker Hessw(J

∣∣
Φ−1(z)

). Moreover, our implications are invertible: we could start

from a nonzero vector w′ ∈ ker Hessw(J
∣∣
Φ−1(z)

) and arrive to a nonzero vector
(ζ ′, 0) ∈ L(�,w)(Φ̄). �
Remark. Condition kerDwΦ∩ker(D2

wJ − �D2
wΦ) = 0 from Lemma 1.1 is not

heavy. Indeed, a pair (J, Φ) satisfies this condition at all its Lagrangian points
if and only if 0 is a regular value of the mapping (ζ, w) �→ ζ dΦdw − dJ

dw . Standard
Transversality Theorem implies that this is true for generic pair (J, Φ).

1.6 Maslov Index

Lemma 1.1 is a starting point for a far going theory which allows to effectively
compute the Morse index of the Hessians in terms of the L-derivatives.

How to do it? Normally, extremal problems depend on some parameters.
Actually, z ∈ N is such a parameter and there could be other ones, which
we do not explicitly add to the constraints. In the optimal control problems
a natural parameter is the time interval t1 − t0. Anyway, assume that we
have a continuous family of the problems and their sharp Lagrangian points:
�τDwτ

Φτ = dwτ
Jτ , τ0 ≤ τ ≤ τ1; let Λ(τ) = L(�τ ,wτ )(Φ̄τ ). Our goal is to

compute the difference ind Hesswτ1
(Jτ1
∣∣
Φ−1

τ1 (zτ1 )
) − ind Hesswτ0

(Jτ0
∣∣
Φ−1

τ0 (zτ0 )
)

in terms of the family of Lagrangian subspaces Λ(τ); that is to get a tool
to follow the evolution of the Morse index under a continuous change of the
parameters. This is indeed very useful since for some special values of the
parameters the index could be known a priori. It concerns, in particular,
optimal control problems with the parameter τ = t1 − t0. If t1 − t0 is very
small then sharpness of the Lagrangian point almost automatically implies
the positivity or negativity of the Hessian.

First we discuss the finite-dimensional case: Theorem 1.1 indicates that
finite-dimensional approximations may already contain all essential informa-
tion. Let Qτ be a continuous family of quadratic forms defined on a finite-
dimensional vector space. If kerQτ = 0, τ0 ≤ τ ≤ τ1, then indQτ is constant
on the segment [τ0, τ1]. This is why Lemma 1.1 opens the way to follow evo-
lution of the index in terms of the L-derivative: it locates values of the para-
meter where the index may change. Actually, L-derivative allows to evaluate
this change as well; the increment of indQτ is computed via so called Maslov
index of a family of Lagrangian subspaces. In order to define this index we
have to recall some elementary facts about symplectic spaces.
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Let Σ, σ be a symplectic space, i.e., Σ is a 2n-dimensional vector space and
σ be a nondegenerate anti-symmetric bilinear form on Σ. The skew-orthogonal
complement to the subspace Γ ⊂ Σ is the subspace Γ∠ = {x ∈ Σ : σ(x, Γ ) =
0}. The nondegeneracy of σ implies that dimΓ∠ = 2n − dimΓ . A subspace
Γ is isotropic if and only if Γ∠ ⊃ Γ ; it is Lagrangian if and only if Γ∠ = Γ .

Let Π = span{e1, . . . , en} be a lagrangian subspace of Σ. Then there exist
vectors f1, . . . , fn ∈ Σ such that σ(ei, fj) = δij , where δij is the Kronecker
symbol. We show this using induction with respect to n. Skew-orthogonal
complement to the space span{e1, . . . , en−1} contains an element f which is
not skew-orthogonal to en; we set fn = 1

σ(en,f)f . We have

span{en, fn} ∩ span{en, fn}∠ = 0

and the restriction of σ to span{en, fn}∠ is a nondegenerate bilinear form.
Hence span{en, fn}∠ is a 2(n − 1)-dimensional symplectic space with a
Lagrangian subspace span{e1, . . . , en−1}. According to the induction assump-
tion, there exist f1, . . . , fn−1 such that σ(ei, fj) = δij and we are done.

Vectors e1, . . . , en, f1, . . . , fn form a basis of Σ; in particular,
∆ = span{f1, . . . , fn} is a transversal to Π Lagrangian subspace, Σ = Π⊕∆.

If xi =
n∑
j=1

(ζji ej + zji fj), i = 1, 2, and ζi = (ζ1
i , . . . , ζ

n
i ), zi = (z1

i , . . . , z
n
i )�,

then σ(x1, x2) = ζ1z2 − ζ2z1. The coordinates ζ, z identify Σ with R
n∗ × R

n;
any transversal to ∆ n-dimensional subspace Λ ⊂ Σ has the following pre-
sentation in these coordinates:

Λ = {z�, SΛz) : z ∈ R
n},

where SΛ is an n × n-matrix. The subspace Λ is Lagrangian if and only if
S∗
Λ = SΛ. We have:

Λ ∩Π = {(z�, 0) : z ∈ kerSΛ},

the subspace Λ is transversal to Π if and only if SΛ is nondegenerate.
That is time to introduce some notations. Let L(Σ) be the set of all

Lagrangian subspaces, a closed subset of the Grassmannian Gn(Σ) of n-
dimensional subspaces in Σ. We set

∆� = {Λ ∈ L(Σ) : Λ ∩∆ = 0},

an open subset of L(Σ). The mapping Λ �→ SΛ gives a regular parametriza-
tion of ∆� by the n(n+ 1)/2-dimensional space of symmetric n×n-matrices.
Moreover, above calculations show that L(Σ) =

⋃
∆∈L(Σ)

∆�. Hence L(Σ) is a

n(n+ 1)/2-dimensional submanifold of the Grassmannian Gn(Σ) covered by
coordinate charts ∆�. The manifold L(Σ) is called Lagrange Grassmannian
associated to the symplectic space Σ. It is not hard to show that any coordi-
nate chart ∆� is everywhere dense in L(Σ); our calculations give also a local
parametrization of its complement.
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Given Π ∈ L(Σ), the subset

MΠ = L(Σ) \Π� = {Λ ∈ L(Σ) : Λ ∩Π �= 0}

is called the train of Π. Let Λ0 ∈ MΠ , dim(Λ0 ∩Π) = k. Assume that ∆ is
transversal to both Λ0 and Π (i.e., ∆ ∈ Λ�

0 ∩Π�). The mapping Λ �→ SΛ gives
a regular parametrization of the neighborhood of Λ0 in MΠ by a neighborhood
of a corank k matrix in the set of all degenerate symmetric n × n-matrices.
A basic perturbation theory for symmetric matrices now implies that a small
enough neighborhood of Λ0 in MΠ is diffeomorphic to the Cartesian product
of a neighborhood of the origin of the cone of all degenerate symmetric k× k-
matrices and a (n(n + 1) − k(k + 1))/2-dimensional smooth manifold (see
[1, Lemma 2.2] for details). We see that MΠ is not a smooth submanifold of
L(Σ) but a union of smooth strata, MΠ =

⋃
k>0

M(k)
Π , where M(k)

Π = {Λ ∈

L(Σ) : dim(Λ ∩ Π) = k} is a smooth submanifold of L(Σ) of codimension
k(k + 1)/2.

Let Λ(τ), τ ∈ [t0, t1] be a smooth family of Lagrangian subspaces (a
smooth curve in L(Σ)) and Λ(t0), Λ(t1) ∈ Π�. We are going to define the
intersection number of Λ(·) and MΠ . It is called the Maslov index and is
denoted µΠ(Λ(·)). Crucial property of this index is its homotopy invariance:
given a homotopy Λs(·), s ∈ [t0, t1] such that Λs(t0), Λs(t1) ∈ Π� ∀s ∈ [0, 1],
we have µΠ(Λ0(·)) = µΠ(Λ1(·)).

It is actually enough to define µΠ(Λ(·)) for the curves which have empty
intersection with MΠ \ M(1)

Π ; the desired index would have a well-defined
extension to other curves by continuity. Indeed, generic curves have empty
intersection with MΠ \ M(1)

Π and, moreover, generic homotopy has empty
intersection with MΠ \ M(1)

Π since any of submanifolds M(k)
Π , k = 2, . . . n

has codimension greater or equal to 3 in L(Σ). Putting any curve in general
position by a small perturbation, we obtain the curve which bypasses MΠ \
M(1)

Π , and the invariance with respect to generic homotopies of the Maslov
index defined for generic curves would imply that the value of the index does
not depend on the choice of a small perturbation.

What remains is to fix a “coorientation” of the smooth hypersurface M(1)
Π

in L(Σ), i.e., to indicate the “positive and negative sides” of the hypersurface.
As soon as we have a coorientation, we may compute µΠ(Λ(·)) for any curve
Λ(·) which is transversal to M(1)

Π and has empty intersection with MΠ \M(1)
Π .

Maslov index of Λ(·) is just the number of points where Λ(·) intersects M(1)
Π in

the positive direction minus the number of points where this curve intersects
M(1)

Π in the negative direction. Maslov index of any curve with endpoints
out of MΠ is defined by putting the curve in general position. Proof of the
homotopy invariance is the same as for usual intersection number of a curve
with a closed cooriented hypersurface (see, for instance, the nice elementary
book by J. Milnor “Topology from the differential viewpoint”, 1965).
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The coorientation is a byproduct of the following important structure on
the tangent spaces to L(Σ). It happens that any tangent vector to L(Σ) at
the point Λ ∈ L(Σ) can be naturally identified with a quadratic form on Λ.
Here we use the fact that Λ is not just a point in the Grassmannian but an
n-dimensional linear space. To associate a quadratic form on Λ to the velocity
Λ̇(t) ∈ TΛ(t)L(Σ) of a smooth curve Λ(·) we proceed as follows: given x ∈ Λ(t)
we take a smooth curve τ �→ x(τ) in Σ in such a way that x(τ) ∈ Λ(τ), ∀τ
and x(t) = x. Then we define a quadratic form Λ̇(t)(x), x ∈ Λ(t), by the
formula Λ̇(t)(x) = σ(x, ẋ(t)).

The point is that σ(x, ẋ(t)) does not depend on the freedom in the choice
of the curve τ �→ x(τ), although ẋ(t) depends on this choice. Let us check
the required property in the coordinates. We have x = (z�, SΛ(t)z) for some
z ∈ R

n and x(τ) = (z(τ)�, SΛ(τ)z(τ)). Then

σ(x, ẋ(t)) = z�(ṠΛ(t)z + SΛ(t)ż) − ż�SΛ(t)z = z�ṠΛ(t)z;

vector ż does not show up. We have obtained a coordinate presentation of
Λ̇(t):

Λ̇(t)(z�, SΛ(t)z) = z�ṠΛ(t)z,

which implies that Λ̇ �→ Λ̇, Λ̇ ∈ TΛL(Σ) is an isomorphism of TΛL(Σ) on the
linear space of quadratic forms on Λ.

We are now ready to define the coorientation of M(1)
Π . Assume that Λ(t) ∈

M(1)
Π , i.e., Λ(t) ∩ Π = Rx for some nonzero vector x ∈ Σ. In coordinates,

x = (z�, 0), where Rx = kerSΛ(t). It is easy to see that Λ̇(t) is transversal to
M(1)

Π (i.e., ṠΛ(t) is transversal to the cone of degenerate symmetric matrices)
if and only if Λ̇(t)(x) �= 0 (i.e., z�ṠΛ(t)z �= 0). Vector x is defined up to a
scalar multiplier and Λ̇(t)(αx) = α2Λ̇(t)(x) so that the sign of Λ̇(t)(x) does
not depend on the selection of x.

Definition. We say that Λ(·) intersects M(1)
Π at the point Λ(t) in the positive

(negative) direction if Λ̇(t)(x) > 0 (< 0).

This definition completes the construction of the Maslov index. A weak
point of the construction is the necessity to put the curve in general position
in order to compute the intersection number. This does not look as an efficient
way to do things since putting the curve in general position is nothing else but
a deliberate spoiling of a maybe nice and symmetric original object that makes
even more involved the nontrivial problem of the localization of its intersection
with MΠ . Fortunately, just the fact that Maslov index is homotopy invariant
leads to a very simple and effective way of its computation without putting
things in general position and without looking for the intersection points with
MΠ .

Lemma 1.2. Assume that Π ∩ ∆ = Λ(τ) ∩ ∆ = 0, ∀τ ∈ [t0, t1]. Then
µΠ(Λ(·)) = indSΛ(t0) − indSΛ(t1), where indS is the Morse index of the
quadratic form z�Sz, z ∈ R

n.
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Proof. The matrices SΛ(t0) and SΛ(t0) are nondegenerate since Λ(t0) ∩Π =
Λ(t1)∩Π = 0 (we define the Maslov index only for the curves whose endpoints
are out of MΠ). The set of nondegenerate quadratic forms with a prescribed
value of the Morse index is a connected open subset of the linear space of all
quadratic forms in n variables. Hence homotopy invariance of the Maslov index
implies that µΠ(Λ(·)) depends only on indSΛ(t0) and indSΛ(t1). It remains to
compute µΠ of sample curves in ∆�, say, for segments of the curve Λ(·) such
that

SΛ(τ) =

⎛
⎝

τ−1 0 ... 0
0 τ−2 ... 0

...
...

. . .
...

0 0 ... τ−n

⎞
⎠ . �

In general, given curve is not contained in the fixed coordinate neighbor-
hood ∆� but any curve can be divided into segments Λ(·)|[τi,τi+1], i = 0, . . . , l,
in such a way that Λ(τ) ∈ ∆�

i ∀τ ∈ [τi, τi+1], where ∆i ∈ Π�, i = 0, . . . , l;
then µΠ(Λ(·)) =

∑
i

µΠ
(
Λ(·)|[τi,τi+1]

)
.

Lemma 1.2 implies the following useful formula which is valid for the
important class of monotone increasing curves in the Lagrange Grassmannian,
i.e., the curves Λ(·) such that Λ̇(t) are nonnegative quadratic forms: Λ̇(t) ≥
0, ∀t.

Corollary 1.1. Assume that Λ̇(τ) ≥ 0, ∀τ ∈ [t0, t1] and {τ ∈ [t0, t1] : Λ(τ) ∩
Π �= 0} is a finite subset of (t0, t1). Then

µΠ (Λ(·)) =
∑

τ∈(t0,t1)

dim(Λ(τ) ∩Π). �

Corollary 1.1 can be also applied to the case of monotone decreasing curves
defined by the inequality Λ̇(t) ≤ 0, ∀t; the change of parameter t �→ t0 + t1− t
makes the curve monotone increasing and and change sign of the Maslov
index.

Let me now recall that our interest to these symplectic playthings was
motivated by the conditional minimum problems. As it was mentioned at
the beginning of the section, we are going to apply this stuff to the case
Σ = T�τ

(T ∗M), �τ ∈ T ∗
zτ
M , Π = T�τ

(T ∗
zτ
M), Λ(τ) = L(�τ ,wτ )(Φ̄τ ), where

zτ = Φτ (wτ ). In this case, not only Λ but also Π and even symplectic space
Σ depend on τ . We thus have to define Maslov index in such situation. This
is easy. We consider the bundle

{(ξ, τ) : ξ ∈ T�τ
(T ∗M), t0 ≤ τ ≤ t1} (19)

over the segment [t0, t1] induced from T (T ∗M) by the mapping τ �→ �τ .
Bundle (19) endowed with the symplectic structure and its subbundle

{(ξ, τ) : ξ ∈ T�τ
(T ∗

zτ
M)}
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are trivial as any bundle over a segment. More precisely, let t ∈ [t0, t1],
Σt = T�t

(T ∗M), Πt = T�t
(T ∗

zt
M); then there exists a continuous with re-

spect to τ family of linear symplectic mappings Ξτ : T�τ
(T ∗M) → Σt such

that Ξτ (T�τ
(T ∗

zτ
M)) = Πt, t0 ≤ τ ≤ t1, Ξt = Id. To any continuous family of

Lagrangian subspaces Λ(τ) ⊂ T�τ
(T ∗M), where Λ(ti) ∩Πti = 0, i = 0, 1, we

associate a curve Ξ.Λ(·) : τ �→ ΞτΛ(τ) in the Lagrange Grassmannian L(Σt)

and set µ(Λ(·)) def
= µΠt

(Ξ.Λ(·)). Homotopy invariance of the Maslov index
implies that µΠt

(Ξ.Λ(·)) does not depend on the choice of t and Ξτ .

Theorem 1.2. Assume that dimW < ∞,

Φ̄τ = (Jτ , Φτ ) : W → R ×M, τ ∈ [t0, t1]

is a continuous one-parametric family of smooth mappings and (�τ , wτ ) is a
continuous family of their Lagrangian points such that �τ �= 0, wτ is a regular
point of Φτ , and kerDwτ

Φτ ∩ ker(D2
wτ
Jτ − �τD

2
wτ
Φτ ) = 0, t0 ≤ τ ≤ t1.

Let zτ = Φ(wτ ), Λ(τ) = L(�τ ,wτ )(Φ̄τ ). If Hesswti
(Jti
∣∣
Φ−1

ti
(zti

)
), i = 1, 2, are

nondegenerate, then

indHesswt0
(Jt0
∣∣
Φ−1

t0
(zt0 )

) − ind Hesswt1
(Jt1
∣∣
Φ−1

t1
(zt1 )

) = µ(Λ(·)).

Remark. If �τ = 0, then wτ is a critical point of Jτ (without restriction to
the level set of Φτ ). Theorem 1.2 can be extended to this situation (with the
same proof) if we additionally assume that ker Hesswτ

Jτ = 0 for any τ such
that �τ = 0.

Proof. We introduce simplified notations: Aτ = Dwτ
Φτ , Qτ = D2

wτ
Jτ −

�τD
2
wτ
Φτ ; the L-derivative L(�τ ,wτ )(Φ̄τ ) = Λ(τ) is uniquely determined by the

linear map Aτ and the symmetric bilinear form Qτ . Fix local coordinates in
the neighborhoods of wτ and zτ and set:

Λ(A,Q) = {(ζ,Av) : ζA+Q(v, ·) = 0} ∈ L(Rn∗ × R
n);

then Λτ = Λ(Aτ , Qτ ).
The assumption kerAτ∩kerQτ = 0 implies the smoothness of the mapping

(A,Q) �→ Λ(A,Q) for (A,Q) close enough to (Aτ , Qτ ). Indeed, as it is shown
in the proof of Proposition 1.4, this assumption implies that the mapping
leftτ : (ζ, v) �→ ζAτ +Qτ (v, ·) is surjective. Hence the kernel of the mapping

(ζ, v) �→ ζA+Q(v, ·) (20)

smoothly depends on (A,Q) for (A,Q) close to (Aτ , Qτ ). On the other hand,
Λ(A,Q) is the image of the mapping (ζ, v) �→ (ζ,Av) restricted to the kernel
of map (20).

Now we have to disclose a secret which the attentive reader already knows
and is perhaps indignant with our lightness: Qτ is not a well-defined bilinear
form on Twτ

W, it essentially depends on the choice of local coordinates in M .
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What is well-defined is the mapping Qτ

∣∣
kerAτ

: kerAτ → T ∗
wτ

W (check this by
yourself or see [3, Sect. 2.3]), the map Aτ : Twτ

W → Tzτ
M and, of course, the

Lagrangian subspace Λ(τ) = L(�τ ,wτ )(Φ̄τ ). By the way, the fact that Qτ

∣∣
kerAτ

is well-defined guarantees that assumptions of Theorem 1.2 do not depend on
the coordinates choice.

Recall that any local coordinates {z} on M induce coordinates {(ζ, z) :
ζ ∈ R

n∗, z ∈ R
n} on T ∗M and T ∗

zM = {(ζ, 0) : ζ ∈ R
n∗} in the induced

coordinates.

Lemma 1.3. Given ẑ ∈ M , � ∈ T ∗
ẑM \ {0}, and a Lagrangian subspace ∆ ∈

T�(T ∗
ẑM)� ⊂ L(T�(T ∗M)), there exist centered at ẑ local coordinates on M

such that ∆ = {(0, z) : z ∈ R
n} in the induced coordinates on T�(T ∗M).

Proof. Working in arbitrary local coordinates we have � = (ζ0, 0), ∆ =
{(Sz, z) : z ∈ R

n}, where S is a symmetric matrix. In other words, ∆ is
the tangent space at (ζ0, 0) to the graph of the differential of the function
a(z) = ζ0z + 1

2z
�Sz. Any smooth function with a nonzero differential can be

locally made linear by a smooth change of variables. To prove the lemma it
is enough to make a coordinates change which kills second derivative of the
function a, for instance: z �→ z + 1

2|ζ0|2 (z�Sz)ζ�0 . �
We continue the proof of Theorem 1.2. Lemma 1.3 gives us the way to take

advantage of the fact that Qτ depends on the choice of local coordinates in M .
Indeed, bilinear form Qτ is degenerate if and only if Λτ ∩{(0, z) : z ∈ R

n} �= 0;
this immediately follows from the relation

Λτ = {(ζ,Aτv) : ζAτ +Qτ (v, ·) = 0}.

Given t ∈ [t0, t1] take a transversal to T�t
(T ∗

zt
M) and Λ(t) Lagrangian

subspace ∆t ⊂ T�t
(T ∗M) and centered at zt local coordinates in M such

that ∆t = {(0, z) : z ∈ R
n} in these coordinates. Then Λ(τ) is transversal to

{(0, z) : z ∈ R
n} for all τ from a neighborhood Ot of t in [t0, t1]. Selecting an

appropriate finite subcovering from the covering Ot, t ∈ [t0, t1] of [t0, t1] we
can construct a subdivision t0 = τ0 < τ1 < . . . < τk < τk+1 = t1 of [t0, t1]
with the following property: ∀i ∈ {0, 1, . . . , k} the segment {zτ : τ ∈ [τi, τi+1]}
of the curve zτ is contained in a coordinate neighborhood Oi of M such
that Λτ ∩ {(0, z) : z ∈ R

n} = 0 ∀τ ∈ [τi, τi+1] in the correspondent local
coordinates.

We identify the form Qτ with its symmetric matrix, i.e., Qτ (v1, v2) =
v�1 Qτv2. Then Qτ is a nondegenerate symmetric matrix and

Λ(τ) = {(ζ,−AτQ−1
τ A�

τ ζ
�}, τi ≤ τ ≤ τi+1. (21)

Now focus on the subspace Λ(τi); it has a nontrivial intersection with
{(ζ, 0) : ζ ∈ R

n∗} = T�τi
(T ∗

zτi
M) if and only if the matrix Aτi

Q−1
τi
A�
τi

is de-
generate. This is the matrix of the restriction of the nondegenerate quadratic
form v �→ v�Q−1

τi
v to the image of the linear map A�

τi
. Hence Aτi

Q−1
τi
A�
τi
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can be made nondegenerate by the arbitrary small perturbation of the map
Aτi

: Twτi
W → Tzτi

M . Such perturbations can be realized simultaneously
for i = 1, . . . , k 2 by passing to a continuous family τ �→ A′

τ , t0 ≤ τ ≤ t1,
arbitrary close and homotopic to the family τ �→ Aτ . In fact, A′

τ can be
chosen equal to Aτ out of an arbitrarily small neighborhood of {τ1, . . . , τk}.
Putting now A′

τ instead of Aτ in the expression for Λ(τ) we obtain a fam-
ily of Lagrangian subspaces Λ′(τ). This family is continuous (see the para-
graph containing formula (20)) and homotopic to Λ(·). In particular, it has
the same Maslov index as Λ(·). In other words, we can assume without
lack of generality that Λ(τi) ∩ T�τi

(T ∗
zτi
M) = 0, i = 0, 1, . . . , k + 1. Then

µ(Λ(·)) =
k∑
i=0

µ
(
Λ(·)
∣∣
[τi,τi+1]

)
. Moreover, it follows from (21) and Lemma 1.2

that

µ
(
Λ(·)
∣∣
[τi,τi+1]

)
= ind(Aτi+1Q

−1
τi+1

A�
τi+1

) − ind(Aτi
Q−1
τi
A�
τi

).

Besides that, indQτi
= indQτi+1 since Qτ is nondegenerate for all τ ∈ [τi, τi+1]

and continuously depends on τ .
Recall that Hesswτ

(
Jτ
∣∣
Φ−1(zτ )

)
= Qτ

∣∣
kerAτ

. In order to complete proof
of the theorem it remains to show that

indQτ = ind
(
Qτ

∣∣
kerAτ

)
+ ind(AτQ−1

τ A�
τ ) (22)

for τ = τi, τi+1.
Let us rearrange the second term in the right-hand side of (22). The change

of variables v = Q−1
τ A�

τ z, z ∈ R
n, implies:

ind
(
AτQ

−1
τ A�

τ

)
= ind

(
Qτ

∣∣
{Q−1

τ A�
τ z : z∈Rn}

)
.

We have: Qτ (v, kerAτ ) = 0 if and only if Qτ (v, ·) = z�Aτ for some z ∈ R
n,

i.e., v�Qτ = z�Aτ , v = Q−1
τ A�

τ z. Hence the right-hand side of (22) takes the
form

indQτ = ind
(
Qτ

∣∣
kerAτ

)
+ ind

(
Qτ

∣∣
{v :Qτ (v,kerAτ )=0}

)

and Qτ

∣∣
{v:Qτ (v,kerAτ )=0} is a nondegenerate form for τ = τi, τi+1. Now

equality (22) is reduced to the following elementary fact of linear algebra:
If Q is a nondegenerate quadratic form on R

m and E ⊂ R
m is a lin-

ear subspace, then indQ = ind (Q|E) + ind
(
Q|E⊥

Q

)
+ dim(E ∩ E⊥

Q), where

E⊥
Q = {v ∈ R

m : Q(v,E) = 0} and E ∩E⊥
Q = ker (Q|E) = ker

(
Q|E⊥

Q

)
. �

Remark. Maslov index µΠ is somehow more than just the intersection num-
ber with MΠ . It can be extended, in a rather natural way, to all continuous
2 We do not need to perturb At0 and Atk+1 : assumption of the theorem and

Lemma 1.1 guarantee the required nondegeneracy property.
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curves in the Lagrange Grassmannian including those whose endpoint belong
to MΠ . This extension allows to get rid of the annoying nondegeneracy as-
sumption for Hesswti

(Jti
∣∣
Φ−1

ti
(zti

)
) in the statement of Theorem 1.2. In general,

Maslov index computes 1/2 of the difference of the signatures of the Hessians
which is equal to the difference of the Morse indices in the degenerate case
(see [3] for this approach).

1.7 Regular Extremals

A combination of the finite-dimensional Theorem 1.2 with the limiting proce-
dure of Theorem 1.1 and with homotopy invariance of the Maslov index allows
to efficiently compute Morse indices of the Hessians for numerous infinite-
dimensional problems. Here we restrict ourselves to the simplest case of a
regular extremal of the optimal control problem.

We use notations and definitions of Sects. 3 and 4. Let h(λ, u) be the
Hamiltonian of a smooth optimal control system and λt, t0 ≤ t ≤ t1, be an
extremal contained in the regular domain D of h. Then λt is a solution of the
Hamiltonian system λ̇ = H(λ), where H(λ) = h(λ, ū(λ)), ∂h

∂uh(λ, ū(λ)) = 0.
Let q(t) = π(λt), t0,≤ t ≤ t1 be the extremal path. Recall that the pair

(λt0 , λt) is a Lagrange multiplier for the conditional minimum problem defined
on an open subset of the space

M × L∞([t0, t1], U) = {(qt, u(·)) : qt ∈ M,u(·) ∈ L∞([t0, t1], U)},

where u(·) is control and qt is the value at t of the solution to the differential
equation q̇ = f(q, u(τ)), τ ∈ [t0, t1]. In particular, Ft(qt, u(·)) = qt. The cost
is J tt0(qt, u(·)) and constraints are Ft0(qt, u(·)) = q(t0), qt = q(t).

Let us set Jt(u) = J tt0(q(t), u(·)), Φt(u) = Ft0(q(t), u(·)). A covector λ ∈
T ∗M is a Lagrange multiplier for the problem (Jt, Φt) if and only if there exists
an extremal λ̂τ , t0 ≤ τ ≤ t, such that λt0 = λ, λ̂t ∈ T ∗

q(t)M . In particular,
λt0 is a Lagrange multiplier for the problem (Jt, Φt) associated to the control
u(·) = ū(λ.). Moreover, all sufficiently close to λt0 Lagrange multipliers for this
problem are values at t0 of the solutions λ(τ), t0 ≤ τ ≤ t to the Hamiltonian
system λ̇ = H(λ) with the boundary condition λ(t) ∈ T ∗

q(t)M .
We will use exponential notations for one-parametric groups of diffeomor-

phisms generated ordinary differential equations. In particular, eτH : T ∗M →
T ∗M, τ ∈ R, is a flow generated by the equation λ̇ = H(λ), so that
λ(τ ′) = e(τ

′−τ)H(λ(τ), τ, τ ′ ∈ R, and Lagrange multipliers for the problem
(Jt, Φt) fill the n-dimensional submanifold e(t0−t)H

(
T ∗
q(t)M
)
.

We set Φ̄t = (Jt, Φt); it is easy to see that the L-derivative L(λt0 ,u)(Φ̄t) is

the tangent space to e(t0−t)H
(
T ∗
q(t)M
)
, i.e., L(λt0 ,u)(Φ̄t)=e

(t0−t)H
∗ Tλt

(
T ∗
q(t)M
)
.

Indeed, let us recall the construction of the L-derivative. First we lin-
earize the equation for Lagrange multipliers at λt0 . Solutions of the
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linearized equation form an isotropic subspace L0
(λt0 ,u)(Φ̄t) of the sym-

plectic space Tλt0
(T ∗M). If L0

(λt0 ,u)(Φ̄t) is a Lagrangian subspace (i.e.,
dimL0

(λt0 ,u)(Φ̄t) = dimM), then L(λ0
t0
,u)(Φ̄t) = L(λt0 ,u)(Φ̄t), otherwise we

need a limiting procedure to complete the Lagrangian subspace. In the case
under consideration, L0

(λt0 ,u)(Φ̄t) = e
(t0−t)H
∗ Tλt

(
T ∗
q(t)M
)

has a proper di-

mension and thus coincides with L(λt0 ,u)(Φ̄t). We can check independently

that e(t0−t)H∗ Tλt

(
T ∗
q(t)M
)

is Lagrangian: indeed, Tλt

(
T ∗
q(t)M
)

is Lagrangian

and e
(t0−t)H
∗ : Tλt

(T ∗M) → Tλt0
(T ∗M) is an isomorphism of symplectic

spaces since Hamiltonian flows preserve the symplectic form.
So t �→ L(λt0 ,u)(Φ̄t) is a smooth curve in the Lagrange Grassmannian

L
(
Tλt0

(T ∗M)
)

and we can try to compute Morse index of

Hessu
(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
= Hessu

(
J t1t0
∣∣
F−1

t0
(q(t0))∩F−1

t1
(q(t1))

)

via the Maslov index of this curve. Of course, such a computation has no sense
if the index is infinite.

Proposition 1.5. (Legendre condition) If quadratic form ∂2h
∂u2 (λt, u(t)) is neg-

ative definite for any t ∈ [t0, t1], then ind Hessu
(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
< ∞ and

Hessu
(
Jt
∣∣
Φ−1

t (q(t0))

)
is positive definite for any t sufficiently close to (and

strictly greater than) t0. If ∂2h
∂u2 (λt, u(t)) � 0 for some t ∈ [t0, t1], then

ind Hessu
(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
= ∞.

We do not give here the proof of this well-known result; you can find it in
many sources (see, for instance, the textbook [7]). It is based on the fact
that ∂2h

∂u2 (λt, u(t))=λ(∂
2f
∂u2 (q(t), u(t)))− ∂2ϕ

∂u2 (q(t), u(t)) is the infinitesimal (for
the “infinitesimally small interval” at t) version of λt0D

2
uΦt1 − D2

uJt1 while
Hessu

(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
= (D2

uJt1 − λt0D
2
wΦt1)
∣∣
kerDuΦt1

.
Next theorem shows that in the “regular” infinite dimensional situation of

this section we may compute the Morse index similarly to the finite dimen-
sional case. The proof of the theorem requires some information about second
variation of optimal control problems which is out of the scope of these notes.
The required information can be found in Chaps. 20 and 21 of [7]. Basically,
it implies that finite dimensional arguments used in the proof of Theorem 1.2
are legal also in our infinite dimensional case.

We set: Λ(t) = e
(t0−t)H
∗ Tλt

(
T ∗
q(t)M
)
.

Theorem 1.3. Assume that ∂2h
∂u2 (λt, u(t)) is a negative definite quadratic form

and u is a regular point of Φt, ∀t ∈ (t0, t1]. Then:
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• The form Hessu
(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
is degenerate if and only if Λ(t1) ∩

Λ(t0) �= 0
• If Λ(t1) ∩ Λ(t0) = 0, then there exists t̄ > t0 such that

ind Hessu
(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
= −µ

(
Λ(·)
∣∣
[τ,t1]

)
, ∀τ ∈ (t0, t̄). �

Note that Legendre condition implies monotonicity of the curve Λ(·); this
property simplifies the evaluation of the Maslov index. Fix some local coordi-
nates in M so that T ∗M ∼= {(p, q) ∈ R

n∗ × R
n}.

Lemma 1.4. Quadratic form Λ̇(t) is equivalent (with respect to a linear
change of variables) to the form −∂2H

∂p2 (λt) = ∂ū
∂p

� ∂2h
∂u2 (λt, ū(λt))∂ū∂p .

Proof. Equality ∂2H
∂p2 = −∂ū

∂p

∗ ∂2h
∂u2

∂ū
∂p is an easy corollary of the identi-

ties H(p, q) = h(p, q, ū(p, q)), ∂h
∂u

∣∣
u=ū(p,q)

= 0. Indeed, ∂2H
∂p2 = 2 ∂2h

∂u∂p
∂ū
∂p +

∂ū
∂p

� ∂2h
∂u2

∂ū
∂p and ∂

∂p

(
∂h
∂u

)
= ∂2h

∂p∂u + ∂2h
∂u2

∂ū
∂p = 0. Further, we have: d

dtΛ(t) =
d
dte

(t0−t)H
∗ Tλt

(
T ∗
q(t)M
)

= e
(t0−t)H
∗

d
dε

∣∣∣
ε=0

e−εH∗ Tλt+ε

(
T ∗
q(t+ε)M

)
. Set ∆(ε) =

e−εH∗ Tλt+ε

(
T ∗
q(t+ε)M

)
∈ L
(
Tλ(t)(T ∗M)

)
. It is enough to prove that ∆̇(0) is

equivalent to −∂2H
∂p2 (λt). Indeed, Λ̇(t) = e

(t0−t)H
∗ Tλt

∆̇(0), where

e
(t0−t)H
∗ : Tλt

(T ∗M) → Tλt0
(T ∗M)

is a symplectic isomorphism.
The association of the quadratic form Λ̇(t) on the subspace Λ(t) to the tangent
vector Λ̇(t) ∈ L

(
Tλt0

(T ∗M)
)

is intrinsic, i.e., depends only on the symplectic

structure on (Tλt0
(T ∗M). Hence ∆̇(0)(ξ) = Λ̇(t)

(
e
(t0−t)H
∗ ξ

)
, ∀ξ ∈ ∆(0) =

Tλt

(
T ∗
q(t)M
)
.

What remains, is to compute ∆̇(0); we do it in coordinates. We have:

∆(ε) =

{
(ξ(ε), η(ε)) :

ξ̇(τ) = ξ ∂
2H

∂p∂q (λt−τ ) + η� ∂2H
∂q2 (λt−τ ),

η̇(τ) = −∂2H
∂p2 (λt−τ )ξ� − ∂2H

∂q∂p (λt−τ )η,

ξ(0) ∈ R
n∗

η(0) = 0

}
,

∆̇(0)(ξ(0)) = σ
(
(ξ(0), 0), (ξ̇(0), η̇(0))

)
= ξ(0)η̇(0) = −ξ(0)

∂2H

∂p2
(λt)ξ(0)�.

�
Now combining Lemma 1.4 with Theorem 1.3 and Corollary 1.1 we obtain

the following version of the classical “Morse formula”

Corollary 1.2. Under conditions of Theorem1.3, if {τ ∈ (t0, t1] : Λ(τ) ∩
Λ(t0) �= 0} is a finite subset of (t0, t1), then

ind HessJt1
∣∣
Φ−1

t1
(q(t0))

=
∑

τ∈(t0,t1)

dim(Λ(τ) ∩ Λ(t0)).



Geometry of Optimal Control Problems and Hamiltonian Systems 25

2 Geometry of Jacobi Curves

2.1 Jacobi Curves

Computation of the L-derivative for regular extremals in the last section has
led us to the construction of curves in the Lagrange Grassmannians which
works for all Hamiltonian systems on the cotangent bundles, independently
on any optimal control problem. Set∆λ = Tλ(T ∗

qM), where λ ∈ T ∗
qM, q ∈ M .

The curve τ �→ e−τH∗ ∆eτH(λ) in the Lagrange Grassmannian L (Tλ(T ∗M)) is
the result of the action of the flow etH on the vector distribution {∆λ}λ∈T∗M .
Now we are going to study differential geometry of these curves; their geom-
etry will provide us with a canonical connection on T ∗M associated with the
Hamiltonian system and with curvature-type invariants. All that gives a far
going generalization (and a dynamical interpretation) of classical objects from
Riemannian geometry.

In fact, construction of the basic invariants does not need symplectic struc-
ture and the Hamiltonian nature of the flow, we may deal with more or less
arbitrary pairs (vector field, rank n distribution) on a 2n-dimensional manifold
N . The resulting curves belong to the usual Grassmannian of all n-dimensional
subspaces in the 2n-dimensional one. We plan to work for some time in this
more general situation and then come back to the symplectic framework.

In these notes we mainly deal with the case of involutive distributions (i.e.,
with n-foliations) just because our main motivation and applications satisfy
this condition. The reader can easily recover more general definitions and
construction by himself.

So we consider a 2n-dimensional smooth manifold N endowed with a
smooth foliation of rank n. Let z ∈ N , by Ez we denote the passing through z
leaf of the foliation; then Ez is an n-dimensional submanifold of N . Point z has
a coordinate neighborhood Oz such that the restriction of the foliation to Oz
is a (trivial) fiber bundle and the fibers Eloc

z′ , z
′ ∈ Oz, of this fiber bundle are

connected components of Ez′ ∩ Oz. Moreover, there exists a diffeomorphism
Oz ∼= R

n×R
n, where R

n×{y}, y ∈ R
n, are identified with the fibers so that

both the typical fiber and the base are diffeomorphic to R
n. We denote by

Oz/E
loc the base of this fiber bundle and by π : Oz → Oz/E

loc the canonical
projection.

Let ζ be a smooth vector field on N . Then z′ �→ π∗ζ(z′), z′ ∈ Eloc
z is a

smooth mapping of Eloc
z to Tπ(z)(Oz/Eloc). We denote the last mapping by

Πz(ζ) : Eloc
z → Tπ(z)(Oz/Eloc).

Definition. We call ζ a lifting field if Πz(ζ) is a constant mapping ∀z ∈ N ;
The field ζ is called regular if Πz(ζ) is a submersion, z ∈ N .

The flow generated by the lifting field maps leaves of the foliation in the
leaves, in other words it is leaves-wise. On the contrary, the flow generated by
the regular field “smears” the fibers over Oz/Eloc; basic examples are second
order differential equations on a manifold M treated as the vector fields on
the tangent bundle TM = N .
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Let us write things in coordinates: We fix local coordinates acting in
the domain O ⊂ N , which turn the foliation into the Cartesian product
of vector spaces: O ∼= {(x, y) : x, y ∈ R

n}, π : (x, y) �→ y. Then vec-

tor field ζ takes the form ζ =
n∑
i=1

(
ai ∂

∂xi
+ bi ∂

∂yi

)
, where ai, bi are smooth

functions on R
n × R

n. The coordinate representation of the map Πz is:
Π(x,y) : x �→

(
b1(x, y), . . . , bn(x, y)

)�. Field ζ is regular if and only if Π(x,y)

are submersions; in other words, if and only if
(
∂bi

∂xj

)n
i,j=1

is a nondegenerate

matrix. Field ζ is lifting if and only if ∂bi

∂xj
≡ 0, i, j = 1, . . . , n.

Now turn back to the coordinate free setting. The fibers Ez, z ∈ N are
integral manifolds of the involutive distribution E = {TzEz : z ∈ N}. Given a
vector field ζ on N , the (local) flow etζ generated by ζ, and z ∈ N we define
the family of subspaces

Jz(t) =
(
e−tζ
)
∗ E|z ⊂ TzN.

In other words, Jz(t) =
(
e−tζ
)
∗ Tetζ(z)Eetζ(z), Jz(0) = TzEz.

Jx(t) is an n-dimensional subspace of TzN , i.e., an element of the Grass-
mannian Gn(TzN). We thus have (the germ of) a curve t �→ Jz(t) in Gn(TzN)
which is called a Jacobi curve.

Definition. We say that field ζ is k-ample for an integer k if ∀z ∈ N and
for any curve t �→ Ĵz(t) in Gn(TzN) with the same k-jet as Jz(t) we have
Ĵz(0) ∩ Ĵz(t) = 0 for all t close enough but not equal to 0. The field is called
ample if it is k-ample for some k.

It is easy to show that a field is 1-ample if and only if it is regular.

2.2 The Cross-Ratio

Let Σ be a 2n-dimensional vector space, v0, v1 ∈ Gn(Σ), v0 ∩ v1 = 0. Then
Σ = v0 + v1. We denote by πv0v1 : Σ → v1 the projector of Σ onto v1 parallel
to v0. In other words, πv0v1 is a linear operator on Σ such that πv0v1

∣∣
v0

= 0,
πv0v1
∣∣
v1

= id. Surely, there is a one-to-one correspondence between pairs of
transversal n-dimensional subspaces of Σ and rank n projectors in GL(Σ).

Lemma 2.1. Let v0 ∈ Gn(Σ); we set v�
0 = {v ∈ Gn(Σ) : v∩v0 = 0}, an open

dense subset of Gn(Σ). Then {πvv0 : v ∈ v�
0 } is an affine subspace of GL(Σ).

Indeed, any operator of the form απvv0+(1−α)πwv0 , where α ∈ R, takes values
in v0 and its restriction to v0 is the identity operator. Hence απvv0+(1−α)πwv0
is the projector of Σ onto v0 along some subspace.

The mapping v �→ πvv0 thus serves as a local coordinate chart on Gn(Σ).
These charts indexed by v0 form a natural atlas on Gn(Σ).
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Projectors πvw satisfy the following basic relations:3

πv0v1 + πv1v0 = id, πv0v2πv1v2 = πv1v2 , πv0v1πv0v2 = πv0v1 , (1)

where vi ∈ Gn(Σ), vi ∩ vj = 0 for i �= j. If n = 1, then Gn(Σ) is just the
projective line RP

1; basic geometry of Gn(Σ) is somehow similar to geometry
of the projective line for arbitrary n as well. The group GL(Σ) acts transitively
on Gn(Σ). Let us consider its standard action on (k + 1)-tuples of points in
Gn(Σ):

A(v0, . . . , vk)
def
= (Av0, . . . , Avk), A ∈ GL(Σ), vi ∈ Gn(Σ).

It is an easy exercise to check that the only invariants of a triple (v0, v1, v2)
of points of Gn(Σ) for such an action are dimensions of the intersections:
dim(vi ∩ vj), 0 ≤ i ≤ 2, and dim(v0 ∩ v1 ∩ v2). Quadruples of points possess
a more interesting invariant: a multidimensional version of the classical cross-
ratio.

Definition. Let vi ∈ Gn(Σ), i = 0, 1, 2, 3, and v0 ∩ v1 = v2 ∩ v3 = 0. The
cross-ratio of vi is the operator [v0, v1, v2, v3] ∈ gl(v1) defined by the formula:

[v0, v1, v2, v3] = πv0v1πv2v3
∣∣
v1
.

Remark. We do not lose information when restrict the product πv0v1πv2v3 to
v1; indeed, this product takes values in v1 and its kernel contains v0.

For n = 1, v1 is a line and [v0, v1, v2, v3] is a real number. For general n, the
Jordan form of the operator provides numerical invariants of the quadruple
vi, i = 0, 1, 2, 3.

We will mainly use an infinitesimal version of the cross-ratio that is an
invariant [ξ0, ξ1] ∈ gl(v1) of a pair of tangent vectors ξi ∈ Tvi

Gn(Σ), i = 0, 1,
where v0 ∩ v1 = 0. Let γi(t) be curves in Gn(Σ) such that γi(0) =
vi,

d
dtγi(t)

∣∣
t=0

= ξi, i = 0, 1. Then the cross-ratio: [γ0(t), γ1(0), γ0(τ), γ1(θ)]
is a well defined operator on v1 = γ1(0) for all t, τ, θ close enough
to 0. Moreover, it follows from (1) that [γ0(t), γ1(0), γ0(0), γ1(0)] =
[γ0(0), γ1(0), γ0(t), γ1(0)] = [γ0(0), γ1(0), γ0(0), γ1(t)] = id. We set

[ξ0, ξ1] =
∂2

∂t∂τ
[γ0(t), γ1(0), γ0(0), γ1(τ)]

∣∣
v1

∣∣∣
t=τ=0

. (2)

It is easy to check that the right-hand side of (2) depends only on ξ0, ξ1 and
that (ξ0, ξ1) �→ [ξ0, ξ1] is a bilinear mapping from Tv0Gn(Σ)×Tv1Gn(Σ) onto
gl(v1).

Lemma 2.2. Let v0, v1 ∈ Gn(Σ), v0 ∩ v1 = 0, ξi ∈ Tvi
Gn(Σ), and ξi =

d
dtγi(t)

∣∣
t=0

, i = 0, 1. Then [ξ0, ξ1] = ∂2

∂t∂τ πγ1(t)γ0(τ)

∣∣
v1

∣∣∣
t=τ=0

and v1, v0 are

invariant subspaces of the operator ∂2

∂t∂τ πγ1(t)γ0(τ)

∣∣
v1

∣∣∣
t=τ=0

.

3 Numbering of formulas is separate in each of two parts of the paper.
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Proof. According to the definition, [ξ0, ξ1] = ∂2

∂t∂τ (πγ0(t)γ1(0)πγ0(0)γ1(τ))∣∣
v1

∣∣∣
t=τ=0

. The differentiation of the identities πγ0(t)γ1(0)πγ0(t)γ1(τ) =
πγ0(t)γ1(0), πγ0(t)γ1(τ)πγ0(0)γ1(τ) = πγ0(0)γ1(τ) gives the equalities:

∂2

∂t∂τ
(πγ0(t)γ1(0)πγ0(0)γ1(τ))

∣∣∣
t=τ=0

= −πv0v1
∂2

∂t∂τ
πγ0(t)γ1(τ)

∣∣∣
t=τ=0

= − ∂2

∂t∂τ
πγ0(t)γ1(τ)

∣∣∣
t=τ=0

πv0v1 .

It remains to mention that ∂2

∂t∂τ πγ1(t)γ0(τ) = − ∂2

∂t∂τ πγ0(τ)γ1(t). �

2.3 Coordinate Setting

Given vi ∈ Gn(Σ), i = 0, 1, 2, 3, we coordinatize Σ = R
n × R

n = {(x, y) : x ∈
R
n, y ∈ R

n} in such a way that vi ∩ {(0, y) : y ∈ R
n} = 0. Then there exist

n× n-matrices Si such that

vi = {(x, Six) : x ∈ R
n}, i = 0, 1, 2, 3. (3)

The relation vi ∩ vj = 0 is equivalent to det(Si − Sj) �= 0. If S0 = 0, then the

projector πv0v1 is represented by the 2n × 2n-matrix
(

0 S−1
1

0 I

)
. In general,

we have

πv0v1 =
(

S−1
01 S0 −S−1

01

S1S
−1
01 S0 −S1S

−1
01

)
,

where S01 = S0 − S1. Relation (3) provides coordinates {x} on the spaces vi.
In these coordinates, the operator [v0, v1, v2, v3] on v1 is represented by the
matrix:

[v0, v1, v2, v3] = S−1
10 S03S

−1
32 S21,

where Sij = Si − Sj .
We now compute the coordinate representation of the infinitesimal cross-

ratio. Let γ0(t) = {(x, Stx) : x ∈ R
n}, γ1(t) = {(x, S1+tx) : x ∈ R

n} so that
ξi = d

dtγi(t)
∣∣
t=0

is represented by the matrix Ṡi = d
dtSt
∣∣
t=i
, i = 0, 1. Then

[ξ0, ξ1] is represented by the matrix

∂2

∂t∂τ
S−1

1t StτS
−1
τ0 S01

∣∣∣
t=0
τ=1

=
∂

∂t
S−1

1t Ṡ1

∣∣∣
t=0

= S−1
01 Ṡ0S

−1
01 Ṡ1.

So
[ξ0, ξ1] = S−1

01 Ṡ0S
−1
01 Ṡ1. (4)

There is a canonical isomorphism Tv0Gn(Σ) ∼= Hom(v0, Σ/v0); it is de-
fined as follows. Let ξ ∈ Tv0Gn(Σ), ξ = d

dtγ(t)|t=0, and z0 ∈ v0. Take
a smooth curve z(t) ∈ γ(t) such that z(0) = z0. Then the residue class
(ż(0) + v0) ∈ Σ/v0 depends on ξ and z0 rather than on a particular choice
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of γ(t) and z(t). Indeed, let γ′(t) be another curve in Gn(Σ) whose velocity
at t = 0 equals ξ. Take some smooth with respect to t bases of γ(t) and
γ′(t): γ(t) = span{e1(t), . . . , en(t)}, γ′(t) = span{e′1(t), . . . , e′n(t)}, where
ei(0) = e′i(0), i = 1, . . . , n; then (ėi(0) − ė′i(0)) ∈ v0, i = 1, . . . , n. Let

z(t) =
n∑
i=1

αi(t)ei(t), z′(t) =
n∑
i=1

α′
i(t)e

′
i(t), where αi(0) = α′

i(0). We have:

ż(0) − ż′(0) =
n∑
i=1

((α̇i(0) − α̇′
i(0))ei(0) + α′

i(0)(ėi(0) − ė′i(0))) ∈ v0,

i.e., ż(0) + v0 = ż′(0) + v0.
We associate to ξ the mapping ξ̄ : v0 → Σ/v0 defined by the formula ξ̄z0 =

ż(0)+v0. The fact that ξ → ξ̄ is an isomorphism of the linear spaces Tv0Gn(Σ)
and Hom(v0, Σ/v0) can be easily checked in coordinates. The matrices Ṡi
above are actually coordinate presentations of ξ̄i, i = 0, 1.

The standard action of the group GL(Σ) on Gn(Σ) induces the action of
GL(Σ) on the tangent bundle TGn(Σ). It is easy to see that the only invariant
of a tangent vector ξ for this action is rank ξ̄ (tangent vectors are just “double
points” or “pairs of infinitesimally close points” and number (n−rank ξ̄) is the
infinitesimal version of the dimension of the intersection for a pair of points
in the Grassmannian). Formula (4) implies:

rank[ξ0, ξ1] ≤ min{rank ξ̄0, rank ξ̄1}.

2.4 Curves in the Grassmannian

Let t �→ v(t) be a germ at t̄ of a smooth curve in the Grassmannian Gn(Σ).

Definition. We say that the germ v(·) is ample if v(t) ∩ v(t̄) = 0 ∀t �= t̄
and the operator-valued function t �→ πv(t)v(t̄) has a pole at t̄. We say that
the germ v(·) is regular if the function t �→ πv(t)v(t̄) has a simple pole at t̄.
A smooth curve in Gn(Σ) is called ample (regular) if all its germs are ample
(regular).

Assume that Σ = {(x, y) : x, y ∈ R
n} is coordinatized in such a way that

v(t̄) = {(x, 0) : x ∈ R
n}. Then v(t) = {(x, Stx) : x ∈ R

n}, where S(t̄) = 0

and πv(t)v(t̄) =
(
I −S−1

t

0 0

)
. The germ v(·) is ample if and only if the scalar

function t �→ detSt has a finite order root at t̄. The germ v(·) is regular if
and only if the matrix Ṡt̄ is not degenerate. More generally, the curve τ �→
{(x, Sτx) : x ∈ R

n} is ample if and only if ∀t the function τ �→ det(Sτ − St)
has a finite order root at t. This curve is regular if and only if det Ṡt �= 0, ∀t.
The intrinsic version of this coordinate characterization of regularity reads:
the curve v(·) is regular if and only if the map ¯̇v(t) ∈ Hom(v(t), Σ/v(t)) has
rank n, ∀t.
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Coming back to the vector fields and their Jacobi curves (see Sect. 2.1) one
can easily check that a vector field is ample (regular) if and only if its Jacobi
curves are ample (regular).

Let v(·) be an ample curve in Gn(Σ). We consider the Laurent expansions
at t of the operator-valued function τ �→ πv(τ)v(t),

πv(τ)v(t) =
m∑

i=−kt

(τ − t)iπit +O(τ − t)m+1.

Projectors of Σ on the subspace v(t) form an affine subspace of gl(Σ) (cf.
Lemma 2.1). This fact implies that π0

t is a projector of Σ on v(t); in other
words, π0

t = πv◦(t)v(t) for some v◦(t) ∈ v(t)�. We thus obtain another curve
t �→ v◦(t) in Gn(Σ), where Σ = v(t)⊕ v◦(t), ∀t. The curve t �→ v◦(t) is called
the derivative curve of the ample curve v(·).

The affine space {πwv(t) : w ∈ v(t)�} is a translation of the linear space
N(v(t)) = {n : Σ → v(t) | n|v(t) = 0} ⊂ gl(Σ)} containing only nilpotent
operators. It is easy to see that πit ∈ N(v(t)) for i �= 0.

The derivative curve is not necessary ample. Moreover, it may be non-
smooth and even discontinuous.

Lemma 2.3. If v(·) is regular then v◦(·) is smooth.

Proof. We will find the coordinate representation of v◦(·). Let v(t) =
{(x, Stx) : x ∈ R

n}. Regularity of v(·) is equivalent to the nondegeneracy
of Ṡt. We have:

πv(τ)v(t) =
(

S−1
τt Sτ −S−1

τt

StS
−1
τt Sτ −StS−1

τt

)
,

where Sτt = Sτ − St. Then S−1
τt = (τ − t)−1Ṡ−1

t − 1
2 Ṡ

−1
t S̈tṠ

−1
t +O(τ − t) as

τ → t and

πv(τ)v(t) = (τ − t)−1

(
Ṡ−1
t St −Ṡ−1

t

StṠ
−1
t St −StṠ−1

t

)

+

(
I − 1

2 Ṡ
−1
t S̈tṠ

−1
t St

1
2 Ṡ

−1
t S̈tṠ

−1
t

St − 1
2StṠ

−1
t S̈tṠ

−1
t St

1
2StṠ

−1
t S̈tṠ

−1
t

)
+O(τ − t).

We set At = − 1
2 Ṡ

−1
t S̈tṠ

−1
t ; then πv◦(t)v(t) =

(
I +AtSt −At

St + StAtSt −StAt

)
is smooth

with respect to t. Hence t �→ v◦(t) is smooth. We obtain:

v◦(t) = {(Aty, y + StAty) : y ∈ R
n} . (5)

2.5 The Curvature

Definition. Let v be an ample curve and v◦ be the derivative curve of v.
Assume that v◦ is differentiable at t and set Rv(t) = [v̇◦(t), v̇(t)]. The operator
Rv(t) ∈ gl(v(t)) is called the curvature of the curve v at t.
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If v is a regular curve, then v◦ is smooth, the curvature is well-defined
and has a simple coordinate presentation. To find this presentation, we will
use formula (4) applied to ξ0 = v̇◦(t), ξ1 = v̇(t). As before, we assume that
v(t) = {(x, Stx) : x ∈ R

n}; in particular, v(t) is transversal to the sub-
space {(0, y) : y ∈ R

n}. In order to apply (4) we need an extra assumption
on the coordinatization of Σ: the subspace v◦(t) has to be transversal to
{(0, y) : y ∈ R

n} for given t. The last property is equivalent to the nonde-
generacy of the matrix At (see (5)). It is important to note that the final
expression for Rv(t) as a differential operator of S must be valid without this
extra assumption since the definition of Rv(t) is intrinsic! Now we compute:
v◦(t) = {(x, (A−1

t + St)x) : x ∈ R
n}, Rv(t) = [v̇◦(t), v̇(t)] = At

d
dt (A

−1
t +

St)AtṠt = (AtṠt)2 − ȦtṠt = 1
4 (Ṡ−1

t S̈t)2 − ȦtṠt. We also have ȦṠ =
− 1

2
d
dt (Ṡ

−1S̈Ṡ−1)Ṡ = (Ṡ−1)2 − 1
2 Ṡ

−1
...

S. Finally,

Rv(t) =
1
2
Ṡ−1
t

...

St −
3
4
(Ṡ−1

t S̈t)2 =
d

dt

(
(2Ṡt)−1S̈t

)
−
(
(2Ṡt)−1S̈t

)2
, (6)

the matrix version of the Schwartzian derivative.
Curvature operator is a fundamental invariant of the curve in the Grass-

mannian. One more intrinsic construction of this operator, without using the
derivative curve, is provided by the following

Proposition 2.1. Let v be a regular curve in Gn(Σ). Then

[v̇(τ), v̇(t)] = (τ − t)−2id +
1
3
Rv(t) +O(τ − t)

as τ → t.

Proof. It is enough to check the identity in some coordinates. Given t we may
assume that

v(t) = {(x, 0) : x ∈ R
n}, v◦(t) = {(0, y) : y ∈ R

n}.

Let v(τ) = {(x, Sτx : x ∈ R
n}, then St = S̈t = 0 (see (5)). Moreover, we may

assume that the bases of the subspaces v(t) and v◦(t) are coordinated in such
a way that Ṡt = I. Then Rv(t) = 1

2

...

St (see (5)). On the other hand, formula
(4) for the infinitesimal cross-ratio implies:

[v̇(τ), v̇(t)] = S−1
τ ṠτS

−1
τ = − d

dτ
(S−1

τ )

= − d

dτ

(
(τ − t)I +

(τ − t)3

6
...

St

)−1

+O(τ − t)

= − d

dτ

(
(τ − t)−1I − (τ − t)

6
...

St

)
+O(τ − t) = (τ − t)−2I +

1
6
...

St +O(τ − t).

�
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Curvature operator is an invariant of the curves in Gn(Σ) with fixed para-
metrizations. Asymptotic presentation obtained in Proposition 2.1 implies a
nice chain rule for the curvature of the reparameterized curves.

Let ϕ : R → R be a regular change of variables, i.e., ϕ̇ �= 0, ∀t. The
standard imbedding R ⊂ RP

1 = G1(R2) makes ϕ a regular curve in G1(R2).
As we know (see (6)), the curvature of this curve is the Schwartzian of ϕ:

Rϕ(t) =
...
ϕ (t)
2φ̇(t)

− 3
4

(
ϕ̈(t)
ϕ̇(t)

)2

.

We set vϕ(t) = v(ϕ(t)) for any curve v in Gn(Σ).

Proposition 2.2. Let v be a regular curve in Gn(Σ) and ϕ : R → R be a
regular change of variables. Then

Rvϕ
(t) = ϕ̇2(t)Rv(ϕ(t)) +Rϕ(t). (7)

Proof. We have

[v̇ϕ(τ), v̇ϕ(t)] = (τ − t)−2id +
1
3
Rvϕ

(t) +O(τ − t).

On the other hand,

[v̇ϕ(τ), v̇ϕ(t)] = [ϕ̇(τ)v̇(ϕ(τ)), ϕ̇(t)v̇(ϕ(t))] = ϕ̇(τ)ϕ̇(t)[v̇(ϕ(τ)), v̇(ϕ(t))]

= ϕ̇(τ)ϕ̇(t)
(

(ϕ(τ) − ϕ(t))−2id +
1
3
Rv(ϕ(t)) +O(τ − t)

)

=
ϕ̇(τ)ϕ̇(t)

(ϕ(τ) − ϕ(t))2
id +

ϕ̇2(t)
3

Rv(ϕ(t)) +O(τ − t).

We treat ϕ as a curve in RP
1 = G1(R2). Then [ϕ̇(τ), ϕ̇(t)] = ϕ̇(τ)ϕ̇(t)

(ϕ(τ)−ϕ(t))2 , see
(4). The one-dimensional version of Proposition 2.1 reads:

[ϕ̇(τ), ϕ̇(t)] = (t− τ)−2 +
1
3
Rϕ(t) +O(τ − t).

Finally,

[v̇ϕ(τ), v̇ϕ(t)] = (t− τ)−2 +
1
3
(
Rϕ(t) + ϕ̇2(t)Rv(ϕ(t))

)
+O(τ − t). �

The following identity is an immediate corollary of Proposition 2.2:
(
Rvϕ

− 1
n

(trRvϕ
)id
)

(t) = ϕ̇2(t)
(
Rv − 1

n
(trRv)id

)
(ϕ(t)). (8)

Definition. An ample curve v is called flat if Rv(t) ≡ 0.
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It follows from Proposition 2.1 that any small enough piece of a regular
curve can be made flat by a reparametrization if and only if the curvature
of the curve is a scalar operator, i.e., Rv(t) = 1

n (trRv(t))id. In the case of a
nonscalar curvature, one can use equality (8) to define a distinguished para-
metrization of the curve and then derive invariants which do not depend on
the parametrization.

Remark. In this paper we are mainly focused on the regular curves. See
paper [6] for the version of the chain rule which is valid for any ample curve
and for basic invariants of unparameterized ample curves.

2.6 Structural Equations

Assume that v and w are two smooth curves in Gn(Σ) such that v(t)∩w(t) =
0, ∀t.

Lemma 2.4. For any t and any e ∈ v(t) there exists a unique fe ∈ w(t)
with the following property: ∃ a smooth curve eτ ∈ v(τ), et = e, such that
d
dτ eτ
∣∣
τ=t

= fe. Moreover, the mapping Φvwt : e �→ ft is linear and for any
e0 ∈ v(0) there exists a unique smooth curve e(t) ∈ v(t) such that e(0) = e0
and

ė(t) = Φvwt e(t), ∀t. (9)

Proof. First we take any curve êτ ∈ v(τ) such that et = e. Then êτ = aτ + bτ
where aτ ∈ v(t), bτ ∈ w(t). We take xτ ∈ v(τ) such that xt = ȧt and set
eτ = êτ + (t− τ)xτ . Then ėt = ḃt and we put fe = ḃt.

Let us prove that ḃt depends only on e and not on the choice of eτ . Comput-
ing the difference of two admissible eτ we reduce the lemma to the following
statement: if z(τ) ∈ v(τ), ∀τ and z(t) = 0, then ż(t) ∈ v(t).

To prove the last statement we take smooth vector-functions eiτ ∈ v(τ),

i = 1, . . . , n such that v(τ) = span{e1τ , . . . , enτ }. Then z(τ) =
n∑
i=1

αi(τ)eiτ ,

αi(t) = 0. Hence ż(t) =
n∑
i=1

α̇i(t)eit ∈ vt.

Linearity of the map Φvwt follows from the uniqueness of fe. Indeed, if
fei = d

dτ e
i
τ

∣∣
τ=t

, then d
dτ (α1e

1
τ + α2e

2
τ )
∣∣
τ=t

= α1fe1 + α2fe2 ; hence α1fe1 +
α2fe2 = fα1e1+α2e2 , ∀ei ∈ v(t), αi ∈ R, i = 1, 2.

Now consider the smooth submanifold V = {(t, e) : t ∈ R, e ∈ v(t)} of
R ×Σ. We have (1, Φvwt e) ∈ T(t,e)V since (1, Φvwt e) is the velocity of a curve
τ �→ (τ, eτ ) in V . So (t, e) �→ (1, Φvwt e), (t, e) ∈ V is a smooth vector field
on V . The curve e(t) ∈ v(t) satisfies (9) if and only if (t, e(t)) is a trajectory
of this vector field. Now the standard existence and uniqueness theorem for
ordinary differential equations provides the existence of a unique solution to
the Cauchy problem for small enough t while the linearity of the equation
guarantees that the solution is defined for all t. �
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It follows from the proof of the lemma that Φvwt e = πv(t)w(t)ėτ
∣∣
τ=t

for
any eτ ∈ v(τ) such that vt = e. Let v(t) = {(x, Svtx) : x ∈ R

n}, w(t) =
{(x, Swtx) : x ∈ R

n}; the matrix presentation of Φvwt in coordinates x is
(Swt − Svt)−1Ṡvt. Linear mappings Φvwt and Φwvt provide a factorization of
the infinitesimal cross-ratio [ẇ(t), v̇(t)]. Indeed, equality (4) implies:

[ẇ(t), v̇(t)] = −Φwvt Φvwt . (10)

Equality (9) implies one more useful presentation of the infinitesimal cross-
ratio: if e(t) satisfies (9), then

[ẇ(t), v̇(t)]e(t) = −Φwvt Φvwt e(t) = −Φwvt ė(t) = −πw(t)v(t)ë(t). (11)

Now let w be the derivative curve of v, w(t) = v◦(t). It happens that ë(t) ∈ v(t)
in this case and (11) is reduced to the structural equation:

ë(t) = −[v̇◦(t), v̇(t)]e(t) = −Rv(t)e(t),

where Rv(t) is the curvature operator. More precisely, we have the following

Proposition 2.3. Assume that v is a regular curve in Gn(Σ), v◦ is its deriv-
ative curve, and e(·) is a smooth curve in Σ such that e(t) ∈ v(t), ∀t. Then
ė(t) ∈ v◦(t) if and only if ë(t) ∈ v(t).

Proof. Given t, we take coordinates in such a way that v(t) = {(x, 0) : x ∈
R
n}, v◦(t) = {(0, y) : y ∈ R

n}. Then v(τ) = {(x, Sτx) : x ∈ R
n} for τ close

enough to t, where St = S̈t = 0 (see (5)).
Let e(τ) = {(x(τ), Sτx(τ))}. The inclusion ė(t) ∈ v◦(t) is equivalent to the

equality ẋ(t) = 0. Further,

ë(t) = {ẍ(t), S̈tx(t) + 2Ṡtẋ(t) + Stẍ(t)} = {ẍ(t), 2Ṡẋ} ∈ v(t).

Regularity of v implies the nondegeneracy of Ṡ(t). Hence ë(t) ∈ v(t) if and
only if ẋ(t) = 0. �

Now equality (11) implies

Corollary 2.1. If ė(t) = Φvv
◦

t e(t), then ë(t) +Rv(t)e(t) = 0.

Let us consider invertible linear mappings Vt : v(0) → v(t) defined by
the relations Vte(0) = e(t), ė(τ) = Φvv

◦

τ e(τ), 0 ≤ τ ≤ t. It follows from
the structural equation that the curve v is uniquely reconstructed from v̇(0)
and the curve t �→ V −1

t RV (t) in gl(v(0)). Moreover, let v0 ∈ Gn(Σ) and
ξ ∈ Tv0Gn(Σ), where the map ξ̄ ∈ Hom(v0, Σ/v0) has rank n; then for any
smooth curve t �→ A(t) in gl(v0) there exists a unique regular curve v such that
v̇(0) = ξ and V −1

t Rv(t)Vt = A(t). Indeed, let ei(0), i = 1, . . . , n, be a basis of

v0 and A(t)ei(0) =
n∑
j=1

aij(t)ej(0). Then v(t) = span{e1(t), . . . , en(t)}, where

ëi(τ) +
n∑
j=1

aij(τ)ej(τ) = 0, 0 ≤ τ ≤ t, (12)

are uniquely defined by fixing the v̇(0).
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The obtained classification of regular curves in terms of the curvature is
particularly simple in the case of a scalar curvature operators Rv(t) = ρ(t)id.
Indeed, we have A(t) = V −1

t Rv(t)Vt = ρ(t)id and system (12) is reduced to n
copies of the Hill equation ë(τ) + ρ(τ)e(τ) = 0.

Recall that all ξ ∈ TGn(Σ) such that rank ξ̄ = n are equivalent under the
action of GL(Σ) on TGn(Σ) induced by the standard action on the Grass-
mannian Gn(Σ). We thus obtain

Corollary 2.2. For any smooth scalar function ρ(t) there exists a unique, up
to the action of GL(Σ), regular curve v in Gn(Σ) such that Rv(t) = ρ(t)id.

Another important special class is that of symmetric curves.

Definition. A regular curve v is called symmetric if VtRv(t) = Rv(t)Vt, ∀t.
In other words, v is symmetric if and only the curve A(t) = V −1

t Rv(t)Vt in
gl(v(0)) is constant and coincides with Rv(0). The structural equation implies

Corollary 2.3. For any n × n-matrix A0, there exists a unique, up to the
action of GL(Σ), symmetric curve v such that Rv(t) is similar to A0.

The derivative curve v◦ of a regular curve v is not necessary regular. The
formula Rv(t) = Φv

◦v
t Φvv

◦

t implies that v◦ is regular if and only if the curvature
operator Rv(t) is nondegenerate for any t. Then we may compute the second
derivative curve v◦◦ = (v◦)◦.

Proposition 2.4. A regular curve v with nondegenerate curvature operators
is symmetric if and only if v◦◦ = v.

Proof. Let us consider system (12). We are going to apply Proposition 2.3
to the curve v◦ (instead of v) and the vectors ėi(t) ∈ v◦(t). According to
Proposition 2.3, v◦◦ = v if and only if d2

dt2 ėi(t) ∈ v◦(t). Differentiating (12) we
obtain that v◦◦ = v if and only if the functions αij(t) are constant. The last
property is none other than a characterization of symmetric curves. �

2.7 Canonical Connection

Now we apply the developed theory of curves in the Grassmannian to the
Jacobi curves Jz(t) (see Sect. 2.1).

Proposition 2.5. All Jacobi curves Jz(·), z ∈ N , associated to the given
vector field ζ are regular (ample) if and only if the field ζ is regular (ample).

Proof. The definition of the regular (ample) field is actually the specification
of the definition of the regular (ample) germ of the curve in the Grassmannian:
general definition is applied to the germs at t = 0 of the curves t �→ Jz(t).
What remains is to demonstrate that other germs of these curves are regular
(ample) as soon as the germs at 0 are. The latter fact follows from the identity
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Jz(t+ τ) = e−tζ∗ Jetζ(z)(τ) (13)

(which, in turn, is an immediate corollary of the identity e
−(t+τ)ζ
∗ = e−tζ∗ ◦

e−τζ∗ ). Indeed, (13) implies that the germ of Jz(·) at t is the image of the germ
of Jetζ(τ)(·) at 0 under the fixed linear transformation e−tζ∗ : Tetζ(z)N → TzN .
The properties of the germs to be regular or ample survive linear transforma-
tions since they are intrinsic properties. �

Let ζ be an ample field. Then the derivative curves J◦
z (t) are well-defined.

Moreover, identity (13) and the fact that the construction of the derivative
curve is intrinsic imply:

J◦
z (t) = e−tζ∗ J◦

etζ(z)(0). (14)

The value at 0 of the derivative curve provides the splitting TzM = Jz(0) ⊕
J◦
z (0), where the first summand is the tangent space to the fiber, Jz(0) =
TzEz.

Now assume that J◦
z (t) smoothly depends on z; this assumption is au-

tomatically fulfilled in the case of a regular ζ, where we have the explicit
coordinate presentation for J◦

z (t). Then the subspaces J◦
z (0) ⊂ TzN, z ∈ N,

form a smooth vector distribution, which is the direct complement to the ver-
tical distribution E = {TzEz : z ∈ N}. Direct complements to the vertical
distribution are called Ehresmann connections (or just nonlinear connections,
even if linear connections are their special cases). The Ehresmann connection
Eζ = {J◦

z (0) : z ∈ N} is called the canonical connection associated with ζ and
the correspondent splitting TN = E ⊕Eζ is called the canonical splitting. Our
nearest goal is to give a simple intrinsic characterization of Eζ which does not
require the integration of the equation ż = ζ(z) and is suitable for calculations
not only in local coordinates but also in moving frames.

Let F = {Fz ⊂ TzN : z ∈ N} be an Ehresmann connection. Given a
vector field ξ on E we denote ξver(z) = πFzJz(0)ξ, ξhor(z) = πJz(0)Fz

ξ, the
“vertical” and the “horizontal” parts of ξ(z). Then ξ = ξver+ξhor, where ξver
is a section of the distribution E and ξhor is a section of the distribution F .
In general, sections of E are called vertical fields and sections of F are called
horizontal fields.

Proposition 2.6. Assume that ζ is a regular field. Then F = Eζ if and only
if the equality

[ζ, [ζ, ν]]hor = 2[ζ, [ζ, ν]ver]hor (15)

holds for any vertical vector field ν. Here [ , ] is Lie bracket of vector fields.

Proof. The deduction of identity (15) is based on the following classical
expression:

d

dt
e−tζ∗ ξ = e−tζ∗ [ζ, ξ], (16)

for any vector field ξ.
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Given z ∈ N , we take coordinates in TzN in such a way that TzN =
{(x, y) : x, y ∈ R

n}, where Jz(0) = {(x, 0) : x ∈ R
n}, J◦

z (0) = {(0, y) : y ∈
R
n}. Let Jz(t) = {(x, Stx) : x ∈ R

n}, then S0 = S̈0 = 0 and det Ṡ0 �= 0 due
to the regularity of the Jacobi curve Jz.

Let ν be a vertical vector field, ν(z) = (x0, 0) and
(
e−tζ∗ ν
)

(z) = (xt, yt).

Then (xt, 0) =
(
e−tζ∗ ν
)
ver

(z), (0, yt) =
(
e−tζ∗ ν
)
hor

(z). Moreover, yt = Stxt

since
(
e−tζ∗ ν
)

(z) ∈ Jz(t). Differentiating the identity yt = Stxt we obtain:

ẏt = Ṡtxt + Stẋt. In particular, ẏ0 = Ṡ0x0. It follows from (16) that (ẋ0, 0) =
[ζ, ν]ver, (0, ẏ0) = [ζ, ν]hor. Hence (0, Ṡ0x0) = [ζ, ν]hor(z), where, I recall, ν is
any vertical field. Now we differentiate once more and evaluate the derivative
at 0:

ÿ0 = S̈0x0 + 2Ṡ0ẋ0 + S0ẍ0 = 2Ṡ0ẋ0. (17)

The Lie bracket presentations of the left and right hand sides of (17) are:
(0, ÿ0) = [ζ, [ζ, ν]]hor, (0, Ṡ0ẋ0) = [ζ, [ζ, ν]ver]hor. Hence (17) implies identity
(15).

Assume now that {(0, y) : y ∈ R
n} �= J◦

z (0); then S̈0x0 �= 0 for some x0.
Hence ÿ0 �= 2Ṡ0ẋ0 and equality (15) is violated. �

Inequality (15) can be equivalently written in the following form that is
often more convenient for the computations:

π∗[ζ, [ζ, ν]](z) = 2π∗[ζ, [ζ, ν]ver](z), ∀z ∈ N. (18)

Let RJz
(t) ∈ gl(Jz(t)) be the curvature of the Jacobi curve Jz(t). Identity

(13) and the fact that construction of the Jacobi curve is intrinsic imply that

RJz
(t) = e−tζ∗ RJ

etζ(z)
(0)etζ∗
∣∣
Jz(t)

.

Recall that Jz(0) = TzEz; the operator RJz
(0) ∈ gl(TzEz) is called the curva-

ture operator of the field ζ at z. We introduce the notation: Rζ(z)
def
= RJz

(0);
then Rζ = {Rζ(z)}z∈E is an automorphism of the “vertical” vector bundle
{TzEz}z∈M .

Proposition 2.7. Assume that ζ is an ample vector field and J◦
z (0) is smooth

with respect to z. Let TN = E ⊕ Eζ be the canonical splitting. Then

Rζν = −[ζ, [ζ, ν]hor]ver (19)

for any vertical field ν.

Proof. Recall that RJz
(0) = [J̇◦

z (0), J̇z(0)], where [·, ·] is the infinitesimal
cross-ratio (not the Lie bracket!). The presentation (10) of the infinitesimal
cross-ratio implies:

Rζ(z) = RJz
(0) = −ΦJ

◦
z Jz

0 Φ
JzJ

◦
z

0 ,
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where Φvw0 e = πv(0)w(0)ė0 for any smooth curve eτ ∈ v(τ) such that e0 = e.

Equalities (14) and (16) imply: ΦJzJ
◦
z

0 ν(z) = [ζ, ν]ver(z), ∀z ∈ M. Similarly,
Φ
J◦

z Jz

0 µ(z) = [ζ, µ]hor(z) for any horizontal field µ and any z ∈ M . Finally,

Rζ(z)ν(z) = −ΦJ
◦
z Jz

0 Φ
JzJ

◦
z

0 = −[ζ, [ζ, ν]hor]ver(z). �

2.8 Coordinate Presentation

We fix local coordinates acting in the domain O ⊂ N , which turn the foliation
into the Cartesian product of vector spaces: O ∼= {(x, y) : x, y ∈ R

n}, π :

(x, y) �→ y. Then vector field ζ takes the form ζ =
n∑
i=1

(
ai ∂

∂xi
+ bi ∂

∂yi

)
, where

ai, bi are smooth functions on R
n × R

n. Below we use abridged notations:
∂
∂xi

= ∂xi
, ∂ϕ
∂xi

= ϕxi
etc. We also use the standard summation agreement for

repeating indices.
Recall the coordinate characterization of the regularity property for the

vector field ζ. Intrinsic definition of regular vector fields is done in Sect. 8; it
is based on the mapping Πz whose coordinate presentation is: Π(x,y) : x �→(
b1(x, y), . . . , bn(x, y)

)�. Field ζ is regular if and only if Πy are submersions;

in other words, if and only if
(
bixj

)n
i,j=1

is a non degenerate matrix.

Vector fields ∂xi
, i = 1, . . . , n, provide a basis of the space of vertical fields.

As soon as coordinates are fixed, any Ehresmann connection finds a unique
basis of the form:

(∂yi
)hor = ∂yi

+ cji∂xj
,

where cj,i i, j = 1, . . . , n, are smooth functions on R
n × R

n. To characterize a
connection in coordinates thus means to find functions cji . In the case of the
canonical connection of a regular vector field, the functions cji can be easily
recovered from identity (18) applied to ν = ∂xi

, i = 1, . . . , n. We will do
it explicitly for two important classes of vector fields: second order ordinary
differential equations and Hamiltonian systems.

A second order ordinary differential equation

ẏ = x, ẋ = f(x, y) (20)

there corresponds to the vector field ζ = f i∂xi
+ xi∂yi

, where f =
(f1, . . . , fn)�. Let ν = ∂xi

; then

[ζ, ν] = −∂yi
− f jxi

∂xj
, [ζ, ν]ver = (cji − f jxi

)∂xj
,

π∗[ζ, [ζ, ν]] = f jxi
∂yj

, π∗[ζ, [ζ, ν]ver] = (f jxi
− cji )∂yj

.
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Hence, in virtue of equality (18) we obtain that cji = 1
2f

j
xi

for the canonical
connection associated with the second order differential equation (20).

Now consider a Hamiltonian vector field ζ = −hyi
∂xi

+ hxi
∂yi

, where h
is a smooth function on R

n × R
n (a Hamiltonian). The field ζ is regular if

and only if the matrix hxx =
(
hxixj

)n
i,j=1

is non degenerate. We are going to

characterize the canonical connection associated with ζ. Let C =
(
cji

)n
i,j=1

;

the straightforward computation similar to the computation made for the
second order ordinary differential equation gives the following presentation
for the matrix C:

2 (hxxChxx)ij = hxk
hxixjyk

− hyk
hxixjxk

− hxiyk
hxkxj

− hxixk
hykxj

or, in the matrix form:

2hxxChxx = {h, hxx} − hxyhxx − hxxhyx,

where {h, hxx} is the Poisson bracket: {h, hxx}ij = {h, hxixj
} = hxk

hxixjyk
−

hyk
hxixjxk

.
Note that matrix C is symmetric in the Hamiltonian case (indeed,

hxxhyx = (hxyhxx)�). This is not occasional and is actually guaranteed
by the fact that Hamiltonian flows preserve symplectic form dxi ∧ dyi. See
Sect. 10 for the symplectic version of the developed theory.

As soon as we found the canonical connection, formula (19) gives us the
presentation of the curvature operator although the explicit coordinate ex-
pression can be bulky. Let us specify the vector field more. In the case of
the Hamiltonian of a natural mechanical system, h(x, y) = 1

2 |x|2 + U(y), the
canonical connection is trivial: cji = 0; the matrix of the curvature operator
is just Uyy.

Hamiltonian vector field associated to the Hamiltonian h(x, y) =
gij(y)xixj with a non degenerate symmetric matrix

(
gij
)n
i,j=1

generates
a (pseudo-)Riemannian geodesic flow. Canonical connection in this case is
classical Levi-Civita connection and the curvature operator is Ricci operator
of (pseudo-)Riemannian geometry (see [4, Sect. 5] for details). Finally, Hamil-
tonian h(x, y) = gij(y)xixj + U(y) has the same connection as Hamiltonion
h(x, y) = gij(y)xixj while its curvature operator is sum of Ricci operator and
second covariant derivative of U .

2.9 Affine Foliations

Let [E ] be the sheaf of germs of sections of the distribution E = {TzEz : z ∈ N}
equipped with the Lie bracket operation. Then [E ]z is just the Lie algebra of
germs at z ∈ M of vertical vector fields. Affine structure on the foliation E
is a sub-sheaf [E ]a ⊂ [E ] such that [E ]az is an Abelian sub-algebra of [E ]z and
{ς(z) : ς ∈ [E ]az} = TzEz, ∀z ∈ N . A foliation with a fixed affine structure is
called the affine foliation.
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The notion of the affine foliation generalizes one of the vector bundle. In
the case of the vector bundle, the sheaf [E ]a is formed by the germs of vertical
vector fields whose restrictions to the fibers are constant (i.e., translation
invariant) vector fields on the fibers. In the next section we will describe an
important class of affine foliations which is not reduced to the vector bundles.

Lemma 2.5. Let E be an affine foliation, ς ∈ [E ]az and ς(z) = 0. Then
ς|Ez

= 0.

Proof. Let ς1, . . . , ςn ∈ [E ]az be such that ς1(z), . . . , ςn(z) form a basis of TzEz.
Then ς = b1ς1 + · · · + bnςn, where bi are germs of smooth functions vanishing
at z. Commutativity of [E ]az implies: 0 = [ςi, ς] = (ςib1)ς1 + · · · + (ςibn)ςn.
Hence functions bi|Ez

are constants, i.e., bi|Ez
= 0, i = 1, . . . , n. �

Lemma 2.5 implies that ς ∈ [E ]az is uniquely reconstructed from ς(z). This
property permits to define the vertical derivative of any vertical vector field ν
on M . Namely, ∀v ∈ TzEz we set

Dvν = [ς, ν](z), where ς ∈ [E ]az , ς(z) = v.

Suppose ζ is a regular vector field on the manifold N endowed with the affine
n-foliation. The canonical Ehresmann connection Eζ together with the vertical
derivative allow to define a canonical linear connection ∇ on the vector bundle
E . Sections of the vector bundle E are just vertical vector fields. We set

∇ξν = [ξ, ν]ver +Dν(ξver),

where ξ is any vector field on N and ν is a vertical vector field. It is easy
to see that ∇ satisfies axioms of a linear connection. The only non evident
one is: ∇bξν = b∇ξν for any smooth function b. Let z ∈ N , ς ∈ [E ]az , and
ς(z) = ν(z). We have

∇bξν = [bξ, ν]ver + [ς, bξver] = b ([ξ, ν]ver + [ς, ξver]) − (νb)ξver + (ςb)ξver.

Hence

(∇bξν)(z) = b(z) ([ξ, ν]ver(z) + [ς, ξver](z)) = (b∇ξν)(z).

Linear connection ∇ gives us the way to express Pontryagin characteristic
classes of the vector bundle E via the regular vector field ζ. Indeed, any linear
connection provides an expression for Pontryagin classes. We are going to
briefly recall the correspondent classical construction (see [13] for details).
Let R∇(ξ, η) = [∇ξ,∇η] − ∇[ξ,η] be the curvature of linear connection ∇.
Then R∇(ξ, η)ν is C∞(M)-linear with respect to each of three arguments
ξ, η, ν. In particular, R∇(·, ·)ν(z) ∈

∧2(T ∗
zN)⊗ TzEz, z ∈ N. In other words,

R∇(·, ·) ∈ Hom
(
E ,
∧2(T ∗N) ⊗ E

)
.
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Consider the commutative exterior algebra

∧ev
N = C∞(N) ⊕

∧2
(T ∗N) ⊕ · · · ⊕

∧2n
(T ∗N)

of the even order differential forms on N . Then R∇ can be treated as an
endomorphism of the module

∧ev
N ⊗ E over algebra

∧ev
N , i.e., R∇ ∈

End∧ev N (
∧ev

M ⊗ E).

Now consider characteristic polynomial det(tI + 1
2πR

∇) = tn +
n∑
i=1

φit
n−i,

where the coefficient φi is an order 2i differential form on N . All forms φi are
closed; the forms φ2k−1 are exact and the forms φ2k represent the Pontryagin
characteristic classes, k = 1, . . . , [n2 ].

2.10 Symplectic Setting

Assume that N is a symplectic manifold endowed with a symplectic form σ.
Recall that a symplectic form is just a closed non degenerate differential 2-
form. Suppose E is a Lagrange foliation on the symplectic manifold (N,σ); this
means that σ|Ez

= 0, ∀z ∈ N . Basic examples are cotangent bundles endowed
with the standard symplectic structure: N = T ∗M, Ez = T ∗

π(z)M , where
π : T ∗M → M is the canonical projection. In this case σ = dτ , where τ = {τz :
z ∈ T ∗M} is the Liouville 1-form on T ∗M defined by the formula: τz = z ◦π∗.
Completely integrable Hamiltonian systems provide another important class
of Lagrange foliations. We will briefly recall the correspondent terminology.
Details can be found in any introduction to symplectic geometry (for instance,
in [10]).

Smooth functions on the symplectic manifold are called Hamiltonians.
To any Hamiltonian there corresponds a Hamiltonian vector field h on M
defined by the equation: dh = σ(·,h). The Poisson bracket {h1, h2} of the
Hamiltonians h1 and h2 is the Hamiltonian defined by the formula: {h1, h2} =
σ(h1,h2) = h1h2. Poisson bracket is obviously anti-symmetric and satisfies
the Jacobi identity: {h1, {h2, h3}} + {h3, {h1, h2}} + {h2, {h3, h1}} = 0. This
identity is another way to say that the form σ is closed. Jacobi identity implies
one more useful formula:

−−−−−→
{h1, h2} = [h1,h2].

We say that Hamiltonians h1, . . . , hn are in involution if {hi, hj} = 0; then
hj is constant along trajectories of the Hamiltonian equation ż = hi(z), i, j =
1, . . . , n. We say that h1, . . . , hn are independent if dzh1 ∧ · · · ∧ dzhn �= 0, z ∈
N . n independent Hamiltonians in involution form a completely integrable
system. More precisely, any of Hamiltonian equations ż = hi(z) is completely
integrable with first integrals h1, . . . , hn.

Lemma 2.6. Let Hamiltonians h1, . . . , hn form a completely integrable sys-
tem. Then the n-foliation Ez = {z′ ∈ M : hi(z′) = hi(z), i = 1, . . . , n}, z ∈
N , is Lagrangian.
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Proof. We have hihj = 0, i, j = 1, . . . , n, hence hi(z) are tangent to Ez.
Vectors h1(z), . . . ,hn(z) are linearly independent, hence

span{h1(z), . . . ,hn(z)} = TzEz.

Moreover, σ(hi,hj) = {hi, hj} = 0, hence σ|Ez
= 0. �

Any Lagrange foliation possesses a canonical affine structure. Let [E ] be
the sheaf of germs of the distribution E = {TzEz : z ∈ N} as in Sect. 9; then
[E ]a is the intersection of [E ] with the sheaf of germs of Hamiltonian vector
fields.

We have to check that Lie algebra [E ]az is Abelian and generates TzEz, ∀z ∈
N . First check the Abelian property. Let h1,h2 ∈ [E ]az ; we have [h1,h2] =
−−−−−→
{h1, h2}, {h1, h2} = σ(h1,h2) = 0, since hi are tangent to Ez and σ|Ez

= 0.
The second property follows from the Darboux–Weinstein theorem (see [10])
which states that all Lagrange foliations are locally equivalent. More precisely,
this theorem states that any z ∈ M possesses a neighborhood Oz and local
coordinates which turn the restriction of the Lagrange foliation E to Oz into
the trivial bundle R

n × R
n = {(x, y) : x, y ∈ R

n} and, simultaneously, turn

σ|Oz
into the form

n∑
i=1

dxi ∧ dyi. In this special coordinates, the fibers become

coordinate subspaces R
n × {y}, y ∈ R

n, and the required property is obvi-
ous: vector fields ∂

∂xi
are Hamiltonian fields associated to the Hamiltonians

−yi, i = 1, . . . , n.

Suppose ζ is a Hamiltonian field on the symplectic manifold endowed with
the Lagrange foliation, ζ = h. Let ς ∈ [E ]az , ς = s; then ςh = {s, h}. The field
h is regular if and only if the quadratic form s �→ {s, {s, h}}(z) has rank n.
Indeed, in the “Darboux–Weinstein coordinates” this quadratic form has the
matrix { ∂2h

∂xi∂xj
}ni,j=1.

Recall that the tangent space TzN to the symplectic manifold N is a
symplectic space endowed with the symplectic structure σz. An n-dimensional
subspace υ ⊂ TzN is a Lagrangian subspace if σz|υ = 0. The set

L(TzN) = {υ ∈ Gn(TzM) : σz|υ = 0}

of all Lagrange subspaces of TzM is a Lagrange Grassmannian.
Hamiltonian flow eth preserves the symplectic form,

(
eth
)∗
σ = σ. Hence(

eth
)
∗ : TzN → Teth(z)N transforms Lagrangian subspaces in the Lagrangian

ones. It follows that the Jacobi curve Jz(t) =
(
e−th
)
∗ Teth(z)Eeth(z) consists

of Lagrangian subspaces, Jz(t) ∈ L(TzN).
We need few simple facts on Lagrangian Grassmannians (see Sect. 1.6 for

the basic information and [3, Sect. 4] for a consistent description of their geom-
etry). Let (Σ, σ̄) be a 2n-dimensional symplectic space and υ0, υ1 ∈ L(Σ)
be a pair of transversal Lagrangian subspaces, υ0 ∩ υ1 = 0. Bilinear form
σ̄ induces a non degenerate pairing of the spaces υ0 and υ1 by the rule
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(e, f) �→ σ̄(e, f), e ∈ υ0, f ∈ υ1. To any basis e1, . . . , en of υ0 we may as-
sociate a unique dual basis f1, . . . , fn of υ1 such that σ̄(ei, fj) = δij . The
form σ̄ is totally normalized in the basis e1, . . . , en, f1, . . . , fn of Σ, since
σ(ei, ej) = σ(fi, fj) = 0. It follows that symplectic group

Sp(Σ) = {A ∈ GL(Σ) : σ̄(Ae,Af) = σ̄(e, f), e, f ∈ Σ}

acts transitively on the pairs of transversal Lagrangian subspaces.
Next result is a “symplectic specification” of Lemma 2.1 from Sect. 9.

Lemma 2.7. Let υ0 ∈ L(Σ); then {πυυ0 : υ ∈ υ�
0 ∩L(Σ)} is an affine subspace

of the affine space {πvυ0 : v ∈ υ�
0 } characterized by the relation:

v ∈ υ�
0 ∩ L(Σ) ⇔ σ̄(πvυ0 ·, ·) + σ̄(·, πvυ0 ·) = σ̄(·, ·).

Proof. Assume that υ1 ∈ υ�
0 ∩ L(Σ). Let e, f ∈ Σ, e = e0 + e1, f = f0 + f1

where ei, fi ∈ υi, i = 0, 1; then

σ̄(e, f) = σ̄(e0 + e1, f0 + f1) = σ̄(e0, f1) + σ̄(e1, f0)

= σ̄(e0, f) + σ̄(e, f0) = σ̄(πυ1υ0e, f) + σ̄(e, πυ1υ0f).

Conversely, let v ∈ υ�
0 is not a Lagrangian subspace. Then there exist e, f ∈ v

such that σ̄(e, f) �= 0, while σ̄(πvυ0e, f) = σ̄(e, πvυ0f) = 0. �

Corollary 2.4. Let v(·) be an ample curve in Gn(Σ) and v◦(·) be the deriv-
ative curve of v(·). If v(t) ∈ L(Σ), ∀t, then v◦(t) ∈ L(Σ).

Proof. The derivative curve v◦ was defined in Sect. 11. Recall that πv◦(t)v(t) =
π0
t , where π0

t is the free term of the Laurent expansion

πv(τ)v(t) ≈
∞∑

i=−kt

(τ − t)iπit.

The free term π0
t belongs to the affine hull of πv(τ)v(t), when τ runs a neigh-

borhood of t. Since πv(τ)v(t) belongs to the affine space {πvv0 : v ∈ v�
0 ∩L(Σ)},

then π0
t belongs to this affine space as well. �

We call a Lagrange distribution any rank n vector distribution {Λz ⊂ TzN :
z ∈ N} on the symplectic manifold N such that Λz ∈ L(TzN), z ∈ N .

Corollary 2.5. Canonical Ehresmann connection Eζ = {J◦
z (0) : z ∈ N} as-

sociated to an ample Hamiltonian field ζ = h is a Lagrange distribution. �

It is clearly seeing in coordinates how Lagrange Grassmanian is sitting in
the usual one. Let Σ = R

n∗ × R
n = {(η, y) : η ∈ R

n∗, y ∈ R
n}. Then any

v ∈ ({0} × R
n)� has a form v = {(y�, Sy) : y ∈ R

n}, where S is an n × n-
matrix. It is easy to see that v is a Lagrangian subspace if and only if S is a
symmetric matrix, S = S�.
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2.11 Monotonicity

We continue to study curves in the Lagrange Grassmannian L(TzN), in partic-
ular, the Jacobi curves t �→

(
e−tH
)
∗ TetH(z)EetH(z). In Sect. 6 we identified the

velocity Λ̇(t) of any smooth curve Λ(·) in L(TzN) with a quadratic form Λ̇(t)
on the subspace Λ(t) ⊂ TzN . Recall that the curve Λ(·) was called monotone
increasing if Λ̇(t) ≥ 0, ∀t; it is called monotone decreasing if Λ̇(t) ≤ 0. It is
called monotone in both cases.

Proposition 2.8. Set Λ(t) =
(
e−tH
)
∗ TetH(z)EetH(z); then quadratic form

Λ̇(t) is equivalent (up to a linear change of variables) to the form

ς �→ −(ς ◦ ςH)(etH(z)), ς ∈ [E ]aetH(z), (21)

on EetH(z).

Proof. Let zt = etH(z), then

d

dt
Λ(t) =

d

dt
e
(t0−t)H
∗ Tzt

Ezt
= e

(t0−t)H
∗

d

dε

∣∣∣
ε=0

e−εH∗ Tzt+ε
Ezt+ε

.

Set ∆(ε) = e−εH∗ Tzt+ε
Ezt+ε

∈ L (Tzt
N). It is enough to prove that ∆̇(0) is

equivalent to form (21). Indeed, Λ̇(t) = e
(t0−t)H
∗ Tzt

∆̇(0), where

e
(t0−t)H
∗ : Tzt

N → Tzt0
N

is a symplectic isomorphism. The association of the quadratic form Λ̇(t) on the
subspace Λ(t) to the tangent vector Λ̇(t) ∈ L

(
Tzt0

N
)

is intrinsic, i.e., depends

only on the symplectic structure on Tzt0
N . Hence ∆̇(0)(ξ) = Λ̇(t)

(
e
(t0−t)H
∗ ξ

)
,

∀ξ ∈ ∆(0) = Tzt
Ezt

.
What remains, is to compute ∆̇(0); we do it in the Darboux–Weinstein

coordinates z = (x, y). We have: ∆(ε) =
{

(ξ(ε), η(ε)) :
ξ̇(τ) = ξ(τ) ∂

2H
∂x∂y (zt−τ ) + η(τ)� ∂2H

∂y2 (zt−τ ),
η̇(τ) = −∂2H

∂x2 (zt−τ )ξ(τ)� − ∂2H
∂y∂x (zt−τ )η(τ),

ξ(0) = ξ ∈ R
n∗

η(0) = 0 ∈ Rn

}
,

∆̇(0)(ξ) = σ
(
(ξ, 0), (ξ̇(0), η̇(0))

)
= ξη̇(0) = −ξ ∂

2H

∂x2
(zt)ξ�.

Recall now that form (21) has matrix ∂2H
∂x2 (zt) in the Darboux–Weinstein

coordinates. �
This proposition clearly demonstrates the importance of monotone curves.

Indeed, monotonicity of Jacobi curves is equivalent to the convexity (or con-
cavity) of the Hamiltonian on each leaf of the Lagrange foliation. In the case of
a cotangent bundle this means the convexity or concavity of the Hamiltonian
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with respect to the impulses. All Hamiltonians (energy functions) of mechan-
ical systems are like that! This is not an occasional fact but a corollary of the
list action principle. Indeed, trajectories of the mechanical Hamiltonian sys-
tem are extremals of the least action principle and the energy function itself
is the Hamiltonian of the correspondent regular optimal control problem as it
was considered in Sect. 7. Moreover, it was stated in Sect. 7 that convexity of
the Hamiltonian with respect to the impulses is necessary for the extremals
to have finite Morse index. It turns out that the relation between finiteness
of the Morse index and monotonicity of the Jacobi curve has a fundamental
nature. A similar property is valid for any, not necessary regular, extremal of
a finite Morse index. Of course, to formulate this property we have first to
explain what are Jacobi curve for non regular extremals. To do that, we come
back to the very beginning; indeed, Jacobi curves appeared first as the result
of calculation of the L-derivative at the regular extremal (see Sects. 7 and 8).
On the other hand, L-derivative is well-defined for any extremal of the finite
Morse index as it follows from Theorem 1.1. We thus come to the following
construction in which we use notations and definitions of Sects. 3 and 4.

Let h(λ, u) be the Hamiltonian of a smooth optimal control system,
λt, t0 ≤ t ≤ t1, an extremal, and q(t) = π(λt), t0,≤ t ≤ t1 the extremal
path. Recall that the pair (λt0 , λt) is a Lagrangian multiplier for the condi-
tional minimum problem defined on an open subset of the space

M × L∞([t0, t1], U) = {(qt, u(·)) : q ∈ M,u(·) ∈ L∞([t0, t1], U)},
where u(·) is control and qt is the value at t of the solution to the differential
equation q̇ = f(q, u(τ)), τ ∈ [t0, t1]. In particular, Ft(qt, u(·)) = qt. The cost
is J t1t0 (qt, u(·)) and constraints are Ft0(qt, u(·)) = q(t0), qt = q(t).

Let us set Jt(u) = J tt0(q(t), u(·)), Φt(u) = Ft0(q(t), u(·)). A covector λ ∈
T ∗M is a Lagrange multiplier for the problem (Jt, Φt) if and only if there exists
an extremal λ̂τ , t0 ≤ τ ≤ t, such that λt0 = λ, λ̂t ∈ T ∗

q(t)M . In particular,
λt0 is a Lagrange multiplier for the problem (Jt, Φt) associated to the control
u(·) = ū(λ.).

Assume that ind Hessu
(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
< ∞, t0 ≤ t ≤ t1 and set Φ̄t =

(Jt, Φt). The curve
t �→ L(λt0 ,u)(Φ̄t), t0 ≤ t ≤ t1

in the Lagrange Grassmannian L
(
Tλt0

(T ∗M)
)

is called the Jacobi curve as-
sociated to the extremal λt, t0 ≤ t ≤ t1.

In general, the Jacobi curve t �→ L(λt0 ,u)(Φ̄t) is not smooth, it may even
be discontinues, but it is monotone decreasing in a sense we are going to
briefly describe now. You can find more details in [2] (just keep in mind that
similar quantities may have opposite signs in different papers; sign agree-
ments vary from paper to paper that is usual for symplectic geometry).
Monotone curves in the Lagrange Grassmannian have analytic properties
similar to scalar monotone functions: no more than a countable set of dis-
continuity points, right and left limits at every point, and differentiability
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almost everywhere with semi-definite derivatives (nonnegative for monotone
increasing curves and nonpositive for decreasing ones). True reason for such
a monotonicity is a natural monotonicity of the family Φ̄t. Indeed, let τ < t,
then Φ̄τ is, in fact, the restriction of Φ̄t to certain subspace: Φ̄τ = Φ̄t ◦ pτ ,

where pτ (u)(s) =
{
u(s) , s < τ
ũ(s) , s > τ

. One can define the Maslov index of a (maybe

discontinues) monotone curve in the Lagrange Grassmannian and the relation
between the Morse and Maslov index indices from Theorem 1.3 remains true.

In fact, Maslov index is a key tool in the whole construction. The starting
point is the notion of a simple curve. A smooth curve Λ(τ), τ0 ≤ τ ≤ τ1, in
the Lagrange Grassmannian L(Σ) is called simple if there exists ∆ ∈ L(Σ)
such that ∆ ∩ Λ(τ) = 0, ∀τ ∈ [τ0, τ1]; in other words, the entire curve is
contained in one coordinate chart. It is not hard to show that any two points of
L(Σ) can be connected by a simple monotone increasing (as well as monotone
decreasing) curve. An important fact is that the Maslov index µ(ΛΠ(·)) of a
simple monotone increasing curve Λ(τ), τ0 ≤ τ ≤ τ1 is uniquely determined by
the triple (Π,Λ(τ0), Λ(τ1)); i.e., it has the same value for all simple monotone
increasing curves connecting Λ(τ0) with Λ(τ1). A simple way to see this is
to find an intrinsic algebraic expression for the Maslov index preliminary
computed for some simple monotone curve in some coordinates. We can use
Lemma 1.2 for this computation since the curve is simple. The monotonic
increase of the curve implies that SΛ(t1) > SΛ(t0).

Exercise. Let S0, S1 be nondegenerate symmetric matrices and S1 ≥ S0.
Then indS0 − indS1 = ind

(
S−1

0 − S−1
1

)
.

Let x ∈ (Λ(τ0) + Λ(τ1)∩Π so that x = x0 +x1, where xi ∈ Λ(τi), i = 0, 1.
We set q(x) = σ(x1, x0). If Λ(τ0) ∩ Λ(τ1) = 0, then Λ(τ0) + Λ(τ1) = Σ, x is
any element of Π and x0, x1 are uniquely determined by x. This is not true
if Λ(τ0) ∩ Λ(τ1) �= 0 but q(x) is well-defined anyway: σ(x1, x2) depends only
on x0 + x1 since σ vanishes on Λ(τi), i = 0, 1.

Now we compute q in coordinates. Recall that

Λ(τi) = {(y�, SΛ(τi)y) : yRn}, i = 0, 1, Π = {y�, 0) : y ∈ R
n}.

We have
q(x) = y�1 SΛ(τ0)y0 − y�0 SΛ(τ1)y1,

where x = (y�0 +y�1 , 0), SΛ(τ0)y0+SΛ(τ1)y1 = 0. Hence y1 = −S−1
Λ(tau1)

SΛ(τ0)y0
and

q(x) = −y�0 SΛ(τ0)y0 −
(
SΛ(τ0)y0

)�
S−1
Λ(τ1)

SΛ(τ0)y0 = y�
(
S−1
Λ(τ0)

− S−1
Λ(τ1)

)
y,

where y = SΛ(τ0)y0. We see that the form q is equivalent, up to a linear change
of coordinates, to the quadratic form defined by the matrix S−1

Λ(τ0)
− S−1

Λ(τ1)
.

Now we set
indΠ(Λ(τ0), Λ(τ1))

def
= ind q.

The above exercise and Lemma 1.2 imply the following:
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Lemma 2.8. If Λ(τ), τ0 ≤ τ ≤ τ1, is a simple monotone increasing curve,
then

µ(Λ(·)) = indΠ(Λ(τ0), Λ(τ1)).

Note that definition of the form q does not require transversality of Λ(τi)
to Π. It is convenient to extend definition of indΠ(Λ(τ0), Λ(τ1)) to this case.
General definition is as follows:

indΠ(Λ0, Λ1) = ind q +
1
2
(dim(Π ∩ Λ0) + dim(Π ∩ Λ1)) − dim(Π ∩ Λ0 ∩ Λ1).

The Maslov index also has appropriate extension (see [3, Sect. 4]) and
Lemma 2.8 remains true.

Index indΠ(Λ0, Λ1) satisfies the triangle inequality:

indΠ(Λ0, Λ2) ≤ indΠ(Λ0, Λ1) + indΠ(Λ1, Λ2).

Indeed, the right-hand side of the inequality is equal to the Maslov index of a
monotone increasing curve connecting Λ0 with Λ2, i.e., of the concatenation
of two simple monotone increasing curves. Obviously, the Maslov index of a
simple monotone increasing curve is not greater than the Maslov index of any
other monotone increasing curve connecting the same endpoints.

The constructed index gives a nice presentation of the Maslov index of any
(not necessary simple) monotone increasing curve Λ(t), t0 ≤ t ≤ t1:

µΠ(Λ(·)) =
l∑

i=0

indΠ(Λ(τi), Λ(τi+1)), (22)

where t0 = τ0 < τ1 < · · · < τl < τl+1 = t1 and Λ
∣∣
[τi,τi+1]

are simple pieces of
the curve Λ(·). If the pieces are not simple, then the right-hand side of (22)
gives a low bound for the Maslov index (due to the triangle inequality).

Let now Λ(t), t0 ≤ t ≤ t1, be a smooth curve which is not monotone
increasing. Take any subdivision t0 = τ0 < τ1 < · · · < τl < τl+1 = t1

and compute the sum
l∑

i=0

indΠ(Λ(τi), Λ(τi+1)). This sum inevitably goes

to infinity when the subdivision becomes finer and finer. The reason is as
follows: indΠ(Λ(τi), Λ(τi+1)) > 0 for any simple piece Λ

∣∣
[τi,τi+1]

such that

Λ̇(τ) � 0, ∀τ ∈ [τi, τi+1] and µΠ(Λ
∣∣
[τi,τi+1]

= 0. I advise reader to play with
the one-dimensional case of the curve in L(R2) = S1 to see better what’s
going on.

This should now be clear how to manage in the general nonsmooth case.
Take a curve Λ(·) (an arbitrary mapping from [t0, t1] into L(Σ)). For any finite
subset T = {τ1 . . . , τl} ⊂ (t0, t1), where t0 = τ0 < τ1 < · · · < τl < τl+1 = t1,

we compute the sum ITΠ =
l∑

i=0

indΠ(Λ(τi), Λ(τi+1)) and then find supremum

of these sums for all finite subsets: IΠ(Λ(·)) = sup
T
ITΠ . The curve Λ(·) is called
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monotone increasing if IΠ < ∞; it is not hard to show that the last property
does not depend on Π and that monotone increased curves enjoy listed above
analytic properties. A curve Λ(·) is called monotone decreasing if inversion of
the parameter t �→ t0 + t1 − t makes it monotone increasing.

We set µ(Λ(·)) = IΠ(Λ(·)) for any monotone increasing curve and
µ(Λ(·)) = −IΠ(Λ̂(·)) for a monotone decreasing one, where Λ̂(t) =
Λ(t0 + t1 − t). The defined in this way Maslov index of a discontinues
monotone curve equals the Maslov index of the continues curve obtained by
gluing all discontinuities with simple monotone curves of the same direction
of monotonicity.

If Λ(t) = L(λt0 ,u)(Φ̄t) is the Jacobi curve associated to the extremal with
a finite Morse index, then Λ(·) is monotone decreasing and its Maslov in-
dex computes ind Hessu

(
Jt1
∣∣
Φ−1

t1
(q(t0))

)
in the way similar to Theorem 1.3.

Of course, these nice things have some value only if we can effectively find
Jacobi curves for singular extremals: their definition was too abstract. Fortu-
nately, this is not so hard; see [5] for the explicit expression of Jacobi curves
for a wide class of singular extremals and, in particular, for singular curves
of rank 2 vector distributions (these last Jacobi curves have found important
applications in the geometry of distributions, see [11,14]).

One more important property of monotonic curves is as follows.

Lemma 2.9. Assume that Λ(·) is monotone and right-continues at t0, i.e.,
Λ(t0) = lim

t↘t0
Λ(t). Then Λ(t0) ∩ Λ(t) =

⋂
t0≤τ≤t

Λ(t) for any t sufficiently close

to (and greater than) t0.

Proof. We may assume that Λ(·) is monotone increasing. Take centered
at Λ(t0) local coordinates in the Lagrange Grassmannian; the coordinate
presentation of Λ(t) is a symmetric matrix SΛ(t), where SΛ(t0) = 0 and
t �→ y�SΛ(t)y is a monotone increasing scalar function ∀y ∈ R

n. In particular,
kerSΛ(t) = Λ(t) ∩ Λ(t0) is a monotone decreasing family of subspaces. �

We set Γt =
⋂

t0≤τ≤t
Λ(τ), a monotone decreasing family of isotropic sub-

spaces. Let Γ = max
t>t0

Γt, then Γt = Γ for all t > t0 sufficiently close to t0.

We have: Λ(t) = Λ(t)∠ and Λ(t) ⊃ Γ for all t > t0 close enough to t0; hence
Γ∠
t ⊃ Λ(t). In particular, Λ(t) can be treated as a Lagragian subspace of the

symplectic space Γ∠/Γ . Moreover, Lemma 2.9 implies that Λ(t) ∩Λ(t0) = Γ .
In other words, Λ(t) is transversal to Λ(t0) in Γ∠/Γ . In the case of a real-
analytic monotone curve Λ(·) this automatically implies that Λ(·) is an ample
curve in Γ∠/Γ . Hence any nonconstant monotone analytic curve is reduced
to an ample monotone curve. It becomes ample after the factorization by a
fixed (motionless) subspace.
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2.12 Comparison Theorem

We come back to smooth regular curves after the deviation devoted to a more
general perspective.

Lemma 2.10. Let Λ(t), t ∈ [t0, t1] be a regular monotone increasing curve
in the Lagrange Grassmannian L(Σ). Then {t ∈ [t0, t1] : Λ(t) ∩Π �= 0} is a
finite subset of [t0, t1] ∀Π ∈ L(Σ). If t0 and t1 are out of this subset, then

µΠ(Λ(·)) =
∑

t∈(t0,t1)

dim(Λ(t) ∩Π).

Proof. We have to proof that Λ(t) may have a nontrivial intersection with Π
only for isolated values of t; the rest is Lemma 1.1. Assume that Λ(t)∩Π �= 0
and take a centered at Π coordinate neighborhood in L(Σ) which contains
Λ(t). In these coordinates, Λ(τ) is presented by a symmetric matrix SΛ(τ)
for any τ sufficiently close to t and Λ(τ) ∩Π = kerSΛ(τ). Monotonicity and
regularity properties are equivalent to the inequality ṠΛ(τ) > 0. In particular,
y�ṠΛ(t)y > 0 ∀y ∈ kerSΛ(t) \ {0}. The last inequality implies that SΛ(τ) is a
nondegenerate for all τ sufficiently close and not equal to t.

Definition. Parameter values τ0, τ1 are called conjugate for the continues
curve Λ(·) in the Lagrange Grassmannian if Λ(τ0)∩Λ(τ1) �= 0; the dimension
of Λ(τ0) ∩ Λ(τ1) is the multiplicity of the conjugate parameters.

If Λ(·) is a regular monotone increasing curve, then, according to
Lemma 2.9, conjugate points are isolated and the Maslov index µΛ(t0)

(
Λ
∣∣
[t,t1]

)
equals the sum of multiplicities of the conjugate to t0 parameter values loc-
ated in (t, t1). If Λ(·) is the Jacobi curve of an extremal of an optimal control
problem, then this Maslov index equals the Morse index of the extremal; this
is why conjugate points are so important.

Given a regular monotone curve Λ(·), the quadratic form Λ̇(t) defines an
Euclidean structure 〈·, ·〉Λ̇(t) on Λ(t) so that Λ̇(t)(x) = 〈x, x〉Λ̇(t). Let RΛ(t) ∈
gl(Λ(t)) be the curvature operator of the curve Λ(·); we define the curvature
quadratic form rΛ(t) on Λ(t) by the formula:

rΛ(t)(x) = 〈RΛ(t)x, x〉Λ̇(t), x ∈ Λ(t).

Proposition 2.9. The curvature operator RΛ(t) is a self-adjoint operator for
the Euclidean structure 〈·, ·〉Λ̇(t). The form rΛ(t) is equivalent (up to linear

changes of variables) to the form Λ̇
◦
(t), where Λ◦(·) is the derivative curve.

Proof. The statement is intrinsic and we may check it in any coordinates.
Fix t and take Darboux coordinates {(η, y) : η ∈ R

n∗, y ∈ R
n} in Σ in

such a way that Λ(t) = {(y�, 0) : y ∈ R
n}, Λ◦(t) = {(0, y) : y ∈ R

n},
Λ̇(t)(y) = y�y. Let Λ(τ) = {(y�, Sτy) : y ∈ R

n}, then St = 0. Moreover, Ṡ(t)
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is the matrix of the form Λ̇(t) in given coordinates, hence Ṡt = I. Recall that
Λ◦(τ) = {(y�Aτ , y + SτAτy) : y ∈ R

n}, where Aτ = − 1
2 Ṡ

−1
τ S̈τ Ṡ

−1
τ (see (5)).

Hence S̈t = 0. We have: RΛ(t) = 1
2

...

St, rΛ(t)(y) = 1
2y

� ...

St y,

Λ̇
◦
(t)(y) = σ

(
(0, y), (y�Ȧt, 0)

)
= −y�Ȧty =

1
2
y�

...

St y.

So rΛ(t) and Λ̇
◦
(t) have equal matrices for our choice of coordinates in Λ(t)

and Λ◦(t). The curvature operator is self-adjoint since it is presented by a sym-
metric matrix in coordinates where form Λ̇(t) is the standard inner product.

�
Proposition 2.9 implies that the curvature operators of regular monotone

curves in the Lagrange Grassmannian are diagonalizable and have only real
eigenvalues.

Theorem 2.1. Let Λ(·) be a regular monotone curve in the Lagrange Grass-
mannian L(Σ), where dimΣ = 2n:

• If all eigenvalues of RΛ(t) do not exceed a constant c ≥ 0 for any t from
the domain of Λ(·), then |τ1−τ0| ≥ π√

c
for any pair of conjugate parameter

values τ0, τ1. In particular, If all eigenvalues of RΛ(t) are nonpositive ∀t,
then Λ(·) does not possess conjugate parameter values

• If trRΛ(t) ≥ nc for some constant c > 0 and ∀t, then, for arbitrary τ0 ≤ t,
the segment [t, t+ π√

c
] contains a conjugate to τ0 parameter value as soon

as this segment is contained in the domain of Λ(·).
Both estimates are sharp.

Proof. We may assume without lack of generality that Λ(·) is ample monotone
increasing. We start with the case of nonpositive eigenvalues of RΛ(t). The
absence of conjugate points follows from Proposition 2.9 and the following

Lemma 2.11. Assume that Λ(·) is an ample monotone increasing (decreas-
ing) curve and Λ◦(·) is a continues monotone decreasing (increasing) curve.
Then Λ(·) does not possess conjugate parameter values and there exists a
lim

t→+∞
Λ(t) = Λ∞.

Proof. Take some value of the parameter τ0; then Λ(τ0) and Λ◦(τ0) is a pair of
transversal Lagrangian subspaces. We may choose coordinates in the Lagrange
Grassmannian in such a way that SΛ(τ)) = 0 and SΛ◦(τ0) = I, i.e., Λ(τ0) is
represented by zero n×n-matrix and Λ◦(τ0) by the unit matrix. Monotonicity
assumption implies that t �→ SΛ(t) is a monotone increasing curve in the
space of symmetric matrices and t �→ SΛ◦(t) is a monotone decreasing curve.
Moreover, transversality of Λ(t) and Λ◦(t) implies that SΛ◦(t) − SΛ(t) is a
nondegenerate matrix. Hence 0 < SΛ(t) < SΛ◦(t) ≤ I for any t > τ0. In
particular, Λ(t) never leaves the coordinate neighborhood under consideration
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for T > τ0, the subspace Λ(t) is always transversal to Λ(τ0) and has a limit
Λ∞, where SΛ∞ = sup

t≥τ0
SΛ(t). �

Now assume that the eigenvalues of RΛ(t) do not exceed a constant c > 0.
We are going to reparametrize the curve Λ(·) and to use the chain rule (7).
Take some t̄ in the domain of Λ(·) and set

ϕ(t) =
1√
c

(
arctan(

√
ct) +

π

2

)
+ t̄, Λϕ(t) = Λ(ϕ(t)).

We have: ϕ(R) =
(
t̄, t̄+ π√

c

)
, ϕ̇(t) = 1

ct2+1 , Rϕ(t) = − c
(ct2+1)2 . Hence,

according to the chain rule (7), the operator

RΛϕ
(t) =

1
(ct2 + 1)2

(RΛ(ϕ(t)) − cI)

has only nonpositive eigenvalues. Already proved part of the theorem implies
that Λϕ does not possess conjugate values of the parameter. In other words,
any length π√

c
interval in the domain of Λ(·) is free of conjugate pairs of the

parameter values.
Assume now that trRΛ(t) ≥ nc. We will prove that the existence of ∆ ∈

L(Σ) such that ∆∩Λ(t) = 0 for all t ∈ [t̄, τ ] implies that τ − t̄ < π√
c
. We will

prove it by contradiction. If there exists such a ∆, then Λ
∣∣
[t̄,τ ]

is completely
contained in a fixed coordinate neighborhood of L(Σ), therefore the curvature
operator RΛ(t) is defined by the formula (6). Put B(t) = (2Ṡt)−1S̈t, b(t) =
trB(t), t ∈ [t̄, τ ]. Then

Ḃ(t) = B2(t) +RΛ(t), ḃ(t) = trB2(t) + trRΛ(t).

Since for an arbitrary symmetric n × n-matrix A we have trA2 ≥ 1
n (trA)2,

the inequality ḃ ≥ b2

n + nc holds. Hence b(t) ≥ β(t), t̄ ≤ t ≤ τ , where β(·)
is a solution of the equation β̇ = β2

n + nc, i.e., β(t) = n
√
c tan(

√
c(t − t0)).

The function b(·) together with β(·) are bounded on the segment [t̄, τ ]. Hence
τ − t ≤ π√

c
.

To verify that the estimates are sharp, it is enough to consider regular
monotone curves of constant curvature. �

2.13 Reduction

We consider a Hamiltonian system on a symplectic manifold N endowed with
a fixed Lagrange foliation E. Assume that g : N → R is a first integral of our
Hamiltonian system, i.e., {h, g} = 0.

Lemma 2.12. Let z ∈ N, g(z) = c. The leaf Ez is transversal to g−1(c) at z
if and only if g(z) /∈ TzEz.
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Proof. Hypersurface g−1(c) is not transversal to g−1(c) at z if and only if

dzg(TzEz) = 0 ⇔ σ(g(z), TzEz) = 0 ⇔ g(z) ∈ (TzEz)∠ = TzEz. �

If all points of some level g−1(c) satisfy conditions of Lemma 2.12, then
g−1(c) is a (2n-1)-dimensional manifold foliated by (n − 1)-dimensional sub-

manifolds Ez ∩ g−1(c). Note that Rg(z) = kerσ
∣∣
Tzg−1(c)

, hence Σg
z

def
=

Tzg
−1(c)/Rg(z) is a 2(n − 1)-dimensional symplectic space and ∆g

z
def
=

Tz
(
Ez ∩ g−1(c)

)
is a Lagrangian subspace in Lgz , i.e., ∆g

z ∈ L(Σg
z ).

The submanifold g−1(c) is invariant for the flow eth. Moreover, eth∗ g =
g. Hence eth∗ induces a symplectic transformation eth∗ : Σg

z → Σg
eth(z)

. Set
Jgz (t) = e−th∗ ∆g

eth(z)
. The curve t �→ Jgz (t) in the Lagrange Grassmannian

L(Σg
z ) is called a reduced Jacobi curve for the Hamiltonian field h at z ∈ N .

The reduced Jacobi curve can be easily reconstructed from the Jacobi
curve Jz(t) = e−th∗

(
Teth(z)Eeth(z)

)
∈ L(TzN) and vector g(z). An elementary

calculation shows that

Jgz (t) = Jz(t) ∩ g(z)∠ + Rg(z).

Now we can temporary forget the symplectic manifold and Hamiltonians and
formulate everything in terms of the curves in the Lagrange Grassmannian.
So let Λ(·) be a smooth curve in the Lagrange Grassmannian L(Σ) and γ a
one-dimensional subspace in Σ. We set Λγ(t) = Λ(t) ∩ γ∠ + γ, a Lagrange
subspace in the symplectic space γ∠/γ. If γ �⊂ Λ(t), then Λγ(·) is smooth
and Λ̇

γ
(t) = Λ̇(t)

∣∣
Λ(t)∩γ∠ as it easily follows from the definitions. In particu-

lar, monotonicity of Λ(·) implies monotonicity of Λγ(·); if Λ(·) is regular and
monotone, then Λγ(·) is also regular and monotone. The curvatures and the
Maslov indices of Λ(·) and Λγ(·) are related in a more complicated way. The
following result is proved in [9].

Theorem 2.2. Let Λ(t), t ∈ [t0, t1] be a smooth monotone increasing curve in
L(Σ) and γ a one-dimensional subspace of Σ such that γ �⊂ Λ(t), ∀t ∈ [t0, t1].
Let Π ∈ L(Σ), γ �⊂ Π, Λ(t0) ∩Π = Λ(t1) ∩Π = 0. Then:

• µΠ(Λ(·)) ≤ µΠγ (Λγ(·)) ≤ µΠ(Λ(·)) + 1
• If Λ(·) is regular, then rΛγ (t) ≥ rΛ(t)

∣∣
Λ(t)∩γ∠ and

rank
(
rΛγ (t) − rΛ(t)

∣∣
Λ(t)∩γ∠

)
≤ 1

The inequality rΛγ (t) ≥ rΛ(t)
∣∣
Λ(t)∩γ∠ turns into the equality if γ ⊂

Λ◦(t), ∀t. Then γ ⊂ ker Λ̇
◦
(t). According to Proposition 2.9, to γ there corre-

sponds a one-dimensional subspace in the kernel of rΛ(t); in particular, rΛ(t)
is degenerate.

Return to the Jacobi curves Jz(t) of a Hamiltonian field h. There al-
ways exists at least one first integral: the Hamiltonian h itself. In general,
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h(z) /∈ J◦
z (0) and the reduction procedure has a nontrivial influence on the

curvature (see [8,9] for explicit expressions). Still, there is an important class
of Hamiltonians and Lagrange foliations for which the relation h(z) ∈ J◦

z (0)
holds ∀z. These are homogeneous on fibers Hamiltonians on cotangent bun-
dles. In this case the generating homotheties of the fibers Euler vector field
belongs to the kernel of the curvature form.

2.14 Hyperbolicity

Definition. We say that a Hamiltonian function h on the symplectic manifold
N is regular with respect to the Lagrange foliation E if the functions h

∣∣
Ez

have nondegenerate second derivatives at z, ∀z ∈ N (second derivative is
well-defined due to the canonical affine structure on Ez). We say that h is
monotone with respect to E if h

∣∣
Ez

is a convex or concave function ∀z ∈ N .

Typical examples of regular monotone Hamiltonians on the cotangent bun-
dles are energy functions of natural mechanical systems. Such a function
is the sum of the kinetic energy whose Hamiltonian system generates the
Riemannian geodesic flow and a “potential” that is a constant on the fibers
function. Proposition 2.8 implies that Jacobi curves associated to the regular
monotone Hamiltonians are also regular and monotone. We will show that
negativity of the curvature operators of such a Hamiltonian implies the hy-
perbolic behavior of the Hamiltonian flow. This is a natural extension of the
classical result about Riemannian geodesic flows.

Main tool is the structural equation derived in Sect. 13. First we will
show that this equation is well coordinated with the symplectic structure.
Let Λ(t), t ∈ R, be a regular curve in L(Σ) and Σ = Λ(t) ⊕ Λ◦(t) the corre-
spondent canonical splitting. Consider the structural equation

ë(t) +RΛ(t)e(t) = 0, where e(t) ∈ Λ(t), ė(t) ∈ Λ◦(t), (23)

(see Corollary 2.1).

Lemma 2.13. The mapping e(0) ⊕ ė(0) �→ e(t) ⊕ ė(t), where e(·) and ė(·)
satisfies (23), is a symplectic transformation of Σ.

Proof. We have to check that σ(e1(t), e2(t)), σ(ė1(t), ė2(t)), σ(e1(t), ė2(t)) do
not depend on t as soon as ei(t), ėi(t), i = 1, 2, satisfy (23). First two quanti-
ties vanish since Λ(t) and Λ◦(t) are Lagrangian subspaces. The derivative of
the third quantity vanishes as well since ëi(t) ∈ Λ(t). �

Let h be a regular monotone Hamiltonian on the symplectic manifold
N equipped with a Lagrange foliation E. As before, we denote by Jz(t) the
Jacobi curves of h and by Jhz (t) the reduced to the level of h Jacobi curves (see
previous section). Let R(z) = RJz

(0) and Rh(z) = RJh
z
(0) be the curvature

operators of Jz(·) and Jhz (·) correspondently. We say that the Hamiltonian
field h has a negative curvature at z with respect to E if all eigenvalues of
R(z) are negative. We say that h has a negative reduced curvature at z if all
eigenvalues of Rh

z are negative.
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Proposition 2.10. Let z0 ∈ N, zt = eth(z). Assume that that {zt : t ∈ R} is
a compact subset of N and that N is endowed with a Riemannian structure. If
h has a negative curvature at any z ∈ {zt : t ∈ R}, then there exists a constant
α > 0 and a splitting Tzt

N = ∆+
zt

⊕∆−
zt

, where ∆±
zt

are Lagrangian subspaces
of Tzt

N such that eτh∗ (∆±
zt

) = ∆±
zt+τ

∀ t, τ ∈ R and

‖e±τh∗ ζ±‖ ≥ eατ‖ζ±‖ ∀ ζ ∈ ∆±
zt
, τ ≥ 0, t ∈ R. (24)

Similarly, if h has a negative reduced curvature at any z ∈ {zt : t ∈ R}, then
there exists a splitting Tzt

(h−1(c)/Rh(zt)) = ∆̂+
zt

⊕ ∆̂−
zt

, where c = h(z0) and
∆̂±
zt

are Lagrangian subspaces of Tzt
(h−1(c)/Rh(zt)) such that eτh∗ (∆̂±

zt
) =

∆̂±
zt+τ

∀ t, τ ∈ R and ‖e±τh∗ ζ±‖ ≥ eατ‖ζ±‖ ∀ ζ ∈ ∆̂±
zt
, τ ≥ 0, t ∈ R.

Proof. Obviously, the desired properties of ∆±
zt

and ∆̂±
zt

do not depend on
the choice of the Riemannian structure on N . We will introduce a special
Riemannian structure determined by h. The Riemannian structure is a smooth
family of inner products 〈·, ·〉z on TzN , z ∈ N . We have TzN = Jz(0)⊕J◦

z (0),
where Jz(0) = TzEz. Replacing h with −h if necessary we may assume that
h
∣∣
Ez

is a strongly convex function. First we define 〈·, ·〉z
∣∣
Jz(0)

to be equal to

the second derivative of h
∣∣
Ez

. Symplectic form σ induces a nondegenerate
pairing of Jz(0) and J◦

z (0). In particular, for any ζ ∈ Jz(0) there exists a
unique ζ◦ ∈ J◦

z (0) such that σ(ζ◦, ·)
∣∣
Jz(0)

= 〈ζ, ·〉z
∣∣
Jz(0)

. There exists a unique
extension of the inner product 〈·, ·〉z from Jz(0) to the whole TzN with the
following properties:

• J◦
z (0) is orthogonal to Jz(0) with respect to 〈·, ·〉z

• 〈ζ1, ζ2〉z = 〈ζ◦1 , ζ◦2 〉z ∀ ζ1, ζ2 ∈ Jz(0)

We will need the following classical fact from Hyperbolic Dynamics (see,
for instance, [12, Sect. 17.6]).

Lemma 2.14. Let A(t), t ∈ R, be a bounded family of symmetric n × n-
matrices whose eigenvalues are all negative and uniformly separated from 0.
Let Γ (t, τ) be the fundamental matrix of the 2n-dimensional linear system
ẋ = −y, ẏ = A(t)x, where x, y ∈ R

n, i.e.,

∂

∂t
Γ (t, τ) =

(
0 −I
A 0

)
Γ (t, τ), Γ (τ, τ) = ( I 0

0 I ) . (25)

Then there exist closed conic neighborhoods C+
Γ , C

−
Γ , where C+

Γ ∩C−
Γ = 0, of

some n-dimensional subspaces of R
2n and a constant α > 0 such that

Γ (t, τ)C+
Γ ⊂ C+

Γ , |Γ (t, τ)ξ+| ≥ eα(τ−t)|ξ+|, ∀ ξ+ ∈ C+
Γ , t ≤ τ,

and

Γ (t, τ)C−
Γ ⊂ C−

Γ , |Γ (t, τ)ξ−| ≥ eα(t−τ)|ξ−|, ∀ ξ− ∈ C−
Γ , t ≥ τ.

The constant α depends only on upper and lower bounds of the eigenvalues of
A(t). �
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Corollary 2.6. Let C±
Γ be the cones described in Lemma 2.14; then

Γ (0,±t)C±
Γ ⊂ Γ (0;±τ)C±

Γ for any t ≥ τ ≥ 0 and the subsets K±
Γ =⋂

t≥0

Γ (0, t)C±
Γ are Lagrangian subspaces of R

n×R
n equipped with the standard

symplectic structure.

Proof. The relations Γ (τ, t)C+
Γ ⊂ C+

Γ and Γ (τ, t)C−
Γ ⊂ C−

Γ imply:

Γ (0,±t)C±
Γ = Γ (0,±τ)Γ (±τ,±t)C±

Γ ⊂ Γ (0,±τ)C±
Γ .

In what follows we will study K+
Γ ; the same arguments work for K−

Γ .
Take vectors ζ, ζ ′ ∈ K+

Γ ; then ζ = Γ (0, t)ζt and ζ ′ = Γ (0, t)ζ ′t for any t ≥ 0
and some ζt, ζ ′t ∈ C+

Γ . Then, according to Lemma 2.14, |ζt| ≤ e−αt|ζ|, |ζ ′t| ≤
e−αt|ζ ′|, i.e., ζt and ζ ′t tend to 0 as t → +∞. On the other hand,

σ(ζ, ζ ′) = σ(Γ (0, t)ζt, Γ (0, t)ζ ′t) = σ(ζt, ζ ′t) ∀t ≥ 0

since Γ (0, t) is a symplectic matrix. Hence σ(ζ, ζ ′) = 0.
We have shown that K+

Γ is an isotropic subset of R
n × R

n. On the other
hand, K+

Γ contains an n-dimensional subspace since C+
Γ contains one and

Γ (0, t) are invertible linear transformations. Isotropic n-dimensional subspace
is equal to its skew-orthogonal complement, therefore K+

Γ is a Lagrangian
subspace. �

Take now a regular monotone curve Λ(t), t ∈ R in the Lagrange Grass-
mannian L(Σ). We may assume that Λ(·) is monotone increasing, i.e.,
Λ̇(t) > 0. Recall that Λ̇(t)(e(t)) = σ(e(t), ė(t)), where e(·) is an arbitrary
smooth curve in Σ such that e(τ) ∈ Λ(τ), ∀τ . Differentiation of the identity
σ(e1(τ), e2(τ)) = 0 implies: σ(e1(t), ė2(t)) = −σ(ė1(t), e2(t)) = σ(e2(t), ė1(t))
if ei(τ) ∈ Λ(τ), ∀τ , i = 1, 2. Hence the Euclidean structure 〈·, ·〉Λ̇(t) defined
by the quadratic form Λ̇(t) reads: 〈e1(t), e2(t)〉Λ̇(t) = σ(e1(t), ė2(t)).

Take a basis e1(0), . . . , en(0) of Λ(0) such that the form Λ̇(t) has the unit
matrix in this basis, i.e., σ(ei(0), ėj(0)) = δij . In fact, vectors ėj(0) are de-
fined modulo Λ(0); we can normalize them assuming that ėi(0) ∈ Λ◦(0), i =
1, . . . , n. Then e1(0), . . . , en(0), ė1(0), . . . , ėn(0) is a Darboux basis of Σ. Fix
coordinates in Σ using this basis: Σ = R

n×R
n, where ( xy ) ∈ R

n×R
n is iden-

tified with
n∑
j=1

(
xjej(0) + yj ėj(0)

)
∈ Σ, x = (x1, . . . , xn)�, y = (y1, . . . , yn)�.

We claim that there exists a smooth family A(t), t ∈ R, of symmetric
n× n matrices such that A(t) has the same eigenvalues as RΛ(t) and

Λ(t) = Γ (0, t)
(

R
n

0

)
, Λ◦(t) = Γ (0, t)

(
0

R
n

)
, ∀t ∈ R

in the fixed coordinates, where Γ (t, τ) satisfies (25). Indeed, let ei(t), i =
1, . . . , n, be solutions to the structural equations (23). Then

Λ(t) = span{e1(t), . . . , en(t)}, Λ◦(t) = span{ė1(t), . . . , ėn(t)}.



56 A.A. Agrachev

Moreover, ëi(t) = −
n∑
i=1

aij(t)ej(t), where A(t) = {aij(t)}ni,j=1 is the matrix of

the operator RΛ(t) in the “moving” basis e1(t), . . . , en(t). Lemma 1.13 implies
that 〈ei(t), ej(t)〉Λ̇(t) = σ(ei(t), ėj(t)) = δij . In other words, the Euclidean
structure 〈·, ·〉Λ̇(t) has unit matrix in the basis e1(t), . . . , en(t). Operator RΛ(t)
is self-adjoint for the Euclidean structure 〈·, ·〉Λ̇(t) (see Proposition 2.9). Hence
matrix A(t) is symmetric.

Let ei(t) =
(
xi(t)
yi(t)

)
∈ R

n × R
n in the fixed coordinates. Make up n × n-

matrices X(t) = (x1(t), . . . , xn(t)), Y (t) = (y1(t), . . . , yn(t)) and a 2n × 2n-
matrix

(
X(t) Ẋ(t)

Y (t) Ẏ (t)

)
. We have

d

dt

(
X Ẋ

Y Ẏ

)
(t) =
(
X Ẋ

Y Ẏ

)
(t)
(

0 −A(t)
I 0

)
,

(
X Ẋ

Y Ẏ

)
(0) =

(
I 0
0 I

)
.

Hence
(
X Ẋ
Y Ẏ

)
(t) = Γ (t, 0)−1 = Γ (0, t).

Let now Λ(·) be the Jacobi curve, Λ(t) = Jz0(t). Set ξi(zt) = eth∗ ei(t),
ηi(zt) = eth∗ ėi(t); then

ξ1(zt), . . . , ξn(zt), η1(zt), . . . , ηn(zt) (26)

is a Darboux basis of Tzt
N , where Jzt

(0) = span{ξ1(zt), . . . , ξn(zt)}, J◦
zt

(0) =
span{η1(zt), . . . , ηn(zt)}. Moreover, the basis (26) is orthonormal for the inner
product 〈·, ·〉zt

on Tzt
N .

The intrinsic nature of the structural equation implies the translation in-
variance of the construction of the frame (26): if we would start from zs instead
of z0 and put Λ(t) = Jzs

(t), ei(0) = ξi(zs), ėi(0) = ηi(zs) for some s ∈ R,
then we would obtain eth∗ ei(t) = ξi(zs+t), eth∗ ėi(t) = ηi(zs+t).

The frame (26) gives us fixed orthonormal Darboux coordinates in Tzs
N

for ∀ s ∈ R and the correspondent symplectic 2n × 2n-matrices Γzs
(τ, t). We

have: Γzs
(τ, t) == Γz0(s + τ, s + t); indeed, Γzs

(τ, t) ( xy ) is the coordinate
presentation of the vector

e
(τ−t)h
∗

(∑
i

xiξi(zs+t) + yiηi(zs+t)

)

in the basis ξi(zs+τ ), ηi(zs+τ ). In particular,

|Γzs
(0, t) ( xy )| =

∥∥∥∥∥e−th∗

(∑
i

xiξi(zs+t) + yiηi(zs+t)

)∥∥∥∥∥
zs

. (27)

Recall that ξ1(zτ ), . . . , ξn(zτ ), η1(zτ ), . . . , ηn(zτ ) is an orthonormal frame for
the scalar product 〈·, ·〉zτ

and ‖ζ‖zτ
=
√

〈ζ, ζ〉
zτ

.
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We introduce the notation:

�W �zs
=

{∑
i

xiξi(zs) + yiηi(zs) : ( xy ) ∈ W

}
,

for any W ⊂ R
n × R

n. Let C±
Γz0

be the cones from Lemma 2.14. Then

e−τh∗ �Γzs
(0, t)C±

Γz0
�zs−τ

= �Γzs−τ
(0, t+ τ)C±

Γz0
�zs−τ

, ∀ t, τ, s. (28)

Now set K+
Γzs

=
⋂
t≥0

C+
Γz0

, K−
Γzs

=
⋂
t≤0

C−
Γz0

and ∆±
zs

= �K∓
Γzs

�zs
. Corollary

2.6 implies that ∆±
zs

are Lagrangian subspaces of Tzs
N . Moreover, it follows

from (28) that eth∗ ∆
±
zs

= ∆±
zs+t

, while (28) and (27) imply inequalities (24).
This finishes the proof of the part of Proposition 2.10 which concerns

Jacobi curves Jz(t). We leave to the reader a simple adaptation of this proof
to the case of reduced Jacobi curves Jhz (t). �
Remark. Constant α depends, of course, on the Riemannian structure on N .
In the case of the special Riemannian structure defined at the beginning of the
proof of Proposition 2.10 this constant depends only on the upper and lower
bounds for the eigenvalues of the curvature operators and reduced curvature
operators correspondently (see Lemma 2.14 and further arguments).

Let etX , t ∈ R be the flow generated by the the vector fieldX on a manifold
M . Recall that a compact invariant subset W ⊂ M of the flow etX is called a
hyperbolic set if there exists a Riemannian structure in a neighborhood of W ,
a positive constant α, and a splitting TzM = E+

z ⊕E−
z ⊕RX(z), z ∈ W , such

that X(z) �= 0, etX∗ E±
z = E±

etX(z)
, and ‖e±tX∗ ζ±‖ ≥ eαt‖ζ±‖, ∀t ≥ 0, ζ± ∈

E±
z . Just the fact some invariant set is hyperbolic implies a rather detailed

information about asymptotic behavior of the flow in a neighborhood of this
set (see [12] for the introduction to Hyperbolic Dynamics). The flow etX is
called an Anosov flow if the entire manifold M is a hyperbolic set.

The following result is an immediate corollary of Proposition 2.10 and the
above remark.

Theorem 2.3. Let h be a regular monotone Hamiltonian on N , c ∈ R, W ⊂
h−1(c) a compact invariant set of the flow eth, t ∈ R, and dzh �= 0, ∀z ∈ W . If
h has a negative reduced curvature at every point of W , then W is a hyperbolic
set of the flow eth

∣∣
h−1(c)

. �

This theorem generalizes a classical result about geodesic flows on com-
pact Riemannian manifolds with negative sectional curvatures. Indeed, if N is
the cotangent bundle of a Riemannian manifold and eth is the geodesic flow,
then negativity of the reduced curvature of h means simply negativity of the
sectional Riemannian curvature. In this case, the Hamiltonian h is homoge-
neous on the fibers of the cotangent bundle and the restrictions eth

∣∣
h−1(c)

are
equivalent for all c > 0.
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The situation changes if h is the energy function of a general natural
mechanical system on the Riemannian manifold. In this case, the flow and
the reduced curvature depend on the energy level. Still, negativity of the
sectional curvature implies negativity of the reduced curvature at h−1(c) for all
sufficiently big c. In particular, eth

∣∣
h−1(c)

is an Anosov flow for any sufficiently
big c; see [8,9] for the explicit expression of the reduced curvature in this case.

Theorem 2.3 concerns only the reduced curvature while the next result
deals with the (not reduced) curvature of h.

Theorem 2.4. Let h be a regular monotone Hamiltonian and W a compact
invariant set of the flow eth. If h has a negative curvature at any point of W ,
then W is a finite set and each point of W is a hyperbolic equilibrium of the
field h.

Proof. Let z ∈ W ; the trajectory zt = eth(z), t ∈ R, satisfies conditions
of Proposition 2.10. Take the correspondent splitting Tzt

N = ∆+
zt

⊕ ∆−
zt

. In
particular, h(zt) = h+(zt) + h−(zt), where h±(zt) ∈ ∆±

zt
.

We have eτh∗ h(zt) = h(zt+τ ). Hence

‖h(zt+τ )‖ = ‖eτh∗ h(zt)‖ ≥ ‖eτh∗ h+(zt)‖ − ‖eτh∗ h−(zt)‖
≥ eατ‖h+(zt)‖ − e−ατ‖h−(zt)‖, ∀τ ≥ 0.

Compactness of {zt : t ∈ R} implies that h+(zt) is uniformly bounded; hence
h+(zt) = 0. Similarly, ‖h(zt−τ‖ ≥ eατ‖h−(zt)‖ − e−ατ‖h+(zt)‖ that implies
the equality h−(zt) = 0. Finally, h(zt) = 0. In other words, zt ≡ z is an
equilibrium of h and TzN = ∆+

z ⊕∆−
z is the splitting of TzN into the repelling

and attracting invariant subspaces for the linearization of the flow eth at z.
Hence z is a hyperbolic equilibrium; in particular, z is an isolated equilibrium
of h. �

We say that a subset of a finite dimensional manifold is bounded if it has
a compact closure.

Corollary 2.7. Assume that h is a regular monotone Hamiltonian and h has
everywhere negative curvature. Then any bounded semi-trajectory of the sys-
tem ż = h(z) converges to an equilibrium with the exponential rate while
another semi-trajectory of the same trajectory must be unbounded. �

Typical Hamiltonians which satisfy conditions of Corollary 2.7 are energy
functions of natural mechanical systems in R

n with a strongly concave poten-
tial energy. Indeed, in this case, the second derivative of the potential energy
is equal to the matrix of the curvature operator in the standard Cartesian
coordinates (see Sect. 2.8).
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Lecture Notes on Logically Switched
Dynamical Systems

A.S. Morse∗
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New Haven, CT 06520-8284, USA
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Introduction

The subject of logically switched dynamical systems is a large one which
overlaps with many areas including hybrid system theory, adaptive control,
optimal control, cooperative control, etc. Ten years ago we presented a lecture,
documented in [1], which addressed several of the areas of logically switched
dynamical systems which were being studied at the time. Since then there
have been many advances in many directions, far to many too adequately
address in these notes. One of the most up to date and best written books on
the subject is the monograph by Liberzon [2] to which we refer the reader for
a broad but incisive perspective as well an extensive list of references.

In these notes we will deal with two largely disconnected topics, namely
switched adaptive control (sometimes called supervisory control) and “flock-
ing” which is about the dynamics of reaching a consensus in a rapidly changing
environment. In the area of adaptive control we focus mainly on one problem
which we study in depth. Our aim is to give a thorough analysis under realistic
assumptions of the adaptive version of what is perhaps the most important
design objective in all of feedback control, namely set-point control of a single-
input, single output process admitting a linear model. While the non-adaptive
version the set-point control problem is very well understood and has been so
for more than a half century, the adaptive version still is not because there
is no credible counterpart in an adaptive context of the performance theories
which address the non-adaptive version of the problem. In fact, even just the
stabilization question for the adaptive version of the problem did not really
get ironed out until ten years ago, except under unrealistic assumptions which
ignored the effects of noise and/or un-modeled dynamics.

As a first step we briefly discuss the problem of adaptive disturbance re-
jection. Although the switching logic we consider contains no logic or discrete

∗This research was supported by the US Army Research Office, the US National
Science Foundation and by a gift from the Xerox Corporation.
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event sub-system, the problem nonetheless sets the stage for what follows.
One of the things which turns out (in retrospect) to have impeded progress
with adaptive control has been the seemingly benign assumption that the
parameters of the (nominal) model of the process to be controlled are from
a continuum of possible values. In Chap. 4 we briefly discuss the unpleasant
consequences of this assumption and outline some preliminary ideas which
might be used to deal with them.

In Chap. 5 we turn to detailed discussion of a switched adaptive controller
capable of causing the output of an imprecisely modeled process to approach
and track a constant reference signal. The material in this chapter provides a
clear example of what is meant by a logically switched dynamical system. Fi-
nally in Chap. 6 we consider several switched dynamical systems which model
the behavior of a group of mobile autonomous agents moving in a rapidly
changing environment using distributed controls. We begin with what most
would agree is the quintessential problem in the area of switched dynamical
systems.

1 The Quintessential Switched Dynamical System
Problem

The quintessential problem in the area of switched dynamical systems is this:
Given a compact subset P of a finite dimensional space, a parameterized
family of n × n matrices A = {Ap : p ∈ P}, and a family S of piecewise-
constant switching signals σ : [0,∞) → P, determine necessary and sufficient
conditions for Aσ to be exponentially stable for every σ ∈ S. There is a large
literature on this subject. Probably its most comprehensive treatment to date
is in the monograph [2] by Liberzon mentioned before. The most general
version of the problem is known to be undecidable [3]. These notes deal with
two special versions of this problem. Each arises in a specific context and thus
is much more structured than the general problem just formulated.

1.1 Dwell-Time Switching

In the first version of the problem, S consists of all switching signals whose
switching times are separated by τD times unit where τD is a pre-specified
positive number called a dwell time. More precisely, σ ∈ S is said to have
dwell time τD if and only if σ switches values at most once, or if it switches
more that once, the set of time differences between any two successive switches
is bounded below τD. In Sect. 5.1 we will encounter a switching logic which
generates such signals.

Note that the class S just defined contains constant switching signal
σ(t) = p, t ≥ 0 for any value of p ∈ P. A necessary condition for Aσ to
be exponentially stable for every σ ∈ S, is therefore that each Ap ∈ A is ex-
ponentially stable. In other words, if Aσ to be exponentially stable for every
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σ ∈ S, then for each p ∈ P there must exist non-negative numbers tp and
λp, with λp positive such that |eApt| ≤ eλp(tp−t), t ≥ 0. Here and elsewhere
through the end of Chap. 5, the symbol | · | denotes any norm on a finite di-
mensional linear space. It is quite easy to show by example that this condition
is not sufficient unless τD is large. An estimate of how large τD has to be in
order to guarantee exponential stability, is provided by the following lemma.

Lemma 1.1. Let {Ap : p ∈ P} be a set of real, n×n matrices for which there
are non-negative numbers tp and λp with λp positive such that

|eApt| ≤ eλp(tp−t), t ≥ 0 (1.1)

Suppose that τD is a finite number satisfying

τD > tp, p ∈ P (1.2)

For any switching signal σ : [0,∞) → P with dwell time τD, the state transi-
tion matrix of Aσ satisfies

|Φ(t, µ)| ≤ eλ(T−(t−µ)), ∀ t ≥ µ ≥ 0 (1.3)

where λ is a positive number defined by

λ = inf
p∈P

{
λp

(
1 − tp

τD

)}
(1.4)

and
T =

2
λ

sup
p∈P

{λptp} (1.5)

Moreover,
λ ∈ (0, λp], p ∈ P. (1.6)

The estimate given by this lemma can be used to make sure that the “slow
switching assumption” discussed in Sect. 5.2 is satisfied.

Proof of Lemma 1.1: Since P is a closed, bounded set, supp∈P tp < ∞.
Thus a finite τD satisfying (1.2) exists. Clearly λp(1 − tp

τD
) > 0, p ∈ P. From

this and the definition of λ it follows that (1.6) holds and that

eλp(tp−τD) ≤ e−λτD , p ∈ P

This and (1.1) imply that for t ≥ τD

|eApt| ≤ eλp(tp−t) = eλp(tp−τD)e−λp(t−τD) ≤ e−λτDe−λp(t−τD)

≤ e−λτDe−λ(t−τD) ≤ e−λt, t ≥ τD, p ∈ P (1.7)
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It also follows from (1.1) and the definition of T that

|eApt| ≤ eλ( T
2 −t), t ∈ [0, τD), p ∈ P (1.8)

Set t0 = 0 and let t1, t2 . . . denote the times at which σ switches. Write pi
for the value of σ on [ti−1, ti). Note that for tj−1 ≤ µ ≤ tj ≤ ti ≤ t ≤ ti+1,

Φ(t, µ) = eApi+1 (t−ti)

⎛
⎝ i∏
q=j+1

eApq (tq−tq−1)

⎞
⎠ eApj

(tj−µ)

In view of (1.7) and (1.8)

|Φ(t, µ)| ≤ |eApi+1 (t−ti)|

⎛
⎝ i∏
q=j+1

|eApq (tq−tq−1)|

⎞
⎠ |eApj

(tj−µ)|

≤ eλ( T
2 −(t−ti))

⎛
⎝ i∏
q=j+1

e−λ(tq−tq−1)

⎞
⎠ eλ( T

2 −(tj−µ))

= eλ(T−(t−µ))

On the other hand, for i > 0, ti−1 ≤ µ ≤ t ≤ ti, (1.8) implies that

|Φ(t, µ)| ≤ eλ( T
2 −(t−µ)) ≤ eλ(T−(t−µ))

and so (1.3) is true. �

Input–Output Gains of Switched Linear Systems

In deriving stability margins and systems gains for the supervisory control
systems discussed in Sect. 5 we will make use of induced “gains” (i.e. norms)
of certain types of switched linear systems. Quantification of stability margins
and the devising of a much needed performance theory of adaptive control,
thus relies heavily on our ability to characterize these induced gains. In this
section we make precise what types of induced gains we are referring to and
we direct the reader to some recent work aimed at their characterization.

To begin, suppose that {(Ap, Bp, Cp,Dp) : p ∈ P} is a family of coefficient
matrices of m-input, r-output, n-dimensional, exponentially stable linear sys-
tems. Then any σ ∈ S determines a switched linear system of the form

Σσ
∆=
{
ẋ = Aσx+Bσu
y = Cσx+Dσu

}
(1.9)

Thus if x(0) ∆= 0, then y = Yσ ◦ u, where Yσ is the input–output mapping

u �−→
∫ t

0

Cσ(t)Φ(t, τ)Dσ(τ)Bσ(τ)u(τ)dτ +Dσu,
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and Φ is the state transition matrix of Aσ. Let prime denotes transpose and,
for any integrable, vector-valued signal v on [0,∞), let || · || denotes the two-
norm

||v|| ∆=
√∫ ∞

0

v′(t)v(t)dt

The input–output gain of Σσ is then the induced two-norm

γ(σ) ∆= inf{g : ||Y ◦ u|| ≤ g||u||, ∀u ∈ L2}
where L2 is the space of all signals with finite two-norms. Define the gain g

of the multi-system {(Ap, Bp, Cp,Dp), p ∈ P} to be

g
∆= sup

σ∈S
γ(σ)

Thus g is the worst case input–output gain of (1.9) as σ ranges over all switch-
ing signals in S. Two problems arise:

1. Derive conditions in terms of τD and the multi-system {(Ap, Bp, Cp,Dp),
p ∈ P} under which g is a finite number.

2. Assuming these conditions hold, characterize g in terms of {(Ap, Bp, Cp,
Dp), p ∈ P} and τD.

The first of the two problems just posed implicitly contains as a sub-
problem the quintessential switched dynamical system problem posed at the
beginning of this section. A sufficient condition for g to be finite is that τD
satisfies condition (1.2) of Lemma 1.1. For the second problem, what would
be especially useful would be a characterization of g which is coordinate-
independent; that is a characterization which depends only on the transfer
matrices Cp(sI−Ap)−1Bp+Dp, p ∈ P and not on the specific realizations of
these transfer matrices which define {(Ap, Bp, Cp,Dp), p ∈ P}. For example,
it is reasonable to expect that there might be a characterization of g in terms
of the H∞ norms of the Cp(sI − Ap)−1Bp + Dp, p ∈ P, at least for τD
sufficiently large.

The problem of characterizing g turns out to be a good deal more difficult
that one might at first suspect, even if all one wants is a characterization of the
limiting value of g as τD → ∞ [4]. In fact, contrary to intuition, one can show
by example that this limiting value may, in some cases, be strictly greater
than the supremum over P of the H∞ norms of the Cp(sI − Ap)−1Bp +Dp.
We refer the interested reader to [4] for a more detailed discussion of this
subject. It is results along these lines which will eventually lead to a bona fide
performance theory for adaptive control.

1.2 Switching Between Stabilizing Controllers

In many applications, including those discussed in Chap. 5, the matrix Aσ
arises within a linear system which models the closed loop connection con-
sisting of fixed linear system in feedback with a switched linear system. For
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Cσ τ

Fig. 1. A switched control system

κp τ

Fig. 2. A Linear Control System

example, it is possible to associate with a given family of controller transfer
functions {κp : p ∈ P} together with a given process model transfer func-
tion τ , a switched control system of the form shown in Fig. 1 where Cσ is a
switched controller with instantaneous transfer function κσ.

Not always appreciated, but nonetheless true is the fact that the input–
output properties of such a system depends on the specific realizations of
the κp. Said differently, it is really not possible to talk about switched linear
systems from a strictly input–output point of view. A good example, which
makes this point, occurs when for each p ∈ P, the closed loop systems shown
in Fig. 2 is stable. Under these conditions, the system shown in Fig. 1 turns out
to be exponentially stable for every possible piecewise continuous switching
signal, no matter how fast the switching, but only for certain realizations of
the κp [5]. The key idea is to first use a Youla parameterization to represent
the entire class of controller transfer functions and second to realize the family
in such a way so that what is actually being switched within Cσ are suitably
defined realizations of the Youla parameters, one for each κp. We refer the
reader to [5] for a detailed discussion of this idea.

1.3 Switching Between Graphs

The system just discussed is a switched dynamical system because the con-
troller within the system is a switched controller. Switched dynamical systems
can arise for other reasons. An interesting example of this when the overall sys-
tem under consideration models the motions of a group of mobile autonomous
agents whose specific movements are governed by strategies which depend on
the movements of their nearby agents. A switched dynamical model can arise
in this context because each agent’s neighbors may change over time. What
is especially interesting about this type of system is the interplay between the
underlying graphs which characterize neighbor relationships, and the evolu-
tion of the system over time. Chapter 6 discusses in depth several example of
this type of system.
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2 Switching Controls with Memoryless Logics

2.1 Introduction

Classical relay control can be thought of as a form of switching control in which
the logic generating the switching signal is a memoryless system. A good ex-
ample of this is the adaptive disturbance rejector devised by I. M. Lie Ying
at the High Altitude Control Laboratory at the Tibet Institute of Technology
in Lhasa. Ying’s work provides a clear illustration of what the use of switch-
ing can accomplish in a control setting, even if there is no logic or memory
involved.

2.2 The Problem

In [6], Ying gives a definitive solution to the long-standing problem of con-
structing an adaptive feedback control for a one-dimensional siso linear system
with an unmeasurable, bounded, exogenous disturbance input so as to cause
the system’s output to go to zero asymptotically. More specifically he consid-
ered the problem of constructing an adaptive feedback control u = f(y) for
the one-dimensional linear system

ẏ = −y + u+ d

so as to cause the system’s output y to go to zero no matter what exogenous
disturbance d : [0,∞) → IR might be, so long as d is bounded and piecewise-
continuous. Up until the time of Ying’s work, solutions to this long standing
problem had been shown to exist only under the unrealistic assumption that
d could be measured [7]. Ying made no such assumption.

2.3 The Solution

The adaptive control he devised is described by the equations

u = −kσ(y)
k̇ = |y|

where

σ(y) =
{

1 y ≥ 0
−1 y < 0 (2.1)

The closed-loop system is thus

ẏ = −y − kσ(y) + d, (2.2)
k̇ = |y| (2.3)
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2.4 Analysis

Concerned that skeptical readers might doubt the practicality of his idea, Ying
carried out a full analysis of the system. Here is his reasoning.

To study this system’s behavior, let b be any positive number for which

|d(t)| ≤ b, t ≥ 0 (2.4)

and let V denote the Lyapunov function

V =
y2

2
+

(k − b)2

2
(2.5)

In view of the definition of σ in (2.1), the rate of change of V along a solution
to (2.2) and (2.3) can be written as

V̇ = ẏy + k̇(k − b) = −y2 − k|y| + dy + |y|(k − b)

Since (2.4) implies that dy ≤ b|y|, V̇ must satisfy

V̇ ≤ −y2 − k|y| + b|y| + |y|(k − b)

Therefore
V̇ ≤ −y2.

From this and (2.5) it follows that y and k are bounded and that y has a
bounded L2 norm. In addition, since (2.2) implies that ẏ is bounded, it must
be true that y → 0 as t → ∞ (cf. [8]) which is what is desired. The practical
significance of this result, has been firmly established by computer simulation
performed be numerous graduate students all over the world.

3 Collaborations

Much of the material covered in these notes has appeared in one form or an-
other in published literature. There are however several notable exceptions
in Chap. 6. Among these are the idea of composing directed graphs and the
interrelationships between rooted graphs, Sarymsakov graphs, and neighbor
shared graphs discussed in Sect. 6.1. The entire section on measurement delays
(Sect. 6.3) is also new. All of the new topics addressed in Chap. 6 were devel-
oped in collaboration with Ming Cao and Brian Anderson. Daniel Spielman
also collaborated with us on most of the convergence results and Jia Fang
helped with the development as well. Most of this material will be published
elsewhere as one or more original research papers.
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4 The Curse of the Continuum

Due to its roots in nonlinear estimation theory, parameter identification the-
ory generally focuses on problems in which unknown model parameters are
assumed to lie within given continuums. Parameter-adaptive control, which is
largely an outgrowth of identification theory, also usually addresses problems
in which unknown process model parameters are assumed to lie within contin-
uums. The continuum assumption comes with a large price tag because a typ-
ical parameter estimation problem over a continuum is generally not tractable
unless the continuum is convex and the dependence on parameters is linear.
These practical limitations have deep implications. For example, a linearly
parameterized transfer matrix on a convex set can easily contain points in
its parameter spaces at which the transfer matrix has an unstable pole and
zero in common. For nonlinear systems, the problem can be even worse – for
those process model parameterizations in which parameters cannot be sepa-
rated from signals, it is usually impossible to construct a finite-dimensional
multi-estimator needed to carry out the parameter estimation process. We
refer to these and other unfortunate consequences of the continuum assump-
tion as the Curse of the Continuum. An obvious way to avoid the curse, is to
formulate problems in such a way so that the parameter space of interest is
finite or perhaps countable. But many problems begin with parameter spaces
which are continuums. How is one to reformulate such a problem using a finite
parameter space, without serious degradation in expected performance? How
should a parameter search be carried out in a finite parameter space so that
one ends up with a provably correct overall adaptive algorithm? It is these
questions to which this brief chapter and Chap. 5 are addressed.

4.1 Process Model Class

Let P be a process to be controlled and suppose for simplicity that P is a
siso system admitting a linear model. Conventional linear feedback theory
typically assumes that P’s transfer function lies in a known open ball

B(ν, r)

of radius r centered at nominal transfer function ν in a metric space T . In
contrast, main-stream adaptive control typically assumes P’s transfer function
lies in a known set of the form

M =
⋃
p∈P

B(νp, rp)

where P is a compact continuum within a finite dimensional space and p �−→rp
is at least bounded.
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κ τ

(a)

C P

(b)

Fig. 3. Non-adaptive control

κp τ

(a)

Cσ P

(b)

Fig. 4. Adaptive control

In a conventional non-adaptive control problem, a controller transfer func-
tion κ is chosen to endow the feedback system shown in Fig. 3a with sta-
bility and other prescribed properties for each candidate transfer function
τ ∈ B(ν, r). Control of P is then carried out by applying to P a controller C

with transfer function κ as shown in Fig. 3b.
In the adaptive control case, for each p ∈ P, controller transfer function

κp is chosen to endow the feedback system shown in Fig. 4a with stability
and other prescribed properties for each τ ∈ B(νp, rp). Adaptive control of
P is then carried, in accordance with the idea of “certainty equivalence by
using a parameter-varying controller or multi-controller Cσ with instantaneous
transfer function κσ where σ is the index in P of the “best” current estimate
of the ball within which P’s transfer function resides.1

Since P is a continuum and κp is to be defined for each p ∈ P, the actual
construction of κp is at best a challenging problem, especially if the construc-
tion is based on LQG or H∞ techniques. Moreover, because of the continuum,
the associated estimation of the index of the ball within which P’s transfer
function resides will be intractable unless demanding conditions are satis-
fied. Roughly speaking, P must be convex and the dependence of candidate

1 Certainty equivalence is a heuristic idea which advocates that the feedback con-
troller applied to an imprecisely modeled process should, at each instant of time,
be designed of the basis of a current estimate of what the process is, with the
understanding that each such estimate is to be viewed as correct even though
it may not be. The term is apparently due to Herbert Simon [9] who used in
a 1956 paper [10] to mean something somewhat different then what’s meant
here and throughout the field of parameter adaptive control. The consequence
of using this idea in an adaptive context is to cause the interconnection of the
controlled process, the multi-controller and the parameter estimator to be de-
tectable through the error between the output of the process and its estimate for
every frozen parameter estimate – and this is true whether the three subsystems
involved are linear or not [11].
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process models on p must be linear. And in the more general case of nonlinear
process models, a certain separability condition [11, 12] would have to hold
which models as simple as

ẏ = sin(py) + u

fail to satisfy. The totality of these implications is rightly called the curse of
the continuum.

Example

The following example illustrates one of the difficulties which arises as a conse-
quence of the continuum assumption. Ignoring un-modeled dynamics, suppose
that M is simply the parameterized family of candidate process model transfer
functions

M =
{

s− 1
6 (p+ 2)

s2 + ps− 2
9p(p+ 2)

: p ∈ P
}

where P = {p : −1 ≤ p ≤ 1}. Note that there is no transfer function in M
with a common pole and zero because the polynomial function

s2 + ps− 2
9
p(p+ 2)|s= 1

6 (p+2)

is nonzero for all p ∈ P. The parameterized transfer function under consider-
ation can be written as

s− 1
6 (p+ 2)

s2 + ps+ q

where
q = −2

9
p(p+ 2). (4.1)

Thus M is also the set of transfer functions

M =
{
s− 1

6 (p+ 2)
s2 + ps+ q

: (p, q) ∈ Q
}
, (4.2)

where Q is the two-parameter space

Q = {(p, q) : q +
2
9
p(p+ 2) = 0, −1 ≤ p ≤ 1}.

The set of points in Q form a parabolic curve segment as shown in Fig. 5.

Although the parameterized transfer function defining M in (4.2) depends
linearly on p and q, the parameter space Q is not convex. Thus devising a
provably parameter estimation algorithm for this parameterization would be
difficult. In a more elaborate example of this type, where more parameters
would be involved, the parameter estimation problem would typically be in-
tractable.
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Fig. 5. Parameter space Q

Fig. 6. Parameter space Q̄

There is a natural way to get around this problem, if the goal is identi-
fication as opposed to adaptive control. The idea is to embed Q in a larger
parameter space which is convex. The smallest convex space Q̄ containing Q
is the convex hull of Q as shown in Fig. 6.

The corresponding set of transfer functions is

M̄ =
{

s − 1
6 (p + 2)

s2 + ps + q
, (p, q) ∈ Q̄

}

It is easy to see that any linearly parameterized family of transfer functions
containing M which is defined on a convex parameter space, must also contain
M̄. While this procedure certainly makes tractably the problem of estimating
parameters, the procedure introduces a new problem. Note that if the newly
parameterized transfer function is evaluated at the point (0,− 1

9 ) ∈ Q̄, what
results is the transfer function

s − 1
6 (p + 2)

s2 + ps + q

∣∣∣∣
(p, q)=(0,− 1

9 )

=
s − 1

3

s2 − 1
9
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This transfer function has a common pole and zero in the right half plane at
s = 1

3 . In summary, the only way to embed M in a larger set which is linearly
parameterized on a convex parameter space, is to introduce candidate process
model transfer functions which have right half plane pole-zero cancellations.
For any such candidate process model transfer function τ , it is impossible
to construct a controller which stabilizes the feedback loop shown in Fig. 4a.
Thus the certainty equivalence based approach we have outlined for defining
Cσ cannot be followed here.

There is a way to deal with this problem if one is willing to use a different
paradigm to construct Cσ [13]; the method relies on an alternative to certainty
equivalence to define Cσ for values of σ which are “close” to points on para-
meter space at which such pole zero cancellations occur. Although the method
is systematic and provably correct, the multi-controller which results is more
complicated than the simple certainty-equivalence based multi-controller de-
scribed above. There is another way to deal with this problem [14] which we
discuss next.

4.2 Controller Covering Problem

As before let P be a siso process to be controlled and suppose that P has a
model in

M =
⋃
p∈P

B(νp, rp)

where B(νp, rp) is a ball of radius rp centered at nominal transfer function νp
in a metric space T with metric µ. Suppose in addition that P is a compact
continuum within a finite dimensional space and p �−→ rp is at least bounded.
Instead of trying re-parameterize as we did in the above example, suppose
instead we try to embed M is a larger class of transfer functions which is
the union of a finite set of balls in T , each ball being small enough so that it
can be adequately controlled with a single conventional linear controller. We
pursue this idea as follows.

Let us agree to say that a finite set of controller transfer functions K is a
control cover of M if for each transfer function τ ∈ M there is at least one
transfer function κ ∈ K which endows the closed-loop system shown in Fig. 7
with at least stability and possible other prescribed properties.

The controller covering problem for a given M is to find a control cover,
if one exists.

κ τ

Fig. 7. Feedback loop
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4.3 A Natural Approach

There is a natural way to try to solve the controller covering problem if each
of the balls B(νi, ri) is small enough so that each transfer function in any
given ball can be adequately controlled by the same fixed linear controller. In
particular, if we could cover M with a finite set of balls – say {B(νp, rp) : p ∈
Q} where Q is a finite subset of P – then we could find controller transfer
functions κp, p ∈ Q, such that for each p ∈ Q and each τ ∈ B(νp, rp), κp
provides the system shown in Fig. 4a with at least stability and possibly other
prescribed properties. The problem with this approach is that M is typically
not compact in which case no such finite cover will exist. It is nevertheless
possible to construct a finite cover of M using enlarged versions of some of
the balls in the set

{B(νp, rp) : p ∈ P}
In fact, M can be covered by any one such ball. For example, for any fixed
q ∈ P, M ⊂ B(νp, sq) where

sq = sup
p∈P

rp + sup
p∈P

µ(νp, νq)

This can be checked by simply applying the triangle inequality. The real prob-
lem then is to construct a cover using balls which are small enough so that all
transfer functions in any one ball can be adequately controlled by the same
linear controller. The following lemma [15] takes a step in this direction.

Lemma 4.1. If Q is a finite subset of P such that

{νp : p ∈ P} ⊂
⋃
q∈Q

B(νq, rq)

then
M ⊂

⋃
q∈Q

B(νq, rq + sq)

where for q ∈ Q,
sq = sup

p∈Pq

rp

and Pq is the set of all p ∈ P such that νp ∈ B(νq, rq).

In other words, if we can cover the set of nominal process model transfer
functions N = {νp : p ∈ P} with a finite set of balls from the set {B(νp, rp) :
p ∈ P}, then by enlarging these balls as the lemma suggests, we can over M.
Of course for such a cover of N to exist, N must be compact. It is reasonable
to assume that this is so and we henceforth do. But we are not yet out of the
woods because the some of enlarged balls we end up with may still turn out
to be too large to be robust stabilizable with linear controllers, even if each of
the balls in the original set {B(νp, rp) : p ∈ P} is. There is a different way to
proceed which avoids this problem if certain continuity conditions apply. We
discuss this next.
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4.4 A Different Approach

Let us assume that

1. p �−→ rp is continuous on P.
2. For each p ∈ P and each positive number εp there is a number δp for

which
µ(νq, νp) < εp

whenever |q−p| < δp where | · | is the norm in the finite-dimensional space
within which P resides.

The following lemma is from [14].

Lemma 4.2. Let the preceding assumptions hold. For each function p �−→ sp
which is positive on P, there is a finite subset Q ⊂ P such that

M ⊂
⋂
q∈Q

B(νq, rq + sq)

The key point here is that if the continuity assumptions hold, then it is possible
to cover M with a finite set of balls which are arbitrarily close in size to the
originals in the set {B(νp, rp) : p ∈ Q}. Thus if each of the original balls is
robustly stabilizable with a linear controller, then so should be the expanded
balls if they are chosen close enough in size to the originals. Of course small
enlargements may require the use of lots of balls to cover M.

4.5 Which Metric?

In order to make use of the preceding to construct a control cover of M, we
need a metric which at least guarantees that if κ stabilizes ν, {i.e., if 1 + κν
has all its zeros in the open left-half plane}, then κ also stabilizes any transfer
function in the ball B(ν, r) for r sufficiently small. Picking a metric with this
robust stabilization property is not altogether trivial. For example, although
for sufficiently small g the transfer function

τg =
s− 1 + g

(s+ 1)(s− 1)

can be made arbitrarily close to the transfer function

ν = τg|g=0 =
1

(s+ 1)

in the metric space of normed differences between transfer function coeffi-
cients, for any controller transfer function κ which stabilizes ν one can always
find a non-zero value of g sufficiently small such that κ does not stabilize τg
at this value. This metric clearly does not have the property we seek. Two
metrics which do are the gap metric [16] and the v-metric [17]. Moreover
the v-metric is known to satisfy the continuity assumption stated just above
Lemma 4.2 [14]. Thus we are able to construct a controller cover as follows.



76 A.S. Morse

4.6 Construction of a Control Cover

Suppose that the admissible process model transfer function class

M =
⋃
p∈P

B(νp, rp)

is composed of balls B(νp, rp) which are open neighborhoods in the metric
space of transfer functions with the v-metric µ. Suppose that these balls are
each small enough so that for some sufficiently small continuous, positive
function p �−→ ρp we can construct for each p ∈ P, a controller transfer
function κp which stabilizes each transfer function in B(νp, rp+ρp). By Lemma
4.2, we can then construct a finite subset Q ⊂ P such that

M ⊂
⋃
p∈Q

B(νp, rp + ρp)

By construction, κp stabilizes each transfer function in B(νp, rp+ρp). Thus for
each τ ∈ M there must be at least one value of q ∈ Q such that κq stabilizes
τ . Since Q is a finite set, {κq : q ∈ Q} is a controller cover of M.

5 Supervisory Control

Much has happened in adaptive control in the last 40 years. The solution to
the classical model reference problem is by now very well understood. Provably
correct algorithms exist which, at least in theory, are capable of dealing with
un-modeled dynamics, noise, right-half-plane zeros, and even certain types
of nonlinearities. However despite these impressive gains, there remain many
important, unanswered questions: Why, for example, is it still so difficult to
explain to a novice why a particular algorithm is able to functions correctly in
the face of un-modeled process dynamics and L∞ bounded noise? How much
un-modeled dynamics can a given algorithm tolerate before loop-stability is
lost? How do we choose an adaptive control algorithm’s many design parame-
ters to achieve good disturbance rejection, transient response, etc.?

There is no doubt that there will eventually be satisfactory answers to all
of these questions, that adaptive control will become much more accessible
to non-specialists, that we will be able to much more clearly and concisely
quantify un-modeled dynamics norm bounds, disturbance-to-controlled out-
put gains, and so on and that because of this we will see the emergence of a
bona fide computer-aided adaptive control design methodology which relies
much more on design principals then on trial and error techniques. The aim
of this chapter is to take a step towards these ends.

The intent of the chapter is to provide a relatively uncluttered analysis
of the behavior of a set-point control system consisting of a poorly modeled
process, an integrator and a multi-controller supervised by an estimator-based
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algorithm employing dwell-time switching. The system has been considered
previously in [18, 19] where many of the ideas which follow were first pre-
sented. Similar systems have been analyzed in one form or another in [20–22]
and elsewhere under various assumptions. It has been shown in [19] that the
system’s supervisor can successfully orchestrate the switching of a sequence
of candidate set-point controllers into feedback with the system’s imprecisely
modeled siso process so as (i) to cause the output of the process to approach
and track a constant reference input despite norm-bounded un-modeled dy-
namics, and constant disturbances and (ii) to insure that none of the signals
within the overall system can grow without bound in response to bounded
disturbances, be they constant or not. The objective of this chapter is to de-
rive the same results in a much more straight forward manner. In fact this has
already been done in [23] and [24] for a supervisory control system in which
the switching between candidate controllers is constrained to be “slow.” This
restriction not only greatly simplified the analysis in comparison with that
given in [19], but also made it possible to derive reasonably explicit upper
bounds for the process’s allowable un-modeled dynamics as well as for the
system’s disturbance-to-tracking error gain. In these notes we also constrain
switching to be slow.

Adaptive set-point control systems typically consist of at least a process
to be controlled, an integrator, a parameter tunable controller or “multi-
controller,” a parameter estimator or “multi-estimator,” and a tuner or
“switching logic.” In sharp contrast with non-adaptive linear control sys-
tems where subsystems are typically analyzed together using one overall linear
model, in the adaptive case the sub-systems are not all linear and cannot be
easily analyzed as one big inter-connected non-linear system. As a result, one
needs to keep track of lots of equations, which can be quite daunting. One way
to make things easier is to use carefully defined block diagrams which sum-
marize equations and relations between signals in a way no set of equations
can match. We make extensive use of such diagrams in this chapter.

5.1 The System

This section describes the overall structure of the supervisory control system
to be considered. We begin with a description of the process.

Process = P

The problem of interest is to construct a control system capable of driving to
and holding at a prescribed set-point r, the output of a process modeled by
a dynamical system with “large” uncertainty. The process P is presumed to
admit the model of a siso linear system whose transfer function from control
input u to measured output y is a member of a continuously parameterized
class of admissible transfer functions of the form
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M =
⋃
p∈P

{νp + δ : δ ≤ εp}

where P is a compact subset of a finite dimensional space,

νp
∆=
αp
βp

is a pre-specified, strictly proper, nominal transfer function, εp is a real non-
negative number, δ is a proper stable transfer function whose poles all have
real parts less than the negative of a pre-specified stability margin λ > 0, and
· is the shifted infinity norm

δ = sup
ω∈IR

|δ(jω − λ)|

It is assumed that the coefficients of αp and βp depend continuously on p and
for each p ∈ P, that βp is monic and that αp and βp are co-prime. All transfer
functions in M are thus proper, but not necessarily stable rational functions.
Prompted by the requirements of set-point control, it is further assumed that
the numerator of each transfer function in M is non-zero at s = 0. The specific
model of the process to be controlled is shown in Fig. 8.

Here y is the process’s measured output, d is a disturbance, and p∗ is the
index of the nominal process model transfer function which models P.

We will consider the case when P is a finite set and also the case when
P contains a continuum. Although both cases will be treated more or less
simultaneously, there are two places where the continuum demands special
consideration. The first is when one tries to construct stabilizable and de-
tectable realizations of continuously parameterized transfer functions, which
are continuous functions of p. In particular, unless the transfer functions in
question all have the same McMillan degree, constructing realizations with
all of these properties can be quite a challenge. The second place where
the continuum requires special treatment, is when one seeks to characterize
the key property implied by dwell time switching. Both of these matters will
be addressed later in this chapter.

+ + +

+
u

d

νp∗

δ

y

Fig. 8. Process model
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In the sequel, we define one by one, the component subsystems of the
overall supervisory control system under consideration. We begin with the
“multi-controller.”

Multi-Controller = Cσ

We take as given a continuously parameterized family of “off-the-shelf” loop
controller transfer functions K ∆= {κp : p ∈ P} with at least the following
property:

Stability margin property: For each p ∈ P, −λ is greater than the real
parts of all of the closed-loop poles2 of the feedback interconnection (Fig. 9).

We emphasize that stability margin property is only a minimal requirement on
the κp. Actual design of the κp could be carried out using any one of a number
of techniques, including linear quadratic or H∞ methods, parameter-varying
techniques, pole placement, etc.

We will also take as given an integer nC ≥ 0 and a continuously para-
meterized family of nC-dimensional realizations {AC(p), bC(p), fC(p), gC(p)},
one for each κp ∈ K. These realizations are required to be chosen so that for
each p ∈ P, (fC(p), λI+AC(p)) is detectable and (λI+AC(p), bC(p)) is stabi-
lizable. There are a great many different ways to construct such realizations,
once one has in hand an upper bound nκ on the McMillan Degrees of the κp.
One is the 2nκ-dimensional identifier-based realization

{(
AI 0
0 AI

)
+
(
bI
0

)
fp,

(
gpbI
bI

)
, fp, gp

}
(5.1)

where (AI , bI) is any given parameter-independent, nκ-dimensional siso, con-
trollable pair with AI stable and fp are gp are respectively a parameter-
dependent 1 × 2nκ matrix and a parameter dependent scalar. Another is the
nκ-dimensional observer-based realization

{AO + kpfO, bp, fO, gp}

+

−
κp

1
s νp

Fig. 9. Feedback interconnection

2 By the closed-loop poles are meant the zeros of the polynomial sρpβp + γpαp,
where

αp

βp
and

γp

ρp
are the reduced transfer functions νp and κp respectively.
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+

−
r yCσ

1
s P

uveT

Fig. 10. Supervised sub-system

where (fO, AO) is any given nκ-dimensional, parameter-independent, observ-
able pair with AO stable and kp and gp are respectively a parameter-dependent
nκ×1 matrix and a parameter dependent scalar. Thus for the identifier-based
realization nC = 2nκ whereas for the observer-based realization nC = nκ. In
either case, linear systems theory dictates that for a these realizations to exist,
it is necessary to be able to represent each transfer function in K as a rational
function ρ(s) with a monic denominator of degree nκ. Moreover, ρ(s) must be
defined so that the greatest common divisor of its numerator and denominator
is a factor of the characteristic polynomial of AI or AO depending on which
type of realization is being used. For the case when K is a finite set, this is eas-
ily accomplished by simply multiplying both the numerator and denominator
of each reduced transfer function κp in K by an appropriate monic polynomial
µp of sufficiently high degree so that the rational function ρ(s) which results
has a denominator of degree nκ. Carry out this step for the case when P con-
tains a continuum is more challenging because to obtain a realization which
depends continuously on p, one must choose the coefficients of µp to depend
continuously on p as well. One obvious way to side-step this problem is to
deal only with the case when all of the transfer functions in K have the same
McMillan degree, because in this case µp can always be chosen to be a fixed
polynomial not depending on p. We will not pursue this issue in any greater
depth in these notes. Instead, we will simply assume that such a continuously
parameterized family of realizations of the κp has been constructed.

Given such a family of realizations, the sub-system to be supervised is of
the form shown in Fig. 10 where Cσ is the nC-dimensional switchable dynam-
ical system

ẋC = AC(σ)xC + bC(σ)eT v = fC(σ)xC + gC(σ)eT, (5.2)

called a multi-controller, v is the input to the integrator

u̇ = v, (5.3)

eT is the tracking error
eT

∆= r − y, (5.4)

and σ is a piecewise constant switching signal taking values in P.

Supervisor = E + W + D

Our aim here is to define a “supervisor” which is capable of generating σ in
real time so as to ensure both:
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1. Global boundedness of all system signals in the face of an arbitrary but
bounded disturbance inputs

2. Set-point regulation {i.e., eT → 0} in the event that the disturbance signal
is constant

As we shall see, the kind of supervisor we will define will deliver even more –
a form of exponential stability which will ensure that neither bounded mea-
surement noise nor bounded system noise entering the system at any point
can cause any signal in the system to grow without bound.

Parallel Realization of an Estimator-Based Supervisor

To understand the basic idea behind the type of supervisor we ultimately
intend to discuss, it is helpful to first consider what we shall call a parallel
realized estimator-based supervisor. This type of supervisor is applicable only
when P is a finite set. So for the moment assume that P contains m elements
p1, p2, . . . , pm and consider the system shown in Fig. 11.

Here each yp is a suitably defined estimate of y which would be asymptot-
ically correct if νp were the process model’s transfer function and there were
no noise or disturbances. The system which generates yp would typically be an
observer for estimating the output of a linear realization of nominal process
transfer function νp. For each p ∈ P, ep = yp − y denotes the pth output es-
timation error and µp is a suitably defined norm-squared value of ep called a
monitoring signal which is used by the supervisor to assess the potential per-
formance of controller p. S is a switching logic whose function is to determine

+
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+

+
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Fig. 11. Parallel realization of an estimator-based supervisor
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σ on the basis of the current values of the µp. The underlying decision making
strategy used by such a supervisor is basically this: From time to time select
for σ, that candidate control index q whose corresponding monitoring signal
µq is the smallest among the µp, p ∈ P. The justification for this heuristic
idea is that the nominal process model whose associated monitoring signal is
the smallest, “best” approximates what the process is and thus the candidate
controller designed on the basis of this model ought to be able to do the best
job of controlling the process.

Estimator-Based Supervisor

The supervisor shown in Fig. 11 is a hybrid dynamical system whose inputs are
v and y and whose output is σ. One shortcoming of this particular architecture
is that it is only applicable when P is a finite set. The supervisor we will
now define is functionally the same as the supervisor shown in Fig. 11 but
has a different realization, one which can be applied even when P contains
a continuum of points. The supervisor consists of three subsystems: a multi-
estimator E, a weight generator W, and a specific switching logic S

∆= D called
dwell-time switching (Fig. 12).

We now describe each of these subsystems in greater detail.

Multi-Estimator = E

By a multi-estimator E for 1
sN , is meant an nE-dimensional linear system

ẋE = AExE + dEy + bEv (5.5)

where

AE =
(
A 0
0 A

)
, dE =

(
b
0

)
, bE =

(
0
b

)

Here (A, b) is any (nν + 1)-dimensional, single input controllable pair cho-
sen so that (λI + A) is exponentially stable, and nν is an upper bound on
the McMillan degrees of the νp, p ∈ P. Because of this particular choice of
matrices, it is possible to construct for each p ∈ P, a row vector cE(p) for
which

{AE + dEcE(p), bE , cE(p)}
realizes 1

sνp and (λI + AE + dEc(p), bE) is stabilizable. We will assume that
such a cE(p) has been constructed and we will further assume that it depends
continuously on p. We will not explain how to carry out such a construction

y

v

xE W
σE W D

Fig. 12. Estimator-based supervisor
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here, even though the procedure is straight forward if P is a finite set or if all
the transfer functions in N have the same McMillan degree.

The parameter-dependent row vector cE(p) is used in the definition of W

which will be given in Sect. 5.1. With cE(p) in hand it is also possible to define
output estimation errors

ep
∆= cE(p)xE − y, p ∈ P (5.6)

While these error signals are not actually generated by the supervisor, they
play an important role in explaining how the supervisor functions. It should
be mentioned that for the case when P contains a continuum, the same issues
arise in defining the quadruple {AE+dEcE(p), bE , cE(p)} to realize the 1

sνp, as
were raised earlier when we discussed the problem of realizing the κp using the
identifier-based quadruple in (5.1). Like before, we will sidestep these issues
by assuming for the case when P is not finite, that all nominal process model
transfer functions have the same McMillan degree.

Weight Generator = W

The supervisor’s second subsystem, W, is a causal dynamical system whose
inputs are xE and y and whose state and output W is a symmetric “weight-
ing matrix” which takes values in a linear space W of symmetric matrices.
W together with a suitably defined monitoring function M : W × P → IR
determine a scalar-valued monitoring signal of the form

µp
∆= M(W,p) (5.7)

which is viewed by the supervisor as a measure of the expected performance
of controller p. W and M are defined by

Ẇ = −2λW +
(
xE
y

)(
xE
y

)
,′ (5.8)

and
M(W,p) =

(
cE(p) −1

)
W
(
cE(p) −1

)′ (5.9)

respectively, where W (0) may be chosen to be any matrix in W. The defin-
itions of W and M are prompted by the observation that if µp are given by
(5.7), then

µ̇p = −2λµp + e2p, p ∈ P
because of (5.6), (5.8) and (5.9). Note that this implies that

µp(T ) = e−2λT ||ep||2T + e−2λTM(W (0), p), T ≥ 0, p ∈ P

where, for any piecewise-continuous signal z : [0,∞) → IRn, and any time
T > 0, ||z||T is the exponentially weighted 2-norm
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||z||T ∆=

√∫ T

0

e2λt|z(t)|2dt

Thus if W (0) = 0, µp(t) is simply a scaled version of the square of the expo-
nentially weighted 2-norm of ep.

Dwell-time Switching Logic = D

The supervisor’s third subsystem, called a dwell-time switching logic D, is a
hybrid dynamical system whose input and output are W and σ respectively,
and whose state is the ordered triple {X, τ, σ}. Here X is a discrete-time ma-
trix which takes on sampled values of W , and τ is a continuous-time variable
called a timing signal. τ takes values in the closed interval [0, τD], where τD is
a pre-specified positive number called a dwell time. Also assumed pre-specified
is a computation time τC ≤ τD which bounds from above for any X ∈ W, the
time it would take a supervisor to compute a value p ∈ P which minimizes
M(X, p). Between “event times,” τ is generated by a reset integrator accord-
ing to the rule τ̇ = 1. Event times occur when the value of τ reaches either
τD − τC or τD; at such times τ is reset to either 0 or τD − τC depending on
the value of D’s state. D’s internal logic is defined by the flow diagram shown
in Fig. 13 where px denotes a value of p ∈ P which minimizes M(X, p).

Note that implementation of the supervisor just described can be accom-
plished when P contains either finitely or infinitely many points. However
when P is a continuum, for the required minimization of M(X, p) to be
tractable, it will typically be necessary to make assumptions about both cE(p)
and P. For example, if cE(p) is an affine linear function and P is a finite union
of convex sets, the minimization of M(X, p) will be a finite family of finite-
dimensional convex programming problems.

In the sequel we call a piecewise-constant signal σ̄ : [0,∞) → P admissible
if it either switches values at most once, or if it switches more than once
and the set of time differences between each two successive switching times
is bounded below by τD. We write S for the set of all admissible switching
signals. Because of the definition of D, it is clear its output σ will be admissible.
This means that switching cannot occur infinitely fast and thus that existence
and uniqueness of solutions to the differential equations involved is not an
issue.

Closed-Loop Supervisory Control System

The overall system just described, admits a block diagram description of the
form shown in Fig. 14. The basic properties of this system are summarized by
the following theorem.

Theorem 5.1. Let τC ≥ 0 be fixed. Let τD be any positive number no smaller
than τC . There are positive numbers εp, p ∈ P, for which the following state-
ments are true provided the process P has a transfer function in M.
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Initialize

σ

τ = 0

τ = τD − τC

X = W

M(X, px) < M(X, σ)

τ = τD − τC τ = τD

σ = px

y n

n y

y n

Fig. 13. Dwell-time switching logic D

+

−
r

eT v u y

d

xE

W

σ

Cσ
1
s P

EW

D

Fig. 14. Supervisory control system



86 A.S. Morse

+
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AC(p) bC(p)

fC(p) gC(p)

AE + dEcE(p) bE

cE(p) 0

Fig. 15. Feedback interconnection

1. Global Boundedness: For each constant set-point value r, each bounded
piecewise-continuous disturbance input d, and each system initialization,
u, xC , xE ,W, and X are bounded responses.

2. Tracking and Disturbance Rejection: For each constant set-point
value r, each constant disturbance d, and each system initialization, y
tends to r and u, xC , xE ,W, and X tend to finite limits, all as fast as
e−λt.

The theorem implies that the overall supervisory control system shown in
Fig. 14 has the basic properties one would expect of a non-adaptive linear
set-point control system. It will soon become clear if it is not already that the
induced L2 gain from d to eT is finite as is the induced L∞ gain from d to
any state variable of the system.

5.2 Slow Switching

Although it is possible to establish correctness of the supervisory control sys-
tem just described without any further qualification [19], in these notes we
will only consider the case when the switching between candidate controllers
is constrained to be “slow” in a sense to be made precise below. This assump-
tion not only greatly simplifies the analysis, but also make it possible to derive
reasonably explicit bounds for the process’s allowable un-modeled dynamics
as well as for the system’s disturbance-to-tracking-error gain.

Consider the system shown in Fig. 15 which represents the feedback con-
nection of linear systems with coefficient matrices {AC(p), bC(p), fC(p), gC(p)}
and {AE + dEcE(p), bE , cE(p)}.

With an appropriate ordering of substates, the “A” matrix for this sys-
tem is

Ap =

⎛
⎝AE + dE(p)cE(p) − bEgC(p)cE(p) bEfC(p)

−bC(p)cE(p) AC(p)

⎞
⎠ . (5.10)

Observe that the two subsystems shown in the figure are realizations of κp
and 1

sνp respectively. Thus because of the stability margin property discussed
earlier, that factor of the characteristic polynomial of Ap determined by κ
and 1

sν must have all its roots to the left of the vertical line s = −λ in the
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complex plane. Any remaining eigenvalues of Ap must also line to the left of
the line s = −λ because {λI + AC(p), bC(p), fC(p), gC(p)} and {λI + AE +
dEcE(p), bE , cE(p)} are stabilizable and detectable systems. In other words,
λI+Ap is an exponentially stable matrix and this is true for all p ∈ P. In the
sequel we assume the following.
Slow switching assumption: Dwell time τD is large enough so that for
each admissible switching signal σ : [0,∞) → P, λI + Aσ is an exponentially
stable matrix.

Using Lemma 1.1 from Sect. 1.1, it is possible to compute an explicit lower
bound for τD for which this assumption holds. Here’s how. Since each λI+Ap
is exponentially stable and p �−→ Ap is continuous, it is possible to com-
pute continuous, non-negative and positive functions p �−→ tp and p �−→ λp
respectively, such that

|e(λI+Apt)| ≤ eλp(tp−t), t ≥ 0

It follows from Lemma 1.1 that if τD is chosen to satisfy

τD > sup
p∈P

{tp}

then for each admissible switching signal σ, λI + Aσ will be exponentially
stable.

5.3 Analysis

Our aim here is to establish a number of basic properties of the supervisory
control system under consideration. We assume that r is an arbitrary but
constant set-point value. In addition we invariably ignore initial condition
dependent terms which decay to zero as fast as e−λt, as this will make things
much easier to follow. A more thorough analysis which would take these terms
into account can carried out in essentially the same manner.

Output Estimation Error ep∗

Assume that the diagram in Fig. 8 correctly models the process and conse-
quently that p∗ is the index of the correct nominal model transfer function
νp∗ . In this section we develop a useful formula for ep∗ where for p ∈ P, ep is
the output estimation error

ep = CExE − y (5.11)

defined previously by (5.6). In the sequel, for any signal w and polynomial
α(s), we use the notation α(s)w to denote the action of the differential op-
erator polynomial α(s)|s= d

dt
on w. For the sake of conciseness, we proceed

formally, ignoring questions of differentiability of w. We will need the follow-
ing easily verifiable fact.
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Lemma 5.1. For any triple of real matrices {An×n, bn×1, ci×n}

c(sI −A)−1b =
π(s) − π̄(s)

π(s)

where π(s) and π̄(s) are the characteristic polynomials of A and A + bc
respectively.

A proof will not be given.
The process model depicted in Fig. 8 implies that

βp∗y = (αp∗ + βp∗δ)u+ αp∗d

This and the fact that u̇ = v enable us to write

sβp∗y = (αp∗ + βp∗δ)v + sαp∗d (5.12)

In view of (5.11)
ep∗ = cE(p∗)xE − y (5.13)

Using this, is possible to re-write estimator equation ẋE = AExE +dEy+ bEv
defined by (5.5), as

ẋE = (AE + dEcE(p∗))xE − dEep∗ + bEv (5.14)

Since {AE + dEcE(p∗), bE , cE(p∗)} realizes 1
sνp∗ and νp∗ = αp∗ (s)

βp∗ (s) it must
be true that

cE(p∗)(sI −AE − dEcE(p∗))−1bE =
αp∗θ(s)

sβp∗(s)θ(s)

where sβp∗(s)θ(s) is the characteristic polynomial of AE + dEcE(p∗) and θ is
a polynomial of unobservable-uncontrollable eigenvalues of {AE + dEcE(p∗),
bE , cE(p∗)}. By assumption, (s+ λ)θ is thus a stable polynomial. By Lemma
5.1,

cE(p∗)(sI −AE − dEcE(p∗))−1dE =
ωE(s)θ(s) − sβp∗(s)θ(s)

sβp∗(s)θ(s)

where ωE(s)θ(s) is the characteristic polynomial of AE . These formulas and
(5.14) imply that

sβp∗θcE(p∗)xE = −(ωEθ − sβp∗θ)ep∗ + αp∗θv

Therefore
sβp∗cE(p∗)xE = −(ωE − sβp∗)ep∗ + αp∗v

This, (5.12) and (5.13) thus imply that

sβp∗ep∗ = −(ωE − sβp∗)ep∗ − βp∗δv − sαp∗d
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Fig. 16. Output estimation error ep∗

and consequently that

ωEep∗ = −βp∗δv − sαp∗d

In summary, the assumption that P is modeled by the system shown in Fig. 8,
implies that the relationship between v, and ep∗ is as shown in Fig. 16.

Note that because of what has been assumed about δ and about the spec-
trum of AE , the poles of all three transfer functions shown in this diagram lie
to the left of the line s = −λ in the complex plane.

Multi-Estimator/Multi-Controller Equations

Our next objective is to combine into a single model, the equations which
describe Cσ and E. As a first step, write x̄E for the shifted state

x̄E = xE +A−1
E bEr (5.15)

Note that because of Lemma 5.1

cE(p)(sI −AE)−1dE =
ω(s) − sβp(s)θp(s)

ω(s)
, p ∈ P

where ω is the characteristic polynomial of AE and for p ∈ P, sβpθp is the
characteristic polynomial of AE + dEcE(p). Evaluation of this expression at
s = 0 shows that

cE(p)A−1
E dE = −1, p ∈ P

Therefore the pth output estimation error ep = cE(p)xE − y can be written
as ep = cE(p)x̄E + r − y. But by definition, the tracking error is eT = r − y,
so

ep = cE(p)x̄E + eT, p ∈ P (5.16)

By evaluating this expression at p = σ, then solving for eT, one obtains

eT = eσ − cE(σ)x̄E (5.17)

Substituting this expression for eT into the multi-controller equations

ẋC = AC(σ)xC + bC(σ)eT v = fC(σ)xC + gC(σ)eT
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defined by (5.2), yields

ẋC = AC(σ)xC−bC(σ)cE(σ)x̄E+bC(σ)eσ v = fC(σ)xC−gC(σ)cE(σ)x̄E+gC(σ)eσ

(5.18)

Note next that multi-estimator equation ẋE = AExE + dEy+ bEv defined by
(5.5) can be re-written using the shifted state x̄E defined by (5.15) as

˙̄xE = AE x̄E − dE(r − y) + bEv

Therefore
˙̄xE = AE x̄E − dEeT + bEv

Substituting in the expression for eT in (5.17) and the formula for v in (5.18)
one gets

˙̄xE = (AE + dEcE(σ) − bEgC(σ)cE(σ))x̄E + bEfC(σ)xC + (bEgC(σ) − dE)eσ
(5.19)

Finally if we define the composite state

x =
(
x̄E
xC

)
(5.20)

then it is possible to combine (5.18) and (5.19) into a single model

ẋ = Aσx+ bσeσ (5.21)

where for p ∈ P, Ap is the matrix defined previously by (5.10) and

bp =

⎛
⎝bEgC(p) − dE

bC(p)

⎞
⎠

The expressions for eT and v in (5.17) and (5.18) can also be written in terms
of x as

eT = eσ + cσx (5.22)

and
v = fσx+ gσeσ (5.23)

respectively, where for p ∈ P

cp = −
(
cE(p) 0

)
fp =
(
−gC(p)cE(p) fC(p)

)
gp = gC(p)

Moreover, in view of (5.16),

ep = eq + cpqx, p, q ∈ P (5.24)

where
cpq =

(
cE(p) − cE(q) 0

)
, p, q ∈ P (5.25)

Equations (5.20)–(5.24) can be thought of as an alternative description of Cσ

and E. We will make use of these equations a little later.
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Exponentially Weighted 2-Norm

In Sect. 5.1 we noted that each monitoring signal µp(t) could be written as

µp(t) = e−2λt||ep||2t + e−2λtM(W (0), p), t ≥ 0, p ∈ P

where, for any piecewise-continuous signal z : [0,∞) → IRn, and any time
t > 0, ||z||t is the exponentially weighted 2-norm

||z||t ∆=

√∫ t

0

e2λτ |z(τ)|2dτ

Since we are considering the case when W (0) = 0, the expression for µ sim-
plifies to

µp(t) = e−2λt||ep||2t
Thus

||ep||2t = e2λtµp(t), p ∈ P (5.26)

The analysis which follows will be carried out using this exponentially
weighted norm. In addition, for any time-varying siso linear system Σ of
the form y = c(t)x+ d(t)u, ẋ = A(t)x+ b(t)u we write

∥∥∥∥A b
c d

∥∥∥∥
for the induced norm

sup{||yu||∞ : u ∈ U}
where yu is Σ’s zero initial state, output response to u and U is the space of
all piecewise continuous signals u such that ||u||∞ = 1. The induced norm of
Σ is finite whenever λI +A(t) is {uniformly} exponentially stable.

We note the following easily verifiable facts about the norm we are using.
If e−λt||u||t is bounded on [0,∞) {in the L∞ sense}, then so is yu provided
d = 0 and λI − A(t) is exponentially stable. If u is bounded on [0,∞) in the
L∞ sense, then so is e−λt||u||{0,t}. If u → 0 as t → ∞, then so does e−λt||u||t.

P Is a Finite Set

It turns out that at this point the analysis for the case when P is a finite set,
proceeds along a different path that the path to be followed in the case when
P contains infinitely many points. In this section we focus exclusively on the
case when P is finite.

As a first step, let us note that the relationships between eT, v and eσ given
by (5.22)–(5.24) can be conveniently represented by block diagrams which, in
turn, can be added to the block diagram shown in Fig. 16. What results in the
block diagram shown in Fig. 17.
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Aσ bσ

cσ 1

βp∗

ωE
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w

ep∗ eσ eT

−
−

v

Fig. 17. A representation of P, Cσ, E and 1
s

In drawing this diagram we have set p = σ and q = p∗ in (5.24) and
we have represented the system defined by (5.21), (5.22) and (5.23) as two
separate exponentially stable subsystems, namely

ẋ1 = Aσx1 + bσeσ ẋ2 = Aσx2 + bσeσ
v = fσx1 + gσeσ eT = cσx2 + eσ

where x1 = x2 = x. Note that the signal in the block diagram labeled w, will
tend to zero if d is constant because of the zero at s = 0 in the numerator of
the transfer function in the block driven by d.

To proceed beyond this point, we will need to “close the loop” in the sense
that we will need to relate eσ to ep∗ . To accomplish this we need to address
the consequences of dwell time switching, which up until now we have not
considered.

Dwell-Time Switching

Note that each of the five blocks in Fig. 17 represents an exponentially stable
linear system with stability margin λ. Thus if it happened to be true that
eσ = gep∗ for some sufficiently small constant gain g then we would be able
to deduce stability in the sense that the induced norm from d to eT would be
finite. Although no such gain exists, it nonetheless turns out to be true that
there is a constant gain for which ||eσ||t ≤ g||ep∗ ||t for all t ≥ 0. To explain
why this is so we will need the following proposition.

Proposition 5.1. Suppose that P contains m > 0 elements that W is gen-
erated by (5.8), that the µp, p ∈ P, are defined by (5.7) and (5.9), that
W (0) = 0, and that σ is the response of D to W . Then for each time T > 0,
there exists a piecewise constant function ψ : [0,∞) → {0, 1} such that for all
q ∈ P, ∫ ∞

0

ψ(t)dt ≤ m(τD + τC) (5.27)

and
||(1 − ψ)eσ + ψeq||T ≤

√
m||eq||T (5.28)

Proposition 5.1 highlights the essential consequences of dwell time switching
needed to analyze the system under consideration for the case when P is finite.
The proposition is proved in Sect. 5.4.
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A Snapshot at Time T

Fix T > 0 and let ψ be as in Proposition 5.1. In order to make use of (5.28),
it is convenient to introduce the signal

z = (1 − ψ)eσ + ψep∗ (5.29)

since, with q ∆= p∗, (5.28) then becomes

||z||T ≤
√
m||ep∗ ||T (5.30)

Note that (5.24) implies that eσ = ep∗ +cσp∗x. Because of this, the expression
for z in (5.29) can be written as

z = (1 − ψ)eσ + ψ(eσ − cσp∗x)

Therefore after cancellation

z = eσ − ψcσp∗x

or
eσ = ψcσp∗x+ z (5.31)

Recall that
ẋ = Aσx+ bσeσ (5.32)

The point here is that (5.31) and (5.32) define a linear system with input z
and output eσ. We refer to this system as the injected sub-system of the over-
all supervisory control system under consideration. Adding a block diagram
representation of this sub-system to the block diagram in Fig. 17 results is
the block diagram shown in Fig. 18 which can be though of as a snapshot of
the entire supervisory control system at time T . Of course the dashed block
shown in the diagram is not really a block in the usual sense of signal flow.
Nonetheless its inclusion in the diagram is handy for deriving norm bound
inequalities, since in the sense of norms, the dashed block does provide the
correct inequality, namely (5.30).

sαp∗

ωE

Aσ bσ

fσ gσ

Aσ bσ

cσ 1
Aσ bσ

cσp∗ 0

βp∗

ωE
δ

d
zep∗ eσ

eT
−

−

v

ψ

+
+

√
m

Fig. 18. A snapshot of the complete system at time T
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System Gains

Let us note that for any given admissible switching signal σ, each of the six
blocks in Fig. 18, excluding the dashed block and the block for ψ, represents
an exponentially stable linear system with stability margin λ. It is convenient
at this point to introduce certain worst case “system gains” associated with
these blocks. In particular, let us define for p ∈ P

ap
∆=

√
2
sαp
ωE

, bp
∆=

√
2
βp
ωE

sup
σ∈S

∥∥∥∥∥∥
Aσ bσ

fσ gσ

∥∥∥∥∥∥ , c
∆= sup

σ∈S

∥∥∥∥∥∥
Aσ bσ

cσ 1

∥∥∥∥∥∥
where, as defined earlier, · is the shifted infinity norm and S is the set of
all admissible switching signals. In the light of Fig. 18, it is easy to see that

||eT||t ≤ c||eσ||t, t ≥ 0 (5.33)

and that
||ep∗ ||t ≤ εp∗

bp∗√
2
|||eσ||t +

ap∗√
2
||d||t, t ≥ 0, (5.34)

where εp∗ is the norm bound on δ.
To proceed we need an inequality which relates the norm of eσ to the norm

of z. For this purpose we introduce one more system gain, namely

vp
∆= sup

σ∈S
sup
t≥0

∫ t

0

|cσ(t)pΦ(t, τ)bσ(τ)e
λ(t−τ)|2dτ, p ∈ P

where Φ(t, τ) is the state transition matrix of Aσ. Note that each vp is finite
because of the Slow Switching Assumption.

Analysis of the injected sub-system in Fig. 18 can now be carried out as
follows. Set

wp(t, τ) = cσ(t)pΦ(t, τ)bσ(τ)

Using Cauchy-Schwartz

||ψ(wp∗ ◦ eσ)||t ≤

√
vp∗

∫ t

0

ψ2||eσ||2µdµ, t ≥ 0 (5.35)

where wp∗ ◦ eσ is the zero initial state output response to eσ of a system with
weighting pattern wp∗ . From Fig. 18 it is it is clear that eσ = z+ψ(wp∗ ◦ eσ).
Thus taking norms

||eσ||t ≤ ||z||t + ||ψ(wp∗ ◦ eσ||t

Therefore
||eσ||2t ≤ 2||z||2t + 2||ψ(wp∗ ◦ eσ||2t
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Thus using (5.35)

||eσ||2t ≤ 2||z||2t + 2vp∗

∫ t

0

ψ2||eσ||2µdµ, 0 ≤ t ≤ T

Hence by the Bellman–Gronwall Lemma

||eσ||2T ≤
(
2e2vp∗

∫ T
0 ψ2dt
)
||z||2T

so
||eσ||T ≤

(√
2evp∗

∫ T
0 ψ2dt
)
||z||T

From this, (5.27), and the fact that ψ2 = ψ, we arrive at

||eσ||T ≤
(√

2evp∗m(τD+τC)
)
||z||T (5.36)

Thus the induced gain from z to eσ of the injected sub-system shown in
Fig. 18 is bounded above by

√
2evp∗m(τD+τC). We emphasize that this is a

finite number, not depending on T .

Stability Margin

We have developed four key inequalities, namely (5.30), (5.33), (5.34) and
(5.36) which we repeat below for ease of reference.

||z||T ≤
√
m||ep∗ ||T (5.37)

||eT||T ≤ c||eσ||T (5.38)

||ep∗ ||T ≤ εp∗
bp∗√

2
|||eσ||T +

ap∗√
2
||d||T (5.39)

||eσ||T ≤
(√

2evp∗m(τD+τC)
)
||z||T (5.40)

Inequalities (5.37), (5.39) and (5.40) imply that

||eσ||T ≤
√
mevp∗m(τD+τC))(εp∗bp∗ ||eσ||T + ap∗ ||d||T ).

Thus if εp∗ satisfies the small gain condition

εp∗ <
e−vp∗m(τD+τC)

bp∗
√
m

(5.41)

then
||eσ||T ≤ ap∗

e
−vp∗m(τD+τC )

)√
m

− εp∗bp∗
||d||T . (5.42)

The inequality in (5.41) provides an explicit upper bound for the norm of
allowable un-modeled process dynamics, namely δ .
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A Bound on the Disturbance-to-Tracking-Error Gain

Note that (5.38) and (5.42) can be combined to provide an inequality of the
form

||eT||T ≤ gp∗ ||d||T , T ≥ 0 (5.43)

where

gp∗ =
cap∗

e
−vp∗m(τD+τC )

√
m

− εp∗bp∗
(5.44)

The key point here is that gp∗ does not depend on T even though the block
diagram in Fig. 18 does. Because of this, (5.43) must hold for all T . In other
words, even though we have carried out an analysis at a fixed time T and in
the process have had to define a several signals {e.g., ψ} which depended on
T , in the end we have obtained an inequality namely (5.43), which is valid for
all T . Because of this we can conclude that

||eT||∞ ≤ gp∗ ||d||∞ (5.45)

Thus gp∗ bounds from above the overall disturbance-to-tracking-error gain of
the system we have been studying.

Global Boundedness

The global boundedness condition of Theorem 5.1 can now easily be justified
as follows. Suppose d is bounded on [0, ∞) in the L∞ sense. Then so must
be e−λt||d||t. Hence by (5.42), e−λt||eσ||t must be bounded on [0, ∞) as well.
This, the differential equation for x in (5.32), and the exponential stability
of λI + Aσ then imply that x is also bounded on [0, ∞). In view of (5.20)
and (5.15), xE and xC must also be bounded. Next recall that the zeros
of ωE {i.e., the eigenvalues of AE} have negative real parts less than −λ,
and that the transfer function βp∗

ωE
δ in Fig. 17 is strictly proper. From these

observations, the fact that e−λt||eσ||t is bounded on [0,∞), and the block
diagram in Fig. 17 one readily concludes that ep∗ is bounded on [0,∞). From
(5.24), eσ = ep∗ + cσp∗x. Therefore eσ is bounded on [0,∞). Boundedness of
eT and v follow at once from (5.22) and (5.23) respectively. In view of (5.4),
y must be bounded. Thus W must be bounded because of (5.8). Finally note
that u must be bounded because of the boundedness of y and v and because of
our standing assumption that the transfer function of P is non-zero at s = 0.
This, in essence, proves Claim 1 of Theorem 5.1.

Convergence

Now suppose that d is a constant. Examination of Fig. 17 reveals that w must
tend to zero as fast as e−λt because of the zero at s = 0 in the numerator of
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the transfer function from d to w. Thus ||w||∞ < ∞. Figure 17 also implies
that

||ep∗ ||T ≤ ||w||T + εp∗
bp∗√

2
||eσ||T

This (5.37), (5.40) and (5.41) implies that

||eσ||T ≤
√

2
e
−vp∗m(τD+τC )

)√
m

− εp∗bp∗
||w||T

Since this inequality holds for all T ≥ 0, it must be true that ||eσ||∞ < ∞.
Hence eσ must tend to zero as fast as e−λt. So therefore must x because of the
differential equation for x in (5.21). In view of (5.20) x̄E and xC must tend
to zero. Thus xE must tend to A−1

E bEr because of (5.15). Moreover ep∗ must
tend to zero as can be plainly seen from Fig. 17. Hence from the formulas
(5.22) and(5.23) for eT and v respectively one concludes that these signals
must tend to zero as well. In view of (5.4), y must tent to r. Thus W must
approach a finite limit because of (5.8). Finally note that u tend to a finite
limit because y and v do and because of our standing assumption that the
transfer function of P is non-zero at s = 0. This, in essence, proves Claim 2 of
Theorem 5.1.

P Is Not a Finite Set

We now consider the more general case when P is a compact but not neces-
sarily finite subset of a finite dimensional linear space. The following proposi-
tion replaces Proposition 5.1 which is clearly not applicable to this case. The
proposition relies on the fact that every nominal transfer function in N can
be modeled by a linear system of dimension at most nE .

Dwell-Time Switching

Proposition 5.2. Suppose that P is a compact subset of a finite dimensional
space, that p �−→ cE(p) is a continuous function taking values in IR1×nE , that
cpq =

(
cE(p) − cE(q) 0

)
as in (5.25), that W is generated by (5.8), that the

µp, p ∈ P, are defined by (5.7) and (5.9), that W (0) = 0, and that σ is the
response of D to W . For each q ∈ P, each real number ρ > 0 and each fixed
time T > 0, there exists piecewise-constant signals h : [0,∞) → IR1×(nE+nC)

and ψ : [0,∞) → {0, 1} such that

|h(t)| ≤ ρ, t ≥ 0, (5.46)∫ ∞

0

ψ(t)dt ≤ nE(τD + τC), (5.47)

and

||(1 − ψ)(eσ − hx) + ψeq||T ≤
{

1 + 2nE

(
1 + supp∈P |cpq|

ρ

)nE}
||eq||T

(5.48)
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This Proposition is proved in Sect. 5.4. Proposition 5.2 summarizes the key
consequences of dwell time switching which are needed to analyze the sys-
tem under consideration. The term involving h in (5.48) present some minor
difficulties which we will deal with next.

Let us note that for any piece-wise continuous matrix-valued signal h :
[0,∞) → IR1×(nE+nC), it is possible to re-write (5.21)–(5.22) as

ẋ = (Aσ + bσh)x+ bσ ē (5.49)

eT = ē+ (cσ + h)x (5.50)

and
v = (fσ + gσh)x+ gσ ē (5.51)

respectively where
ē = eσ − hx. (5.52)

Note also that the matrix λI +Aσ + bσh will be exponentially stable for any
σ ∈ S if |h| ≤ ρ, t ≥ 0, where ρ is a sufficiently small positive number. Such a
value of ρ exists because p �−→ Ap and p �−→ bp are continuous and bounded
functions on P and because λI+Aσ is exponentially stable for every admissible
switching signal. In the sequel we will assume that ρ is such a number and
that H is the set of all piece-wise continuous signals h satisfying |h| ≤ ρ, t ≥ 0.

A Snapshot at Time T

Now fix T > 0 and let ψ and h be signals for which (5.46)–(5.48) hold with
q = p∗. To account for any given h in (5.49)–(5.51), we will use in place of the
diagram in Fig. 17, the diagram shown in Fig. 19. As with the representation
in Fig. 17, we are representing the system defined by (5.49)–(5.51) as two
separate subsystems, namely

ẋ1 = (Aσ + bσh)x1 + bσ ē ẋ2 = (Aσ + bσh)x2 + bσ ē
v = (fσ + gσh)x1 + gσ ē eT = (cσ + h)x2 + ē

where x1 = x2 = x.

sαp∗

ωE

Aσ + bσh bσ

fσ + bσh gσ

Aσ + bσh bσ

cσ + h 1

βp∗

ωE
δ

d
w

z2

ep∗ ē eT

−
−

v

Fig. 19. A Representation of P, Cσ, E and 1
s
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Note that each of the five blocks in Fig. 19 represents an exponentially stable
linear system with stability margin λ.

In order to make use of (5.48), it is helpful to introduce the signal

z̄ = (1 − ψ)(eσ − hx) + ψep∗ (5.53)

since (5.48) then becomes

||z̄||T ≤ γp∗ ||ep∗ ||T (5.54)

where

γp∗
∆=
{

1 + 2nE

(
1 + supp∈P |cpp∗ |

ρ

)nE}

Note that
eσ = ep∗ + cσp∗x

because of (5.24). Solving for ep∗ in substituting the result into (5.53) gives

z̄ = (1 − ψ)(eσ − hx) + ψ(eσ − cσp∗x)

Thus
z̄ = eσ − hx− ψ(cσp∗ − h)x

In view of (5.52) we can therefore write

z̄ = ē− ψ(cσp∗ − h)x

or
ē = z̄ + ψ(cσp∗ − h)x (5.55)

Recall that (5.49) states that

ẋ = (Aσ + bσh)x+ bσ ē. (5.56)

Observe that (5.55) and (5.56) define a linear system with input z̄ and output
ē which we refer to as the injected system for the problem under considera-
tion. Adding a block diagram representation of this sub-system to the block
diagram in Fig. 19 results in the block diagram shown in Fig. 20. Just as in
the case when P is finite, the dashed block is not really a block in the sense
of signal flow.

System Gains

Let us note that for any given admissible switching signal σ, each of the six
blocks in Fig. 20, excluding the dashed block and the block for ψ, represents
an exponentially stable linear system with stability margin λ. It is convenient
at this point to introduce certain worst case “system gains” associated with
these blocks. In particular, let us define for p ∈ P
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sαp∗

ωE

Aσ + bσh bσ

fσ + gσh gσ

Aσ + bσh bσ

cσ 1

Aσ + bσh bσ

cσp∗ − h 0

βp∗

ωE
δ

d
z̄ep∗ ē

eT
−

−

v

ψ

+
+

γp∗

Fig. 20. A Snapshot of the complete system at time T

b̄p
∆=

√
2
βp
ωE

⎧⎨
⎩sup
h∈H

sup
σ∈S

∥∥∥∥∥∥
Aσ + bσh bσ

fσ + gσh gσ

∥∥∥∥∥∥

⎫⎬
⎭ c̄

∆= sup
h∈H

sup
σ∈S

∥∥∥∥∥∥
Aσ + bσh bσ

cσ + h 1

∥∥∥∥∥∥
In the light of Fig. 20, it is easy to see that

||eT||t ≤ c̄||ē||t t ≥ 0, (5.57)

and that

||ep∗ ||t ≤ εp∗
¯bp∗√
2
||ē||t +

ap∗√
2
||d||t, t ≥ 0 (5.58)

where εp∗ is the norm bound on δ and ap is as defined in Sect. 5.3.
To proceed we need an inequality which related the norm of ē to the norm

of z̄. For this purpose we introduce the additional system gain

v̄q
∆= sup

h∈H
sup
σ∈S

sup
t≥0

∫ t

0

|(cσ(t)q − h(t))Φ(t, τ)bσ(τ)e
λ(t−τ)|2dτ

where Φ(t, τ) is the state transition matrix of Aσ + bσh. Note that each v̄q is
finite because of the Slow Switching Assumption.

Analysis of the injected sub-system shown in Fig. 20 is the same as in the
case when P is finite. Instead of (5.36), what one obtains in this case is the
inequality

||ē||T ≤
(√

2ev̄p∗nE(τD+τC)
)
||z̄||T (5.59)

Stability Margin

We have developed four key inequalities for the problem at hand, namely
(5.54), (5.57), (5.58) and (5.59) which we repeat for ease of reference.
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||z̄||T ≤ γp∗ ||ep∗ ||T (5.60)
||eT||T ≤ c̄||ē||T (5.61)

||ep∗ ||T ≤ εp∗
b̄p∗√

2
|||ē||T +

ap∗√
2
||d||T (5.62)

||ē||T ≤
(√

2ev̄p∗m(τD+τC)
)
||z̄||T (5.63)

Observe that except for different symbols, these inequalities are exactly the
same as those in (5.37)–(5.40) respectively. Because of this, we can state at
once that if εp∗ satisfies the small gain condition

εp∗ <
e−v̄p∗nE(τD+τC)

b̄p∗γp∗
(5.64)

then
||ē||T ≤ ap∗

e
−v̄p∗nE(τD+τC )

γP∗ − εp∗ b̄p∗
||d||T , (5.65)

As in the case when P is finite, inequality in (5.64) provides an explicit bound
for the norm of allowable process dynamics.

A Bound on the Disturbance-to-Tracking-Error Gain

Note that (5.61) and (5.65) can be combined to provide an inequality of the
form

||eT||T ≤ ḡp∗ ||d||T , T ≥ 0

where

ḡp∗ =
c̄ap∗

e
−v̄p∗nE(τD+τC )

γP∗ − εp∗ b̄p∗
(5.66)

Moreover, because the preceding inequality holds for all T > 0 and gp∗ is
independent of T , it must be true that

||eT||∞ ≤ ḡp∗ ||d||∞
Thus for the case when P contains infinitely many points, ḡp∗ bounds from
above the overall system’s disturbance-to-tracking-error gain.

Global Boundedness and Convergence

It is clear from the preceding that the reasoning for the case when P contains
infinitely many points parallels more or less exactly the reasoning used for the
case when P contains only finitely many points. Thus for example, the claims
of Theorem 5.1 regarding global boundedness and exponential convergence
for the case when P contains infinitely many points, can be established in
essentially the same way as which they were established earlier in these notes
for the case when P is a finite set. For this reason, global boundedness and
convergence arguments will not be given here.
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5.4 Analysis of the Dwell Time Switching Logic

We now turn to the analysis of dwell time switching. In the sequel, T > 0 is
fixed, σ is a given switching signal, t0

∆= 0, ti denotes the ith time at which
σ switches and pi is the value of σ on [ti−1, ti); if σ switches at most n < ∞
times then tn+1

∆= ∞ and pn+1 denotes σ’s value on [tn,∞). Any time X
takes on the current value of W is called a sample time. We use the notation
�t� to denote the sample time just preceding time t, if t > τD − τC , and the
number zero otherwise. Thus, for example, �t0� = 0 and �ti� = ti− τC , i > 0.
We write k for that integer for which T ∈ [tk−1, tk). For each j ∈ {1, 2, . . . , k}
define

t̄j =

{
tj if j < k

T if j = k
,

and let φj : [0,∞) → {0, 1} be that piecewise-constant signal which is zero
everywhere except on the interval

[�tj�, t̄j), if t̄j − tj−1 ≤ τD

or
[�t̄j� − τC , t̄j), if t̄j − tj−1 > τD

In either case φj has support no greater than τD + τC and is idempotent {i.e.,
φ2
j = φj}. The following lemma describes the crucial consequence of dwell

time switching upon which the proofs of Proposition 5.1 and 5.2 depend.

Lemma 5.2. For each j ∈ {1, 2, . . . , k}

||(1 − φj)epj
||t̄j ≤ ||(1 − φj)eq||T , ∀q ∈ P

Proof of Lemma 5.2: The definition of dwell time switching implies that

µpj
(�tj−1�) ≤ µq(�tj−1�), ∀q ∈ P,

µpj
(�t̄j� − τC) ≤ µq(�t̄j� − τC),∀q ∈ P if t̄j − tj−1 > τD

As noted earlier, for all t ≥ 0

µp(t) = e−2λt||ep||2t , p ∈ P

Therefore

||epj
||2�tj−1� ≤ ||eq||2�tj−1�, ∀q ∈ P

||epj
||2(�t̄j�−τC) ≤ ||eq||2(�t̄j�−τC), ∀q ∈ P, if t̄j − tj > τD

⎫⎬
⎭ (5.67)

The definitions of φj implies that for l ∈ P
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||(1 − φj)el||2t̄j =

{
||(1 − φj)el||2�tj−1� if t̄j − tj−1 ≤ τD,

||(1 − φj)el||2(�t̄j�−τC) if t̄j − tj−1 > τD

From this and (5.67) we obtain for all q ∈ P

||(1 − φj)epj
||2t̄j = ||epj

||2�tj−1� ≤ ||eq||2�tj−1� ≤ ||eq||2t̄j = ||(1 − φj)eq||2t̄j

if t̄j − tj−1 ≤ τD and

||(1 − φj)epj
||2t̄j = ||epj

||2�t̄j−τC� ≤ ||eq||2�t̄j−τC� ≤ ||eq||2t̄j = ||(1 − φj)eq||2t̄j

if t̄j − tj−1 > τD. From this and the fact that

||(1 − φj)eq||2t̄j ≤ ||(1 − φj)eq||2T , q ∈ P,

there follows

||(1 − φj)epj
||t̄j ≤ ||(1 − φj)eq||T , ∀ q ∈ P

�

Implication of Dwell-Time Switching When P Is a Finite Set

The proof of Proposition 5.1 makes use of the following lemma.

Lemma 5.3. For all µi ∈ [0, 1], i ∈ {1, 2, . . . ,m}
m∑
i=1

(1 − µi) ≤ (m− 1) +
m∏
i=1

(1 − µi) (5.68)

Proof of Lemma 5.3: Set xi = 1 − µi, i ∈ {1, 2, . . . , }. It is enough to show
that for xi ∈ [0, 1], i ∈ {1, 2, . . . , }

j∑
i=1

xi ≤ (j − 1) +
j∏
i=1

xj (5.69)

for j ∈ {1, 2, . . . ,m}. Clearly (5.69) is true if j = 1. Suppose therefore that
for some k > 0, (5.69) holds for j ∈ {1, 2, . . . , k}. Then

k+1∑
i=1

xi = xk+1 +
k∑
i=1

xi ≤ xk+1 + (k − 1) +
k∏
i=1

xi

≤ (1 − xk+1)

(
1 −

k∏
i=1

xi

)
+ xk+1 + (k − 1) +

k∏
i=1

xi

= k +
k+1∏
i=1

xi



104 A.S. Morse

By induction, (5.69) thus holds for j ∈ {1, 2, . . . ,m}. �

Proof of Proposition 5.1: For each distinct p ∈ {p1, p2, . . . , pk}, let Ip
denote the set of nonnegative integers i such that pi = p and write jp for the
largest integer in Ip. Note that jpk

= k. Let J denote the set of all such j.
since P contains m elements, m bounds from above the number of elements
in J . For each j ∈ J , define

ψ
∆= 1 −

∏
j∈J

(1 − φj) (5.70)

Since each φp has co-domain {0, 1}, support no greater than τD + τC and is
idempotent, it must be true that ψ has co-domain {0, 1}, support no greater
than m(τD + τC) and is idempotent as well. Therefore, (5.27) holds.

Now

||(1−ψ)eσ||2T =
∑
j∈J

∑
i∈Ipj

(||(1−ψ)epj
||2t̄i−||(1−ψ)epj

||2ti−1
) ≤
∑
j∈J

||(1−ψ)epj
||2t̄j

(5.71)
In view of (5.70) we can write

∑
j∈J

||(1 − ψ)epj
||2t̄j =

∑
j∈J

∥∥∥∥∥
{∏
l∈J

(1 − φl)

}
epj

∥∥∥∥∥
2

t̄j

(5.72)

But ∑
j∈J

∥∥∥∥∥
{∏
l∈J

(1 − φl)

}
epj

∥∥∥∥∥
2

t̄j

≤
∑
j∈J

∥∥(1 − φj)epj

∥∥2
t̄j

From this, Lemma 5.2, (5.71), and (5.72) it follows that

||(1 − ψ)eσ||2T ≤
∑
j∈J

||(1 − φj)eq||2T , ∀ q ∈ P

Thus for q ∈ P

||(1 − ψ)eσ||2T ≤
∑
j∈J

∫ T

0

{eqeλt}2(1 − φj)2dt

=
∫ T

0

{eqeλt}2

⎧⎨
⎩
∑
j∈J

(1 − φj)2

⎫⎬
⎭ dt

=
∫ T

0

{eqeλt}2

⎧⎨
⎩
∑
j∈J

(1 − φj)

⎫⎬
⎭ dt
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This, Lemma 5.3 and (5.70) imply that

||(1 − ψ)eσ||2T ≤
∫ T

0

{eqeλt}2

⎧⎨
⎩m− 1 +

∏
p∈PT

(1 − φp)

⎫⎬
⎭ dt

=
∫ T

0

{eqeλt}2{m− ψ}dt

=
∫ T

0

{eqeλt}2{m− ψ2}dt

Hence
||(1 − ψ)eσ||2T ≤ m||eq||2T − ||ψeq||2T (5.73)

Now
||(1 − ψ)eσ||2T + ||ψeq||2T = ||(1 − ψ)eσ + ψeq||2T

because ψ(1 − ψ) = 0. From this and (5.73) it follows that

||(1 − ψ)eσ + ψeq||2T ≤ m||eq||2T

and thus that (5.28) is true �

Implication of Dwell-Time Switching When P Is Not a Finite Set

To prove Proposition 5.2 we will need the following result which can be easily
deduced from the discussion about strong bases in Sect. 5.4.

Lemma 5.4. Let ε be a positive number and suppose that X = {x1, x2, . . . xm}
is any finite set of vectors in a real n-dimensional space such that |xm| > ε.
There exists a subset of m̄ ≤ n positive integers N = {i1, i2, . . . , im̄}, each no
larger than m, and a set of real numbers aij , i ∈ M = {1, 2, . . .m}, j ∈ N
such that ∣∣∣∣∣∣xi −

∑
j∈N

aijxj

∣∣∣∣∣∣ ≤ ε, i ∈ M

where

aij = 0, i ∈ M, j ∈ N , i > j,

|aij | ≤
(1 + supX )n

ε
, i ∈ M, j ∈ N

Proof of Proposition 5.2: There are two cases to consider:
Case I: Suppose that |cpiq| ≤ ρ for i ∈ {1, 2, . . . , k}. In this case set ψ(t) =
0, t ≥ 0, h(t) = cσ(t)q for t ∈ [0, tk), and h(t) = 0 for t > tk. Then (5.47) and
(5.46) hold and eσ = hx + eq for t ∈ [0, T ). Therefore ||eσ − hx||T = ||eq||T
and (5.48) follows.
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Case II: Suppose the assumption of Case I is not true in which case there is a
largest integer m ∈ {1, 2, . . . , k} such that |cpmq| > ρ. We claim that there is a
non-negative integer m̄ ≤ nE , a set of m̄ positive integers J = {i1, i2, . . . , im̄},
each no greater than k, and a set of piecewise constant signals γj : [0,∞) →
IR, j ∈ J , such that

∣∣∣∣∣∣cσ(t)q −
∑
j∈J

γj(t)cpjq

∣∣∣∣∣∣ ≤ ρ, 0 ≤ t ≤ T (5.74)

where for all j ∈ J

γj(t) = 0, t ∈ (tj ,∞), (5.75)

|γj(t)| ≤
(

1 + supp∈P |cpq|
ρ

)nE

, t ∈ [0, tj) (5.76)

To establish this claim, we first note that {cp1q, cp2q, . . . , cpmq} ⊂ {cpq : p ∈ P}
and that {cpq : p ∈ P} is a bounded subset of an nE dimensional space.
By Lemma 5.4 we thus know that there must exist a subset of m̄ ≤ nE
integers J = {i1, i2, . . . , im̄}, each no greater thanm, and a set of real numbers
gij , i ∈ M = {1, 2, . . . ,m}, j ∈ J such that

∣∣∣∣∣∣cpiq −
∑
j∈J

gijcpjq

∣∣∣∣∣∣ ≤ ρ, i ∈ M (5.77)

where

gij = 0, i ∈ M, j ∈ J , i > j, (5.78)

|gij | ≤
(1 + supp∈P |cpq|)nE

ρ
, i ∈ M, j ∈ N (5.79)

Thus if for each j ∈ J , we define γj(t) = gij , t ∈ [ti−1, ti), i ∈ M, and
γj(t) = 0, t > tm then (5.74)–(5.76) will all hold.

To proceed, define h(t) for t ∈ [0, tm) so that

h(t) = cpiq −
∑
j∈J

gijcpjq, t ∈ [ti−1, ti), i ∈ M

and for t > tm so that

h(t) =

⎧⎨
⎩
cpiq t ∈ [ti−1, ti) i ∈ {m+ 1, . . . , k}

0 t > tk

Then (5.46) holds because of (5.74) and the assumption that |cpiq| ≤ ρ for
i ∈ {m+ 1, . . . , k}. The definition of h implies that
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cσ(t)q − h(t) =
∑
j∈J

γj(t)cpjq, t ∈ [0, T )

and thus that

eσ(t)(t) − eq(t) − h(t)x(t) =
∑
j∈J

γj(t)(epj
(t) − eq(t)), t ∈ [0, T ) (5.80)

For each j ∈ J , let
ψ

∆= 1 −
∏
j∈J

(1 − φj) (5.81)

Since each φj has co-domain {0, 1}, support no greater than τD + τC and is
idempotent, it must be true that ψ also has co-domain {0, 1}, is idempotent,
and has support no greater than m̄(τD + τC). In view of the latter property
and the fact that m̄ ≤ nE , (5.47) must be true.

By Lemma 5.2

||(1 − φj)epj
||t̄j ≤ ||eq||T , ∀j ∈ J , q ∈ P

From this and the triangle inequality

||(1 − φj)(epj
− eq)||t̄j ≤ 2||eq||T , ∀j ∈ J , q ∈ P. (5.82)

From (5.80)

||(1 − ψ)(eσ − eq − f̄x)||T =
∥∥∥∑j∈N (1 − ψ)γj(epj

− eq)
∥∥∥
T

≤
∑

j∈N ||(1 − ψ)γj(epj
− eq)||T

(5.83)

But
||(1 − ψ)γj(epj

− eq)||T = ||(1 − ψ)γj(epj
− eq)||tj

because of (5.75). In view of (5.76)

||(1 − ψ)γj(epj
− eq)||{0,T} ≤ γ̄||(1 − ψ)(epj

− eq)||tj (5.84)

where

γ̄
∆=

(1 + supp∈P |cpq|)nE

ρ

Now ||(1 − ψ)(epj
− eq)||tj ≤ ||(1 − φj)(epj

− eq)||tj because of (5.70). From
this, (5.82) and (5.84) it follows that

||(1 − ψ)γj(epj
− eq)||T ≤ 2γ̄||eq||T

In view of (5.83) and the fact that m̄ ≤ nE , it follows that

||(1 − ψ)(eσ − eq − hx)||T ≤ 2nE γ̄||eq||T
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But
(1 − ψ)(eσ − hx)) + ψeq = (1 − ψ)(eσ − eq − hx) − eq

so by the triangle inequality

||(1 − ψ)(eσ − hx)) + ψeq||T ≤ ||(1 − ψ)(eσ − eq − hx)||T + ||eq||T

Therefore
||(1 − ψ)(eσ − hx) + ψeq||T ≤ (1 + 2nE γ̄)||eq||T

and (5.48) is true. �

Strong Bases

Let X be a subset of a real, finite dimensional linear space with norm | · | and
let ε be a positive number. A nonempty list of vectors {x1, x2, . . . , xn̄} in X
is ε-independent if

|xn̄| ≥ ε, (5.85)

and, for k ∈ {1, 2, . . . , n̄− 1},
∣∣∣∣∣∣xk +

n̄∑
j=k+1

µjxj

∣∣∣∣∣∣ ≥ ε, ∀µj ∈ IR (5.86)

{x1, x2, ldots, xn̄} ε-spans X if for each x ∈ X there is a set of real numbers
{b1, b2, . . . , bn̄}, called ε-coordinates, such that

∣∣∣∣∣x−
n̄∑
i=1

bixi

∣∣∣∣∣ ≤ ε (5.87)

The following lemma gives an estimate on how large these ε-coordinates can
be assuming X is abounded subset.

Lemma 5.5. Let X be a bounded subset which is ε-spanned by an
ε-independent list {x1, x2, . . . , xn̄}. Suppose that x is a vector in X and that
b1, b2, . . . bn̄ is a set of ε-coordinates of x with respect to {x1, x2, . . . , xn̄}.
Then

|bi| ≤
(

1 +
supX
ε

)n̄
, i ∈ {1, 2, . . . , n̄} (5.88)

This lemma will be proved in a moment.
Now suppose that X is an finite list of vectors x1, x2, . . . , xm in a real

n-dimensional vector space. Suppose, in addition, that |xm| ≥ ε. It is possible
to extract from X an ordered subset {xi1 , xi2 , . . . , xin̄}, with n̄ ≤ n, which is
ε-independent and which ε-spans X . Moreover the ij can always be chosen so
that
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i1 < i2 < i3 < · · · < in̄ = m (5.89)

and also so that for suitably defined bij ∈ IR
∣∣∣xi −∑n̄

j=k+1 bijxij

∣∣∣ ≤ ε, i ∈ {ik + 1, ik + 2, . . . , ik+1}, k ∈ {1, 2, . . . , n̄− 1},
(5.90)∣∣∣xi −∑n̄

j=1 bijxij

∣∣∣ ≤ ε, i ∈ {1, 2, . . . , k1} (5.91)

In fact, the procedure for doing this is almost identical to the familiar
procedure for extracting from {x1, x2, . . . , xm}, an ordered subset which
is linearly independent {in the usual sense} and which spans the span of
{x1, x2, . . . , xm}. The construction of interest here begins by defining an
integer j1

∆= m. j2 is then defined to be the greatest integer j < j1 such that

|xj − µxj1 | ≥ ε ∀µ ∈ IR,

if such an integer exists. If not, one defines n̄ ∆= 1 and i1
∆= j1 and the

construction is complete. If j2 exists, j3 is then defined to be the greatest
integer j < j2 such that

|xj − µ1xj1 − µ2xj2 | ≥ ε ∀µi ∈ IR,

if such an integer exists. If not, one defines n̄ ∆= 2 and ik
∆= jm̄+1−k, k ∈

{1, 2}.... and so on. By this process one thus obtains an ε-independent,
ε-spanning subset of X for which there exist numbers aij such that
(5.89)–(5.91) hold. Since such bij , j ∈ {1, 2, . . . , n̄}, are ε-coordinates of
xi, i ∈ {1, 2, . . . , n̄}, each coordinate must satisfy the same bound inequality
as the bi in (5.88). Moreover, because n̄ cannot be larger than the dimension
of the smallest linear space containing X , n̄ ≤ n.

Proof of Lemma 5.5: For k ∈ {1, 2, . . . , n̄} let

yk
∆=

n̄∑
i=k

bixi (5.92)

We claim that

|bk| ≤
|yk|
ε
, k ∈ {1, 2, . . . , n̄} (5.93)

Now (5.93) surely holds for k = n̄, because of (5.85) and the formula |yn̄| =
|bn̄||xn̄| which, in turn, is a consequence of (5.92). Next fix k ∈ {1, 2, , . . . , n̄−
1}. Now (5.93) is clearly true if bk = 0. Suppose bk �= 0 in which case

yk = bk

⎛
⎝xk +

n̄∑
j=k+1

µjxj

⎞
⎠



110 A.S. Morse

where µj
∆= bj

bk
. From this and (5.86) it follows that |yk| ≥ |bk|ε, k ∈

{1, 2, . . . , n̄}, so (5.93) is true.
Next write y1 = (y1 − x) + x. Then |y1| ≤ |y1 − x| + |x|. But |x| ≤ supX

because x ∈ X and |y1 − x| ≤ ε because of (5.87) and the definition of y1 in
(5.92). Therefore

|y1|
ε

≤
(

1 +
supX
ε

)
(5.94)

From (5.92) we have that yk+1 = yk − bkxk, k ∈ {1, 2, . . . , n̄ − 1}. Thus
|yk+1| ≤ |yk| + |bk||xk|, k ∈ {1, 2, . . . , n̄ − 1}. Dividing both sides of this in-
equality by ε and then using (5.93) and |xk| ≤ supX , we obtain the inequality

|yk+1|
ε

≤
(

1 +
supX
ε

)
|yk|
ε
, k ∈ {1, 2, . . . , n̄− 1}

This and (5.94) imply that

|yk|
ε

≤
(

1 +
supX
ε

)k
, k ∈ {1, 2, . . . , n̄}

In view of (5.93), it follows that (5.88) is true. �

6 Flocking

Current interest in cooperative control of groups of mobile autonomous agents
has led to the rapid increase in the application of graph theoretic ideas to-
gether with more familiar dynamical systems concepts to problems of analyz-
ing and synthesizing a variety of desired group behaviors such as maintaining
a formation, swarming, rendezvousing, or reaching a consensus. While this
in-depth assault on group coordination using a combination of graph theory
and system theory is in its early stages, it is likely to significantly expand
in the years to come. One line of research which “graphically” illustrates the
combined use of these concepts, is the recent theoretical work by a number of
individuals which successfully explains the heading synchronization phenom-
enon observed in simulation by Vicsek [25], Reynolds [26] and others more
than a decade ago. Vicsek and co-authors consider a simple discrete-time
model consisting of n autonomous agents or particles all moving in the plane
with the same speed but with different headings. Each agent’s heading is up-
dated using a local rule based on the average of its own heading plus the
current headings of its “neighbors.” Agent i’s neighbors at time t, are those
agents which are either in or on a circle of pre-specified radius ri centered
at agent i’s current position. In their paper, Vicsek et al. provide a variety
of interesting simulation results which demonstrate that the nearest neighbor
rule they are studying can cause all agents to eventually move in the same
direction despite the absence of centralized coordination and despite the fact
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that each agent’s set of nearest neighbors can change with time. A theoret-
ical explanation for this observed behavior has recently been given in [27].
The explanation exploits ideas from graph theory [28] and from the theory of
non-homogeneous Markov chains [29–31]. With the benefit of hind-sight it is
now reasonably clear that it is more the graph theory than the Markov chains
which will prove key as this line of research advances. An illustration of this
is the recent extension of the findings of [27] which explain the behavior of
Reynolds’ full nonlinear “boid” system [32]. By appealing to the concept of
graph composition, we side-step most issues involving products of stochastic
matrices and present in this chapter a variety of graph theoretic results which
explain how convergence to a common heading is achieved.

Since the writing of [27] many important papers have appeared which ex-
tend the Vicsek problem in many directions and expand the results obtained
[33–37]. Especially noteworthy among these are recent papers by Moreau [33]
and Beard [34] which address the modified versions of the Vicsek problem in
which different agents use different sensing radii ri. The asymmetric neigh-
bor relationships which result necessitate the use of directed graphs rather
than undirected graphs to represent neighbor relation. We will use directed
graphs in this chapter, not only because we want to deal with different sens-
ing radii, but also because working with directed graphs enables us to give
convergence conditions for the symmetric version of Vicsek’s problem which
are less restrictive than those originally presented in [27].

Vicsek’s problem is what in computer science is called a “consensus prob-
lem” or an “agreement problem.” Roughly speaking, one has a group of agents
which are all trying to agree on a specific value of some quantity. Each agent
initially has only limited information available. The agents then try to reach a
consensus by passing what they know between them either just once or repeat-
edly, depending on the specific problem of interest. For the Vicsek problem,
each agent always knows only its own heading and the headings of its neigh-
bors. One feature of the Vicsek problem which sharply distinguishes it from
other consensus problems, is that each agent’s neighbors change with time,
because all agents are in motion for the problems considered in these notes.
The theoretical consequence of this is profound: it renders essentially useless
a large body of literature appropriate to the convergence analysis of “near-
est neighbor” algorithms with fixed neighbor relationships. Said differently,
for the linear heading update rules considered in this chapter, understand-
ing the difference between fixed neighbor relationships and changing neighbor
relationships is much the same as understanding the difference between the
stability of time – invariant linear systems and time – varying linear systems.

6.1 Leaderless Coordination

The system to be studied consists of n autonomous agents, labeled 1 through
n, all moving in the plane with the same speed but with different headings.
Each agent’s heading is updated using a simple local rule based on the average



112 A.S. Morse

of its own heading plus the headings of its “neighbors.” Agent i’s neighbors
at time t, are those agents, including itself, which are either in or on a circle
of pre-specified radius ri centered at agent i’s current position. In the sequel
Ni(t) denotes the set of labels of those agents which are neighbors of agent i
at time t. Agent i’s heading, written θi, evolves in discrete-time in accordance
with a model of the form

θi(t+ 1) =
1

ni(t)

⎛
⎝ ∑
j∈Ni(t)

θj(t)

⎞
⎠ (6.1)

where t is a discrete-time index taking values in the non-negative integers
{0, 1, 2, . . .}, and ni(t) is the number of neighbors of agent i at time t.

The explicit form of the update equations determined by (6.1) depends on
the relationships between neighbors which exist at time t. These relationships
can be conveniently described by a directed graph G with vertex set V =
{1, 2, . . . n} and “arc set” A(G) ⊂ V × V which is defined in such a way so
that (i, j) is an arc or directed edge from i to j just in case agent i is a neighbor
of agent j. Thus G is a directed graph on n vertices with at most one arc from
any vertex to another and with exactly one self-arc at each vertex. We write
G for the set of all such graphs and Ḡ for the set of all directed graphs with
vertex set V. We use the symbol P̄ to denote a suitably defined set indexing Ḡ
and we write P for the subset of P̄ which indexes G. Thus G = {Gp : p ∈ P}
where for p ∈ P̄, Gp denotes the pth graph in Ḡ. It is natural to call to a
vertex i a neighbor of vertex j in G if (i, j) is and arc in G. In addition we
sometimes refer to a vertex k as a observer of vertex j in G if (j, k) is and
arc in G. Thus every vertex of G can observe its neighbors, which with the
interpretation of vertices as agents, is precisely the kind of relationship G is
suppose to represent.

The set of agent heading update rules defined by (6.1) can be written in
state form. Toward this end, for each p ∈ P, define flocking matrix

Fp = D−1
p A′

p (6.2)

where A′
p is the transpose of the “adjacency matrix” of the graph Gp and Dp

the diagonal matrix whose jth diagonal element is the “in-degree” of vertex
j within the graph.3 Then

θ(t+ 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (6.3)

where θ is the heading vector θ =
(
θ1 θ2 . . . θn

)′ and σ : {0, 1, . . .} → P is a
switching signal whose value at time t, is the index of the graph representing
3 By the adjacency matrix of a directed graph G ∈ Ḡ is meant an n × n matrix

whose ijth entry is a 1 if (i, j) is an arc in A(G) and 0 if it is not. The in-degree of
vertex j in G is the number of arcs in A(G) of the form (i, j); thus j’s in-degree
is the number of incoming arcs to vertex j.
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the agents’ neighbor relationships at time t. A complete description of this
system would have to include a model which explains how σ changes over
time as a function of the positions of the n agents in the plane. While such a
model is easy to derive and is essential for simulation purposes, it would be
difficult to take into account in a convergence analysis. To avoid this difficulty,
we shall adopt a more conservative approach which ignores how σ depends
on the agent positions in the plane and assumes instead that σ might be any
switching signal in some suitably defined set of interest.

Our ultimate goal is to show for a large class of switching signals and
for any initial set of agent headings that the headings of all n agents will
converge to the same steady state value θss. Convergence of the θi to θss
is equivalent to the state vector θ converging to a vector of the form θss1
where 1 ∆=

(
1 1 . . . 1

)′
n×1

. Naturally there are situations where convergence
to a common heading cannot occur. The most obvious of these is when one
agent – say the ith – starts so far away from the rest that it never acquires
any neighbors. Mathematically this would mean not only that Gσ(t) is never
strongly connected4 at any time t, but also that vertex i remains an isolated
vertex of Gσ(t) for all t in the sense that within each Gσ(t), vertex i has
no incoming arcs other than its own self-arc. This situation is likely to be
encountered if the ri are very small. At the other extreme, which is likely
if the ri are very large, all agents might remain neighbors of all others for
all time. In this case, σ would remain fixed along such a trajectory at that
value in p ∈ P for which Gp is a complete graph. Convergence of θ to θss1
can easily be established in this special case because with σ so fixed, (6.3)
is a linear, time-invariant, discrete-time system. The situation of perhaps the
greatest interest is between these two extremes when Gσ(t) is not necessarily
complete or even strongly connected for any t ≥ 0, but when no strictly proper
subset of Gσ(t)’s vertices is isolated from the rest for all time. Establishing
convergence in this case is challenging because σ changes with time and (6.3)
is not time-invariant. It is this case which we intend to study.

Strongly Rooted Graphs

In the sequel we will call a vertex i of a directed graph G ∈ Ḡ, a root of G if
for each other vertex j of G, there is a path from i to j. Thus i is a root of G,
if it is the root of a directed spanning tree of G. We will say that G is rooted
at i if i is in fact a root. Thus G is rooted at i just in case each other vertex
of G is reachable from vertex i along a path within the graph. G is strongly
rooted at i if each other vertex of G is reachable from vertex i along a path of

4 A directed graph G ∈ Ḡ with arc set A is strongly connected if has a “path” be-
tween each distinct pair of its vertices i and j; by a path {of length m} between ver-
tices i and j is meant a sequence of arcs in A of the form (i, k1), (k1, k2), . . . (km, j)
where i, k1, . . . , km, and j are distinct vertices. G is complete if has a path of length
one {i.e., an arc} between each distinct pair of its vertices.
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length 1. Thus G is strongly rooted at i if i is a neighbor of every other vertex
in the graph. By a rooted graph G ∈ Ḡ is meant a graph which possesses at
least one root. Finally, a strongly rooted graph is a graph which at least one
vertex at which it is strongly rooted. It is now possible to state the following
elementary convergence result.

Theorem 6.1. Let Q denote the subset of P consisting of those indices q for
which Gq ∈ G is strongly rooted. Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P
be a switching signal satisfying σ(t) ∈ Q, t ∈ {0, 1, . . .}. Then there is a
constant steady state heading θss depending only on θ(0) and σ for which

lim
t→∞

θ(t) = θss1 (6.4)

where the limit is approached exponentially fast.

In order to explain why this theorem is true, we will make use of certain
structural properties of the Fp. As defined, each Fp is square and non-negative,
where by a non-negative matrix is meant a matrix whose entries are all non-
negative. Each Fp also has the property that its row sums all equal 1 {i.e.,
Fp1 = 1}. Matrices with these two properties are called {row} stochastic [38].
Because each vertex of each graph in G has a self-arc, the Fp have the ad-
ditional property that their diagonal elements are all non-zero. Let S denote
the set of all n × n row stochastic matrices whose diagonal elements are all
positive. S is closed under multiplication because the class of all n × n sto-
chastic matrices is closed under multiplication and because the class of n× n
non-negative matrices with positive diagonals is also.

In the sequel we write M ≥ N whenever M −N is a non-negative matrix.
We also write M > N whenever M−N is a positive matrix where by a positive
matrix is meant a matrix with all positive entries.

Products of Stochastic Matrices

Stochastic matrices have been extensively studied in the literature for a long
time largely because of their connection with Markov chains [29–31]. One
problem studied which is of particular relevance here, is to describe the as-
ymptotic behavior of products of n× n stochastic matrices of the form

SjSj−1 · · ·S1

as j tends to infinity. This is equivalent to looking at the asymptotic behavior
of all solutions to the recursion equation

x(j + 1) = Sjx(j) (6.5)

since any solution x(j) can be written as

x(j) = (SjSj−1 · · ·S1)x(1), j ≥ 1
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One especially useful idea, which goes back at least to [39] and more recently
to [40], is to consider the behavior of the scalar-valued non-negative function
V (x) =  x! − �x� along solutions to (6.5) where x =

(
x1 x2 · · · xn

)′ is a
non-negative n vector and  x! and �x� are its largest and smallest elements
respectively. The key observation is that for any n × n stochastic matrix S,
the ith entry of Sx satisfies

n∑
j=1

sijxj ≥
n∑
j=1

sij�x� = �x�

and
n∑
j=1

sijxj ≤
n∑
j=1

sij x! =  x!

Since these inequalities hold for all rows of Sx, it must be true that �Sx� ≥
�x�,  Sx! ≤  x! and, as a consequence, that V (Sx) ≤ V (x). These inequalities
and (6.5) imply that the sequences

�x(1)�, �x(2)�, . . .  x(1)!,  x(2)!, . . . V (x(1)), V (x(2)), . . .

are each monotone. Thus because each of these sequences is also bounded, the
limits

lim
j→∞

�x(j)�, lim
j→∞

 x(j)!, lim
j→∞

V (x(j))

each exist. Note that whenever the limit of V (x(j)) is zero, all components of
x(j) must tend to the same value and moreover this value must be a constant
equal to the limiting value of �x(j)�.

There are various different ways one might approach the problem of devel-
oping conditions under which SjSj−1 · · ·S1 converges to a constant matrix of
the form 1c or equivalently x(j) converges to some scalar multiple of 1. For
example, since for any n×n stochastic matrix S, S1 = 1, it must be true that
span {1} is an S-invariant subspace for any such S. From this and standard
existence conditions for solutions to linear algebraic equations, it follows that
for any (n−1)×n matrix P with kernel spanned by 1, the equations PS = S̃P
has unique solutions S̃, and moreover that

spectrum S = {1} ∪ spectrum S̃ (6.6)

As a consequence of the equations PSj = S̃jP, j ≥ 1, it can easily be seen
that

S̃jS̃j−1 · · · S̃1P = PSjSj−1 · · ·S1

Since P has full row rank and P1 = 0, the convergence of a product of the form
SjSj−1 · · ·S1 to 1c for some constant row vector c, is equivalent to convergence
of the corresponding product S̃jS̃j−1 · · · S̃1 to the zero matrix. There are two
problems with this approach. First, since P is not unique, neither are the
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S̃i. Second it is not so clear how to going about picking P to make tractable
the problem of proving that the resulting product S̃jS̃j−1 · · · S̃1 tends to zero.
Tractability of the latter problem generally boils down to choosing a norm
for which the S̃i are all contractive. For example, one might seek to choose
a suitably weighted 2-norm. This is in essence the same thing choosing a
common quadratic Lyapunov function. Although each S̃i can easily be shown
to be discrete-time stable, it is known that there are classes of Si which give
rise to S̃i for which no such common Lyapunov matrix exists [41] regardless
of the choice of P . Of course there are many other possible norms to choose
from other than two norms. In the end, success with this approach requires
one to simultaneously choose both a suitable P and an appropriate norm with
respect to which the S̃i are all contractive. In the sequel we adopt a slightly
different, but closely related approach which ensures that we can work with
what is perhaps the most natural norm for this type of convergence problem,
the infinity norm.

To proceed, we need a few more ideas concerned with non-negative matri-
ces. For any non-negative matrix R of any size, we write ||R|| for the largest
of the row sums of R. Note that ||R|| is the induced infinity norm of R and
consequently is sub-multiplicative. Note in addition that ||x|| =  x! for any
non-negative n vector x. Moreover, ||M1|| ≤ ||M2|| if M1 ≤ M2. Observe
that for any n × n stochastic matrix S, ||S|| = 1 because the row sums of
a stochastic matrix all equal 1. We extend the domain of definitions of �·�
and  ·! to the class of all non-negative n×m matrix M , by letting �M� and
 M! now denote the 1 × m row vectors whose jth entries are the smallest
and largest elements respectively, of the jth column of M . Note that �M� is
the largest 1×m non-negative row vector c for which M − 1c is non-negative
and that  M! is the smallest non-negative row vector c for which 1c −M is
non-negative. Note in addition that for any n× n stochastic matrix S,

S = 1�S� + �|S|� and S = 1 S! −  |S|! (6.7)

where �|S|� and  |S|!are the non-negative matrices

�|S|� = S − 1�S� and  |S|! = 1 S! − S (6.8)

respectively. Moreover the row sums of �|S|� are all equal to 1 − �S�1 and the
row sums of  |S|! are all equal to  S!1 − 1 so

||�|S|�|| = 1 − �S�1 and || |S|!|| =  S!1 − 1 (6.9)

In the sequel we will also be interested in the matrix

� |S|!� = �|S|� +  |S|! (6.10)

This matrix satisfies
� |S|!� = 1( S! − �S�) (6.11)
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because of (6.7).
For any infinite sequence of n×n stochastic matrices S1, S2, . . ., we hence-

forth use the symbol �· · ·Sj · · ·S1� to denote the limit

�· · ·Sj · · ·S2S1� = lim
j→∞

�Sj · · ·S2S1� (6.12)

From the preceding discussion it is clear that this limit exists whether or not
the product Sj · · ·S2S1 itself has a limit. Two situations can occur. Either the
product Sj · · ·S2S1 converges to a rank one matrix or it does not. It is quite
possible for such a product to converge to a matrix which is not rank one.
An example of this would be a sequence in which S1 is any stochastic matric
of rank greater than 1 and for all i > 1, Si = In×n. In the sequel we will
develop necessary conditions for Sj · · ·S2S1 to converge to a rank one matrix
as j → ∞. Note that if this occurs, then the limit must be of the form 1c
where c1 = 1 because stochastic matrices are closed under multiplication.

In the sequel we will say that a matrix product SjSj−1 · · ·S1 converges
to 1�· · ·Sj · · ·S1� exponentially fast at a rate no slower than λ if there are
non-negative constants b and λ with λ < 1, such that

||(Sj · · ·S1) − 1�· · ·Sj · · ·S2S1�|| ≤ bλj , j ≥ 1 (6.13)

The following proposition implies that such a stochastic matrix product will
so converge if the matrix product �|Sj · · ·S1|� converges to 0.

Proposition 6.1. Let b̄ and λ be non-negative numbers with λ < 1. Suppose
that S1, S2, . . . , is an infinite sequence of n× n stochastic matrices for which

||�|Sj · · ·S1|�|| ≤ b̄λj , j ≥ 0 (6.14)

Then the matrix product Sj · · ·S2S1 converges to 1�· · ·Sj · · ·S1� exponentially
fast at a rate no slower than λ.

The proof of Proposition 6.1 makes use of the first of the two inequalities
which follow.

Lemma 6.1. For any two n× n stochastic matrices S1 and S2,

�S2S1� − �S1� ≤  S2!�|S1|� (6.15)
�|S2S1|� ≤ �|S2|� �|S1|� (6.16)

Proof of Lemma 6.1: Since S2S1 = S2(1�S1�+ �|S1|�) = 1�S1�+S2�|S1|� and
S2 = 1 S2!− |S2|!, it must be true that S2S1 = 1(�S1�+ S2!�|S1|�)− |S2|! �|S1|�.
But  S2S1! is the smallest non-negative row vector c for which 1c − S2S1 is
non-negative. Therefore

 S2S1! ≤ �S1� +  S2!�|S1|� (6.17)
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Moreover �S2S1� ≤  S2S1! because of (6.11). This and (6.17) imply �S2S1� ≤
�S1� +  S2!�|S1|� and thus that (6.15) is true.

Since S2S1 = S2(1�S1�+ �|S1|�) = 1�S1�+S2�|S1|� and S2 = �S2�+ �|S2|�, it
must be true that S2S1 = 1(�S1� + �S2��|S1|�) + �|S2|� �|S1|�. But �S2S1� is the
largest non-negative row vector c for which S2S1 − 1c is non-negative so

S2S1 ≤ 1�S2S1� + �|S2|� �|S1|� (6.18)

Now it is also true that S2S1 = 1�S2S1� + �|S2S1|�. From this and (6.18) it
follows that (6.16) is true. �

Proof of Proposition 6.1: Set Xj = Sj · · ·S1, j ≥ 1 and note that each
Xj is a stochastic matrix. In view of (6.15),

�Xj+1� − �Xj� ≤  Sj+1!�|Xj |�, j ≥ 1

By hypothesis, ||�|Xj |�|| ≤ b̄λj , j ≥ 1. Moreover || Sj+1!|| ≤ n because all
entries in Sj+1 are bounded above by 1. Therefore

||�Xj+1� − �Xj�|| ≤ nb̄λj , j ≥ 1 (6.19)

Clearly

�Xj+i� − �Xj� =
i∑

k=1

(�Xi+j+1−k� − �Xi+j−k�), i, j ≥ 1

Thus, by the triangle inequality

||�Xj+i� − �Xj�|| ≤
i∑

k=1

||�Xi+j+1−k� − �Xi+j−k�||, i, j ≥ 1

This and (6.19) imply that

||�Xj+i� − �Xj�|| ≤ nb̄

i∑
k=1

λ(i+j−k), i, j ≥ 1

Now
i∑

k=1

λ(i+j−k) = λj
i∑

k=1

λ(i−k) = λj
i∑

q=1

λq−1 ≤ λj
∞∑
q=1

λq−1

But λ < 1 so
∞∑
q=1

λq−1 =
1

(1 − λ)
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Therefore

||�Xi+j� − �Xj�|| ≤ nb̄
λj

(1 − λ)
, i, j ≥ 1. (6.20)

Set c = �· · ·Sj · · ·S1� and note that

||�Xj� − c|| = ||�Xj� − �Xi+j� + �Xi+j� − c||
≤ ||�Xj� − �Xi+j�|| + ||�Xi+j� − c||, i, j ≥ 1

In view of (6.20)

||�Xj� − c|| ≤ nb̄
λj

(1 − λ)
+ ||�Xi+j� − c||, i, j ≥ 1

Since
lim
i→∞

||�Xi+j� − c|| = 0

it must be true that

||�Xj� − c|| ≤ nb̄
λj

(1 − λ)
, j ≥ 1

But ||1(�Xj� − c)|| = ||�Xj� − c|| and Xj = Sj · · ·S1. Therefore

||1(�Sj · · ·S1� − c)|| ≤ nb̄
λj

(1 − λ)
, j ≥ 1 (6.21)

In view of (6.7)

Sj · · ·S1 = 1�Sj · · ·S1� + �|Sj · · ·S1|�, j ≥ 1

Therefore

||(Sj · · ·S1) − 1c|| = ||1�Sj · · ·S1� + �|Sj · · ·S1|� − 1c||

≤ ||1�Sj · · ·S1� − 1c|| + ||�|Sj · · ·S1|�||, j ≥ 1

From this, (6.14) and (6.21) it follows that

||Sj · · ·S1 − 1c|| ≤ b̄

(
1 +

n

(1 − λ)

)
λj , j ≥ 1

and thus that (6.13) holds with b = b̄
(
1 + n

(1−λ)

)
. �

Convergence

We are now in a position to make some statements about the asymptotic
behavior of a product of n×n stochastic matrices of the form SjSj−1 · · ·S1 as
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j tends to infinity. Note first that (6.16) generalizes to sequences of stochastic
matrices of any length. Thus

�|SjSj−1 · · ·S2S1|� ≤ �|Sj |� �|Sj−1|� · · · �|S1|� (6.22)

It is therefore clear that condition (6.14) of Proposition 6.1 will hold with
b̄ = 1 if

||�|Sj |� · · · �|S1|�|| ≤ λj (6.23)

for some nonnegative number λ < 1. Because || · || is sub-multiplicative, this
means that a product of stochastic matrices Sj · · ·S1 will converge to a limit
of the form 1c for some constant row-vector c if for each of the matrices
Si in the sequence S1, S2, . . . satisfies the norm bound ||�|Si|�|| < λ. We now
develop a condition, tailored to our application, for this to be so. For any n×n
stochastic matrix, let γ(S) denote that graph G ∈ Ḡ whose adjacency matrix
is the transpose of the matrix obtained by replacing all of S’s non-zero entries
with 1s.

Lemma 6.2. For each n×n stochastic matrix S whose graph γ(S) is strongly
rooted

||�|S|�|| < 1 (6.24)

Proof: Let A be the adjacency matrix of γ(S). Since γ(S) is strongly rooted,
its adjacency matrix A must have a positive row i for every i which is the
label of a root of γ(S). Since the positions of the non-zero entries of S and A′

are the same, this means that S’s ith column si will be positive if i is a root.
Clearly �S� will have its ith entry non-zero if vertex i is a root of γ(S). Since
γ(S) is strongly rooted, at least one such root exists which implies that �S�
is non-zero, and thus that 1 − �S�1 < 1. From this and (6.9) it follows that
(6.24) is true. �

It can be shown very easily that if (6.24) holds, then γ(S) must be strongly
rooted. We will not need this fact so the proof is omitted.

Proposition 6.2. Let Ssr be any closed set of n×n stochastic matrices whose
graphs γ(S), S ∈ Ssr are all strongly rooted. Then any product Sj · · ·S1 of
matrices from Ssr converges to 1�· · ·Sj · · ·S1� exponentially fast as j → ∞
at a rate no slower than λ, where λ is a non-negative constant depending on
Ssr and satisfying λ < 1.

Proof of Proposition 6.2: In view of Lemma 6.2, ||�|S|�|| < 1, S ∈ Ssr. Let

λ = max
S∈Ssr

||�|S|�||

Because Ssr is closed and bounded and ||�| · |�|| is continuous, λ < 1. Clearly
||�|S|�|| ≤ λ, i ≥ 1 so (6.23) must hold for any sequence of matrices S1, S2, . . .
from Ssr. Therefore for any such sequence ||�|Sj · · ·S1|�|| ≤ λj , j ≥ 0. Thus by
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Proposition 6.1, the product Π(j) = SjSj−1 · · ·S1 converges to 1�· · ·Sj · S1�
exponentially fast at a rate no slower than λ. �

Proof of Theorem 6.1: By definition, the graph Gp of each matrix Fp in the
finite set {Fp : p ∈ Q} is strongly rooted. By assumption, Fσ(t) ∈ {Fp : p ∈
Q}, t ≥ 0. In view of Proposition 6.2, the product Fσ(t) · · ·Fσ(0) converges
to 1�· · ·Fσ(t) · · ·Fσ(0)� exponentially fast at a rate no slower than

λ = max
p∈Q

||�|Fp|�||

But it is clear from (6.3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (6.4) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0) and the convergence
is exponential. �

Convergence Rate

Using (6.9) it is possible to calculate a worst case value for the convergence
rate λ used in the proof of Theorem 6.1. Fix p ∈ Q and consider the flocking
matrix Fp and its associated graph Gp. Because Gp is strongly rooted, at least
one vertex – say the kth – must be a root with arcs to each other vertex. In the
context of (6.1), this means that agent k must be a neighbor of every agent.
Thus θk must be in each sum in (6.1). Since each ni in (6.1) is bounded above
by n, this means that the smallest element in column k of Fp, is bounded
below by 1

n . Since (6.9) asserts that ||�|Fp|�|| = 1 − �Fp�1, it must be true
that ||�|Fp|�|| ≤ 1 − 1

n . This holds for all p ∈ Q. Moreover in the worst case
when Gp is strongly rooted at just one vertex and all vertices are neighbors
of at least one common vertex, ||�|Fp|�|| = 1− 1

n . It follows that the worst case
convergence rate is

max
p∈Q

||�|Fp|�|| = 1 − 1
n

(6.25)

Rooted Graphs

The proof of Theorem 6.1 depends crucially on the fact that the graphs en-
countered along a trajectory of (6.3) are all strongly rooted. It is natural to ask
if this requirement can be relaxed and still have all agents’ headings converge
to a common value. The aim of this section is to show that this can indeed be
accomplished. To do this we need to have a meaningful way of “combining”
sequences of graphs so that only the combined graph need be strongly rooted,
but not necessarily the individual graphs making up the combination. One
possible notion of combination of a sequence Gp1 ,Gp2 , . . . ,Gpk

would be that
graph in G whose arc set is the union of the arc sets of the graphs in the
sequence. It turns out that because we are interested in sequences of graphs
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rather than mere sets of graphs, a simple union is not quite the appropriate
notion for our purposes because a union does not take into account the order
in which the graphs are encountered along a trajectory. What is appropriate
is a slightly more general notion which we now define.

Composition of Graphs

Let us agree to say that the composition of a directed graph Gp1 ∈ Ḡ with a
directed graph Gp2 ∈ Ḡ, written Gp2 ◦ Gp1 , is the directed graph with vertex
set {1, . . . , n} and arc set defined in such a way so that (i, j) is an arc of the
composition just in case there is a vertex q such that (i, q) is an arc of Gp1

and (q, j) is an arc of Gp2 . Thus (i, j) is an arc of Gp2 ◦Gp1 if and only if i has
an observer in Gp1 which is also a neighbor of j in Gp2 . Note that Ḡ is closed
under composition and that composition is an associative binary operation;
because of this, the definition extend unambiguously to any finite sequence of
directed graphs Gp1 , Gp2 , . . . ,Gpk

.
If we focus exclusively on graphs in G, more can be said. In this case the

definition of composition implies that the arcs of Gp1 and Gp2 are arcs of
Gp2 ◦ Gp1 . The definition also implies in this case that if Gp1 has a directed
path from i to k and Gp2 has a directed path from k to j, then Gp2 ◦Gp1 has
a directed path from i to j. Both of these implications are consequences of
the requirement that the vertices of the graphs in G all have self arcs. Note
in addition that G is closed under composition. It is worth emphasizing that
the union of the arc sets of a sequence of graphs Gp1 , Gp2 , . . . ,Gpk

in G must
be contained in the arc set of their composition. However the converse is not
true in general and it is for this reason that composition rather than union
proves to be the more useful concept for our purposes.

Suppose that Ap =
(
aij(p)
)

and Aq =
(
aij(q)
)

are the adjacency matrices
of Gp ∈ Ḡ and Gq ∈ Ḡ respectively. Then the adjacency matrix of the compo-
sition Gq ◦Gp must be the matrix obtained by replacing all non-zero elements
in ApAq with ones. This is because the ijth entry of ApAq, namely

n∑
k=1

aik(p)akj(q),

will be non-zero just in case there is at least one value of k for which both
aik(p) and akj(q) are non-zero. This of course is exactly the condition for
the ijth element of the adjacency matrix of the composition Gq ◦ Gp to be
non-zero. Note that if S1 and S2 are n × n stochastic matrices for which
γ(S1) = Gp and γ(S2) = Gq, then the matrix which results by replacing
by ones, all non-zero entries in the stochastic matrix S2S1, must be the
transpose of the adjacency matrix of Gq ◦ Gp. In view of the definition of
γ(·), it therefore must be true that γ(S2S1) = γ(S2) ◦ γ(S1). This obviously
generalizes to finite products of stochastic matrices.
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Lemma 6.3. For any sequence of n× n stochastic matrices S1, S2, . . . , Sj,

γ(Sj · · ·S1) = γ(Sj) ◦ · · · ◦ γ(S1)

Compositions of Rooted Graphs

We now give several different conditions under which the composition of a
sequence of graphs is strongly rooted.

Proposition 6.3. Suppose n > 1 and let Gp1 ,Gp2 , . . . ,Gpm
be a finite

sequence of rooted graphs in G.

1. If m ≥ n2, then Gpm
◦ Gpm−1 ◦ · · · ◦ Gp1 is strongly rooted.

2. If Gp1 ,Gp2 , . . . ,Gpm
are all rooted at v and m ≥ n−1, then Gpm

◦Gpm−1 ◦
· · · ◦ Gp1 is strongly rooted at v.

The requirement that all the graphs in the sequence be rooted at a single
vertex v is obviously more restrictive than the requirement that all the graphs
be rooted, but not necessarily at the same vertex. The price for the less re-
strictive assumption, is that the bound on the number of graphs needed in the
more general case is much higher than the bound given in the case which all
the graphs are rooted at v. It is undoubtedly true that the bound n2 for the
more general case is too conservative. The more special case when all graphs
share a common root is relevant to the leader follower version of the problem
which will be discussed later in these notes. Proposition 6.3 will be proved in
a moment.

Note that a strongly connected graph is the same as a graph which is
rooted at every vertex and that a complete graph is the same as a graph
which is strongly rooted at every vertex. In view of these observations and
Proposition 6.3 we can state the following

Proposition 6.4. Suppose n > 1 and let Gp1 ,Gp2 , . . . ,Gpm
be a finite se-

quence of strongly connected graphs in G. If m ≥ n − 1, then Gpm
◦ Gpm−1 ◦

· · · ◦ Gp1 is complete.

To prove Proposition 6.3 we will need some more ideas. We say that a
vertex v ∈ V is a observer of a subset S ⊂ V in a graph G ∈ Ḡ, if v is
an observer of at least one vertex in S. By the observer function of a graph
G ∈ Ḡ, written α(G, · ) we mean the function α(G, · ) : 2V → 2V which assigns
to each subset S ⊂ V, the subset of vertices in V which are observers of S in
G. Thus j ∈ α(G, i) just in case (i, j) ∈ A(G). Note that if Gp ∈ Ḡ and Gq in
G, then

α(Gp,S) ⊂ α(Gq ◦ Gp,S), S ∈ 2V (6.26)

because Gq ∈ G implies that the arcs in Gp are all arcs in Gq ◦ Gp. Observer
functions have the following important property.
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Lemma 6.4. For all Gp,Gq ∈ Ḡ and any non-empty subset S ⊂ V,

α(Gq, α(Gp,S)) = α(Gq ◦ Gp,S) (6.27)

Proof: Suppose first that i ∈ α(Gq, α(Gp,S)). Then (j, i) is an arc in Gq for
some j ∈ α(Gp,S). Hence (k, j) is an arc in Gp for some k ∈ S. In view of
the definition of composition, (k, i) is an arc in Gq ◦ Gp so i ∈ α(Gq ◦ Gp,S).
Since this holds for all i ∈ V, α(Gq, α(Gp,S)) ⊂ α(Gq ◦ Gp,S).

For the reverse inclusion, fix i ∈ α(Gq ◦ Gp,S) in which case (k, i) is an
arc in Gq ◦ Gp for some k ∈ S. By definition of composition, there exists
an j ∈ V such that (k, j) is an arc in Gp and (j, i) is an arc in Gq. Thus
j ∈ α(Gp,S). Therefore i ∈ α(Gq, α(Gp,S)). Since this holds for all i ∈ V,
α(Gq, α(Gp,S)) ⊃ α(Gq ◦ Gp,S). Therefore (6.27) is true. �

To proceed, let us note that each subset S ⊂ V induces a unique subgraph
of G with vertex set S and arc set A consisting of those arcs (i, j) of G for
which both i and j are vertices of S. This together with the natural partial
ordering of V by inclusion provides a corresponding partial ordering of Ḡ.
Thus if S1 and S2 are subsets of V and S1 ⊂ S2, then G1 ⊂ G2 where for
i ∈ {1, 2}, Gi is the subgraph of G induced by Si. For any v ∈ V, there is
a unique largest subgraph rooted at v, namely the graph induced by the
vertex set V(v) = {v} ∪ α(G, v) ∪ · · · ∪ αn−1(G, v) where αi(G, ·) denotes the
composition of α(G, ·) with itself i times. We call this graph, the rooted graph
generated by v. It is clear that V(v) is the smallest α(G, ·)-invariant subset of
V which contains v.

The proof of Propositions 6.3 depends on the following lemma.

Lemma 6.5. Let Gp and Gq be graphs in G. If Gq is rooted at v and α(Gp, v)
is a strictly proper subset of V, then α(Gp, v) is also a strictly proper subset
of α(Gq ◦ Gp, v)

Proof of Lemma 6.5: In general α(Gp, v) ⊂ α(Gq ◦ Gp, v) because of
(6.26). Thus if α(Gp, v) is not a strictly proper subset of α(Gq ◦ Gp, v), then
α(Gp, v) = α(Gq ◦ Gp, v) so α(Gq ◦ Gp, v) ⊂ α(Gp, v). In view of (6.27),
α(Gq ◦Gp, v) = α(Gq, α(Gp, v)). Therefore α(Gq, α(Gp, v)) ⊂ α(Gp, v). More-
over, v ∈ α(Gp, v) because v has a self-arc in Gp. Thus α(Gp, v) is a strictly
proper subset of V which contains v and is α(Gq, ·)-invariant. But this is
impossible because Gq is rooted at v. �

Proof of Proposition 6.3: Suppose m ≥ n2. In view of (6.26), A(Gpk
◦

Gpk−1 ◦ · · · ◦Gp1) ⊂ A(Gpm
◦Gpm−1 ◦ · · · ◦Gp1) for any positive integer k ≤ m.

Thus Gpm
◦Gpm−1 ◦ · · · ◦Gp1 will be strongly rooted if there exists an integer

k ≤ n2 such that Gpk
◦ Gpk−1 ◦ · · · ◦ Gp1 is strongly rooted. It will now be

shown that such an integer exists.
If Gp1 is strongly rooted, set k = 1. If Gp1 is not strongly rooted, then let

i > 1 be the least positive integer not exceeding n2 for which Gpi−1 ◦· · ·◦Gp1 is
not strongly rooted. If i < n2, set k = i in which case Gpk

◦· · ·◦Gp1 is strongly
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rooted. Therefore suppose i = n2 in which case Gpj−1 ◦· · ·◦Gp1 is not strongly
rooted for j ∈ {2, 3, . . . , n2}. Fix j ∈ {2, 3, . . . , n2} and let vj be any root of
Gpj

. Since Gpj−1 ◦ · · · ◦ Gp1 is not strongly rooted, α(Gpj−1 ◦ · · · ◦ Gp1 , vj) is
a strictly proper subset of V. Hence by Lemma 6.5, α(Gpj−1 ◦ · · · ◦ Gp1 , vj) is
also a strictly proper subset of α(Gpj

◦ · · · ◦Gp1 , vj). Thus A(Gpj−1 ◦ · · · ◦Gp1)
is a strictly proper subset of A(Gpj

◦ · · · ◦ Gp1). Since this holds for all j ∈
{2, 3, . . . , n2} each containment in the ascending chain

A(Gp1) ⊂ A(Gp2 ◦ Gp1) ⊂ · · · ⊂ A(Gpn2 ◦ · · · ◦ Gp1)

is strict. Since A(Gp1) must contain at least one arc, and there are at most
n2 arcs in any graph in G, Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 must be strongly rooted if
k = n2.

Now suppose that m ≥ n−1 and Gp1 ,Gp2 , . . . ,Gpm
are all rooted at v. In

view of (6.26), A(Gpk
◦Gpk−1 ◦ · · · ◦Gp1) ⊂ A(Gpm

◦Gpm−1 ◦ · · · ◦Gp1) for any
positive integer k ≤ m. Thus Gpm

◦ Gpm−1 ◦ · · · ◦ Gp1 will be strongly rooted
at v if there exists an integer k ≤ n− 1 such that

α(Gpk
◦ Gpk−1 ◦ · · · ◦ Gp1 , v) = V (6.28)

It will now be shown that such an integer exists.
If α(Gp1 , v) = V, set k = 1 in which case (6.28) clearly holds. If α(Gp1 , v) �=

V, then let i > 1 be the least positive integer not exceeding n − 1 for which
α(Gpi−1 ◦ · · · ◦ Gp1 , v) is a strictly proper subset of V. If i < n − 1, set k = i
in which case (6.28) is clearly true. Therefore suppose i = n− 1 in which case
α(Gpj−1 ◦ · · · ◦Gp1 , v) is a strictly proper subset of V for j ∈ {2, 3, . . . , n− 1}.
Hence by Lemma 6.5, α(Gpj−1 ◦ · · · ◦Gp1 , v) is also a strictly proper subset of
α(Gpj

◦ · · · ◦ Gp1 , v) for j ∈ {2, 3, . . . , n− 1}. In view of this and (6.26), each
containment in the ascending chain

α(Gp1 , v) ⊂ α(Gp2 ◦ Gp1 , v) ⊂ · · · ⊂ α(Gpn−1 ◦ · · · ◦ Gp1 , v)

is strict. Since α(Gp1 , v) has at least two vertices in it, and there are n vertices
in V, (6.28) must hold with k = n− 1. �

Proposition 6.3 implies that every sufficiently long composition of graphs
from a given subset Ĝ ⊂ G will be strongly rooted if each graph in Ĝ is rooted.
The converse is also true. To understand why, suppose that it is not in which
case there would have to be a graph G ∈ Ĝ, which is not rooted but for
which G

m is strongly rooted for m sufficiently large where G
m is the m-fold

composition of G with itself. Thus α(Gm, v) = V where v is a root of G
m. But

via repeated application of (6.27), α(Gm, v) = αm(G, v) where αm(G, ·) is the
m-fold composition of α(G, ·) with itself. Thus αm(G, v) = V. But this can
only occur if G is rooted at v because αm(G, v) is the set of vertices reachable
from v along paths of length m. Since this is a contradiction, G cannot be
rooted. We summarize.

Proposition 6.5. Every possible sufficiently long composition of graphs from
a given subset Ĝ ⊂ G is strongly rooted, if and only if every graph in Ĝ is
rooted.
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Sarymsakov Graphs

In the sequel we say that a vertex v ∈ V is a neighbor of a subset S ⊂ V in a
graph G ∈ Ḡ, if v is a neighbor of at least one vertex in S. By a Sarymsakov
Graph is meant a graph G ∈ Ḡ with the property that for each pair of non-
empty subsets S1 and S2 in V which have no neighbors in common, S1 ∪ S2

contains a smaller number of vertices than does the set of neighbors of S1∪S2.
Such seemingly obscure graphs are so named because they are the graphs of
an important class of non-negative matrices studied by Sarymsakov in [29].
In the sequel we will prove that Sarymsakov graphs are in fact rooted graphs.
We will also prove that the class of rooted graphs we are primarily interested
in, namely those in G, are Sarymsakov graphs.

It is possible to characterize Sarymsakov graph a little more concisely using
the following concept. By the neighbor function of a graph G ∈ Ḡ, written
β(G, · ), we mean the function β(G, · ) : 2V → 2V which assigns to each subset
S ⊂ V, the subset of vertices in V which are neighbors of S in G. Thus in
terms of β, a Sarymsakov graph is a graph G ∈ Ḡ with the property that
for each pair of non-empty subsets S1 and S2 in V which have no neighbors
in common, S1 ∪ S2 contains less vertices than does the set β(G,S1 ∪ S2).
Note that if G ∈ G, the requirement that S1 ∪ S2 contain less vertices than
β(G,S1∪S2) simplifies to the equivalent requirement that S1∪S2 be a strictly
proper subset of β(G,S1 ∪S2). This is because every vertex in G is a neighbor
of itself if G ∈ G.

Proposition 6.6.
1. Each Sarymsakov graph in Ḡ is rooted
2. Each rooted graph in G is a Sarymsakov graph

It follows that if we restrict attention exclusively to graphs in G, then rooted
graphs and Sarymsakov graphs are one and the same.

In the sequel βm(G, ·) denotes them-fold composition of β(G, ·) with itself.
The proof of Proposition 6.6 depends on the following ideas.

Lemma 6.6. Let G ∈ Ḡ be a Sarymsakov graph. Let S be a non-empty subset
of V such that β(G,S) ⊂ S. Let v be any vertex in V. Then there exists a
non-negative integer m ≤ n such that βm(G, v) ∩ S is non-empty.

Proof: If v ∈ S, set m = 0. Suppose next that v �∈ S. Set T = {v} ∪
β(G, v) ∪ · · · ∪ βn−1(G, v) and note that βn(G, v) ⊂ T . Since β(G, T ) =
β(G, v)∪β2(G, v)∪· · ·∪βn(G, v), it must be true that β(G, T ) ⊂ T . Therefore

β(G, T ∪ S) ⊂ T ∪ S. (6.29)

Suppose β(G, T )∩ β(G,S) is empty. Then because G is a Sarymsakov graph,
T ∪ S contains fewer vertices than β(G, T ∪ S). This contradicts (6.29) so
β(G, T ) ∩ β(G,S) is not empty. In view of the fact that β(G, T ) = β(G, v) ∪
β2(G, v) ∪ · · · ∪ βn(G, v) it must therefore be true for some positive integer
m ≤ n, that βm(G, v) ∩ S is non-empty. �



Lecture Notes on Logically Switched Dynamical Systems 127

Lemma 6.7. Let G ∈ Ḡ be rooted at r. Each non-empty subset S ⊂ V not
containing r is a strictly proper subset of S ∪ β(G,S).

Proof of Lemma 6.7: Let S ⊂ V be non-empty and not containing r. Pick
v ∈ S. Since G is rooted at r, there must be a path in G from r to v. Since
r �∈ S there must be a vertex x ∈ S which has a neighbor which is not in S.
Thus there is a vertex y ∈ β(G,S) which is not in S. This implies that S is a
strictly proper subset of S ∪ β(G,S). �

By a maximal rooted subgraph of G we mean a subgraph G
∗ of G which

is rooted and which is not contained in any rooted subgraph of G other than
itself. Graphs in Ḡ may have one or more maximal rooted subgraphs. Clearly
G

∗ = G just in case G is rooted. Note that if R̂ is the set of all roots of a
maximal rooted subgraph Ĝ, then β(G, R̂) ⊂ R̂. For if this were not so, then
it would be possible to find a vertex x ∈ β(G, R̂) which is not in R̂. This
would imply the existence of a path from x to some root v̂ ∈ R̂; consequently
the graph induced by the set of vertices along this path together with R̂ would
be rooted at x �∈ R̂ and would contain Ĝ as a strictly proper subgraph. But
this contradicts the hypothesis that Ĝ is maximal. Therefore β(G, R̂) ⊂ R̂.
Now suppose that Ĝ is any rooted subgraph in G. Suppose that Ĝ’s set of
roots R̂ satisfies β(G, R̂) ⊂ R̂. We claim that Ĝ must then be maximal. For if
this were not so, there would have to be a rooted graph G

∗ containing Ĝ as a
strictly proper subset. This in turn would imply the existence of a path from
a root x∗ of G

∗ to a root v of Ĝ; consequently x∗ ∈ βi(G, R̂) for some i ≥ 1.
But this is impossible because R̂ is β(G, · ) invariant. Thus Ĝ is maximal. We
summarize.

Lemma 6.8. A rooted subgraph of a graph G generated by any vertex v ∈ V
is maximal if and only if its set of roots is β(G, · ) invariant.

Proof of Proposition 6.6: Write β(·) for β(G, ·). To prove the assertion 1,
pick G ∈ Ḡ. Let G

∗ be any maximal rooted subgraph of G and write R for
its root set; in view of Lemma 6.8, β(R) ⊂ R. Pick any v ∈ V. Then by
Lemma 6.6, for some positive integer m ≤ n, βm(v) ∩ R is non-empty. Pick
z ∈ βm(v) ∩ R. Then there is a path from z to v and z is a root of G

∗. But
G

∗ is maximal so v must be a vertex of G
∗. Therefore every vertex of G is a

vertex of G
∗ which implies that G is rooted.

To prove assertion 2, let G ∈ G be rooted at r. Pick any two non-empty
subsets S1,S2 of V which have no neighbors in common. If r �∈ S1 ∪ S2, then
S1 ∪ S2 must be a strictly proper subset of S1 ∪ S2 ∪ β(S1 ∪ S2) because of
Lemma 6.7.

Suppose next that r ∈ S1 ∪ S2. Since G ∈ G, Si ⊂ β(Si), i ∈ {1, 2}. Thus
S1 and S2 must be disjoint because β(S1) and β(S2) are. Therefore r must
be in either S1 or S2 but not both. Suppose that r �∈ S1. Then S1 must be a
strictly proper subset of β(S1) because of Lemma 6.7. Since β(S1) and β(S2)
are disjoint, S1∪S2 must be a strictly proper subset of β(S1∪S2). By the same
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reasoning, S1 ∪ S2 must be a strictly proper subset of β(S1 ∪ S2) if r �∈ S2.
Thus in conclusion S1 ∪ S2 must be a strictly proper subset of β(S1 ∪ S2)
whether r is in S1 ∪ S2 or not. Since this conclusion holds for all such S1 and
S2 and G ∈ G, G must be a Sarymsakov graph. �

Neighbor-Shared Graphs

There is a different assumption which one can make about a sequence of
graphs from Ḡ which also insures that the sequence’s composition is strongly
rooted. For this we need the concept of a “neighbor-shared graph.” Let us call
G ∈ Ḡ neighbor shared if each set of two distinct vertices share a common
neighbor. Suppose that G is neighbor shared. Then each pair of vertices is
clearly reachable from a single vertex. Similarly each three vertices are reach-
able from paths starting at one of two vertices. Continuing this reasoning it
is clear that each of the graph’s n vertices is reachable from paths starting
at vertices in some set Vn−1 of n − 1 vertices. By the same reasoning, each
vertex in Vn−1 is reachable from paths starting at vertices in some set Vn−2

of n− 2 vertices. Thus each of the graph’s n vertices is reachable from paths
starting at vertices in a set of n− 2 vertices, namely the set Vn−2. Continuing
this argument we eventually arrive at the conclusion that each of the graph’s
n vertices is reachable from paths starting at a single vertex, namely the one
vertex in the set V1. We have proved the following.

Lemma 6.9. Each neighbor-shared graph in Ḡ is rooted.

It is worth noting that although shared neighbor graphs are rooted, the con-
verse is not necessarily true. The reader may wish to construct a three vertex
example which illustrates this. Although rooted graphs in G need not be neigh-
bor shared, it turns out that the composition of any n − 1 rooted graphs in
G is.

Proposition 6.7. The composition of any set of m ≥ n− 1 rooted graphs in
G is neighbor shared.

To prove Proposition 6.7 we need some more ideas. By the reverse graph of
G ∈ Ḡ, written G

′ is meant the graph in Ḡ which results when the directions
of all arcs in G are reversed. It is clear that G is closed under the reverse
operation and that if A is the adjacency matrix of G, then A′ is the adjacency
matrix of G

′. It is also clear that (Gp ◦ Gq)′ = G
′
q ◦ G

′
p, p, q ∈ P̄, and that

α(G′,S) = β(G,S), S ∈ 2V (6.30)

Lemma 6.10. For all Gp,Gq ∈ Ḡ and any non-empty subset S ⊂ V,

β(Gq, β(Gp,S)) = β(Gp ◦ Gq,S) (6.31)
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Proof of Lemma 6.10: In view of (6.27), α(G′
p, α(G′

q,S)) = α(G′
p ◦ G

′
q,S).

But G
′
p ◦ G

′
q = (Gq ◦ Gp)′ so α(G′

p, α(G′
q,S)) = α((Gq ◦ Gp)′,S). Therefore

β(Gp, β(Gq,S)) = β(Gq ◦ Gp),S) because of (6.30). �

Lemma 6.11. Let G1 and G2 be rooted graphs in G. If u and v are distinct
vertices in V for which

β(G2, {u, v}) = β(G2 ◦ G1, {u, v}) (6.32)

then u and v have a common neighbor in G2 ◦ G1

Proof: β(G2, u) and β(G2, v) are non-empty because u and v are neigh-
bors of themselves. Suppose u and v do not have a common neigh-
bor in G2 ◦ G1. Then β(G2 ◦ G1, u) and β(G2 ◦ G1, v) are disjoint. But
β(G2 ◦ G1, u) = β(G1, β(G2, u)) and β(G2 ◦ G1, v) = β(G1, β(G2, v)) because
of (6.31). Therefore β(G1, β(G2, u)) and β(G1, β(G2, v)) are disjoint. But G1

is rooted and thus a Sarymsakov graph because of Proposition 6.6. Thus
β(G2, {u, v}) is a strictly proper subset of β(G2, {u, v})∪ β(G1, β(G2, {u, v}).
But β(G2, {u, v}) ⊂ β(G1, β(G2, {u, v}) because all vertices in G2 are neigh-
bors of themselves and β(G1, β(G2, {u, v}) = β(G2 ◦ G1, {u, v}) because of
(6.31). Therefore β(G2, {u, v}) is a strictly proper subset of β(G2 ◦G1, {u, v}).
This contradicts (6.32) so u and v have a common neighbor in G2 ◦ G1. �

Proof of Proposition 6.7: Let u and v be distinct vertices in V. Let
G1,G2, . . . ,Gn−1 be a sequence of rooted graphs in G. Since A(Gn−1 ◦
· · ·Gn−i) ⊂ A(Gn−1 ◦ · · ·Gn−(i+1)) for i ∈ {1, 2, . . . , n − 2}, it must be true
that the Gi yield the ascending chain

β(Gn−1, {u, v}) ⊂ β(Gn−1◦Gn−2, {u, v}) ⊂ · · · ⊂ β(Gn−1◦· · ·◦G2◦G1, {u, v})

Because there are n vertices in V, this chain must converge for some i < n−1
which means that

β(Gn−1 ◦ · · · ◦ Gn−i, {u, v}) = β(Gn−1 ◦ · · · ◦ Gn−i ◦ Gn−(i+1), {u, v})

This and Lemma 6.11 imply that u and v have a common neighbor in Gn−1 ◦
· · · ◦ Gn−i and thus in Gn−1 ◦ · · · ◦ G2 ◦ G1. Since this is true for all distinct
u and v, Gn−1 ◦ · · · ◦ G2 ◦ G1 is a neighbor shared graph. �

If we restrict attention to those rooted graphs in G which are strongly
connected, we can obtain a neighbor-shared graph by composing a smaller
number of rooted graphs that claimed in Proposition 6.7.

Proposition 6.8. Let k be the integer quotient of n divided by 2. The compo-
sition of any set of m ≥ k strongly connected graphs in G is neighbor shared.

Proof of Proposition 6.8: Let k < n be a positive integer and let v
be any vertex in V. Let G1,G2, . . . ,Gk be a sequence of strongly connected
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graphs in G. Since k < n and A(Gk ◦ · · ·Gk−i) ⊂ A(Gk−1 ◦ · · ·Gk−(i+1)) for
i ∈ {1, 2, . . . , k − 1}, it must be true that the Gi yield the ascending chain

{v} ⊂ β(Gk, {v}) ⊂ β(Gk ◦ Gk−1, {v}) ⊂ · · · ⊂ β(Gk ◦ · · · ◦ G2 ◦ G1, {v})

Moreover, since any strongly connected graph is one in which every vertex is
a root, it must also be true that the subsequence

{v} ⊂ β(Gk, {v}) ⊂ β(Gk ◦ Gk−1, {v}) ⊂ · · · ⊂ β(Gk ◦ · · · ◦ G(i+1) ◦ Gi, {v})

is strictly increasing where either i = 1 or i > 1 and β(Gk ◦ · · · ◦ G(i+1) ◦
Gi, {v}) = V. In either case this implies that β(Gk ◦· · ·◦G2 ◦G1, {v}) contains
at least k+1 vertices. Fix k as the integer quotient of n+1 divided by 2 in which
case 2k ≥ n−1. Let v1 and v2 be any pair of distinct vertices in V. Then there
must be at least k+1 vertices in β(Gk ◦ · · · ◦G2 ◦G1, {v1}) and k+1 vertices
in β(Gk ◦ · · · ◦ G2 ◦ G1, {v2}). But 2(k + 1) > n so β(Gk ◦ · · · ◦ G2 ◦ G1, {v1})
and β(Gk ◦ · · · ◦G2 ◦G1, {v2}) must have at least one vertex in common. Since
this is true for each pair of distinct vertices v1, v2 ∈ V,

Gk ◦ · · · ◦ G2 ◦ G1 must be neighbor-shared. �
Lemma 6.9 and Proposition 6.3 imply that any composition of n2 neighbor-

shared graphs in G is strongly rooted. The following proposition asserts that
the composition need only consist of n− 1 neighbor-shared graphs and more-
over that the graphs need only be in Ḡ and not necessarily in G.

Proposition 6.9. The composition of any set of m ≥ n − 1 neighbor-shared
graphs in Ḡ is strongly rooted.

To prove this proposition we need a few more ideas. For any integer 1 < k ≤ n,
we say that a graph G ∈ Ḡ is k-neighbor shared if each set of k distinct vertices
share a common neighbor. Thus a neighbor-shared graph and a two neighbor
shared graph are one and the same. Clearly a n neighbor shared graph is
strongly rooted at the common neighbor of all n vertices.

Lemma 6.12. If Gp ∈ Ḡ is a neighbor-shared graph and Gq ∈ Ḡ is a k neigh-
bor shared graph with k < n, then Gq ◦ Gp is a (k+ 1) neighbor shared graph.

Proof: Let v1, v2, . . . , vk+1 be any distinct vertices in V. Since Gq is a k
neighbor shared graph, the vertices v1, v2, . . . , vk share a common neighbor
u1 in Gq and the vertices v2, v2, . . . , vk+1 share a common neighbor u2 in Gq

as well. Moreover, since Gp is a neighbor shared graph, u1 and u2 share a
common neighbor w in Gp. It follows from the definition of composition that
v1, v2, . . . , vk have w as a neighbor in Gq ◦Gp as do v2, v3, . . . , vk+1. Therefore
v1, v2, . . . , vk+1 have w as a neighbor in Gq ◦ Gp. Since this must be true for
any set of k+ 1 vertices in Gq ◦ Gp, Gq ◦ Gp must be a k+ 1 neighbor shared
graph as claimed. �

Proof of Proposition 6.9: The preceding lemma implies that the compo-
sition of any two neighbor shared graphs is three neighbor shared. From this
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and induction it follows that for m < n, the composition of m neighbor shared
graphs ism+1 neighbor shared. Thus the composition of n−1 neighbor shared
graphs is n neighbor shared and consequently strongly rooted. �

In view of Proposition 6.9, we have the following slight improvement on
Proposition 6.3.

Proposition 6.10. The composition of any set of m ≥ (n−1)2 rooted graphs
in G is strongly rooted.

Convergence

We are now in a position to significantly relax the conditions under which the
conclusion of Theorem 6.1 holds.

Theorem 6.2. Let Q denote the subset of P consisting of those indices q for
which Gq ∈ G is rooted. Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P be a
switching signal satisfying σ(t) ∈ Q, t ∈ {0, 1, . . .}. Then there is a constant
steady state heading θss depending only on θ(0) and σ for which

lim
t→∞

θ(t) = θss1 (6.33)

where the limit is approached exponentially fast.

The theorem says that a unique heading is achieved asymptotically along any
trajectory on which all neighbor graphs are rooted. The proof of Theorem 6.2
relies on the following generalization of Proposition 6.2.

Proposition 6.11. Let Sr be any closed set of stochastic matrices in S whose
graphs are all rooted. Then any product Sj . . . S1 of matrices from Ssr con-
verges to 1�· · ·Sj · · ·S1� exponentially fast as j → ∞ at a rate no slower than
λ, where λ is a non-negative constant depending on Sr and satisfying λ < 1.

Proof of Proposition 6.11: Setm = n2 and write Smr for the closed set of all
products of stochastic matrices of the form SmSm−1 · · ·S1 where each Si ∈ Sr.
By assumption, γ(S) is rooted for S ∈ S. In view of Proposition 6.3, γ(Sm) ◦
· · · γ(S1) is strongly rooted for every list of m matrices {S1, S2, . . . , Sm} from
Sr. But γ(Sm) ◦ · · · ◦ γ(S1) = γ(Sm · · ·S1) because of Lemma 6.3. Therefore
γ(Sm · · ·S1) is strongly rooted for all products Sm · · ·S1 ∈ Smr .

Now any product Sj · · ·S1 of matrices in Sr can be written as

Sj · · ·S1 = S̄(j)S̄k · · · S̄1

where
S̄i = Sim · · ·S(i−1)m+1, 1 ≤ i ≤ k

is a product in Smr ,
S̄(j) = Sj · · ·S(km+1),
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and k is the integer quotient of j divided by m. In view of Proposition 6.2,
S̄k · · · S̄1 must converge to 1�· · · S̄k · · · S̄1� exponentially fast as k → ∞ at a
rate no slower than λ̄, where

λ̄ = max
S̄∈Sm

r

||�|S̄|�||

But S̄(j) is a product of at most m stochastic matrices, so it is a bounded
function of j. It follows that the product SjSj−1 · · ·S1 must converge to
1�· · ·Sj · S1� exponentially fast at a rate no slower than λ = λ̄

1
m . �

The proof of Proposition 6.11 can be applied to any closed subset Sns ⊂ S
of stochastic matrices with neighbor shared graphs. In this case, one would
define m = n− 1 because of Proposition 6.9.

Proof of Theorem 6.2: By definition, the graph Gp of each matrix Fp in
the finite set {Fp : p ∈ Q} is rooted. By assumption, Fσ(t) ∈ {Fp : p ∈
Q}, t ≥ 0. In view of Proposition 6.11, the product Fσ(t) · · ·Fσ(0) converges
to 1�· · ·Fσ(t) · · ·Fσ(0)� exponentially fast at a rate no slower than

λ = { max
F∈Fm

r

||�|F |�||} 1
m

where m = n2 and Fm
r is the finite set of all m-term flocking matrix products

of the form Fpm
· · ·Fp1 , pi ∈ Q. But it is clear from (6.3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (6.33) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0) and the convergence
is exponential. �

The proof of Theorem 6.2 also applies to the case when all of the Gσ(t), t ≥
0 are neighbor shared. In this case, one would define m = n − 1 because of
Proposition 6.9.

Convergence Rates

It is possible to deduce an explicit convergence rate for the situation addressed
in Theorem 6.2 [42]. To do this we need a few more ideas.

Scrambling Constants
Let S be an n × n stochastic matrix. Observe that for any non-negative
n-vector x, the ith minus the jth entries of Sx can be written as

n∑
k=1

(sik − sjk)xk =
∑
k∈K

(sik − sjk)xk +
∑
k∈K̄

(sik − sjk)xk

where
K = {k : sik − sjk ≥ 0, k ∈ {1, 2, . . . , n}} and
K̄ = {k : sik − sjk < 0, k ∈ {1, 2, . . . , n}}
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Therefore

n∑
k=1

(sik − sjk)xk ≤
(∑
k∈K

(sik − sjk)

)
 x! +

⎛
⎝∑
k∈K̄

(sik − sjk)

⎞
⎠ �x�

But ∑
k∈K∪K̄

(sik − sjk) = 0

so ∑
k∈K̄

(sik − sjk) = −
∑
k∈K

(sik − sjk)

Thus
n∑
k=1

(sik − sjk)xk ≤
(∑
k∈K

(sik − sjk)

)
( x! − �x�)

Now ∑
k∈K

(sik − sjk) = 1 −
∑
k∈K̄

sik −
∑
k∈K

sjk

because the row sums of S are all one. Moreover

sik = min{sik, sjk}, ∈ K̄
sjk = min{sik, sjk}, ∈ K

so ∑
k∈K

(sik − sjk) = 1 −
n∑
k=1

min{sik, sjk}

It follows that

n∑
k=1

(sik − sjk)xk ≤
(

1 −
n∑
k=1

min{sik, sjk}
)

( x! − �x�)

Hence if we define

µ(S) = max
i,j

(
1 −

n∑
k=1

min{sik, sjk}
)

(6.34)

then
n∑
k=1

(sik − sjk)xk ≤ µ(S)( x! − �x�)

Since this holds for all i, j, it must hold for that i and j for which

n∑
k=1

sikxk =  Sx! and
n∑
k=1

sjkxk = �Sx�
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Therefore
 Sx! − �Sx� ≤ µ(S)( x! − �x�) (6.35)

Now let S1 and S2 be any two n× n stochastic matrices and let ei be the
ith unit n-vector. Then from (6.35),

 S2S1ei! − �S2S1ei� ≤ µ(S2)( S1ei! − �S1e1�) (6.36)

Meanwhile, from (6.11),

� |S2S1|!�ei = 1( S2S1! − �S2S1�)ei

and
� |S1|!�ei = 1( S1! − �S1�)ei

But for any non-negative matrix M ,  M!ei =  Mei! and �M�ei = �Mei� so

� |S2S1|!�ei = 1( S2S1ei! − �S2S1ei�)

and
� |S1|!�ei = 1( S1ei! − �S1ei�)

From these expressions and (6.36) it follows that

� |S2S1|!�ei ≤ µ(s2)� |S1|!�ei

Since this is true for all i, we arrive at the following fact.

Lemma 6.13. For any two stochastic matrices in S,

� |S2S1|!� ≤ µ(S2)� |S1|!� (6.37)

where for any n× n stochastic matrix S,

µ(S) = max
i,j

(
1 −

n∑
k=1

min{sik, sjk}
)

(6.38)

The quantity µ(S) has been widely studied before [29] and is know as the
scrambling constant of the stochastic matrix S. Note that since the row sums
of S all equal 1, µ(S) is non-negative. It is easy to see that µ(S) = 0 just in
case all the rows of S are equal. Let us note that for fixed i and j, the kth
term in the sum appearing in (6.38) will be positive just in case both sik and
sjk are positive. It follows that the sum will be positive if and only if for at
least one k, sik and sjk are both positive. Thus µ(S) < 1 if and only if for
each distinct i and j, there is at least one k for which sik and sjk are both
positive. Matrices with this property have been widely studied and are called
scrambling matrices. Thus a stochastic matrix S is a scrambling matrix if and
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only if µ(S) < 1. It is easy to see that the definition of a scrambling matrix also
implies that S is scrambling if and only if its graph γ(S) is neighbor-shared.

The statement of Proposition 6.11 applies to the situation when instead
of Sr, one considers a closed subset Sns ⊂ Sr of stochastic matrices with
neighbor shared graphs. In this case, the proof of Proposition 6.11 gives a
worst case convergence rate bound of

λ =
{

max
S̄∈Sm

ns

||�|S̄|�||
} 1

n−1

where m = n − 1 and Smns is the set of m term matrix products of the form
Sm · · ·S1, Si ∈ Sns. Armed with Lemma 6.13, one can do better.

Let Sns ⊂ S be a closed subset consisting of matrices whose graphs are all
neighbor shared. Then the scrambling constant µ(S) defined in (6.38) satisfies
µ(S) < 1, S ∈ Sns because each such S is a scrambling matrix. Let

λ = max
S∈Sns

µ(S)

The λ < 1 because Sns is closed and bounded and because µ(·) is continuous.
In view of Lemma 6.13,

||� |S2S1|!�|| ≤ λ||� |S1|!�||, S1, S2 ∈ Sns

Hence by induction, for any sequence of matrices S1, S2, . . . in Sns

||� |Sj · · ·S1|!�|| ≤ λj−1||� |S1|!�||, Si ∈ Sns

But from (6.10), �|S|� ≤ � |S|!�, S ∈ S, so ||�|S|�|| ≤ ||� |S|!�||, S ∈ S Therefore for
any sequence of stochastic matrices S1, S2, . . . with neighbor shared graphs

||�|Sj · · ·S1|�|| ≤ λj−1||� |S1|!�|| (6.39)

Therefore from Proposition 6.1, any such product Sj · · ·S1 converges expo-
nentially at a rate no slower than λ as j → ∞.

Note that because of (6.22) and (6.10), the inequality in (6.39) applies to
any sequence of stochastic matrices S1, S2, . . . for which ||�|Si|�|| ≤ λ. Thus
for example (6.39) applies to any sequence of stochastic matrices S1, S2, . . .
whose graphs are strongly rooted provided the graphs in the sequence come
from a compact set; in this case λ would be the maximum value of ||�|S|�|| as
S ranges over the set. Of course any such sequence is far more special then
a sequence of stochastic matrices with neighbor-shared graphs since every
strongly rooted graph is neighbor shared but the converse is generally not true.

Convergence Rates for Neighbor-Shared Graphs
Suppose that Fp is a flocking matrix for which Gp is neighbor shared. In

view of the definition of a flocking matrix, any non-zero entry in Fp must be
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bounded below by 1
n . Fix distinct i and j and suppose that k is a neighbor that

i and j share. Then fik and fjk are both non-zero so min{fik, fjk} ≥ 1
n . This

implies that the sum in (6.38) must be bounded below by 1
n and consequently

that µ(Fp) ≤ 1 − 1
n .

Now let Fp be that flocking matrix whose graph Gp ∈ G is such that vertex
1 has no neighbors other than itself, vertex 2 has every vertex as a neighbor,
and vertices 3 through n have only themselves and agent 1 as neighbors. Since
vertex 1 has no neighbors other than itself, fi,k = 0 for all i and for k > 1.
Thus for all i, j, it must be true that

∑n
k=1 min{fik, fjk} = min{fi1, fj1}.

Now vertex 2 has n neighbors, so f2,1 = 1
n . Thus min{fi1, fj1} attains its

lower bound of 1
n when either i = 2 or j = 2. It thus follows that with this

Fp, µ(Fp) attains its upper bound of 1 − 1
n . We summarize.

Lemma 6.14. Let Q be the set of indices in P for which Gp is neighbor
shared. Then

max
q∈Q

µ(Fq) = 1 − 1
n

(6.40)

Lemma 6.14 can be used as follows. Let Q denote the set of p ∈ P for which Gp

is neighbor shared. It is clear from the discussion at the end of the last section,
that any product of flocking matrices Fpj

· · ·Fp1 , pi ∈ Q must converge at a
rate no slower than

λ = max
q∈Q

µ(Fq)

Thus, in view of Lemma 6.14, 1 − 1
n is a worst case bound on the rate of

convergence of products of flocking matrices whose graphs are all neighbor
shared. By way of comparison, 1 − 1

n is a worst case bound if the flocking
matrices in the product all have strongly rooted graphs (cf. (6.25)). Of course
the latter situation is far more special than the former, since strongly rooted
graph are neighbor shared but not conversely.

Convergence Rates for Rooted Graphs
It is also possible to derive a worst case convergence rate for products of

flocking matrices which have rooted rather than neighbor-shared graphs. As
a first step towards this end we exploit the fact that for any n× n stochastic
scrambling matrix S, the scrambling constant of µ(S) satisfies the inequality

µ(S) ≤ 1 − φ(S), (6.41)

where for any non-negative matrix M , φ(M) denote the smallest non-zero
element of M . Assume that S is any scrambling matrix. Note that for any
distinct i and j, there must be a k for which min{sik, sjk} is non-zero and
bounded above by φ(S). Thus

n∑
k=1

min{sik, sjk} ≥ φ(S)
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so

1 −
n∑
k=1

min{sik, sjk} ≤ 1 − φ(S)

But this holds for all distinct i and j. In view of the definition of µ(S) in
(6.38), (6.41) must therefore be true.

We will also make use of the fact that for any two n×n stochastic matrices
S1 and S2,

φ(S2S1) ≥ φ(S2)φ(S1). (6.42)

To prove that this is so note first that any stochastic matrix S can be written
at S = φ(S)S̄ where S̄ is a non-zero matrix whose non-zero entries are all
bounded below by 1; moreover if S = ŜŜ where φ̂(S) is a number and Ŝ is
also a non-zero matrix whose non-zero entries are all bounded below by 1,
then φ(S) ≥ φ̂(S). Accordingly, write Si = φ(Si)S̄i, i ∈ {1, 2} where each S̄i
is a non-zero matrix whose non-zero entries are all bounded below by 1. Since
S2S1 = φ(S2)φ(S1)S̄2S̄1 and S2S1 is non-zero, S̄2S̄1 must be non-zero as well.
Moreover the nonzero entries of S̄2S̄1 must be bounded below by 1 because the
product of any two n×n matrices with all non-zero entries bounded below by
1 must be a matrix with the same property. Therefore φ(S2S1) ≥ φ(S2)φ(S1)
as claimed.

Suppose next that Sr is the set of all n × n stochastic matrices S which
have rooted graphs γ(S) ∈ G and which satisfy φ(S) ≥ b where b is a positive
number smaller than 1. Thus for any set of m = n− 1 Si ∈ Sr,

φ(Sm · · ·S1) ≥ bm (6.43)

because of (6.42). Now γ(Sm · · ·S1) = γ(Sm) · · · γ(S1). Moreover γ(Sm · · ·S1)
will be neighbor shared if m ≥ n− 1 because of Proposition 6.7. Therefore if
m ≥ n− 1, Sm · · ·S1 is a scrambling matrix and

µ(Sm · · ·S1) ≤ 1 − bm (6.44)

It turns out that this bound is actually attained if all the Si = S, where S is
a stochastic matrix of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
b 1 − b 0 0 · · · 0
0 b 1 − b 0 · · · 0
...

...
...

...
...

...
...

...
...

... 1 − b 0
0 0 0 0 b 1 − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.45)

with a graph which has no closed cycles other than the self-arcs at each of
its vertices. To understand why this is so, note that the first row of Sm is(
1 0 · · · 0

)
and the first element in the last row is bm. This implies that

min{s11, sn1} = bm, that
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1 −
n∑
k=1

min{s1k, snk} ≥ bm,

and consequently that µ(S) ≥ bm. We summarize.

Lemma 6.15. Let b be a positive number less than 1 and let m = n− 1. Let
Smr denote the set of all m-term matrix products S = SmSm−1 · · ·S1 where
each Si is an n × n stochastic matrix with rooted graph γ(Si) ∈ G and all-
nonzero entries bounded below by b. Then

max
S∈Sm

r

µ(S) = 1 − b(n−1)

It is possible to apply at least part of the preceding to the case when
the Si are flocking matrices. Towards this end, let m = n − 1 and let
Gp1 ,Gp2 , . . . ,Gpm

be any sequence of m rooted graphs in G and let Fp1 , . . . ,
Fpm

be the sequence of flocking matrices associated with these graphs. Since
each Fp is a flocking matrix, it must be true that φ(Fpi

) ≥ 1
n , i ∈ {1, 2, . . . ,m}.

Since the hypotheses leading up to (6.44) are satisfied,

µ(Fpm
· · ·Fp1) ≤ 1 −

(
1
n

)(n−1)

(6.46)

Unfortunately, we cannot use the preceding reasoning to show that (6.46)
holds with equality for some sequence of rooted graphs. This is because the
matrix S in (6.45) is not a flocking matrix when b = 1

n , except in the special
case when n = 2. Nonetheless (6.46) can be used as follows to develop a
convergence rate for products of flocking matrices whose graphs are all rooted.
The development is very similar to that used in the proof of Proposition 6.11.
Let Q denote the set of p ∈ P for which Gp is rooted and write Fm

r for the
closed set of all products of flocking matrices of the form Fpm

Fpm−1 · · ·Fp1
where each pi ∈ Q. In view of Proposition 6.7, Gpm

◦Gpm−1◦· · ·Gp1 is neighbor
shared for every list of m indices matrices {p1, p2, . . . , pm} from Q. Therefore
(6.46) holds for every such list. Now for any sequence p(1), p(2), . . . , p(j) of
indices in Q, the corresponding product Fp(j) · · ·Fp(1) of flocking matrices can
be written as

Fp(j) · · ·Fp(1) = S̄(j)S̄k · · · S̄1

where
S̄i = Fp(im) · · ·Fp((i−1)m+1), 1 ≤ i ≤ k,

S̄(j) = Fp(j) · · ·Fp(km+1),

and k is the integer quotient of j divided by m. In view of (6.46)

µ(S̄i) ≤ λ̄, i ∈ {1, 2, . . . , k},
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where

λ̄ = 1 −
(

1
n

)(n−1)

From this and the discussion at the end of the section on scrambling constants
it is clear that S̄k · · · S̄1 must converge to 1�· · · S̄k · · · S̄1� exponentially fast
as k → ∞ at a rate no slower than λ̄, But S̄(j) is a product of at most
m stochastic matrices, so it is a bounded function of j. It follows that the
product Fp(j) · · ·Fp(1) must converge to 1�Fp(j) · · ·Fp(1)� exponentially fast
at a rate no slower than λ = λ̄

1
m . We have proved the following corollary to

Theorem 6.2.

Corollary 6.1. Under the hypotheses of Theorem 6.2, convergence of θ(t) to
θss1 is exponential at a rate no slower than

λ =

{
1 −
(

1
n

)(n−1)
} 1

n−1

Convergence Rates for Strongly Connected Graphs

It is possible to develop results analogous to those in the last section for
strongly connected graphs. Consider next the case when the Gp are all strongly
connected. Suppose that Ssc is the set of all n×n stochastic matrices S which
have strongly connected graphs γ(S) ∈ G and which satisfy φ(S) ≥ b where b
is a positive number smaller than 1. Let m denote the integer quotient of n
divided by 2. Thus for any set of m stochastic matrices Si ∈ Ssc,

φ(Sm · · ·S1) ≥ bm (6.47)

because of (6.42). Now γ(Sm · · ·S1) = γ(Sm) · · · γ(S1). Moreover γ(Sm · · ·S1)
will be neighbor shared because of Proposition 6.8. Therefore Sm · · ·S1 is a
scrambling matrix and

µ(Sm · · ·S1) ≤ 1 − bm (6.48)

Just as in the case of rooted graphs, it turns out that this bound is actually
attained if all the Si = S, where S is a stochastic matrix of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − b 0 0 0 · · · b
b 1 − b 0 0 · · · 0
0 b 1 − b 0 · · · 0
...

...
...

...
...

...
...

...
...

... 1 − b 0
0 0 0 0 b 1 − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.49)

with a graph consisting of one closed cycle containing all vertices plus self-
arcs at each of its vertices. The reader may wish to verify that this is so by
exploiting the structure of Sm.
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Just as in the case of rooted graphs, it is possible to apply at least part of
the preceding to the case when the Si are flocking matrices. The development
exactly parallels the rooted graph case and one obtains in the end the following
corollary to Theorem 6.2.

Corollary 6.2. Under the hypotheses of Theorem 6.2, and the additional as-
sumption that σ takes values only in the subset of Q composed of those indices
for which Gp is strongly connected, convergence of θ(t) to θss1 is exponential
at a rate no slower than

λ =
{

1 −
(

1
n

)m} 1
m

where m is the integer quotient of n divided by 2.

Jointly Rooted Graphs

It is possible to relax still further the conditions under which the conclusion of
Theorem 6.1 holds. Towards this end, let us agree to say that a finite sequence
of directed graphs Gp1 , Gp2 , . . . ,Gpk

in G is jointly rooted if the composition
Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 is rooted.
Note that since the arc set of any graph Gp,Gq ∈ G are contained

in the arc set of any composed graph Gq ◦ G ◦ Gp, G ∈∈ G, it must
be true that if Gp1 , Gp2 , . . . ,Gpk

is a jointly rooted sequence, then so is
Gq◦Gp1 , Gp2 , . . . ,Gpk

,Gp. In other words, a jointly rooted sequence of graphs
in G remain jointly rooted if additional graphs from G are added to either end
of the sequence.

There is an analogous concept for neighbor-shared graphs. We say that a
finite sequence of directed graphs Gp1 , Gp2 , . . . ,Gpk

from G is jointly neighbor-
shared if the composition Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 is a neighbor-shared graph.
Jointly neighbor shared sequences of graphs remains jointly neighbor shared if
additional graphs from G are added to either end of the sequence. The reason
for this is the same as for the case of jointly rooted sequences. Although
the discussion which follows is just for the case of jointly rooted graphs, the
material covered extends in the obvious way to the case of jointly neighbor
shared graphs.

In the sequel we will say that an infinite sequence of graphs Gp1 ,Gp2 , . . . ,
in G is repeatedly jointly rooted if there is a positive integer m for which each
finite sequence Gpm(k−1)+1 , . . . ,Gpmk

, k ≥ 1 is jointly rooted. We are now
in a position to generalize Proposition 6.11.

Proposition 6.12. Let S̄ be any closed set of stochastic matrices in S. Sup-
pose that S1, S2, . . . is an infinite sequence of matrices from S̄ whose corre-
sponding sequence of graphs γ(S1), γ(S2), . . . is repeatedly jointly rooted. Then
the product Sj . . . S1 converges to 1�· · ·Sj · · ·S1� exponentially fast as j → ∞
at a rate no slower than λ, where λ < 1 is a non-negative constant depending
on the sequence.
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Proof of Proposition 6.12: Since γ(S1), γ(S2), . . . is repeatedly jointly
rooted, there is a finite integerm such that γ(Sm(k−1)+1), . . . , γ(Smk), k ≥ 1
is jointly rooted. For k ≥ 1 define S̄k = Smk · · ·Sm(k−1)+1. By Lemma 6.3,
γ(Smk · · ·Sm(k−1)+1) = γ(Smk) ◦ · · · γ(Sm(k−1)+1), k ≥ 1. Therefore γ(S̄k) is
rooted for k ≥ 1. Note in addition that {S̄k, k ≥ 1} is a closed set because
S̄ is closed and m is finite. Thus by Proposition 6.11, the product S̄k · · · S̄1

converges to 1�· · · S̄k · · · S̄1� exponentially fast as k → ∞ at a rate no slower
than λ̄, where λ̄ is a non-negative constant depending on {S̄k, k ≥ 1} and
satisfying λ̄ < 1.

Now the product Sj · · ·S1 can be written as

Sj · · ·S1 = Ŝ(j)S̄i · · · S̄1

where
Ŝ(j) = Sj · · ·S(im+1),

and i is the integer quotient of j divided by m. But Ŝ(j) is a product of at
most m stochastic matrices, so it is a bounded function of j. It follows that
the product SjSj−1 · · ·S1 must converge to 1�· · ·Sj · S1� exponentially fast
at a rate no slower than λ = λ̄

1
m . �

We are now in a position to state our main result on leaderless coordina-
tion.

Theorem 6.3. Let θ(0) be fixed and let σ : [0, 1, 2, . . .) → P̄ be a switching
signal for which the infinite sequence of graphs Gσ(0),Gσ(1), . . . is repeatedly
jointly rooted. Then there is a constant steady state heading θss, depending
only on θ(0) and σ, for which

lim
t→∞

θ(t) = θss1, (6.50)

where the limit is approached exponentially fast.

Proof of Theorem 6.3: The set of flocking matrices F = {Fp : p ∈
P} is finite and γ(Fp) = Gp, p ∈ P. Therefore the infinite sequence
of matrices Fσ(0), Fσ(1), . . . come from a closed set and the infinite se-
quence of graphs γ(Fσ(0)), γ(Fσ(1)), . . . is repeatedly jointly rooted. It fol-
lows from Proposition 6.12 that the product Fσ(t) · · ·Fσ(1)Fσ(0) converges to
1�· · ·Fσ(t) · · ·Fσ(1)Fσ(0)� exponentially fast as t → ∞ at a rate no slower than
λ, where λ < 1 is a non-negative constant depending on the sequence. But it
is clear from (6.3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (6.50) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0) and the convergence
is exponential. �
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6.2 Symmetric Neighbor Relations

It is natural to call a graph in Ḡ symmetric if for each pair of vertices i and
j for which j is a neighbor of i, i is also a neighbor of j. Note that G is
symmetric if and only if its adjacency matrix is symmetric. It is worth noting
that for symmetric graphs, the properties of rooted and rooted at v are both
equivalent to the property that the graph is strongly connected. Within the
class of symmetric graphs, neighbor-shared graphs and strongly rooted graphs
are also strongly connected graphs but in neither case is the converse true. It
is possible to represent a symmetric directed graph G with a simple undirected
graph G

s in which each self-arc is replaced with an undirected edge and each
pair of directed arcs (i, j) and (j, i) for distinct vertices is replaced with an
undirected edge between i and j. Notions of strongly rooted and neighbor
shared extend in the obvious way to unconnected graphs. An undirected graph
is said to be connected if there is an undirected path between each pair of
vertices. Thus a strongly connected, directed graph which is symmetric is in
essence the same as a connected, undirected graph. Undirected graphs are
applicable when the sensing radii ri of all agents are the same. It was the
symmetric version of the flocking problem which Vicsek addressed [25] and
which was analyzed in [27] using undirected graphs.

Let Ḡs and Gs denote the subsets of symmetric graphs in Ḡ and G respec-
tively. Simple examples show that neither Ḡs nor Gs is closed under composi-
tion. In particular, composition of two symmetric directed graphs in Ḡ is not
typically symmetric. On the other hand the “union” is where by the union of
Gp ∈ Ḡ and Gq ∈ Ḡ is meant that graph in Ḡ whose arc set is the union of
the arc sets of Gp and Gq. It is clear that both Ḡs and Gs are closed under
the union operation. The union operation extends to undirected graphs in the
obvious way. Specifically, the union of two undirected graphs with the same
vertex set V, is that graph whose vertex set is V and whose edge set is the
union of the edge sets of the two graphs comprising the union. It is worth
emphasizing that union and composition are really quite different operations.
For example, as we have already seen with Proposition 6.4, the composition of
any n− 1 strongly connected graphs is complete, symmetric or not, is always
complete. On the other hand, the union of n − 1 n − 1 strongly connected
graphs is not necessarily complete. In terms of undirected graphs, it is simply
not true that the union of n− 1 undirected graphs with vertex set V is com-
plete, even if each graph in the union has self-loops at each vertex. The root
cause of the difference between union and composition stems from the fact
that the union and composition of two graphs in Ḡ have different arc sets –
and in the case of graphs from G, the arc set of the union is always contained
in the arc set of the composition, but not conversely.

The development in [27] make use of the notion of a “jointly connected set
of graphs.” Specifically, a set of undirected graphs with vertex set V is jointly
connected if the union of the graphs in the collection is a connected graph. The
notion of jointly connected also applies to directed graphs in which case the
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collection is jointly connected if the union is strongly connected. In the sequel
we will say that an infinite sequence of graphs Gp1 ,Gp2 , . . . , in G is repeatedly
jointly connected if there is a positive integer m for which each finite sequence
Gpm(k−1)+1 , . . . ,Gpmk

, k ≥ 1 is jointly connected. The main result of [27] is in
essence as follows.

Theorem 6.4. Let θ(0) be fixed and let σ : [0, 1, 2, . . .) → P̄ be a switching
signal for which the infinite sequence of symmetric graphs Gσ(0),Gσ(1), . . . in
G is repeatedly jointly connected. Then there is a constant steady state heading
θss, depending only on θ(0) and σ, for which

lim
t→∞

θ(t) = θss1 (6.51)

where the limit is approached exponentially fast.

In view of Theorem 6.3, Theorem 6.4 also holds if the word “connected”
is replaced with the word “rooted.” The latter supposes that composition
replaces union and that jointly rooted replaces jointly connected. Examples
show that these modifications lead to a more general result because a jointly
rooted sequence of graphs is always jointly connected but the converse is not
necessarily true.

Generalization

It is possible to interpret the system we have been studying (6.3) as the closed-
loop system which results when a suitably defined decentralized feedback law
is applied to the n-agent heading model

θ(t+ 1) = θ(t) + u(t) (6.52)

with open-loop control u. To end up with (6.3), u would have to be defined
as

u(t) = −D−1
σ(t)e(t) (6.53)

where e is the average heading error vector

e(t) ∆= Lσ(t)θ(t) (6.54)

and, for each p ∈ P, Lp is the matrix

Lp = Dp −Ap (6.55)

known in graph theory as the Laplacian of Gp [28,43]. It is easily verified that
(6.52) to (6.55) do indeed define the system modeled by (6.3). We have elected
to call e the average heading error because if e(t) = 0 at some time t, then
the heading of each agent with neighbors at that time will equal the average
of the headings of its neighbors.
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In the present context, (6.53) can be viewed as a special case of a more
general decentralized feedback control of the form

u(t) = −G−1
σ(t)Lσ(t)θ(t) (6.56)

where for each p ∈ P, Gp is a suitably defined, nonsingular diagonal matrix
with ith diagonal element gip. This, in turn, is an abbreviated description of
a system of n individual agent control laws of the form

ui(t) = − 1
gi(t)

⎛
⎝ ∑
j∈Ni(t)

θj(t)

⎞
⎠ , i ∈ {1, 2, . . . , n} (6.57)

where for i ∈ {1, 2, . . . , n}, ui(t) is the ith entry of u(t) and gi(t)
∆= giσ(t).

Application of this control to (6.52) would result in the closed-loop system

θ(t+ 1) = θ(t) −G−1
σ(t)Lσ(t)θ(t) (6.58)

Note that the form of (6.58) implies that if θ and σ were to converge to
a constant values θ̄, and σ̄ respectively, then θ̄ would automatically satisfy
Lσ̄ θ̄ = 0. This means that control (6.56) automatically forces each agent’s
heading to converge to the average of its neighbors, if agent headings were
to converge at all. In other words, the choice of the Gp does not affect the
requirement that each agent’s heading equal the average of the headings of its
neighbors, if there is convergence at all. In the sequel we will deal only with
the case when the graphs Gp are all symmetric in which case Lp is symmetric
as well.

The preceding suggests that there might be useful choices for the Gp al-
ternative to those we have considered so far, which also lead to convergence.
One such choice turns out to be

Gp = gI, p ∈ P (6.59)

where g is any number greater than n. Our aim is to show that with the Gp so
defined, Theorem 6.2 continues to be valid. In sharp contrast with the proof
technique used in the last section, convergence will be established here using
a common quadratic Lyapunov function.

As before, we will use the model

θ(t+ 1) = Fσ(t)θ(t) (6.60)

where, in view of the definition of the Gp in (6.59), the Fp are now symmetric
matrices of the form

Fp = I − 1
g
Lp, p ∈ P (6.61)

To proceed we need to review a number of well known and easily verified
properties of graph Laplacians relevant to the problem at hand. For this, let
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G be any given symmetric directed graph in G. Let D be a diagonal matrix
whose diagonal elements are the in-degrees of G’s vertices and write A for G’s
adjacency matrix. Then, as noted before, the Laplacian of G is the symmetric
matrix L = D − A. The definition of L clearly implies that L1 = 0. Thus
L must have an eigenvalue at zero and 1 must be an eigenvector for this
eigenvalue. Surprisingly L is always a positive semidefinite matrix [28]. Thus
L must have a real spectrum consisting of non-negative numbers and at least
one of these numbers must be 0. It turns out that the number of connected
components of G is exactly the same as the multiplicity of L’s eigenvalue
at 0 [28]. Thus G is a rooted or strongly connected graph just in case L has
exactly one eigenvalue at 0. Note that the trace of L is the sum of the in-
degrees of all vertices of G. This number can never exceed (n − 1)n and can
attain this high value only for a complete graph. In any event, this property
implies that the maximum eigenvalue of L is never larger than n(n − 1).
Actually the largest eigenvalue of L can never be larger than n [28]. This
means that the eigenvalues of 1

gL must be smaller than 1 since g > n. From
these properties it clearly follows that the eigenvalues of (I − 1

gL) must all be
between 0 and 1, and that if G is strongly connected, then all will be strictly
less than 1 except for one eigenvalue at 1 with eigenvector 1. Since each Fp is
of the form (I − 1

gL), each Fp possesses all of these properties.
Let σ be a fixed switching signal with value pt ∈ Q at time t ≥ 0. What

we’d like to do is to prove that as i → ∞, the matrix product Fpi
Fpi−1 · · ·Fp0

converges to 1c for some row vector c. As noted near the beginning of Sect. 6.1,
this matrix product will so converge just in case

lim
i→∞

F̃pi
F̃pi−1 · · · F̃p0 = 0 (6.62)

where as in Sect. 6.1, F̃p is the unique solution to PFp = F̃pP, p ∈ P and P is
any full rank (n−1)×n matrix satisfying P1 = 0. For simplicity and without
loss of generality we shall henceforth assume that the rows of P form a basis
for the orthogonal complement of the span of e. This means that PP ′ equals
the (n − 1) × (n − 1) identity Ĩ, that F̃p = PFpP

′, p ∈ P, and thus that
each F̃p is symmetric. Moreover, in view of (6.6) and the spectral properties
of the Fp, p ∈ Q, it is clear that each F̃p, p ∈ Q must have a real spectrum
lying strictly inside of the unit circle. This plus symmetry means that for each
p ∈ Q, F̃p − Ĩ is negative definite, that F̃ ′

pF̃p − Ĩ is negative definite and thus
that Ĩ is a common discrete-time Lyapunov matrix for all such F̃p. Using this
fact it is straight forward to prove that Theorem 6.2 holds for system (6.58)
provided the Gp are defined as in (6.59) with g > n.

In general, each F̃p is a discrete-time stability matrix for which F̃ ′
pF̃p − Ĩ

is negative definite only if p ∈ Q. To craft a proof of Theorem 6.3 for the
system described by (6.58) and (6.59), one needs to show that for each interval
[ti, ti+1) on which {Gσ(ti+1−1), . . .Gσ(ti+1),Gσ(ti)} is a jointly rooted sequence
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of graphs, the product F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti) is a discrete-time stability
matrix and

(F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti))
′(F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti)) − Ĩ

is negative definite. This is a direct consequence of the following proposition.

Proposition 6.13. If {Gp1 ,Gp2 , . . . ,Gpm
} is a jointly rooted sequence of

symmetric graphs, then

(F̃p1 F̃p2 · · · F̃pm
)′(F̃p1 F̃p2 · · · F̃pm

) − Ĩ

is a negative definite matrix.

In the light of Proposition 6.13, it is clear that the conclusion Theorem 6.3
is also valid for the system described by (6.58) and (6.59). A proof of this
version of Theorem 6.3 will not be given.

To summarize, both the control defined by u = −D−1
σ(t)e(t) and the simpli-

fied control given by u = − 1
g e(t) achieve the same emergent behavior. While

the latter is much easier to analyze than the former, it has the disadvantage
of not being a true decentralized control because each agent must know an
upper bound (i.e., g) on the total number of agents within the group. Whether
or not this is really a disadvantage, of course depends on what the models are
to be used for.

The proof of Proposition 6.13 depends on two lemmas. In the sequel, we
state the lemmas, use them to prove Proposition 6.13, and then conclude this
section with proofs of the lemmas themselves.

Lemma 6.16. If Gp1 ,Gp2 , . . . ,Gpm
is a jointly rooted sequence of symmetric

graphs in G with Laplacians Lp1 , Lp2 , . . . , Lpm
, then

m⋂
i=1

kernel Lpi
= span {1} (6.63)

Lemma 6.17. Let M1,M2, . . . ,Mm be a set of n×n real symmetric, matrices
whose induced 2-norms are all less than or equal to 1. If

m⋂
i=1

kernel (I −Mi) = 0 (6.64)

then the induced 2-norm of M1M2 · · ·Mm is less than 1.

Proof of Proposition 6.13: The definition of the Fp in (6.61) implies that
I − Fp = 1

gLp. Hence by Lemma 6.16 and the hypothesis that {Gp1 ,Gp2 , . . . ,

Gpm
} is a jointly rooted sequence,
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m⋂
i=1

kernel (I − Fpi
) = span {1} (6.65)

We claim that
m⋂
i=1

kernel (Ĩ − F̃pi
) = 0 (6.66)

To establish this fact, let x̄ be any vector such that (Ĩ − F̃pi
)x̄ = 0, i ∈

{1, 2, . . . ,m}. Since P has independent rows, there is a vector x such that
x̄ = Px. But P (I−Fpi

) = (Ĩ− F̃pi
)P , so P (I−Fpi

)x = 0. Hence (I−Fpi
)x =

ai1 for some number ai. But 1′(I − Fpi
) = 1

g1
′Lpi

= 0, so ai1′1 = 0. This
implies that ai = 0 and thus that (I−Fpi

)x = 0. But this must be true for all
i ∈ {1, 2, . . . ,m}. It follows from (6.65) that x ∈ span {1} and, since x̄ = Px,
that x̄ = 0. Therefore (6.66) is true.

As defined, the F̃p are all symmetric, positive semi-definite matrices with
induced 2-norms not exceeding 1. This and (6.66) imply that the family of
matrices F̃p1 , F̃p2 , . . . , F̃pm

satisfy the hypotheses of Lemma 6.17. It follows
that Proposition 6.13 is true. �

Proof of Lemma 6.16: In the sequel we write L(G) for the Laplacian of a
simple graph G. By the intersection of a collection of graphs {Gp1 ,Gp2 , . . . ,
Gpm

} in G, is meant that graph G ∈ G with edge set equaling the intersection
of the edge sets of all of the graphs in the collection. It follows at once from
the definition of a Laplacian that

L(Gp) + L(Gq) = L(Gp ∩ Gq) + L(Gp ∪ Gq)

for all p, q ∈ P. Repeated application of this identity to the set {Gp1 ,Gp2 , . . . ,
Gpm

} yields the relation

m∑
i=1

L(Gpi
) = L

(
m⋃
i=1

Gpi

)
+

m−1∑
i=1

L

⎛
⎝Gpi+1

⋂⎧⎨
⎩

i⋃
j=1

Gpj

⎫⎬
⎭
⎞
⎠ (6.67)

which is valid for m > 1. Since all matrices in (6.67) are positive semi-definite,
any vector x which makes the quadratic form x′{L(Gp1) + L(Gp2) + · · · +
L(Gpm

)}x vanish, must also make the quadratic form x′L(Gp1 ∪ Gp2 ∪ · · · ∪
Gpm

)x vanish. Since any vector in the kernel of each matrix L(Gpi
) has this

property, we can draw the following conclusion.

m⋂
i=1

kernel L(Gpi
) ⊂ kernel L

(
m⋃
i=1

Gpi

)

Suppose now that {Gp1 ,Gp2 , . . . ,Gpm
} is a jointly rooted collection. Then

the union Gp1 ∪ Gp2 ∪ · · · ∪ Gpm
is rooted so its Laplacian must have exactly

span {1} for its kernel. Hence the intersection of the kernels of the L(Gpi
)
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must be contained in span {1}. But span {1} is contained in the kernel of
each matrix L(Gpi

) in the intersection and therefore in the intersection of the
kernels of these matrices as well. It follows that (6.63) is true. �

Proof of Lemma 6.17: In the sequel we write |x| for the 2-norm of a real
n-vector x and |M | for the induced 2-norm of a real n×n matrix. Let x ∈ IRn

be any real, non-zero n-vector. It is enough to show that

|M1M2 · · ·Mmx| < |x| (6.68)

In view of (6.64) and the assumption that x �= 0, there must be a largest
integer k ∈ {1, 2, . . . ,m} such that x �∈ kernel (Mk − I). We claim that

|Mkx| < |x| (6.69)

To show that this is so we exploit the symmetry ofMk to write x as x = α1y1+
α2y2+ · · ·+αnyn where α1, α2, . . . , αn are real numbers and {y1, y2, . . . , yn} is
an orthonormal set of eigenvectors of Mk with real eigenvalues λ1, λ2, . . . λn.
Note that |λi| ≤ 1, i ∈ {1, 2, . . . , n}, because |Mk| ≤ 1. Next observe that
since Mkx = α1λ1y1 + α2λ2y2 + · · · + αnλnyn and Mkx �= x, there must be
at least one integer j such that αjλj �= αj . Hence |αjλjyj | < |αjyj |. But
|Mkx|2 = |α1λ1y1|2 + · · · + |αjλjyj |2 + · · · + |αnλnyn|2 so

|Mkx|2 < |α1λ1y1|2 + · · · + |αjyj |2 + · · · + |αnλnyn|2

Moreover

|α1λ1y1|2+· · ·+|αjyj |2+· · ·+|αnλnyn|2 ≤ |α1y1|2+· · ·+|αjyj |2+· · ·+|αnyn|2 = |x|2

so |Mkx|2 < |x|2; therefore (6.69) is true.
In view of the definition of k, Mjx = x, j ∈ {k+ 1, . . . ,m}. From this and

(6.69) it follows that |M1 · · ·Mmx| = |M1 · · ·Mkx| ≤ |M1 · · ·Mk−1||Mkx| <
|M1 · · ·Mk−1||x|. But |M1 · · ·Mk−1| ≤ 1 because each Mi has an induced 2
norm not exceeding 1. Therefore (6.68) is true. �

6.3 Measurement Delays

In this section we consider a modified version of the flocking problem in which
integer valued delays occur in sensing the values of headings which are avail-
able to agents. More precisely we suppose that at each time t ∈ {0, 1, 2, . . .},
the value of neighboring agent j’s headings which agent i may sense is
θj(t − dij(t)) where dij(t) is a delay whose value at t is some integer be-
tween 0 and mj − 1; here mj is a pres-specified positive integer. While well
established principles of feedback control would suggest that delays should be
dealt with using dynamic compensation, in these notes we will consider the
situation in which the delayed value of agent j’s heading sensed by agent i at
time t is the value which will be used in the heading update law for agent i.
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Thus

θi(t+ 1) =
1

ni(t)

⎛
⎝ ∑
j∈Ni(t)

θj(t− dij(t))

⎞
⎠ (6.70)

where dij(t) ∈ {0, 1, . . . , (mj − 1)} if j �= i and dij(t) = 0 if i = j.
It is possible to represent this agent system using a state space model

similar to the model discussed earlier for the delay-free case. Towards this end,
let D̄ denote the set of all directed graphs with vertex set V̄ = V1∪V2∪· · ·∪Vn
where Vi = {vi1 . . . , vimi

}. Here vertex vi1 represents agent i and Vi is the
set of vertices associated with agent i. We sometimes write i for vi1, i ∈
{1, 2, . . . , n}, and V for the subset of agent vertices {v11, v21, . . . , vn1}. Let Q̄
be an index set parameterizing D̄ ; i.e, D̄ = {Gq : q ∈ Q̄}

To represent the fact that each agent can use its own current heading in
its update formula (6.70), we will utilize those graphs in D̄ which have self
arcs at each vertex in V. We will also require the arc set of each such graph to
have, for i ∈ {1, 2, . . . , n}, an arc from each vertex vij ∈ Vi except the last, to
its successor vi(j+1) ∈ Vi. Finally we stipulate that for each i ∈ {1, 2, . . . , n},
each vertex vij with j > 1 has in-degree of exactly 1. In the sequel we write D
for the subset of all such graphs. Thus unlike the class of graphs G considered
before, there are graphs in D possessing vertices without self-arcs. Nonetheless
each vertex of each graph in D has positive in-degree. In the sequel we use
the symbol Q to denote that subset of Q̄ for which D = {Gq : q ∈ Q}.

The specific graph representing the sensed headings the agents use at time
t to update their own headings according to (6.70), is that graph Gq ∈ D whose
arc set contains an arc from vik ∈ Vi to j ∈ V if agent j uses θi(t + 1 − k)
to update. The set of agent heading update rules defined by (6.70) can now
be written in state form. Towards this end define θ(t) to be that (m1 +m2 +
· · · + mi) vector whose first m1 elements are θ1(t) to θ1(t + 1 −m1), whose
next m2 elements are θ2(t) to θ2(t + 1 − m2) and so on. Order the vertices
of V̄ as v11, . . . , v1m1 , v21, . . . , v2m2 , . . . , vn1, . . . , vnmn

and with respect to this
ordering define

Fq = D−1
q A′

q, q ∈ Q (6.71)

where A′
q is the transpose of the adjacency matrix the of Gq ∈ D and Dq

the diagonal matrix whose ijth diagonal element is the in-degree of vertex vij
within the graph. Then

θ(t+ 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (6.72)

where σ : {0, 1, . . .} → Q is a switching signal whose value at time t, is
the index of the graph representing which headings the agents use at time
t to update their own headings according to (6.70). As before our goal is
to characterize switching signals for which all entries of θ(t) converge to a
common steady state value.

There are a number of similarities and a number of differences between
the situation under consideration here and the delay-free situation considered
earlier. For example, the notion of graph composition defined earlier can be
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defined in the obvious way for graphs in D̄. On the other hand, unlike the
situation in the delay-free case, the set of graphs used to model the system
under consideration, namely D, is not closed under composition except in the
special case when all of the delays are at most 1; i.e., when all of the mi ≤ 2.
In order to characterize the smallest subset of D̄ containing D which is closed
under composition, we will need several new concepts.

Hierarchical Graphs

As before, let Ḡ be the set of all directed graphs with vertex set V =
{1, 2, . . . n}. Let us agree to say that a rooted graph G ∈ Ḡ is a hierarchi-
cal graph with hierarchy {v1, v2, . . . , vn} if it is possible to re-label the vertices
in V as v1, v2, . . . vn in such a way so that v1 is a root of G with a self-arc and
for i > 1, vi has a neighbor vj “lower ” in the hierarchy where by lower we
mean j < i. It is clear that any graph in Ḡ with a root possessing a self-arc
is hierarchial. Note that a graph may have more than one hierarchy and two
graphs with the same hierarchy need not be equal. Note also that even though
rooted graphs with the same hierarchy share a common root, examples show
that the composition of hierarchial graphs in Ḡ need not be hierarchial or even
rooted. On the other hand the composition of two rooted graphs in Ḡ with
the same hierarchy is always a graph with the same hierarchy. To understand
why this is so, consider two graphs G1 and G2 in Ḡ with the same hierarchy
{v1, v2, . . . , vn}. Note first that v1 has a self-arc in G2 ◦G1 because v1 has self
arcs in G1 and G2. Next pick any vertex vi in V other than v1. By definition,
there must exist vertex vj lower in the hierarchy than vi such that (vj , vi) is
an arc of G2. If vj = v1, then (v1, vi) is an arc in G2 ◦ G1 because v1 has a
self-arc in G1. On the other hand, if vj �= v1, then there must exist a vertex
vk lower in the hierarchy than vj such that (vk, vj) is an arc of G1. It follows
from the definition of composition that in this case (vk, vi) is an arc in G2◦G1.
Thus vi has a neighbor in G2 ◦ G1 which is lower in the hierarchy than vi.
Since this is true for all vi, G2 ◦ G1 must have the same hierarchy as G1 and
G2. This proves the claim that composition of two rooted graphs with the
same hierarchy is a graph with the same hierarchy.

Our objective is to show that the composition of a sufficiently large number
of graphs in Ḡ with the same hierarchy is strongly rooted. Note that Proposi-
tion 6.3 cannot be used to reach this conclusion, because the vi in the graphs
under consideration here do not all necessarily have self-arcs.

As before, let G1 and G2 be two graphs in Ḡ with the same hierarchy
{v1, v2, . . . , vn}. Let vi be any vertex in the hierarchy and suppose that vj is
a neighbor vertex of vi in G2. If vj = v1, then vi retains v1 as a neighbor in
the composition G2 ◦ G1 because v1 has a self-arc in G1. On the other hand,
if vj �= v1, then vj has a neighboring vertex vk in G1 which is lower in the
hierarchy than vj . Since vk is a neighbor of vi in the composition G2 ◦ G1,
we see that in this case vi has acquired a neighbor in G2 ◦ G1 lower in the
hierarchy than a neighbor it had in G2. In summary, any vertex vi ∈ V either
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has v1 as neighbor in G2 ◦G1 or has a neighbor in G2 ◦G1 which is one vertex
lower in the hierarchy than any neighbor it had in G2.

Now consider three graphs G1,G2,G3 in Ḡ with the same hierarchy. By
the same reasoning as above, any vertex vi ∈ V either has v1 as neighbor in
G3 ◦G2 ◦G1 or has a neighbor in G3 ◦G2 ◦G1 which is one vertex lower in the
hierarchy than any neighbor it had in G3 ◦ G2. Similarly vi either has v1 as
neighbor in G3◦G2 or has a neighbor in G3◦G2 which is one vertex lower in the
hierarchy than any neighbor it had in G3. Combining these two observations
we see that any vertex vi ∈ V either has v1 as neighbor in G3◦G2◦G1 or has a
neighbor in G3 ◦G2 ◦G1 which is two vertices lower in the hierarchy than any
neighbor it had in G3. This clearly generalizes and so after the composition of
m such graphs G1,G2, . . .Gm, vi either has v1 as neighbor in Gm ◦ · · ·G2 ◦G1

or has a neighbor in Gm ◦ · · ·G2 ◦ G1 which is m − 1 vertices lower in the
hierarchy than any neighbor it had in Gm. It follows that if m ≥ n, then vi
must be a neighbor of v1. Since this is true for all vertices, we have proved
the following.

Proposition 6.14. Let G1,G2, . . .Gm denote a set of rooted graphs in Ḡ
which all have the same hierarchy. If m ≥ n − 1 then Gm ◦ · · ·G2 ◦ G1 is
strongly rooted.

As we have already pointed out, Proposition 6.14 is not a consequence
of Proposition 6.3 because Proposition 6.3 requires all vertices of all graphs
in the composition to have self-arcs whereas Proposition 6.14 does not. On
the other hand, Proposition 6.3 is not a consequence of Proposition 6.14 be-
cause Proposition 6.14 only applies to graphs with the same hierarchy whereas
Proposition 6.3 does not.

Delay Graphs

We now return to the study of the graphs in D. As before D is the subset of
D̄ consisting of those graphs which (i) have self arcs at each vertex in V =
{1, 2, . . . , }, (ii) for each i ∈ {1, 2, . . . , n}, have an arc from each vertex vij ∈ Vi
except the last, to its successor vi(j+1) ∈ Vi, and (iii) for each i ∈ {1, 2, . . . , n},
each vertex vij with j > 1 has in-degree of exactly 1. It can easily be shown by
example that D is not closed under composition. We deal with this problem as
follows. A graph G ∈ D̄ is said to be a delay graph if for each i ∈ {1, 2, . . . , n},
(i) every neighbor of Vi which is not in Vi is a neighbor of vi1 and (ii) the
subgraph of G induced by Vi has {vi1 . . . , vimi

} as a hierarchy. It is easy to
see that every graph in D is a delay graph. More is true.

Proposition 6.15. The set of delay graphs in D̄ is closed under composition.

To prove this proposition, we will need the following fact.

Lemma 6.18. Let G1,G2, . . . ,Gq be any sequence of q > 1 directed graphs in
Ḡ. For i ∈ {1, 2, . . . , q}, let Ḡi be the subgraph of Gi induced by S ⊂ V. Then
Ḡq ◦· · ·◦Ḡ2 ◦Ḡ1 is contained in the subgraph of Gq ◦· · ·◦G2 ◦G1 induced by S.
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Proof of Lemma 6.18: It will be enough to prove the lemma for q = 2,
since the proof for q > 2 would then directly follow by induction. Suppose
q = 2. Let (i, j) be in A(Ḡ2 ◦ Ḡ1). Then i, j ∈ S and there exists an integer
k ∈ S such that (i, k) ∈ A(Ḡ1) and (k, j) ∈ A(Ḡ2). Therefore (i, k) ∈ A(G1)
and (k, j) ∈ A(G2). Thus (i, j) ∈ A(G2 ◦ G1). But i, j ∈ S so (i, j) must be
an arc in the subgraph of G2 ◦ G1 induced by S. Since this clearly is true for
all arcs in A(Ḡ2 ◦ Ḡ1), the proof is complete. �

Proof of Proposition 6.15: Let G1 and G2 be two delay graphs in D̄. It
will first be shown that for each i ∈ {1, 2, . . . , n}, every neighbor of Vi which
is not in Vi is a neighbor of vi1 in G2 ◦G1. Fix i ∈ {1, 2, . . . , n} and let v be a
neighbor of Vi in G2◦G1 which is not in Vi. Then (v, k) ∈ A(G2◦G1) for some
k ∈ Vi. Thus there is a s ∈ V̄ such that (v, s) ∈ A(G1) and (s, k) ∈ A(G2). If
s �∈ Vi, then (s, vi1) ∈ A(G2) because G2 is a delay graph. Thus in this case
(v, vi1) ∈ A(G2 ◦G1) because of the definition of composition. If, on the other
hand, s ∈ Vi, then (v, vi1) ∈ A(G1) because G1 is a delay graph. Thus in this
case (v, vi1) ∈ A(G2 ◦ G1) because vi1 has a self-arc in G2. This proves that
every neighbor of Vi which is not in Vi is a neighbor of vi1 in G2 ◦ G1. Since
this must be true for each i ∈ {1, 2, . . . , n}, G2 ◦ G1 has the first property
defining delay graphs in D̄.

To establish the second property, we exploit the fact that the composition
of two graphs with the same hierarchy is a graph with the same hierarchy. Thus
for any integer i ∈ {1, 2, . . . , n}, the composition of the subgraphs of G1 and
G2 respectively induced by Vi must have the hierarchy {vi1, vi2, . . . , vimi

}.
But by Lemma 6.18, for any integer i ∈ {1, 2, . . . , n}, the composition of
the subgraphs of G1 and G2 respectively induced by Vi, is contained in the
subgraph of the composition of G1 and G2 induced by Vi. This implies that
for i ∈ {1, 2, . . . , n}, the subgraph of the composition of G1 and G2 induced
by Vi has {vi1, vi2, . . . , vimi

} as a hierarchy. �
In the sequel we will state and prove conditions under which the composi-

tion of a sequence of delay graphs is strongly rooted. To do this, we will need
to introduce several concepts. By the quotient graph of G ∈ D̄, is meant that
directed graph with vertex set V whose arc set consists of those arcs (i, j)
for which G has an arc from some vertex in Vi to some vertex in Vj . The
quotient graph of G models which headings are being used by each agent in
updates without describing the specific delayed headings actually being used.
Our main result regarding delay graphs is as follows.

Proposition 6.16. Let m be the largest integer in the set {m1,m2, . . . ,mn}.
The composition of any set of at least m(n− 1)2 +m− 1 delay graphs will be
strongly rooted if the quotient graph of each of the graphs in the composition
is rooted.

To prove this proposition we will need several more concepts. Let us agree
to say that a delay graph G ∈ D̄ has strongly rooted hierarchies if for each
i ∈ V, the subgraph of G induced by Vi is strongly rooted. Proposition 6.14
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states that a hierarchial graph on mi vertices will be strongly rooted if it is
the composition of at least mi − 1 rooted graphs with the same hierarchy.
This and Lemma 6.18 imply that the subgraph of the composition of at least
mi − 1 delay graphs induced by Vi will be strongly rooted. We are led to the
following lemma.

Lemma 6.19. Any composition of at least m − 1 delay graphs in D̄ has
strongly rooted hierarchies.

To proceed we will need one more type of graph which is uniquely de-
termined by a given graph in D̄. By the agent subgraph of G ∈ D̄ is meant
the subgraph of G induced by V. Note that while the quotient graph of G

describes relations between distinct agent hierarchies, the agent subgraph of
G only captures the relationships between the roots of the hierarchies.

Lemma 6.20. Let Gp and Gq be delay graphs in D̄. If Gp has a strongly rooted
agent subgraph and Gq has strongly rooted hierarchies, then the composition
Gq ◦ Gp is strongly rooted.

Proof of Lemma 6.20: Let vi1 be a root of the agent subgraph of Gp and let
vjk be any vertex in V̄. Then (vi1, vj1) ∈ A(Gp) because the agent subgraph of
Gp is strongly rooted. Moreover, (vj1, vjk) ∈ A(Gq) because Gq has strongly
rooted hierarchies. Therefore, in view of the definition of graph composition
(vi1, vjk) ∈ A(Gq ◦Gp). Since this must be true for every vertex in V̄, Gq ◦Gp

is strongly rooted. �

Lemma 6.21. The agent subgraph of any composition of at least (n − 1)2

delay graphs in D̄ will be strongly rooted if the agent subgraph of each of the
graphs in the composition is rooted.

Proof of Lemma 6.21: Let G1,G2, . . . ,Gq be any sequence of q ≥ (n− 1)2

delay graphs in D̄ whose agent subgraphs, Ḡi i ∈ {1, 2, . . . , q}, are all rooted.
By Proposition 6.10, Ḡq ◦· · ·◦Ḡ2 ◦Ḡ1 is strongly rooted. But Ḡq ◦· · ·◦Ḡ2 ◦Ḡ1

is contained in the agent subgraph of Gq ◦ · · · ◦ G2 ◦ G1 because of Lemma
6.18. Therefore the agent subgraph of Gq ◦ · · · ◦ G2 ◦ G1 is strongly rooted. �

Lemma 6.22. Let Gp and Gq be delay graphs in D̄. If Gp has a strongly rooted
hierarchies and Gq has a rooted quotient graph, then the agent subgraph of the
composition Gq ◦ Gp is rooted.

Proof of Lemma 6.22: Let (i, j) be any arc in the quotient graph of Gq

with i �= j. This means that (vik, vjs)∈A(Gq) for some vik ∈ Vi and vjs ∈ Vj .
Clearly (vi1, vik) ∈ A(Gp) because Gp has strongly rooted hierarchies. More-
over since i �= j, vik is a neighbor of Vj which is not in Vj . From this and the
definition of a delay graph, it follows that vik is a neighbor of vj1. Therefore
(vik, vj1) ∈ A(Gq). Thus (vi1, vj1) ∈ A(Gq ◦ Gp). We have therefore proved
that for any path of length one between any two distinct vertices i, j in the
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quotient graph of Gq, there is a corresponding path between vertices vi1 and
vj1 in the agent subgraph of Gq ◦ Gp. This implies that for any path of any
length between any two distinct vertices i, j in the quotient graph of Gq, there
is a corresponding path between vertices vi1 and vj1 in the agent subgraph of
Gq ◦ Gp. Since by assumption, the quotient graph of Gq is rooted, the agent
subgraph of Gq ◦ Gp must be rooted as well. �

Proof of Proposition 6.16: Let G1,G2, . . .Gs be a sequence of at least
m(n−1)2+m−1 delay graphs with strongly rooted quotient graphs. The graph
Gs ◦ · · ·G(m(n−1)2+1) is composed of at least m − 1 delay graphs. Therefore
Gs◦· · ·G(m(n−1)2+1) must have strongly rooted hierarchies because of Lemma
6.19. In view of Lemma 6.20, to complete the proof it is enough to show that
G(m(n−1)2 ◦· · ·◦G1 has a strongly rooted agent subgraph. But G(m(n−1)2 ◦· · ·◦
G1 is the composition of (n− 1)2 graphs, each itself a composition of m delay
graphs with rooted quotient graphs. In view of Lemma 6.21, to complete the
proof it is enough to show that the agent subgraph of any composition of m
delay graphs is rooted if each of the quotient graph of each delay graph in the
composition is rooted. Let H1,H2, . . . ,Hm be such a family of delay graphs.
By assumption, Hm has a rooted quotient graph. In view of Lemma 6.22, the
agent subgraph of Hm ◦ Hm−1 ◦ · · · ◦ H1 will be rooted if Hm−1 ◦ · · · ◦ H1 has
strongly rooted hierarchies. But Hm−1 ◦ · · · ◦ H1 has this property because of
Lemma 6.19. �

Convergence

Using the results from the previous section, it is possible to state results
for the flocking problem with measurement delays similar to those discussed
earlier for the delay free case. Towards this end let us agree to say that a
finite sequence of graphs Gp1 ,Gp2 , . . . ,Gpk

in D is jointly quotient rooted if
the quotient of the composition Gpk

◦ Gp(k−1) ◦ · · · ◦ Gp1 is rooted.
In the sequel we will say that an infinite sequence of graphs Gp1 ,Gp2 , . . . , in

D is repeatedly jointly quotient rooted if there is a positive integer m for which
each finite sequence Gpm(k−1)+1 , . . . ,Gpmk

, k ≥ 1 is jointly quotient rooted.
We are now in a position to state our main result on leaderless coordination
with measurement delays.

Theorem 6.5. Let θ(0) be fixed and with respect to (6.72), let
σ : [0, 1, 2, . . .) → Q̄ be a switching signal for which the infinite sequence
of graphs Gσ(0),Gσ(1), . . . in D is repeatedly jointly rooted. Then there is a
constant steady state heading θss, depending only on θ(0) and σ, for which

lim
t→∞

θ(t) = θss1 (6.73)

where the limit is approached exponentially fast.

The proof of this theorem exploits Proposition 6.16 and parallels exactly the
proof of Theorem 6.3. A proof of Theorem 6.5 therefore will not be given.
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6.4 Asynchronous Flocking

In this section we consider a modified version of the flocking problem in which
each agent independently updates its heading at times determined by its own
clock [44]. We do not assume that the groups’ clocks are synchronized to-
gether or that the times any one agent updates its heading are evenly spaced.
Updating of agent i’s heading is done as follows. At its kth sensing event time
tik, agent i senses the headings θj(tik), j ∈ Ni(tik) of its current neighbors
and from this data computes its kth way-point wi(tik). In the sequel we will
consider way point rules based on averaging. In particular

wi(tik) =
1

ni(tik)

⎛
⎝ ∑
i∈Ni(tik)

θj(tik)

⎞
⎠ , i{1, 2, . . . , n} (6.74)

where ni(tik) is the number of neighbor of elements in neighbor index set
Ni(tik). Agent i then changes its heading from θi(tik) to wi(tik) on the interval
[tik, ti(k+1)). In these notes we will consider the case each agent updates its
headings instantaneously at its own even times, and that it maintains fixed
headings between its event times. More precisely, we will assume that agent i
reaches its kth way-point at its (k+1)st event time and that θi(t) is constant
on each continuous-time interval (ti(k−1), tik], k ≥ 1, where ti0 = 0 is agent
i’s zeroth event time. In other words for k ≥ 0, agent i’s heading satisfies is

θi(ti(k+1)) =
1

ni(tik)

⎛
⎝ ∑
j∈Ni(tik)

θj(tik)

⎞
⎠ (6.75)

θi(t) = θi(tik), ti(k−1) < t ≤ tik (6.76)

To ensure that each agent’s neighbors are unambiguously defined at each of
its event times, we will further assume that agents move continuously.

Analytic Synchronization

To develop conditions under which all agents eventually move with the same
heading requires the analysis of the asymptotic behavior of the asynchronous
process which the 2n heading equations of the form (6.75), (6.76) define. De-
spite the apparent complexity of this process, it is possible to capture its
salient features using a suitably defined synchronous discrete-time, hybrid dy-
namical system S. We call the sequence of steps involved in defining S analytic
synchronization. Analytic synchronization is applicable to any finite family of
continuous or discrete time dynamical processes {P1,P2, . . . , . . . ,Pn} under
the following conditions. First, each process Pi must be a dynamical sys-
tem whose inputs consist of functions of the states of the other processes
as well as signals which are exogenous to the entire family. Second, each
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process Pi must have associated with it an ordered sequence of event times
{ti1, ti2, . . .} defined in such a way so that the state of Pi at event time ti(ki+1)

is uniquely determined by values of the exogenous signals and states of the
Pj , j ∈ {1, 2, . . . , n} at event times tjkj

which occur prior to ti(ki+1) but
in the finite past. Event time sequences for different processes need not be
synchronized. Analytic synchronization is a procedure for creating a single
synchronous process for purposes of analysis which captures the salient fea-
tures of the original n asynchronously functioning processes. As a first step,
all n event time sequences are merged into a single ordered sequence of even
times T . The “synchronized” state of Pi is then defined to be the original of
Pi at Pi’s event times {ti1, ti2, . . .} plus possibly some additional variables; at
values of t ∈ T between event times tiki

and ti(ki+1), the synchronized state
of Pi is taken to be the same at the value of its original state at time ti(k+1).
Although it is not always possible to carry out all of these steps, when it is
what ultimately results is a synchronous dynamical system S evolving on the
index set of T , with state composed of the synchronized states of the n indi-
vidual processes under consideration. We now use these ideas to develop such
a synchronous system S for the asynchronous process we have been studying.

Definition of S

As a first step, let T denote the set of all event times of all n agents. Relabel the
elements of T as t0, t1, t2, · · · in such a way so that tj < tj+1, j ∈ {1, 2, . . .}.
Next define

θ̄i(τ) = θi(tτ ), τ ≥ 0, i ∈ {1, 2, . . . , n}. (6.77)

In view of (6.75), it must be true that if tτ is an event time of agent i, then

θ̄i(τ ′) =
1

n̄i(tτ )

⎛
⎝ ∑
j∈N̄i(τ)

θ̄j(τ)

⎞
⎠

where N̄i(τ) = Ni(tτ ), n̄i(τ) = ni(tτ ) and tτ ′ is the next event time of agent
i after tτ . But θ̄i(τ ′) = θ̄i(τ +1) because θi(t) is constant for tτ < t ≤ tτ ′ {cf.,
(6.76)}. Therefore

θ̄i(τ + 1) =
1

n̄i(tτ )

⎛
⎝ ∑
j∈N̄i(τ)

θ̄j(τ)

⎞
⎠ (6.78)

if tτ is an event time of agent i. Meanwhile if tτ is not an event time of agent
i, then

θ̄i(τ + 1) = θ̄i(τ), (6.79)

again because θi(t) is constant between event times. Note that if we define
N̄i(τ) = {i} and n̄i(τ) = 1 for every value of τ for which tτ is not an event
time of agent i, then (6.79) can be written as
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θ̄i(τ + 1) =
1

n̄i(tτ )

⎛
⎝ ∑
j∈N̄i(τ)

θ̄j(τ)

⎞
⎠ (6.80)

Doing this enables us to combine (6.78) and (6.80) into a single formula valid
for all τ ≥ 0. In other words, agent i’s heading satisfies

θ̄i(τ + 1) =
1

n̄i(tτ )

⎛
⎝ ∑
j∈N̄i(τ)

θ̄j(τ)

⎞
⎠ , τ ≥ 0 (6.81)

where

N̄i(τ) =

⎧⎨
⎩

Ni(tτ ) if tτ is an event time of agent i

{i} if tτ is not an event time of agent i

⎫⎬
⎭ (6.82)

and n̄i(τ) is the number of indices in N̄i(τ). For purposes of analysis, it is
useful to interpret (6.82) as meaning that between agent i’s event times, its
only neighbor is itself. There are n equations of the form in (6.81) and together
they define a synchronous system S which models the evolutions of the n
agents’ headings at event times.

State Space Model

As before, we can represent the neighbor relationships associated with (6.82)
using a directed graph G with vertex set V = {1, 2, . . . n} and arc A(G) ⊂ V×V
which is defined in such a way so that (i, j) is an arc from i to j just in case
agent i is a neighbor of agent j. Thus as before, G is a directed graph on n
vertices with at most one arc from any vertex to another and with exactly one
self-arc at each vertex. We continue to write G for the set of all such graphs
and we also continue to use the symbol P to denote a set indexing G.

For each p ∈ P, let Fp = D−1
p A′

p, where A′
p is the transpose of the ad-

jacency matrix the of graph Gp ∈ G and Dp the diagonal matrix whose jth
diagonal element is the in-degree of vertex j within the graph. The set of
agent heading update rules defined by (6.82) can be written in state form as

θ̄(τ + 1) = Fσ(τ)θ̄(τ), τ ∈ {0, 1, 2, . . .} (6.83)

where θ̄ is the heading vector θ̄ =
(
θ̄1 θ̄2 . . . θ̄n

)′, and σ : {0, 1, . . .} → P is a
switching signal whose value at time τ , is the index of the graph representing
the agents’ neighbor relationships at time τ .

Up to this point things are essentially the same as in the basic flocking
problem treated in Sect. 6.1. But when one considers the type of graphs in G
which are likely to be encountered along a given trajectory, things are quite
different. Note for example, that the only vertices of Gσ(τ) which can have
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more than one incoming arc, are those of agents for whom τ is an event time.
Thus in the most likely situation when distinct agents have only distinct event
times, there will be at most one vertex in each graph Gσ(τ) which has more
than one incoming arc. It is this situation we want to explore further. Toward
this end, let G∗ ⊂ G denote the subclass of all graphs which have at most
one vertex with more than one incoming arc. Note that for n > 2, there is
no rooted graph in G∗. Nonetheless, in the light of Theorem 6.3 it is clear
that convergence to a common steady state heading will occur if the infinite
sequence of graphs Gσ(0),Gσ(1), . . . is repeatedly jointly rooted. This of course
would require that there exist a jointly rooted sequence of graphs from G∗.
We will now explain why such sequences do in fact exist.

Let us agree to call a graph G ∈ G an all neighbor graph centered at v if
every vertex of G is a neighbor of v. Thus G is an all neighbor graph centered
at v if and only if its reverse G

′ is strongly rooted at v. Note that every
all neighbor graph in G is also in G∗. Note also that all neighbor graphs are
maximal in G∗ with respect to the partial ordering of G∗ by inclusion. Note
also the composition of any all neighbor graph with itself is itself. On the
other hand, because of the union of two graphs in G is always contained in
the composition of the two graphs, the composition of n all neighbor graphs
with distinct centers must be a graph in which each vertex is a neighbor of
every other; i.e., the complete graph. Thus the composition of n all neighbor
graphs with distinct centers is strongly rooted. In summary, the hypothesis of
Theorem 6.3 is not vacuous for the asynchronous problem under consideration.
When that hypothesis is satisfied, convergence to a common steady state
heading will occur.

6.5 Leader Following

In this section we consider two modified versions of the flocking problem for
the same group n agents as before, but now with one of the group’s members
(say agent 1) acting as the group’s leader. In the first version of the problem,
the remaining agents, henceforth called followers and labeled 2 through n,
do not know who the leader is or even if there is a leader. Accordingly they
continue to use the same heading update rule (6.1) as before. The leader on
the other hand, acting on its own, ignores update rule (6.1) and moves with
a constant heading θ1(0). Thus

θ1(t+ 1) = θ1(t) (6.84)

The situation just described can be modeled as a state space system

θ(t+ 1) = Fσ(t)θ(t), t ≥ 0 (6.85)

just as before, except now agent 1 is constrained to have no neighbors other
than itself. The graphs Gp which model neighbor relations accordingly all have
a distinguished leader vertex which has no incoming arcs other than its own.
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Much like before, our goal here is to show for a large class of switching sig-
nals and for any initial set of follower agent headings, that the headings of all n
followers converge to the heading of the leader. Convergence in the leaderless
case under the most general, required the sequence of graphs Gσ(0),Gσ(1), . . .
encountered along a trajectory to be repeatedly jointly rooted. For the leader
follower case now under consideration, what is required is exactly the same.
However, since the leader vertex has only one incoming arc, the only way
Gσ(0),Gσ(1), . . . can be repeatedly jointly rooted, is that the sequence be
“rooted at the leader vertex v = 1.” More precisely, an infinite sequence
of graphs Gp1 ,Gp2 , in G is repeatedly jointly rooted at v if there is a positive
integer m for which each finite sequence Gpm(k−1)+1 , . . . ,Gpmk

, k ≥ 1 is
“jointly rooted at v”; a finite sequence of directed graphs Gp1 , Gp2 , . . . ,Gpk

is jointly rooted at v if the composition Gpk
◦ Gpk−1 ◦ · · · ◦ Gp1 is rooted at v.

Our main result on discrete-time leader following is next.

Theorem 6.6. Let θ(0) be fixed and let σ : [0, 1, 2, . . .) → P be a switching
signal for which the infinite sequence of graphs Gσ(0),Gσ(1), . . . is repeatedly
jointly rooted. Then

lim
t→∞

θ(t) = θ1(0)1 (6.86)

where the limit is approached exponentially fast.

Proof of Theorem 6.6: Since any sequence which is repeatedly jointly rooted
at v is repeatedly jointly rooted, Theorem 6.3 is applicable. Therefore the
headings of all n agents converge exponentially fast to a single common steady
state heading θss. But since the heading of the leader is fixed, θss must be
the leader’s heading. �
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Adaptive Control Design. Adaptive and Learning Systems for Signal Processing,
Communications, and Control. John Wiley & Sons, New York, 1995.

46. Z. Lin, M. Brouche, and B. Francis. Local control strategies for groups of mobile
autonomous agents. Ece control group report, University of Toronto, 2003.

47. A. Isidori. Nonlinear Control Systems. Springer-Verlag, 1989.



Input to State Stability: Basic Concepts
and Results

E.D. Sontag

Department of Mathematics, Hill Center, Rutgers University,
110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA
sontag@math.rutgers.edu

1 Introduction

The analysis and design of nonlinear feedback systems has recently under-
gone an exceptionally rich period of progress and maturation, fueled, to a
great extent, by (1) the discovery of certain basic conceptual notions, and (2)
the identification of classes of systems for which systematic decomposition ap-
proaches can result in effective and easily computable control laws. These two
aspects are complementary, since the latter approaches are, typically, based
upon the inductive verification of the validity of the former system proper-
ties under compositions (in the terminology used in [62], the “activation” of
theoretical concepts leads to “constructive” control).

This expository presentation addresses the first of these aspects, and in
particular the precise formulation of questions of robustness with respect to
disturbances, formulated in the paradigm of input to state stability. We provide
an intuitive and informal presentation of the main concepts. More precise
statements, especially about older results, are given in the cited papers, as well
as in several previous surveys such as [103, 105] (of which the present paper
represents an update), but we provide a little more detail about relatively
recent work. Regarding applications and extensions of the basic framework,
we give some pointers to the literature, but we do not focus on feedback
design and specific engineering problems; for the latter we refer the reader to
textbooks such as [27,43,44,58,60,66,96].

2 ISS as a Notion of Stability of Nonlinear I/O Systems

Our subject is the study of stability-type questions for input/output (“i/o”)
systems. We later define more precisely what we mean by “system,” but, in
an intuitive sense, we have in mind the situation represented in Fig. 1, where
the “system” may well represent a component (“module” or “subsystem”)
of a more complex, larger, system. In typical applications of control theory,
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� �u y(sub)system

Fig. 1. I/O system
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Fig. 2. Plant and controller

our “system” may in turn represent a plant/controller combination (Fig. 2),
where the input u = (u1, u2) incorporates actuator and measurement noises
respectively, as well as disturbances or tracking signals, and where y = (y1, y2)
might consist respectively of some measure of performance (distance to a set
of desired states, tracking error, etc.) and quantities directly available to a
controller.

The goals of our work include:

• Helping develop a “toolkit” of concepts for studying systems via decom-
positions

• The quantification of system response to external signals
• The unification of state-space and input/output stability theories

2.1 Desirable Properties

We wish to formalize the idea of “stability” of the mapping u(·) �→ y(·). Intu-
itively, we look for a concept that encompasses the properties that inputs that
are bounded, “eventually small,” “integrally small,” or convergent, produce
outputs with the respective property:

u

⎧⎪⎪⎨
⎪⎪⎩

bounded
(ev)small

(integ)small
→ 0

⎫⎪⎪⎬
⎪⎪⎭

?⇒ y

⎧⎪⎪⎨
⎪⎪⎩

bounded
(ev)small

(integ)small
→ 0

⎫⎪⎪⎬
⎪⎪⎭

and, in addition, we will also want to account appropriately for initial states
and transients. A special case is that in which the output y of the system is
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just the internal state. The key notion in our study will be one regarding such
stability from inputs to states; only later do we consider more general outputs.
In terms of states, thus, the properties that we would like to encompass in a
good stability notion include the the convergent-input convergent-state (CICS)
and the bounded-input bounded-state (BIBS) properties.

We should remark that, for simplicity of exposition, we concentrate here
solely on stability notions relative to globally attractive steady states. How-
ever, the general theory allows consideration of more arbitrary attractors (so
that norms get replaced by, for example, distances to certain compact sets),
and one may also consider local versions, as well as robust and/or adaptive
concepts associated to the ones that we will define.

2.2 Merging Two Different Views of Stability

Broadly speaking, there are two main competing approaches to system stabil-
ity: the state-space approach usually associated with the name of Lyapunov,
and the operator approach, of which George Zames was one of the main pro-
ponents and developers and which was the subject of major contributions by
Sandberg, Willems, Safonov, and others. Our objective is in a sense (Fig. 3)
that of merging these “Lyapunov” and “Zames” views of stability. The oper-
ator approach studies the i/o mapping

(x0, u(·)) �→ y(·)
IRn × [Lq(0,+∞)]m → [Lq(0,+∞)]p

(with, for instance, q = 2 or q = ∞, and assuming the operator to be well-
defined and bounded) and has several advantages, such as allowing the use

u(.)

x = f(x,0).

y(.) = F(x(0),u(.))

Fig. 3. Lyapunov state-space and Zames-like external stability
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of Hilbert or Banach space techniques, and elegantly generalizing many prop-
erties of linear systems, especially in the context of robustness analysis, to
certain nonlinear situations. The state-space approach, in contrast, is geared
to the study of systems without inputs, but is better suited to the study of
nonlinear dynamics, and it allows the use of geometric and topological ideas.
The ISS conceptual framework is consistent with, and combines several fea-
tures of, both approaches.

2.3 Technical Assumptions

In order to keep the discussion as informal and simple as possible, we make
the assumption from now on that we are dealing with systems with inputs
and outputs, in the usual sense of control theory [104]:

ẋ(t) = f(x(t), u(t)) , y(t) = h(x(t))

(usually omitting arguments t from now on) with states x(t) taking values
in Euclidean space IRn, inputs (also called “controls” or “disturbances” de-
pending on the context) being measurable locally essentially bounded maps
u(·) : [0,∞) → IRm, and output values y(t) taking values in IRp, for some pos-
itive integers n,m, p. The map f : IRn × IRm → IRn is assumed to be locally
Lipschitz with f(0, 0) = 0, and h : IRn → IRp is continuous with h(0) = 0.
Many of these assumptions can be weakened considerably, and the cited ref-
erences should be consulted for more details. We write x(t, x0, u) to denote
the solution, defined on some maximal interval [0, tmax(x0, u)), for each initial
state x0 and input u. In particular, for systems with no inputs

ẋ(t) = f(x(t)) ,

we write just x(t, x0). The zero-system associated to ẋ = f(x, u) is by defin-
ition the system with no inputs ẋ = f(x, 0). We use |x| to denote Euclidean
norm and ‖u‖, or ‖u‖∞ for emphasis, the (essential) supremum norm (possi-
bly +∞, if u is not bounded) of a function, typically an input or an output.
When only the restriction of a signal to an interval I is relevant, we write
‖uI‖∞ (or just‖uI‖), for instance ‖u[0,T ]‖∞ when I = [0, T ], to denote the
sup norm of that restriction.

2.4 Comparison Function Formalism

A class K∞ function is a function α : IR≥0 → IR≥0 which is continuous,
strictly increasing, unbounded, and satisfies α(0) = 0 (Fig. 4), and a class KL
function is a function β : IR≥0 × IR≥0 → IR≥0 such that β(·, t) ∈ K∞ for each
t and β(r, t) ↘ 0 as t → ∞.
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Fig. 4. K∞-function

2.5 Global Asymptotic Stability

For a system with no inputs ẋ = f(x), there is a well-known notion of global
asymptotic stability (for short from now on, GAS , or “0-GAS” when referring
to the zero-system ẋ = f(x, 0) associated to a given system with inputs ẋ =
f(x, u)) due to Lyapunov, and usually defined in “ε-δ” terms. It is an easy
exercise to show that this standard definition is in fact equivalent to the
following statement:

(∃β ∈ KL) |x(t, x0)| ≤ β (|x0|, t) ∀x0 , ∀ t ≥ 0 .

Observe that, since β decreases on t, we have, in particular:

|x(t, x0)| ≤ β (|x0|, 0) ∀x0 , ∀ t ≥ 0 ,

which provides the Lyapunov-stability or “small overshoot” part of the GAS
definition (because β (|x0|, 0) is small whenever |x0| is small, by continuity of
β(·, 0) and β(0, 0) = 0), while the fact that β → 0 as t → ∞ gives:

|x(t, x0)| ≤ β (|x0|, t) −→
t→∞

0 ∀x0 ,

which is the attractivity (convergence to steady state) part of the GAS defi-
nition.

We also remark a property proved in [102], Proposition 7, namely that for
each β ∈ KL there exist two class K∞ functions α1, α2 such that:

β(r, t) ≤ α2

(
α1(r)e−t

)
∀ s, t ≥ 0 ,

which means that the GAS estimate can be also written in the form:

|x(t, x0)| ≤ α2

(
α1(|x0|)e−t

)

and thus suggests a close analogy between GAS and an exponential stability
estimate |x(t, x0)| ≤ c |x0| e−at.
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x(t) = (2t+2)

u(t) = (2t+2)

1/2

− 1/2

Fig. 5. Diverging state for converging input, for example

2.6 0-GAS Does Not Guarantee Good Behavior
with Respect to Inputs

A linear system in control theory is one for which both f and h are linear
mappings:

ẋ = Ax+Bu , y = Cx

with A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRp×n. It is well-known that a linear sys-
tem is 0-GAS (or “internally stable”) if and only if the matrix A is a Hurwitz
matrix, that is to say, all the eigenvalues of A have negative real parts. Such a
0-GAS linear system automatically satisfies all reasonable input/output sta-
bility properties: bounded inputs result in bounded state trajectories as well as
outputs, inputs converging to zero imply solutions (and outputs) converging
to zero, and so forth; see, e.g., [104]. But the 0-GAS property is not equivalent ,
in general, to input/output, or even input/state, stability of any sort. This
is in general false for nonlinear systems. For a simple example, consider the
following one-dimensional (n = 1) system, with scalar (m = 1) inputs:

ẋ = −x+ (x2 + 1)u .

This system is clearly 0-GAS, since it reduces to ẋ = −x when u ≡ 0. On
the other hand, solutions diverge even for some inputs that converge to zero.
For example, take the control u(t) = (2t+ 2)−1/2 and x0 =

√
2, There results

the unbounded trajectory x(t) = (2t + 2)1/2 (Fig. 5). This is in spite of the
fact that the unforced system is GAS. Thus, the converging-input converging-
state property does not hold. Even worse, the bounded input u ≡ 1 results in
a finite-time explosion. This example is not artificial, as it arises in feedback-
linearization design, as we mention below.

2.7 Gains for Linear Systems

For linear systems, the three most typical ways of defining input/output sta-
bility in terms of operators

{
L2, L∞}→ {L2, L∞}
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are as follows. (In each case, we mean, more precisely, to ask that there should
exist positive c and λ such that the given estimates hold for all t ≥ 0 and all
solutions of ẋ = Ax+Bu with x(0) = x0 and arbitrary inputs u(·).)

“L∞ → L∞” : c |x(t, x0, u)| ≤ |x0| e−λt + sup
s∈[0,t]

|u(s)|

“L2 → L∞” : c |x(t, x0, u)| ≤ |x0| e−λt +
∫ t

0

|u(s)|2 ds

“L2 → L2” : c

∫ t

0

|x(s, x0, u)|2 ds ≤ |x0| +
∫ t

0

|u(s)|2 ds

(the missing case L∞ → L2 is less interesting, being too restrictive). For linear
systems, these are all equivalent in the following sense: if an estimate of one
type exists, then the other two estimates exist too. The actual numerical values
of the constants c, λ appearing in the different estimates are not necessarily
the same: they are associated to the various types of norms on input spaces
and spaces of solutions, such as “H2” and “H∞” gains, see, e.g., [23]. Here
we are discussing only the question of existence of estimates of these types.
It is easy to see that existence of the above estimates is simply equivalent to
the requirement that the A matrix be Hurwitz, that is to say, to 0-GAS, the
asymptotic stability of the unforced system ẋ = Ax.

2.8 Nonlinear Coordinate Changes

A “geometric” view of nonlinear dynamics leads one to adopt the view that

notions of stability should be invariant under (nonlinear) changes of variables

– meaning that if we make a change of variables in a system which is stable
in some technical sense, the system in new coordinates should again be stable
in the same sense. For example, suppose that we start with the exponentially
stable system ẋ = −x, but we make the change of variables y = T (x) and wish
to consider the equation ẏ = f(y) satisfied by the new variable y. Suppose
that T (x) ≈ lnx for large x. If it were the case that the system ẏ = f(y) is
globally exponentially stable (|y(t)| ≤ ce−λt |y(0)| for some positive constants
c, λ), then there would exist some time t0 > 0 so that |y(t0)| ≤ |y(0)|/2 for
all y(0). But ẏ = T ′(x)ẋ ≈ −1 for large y, so y(t0) ≈ y(0) − t0, contradicting
|y(t0)| ≤ |y(0)|/2 for large enough y(0). In conclusion, exponential stability
is not a natural mathematical notion when nonlinear coordinate changes are
allowed. This is why the notion of asymptotic stability is important.

Let us now discuss this fact in somewhat more abstract terms, and see
how it leads us to GAS and, when adding inputs, to ISS. By a change of
coordinates we will mean a map

T : IRn → IRn
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such that the following properties hold: T (0) = 0 (since we want to preserve
the equilibrium at x = 0), T is continuous, and it admits an inverse map
T−1 : IRn → IRn which is well-defined and continuous as well. (In other
words, T is a homeomorphism which fixes the origin. We could also add the
requirement that T should be differentiable, or that it be differentiable at least
for x �= 0, but the discussion to follow does not need this additional condition.)
Now suppose that we start with a system ẋ = f(x) that is exponentially stable:

|x(t, x0)| ≤ c |x0|e−λt ∀ t ≥ 0 (some c, λ > 0)

and we perform a change of variables:

x(t) = T (z(t)) .

We introduce, for this transformation T , the following two functions:

α(r) := min
|x|≥r

|T (x)| and α(r) := max
|x|≤r

|T (x)| ,

which are well-defined because T and its inverse are both continuous, and are
both functions of class K∞ (easy exercise). Then,

α(|x|) ≤ |T (x)| ≤ α(|x|) ∀x ∈ IRn

and therefore, substituting x(t, x0) = T (z(t, z0)) in the exponential stability
estimate:

α(|z(t, z0)|) ≤ c α(|z0|) e−λt

where z0 = T−1(x0). Thus, the estimate in z-coordinates takes the following
form:

|z(t, z0)| ≤ β (|z0|, t)
where β(r, t) = α−1

(
cα
(
re−λt
))

is a function of class KL. (As remarked
earlier, any possible function of class KL can be written in this factored form,
actually.)

In summary, we re-derived the concept of global asymptotic stability sim-
ply by making coordinate changes on globally exponentially stable systems.
So let us see next where these considerations take us when looking at systems
with inputs and starting from the previously reviewed notions of stability for
linear systems. Since there are now inputs, in addition to the state transforma-
tion x(t) = T (z(t)), we must now allow also transformations u(t) = S(v(t)),
where S is a change of variables in the space of input values IRm. Arguing
exactly as for the case of systems without inputs, we arrive to the following
three concepts:

L∞ → L∞ � α (|x(t)|) ≤ β(|x0| , t) + sup
s∈[0,t]

γ(|u(s)|),
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L2 → L∞ � α (|x(t)|) ≤ β(|x0| , t) +
∫ t

0

γ(|u(s)|) ds

L2 → L2 �

∫ t

0

α (|x(s)|) ds ≤ α0(|x0|) +
∫ t

0

γ(|u(s)|) ds .

From now on, we often write x(t) instead of the more cumbersome x(t, x0, u)
and we adopt the convention that, any time that an estimate like the ones
above is presented, an unless otherwise stated, we mean that there should
exist comparison functions (α, α0 ∈ K∞, β ∈ KL) such that the estimates
hold for all inputs and initial states. We will study these three notions one at
a time.

2.9 Input-to-State Stability

The “L∞ → L∞” estimate, under changes of variables, leads us to the first
concept, that of input to state stability (ISS). That is, there should exist some
β ∈ KL and γ ∈ K∞ such that

|x(t)| ≤ β(|x0| , t) + γ (‖u‖∞) (ISS)

holds for all solutions. By “all solutions” we mean that this estimate is valid for
all inputs u(·), all initial conditions x0, and all t ≥ 0. Note that we did not now
include the function “α” in the left-hand side. That is because, redefining β
and γ, one can assume that α is the identity: if α(r) ≤ β(s, t)+γ(t) holds, then
also r ≤ α−1(β(s, t)+γ(t)) ≤ α−1(2β(s, t))+α−1(2γ(t)); since α−1(2β(·, ·)) ∈
KL and α−1(2γ(·)) ∈ K∞, an estimate of the same type, but now with no
“α,” is obtained. In addition, note that the supremum sups∈[0,t] γ(|u(s)|) over
the interval [0, t] is the same as γ(‖u[0,t]‖∞) = γ(sups∈[0,t](|u(s)|)), because
the function γ is increasing, and that we may replace this term by γ(‖u‖∞),
where ‖u‖∞ = sups∈[0,∞) γ(|u(s)|) is the sup norm of the input, because the
solution x(t) depends only on values u(s), s ≤ t (so, we could equally well
consider the input that has values ≡ 0 for all s > t).

It is important to note that a potentially weaker definition might simply
have requested that this condition hold merely for all t ∈ [0, tmax(x0, u)).
However, this definition turns out to be equivalent to the one that we gave.
Indeed, if the estimate holds a priori only on such a maximal interval of
definition, then, since the right-hand is bounded on [0, T ], for any T > 0
(recall that inputs are by definition assumed to be bounded on any bounded
interval), it follows that the maximal solution of x(t, x0, u) is bounded, and
therefore that tmax(x0, u) = +∞ (see, e.g., Proposition C.3.6 in [104]). In other
words, the ISS estimate holds for all t ≥ 0 automatically, if it is required to
hold merely for maximal solutions.

Since, in general, max{a, b} ≤ a + b ≤ max{2a, 2b}, one can restate the
ISS condition in a slightly different manner, namely, asking for the existence
of some β ∈ KL and γ ∈ K∞ (in general different from the ones in the ISS
definition) such that
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Fig. 6. ISS combines overshoot and asymptotic behavior

|x(t)| ≤ max {β(|x0|, t) , γ (‖u‖∞)}

holds for all solutions. Such redefinitions, using “max” instead of sum, will be
possible as well for each of the other concepts to be introduced later; we will
use whichever form is more convenient in each context, leaving implicit the
equivalence with the alternative formulation.

Intuitively, the definition of ISS requires that, for t large, the size of the
state must be bounded by some function of the sup norm – that is to say, the
amplitude, – of inputs (because β(|x0| , t) → 0 as t → ∞). On the other hand,
the β(|x0| , 0) term may dominate for small t, and this serves to quantify the
magnitude of the transient (overshoot) behavior as a function of the size of
the initial state x0 (Fig. 6). The ISS superposition theorem, discussed later,
shows that ISS is, in a precise mathematical sense, the conjunction of two
properties, one of them dealing with asymptotic bounds on |x0| as a function
of the magnitude of the input, and the other one providing a transient term
obtained when one ignores inputs.

2.10 Linear Case, for Comparison

For internally stable linear systems ẋ = Ax+Bu, the variation of parameters
formula gives immediately the following inequality:

|x(t)| ≤ β(t) |x0| + γ‖u‖∞ ,

where

β(t) = ‖etA‖ → 0 and γ = ‖B‖
∫ ∞

0

‖esA‖ds < ∞ .

This is a particular case of the ISS estimate, |x(t)| ≤ β(|x0|, t) + γ (‖u‖∞),
with linear comparison functions.
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2.11 Feedback Redesign

The notion of ISS arose originally as a way to precisely formulate, and then
answer, the following question. Suppose that, as in many problems in control
theory, a system ẋ = f(x, u) has been stabilized by means of a feedback
law u = k(x) (Fig. 7), that is to say, k was chosen such that the origin
of the closed-loop system ẋ = f(x, k(x)) is globally asymptotically stable.
(See, e.g., [103] for a discussion of mathematical aspects of state feedback
stabilization.) Typically, the design of k was performed by ignoring the effect
of possible input disturbances d(·) (also called actuator disturbances). These
“disturbances” might represent true noise or perhaps errors in the calculation
of the value k(x) by a physical controller, or modeling uncertainty in the
controller or the system itself. What is the effect of considering disturbances?
In order to analyze the problem, we incorporate d into the model, and study
the new system ẋ = f(x, k(x) + d), where d is seen as an input (Fig. 8). We
then ask what is the effect of d on the behavior of the system.

Disturbances d may well destabilize the system, and the problem may arise
even when using a routine technique for control design, feedback linearization.
To appreciate this issue, we take the following very simple example. We are
given the system

ẋ = f(x, u) = x+ (x2 + 1)u .

�

� ẋ = f(x, u)

u = k(x)

u x

Fig. 7. Feedback stabilization, closed-loop system ẋ = f(x, k(x))

�

v

�

�

u x

ẋ = f(x, v)

u = k(x)

��d

Fig. 8. Actuator disturbances, closed-loop system ẋ = f(x, k(x) + d)
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In order to stabilize it, we first substitute u = ũ
x2+1 (a preliminary feedback

transformation), rendering the system linear with respect to the new input ũ:
ẋ = x+ ũ, and then we use ũ = −2x in order to obtain the closed-loop system
ẋ = −x. In other words, in terms of the original input u, we use the feedback
law:

k(x) =
−2x
x2 + 1

so that f(x, k(x)) = −x. This is a GAS system. Next, let us analyze the effect
of the disturbance input d. The system ẋ = f(x, k(x) + d) is:

ẋ = −x+ (x2 + 1) d .

As seen before, this system has solutions which diverge to infinity even for
inputs d that converge to zero; moreover, the constant input d ≡ 1 results
in solutions that explode in finite time. Thus k(x) = −2x

x2+1 was not a good
feedback law, in the sense that its performance degraded drastically once that
we took into account actuator disturbances.

The key observation for what follows is that, if we add a correction term
“−x” to the above formula for k(x), so that we now have:

k̃(x) =
−2x
x2 + 1

−x

then the system ẋ = f(x, k̃(x) + d) with disturbance d as input becomes,
instead:

ẋ = − 2x − x3 + (x2 + 1) d

and this system is much better behaved: it is still GAS when there are no
disturbances (it reduces to ẋ = −2x− x3) but, in addition, it is ISS (easy to
verify directly, or appealing to some of the characterizations mentioned later).
Intuitively, for large x, the term −x3 serves to dominate the term (x2 + 1)d,
for all bounded disturbances d(·), and this prevents the state from getting too
large.

2.12 A Feedback Redesign Theorem for Actuator Disturbances

This example is an instance of a general result, which says that, whenever
there is some feedback law that stabilizes a system, there is also a (possibly
different) feedback so that the system with external input d (Fig. 9) is ISS.

Theorem 2.1. [99] Consider a system affine in controls

ẋ = f(x, u) = g0(x) +
m∑
i=1

uigi(x) (g0(0) = 0)

and suppose that there is some differentiable feedback law u = k(x) so that



Input to State Stability 175

�

�
� ẋ = f(x, u)

u = k̃(x)

��d

Fig. 9. Different feedback ISS-stabilizes

ẋ = f(x, k(x))

has x = 0 as a GAS equilibrium. Then, there is a feedback law u = k̃(x) such
that

ẋ = f(x, k̃(x) + d)

is ISS with input d(·).

The proof is very easy, once that the appropriate technical machinery has
been introduced: one starts by considering a smooth Lyapunov function V for
global asymptotic stability of the origin in the system ẋ = f(x, k(x)) (such a
V always exists, by classical converse theorems); then k̂(x) := −(LGV (x))T =
−(∇V (x)G(x))T , where G is the matrix function whose columns are the gi,
i = 1, . . . ,m and T indicates transpose, provides the necessary correction
term to add to k. This term has the same degree of smoothness as the vector
fields making up the original system. Somewhat less than differentiability of
the original k is enough for this argument: continuity is enough. However,
if no continuous feedback stabilizer exists, then no smooth V can be found.
(Continuous stabilization of nonlinear systems is basically equivalent to the
existence of what are called smooth control-Lyapunov functions, see, e.g.,
[103].) In that case, if only discontinuous stabilizers are available, the result
can still be generalized, see [79], but the situation is harder to analyze, since
even the notion of “solution” of the closed-loop system ẋ = f(x, k(x)) has to
be carefully defined.

There is also a redefinition procedure for systems that are not affine on
inputs, but the result as stated above is false in that generality, and is much
less interesting; see [101] for a discussion.

The above feedback redesign theorem is merely the beginning of the story.
See for instance the book [60], and the references given later, for many further
developments on the subjects of recursive feedback design, the “backstepping”
approach, and other far-reaching extensions.
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3 Equivalences for ISS

Mathematical concepts are useful when they are “natural” in the sense that
they can be equivalently stated in many different forms. As it turns out, ISS
can be shown to be equivalent to several other notions, including asymptotic
gain, existence of robustness margins, dissipativity, and an energy-like stability
estimate. We review these next.

3.1 Nonlinear Superposition Principle

Clearly, if a system is ISS, then the system with no inputs ẋ = f(x, 0) is GAS:
the term ‖u‖∞ vanishes, leaving precisely the GAS property. In particular,
then, the system ẋ = f(x, u) is 0-stable, meaning that the origin of the system
without inputs ẋ = f(x, 0) is stable in the sense of Lyapunov: for each ε > 0,
there is some δ > 0 such that |x0| < δ implies |x(t, x0)| < ε. (In comparison-
function language, one can restate 0-stability as: there is some γ ∈ K such
that |x(t, x0)| ≤ γ(|x0|) holds for all small x0.)

On the other hand, since β(|x0| , t) → 0 as t → ∞, for t large one has that
the first term in the ISS estimate |x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)} vanishes.
Thus an ISS system satisfies the following asymptotic gain property (“AG”):
there is some γ ∈ K∞ so that:

lim
t→+∞

|x(t, x0, u)| ≤ γ (‖u‖∞) ∀x0, u(·) (AG)

(see Fig. 10). In words, for all large enough t, the trajectory exists, and it
gets arbitrarily close to a sphere whose radius is proportional, in a possibly
nonlinear way quantified by the function γ, to the amplitude of the input. In
the language of robust control, the estimate (AG) would be called an “ultimate
boundedness” condition; it is a generalization of attractivity (all trajectories
converge to zero, for a system ẋ = f(x) with no inputs) to the case of systems
with inputs; the “lim sup” is required since the limit of x(t) as t → ∞ may
well not exist. From now on (and analogously when defining other properties),
we will just say “the system is AG” instead of the more cumbersome “satisfies
the AG property.”

Fig. 10. Asymptotic gain property
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Observe that, since only large values of t matter in the limsup, one can
equally well consider merely tails of the input u when computing its sup norm.
In other words, one may replace γ(‖u‖∞) by γ(limt→+∞ |u(t)|), or (since γ is
increasing), limt→+∞γ(|u(t)|).

The surprising fact is that these two necessary conditions are also sufficient.
We call this the ISS superposition theorem:

Theorem 3.1. [110] A system is ISS if and only if it is 0-stable and AG.

This result is nontrivial. The basic difficulty is in establishing uniform con-
vergence estimates for the states, i.e., in constructing the β function in the ISS
estimate, independently of the particular input. As in optimal control theory,
one would like to appeal to compactness arguments (using weak topologies
on inputs), but there is no convexity to allow this. The proof hinges upon a
lemma given in [110], which may be interpreted [41] as a relaxation theorem
for differential inclusions, relating global asymptotic stability of an inclusion
ẋ ∈ F (x) to global asymptotic stability of its convexification.

A minor variation of the above superposition theorem is as follows. Let us
consider the limit property (LIM):

inf
t≥0

|x(t, x0, u)| ≤ γ(‖u‖∞) ∀x0, u(·) (LIM)

(for some γ ∈ K∞).

Theorem 3.2. [110] A system is ISS if and only if it is 0-stable and LIM.

3.2 Robust Stability

Let us call a system robustly stable if it admits a margin of stability ρ, by
which we mean some smooth function ρ ∈ K∞ which is such that the system

ẋ = g(x, d) := f(x, dρ(|x|))

is GAS uniformly in this sense: for some β ∈ KL,

|x(t, x0, d)| ≤ β(|x0| , t)

for all possible d(·) : [0,∞) → [−1, 1]m. An alternative way to interpret this
concept (cf. [109]) is as uniform global asymptotic stability of the origin with
respect to all possible time-varying feedback laws ∆ bounded by ρ: |∆(t, x)| ≤
ρ(|x|). In other words, the system

ẋ = f(x,∆(t, x))

(Fig. 11) is stable uniformly over all such perturbations ∆. In contrast to the
ISS definition, which deals with all possible “open-loop” inputs, the present
notion of robust stability asks about all possible closed-loop interconnections.
One may think of∆ as representing uncertainty in the dynamics of the original
system, for example.
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Fig. 11. Margin of robustness

Theorem 3.3. [109] A system is ISS if and only if it is robustly stable.

Intuitively, the ISS estimate |x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)} tells us
that the β term dominates as long as |u(t)| $ |x(t)| for all t, but |u(t)| $ |x(t)|
amounts to u(t) = d(t).ρ(|x(t)|) with an appropriate function ρ. This is an
instance of a “small gain” argument, about which we will say more later.

One analog for linear systems is as follows: if A is a Hurwitz matrix, then
A+Q is also Hurwitz, for all small enough perturbations Q; note that when
Q is a nonsingular matrix, |Qx| is a K∞ function of |x|.

3.3 Dissipation

Another characterization of ISS is as a dissipation notion stated in terms of
a Lyapunov-like function.

We will say that a continuous function V : IRn → IR is a storage function
if it is positive definite, that is, V (0) = 0 and V (x) > 0 for x �= 0, and
proper, that is, V (x) → ∞ as |x| → ∞. This last property is equivalent to the
requirement that the sets V −1([0, A]) should be compact subsets of IRn, for
each A > 0, and in the engineering literature it is usual to call such functions
radially unbounded . It is an easy exercise to show that V : IRn → IR is a
storage function if and only if there exist α, α ∈ K∞ such that

α(|x|) ≤ V (x) ≤ α(|x|) ∀x ∈ IRn

(the lower bound amounts to properness and V (x) > 0 for x �= 0, while the
upper bound guarantees V (0) = 0). We also use this notation: V̇ : IRn×IRm →
IR is the function:

V̇ (x, u) := ∇V (x).f(x, u)

which provides, when evaluated at (x(t), u(t)), the derivative dV/dt along
solutions of ẋ = f(x, u).

An ISS-Lyapunov function for ẋ = f(x, u) is by definition a smooth storage
function V for which there exist functions γ, α ∈ K∞ so that

V̇ (x, u) ≤ −α(|x|) + γ(|u|) ∀x, u . (L-ISS)
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In other words, an ISS-Lyapunov function is a smooth (and proper and
positive definite) solution of a partial differential inequality of this form, for
appropriate α, γ. Integrating, an equivalent statement is that, along all tra-
jectories of the system, there holds the following dissipation inequality:

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

w(u(s), x(s)) ds

where, using the terminology of [126], the “supply” function is w(u, x) =
γ(|u|)−α(|x|). Note that, for systems with no inputs, an ISS-Lyapunov func-
tion is precisely the same as a Lyapunov function in the usual sense. Massera’s
Theorem says that GAS is equivalent to the existence of smooth Lyapunov
functions; the following theorem provides a generalization to ISS:

Theorem 3.4. [109] A system is ISS if and only if it admits a smooth ISS-
Lyapunov function.

Since −α(|x|) ≤ −α(α−1(V (x))), the ISS-Lyapunov condition can be re-
stated as

V̇ (x, u) ≤ −α̃(V (x)) + γ(|u|) ∀x, u
for some α̃ ∈ K∞. In fact, one may strengthen this a bit [93]: for any ISS
system, there is a always a smooth ISS-Lyapunov function satisfying the “ex-
ponential” estimate V̇ (x, u) ≤ −V (x) + γ(|u|).

The sufficiency of the ISS-Lyapunov condition is easy to show, and was
already in the original paper [99]. A sketch of proof is as follows, assuming
for simplicity a dissipation estimate in the form V̇ (x, u) ≤ −α(V (x))+γ(|u|).
Given any x and u, either α(V (x)) ≤ 2γ(|u|) or V̇ ≤ −α(V )/2. From here,
one deduces by a comparison theorem that, along all solutions,

V (x(t)) ≤ max
{
β(V (x0), t) , α−1(2γ(‖u‖∞))

}
,

where we have defined the KL function β(s, t) as the solution y(t) of the initial
value problem

ẏ = −1
2
α(y) + γ(u) , y(0) = s .

Finally, an ISS estimate is obtained from V (x0) ≤ α(x0).
The proof of the converse part of the theorem is much harder. It is based

upon first showing that ISS implies robust stability in the sense already dis-
cussed, and then obtaining a converse Lyapunov theorem for robust stability
for the system ẋ = f(x, dρ(|x|)) = g(x, d), which is asymptotically stable uni-
formly on all Lebesgue-measurable functions d(·) : IR≥0 → B(0, 1). This last
theorem was given in [73], and is basically a theorem on Lyapunov functions
for differential inclusions. A classical result of Massera [84] for differential
equations becomes a special case.
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3.4 Using “Energy” Estimates Instead of Amplitudes

In linear control theory, H∞ theory studies L2 → L2 induced norms. We
already saw that, under coordinate changes, we are led to the following type
of estimate:

∫ t

0

α (|x(s)|)) ds ≤ α0(|x0|) +
∫ t

0

γ(|u(s)|) ds

along all solutions, and for some α, α0, γ ∈ K∞. More precisely, let us say,
just for the purposes of the next theorem, that a system satisfies an integral–
integral estimate if for every initial state x0 and input u, the solution x(t, x0, u)
is defined for all t > 0 and an estimate as above holds. (In contrast to ISS, we
now have to explicitly demand that tmax = ∞.)

Theorem 3.5. [102] A system is ISS if and only if it satisfies an integral–
integral estimate.

This theorem is quite easy, in view of previous results. A sketch of proof
is as follows. If the system is ISS, then there is an ISS-Lyapunov function
satisfying V̇ (x, u) ≤ −V (x) + γ(|u|), so, integrating along any solution we
obtain
∫ t

0

V (x(s)) ds ≤
∫ t

0

V (x(s)) ds + V (x(t)) ≤ V (x(0)) +
∫ t

0

γ(|u(s)|) ds

and thus an integral–integral estimate holds. Conversely, if such an estimate
holds, one can prove that ẋ = f(x, 0) is stable and that an asymptotic gain
exists. We show here just the “limit property” inft≥0 |x(t)| ≤ θ(‖u‖∞). Indeed,
let θ := α−1 ◦ γ. Pick any x0 and u, and suppose that inft≥0 |x(t)| > (α−1 ◦
γ)(‖u‖), so that there is some ε > 0 so that α(x(t)) ≥ ε + γ(|u(t)|) for all
t ≥ 0. Then,

∫ t
0
α(x(s))ds ≥ εt +

∫ t
0
γ(|u(s)|)ds, which implies α0(|x0|) >

εt for all t, a contradiction. Therefore, the LIM property holds with this
choice of θ.

4 Cascade Interconnections

One of the main features of the ISS property is that it behaves well under
composition: a cascade (Fig. 12) of ISS systems is again ISS, see [99]. In
this section, we will sketch how the cascade result can also be seen as a
consequence of the dissipation characterization of ISS, and how this suggests
a more general feedback result. We will not provide any details of the rich
theory of ISS small-gain theorems, and their use in nonlinear feedback design,
for which the references should be consulted, but we will present a very simple
example to illustrate the ideas. We consider a cascade as follows:
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Fig. 12. Cascade
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Fig. 13. Adding a feedback to the cascade

ż = f(z, x),
ẋ = g(x, u),

where each of the two subsystems is assumed to be ISS. Each system admits
an ISS-Lyapunov function Vi. But, moreover, it is always possible (see [106])
to redefine the Vi’s so that the comparison functions for both are matched in
the following way:

V̇1(z, x) ≤ θ(|x|) − α(|z|),
V̇2(x, u) ≤ θ̃(|u|) − 2θ(|x|) .

Now it is obvious why the full system is ISS: we simply use V := V1 + V2 as
an ISS-Lyapunov function for the cascade:

V̇ ((x, z), u) ≤ θ̃(|u|) − θ(|x|) − α(|z|) .
Of course, in the special case in which the x-subsystem has no inputs, we have
also proved that the cascade of a GAS and an ISS system is GAS.

More generally, one may allow a “small gain” feedback as well (Fig. 13).
That is, we allow inputs u = k(z) as long as they are small enough:

|k(z)| ≤ θ̃−1((1 − ε)α(|z|)) .
The claim is that the closed-loop system

ż = f(z, x)
ẋ = g(x, k(x))

is GAS. This follows because the same V is a Lyapunov function for the
closed-loop system; for (x, z) �= 0:

θ̃(|u|) ≤ (1 − ε)α(|z|) � V̇ (x, z) ≤ −θ(|x|) − εα(|z|) < 0 . �
A much more interesting version of this result, resulting in a composite system
with inputs being itself ISS, is the ISS small-gain theorem due to Jiang, Teel,
and Praly [53].
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4.1 An Example of Stabilization Using the ISS Cascade Approach

We consider a model of a rigid body in 3-space (Fig. 14), controlled by two
torques acting along principal axes. This is a simple model of a satellite con-
trolled by an opposing jet pair. If we denote by ω = (ω1, ω2, ω3) the angular
velocity of a body-attached frame with respect to inertial coordinates, and let
I = diag(I1, I2, I3) be the principal moments of inertia, the equations are:

Iω̇ =

⎛
⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎠ Iω +

⎛
⎝0 0

1 0
0 1

⎞
⎠u

Ignoring kinematics, we just look at angular momenta, and we look for a
feedback law to globally stabilize this system to ω = 0. Under feedback and
coordinate transformations, one can bring this into the following form of a
system in IR3 with controls in IR2:

ẋ1 = x2x3,

ẋ2 = u1,

ẋ3 = u2 .

(We assume that I2 �= I3, and use these transformations: (I2 − I3)x1=I1ω1,
x2=ω2, x3=ω3, I2ũ1=(I3−I1)ω1ω2 +u1, I3ũ2=(I1−I2)ω1ω3 +u2.) Our claim
is that the following feedback law globally stabilizes the system:

u1 = −x1 − x2 − x2x3

u2 = −x3 + x2
1 + 2x1x2x3 .

Indeed, as done in [18] for the corresponding local problem, we make the
following transformations: z2 := x1+x2, z3 := x3−x2

1, so the system becomes:

Fig. 14. Rigid body
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ẋ1 = −x3
1 + α(x1, z2, z3) (degx1

α ≤ 2),
ż2 = −z2,
ż3 = −z3 .

Now, the x1-subsystem is easily seen to be ISS, and the z1, z2 subsystem is
clearly GAS, so the cascade is GAS. Moreover, a similar construction produces
a feedback robust with respect to input disturbances.

5 Integral Input-to-State Stability

We have seen that several different properties, including “integral to integral”
stability, dissipation, robust stability margins, and asymptotic gain proper-
ties, all turned out to be exactly equivalent to input to state stability. Thus,
it would appear to be difficult to find a general and interesting concept of
nonlinear stability that is truly distinct from ISS. One such concept, however,
does arise when considering a mixed notion which combines the “energy” of
the input with the amplitude of the state. It is obtained from the “L2 → L∞”
gain estimate, under coordinate changes, and it provides a genuinely new
concept [102].

A system is said to be integral-input to state stable (iISS) provided that
there exist α, γ ∈ K∞ and β ∈ KL such that the estimate

α (|x(t)|) ≤ β(|x0| , t) +
∫ t

0

γ(|u(s)|) ds (iISS)

holds along all solutions. Just as with ISS, we could state this property merely
for all times t ∈ tmax(x0, u), but, since the right-hand side is bounded on each
interval [0, t] (because, recall, inputs are by definition assumed to be bounded
on each finite interval), it is automatically true that tmax(x0, u) = +∞ if such
an estimate holds along maximal solutions. So forward-completeness can be
assumed with no loss of generality.

5.1 Other Mixed Notions

We argued that changes of variables transformed linear “finite L2 gain” es-
timates into an “integral to integral” property, which we then found to be
equivalent to the ISS property. On the other hand, finite operator gain from
Lp to Lq, with p �= q both finite, lead one naturally to the following type of
“weak integral to integral” mixed estimate:

∫ t

0

α(|x(s)|) ds ≤ κ(|x0|) + α

(∫ t

0

γ(|u(s)|) ds
)

for appropriate K∞ functions (note the additional “α”). See [12] for more
discussion on how this estimate is reached, as well as the following result:
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Theorem 5.1. [12] A system satisfies a weak integral to integral estimate if
and only if it is iISS.

Another interesting variant is found when considering mixed integral/
supremum estimates:

α(|x(t)| ≤ β(|x0|, t) +
∫ t

0

γ1(|u(s)|) ds + γ2(‖u‖∞)

for suitable β ∈ KL and α, γi ∈ K∞. One then has:

Theorem 5.2. [12] A system satisfies a mixed estimate if and only if it is
iISS.

5.2 Dissipation Characterization of iISS

There is an amazingly elegant characterization of iISS, as follows. Recall that
by a storage function we mean a continuous V : IRn → IR which is positive
definite and proper. Following [11], we will say that a smooth storage function
V is an iISS-Lyapunov function for the system ẋ = f(x, u) if there are a
γ ∈ K∞ and an α : [0,+∞) → [0,+∞) which is merely positive definite (that
is, α(0) = 0 and α(r) > 0 for r > 0) such that the inequality:

V̇ (x, u) ≤ −α(|x|) + γ(|u|) (L-iISS)

holds for all (x, u) ∈ IRn × IRm. By contrast, recall that an ISS-Lyapunov
function is required to satisfy an estimate of the same form but where α is
required to be of class K∞; since every K∞ function is positive definite, an
ISS-Lyapunov function is also an iISS-Lyapunov function.

Theorem 5.3. [11] A system is iISS if and only if it admits a smooth iISS-
Lyapunov function.

Since an ISS-Lyapunov function is also an iISS one, ISS implies iISS. How-
ever, iISS is a strictly weaker property than ISS, because α may be bounded
in the iISS-Lyapunov estimate, which means that V may increase, and the
state become unbounded, even under bounded inputs, so long as γ(|u(t)|) is
larger than the range of α. This is also clear from the iISS definition, since a
constant input with |u(t)| = r results in a term in the right-hand side that
grows like rt. As a concrete example using a nontrivial V , consider the system

ẋ = −tan−1x + u,

which is not ISS, since u(t) ≡ π/2 results in unbounded trajectories. This
system is nonetheless iISS: if we pick V (x) = x tan−1x, then

V̇ ≤ −(tan−1 |x|)2 + 2 |u|
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so V is an iISS-Lyapunov function. An interesting general class of examples
is given by bilinear systems

ẋ =

(
A+

m∑
i=1

uiAi

)
x + Bu

for which the matrix A is Hurwitz. Such systems are always iISS (see [102]),
but they are not in general ISS. For instance, in the case whenB = 0, bounded-
ness of trajectories for all constant inputs already implies that A+

∑m
i=1 uiAi

must have all eigenvalues with nonpositive real part, for all u ∈ IRm, which is
a condition involving the matrices Ai (for example, ẋ = −x + ux is iISS but
it is not ISS).

The notion of iISS is useful in situations where an appropriate notion of
detectability can be verified using LaSalle-type arguments. There follow two
examples of theorems along these lines.

Theorem 5.4. [11] A system is iISS if and only if it is 0-GAS and there is
a smooth storage function V such that, for some σ ∈ K∞:

V̇ (x, u) ≤ σ(|u|)

for all (x, u).

The sufficiency part of this result follows from the observation that the 0-
GAS property by itself already implies the existence of a smooth and positive
definite, but not necessarily proper, function V0 such that V̇0 ≤ γ0(|u|) −
α0(|x|) for all (x, u), for some γ0 ∈ K∞ and positive definite α0 (if V0 were
proper, then it would be an iISS-Lyapunov function). Now one uses V0 + V
as an iISS-Lyapunov function (V provides properness).

Theorem 5.5. [11] A system is iISS if and only if there exists an output func-
tion y = h(x) (continuous and with h(0) = 0) which provides zero-detectability
(u ≡ 0 and y ≡ 0 ⇒ x(t) → 0) and dissipativity in the following sense: there
exists a storage function V and σ ∈ K∞, α positive definite, so that:

V̇ (x, u) ≤ σ(|u|) − α(h(x))

holds for all (x, u).

The paper [12] contains several additional characterizations of iISS.

5.3 Superposition Principles for iISS

We now discuss asymptotic gain characterizations for iISS.
We will say that a system is bounded energy weakly converging state (BE-

WCS) if there exists some σ ∈ K∞ so that the following implication holds:
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∫ +∞

0

σ(|u(s)|) ds < +∞ ⇒ lim inf
t→+∞

|x(t, x0, u)| = 0 (BEWCS)

(more precisely: if the integral is finite, then tmax(x0, u) = +∞ and the liminf
is zero), and that it is bounded energy frequently bounded state (BEFBS) if
there exists some σ ∈ K∞ so that the following implication holds:
∫ +∞

0

σ(|u(s)|) ds < +∞ ⇒ lim inf
t→+∞

|x(t, x0, u)| < +∞ (BEFBS)

(again, meaning that tmax(x0, u) = +∞ and the liminf is finite).

Theorem 5.6. [6] The following three properties are equivalent for any given
system ẋ = f(x, u):

• The system is iISS
• The system is BEWCS and 0-stable
• The system is BEFBS and 0-GAS

These characterizations can be obtained as consequences of characteriza-
tions of input/output to state stability (IOSS), cf. Sect. 8.4. The key obser-
vation is that a system is iISS with input gain (the function appearing in the
integral) σ if and only if the following auxiliary system is IOSS with respect
to the “error” output y = e:

ẋ = f(x, u)
ė = σ(|u|) .

The proof of this equivalence is trivial, so we include it here. If the system is
iISS, then:

α(|x(t, x0, u)|) ≤ β(|x0| , t) +
∫ t

0

σ(|u(s)|) ds = β(|x0| , t) + e(t) − e(0)

≤ β(|x0| , t) + 2‖y[0,t]‖∞

and, conversely, if it is IOSS, then for any x0 and picking e(0) = 0, we have:

|x(t, x0, u)| ≤ β(|(x0, 0)| , t) + γ(‖u‖∞) + ‖y[0,t]‖∞

≤ β(|x0| , t) + γ(‖u‖∞) +
∫ t

0

σ(|u|) ds .

5.4 Cascades Involving iISS Systems

We have seen that cascades of ISS systems are ISS, and, in particular, any
system of the form:

ẋ = f(x, z)
ż = g(z)
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for which the x-subsystem is ISS when z is viewed as an input and the g-
subsystem is GAS, is necessarily GAS. This is one of the most useful prop-
erties of the ISS notion, as it allows proving stability of complex systems
by a decomposition approach. The iISS property on the first subsystem, in
contrast, is not strong enough to guarantee that the cascade is GAS. As an
illustration, consider the following system:

ẋ = −sat(x) + xz,

ż = −z3 ,

where sat(x) := sgn(x)min{1, |x|}. It is easy to see that the x-subsystem with
input z is iISS, and the z-subsystem is clearly GAS. On the other hand [13],
if we pick z(0) = 1 and any x(0) ≥ 3, then x(t) ≥ e(

√
1+2t−1), so x(t) → ∞

as t → ∞; so the complete system is not GAS. However, under additional
conditions, it is possible to obtain a cascade result for a system of the above
form. One such result is as follows.

Theorem 5.7. [13] Suppose that the x-subsystem is iISS and affine in z,
and that the z-subsystem is GAS and locally exponentially stable. Then, the
cascade is GAS.

Note that the counterexample shown above is so that the x-subsystem is
indeed affine in z, but the exponential stability property fails. This theorem
is a consequence of a more general result, which is a bit technical to state.
We first need to introduce two concepts. The first one qualifies the speed of
convergence in the GAS property, and serves to relax exponential stability:
we say that the system ż = g(z) is GAS(α), for a given α ∈ K∞, if there exists
a class-K∞ function θ(·) and a positive constant k > 0 so that

|z(t)| ≤ α
(
e−ktθ(|z0|)

)
holds for all z0. (Recall that GAS is always equivalent to the existence of some
α and θ like this.) The second concept is used to characterize the function γ
appearing in the integral in the right-hand side of the iISS estimate, which
we call the “iISS gain” of the system: given any α ∈ K∞, we say that the
function γ is “class-Hα” if it is of class K and it also satisfies:

∫ 1

0

(γ(α(s))
s

ds < ∞ .

The main result says that if the same α can be used in both definitions, then
the cascade is GAS:

Theorem 5.8. [13] Suppose that the x-subsystem is iISS with a class-Hα

iISS gain, and that the z-subsystem is GAS(α). Then, the cascade is GAS.

See [13] for various corollaries of this general fact, which are based upon
checking that the hypotheses are always satisfied, for example for the above-
mentioned case of x- subsystem affine in z and exponentially stable z- sub-
system.
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5.5 An iISS Example

As an example of the application of iISS ideas, we consider as in [11] a robotic
device studied by Angeli in [3]. This is a manipulator with one rotational and
one linear actuator (Fig. 15). A simple model is obtained considering the arm
as a segment with mass M and length L, and the hand as a material point
with mass m. The equations for such a system are four-dimensional, using
as state variables angular position and velocity θ, θ̇ and linear extension and
velocity r, ṙ, and they follow from the second order equation

(mr2 +ML2/3) θ̈ + 2mrṙθ̇ = τ

mr̈ −mrθ̇2 = F ,

where the controls are the torque τ and linear force F . We write the state
as (q, q̇), with q = (θ, r), We wish to study the standard tracking feedback
controller with equations

τ = −k1θ̇ − k2(θ − θd) , F = −k3ṙ − k4(r − rd)

where qd, rd are the desired trajectories. It is well-known that, for constant
tracking signals qd, rd, one obtains convergence: q̇ → 0 and q → qd as t → ∞.
In the spirit of the ISS approach, however, it is natural to ask what is the
sensitivity of the design to additive measurement noise, or equivalently, since
these errors are potentially arbitrary functions, what is the effect of time-
varying tracking signals. One could ask if the system is ISS, and indeed the
paper [83] proposed the reformulation of tracking problems using ISS as a way
to characterize performance.

It turns out that, for this example, even bounded signals may destabilize
the system, by a sort of “nonlinear resonance” effect, so the system cannot be
ISS (not even bounded-input bounded-state) with respect to qd and rd. Fig. 16
plots a numerical example of a de-stabilizing input; the corresponding r(t)-
component is in Fig. 17. To be precise, the figures show the “r” component of
the state of a certain solution which corresponds to the shown input; see [11]

θ

r F

τ

m

M

Fig. 15. A linear/rotational actuated arm
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Fig. 16. Destabilizing input

Fig. 17. Corresponding r(·)

for details on how this input and trajectory were calculated. Thus, the question
arises of how to qualitatively formulate the fact that some other inputs are not
destabilizing. We now show that iISS provides one answer to this question,

In summary, we wish to show that the closed loop system

(mr2 +ML2/3)θ̈ + 2mrṙθ̇ = u1 − k1θ̇ − k2θ,

mr̈ −mrθ̇2 = u2 − k3ṙ − k4r,

with states (q, q̇), q = (θ, r), and u = (k2θd, k4rd) is iISS.
In order to do so, we consider the mechanical energy of the system:

V (q, z) :=
1
2
q̇TH(q)q̇ +

1
2
qTKq

and note [11] the following passivity-type estimate:

d

dt
V (q(t), q̇(t)) ≤ −c1|q̇(t)|2 + c2 |u(t)|2

for sufficiently small c1 > 0 and large c2 > 0. Taking q̇ as an output, the
system is zero-detectable and dissipative, since u ≡ 0 and q̇ ≡ 0 imply q ≡ 0,
and hence, appealing to the given dissipation characterizations, we know that
it is indeed iISS.
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6 Input to State Stability with Respect to Input
Derivatives

The ISS property imposes a very strong requirement, in that stable behavior
must hold with respect to totally arbitrary inputs. Often, on the other hand,
only stability with respect to specific classes of signals is expected. An example
is in regulation problems, where disturbance rejection is usually formulated in
terms of signals generated by a given finite-dimensional exosystem. Another
example is that of parameter drift in adaptive control systems, where bounds
on rates of change of parameters (which we may see as inputs) are imposed.
This question motivated the work in [10] on ISS notions in which one asks,
roughly, that x(t) should be small provided that u and its derivatives of some
fixed order be small, but not necessarily when just u is small. The precise
definition is as follows.

For any given nonnegative integer k, we say that the system ẋ = f(x, u) is
differentiably k-ISS (DkISS) if there exist β ∈ KL and γi ∈ K∞, i = 0, . . . , k,
such that the estimate:

|x(t, x0, u)| ≤ β(|x0| , t) +
k∑
i=0

γi

(
‖u(i)‖∞

)
(DkISS)

holds for all x0, all inputs u ∈ W k,∞, and all t ∈ tmax(x0, u). (By W k,∞ we are
denoting the Sobolev space of functions u: [0,∞)→IRm for which the (k−1)st
derivative u(k−1) exists and is locally Lipschitz, which means in particular that
u(k) exists almost everywhere and is locally essentially bounded.) As with the
ISS property, forward completeness is automatic, so one can simply say “for
all t” in the definition. Notice that D0ISS is the same as plain ISS, and that,
for every k, DkISS implies Dk+1ISS.

6.1 Cascades Involving the DkISS Property

Consider any cascade as follows:

ẋ = f(x, z)
ż = g(z, u)

where we assume that g is smooth. The following result generalizes the fact
that cascading ISS and GAS subsystems gives a GAS system.

Theorem 6.1. [10] If each subsystem is DkISS, then the cascade is DkISS.
In particular the cascade of a DkISS and a GAS system is GAS.

Actually, somewhat less is enough: the x-subsystem need only be Dk+1ISS,
and we may allow the input to appear in this subsystem.

It is not difficult to see that a system is D1ISS if and only if the following
system:
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ẋ = f(x, z)
ż = −z + u

is ISS, and recursively one can obtain a similar characterization of DkISS.
More generally, a system is DkISS if and only if it is Dk−1ISS when cascaded
with any ISS “smoothly invertible filter” as defined in [10]. Also very useful is
a close relationship with the IOSS concept studied in Sect. 8.2. Consider the
following auxiliary system with input u and output y:

ẋ = f(x, u0)
u̇0 = u1

...
...

u̇k−1 = uk

y = [u0, u1, . . . , uk−1].

Theorem 6.2. [10] The auxiliary system is IOSS if and only if the original
system is DkISS.

The paper [10] also discusses some relations between the notion of D1ISS
and ISS, for systems of the special form ẋ = f(x + u), which are of interest
when studying observation uncertainty.

6.2 Dissipation Characterization of DkISS

Theorem 6.3. [10] A system is D1ISS if and only if there exists a smooth
function V (x, u) such that, for some α, δ0, δ1, α1, α2 ∈ K∞,

α1(|x| + |u|) ≤ V (x, u) ≤ α2(|x| + |u|)

and

DxV (x, u) f(x, u) +DuV (x, u)u̇ ≤ −α(|x|) + δ0(|u|) + δ1(|u̇|)

for all (x, u, u̇) ∈ IRn × IRm × IRm.

Notice that “u̇” is just a dummy variable in the above expression. Analo-
gous characterizations hold for DkISS.

6.3 Superposition Principle for DkISS

We will say that a forward-complete system satisfies the k-asymptotic gain (k-
AG) property if there are some γ0, γ1, . . . , γk ∈ K so that, for all u ∈ W k,∞,
and all x0, the estimate

lim
t→∞

|x(t, ξ, u)| ≤ γ0(‖u‖∞) + γ1(‖u̇‖∞) + . . .+ γk(‖u(k)‖∞)

holds.

Theorem 6.4. [10] A system is DkISS if and only if it is 0-stable and k-AG.
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6.4 A Counter-Example Showing that D1ISS �= ISS

Consider the following system:

ẋ = ‖x‖2 U(θ)′ ΦU(θ)x,

where x ∈ IR2, and u = θ(·) is the input,

U(θ) =
[

sin(θ) cos(θ)
− cos(θ) sin(θ)

]
,

and where Φ is any 2×2 Hurwitz matrix such that Φ′+Φ has a strictly positive
real eigenvalue. It is shown in [10] that this system is not forward complete,
and in particular it is not ISS, but that it is D1ISS. This latter fact is shown
by proving, through the construction of an explicit ISS-Lyapunov function,
that the cascaded system

ẋ = ‖x‖2 U(θ)′ ΦU(θ)x, θ̇ = −θ + u

is ISS.
It is still an open question if D2ISS is strictly weaker than D1ISS, and

more generally Dk+1ISS than DkISS for each k.

7 Input-to-Output Stability

Until now, we only discussed stability of states with respect to inputs. For
systems with outputs ẋ = f(x, u), y = h(x), if we simply replace states by
outputs in the left-hand side of the estimate defining ISS, we then arrive to
the notion of input-to-output stability (IOS): there exist some β ∈ KL and
γ ∈ K∞ such that

|y(t)| ≤ β(|x0| , t) + γ (‖u‖∞) (IOS)

holds for all solutions, where y(t) = h(x(t, x0, u)). By “all solutions” we mean
that this estimate is valid for all inputs u(·), all initial conditions x0, and
all t ≥ 0, and we are imposing as a requirement that the system be forward
complete, i.e., tmax(x0, u) = ∞ for all initial states x0 and inputs u. As earlier,
x(t), and hence y(t) = h(x(t)), depend only on past inputs (“causality”), so
we could have used just as well simply the supremum of |u(s)| for s ≤ t in the
estimate.

We will say that a system is bounded-input bounded-state stable (BIBS) if,
for some σ ∈ K∞, the following estimate:

|x(t)| ≤ max {σ(|x0|), σ(‖u‖∞)}

holds along all solutions. (Note that forward completeness is a consequence
of this inequality, even if it is only required on maximal intervals, since the
state is upper bounded by the right-hand side expression.)
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We define an IOS-Lyapunov function as any smooth function V : IRn →
IR≥0 so that, for some αi ∈ K∞:

α1(|h(x)|) ≤ V (x) ≤ α2(|x|) ∀ x ∈ IRn, u ∈ IRm

and, for all x, u:

V (x) > α3(|u|) ⇒ ∇V (x) f(x, u) < 0 .

Theorem 7.1. [113] A BIBS system is IOS if and only if it admits an IOS-
Lyapunov function.

A concept related to IOS is as follows. We call a system robustly output
stable (ROS) if it is BIBS and there is some smooth λ ∈ K∞ such that

ẋ = g(x, d) := f(x, dλ(|y|)) , y = h(x)

is globally output-asymptotically stable uniformly with respect to all d(·) :
[0,∞) → [−1, 1]m: for some β ∈ KL,

|y(t, x0, d)| ≤ β(|x0| , t)

for all solutions. Then, IOS implies ROS, but the converse does not hold in
general [112]. We have the following dissipation characterization of ROS:

Theorem 7.2. [113] A system is ROS if and only if it is BIBS and there are
α1, α2 ∈ K∞, χ ∈ K, and α3 ∈ KL, and a smooth function V : IRn → IR, so
that

α1(|h(x)|) ≤ V (x) ≤ α2(|x|)
and

|h(x)| ≥ χ(|u|) ⇒ V̇ ≤ −α3(V (x), |x|)
for all (x, u).

The area of partial stability studies stability of a subset of variables in
a system ẋ = f(x). Letting y = h(x) select the variables of interest, one
may view partial stability as a special case of output stability, for systems
with no inputs. Note that, for systems with no inputs, the partial differential
inequality for IOS reduces to ∇V (x) f(x) < 0 for all nonzero x, and that for
ROS to V̇ ≤ −α3(V (x), |x|). In this way, the results in [113] provide a far-
reaching generalization of, and converse theorems to, sufficient conditions [125]
for partial stability.

There is also a superposition principle for IOS. We will say that a forward-
complete system satisfies the output asymptotic gain (OAG) property if

lim
t→∞

|y(t)| ≤ γ(‖u‖∞) (OAG)

for some γ ∈ K∞ and all solutions. One would like to have a characterization of
IOS in terms of OAG, which is an analog of the AG gain property in the state
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case, and a stability property. Let us define a system to be output-Lagrange
stable (OL) if it satisfies an estimate, for some σ ∈ K∞:

|y(t)| ≤ σ(|y(0)|) + σ(‖u‖∞)

along all solutions. Under this assumption, we recover a separation principle:

Theorem 7.3. [6] An OL system is OAG if and only if it is IOS.

Observe that the OL property asks that the output be uniformly bounded
in terms of the amplitudes of the input and of the initial output (not of the
initial state), which makes this property a very strong constraint. If we weaken
the assumption to an estimate of the type

|y(t)| ≤ σ(|x0|) + σ(‖u‖∞)

then IOS implies the conjunction of OL and this property, but the converse
fails, as shown by the following counter-example, a system with no inputs:

ẋ1 = −x2 |x2| , ẋ2 = x1 |x2| , y = x2 .

The set of equilibria is {x2 = 0}, and trajectories are half circles traveled
counterclockwise. We have that |y(t)| ≤ |x(0)| for all solutions, and y(t) → 0
as t → ∞, so both properties hold. However, there is no possible IOS estimate
|y(t)| ≤ β(|x0| , t), since, in particular, for a state of the form x(0) = (1, ε),
the time it takes for y(·) to enter an ε-neighborhood of 0 goes to ∞ as ε → 0;
see [6] for more discussion.

8 Detectability and Observability Notions

Recall (see [104] for precise definitions) that an observer for a given system
with inputs and outputs ẋ = f(x, u), y = h(x) is another system which,
using only information provided by past input and output signals, provides an
asymptotic (i.e., valid as t → ∞) estimate x̂(t) of the state x(t) of the system of
interest (Fig. 18). One may think of the observer as a physical system or as an
algorithm implemented by a digital computer. The problem of state estimation
is one of the most important and central topics in control theory, and it arises

� �

�
�u y

x
x̂

Fig. 18. Observer provides estimate x̂ of state x; x̂(t) − x(t) → 0 as t → ∞
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in signal processing applications (Kalman filters) as well as when solving the
problem of stabilization based on partial information. It is well understood for
linear systems, but, a huge amount of research notwithstanding, the theory
of observers is not as developed in general.

We will not say much about the general problem of building observers,
which is closely related to “incremental” ISS-like notions, a subject not yet
studied enough, but will focus on an associated but easier question. When
the ultimate goal is that of stabilization to an equilibrium, let us say x = 0
in Euclidean space, sometimes a weaker type of estimate suffices: it may be
enough to obtain a norm-estimator which provides merely an upper bound
on the norm |x(t)| of the state x(t); see [50, 57, 93]. Before defining norm-
estimators, and studying their existence, we need to introduce an appropriate
notion of detectability.

8.1 Detectability

Suppose that an observer exists, for a given system. Since x0 = 0 is an equi-
librium for ẋ = f(x, 0), and also h(0) = 0, the solution x(t) ≡ 0 is consistent
with u ≡ 0 and y ≡ 0. Thus, the estimation property x̂(t) − x(t) → 0 implies
that x̂(t) → 0. Now consider any state x0 for which u ≡ 0 and y ≡ 0, that
is, so that h(x(t, x0, 0)) ≡ 0. The observer output, which can only depend
on u and y, must be the same x̂ as when x0 = 0, so x̂(t) → 0; then, using
once again the definition of observer x̂(t) − x(t, x0, 0) → 0, we conclude that
x(t, x0, 0) → 0. In summary, a necessary condition for the existence of an
observer is that the “subsystem” of ẋ = f(x, u), y = h(x) consisting of those
states for which u ≡ 0 produces the output y ≡ 0 must have x = 0 as a GAS
state (Fig. 19); one says in that case that the system is zero-detectable. (For
linear systems, zero-detectability is equivalent to detectability or “asymptotic
observability” [104]: two trajectories which produce the same output must ap-
proach each other. But this equivalence need not hold for nonlinear systems.)
In a nonlinear context, zero-detectability is not “well-posed” enough: to get
a well-behaved notion, one should add explicit requirements to ask that small
inputs and outputs imply that internal states are small too (Fig. 20), and that
inputs and outputs converging to zero as t → ∞ implies that states do, too
(Fig. 21), These properties are needed so that “small” errors in measurements
of inputs and outputs processed by the observer give rise to small errors.
Furthermore, one should impose asymptotic bounds on states as a function

� �u ≡ 0
⇒ x → 0

y ≡ 0

Fig. 19. Zero-detectability
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� �u ≈ 0
⇒ x ≈ 0

y ≈ 0

Fig. 20. Small inputs and outputs imply small states

� �u → 0
⇒ x → 0

y → 0

Fig. 21. Converging inputs and outputs imply convergent states

of input/output bounds, and it is desirable to quantify “overshoot” (transient
behavior). This leads us to the following notion.

8.2 Dualizing ISS to OSS and IOSS

A system is input/output to state stable (IOSS) if, for some β ∈ KL and
γu, γy ∈ K∞,

x(t) ≤ β(|x0|, t) + γ1

(
‖u[0,t]‖∞

)
+ γ2

(
‖y[0,t]‖∞

)
(IOSS)

for all initial states and inputs, and all t ∈ [0, Tξ,u). Just as ISS is stronger
than 0-GAS, IOSS is stronger than zero-detectability. A special case is when
one has no inputs, output to state stability:

|x(t, x0)| ≤ β(|x0|, t) + γ
(
‖y|[0,t]‖∞

)

and this is formally “dual” to ISS, simply replacing inputs u by outputs in
the ISS definition. This duality is only superficial, however, as there seems to
be no useful way to obtain theorems for OSS by dualizing ISS results. (Note
that the outputs y depend on the state, not vice versa.)

8.3 Lyapunov-Like Characterization of IOSS

To formulate a dissipation characterization, we define an IOSS-Lyapunov func-
tion as a smooth storage function so that

∇V (x) f(x, u) ≤ −α1(|x|) + α2(|u|) + α3(|y|)

for all x ∈ IRn, u ∈ IRm, y ∈ IRp. The main result is:

Theorem 8.1. [65] A system is IOSS if and only if it admits an IOSS-
Lyapunov function.
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8.4 Superposition Principles for IOSS

Just as for ISS and IOS, there are asymptotic gain characterizations of in-
put/output to state stability.

We say that a system satisfies the IO-asymptotic gain (IO-AG) property
if:

lim
t↗tmax(x0,u)

|x(t, x0, u)| ≤ γu(‖u‖∞) + γy(‖y‖∞) ∀x0, u(·) (IO-AG)

(for some γu, γy), and the IO-limit (IO-LIM) property if:

inf
t≥0

|x(t, x0, u)| ≤ γu(‖u‖∞) + γy(‖y‖∞) ∀x0, u(·) (IO-LIM)

(for some γu, γy), where sup norms and inf are taken over [0, tmax(x0, u)). We
also define the notion of zero-input local stability modulo outputs (0-LS) as
follows:

(∀ ε > 0) (∃ δε) max{|x0|, ‖y[0,t]‖∞} ≤ δε ⇒ |x(t, x0, 0)| ≤ ε . (0-LS)

This is a notion of marginal local detectability; for linear systems, it amounts
to marginal stability of the unobservable eigenvalues. We have the following
result.

Theorem 8.2. [6] The following three properties are equivalent for any given
system ẋ = f(x, u):

• The system is IOSS
• The system is IO-AG and zero-input O-LS
• The system is IO-LIM and zero-input O-LS

Several other characterizations can also be found in [6].

8.5 Norm-Estimators

We define a state-norm-estimator (or state-norm-observer) for a given system
as another system

ż = g(z, u, y) , with output k : IR� × IRp → IR≥0

evolving in some Euclidean space IR�, and driven by the inputs and outputs
of the original system. We ask that the output k should be IOS with respect
to the inputs u and y, and the true state should be asymptotically bounded in
norm by some function of the norm of the estimator output, with a transient
(overshoot) which depends on both initial states. Formally:

• There are γ̂1, γ̂2 ∈ K and β̂ ∈ KL so that, for each initial state z0 ∈ IR�,
and inputs u and y, and every t in the interval of definition of the solution
z(·, z0,u,y)

k (z(t, z0,u,y),y(t)) ≤ β̂(|z0| , t) + γ̂1

(
‖u|[0,t]‖

)
+ γ̂2

(
‖y|[0,t]‖

)
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• There are ρ ∈ K, β ∈ KL so that, for all initial states x0 and z0 of the
system and observer, and every input u

|x(t, x0,u)| ≤ β(|x0| + |z0| , t) + ρ
(
k
(
z(t, z0,u,yx0,u),yx0,u(t)

))

for all t ∈ [0, tmax(x0,u)), where yx0,u(t) = y(t, x0,u)

Theorem 8.3. [65] A system admits a state-norm-estimator if and only if it
is IOSS.

8.6 A Remark on Observers and Incremental IOSS

As mentioned earlier, for linear systems, “zero-detectability” and detectability
coincide, where the latter is the property that every pair of distinct states is
asymptotically distinguishable. The following is an ISS-type definition of de-
tectability: we say that a system is incrementally (or Lipschitz) input/output-
to-state stable (i-IOSS) if there exist γ1, γ2 ∈ K and β ∈ KL such that, for
any two initial states x0 and z0, and any two inputs u1 and u2,

|x(t, x0, u1)−x(t, z0, u2)| ≤ max {β(|x0−z0| , t), γ1(‖∆u‖), γ2(‖∆y‖)} (i-IOSS)

where ∆u = (u1−u2), ∆y = (yx0,u1−yz0,u2)[0,t], for all t in the common do-
main of definition. It is easy to see that i-IOSS implies IOSS, but the converse
does not hold in general. The notion of incremental-IOSS was introduced
in [111]. A particular case is that in which h(x) ≡ 0, in which case we have
the following notion: a system is incrementally ISS (i-ISS) if there holds an
estimate of the following form:

|x(t, x0, u1)−x(t, z0, u2)| ≤ max {β(|x0−z0| , t), γ1(‖∆u‖)} (i-ISS)

where ∆u = u1 − u2, for all t in the common domain of definition. Several
properties of the i-ISS notion were explored in [4], including the fact that i-ISS
is preserved under cascades. Specializing even more, when there are no inputs
one obtains the property incremental GAS (i-GAS). This last property can
be characterized in Lyapunov terms using the converse Lyapunov result given
in [73] for stability with respect to (not necessarily compact) sets, since it
coincides with stability with respect to the diagonal of the system consisting
of two parallel copies of the same system. Indeed, i-GAS is equivalent to asking
that the system:

ẋ = f(x)
ż = f(z)

be asymptotically stable with respect to {(x, z) | x = z}. A sufficient condition
for i-ISS in dissipation terms, using a similar idea, was given in [4].

As recalled earlier, an observer is another dynamical system, which
processes inputs and outputs of the original system, and produces an esti-
mate x̂(t) of the state x(t): x(t)−x̂(t) → 0 as t → ∞, and this difference (the
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ẋ=f(x,u)
y=h(x)

u(t)

ud(t)

yd(t)

x̂(t)observer

y(t)

Fig. 22. Observer with perturbations in measurements

estimation error) should be small if it starts small (see [104], Chap. 6). As
with zero-detectability, it is more natural in the ISS paradigm to ask that
the estimation error x(t)−x̂(t) should be small even if the measurements of
inputs and outputs received by the observer are corrupted by noise. Writing
ud and yd for the input and output measurement noise respectively, we have
the situation shown pictorially in Fig. 22 (see [111] for a precise definition).
Existence of an observer implies that the system is i-IOSS [111]. The converse
and more interesting problem of building observers under IOSS assumptions
is still a largely unsolved, although much progress has been made for systems
with special structures, cf. [16, 57].

8.7 Variations of IOSS

The terminology IOSS was introduced in [111], and the name arises from the
view of IOSS as “stability from the i/o data to the state.” It combines the
“strong” observability from [99] with ISS; and was called simply “detectabil-
ity” in [98], where it was formulated in an input/output language and applied
to controller parameterization, and it was called “strong unboundedness ob-
servability” in [53] (more precisely, this paper allowed for an additive nonneg-
ative constant in the estimate). IOSS is related to other ISS-like formalisms
for observers, see, e.g., [37, 75, 77, 92]. Both IOSS and its incremental variant
are very closely related to the OSS-type detectability notions pursued in [59];
see also the emphasis on ISS guarantees for observers in [82].

The dissipation characterization amounts to a Willems’-type dissipation
inequality (d/dt)V (x(t))≤−σ1(|x(t)|)+σ2(|y(t)|)+σ3(|u(t)|) holding along
all trajectories. There have been other suggestions that one should define
“detectability” in dissipation terms; see, e.g., [76], where detectability was de-
fined by the requirement that there exist a differentiable storage function V
as here, but with the special choice σ2(r) := r2 (and no inputs), or as in [85],
which asked for a weaker the dissipation inequality:

x �= 0 ⇒ d

dt
V (x(t)) < σ2(|y(t)|)
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(again, with no inputs), not requiring the “margin” of stability −σ1(|x(t)|).
Observe also that, asking that along all trajectories there holds the estimate

d

dt
V (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) + σ3(|u(t)|)

means that V satisfies a partial differential inequality (PDI):

max
u∈IRm

{∇V (x) · f(x, u) + σ1(|x|) − σ2(|h(x)|) − σ3(|u|)} ≤ 0

which is same as the Hamilton–Jacobi inequality

g0(x) +
1
4

m∑
i=1

(∇V (x) · gi(x))2 + σ1(|x|) − σ2(|h(x)|) ≤ 0

in the special case of quadratic input “cost” σ3(r) = r2 and systems ẋ =
f(x, u) affine in controls

ẋ = g0(x) +
m∑
i=1

ui gi(x)

(just replace the right-hand side in the PDI by the maximum value, obtained
at ui = (1/2)∇V (x) · gi(x)). Thus the converse result amounts to providing
necessary and sufficient conditions for existence of a smooth (and proper and
positive definite) solution V to the PDI. In this context, it is worth remark-
ing that the mere existence of a lower semicontinuous V (interpreted in an
appropriate weak sense) implies the existence of a C∞ solution (possibly with
different comparison functions); see [64].

8.8 Norm-Observability

There are many notions of observability for nonlinear systems (see, e.g., [104],
Chap. 6); here we briefly mention one such notion given in an ISS style, which
was presented in [34]. More precisely, we define “norm-observability”, which
concerns the ability to determine an upper bound on norms, rather than
the precise value of the state (an “incremental” version would correspond to
true observability). We do so imposing a bound on the norm of the state in
terms of the norms of the output and the input, and imposing an additional
requirement which says, loosely speaking, that the term describing the effects
of initial conditions can be chosen to decay arbitrarily fast.

A system ẋ = f(x, u), y = h(x) is small-time initial-state norm-observable
if:

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x0| ≤ γ(‖y[0,τ ]‖∞) + χ(‖u[0,τ ]‖∞) ∀x0, u ,

it is small-time final-state norm-observable if:
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∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(τ)| ≤ γ(‖y[0,τ ]‖∞) + χ(‖u[0,τ ]‖∞) ∀x0, u ,

and is small-time-KL norm-observable if for every ε > 0 and every ν ∈ K,
there exist γ, χ ∈ K∞ and a β ∈ KL so that β(r, ε) ≤ ν(r) for all r ≥ 0 (i.e.,
β can be chosen to decay arbitrarily fast in the second argument) such that
the IOSS estimate:

|x(t)| ≤ β(|x0| , t) + γ(‖y[0,t]‖∞) + χ(‖u[0,t]‖∞) ∀x0, u, t ≥ 0

holds along all solutions.

Theorem 8.4. [34] The following notions are equivalent:

• Small-time initial-state norm-observability
• Small-time final-state norm-observability
• Small-time-KL norm-observability

To be precise, the equivalences assume unboundedness observability (UO),
which means that for each trajectory defined on some maximal interval
tmax < ∞, the output becomes unbounded as t ↗ tmax, as well as a simi-
lar property for the reversed-time system. The unboundedness observability
property is strictly weaker than forward completeness, which is the property
that each trajectory is defined for all t ≥ 0; see [9, 53], the latter especially
for complete Lyapunov characterizations of the UO property. Similarly, one
can prove equivalences among other definitions, such as asking “∃ τ” instead
of “∀ τ ,” and one may obtain Lyapunov-like characterizations; the results
are used in the derivation of LaSalle-like theorems for verifying stability of
switched systems in [34].

9 The Fundamental Relationship Among ISS, IOS,
and IOSS

The definitions of the basic ISS-like concepts are consistent and related in an
elegant conceptual manner, as follows:

A system is ISS if and only if it is both IOS and IOSS.

In informal terms, we can say that:

external stability and detectability ⇐⇒ internal stability

as it is the case for linear systems. Intuitively, we have the three possible
signals in Fig. 23. The basic idea of the proof is as follows. Suppose that
external stability and detectability hold, and take an input so that u → 0.
Then y → 0 (by external stability), and this then implies that x → 0 (by
detectability). Conversely, if the system is internally stable, then we prove i/o
stability and detectability. Suppose that u → 0. By internal stability, x → 0,
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� �x → 0u → 0 y → 0

Fig. 23. Convergent input, state, and/or output

�
�

�
system

w

y
u

Fig. 24. System with error and measurement outputs ẋ = f(x, u), y = h(x), w =
g(x)

and this gives y(t) → 0 (i/o stability). Detectability is even easier: if both
u(t) → 0 and y(t) → 0, then in particular u → 0, so x → 0 by internal
stability. The proof that ISS is equivalent to the conjunction of IOS and IOSS
must keep careful track of the estimates, but the idea is similar.

10 Systems with Separate Error and Measurement
Outputs

We next turn to a topic which was mentioned in [105] as a suggestion for
further work, but for which still only incomplete results are available. We
will assume that there are two types of outputs (Fig. 24), which we think of,
respectively as an “error” y = h(x) to be kept small, as in the IOS notion,
and a “measurement” w = g(x) which provides information about the state,
as in the IOSS notion.

Several ISS-type formulations of the central concept in regulator theory,
namely the idea of using the size of w in order to bound y, were given in [38],
and are as follows.

10.1 Input-Measurement-to-Error Stability

We will say that a system is input-measurement-to-error stable (IMES) if there
are β ∈ KL, σ ∈ K, and γ ∈ K such that the following estimate holds:

|y(t)| ≤ β(|x0| , t) + σ
(
‖w[0,t]‖∞

)
+ γ(‖u‖∞) (IMES)

for all t ∈ tmax(x0, u), for all solutions, where we are writing y(t)
= h(x(t, x0, u)) and w(t) = g(x(t, x0, u)). Special cases are all the previous
concepts:
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• When h(x) = x, so y = x, and we view w as the output, we recover IOSS
• When the output g = 0, that is w ≡ 0, we recover IOS
• If both y = x and g = 0, we recover ISS

The goal of obtaining general theorems for IMES which will specialize to all
known theorems for ISS, IOS, and IOSS is so far unattained. We only know
of several partial results, to be discussed next.

For simplicity from now on, we restrict to the case of systems with no
inputs ẋ = f(x), y = h(x), w = g(x), and we say that a system is measurement
to error stable (MES) if an IMES estimate holds, i.e., for suitable β ∈ KL and
γ ∈ K:

|y(t)| ≤ β(|x0| , t) + γ
(
‖w[0,t]‖∞

)
for all t ∈ [0, Tmax) and for all solutions.

In order to present a dissipation-like version of MES, it is convenient to
introduce the following concept. We will say that a system is relatively error-
stable (RES) if the following property holds, for some ρ ∈ K and β ∈ KL:

|y(t)| > ρ(|w(t)|) on [0, T ] ⇒ |y(t)| ≤ β(|x0| , t) on [0, T ] (RES)

along all solutions and for all T < tmax(x0, u). In words: while the error is
much larger than the estimate provided by the measurement, the error must
decrease asymptotically, with an overshoot controlled by the magnitude of the
initial state. This property, together with the closely related notion of stability
in three measures (SIT), was introduced and studied in [38]. It is easy to see
that MES implies RES, but that the converse is false. In order to obtain a
converse, one requires an additional concept: we say a system satisfies the
relative measurement to error boundedness (RMEB) property if it admits an
estimate of the following form, for some σi ∈ K:

|y(t)| ≤ max
{
σ1(|h(x0)|), σ2

(
‖w[0,t]‖∞

)}
(RMEB)

along all solutions. For forward complete systems, and assuming RMEB, RES
is equivalent to MES [38].

10.2 Review: Viscosity Subdifferentials

So far, no smooth dissipation characterization of any of these properties is
available. In order to state a nonsmooth characterization, we first review a
notion of weak differential. For any function V : IRn → IR and any point
p ∈ IRn in its domain, one says that a vector ζ is a viscosity subgradient of
V at p if the following property holds: there is some function ϕ : IRn → IR,
differentiable at zero and with ∇ϕ(0) = ζ (that is, ϕ(h) = ζ · h+ o(h)), such
that

V (p+ h) ≥ V (p) + ϕ(h)

for each h in a neighborhood of 0 ∈ IRn. In other words, a viscosity subgradient
is a gradient (tangent slopes) of any supporting C1 function. One denotes then
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Fig. 25. ∂DV (0) = [−1, 1]

Fig. 26. ∂DV (0) = ∅

∂DV (p) := {all viscosity subgradients of V at p}. As an illustration, Fig. 25
shows a case where ∂DV (0) = [−1, 1], for the function V (x) = |x|, and Fig. 26
an example where ∂DV (0) = ∅, for V (x) = −|x|. In particular, if V is differ-
entiable at p, then ∂DV (p) = {∇V (p)}.

10.3 RES-Lyapunov Functions

The lower semicontinuous V is an RES-Lyapunov function if:

• There exist α1 and α2 ∈ K∞ so, on the set C := {p : |h(p)| > ρ(|g(p)|)},
it holds that

α1(|h(p)|) ≤ V (p) ≤ α2(|p|)
• For some continuous positive definite α3 : IR≥0 → IR≥0, on the set C there

holds the estimate

ζ · f(x) ≤ −α3(V (p)) ∀ ζ ∈ ∂DV (p)

(when V is differentiable, this is just ∇V · f(x) ≤ −α3(V (p)))

One can show (cf. [38]) that this estimate is equivalent to the existence of a
locally Lipschitz, positive definite α̃3 such that, for all trajectories:

x(t) ∈ C on [0, t1] ⇒ V (x(t)) − V (x(0)) ≤ −
∫ t

0

α̃3(V (x(s))) ds .
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� �⇒ u → 0
⇒ x → 0

y → 0

Fig. 27. Inverse of IOS property: small output implies input (and state) small

Theorem 10.1. [38] A forward-complete system is RES if and only if it
admits an RES-Lyapunov function.

As a corollary, we have that, for RMEB systems, MES is equivalent to the
existence of such a lower semicontinuous RES Lyapunov function.

11 Output to Input Stability and Minimum-Phase

We now mention a nonlinear “well-posed” version of Bode’s minimum phase
systems, which relates to the usual notion (cf. [42]) in the same manner as
ISS relates to zero-GAS. We need to say, roughly, what it means for the
“inverse system” to be ISS (Fig. 27). The paper [71] defines a smooth system
as output to input stable (OIS) if there exists an integer N > 0, and functions
β ∈ KL and γ ∈ K∞, so that, for every initial state x0 and every (N−1)-times
continuously differentiable input u, the inequality:

|u(t)| + |x(t)| ≤ β(|x0|, t) + γ
(
‖yN[0,t]‖∞

)

holds for all t ∈ tmax(x0, u), where “yN” lists y as well as its first N derivatives
(and we use supremum norm, as usual). See [71] for relationships to OSS, an
interpretation in terms of an ISS property imposed on the “zero dynamics”
of the system, and connections to relative degree, as well as an application to
adaptive control.

12 Response to Constant and Periodic Inputs

Systems ẋ = f(x, u) that are ISS have certain noteworthy properties when
subject to constant or, more generally periodic, inputs, which we now discuss.
Let V be an ISS-Lyapunov function which satisfies the inequality V̇ (x, u) ≤
−V (x) + γ(|u|) for all x, u, for some γ ∈ K∞.

To start with, suppose that ū is any fixed bounded input, and let a :=
γ(‖ū‖∞), pick any initial state x0, and consider the solution x(t) = x(t, x0, ū)
for this input. Letting v(t) := V (x(t)), we have that v̇(t) + v(t) ≤ a so, using
et as an integrating factor, we have that v(t) ≤ a+ e−t(v(0)− a) for all t ≥ 0.
In particular, if v(0) ≤ a it will follow that v(t) ≤ a for all t ≥ 0, that is
to say, the sublevel set K := {x | V (x) ≤ a} is a forward-invariant set for
this input: if x0 ∈ K then x(t) = x(t, x0, ū) ∈ K for all t ≥ 0. Therefore
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MT : x0 �→ x(T, x0, ū) is a continuous mapping from K into K, for each
fixed T > 0, and thus, provided that K has a fixed-point property (every
continuous map M : K → K has some fixed point), we conclude that for
each T > 0 there exists some state x0 such that x(T, x0, ū) = x0. The set K
indeed has the fixed-point property, as does any sublevel set of a Lyapunov
function. To see this, we note that V is a Lyapunov function for the zero-input
system ẋ = f(x, 0), and thus, if B is any ball which includes K in its interior,
then the map Q : B → K which sends any ξ ∈ B into x(tξ, ξ), where tξ is
the first time such that x(t, ξ) ∈ K, is continuous (because the vector field is
transversal to the boundary of K since ∇V (x).f(x, 0) < 0), and is the identity
on K (that is, Q is a topological retraction). A fixed point of the composition
M ◦Q : B → B is a fixed point of M .

Now suppose that ū is periodic of period T , ū(t+ T ) = ū(t) for all t ≥ 0,
and pick any x0 which is a fixed point for MT . Then the solution x(t, x0, ū) is
periodic of period T as well. In other words, for each periodic input, there is a
solution of the same period . In particular, if ū is constant, we may pick for each
h > 0 a state xh so that x(h, xh, ū) = xh, and therefore, picking a convergent
subsequence xh → x̄ gives that 0 = (1/h)(x(h, xh, ū) − xh) → f(x̄, ū), so
f(x̄, ū) = 0. Thus we also have the conclusion that for each constant input,
there is a steady state.

13 A Remark Concerning ISS and H∞ Gains

We derived the “integral to integral” version of ISS when starting from H∞-
gains, that is, L2-induced operator norms. In an abstract manner, one can
reverse the argument, as this result shows:

Theorem 13.1. [33] Assume n �= 4, 5. If the system ẋ = f(x, u) is ISS, then,
under a coordinate change, for all solutions one has:∫ t

0

|x(s)|2 ds ≤ |x0|2 +
∫ t

0

|u(s)|2 ds .

(A particular case of this is that global exponential stability is equivalent to
global asymptotic stability, under such nonsmooth coordinate changes. This
would seem to contradict Center Manifold theory, but recall that our “coordi-
nate changes” are not necessarily smooth at the origin, so dimensions of stable
and unstable manifolds need not be preserved.) It is still an open question if
the theorem generalizes to n = 4 or 5. A sketch of proof is as follows.

Let us suppose that the system ẋ = f(x, u) is ISS. We choose a “robustness
margin” ρ ∈ K∞, i.e., a K∞ function with the property that the closed-loop
system ẋ = f(x, dρ(|x|)) is GAS uniformly with respect to all disturbances
such that ‖d‖∞ ≤ 1. We next pick a smooth, proper, positive definite storage
function V so that

∇V (x)·f(x, dρ(|x|)) ≤ −V (x) ∀x, d
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(such a function always exists, by the results already mentioned). Now suppose
that we have been able to find a coordinate change so that V (x) = |x|2, that
is, a T so that W (z) := V (T−1(z)) = |z|2 with z = T (x). Then, whenever
|u|≤ρ(|x|), we have

d |z|2 /dt = Ẇ (z) = V̇ (x) ≤ −V (x) = − |z|2 .

It follows that, if χ ∈ K∞ is so that |T (x)| ≤ χ(ρ(|x|)), and

α(r) := max
|u|≤r,|z|≤χ(r)

d |z|2 /dt

then:
d |z|2

dt
≤ − |z|2 + α(|u|) = − |z|2 + v

(where we denote by v the input in new coordinates).
Integrating, one obtains

∫
|z|2 ≤ |z0|2 +

∫
|v|2, and this gives the L2 es-

timate as wanted. The critical technical step, thus, is to show that, up to
coordinate changes, every Lyapunov function V is quadratic. That fact is
shown as follows. First notice that the level set S := {V (x) = 1} is homo-
topically equivalent to S

n−1 (this is well-known: S × IR ( S because IR is
contractible, and S × IR is homeomorphic to IRn \ {0} ( S

n−1 via the flow of
ẋ = f(x, 0)). Thus, {V (x) = 1} is diffeomorphic to S

n−1, provided n �= 4, 5.
(In dimensions n = 1, 2, 3 this is proved directly; for n ≥ 6 the sublevel set
{V (x) < 1} is a compact, connected smooth manifold with a simply connected
boundary, and results on h-cobordism theory due to Smale and Milnor show
the diffeomorphism to a ball. Observe that results on the generalized Poincaré
conjecture would give a homeomorphism, for n �= 4.) Finally, we consider the
normed gradient flow:

ẋ =
∇V (x)′

|∇V (x)|2

and take the new variable

z :=
√
V (x) θ(x′)

where x′ is the translate via the flow back into the level set, and θ : {V = 1} (
{|z| = 1} is the given diffeomorphism, see Fig. 28. (Actually, this sketch is not
quite correct: one needs to make a slight adjustment in order to obtain also
continuity and differentiability at the origin; the actual coordinate change is
z = γ(V (x))θ(x′), so W (z) = γ(|z|), for a suitable γ.)

14 Two Sample Applications

For applications of ISS notions, the reader is encouraged to consult textbooks
such as [27,43,44,58,60,66,96], as well as articles in journals as well as Proceed-
ings of the various IEEE Conferences on Decision and Control. We highlight
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Fig. 28. Making level sets into spheres

next a couple of applications picked quite arbitrarily from the literature. They
are chosen as illustrations of the range of possibilities afforded by the ISS view-
point.

The paper [63] provides a new observer suitable for output-feedback stabi-
lization, and applies the design to the stabilization of surge and the magnitude
of the first stall mode, in the single-mode approximation of the Moore–Greitzer
PDE axial compressor model used in jet engine studies. The equations are as
follows:

φ̇ = −ψ + 3
2φ+ 1

2 − 1
2 (φ+ 1)3 − 3(φ+ 1)R

ψ̇ =
1
β2

(φ+ 1 − u)

Ṙ = σR(−2φ− φ2 −R) (R ≥ 0)

where φ denotes the mass flow relative to a setpoint, ψ the pressure rise
relative to the setpoint, and R the magnitude of the first stall mode. The
objective is to stabilize this system, using only y = ψ.

The systematic use of ISS-type properties is central to the analysis: taking
the magnitude of the first stall mode as evolving through uncertain dynamics,
the authors require that their estimator have an error that is ISS with respect
to this unmodeled dynamics, and that the first mode be IOS with respect to
mass flow deviation from its setpoint; an ISS small-gain theorem is then used
to complete the design. Abstractly, their general framework in [63] is roughly
as follows. One is given a system with the block structure:

ẋ = f(x, z, u)
ż = g(x, z)

and only an output y = h(x) is available for stabilization. The z-subsystem (R
in the application) is unknown (robust design). The authors construct a state-
feedback u = k(x) and a reduced-order observer that produces an estimate x̂
so that:

• The error e = x− x̂ is ISS with respect to z
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d(t)

noisy channel

u = y yẋ = f(x, y)
y = h(x)

ż = f(z, y+d)

Fig. 29. Synchronized systems

• The system ẋ = f(x, z, k(x̂)) = F (x, z, e) is ISS with respect to both e
and z

• The system ż = g(x, z) is ISS with respect to x

Combining with a small-gain condition, the stability of the entire system is
guaranteed.

A completely different application, in signal processing, can be found in [4],
dealing with the topic of synchronized chaotic systems, which arises in the
study of secure communications. A “master-slave” configuration is studied,
where a second copy of the system (receiver) is driven by an output from the
first (Fig. 29). The main objective is to show that states synchronize:

|x(t) − z(t)| ≤ max{β(|x0 − z0|, t) , ‖d‖}

This can be shown, provided that the system is incrementally ISS, in the sense
discussed in Sect. 8.6.

One particular example is given by the Lorentz attractor:

ẋ1 = −βx1 + sat(x2)sat(x3),
ẋ2 = σ(x3 − x2),
ẋ3 = −x3 + u,

y = ρx2 − x1x2,

where β = 8/3, σ = 10, ρ = 28 (the saturation function, sat(r) = r for |r| < 1
and sat(r) = sign(r) otherwise, is inserted for technical reasons and does
not affect the application). Preservation of the i-ISS property under cascades
implies that this system (easily to be seen a cascade of i-ISS subsystems) is
i-ISS. The paper [4] provides simulations of the impressive behavior of this
algorithm.

15 Additional Discussion and References

The paper [99] presented the definition of ISS, established the result on
feedback redefinition to obtain ISS with respect to actuator errors, and pro-
vided the sufficiency test in terms of ISS-Lyapunov functions. The necessity
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of this Lyapunov-like characterization is from [109], which also introduced the
“small gain” connection to margins of robustness; the existence of Lyapunov
functions then followed from the general result in [73]. The asymptotic gain
characterizations of ISS are from [110]. (Generalizations to finite-dimensional
and infinite-dimensional differential inclusions result in new relaxation theo-
rems, see [41] and [39], as well as [81] for applications to switched systems.)
Asymptotic gain notions appeared also in [20, 114]. Small-gain theorems for
ISS and IOS notions originated with [53]. See [40] for an abstract version of
such results.

The notion of ISS for time-varying systems appears in the context of as-
ymptotic tracking problems, see, e.g., [124]. In [24], one can find further results
on Lyapunov characterizations of the ISS property for time-varying (and in
particular periodic) systems, as well as a small-gain theorem based on these
ideas. See also [78].

Coprime factorizations are the basis of the parameterization of controllers
in the Youla approach. As a matter of fact, as the paper’s title indicates,
their study was the original motivation for the introduction of the notion of
ISS in [99]. Some further work can be found in [98], see also [28], but much
remains to be done.

One may of course also study the notion of ISS for discrete-time systems.
Many ISS results for continuous time systems, and in particular the Lyapunov
characterization and ISS small gain theorems, can be extended to the discrete
time case; see [52, 55, 56, 61, 67]. Discrete-time iISS systems are the subject
of [2], who proves the very surprising result that, in the discrete-time case,
iISS is actually no different than global asymptotic stability of the unforced
system (this is very far from true in the continuous-time case, of course); see
also [74].

Questions of sampling, relating ISS properties of continuous and discrete-
time systems, have been also studied, see [119] which shows that ISS is recov-
ered under sufficiently fast sampling, as well as the papers [86,87,90].

The paper [5] introduces a notion of ISS where one merely requires good
behavior on a generic (open dense) subset of the state space. Properties of this
type are of interest in “almost-global” stabilization problems, where there are
topological constraints on what may be achieved by controllers. The area is
still largely undeveloped, and there are several open problems mentioned in
that reference.

More generally than the question of actuator ISS, one can ask when, given
a system ẋ = f(x, d, u), is there a feedback law u = k(x) such that the system
ẋ = f(x, d, k(x)) becomes ISS (or iISS, etc) with respect to d. One approach
to this problem is in terms of control-Lyapunov function (“cLf”) methods,
and concerns necessary and sufficient cLf conditions, for the existence of such
(possibly dynamic) feedback laws. See for example [120], which deals primarily
with systems of the form ẋ = f(x, d) + g(x)u (affine in control, and control
vector fields are independent of disturbances) and with assigning precise upper
bounds to the “nonlinear gain” obtained in terms of d.
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A problem of decentralized robust output-feedback control with distur-
bance attenuation for a class of large-scale dynamic systems, achieving ISS
and iISS properties, is studied in [49].

Partial asymptotic stability for differential equations is a particular case
of output stability (IOS when there are no inputs) in our sense; see [125] for a
survey of the area, as well as the book [94], which contains a converse theorem
for a restricted type of output stability. The subject of IOS is also related to
the topic of “stability in two measures” (see, e.g., [68]), in the sense that
one asks for stability of one “measure” of the state (h(x)) relative to initial
conditions measured in another one (the norm of the state).

A useful variation of the notion of ISS is obtained when one studies stability
with respect to a closed subset K of the state space IRn, but not necessarily
K = {0}. One may generalize the various definitions of ISS, IOS, IOSS, etc.
For instance, the definition of ISS becomes

|x(t, x0, u)|K ≤ β(|x0|K , t) + γ(‖u‖∞) ,

where |x|K denotes the distance from x to the set K. (The special case when
u ≡ 0 implies in particular that the set K must be invariant for the unforced
system.) The equivalence of various alternative definitions can be given in
much the same way as the equivalence for the particular case K = {0} (at
least for compact K), since the general results in [73] are already formulated
for set stability; see [108] for details. The interest in ISS with respect to sets
arises in various contexts, such as the design of robust control laws, where
the set K might correspond to equilibria for different parameter values, or
problems of so-called “practical stabilization,” concerned with stabilization
to a prescribed neighborhood of the origin. See [107] for a theorem relating
practical stabilization and ISS with respect to compact attractors.

Perhaps the most interesting set of open problems concerns the construc-
tion of feedback laws that provide ISS stability with respect to observation
errors. Actuator errors are far better understood (cf. [99]), but save for the case
of special structures studied in [27], the one-dimensional case (see, e.g., [25])
and the counterexample [26], little is known of this fundamental question.
Recent work analyzing the effect of small observation errors (see [103]) might
provide good pointers to useful directions of research (indeed, see [69] for
some preliminary remarks in that direction). For special classes of systems,
even output feedback ISS with respect to observation errors is possible, cf. [88].

A stochastic counterpart of the problem of ISS stabilization is proposed
and solved in [22], formulated as a question of stochastic disturbance attenu-
ation with respect to noise covariance. The paper [21], for a class of systems
that can be put in output-feedback form (controller canonical form with an
added stochastic output injection term), produces, via appropriate clf’s, sto-
chastic ISS behavior (“NSS” = noise to state stability, meaning that solutions
converge in probability to a residual set whose radius is proportional to bounds
on covariances). Stochastic ISS properties are treated in [123].
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For a class of block strict-feedback systems including output feedback form
systems, the paper [48] provided a global regulation result via nonlinear output
feedback, assuming that the zero dynamics are iISS, thus generalizing the ISS-
like minimum-phase condition in the previous [47], which in turn had removed
the more restrictive assumption that system nonlinearities depend only on the
output. See also [45] for iISS and ISS-stabilizing state and output feedback
controllers for systems on strict-feedback or output-feedback forms.

For a class of systems including “Euler-Lagrange” models, the paper [17]
provides a general result on global output feedback stabilization with a distur-
bance attenuation property. The notion of OSS and the results on unbounded
observability both play a key role in the proof of correctness of the design.

An ISS result for the feedback interconnection of a linear block and a
nonlinear element (“Lurie systems”) is provided in [14], and an example is
worked out concerning boundedness for negative resistance oscillators, such
as the van der Pol oscillator.

The authors of [15] obtain robust tracking controllers with disturbance
attenuation for a class of systems in strict-feedback form with structurally
(non-parametric) unknown dynamics, using neural-network based approxima-
tions. One of the key assumptions is an ISS minimum phase condition, when
external disturbances are included as inputs to the zero dynamics.

Output-feedback robust stabilization both in the ISS and iISS sense is stud-
ied, for large-scale systems with strongly nonlinear interconnections, in [51],
using decentralized controllers.

Both ISS and iISS properties have been featured in the analysis of the per-
formance of switching controllers, cf. [36]. The paper [35] dealt with hybrid
control strategies for nonlinear systems with large-scale uncertainty, using a
logic-based switching among a family of lower-level controllers, each of which
is designed by finding an iISS-stabilizing control law for an appropriate system
with disturbance inputs. The authors provide a result on stability and finite
time switching termination for their controllers. The dissipation characteriza-
tions of ISS and of iISS were extended to a class of hybrid switched systems
in [80].

A nonstandard application of IOSS, or more precisely of an MES prop-
erty for turbulent kinetic energy and dissipation, was the method for
destabilization of pipe flows (to enhance mixing) studied in [1]. The au-
thors used the wall velocity as inputs (blowing/suction actuators are assumed
distributed on the pipe wall) and pressure differences across the pipe as
outputs (using pressure sensors to measure). Detectability in the sense of
IOSS provided a useful way to express the energy estimates required by the
controller.

The papers [115, 116] introduced the notion of “formation input-to-state
stability” in order to characterize the internal stability of leader-follower vehi-
cle formations. There, and in related papers by other authors (e.g., [91]), ISS
is used as a framework in which to systematically quantify the performance
of swarm formations under time-varying signals (leader or enemy to be fol-
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lowed, noise in observation, actuator errors); in this context, the state x in
the ISS estimate is in reality a measure of formation error. Thus, in terms of
the original data of the problem, this formation ISS is an instance not of ISS
itself, but rather of input/output stability (IOS), in which a function of state
variables is used in estimates.

For results concerning averaging for ISS systems, see [89], and see [19]
for singular perturbation issues in this context. See [97] for a notion which
is in some sense close to IMES. Neural-net control techniques using ISS are
mentioned in [95]. There are ISS-small gain theorems for certain infinite di-
mensional classes of systems such as delay systems, see [117].
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63. Kokotović, P., M. Arcak, “Nonlinear observers: a circle criterion design and
robustness analysis,” Automatica 37(2001): 1923–1930.

64. Krichman, M., E.D. Sontag, “Characterizations of detectability notions in
terms of discontinuous dissipation functions,” Intern. J. Control 75(2002):
882–900.

65. Krichman, M., E.D. Sontag, Y. Wang, “Input-output-to-state stability,” SIAM
J. Control and Optimization 39(2001): 1874–1928.
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80. Mancilla-Aguilar, J.L., R.A. Garćıa, “On converse Lyapunov theorems for ISS
and iISS switched nonlinear systems,” Systems & Control Letters 42(2001):
47–53.
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1 Introduction

In a series of previous papers (cf. [20–23]), we have developed a “primal”
approach to the non-smooth Pontryagin Maximum Principle, based on
generalized differentials, flows, and general variations. The method used
is essentially the one of classical proofs of the Maximum Principle such as
that of Pontryagin and his coauthors (cf. Pontryagin et al. [15], Berkovitz [1]),
based on the construction of packets of needle variations, but with a refine-
ment of the “topological argument,” and with concepts of differential more
general than the classical one, and usually set-valued.

In this article we apply this approach to optimal control problems with
state space constraints, and at the same time we state the result in a more
concrete form, dealing with a specific class of generalized derivatives (the
“generalized differential quotients”), rather than in the abstract form used in
some of the previous work.

The paper is organized as follows. In Sect. 2 we introduce some of our
notations, and review some background material, especially the basic concepts
about finitely additive vector-valued measures on an interval. In Sect. 3 we
review the theory of “Cellina continuously approximable” (CCA) set-valued
maps, and prove the CCA version – due to A. Cellina – of some classical
fixed point theorems due to Leray-Schauder, Kakutani, Glicksberg and Fan.
In Sect. 4 we define the notions of generalized differential quotient (GDQ), and
approximate generalized differential quotient (AGDQ), and prove their basic
properties, especially the chain rule, the directional open mapping theorem,
and the transversal intersection property. In Sect. 5 we define the two types of
variational generators that will occur in the maximum principle, and state and
prove theorems asserting that various classical generalized derivatives – such
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as classical differentials, Clarke generalized Jacobians, subdifferentials in the
sense of Michel–Penot, and (for functions defining state space constraints)
the object often referred to as ∂>x g in the literature – are special cases of
our variational generators. In Sect. 6 we discuss the classes of discontinuous
vector fields studied in detail in [24]. In Sect. 7 we state the main theorem.
The rather lengthy proof will be given in a subsequent paper.

Acknowledgments. The author is grateful to Paolo Nistri and Gianna
Stefani, the organizers of the Cetraro 2004 C.I.M.E. Summer School, for
inviting him to present the ideas that have led to this paper, to Arrigo Cel-
lina for his useful comments on the condition that is here called “Cellina
continuous approximability,” and to the audience of the Cetraro lectures for
their numerous contributions. He also thanks G. Stefani for the invitation to
give a series of lectures in Firenze in the Summer of 2005, and the partici-
pants of the Firenze lectures, especially Andrei Sarychev, who explained to
the author why it was important to use finitely additive measures.

2 Preliminaries and Background

2.1 Review of Some Notational Conventions and Definitions

Integers and Real Numbers

We use Z, R to denote, respectively, the set of all integers and the set of
all real numbers, and write N

def= {n ∈ Z : n > 0}, Z+
def= N ∪ {0}. Also, R̄, R+,

R̄+, denote, respectively, the extended real line R ∪ {−∞,+∞}, the half-line
[0,+∞ [ , and the extended half-line [0,+∞] (i.e., [0,+∞ [∪{+∞}).

Intervals

An interval is an arbitrary connected subset of R. If a, b ∈ R and a ≤ b, then
INT([a, b]) is the set of all intervals J such that J ⊆ [a, b]. Hence INT([a, b])
consists of the intervals [α, β], [α, β [ , ]α, β] and ]α, β [ , with a ≤ α < β ≤ b,
as well as the singletons {α}, for a ≤ α ≤ b), and the empty set. A nontrivial
interval is one whose length is strictly positive, that is, one that contains at
least two distinct points.

Euclidean Spaces and Matrices

The expressions R
n, Rn will be used to denote, respectively, the set of all real

column vectors x = (x1, . . . , xn)† (where “†” stands for “transpose”) and the
set of all real row vectors p = (p1, . . . , pn). We refer to the members of Rn

as covectors. Also, R
m×n is the space of all real matrices with m rows and n

columns.
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If n ∈ Z+, x ∈ R
n, r ∈ R, and r > 0, we use B̄

n(x, r), B
n(x, r) to

denote, respectively, the closed and open balls in R
n with center x and

radius r. We write B̄
n(r), B

n(r) for B̄
n(0, r), B

n0, (r), and B̄
n, B

n for B̄
n(1),

B
n(1). Also, we will use S

n to denote the n-dimensional unit sphere, so
S
n = {(x1, . . . , xn+1)† ∈ R

n+1 :
∑n+1

j=1 x
2
j = 1}.

Topological Spaces, Metric Spaces, Metric Balls

We will use throughout the standard terminology of point-set topology: a
neighborhood of a point x in a topological space X is any subset S of X that
contains an open set U such that x ∈ U . In the special case of a metric space
X, we use BX(x, r), B̄X(x, r), to denote, respectively, the open ball and the
closed ball with center x and radius r.

Quasidistance and Hausdorff Distance

If X is a topological space, then Comp0(X) will denote the set of all compact
subsets of X (including the empty set), and Comp(X) will be the set of all
nonempty members of Comp0(X).

If X is a metric space, with distance function dX , then we can define
the “quasidistance” ∆qua

X (A,B) from a set A ∈ Comp0(X) to another set
B ∈ Comp0(X) by letting

∆qua
X (A,B)=sup

{
inf{dX(x, x′) : x′∈B} : x∈A

}
. (2.1.1)

(This function is not a distance because, for example, it is not symmetric,
since ∆qua

X (A,B) = 0 but ∆qua
X (B,A) �= 0 if A ⊆ B and A �= B. Furthermore,

∆qua
X can take the value +∞, since ∆qua

X (A,B) = +∞ if A �= ∅ but B = ∅.)

Definition 2.1 Suppose that X is a metric space. The Hausdorff distance
∆X(K,L) between two nonempty subsets K, L of X is the number

∆X(K,L) = max
(
∆qua
X (K,L),∆qua

X (L,K)
)
. *+

It is then clear that the function ∆X , restricted to Comp(X) × Comp(X), is
a metric.

Linear Spaces and Linear Maps

The abbreviations “FDRLS” and “FDNRLS” will stand for the expressions
“finite-dimensional real linear space,” and “finite-dimensional normed real
linear space,” respectively. If X and Y are real linear spaces, then Lin(X,Y )
will denote the set of all linear maps from X to Y . We use X† to denote
Lin(X,R), i.e., the dual space of X. If X is a FDNRLS, then X†† is identified
with X in the usual way.
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If X and Y are FDNRLSs, then Lin(X,Y ) is a FDNRLS, endowed with
the operator norm ‖ · ‖op given by

‖L‖op = sup{‖L · x‖ : x ∈ X, ‖x‖ ≤ 1} . (2.1.2)

Also, we write L(X) for Lin(X,X), the space of all linear maps L : X �→ X.
We identify Lin(Rn,Rm) with R

m×n in the usual way, by assigning to each
matrix M ∈ R

m×n the linear map R
n , x �→ M ·x ∈ R

m. In particular, L(X)
is identified with R

n×n. Also, we identify Rn with the dual (Rn)† of R
n, by

assigning to a y ∈ Rn the linear functional R
n , x �→ y · x ∈ R.

If X,Y are FDRLSs, and L ∈ Lin(X,Y ), then the adjoint of L is the map
L† : Y † �→ X† such that L†(y) = y ◦ L for y ∈ Y †. In the special case when
X = R

n and Y = R
m, so L ∈ R

m×n, the map L† goes from Rm to Rn, and is
given by L†(y) = y · L for y ∈ Rm.

Manifolds, Tangent Spaces, Differentials

If M is a manifold of class C1, and x ∈ M , then TxM will denote the tangent
space of M at x. It follows that if M , N are manifolds of class C1, x ∈ M , F is
an N -valued map defined on a neighborhood U of x in M , and F is classically
differentiable at x, then the differential DF (x) belongs to Lin(TxM,TF (x)N).

Single- and Set-Valued Maps

Throughout this paper, the word “map” always stands for “set-valued map.”
The expression “ppd map” refers to a “possibly partially defined (that is, not
necessarily everywhere defined) ordinary (that is, single-valued) map.” The
precise definitions are as follows. A set-valued map is a triple F = (A,B,G)
such that A and B are sets and G is a subset of A×B. If F = (A,B,G) is a
set-valued map, we say that F is a set-valued map from A to B. In that case,
we refer to the sets A, B, G as the source, target, and graph of F , respectively,
and we write A = So(F ), B = Ta(F ), G = Gr(F ). If x ∈ So(F ), we
write F (x) = {y : (x, y) ∈ Gr(F )}. The set Do(F ) = {x ∈ So(F ) : F (x) �= ∅}
is the domain of F . If A, B are sets, we use SVM(A,B) to denote the
set of all set-valued maps from A to B, and write F : A�→→B to indicate
that F ∈ SVM(A,B). A ppd map from A to B is an F ∈ SVM(A,B)
such that F (x) has cardinality zero or one for every x ∈ A. We write
F : A ↪→ B to indicate that F is a ppd map from A to B. If F : A �→→ B,

and C ⊆ A, then the restriction of F to C is the set-valued map F  C defined
by F  Cdef=(C,B,Gr(F ) ∩ (C ×B)).

If F1 and F2 are set-valued maps, then the composite F2 ◦ F1 is defined
if and only if Ta(F1) = So(F2) and, in that case, So(F2 ◦ F1)

def=So(F1),
Ta(F2 ◦ F1)

def=Ta(F2), and

Gr(F2 ◦ F1)
def=
{

(x, z) : (∃y)
(
(x, y) ∈ Gr(F1) and (y, z) ∈ Gr(F2)

)}
.
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If A is a set, then IA denotes the identity map of A, that is, the triple
(A,A,∆A), where ∆A is the set of all pairs (x, x), for all x ∈ A.

Epimaps and Constraint Indicator Maps

If f : S ↪→ R is a ppd function, then:

• The epimap of f is the set-valued map f̌ : S �→→ R whose graph is the
epigraph of f , so that f̌(s) = {f(s)+v : v ∈ R, v ≥ 0} whenever s ∈ Do(f),
and f̌(s) = ∅ if s ∈ S\Do(f).

• The constraint indicator map of f is the set-valued map χcof : S �→→ R

such that χcof (s) = ∅ if f(s) ≤ 0 or s ∈ S\Do(f), and χcof (s) = [0,+∞ [ if
f(s) > 0 .

Cones and Multicones

A cone in a FDRLS X is a nonempty subset C of X such that r · c ∈ C
whenever c ∈ C, r ∈ R and r ≥ 0. If X is a FDRLS, a multicone in X is a
nonempty set of convex cones in X. A multicone C is convex if every member
C of C is convex.

Polars

Let X be a FDNRLS. The polar of a cone C ⊆ X is the closed convex cone
C† = {λ ∈ X† : λ(c) ≤ 0 for all c ∈ C}. If C is a multicone in X, the polar of
C is the set C† = Clos

(⋃
{C† : C ∈ C}

)
, so C† is a (not necessarily convex)

closed cone in X†.

Boltyanskii Approximating Cones

If X is a FDNRLS, S ⊆ X, and x ∈ S, a Boltyanskii approximating cone to S
at x is a convex cone C in X such that there exist an n ∈ Z+, a closed convex
cone D in R

n, a neighborhood U of 0 in R
n, a continuous map F : U ∩D �→ S,

and a linear map L : R
n �→ X, such that F (h) = x+ L · h+ o(‖h‖) as h → 0

via values in D, and C = L ·D. A limiting Boltyanskii approximating cone to
S at x is a closed convex cone C which is the closure of an increasing union⋃∞
j=1 Cj such that each Cj is a Boltyanskii approximating cone to S at x.

Some Function Spaces

If A, B are sets, we use fn(A,B) to denote the set of all functions from
A to B. If X is a real normed space and A is a set, then Bdfn(A,X) will
denote the set of all bounded functions from A to X. The space Bdfn(A,X)
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is endowed with the norm ‖ · ‖sup given by ‖f‖sup = sup{‖f(t)‖ : t ∈ A}.
Then Bdfn(A,X) is a Banach space if X is a Banach space.

If, in addition, A is a topological space, then C0(A,X) denotes the space
of all bounded continuous functions from A to B, endowed with the norm
‖ · ‖sup. It is clear that C0(A,X) is a closed subspace of Bdfn(A,X), so in
particular C0(A,X) is a Banach space if X is a Banach space.

Tubes

If X is a FDNRLS, a, b ∈ R, a ≤ b, ξ ∈ C0([a, b],X) and δ > 0, we use
T X(ξ, δ) to denote the δ-tube about ξ in X, defined by

T X(ξ, δ) def= {(x, t) :x∈X, a≤ t≤b, ‖x−ξ(t)‖≤δ} . (2.1.3)

Vector Fields, Trajectories, and Flow Maps

If X is a FDNRLS, a ppd time-varying vector field on X is a ppd map X×R ,
(x, t) ↪→ f(x, t) ∈ X. A trajectory, or integral curve, of a ppd time-varying
vector field f on X is a locally absolutely continuous map ξ : I �→ X, defined
on a nonempty real interval I, such that for almost all t ∈ I the following two
conditions hold: (i) (ξ(t), t) ∈ Do(f), and (ii) ξ̇(t) = f(ξ(t), t). If f is a ppd
time-varying vector field on X, then Traj (f) will denote the set of all integral
curves ξ : Iξ �→ X of f . If S is a subset of X × R, then Traj (f, S) will denote
the set of ξ ∈ Traj (f) such that (ξ(t), t) ∈ S for all t ∈ Iξ, and Traj c(f, S)
will denote the set of ξ ∈ Traj (f, S) whose domain Iξ is a compact interval.

The flow map of a ppd time-varying vector field X×R,(x, t) ↪→f(x, t)∈X
is the set-valued map Φf : R × R × X �→→ X that assigns to each triple
(t, s, x) ∈ R × R ×X the set Φf (t, s, x) = {ξ(t) : ξ ∈ Traj (f), ξ(s) = x}.

Functions of Bounded Variation

Assume that X is a real normed space, a, b ∈ R, and a < b.

Definition 2.2 A function ϕ ∈ fn([a, b],X) is of bounded variation if
there exists a nonnegative real number C such that

∑m
j=1 ‖ϕ(tj) − ϕ(sj)‖ ≤ C

whenever m ∈ N and the finite sequences {sj}mj=1, {tj}mj=1 are such that
a≤s1≤ t1≤s2≤ t2≤· · ·≤sm≤ tm≤b. *+
We use bvfn([a, b],X) to denote the set of all ϕ ∈ fn([a, b],X) that are of
bounded variation, and define the total variation norm ‖ϕ‖tv of a function
ϕ ∈ fn([a, b],X) by letting ‖ϕ‖tv = ‖ϕ(b)‖+C(ϕ) , where C(ϕ) is the smallest
C having the property of Definition 2.2. Also, we let bvfn0,b([a, b],X) denote
the set of all ϕ ∈ bvfn([a, b],X) such that ϕ(b) = 0. Then ‖ϕ‖tv = C(ϕ) if
ϕ ∈ bvfn0,b([a, b],X). It is then easy to verify that
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Fact 2.3 If X is a Banach space, then the space bvfn([a, b],X), endowed with
the total variation norm ‖ · ‖tv, is a Banach space, and bvfn0,b([a, b],X) is a
closed linear subspace of bvfn([a, b],X) of codimension one. *+
Fact 2.4 If X is a Banach space and f ∈ bvfn(([a, b],X), then lims↑t f(s)
exists for every t ∈ ] a, b], and lims↓t f(s) exists for every t ∈ [a, b [ . *+
Remark 2.5 The set bvfn([a, b],X) is clearly a linear subspace of
Bdfn([a, b],X). The sup norm and the total variation norm are related by the
inequality ‖ϕ‖sup ≤ ‖ϕ‖tv, which holds whenever ϕ ∈ bvfn([a, b],X) . On the
other hand, bvfn([a, b],X) is clearly not closed in Bdfn([a, b],X). *+

Measurable Spaces and Measure Spaces

A measurable space is a pair (S,A) such that S is a set and A is a σ-algebra
of subsets of S.

If (S,A) is a measurable space, then a nonnegative measure on (S,A)
is a map µ : A �→ [0,+∞] that satisfies µ(∅) = 0 and is countably additive
(i.e., such that µ(

⋃∞
j=1Aj) =

∑∞
j=1 µ(Aj) whenever {Aj}j∈N is a sequence of

pairwise disjoint members of A).
A nonnegative measure space is a triple (S,A, µ) is such that (S,A) is a

measurable space and µ is a nonnegative-measure on (S,A). A nonnegative
measure space (S,A, µ) is finite if µ(A) < ∞ for all A ∈ A.

Measurability of Set-Valued Maps; Support Functions

Assume that (S,A) is a measurable space and Y is a FDNRLS.

Definition 2.6 A set-valued map Λ :S �→→Y is said to be measurable if the
set {s ∈ S : Λ(s) ∩Ω �= ∅} belongs to A for every open subset Ω of Y . *+
If Λ has compact values, then we define the support function of Λ to be the
function σΛ : S × Y † �→ R given by

σΛ(s, x)=sup{〈x, y〉 : y∈Λ(s)} for x∈Y † , s∈S. (2.1.4)

(If Λ(s) = ∅ then we define σΛ(s, y) = −∞.) The following fact is well known.

Lemma 2.7 Assume that (S,A) is a measurable space, Y is a FDNRLS,
and Λ :S �→→Y is a set-valued map with compact convex values. For each
y ∈ Y †, let ψy(s) = σΛ(s, y). Then Λ is measurable if and only if the function
ψy : S �→ R ∪ {−∞} is measurable for every y ∈ Y †. *+

Integrable Boundedness of Set-Valued Maps

Assume that (S,A, ν) is a nonnegative measure space.

Definition 2.8 A ν-integrable bound for a set-valued map Λ :S �→→Y is a
nonnegative ν-integrable function k : S �→ [0,+∞] having the property that
Λ(s)⊆{y∈Y :‖y‖≤k(s)} for ν-almost all s∈S. The map Λ is said to be
ν-integrably bounded if there exists a ν-integrable bound for Λ. *+
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2.2 Generalized Jacobians, Derivate Containers,
and Michel–Penot Subdifferentials

For future use, we will now review the definitions and basic properties of three
classical “non-smooth” notions of set-valued derivative, namely, Clarke gen-
eralized Jacobians, Warga derivate containers, and Michel–Penot derivatives.

Generalized Jacobians

Assume that X, Y are FDNRLSs, Ω is an open subset of X, F : Ω �→ Y is a
Lipschitz-continuous map, and x̄∗ ∈ Ω.

Definition 2.9 The Clarke generalized Jacobian of F at x̄∗ is the subset
∂F (x̄∗) of Lin(X,Y ) defined as follows:

• ∂F (x̄∗) is the convex hull of the set of all limits L = limj→∞DF (xj),
for all sequences {xj}j∈N in Ω such that (1) limj→∞ xj = x̄∗, (2) F is
classically differentiable at xj for all j ∈ N, and (3) the limit L exists. *+

Warga Derivate Containers

Assume that X, Y are FDNRLSs, Ω is an open subset of X, F : Ω �→ Y , and
x̄∗ ∈ Ω.

Definition 2.10 A Warga derivate container of F at x̄∗ is a compact
subset Λ of Lin(X,Y ) such that:

• For every positive number δ there exist (1) an open neighborhood Uδ of x̄∗
such that Uδ ⊆ Ω, and (2) a sequence {Fj}j∈N of Y -valued functions
of class C1 on Uδ, such that (i) limj→∞ Fj = F uniformly on Uδ,
(ii) dist(DFj(x), Λ)≤δ for every (j, x)∈N×Uδ. *+

Michel–Penot Subdifferentials

Assume that X is a FDNRLS, Ω is an open subset of X, f : Ω �→ R is a
Lipschitz-continuous function, and x̄∗ ∈ Ω. For h ∈ X, define

dof(x̄∗, h) = sup
k∈X

lim sup
t↓0

t−1
(
f(x̄∗ + t(k + h)) − f(x̄∗ + tk)

)
, (2.2.1)

so that X , h �→ dof(x̄∗, h) ∈ R̄ is a convex positively homogeneous function.

Definition 2.11 The Michel–Penot subdifferential of f at x̄∗ is the set
∂of(x̄∗) of all linear functionals ω ∈ X† having the property that the inequality
dof(x̄∗, h) ≥ 〈ω, h〉 holds whenever h ∈ X. *+
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2.3 Finitely Additive Measures

If a, b ∈ R, a < b, and X is a FDNRLS, we use Pc([a, b],X) to denote the set
of all piecewise constant X-valued functions on [a, b], so that f ∈ Pc([a, b],X)
iff f : [a, b] �→ X and there exists a finite partition P of [a, b] into intervals
such that f is constant on each I ∈ P. We let Pc([a, b],X) denote the set of all
uniform limits of members of Pc([a, b],X), so Pc([a, b],X) is a Banach space,
endowed with the sup norm. Furthermore, Pc([a, b],X) is exactly the space of
all f : [a, b] �→ X such that the left limit f(t−) = lims→t,s<t f(s) exists for all
t ∈ ]a, b], and the right limit f(t+) = lims→t,s>t f(s) exists for all t ∈ [a, b [ .

We define Pc0([a, b],X) to be the set of all f ∈ Pc([a, b],X) that vanish
on the complement of a countable (i.e., finite or countably infinite) set. Then
Pc0([a, b],X) is the closure in Pc([a, b],X) of the space Pc0([a, b],X) of all
f ∈ Pc([a, b],X) such that f vanishes on the complement of a finite set.

We let pc([a, b],X) be the quotient space Pc([a, b],X)/Pc0([a, b],X). Then
every equivalence class F ∈ pc([a, b],X) has a unique left-continuous member
F−, and a unique right-continuous member F+, and of course F− ≡ F+ on
the complement of a countable set. So pc([a, b],X) can be identified with the
set of all pairs (f−, f+) of X-valued functions on [a, b] such that f− is left-
continuous, f+ is right-continuous, and f− ≡ f+ on the complement of a
countable set.

If X is a FDNRLS, then we use bvadd([a, b],X) to denote the dual
space pc([a, b],X†)† of pc([a, b],X†). A reduced additive X-valued interval
function of bounded variation on [a, b] is a member of bvadd([a, b],X). A
measure µ ∈ bvadd([a, b],X) gives rise to a set function µ̂ : INT ([a, b]) �→ X,
defined by 〈µ̂(I), y〉 = µ(χy

I
) for y ∈ X†, where χy

I
(t) = 0 if t /∈ I and

χy
I
(t) = y if t ∈ I. We then associate to µ its cumulative distribution cdµ,

defined by cdµ(t) = −µ̂([t, b]) for t ∈ [a, b]. Then cdµ belongs to the space
bvfn0,b([a, b],X) of all functions ϕ : [a, b] �→ X that are of bounded variation
(cf. Definition 2.2) and such that ϕ(b) = 0. The map

bvadd([a, b],X) , µ �→ cdµ ∈ bvfn0,b([a, b],X)

is a bijection. The dual Banach space norm ‖µ‖ of a µ ∈ bvadd([a, b],X)
coincides with ‖cdµ‖bv.

Remark 2.12 The non-reduced additive X-valued interval functions of
bounded variation on [a, b] are the members of the dual space Pc([a, b],X†)†.
Then bvadd([a, b],X) consists of those members of Pc([a, b],X†)† that vanish
on every test function F ∈ Pc([a, b],X†) such that F (t) = 0 for all but
finitely many values of t. For a reduced interval function µ ∈ bvadd([a, b],X),
the measure µ̂({t}) of every singleton is equal to zero, because the function
χy{t} belongs to Pc0([a, b],X†) for every y ∈ X†. *+

A µ ∈ bvadd([a, b],X) is a left (resp.right) delta function if there exist
an x ∈ X and a t ∈ ] a, b] (resp. a t ∈ [ a, b [ ) such that µ(F ) = 〈F (t−), x〉
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(resp. µ(F ) = 〈F (t+), x〉) for all F ∈ pc([a, b],X). We call µ left-atomic (resp.
right-atomic) if it is the sum of a convergent series of left (resp. right) delta
functions.

A µ ∈ bvadd([a, b],X) is continuous if the function cdµ is continuous.
Every µ ∈ bvadd([a, b],X) has a unique decomposition into the sum of a
continuous part µco, a left-atomic part µat,− and a right-atomic part µat,+.
(This resembles the usual decomposition of a countably additive measure into
the sum of a continuous part and an atomic part. The only difference is that
in the finitely additive setting there are left and right atoms rather than just
atoms.)

If Y is a FDNRLS, a bounded Y -valued measurable pair on [a, b] is
a pair (γ−, γ+) of bounded Borel measurable functions from [a, b] to
Y such that γ− ≡ γ+ on the complement of a finite or countable set.
If X,Y,Z are FDNRLSs, Y ×X , (y, x) �→ 〈y, x〉 ∈ Z is a bilinear map,
µ ∈ bvadd([a, b],X), and γ = (γ−, γ+) is a bounded Y -valued measurable pair
on [a, b], then the product measure γ ·µ is a member of bvadd([a, b], Z) defined
by multiplying the continuous part µco by γ− or γ+, the left-atomic part by
γ−, and the right-atomic part by γ+. In particular, the product γ · µ is a well
defined member of bvadd([a, b],X) whenever µ ∈ bvadd([a, b],R) and γ is a
bounded X-valued measurable pair on [a, b].

Finally, we briefly discuss the solutions of an “adjoint” Cauchy problem
represented formally as

dy(t) = −y(t) · L(t) · dt+ dµ(t) , y(b) = ȳ , (2.3.1)

where µ belongs to bvadd([a, b],X†), L ∈ L1([a, b],L (X)), and we are looking
for solutions y(·) ∈ bvadd([a, b],X†).

This is done by rewriting our Cauchy problem as the integral equation

y(t) − V (t) =
∫ b

t

y(s) · L(s) · ds , where V = cdµ . (2.3.2)

Equation (2.3.2) is easily seen to have a unique solution π, given by

π(t) = ȳ ·ML(b, t) −
∫

[t,b]

dµ(s) ·ML(s, t) , (2.3.3)

where ML : [a, b] × [a, b] �→L (X) is the fundamental solution of Ṁ = M · L,
characterized by the identity ML(τ, t) = IX +

∫ τ
t
L(r) ·ML(r, t) dr.

3 Cellina Continuously Approximable Maps

The CCA maps constitute a class of set-valued maps whose properties are
similar to those of single-valued continuous maps. The most important such
property is the fixed point theorem that, for single-valued continuous maps, is
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known as Brouwer’s theorem in the finite-dimensional case, and as Schauder’s
theorem in the infinite-dimensional case. A class of set-valued maps with some
of the desired properties was singled out in the celebrated Kakutani fixed
point theorem (for the finite-dimensional case), and its infinite-dimensional
generalization due to Fan and Glicksberg. This class, whose members are the
upper semicontinuous maps with nonempty compact convex values, turns out
to be insufficient for our purposes, because is lacks the crucial property that
a composite of two maps belonging to the class also belongs to the class.
(For example, if f : B̄

n(0, 1) �→→ B̄
n(0, 1) has nonempty convex values and a

compact graph, and g : B̄
n(0, 1) �→ B̄

n(0, 1) is single-valued and continuous,
then g also has a compact graph and nonempty convex values, so g belongs to
the class as well, but g ◦f need not belong to the class, because the image of a
convex set under a continuous map need not be convex. And yet it is obvious
that g◦f has to have a fixed point, because the same standard argument used
to prove the Kakutani theorem applies here as well: we can find a sequence of
single-valued continuous maps fj that converge to f in an appropriate sense,
apply Brouwer’s theorem to obtain fixed points xj of the maps g ◦ fj , and
then pass to the limit.)

The previous example strongly suggests that there ought to exist a class of
maps, larger than that of the Kakutani and Fan-Glicksberg theorems, which is
closed under composition and such that the usual fixed point theorems hold.
This class was introduced by A. Cellina in a series of papers around 1970
(cf. [3–6]). We now study it in detail.

3.1 Definition and Elementary Properties

CCA maps are set-valued maps that are limits of single-valued continuous
maps in the sense of an appropriate (non-Hausdorff) notion of convergence.
We begin by defining this concept of convergence precisely.

Inward Graph Convergence

If K, Y are metric spaces and K is compact, then SVMcomp(K,Y ) will denote
the subset of SVM(K,Y ) whose members are the set-valued maps from K to
Y that have a compact graph. We say that a sequence {Fj}j∈N of members
of SVMcomp(K,Y ) inward graph-converges to an F ∈ SVMcomp(K,Y ) – and

write Fj
igr−→ F – if for every open subset Ω of K × Y such that Gr(F ) ⊆ Ω

there exists a jΩ ∈ N such that Gr(Fj) ⊆ Ω whenever j ≥ jΩ .
The above notion of convergence is a special case of the following more

general idea. Recall that Comp0(X) is the set of all compact subsets of X.
Then we can define a topology TComp0(X) on Comp0(X) by declaring a subset
U of Comp0(X) to be open if for every K ∈ U there exists an open subset U
of X such that K ⊆ U and {J ∈ Comp0(X) : J ⊆ U} ⊆ U . (This topology is
non-Hausdorff even if X is Hausdorff, because if J,K ∈ Comp0(X), J ⊆ K,
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and J �= K, then every neighborhood of K contains J .) Inward graph
convergence of a sequence {Fj}j∈N of members of SVMcomp(K,Y ) to an
F ∈ SVMcomp(K,Y ) is then equivalent to convergence to Gr(F ) of the sets
Gr(Fj) in the topology TComp0(X).

The convergence of sequences and, more generally, of nets, in the space
TComp0(X) can be characterized as follows, in terms of the quasidistance ∆qua

defined in (2.1.1).

Fact 3.1 Let (Z, dZ) be a metric space, let K = {Kα}α∈A be a net of members
of Comp0(Z), indexed by a directed set (A,-A), and let K ∈ Comp0(Z).
Then the net K converges to K with respect to TComp0(Z) if and only if
limα∆

qua
Z (Kα,K) = 0. *+

Fact 3.1 can be applied in the special case when the metric space Z is a
product X × Y , equipped with the distance dZ : Z × Z �→ R+ given by

dZ

(
(x, y), (x′, y′)

)
= dX(x, x′) + dY (y, y′) . (3.1.1)

We then obtain the following equivalent characterization of inward graph
convergence.

Fact 3.2 Let X, Y be metric spaces, with distance functions dX , dY , let
F = {Fα}α∈A be a net of members of SVMcomp(X,Y ), indexed by a directed
set (A,-A), and let F ∈ SVMcomp(X,Y ). Then the net F converges to F
in the inward graph convergence sense (that is, the graphs Gr(Fα) converge
to Gr(F ) in TComp0(X×Y )) if and only if limα∆

qua
Z

(
Gr(Fα),Gr(F )

)
= 0,

where Z = X × Y , equipped with the distance dZ given by (3.1.1). *+

Compactly Graphed Set-Valued Maps

Suppose that X and Y are metric spaces, and F : X �→→ Y . Then F
is compactly graphed if, for every compact subset K of X, the restriction
F  K of F to K has a compact graph, i.e., has the property that the set
Gr(F  K)def= {(x, y) : x ∈ K ∧ y ∈ F (x)} is compact.

We recall that, if X, Y are topological spaces, then a set-valued map
F : X �→→ Y is said to be upper semicontinuous if the inverse image of every
closed subset U of Y is a closed subset of X. It is then easy to see that

Fact 3.3 If X and Y are metric spaces and F : X �→→ Y has compact values,
then F is upper semicontinuous if and only if it is compactly graphed. *+

CCA Maps

We are now, finally, in a position to define the notion of a “Cellina continuously
approximable map.”
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Definition 3.4 Assume that X and Y are metric spaces, and F : X �→→ Y .
We say that F is Cellina continuously approximable (abbr. “CCA”) if
F is compactly graphed and

• For every compact subset K of X, the restriction F  K is a limit – in the
sense of inward graph-convergence – of a sequence of continuous single-
valued maps from K to Y . *+
We will use the expression CCA(X,Y ) to denote the set of all CCA set-

valued maps from X to Y . It is easy to see that

Fact 3.5 If f : X ↪→ Y is a ppd map, then the following are equivalent:

(1) f ∈ CCA(X,Y )
(2) f is everywhere defined and continuous
(3) f is everywhere defined and compactly graphed *+

Composites of CCA Maps

The following simple observation will play a crucial role in the theory of GDQs
and AGDQs.

Theorem 3.6 Assume that X, Y , Z are metric spaces. Let F ∈ CCA(X,Y ),
G ∈ CCA(Y,Z). Then the composite map G ◦ F belongs to CCA(X,Z).

Proof. Let H = G ◦ F . We prove first that H is compactly graphed. Let K
be a compact subset of X, and let J = Gr(H  K). A pair (x, z) belongs
to J if and only if there exists y ∈ Y such that (x, y) ∈ Gr(F  K)
and (y, z) ∈ Gr(G). Let Q = π(Gr(F  K)), where π is the projection
X × Y , (x, y) �→ y ∈ Y . Then (x, z) ∈ J iff there exists y ∈ Q such that
(x, y) ∈ Gr(F  K) and (y, z) ∈ Gr(G  Q). Equivalently, (x, z) ∈ J iff there
exists a point p = (x, y, ỹ, z) ∈ S such that Π(p) = (x, z) and p ∈ A, where
A = {(x, y, ỹ, z) ∈ X × Y × Y ×Z : y = ỹ}, S = Gr(F  K)×Gr(G  Q), and
Π is the projection X × Y × Y × Z ∈ (x, y, ỹ, z) �→ (x, z) ∈ X × Z.

So J = Π(S ∩A). Since S is compact and A is closed in X × Y × Y × Z,
the set S ∩A is compact, so J is compact, since Π is continuous. Hence H is
compactly graphed.

We now fix a compact subset K of X, let h = H  K, and show that
there exists a sequence {hj}j∈N of continuous maps from K to Z such that

hj
igr−→ h. For this purpose, we let f = F  K, and use the fact that F is a

CCA map to construct a sequence {fj}j∈N of continuous maps from K to Y

such that fj
igr−→ f as j → ∞. Then the set B = Gr(f) ∪

(⋃∞
j=1 Gr(fj)

)
is

clearly compact. (Proof: Let O be a set of open subsets of X × Y such that
B ⊆
⋃
{Ω : Ω ∈ O}. Then Gr(f) ⊆

⋃
{Ω : Ω ∈ O}. Since Gr(f) is compact,

we may pick a finite subset O0 of O such that Gr(f) ⊆
⋃
{Ω : Ω ∈ O0}. Since

the set
⋃
{Ω : Ω ∈ O0} is open and contains Gr(f), there exists a j∗ ∈ N

such that Gr(fj) ⊆
⋃
{Ω : Ω ∈ O0} whenever j > j∗. For j = 1, . . . , j∗,
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use the compactness of Gr(fj) to pick a finite subset Oj of O such that
Gr(fj) ⊆

⋃
{Ω : Ω ∈ Oj}. Let Ô =

⋃
{Oj : j = 0, . . . j∗}. Then Ô is a finite

subset of O, and B ⊆
⋃
{Ω : Ω ∈ Ô}.)

Let C = π(B), where π is the projection defined above. Then C is a
compact subset of Y , and the fact that G is a CCA map implies that there
exists a sequence {gj}j∈N of continuous maps gj : C �→ Z such that gj

igr−→ g,
where g = G  C.

We now define hj = gj ◦ fj , and begin by observing that the hj are well
defined continuous maps from K to Z. (The reason that hj is well defined
is that if x ∈ K, then (x, fj(x)) ∈ Gr(fj) ⊆ B, so (x, fj(x)) ∈ B, and then
fj(x) ∈ C, so gj(fj(x)) is defined. The continuity of hj then follows because
it is a composite of continuous maps.)

To conclude the proof, we have to establish that hj
igr−→ h. Let us first

define αj = sup{Ξ(x, z) : (x, z) ∈ Gr(hj)}, where Ξ is the map given by
Ξ(x, z) = inf{d(x, x̃) + d(z, z̃) : (x̃, z̃) ∈ Gr(h)}. We want to show that αj → 0
as j → ∞. Suppose not. Then by passing to a subsequence we may assume that
αj ≥ 2ᾱ for all j, for some strictly positive ᾱ. For each j, pick (xj , zj) ∈ Gr(hj)
such that Ξ(xj , zj) ≥ ᾱ. Let yj = fj(xj), so zj = gj(yj). The point (xj , yj)
then belongs to Gr(fj), so Θ(xj , yj) → 0, where Θ was defined above. Hence
we can find (x̃j , ỹj) ∈ Gr(f) such that d(xj , x̃j) + d(yj , ỹj) → 0. Similarly,
we can define Θ̂(y, z) = inf{d(y, ỹ) + d(z, z̃) : (ỹ, z̃) ∈ Gr(g)}, and conclude

that Θ̂(yj , zj) → 0, since gj
igr−→ g, so we can find points (ỹ#

j , z̃j), belonging
to Gr(g), such that d(yj , ỹ

#
j ) + d(zj , z̃j) → 0. So all four quantities d(xj , x̃j),

d(yj , ỹj), d(yj , ỹ
#
j ), and d(zj , z̃j), go to 0. Since Gr(f) and Gr(g) are compact

we may assume, after passing to a subsequence, that the (x̃j , ỹj) converge to
a limit (x̃, ỹ) ∈ Gr(f), and the (ỹ#

j , z̃j) converge to a limit d(ỹ#, z̃) ∈ Gr(g).
Since d(yj , ỹj) → 0 and d(yj , ỹ

#
j ) → 0, we have dỹj , ỹ

#
j ) → 0, so ỹ = ỹ#. So

(x̃, ỹ) ∈ Gr(F ) and (ỹ, z̃) ∈ Gr(G), from which it follows that (x̃, z̃) ∈ Gr(H).
But d(xj , x̃j) → 0 and x̃j → x̃, so d(xj , x̃) → 0. Similarly, d(zj , z̃) → 0. Hence
Ξ(xj , zj) → 0 contradicting the inequalities Ξ(xj , zj) ≥ ᾱ > 0. So αj → 0,
and our proof is complete. *+

3.2 Fixed Point Theorems for CCA Maps

The Space of Compact Connected Subsets of a Compact Metric
Space

Recall that, if X is a metric space, then Comp(X) denotes the set of all
nonempty compact subsets of X. The Hausdorff distance ∆X was introduced
in Definition 2.1. We write Compc(X) to denote the set of all connected
members of Comp(X). We will need the following fact about Comp(X).

Proposition 3.7 Let X be a compact metric space. Then (I) (Comp(X),∆X)
is compact, and (II) Compc(X) is a closed subset of Comp(X).
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Proof. We first prove (I). Let X be compact, and let D be the diameter of
X, that is, D = max{dX(x, x′) : x, x′ ∈ X}. Let {Kj}j∈N be a sequence
in Comp(X). For each j ∈ N, let ϕj : X �→ R be the function given by
ϕj(x) = dX(x,Kj). Then each ϕj is a Lipschitz function on X, with Lip-
schitz constant 1. Furthermore, the bounds 0 ≤ ϕj(x) ≤ D clearly hold.
Hence {ϕj}j∈N is a uniformly bounded equicontinuous sequence of continuous
real-valued functions on the compact space X. Therefore the Ascoli–Arzelà
theorem implies that there exist an infinite subset J of N and a continuous
function ϕ : X �→ R such that the ϕj converge uniformly to ϕ as j → ∞ via
values in J . Define K = {x : ϕ(x) = 0}. Then K is a compact subset of X.

Let us show that K �= ∅. For this purpose, use the fact that each Kj is
nonempty to find a member xj of Kj . Since X is compact, there exists an
infinite subset J ′ of J such that the limit x = limj→∞,j∈J′ xj exists. Since
ϕj(xj) = 0, and ϕj → ϕ uniformly, it follows that ϕ(x) = 0, so x ∈ K, proving
that K �= ∅, so that K ∈ Comp(X).

We now show that Kj →J K in the Hausdorff metric, where “→J”
means “converges as j goes to ∞ via values in J .” First, we prove that
∆qua
X (K,Kj) →J 0. By definition, ∆qua

X (K,Kj) = sup{ϕj(x) : x ∈ K}. Since
ϕj →J ϕ uniformly on X, it follows that ϕj →J ϕ uniformly on K. But ϕ ≡ 0
on K, so ϕj →J 0 uniformly on K, and then sup{ϕj(x) : x ∈ K} →J 0, that
is, ∆qua

X (K,Kj) →J 0.
Next, we prove that ∆qua

X (Kj ,K) →J 0. If this was not so, there would
exist an infinite subset J ′ of J and an α such that α > 0 and

∆qua
X (Kj ,K) ≥ α whenever j ∈ J ′ . (3.2.1)

For each j ∈ J ′, pick xj ∈ Kj such that distX(xj ,K) = ∆qua
X (Kj ,K). Then,

using the compactness of X, pick an infinite subset J ′′ of J ′ such that the
limit x = limj→∞,j∈J′′ xj exists. Clearly, ϕj(xj) = 0, because xj ∈ Kj . Hence
ϕ(x) = 0, so x ∈ K. But dX(xj , x) → 0 as j →

J′′ ∞. Hence distX(xj ,K) → 0
as j →

J′′ ∞, contradicting (3.2.1). This proves (I).
We now prove (II). Let {Kj}j∈N be a sequence in Comp(X) that converges

to aK ∈ Comp(X) and is such that all theKj are connected. We have to prove
that K is connected. Suppose K was not connected. Then there would exist
open subsets U1, U2 of X such that K ⊆ U1∪U2, U1∩U2 = ∅, K∩U1 �= ∅, and
K ∩U2 �= ∅. The fact that Kj → K clearly implies that there exists a j∗ such
that, if j ≥ j∗, then (a) Kj ⊆ U1 ∪U2, (b) Kj ∩U1 �= ∅, and (c) Kj ∩U2 �= ∅.
But then, if we pick any j such that j ≥ j∗, the set Kj is not connected, and
we have reached a contradiction. This completes the proof of (II). *+

Connected Sets of Zeros

The following result is a very minor modification of a theorem of Leray and
Schauder – stated in [14] and proved by F. Browder in [2] – according to which:
if K ⊆ R

n is compact convex, 0 ∈ IntK, R > 0, and H : K × [0, R] �→ R
n
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is a continuous map such that H(x, 0) = x whenever x ∈ K and H never
vanishes on ∂K × [0, R], then there exists a compact connected subset Z of
K × [0, R] such that H(x, t) = 0 whenever (x, t) ∈ Z, and the intersections
Z ∩ (K × {0}), Z ∩ (K × {R}) are nonempty.

Our version allows H to be a set-valued CCA map, and in addition allows
0 to belong to the boundary of K, but requires that 0 be a limit of interior
points vj such that H never takes the value vj on ∂K × [0, R].

Theorem 3.8 Let n ∈ Z+, and let K be a compact convex subset of R
n.

Assume that R > 0 and H : K × [0, R] �→→ R
n is a CCA map. Assume,

moreover, that:

(1)H(x, 0) = {x} whenever x ∈ K
(2)There exists a sequence {vj}j∈N of interior points of K such that:

(2.1) limj→∞ vj = 0
(2.2) H(x, t) �= vj whenever x∈∂K, t∈ [0, R], j∈N

Then there exists a compact connected subset Z of K × [0, R] such that:

(a) 0 ∈ H(x, t) whenever (x, t) ∈ Z
(b) Z ∩ (K × {0}) �= ∅
(c) Z ∩ (K × {R}) �= ∅

Remark 3.9 If 0 is an interior point of K, and H never takes the value 0
on ∂K × [0, R], then Hypothesis (2) is automatically satisfied, since in that
case we can take vj = 0. If in addition H is single-valued, then Theorem 3.8
specializes to the result of [14] and [2]. *+

Remark 3.10 Any point (ξ, τ) of intersection of Z ∩ (K × {0}) must satisfy
τ = 0 and 0 ∈ H(ξ, 0). Since H(ξ, 0) = {ξ}, ξ must be 0. So Conclusion (b) is
equivalent to the assertion that (0, 0) ∈ Z. *+

Proof of Theorem 3.8. Pick a sequence {H1
k}k∈N of ordinary continuous maps

H1
k : K × [0, R] �→ R

n such that H1
k

igr−→ H as k → ∞. Then, for each k, pick
a sequence {H2

k,�}k∈N of polynomial maps H2
k,� : R

n × R �→ R
n such that

sup{‖H2
k,�(x, t) −H1

k(x, t)‖ : (x, t) ∈ K × [0, R]} ≤ 2−� .

Let H3
k = H2

k,k, and define H4
k(x, t) = H3

k(x, t) + x −H3
k(x, 0). Then the H4

k

are polynomial maps from R
n×R to R

n such that H4
k(x, 0) = x for all x ∈ R

n.
We claim that

H4
k  (K × [0, R])

igr−→ H as k → ∞ . (3.2.2)

To prove (3.2.2), we let αk = sup{θk(ξ, τ) : (ξ, τ) ∈ K × [0, R]}, where

θk(ξ, τ)= min
{
‖ξ−x‖+|τ−t|+‖H4

k(ξ, τ)−y‖ : (x, t)∈K×[0, R], y∈H(x, t)
}
,

(3.2.3)
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and show that αk → 0. Assume that αk does not go to 0. Then assume, after
passing to a subsequence if necessary, that αk ≥ 3β for a strictly positive
β. Then we may pick (ξk, τk) ∈ K × [0, R] such that θk(ξk, τk) ≥ 2β for all
k. After passing once again to a subsequence, we may assume that the limit
(ξ̄, τ̄) = limk→∞(ξk, τk) exists and belongs to K× [0, R]. Then (3.2.3) implies,
since θk(ξk, τk) ≥ 2β, that ‖ξk− ξ̄‖+ |τk− τ̄ |+‖H4

k(ξk, τk)−y‖ ≥ 2β whenever
y ∈ H(ξ̄, τ̄). If k is large enough then ‖ξk − ξ̄‖ + |τk − τ̄ | ≤ β. So we may
assume, after passing to a subsequence, that ‖H4

k(ξk, τk) − y‖ ≥ β whenever
y ∈ H(ξ̄, τ̄).

On the other hand, if y ∈ H(ξ̄, τ̄). then

β ≤ ‖H4
k(ξk, τk) − y‖

≤ ‖H4
k(ξk, τk) −H1

k(ξk, τk)‖ + ‖H1
k(ξk, τk) − y‖

= ‖H3
k(ξk, τk) + ξk −H3

k(ξk, 0) −H1
k(ξk, τk)‖ + ‖H1

k(ξk, τk) − y‖
= ‖H3

k(ξk, τk) −H1
k(ξk, τk)‖ + ‖ξk −H3

k(ξk, 0)‖ + ‖H1
k(ξk, τk) − y‖

= ‖H2
k,k(ξk, τk) −H1

k(ξk, τk)‖ + ‖ξk −H2
k,k(ξk, 0)‖ + ‖H1

k(ξk, τk) − y‖

≤ 2−k + ‖ξk −H1
k(ξk, 0)‖ + ‖H1

k(ξk, 0) −H2
k,k(ξk, 0)‖ + ‖H1

k(ξk, τk) − y‖

≤ 21−k + ‖ξk −H1
k(ξk, 0)‖ + ‖H1

k(ξk, τk) − y‖
= 21−k + ‖ξk − uk‖ + ‖vk − y‖ ,

where uk = H1
k(ξk, 0), vk = H1

k(ξk, τk). Since (ξk, 0, uk) ∈ Gr(H1
k) and

H1
k

igr−→ H, we may pick points (ξ̃k, τ̃k, ũk) ∈ Gr(H) such that

‖ξk − ξ̃k‖ + τ̃k + ‖uk − ũk‖ → 0 as t → ∞ . (3.2.4)

We may then pass to a subsequence and assume that the limit (ξ̃∞, τ̃∞, ũ∞)
of the sequence {(ξ̃k, τ̃k, ũk)}k∈N exists and belongs to Gr(H). Then (3.2.4)
implies that ξk → ξ̃∞ (from which it follows that ξ̃∞ = ξ̄), τ̃∞ = 0, and, finally
ũ∞ = limk→∞ uk = limk→∞H1

k(ξk, 0).
Since (ξ̄, 0, ũ∞) = (ξ̃∞, τ̃∞, ũ∞) ∈ Gr(H), we conclude that ũ∞ ∈ H(ξ̄, 0),

so ũ∞ = ξ̄. Since ξk → ξ̄ and uk → ξ̄, we see that limk→∞ ‖ξk − uk‖ = 0.

Next, since (ξk, τk, vk) ∈ Gr(H1
k) and H1

k

igr−→ H, we may pick points
(ξ̂k, τ̂k, v̂k) ∈ Gr(H) such that

‖ξk − ξ̂k‖ + |τk − τ̂k| + ‖vk − v̂k‖ → 0 as t → ∞ . (3.2.5)

It is then possible to pass to a subsequence and assume that the limit
(ξ̂∞, τ̂∞, v̂∞) = limk→∞(ξ̂k, τ̂k, v̂k) exists and belongs to Gr(H). Then (3.2.5)
implies that ξk → ξ̂∞ (so that ξ̂∞ = ξ̄), τk → τ̂∞ (so that τ̂∞ = τ̄), and
v̂∞ = limk→∞ vk = limk→∞H1

k(ξk, τk) (so that ‖vk − v̂∞‖ → 0 as k → ∞).
Since (ξ̄, τ̄ , v̂∞) = (ξ̂∞, τ̂∞, v̂∞) ∈ Gr(H), we conclude that v̂∞ ∈ H(ξ̄, τ̄).
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Hence we can apply the inequality β ≤ 21−k + ‖ξk − uk‖ + ‖vk − y‖ with
y = v̂∞, and conclude that

β ≤ 21−k + ‖ξk − uk‖ + ‖vk − v̂∞‖ . (3.2.6)

However, we know that limk→∞ ‖ξk − uk‖ = 0, and limk→∞ ‖vk − v̂∞‖ = 0.
So the right-hand side of (3.2.6) goes to zero as k → ∞, contradicting the fact
that β > 0. This contradiction completes the proof of (3.2.2).

The set

Q = H(∂K × [0, R]) = {y ∈ R
n : (∃x ∈ ∂K)(∃t ∈ [0, R])(y ∈ H(x, t))}

is compact, and our hypotheses imply that the points vj do not belong to Q.
Let Qk = H4

k(∂K × [0, R]), so Qk is also compact. We claim that:

($) For every j ∈ N there exists a κ(j) ∈ N such that vj /∈ Qk whenever
k ≥ κ(j).

To see this, suppose that j is such that vj ∈ Qk for infinitely many values of k.
Then we may assume, after passing to a subsequence, that vj ∈ Qk for all k.

Let vj = H4
k(xk, tk), xk ∈ ∂K, tk ∈ [0, R]. Since H4

k  (K × [0, R])
igr−→ H, we

may pick (x̃k, t̃k, ṽk) ∈ Gr(H) such that ‖xk−x̃k‖+‖tk− t̃k‖+‖vj−ṽk‖→0.
Since Gr(H) is compact, we may pass to a subsequence and assume that
the limit (x̃∞, t̃∞, ṽ∞) = limk→∞(x̃k, t̃k, ṽk) exists and belongs to Gr(H).
But then x̃∞ = limk→∞ xk, so in particular x̃∞ ∈ ∂K, because xk ∈ ∂K,
and ỹ∞ = limk→∞ tk. In addition, ṽk = vj . So vj ∈ H(x̃∞, t̃∞) and
(x̃∞, t̃∞) ∈ ∂K × [0, R]. Hence vj ∈ Q, and we have reached a contradiction,
proving ($).

We now pick, for each j, an index k(j) such that k(j) ≥ κ(j) and
k(j) ≥ j, and let H5

j = H4
k(j). Then each H5

j is a polynomial map such that
H5
j (x, 0) = x whenever x ∈ R

n, and H5
j (x, t) �= vj whenever (x, t) belongs to

∂K × [0, R]. Furthermore, H5
j  (K × [0, R])

igr−→ H as j → ∞. Since the set
Pj = H5

j (∂K × [0, R]) is compact, vj /∈ Pj , and vj ∈ Int(K), we may pick
for each j an εj such that 0 < εj < 2−j with the property that the ball
Bj = {v ∈ R

n : ‖v − vj‖ < εj} is a subset of Int(K) and does not intersect
Pj . It follows from Sard’s theorem that, for any given j, almost every v ∈ R

n

is a regular value of both maps R
n × R , (x, t) �→ H5

j (x, t) ∈ R
n and

R
n , x �→ H5

j (x,R) ∈ R
n. So we may pick wj ∈ Bj which is a regular

value of both maps. Since vj → 0 as j → ∞ and ‖wj − vj‖ < εj < 2−j , we
can conclude that limj→∞ wj = 0.

We now fix a j. Let S = {(x, t) ∈ R
n × R : H5

j (x, t) = wj}. Then S is the
set of zeros of the polynomial map

R
n × R , (x, t) �→ H5

j (x, t) − wj ∈ R
n ,

which does not have 0 as a regular value. It follows that S is a closed embedded
one-dimensional submanifold of R

n × R, so each connected component of
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S is a closed embedded one-dimensional submanifold of R
n × R which is

diffeomorphic to R or to the circle S
1 = {(x, y) ∈ R

2 : x2 + y2 = 1}. Since
H5
j (wj , 0) = wj , the point (wj , 0) belongs to a connected component C of

S. Since C is diffeomorphic to R or S
1, the set X of all smooth vector fields

X on C such that ‖X(x)‖ = 1 for every x ∈ C has exactly two members.
Fix an X ∈ X , so the other member of X is −X. The vector X(wj , 0) is then
tangent to C at (wj , 0), and therefore belongs to the kernel of DH5

j (wj , 0). On
the other hand, the differential at wj of the map R

n , x �→ H5
j (x, 0) ∈ R

n is
the identity map, which is injective. It follows that the vector X(wj , 0) is not
tangent to R

n×{0}. Hence X(wj , 0) = (ω, r), with ω ∈ R
n, r ∈ R, and r �= 0.

We may then assume, after relabeling −X as X, if necessary, that r > 0.
Next, still keeping j fixed, we let γq be, for each q ∈ C, the maximal

integral curve of X such that γq(0) = q. Then each γq is defined, in principle,
on an interval Iq = ]αq, βq[ , where −∞ ≤ αq < 0 < βq ≤ +∞. It turns out,
however, that the numbers αq, βq cannot be finite. (For example, suppose
βq was finite. Then the limit p = limt↑βq

γq(t) would exist, as a limit in
the ambient space R

n × R, because γq is Lipschitz. Then p would have to
belong to C, since C is closed, and p would also be the limit in C of γq(t)
as t ↑ βq, because C is embedded. Hence we would be able to extend γq to a
continuous map from the interval Iq = ]αq, βq] to C such that γq(βq) = p, and
concatenate this with an integral curve γ̃ : [βq, βq+ε[ �→ C such that γ̃(βq) = p,
thereby obtaining an extension of γq to a larger interval, and contradicting
the maximality. of γq. A similar argument works for αq. So αq = −∞ and
βq = +∞.) Therefore Iq = R for every q ∈ C. Clearly, the set Aq = γq(R)
is an open submanifold of C. Furthermore, if q, q′ ∈ C then the sets Aq, Aq′
are either equal or disjoint. Since C is connected, all the sets Aq coincide and
are equal to C. In particular, if we let q̄ = (wj , 0), and write γ = γq̄, then
γ(R) = C. Write γ(t) = (ξ(t), τ(t)), ξ(t) ∈ R

n, τ(t) ∈ R. Then there exists
a positive number δ such that ξ(t) ∈ Int(K) for −δ < t < δ and tτ(t) > 0
for 0 < |t| < δ. It follows, after making δ smaller, if necessary, that γ(t) is an
interior point of K× [0, R] for 0 < t < δ. If C is diffeomorphic to S

1, then γ is
periodic, so there exists a smallest time T > 0 such that γq̄(T ) = γ(0). Then
γ(T − h) = γ(−h) for small positive h, so τ(T − h) = τ(−h) < 0 for such h,
implying that γ(t) /∈ K × [0, R] when t < T and T − t is small enough. It
follows that it is not true that γ(t) ∈ K × [0, R] for all t ∈ [0, T ]. If we let
M = {t ∈ [0, T ] : γ(t) /∈ K × [0, R]}, then M is a nonempty relatively open
subset of [0, T ]. Let T0 = infM . Then T0 > 0, because γ(t) ∈ K× [0, R] when
0 ≤ t < δ. Therefore T0 /∈ M , because if T0 ∈ M then the facts that M is
relatively open in [0, T ] and T0 > 0 would imply that T0 − h ∈ M for small
positive h, contradicting the fact that T0 = inf M . It follows that:

(&) T0 > 0, γ(t) ∈ K × [0, R] for 0 ≤ t ≤ T0, γ(T0 + h�) /∈ K × [0, R] for a
sequence {h�}�∈N of positive numbers converging to 0, and γ is an injective
map on [0, T0].
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So we have proved the existence of a T0 for which (&) is true, under the
hypothesis that C is diffeomorphic to S

1.
We now show, still keeping j fixed, that a T0 for which (&) holds also

exists if C is diffeomorphic to R. To prove this, we define a set M by letting
M = {t ∈ [0,+∞[ : γ(t) /∈ K × [0, R]}. Then M is a relatively open subset of
[0,+∞[ . Furthermore, M �= ∅. (Proof. If M was empty, then γ(t) would
belong to K × [0, R] for all positive t. So we could pick a sequence {t�}�∈N of
positive numbers converging to +∞ and such that γ(t�) converges to a limit
q. But then q ∈ C, because C is closed, and the equality lim�→∞ γ(t�) = q
also holds in C, because C is embedded. Since C is embedded, there exists a
neighborhood U of q in R

n×R which is diffeomorphic to a product −]ρ, ρ[n+1

under a map Φ : U �→ −]ρ, ρ[n+1 that sends q to 0 and is such that Φ(U ∩C) is
the arc A = {(s, 0, . . . , 0) : −ρ < s < ρ}. Then γ(t�) ∈ A if � is large enough.
But A itself, suitably parametrized, is an integral curve ]α, β[, t �→ ζ(t) of
X such that α < 0 < β and ζ(0) = q. It follows that for large enough �
there exist h� ∈ ]α, β[ such that h� → 0 as � → ∞ and ζ(h�) = γ(t�). Let
T ∈ R be such that γ(T ) = q. Then γ(T + h�) = ζ(h�) = γ(t�). Since the
t� go to +∞, but the T + h� are bounded, there must exist at least one �
such that T + h� �= t�. Since γ(T + h�) = ζ(h�) = γ(t�), it follows that γ is
periodic and then C = γ(R) is compact, contradicting the assumption that C
is diffeomorphic to R.) Let T0 = infM . Then T0 > 0, because γ(t) ∈ K×[0, R]
when 0 ≤ t < δ. Therefore T0 /∈ M , because if T0 ∈ M then the facts that M
is relatively open in [0,+∞[ and T0 > 0 would imply that T0 − h ∈ M for
small positive h, contradicting the fact that T0 = inf M . Hence (&) holds.

So we have shown that:

(&&) For every j there exist a positive number T j0 and a smooth curve
[0,+∞[, s �→ γj(s) = (ξj(s), τ j(s)) ∈ R

n × R such that:
(&&.1) γj(0) = (wj , 0)
(&&.2) γj(s) ∈ K × [0, R] for 0 ≤ s ≤ T j0
(&&.3) There exists a sequence {h�}�∈N of positive numbers, converging

to 0, such that γj(T j0 + h�) /∈ K × [0, R] for every �
(&&.4) γj is an injective map on [0, T j0 ]
(&&.5) H5

j (γ
j(s)) = wj for every s ∈ [0, T j0 ]

We now let Zj = γj([0, T j0 ]) for every j ∈ N. Then each Zj is a compact
connected subset of K×[0, R], such that (wj , 0) ∈ Zj and the function H5

j −wj
vanishes on Zj . Furthermore, we claim that Zj ∩ (K × {R}) �= ∅. (Proof.
We show that γj(T j0 ) ∈ K × {R}. To see this, observe that (&&.2) implies
that γj(T j0 ) ∈ K × [0, R], and (&&.3) implies that γj(T j0 ) is not an interior
point of K × [0, R], so γj(T j0 ) ∈ ∂(K × [0, R]). On the other hand, it is
clear that ∂(K × [0, R]) = (∂K × [0, R]) ∪ (K × {0, R}). But γj(T j0 ) cannot
belong to ∂K× [0, R], because H5

j (γ
j(T j0 )) = wj and H5

j never takes the value
wj on ∂K × [0, R] (because wj ∈ Bj and Bj ∩ Pj = ∅). So γj(T j0 ) belongs
to (K × {0}) ∪ (K × {R}). But γj(T j0 ) cannot belong to K × {0}, because
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γj(T j0 ) �= γj(0) (thanks to (&&.4)), γj(0) = (wj , 0), and (wj , 0) is the only
point of K × {0} where H5

j − wj vanishes (since H5
j (x, 0) = x for all x). So

γj(T j0 ) ∈ K × {R}, as desired.)
Since Z = {Zj}j∈N is a sequence of nonempty compact connected subsets

of K × [0, R], Proposition 3.7 implies that we may assume, after passing to a
subsequence, that Z converges in the Hausdorff metric to a nonempty compact
connected subset Z of K × [0, R]. We now show that Z satisfies the three
properties of the conclusion of our theorem. First. we prove that 0 ∈ H(x, t)
whenever (x, t) ∈ Z. Pick a point (x, t) of Z. Then dist((x, t), Zj) goes to 0
as j → ∞. So we may pick (xj , tj) ∈ Zj such that xj → x and tj → t. Since
(xj , tj) ∈ Zj , the point ((xj , tj), wj) belongs to Gr(H5

j  (K × [0, R])). Since

H5
j  (K× [0, R])

igr−→ H, we may pick points ((x̃j , t̃j), w̃j) in Gr(H) such that

lim
j→∞

(
‖xj − x̃j‖ + |tj − t̃j | + ‖wj − w̃j‖

)
= 0 . (3.2.7)

Since (xj , tj , wj) → (x, t, 0), (3.2.7) implies that ((x̃j , t̃j), w̃j) → ((x, t), 0).
Since Gr(H) is compact, ((x, t), 0) belongs to Gr(H), so 0 ∈ H(x, t), as
desired. Next we show that Z ∩ (K × {0}) �= ∅. To see this, it suffices to
observe that (wj , 0) ∈ Zj and wj → 0, so (0, 0) ∈ Z. Finally, we prove that
Zj ∩ (K × {R}) �= ∅. For this purpose, we use the fact that Zj∩(K×{R}) �= ∅
to pick points zj ∈ K such that (zj , R) ∈ Zj . Using the compactness of K,
pick an infinite subset J of N such that z = limj→∞,j∈J zj exists and belongs
to K. Then, since (zj , R) ∈ Zj , (zj , R) → (z,R), and Zj → Z in the Hausdorff
metric, it follows that (z,R) ∈ Z, concluding our proof. *+

Kakutani–Fan–Glicksberg (KFG) Maps

An important class of examples of CCA maps consists of those that we will
call Kakutani–Fan–Glicksberg (abbreviated “KFG”) maps, because they occur
in the celebrated finite-dimensional Kakutani fixed point theorem as well as
in its infinite-dimensional version due to Fan and Glicksberg.

Definition 3.11 If X is a metric space and C is a convex subset of a normed
space, a KFG map from X to C is a compactly-graphed set-valued map
F : X �→→ C such that F (x) is convex and nonempty whenever x ∈ X. *+

Remark 3.12 It follows from Fact 3.3 that a set-valued map F : X �→→ C
from a metric space X to a convex subset C of a normed space is a KFG
map if and only if it is an upper semicontinuous map with nonempty compact
convex values. *+

The following result is due to A. Cellina, cf. [3, 4, 6].

Theorem 3.13 If X is a metric space, C is a convex subset of a normed
space Y , F : X �→→ C, and F is a KFG map, then F is a CCA map.
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Proof. The definition of a KFG map implies that Gr(F  K) is compact and
nonempty whenever K is a nonempty compact subset of X, which is one of the
two conditions needed for F to be a CCA map. To prove the other condition,
we fix a nonempty compact subset K of X and prove that there exists a
sequence {Fj}∞j=1 of continuous maps Fj : K �→ C such that Fj

igr−→ F  K as
j → ∞.

For each positive number ε, select a finite subset Sε of K such that
K ⊆
⋃
s∈Sε

BX(s, ε). For x ∈ K, s ∈ Sε, let ψs,ε(x) = max
(
0, ε − dX(x, s)

)
,

so ψs,ε : K �→ R is continuous and nonnegative and ψs,ε(x) > 0 if and only

if x ∈ BX(s, ε). Define ϕs,ε(x) =
(∑

s′∈Sε
ψs′,ε(x)

)−1

ψs,ε(x), so the ϕs,ε are
continuous nonnegative real-valued functions on K having the property that∑

s∈Sε
ϕs,ε(x) = 1 for all x ∈ K. Using the fact that the sets F (x) are non-

empty, pick a ys,ε ∈ F (s) for each s ∈ Sε. Define Hε : K �→ C by letting
Hε(x) =

∑
s∈Sε

ϕs,ε(x)ys,ε. Then each Hε is continuous.
Now let {εj}j∈N be a sequence of positive numbers that converges to zero.

We claim that the Hεj

igr−→ F  K. To see this, we let

αj = sup{dX×Y (q,Gr(F  K)) : q ∈ Gr(Hεj
)} ,

and prove that αj → 0. The proof will be by contradiction.
Assume that {αj} does not go to zero. Then we may pass to a subsequence

and assume that the αj are bounded below by a fixed strictly positive number
α. Pick a β such that 0 < β < α. Pick qj ∈ Gr(Hεj

) such that

dX×Y (qj ,Gr(F  K)) ≥ β . (3.2.8)

Write qj = (xj , yj). Then the xj belong to K, so we may assume, after passing
to a subsequence, that the limit x̄ = limj→∞ xj exists.

Fix a γ such that 0 < γ and 2γ < β. Pick a positive δ such that
dY (z, F (x̄)) < γ whenever w ∈ K, z ∈ F (w), and dX(x̄, w) ≤ δ. (The
existence of such a δ is easily proved: suppose, by contradiction, that there
exist sequences {wk}, {zk} in K such that zk ∈ F (wk), wk → x̄ as k → ∞, and
dY (zk, F (x̄)) ≥ γ; since Gr(F  K) is compact we may assume, after passing to
a subsequence, that the sequence {zk} converges to a limit z; since zk ∈ F (wk),
and wk → x̄, the compactness of Gr(F  K) also implies that z ∈ F (x̄); since
zk → z, we see that dY (zk, F (x̄)) → 0, and we have derived a contradiction.)

Now let j∗ ∈ N be such that

2 εj ≤ δ and dX(xj , x̄) ≤ min
(
γ,
δ

2

)
(3.2.9)

whenever j ≥ j∗. If j ≥ j∗, x = xj , and ε = εj , then all the terms in the
summation defining Hε for which dX(s, x̄) ≥ δ vanish, because dX(s, x̄) ≥ δ
implies dX(xj , s) ≥ δ

2 ≥ εj in view of (3.2.9), so ϕs,εj
(xj) = 0. Therefore, if

we let yj = Hεj
(xj), we have
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yj = Hεj
(xj) =

∑
s∈Ŝεj,x̄

ϕs,εj
(xj)ys,εj

, (3.2.10)

where Ŝεj ,x̄ =
{
s ∈ Sεj

: dX(s, x̄) < δ
}

. For every s ∈ Ŝεj ,x̄, the point ys,εj

is in F (s), so dist(ys,εj
, F (x̄)) < γ. Therefore we may pick ỹs,εj

∈ F (x̄) such
that ‖ys,εj

− ỹs,εj
‖ ≤ γ. If we let ỹj =

∑
s∈Ŝεj,x̄

ϕs,εj
(xj)ỹs,εj

, and compare

this with (3.2.10), we find ‖ỹj − yj‖ ≤
∑

s∈Ŝεj,x̄
ϕs,εj

(xj)‖ỹs,εj
− ys,εj

‖ ≤ γ.

On the other hand, ỹj clearly is a convex combination of points of F (x̄), so
ỹj ∈ F (x̄), because F (x̄) is convex. Since ‖yj − ỹj‖ ≤ γ and dX(xj , x̄) ≤ γ for

j ≥ j∗, and the point q̃j
def=(x̄, ỹj) belongs to Gr(F  K), we can conclude that

dX×Y (qj ,Gr(F  K)) ≤ 2 γ < β if j ≥ j∗ This, together with Formula
(3.2.8), shows that the assumption that αj does not go zero leads to a
contradiction. So αj → 0, and the proof is complete. *+

The Cellina, Kakutani, and Fan–Glicksberg Fixed Point Theorems

Many fixed point properties of continuous maps are also valid for CCA maps,
as we now show. Let us recall that, if A is a set, and F : A �→→ A, then a fixed
point of F is a point a ∈ A such that a ∈ F (a).

Theorem 3.14 (Cellina, cf. [5]) Let K be a nonempty compact convex subset
of a normed space X, and let F : K �→→ K be a CCA map. Then F has a fixed
point.

Proof. Let {Fj}j∈N be a sequence of continuous maps from K to K such that

Fj
igr−→ F as j → ∞. By the Schauder fixed point theorem, there exist xj

such that Fj(xj) = xj . Since K is compact we may pass to a subsequence,
if necessary, and assume that the sequence {xj}j∈N has a limit x ∈ K. Then
Fj(xj) → x as well, so x ∈ F (x). *+

Corollary 3.15 (The Kakutani–Fan–Glicksberg fixed point theorem, cf.
Kakutani [13], Fan [10], Glicksberg [11].) Let K be a nonempty compact convex
subset of a normed space X. Let F : K �→→ K be a set-valued map with a
compact graph and nonempty convex values. Then F has a fixed point.

Proof. Theorem 3.13 tells us that F is a CCA map, and then Theorem 3.14
implies that F has a fixed point. *+

4 GDQs and AGDQs

We use Θ to denote the class of all functions θ : [0,+∞ [ �→ [0,+∞] such that:

• θ is monotonically nondecreasing (that is, θ(s) ≤ θ(t) whenever s, t are
such that 0 ≤ s ≤ t < +∞)

• θ(0) = 0 and lims↓0 θ(s) = 0
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If X,Y are FDNRLSs, we endow Lin(X,Y ) with the operator norm ‖ · ‖op
defined in (2.1.2). If Λ ⊆ Lin(X,Y ) and δ > 0, we define

Λδ = {L ∈ Lin(X,Y ) : dist(L,Λ) ≤ δ} ,

where dist(L,Λ) = inf{‖L − L′‖op : L′ ∈ Λ}. Notice that if L ∈ Lin(X,Y ),
then dist(L, ∅) = +∞. In particular, if Λ = ∅ then Λδ = ∅. Notice also that
Λδ is compact if Λ is compact and Λδ is convex if Λ is convex.

4.1 The Basic Definitions

Generalized Differential Quotients (GDQs)

We assume that (1) X and Y are FDNRLSs, (2) F : X �→→ Y is a set-valued
map; (3) x̄∗ ∈ X, (4) ȳ∗ ∈ Y , and (5) S ⊆ X.

Definition 4.1 A generalized differential quotient (abbreviated “GDQ”)
of F at (x̄∗, ȳ∗) in the direction of S is a compact subset Λ of Lin(X,Y )
having the property that for every neighborhood Λ̂ of Λ in Lin(X,Y ) there
exist U , G such that:

(I) U is a neighborhood of x̄∗ in X
(II) ȳ∗ +G(x) · (x− x̄∗) ⊆ F (x) for every x ∈ U ∩ S

(III) G is a CCA set-valued map from U ∩ S to Λ̂ *+
We will use GDQ(F, x̄∗, ȳ∗, S) to denote the set of all GDQs of F at (x̄∗, ȳ∗)
in the direction of S.

Remark 4.2 The set Λ can, in principle, be empty. Actually, it is very easy
to show that the following three conditions are equivalent:

(1) ∅ ∈ GDQ(F, x̄∗, ȳ∗, S)
(2) Every compact subset of Lin(X,Y ) belongs to GDQ(F, x̄, ȳ, S)
(3) x̄∗ does not belong to the closure of S *+

It is not hard to prove the following alternative characterization of GDQs.

Proposition 4.3 Let X,Y be FDNRLSs, let F : X �→→ Y be a set-valued map,
and let Λ be a compact subset of Lin(X,Y ). Let x̄∗ ∈ X, ȳ∗ ∈ Y , S ⊆ X.
Then Λ ∈ GDQ(F, x̄∗, ȳ, S) if and only if there exists a function θ ∈ Θ –
called a GDQ modulus for (Λ,F, x̄∗, ȳ∗, S) – having the property that:

(*) For every ε ∈ ] 0,+∞ [ such that θ(ε) < ∞ there exists a set-valued map
Gε ∈ CCA(B̄X(x̄∗, ε)∩S,Lin(X,Y )) such that for every x ∈ B̄X(x̄∗, ε)∩S
the inclusions Gε(x) ⊆ Λθ(ε) and ȳ∗ +Gε(x) · (x− x̄∗) ⊆ F (x) hold

Proof. Assume that Λ belongs to GDQ(F, x̄∗, ȳ∗, S). For each nonnegative
real number ε, let H(ε) be the set of all δ such that (i) δ > 0, and
(ii) there exists a G ∈ CCA(B̄X(x̄∗, ε)∩S,Lin(X,Y )) with the property that
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G(x) ⊆ Λδ and ȳ∗ + G(x) · (x − x̄∗) ⊆ F (x) whenever x ∈ B̄X(x̄∗, ε) ∩ S.
Let θ0(ε) = inf H(ε), and then define θ(ε) = θ0(ε) + ε. (Notice that
the set H(ε) could be empty, in which case θ0(ε) = θ(ε) = +∞.) It is
clear that θ is monotonically non-decreasing, since H(ε′) ⊆ H(ε) whenever
0 ≤ ε < ε′. The fact that Λ ∈ GDQ(F, x̄∗, ȳ∗, S) implies that, given any
positive δ, there exist a neighborhood U of x̄∗ and a map G̃ ∈ CCA(U ∩ S,Λδ)
such that ȳ∗ + G̃(x) · (x− x̄∗) ⊆ F (x) whenever x ∈ U ∩ S. Find ε such that
B̄X(x̄∗, ε) ⊆ U , and let G = ι2 ◦ G̃ ◦ ι1, where ι1 : B̄X(x̄∗, ε) ∩ S �→ U ∩ S
and ι2 : Λδ �→ Lin(X,Y ) are the set inclusions. Then it is clear that G
belongs to CCA(B̄X(x∗, ε) ∩ S,Lin(X,Y )), and also that G(x) ⊆ Λδ and
ȳ∗ +G(x) · (x− x̄∗) ⊆ F (x) whenever x ∈ B̄X(x̄∗, ε)∩S. Therefore δ ∈ H(ε),
so θ0(ε) ≤ δ. This proves that limε↓0 θ0(ε) = 0, thus establishing that
θ0 ∈ Θ, and then θ ∈ Θ as well. Finally, if θ(ε) < +∞, then we can
pick a δ ∈ H(ε) such that θ0(ε) ≤ δ ≤ θ(ε), and then find a G belonging
to CCA(B̄X(x̄∗, ε) ∩ S,Lin(X,Y )) for which the conditions G(x) ⊆ Λδ and
ȳ∗ +G(x) · (x− x̄∗) ⊆ F (x) hold whenever x ∈ B̄X(x̄∗, ε)∩S. Since δ ≤ θ(ε),
the map G takes values in Λθ(ε). Hence we can choose Gε to be G, and the
condition of (*) is satisfied.

To prove the converse, let θ be a GDQ modulus for Λ,F, x̄∗, ȳ∗, S. Fix
a positive number δ. Pick an ε such that θ(ε) < δ. Then pick Gε such
that the conditions of (*) hold. Then the map Gε satisfies the requirement
that ȳ∗ + Gε · (x − x̄∗) ⊆ F (x) whenever x ∈ B̄X(x̄∗, ε) ∩ S. Furthermore,
Gε ∈ CCA(B̄X(x̄∗, ε) ∩ S,Lin(X,Y )), and Gε takes values in Λθ(ε). Since
θ(ε) < δ, if K is a compact subset of B̄X(x̄∗, ε) ∩ S and {Gj}j∈N is a sequence

of continuous maps from K to Lin(X,Y ) such that Gj
igr−→ Gε  K, it follows

that Gj takes values in Λδ if j is large enough. Therefore Gε belongs to
CCA(B̄n(x̄∗, ε) ∩ S,Λδ). This shows that Λ ∈ GDQ(F, x̄∗, ȳ∗, S), concluding
our proof. *+

Approximate Generalized Differential Quotients (AGDQs)

Motivated by the characterization of GDQs given in Proposition 4.3, we now
define a slightly larger class of generalized differentials. First, if X, Y are
FDNRLSs, we let Aff(X,Y ) be the set of all affine maps from X to Y , so
the members of Aff(X,Y ) are the maps X , x �→ A(x) = L · x+h , L ∈
Lin(X,Y ), h∈Y . (For a map A of this form, the linear map L ∈ Lin(X,Y )
and the vector h ∈ Y are the linear part and the constant part of A.) We
identify Aff(X,Y ) with Lin(X,Y ) × Y by identifying each A ∈ Aff(X,Y )
with the pair (L, h) ∈ Lin(X,Y ) × Y , where L, h are, respectively, the linear
part and the constant part of A.

Definition 4.4 Assume that X,Y are FDNRLSs, F : X �→→ Y is a set-valued
map, Λ is a compact subset of Lin(X,Y ), x̄∗ ∈ X, ȳ∗ ∈ Y , and S ⊆ X. We
say that Λ is an approximate generalized differential quotient of F at
(x̄∗, ȳ∗) in the direction of S – and write Λ∈AGDQ(F, x̄∗, ȳ∗, S) – if there
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exists a function θ ∈ Θ – called an AGDQ modulus for (Λ,F, x̄∗, ȳ∗, S) –
having the property that:

(**) For every ε ∈ ] 0,+∞ [ such that θ(ε) < ∞ there exists a set-valued
map Aε ∈ CCA(B̄X(x̄∗, ε) ∩ S,Aff(X,Y )) such that

L ∈ Λθ(ε) , ‖h‖ ≤ θ(ε)ε , and ȳ∗ + L · (x− x̄∗) + h ∈ F (x)

whenever x ∈ B̄X(x̄∗, ε) ∩ S and (L, h) belongs to Aε(x) . *+

4.2 Properties of GDQs and AGDQs

Retracts, Quasiretracts and Local Quasiretracts

In order to formulate and prove the chain rule, we first need some basic facts
about retracts.

Definition 4.5 Let T be a topological space and let S be a subset of T . A
retraction from T to S is a continuous map ρ : T �→ S such that ρ(s) = s
for every s ∈ S. We say that S is a retract of T if there exists a retraction
from T to S. *+
Often, the redundant phrase “continuous retraction” will be used for emphasis,
instead of just saying “retraction.”

It follows easily from the definition that

Fact 4.6 If T is a Hausdorff topological space and S is a retract of T , then
S is closed. *+

Also, it is easy to show that every retract is a “local retract” at any point,
in the following precise sense:

Fact 4.7 If T is a Hausdorff topological space, S is a retract of T , and s ∈ S,
then every neighborhood U of s contains a neighborhood V of s such that S∩V
is a retract of V . *+

It will be convenient to introduce a weaker concept, namely, that of a
“quasiretract,” as well as its local version.

Definition 4.8 Let T be a topological space and let S be a subset of T . We
say that S is a quasiretract of T if for every compact subset K of S there
exist a neighborhood U of K and a continuous map ρ : U �→ S such that
ρ(s) = s for every s ∈ K. *+

Definition 4.9 Assume that T is a topological space, S ⊆ T , and s̄∗ ∈ T . We
say that S is a local quasiretract of T at s̄∗ if there exists a neighborhood
U of s̄∗ such that S ∩ U is a quasiretract of U . *+
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It is then easy to verify the following facts.

Fact 4.10 If T is a topological space and S ⊆ T , then:

(1) If S is a retract of T then S is a quasiretract of T
(2) If S is a quasiretract of T and Ω is an open subset of T then S ∩Ω is a

quasiretract of Ω *+

Fact 4.11 Assume that T is a topological space, S ⊆ T , and s̄∗ ∈ T . Then
the following are equivalent:

(a) S is a local quasiretract of T at s̄∗
(b) Every neighborhood V of s̄∗ contains an open neighborhood U of s̄∗ in T

such that S ∩ U is a quasiretract of U *+

Fact 4.11 implies, in particular, that being a local quasiretract is a local-
homeomorphism invariant property of the germ of S at s̄∗. Precisely,

Corollary 4.12 Assume that T, T ′ are topological spaces, S ⊆ T , S′ ⊆ T ′,
s̄∗ ∈ T , and s̄′∗ ∈ T ′. Assume that there exist neighborhoods V , V ′ of s̄∗, s̄′∗ in
T, T ′, and a homeomorphism h from V onto V ′ such that h(S ∩ V ) = S′ ∩ V ′

and h(s̄∗) = s̄′∗. Then S is a local quasiretract of T at s̄∗ if and only if S′ is
a local quasiretract of T ′ at s̄′∗.

Proof. It clearly suffices to prove one of the two implications. Assume that S
is a local quasiretract of T at s̄∗. Then Fact 4.11 implies that there exists an
open subset U of T such that s̄∗ ∈ U , U ⊆ V , and S ∩ U is a quasiretract
of U . Let U ′ = h(U). Since h is a homeomorphism, U ′ is a relatively open
subset of V ′ such that s̄′∗ ∈ U ′, and S′ ∩ U ′ is a quasiretract of U ′. Since V ′

is a neighborhood of s̄′∗ in T ′, it follows that U ′ is a neighborhood of s̄′∗ in T ′,
so Definition 4.9 tells us that S′ is a local quasiretract of T ′ at s̄′∗. *+

Remark 4.13 The set S = {(x, y) ∈ R
2 : y > 0} ∪ {(0, 0)} is a quasiretract

of R
2. (Indeed, if K is a compact subset of S, then the convex hull K̂ of K

is also compact, and K̂ ⊆ S because S is convex. Therefore K̂ is a retract of
R

2. If ρ : R
2 �→ K̂ is a retraction, then ρ maps R

2 into S, and ρ(s) = s for
every s ∈ K.)

On the other hand, S is not a retract of R
2, because S is not a closed subset

of R. This shows that the notion of quasiretract is strictly more general than
that of a retract.

The same is true for the notions of “local quasiretract” and “local retract.”
For example, the set S of our previous example is a local quasiretract at the
origin, but it is not a local retract at (0, 0), because there does not exist a
neighborhood V of (0, 0) such that S ∩V is a relatively closed subset of V . *+
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The Chain Rule

We now prove the chain rule for GDQs and AGDQs.

Theorem 4.14 For i = 1, 2, 3, let Xi be a FDNRLS, and let x̄∗,i be a point
of Xi. Assume that, for i = 1, 2, (i) Fi : Xi �→→ Xi+1 is a set-valued map,
(ii) Si is a subset of Xi, and (iii) Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume,
in addition, that (iv) F1(S1) ⊆ S2, and

(v) Either (v.1) S2 is a local quasiretract of X2 at x̄∗,2 or (v.2) there exists a
neighborhood U of x̄∗,1 in X1 such that the restriction F1  (U ∩S1) of F1

to U ∩ S1 is single-valued.

Then Λ2 ◦ Λ1 ∈ AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). Furthermore, if the sets Λ1,
Λ2 belong to GDQ(F1, x̄∗,1, x̄∗,2, S1) and GDQ(F2, x̄∗,2, x̄∗,3, S2), respectively,
then Λ ∈ GDQ(F, x̄∗,1, x̄∗,3, S1).

Proof. We assume, as is clearly possible without loss of generality, that
x̄∗,i = 0 for i = 1, 2, 3. We let F def= F2◦F1, Λ

def= Λ2◦Λ1. We will first prove the
conclusion for AGDQs, and then indicate how to make a trivial modification
to obtain the GDQ result.

To begin with, let us fix AGDQ moduli θ1, θ2 for (Λ1, F1, 0, 0, S1) and
(Λ2, F2, 0, 0, S2), respectively. Also, let κi = 1 + sup

{
‖L‖ : L ∈ Λi

}
, for

i = 1, 2. (We add 1 to make sure that κi > 0 even if Λi = {0}.) It is then easy
to see that Λδ22 ◦Λδ11 ⊆ Λκ2δ1+κ1δ2+δ1δ2 if δ1 ≥ 0, δ2 ≥ 0. (Indeed, if L1 ∈ Λδ11 ,
L2 ∈ Λδ22 , we may pick L̃1 ∈ Λ1, L̃2 ∈ Λ2 such that ‖L̃1 − L1‖ ≤ δ1 and
‖L̃2 − L2‖ ≤ δ2. Then ‖L̃2L̃1 − L2L1‖ ≤ ‖L̃2L̃1 − L̃2L1‖ + ‖L̃2L1 − L2L1‖,
so ‖L̃2L̃1 − L2L1‖ ≤ ‖L̃2‖ ‖L̃1 − L1‖ + ‖L̃2 − L2‖ ‖L1‖ ≤ (κ2 + δ2)δ1 + κ1δ2,
showing that L2L1 ∈ Λκ2δ1+κ1δ2+δ1δ2 .)

We now use Hypothesis (v). If S2 is a local quasiretract of X2 at 0, then
we choose a neighborhood U of 0 in X2 such that S2 ∩ U is a quasiretract of
U , and then we choose a positive number σ̄ such that the open ball BX2(0, σ̄)
is contained in U . Then Fact 4.10 implies that S2 ∩BX2(0, σ̄) is a quasiretract
of BX2(0, σ̄). If S2 is not a local quasiretract of X2, then Hypothesis (v)
guarantees that F1  (U ∩ S1) is single-valued for some neighborhood U of 0
in X1. In this case, we choose a positive ε̄ such that F1 is single-valued on
B̄X1(0, ε̄) ∩ S1, and then take σ̄ to be equal to ε̄.

Then, for ε ∈ ] 0,+∞ [ , we define σ0
ε = (κ1 + 2θ1(ε))ε, σε = σ0

ε + ε,

θ0(ε) = κ2θ1(ε) + κ1θ2(σε) + 3θ1(ε)θ2(σε) , θ(ε) =
{
θ0(ε) if σε < σ̄
+∞ if σε ≥ σ̄ .

Let us show that θ is an AGDQ modulus for (Λ,F, 0, 0, S1). For this purpose,
we first observe that θ ∈ Θ. We next fix a positive ε such that θ(ε) is finite,
and set out to construct a CCA map A : B̄X1(0, ε) ∩ S1 �→→ Lin(X1,X3) ×X3

such that
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(
x ∈ B̄X1(0, ε) ∩ S1 ∧ (L, h) ∈ A(x)

)
⇒(

L ∈ Λθ(ε) ∧ ‖h‖ ≤ θ(ε)ε ∧ L · x+ h ∈ F (x)
)
.

(4.2.1)

The fact that θ(ε) < +∞ clearly implies that σε < σ̄, θ(ε) = θ0(ε),
θ1(ε) < +∞, and θ2(σε) < +∞. We may therefore choose set-valued maps

A1 ∈ CCA(B̄X1(0, ε) ∩ S1, Lin(X1,X2) ×X2) ,
A2 ∈ CCA(B̄X2(0, σε) ∩ S2, Lin(X2,X3) ×X3) ,

such that the conditions

L1 ∈ Λ
θ1(ε)
1 , ‖h1‖ ≤ θ1(ε)ε , L1 · x+ h1 ∈ F1(x) , (4.2.2)

L2 ∈ Λ
θ2(σε)
2 , ‖h2‖ ≤ θ2(σε)σε , L2 · y + h2 ∈ F2(y) (4.2.3)

hold whenever x ∈ B̄X1(0, ε) ∩ S1, (L1, h1) ∈ A1(x), y ∈ B̄X2(0, σε) ∩ S2, and
(L2, h2) ∈ A2(y).

We then define our desired set-valued map A from B̄X1(0, ε) ∩ S to
Lin(X1,X3) ×X3 as follows. For each x ∈ B̄X1(0, ε) ∩ S1, we let

A(x) =
{

(L2 · L1, L2h1 + h2) : (L1h1) ∈ A1(x) , (L2, h2) ∈ A2(L1 · x+ h1)
}
.

Assume that x ∈ B̄X1(0, ε) ∩ S1 and (L, h) ∈ A(x), and let z = L · x + h.
Then there exist (L1, h1) ∈ A1(x) and (L2, h2) ∈ A2(L1 · x + h1) such that
L = L2 · L1 and h = L2h1 + h2. The fact that (L1, h1) ∈ A1(x) implies that
L1 ∈ Λ

θ(ε)
1 , ‖h1‖ ≤ θ1(ε)ε, and ydef=L1 · x+ h1 ∈ F1(x). Then y ∈ S2 (because

F1(S1) ⊆ S2), and ‖y‖ ≤ (κ1 + θ1(ε))ε+ θ1(ε)ε = σ0
ε < σε, so

y ∈ B̄X2(0, σ
0
ε) ∩ S2 ⊆ BX2(0, σε) ∩ S2 (4.2.4)

and then L2 ∈ Λ
θ(σε)
2 , ‖h2‖ ≤ θ2(σε)σε, and L2 · y + h2 ∈ F2(y). It follows

that L = L2L1 ∈ Λκ1θ2(σε)+κ2θ1(ε)+θ2(σε)θ1(ε) ⊆ Λθ(ε). Also,

‖h‖ ≤ ‖L2‖ ‖h1‖ + ‖h2‖ ≤ (κ2 + θ2(σε))θ1(ε)ε+ θ2(σε)σε
= (κ2 + θ2(σε))θ1(ε)ε+ θ2(σε)(κ1 + 2θ1(ε))ε

=
(
κ2θ1(ε) + θ2(σε)θ1(ε) + θ2(σε)κ1 + 2θ2(σε)θ1(ε)

)
ε

=
(
κ2θ1(ε) + θ2(σε)κ1 + 3θ2(σε)θ1(ε)

)
ε

= θ(ε)ε .

Finally,

z = L·x+h = L2L1 ·x+L2 ·h1+h2 = L2(L1 ·x+h1)+h2 = L2 ·y+h2 ∈ F2(y) .

Since y ∈ F1(x), we conclude that z ∈ F (x). Hence A satisfies (4.2.1).
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To conclude our proof, we have to show that

A ∈ CCA(B̄n(0, ε) ∩ S1, Lin(X1,X3) ×X3) . (4.2.5)

We let

Q1,ε = B̄X1(0, ε) ∩ S1 , T1,ε = Q1,ε × Lin(X1,X2) ×X2 ×X2 ,

R1,ε = B̄X2(0, σε) ∩ S2 , T2,ε = Q1,ε × Lin(X1,X2) ×X2 ×R1,ε ,

and let Ψ1,ε be the set-valued map with source Q1,ε and target T1,ε that sends
each x ∈ Q1,ε to the set Ψ1,ε(x) of all 4-tuples (ξ, L1, h1, y) ∈ T1,ε such that
ξ = x, (L1, h1) ∈ A1(x), and y = L1 · x + h1. We then observe that Ψ1,ε

takes values in T2,ε. (This is trivial, because we have already established – cf.
(4.2.4) – that if x ∈ Q1,ε, (L1, h1) ∈ A1(x), and y = L1 ·x+h1, then y ∈ R1,ε.)

Let Ψ̃1,ε be “Ψ1,ε regarded as a set-valued map with target T2,ε.” (Precisely,
Ψ̃1,ε is the set-valued map with source Q1,ε, target T2,ε, and graph Gr(Ψ1,ε).)

We now show that Ψ̃1,ε ∈ CCA(Q1,ε, T2,ε). To prove this, we pick a
compact subset K of Q1,ε, and show that (a) Gr(Ψ̃1,ε  K) is compact, and
(b) there exists a sequence H = {Hj}j∈N of continuous maps Hj : K �→ T2,ε

such that Hj
igr−→ Ψ̃1,ε  K as j → ∞.

The compactness of Gr(Ψ̃1,ε  K) follows from the fact that Gr(Ψ̃1,ε  K) is
the image of Gr(A1  K) under the continuous map

Q1,ε×Lin(X1,X2)×X2 , (x,L1, h1) �→ (x, (x,L1, h1, L1·x+h1)) ∈ Q1,ε×T1,ε .

To prove the existence of the sequence H, we use the fact that A1 belongs
to CCA(Q1,ε, Lin(X1,X2) ×X2) to produce a sequence {Aj1}j∈N of ordinary

continuous maps from K to R
n2×n1 ×R

n2 such that Aj1
igr−→ A1  K as j → ∞,

and we write Aj1(x) = (Lj1(x), h
j
1(x)) for x ∈ K.

We will construct H in two different ways, depending on whether (v.1) or
(v.2) holds.

First suppose that (v.1) holds. The set

K = {L1 · x+ h1 : (x,L1, h1) ∈ Gr(A1  K)} (4.2.6)

is compact, and we know from (4.2.4) that every y ∈ K is a member of
BX2(0, σε) ∩ S2. Since BX2(0, σ̄) ∩ S2 is a quasiretract of BX2(0, σ̄), and
σε < σ̄, Fact 4.10 implies that BX2(0, σε) ∩ S2 is a quasiretract of BX2(0, σε).
Hence there exist an open subset Ω of the ball BX2(0, σε) and a continuous
map ρ : Ω �→ BX2(0, σε) ∩ S2 such that ρ(y) = y whenever y ∈ K. Since

Aj1
igr−→ A1  K, the functions Aj1 must satisfy

{Lj1(x) · x+ hj1(x) : x ∈ K} ⊆ Ω (4.2.7)

for all sufficiently large j. (Otherwise, there would exist an infinite subset
J of N and xj ∈ K such that yj = Lj1(xj) · xj + hj1(xj) /∈ Ω. By making J
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smaller – but still infinite – if necessary, we may assume that the sequence
{(xj , Lj1, h

j
1)}j∈J converges to a limit (x,L1, h1) ∈ Gr(A1  K). Then if we let

y = L1 · x + h1, we see that y ∈ K. On the other hand, the yj are not in Ω,
so y is not in Ω either, because Ω is open. Since K ⊆ Ω, we have reached a
contradiction.)

So we may assume, after passing to a subsequence, that (4.2.7) holds for
all j ∈ N. We then define Hj(x) = (x,Lj1(x), h

j
1(x), ρ(L

j
1(x) · x + hj1(x))) for

x ∈ K, j ∈ N. Then the Hj are continuous maps from K to T2,ε, because ρ
takes values in R1,ε.

We now show that Hj
igr−→ Ψ̃1,ε  K as j goes to ∞. To prove this, we let

νj = sup{dist(q,Gr(Ψ̃1,ε  K)) : q ∈ Gr(Hj)}, and assume that νj does not go
to zero. We may then assume, after passing to a subsequence, that there exists
a ν̄ such that 0 < 2ν̄ ≤ νj for all j. We can then pick xj ∈ K such that

‖xj−x‖+‖Lj1(xj)−L1‖+‖hj1(xj)−h1‖+‖ρ(Lj1(xj) ·x+h
j
1(xj))−y‖≥ ν̄ (4.2.8)

whenever (x,L1, h1, y) ∈ Gr(Ψ̃1,ε  K), j ∈ N. Since Aj1
igr−→ A1  K, we may

clearly assume, after passing to a subsequence if necessary, that the sequence
{(xj , Lj1(xj), h

j
1(xj))}j∈N has a limit (x̄, L̄1, h̄1) ∈ Gr(A1  K).

Let ȳ∗ = L̄1 · x̄ + h̄1. Then ȳ∗ ∈ K, because of (4.2.6) and the fact
that (x̄, L̄1, h̄1) ∈ Gr(A1  K). Therefore ρ(ȳ∗) = ȳ∗. Furthermore, xj → x̄,
Lj1(xj) → L̄1, and hj1(xj) → h̄1. Hence Lj1(xj) · xj + hj1(xj) converges to

L̄1(x̄) · x̄ + h̄1 = ȳ∗. But then limj→∞
(
ρ(Lj1(xj) · x + hj1(xj))

)
= ρ(ȳ∗),

since ρ is continuous, so limj→∞
(
ρ(Lj1(xj) · x + hj1(xj))

)
= ȳ∗, and then

limj→∞ ‖ρ(Lj1(xj) · x+ hj1(xj)) − ȳ∗‖ = 0. It follows that

‖xj−x̄‖+‖Lj1(xj)−L̄1‖+‖hj1(xj)−h̄1‖+‖ρ(Lj1(xj)·xj+h
j
1(xj))−ȳ∗‖ → 0 . (4.2.9)

Let ȳ∗ = (x̄, L̄, L̄ · x̄). Then ȳ∗ ∈ Gr(Ψ̃1,ε  K), so (4.2.9) contradicts (4.2.8).

This concludes the proof that Hj
igr−→ Ψ̃1,ε  K as j goes to ∞. We have thus

established that the sequence H exists, under the assumption that (v.1) holds.
Next, we consider the case when (v.2) holds. Then σ̄ = ε̄, so the fact that

σε < σ̄ implies that ε < ε̄, and then the map F1 is single-valued on Q1,ε. Define
ϕ(x) = {L1 · x + h1 : (L1, h1) ∈ A1(x)} for x ∈ K. Since L1 · x + h1 ∈ F1(x)
whenever x ∈ K and (L1, h1) ∈ A1(x), the hypothesis that F1 is single-valued
on Q1,ε implies that ϕ is a single-valued CCA map from K to X2, so ϕ is an
ordinary continuous map fromK toX2. Since L1·x+h1 ∈ B̄X2(0, σε) whenever
x ∈ K, and (L1, h1) ∈ A1(x), we conclude that ϕ is in fact a continuous map
from K to R1,ε. We then define Hj(x) = (x,Lj1(x), h

j
1(x), ϕ(x)) for x ∈ K,

j ∈ N. Then the Hj are continuous maps from K to T2,ε, and it is easy to see

that Hj
igr−→ Ψ̃1,ε  K as j → ∞. So the existence of H has also been proved

when (v.2) holds.
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We are now ready to prove (4.2.5). We do this by expressing A as a
composite of CCA maps as follows: A = Ψ3,ε ◦ Ψ2,ε ◦ Ψ̃1,ε, where:

1. T3,ε = T2,ε × Lin(X2,X3) ×X3

2. Ψ2,ε : T2,ε �→→ T3,ε is the set-valued map that sends (x,L1, h1, y) ∈ T2,ε to

the set Ψ2,ε(x,L1, h1, y)
def= {x} × {L1} × {h1} × {y} ×A2(y)

3. T4,ε = Lin(X1,X3) ×X3

4. Ψ3,ε : T3,ε �→ T4,ε is the continuous single-valued map that sends
(x,L1, h1, y, L2, h2) ∈ T3,ε to the pair (L2L1, L2h1 + h2) ∈ T4,ε

It is clear that Ψ2,ε and Ψ3,ε are CCA maps, so A is a CCA map, and our
proof for AGDQs is complete.

The proof of the statement for GDQs is exactly the same, except only for
the fact in this case all the constant components h of the various pairs (L, h)
are always equal to zero. *+

GDQs and AGDQs on Manifolds

If M and N are manifolds of class C1, x̄∗∈M , ȳ∗∈N , S⊆M , and
F : M �→→ N , then it is possible to define sets GDQ(F, x̄∗, ȳ∗, S), AGDQ
(F, x̄∗, ȳ∗, S) of compact subsets of the space Lin(Tx̄∗M,Tȳ∗N) of linear
maps from Tx̄∗M to Tȳ∗N as follows. We let m = dimM , n = dimN ,
and pick coordinate charts M , x ↪→ ξ(x) ∈ R

m, N , y ↪→ η(y) ∈ R
n, de-

fined near x̄∗, ȳ∗ and such that ξ(x̄∗)=0 and η(ȳ∗)=0, and declare that
a subset Λ of Lin(Tx̄∗M,Tȳ∗N) belongs to GDQ(F, x̄∗, ȳ∗, S) (resp. to
AGDQ(F, x̄∗, ȳ∗, S)) if the composite map Dη(ȳ∗) ◦ Λ ◦Dξ(x̄∗)−1 is in
GDQ(η ◦ F ◦ ξ−1, 0, 0, ξ(S)) (resp. in AGDQ(η ◦ F ◦ ξ−1, 0, 0, ξ(S))). It then
follows easily from the chain rule that, with this definition, the sets
GDQ(F, x̄∗, ȳ∗, S) and AGDQ(F, x̄∗, ȳ∗, S) do not depend on the choice of
the charts ξ, η. In other words, the notions of GDQ and AGDQ are in-
variant under C1 diffeomorphisms and therefore make sense intrinsically on
manifolds of class C1.

The following facts about GDQs and AGDQs on manifolds are then easily
verified.

Proposition 4.15 If M , N are manifolds of class C1, S ⊆ M , x̄∗ ∈ M ,
ȳ∗ ∈ N , and F : M �→→ N , then:

(1) GDQ(F, x̄∗, ȳ∗, S) ⊆ AGDQ(F, x̄∗, ȳ∗, S).
(2) If (i) U is a neighborhood of x̄∗ in M , (ii) the restriction F  (U ∩ S)

is a continuous everywhere defined map, (iii) ȳ∗ = F (x̄∗), (iv) F is
differentiable at x̄∗ in the direction of S, (v) L is a differential of F
at x̄∗ in the direction of S (that is, L belongs to Lin(Tx̄∗M,Tȳ∗N) and

limx→x̄∗,x∈S ‖x − x̄∗‖−1
(
F (x) − F (x̄∗) − L · (x − x̄∗)

)
= 0 relative to

some choice of coordinate charts about x̄∗ and ȳ∗), then {L} belongs to
GDQ(F, x̄∗, ȳ∗, S).
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(3) If (i) U is an open neighborhood of x̄∗ in M , (ii) the restriction F  U
is a Lipschitz-continuous everywhere defined map, (iii) F (x̄∗) = ȳ∗, and
(iv) Λ is the Clarke generalized Jacobian of F at x̄∗, then Λ belongs to
GDQ(F, x̄∗, ȳ∗,M). *+

Proposition 4.16 (The chain rule.) Assume that (I) for i = 1, 2, 3, Mi

is a manifold of class C1 and x̄∗,i∈Mi, and (II) for i = 1, 2, (II.1) Si ⊆ Mi,
(II.2) Fi : Mi �→→ Mi+1, and (II.3) Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume,
in addition, that either S2 is a local quasiretract of M2 or F1 is single-valued
on U∩S1 for some neighborhood U of x̄∗,1. Then the composite Λ2◦Λ1 belongs
to AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). If in addition Λi ∈ GDQ(Fi, x̄∗,i, x̄∗,i+1, Si)
for i = 1, 2, then Λ2 ◦ Λ1 ∈ GDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). *+

Proposition 4.17 (The product rule.) Assume that, for i = 1, 2, (1) Mi

and Ni are manifolds of class C1, (2) Si ⊆ Mi, (3) x̄∗,i ∈ Mi, (4) ȳ∗,i ∈ Ni,
(5) Fi : Mi �→→ Ni, (6) Λi ∈ AGDQ(Fi, x̄∗,i, ȳ∗,i, Si). Assume also that:

(7) x̄∗ = (x̄∗,1, x̄∗,2), ȳ∗ = (ȳ∗,1, ȳ∗,2), and S = S1 × S2

(8) F = F1×F2, where F1×F2 is the set-valued map from M1×M2 to N1×N2

that sends each point (x1, x2) ∈ M1 ×M2 to the subset F1(x1) × F2(x2)
of N1 ×N2

(9) Λ = Λ1 ⊕ Λ2, where (i) Λ1 ⊕ Λ2 is the set of all linear maps L1 ⊕ L2 for
all L1 ∈ Λ1, L2 ∈ Λ2, (ii) L1 ⊕ L2 is the map

Tx̄∗,1M1 ⊕ Tx̄∗,2M2 , (v1, v2) �→ (L1v1, L2v2) ∈ Tȳ∗,1N1 ⊕ Tȳ∗,2N2 ,

and (iii) we are identifying Tx̄∗,1M1 ⊕ Tx̄∗,2M2 with T(x̄∗,1,x̄∗,2)(M1 ×M2)
and Tȳ∗,1N1 ⊕ Tȳ∗,2N2 with T(ȳ∗,1,ȳ∗,2)(N1 ×N2)

Then Λ ∈ AGDQ(F, x̄∗, ȳ∗, S). Furthermore, if Λi ∈ GDQ(Fi, x̄∗,i, ȳ∗,i, Si)
for i = 1, 2, then Λ ∈ AGDQ(F, x̄∗, ȳ∗, S). *+

Proposition 4.18 (Locality.) Assume that (1) M , N , are manifolds of class
C1, (2) x̄∗ ∈ M , (3) ȳ∗ ∈ N , (4) Si ⊆ M , (5) Fi : M �→→ N for i = 1, 2,
and (6) there exist neighborhoods U , V of x̄∗, ȳ∗, in M , N , respectively,
such that U ∩ S1 = U ∩ S2 and (U × V ) ∩ Gr(F1) = (U × V ) ∩ Gr(F2).
Then (a) AGDQ(F1, x̄∗, ȳ∗, S1) = AGDQ(F2, x̄∗, ȳ∗, S2), and in addition
(b) GDQ(F1, x̄∗, ȳ∗, S1) = GDQ(F2, x̄∗, ȳ∗, S2). *+

Remark 4.19 It is easy to exhibit maps that have GDQs at a point x̄∗ but
are not classically differentiable at x̄∗ and do not have differentials at x̄∗ in
the sense of other theories such as Clarke’s generalized Jacobians, Warga’s
derivate containers, or our “semidifferentials” and “multidifferentials”. (A
simple example is provided by the function f :R �→R given by f(x)=x sin 1/x
if x �= 0, and f(0) = 0. The set [−1, 1] belongs to GDQ(f, 0, 0,R), but is not
a differential of f at 0 in the sense of any of the other theories.) *+
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Closedness and Monotonicity

GDQs and AGDQs have an important closedness property. In order to
state it, we first recall that, if Z is a metric space, then (i) Comp0(Z) is the set
of all compact subsets of Z, (ii) Comp0(Z) has a natural non-Hausdorff topol-
ogy TComp0(Z), defined in Sect. 3.1. In particular, ifX and Y are FDRLSs, then
Comp0(Lin(X,Y )) is the set of all compact subsets of Lin(X,Y ). Clearly, a
subset O of Comp0(Lin(X,Y )) is open in the topology TComp0(Lin(X,Y )) if
and only if for every Λ̄ ∈ O there exists an open subset Ω of Lin(X,Y ) such
that (i) Λ̄ ⊆ Ω and (ii) {Λ ∈ Comp0(Lin(X,Y )) : Λ ⊆ Ω} ⊆ O. It is clear that
the topology TComp0(Lin(X,Y )) can be entirely characterized by its convergent
sequences. (That is, a subset C of Comp0(Lin(X,Y )) is closed if and only
if it is sequentially closed, i.e., such that, whenever {Λk}k∈N is a sequence
of members of C and Λ ∈ Comp0(Lin(X,Y )) is such that Λk → Λ in the
topology TComp0(Lin(X,Y )) as k → ∞, it follows that Λ ∈ C.)

Furthermore, convergence of sequences is easily characterized as follows.

Fact 4.20 Assume that X and Y are FDRLSs, {Λk}k∈N is a sequence of
members of Comp0(Lin(X,Y )), and Λ belongs to Comp0(Lin(X,Y )). Then
Λk → Λ as k → ∞ in the topology TComp0(Lin(X,Y )) if and only if

limk→∞ sup
{

dist(L,Λ) : L ∈ Λk

}
= 0. *+

The following result is then an easy consequence of the definitions of GDQ
and AGDQ.

Fact 4.21 If M , N are manifolds of class C1, F : M �→→ N , (x̄∗, ȳ∗) ∈ M×N ,
S ⊆ M , X = Tx̄∗M , and Y = Tȳ∗N , then the sets GDQ(F, x̄∗, ȳ∗, S) and
AGDQ(F, x̄∗, ȳ∗, S) are closed relative to the topology TComp0(Lin(X,Y )). *+

Fact 4.21 then implies that GDQs and AGDQs also have the following
monotonicity property.

Fact 4.22 If M , N are manifolds of class C1, F : M �→→N , (x̄∗, ȳ∗)∈M×N ,
S ⊆M , Λ∈AGDQ(F, x̄∗, ȳ∗, S), Λ̃ ∈ Comp0(Lin(Tx̄∗M,Tȳ∗N)), and Λ⊆ Λ̃,
then Λ̃ ∈ AGDQ(F, x̄∗, ȳ∗, S). Furthermore, if Λ∈GDQ(F, x̄∗, ȳ∗, S) then Λ̃
belongs to GDQ(F, x̄∗, ȳ∗, S).

Proof. It suffices to use Fact 4.21 and observe that, under our hypotheses, Λ̃
belongs to the closure of the set {Λ} relative to TComp0(Lin(X,Y )). *+

In addition, GDQs and AGDQs also have a monotonicity property with
respect to F and S. Precisely, the following is a trivial corollary of the
definitions of GDQ and AGDQ.

Fact 4.23 Suppose that M , N are manifolds of class C1, (x̄∗, ȳ∗) ∈ M ×N ,
S̃ ⊆ S ⊆ M , F : M �→→ N , F̃ : M �→→ N , and Gr(F ) ⊆ Gr(F̃ ). Then

GDQ(F, x̄∗, ȳ∗, S) ⊆ GDQ(F̃ , x̄∗, ȳ∗, S̃)

and AGDQ(F, x̄∗, ȳ∗, S) ⊆ AGDQ(F̃ , x̄∗, ȳ∗, S̃) . *+
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Fact 4.21 says in particular that every GDQ of a map is also a GDQ of
any “larger” map. On the other hand, it is perfectly possible for the “larger”
map to have smaller GDQs. For example, if f : R �→ R is the function given
by f(x) = |x|, then the interval [−1, 1] is a GDQ of f at 0 in the direction
of R, and no proper subset of [−1, 1] has this property. But if we “enlarge”
f and consider the set-valued map F : R �→→ R given by F (x) = [0, |x|], then
{0} ∈ GDQ(F, 0, 0,R).

4.3 The Directional Open Mapping and Transversality Properties

The crucial fact about GDQs and AGDQs that leads to the maximum
principle is the transversal intersection property, which is a very simple
consequence of the directional open mapping theorem. We will now prove
these results. As a preliminary, we need information on pseudoinverses.

Linear (Moore–Penrose) Pseudoinverses

If X, Y are FDRLSs and L ∈ Lin(X,Y ), a linear right inverse of L is a
linear map M ∈ Lin(Y,X) such that L · M = IY . It is clear that L has a
right inverse if and only if it is surjective. Let Linonto(X,Y ) be the set of all
surjective linear maps from X to Y . Since every L ∈ Linonto(X,Y ) has a right
inverse, it is natural to ask if it is possible to choose a right inverse I(L) for
each L in a way that depends continuously (or smoothly, or real-analytically)
on L. One way to make this choice is to let I(L) be L#, the “Moore-Penrose
pseudoinverse” of L (with respect to a particular inner product on X).

To define L#, assume X, Y are FDRLSs and endow both X and Y with
Euclidean inner products (although, as will become clear below, only the
choice of the inner product on X matters). Then every map L ∈ Lin(X,Y )
has an adjoint (or transpose) L† ∈ Lin(Y,X), characterized by the property
that 〈L†y, x〉 = 〈y, Lx〉 whenever x ∈ X, y ∈ Y . It is then easy to see that

Fact 4.24 If X and Y are FDRLSs endowed with Euclidean inner products,
then L ∈ Linonto(X,Y ) if and only if LL† is invertible. *+

Definition 4.25 If X and Y are FDRLSs endowed with Euclidean inner
products, and L ∈ Linonto(X,Y ), the Moore-Penrose pseudoinverse of
L is the linear map L# ∈ Lin(Y,X) given by L# = L†(LL†)−1, where the
symbol “†” stands for “adjoint.” *+

The following result is then a trivial consequence of the definition.

Fact 4.26 Suppose that X and Y are FDRLSs endowed with Euclidean inner
products. Then Linonto(X,Y ) is an open subset of the space Lin(X,Y ), and
the map Linonto(X,Y ) , L �→ L# ∈ Lin(Y,X) is real-analytic. Furthermore,
the identity LL# = IX holds for all L ∈ Lin(X,Y ). *+
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Remark 4.27 If X, Y , L are as in Definition 4.25, y ∈ Y , x = L#y, and ξ
is any member of L−1y, then

〈ξ, x〉 = 〈ξ, L#y〉 = 〈ξ, L†(LL†)−1y〉 = 〈Lξ, (LL†)−1y〉 = 〈y, (LL†)−1y〉 .

In particular, the above equalities are true for x in the role of ξ, so that
〈x, x〉 = 〈y, (LL†)−1y〉, and then 〈ξ, x〉 = 〈x, x〉, so 〈ξ − x, x〉 = 0. Therefore

‖ξ‖2 = ‖ξ−x+x‖2 = ‖ξ−x‖2 +‖x‖2 +2〈ξ−x, x〉 = ‖ξ−x‖2 +‖x‖2 ≥ ‖x‖2 .

It follows that L#y is the member of L−1y of minimum norm. This shows,
in particular, that the map L# does not depend on the choice of a Euclidean
inner product on Y . *+

More generally, we would like to find a pseudoinverse P of a given surjective
map L ∈ Lin(X,Y ) that, for a given v ∈ X, has the value v when applied to
Lv. This is clearly impossible if Lv = 0 but v �= 0, because P0 has to be 0.
But, as we now show, it can be done as long as Lv �= 0, with a P that depends
continuously on L and v.

To see this, we first define Ω(X,Y )={(L, v) :L∈Linonto(X,Y ) , Lv �=0}.
We then fix inner products 〈·, ·〉

X
, 〈·, ·〉

Y
, on X, Y , and use L# to denote, for

L ∈ Linonto(X,Y ), the Moore-Penrose pseudoinverse of L corresponding to
these inner products. Then, for (L, v) ∈ Ω(X,Y ), we define

L#,v(y) = L#(y) +
〈y, Lv〉

Y

〈Lv,Lv〉
Y

(v − L#Lv) . (4.3.1)

Then it is clear that

Fact 4.28 If (L, v) belongs to Ω(X,Y ), then (1) L#,v is a linear map from
Y to X, (2) LL#,v = IY , and (3) L#,vLv = v. Furthermore, the map
Ω(X,Y ) , (L, v) �→ L#,v ∈ Lin(Y,X) is real-analytic. *+

Pseudoinverses on Cones

If X,Y are FDRLSs and C is a convex cone in X, we define

Σ(X,Y,C)=
{

(L, y)∈Lin(X,Y )×Y :y∈ Int(LC)
}
. (4.3.2)

(Here “Int(LC)” denotes the absolute interior of LC, i.e., the largest open
subset U of Y such that U ⊆ LC.)

Lemma 4.29 Let X,Y be FDRLSs, let C be a convex cone in X, let SC be
the linear span of C, and let C

o

be the interior of C relative to SC . Then:

(1) Σ(X,Y,C) is an open subset of Lin(X,Y ) × Y
(2) There exists a continuous map ηX,Y,C : Σ(X,Y,C) �→ X such that the

following are true whenever (L, y) ∈ Σ(X,Y,C) and r ≥ 0:
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ηX,Y,C(L, y) ∈ C
o

∪ {0} (4.3.3)
LηX,Y,C(L, y) = y (4.3.4)
ηX,Y,C(L, ry) = rηX,Y,C(L, y) (4.3.5)

Proof. We assume, as we clearly may, that X and Y are endowed with inner
products, and we write Σ = Σ(X,Y,C), S = SC .

Statement (1) is trivial, because if (L̄, ȳ) ∈ Σ, and m = dim(Y ), then we
can find m + 1 points q0, . . . , qm in Int(L̄C) such that ȳ is an interior point
of the convex hull of the set Q = {q0, . . . , qm}. Then we can write qj = L̄pj ,
with pj ∈ C, for j = 0, . . . ,m. If L ∈ Lin(X,Y ) is close to L̄, and y ∈ Y is
close to ȳ, then the points qLj = Lpj belong to LC, and y is an interior point
of their convex hull, so y ∈ Int(LC), proving (1).

For each (L̄, ȳ) ∈ Σ, we pick a point xL̄,ȳ ∈ C
o

such that L̄ · xL̄,ȳ = ȳ. (To

see that such a point exists, fix a z ∈ C
o

, and observe that ȳ− εL̄ · z ∈ L̄C if ε
is positive and small enough, because ȳ ∈ Int(L̄C), since (L̄, ȳ) ∈ Σ. Pick one
such ε, write ȳ−εL̄·z = L̄·x for an x ∈ C, and then let xL̄,ȳ = x+εz. It is then

clear that L̄ ·xL̄,ȳ = ȳ and xL̄,ȳ ∈ C
o

.) We then define a map µL̄,ȳ : Σ �→ X by
letting µL̄,ȳ(L, y) = xL̄,ȳ+(LS)#(y−LSxL̄,ȳ) for (L, y) ∈ Σ, where LS denotes
the restriction of L to S (so LS ∈ Linonto(S, Y ), because LS ∈ Lin(S, Y ) and
y ∈ Int(LC) = Int(LSC) ⊆ Int(LSS), showing that Int(LSS) �= ∅, so LS is
surjective).

Then µL̄,ȳ is a continuous map from Σ to S, and satisfies the identity
µL̄,ȳ(L̄, ȳ) = xL̄,ȳ. In addition, if (L, y) ∈ Σ, then

L · µL̄,ȳ(L, y) = L · xL̄,ȳ + L · (LS)# · (y − L · xL̄,ȳ)
= L · xL̄,ȳ + y − L · xL̄,ȳ
= y .

Since µL̄,ȳ(L̄, ȳ) = xL̄,ȳ ∈ C
o

, C
o

is a relatively open subset of S, and µL̄,ȳ is
a continuous map from Σ to S, we can pick an open neighborhood VL̄,ȳ of

(L̄, ȳ) in Σ such that µL̄,ȳ(L, y) ∈ C
o

whenever (L, y) ∈ VL̄,ȳ.
The family V = {VL̄,ȳ}(L̄,ȳ)∈Σ of open sets is an open covering of Σ. So

we can find a locally finite set W of open subsets of Σ which is a covering of
Σ and a refinement of V. (That is, (a) every W ∈ W is an open subset of Σ,
(b) for every W ∈ W there exists (L̄, ȳ) ∈ Σ such that W ⊆ VL̄,ȳ, (c) every
(L, y) ∈ Σ belongs to some W ∈ W, and (d) every compact subset K of Σ
intersects only finitely many members of W.)

Let {ϕW }W∈W be a continuous partition of unity subordinate to the
covering W. (That is, (a) each ϕW is a continuous nonnegative real-valued
function on Σ such that support(ϕW ) ⊆ W , and (b)

∑
W∈W ϕW ≡ 1. Recall

that the support of a function ψ : Σ �→ R is the closure in Σ of the set
{σ ∈ Σ : ψ(σ) �= 0}.) Select, for each W ∈ W, a point (L̄W , ȳW ) ∈ Σ
such that W ⊆ VL̄W ,ȳW

, and define η̃(L, y) =
∑

W∈W ϕW (L, y)µL̄W ,ȳW
(L, y)
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for (L, y) ∈ Σ. Then η̃ is a continuous map from Σ to X. If (L, y) ∈ Σ,
let W(L, y) be the set of all W ∈ W such that ϕW (L, y) �= 0. Then
(L, y) ∈ W for every W ∈ W(L, y), so W(L, y) is a finite set. Clearly,
η̃(L, y) =

∑
W∈W(L,y) ϕW (L, y)µL̄W ,ȳW

(L, y), and
∑

W∈W(L,y) ϕW (L, y) = 1.

If W ∈ W(L, y), then (L, y) ∈ W ⊆ VL̄W ,ȳW
, so µL̄W ,ȳW

(y, L) ∈ C
o

and
L · µL̄W ,ȳW

(L, y) = y. So η̃(L, y) is a convex combination of points belonging

to C
o

, and then η̃(L, y) ∈ C
o

. Furthermore,

L · η̃(L, y)=
∑

W∈W(L,L)

ϕW (L, y)L · µL̄W ,ȳW
(L, y)=

( ∑
W∈W(L,y)

ϕW (L, y)
)
y=y .

Hence, if we took ηX,Y,C to be η̃, we would be satisfying all the required
conditions, except only for the homogeneity property (4.3.5). In order to
satisfy (4.3.5) as well, we define ηX,Y,C(L, y), for (L, y) ∈ Σ, by letting

ηX,Y,C(L, y) =

{
‖y‖η̃
(
L, y

‖y‖

)
if y �= 0 ,

0 if y = 0 .

(This is justified, because if (L, y) ∈ Σ and y �= 0 then
(
L. y

‖y‖

)
∈ Σ as well.)

Then ηX,Y,C clearly satisfies (4.3.3), (4.3.4) and (4.3.5), and it is easy to
verify that ηX,Y,C is continuous. (Continuity at a point (L, y) of Σ such that
y �= 0 is obvious. To prove continuity at a point (L, 0) of Σ, we pick a sequence
{(Lj , yj)}j∈N of members of Σ such that Lj → L and yj → 0, and prove that
ηX,Y,C(Lj , yj) → 0. If this conclusion was not true, there would exist a positive
number ε and an infinite subset J of N such that

‖ηX,Y,C(Lj , yj)‖ ≥ ε for all j ∈ J . (4.3.6)

In particular, if j ∈ J then yj �= 0, so we can define a unit vector zj = yj

‖yj‖
and conclude that (Lj , zj) ∈ Σ and ηX,Y,C(Lj , yj) = ‖yj‖η̃(Lj , zj). Since
the zj are unit vectors, there exists an infinite subset J ′ of J such that the
limit z = limj→∞,j∈J′ zj exists. Since (L, 0) ∈ Σ, 0 is an interior point of the
cone LC, so LC = Y and then z ∈ Int(LC) as well. Therefore (L, z) ∈ Σ.
Since (Lj , zj) → (L, z) as j → ∞ via values in J ′, the continuity of η̃ on
Σ implies that η̃(Lj , zj) → η̃(L, z) as j → ∞ via values in J ′. But then
ηX,Y,C(Lj , yj) → 0 as j →

J′ ∞, because ηX,Y,C(Lj , yj) = ‖yj‖η̃(Lj , zj) and
yj → 0. This contradicts (4.3.6).) So ηX,Y,C satisfies all our conditions, and
the proof is complete. *+

The Open Mapping Theorem

We are now ready to prove the open mapping theorem.

Theorem 4.30 Let X,Y be FDNRLSs, and let C be a convex cone in X. Let
F : X �→→ Y be a set-valued map, and let Λ ∈ AGDQ(F, 0, 0, C). Let ȳ ∈ Y be
such that ȳ ∈ Int(LC) for every L ∈ Λ. Then:
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(I) There exist a closed convex cone D in X such that ȳ ∈ Int(D), and
positive constants ᾱ, κ, having the property that

(I.∗) For every y ∈ D such that 0 < ‖y‖ ≤ ᾱ there exists an x ∈ C such
that ‖x‖ ≤ κ‖y‖ and y ∈ F (x).

(II) Moreover, ᾱ and κ can be chosen so that
(II.∗) There exists a function ] 0, ᾱ] , α �→ ρ(α) ∈ [0, 1 [ such that

limα↓0 ρ(α) = 0, for which, if we write C(r) = C ∩ B̄X(0, r), then:
(II.∗.#) For every α ∈ ] 0, ᾱ] and every y ∈ D such that ‖y‖ = α

there exists a compact connected subset Zy of the product
C(κα) × [ρ(α), 1] having the following properties:

Zy ∩
(
C(κα) × {ρ(α)}

)
�= ∅ , Zy ∩

(
C(κα) × {1}

)
�= ∅ , (4.3.7)

ry∈F (x) and ‖x‖ ≤ κr‖y‖ whenever ρ(α) ≤r≤1 and (x, r)∈Zy . (4.3.8)

(III) Finally, if Λ ∈ GDQ(F, 0, 0, C) then the cone D and the constants ᾱ,
κ can be chosen so that the following stronger conclusion holds:

(III.∗) If y∈D and ‖y‖≤ ᾱ then there exists a compact connected subset
Zy of C(κ‖y‖)×[0, 1] such that (0, 0)∈Zy, Zy∩

(
C(κα)×{1}

)
�=∅,

and ry∈F (x) whenever (x, r) ∈ Zy.

Remark 4.31 For ȳ �= 0, Conclusion (I) of Theorem 4.30 is the directional
open mapping property with linear rate and fixed angle for the restriction
of F to C, since it asserts that there is a neighborhood N of the half-line
Hȳ = {rȳ : r ≥ 0} in the space HY of all closed half-lines emanating from 0
in Y such that, if DN is the union of all the members of N , then for every
sufficiently small ball B̄Y (0, α) the set

(
B̄Y (0, α) ∩DN

)
\{0} is contained in

the image under F of a relative neighborhood B̄X(0, r) ∩ C of 0 in C, whose
radius r can be chosen proportional to α.

For ȳ = 0, Conclusion (I) is the punctured open mapping property with
linear rate for the restriction of F to C, because in that case the cone D
is necessarily the whole space Y , and Conclusion (I) asserts that for every
sufficiently small ball B̄Y (0, α) the punctured neighborhood B̄Y (0, α)\{0} is
contained in the image under F of a relative neighborhood B̄X(0, r) ∩ C of 0
in C, whose radius r can be chosen proportional to α. *+

Proof of Theorem 4.30. It is clear that (II) implies (I), so there is no need
to prove (I), and we may proceed directly to the proof of (II). Furthermore,
Conclusion (III) is exactly the same as Conclusion (II), except only for the
fact that in (III) ρ(α) is chosen to be equal to 0. So we will just prove (II),
making sure that whenever we show the existence of ρ(α) it also follows that
ρ(α) can be chosen to be equal to zero when Λ ∈ GDQ(F, 0, 0, C).

Next, we observe that, once our conclusion is proved for ȳ �= 0, its validity
for ȳ = 0 follows by a trivial compactness argument. So we will assume from
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now on that ȳ �= 0, and in that case it is clear that, without loss of generality,
we may assume that ‖ȳ‖ = 1.

Let SC be the linear span of C, and let C
o

be the interior of C relative to
SC . Write Σ = Σ(X,Y,C) (cf. (4.3.2)). Then Lemma 4.29 tells us that Σ is
open in Lin(X,Y ) × Y , and there exists a continuous map ηX,Y,C : Σ �→ X
such that (4.3.3), (4.3.4) and (4.3.5) hold. We write η = ηX,Y,C .

Our hypothesis says that the compact set Λ×{ȳ} is a subset of Σ. Hence
we can find numbers γ̂, δ, such that δ > 0, 0 < γ̂ < 1, and Λδ× B̄Y (ȳ, γ̂) ⊆ Σ.
Let D̂ = {ry : r ∈ R, r ≥ 0, y ∈ Y, ‖y − ȳ‖ ≤ γ̂}. Then D̂ is a closed convex
cone in Y and ȳ ∈ Int(D̂). Furthermore, it is clear that Λδ× (D̂\{0}) ⊆ Σ. So
η(L, y) is well defined whenever L ∈ Λδ and y ∈ D̂\{0}. In particular, η(L, y)
is defined for (L, y) ∈ J , where J = {(L, y) : L ∈ Λδ , y ∈ D̂, ‖y‖ = 1}, so J is
compact. Let H = {η(L, y) : (L, y) ∈ J}. Then H is a compact subset of C

o

.
Pick a compact subset H̃ of C

o

such that H is contained in the interior of H̃.
Since H̃ is a compact subset of the convex set C

o

, the convex hull Ĥ of H̃ is
also a compact subset of C

o

. If 0 /∈ Ĥ, and we define C = {rx : r ≥ 0, x ∈ Ĥ},
then C is a closed convex cone in R

n such that

C ⊆ C
o

∪ {0} and η(L, y) ∈ Int(C) whenever (L, y) ∈ J . (4.3.9)

If 0 ∈ Ĥ, then 0 ∈ C
o

, so C = SC and then in particular C is closed, so we can
define C = C, and then then C is a closed convex cone in R

n such that (4.3.9)
holds. Let κ̂ = max{‖η(L, y)‖ : (y, L) ∈ J}. Then ‖η(L, y)‖ ≤ κ̂‖y‖ whenever
(L, y) ∈ Λδ × (D̂\{0}). This shows that η can be extended to a continuous
map from Λδ × D̂ to C by letting η(L, 0) = 0 for L ∈ Λδ.

Fix a γ ∈ ] 0, γ̂ [ , and let D = {ry : r ∈ R, r ≥ 0, y ∈ Y, ‖y − ȳ‖ ≤ γ}.
Then D is a closed convex cone in Y , ȳ ∈ Int(D), and D ⊆ Int(D̂)∪{0}. More
precisely, we may pick a σ̃ such that σ̃ > 0 and B̄Y (y, σ̃‖y‖) ⊆ D̂ whenever
y ∈ D. (For example, σ̃ = γ̂ − γ will do. A simple calculation shows that the
best – i.e., largest – possible choice of σ̃ is σ̃ = (γ̂ − γ)(1 − γ)−1/2.) We then
let σ = σ̃

2 , κ = κ̂(1 + 2σ).
Fix an AGDQ modulus θ for (F, 0, 0, C). For each ε such that θ(ε) is finite,

pick a map Aε ∈ CCA(C(ε), Lin(X,Y ) × Y ) such that
(
x∈C(ε) ∧ (L, h)∈Aε(x)

)
⇒
(
L∈Λθ(ε) ∧ ‖h‖≤θ(ε)ε ∧ L · x+h∈F (x)

)
.

Also, observe that when Λ ∈ GDQ(F, 0, 0, C) then Aε can be chosen so that
all the members (L, h) of Aε(x) are such that h = 0. In that case, we let Gε(x)
be such that Aε(x) = Gε(x) × {0}.

Next, fix a positive number ε̄ such that θ(ε̄) < δ and θ(ε̄) < σ
κ . Let ᾱ = ε̄

κ .
Fix an α such that 0 < α ≤ ᾱ, and let ε = κα, so 0 < ε ≤ ε̄. Then θ(ε) < δ

and θ(ε) < σ
κ . Let C(ε) = C ∩ B̄X(0, ε). Then C(ε) is a nonempty compact

convex subset of X.
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Now choose ρ(α) – for α ∈ ] 0, ᾱ] – as follows:

ρ(α) =
{

0 if Λ ∈ GDQ(F, 0, 0, C)
κθ(κα)

σ if Λ /∈ GDQ(F, 0, 0, , C) .

It is then clear that 0 ≤ ρ(α) < 1, because θ(κα) ≤ θ(κᾱ) = θ(ε̄) < σ
κ .

Furthermore, ρ(α) clearly goes to 0 as α ↓ 0.
Fix a y ∈ D such that ‖y‖ = α. Let Qε = C(ε) × [0, 1], and define a

set-valued map Hε : Qε �→→ X by letting Hε(x, t) = x − Uε(x, t) (that is,
Hε(x, t) = {x− ξ : ξ ∈ Uε̄(x, t)}) for x ∈ C(ε), t ∈ [0, 1], where, for (x, t) ∈ Qε:

• If Λ /∈GDQ(F, 0, 0, C), then Uε(x, t)=
{
η(L, ty−ϕε(t)h) : (L, h)∈Aε(x)

}
,

where the function ϕε : [0, 1] �→ [0, 1] is defined by

ϕε(t) =
t

ρ(α)
if 0 ≤ t < ρ(α) , ϕε(t) = 1 if ρ(α) ≤ t ≤ 1 ;

• If Λ ∈ GDQ(F, 0, 0, C), then Uε(x, t) =
{
η(L, ty) : L ∈ Gε(x)

}
.

We claim that Hε ∈ CCA(Qε,X). To see this, we first show that

ty − ϕε(t)h ∈ D̂ whenever (x, t) ∈ Qε and (L, h) ∈ Aε(x) . (4.3.10)

This conclusion is trivial if Λ ∈ GDQ(F, 0, 0, C), because in that case h = 0.
Now consider the case when Λ /∈ GDQ(F, 0, 0, C), and observe that if x ∈ C(ε)
and (L, h) ∈ Aε(x) then L ∈ Λθ(ε) and

‖ϕε(t)h‖ ≤ t

ρ(α)
‖h‖ ≤ t

ρ(α)
θ(ε)ε =

t

ρ(α)
θ(κα)κ‖y‖ =

t

ρ(α)
θ(κα)κ‖y‖

=
1

ρ(α)
θ(κα)κ
σ

tσ‖y‖ =
1

ρ(α)
ρ(α)tσ‖y‖ = tσ‖y‖ .

It follows that ty−ϕε(t)h belongs to the ball B̄Y (ty, tσ‖y‖), which is contained
in D̂. So ty − ϕε(t)h ∈ D̂, completing the proof of (4.3.10).

Next, let µ be the set-valued map with sourceQε and target Lin(X,Y )×Y ,
such that µ(x, t) = {(L, ty − ϕε(t)h) : (L, h) ∈ Aε(x)}. Then µ belongs to
CCA(Qε, Lin(X,Y ) × Y ), because it is the composite of the maps

Qε , (x, t) �→→ Aε(x) × {t} ⊆ Lin(X,Y ) × Y × R ,

and Lin(X,Y )×Y ×R , (L, h, t) �→ (L, ty−ϕε(t)h) ∈ Lin(X,Y )×Y .
On the other hand, µ actually takes values in Λθ(ε) × D̂. Therefore, if we let
ν be the map having exactly the same graph as µ, but with target Λδ × D̂,
then ν ∈ CCA(Qε, Λ

δ × D̂). (Indeed, if {µj}j∈N is a sequence of continuous

maps from Qε to Lin(X,Y ) × Y with the property that µj
igr−→ µ, and we

write µj(x, t) = (Lj(x, t), ζj(x, t)), then Lj will take values in Λδ if j is large
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enough, because Λδ is a neighborhood of Λθ(ε). On the other hand, D̂ is
a closed convex subset of Y , so it is a retract of Y . If ω : Y �→ D̂ is a
retraction, and νj(x, t) = (Lj(x, t), ω(ζj(z, t))), then {νj}j∈N,j≥j∗ is – for some

j∗ – a sequence of continuous maps from Qε to Λδ × D̂ such that νj
igr−→ ν.)

Now, Uε is the composite η ◦ ν, and η is a continuous map on Λδ × D̂. So
Uε ∈ CCA(Qε,X), and then Hε ∈ CCA(Qε,X) as well, completing the proof
that Hε ∈ CCA(Qε,X).

It is clear that

if (x, t) ∈ Qε then 0 ∈ Hε(x, t) ⇐⇒ x ∈ Uε(x, t) .

We now analyze the implications of the statement “x ∈ Uε(x, t)” in two cases.
First, suppose that Λ ∈ GDQ(F, 0, 0, C). Then x ∈ Uε(x, t) if and only if

(∃L ∈ Gε(x))(x = η(L, ty)). If such an L exists, then L · x = Lη(L, ty) = ty,
so ty ∈ Gε(x) ·x, and then ty ∈ F (x). Furthermore, the fact that x = η(L, ty)
implies that ‖x‖ ≤ κ̂t‖y‖, so a fortiori ‖x‖ ≤ κt‖y‖.

Now suppose that Λ /∈ GDQ(F, 0, 0, C). Then x ∈ Uε(x, t) if and only if(
∃(L, h) ∈ Aε(x)

)(
x = η(L, ty − ϕε(t)h)

)
. If such a pair (L, h) exists, and

t ≥ ρ(α), then

L · x = Lη(L, ty − ϕε(t)h) = Lη(L, ty − h) = ty − h

so L · x + h = ty, and then ty ∈ F (x). On the other hand, the fact
that x = η(L, ty − ϕε(t)h) implies that ‖x‖ ≤ κ̂(t‖y‖ + tσ‖y‖), since we have
already established that ‖ϕε(t)h‖ ≤ tσ‖y‖. Hence ‖x‖ ≤ κt‖y‖.

So we have shown, in both cases, that:

(A) If (x, t) ∈ Qε, 0 ∈ Hε(x, t) and ρ(α) ≤ t ≤ 1, then ty ∈ F (x) and
‖x‖ ≤ κt‖y‖.

In addition, Hε obviously satisfies:

(B) Hε(x, 0) = {x} whenever x ∈ C(ε).

Next, choose a sequence {vj}j∈N of interior points of C such that vj → 0 as
j → ∞ and ‖vj‖ < σκ̂‖y‖ for all j. We claim that:

(C) vj /∈ Hε(x, t) whenever x ∈ ∂C(ε), t ∈ [0, 1], and j ∈ N.

To see this, we first observe that the condition vj ∈ Hε(x, t) is equivalent to
x ∈ vj + Uε(x, t). If x ∈ ∂C(ε), then either x ∈ ∂C or ‖x‖ = κ‖y‖. If x ∈ ∂C,
then x cannot belong to vj + Uε(x, t), because Uε(x, t) ⊆ C and vj ∈ Int(C),
so vj +Uε(x, t) ⊆ Int(C). If ‖x‖ = κ‖y‖, then x cannot belong to vj +Uε(x, t)
either, because if (L, h) ∈ Aε̄(x) then

‖η(L, ty − ϕε(t)h)‖ ≤ κ̂‖ty − ϕε(t)h‖ ≤ κ̂‖ty‖ + κ̂‖ϕε(t)h‖

≤ tκ̂‖y‖+tκ̂‖σ‖y‖ = tκ̂(1+σ)‖y‖ ≤ κ̂(1+σ)‖y‖ ,
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so ‖vj + η(L, ty)‖ ≤ κ̂(1 + σ)‖y‖ + ‖vj‖ < κ̂(1 + σ)‖y‖ + κ̂σ‖y‖ = κ‖y‖.
Hence we can apply Theorem 3.8 and conclude that there exists a compact

connected subset Z of C(ε)× [0, 1] such that (i) the sets Z ∩ (C(ε)×{0}) and
Z ∩ (C(ε) × {1}) are nonempty, and (ii) 0 ∈ Hε(x, t) whenever (x, t) ∈ Z.

For β such that 0 < β < 1−ρ(α), let Z(β) be the open β-neighborhood of Z
in Qε, so that Z(β) = {q ∈ Qε : dist(q, Z) < β}. Then Z(β) is a relatively open
subset of Qε. It is clear that Z(β) is connected, so it is path-connected. Since
Z(β) intersects both sets C(ε) × {0} and C(ε) × {1}, there exists a continuous
map ξ : [0, 1] �→ Z(β) such that ξ(0) ∈ C(ε) × {0} and ξ(1) ∈ C(ε) × {1}. Let

I =
{
t ∈ [0, 1] : ξ(t) ∈ C(ε) × [0, ρ(α) + β]

}
,

Then it is clear that I is a nonempty compact subset of [0, 1], so I has a largest
element τ . Then ξ(τ) ∈ C(ε) × {ρ(α) + β}, and

ξ(t) ∈ C(ε) × [ρ(α) + β, 1] whenever τ ≤ t ≤ 1 . (4.3.11)

Hence, if we define W β = γ([τ, 1]), we see that (i) W β is compact and
connected, (ii) W β ⊆ C(ε)× [ρ(α)+β, 1], (iii) W β ∩

(
C(ε)×{ρ(α)+β}

)
�= ∅,

(iv) W β ∩
(
C(ε) × {1}

)
�= ∅, and (v) dist(w,Z) ≤ β whenever w ∈ W β .

Let Z̃ = Z∩(C(ε)×[ρ(α), 1]). Then Z̃ is a compact subset of C(ε)×[ρ(α), 1].
If w ∈ W β , then the point zw ∈ Z closest to w is at a distance ≤ β from w,
and must therefore belong to C(ε) × [ρ(α), 1], since w ∈ C(ε) × [ρ(α) + β, 1].
It follows that zw ∈ Z̃. Therefore

dist(w, Z̃) ≤ β whenever w ∈ W β . (4.3.12)

We now use Theorem 3.7 to pick a sequence {βj}j∈N converging to zero,
such that the sets W βj converge in Comp(Qε) to a compact connected set W .
It then follows from (4.3.12) that W ⊆ Z̃. On the other hand, since the sets
W βj ∩

(
C(ε)×{ρ(α)+βj}

)
andW βj ∩

(
C(ε)×{1}

)
are nonempty for each j, we

can easily conclude that W ∩
(
C(ε)×{ρ(α)}

)
�= ∅ and W ∩

(
C(ε)×{1}

)
�= ∅.

Hence, if we take Zy to be the set W , we see that (i) Zy is compact connected,

(ii) Zy ⊆ Z ∩
(
C(ε)× [ρ(α), 1]

)
, and (iii) Zy has a nonempty intersection with

both C(ε) × {ρ(α)} and C(ε) × {1}.
Now, if (x, t) ∈ Zy, we know that 0 ∈ Hε(x, t), and then (A) implies that

ty ∈ F (x) and ‖x‖ ≤ κt‖y‖, since ρ(α) ≤ t ≤ 1. This shows that Zy satisfies
all the conditions of our statement, and completes our proof. *+

Approximating Multicones

Assume that M is a manifold of class C1, S is a subset of M and x̄∗ ∈ S
.Recall that “multicones” were defined on Page 225.
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Definition 4.32 An AGDQ approximating multicone to S at x̄∗ is a
convex multicone C in Tx̄∗M such that there exist an m ∈ Z+, a set-valued
map F : R

m �→→ M , a convex cone D in R
m, and a Λ ∈ AGDQ(F, 0, x̄∗,D),

such that F (D) ⊆ S and C = {LD : L ∈ Λ}. If Λ can be chosen so
that Λ ∈ GDQ(F, 0, x̄∗,D), then C is said to be a GDQ approximating
multicone to S at x∗. *+

Transversality of Cones and Multicones

If S1, S2 are subsets of a linear space X, we define the sum S1 + S2 and the
difference S1 − S2 by letting

S1+S2 ={s1+s2 :s1∈S1, s2∈S2} , S1−S2 ={s1−s2 :s1∈S1, s2∈S2} .

Definition 4.33 Let X be a FDRLS. We say that two convex cones C1, C2

in X are transversal, and write C1∩|
−
C2, if C1 − C2 = X. *+

Definition 4.34 Let X be a FDRLS. We say that two convex cones C1, C2

in X are strongly transversal, and write C1∩||
−
C2, if C1∩|

−
C2 and in addition

C1 ∩ C2 �= {0}. *+

The definition of “transversality” of multicones is a straightforward extension
of that of transversality of cones.

Definition 4.35 Let X be a FDRLS. We say that two convex multicones

C1 and C2 in X are transversal, and write C1∩|
−
C2, if C1∩|

−
C2 for all pairs

(C1, C2) ∈ C1 × C2. *+
The definition of “strong transversality” for multicones requires more care.
It is clear that two convex cones C1, C2 are strongly transversal if and only

if (i) C1∩|
−
C2, and (ii) there exists a nontrivial linear functional λ ∈ X† such

that C1∩C2∩{x ∈ X : λ(x) > 0} �= ∅. It is under this form that the definition
generalizes to multicones.

Definition 4.36 Let X be a finite-dimensional real linear space. Let C1, C2

be convex multicones in X. We say that C1 and C2 are strongly transversal,

and write C1∩||
−
C2, if (i) C1∩|

−
C2, and (ii) there exists a nontrivial linear

functional λ ∈ X† such that C1 ∩ C2 ∩ {x ∈ X : λ(x) > 0} �= ∅ for every
(C1, C2) ∈ C1 × C2. *+

The Nonseparation Theorem

If S1, S2 are subsets of a topological space T , and s̄∗ ∈ S1 ∩ S2, we say that
S1 and S2 are locally separated at s̄∗ if there exists a neighborhood U of s̄∗
such that S1∩S2∩U = {s̄∗}. If T is metric, then it is clear that S1 and S2 are
locally separated at s̄∗ if and only if there does not exist a sequence {sj}j∈N

of points of (S1 ∩ S2)\{0} converging to s̄∗.
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Theorem 4.37 Let M be a manifold of class C1, let S1, S2 be subsets of M ,
and let s̄∗ ∈ S1 ∩S2. Let C1, C2 be AGDQ-approximating multicones to S1, S2

at s̄∗ such that C1∩||
−
C2. Then S1 and S2 are not locally separated at s̄∗ (that

is, the set S1 ∩ S2 contains a sequence of points sj converging to s̄∗ but not
equal to s̄∗). Furthermore:

(1) If ξ : Ω �→ R
n is a coordinate chart of M , defined on an open set Ω

containing s̄∗, and such that ξ(s̄∗) = 0, then there exist positive numbers
ᾱ, κ, σ, and a function ρ : ] 0, ᾱ] �→ [0, 1 [ such that limα↓0 ρ(α) = 0, having
the property that, whenever 0 < α ≤ ᾱ, the set ξ(S1 ∩ S2 ∩Ω) contains a
nontrivial compact connected set Zα such that Zα contains points x−(α),
x+(α), for which ‖x−(α)‖ ≤ κρ(α)α and ‖x+(α)‖ ≥ σα.

(2) If C1, C2 are GDQ-approximating multicones to S1, S2 at s̄∗. then S1 ∩S2

contains a nontrivial compact connected set Z such that s̄∗ ∈ Z.

In view of our definitions, Theorem 4.37 will clearly follow if we prove:

Theorem 4.38 Let n1, n2,m be positive integers. Assume that, for i = 1, 2,
(1) Ci is a convex cone in R

ni , (2) Fi : R
ni �→→ R

m is a set-valued map, and
(3) Λi ∈ AGDQ(Fi, 0, 0, Ci). Assume that the transversality condition

L1C1 − L2C2 = R
m for all (L1, L2) ∈ Λ1 × Λ2 (4.3.13)

holds, and there exists a nontrivial linear functional µ : R
m �→ R such that

L1C1∩L2C2∩{y ∈ R
m : µ(y)>0} �= ∅ for all (L1, L2)∈Λ1×Λ2 . (4.3.14)

Let I =
{

(x1, x2, y) ∈ C1 × C2 × R
m : y ∈ F1(x1) ∩ F2(x2)

}
. Then there

exist positive constants ᾱ, κ, σ, and a function ρ : ] 0, ᾱ] �→ [0, 1[ such that
limα↓0 ρ(α) = 0, having the property that:

(*) For every α for which 0 < α ≤ ᾱ there exist a compact connected subset
Zα of I, and points (x1,α,−, x2,α,−, yα,−), (x1,α,+, x2,α,+, yα,+) of Zα, for
which ‖yα,+‖ ≥ σα and ‖yα,−‖ ≤ κρ(α)α.

Furthermore, if Λi ∈ GDQ(Fi, 0, 0, Ci) for i = 1, 2, then it is possible to
choose ρ(α) ≡ 0.

Proof. Define a set-valued map F : R
n1 × R

n2 × R
m �→→ R

m × R
m × R by

letting F(x1, x2, y) = (y − F1(x1), y − F2(x2), µ(y)) for x1 ∈ R
n1 , x2 ∈ R

n2 ,
y ∈ R

m. (Precisely, this means that F(x1, x2, y) is the set of all triples
(y − y1, y − y2, µ(y)), for all y1 ∈ F1(x1), y2 ∈ F2(x2).)

Also, define a cone C ⊆ R
n1 × R

n2 × R
m by letting C = C1 × C2 × R

m,
and a subset L of Lin(Rn1 ×R

n2 ×R
m,Rm×R

m×R) by letting L be the set
of all linear maps LL1,L2 , for all (L1, L2) ∈ Λ1 ×Λ2, where LL1,L2 is the map
from R

n1 × R
n2 × R

m to R
m × R

m × R such that

LL1,L2(x1, x2, y) = (y − L1x1, y − L2x2, µ(y))
if (x1, x2, y) ∈ R

n1 × R
n2 × R

m.
(4.3.15)
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It then follows immediately from the definition of AGDQs and GDQs that
L ∈ AGDQ(F , (0, 0, 0), (0, 0), C), and also that L∈GDQ(F , (0, 0, 0), (0, 0), C)
if Λi is in GDQ(Fi, 0, 0, Ci) for i = 1, 2.

Let w̄∗ = (0, 0, 1). We want to show that the conditions of the directional
open mapping theorem are satisfied, that is, that w̄∗ ∈ Int(LC) whenever
L ∈ L. Let L ∈ L, and write L = LL1,L2 , with L1 ∈ Λ1, L2 ∈ Λ2. Using
(4.3.14), find c̄1 ∈ C1, c̄2 ∈ C2, such that L1c̄1 = L2c̄2 and µ(L1c̄1) > 0.
Let ᾱ = µ(L1c̄1). Let v1, v2 ∈ R

m be arbitrary vectors. We claim that the
equation

L(x1, x2, y) = (v1, v2, r) (4.3.16)

has a solution (x1, x2, y) ∈ C provided that r is large enough. To see this,
observe first that (4.3.13) implies that we can express v2 − v1 as a difference

v2 − v1 = L1c1 − L2c2 , c1 ∈ C1 , c2 ∈ C2 . (4.3.17)

Then, if we let ỹ = v1 + L1c1 (so that (4.3.17) implies that ỹ = v2 + L2c2 as
well), it is clear that L(c1, c2, ỹ) = (ỹ − L1c1, ỹ − L2c2, µ(ỹ)) = (v1, v2, r̃), if
we let r̃ def= µ(ỹ). If r ≥ r̃, then we can choose

y = ỹ +
r − r̃

ᾱ
· L1c̄1 , x1 = c1 +

r − r̃

ᾱ
· c̄1 , x2 = c2 +

r − r̃

ᾱ
· c̄2 .

With this choice, we have

y − L1x1 = ỹ − L1c1 +
r − r̃

ᾱ
· L1c̄1 − r − r̃

ᾱ
· L1c̄1 = ỹ − L1c1 = v1 ,

y − L2x2 = ỹ − L2c2 +
r − r̃

ᾱ
· L1c̄1 − r − r̃

ᾱ
· L2c̄2

= ỹ − L2c2 +
r − r̃

ᾱ
· L1c̄1 − r − r̃

ᾱ
· L1c̄1 = ỹ − L2c2 = v2 ,

and µ(y) = µ(ỹ) + r−r̃
ᾱ µ(L1c̄1) = r̃ + r − r̃ = r. It then follows that

L(x1, x2, y) = (v1, v2, r), and we have found our desired solution of (4.3.16).
So we have shown that for every (v1, v2) ∈ R

m × R
m the vector (v1, v2, r)

belongs to L · C if r is large enough. This easily implies that the point
w̄∗ = (0, 0, 1) belongs to the interior of L · C. (This can be proved in many
ways. For example, let E = (e0, . . . , e2m) be a sequence of 2m + 1 affinely
independent vectors in R

m × R
m such that the origin of R

m × R
m is an

interior point of the convex hull of E. Then we can find an r̄ such that r̄ > 0
and (ei, r̄) ∈ LC whenever r ≥ r̄. It then follows that the vectors (ei, r̄) and
(ei, r̄ + 2) belong to LC, so the vector (0, 0, r̄ + 1) is in Int(LC), and then
(0, 0, 1) ∈ Int(LC) as well.)

We can then apply Theorem 4.30 to the map F and conclude that there
exist positive numbers ᾱ, κ, and a function ρ : ] 0, ᾱ] �→ [0, 1 [ such that, if
α ∈ ] 0, ᾱ] and we let ŵ∗(α) = αw̄∗, then there exists a compact connected
subset Ẑα of C(κα)× [ρ(α), 1] such that Zα intersects the sets C(κα)×{ρ(α)}
and C(κα) × {1}, and the conditions
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rŵ∗(α) ∈ F(x1, x2, y) and ‖x1‖ + ‖x2‖ + ‖y‖ ≤ κrα

hold whenever ((x1, x2, y), r) ∈ Ẑα and ρ(α) ≤ r ≤ 1. (Here we are writing
C(r) = {(x1, x2, y) ∈ C : ‖x1‖ + ‖x2‖ + ‖y‖ ≤ r}.) We let σ = ‖µ‖−1.

If we now define Zα=
{

(x1, x2, y) : (∃r∈ [ρ(α), 1])
(
((x1, x2, y), r)∈ Ẑα

)}
,

then Zα is a continuous projection of a compact connected set, so Zα is
compact and connected. If (x1, x2, y) ∈ Zα, then there is an r ∈ [ρ(α), 1] such
that ((x1, x2, y), r) ∈ Ẑα, and then (0, 0, rα) ∈ F(x1, x2, y), so in particular
0 = y − y1 = y − y2 for some y1 ∈ F1(x1) and some y2 ∈ F2(x2). But then
y1 = y2 = y, so y ∈ F1(x1) ∩ F2(x2), showing that (x1, x2, y) ∈ I. So Zα ⊆ I,
as desired.

Finally, we must show that Zα contains points (x1,α,−, x2,α,−, yα,−) and
(x1,α,+, x2,α,+, yα,+) for which ‖yα,−‖ ≤ κρ(α)α and ‖yα,+‖ ≥ σα. Let
((x1,α,−, x2,α,−, yα,−), rα,−) and ((x1,α,+, x2,α,+, yα,+), rα,+) be members of
Ẑα∩(C(κα)×{ρ(α)}) and Ẑα∩(C(κα)×{1}), respectively. Then rα,− = ρ(α),
and (0, 0, ρ(α)α) = (0, 0, rα,−α) = rα,−ŵ∗(α) ∈ F(x1,α,−, x2,α,−, yα,−), from
which it follows that ‖yα,−‖ ≤ κrα,−α. On the other hand, rα,+ = 1, and then
(0, 0, α) = (0, 0, rα,+α) = rα,+ŵ∗(α) ∈ F(x1,α,+, x2,α,+, yα,+), from which
it follows that µ(yα,+) = α, so that α = µ(yα,+) ≤ ‖µ‖ ‖yα,+‖, and then
‖yα,+‖ ≥ σα. *+

5 Variational Generators

5.1 Linearization Error and Weak GDQs

Assume that X and Y are FDNRLSs, S ⊆ X, F : S �→ Y , and x̄∗ ∈ X. Recall
that a linear map L : X �→ Y is said to be a differential of F at x̄∗ in the
direction of S if the linearization error Elin

F,L,x̄∗
(h) = F (x̄∗ +h)−F (x̄∗)−L ·h

is o(‖h‖) as h → 0 via values such that x̄∗ + h ∈ S.

Remark 5.1 The precise meaning of the sentence “Elin
F,L,x̄∗

(h) is o(‖h‖) as
h → 0 via values such that x̄∗ + h ∈ S ” is:

• There exists a function θ ∈ Θ (cf. Sect. 4, page 243) having the property
that ‖Elin

F,Λ,ȳ∗
(x̄∗, h)‖ ≤ θ(‖h‖)‖h‖ for every h such that x̄∗ + h ∈ S. *+

A natural generalization of that, when Λ is a set of linear maps, F is
set-valued, and we have picked a point ȳ∗ ∈ Y to play the role of F (x̄∗), is
obtained by defining the linearization error via the formula

Elin
F,Λ,x̄∗,ȳ∗(h)

def= inf
{
‖y − ȳ∗ − L · h‖ : y ∈ F (x̄∗ + h), L ∈ Λ

}
. (5.1.1)

Definition 5.2 Assume that X and Y are FDNRLSs, (x̄∗, ȳ∗) ∈ X × Y ,
F :X �→→Y , and S ⊆ X. A weak GDQ of F at (x̄∗, ȳ∗) in the direction of
S is a compact set Λ of linear maps from X to Y such that the linearization
error Elin

F,Λ,x̄∗,ȳ∗
(h) is o(‖h‖) as h → 0 via values such that x̄∗ + h ∈ S. *+
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In other words, a weak GDQ is just the same as a classical differential,
except for the fact that, since the map F is set-valued and the “differential”
Λ is a set, we compute the linearization error by choosing the y ∈ F (x̄∗ + h)
and the linear map L ∈ Λ that give the smallest possible error.

We will write WGDQ(F, x̄∗, ȳ∗, S) to denote the set of all weak GDQs of
F at (x̄∗, ȳ∗) in the direction of S.

The following trivial observations will be important, so we state them
explicitly. (The second assertion is true because the infimum of the empty
subset of [0,+∞] is +∞.)

Fact 5.3 Assume that X and Y are FDNRLSs, (x̄∗, ȳ∗) ∈ X × Y , F :X �→→Y ,
and S⊆X. Then:

• If Λ ∈ WGDQ(F, x̄∗, ȳ∗, S), Λ′ ∈ Comp0(X,Y ), and Λ ⊆ Λ′, then
Λ′ ∈ WGDQ(F, x̄∗, ȳ∗, S).

• ∅ ∈ WGDQ(F, x̄∗, ȳ∗, S) if and only if x̄∗ /∈ Closure(S). *+
We recall that the distance dist(S, S′) between two subsets S, S′ of a metric
space (M,dM ) is defined by dist(S, S′) = inf{dM (s, s′) : s ∈ S, s′ ∈ S′}. It
follows that dist(S, S′) ≥ 0, and also that dist(S, S′) < +∞ if and only if both
S and S′ are nonempty. Furthermore, the linearization error Elin

F,Λ,x̄∗,ȳ∗
(h)

defined in (5.1.1) is exactly equal to dist(ȳ∗ + Λ · h, F (x̄∗ + h)).
The following two propositions are rather easy to prove, but we find it

convenient to state them explicitly, because they will be the key to the notion
of “variational generator” in GDQ theory.

Proposition 5.4 Suppose X, Y are FDNRLSs, F : X �→→ Y , S ⊆ X, (x̄∗, ȳ∗)
belongs to X × Y , and Λ is a compact set of linear maps from X to Y . Then
the following three conditions are equivalent:

(1)Λ ∈ WGDQ(F, x̄∗, ȳ∗, S)
(2)There exist a positive number δ̄∗ and a family {κδ}0<δ≤δ̄∗ of positive

numbers such that limδ↓0 κ
δ = 0, having the property that

dist
(
ȳ∗+Λ·h, F (x̄∗+h)

)
≤δκδ whenever ‖h‖≤δ≤ δ̄∗ and x̄∗+h∈S (5.1.2)

(3) If {hj}j∈N is a sequence in X such that limj→∞ hj = 0 and x̄∗ + hj ∈ S
for all j, then there exist (i) a sequence {Lj}j∈N of members of Λ (ii) a
sequence {yj}j∈N for which yj ∈ F (x̄∗ + hj) for each j, (iii) a sequence
{rj}j∈N of positive numbers such that ‖yj − ȳ∗ − Lj · hj‖ ≤ rj‖hj‖ for all
j ∈ N and limj→∞ rj = 0 *+

Proposition 5.5 Let X,Y, F, S, x̄∗, ȳ∗ be as in Proposition 5.4. Then:

• If Λ ∈ AGQD(F, x̄∗, ȳ∗, S) it follows that Λ ∈ WGQD(F, x̄∗, ȳ∗, S).
• If Λ belongs to WGQD(F, x̄∗, ȳ∗, S), Λ is convex, and the restriction F  S

is upper semicontinuous with closed convex values, then it follows that
Λ ∈ GQD(F, x̄∗, ȳ∗, S). *+
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5.2 GDQ Variational Generators

For a set-valued map F : X × R �→→ Y , we write Fx, F t, if x ∈ X, t ∈ R, to
denote the partial maps Fx : R �→→ Y , F t : X �→→ Y , given by

Fx(s) = F (x, s) and F t(u) = F (u, t) if s ∈ R, u ∈ X .

For a subset S of X × R, we write Sx, St, if x ∈ X, t ∈ R, to denote
the sections Sx ⊆ R, St ⊆ X, given by Sx = {s ∈ R : (x, s) ∈ S} and
St = {u ∈ X : (u, t) ∈ S}.

We would like to define the notion of “variational generator” as follows,
assuming that:

(VGA1) X and Y are FDNRLSs, a, b ∈ R, and a ≤ b
(VGA2) ξ∗ ∈ C0( [a, b] ; X ) and σ∗ is a ppd single-valued function from

[a, b] to Y
(VGA3) S ⊆ X × R

(VGA4) F : X × R �→→ Y is a set-valued map

Tentative definition: Assume that (VGA1,2,3,4) hold. A GDQ variational
generator of F along (ξ∗, σ∗) in the direction of S is a set-valued map
Λ : [a, b] �→→ Lin(X,Y ) such that, for every t ∈ [a, b], the set Λ(t) is a weak
GDQ of F t at (ξ∗(t), σ∗(t)) in the direction of St. *+

The trouble with this definition is twofold:

• First of all, there at least two natural ways to define the “linearization
error” at a particular time t, because we could:
(1) Use the “fixed time error” h �→ Elin

F,Λ,ξ∗,σ∗
(h, t)def=Elin

F t,Λ(t),ξ∗(t),σ∗(t)(h),
where Elin

F t,Λ(t),ξ∗(t),σ∗(t)(h) is obtained by applying Formula (5.1.1) to
the map F t, so that

Elin
F,Λ,ξ∗,σ∗(h, t) = dist(σ∗(t) + Λ(t) · h, F (ξ∗(t) + h, t)) (5.2.1)

(2) Work instead with a “robust” version of the error, in which we try to
approximate F (ξ∗(t+ s) + h, t+ s) − σ∗(t+ s) by Λ(t) · h not just for
s = 0 but also for s in some neighborhood of 0; this leads to defining

Elin,rob
F,Λ,ξ∗,σ∗

(h, s, t) = dist(σ∗(t+ s) +Λ(t) · h, F (ξ∗(t+ s) + h, t+ s)) (5.2.2)

• Second, once we have settled on which form of the error to use, this
will lead to introducing functions t �→ κδ(t), t �→ κδ,s(t) such that
‖Elin

F,Λ,ξ∗,σ∗
(h, t)‖ ≤ δκδ(t) and ‖Elin,rob

F,Λ,ξ∗,σ∗
(h, s, t)‖ ≤ δκδ,s(t) whenever

|h‖ ≤ δ, and require that these functions “go to zero.” However, when
functions are involving, “going to zero” can mean many different things,
since the convergence could be, for example, pointwise, in L1, or uniform.



270 H.J. Sussmann

It follows that, in principle, there are at least twice as many reasonable notions
of “variational generators” as there are notions of convergence of functions,
since for each convergence notion we can require that the convergence take
place for the fixed-time error or for the robust one.

It turns out, however, that of all these possible notions of “variational
generator,” only two will be important to us. So we will define these two
notions and ignore all the others.

L1 Fixed-Time GDQ Variational Generators

Let us assume that X, Y , a, b, ξ∗, σ∗, S, F are such that (VGA1,2,3,4) hold.

Definition 5.6 An L1 fixed-time GDQ variational generator of the
map F along (ξ∗, σ∗) in the direction of the set S is a set-valued map
Λ : [a, b] �→→ Lin(X,Y ) such that:

• There exist a positive number δ̄ and a family {κδ}0<δ≤δ̄ of measurable
functions κδ : [a, b] �→ [0,+∞] such that limδ↓0

∫ b
a
κδ(t) dt = 0 and, in

addition, dist(σ∗(t) + Λ(t) · h, F (ξ∗(t) + h, t)) ≤ δκδ(t) whenever h ∈ X,
t ∈ [a, b], (ξ∗(t) + h, t) ∈ S, and ‖h‖ ≤ δ. *+

We will write V GL1,ft
GDQ(F, ξ∗, σ∗, S) to denote the set of all L1 fixed-time GDQ

variational generators of F along (ξ∗, σ∗) in the direction of S.

Pointwise Robust GDQ Variational Generators

Again, let us assume that X, Y , a, b, ξ∗, σ∗, S, F are such that (VGA1,2,3,4)
hold.

Definition 5.7 A pointwise robust GDQ variational generator of the
map F along (ξ∗, σ∗) in the direction of the set S is a set-valued map
Λ : [a, b] �→→ Lin(X,Y ) such that:

• There exist δ̄ > 0, s̄ > 0, and a family {κδ,s}0<δ≤δ̄,0<s≤s̄ of functions
κδ,s : [a, b] �→ [0,+∞], such that (i) limδ↓0,s↓0 κ

δ,s(t) = 0 for every t ∈ [a, b]
and (ii) dist(σ∗(t+s)+Λ(t)·h, F (ξ∗(t+s)+h, t+s))≤δκδ,s(t) whenever
h∈X, ‖h‖≤δ, t∈ [a, b], t+s ∈ [a, b], and (ξ∗(t+s)+h, t+s) ∈ S. *+

We write V Gpw,rob
GDQ (F, ξ∗, σ∗, S) to denote the set of all pointwise robust GDQ

variational generators of F along (ξ∗, σ∗) in the direction of S.

5.3 Examples of Variational Generators

We now prove four propositions giving important examples of variational
generators.
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Clarke Generalized Jacobians

Recall that ∂xf(q, t) denotes the Clarke generalized Jacobian (cf. Definition
2.9) at x = q of the map x �→ f(x, t).

Proposition 5.8 Assume that X, Y are FDNRLSs, and f is a single-valued
ppd map from X × R to Y , whose domain contains a tube T X(ξ∗, δ̄) about a
continuous curve ξ∗ : [a, b] �→ X. Assume that each partial map t �→ f(x, t)
is measurable and each partial map x �→ f(x, t) is Lipschitz with a Lipschitz
constant C(t) such that the function C(·) is integrable. Let Z = Lin(X,Y ),
and define Λ(t) = ∂xf(ξ∗(t), t) and σ∗(t) = f(ξ∗(t), t) for t ∈ [a, b]. Then Λ
is an integrably bounded measurable set-valued function from [a, b] to Z with
a.e. nonempty compact convex values, and Λ is an L1 fixed-time variational
GDQ of f along (ξ∗, σ∗) in the direction of X × [a, b].

Proof. To begin with, we observe that the bound ‖L‖ ≤ C(t) holds for every
t ∈ [a, b] and every L ∈ Λ(t), so Λ is integrably bounded. Furthermore, Λ
clearly has compact convex a.e. nonempty values. A somewhat tedious but
elementary argument proves that Λ is measurable.

Now, let κδ(t) denote the maximum of the distances dist(L,Λ(t)) for all
L ∈ Λ(δ)(t), where Λ(δ)(t) is the closed convex hull of the set of all the
differentials Df t(x) for all x ∈ Dt

δ, and Dt
δ is the set of all points x in the the

open ball BX(ξ∗(t), δ) such that f t is differentiable at x. Then κδ is easily seen
to be measurable, and such that limδ↓0 κ

δ(t) = 0 for every t. Furthermore, if
‖h‖ ≤ δ, then the equality f(ξ∗(t) + h, t) − f(ξ∗(t), t) = L̃ · h holds for some
L̃ ∈ Λ(δ)(t), and we can pick L ∈ Λ(t) such that ‖L̃−L‖ ≤ κδ(t), and conclude
that

f(ξ∗(t) + h, t) − f(ξ∗(t), t) − L · h = (L̃− L) · h ,
from which it follows that ‖f(ξ∗(t) + h, t) − f(ξ∗(t), t) − L · h‖ ≤ δκδ(t).

On the other hand, it is clear that κδ(t) ≤ 2C(t). So the functions κδ

converge pointwise to zero and are bounded by a fixed integrable function.
Hence limδ↓0

∫ b
a
κδ(t) dt = 0, and our proof is complete. *+

Michel–Penot Subdifferentials

Recall that if f : X×R ↪→ R then ∂oxf(q, t) is the Michel–Penot subdifferential
(cf. Definition 2.11) at x = q of the function x �→ f(x, t), and that the notion
of epimap was defined in Sect. 2.1, page 225.

Proposition 5.9 Let X be a FDNRLS, and let f be a single-valued ppd map
from X×R to R, whose domain contains a tube T X(ξ∗, δ̄) about a continuous
curve ξ∗ : [a, b] �→ X. Assume that each partial map t �→ f(x, t) is measurable
and each partial map x �→ f(x, t) is Lipschitz with a Lipschitz constant
C(t) such that the function C(·) is integrable. Let Λ(t) = ∂oxf(ξ∗(t), t), and
let σ∗(t) = f(ξ∗(t), t). Let F be the epimap of f . Then Λ is an integrably
bounded measurable set-valued function with a.e. nonempty compact convex
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values, and Λ is an L1 fixed-time variational GDQ of F along (ξ∗, σ∗) in the
direction of X × [a, b].

Proof. To begin with, we observe, as in the previous proof, that (i) the bound
‖L‖ ≤ C(t) holds for every t ∈ [a, b] and every L ∈ Λ(t), so Λ is integrably
bounded, and (ii) Λ clearly has compact convex a.e. nonempty values.

Next, we prove that Λ is measurable. For this purpose, we need to review
how the Michel–Penot subdifferential Λ(t) is defined: for each t ∈ [a, b], let
f t be the function B̄X(ξ∗(t), δ̄) , x �→ f(x, t) ∈ R; extend f t to all of X by
defining it in an arbitrary fashion outside B̄X(ξ∗(t), δ̄); for x, h ∈ X, define
dof t(x, h) = supk∈X lim supt↓0 t−1

(
f(x+t(k+h))−f(x+tk)

)
, so that, for each

x ∈ X, the function X , h �→ df(x, h) ∈ [−∞,+∞] is convex and positively
homogeneous; then Λ(t) is the set of all linear functionals ω ∈ X† such that
dof t(ξ∗(t), h) ≥ 〈ω, h〉 whenever h ∈ X.

We define the support function σΛ using (2.1.4), with R in the role of Y ,
and X† = Lin(X,R) in the role of X, so σΛ is a function on [a, b] ×X. The
measurability of Λ will follow if we prove that the function [a, b] , t �→ σΛ(t, h̄)
is measurable for each h̄ ∈ X.

Fix an h̄ ∈ X and a t ∈ [a, b]. If ω ∈ Λ(t), then 〈ω, h̄〉 ≤ dof t(ξ∗(t), h̄).
Therefore σΛ(t, h̄) ≤ dof t(ξ∗(t), h̄). We will prove that the opposite inequality
is also true. Define E = {(h, r) ∈ X × R : r ≥ dof t(ξ∗(t), h)}, Then E is the
epigraph of the function X , h �→ dof t(ξ∗(t), h) ∈ R , which is everywhere
finite, convex, and positively homogeneous. In particular, E is a closed convex
cone in X × R with nonempty interior. If we let r̄ = dof t(ξ∗(t), h̄), then
the point (h̄, r̄) belongs to the boundary of E. Hence the Hahn–Banach
theorem implies that there exists a linear functional Ω ∈ (X × R)†\{0} such
that 0 = Ω(h̄, r̄) ≤ Ω(h, r) for all (h, r) ∈ E. Then there exist a linear
functional ω : X �→ R and a real number ω0 such that Ω(h, r) = −ω(h) +ω0r
for all (h, r) ∈ X × R, and (ω, ω0) �= (0, 0). Clearly, ω0 ≥ 0, because
0 = −ω(h̄) + ω0r̄ ≤ −ω(h̄) + ω0(r̄ + 1). Furthermore, ω0 �= 0, because if
ω0 = 0 then ω(h̄) = −Ω(h̄, r̄) = 0, and then the inequality Ω(h̄, r̄) ≤ Ω(h, r)
implies 0 = −ω(h̄) ≤ −ω(h) for all h ∈ X, so ω = 0 as well. So we may assume
that ω0 = 1, and then 0 = −ω(h̄) + r̄ ≤ −ω(h) + r for all (h, r) ∈ E. Hence
ω(h) ≤ r for all (h, r) ∈ E, so in particular ω(h) ≤ dof t(ξ∗(t), h) for all h ∈ X.
It follows that ω ∈ Λ(t). On the other hand, the fact that −ω(h̄) + r̄ = 0 tells
us that ω(h̄) = dof t(ξ∗(t), h̄). Hence σΛ(t, h̄) ≥ dof t(ξ∗(t), h̄).

It follows that σΛ(t, h̄) = dof t(ξ∗(t), h̄) for all h̄ ∈ X. This implies the
desired measurability of the function [a, b] , t �→ σΛ(t, h̄) ∈ R, because
[a, b] , t �→ dof t(ξ∗(t), h̄) is clearly measurable.

Now fix t ∈ [a, b]. For h ∈ R
n such that ‖h‖ ≤ δ̄, let

θ̂t(h) = min{f(ξ∗(t) + h, t) − σ∗(t) − ω · h : ω ∈ Λ(t)} . (5.3.1)

If in addition h �=0, write θt(h)= θ̂t(h)
‖h‖ . We claim that lim suph→0,h�=0 θ

t(h)≤0.
Indeed, if this was not so there would exist a positive ε and a sequence {hj}j∈N
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converging to zero and such that hj �= 0 and θt(hj) ≥ ε for all j. Then
f(ξ∗(t) + hj , t) − f(ξ∗(t), t) − ω · hj ≥ ε‖hj‖ for all j and all ω ∈ Λ(t). Let
τj = ‖hj‖, wj = hj

τj
, so ‖wj‖ = 1. By passing to a subsequence, if necessary,

assume that the limit w = limj→∞ wj exists. Let ej = wj−w, so ej → 0. Then
hj = τjwj = τj(w + ej), so f(ξ∗(t) + τj(w + ej), t) − f(ξ∗(t), t) − ω · hj ≥ ετj
for all j ∈ N and all ω ∈ Λ(t).

It follows that lim supj→∞ τ−1
j

(
f(ξ∗(t)+τj(w+ej), t)−f(ξ∗(t), t)−ω ·hj

)
≥ ε

if ω ∈ Λ(t). But f(ξ∗(t)+τj(w+ej), t)−f(ξ∗(t)+τjw, t)≤C(t)τj‖ej‖. Hence

lim supj→∞ τ−1
j

(
f(ξ∗(t) + τjw, t) − f(ξ∗(t), t) − ω · hj

)
≥ ε, and then we

find that lim supj→∞ τ−1
j

(
f(ξ∗(t) + τjw, t) − f(ξ∗(t), t)

)
≥ ε + ω · w, from

which it follows that lim supτ↓0 τ−1
(
f(ξ∗(t)+ τw, t)− f(ξ∗(t), t)

)
≥ ε+ω ·w.

So we have shown that dof t(ξ∗(t), w) ≥ ε + ω · w for all ω ∈ Λ(t). But
this is impossible, because we already know that dof t(ξ∗(t), w) = σΛ(t, w),
so dof t(ξ∗(t), w) = ω · w for some ω ∈ Λ(t). This proves our claim that
lim suph→0 θ

t(h) ≤ 0.
Now define κδ(t)=max

(
0, sup{θt(h) :‖h‖≤δ}

)
. Then the functions κδ are

measurable and nonnegative, and converge pointwise to zero. In addition,
they clearly satisfy κδ ≤ 2C(t), since (5.3.1) implies that θ̂(h) ≤ 2C(t)‖h‖.
Therefore limδ↓0

∫ b
a
κδ(t) dt = 0.

Given t ∈ [a, b] and h ∈ X such that ‖h‖ ≤ δ, we can pick ω ∈ Λ(t) such
that f(ξ∗(t) + h, t) − σ∗(t) − ω · h = θ̂t(h), and then

f(ξ∗(t) + h, t) − σ∗(t) − ω · h = ‖h‖θt(h) ≤ ‖h‖κδ(t) ≤ δκδ(t) .

It then follows that we can pick a real number r ∈ F (ξ∗(t) + h, t) such that
|r − σ∗(t) − ω · h| ≤ δκδ(t). (Indeed, if f(ξ∗(t) + h, t) − σ∗(t) − ω · h ≥ 0, we
may pick r = f(ξ∗(t) + h, t), and if f(ξ∗(t) + h, t) − σ∗(t) − ω · h < 0 pick
r = σ∗(t) + ω · h.) But then dist

(
F (ξ∗(t) + h, t), σ∗(t) + Λ(t) · h

)
≤ δκδ(t),

since σ∗(t) + ω · h ∈ σ∗(t) + Λ(t) · h and r ∈ F (ξ∗(t) + h, t). This completes
our proof. *+

Classical Differentials

If (M,dM ), (N, dN ) are metric spaces, and x̄∗ ∈ M , a map F : M ↪→ N
is calm at x̄∗ if there exist positive constants C, δ̄ such that x ∈ Do(F ) and
dN (F (x), F (x̄∗) ≤ CdM (x, x̄∗) whenever dM (x, x̄∗) ≤ δ. If a, b ∈ R, a < b, and
ξ∗ : [a, b] �→ M is continuous, then a ppd map F : M × [a, b] ↪→ N is integrably
calm along ξ∗ if there exist a positive constant δ̄ and an integrable function
C : [a, b] �→ [0,+∞] such that, for almost all t ∈ [a, b], the following two
conditions are satisfied whenever dM (x, ξ∗(t)) ≤ δ: (i) (x, t) ∈ Do(F ), and
(ii) dN (F (x, t), F (ξ∗(t), t)) ≤ C(t)dM (x, ξ∗(t)). Then the following is easily
proved.
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Proposition 5.10 Assume that X,Y are FDNRLSs, and f is a single-valued
ppd map from X × R to Y whose domain contains a tube T X(ξ∗, δ̄) about a
continuous curve ξ∗ : [a, b] �→ X. Assume that each partial map t �→ f(x, t) is
measurable. Assume in addition that:

• For each t the map x �→ f(x, t) is differentiable at ξ∗(t)
• f is integrably calm along ξ∗

Let σ∗(t) = f(ξ∗(t), t), and let Λ(t) = {Dxf(ξ∗(t), t)}. Then Λ is an integrable
single-valued map. Furthermore, Λ is an L1 fixed-time variational GDQ of f
along (ξ∗, σ∗) in the direction of X × [a, b]. *+

The Set-Valued Maps ∂ > g

We are going to assume that:

(A) X is a FDNRLS, ξ∗ ∈ C0([a, b],X), δ̄ > 0, and T = T X(ξ∗, δ̄).
(B) g : T �→ R is a single-valued everywhere defined function such that

(i) g(ξ∗(t), t) ≤ 0 for all t ∈ [a, b], and (ii) each partial map x �→ g(x, t)
is Lipschitz on {x ∈ X : ‖x− ξ∗(t)‖ ≤ δ̄}, with a Lipschitz constant C
which is independent of t for t ∈ [a, b].

We define Avg = {(x, t) ∈ T X(ξ∗, δ̄) : g(x, t) > 0}, so Avg is the domain of
the constraint indicator map χcog (cf. Sect. 2.1, page 225).

Remark 5.11 For an optimal control problem with an inequality state space
constraint g(x, t) ≤ 0, Avg is the set to be avoided, that is, the set of points
(x, t) such that any trajectory ξ for which (ξ(t), t) is one of these points, for
some t, fails to be admissible. *+

We define ∂>x g(x̄, t) to be the convex hull of the set of all limits limj→∞ ωj ,
for all sequences {(xj , tj , ωj)}j∈N such that limj→∞(xj , tj) → (x̄, t) and, for
all j, (1) (xj , tj) ∈ Avg, (2) the function x �→ g(x, tj) is differentiable at xj ,
and (3) ωj = ∇xg(xj , tj).

We let K be the set of all t ∈ [a, b] such that (ξ∗(t), t) belongs to the
closure of Avg. Then K is compact.

Remark 5.12 The set K could be empty. (This happens if and only if the
closure of Avg does not contain any point of the form (ξ∗(t), t), t ∈ [a, b].) *+

Proposition 5.13 Assume that X, a, b, ξ∗, δ̄, T = T X(ξ∗, δ̄), g, C are such
that (A), (B) hold, and Avg, ∂>x g, K are defined as above. Let σ∗(t) = 0 for
t ∈ [a, b], and define Λ(t) = ∂>x g(ξ∗(t), t) for t ∈ [a, b]. Then:

(1) Λ is an upper semicontinuous set-valued map with compact convex
values

(2) K = {t ∈ [a, b] : Λ(t) �= ∅}
(3) Λ is a pointwise robust GDQ variational generator of χcog along (ξ∗, σ∗)

in the direction of Avg
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Proof. The desired conclusions do not depend on the choice of a norm on X,
so we will assume that the norm on X is Euclidean. For each t ∈ [a, b], let gt

denote the function x �→ g(x, t), with domain Bt = B̄X(ξ∗(t), δ̄), and let Dt

be the set of points x ∈ Bt such that gt is differentiable at x. Then Dt is a
subset of full measure of Bt.

Let us show that Λ is upper semicontinuous and has compact convex
values. The convexity of the sets Λ(t) is clear from the definition of Λ. We
will prove that the graph of Λ is compact, from which it will follow that Λ is
upper semicontinuous and has compact values.

First, we observe that every member (t, ω) of Gr(Λ) is the limit of a
sequence {(tj , ωj)}j∈N such that ‖ωj‖ ≤ C for all j. Therefore ‖ω‖ ≤ C
whenever t ∈ [a, b] and ω ∈ Λ(t).

Now, take a sequence {(tj , ωj)}j∈N of points in Gr(Λ). Then ‖ωj‖ ≤ C
for all j, so we may find an infinite subset J of N such that the sequence
{(tj , ωj)}j∈J converges to a limit (t, ω) ∈ [a, b] × X†. We need to show
that ω ∈ Λ(t). For each j ∈ J , the covector ωj is a convex combination∑n

k=0 αj,kωj,k, where αj,k ≥ 0,
∑n

k=0 αj,k = 1, and ωj,k = lim�→∞ ωj,k,�,
with xj,k,� ∈ Dtj,k,� , g(xj,k,�, tj,k,�) > 0, ωj,k,� = ∂g

∂x (xj,k,�, tj,k,�), and
lim�→∞(xj,k,�, tj,k,�) = (ξ∗(tj), tj). Pick an infinite subset J ′ of J such that the
limits ω̃k = limj→∞,j∈J′ ωj,k and α̃k = limj→∞,j∈J′ αj,k exist. Then α̃k ≥ 0,∑n

k=0 α̃k = 1, and
∑n

k=0 α̃kω̃k = ω. Therefore the conclusion that ω ∈ Λ(t)
will follow if we show that ω̃k ∈ Λ(t) for each k. For j ∈ J ′, k ∈ {0, . . . , n},
pick �(j, k) ∈ N such that

‖ω̂j,k − ωj,k‖ + ‖x̂j,k − ξ∗(tj)‖ + |t̂j,k − tj | ≤ 2−j ,

whereω̂j,k=ωj,k,�(j,k),x̂j,k=xj,k,�(j,k),t̂j,k=tj,k,�(j,k).Thenω̃k= limj→∞,j∈J′ ω̂j,k,
with ω̂j,k ∈ ∂xg(x̂j,k, t̂j,k), g(x̂j,k, t̂j,k) > 0, and limj→∞(x̂j,k, t̂j,k) = (ξ∗(t), t).
Therefore ω̃k ∈ Λ(t) for each k, and then ω ∈ Λ(t), completing the proof that
Λ is upper semicontinuous and has compact values. So we have proved (1).

Now let us prove (2). Fix a t ∈ K. Then there exist, for j ∈ N, pairs
(x̃j , tj) ∈ Sg such that g(x̃j , tj) > 0 and ‖x̃j − ξ∗(t)‖ + |tj − t| < 2−j . Pick
xj ∈ Dtj such that g(xj , tj) > 0 and ‖xj − x̃j‖ < 2−j . Let ωj = ∂g

∂x (xj , tj).
Then ‖ωj‖ ≤ C for all j. Therefore, we can pick an infinite subset J of N

such that ω = lim
j→∞,j∈J

ωj exists. Then ω ∈ Λ(t), so Λ(t) �= ∅. Next, fix
a t ∈ [a, b]\K. Then no sequence {(xj , tj , ωj)j∈N of the kind specified in the
definition of ∂>x g exists, so ∂>x g(x̄, t) is empty, that is, Λ(t) = ∅. This completes
the proof of (2).

We now prove (3). We take a point t̄ ∈ [a, b], a sequence {(tj , hj)}j∈N of
points of Sg such that limj→∞ hj = 0, and limj→∞ tj = t̄, and show that

lim
j→∞

µj=0, where µj=
ρj

‖hj‖
, ρj=dist(χcog (ξ∗(tj)+hj , tj), Λ(t̄) · hj). (5.3.2)

Write xj = ξ∗(tj) + hj , x̄ = ξ∗(t̄) (so that limj→∞ xj = x̄). Suppose (5.3.2) is
not true. Then we can pick an infinite subset J of N and an ε ∈ R such that ε>0
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and µj ≥ ε for all j ∈ J . Fix a j ∈ J . Then g(xj , tj) > 0. Let γj = g(xj , tj),
and use Σj to denote the sphere {h ∈ X : ‖h‖ = ‖hj‖}. (Recall that hj �= 0,
so Σj is a true sphere, not reduced to a point.) For h ∈ X\{0}, let σh denote
the segment {ξ∗(tj) + sh : 0 ≤ s ≤ 1}. It then follows from Fubini’s theorem
and Rademacher’s theorem that the function gtj is differentiable at almost all
points of σh (that is, ξ∗(tj) + sh ∈ Dtj for almost all s ∈ [0, 1]) for almost all
h ∈ Σj . Therefore we can pick h̃j ∈ Σj such that, if we let x̃j = ξ∗(tj) + h̃j ,
then ‖h̃j − hj‖ ≤ (2C)−1γj and ξ∗(tj) + sh̃j ∈ Dtj for almost all s ∈ [0, 1].
Therefore ‖x̃j − xj‖ ≤ (2C)−1γj and g(xj , tj) − g(x̃j , tj) ≤ C‖xj − x̃j‖ ≤ γj

2
from which it follows (since g(xj , tj) = γj) that g(x̃j , tj) ≥ γj

2 . Clearly,

g(x̃j , tj) = g(ξ∗(tj), tj) +

(∫ 1

0

∂g

∂x
(ξ∗(tj) + sh̃j , tj) ds

)
· h̃j .

Since g(ξ∗(tj), tj) ≤ 0, and g(x̃j , tj) ≥ γj

2 , we conclude that
(∫ 1

0

∂g

∂x
(ξ∗(tj) + sh̃j , tj) ds

)
· h̃j ≥ γj

2
.

We claim that we can pick sj ∈ [0, 1] such that the three conditions

ξ∗(tj)+sj h̃j ∈Dtj , g(ξ∗(tj)+sj h̃j , tj)>0,
∂g

∂x
(ξ∗(tj)+sj h̃j , tj)·h̃j≥

γj
2

(5.3.3)

hold. To see this, let η(s) = g(ξ∗(tj) + sh̃j , tj) − g(ξ∗(tj), tj) for s ∈ [0, 1],
so η(0) = 0, η(1) > 0, η is Lipschitz, and η̇(s) = ∂g

∂x (ξ∗(tj) + sh̃j , tj) · h̃j
for almost all s ∈ [0, 1]. Let τ = sup{s ∈ [0, 1] : η(s) ≤ 0}. Then τ < 1,
η(τ) = 0, η(1) ≥ γj

2 , and η(s) > 0 for s > τ . Therefore, there exists an s

such that τ < s < 1, ξ∗(tj) + sh̃j ∈ Dtj , and η̇(s) ≥ γj

2 (because if such
an s did not exist it would follow that η̇(s) < γj

2 for all s ∈]τ, 1[ such that
ξ∗(tj) + sh̃j ∈ Dtj , i.e., that η̇(s) < γj

2 for almost all s ∈ [τ, 1], and then∫ 1

τ
η̇(s) ds < γj

2 , so η(1)− η(τ) < γj

2 , contradicting the fact that η(τ) = 0 and
η(1) ≥ γj

2 ). This s is our desired sj , and the claim is proved.
Now let ĥj = sj h̃j ,k x̂j = ξ∗(tj) + ĥj , ωj = ∂g

∂x (x̂j , tj). Then the sequence
{ωj}j∈J3 is bounded (because ‖ωj‖ ≤ C) so we may find an infinite subset J ′

of J such that ω = limj→∞,j∈J′ ωj exists. It then follows from the definition
of Λ that ω ∈ Λ(t̄). Then, if j ∈ J ′, we have

ω · hj = (ω−ωj) · hj+ωj · (hj−h̃j)+ωj · h̃j . (5.3.4)

It follows from (5.3.3) that ωj · h̃j ≥ γj

2 , while on the other hand we also have
|ωj · (hj − h̃j)| ≤ γj

2 , since ‖h̃j − hj‖ ≤ (2C)−1γj and ‖ωj‖ ≤ C. Then (5.3.4)
allows us to conclude that

ω · hj ≥ −‖ω − ωj‖ · ‖hj‖ . (5.3.5)
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Since χcog (ξ∗(tj) + hj , tj) = [0,+∞[, and ω · hj belongs to Λ(t̄) · hj , (5.3.5)
implies that the distance ρj between the sets Λ(t̄) · hj and χcog (ξ∗(tj) + hj , tj)
is not greater than ‖ω − ωj‖ · ‖hj‖. Hence µj ≤ ‖ω − ωj‖. Therefore
limj→∞,j∈J′ µj = 0. But this contradicts the facts that J ′ ⊆ J and µj ≥ ε
for all j ∈ J . This contradiction concludes our proof. *+

6 Discontinuous Vector Fields

In this section we will study classes of discontinuous vector fields f that
have good properties, such as local existence of trajectories, local Cellina
approximability of flow maps, and differentiability of the flow maps
(t, s, x) �→ Φf (t, s, x) at points (t̄, t̄, x̄). (The flow map of a ppd time-varying
vector field was defined in Sect. 2.1, p. 226.)

These classes have already been studied in great detail in [24], so here we
will just limit ourselves to presenting the relevant definitions, referring the
reader to [24] for the proofs.

6.1 Co-Integrably Bounded Integrally Continuous Maps

The goal of this subsection is to define (i) the class of “co-IBIC” time-
varying maps K , (x, t) �→ f(x, t) ∈ Y , where X,Y are FDNRLSs and K is
a compact subset of X × R, and (ii) the lower semicontinuous analogue of
the co-IBIC condition – called “co-ILBILSC,” – in the case when Y = R.
(The two abbreviations “co-IBIC” and “co-ILBILSC” stand, respectively, for
“co-integrably bounded and integrally continuous” and “co-integrably lower
bounded and integrally lower semicontinuous.”)

The co-IBIC class will be interesting when Y = X, i.e., when f is a
time-varying vector field on X. Roughly speaking the co-IBIC condition is
the minimum requirement that has to be satisfied so that local existence of
trajectories can be proved using the Schauder fixed point theorem. For a
time-varying vector field f : X × R �→ X, and an initial condition (t̄, x̄), one
would like to prove existence of a trajectory ξ of f , defined on some interval
[t̄− ε, t̄+ ε], by finding a fixed point of the map

Ξt̄,ε,x̄ , ξ �→ I(ξ) ∈ Z such that I(ξ)(t) = x̄+
∫ t

t̄

f(ξ(s), s) ds ,

where Z = C0([t̄−ε, t̄+ε],X), and Ξt̄,ε,x̄ is the set of all ξ ∈ C0([t̄−ε, t̄+ε],X)
for which ξ(t̄) = x̄. To guarantee the existence of a fixed point, one needs I
to map Ξt̄,ε,x̄ continuously into a compact convex subset of Ξt̄,ε,x̄.

Traditionally, this is done – if, for example, f is continuous with respect
to x for each t and measurable with respect to t for each x – by assum-
ing that a bound ‖f(x, t)‖ ≤ k(t) is satisfied for all x, t, where the func-
tion k : R �→ [0,+∞] is locally integrable. (Naturally, it suffices to assume
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that a function kJ exists for every compact subset J of X.) In that case,
the functions I(ξ), for ξ ∈ Ξt̄,ε,x̄, are absolutely continuous with derivatives
ξ̇(t) bounded in norm by k(t), and the Ascoli–Arzelà theorem guarantees
the desired compactness, while the continuity of the map follows from the
Lebesgue dominated convergence theorem.

Here we will consider a much large class of time-varying vector fields, and
in particular we will not require that f(x, t) be continuous with respect to x.
The main condition is going to be the continuity of the map I. We will still
want to assume the existence of the integral bounds k, and the continuity
of the integral map will only be assumed on the set of absolutely continuous
arcs ξ whose derivatives are bounded by the same function k. That is, we
will single out, for each compact subset S of X × R, the set Arc (S) of all
arcs ξ : I �→ X, defined on a ξ-dependent compact interval I, and such that
(ξ(t), t) ∈ S for all t ∈ I, and the subset Arc k(S) of Arc (S) consisting of
all absolutely continuous ξ ∈ Arc (S) such that ‖ξ̇(t)‖ ≤ k(t) for almost all
t. This leads us to the concept of “co-IBIC” time-varying ppd vector fields,
that is, maps f : X × R ↪→ X such that, on a given compact subset S of
X × R, satisfy a bound ‖f(x, t)‖ ≤ k(t) and also give rise to a continuous
integral map I on Arc k′(S), with the integrable functions k and k′ equal to
each other.

Finally, we point out that, for the integral map to be continuous, an
obvious prerequisite is that it be well defined. If ξ ∈ Arc (S), and Do(ξ) = I,
then of course the map I , t �→ f(ξ(t), t) will be bounded by an integrable
function of t as long as f satisfies a bound ‖f(x, t)‖ ≤ k(t). But in addition
we have to make sure that the map is measurable, and this will require that
f be measurable with respect to (x, t) in some appropriate sense. This is why
our discussion will begin with the definition of “essential Borel×Lebesgue
measurability.”

Measurability Conditions

If X is a FDNRLS, we use Bo(X), Leb(X), BLeb(X,R), to denote, respec-
tively, the Borel and Lebesgue σ-algebras of subsets of X, and the product
σ-algebra Bo(X) ⊗ Leb(R). We let N (X,R) denote the set of all subsets S
of X × R such that ΠX(S) is a Lebesgue-null subset of R, where ΠX is the
canonical projection X × R , (x, t) → t ∈ R. Finally, we use BLe(X,R) to de-
note the σ-algebra of subsets of X×R generated by BLeb(X,R)∪N (X,R). It
is then clear that the relations Bo(X × R) ⊂ BLeb(X,R) ⊂ BLe(X,R) hold,
and both inclusions are strict.

Definition 6.1 Let X,Y be FDNRLSs, let f be a ppd map from X×R to Y ,
and let K be a compact subset of X × R:

• We say that f is essentially Borel×Lebesgue measurable on K, or
BLe(X,R)-measurable on K, if K ⊆ Do(f) and f−1(U) ∩K belongs to
BLe(X,R) for all open subsets U of Y .
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• We use MBLe(X ×R,K, Y ) to denote the set of ppd maps from X ×R to
Y that are BLe(X,R)-measurable on K.

Integrable Boundedness

Assume that X,Y are FDNRLSs, f is a ppd map from X ×R to Y , and K is
a compact subset of X × R:

• An integrable bound for f on the set K is an integrable function
R , t → ϕ(t) ∈ [0,+∞] such that ‖f(x, t)‖ ≤ ϕ(t) for all (x, t) ∈ K.

• If Y = R, an integrable lower bound for f on K is an integrable function
R , t → ϕ(t) ∈ [0,+∞] such that f(x, t) ≥ −ϕ(t) for all (x, t) ∈ K.

• We call f integrably bounded (IB) – resp. integrably lower bounded
(ILB) – on K if f is BLe(X,R)-measurable on K and there exists an
integrable bound – resp. an integrable lower bound – for f on K.

• We write IB(X ×R,K, Y ), ILB(X ×R,K,R) to denote, respectively, the
sets of (i) all ppd maps from X × R to Y that are IB on K, and (ii) all
ppd maps from X × R to R that are ILB on K. *+

Spaces of Arcs

If S ⊆ X × R, and I is a nonempty compact interval, we write Arc (I, S) to
denote the set of all curves ξ∈C0( I ; X ) such that (ξ(t), t)∈S for all t ∈ I.
If k : R �→ R+ ∪ {+∞} is a locally integrable function, then Arc k(I, S) will
denote the set of all ξ ∈ Arc (I, S) such that ξ is absolutely continuous and
‖ξ̇(t)‖ ≤ k(t) for almost all t ∈ I. We then write Arc (S), Arc k(S) to denote,
respectively, the union of the sets Arc (J, S) and the union of the Arc k(J, S),
taken over all nonempty compact subintervals J of R. It is then easy to show
that

Fact 6.2 If X,Y are FDNRLSs, K ⊆ X ×R is compact, ξ ∈ Arc (K), and f
belongs to MBLe(X × R,K, Y ), then the function Do(ξ) , t �→ f(ξ(t), t) ∈ Y
is measurable. *+

The sets Arc (S) are metric spaces, with the distance d(ξ, ξ′) between two
members ξ : [a, b] �→ X, ξ′ : [a′, b′] �→ X of Arc (S) defined by

d(ξ, ξ′) = |a− a′| + |b− b′| + sup{‖ξ̃(t) − ξ̃′(t)‖ : t ∈ R}

where, for any continuous map γ : [α, β] �→ X, γ̃ denotes the extension of γ
to R which is identically equal to γ(α) on ] − ∞, α] and to γ(β) on [β,+∞[.
Clearly, then

Fact 6.3 If X is a FDNRLS and S ⊆ X × R, then:

(1) If {ξj}j∈N is a sequence of members of Arc (S), with domains [aj , bj ], and
ξ ∈ Arc (S) has domain [a, b], then {ξj}j∈N converges to ξ if and only
if (a) limj→∞ aj = a, (b) limj→∞ bj = b, and (c) limj→∞ ξj(tj) = ξ(t)
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whenever {tj}j∈N is a sequence such that tj ∈ [aj , bj ] for each j and
limj→∞ tj = t ∈ [a, b],

(2) If S is compact, and k : R �→ R+ ∪ {+∞} is locally integrable, then
Arc k(S) is compact. *+

Integral Continuity

If X,Y are FDNRLSs, K⊆X×R is compact, and f ∈ IB(X × R,K, Y ), then
it is convenient to define a real-valued integral map If,K : Arc (K) �→ R, by
letting If,K(ξ) =

∫
Do(ξ)

f(ξ(s), s) ds for every ξ ∈ Arc (K). If S ⊆ Arc (K),
we call f integrally continuous (abbr. IC) on S if If,K  S is continuous.
If f ∈ ILB(X × R,K,R), then If,K is still well defined as a map into R ∪
{+∞}, and we call f integrally lower semicontinuous (abbr. ILSC) on
S if If,K  S is lower semicontinuous.

We will be particularly interested in maps f that, for some integrable
function k, are both integrably bounded with integral bound k and integrally
continuous on Arc k(K).

Definition 6.4 If X, Y are FDNRLSs, K is a compact subset of X×R, and
f : X × R ↪→ Y , we call f co-IBIC (“co-integrably bounded and integrally
continuous”) on K if f ∈ IB(X × R,K, Y ) and there exists an integrable
bound k : R �→ [0,+∞] for f on K such that f is integrally continuous on
Arc k(K). If f : X ×R ↪→ R, we call f co-ILBILSC (“co-integrably bounded
and integrally lower semicontinuous”) on K if f ∈ ILB(X × R,K,R) and
there exists an integrable lower bound k : R �→ [0,+∞] for f on K such that
f is integrally lower semicontinuous on Arc k(K). *+

6.2 Points of Approximate Continuity

Suppose that X and Y are FDNRLSs, f is a ppd map from X × R to Y ,
and (x̄∗, t̄∗) ∈ X × R. A modulus of approximate continuity (abbr. MAC) for
f near (x̄∗, t̄∗) is a function ] 0,+∞ [×R , (β, r) �→ ψ(β, r) ∈ ] 0,+∞ ] such
that:

(MAC.1) The function R , r �→ ψ(β, r) ∈ ] 0,+∞ ] is measurable for each
β ∈ ] 0,+∞ [ ,

(MAC.2) lim(β,ρ)→(0,0),β>0,ρ>0
1
ρ

∫ ρ
−ρ ψ(β, r) dr = 0,

(MAC.3) There exist positive numbers β∗, ρ∗, such that:
(MAC.3.a) f(x, t) is defined whenever ‖x− x̄∗‖ ≤ β∗ and |t− t̄∗| ≤ ρ∗,
(MAC.3.b) The inequality ‖f(x, t)−f(x̄∗, t̄∗)‖≤ψ(β, t− t̄∗) holds whenever

β ∈ R, x ∈ X, t∈R are such that ‖x−x̄∗‖≤β≤β∗ and
|t− t̄∗|≤ρ∗.

Definition 6.5 A point of approximate continuity (abbr. PAC) for f
is a point (x̄∗, t̄∗) ∈ X × R having the property that there exists a MAC for f
near (x̄∗, t̄∗). *+
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An important example of a class of maps with many points of approximate
continuity is given by the following corollary of the well-known Scorza-Dragoni
theorem.

Proposition 6.6 Suppose X, Y are FDNRLSs, Ω is open in X, a, b ∈ R,
a < b, and f : Ω × [a, b] �→ Y is such that:

• The partial map [a, b] , t �→ f(x, t) ∈ Y is measurable for every x ∈ Ω
• The partial map Ω , x �→ f(x, t) ∈ Y is continuous for every t ∈ [a, b]
• There exists an integrable function [a, b] , t �→ k(t) ∈ [0,+∞] such that

the bound ‖f(x, t)‖ ≤ k(t) holds whenever (x, t) ∈ Ω × [a, b]

Then there exists a subset G of [a, b] for which meas([a, b]\G) = 0, such that
every (x̄∗, t̄) ∈ Ω ×G is a point of approximate continuity of f . *+

Another important example of maps with many PACs is given by the
following result, proved in [24].

Proposition 6.7 Suppose that X and Y are FDNRLSs, a, b ∈ R, a < b, and
F : X × [a, b] �→→ Y is an almost lower semicontinuous set-valued map with
closed nonempty values such that for every compact subset K of X the function
[a, b] , t �→ sup{min{‖y‖ : y ∈ F (x, t)} : x ∈ K} is integrable. Then there
exists a subset G of [a, b] such that meas([a, b]\G) = 0, having the property
that, whenever x∗ ∈ X, t∗ ∈ G, v∗ ∈ F (x∗, t∗), and K ⊆ X is compact,
there exists a map K × [a, b] , (x, t) �→ f(x, t) ∈ F (x, t) which is co-IBIC on
K × [a, b] and such that (x∗, t∗) is a PAC of f and f(x∗, t∗) = v∗. *+

7 The Maximum Principle

We consider a fixed time-interval optimal control problem with state space
constraints, of the form

minimize ϕ(ξ(b)) +
∫ b
a
f0(ξ(t), η(t), t) dt

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ(·) ∈ W 1,1([a, b],X) and ξ̇(t) = f(ξ(t), η(t), t) a.e. ,
ξ(a) = x̄∗ and ξ(b) ∈ S ,
gi(ξ(t), t) ≤ 0 for t ∈ [a, b] , i = 1, . . . ,m ,
hj(ξ(b)) = 0 for j = 1, . . . , m̃ ,
η(t) ∈ U for all t ∈ [a, b] and η(·) ∈ U ,

and a reference trajectory-control pair (ξ∗, η∗).

The Technical Hypotheses

We will make the assumption that the data 14-tuple D = (X,m, m̃, U, a, b, ϕ,
f0, f, x̄∗,g,h, S,U) satisfies:
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(H1) X is a normed finite-dimensional real linear space, x̄∗ ∈ X, and m, m̃
are nonnegative integers

(H2) U is a set, a, b ∈ R and a < b
(H3) f0, f are ppd functions from X × U × R to R, X, respectively
(H4) g = (g1, . . . , gm) is an m-tuple of ppd functions from X × R to R

(H5) h = (h1, . . . , hm̃) is an m̃-tuple of ppd functions from X to R

(H6) ϕ is a ppd function from X to R

(H7) S is a subset of X
(H8) U is a set of ppd functions from R to U such that the domain of every

η ∈ U is a nonempty compact interval

Given such a D, a controller is a ppd function η : R ↪→ U whose domain is a
nonempty compact interval. (Hence (H8) says that U is a set of controllers.)
An admissible controller is a member of U . If α, β ∈ R and α ≤ β, then we
use W 1,1([α, β],X) to denote the space of all absolutely continuous maps
ξ : [α, β] �→ X. A trajectory for a controller η : [α, β] �→ U is a map
ξ ∈ W 1,1([α, β],X) such that, for almost every t ∈ [α, β], (ξ(t), η(t), t) belongs
to Do(f) and ξ̇(t) = f(ξ(t), η(t), t). A trajectory-control pair (abbr. TCP) is a
pair (ξ, η) such that η is a controller and ξ is a trajectory for η. The domain
of a TCP (ξ, η) is the domain of η, which is, by definition, the same as the
domain of ξ. A TCP (ξ, η) is admissible if η ∈ U .

A TCP (ξ, η) with domain [α, β] is cost-admissible if:

• (ξ, η) is admissible
• The function [α, β] , t �→ f0(ξ(t), η(t), t) is a.e. defined, measurable, and

such that
∫ β
α

min
(
0, f0(ξ(t), η(t), t)

)
dt > −∞

• The terminal point ξ(β) belongs to the domain of ϕ

It follows that if (ξ, η) is cost-admissible then the number

J(ξ, η) = ϕ(ξ(β)) +
∫ β

α

f0(ξ(t), η(t), t) dt

– called the cost of (ξ, η) – is well defined and belongs to ]−∞,+∞].
A TCP (ξ, η) with domain [α, β] is constraint-admissible if it satisfies all

our state space constraints, that is, if:

(CA1) ξ(α) = x̄∗
(CA2) (ξ(t), t) ∈ Do(gi) and gi(ξ(t), t) ≤ 0 if t ∈ [α, β] and i ∈ {1, . . . ,m}
(CA3) ξ(β) ∈ S ∩

(
∩m̃j=1 Do(hj)

)
and hj(ξ(β)) = 0 for j = 1, . . . , m̃

For the data tuple D, we use ADM(D) to denote the set of all cost-admissible,
constraint-admissible TCPs (ξ, η), and ADM[a,b](D) to denote the set of all
(ξ, η) ∈ ADM(D) whose domain is [a, b].

The hypothesis on the reference TCP (ξ∗, η∗) is that it is a cost-minimizer
in ADM[a,b](D), i.e., an admissible, cost admissible, constraint-admissible
TCP with domain [a, b] that minimizes the cost in the class of all admissible,
cost-admissible, constraint-admissible, TCP’s with domain [a, b]. That is:
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(H9) The pair (ξ∗, η∗) satisfies (ξ∗, η∗) ∈ ADM[a,b](D), J(ξ∗, η∗) < +∞,
and J(ξ∗, η∗) ≤ J(ξ, η) for all pairs (ξ, η) ∈ ADM[a,b](D) .

To the data D, ξ∗, η∗ as above, we associate the cost-augmented dynamics
f : X×U×R ↪→ R×X defined by

Do(f) = Do(f0) ∩ Do(f), and f(z) = (f0(z), f(z)) for z = (x, u, t) ∈ Do(f) .

We also define the epi-augmented dynamics f̌ : X × U × R �→→ R ×X, given,
for each z = (x, u, t) ∈ X × U × R, by

f̌(z) = [f0(z),+∞[×{f(z)} if z ∈ Do(f), f̌(z) = ∅ if z /∈ Do(f) .

We will also use the constraint indicator maps χcogi
:X×R �→→R, for i=1, . . . ,m,

and the epimap ϕ̌ : X �→→ R. (These two notions were defined in Sect. 2.1.)
For i ∈ {1, . . . ,m}, we let

σf
∗(t)= f(ξ∗(t), η∗(t), t) and σgi

∗ (t)=gi(ξ∗(t), t) if t ∈ [a, b],
Avgi

={(x, t) ∈ X × [a, b] : gi(x, t) > 0}

(so the Avgi
are the “sets to be avoided”). We then define Ki to be the set

of all t ∈ [a, b] such that (ξ∗(t), t) belongs to the closure of Avgi
. Then Ki is

obviously a compact subset of [a, b].
We now make technical hypotheses on D, ξ∗, η∗, and five new objects

called Λf , Λg, Λh, Λϕ, and C. To state these hypotheses, we let Uc,[a,b]
denote the set of all constant U -valued functions defined on [a, b], and define
Uc,[a,b],∗ = Uc,[a,b] ∪ {η∗} . The technical hypotheses are then as follows:

(H10) For each η ∈ Uc,[a,b],∗. there exist a positive number δη such that
(H10.a) f(x, η(t), t) is defined for all (x, t) in the tube T X(ξ∗, δη)
(H10.b) The time-varying vector field T X(ξ∗, δη) , (x, t) �→ f(x, η(t), t) is

co-IBIC on T X(ξ∗, δη)
(H10.c) The time-varying function T X(ξ∗, δη) , (x, t) �→ f0(x, η(t), t) ∈ R

is co-ILBILSC on T X(ξ∗, δη)
(H11) The number δη∗ can be chosen so that (i) each function gi is defined

on T X(ξ∗, δη∗), and (ii) for each i ∈ {1, . . . ,m}, t ∈ [a, b], the set
{x ∈ X : gi(x, t) > 0, ‖x− ξ∗(t)‖ ≤ δη∗} is relatively open in the ball
{x ∈ X : ‖x− ξ∗(t)‖ ≤ δη∗}

(H12) Λf is a measurable integrably bounded set-valued map from [a, b]
to X†×L (X) with compact convex values such that Λf belongs to
V GL1,ft

GDQ(f̌ , [a, b], ξ∗, σf
∗,X × R)

(H13) Λg is an m̂-tuple (Λg1 , . . . , Λgm̂) such that, for each i ∈ {1, . . . , m̂},
Λgi is an upper semicontinuous set-valued map from [a, b] to X† with
compact convex values, such that Λgi ∈ V Gpw,rob

GDQ (χcogi
, ξ∗, σ

gi
∗ , Avgi

)
(H14) Λh is a generalized differential quotient of h at ( ξ∗(b),h(ξ∗(b))) in the

direction of X
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(H15) Λϕ is a generalized differential quotient of the epifunction ϕ̌ at the
point (ξ∗(b), ϕ(ξ∗(b))) in the direction of X

(H16) C is a limiting Boltyanskii approximating cone of S at ξ∗(b)

Our last hypothesis will require the concept of an equal-time interval-
variational neighborhood (abbr. ETIVN) of a controller η. We say that a set
V of controllers is an ETIVN of a controller η if:

• For every n ∈ Z+ and every n-tuple u = (u1, . . . , un) of members
of U , there exists a positive number ε = ε(n,u) such that whenever
η′ : Do(η) �→ U is a map obtained from η by first selecting an n-tuple
I = (I1, . . . , In) of pairwise disjoint subintervals of Do(η) with the property
that
∑n

j=1 meas(Ij) ≤ ε, and then substituting the constant value uj for
the value η(t) for every t ∈ Ij, j = 1, . . . , n, it follows that η′ ∈ U .

We will then assume:

(H17) The class U is an equal-time interval-variational neighborhood of η∗.

We define the Hamiltonian to be the function Hα : X × U ×X† × R ↪→ R

given by Hα(x, u, p, t) = p · f(x, u, t)−αf0(x, u, t), so Hα depends on the real
parameter α.

The Main Theorem

The following is our version of the maximum principle.

Theorem 7.1 Assume that the data D, ξ∗, η∗, Λf , Λg, Λh, Λϕ, C satisfy
Hypotheses (H1) to (H17). Let I be the set of those indices i ∈ {1, . . . ,m}
such that Ki is nonempty. Then there exist:

1. A covector π̄ ∈ X†, a nonnegative real number π0, and an m̃-tuple
λ = (λ1, . . . , λm̃) of real numbers

2. A measurable selection [a, b] , t �→ (L0(t), L(t)) ∈ X†×L (X) of the set-
valued map Λf

3. A family {νi}i∈I of nonnegative additive measures νi ∈ bvadd([a, b],R)
such that support(νi) ⊆ |Λi| for every i ∈ I

4. A family {γi}i∈I of pairs γi = (γ−i , γ
+
i ) such that γ−i : |Λgi | �→ X† and

γ+
i : |Λgi | �→ X† are measurable selections of Λgi , and γ−i (t) = γ+

i (t) for
all t in the complement of a finite or countable set

5. A member Lh = (Lh1 , . . . , Lhm̃) ∈ (X†)m̃ of Λh and a member Lϕ of Λϕ

having the property that, if we let π : [a, b] �→ X† be the unique solution of the
adjoint Cauchy problem

{
dπ(t)=(−π(t) · L(t)+π0L0(t))dt+

∑
i∈I dµi(t)

π(b) = π̄ −
∑m̃

j=1 λjL
h
j − π0L

ϕ

(where µi ∈ bvadd(Λgi) is the finitely additive X†-valued measure such that
dµi = γi · dνi, defined in Page 230), then the following conditions are true:
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I. the Hamiltonian maximization condition: the inequality

Hπ0(ξ∗(t̄), η∗(t̄), π(t̄)) ≥ Hπ0(ξ∗(t̄), u, π(t̄))

holds whenever u ∈ U , t̄ ∈ [a, b] are such that (ξ∗(t̄), t̄) is a point of
approximate continuity of both augmented vector fields (x, t) �→ f(x, u, t)
and (x, t) �→ f(x, η∗(t), t),

II. the transversality condition: −π̄ ∈ C†,
III. The nontriviality condition: ‖π̄‖ + π0 +

∑m̃
j=1 |λj | +

∑
i∈I ‖νi‖ > 0.

Remark 7.2 The adjoint equation satisfied by π can be written in integral
form, incorporating the terminal condition at b. The result is the formula

π(t)= π̄−
m̃∑
j=1

λjL
h
j−π0L

ϕ+
∫ b

t

(
π(s) ·L(s)−π0L0(s)

)
ds−
∑
i∈I

∫
[t,b]

γi(s)dνi(s),

from which it follows, in particular, that π(b) = π̄ −
∑m̃

j=1 λjL
h
j − π0L

ϕ . *+

Remark 7.3 The adjoint covector π can also be expressed using (2.3.3). This
yields π(t) = π(b) −

∫ b
t
ML(s, t)†

(
π0L0(s) ds +

∑
i∈I d(γ

i · νi)(s)
)

, where

π(b) = π̄ −
∑m̃

j=1 λjL
h
j −π0L

ϕ, and ML is the fundamental solution of the
equation Ṁ = L ·M . *+
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Annuelle de la Société Mathémathique de France (SMF), Publications de la
SMF, Paris, 2000, pp. 1–52.

22. Sussmann, H. J., “New theories of set-valued differentials and new versions
of the maximum principle of optimal control theory.” In Nonlinear Control in
the year 2000, A. Isidori, F. Lamnabhi-Lagarrigue and W. Respondek Eds.,
Springer-Verlag, London, 2000, pp. 487–526.

23. Sussmann, H. J., “Set-valued differentials and the hybrid maximum principle.”
In Proc. 39th IEEE Conf. Decision and Control, Sydney, Australia, Dec. 12–15,
2000, IEEE publications, New York, 2000.

24. Sussmann, H. J., “Needle variations and almost lower semicontinuous differential
inclusions.” Set-valued analysis, Vol. 10, Issue 2–3, June–September 2002,
pp. 233–285.

25. Sussmann, H. J., “Combining high-order necessary conditions for optimality
with nonsmoothness.” In Proceedings of the 43rd IEEE 2004 Conference on
Decision and Control (Paradise Island, the Bahamas, December 14-17, 2004),
IEEE Publications, New York, 2004.

26. Warga, J., “Fat homeomorphisms and unbounded derivate containers.” J. Math.
Anal. Appl. 81, 1981, pp. 545–560.



Non-Smooth Maximum Principle 287

27. Warga, J., “Controllability, extremality and abnormality in nonsmooth optimal
control.” J. Optim. Theory Applic. 41, 1983, pp. 239–260.

28. Warga, J., “Optimization and controllability without differentiability
assumptions.” SIAM J. Control and Optimization 21, 1983, pp. 837–855.

29. Warga, J., “Homeomorphisms and local C1 approximations.” Nonlinear Anal.
TMA 12, 1988, pp. 593–597.



Sliding Mode Control: Mathematical Tools,
Design and Applications

V.I. Utkin

Department of Electrical Engineering, 205 Dreese Laboratory, The Ohio State
University, 2015 Neil Avenue, Columbus, OH 43210, USA
utkin@ee.eng.ohio-state.edu

1 Introduction

The sliding mode control approach is recognized as one of the efficient tools
to design robust controllers for complex high-order nonlinear dynamic plant
operating under uncertainty conditions. The research in this area were ini-
tiated in the former Soviet Union about 40 years ago, and then the sliding
mode control methodology has been receiving much more attention from the
international control community within the last two decades.

The major advantage of sliding mode is low sensitivity to plant parameter
variations and disturbances which eliminates the necessity of exact modeling.
Sliding mode control enables the decoupling of the overall system motion into
independent partial components of lower dimension and, as a result, reduces
the complexity of feedback design. Sliding mode control implies that control
actions are discontinuous state functions which may easily be implemented by
conventional power converters with “on-off” as the only admissible operation
mode. Due to these properties the intensity of the research at many scientific
centers of industry and universities is maintained at high level, and sliding
mode control has been proved to be applicable to a wide range of problems
in robotics, electric drives and generators, process control, vehicle and motion
control.

2 Examples of Dynamic Systems with Sliding Modes

Sliding modes as a phenomenon may appear in a dynamic system governed
by ordinary differential equations with discontinuous right hand sides.

The term “sliding mode” first appeared in the context of relay systems.
It may happen that the control as a function of the system state switches at
high (theoretically infinite) frequency and this motion is referred to as “sliding
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Fig. 1.

mode.” This motion may be enforced in the simplest first order tracking relay
system with the state variable x(t)

ẋ = f(x) + u

with the bounded function

f(x) , |f(x)| < f0 = const

and the control as a relay function (Fig. 1) of the tracking error e = r(t) − x
and r(t) being the reference input,

u =

{
u0 if e > 0

−u0 if e < 0
or u = u0 sign(e), u0 = const.

The values of e and de
dt = ė = ṙ − f(x) − u0 sign(e) have different signs if

u0 > f0 + |ṙ|. It means that the magnitude of the tracking error decays at a
finite rate and the error is equal to zero identically after a finite time interval
T (Fig. 2). The argument of the control function, e is equal to zero which is the
discontinuity point. For any real-life implementation due to imperfections in
switching device the control switches at high frequency or takes intermediate
values for continuous approximation of the relay function. The motion for
t > T is called “sliding mode.”

The conventional example to demonstrate sliding modes in terms of the
state space method is a second-order time-invariant relay system with relay
control input

ẍ+ a2ẋ+ a1x = u,
u = −Msign(s), s = cx+ ẋ, a1, a2,M, c - const

(2.1)

The system behavior may be analyzed in the state plane (x, ẋ). The state
plane in Fig. 3 is shown for a1 = a2 = 0. The control u undergoes disconti-
nuities at the switching line s = 0 and the state trajectories are constituted
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Fig. 2.

Fig. 3.

by two families: the first family corresponds to s > 0 and u = −M (upper
semiplane), the second to s < 0 and u = M (lower semiplane). Within the
sector m− n on the switching line the state trajectories are oriented towards
the line. Having reached the sector at some time t1, the state can not leave the
switching line. This means that the state trajectory will belong to the switch-
ing line for t > t1. This motion with state trajectories in the switching line is
sliding mode as well. Since in the course of sliding mode, the state trajectory
coincides with the switching line s = 0, its equation may be interpreted as the
motion equation, i.e.

ẋ+ cx = 0. (2.2)

It is important that its solution

x(t) = x(t1)e−c(t−t1)

depends neither on the plant parameters nor the disturbance. This so-called
“invariance” property looks promising for designing feedback control for the
dynamic plants operating under uncertainty conditions.

We have just described an ideal mathematical model. In real implementa-
tions, the trajectories are confined to some vicinity of the switching line. The
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Fig. 4.

deviation from the ideal model may be caused by imperfections of switch-
ing devices such as small delays, dead zones, hysteresis which may lead to
high frequency oscillations. The same phenomenon may appear due to small
time constants of sensors and actuators having been neglected in the ideal
model. This phenomenon referred to as “chattering” was a serious obstacle
for utilization of sliding modes in control systems and special attention will be
paid to chattering suppression methods in Chap. 8. It is worth noting that the
state trajectories are also confined to some vicinity of the switching line for
continuous approximation of a discontinuous relay function (Fig. 4) as well.

In a δ-vicinity of the line s = 0, control is the linear state function with
a high gain k and the eigenvalues of the linear system are close to −k and
−c. This means that the motion in the vicinity consists of the fast component
decaying rapidly and the slow component coinciding with solution to the ideal
sliding mode equation.

Sliding mode became the principle operation mode in so-called variable
structures systems. A variable structure system consists of a set of continuous
subsystems with a proper switching logic and, as a result, control actions are
discontinuous functions of the system state, disturbances (if they are accessible
for measurement), and reference inputs. The term “Variable Structure Sys-
tem” (VSS) first appeared in the late fifties. Naturally at the very beginning
several specific control tasks for second-order linear and non-linear systems
were tackled and advantages of the new approach were demonstrated. Then
the main directions of further research were formulated. In the course of fur-
ther development the first expectations of such systems were modified, their
real potential has been revealed. Some research trends proved to be unpromis-
ing while the others, being enriched by new achievements of the control theory
and technology, have become milestones in VSS theory.



Sliding Mode Control: Mathematical Tools, Design and Applications 293

Fig. 5.

Three papers were published by S. Emel’yanov in late fifties on feedback
design for the second-order linear systems ([1] was the first of them). The
novelty of the approach was that the feedback gains could take several constant
values depending on the system state. Although the term “Variable Structure
System” was not introduced in the papers, each of the systems consisted of a
set linear structures and was supplied with a switching logic and actually was
VSS. The author observed that due to altering the structure in the course of
control process the properties could be attained which were not inherent in
any of the structures. For example the system consisting of two conservative
subsystems (Fig. 5)

ẍ = −kx,

k =

{
k1 if xẋ > 0
k2 if xẋ < 0

, k1 > k2 > 0.

becomes asymptotically stable due to varying its structure on coordinate axes
(Fig. 6).

Another way for stabilization is to find a trajectory in a state plane of one
of the structures with converging motion. Then the switching logic should be
found such that the state reaches this trajectory for any initial conditions and
moves along it. If in the system ẍ = a2ẋ−kx, a2 > 0, there are two structures
with k2 < 0 and k1 > 0 (Fig. 7a, b), then such trajectory exists in the first
structure (straight line s = c∗x1+x2 = 0 c∗ = a2/2+

√
a2
2/4 − k2 in Fig. 7a).

As it can be seen in Fig. 7c the variable structure system with switching logic

k =

{
k1 if xs > 0
k2 if xs < 0

(2.3)

is asymptotically stable with monotonous processes. It is of interest that a
similar approach was offered by A. Letov [2], but his approach implied cal-
culation of the switching time as a function of initial conditions. As a result
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Fig. 6.

Fig. 7.

any calculation error led to instability, therefore the system was called “con-
ditionally stable.”

Starting from early sixties term “Variable Structure Control” appeared in
titles of the papers by S. Emel’yanov and his colleagues. Interesting attempts
were made to stabilize second-order nonlinear plants [3]. The plants under
study were unstable with several equilibrium points and could not be stabi-
lized by any linear control. Such situation was common for many processes of
chemical technology. The universal design recipe could hardly be developed,
so for any specific case the authors tried to “cut and glue” different pieces of
available structures such that the system turned to be globally asymptotically
stable. In Fig. 8a–c the state planes (x1 = x, x2 = ẋ) of three structures with
linear feedback are shown. Equilibrium points of each of them are unstable.
Partitioning of the state plane into six parts led to an asymptotically stable
variable structure system (Fig. 9).

Note that the state trajectories are oriented towards switching line s =
x2 + cx1 = 0 in the above example (Fig. 9). It means that that having reached
this line the state trajectory can not leave it and for further motion the state
vector will be on this line. This motion is called sliding mode. Sliding mode will
play the dominant role in the development of VSS theory. Sliding mode may
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Fig. 8.

Fig. 9.

Fig. 10.

appear in our second example on the switching line, if 0 < c < c∗ (Fig. 10).
Since the state trajectory coincides with the switching line in sliding mode,
similarly to the relay system, its equation may be interpreted as the sliding
mode equation

ẋ+ cx = 0. (2.4)
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Equation (2.4) is the ideal model of sliding mode. In reality due to small
imperfections in a switching device (small delay, hysteresis, time constant)
the control switches at a finite frequency and the state is not confined to the
switching line but oscillates within its small vicinity.

Three important facts may be underlined now:

1. The order of the motion equation is reduced.
2. Although the original system is governed by the non-linear second order

equation, the motion equation of sliding mode is linear and homogenous.
3. Sliding mode does not depend on the plant dynamics and is determined

by parameter c selected by a designer.

The above example let us outline various design principles offered at the
initial stage of VSS theory development. The first most obvious principle im-
plies taking separate pieces of trajectories of the existing structures and com-
bining them together to get a good (in some sense) trajectory of the motion
of a feedback system. The second principle consists in seeking individual tra-
jectories in one of the structures with the desired dynamic properties and
designing the switching logic such that starting from some instant the state
moves along one of these trajectories. And finally, the design principle based
on enforcing sliding modes in the surface where the system structure is varied
or control undergoes discontinuities.

Unfortunately, the hopes associated with the first two approaches have
not been justified; their applications have been limited to the study of several
specific systems of low order. Only control design principles based on enforcing
sliding modes proved to be promising due to the properties observed in our
second-order examples. As a result sliding modes have played, and are still
playing, an exceptional role in the development of VSS theory. Therefore
the term “Sliding Mode Control” is often used in literature on VSS as more
adequate to the nature of feedback design approach.

3 VSS in Canonical Space

The examples of relay and variable structure systems demonstrated order
reduction and invariance with respect to plant uncertainties of the systems
with sliding modes. Utilization of these properties was the key idea of variable
structure theory at the first stage when only single-input-single-output sys-
tems with motion equations in canonical space were studied [4]. A control
variable x = x1 and its time-derivatives x(i−1) = xi, i = 1, . . . , n are compo-
nents of a state vector in the canonical space

ẋi = xi+1, i = 1, . . . , n− 1

ẋn = −
n∑
i=1

ai(t)xi + f(t) + b(t)u, (3.1)
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where ai(t) and bi(t) are unknown parameters and f(t) is an unknown distur-
bance.

Control undergoes discontinuities on some plane s(x) = 0 in the state
space

u =

{
u+(x, t) if s(x) > 0
u−(x, t) if s(x) < 0,

where u+(x, t) and u−(x, t) are continuous state functions, u+(x, t) �= u−(x, t),

s(x) =
n∑
i=1

cixi, cn = 1 and c1 . . . cn−1 are constant coefficients.

The discontinuous control was selected such that the state trajectories are
oriented towards the switching plane s = 0 and as a result, sliding mode
arises in this plane (Fig. 11).

After the sliding mode starts, the motion trajectories of system (3.1) are
in the switching surface

xn = −
n−1∑
i=1

cixi.

Substitution into the (n− 1) -st equation yields the sliding mode equations

ẋi = xi+1, i = 1, ..., n− 2

ẋn−1 = −
n−1∑
i=1

cixi or x(n−1) + cn−1x
(n−2) + · · · + c1 = 0.

The motion equation is of reduced order and depends neither the plant
parameters nor the disturbance. The desired dynamics of the sliding mode
may be assigned by a proper choice of the parameters of switching plane ci.

Fig. 11.
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3.1 Control of Free Motion

The sliding mode control methodology, demonstrated for the second-order
systems, can be easily generalized for linear SISO dynamic systems of an
arbitrary order under strong assumption that their behavior is represented in
canonical space–space of output and its time derivatives:

ẋi = xi+1 i = 1, ..., n− 1

ẋn = −
n∑
i=1

aixi + bu, ai, b are plant parameters, u is control input.

(3.2)
Similar to the second-order systems, control was designed as a piece-wise linear
function of system output

u = −kx1,

k =

{
k1 if x1s > 0
k2 if x1s < 0

(3.3)

with switching plane

s =
n∑
i=1

cixi = 0, ci = const, cn = 1.

The design method of VSS (3.2), (3.3) was developed after V. Taran joined
the research team [5].

The methodology, developed for second-order systems, was preserved:
– Sliding mode should exist at any point of switching plane, then it is called
sliding plane.
– Sliding mode should be stable.
– The state should reach the plane for any initial conditions.

Unfortunately the first and second requirements may be in conflict.
On one hand, sliding mode exists if the state trajectories in the vicinity of the
switching plane are directed to the plane, or [6]

lim ṡ < 0, s → +0 lim ṡ > 0, s → −0 (3.4)

These conditions for our system are of the form [5]

ci−1−ai

ci
= cn−1 − an, i = 2, ..., n− 1.

bk1 > −a1 − c1(cn−1 − an)
bk2 < −a1 − c1(cn−1 − an)

(3.5)

On the other hand coefficients ci in sliding mode equation

x
(n−1)
1 + cn−1x

(n−2)
1 + · · · + c1x1 = 0 (3.6)
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should satisfy Hurwitz conditions.
The result of [5]: a sliding plane with stable motion exists if and only if

there exists k0 , k2 < k0 < k1 such that the linear system with control
u = k0x1 has (n− 1) eigenvalues with negative real parts.

The result of [7]: for the state to reach a switching plane from any initial
position it is necessary and sufficient that the linear system with u = −k1x1

does not have real positive eigenvalues.
The above results mean that for asymptotical stability of VSS system each

of the structures may be unstable. For example the third-order VSS system,

...
x = u, u = −kx, k =

{
1 if xs > 0
−1 if xs < 0

s = c1x+ c2ẋ+ ẍ

consisting of two unstable linear structures is asymptotically stable for c1 = c22
(sliding plane existence condition), c1 > 0, c2 > 0 (Hurwitz condition for
sliding mode). The reaching condition holds as well since the linear system
with k = 1 does not have real positive eigenvalues.

Again sliding mode equation (3.6) is of a reduced order, linear, homoge-
nous, does not depend on plant dynamics and is determined by coefficients
in switching plane equation. This property looks promising when controlling
plants with unknown time-varying parameters. Unfortunately control (3.3) is
not applicable for this purpose because the conditions for sliding plane to exist
(3.5) need knowledge on the parameters ai.

For the modified version of VSS control

u = −
n−1∑
i=1

kixi, (3.7)

ki =

{
k′i if xis > 0
k′′i if xis < 0

s = 0 is a sliding plane for any value of ci if

bk′i > max
ai,an

(ci−1 − ai − cn−1ci + anci),

bk′′i > min
ai,an

(ci−1 − ai − cn−1ci + anci)
c0 = 0, i = 1, ..., n− 1. (3.8)

The design procedure of VSS (3.7) consisting of 2n−1 linear structures im-
plies selection of switching plane or sliding mode equation (3.6) with desired
dynamics and then coefficients k′i and k′′i (3.8) such that s = 0 is a sliding
plane (assuming that the ranges of parameter variations are known). Reach-
ing this plane may be provided by increasing coefficient k′1 [7]. Sliding mode
with the desired properties starts in the VSS after a finite time interval. The
time, preceding the sliding mode, may be decreased by increasing the gains
in control (3.7).
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Development of special methods is needed if the last equation in (3.1)
depends on time derivatives of control, since trajectories in the canonical
space become discontinuous. Two approaches were offered in the framework
of the VSS theory: first, designing a switching surface with a part of state
variables, and, second, using a pre-filter in controller [8]. For the both cases
the conventional sliding mode with the desired properties can be enforced.
Traces of the approaches may be found in modern publications.

3.2 Disturbance Rejection

The property of insensitivity of sliding modes to plant dynamics may be uti-
lized for control of plant subjected to unknown external disturbances. It is
obvious that control (3.7) does not fit for this purpose. Indeed at the desired
state (all xi are equal to zero) the control is equal to zero and unable to
keep the plant at the desired equilibrium point at presence of disturbances.
We demonstrate how the disturbance rejection problem can be solved using
dynamic actuators with variable structure. Let plant and actuator be integra-
tors in the second-order system (Fig. 12). An external disturbance f(t) is not
accessible for measurement.

The control is designed as a piece-wise linear function not only of the
output x = x1 to be reduced to zero but also of actuator output y:

ẋ1 = y + f(t)
ẏ = u,
u = −kx1 − kyy.

or
ẋ1 = x2

ẋ2 = −kx1 − kyx2 − kyf + ḟ .

The state semi-planes x1 > 0 and x1 < 0 for the variable structure system
with

k =

{
k0 if x1s > 0
−k0 if x1s < 0

, ky =

{
ky0 if ys > 0
−ky0 if ys < 0

,

s = cx1 + x2, k0, kyo, c are constant

Fig. 12.
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Fig. 13.

Fig. 14.

are shown in Fig. 13. For domain x2 < |f(t)| the singular points for each semi-
plane are located in the opposite one and as a result state trajectories are
oriented toward switching line s = 0. It means that sliding mode occurs in
this line with motion equation ẋ + cx = 0 and solution tending to zero. The
effect of disturbance rejection may be explained easily in structural language.
Since the sign of actuator feedback is varied, the actuator output may be ei-
ther diverging or converging exponential function (Fig. 14). In sliding mode
due to high frequency switching, an average value of the output is equal to
the disturbance with an opposite sign. It is clear that the disturbance, which
can be rejected, should be between the diverging and converging exponential
functions at any time. Similar approach stands behind the disturbance rejec-
tion method in VSS of an arbitrary order.

3.3 Comments for VSS in Canonical Space

In the sixties VSS studies were mainly focused on linear (time-invariant and
time-varying) systems of an arbitrary order with scalar control and scalar
variable to be controlled. These first studies utilized the space of an error
coordinate and its time derivatives, or canonical space, while the control
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was designed as a sum of state components and accessible for measurement
disturbances with piece-wise constant gains. When the plant was subjected to
unknown external disturbances, local feedback of the actuators was designed
in the similar way. As a rule, the discontinuity surface was a plane in the
canonical space or in an extended space, including the states of the filters
for deriving approximate values of derivatives. In short, most works of this
period on VSS period treated piece-wise linear systems in the canonical space
with scalar control and scalar controlled coordinate. The invariance property
of sliding modes in the canonical space to plant dynamics was the key idea of
all design methods.

The first attempts to apply the results of VSS theory demonstrated that
the invariance property of sliding modes in canonical spaces had not been
beneficial only. In a sense it decelerated development of the theory. The il-
lusion that any control problems may be easily solved, should sliding mode
be enforced, led to some exaggeration of sliding mode potential. The fact is,
that the space of derivatives is a mathematical abstraction, and in practice
any real differentiators have denominators in transfer functions; so the study
of the system behavior in the canonical space can prove to be unacceptable
idealization. Unfortunately the attempts to use filters with variable structure
for multiple differentiation have not led to any significant success.

For the just discussed reason, research of the fairly narrow class of VSS,
mainly carried out at Institute of Control Sciences, Moscow and by a group
of mathematicians headed by E. Barbashin at Institute of Mathematics and
Mechanics, Sverdlovsk, did not result in wide applications and did not pro-
duced significant echo in the scientific press. The results of this first stage of
VSS development, i.e. analysis and design of VSS in the canonical space, were
summarized in [5, 6]. In view of the limited field of practical applications in
the frame of this approach (VSS with differentiating circuits), another extreme
appeared, reflecting certain pessimism about implementation of any VSS with
sliding modes.

The second stage of development of VSS theory began roughly in the late
sixties and early seventies, when design procedures in the canonical space
ceased to be looked as obligatory and studies were focused on systems of
general form with arbitrary state components and with vector control and
output values. The first attempts to revise VSS methodology in this new
environment demonstrated that the pessimism about sliding mode control
was unjustified and refusal to utilize the potential of sliding mode was an
unreasonable extravagance [10, 11].

3.4 Preliminary Mathematical Remark

The basic design idea of the first stage of VSS theory was to enforce sliding
mode in a plane of the canonical space. An equation of a sliding plane depend-
ing on a system output and its derivatives was interpreted as a sliding mode
equation. Formally this interpretation is not legitimate. “To solve differential
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equation” means to find a time function such that substitution of the solution
into the equation makes its right- and left-hand sides equal identically.

In our second-order example with control (2.3) and 0 < c < c∗, sliding
mode existed on the switching line s = 0 and (2.4) was taken as the sliding
mode equation. Its solution Ae−ct being substituted into function s makes
it equal to zero. Control (2.3) is not defined for s = 0 and respectively the
right-hand side of the system equation (2.1) is not defined as well. Therefore
we cannot answer the question whether the solution to (2.2) is the solution
to the original system.

One of the founders of control theory in the USSR academician A.A.
Andronov indicated that ambiguity in the system behavior is eliminated if
minor non-idealities such as time delay, hysteresis, small time constants are
recognized in the system model which results in so-called real sliding mode
in a small neighborhood of the discontinuity surface. Ideal sliding motion is
regarded as a result of limiting procedure with all non-idealities tending to
zero [9]. The examples of such limiting procedure were also given. The relay
second-order system was considered with motion equations in the canonical
space and a straight line (2.2) as a set of discontinuity points for control. The
behavior of the system was studied under the assumption that a time de-
lay was inherent in the switching device and, consequently, the discontinuity
points were isolated in time. It was shown that the solution of the second-
order equation in sliding mode always tended to the solution of the first order
equation (2.2) depending on c only irrespective of the plant parameters and
disturbances, if the delay tended to zero. The validity of (3.6) as the model
of sliding mode in the canonical space of an arbitrary-order system may be
substantiated in the similar way.

4 Sliding Modes in Arbitrary State Spaces: Problem
Statements

Now we demonstrate sliding modes in non-linear affine systems of general
form

ẋ = f(x, t) +B(x, t)u (4.1)

ui =

{
u+
i (x, t) if si(x) > 0
u−i (x, t) if si(x) < 0

(4.2)

where x ∈ Rn is a state vector, u ∈ Rm is a control vector, u+
i (x, t), u−i (x, t)

and si(x) are continuous functions of their arguments, u+
i (x, t) u−i (x, t). The

control is designed as a discontinuous function of the state such that each
component undergoes discontinuities in some surface in the system state space.

Similar to the above example, state velocity vectors may be directed to-
wards one of the surfaces and sliding mode arises along it (arcs ab and cb in
Fig. 15). It may arise also along the intersection of two of surfaces (arc bd).
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Fig. 15.

Fig. 16.

Fig. 17.

Figure 16 illustrates the sliding mode in the intersection even if it does
not exist at each of the surfaces taken separately.

For the general case (4.1) sliding mode may exist in the intersection of all
discontinuity surfaces si = 0, or in the manifold

s(x) = 0, sT (x) = [s1(x), ..., sm(x)] (4.3)

of dimension n −m. Let us discuss the benefits of sliding modes, if it would
be enforced in the control system. First, in sliding mode the input s of the
element implementing discontinuous control is close to zero, while its output
(exactly speaking its average value uav) takes finite values (Fig. 17).
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Hence, the element implements high (theoretically infinite) gain, that is
the conventional tool to reject disturbance and other uncertainties in the
system behavior. Unlike to systems with continuous controls, this property
called invariance is attained using finite control actions. Second, since sliding
mode trajectories belong to a manifold of a dimension lower than that of the
original system, the order of the system is reduced as well. This enables a
designer to simplify and decouple the design procedure. Both order reduction
and invariance are transparent for the above two second-order systems.

In order to justify the above arguments in favor of using sliding modes in
control systems, we, first, need mathematical methods for deriving equations
of sliding modes in the intersection of discontinuity surfaces and, second, the
conditions for the sliding mode to exist should be obtained. Only having these
mathematical tools the design methods of sliding mode control for wide range
of control problems may be developed.

5 Sliding Mode Equations: Equivalent Control Method

5.1 Problem Statement

The first mathematical problem concerns differential equations of sliding
mode. For our second-order examples the equation was obtained using heuris-
tic approach: the equation of the switching line ẋ+ cx = 0 was interpreted as
the motion equation. But even for an arbitrary time invariant second-order
relay system

ẋ1 = a11x1 + a12x2 + b1u
ẋ2 = a21x1 + a22x2 + b2u,
u = −Msign(s), s = cx1 + x2; M,aij , bi, c are constant

(5.1)

the problem of mathematical description of sliding mode is quite a challenge
and requires the design of special techniques. It arises due to discontinuities
in control, since the relevant motion equations with discontinuous right-hand
sides do not satisfy the conventional theorems on existence-uniqueness of so-
lutions (a Lipshitz constant does not exists for discontinuous functions).

Discontinuous systems are not a subject of the conventional theory of dif-
ferential equations dealing with continuous state functions.1 The conventional
theory does not answer even the fundamental questions, whether the solution
exists and whether the solution is unique. Formally, even for our simple exam-
ples of second order systems in canonical form (2.1) our method of deriving the
1 Strictly speaking, the conventional method require the right-hand sides of a dif-

ferential equation to consist of functions f(x) satisfying the Lipschitz condition
‖f(x1) − f(x2)‖ < L ‖x1 − x2‖ with some positive number L, referred to as the
Lipschitz constant, for any x1 and x2. The condition implies that the function
does not grow faster than some linear one which is not the case for discontinuous
functions if x1 and x2 are close to a discontinuity point.
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sliding mode equations was not legitimate. The solution x(t) = x(t1)e−c(t−t1)

should satisfy the original differential equation (2.1) rather than heuristically
written equation (2.2). Direct substitution of x(t) into (2.1) leads to s(t) = 0
and

(1 − a2 + a1)x(t1)e−c(t−t1)
?= −M sign (0) + f(t).

Since the function sign (·) is not defined at zero point, we can not check
whether the solution x(t) is correct.

Uncertainty in behavior of discontinuous systems on the switching surfaces
gives freedom on choosing an adequate mathematical model and gave birth
to a number of lively discussions. For example, description of sliding mode in
system (5.1) by a linear first-order differential equation, a common practice
today, seemed unusual at first glance; this model was offered by Kornilov [12]
and Popovski [13] and the approach was generalized for linear systems of an
arbitrary order by Yu. Dolgolenko [14] in fifties.

The approach by Filippov [15], now recognized as classical, was not ac-
cepted by all experts in the area: at the first IFAC congress in 1960 Yu.
Neimark (author of one more mathematical model of sliding mode based on
convolution equation) offered an example of a system with two relay elements
with a solution different from that of Filippov’s method [16]. The discussion
at the congress proved to be fruitful from the point of stating a new prob-
lem in the theory of sliding modes. The discussion led to the conclusion that
two dynamic systems with identical equations outside a discontinuity surface
may have different sliding mode equations. Most probably the problem of
unambiguous description of sliding modes in discontinuous systems was first
brought to light.

5.2 Regularization

In situations where conventional methods are not applicable, the common ap-
proach is to employ different methods of regularization or replacing the origi-
nal problem by a closely similar one for which familiar methods are applicable.
For systems with discontinuous controls, regularization approach has a simple
physical interpretation. Uncertainty of system behavior at the discontinuity
surfaces appears because the motion equations (4.1) and (4.2) are an ideal
system model. Non-ideal factors such as small imperfections of switching de-
vices (delay, hysteresis, small time constants), unmodeled dynamics of sensors
and actuators etc. are neglected in the ideal model. Incorporating them into
the system model makes discontinuity point isolated in time and eliminates
ambiguity in the system behavior. Next, small parameters characterizing all
these factors are assumed to tend to zero. If the limit of the solutions exists
with the small parameters tending to zero, then they are taken as the solutions
to the equations describing the ideal sliding mode. Such a limit procedure is
the regularization method for deriving sliding mode equations in the dynamic
systems with discontinuous control.
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As was discussed in Chap. 3, such regularization with time delay was em-
ployed by Andronov for substantiation of sliding mode equation (2.2). Similar
approach for nonlinear relay system with imperfections of time delay and hys-
teresis type was developed by Andre and Seibert [17]; it is interesting that
their sliding mode equations coincided with those of Filippov’s method [15]
and the result may serve as substantiation of Filippov’s method. At the same
time the question may be asked, whether the method is applicable for the
systems with different types of non-idealities. Generally speaking the answer
is negative: a continuous approximation of a discontinuous function leads to
motion equations different from those of Filippov’s method [10]. So we should
admit that for systems with a right-hand side as a nonlinear function of dis-
continuous control sliding mode equations cannot be derived unambiguously
even for the case of scalar control. The “point-to-point” technique used in the
cited papers here for scalar case is not applicable for the system with vector
control and sliding modes in the intersection of a set of discontinuity surfaces
(4.3).

To illustrate the regularization method, we consider a linear time-invariant
system with one control input, being a scalar relay function of a linear com-
bination of the state components:

ẋ = Ax+ bu, x ∈ 1n, (5.2)

A and b are n × n and n × 1 constant matrices, u = M sign (s), M is a
scalar positive constant value, s = cx, c = (c1, c2, ..., cn) = const.

As in our examples of the systems in canonical space, the state trajectories
may be oriented in a direction towards the switching plane s(x) = 0 in the
state space xT = (x1, x2, . . . , xn). Hence the sliding mode occurs in the plane
(Fig. 18) and the motion equation should be found. A similar problem was left
unanswered for system 5.1.

Following the regularization procedure, small imperfections of a switching
device should be taken into account. If a relay device is implemented with a
hysteresis loop with the width 2∆ (Fig. 19), then the state trajectories oscillate
in a ∆-vicinity of the switching plane (Fig. 20). The value of ∆ is assumed

Fig. 18.
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Fig. 19.

Fig. 20.

to be small such that the state trajectories may be approximated by straight
lines with constant state velocity vectors Ax+bM and Ax−bM in the vicinity
of some point x on the plane s(x) = 0 (Fig. 20). Calculate times ∆t1 and ∆t2
intervals and increments ∆x1 and ∆x2 in the state vector for transitions from
point 1 to point 2 and from point 2 to point 3, respectively:

∆t1 =
2∆
ṡ+

=
−2∆

cAx+ cbM
,

∆x 1 = (Ax+ bM)∆t1 = (Ax+ bM)
−2∆

cAx+ cbM
.

Similarly for the second interval

∆t2 =
2∆
ṡ−

=
2∆

cAx− cbM
,

∆x 2 = (Ax− bM)∆t2 = (Ax− bM)
2∆

cAx− cbM
.

Note that by our assumption, sliding mode exists in the ideal system there-
fore the values s and ṡ have opposite signs, i.e. ṡ+ = cAx + cbM < 0 and
ṡ− = cAx− cbM > 0. This implies that both time intervals ∆t1 and ∆t2 are
positive. Note that the inequalities may hold if cb < 0.
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The average state velocity within the time interval ∆t = ∆t1 +∆t2 may
be found as

ẋav =
∆x1 +∆x2

∆t
= Ax− (cb)−1bcAx.

The next step of the regularization procedure implies that the width of
the hysteresis loop ∆ should tend to zero. However we do not need to
calculate lim

∆→0
(ẋav): the limit procedure was performed implicitly when we as-

sumed that state trajectories are straight lines and the state velocities are
constant. This is the reason why ẋav does not depend on ∆. As it follows
from the more accurate model the sliding mode in the plane s(x) = 0 is
governed by

ẋ = (In − (cb)−1bc)Ax (5.3)

with initial state s[x(0)] = 0 and In being an identity matrix. It follows from
(5.2) and (5.3) that

ṡ = c(In − (cb)−1bc)Ax ≡ 0

hence the state trajectories of the sliding mode are oriented along the switch-
ing plane. The condition s[x(0)] = 0 enables one to reduce the system order
by one. To obtain the sliding mode equation of (n − 1)th order, one of the
components of the state vector, let it be xn, may be found as a function of
the other n−1 components and substituted into the system (5.3). Finally the
last equation for xn can be disregarded.

Applying the above procedure to the second order system (5.1) results in a
first order sliding mode equation along the switching lines = c1x1 +c2x2 = 0 :

ẋ1 = [a11 − a12c
−1
2 c1 − (cb)−1b1(ca1 − ca2c−1

2 c1)]x1 + [d1 − b1(cb)−1(cd)]f,

where c = (c1, c2), bT = (b1, b2), (a1)T = (a11, a21), (a2)T = (a12, a22), dT =
(d1, d2), and cb and c2 are assumed to be different from zero. As we can see for
this general case of a linear second order system, the sliding mode equation
is of reduced order and depends on the plant parameters, disturbances and
coefficients of switching line equations, but does not depend on control.

For the systems in canonical form (2.1) and (3.1), the above regularization
method may serve as validation that the reduced order sliding mode equations
(2.2) and (3.6) depend neither on plant parameters nor disturbances.

Exactly the same equations for our examples result from regularization
based on an imperfection of “delay” type [17]. It is interesting to note that
nonlinear systems of an arbitrary order with one discontinuity surface were
studied in this paper and the motion equations proved to be the same for
both types of imperfections – hysteresis and delay. This result may be easily
interpreted in terms of relative time intervals for control input to take each
of two extreme values. For a system of an arbitrary order with scalar control

ẋ = f(x, u), x, f ∈ 1n, u(x) ∈ 1,
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u(x) =

{
u+(x) if s(x) > 0
u−(x) if s(x) > 0

,

the components of vector f , scalar functions u+(x), u−(x) and s(x) are contin-
uous and smooth, and u+(x) �= u−(x). We assume that sliding mode occurs
on the surface s(x) = 0 and try to derive the motion equations using the
regularization method. Again, let the discontinuous control be implemented
with some imperfections of unspecified nature, control is known to take one
of the two extreme values, u+(x) or u−(x), and the discontinuity points are
isolated in time. As a result, the solution exists in the conventional sense and
it does not matter whether we deal with small hysteresis, time delay or time
constants neglected in the ideal model.

Like for the system (5.2) with hysteresis imperfection, the state velocity
vectors f+ = f(x, u+) and f− = f(x, u−) are assumed to be constant for
some point x on the surface s(x) = 0 within a short time interval[t, t + ∆t].
Let the time interval ∆t consists of two sets of intervals ∆t1 and ∆t2 such
that∆t = ∆t1 + ∆t2, u = u+ for the time from the set ∆t1 and u = u− for
the time from the set ∆t2. Then the increment of the state vector after time
interval ∆t is found as

∆x = f+∆t1 + f−∆t2

and the average state velocity as

ẋav =
∆x

∆t
= µf+ + (1 − µ)f−,

where µ = ∆t1
∆t is relative time for control to take value u+ and (1 − µ) – to

take value u−, 0 ≤ µ ≤ 1. To get the vector ẋ the time ∆t should be tended
to zero. However we do not need to perform this limit procedure, it is hidden
in our assumption that the state velocity vectors are constant within time
interval ∆t, therefore the equation

ẋ = µf+ + (1 − µ)f− (5.4)

represents the motion during sliding mode. Since the state trajectories during
sliding mode are in the surface s(x) = 0, the parameter µ should be selected
such that the state velocity vector of the system (5.4) is in the tangential
plane to this surface, or

ṡ = grad [s(x)] · ẋ = grad [s(x)][µf+ + (1 − µ)f−] = 0, with

grad [s(x)] = [ ∂s
∂x1 ...

∂s
∂xn

].
(5.5)

The solution to (5.5) is given by
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µ =
grad (s) · f−

grad (s) · (f− − f+)
(5.6)

Substitution of (5.6) into (5.4) results in the sliding mode equation

ẋ = fsm, fsm =
(grad s) · f−

(grad s) · (f− − f+)
f+ − (grad s) · f+

(grad s) · (f− − f+)
f−,

(5.7)

representing the motion in sliding mode with initial condition s[x(0)] = 0.
Note that sliding mode occurs in the surface s(x) = 0, therefore the functions
s and ṡ have different signs in the vicinity of the surface (Fig. 18) and ṡ+ =
(grads) · f+ < 0, ṡ− = (grad s) · f− > 0. As follows from (5.6), the condition
0 ≤ µ ≤ 1 for parameter µ holds. It easy to check the condition ṡ = (grad s) ·
fsm = 0 for the trajectories of system (5.7) and to show that they are confined
to the switching surface s(x) = 0. As it could be expected, direct substitution
of grad s = c, f+ = Ax + bu+ and f− = Ax + bu− into (5.7) results in
the sliding mode equation (5.2) derived for the linear system (5.2) with the
discontinuity plane s(x) = cx = 0 via hysteresis regularization.

5.3 Boundary Layer Regularization

The universal approach to regularization consists in introducing a boundary
layer ‖s‖ < ∆,∆ − const around manifold s = 0, where an ideal discontinu-
ous control is replaced by a real one such that the state trajectories are not
confined to this manifold but run arbitrarily inside the layer (Fig. 21). The
nonidealities, resulting in motion in the boundary layer, are not specified. The
only assumption for this motion is that the solution exists in the conventional
sense. If, with the width of the boundary layer ∆ tending to zero, the limit of
the solution exists, it is taken as a solution to the system with ideal sliding
mode. Otherwise we have to recognize that the equations beyond discontinu-
ity surfaces do not derive unambiguously equations in their intersection, or
equations of the sliding mode.

Fig. 21.
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The boundary layer regularization enables substantiation of so-called
Equivalent Control Method intended for deriving sliding mode equations in
manifold s = 0 in affine systems

ẋ = f(x, t) +B(x, t)u (5.8)

with B(x, t) being n×m full rank matrix and det(GB) �= 0, G(x) = {∂s/∂x}.
Following this method, the sliding mode equation with a unique solution may
be derived.

First, the equivalent control should be found as the solution to the equation
ṡ = 0 on the system trajectories (G and (GB)−1 are assumed to exist):

ṡ = Gf +GBu = 0, ueq = − (GB)−1
Gf.

Then the solution should be substituted into (5.8) for the control

ẋ = f −B (GB)−1
Gf (5.9)

Equation (5.9) is the sliding mode equation with initial conditions
s(x(0), 0) = 0.

Since s(x) = 0 in sliding mode, m components of the state vector may
be found as a function of the rest (n −m) ones: x2 = s0(x1), x2, s0 ∈ 1m;
x1 ∈ 1 n-m and, correspondingly, the order of sliding mode equation may be
reduced by m:

ẋ1 = f1[x1, t, s0(x1)], f1 ∈ 1n−m. (5.10)

The idea of the equivalent control method may be easily explained with
the help of geometric consideration. Sliding mode trajectories lie in the man-
ifold s = 0 and the equivalent control ueq being a solution to the equation
ṡ = 0 implies replacing discontinuous control by such continuous one that the
state velocity vector lies in the tangential manifold and as a result the state
trajectories are in this manifold. It will be important for control design that
sliding mode equation (5.10)

– Is of reduced order
– Does not depend on control
– Depends on the equation of switching surfaces

It is interesting that the above regularization method of deriving the sliding
mode equation may be considered as physical interpretation of the famous
Filippov’s method [18]. The method is intended for solution continuation at a
discontinuity surface for differential equations with discontinuous right-hand
sides. According to the method the ends of all state velocity vectors in the
vicinity of a point in a discontinuity surface should be complemented by a
minimal convex set and state velocity vector for the sliding motion should
belong to this set. For systems with scalar control (Fig. 22)

ẋ = f0(x) + b(x)u, x, f, b ∈ 1n, u(x) ∈ 1,
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Fig. 22.

u(x) =

{
u+(x) if s(x) > 0
u−(x) if s(x) > 0

,

we have two points, ends of vectors f+ = fo + bu+, f− = f0 + bu−, and the
minimal convex set is the straight line connecting the end. The intersection
of the line with the tangential plane defines the state velocity vector fsm in
the sliding mode, or the right-hand side of the sliding mode equation.

ẋ = fsm, fsm =
(grad s) · f−

(grad s) · (f− − f+)
f+ − (grad s) · f+

(grad s) · (f− − f+)
f−,

It is easy to check that the result of Filippov’s method coincides with the
equation derived by the equivalent control method.

6 Sliding Mode Existence Conditions

The second mathematical problem in the analysis of sliding mode as a phe-
nomenon is deriving the conditions for sliding mode to exist. As to the second-
order systems with scalar control studied in Sect. 2 the conditions may be
obtained from geometrical considerations: the deviation from the switching
surface s and its time derivative should have opposite signs in the vicinity of
a discontinuity surface s = 0, or

lim
s→+0

ṡ < 0, and lim
s→−0

ṡ > 0. (6.1)

Inequalities (6.1) are referred to as reaching conditions – the condition for
the state to reach the surface s = 0 after a finite time for arbitrary initial
conditions.

For the second-order relay system (2.1) the domain of sliding mode on
s = 0 or for ẋ = −cx (sector mn on the switching line, Fig. 3 may be found
analytically from these conditions:



314 V.I. Utkin

ṡ = (−c2 + a2c− a1)x−Msign(s)

and
|x| < M

|−c2 + a2c− a1|
.

As it was demonstrated in the example in Fig. 16, for existence of sliding
mode in an intersection of a set of discontinuity surfaces si(x) = 0, (i =
1, ...,m) it is not necessary to fulfill inequalities (6.1) for each of them. The
trajectories should converge to the manifold sT = (s1, ... , sm) = 0 and reach
it after a finite time interval similarly to the systems with scalar control. The
term “converge” means that we deal with the problem of stability of the origin
in m-dimensional subspace (s1, ... , sm), therefore the existence conditions may
be formulated in terms of the stability theory. The non-traditional condition:
finite time convergence should take place. This last condition is important to
distinguish the systems with sliding modes and the continuous system with
state trajectories converging to some manifold asymptotically. For example the
state trajectories of the system ẍ−x = 0 converge to the manifold s = ẋ−x = 0
asymptotically since ṡ = −s, however it would hardly be reasonable to call
the motion in s = 0 “sliding mode.”

As to the systems with scalar control the conditions may be obtained from
geometrical considerations: inequalities (6.1). However for vector cases it is
not necessary to fulfill these inequalities for each discontinuity surfaces. As
an illustration consider the motion projection on a two-dimensional subspace
(s1, s2) governed by equations

ṡ1 = −sign s1 + 2sign s2
ṡ2 = −2sign s1 − sign s2.

The state trajectories are straight lines on the state plane (s1, s2) (Fig. 23).
It is clear from the picture that for any point on s1 = 0 or s2 = 0 the state

trajectories are not oriented towards the line therefore sliding mode does not
exist at any of the switching lines taken separately. At the same time the

Fig. 23.
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trajectories converge to the intersection of them – the origin in the subspace
(s1, s2). Let us calculate the time needed for the state to reach it. For initial
conditions

s1(0) = 0, s2(0) > 0 (point 1)

ṡ1 = 1
ṡ2 = −3 for 0 < t < T ′.

and

s2(T ′) = 0, T ’ =
1
3
s2 (0) , s1(T ′) =

1
3
s2 (0) (point 2).

For the further motion

ṡ1 = −3
ṡ2 = −1 for T ′ < t < T ′ + T”,

and

s1(T ′ + T”) = 0, T” = 1
9s2(0), s2(T ′ + T”) = − 1

9s2(0) or

s2(T1) = − 1
9s2(0), T1 = T ′ + T” = 4

9s2(0) (point 3).

It means that

|s2(Ti)| = (1
9 )i |s2(0)| , s1(Ti) = 0,

∆Ti = Ti − Ti−1 = 4
9s2(Ti−1) = 4

9 ( 1
9 )i−1s2(0), i = 1, 2, ..., T0 = 0.

Since

limi→∞[s2(Ti)] = 0, s1(Ti) = 0,

limi→∞ Ti = limi→∞
∑∞

i=1∆Ti = 4
9

1
3s2 (0) 1

1− 1
9

= 1
2s2 (0)

the state will reach the manifold (s1, s2) = 0 after a finite time interval and
then sliding mode will arise in this manifold as in all above systems with
discontinuous scalar and vector controls. The example illustrates that the
conditions for the two-dimensional sliding mode to exist can not be derived
from analysis of scalar cases. Even more sliding mode may exist in the inter-
section of discontinuity surfaces although it does not exist on each of them
taken separately.

Further we will deal with the conditions for sliding mode to exist for affine
systems (5.8). To derive the existence conditions, the stability of the motion
projection on subspace s

ṡ = Gf +GBu (6.2)
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should be analyzed. The control (4.2) may be represented as

u(x, t) = u0(x, t) + U(x, t)sign(s),

u0(x) =
u+(x, t) + u−(x, t)

2
,

diagonal matrix U with elements

Ui =
u+
i (x, t) − u−i (x, t)

2
, i = 1, ... ,m

and
[sign(s)]T = [sign(s1), ... , sign(sm)]

Then the motion projection on subspace s is governed by

ṡ = d(x) −D(x)sign(s) with d = Gf +GBu0, D = −GBU.
(6.3)

To find the stability conditions of the origin s = 0 for nonlinear system (6.3), or
the conditions for sliding mode to exist, we will follow the standard method-
ology for stability analysis of nonlinear systems – try to find a Lyapunov
function.

Definition 6.1 The set S(x) in the manifold s(x) = 0 is the domain of slid-
ing mode if for the motion governed by (6.2) the origin in the subspace s is
asymptotically stable with finite convergence time for each x from S(x).

Definition 6.2 Manifold s(x) = 0 is referred to as sliding manifold if sliding
mode exists at its each point, or S(x) = {x : s(x) = 0}.

Theorem 6.3 S(x) is a sliding manifold for the system with motion projec-
tion on subspace s governed by ṡ = −Dsign(s), if matrix D + DT > 0 is
positive definite.

Theorem 6.4 S(x) is a sliding manifold for system (6.2) if

D(x) +DT (x) > 0, λ0 > d0

√
m, λmin(x) > λ0 > 0, ‖d(x)‖ < d0,

λmin is the minimal eigenvalue of matrix D+D
2

T
, λmin > 0.

The statements of the both theorems may be proven using sum of absolute
values of siV = sT sign(s) > 0 as a Lyapunov function.

7 Design Principles

7.1 Decoupling and Invariance

The above mathematical results constitute the background of the design meth-
ods for sliding mode control involving two independent subproblems of lower
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dimensions:
– Design of the desired dynamics for a system of the (n − m)th order by a
proper choice of a sliding manifold s = 0.
– Enforcing sliding motion in this manifold which is equivalent to stability
problem of the mth order system.

All the design methods will be discussed for affine systems (5.8). Affine
systems are linear with respect to control but not necessary with the respect to
state. Since the principle operating mode is in the vicinity of the discontinuity
points, the effects inherent in the systems with infinite feedback gains may
be obtained with finite control actions. As a result sliding mode control is an
efficient tool to control dynamic high-order nonlinear plants operating under
uncertainty conditions (e.g., unknown parameter variations and disturbances).

Formally the sliding mode is insensitive, or invariant to “uncertainties” in
the systems satisfying the matching conditions h(x, t) ∈ range(B) [18]. Vector
h(x, t) characterizes all factors in a motion equation

ẋ = f(x, t) +B(x, t)u+ h(x, t),

whose influence on the control process should be rejected. The matching con-
dition means that disturbance vector h(x, t) may be represented as a linear
combination of columns of matrix B.

In the sequel, we will deal with affine systems

ẋ = f(x, t) +B(x, t)u, x, f ∈ 1n, B(x) ∈ 1n×m , u(x) ∈ 1m, (7.1)

u(x) =

{
u+(x, t) if s(x) > 0
u−(x, t) if s(x) > 0

(component−wise), s(x)T = [s1(x)...sm(x)].

To obtain the equation of sliding mode in manifold s(x) = 0 under the as-
sumption that matrix GB (matrix G = {∂s/∂x} with rows as gradients of the
components of vector s) is nonsingular, the equivalent control

ueq(x, t) = −[G(x)B(x, t)]−1G(x)f(x, t)

should be substituted into (7.1) for the control u(x) to yield

ẋ = fsm(x, t),
fsm(x, t) = f(x, t) −B(x, t)[G(x)B(x, t)]−1G(x)f(x, t). (7.2)

Since s(x) = 0 in sliding mode, this system of m algebraic equations may be
solved with respect to m component of the state vector constituting subvec-
tor x2:

x2 = s0(x1), x2 ∈ 1m, x1 ∈ 1n−m , xT = [ xT1 xT2 ]

and s(x) = 0.
Replacing x2 by s0(x1) in the first n−m equations of (7.2) yields a reduced

order sliding mode equation
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ẋ1 = f1sm[x1, s0(x1), t] where
fTsm(x, t) = fTsm(x1, x2, t) = [fT1sm(x1, x2, t) fT2sm(x1, x2, t)]. (7.3)

The motion equation (7.3) depends on function s0(x1), i.e. on the equation of
the discontinuity manifold. Function s0(x1) may be handled as m-dimensional
control for the reduced order system. It should be noted that the design prob-
lem is not a conventional one since right-hand sides in (7.2) and (7.3) depend
not only on the discontinuity manifold equation but on the gradient matrix
G as well. If a class of functions s(x) is pre-selected, for instance linear func-
tions or in the form of finite series, then both s(x), G and, as a result, the
right-hand sides in (7.3) depend on the set of parameters to be selected when
designing the desired dynamics of sliding motion.

The second-order system (5.1) with a scalar control

ẋ1 = a11x1 + a12x2 + b1u+ d1f(t)
ẋ2 = a12x1 + a22x2 + b2u+ d2f(t)

u = −M sign (s), s = c1x1 + c2x2.

may serve as an example. It was shown in Sect. 5 that sliding mode along the
switching line

s = c1x1 + c2x2 = 0

is governed by the first-order equation

ẋ1 = [a11 − a12c
−1
2 c1 − (cb)−1b1(ca1 − ca2c−1

2 c1)]x1 + [d1 − b1(cb)−1(cd)]f(t),

where c = [c1 c2], bT = [b1 b2], (a1)T = [a11 a21], [ a2]T = [a12 a22],
dT = [d1 d2] and cb and c2 are assumed to be different from zero. The
equation may be rewritten in the form

ẋ1 = [a11 − a12c
∗
1 − (c∗b)−1b1(c∗a1 − c∗a2c∗1)]x1 + [d1 − b1(c∗b)−1(c∗d)]f(t)

with c∗ = [c∗1 1], and c∗1 = c−1
2 c1. Hence only one parameter c∗1 should be

selected to provide the desired motion of the first-order dynamics in our second
order example.

7.2 Regular Form

The design procedure may be illustrated easily for the systems represented in
the Regular Form

ẋ1 = f1(x1, x2, t), x1 ∈ Rn−m

ẋ2 = f2(x1, x2, t) +B2(x1, x2, t)u, x2 ∈ Rm, det(B2) �= 0. (7.4)

The state subvector x2 is handled as a fictitious control in the first equation
of (7.4) and selected as a function of x1 to provide the desired dynamics in
the first subsystem (the design problem in the system of the (n−m)th order
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with m-dimensional control): x2 = −s0(x1). Then the discontinuous control
should be designed to enforce sliding mode in the manifold

s(x1, x2) = x2 + s0(x1) = 0 (7.5)

(the design problem of the mth order with m-dimensional control).
After a finite time interval sliding mode in the manifold (7.5) starts and

the system will exhibit the desired behavior governed by

ẋ1 = f1[x1,−s0(x1), t].

Note that the motion is of a reduced order and depends neither function
f2(x1, x2, t) nor function B2(x1, x2, t) in the second equation of the original
system (7.4).

Since the design procedures for the systems in Regular Form (7.4) are
simpler than those for (7.1), it is of interest to find the class of systems (7.1)
for which a nonlinear coordinate transformation exists such that it reduces
the original system (7.1) to the form (7.4). By the assumption rank(B) = m,
therefore (7.1) may be represented as

ẋ1 = f1(x1, x2, t) +B1(x1, x2, t)u, x1 ∈ Rn−m

ẋ2 = f2(x1, x2, t) +B2(x1, x2, t)u, x2 ∈ Rm, det(B2) �= 0.

For coordinate transformation

y1 = ϕ(x, t), y2 = x2 , y1, ϕ ∈ 1n−m,

the equation for y1
ẏ1 =

∂ϕ

∂x
f +

∂ϕ

∂x
Bu+

∂ϕ

∂t

does not depend on control u, if vector function ϕ is a solution to matrix
partial differential equation

∂ϕ

∂x
B = 0. (7.6)

Then the motion equations with respect to y1 and y2 are in the regular
form. Necessary and sufficient conditions of solution existence and uniqueness
for (7.6) may be found in terms of Pfaff ‘s forms theory and Frobenius theorem
which constitute a well developed branch of mathematical analysis [19].

We illustrate now the method of reducing an affine system to the regular
form for the case of scalar control

ẋ = f(x, t) + b(x, t)u, x ∈ 1n, u ∈ 1, (7.7)

b(x, t) is an n-dimensional vector with components bi(x, t) and bn(x, t) �= 0.
Let a solution to an auxiliary system of (n− 1) order

dxi/dxn = bi/bn i = 1, ..., n− 1 (7.8)
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be set of functions

xi = ϕ̃i(xn, t, c1, c2, ..., cn−1), i = 1, ..., n− 1 with integration constants c′is.
(7.9)

Solve these algebraic system of equations for ci

ci = ϕi(x),

and introduce the nonsingular coordinate transformation

yi = ϕi(x), i = 1, ..., n− 1 (7.10)

Since dϕi

dxn
= (gradϕi)T b/bn = 0 or (gradϕi)T b = 0 the motion equation with

respect to new state vector (y1, ..., yn−1, xn) is of form

ẏi = (gradϕi)T fi, i = 1, ..., n− 1
ẋn = fn + bnu,

Replacing xi by the solution of (7.10) as functions of(y1, ..., yn−1, xn) leads
to motion equations

ẏ = f∗(y, xn, t),
ẋn = f∗n(y, xn) + b∗n(y, xn, t)u,

(7.11)

y, f∗ are (n− 1)-dimensional vectors, f∗n, b
∗
n are scalar functions.

The system with respect to y and xn is in the regular form (7.4) with
(n− 1) and first order blocks.

Note the following characteristics for the design in the regular form:

1. In contrast to (7.2) and (7.3), the sliding mode equation does not de-
pend on gradient matrix G, which makes the design problem at the first
stage a conventional one-design of m-dimensional control x2 in (n −m)-
dimensional system with state vector x1.

2. Calculation of the equivalent control to find the sliding mode equation is
not needed.

3. The condition det(GB) = det(B2) �= 0 holds (Recall that this condition
is needed to enforce sliding mode in the pre-selected manifold s(x) = 0).

4. Sliding mode is invariant with respect to functions f2 and B2 in the second
block.

7.3 Block Control Principle

Due to the higher complexity of the modern plants and processes, the need
of decomposition of the original system into independent subsystems of lower
complexity is highly stressed and has been intensively studied. The objective of
this section is to propose a sliding mode control design method based on block
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control principle [20, 21] reducing the design procedure to a set of simplest
subproblems of low dimensions.

For a linear controllable system

ẋ = Ax+Bu (7.12)

where x ∈ Rn, u ∈ Rm, the sliding mode control design principle may be
demonstrated after reducing the system (7.12) to Regular Form

ẋ1 = A11x1 +A12x2

ẋ2 = A21x1 +A22x2 +B2u
(7.13)

where x1 ∈ Rn−m, x2 ∈ Rm, u ∈ Rm , det(B2) �= 0, rank(B2) = dim(u). The
fictitious control of second subsystem, x2, can be designed as

x2 = A+
12(−A11x1 + Λ)x1, (7.14)

where A+
12 is the psudoinverse of A12 and Λ is the desired spectrum. To im-

plement the control design (7.14), a sliding control can be designed as

u = −M · sign(s). (7.15)

where
s = x2 −A+

12(−A11x1 + Λ)x1 (7.16)

When sliding mode is enforced, s is equal to zero, condition (7.14) holds, and
the system behavior depends only on the upper subsystem with the desired
dynamics

ẋ1 = Λx1. (7.17)

A further development of the Regular Form is the so-called Block Control
Form

ẋr = Ar xr + Brxr−1

ẋr−1 = Ar−1

[
xr
xr−1

]
+ Br−1xr−2

...

ẋ2 = A2

⎡
⎢⎣
xr
...
x2

⎤
⎥⎦ + B2x1

ẋ1 = A1

⎡
⎢⎣
xr
...
x1

⎤
⎥⎦ + B1u

(7.18)

where dim(u) = rank(B1), rank(Bi) = dim(xi), i = 2, · · · , r.
The fictitious control could be designed in following procedure such that

every subsystem in the block control form has a desired spectrum. Let Λi,
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i = 2, · · · , r be the desired spectra. The fictitious control xr−1 of the first
subsystem should be designed as

xr−1 = −B+
r (Ar + Λr)xr

to have the desired motion in the first block.
The fictitious control of the next block xr−2 can be selected to reduce

sr−1 = xr−1 +B+
r (Ar + Λr)xr

to zero with the desired rate of convergence, determined by Λr−1. It can be
found from the equation

ṡr−1 = Ãr−1

[
xr
xr−1

]
+Br−1xr−2 :

xr−2 = −B+
r−1(Ãr−1

[
xr
xr−1

]
− Λr−1sr−1)

(Ãr−1 depends on matrices of the first two blocks and Λr).
Follow the procedure step by step, the fictitious control, x1 can be found

x1 = −B+
2

(
Ã2 − Λ2

)
⎡
⎢⎣
xr
...
x2

⎤
⎥⎦ .

The final step is to select discontinuous control u = −M · sign(s1) enforcing
sliding mode in the manifold

s1 = x1 +B+
2 (A2 + Λ2)

⎡
⎢⎣
xr
...
x2

⎤
⎥⎦ = 0.

After sliding mode is enforced, s1 will be equal to zero which leads to con-
vergence of all functions si to zero with the desired spectrum. It is important
that the design task at each step is simple: it is of a reduced order with equal
dimensions of the state and control.

7.4 Enforcing Sliding Modes

At the second stage of feedback design, discontinuous control should be se-
lected such that sliding mode is enforced in manifold s = 0. As shown in
Chap. 6, sliding mode will start at manifold s = 0 if the matrix GB + (GB)T

is positive-definite and the control is of the form

u = −M(x, t) sign(s) (component-wise).
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A positive scalar function M(x, t) is chosen to satisfy the inequality

M(x, t) > λ−1 ‖Gf‖ ,

where λ is the lower bound of the eigenvalues of the matrix GB + (GB)T .
Now we demonstrate a method of enforcing sliding mode in manifold s = 0

for an arbitrary nonsingular matrix GB. The motion projection equation on
subspace s can be written in the form

ṡ = GB(u− ueq).

Remind that the equivalent control ueq is the value of control such that time
derivative of vector s is equal to zero.

Let V = 1
2s

T s be a Lyapunov function candidate and the control be of the
form

u = −M(x, t)sign(s∗), s* = (GB)T s.

Then V̇ = −M(x, t)[s ∗T sign(s∗)+ s ∗T ueq

M(x,t) ] and V̇ is negative-definite for
M(x, t) > ‖ueq‖ . It means that sliding mode is enforced in manifold s∗ = 0
that is equivalent to its existence in manifold s = 0 selected on the first step of
the design procedure. It is important that the conditions for sliding mode to
exist are inequalities. Therefore upper estimate of the disturbances is needed
rather than precise information on their values.

Example

To demonstrate the sliding mode control design methodology consider the
conventional problem of linear control theory: eigenvalue placement in a linear
time invariant multidimensional system

ẋ = Ax+Bu,

where x and u are n− and m-dimensional state and control vectors, respec-
tively, A and B are constant matrices, rank (B) = m. The system is assumed
to be controllable.

For any controllable system there exists a linear feedback u = Fx (F being
a constant matrix) such that the eigenvalues of the feedback system, i.e. of
matrix A+BF , take the desired values and, as a result, the system exhibits
desired dynamic properties.

Now we will show that the eigenvalue placement task may be solved in
the framework of the sliding mode control technique dealing with a reduced
order system. The core idea is to utilize the methods of linear control theory
for reduced order equations and to employ one of the methods of enforcing
sliding modes with desired dynamics.

As it was demonstrated in this section, the design becomes simpler for
systems represented in the regular form. Reducing system equations to the



324 V.I. Utkin

regular form will be performed as a preliminary step in the design procedures.
Since rank (B) = m, matrix B may be partitioned (after reordering the state
vector components) as

B =
[
B1

B2

]

where B1 ∈ 1(n−m)×m, B2 ∈ 1m×m with det B2 �= 0. The nonsingular
coordinate transformation[

x1

x2

]
= Tx, T =

[
In−m −B1B

−1
2

0 B−1
2

]

reduces the system equations to the regular form

ẋ1 = A11x1 +A12x2

ẋ2 = A21x1 +A22x2 + u,

where x1 ∈ 1(n−m), x2 ∈ 1m and Aij are constant matrices for i, j = 1, 2.
It follows from controllability of (A,B) that the pair (A11, A12) is control-

lable as well. Otherwise an uncontrollable subspace exists in the first block
which is an uncontrollable subspace in the original system as well. Handling x2

as an m-dimensional fictitious control in the controllable (n-m)-dimensional
first subsystem all (n−m) eigenvalues may be assigned arbitrarily by a proper
choice of matrix C in x2 = −Cx1. To provide the desired dependence between
components x1 and x2 of the state vector, sliding mode should be enforced
in the manifold s = x2 + Cx1 = 0, where sT = (s1, ..., sm) is the difference
between the real values of x2 and its desired value −Cx1.

After sliding mode starts, the motion is governed by a reduced order system
with the desired eigenvalues

ẋ1 = (A11x1 −A12C)x1.

For a piece-wise linear discontinuous control

u = −(α |x| + δ) sign (s),

with

|x| =
n∑
i=1

|xi| sign (s)T = [sign (s1)... sign (sm)];

α and δ being constant positive values,
calculate the time derivative of positive definite function

V = 1
2s

T s

V̇ = sT [(CA11 +A21)x1 + (CA12 +A22)x2] − (α |x| + δ) |s|
≤ |s| |(CA11 +A21)x1 + (CA12 +A22)x2| − (α |x| + δ) |s| .

It is evident that there exists such value of α that for any δ the time
derivative V̇ is negative which validates convergence of the state vector to
manifold s = 0 and existence of sliding mode with the desired dynamics. The
time interval preceding the sliding motion may be decreased by increasing
parameters α and δ in the control.
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7.5 Unit Control

The objective of this section is to demonstrate a design method for discon-
tinuous control enforcing sliding mode in some manifold without individual
selection of each component of control as a discontinuous state function. The
approach implies design of control based on a Lyapunov function selected for a
nominal (feedback or open loop) system. The control is to be found such that
the time-derivative of the Lyapunov function is negative along the trajectories
of the system with perturbations caused by uncertainties in the plant model
and environment conditions.

The roots of the above approach may be found in papers by G. Leitmann
and S. Gutman published in the 1970s [22, 23]. The design idea may be ex-
plained for an affine system

ẋ = f (t, x) +B (t, x)u+ h (t, x) (7.19)

with state and control vectors x ∈ Rn, u ∈ Rm, state-dependent vectors
f (t, x), h (t, x) and control input matrixB (t, x)x ∈ Rn×m . The vector h (t, x)
represents the system uncertainties and its influence on the control process
should be rejected.

The equation
ẋ = f (t, x)

represents an open loop nominal system which is assumed to be asymptotically
stable with a known Lyapunov function

V (x) > 0,

Wo = dV/dt |h=0,u=0 = grad (V )T f < 0,

(grad(V )T = [
∂V

∂x1
...
∂V

∂xn
].

The perturbation vector h (t, x) is assumed to satisfy the matching conditions,
hence there exists vector γ (t, x) ∈ Rm such that

h (t, x) = B (t, x) γ (t, x) . (7.20)

γ (t, x) may be an unknown vector with known upper scalar estimate γ0 (t, x)

‖γ (t, x)‖ < γ0 (t, x) .

Calulate the time derivative of Lyapunov function V (x) along the trajectories
of the perturbed system as

W = dV/dt = W0 + grad (V )T B (u+ γ)

For control u depending on the upper estimate of the unknown disturbance,
chosen as
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u = −ρ (t, x)
BT grad (V )

‖BT grad (V )‖ (7.21)

with a scalar function ρ (t, x) > γ0(x, t) and

∥∥BT grad (V )
∥∥2 =
[
BT grad (V )

] [
BT grad (V )

]
.

The time derivative of the Lyapunov function V (x)

W = W0 − ρ (t, x)
∥∥BT grad (V )

∥∥+ grad (V )T Bγ (t, x)

< W0 −
∥∥BT grad (V )

∥∥ [ρ (t, x) − γ0 (t, x)] < 0 .

is negative. This implies that the perturbed system with control (7.21) is
asymptotically stable as well.

Two important features should be underlined for the system with control
(7.21):

1. Control (7.21) undergoes discontinuities in (n−m)-dimensional manifold
s(x) = BT grad (V ) = 0 and is a continuous state function beyond this
manifold. This is the principle difference between control (7.1) and all the
control inputs in the previous sections with individual switching functions
for each control component.

2. The disturbance h (t, x) is rejected due to enforcing sliding mode in the
manifold s (x) = 0. Indeed, if the disturbance (7.20) is rejected, then
control u should be equal to −γ (t, x) which is not generally the case for the
control (7.21) beyond the discontinuity manifold s (x) = BT grad (V ) �= 0 .
It means that sliding mode occurs in the manifold s = 0 and the equivalent
value of control ueq is equal to −λ (t, x) .

Note that the norm of control (7.21) with the gain ρ (t, x) = 1
∥∥∥∥ BT grad (V )
‖BT grad (V )‖

∥∥∥∥
is equal to 1 for any value of the state vector. It explains the term “unit
control” for the control (7.21).

Now we demonstrate how this approach can be applied to enforce sliding
mode in manifold s = 0 for the system (7.19) with unknown disturbance
vector h(x, t) [24]. Function s is selected in compliance with some performance
criterion at the first stage of feedback design. The control is designed as a
discontinuous function of s

u = −ρ (t, x)
DT s (x)

‖DT s (x)‖ (7.22)

with D = (∂s/∂x)B and D being a nonsingular matrix.
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The equation of a motion projection of the system (7.19) on subspace s is
of the form

ṡ = (∂s/∂x) (f + h) +Du .

The conditions for the trajectories to converge to the manifolds (x) = 0 and
sliding mode to exist in this manifold may be derived based on Lyapunov
function

V =
1
2
sT s > 0 (7.23)

with time derivative

V̇ = sT (∂s/∂x) (f + h) − ρ (t, x)
∥∥DT s (x)

∥∥
<
∥∥DT s (x)

∥∥ [∥∥D−1 (∂s/∂x) (f + h)
∥∥− ρ (t, x)

] (7.24)

For ρ (t, x) >
∥∥D−1 (∂s/∂x) (f + h)

∥∥ the value of V̇ is negative therefore
the state will reach the manifold s (x) = 0 after a finite time interval for any
initial conditions and then the sliding mode with the desired dynamics occurs.
Finiteness of the interval preceding the sliding motion follows from inequality
resulting from (7.23), (7.24)

V̇ < −γV 1/2 γ = const > 0

with the solution

V (t) <
(
−γ

2
t+
√
V0

)2
, V0 = V (0) .

Since the solution vanishes after some ts < 2
γ

√
V0 , the vector s vanishes as

well and the sliding mode starts after a finite time interval.
It is of interest to note the principle difference in motions preceding the

sliding mode in s (x) = 0 for the conventional component-wise control and unit
control design methods. For the conventional method the control undergoes
discontinuities, should any of the components of vector s changes sign, while
the unit control is a continuous state function until the manifold s (x) = 0
is reached. Due to this reason unit control systems with sliding modes would
hardly be recognized as VSS.

8 The Chattering Problem

The subject of this section is of great importance whenever we intend to estab-
lish the bridge between the recommendations of the theory and applications.
Bearing in mind that the control has a high-frequency component, we should
analyze the robustness or the problem of correspondence between an ideal
sliding mode and real-life processes at the presence of unmodeled dynamics.
Neglected small time constants (µ1 and µ2 in Fig. 24 with a linear plant) in
plant models, sensors, and actuators lead to dynamics discrepancy (z1 and
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Fig. 24.

Fig. 25.

z2 are the unmodeled-dynamics state vectors). In accordance with singular
perturbation theory [25], in systems with continuous control a fast component
of the motion decays rapidly and a slow one depends on the small time con-
stants continuously. In discontinuous control systems the solution depends on
the small parameters continuously as well. But unlike continuous systems, the
switchings in control excite the unmodeled dynamics, which leads to oscilla-
tions in the state vector at a high frequency. The oscillations, usually referred
to as chattering, are known to result in low control accuracy, high heat losses
in electrical power circuits, and high wear of moving mechanical parts. These
phenomena have been considered as a serious obstacle for applications of slid-
ing mode control in many papers and discussions.

To qualitatively illustrate the influence of unmodeled dynamics on the
system behavior, consider the simplest case shown in Fig. 25.

The motion equations may be written in the form
⎧⎨
⎩
ẋ = w
ẇ = v
v̇ = − 2

µv − 1
µ2w + 1

µ2u.
(8.1)
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Fig. 26.

For the control u = −M sign(x), the sign-varying Lyapunov function

V = xv − 0.5w2

has a negative time-derivative

V̇ = x(− 2
µ
v − 1

µ2
w +

1
µ2
u) = −x( 2

µ
v +

1
µ2
w) − 1

µ2
M |x|

for small magnitudes of v and w. This means that the motion is unstable in an
ε(µ)-order vicinity of the manifold s(x) = x = 0. Alternatively to Fig. 25, the
block-diagram of the system (8.1) may be represented in the form depicted in
Fig. 26.

The motion equations may now be written as

ẋ∗ = −M sign(x)
µ2ẍ+ 2µẋ+ x = x∗

Sliding mode can not occur in the systems since the time derivative ẋ is a
continuous time function and can not have sign opposite to x in the vicinity
of the point x = 0 where the control undergoes discontinuities.

The value of ẋ∗ is bounded and, as follows from the singular perturbation
theory [25], the difference between x and x∗ is of ε(µ)-order. The signs of x and
x∗ coincide beyond the ε(µ)-vicinity of s(x) = x = 0, hence the magnitudes
of x∗ and x decrease, i.e. the state trajectories converge to this vicinity and
after a finite time interval t1 the state remains in the vicinity. According to
the analysis of (8.1), the motion in the vicinity x = 0 is unstable.

The fact of instability explains why chattering may appear in the systems
with discontinuous controls at the presence of unmodeled dynamics. The high
frequency oscillations in the discontinuous control system may be analyzed in
time domain as well. The brief periods of divergence occur after switches of
the control input variable u (t) when the output w (t) of the actuator is unable
to follow the abrupt change of the control command.

The proposed solutions to the chattering problem thus focus on either
avoiding control discontinuities in general or move the switching action to a
controller loop without any unmodeled dynamics. A recent study and practical
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experience showed that the chattering caused by unmodeled dynamics may be
eliminated in systems with asymptotic observers, also known as Luenberger
observers (Fig. 24). In spite of the presence of unmodeled dynamics, ideal
sliding arises, it is described by a singularly perturbed differential equation
with solutions free of a high-frequency component and close to those of the
ideal system.

As shown in Fig. 24 an asymptotic observer serves as a bypass for the
high-frequency component, therefore the unmodeled dynamics are not ex-
cited. Preservation of sliding modes in systems with asymptotic observers
predetermined successful application of the of sliding mode control.

Another way to reduce chattering implies replacing the discontinuous con-
trol by its continuous approximation in a boundary layer. This may result in
chattering as well at the presence of unmodeled fast dynamics if the gain in the
boundary layer is too high. Since the values of the time constants, neglected
in the ideal model, are unknown, the designer should be oriented towards the
worst case and reduce the gain such that the unmodeled dynamics are not
excited. As a results the disturbance rejection properties of discontinuous (or
high gain) control are not utilized to full extent.

9 Discrete-Time Systems

Most sliding mode approaches are based on finite-dimensional continuous-
time models and lead to a discontinuous controller. Once such a dynamic
system is “in sliding mode,” its motion trajectory is confined to a manifold
in the state space, i.e. to the sliding manifold. For continuous-time systems,
this reduction of the system order may only be achieved by a discontinuous
controller, switching at theoretically infinite frequency.

When challenged with the task of implementing a sliding mode controller
in a practical system, the control engineer has two options:

• Direct, analog implementation of discontinuous controller with a very fast
switching device, e.g. with power transistors.

• Discrete implementation of the sliding mode controller, e.g. with a digital
micro-controller.

The first method is only suitable for systems with a voltage input allowing
the use of analog switching devices. Most other systems are usually based on
a discrete micro-controller based implementation. However, a discontinuous
controller designed for a continuous-time system model would lead to chat-
tering when implemented without modifications in discrete time with a finite
sampling rate. This discretization chattering is different from the chattering
problem caused by unmodeled dynamics as discussed in Chap. 8. Discretiza-
tion chattering is due to the fact that the switching frequency is limited to
the sampling rate, but correct implementation of a sliding mode controller
requires infinite switching frequency. The following example will illustrate the
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difference between ideal continuous time sliding mode and direct discrete im-
plementation with discretization chattering. The subsequent sections of this
chapter are dedicated to the development of a discrete-time sliding mode con-
cept to eliminate the chattering.

9.1 Discrete-Time Sliding Mode Concept

Before developing the concept of discrete-time sliding mode, let us revisit
the principle of sliding mode in continuous time systems with an ideal
discontinuous controller from an engineering point of view. Assume that in a
general continuous-time system

ẋ = f(x, u, t) (9.1)

with a discontinuous scalar controller

u =
{

u0 if s(x) > 0
−u0 if s(x) < 0 (9.2)

sliding mode exists in some manifold s(x) = 0 (Fig. 27).
Note the following observations characterizing the nature of sliding mode

systems:

• The time interval between the initial point t = 0 and the reaching of the
sliding manifold s(x) = 0 at tsm is finite, in contrast to systems with a
continuous controller, which exhibit asymptotic convergence.

• Once the system is “in sliding mode” for all t ≥ tsm, its trajectory motion
is confined to the manifold s(x) = 0 and the order of the closed-loop
system dynamics is less than the order of the original system.

• After sliding mode has started at tsm, the system trajectory cannot be
back-tracked beyond the manifold s(x) = 0 like in systems without dis-
continuities. In other words, at any point t0 ≥ tsm, it is not possible to
determine the time instance tsm or to reverse calculate the trajectory for
t < tsm based on information of the system state at t0.

Fig. 27.
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However, during both time intervals before and after reaching the sliding
manifold, the state trajectories are continuous time functions and the relation
between two values of the state at the ends of a finite time interval t =
[t0, t0 +∆t] may be found by solving (9.1) as

x(t0 +∆t) = F (x(t0)) (9.3)

where F (x(t)) is a continuous function as well. When derived for each sam-
pling point tk = k∆t, k = 1, 2, ..., this equation is nothing but the discrete
time representation of for the continuous time prototype (9.1), i.e.

xk+1 = F (xk), xk = x(k∆t).

Starting from time instance tsm, the state trajectory belongs to the sliding
manifold with

s (x(t)) = 0, or for some ksm ≥ tsm
∆t

, s(xk) = 0, ∀k ≥ ksm.

It seems reasonable to call this motion “sliding mode in discrete time,” or
“discrete-time sliding mode.” Note that the right-hand side of the motion
equation of the system with discrete time sliding mode is a continuous state
function.

So far, we have generated a discrete time description of a continuous-
time sliding mode system. Next, we need to derive a discrete-time control law
which may generate sliding mode in a discrete-time system. Let us return to
the system (9.1) and suppose that for any constant control input u for any
initial condition x(0), the solution to (9.1) may be found in closed form, i.e.

x(t) = F (x(0), u) .

Asume that control u may be chosen arbitrarily and follow the procedure
below:

1. Select constant u (x(t = 0),∆t) for a given time interval ∆t such that
s (x(t = ∆t)) = 0.

2. Next, find constant u (x(t = ∆t),∆t) such that s (x(t = 2∆t)) = 0.
3. In general, for each k = 1, 2, ... , choose constant u (xk,∆t) such that
s (xk+1) = 0.

In other words, at each sampling point k, select uk such that this con-
trol input, to be constant during the next sampling interval ∆t, will achieve
s (xk+1) = 0 at sampling point (k + 1). During the sampling interval, state
x (k∆t < t < (k + 1)∆t) may not belong to the manifold, i.e. s (x(t)) �= 0 is
possible for k∆t < t < (k+1)∆t. However, any trajectory of the discrete-time
system

xk+1 = F (xk, uk)
uk = u(xk)
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hits the sliding manifold at each sampling point, i.e. s (xk) = 0 ∀k = 1, 2, ... ,
is fulfilled.

Since F (x(0), u) for any constant u tends to x(0) as ∆t → 0, the function
u(x(0), ∆t) may exceed the available control resources u0. As a result, the
control steers state xk to zero only after a finite number of steps ksm. Thus the
manifold is reached after a finite time interval tsm = ksm∆t and thereafter the
state xk remains on the manifold. In analogy to continuous-time systems, this
motion may be referred to as “discrete-time sliding mode.” Note that sliding
mode is generated in the discrete-time system with control −u0 ≤ u ≤ u0 as a
continuous function of the state xk and being piece-wise constant during the
sampling interval.

The above example clarifies the definition of the term “discrete-time slid-
ing mode” introduced [26] for an arbitrary finite-dimensional discrete-time
system.

Definition 9.1 (Discrete-time sliding mode) In the discrete-time dy-
namic system

xk+1 = F (xk, uk) , x ∈ 1n, u ∈ 1m, m ≤ n (9.4)

discrete-time sliding mode takes place on a subset Σ of the manifold σ =
{x : s(x) = 0} , s ∈ 1m, if there exists an open neighborhood ℵ of this subset
such that for each x ∈ ℵ it follows that s (F (xk+1)) ∈ Σ.

In contrast to continuous-time systems, sliding mode may arise in discrete-
time systems with a continuous function in the right-hand side of the closed
loop system equation. Nevertheless, the aforementioned characteristics of
continuous-time sliding mode have been transferred to discrete-time sliding
mode. Practical issues will be discussed in the subsequent section using linear
systems as an example.

9.2 Linear Discrete-Time Systems with Known Parameters

This section deals with discrete-time sliding mode controllers for linear time-
invariant continuous-time plants. Let us assume that a sliding mode manifold
is linear for an nth-order discrete-time system xk+1 = F (xk), i.e. sk = Cxk,
C ∈ 1m×n with m control inputs. According to definition the sliding mode
existence condition is of the form

sk+1 = C (F (xk)) = 0 (9.5)

to design a discrete-time sliding mode controller based on condition (9.5),
consider the discrete-time representation of the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t) +Dr(t) (9.6)
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with state vector x(t) ∈ 1n, control u(t) ∈ 1m, reference input r(t), and
constant system matrices A, B, and D. Transformation to discrete time with
sampling interval ∆t yields

xk+1 = A∗xk +B∗uk +D∗rk, (9.7)

where

A∗ = eA∆t, B∗ =

∆t∫

0

eA(∆t−t)B d τ, D∗ =

∆t∫

0

eA(∆t−t)D d τ (9.8)

and the reference input r(t) is assumed to be constant during the sampling
interval ∆t. In accordance with (9.5), discrete-time sliding mode exists if the
matrix CB∗ has an inverse and the control uk is designed as the solution of

sk+1 = CA∗xk + CD∗rk + CB∗uk = 0 (9.9)

In other words, control uk should be chosen as

uk = − (CB∗)−1 (CA∗xk + CD∗rk) . (9.10)

By analogy with continuous-time systems, the control law (9.10) yielding mo-
tion in the manifold s = 0 will be referred to as “equivalent control.” To reveal
the structure of ukeq

, let us represent it as the sum of two linear functions

ukeq
= − (CB∗)−1

sk − (CB∗)−1 ((CA∗ − C)xk + CD∗rk) (9.11)

and
sk+1 = sk + (CA∗ − C)xk + CD∗rk + CB∗uk. (9.12)

As it was mentioned in the previous section, ukeq
can exceed the available

control resources with ∆t → 0 for initial sk �= 0, since (CB∗)−1 (CA∗ − C)
and (CB∗)−1

CD∗ take finite values. Hence the real-life bounds for control
uk should be taken into account. Suppose that the control can vary within
‖uk‖ ≤ u0 and the available control resources are such that

∥∥∥(CB∗)−1
∥∥∥ · ‖(CA∗ − C)xk + CD∗rk‖ < u0. (9.13)

The controller

uk =

⎧⎪⎨
⎪⎩

ukeq
for
∥∥ukeq

∥∥ ≤ u0

u0
ukeq

‖ukeq‖ for
∥∥ukeq

∥∥ > u0

(9.14)

complies with the bounds of the control resources. As shown above, uk =
ukeq

for
∥∥ukeq

∥∥ ≤ u0 yields motion in the sliding manifold s = 0. To proof
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convergence to this domain, consider the case
∥∥ukeq

∥∥ > u0, but in compliance
with condition (9.13). From (9.11)-(9.14) it follows that

sk+1 = (sk + (CA∗ − C)xk + CD∗rk)

(
1 − u0∥∥ukeq

∥∥
)

with u0 <
∥∥ukeq

∥∥
(9.15)

Thus

‖sk+1‖ = ‖(sk + (CA∗ − C)xk + CD∗rk)‖
(

1 − u0

‖ukeq‖

)

≤ ‖sk‖ + ‖(CA∗ − C)xk + CD∗rk‖ − u0

‖(CB∗)−1‖
< ‖sk‖

(9.16)

Hence ‖sk‖ decreases monotonously and, after a finite number of steps,∥∥ukeq

∥∥ < u0 is achieved. Discrete-time sliding mode will take place from the
next sampling point onwards.

Controller (9.14) provides chattering-free motion in the manifold s = 0 in
contrast to the direct implementation of a discontinuous controller resulting
in discretization chattering in the vicinity of the sliding manifold. Similarly
to the case of continuous-time systems, the equation s = Cx = 0 enables the
reduction of system order, and the desired system dynamics “in sliding mode”
can be designed by appropriate choice of matrix C.

9.3 Linear Discrete-Time Systems with Unknown Parameters

Complete information of the plant parameters is required for implementa-
tion of controller (9.14), which may not be available in practice. To extend
the discrete-time sliding mode concept to systems with unknown parameters,
suppose that system (9.7) operates under uncertainty conditions: the matrices
A and D, and the reference input rk are assumed unknown and may vary in
some ranges. Similarly to (9.14) the controller

uk =

⎧⎪⎪⎨
⎪⎪⎩

− (CB∗)−1
sk for

∥∥∥(CB∗)−1
sk

∥∥∥ ≤ u0

−u0
(CB∗)−1sk

‖(CB∗)−1sk‖ for
∥∥∥(CB∗)−1

sk

∥∥∥ > u0

(9.17)

respects the bounds of the control resources. Furthermore, controller (9.17)
does not depends on the plant parameters A and D and the reference input
rk. Substitution of (9.17) into the system equations of the previous section
leads to

sk+1 = sk

⎛
⎝1 − u0∥∥∥(CB∗)−1

sk

∥∥∥

⎞
⎠+ (CA∗ − C)xk + CD∗rk
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for u0 <
∥∥∥(CB∗)−1

sk

∥∥∥ and similarly to (9.16)

‖sk+1‖ ≤ ‖sk‖
(

1 − u0

‖(CB∗)−1sk‖

)
+ ‖(CA∗ − C)xk + CD∗rk‖

≤ ‖sk‖ − u0‖sk‖
‖(CB∗)−1sk‖ + ‖(CA∗ − C)xk + CD∗rk‖

≤ ‖sk‖ − u0

‖(CB∗)−1‖ + ‖(CA∗ − C)xk + CD∗rk‖
< ‖sk‖ .

Hence, as for the case with complete knowledge of system parameters dis-
cussed in Sect. 9.2, the value of ‖sk‖ decreases monotonously and after a finite
number of steps, control‖uk‖ < u0 will be within the available resources. Sub-
stituting this value from (9.17) into (9.13) results in

sk+1 = sk + (CA∗ − C)xk + CD∗rk.

Since the matrices(CA∗ − C) and CD∗ are of ∆t-order, the system motion
will be in a ∆t-order vicinity of the sliding manifold s = 0. Convergence to the
vicinity of the sliding manifold is achieved in finite time; thereafter, the mo-
tion trajectory does not follow the sliding manifold exactly, but rather remains
within a ∆t-order vicinity. This result should be expected from systems op-
erating under uncertainty conditions, since we are dealing with an open-loop
system during each sampling interval. In contrast to discrete-time systems
with direct implementation of the discontinuous controller, this motion is free
of discretization chattering as well.

10 Infinite-Dimensional Systems

All design methods discussed in the previous sections are oriented towards
dynamic processes governed by ordinary differential equations or finite-
dimensional discrete time equations. Many processes of modern technology
are beyond these classes and their models should be treated as infinite-
dimensional:

– Partial differential equations
– Integro-differential equations
– Systems with delays.

In particular the systems with state Q depending on time t and spatial
variable x are governed by partial differential equation

∂Q(x, t)/∂t = AQ(x)

with an unbounded operator A (Examples: ∂2/∂x2, ∂4/∂x4).
Theoretical generalizations to infinite-dimensional cases involve principle

difficulties since the both mathematical and design methods should be revised.
The table illustrates why new developments are needed for sliding mode con-
trol applications for infinite-dimensional systems.
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Finite dimensional systems:

ẋ = f(x) +B(x)u, x ∈ 1n, u ∈ 1m,

u =
{
u+ (x) if s(x) > 0
u−(x) if s(x) < 0 component-wise

ṡ = {∂s/∂x} f + {∂s/∂x}Bu

Infinite-dimensional systems:

∂Q(x, t)/∂t = AQ(x) + bu(x),
ṡ = grad(s)AQ+ grad(s)bu

Q and u are infinite-dimensional vectors, s(Q) = cQ(x) = 0 is a sliding
manifold, b and c are bounded operators.

Finite-dimensional Infinite-dimensional

Motion equations Lipshitz condition be-
yond s(x) = 0

A is unbounded

Existence Conditions “u should suppress
grad(s)f(x)”

A is unbounded
and “should suppress”
does not work

Control design Component-wise No components

The basic concepts of sliding mode control analysis and design methods
can be found in [27, 28]. The two examples will be given in this section as
illustration of sliding mode control applications for heat and mechanical sys-
tems.

10.1 Distributed Control of Heat Process

Consider control of one-dimensional heat process Q(x, t) with heat isolated
ends described by the second order nonlinear parabolic equation

ρ(x)Q̇ = (k(x,Q)Q′)′ − q(x,Q)Q+ u(x, t) + f(x, t)
0 ≤ x ≤ 1, t ≥ 0, Q(x, 0) = Q0(x), Q′(0, t) = Q′(x, t) = 0
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With distributed control u(x, t) and bounded unknown disturbance |f(x, t)|
≤ C. ρ, k and q are unknown positive heat characteristics. The control task is
to create temperature field Q∗(x, t). Without loss of generality one can confine
oneself to the case Q ∗ (x, t) = 0. The norm of deviation of the temperature
field from the desired distribution will be used as the Lyapunov functional

v(t) =
1
2

1∫

0

ρ(x)Q2(x, t)dx.

Compute the time derivative of functional v(t) on the system trajectories
with the given boundary conditions

v̇(t) =

1∫

0

Q(kQ′)′dx−
1∫

0

qQ2dx+

1∫

0

Q(u+ f)dx

= −
1∫

0

k(Q′)2dx−
1∫

0

qQ2dx+

1∫

0

Q(u+ f)dx.

Taking u = −MsignQ(x, t), M > C, obtain v̇(t) < 0 for
1∫
0

Q2(x, t)dx �= 0,

therefore v(t) → 0 with t → ∞. Hence the discontinuous control u =
−MsignQ(x, t) provides convergence of the heat field distribution to zero
in metrics L2. It is shown in [29], that point wise convergence stems from
convergence in metrics L2.

10.2 Flexible Mechanical System

This section discusses a flexible shaft as an example for a distributed system.
Consider a flexible shaft with length l and inertial load J acting as a torsion
bar as depicted in Fig. 28. Let e(t) be the absolute coordinate of the left end of

Fig. 28.
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the bar with input torque M and let d(x, t) be the relative deviation at location
0 ≤ x ≤ l at time t. Hence the absolute deviation of a point 0 < x < l at time
t is described by q(x, t) = e(t) + d(x, t) and governed by

∂2q(x, t)
∂t2

= a2 ∂
2q(x, t)
∂x2

where a is the flexibility constant depending on the geometry and the material
of the bar. The boundary conditions corresponding to the input torque M and
the load inertia J are

−M = a2 ∂q(0, t)
∂x

, −J ∂
2q(l, t)
∂t2

= a2 ∂
2q(l, t)
∂x2

.

Consider the input torque M as the control input u(t) and the load position
q(l, t) as the system output. To find the transfer function W (p) via Laplace
transformation, assume zero initial conditions

q(x, 0) = 0,
∂q(x, 0)
∂t

= 0 (10.1)

to yield
a2Q(0, p) = −U(p),
p2Q(x, p) = a2Q′′(x, p),
a2Q′(l, p) = −Jp2Q(l, p)

(10.2)

where Q(x, p) denotes the Laplace transform of q(x, t) with spatial derivatives
Q′(x, p) = ∂Q(x,p)

∂x and Q′′(x, p) = ∂2Q(x,p)
∂x2 , and U(p) represents the Laplace

transform of input variable u(t). The solution to the boundary value problem
(10.2) is given by

Q(x, p) = −
(1 − J

a p)e
− l−x

a p + (1 + J
a p)e

l−x
a p

ap
(
−(1 − J

a p)e
− l

ap + (1 + J
a p)e

l
ap
)U(p)

from which W (p) may be found by setting x = l to yield

W (p) =
2e−τp

ap
(
1 + J

a p
)

+
(
1 − J

a p
)
e−2τp

,

where τ = l
a describes the “delay” between the right end and the left end of

the bar. The corresponding differential-difference equation may be written in
the form

Jq̈(t) + Jq̈(t− τ) + aq̇(t) − aq̇(t− 2τ) = 2u(t− τ).

Denoting x1(t) = q(t), x2(t) = q̇(t), and z(t) = Jq̈(t) + aq̇(t), we obtain
the motion equations as
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ẋ1(t) = x2(t)
ẋ2(t) = − (ax2(t) + z(t)) /J (10.3)

z(t) = 2ax2(t− 2τ) − z(t− 2τ) + 2u(t− τ) (10.4)

which corresponds to the block-control structure in Chap. 7. In the first design
step, assign a desired control zd(t) for the first block

zd(t) = −M sign (kx1(t) + x2(t)) .

In order to achieve z(t) = zd(t) in the second design step, choose control
input u(t) in compliance with the methodology developed for discrete-time
systems in Chap. 9

u(t) = ueq(t) =
1
2

(−2ax2(t−τ) + z(t−τ) −M sign (kx1(t+ τ)+x2(t+τ))) .

The manifold s(t) = zd(t) − z(t) = 0 is reached within finite time t < τ
and sliding mode exists thereafter.

If control u(t) is bounded by |u(t)| ≤ u0, choose

u(t) =

{
ueq(t) for |ueq(t)| ≤ u0

u0 signueq(t) for |ueq(t)| > u0

and there exists an open domain containing the origin of the state space
of system ((10.3)–(10.4)) such that for all initial conditions in this domain,
sliding mode occurs along the manifold s(t) = 0. The values of x1(t+ τ) and
x2(t+τ) have to be calculated as the solution of (10.3) with known input z(t)
from (10.4)

x(t+ τ) = eAtx(t) +

τ∫

0

eAtBu(t− ξ) d ξ

with

A =
(

0 1
0 −a2

)
, B =

(
0

− 1
J

)
.

If only output y(t) = x1(t) can be measured, but not its time derivative
ẏ(t) = x2(t), an asymptotic observer should be used to estimate the state
x2(t).

11 Control of Induction Motor

Control of electric drives is one of the most challenging applications of sliding
modes due to wide use of motors and low efficiency of the conventional linear
control methodology for such essentially non-linear high-order plants as a.c.
motors. Implementation of sliding mode control by means of the most com-
mon electric converters has turned out to be simple enough since “on-off” is
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the only operation mode for them and discontinuities in control actions are
dictated by the very nature of power converters.

The most simple, reliable and economic of all motors, maintenance-free in-
duction motors supersede DC motors in today’s technology, although, in terms
of controllability, induction motors seem the most complicated. Application
of sliding mode control methodology to induction motors is demonstrated in
this section [30].

The behavior of an induction motor is described by a nonlinear high-order
system of differential equations:

dn

dt
=

1
J

(M −ML) , M =
xH
xR

(iαφβ − iβφα)

dφα
dt

= − rR
xR

φα − nφβ + rR
xH
xR

iα (11.1)

dφβ
dt

= − rR
xR

φβ + nφα + rR
xH
xR

iβ

diα
dt

=
xR

xsxR − x2
H

(
−xH
xR

dφα
dt

− rsiα + uα

)

diβ
dt

=
xR

xsxR − x2
H

(
−xH
xR

dφβ
dt

− rsiβ + uβ

)

[
uα
uβ

]
=

2
3

[
eRε eSα eTα
eRα eSβ eTβ

]
×

⎡
⎣uRuS
uT

⎤
⎦ (11.2)

where n is a rotor angle velocity, and two-dimensional vectors φT = (φα, φβ);
iT = (iα, iβ) , uT = (uα, uβ) are rotor flux, stator current, and voltage in the
fixed coordinate system (α, β), respectively;M andML are a torque developed
by a motor and a load torque, for an induction motor controlled by modern
power converters uR, uS , uT are phase voltages, which may take only two
values either u0 or −u0; eR, eS , eT are unit vectors of phase windings, R, S,
T ; and J , xH , xS , xR, rR, rS are motor parameters.

The control goal is to make one of the mechanical coordinates, for example,
an angle speed n (t), be equal to a reference input n0 (t) and the magnitude
of the rotor flux‖φ (t)‖ be equal to its scalar reference input φ0 (t) . The devi-
ations from the desired motions are described by the functions

s1 = c1 [n0 − n (t)] + d
dt [n0 − n (t)]

s2 = c2 [φ0 − ‖φ (t)‖] + d
dt [φ0 − ‖φ (t)‖] (11.3)

and c1, c2 are const positive values.
The static inverter forms three independent controls uR, uS , uT so one

degree of freedom can be used to satisfy some additional criterion. Let the
voltages uR, uS , uT constitute a three-phase balanced system, which means
that the equality
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s3 =
∫ t

0

(uR + uS + uT ) dt = 0 (11.4)

should hold for any t.
If all three functions s1, s2, s3 are equal to zero then, in addition to

balanced system condition, the speed and flux mismatches decay exponentially
since s1 = 0, s2 = 0 with c1, c2 > 0 are first-order differential equations.
This means that the design task is reduced to enforcing the sliding mode
in the manifold s = 0, sT = (s1, s2, s3) in the system (11.1) with control
uT = (uR, uS , uT ) . Projection of the system motion on subspace s can be
written as

ds

dt
= F +Du

where vector FT = (f1, f2, 0) and matrix D are calculated on the trajectories
of ((11.1)–(11.4)). They do not depend on control and are continuous functions
of motor state and inputs. Matrix D is of the form

D =
[
D1

d

]
,

D1 =
kxH

xSxR − x2
H

[ 1
J 0
0 rR

‖φ‖

]
×
[
φβ −φα
φα φβ

]
×
[
eRε eSα eTα
eRα eSβ eTβ

]

and
d = (1, 1, 1) , k − const, detD �= 0.

Discontinuous control will be designed using the Lyapunov function

V =
1
2
sT s ≥ 0.

Find its time derivative on the system state trajectories:

dV

dt
= sT (F +Du)

Substitution of control

u = −u0 sgn s∗ s∗ = DT s (s∗)T = (s∗1, s
∗
2, s

∗
3)

yields
dV

dt
= (s∗)T F ∗ − u0 |s∗|

where
F ∗T =

(
D−1F

)T = (f∗1 , f
∗
2 , f

∗
3 )

|s∗| = |s∗1| + |s∗2| + |s∗3| .
The conditions

u0 > |f∗i | , i = 1, 2, 3
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provide negativeness of dV/dt and hence the origin in the space s∗ (and by
virtue of detD �= 0 in the space s as well) is asymptotically stable. Hence
sliding mode arises in the manifold s∗ = 0, which enables one to steer the
variables under control to the desired values. Note that the existence condition
are inequalities, therefore the only range of parameter variations and a load
torque should be known for the choice of necessary values of phase voltages.

The equations of discontinuity surface s∗ = 0 depend on an angle accel-
eration, rotor flux, and its time derivative. These values may be found using
asymptotic observers under the assumption that an angle speed n and stator
currents iR, iS , iT are measured directly. Bearing in mind that

[
iα
iβ

]
=

2
3

[
eRε eSα eTα
eRα eSβ eTβ

]⎡
⎣ iRiS
iT

⎤
⎦

design an observer with the state vector
(
φ̂α, φ̂β

)
as an estimate of rotor flux

components φα and φβ and with iα and iβ as inputs:

dφ̂α
dt

=
rR
xR

φ̂α − nφ̂β + rR
xH
xR

iα

dφ̂β
dt

= − rR
xR

φ̂β + nφ̂α + rR
xH
xR

iβ .

To obtain the equations for the estimation errorφ̄α = φ̂α−φα, φ̄β = φ̂β−φβ
the equations for φα and φβ in (11.1) should be subtracted from the observer
equations:

dφ̄α
dt

= − rR
xR

φ̄α − nφ̄β

dφ̄β
dt

= − rR
xR

φ̄β + nφ̄α

The time derivative of Lyapunov function

V =
1
2
(
φ̄2
α + φ̄2

β

)
> 0

on the solutions of the estimate equation

dV

dt
= − rR

xR

(
φ̄2
α + φ̄2

β

)
= −2

rR
xR

V < 0

is negative, which testifies to exponential convergence of V to zero and the
estimates φ̂α and φ̂β to the real values of φα and φα. The known values φα, φβ ,
iα and iβ enable one to find the time derivatives dφα/dt and dφβ/dt from the
estimator equations and then d ‖φ‖ /dt needed for designing the discontinuity
surface s2 = 0.
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Fig. 29.

The equation of the discontinuity surface s1 depends on acceleration dn/dt.
Since the values of φα and φβ have been found and the currents iα and iβ are
measured directly, the motor torque may be calculated:

M =
(
xH
xR

)
(iαφβ − iβφα) .

Under the assumption that the load torque ML varies slowly the value of
dn/dt may be found using the conventional linear state observer.

In the further studies the sliding mode observer was developed for
so-called sensorless systems to estimate the motor flux and speed simul-
taneously. Figure 29 shows the results of experiments for Westinghaus 5-hp
220V Y-connected four-pole induction motor. Real speed is measured by an
optical encoder for speed estimation verification only and it is not used for
the feedback control.
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31. Proprietà di media e teoremi di confronto in Fisica Matematica

1964 32. Relatività generale
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