Brought to You by

Like the book? Buy it!

Digital Logic Testing

Second Edition

ALEXANDER MICZO

DIGITAL LOGIC TESTING
AND SIMULATION

DIGITAL LOGIC TESTING
AND SIMULATION

SECOND EDITION

Alexander Miczo

Wl LEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Miczo, Alexander.
Digital logic testing and simulation / Alexander Miczo—2nd ed.
p.cm.
Rev. ed. of: Digital logic testing and simulation. c1986.
Includes bibliographical references and index.
ISBN 0-471-43995-9 (cloth)
1. Digital electronics—Testing. I. Miczo, Alexander. Digital logic testing and simulation
I1. Title.

TK7868.D5M49 2003
621.3815"48—dc21
2003041100

Printed in the United States of America

10987654321

I CONTENTS

Preface

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction

Quality

The Test

The Design Process

Design Automation
Estimating Yield

Measuring Test Effectiveness
The Economics of Test

Case Studies
1.9.1 The Effectiveness of Fault Simulation
1.9.2 Evaluating Test Decisions

1.10 Summary

Problems

References

2 Simulation

2.1
2.2
23
24
2.5
2.6

Introduction

Background

The Simulation Hierarchy
The Logic Symbols
Sequential Circuit Behavior

The Compiled Simulator
2.6.1 Ternary Simulation

Xvii

O N DN

14
20

23
23
24

26
29

30

33

33
33
36
37
39

44
48

vi

CONTENTS

2.7

2.8
29

2.10
2.11

2.12
2.13

2.14

2.6.2 Sequential Circuit Simulation
2.6.3 Timing Considerations

2.6.4 Hazards

2.6.5 Hazard Detection

Event-Driven Simulation

2.7.1 Zero-Delay Simulation
2.7.2 Unit-Delay Simulation
2.7.3 Nominal-Delay Simulation

Multiple-Valued Simulation

Implementing the Nominal-Delay Simulator

2.9.1 The Scheduler

2.9.2 The Descriptor Cell

2.9.3 Evaluation Techniques

2.9.4 Race Detection in Nominal-Delay Simulation
2.9.5 Min-Max Timing

Switch-Level Simulation

Binary Decision Diagrams
2.11.1 Introduction

2.11.2 The Reduce Operation
2.11.3 The Apply Operation

Cycle Simulation

Timing Verification
2.13.1 Path Enumeration
2.13.2 Block-Oriented Analysis

Summary

Problems

References

Fault Simulation

3.1
32
33

Introduction
Approaches to Testing

Analysis of a Faulted Circuit

3.3.1 Analysis at the Component Level
3.3.2 Gate-Level Symbols

3.3.3 Analysis at the Gate Level

48
50
50
52

54
56
58
59

61

64
64
67
70
71
72

74

86
86
91
96

101

106
107
108

110
111

116

119

119
120

122
122
124
124

CONTENTS

3.4 The Stuck-At Fault Model
3.4.1 The AND Gate Fault Model
3.4.2 The OR Gate Fault Model
3.4.3 The Inverter Fault Model
3.4.4 The Tri-State Fault Model
3.4.5 Fault Equivalence and Dominance
3.5 The Fault Simulator: An Overview
3.6 Parallel Fault Processing
3.6.1 Parallel Fault Simulation
3.6.2 Performance Enhancements
3.6.3 Parallel Pattern Single Fault Propagation
3.7 Concurrent Fault Simulation
3.7.1 An Example of Concurrent Simulation
3.7.2 The Concurrent Fault Simulation Algorithm
3.7.3 Concurrent Fault Simulation: Further Considerations
3.8 Delay Fault Simulation
3.9 Differential Fault Simulation
3.10 Deductive Fault Simulation
3.11 Statistical Fault Analysis
3.12 Fault Simulation Performance
3.13 Summary
Problems
References

Automatic Test Pattern Generation

4.1
4.2

43

Introduction

The Sensitized Path
4.2.1 The Sensitized Path: An Example
4.2.2 Analysis of the Sensitized Path Method

The D-Algorithm

4.3.1 The D-Algorithm: An Analysis
4.3.2 The Primitive D-Cubes of Failure
4.3.3 Propagation D-Cubes

4.3.4 Justification and Implication
4.3.5 The D-Intersection

vii

125
127
128
128
128
129

131

134
134
136
137

139
139
141
146

147
149
151
152
155
157
159

162

165

165

165
166
168

170
171
174
177
179
180

viii CONTENTS

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14

Testdetect

The Subscripted D-Algorithm
PODEM

FAN

Socrates

The Critical Path

Critical Path Tracing

Boolean Differences

Boolean Satisfiability

Using BDDs for ATPG
4.13.1 The BDD XOR Operation
4.13.2 Faulting the BDD Graph

Summary

Problems

References

5 Sequential Logic Test

5.1
52

53

54

55
5.6

Introduction

Test Problems Caused by Sequential Logic
5.2.1 The Effects of Memory
5.2.2 Timing Considerations

Sequential Test Methods

5.3.1 Seshu’s Heuristics

5.3.2 The Iterative Test Generator
5.3.3 The 9-Value ITG

5.3.4 The Critical Path

5.3.5 Extended Backtrace

5.3.6 Sequential Path Sensitization

Sequential Logic Test Complexity
5.4.1 Acyclic Sequential Circuits
5.4.2 The Balanced Acyclic Circuit
5.4.3 The General Sequential Circuit

Experiments with Sequential Machines

A Theoretical Limit on Sequential Testability

182
184
188
193
202
205
208
210
216

219
219
220

224
226

230

233

233

233
234
237

239
239
241
246
249
250
252

259
260
262
264

266
272

5.7

CONTENTS

Summary

Problems

References

Automatic Test Equipment

6.1 Introduction
6.2 Basic Tester Architectures
6.2.1 The Static Tester
6.2.2 The Dynamic Tester
6.3 The Standard Test Interface Language
6.4 Using the Tester
6.5 The Electron Beam Probe
6.6 Manufacturing Test
6.7 Developing a Board Test Strategy
6.8 The In-Circuit Tester
6.9 The PCB Tester
6.9.1 Emulating the Tester
6.9.2 The Reference Tester
6.9.3 Diagnostic Tools
6.10 The Test Plan
6.11 Visual Inspection
6.12 Test Cost
6.13 Summary
Problems
References

Developing a Test Strategy

7.1
7.2
7.3
7.4

Introduction
The Test Triad
Overview of the Design and Test Process

A Testbench
7.4.1 The Circuit Description
7.4.2 The Test Stimulus Description

277
278

280

283

283

284
284
286

288
293
299
301
304
307

310
311
312
313

315
316
319
319
320

321

323

323
323
325

327
327
330

X

CONTENTS

7.5

7.6

1.7

7.8

7.9

7.10

Fault Modeling

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5

Checkpoint Faults
Delay Faults
Redundant Faults
Bridging Faults
Manufacturing Faults

Technology-Related Faults

7.6.1
7.6.2

7.6.3 Fault Coverage Results in Equivalent Circuits

MOS
CMOS

The Fault Simulator

7.7.1
7.7.2
7.7.3
7.7.4
7.1.5
7.7.6
7.1.7
7.7.8
7.7.9

Random Patterns

Seed Vectors

Fault Sampling

Fault-List Partitioning
Distributed Fault Simulation
Iterative Fault Simulation
Incremental Fault Simulation
Circuit Initialization

Fault Coverage Profiles

7.7.10 Fault Dictionaries
7.7.11 Fault Dropping

Behavioral Fault Modeling

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

Behavioral MUX

Algorithmic Test Development
Behavioral Fault Simulation
Toggle Coverage

Code Coverage

The Test Pattern Generator

7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7

Trapped Faults

SOFTG

The Imply Operation
Comprehension Versus Resolution
Probable Detected Faults

Test Pattern Compaction

Test Counting

Miscellaneous Considerations
7.10.1 The ATPG/Fault Simulator Link

331
331
333
334
335
337

337
338
338
340

341
342
343
346
347
348
348
349
349
350
351
352

353
354
356
361
364
365

368
368
369
369
371
372
372
374

378
378

CONTENTS

7.10.2 ATPG User Controls
7.10.3 Fault-List Management
7.11 Summary
Problems

References

Design-For-Testability

8.1 Introduction

8.2 Ad Hoc Design-for-Testability Rules
8.2.1 Some Testability Problems
8.2.2 Some Ad Hoc Solutions

8.3 Controllability/Observability Analysis
8.3.1 SCOAP
8.3.2 Other Testability Measures
8.3.3 Test Measure Effectiveness
8.3.4 Using the Test Pattern Generator
8.4 The Scan Path
8.4.1 Overview
8.4.2 Types of Scan-Flops
8.4.3 Level-Sensitive Scan Design
8.4.4 Scan Compliance
8.4.5 Scan-Testing Circuits with Memory
8.4.6 Implementing Scan Path
8.5 The Partial Scan Path

8.6 Scan Solutions for PCBs
8.6.1 The NAND Tree
8.6.2 The 1149.1 Boundary Scan

8.7 Summary
Problems

References

Built-In Self-Test

9.1 Introduction

9.2 Benefits of BIST

9.3 The Basic Self-Test Paradigm

Xi
380
381
382
383
385

387

387

388
389
393

396
396
403
405
406

407
407
410
412
416
418
420

426

432
433
434

443
444
449

451

451
452
454

Xii

10

CONTENTS

9.4

9.5

9.6

9.7

9.8

9.9

9.3.1
9.3.2
933
934

A Mathematical Basis for Self-Test
Implementing the LFSR

The Multiple Input Signature Register (MISR)
The BILBO

Random Pattern Effectiveness

9.4.1
942
9423
9.4.4
945

Determining Coverage
Circuit Partitioning
Weighted Random Patterns
Aliasing

Some BIST Results

Self-Test Applications

9.5.1
952
953
954
955
9.5.6

Microprocessor-Based Signature Analysis

Self-Test Using MISR/Parallel SRSG (STUMPS)

STUMPS in the ES/9000 System
STUMPS in the S/390 Microprocessor
The Macrolan Chip

Partial BIST

Remote Test

9.6.1
9.6.2

The Test Controller
The Desktop Management Interface

Black-Box Testing

9.7.1
9.7.2
9.7.3

The Ordering Relation
The Microprocessor Matrix
Graph Methods

Fault Tolerance

9.8.1
9.8.2
9.8.3
9.8.4
9.8.5

Performance Monitoring
Self-Checking Circuits

Burst Error Correction

Triple Modular Redundancy

Software Implemented Fault Tolerance

Summary

Problems

References

Memory Test

10.1 Introduction

455
459
460
463

464
464
465
467
470
471

471
471
474
4717
478
480
482

484
484
487

488
489
493
494
495
496
498
499
503
505
505
507
510

513
513

11

10.2
10.3
10.4
10.5

10.6
10.7

10.8

CONTENTS

Semiconductor Memory Organization
Memory Test Patterns
Memory Faults

Memory Self-Test

10.5.1 A GALPAT Implementation
10.5.2 The 9N and 13N Algorithms
10.5.3 Self-Test for BIST

10.5.4 Parallel Test for Memories
10.5.5 Weak Read—Write

Repairable Memories

Error Correcting Codes

10.7.1 Vector Spaces

10.7.2 The Hamming Codes
10.7.3 ECC Implementation
10.7.4 Reliability Improvements
10.7.5 Iterated Codes

Summary

Problems

References

Ipyng
11.1
11.2
11.3

11.4
11.5
11.6
11.7
11.8

Introduction
Background

Selecting Vectors
11.3.1 Toggle Count
11.3.2 The Quietest Method

Choosing a Threshold
Measuring Current

Ippq Versus Burn-In
Problems with Large Circuits

Summary

Problems

References

xiii
514
517

521

524
525
529
531
531
533

535

537
538
540
542
543
545

546
547

549

551

551
551

553
553
554

556
557
559
562
564
565

565

Xiv CONTENTS

12 Behavioral Test and Verification

12.1
12.2
12.3

12.4

12.5
12.6

12.7

12.8

12.9

Introduction
Design Verification: An Overview

Simulation

12.3.1 Performance Enhancements
12.3.2 HDL Extensions and C++
12.3.3 Co-design and Co-verification

Measuring Simulation Thoroughness
12.4.1 Coverage Evaluation
12.4.2 Design Error Modeling

Random Stimulus Generation

The Behavioral ATPG

12.6.1 Overview

12.6.2 The RTL Circuit Image

12.6.3 The Library of Parameterized Modules

12.6.4 Some Basic Behavioral Processing Algorithms

The Sequential Circuit Test Search System (SCIRTSS)
12.7.1 A State Traversal Problem
12.7.2 The Petri Net

The Test Design Expert

12.8.1 An Overview of TDX

12.8.2 DEPOT

12.8.3 The Fault Simulator

12.8.4 Building Goal Trees

12.8.5 Sequential Conflicts in Goal Trees
12.8.6 Goal Processing for a Microprocessor
12.8.7 Bidirectional Goal Search

12.8.8 Constraint Propagation

12.8.9 Pitfalls When Building Goal Trees
12.8.10 MaxGoal Versus MinGoal
12.8.11 Functional Walk

12.8.12 Learn Mode

12.8.13 DFT in TDX

Design Verification
12.9.1 Formal Verification
12.9.2 Theorem Proving

567

567
568

570
570
572
573

575
575
578

581

587
587
588
589
593

597
597
602

607
607
614
616
617
618
620
624
625
626
627
629
630
633

635
636
636

12.9.3 Equivalence Checking
12.9.4 Model Checking
12.9.5 Symbolic Simulation

12.10 Summary

Problems

References

Index

CONTENTS

XV

638
640
648

650
652

653

657

I PREFACE

About one and a half decades ago the state of the art in DRAMs was 64K bytes, a
typical personal computer (PC) was implemented with about 60 to 100 dual in-line
packages (DIPs), and the VAX11/780 was a favorite platform for electronic design
automation (EDA) developers. It delivered computational power rated at about one
MIP (million instructions per second), and several users frequently shared this
machine through VT100 terminals.

Now, CPU performance and DRAM capacity have increased by more than three
orders of magnitude. The venerable VAX11/780, once a benchmark for performance
comparison and host for virtually all EDA programs, has been relegated to muse-
ums, replaced by vastly more powerful PCs, implemented with fewer than a half
dozen integrated circuits (ICs), at a fraction of the cost. Experts predict that shrink-
ing geometries, and resultant increase in performance, will continue for at least
another 10 to 15 years.

Already, it is becoming a challenge to use the available real estate on a die.
Whereas in the original Pentium design various teams vied for a few hundred addi-
tional transistors on the die,! it is now becoming increasingly difficult for a design
team to use all of the available transistors.’

The ubiquitous 8-bit microcontroller appears in entertainment products and in
automobiles; billions are sold each year. Gordon Moore, Chairman Emeritus of Intel
Corp., observed that these less glamorous workhorses account for more than 98% of
Intel’s unit sales.> More complex ICs perform computation, control, and communi-
cations in myriad applications. With contemporary EDA tools, one logic designer
can create complex digital designs that formerly required a team of a half dozen
logic designers or more. These tools place logic design capability into the hands of
an ever-growing number of users. Meanwhile, these development tools themselves
continue to evolve, reducing turn-around time from design of logic circuit to receipt
of fabricated parts.

This rapid advancement is not without problems. Digital test and verification
present major hurdles to continued progress. Problems associated with digital logic
testing have existed for as long as digital logic itself has existed. However, these
problems have been exacerbated by the growing number of circuits on individual
chips. One development group designing a RISC (reduced instruction set computer)
stated, “the work required to ... test a chip of this size approached the amount of
effort required to design it. If we had started over, we would have used more
resources on this tedious but important chore.”

Xvii

Xviii PREFACE

The increase in size and complexity of circuits on a chip, often with little or no
increase in the number of I/O pins, creates a testing bottleneck. Much more logic
must be controlled and observed with the same number of I/O pins, making it more
difficult to test the chip. Yet, the need for testing continues to grow in importance.
The test must detect failures in individual units, as well as failures caused by defec-
tive manufacturing processes. Random defects in individual units may not signifi-
cantly impact a company’s balance sheet, but a defective manufacturing process for
a complex circuit, or a design error in some obscure function, could escape detec-
tion until well after first customer shipments, resulting in a very expensive product
recall.

Public safety must also be taken into account. Digital logic devices have become
pervasive in products that affect public safety, including applications such as trans-
portation and human implants. These products must be thoroughly tested to ensure
that they are designed and fabricated correctly. Where design and test shared tools in
the past, there is a steadily growing divergence in their methodologies. Formal veri-
fication techniques are emerging, and they are of particular importance in applica-
tions involving public safety.

Each new generation of EDA tools makes it possible to design and fabricate chips
of greater complexity at lower cost. As a result, testing consumes a greater percent-
age of total production cost. It requires more effort to create a test program and
requires more stimuli to exercise the chip. The difficulty in creating test programs
for new designs also contributes to delays in getting products to the marketplace.
Product managers must balance the consequences of delaying shipment of a product
for which adequate test programs have not yet been developed against the conse-
quences of shipping product and facing the prospect of wholesale failure and return
of large quantities of defective products.

New test strategies are emerging in response to test problems arising from these
increasingly complex devices, and greater emphasis is placed on finding defects as
early as possible in the manufacturing cycle. New algorithms are being devised to
create tests for logic circuits, and more attention is being given to design-for-test
(DFT) techniques that require participation by logic designers, who are being asked
to adhere to design rules that facilitate design of more testable circuits.

Built-in self-test (BIST) is a logical extension of DFT. It embeds test mechanisms
directly into the product being designed, often using DFT structures. The goal is to
place stimulus generation and response evaluation circuits closer to the logic being
tested.

Fault tolerance also modifies the design, but the goal is to contain the effects of
faults. It is used when it is critical that a product operate correctly. The goal of pas-
sive fault tolerance is to permit continued correct circuit operation in the presence
of defects. Performance monitoring is another form of fault tolerance, sometimes
called active fault tolerance, in which performance is evaluated by means of special
self-testing circuits or by injecting test data directly into a device during operation.
Errors in operation can be recognized, but recovery requires intervention by the
processor or by an operator. An instruction may be retried or a unit removed from
operation until it is repaired.

PREFACE Xix

Remote diagnostics are yet another strategy employed in the quest for reliable
computing. Some manufacturers of personal computers provide built-in diagnostics.
If problems occur during operation and if the problem does not interfere with the
ability to communicate via the modem, then the computer can dial a remote com-
puter that is capable of analyzing and diagnosing the cause of the problem.

It should be obvious from the preceding paragraphs that there is no single solu-
tion to the test problem. There are many solutions, and a solution may be appropri-
ate for one application but not for another. Furthermore, the best solution for a
particular application may be a combination of available solutions. This requires that
designers and test engineers understand the strengths and weaknesses of the various
approaches.

THE ROADMAP

This textbook contains 12 chapters. The first six chapters can be viewed as building
blocks. Topics covered include simulation, fault simulation, combinational and
sequential test pattern generation, and a brief introduction to tester architectures.
The last six chapters build on the first six. They cover design-for-test (DFT), built-in
self-test (BIST), fault tolerance, memory test, IDDQ test, and, finally, behavioral test
and verification. This dichotomy represents a natural partition for a two-semester
course. Some examples make use of the Verilog hardware design language (HDL).
For those readers who do not have access to a commercial Verilog product, a quite
good (and free) Verilog compiler/simulator can be downloaded from http:/
www.icarus.com. Every effort was made to avoid relying on advanced HDL con-
cepts, so that the student familiar only with programming languages, such as C, can
follow the Verilog examples.

PART |

Chapter 1 begins with some general observations about design, test, and quality.
Acceptable quality level (AQL) depends both on the yield of the manufacturing pro-
cesses and on the thoroughness of the test programs that are used to identify defec-
tive product. Process yield and test thoroughness are focal points for companies
trying to balance quality, product cost, and time to market in order to remain profit-
able in a highly competitive industry.

Simulation is examined from various perspectives in Chapter 2. Simulators used
in digital circuit design, like compilers for high-level languages, can be compiled or
interpreted, with each having its distinct advantages and disadvantages. We start by
looking at contemporary hardware design languages (HDL). Ironically, while soft-
ware for personal computers has migrated from text to graphical interfaces, the
input medium for digital circuits has migrated from graphics (schematic editors) to
text. Topics include event-driven simulation and selective trace. Delay models for
simulation include O-delay, unit delay, and nominal delay. Switch-level simulation

XX PREFACE

represents one end of the simulation spectrum. Behavioral simulation and cycle
simulation represent the other end. Binary decision diagrams (BDDs), used in
support of cycle simulation, are introduced in this chapter. Timing analysis in syn-
chronous designs is also discussed.

Chapter 3 concentrates on fault simulation algorithms, including parallel,
deductive, and concurrent fault simulation. The chapter begins with a discussion of
fault modeling, including, of course, the stuck-at fault model. The basic algorithms
are examined, with a look at ways in which excess computations can be squeezed
out of the algorithms in order to improve performance. The relationship between
algorithms and the design environment is also examined: For example, how are the
different algorithms affected by the choice of synchronous or asynchronous design
environment?

The topic for Chapter 4 is automatic test pattern generation (ATPG) for combi-
national circuits. Topological, or path tracing, methods, including the D-algorithm
with its formal notation, along with PODEM, FAN, and the critical path, are
examined. The subscripted D-algorithm is examined; it represents an example of
symbolic propagation. Algebraic methods are described next; these include Bool-
ean difference and Boolean satisfiability. Finally, the use of BDDs for ATPG is
discussed.

Sequential ATPG merits a chapter of its own. The search for an effective sequential
ATPG has continued unabated for over a quarter-century. The problem is complicated
by the presence of memory, races, and hazards. Chapter 5 focuses on some of the
methods that have evolved to deal with sequential circuits, including the iterative test
generator (ITG), the 9-value ITG, and the extended backtrace (EBT). We also look at
some experiments on state machines, including homing sequences, distinguishing
sequences, and so on, and see how these lead to circuits which, although testable,
require more information than is available from the netlist.

Chapter 6 focuses on automatic test equipment. Testers in use today are extraor-
dinarily complex; they have to be in order to keep up with the ICs and PCBs in pro-
duction; hence this chapter can be little more than a brief overview of the subject.
Testers are used to test circuits in production environments, but they are also used to
characterize ICs and PCBs. In order to perform characterization, the tester must be
able to operate fast enough to clock the circuit at its intended speed, it must be able
to accurately measure current and voltage, and it must be possible to switch input
levels and strobe output pins in a matter of picoseconds. The Standard Test Interface
Language (STIL) is also examined in this chapter. Its goal it to give a uniform
appearance to the many different tester architectures on the marketplace.

PART II

Topics covered in the first six chapters, including logic and fault simulators, ATPG
algorithms, and the various testers and test strategies, can be thought of as building
blocks, or components, of a successful test strategy. In Chapter 7 we bring these
components together in order to determine how to leverage the tools, individually

PREFACE XXi

and in conjunction with other tools, in order to create a successful test strategy. This
often requires an understanding of the environment in which they function, includ-
ing such things as design methodologies, HDLs, circuit models, data structures, and
fault modeling strategies. Different technologies and methodologies require very
different tools.

The focus up to this point has been on the traditional approach to test—that is,
apply stimuli and measure response at the output pins. Unfortunately, existing
algorithms, despite decades of research, remain ineffective for general sequential
logic. If the algorithms cannot be made powerful enough to test sequential logic,
then circuit complexity must be reduced in order to make it testable. Chapters 8
and 9 look at ways to improve testability by altering the design in order to improve
access to its inner workings. The objectives are to make it easier to apply a test
(improve controllability) and make it easier to observe test results (improve
observability). Design-for-test (DFT) makes it easier to develop and apply tests via
conventional testers. Built-in self-test (BIST) attempts to replace the tester, or at
least offload many of its tasks. Both methodologies make testing easier by reducing
the amount and/or complexity of logic through which a test must travel either to
stimulate the logic being tested or to reach an observable output whereby the test
can be monitored.

Memory test is covered in Chapter 10. These structures have their own problems
and solutions as a result of their regular, repetitive structure and we examine some
algorithms designed to exploit this regularity. Because memories keep growing in
size, the memory test problem continues to escalate. The problem is further exac-
erbated by the fact that increasingly larger memories are being embedded in
microprocessors and other devices. In fact, it has been suggested that as micropro-
cessors grow in transistor count, they are becoming de facto memories with a little
logic wrapped around them. A growing trend in memories is the use of memory
BIST (MBIST). This chapter contains two Verilog implementations of memory
test algorithms.

Complementary metal oxide semiconductor (CMOS) circuits draw little or no
current except when clocked. Consequently, excessive current observed when an IC
is in the quiescent state is indicative of either a hard failure or a potential reliability
problem. A growing number of investigators have researched the implications of this
observation, and determined how to leverage this potentially powerful test strategy.
Ippq Will be the focus of Chapter 11.

Design verification and test can be viewed as complementary aspects of one
problem, namely, the delivery of reliable computation, control, and communications
in a timely and cost-effective manner. However, it is not completely obvious how
these two disciplines are related. In Chapter 12 we look closely at design verifica-
tion. The opportunities to leverage test development methodologies and tools in
design verification—and, conversely, the opportunities to leverage design verifica-
tion efforts to obtain better test programs—make it essential to understand the rela-
tionships between these two efforts. We will look at some evolving methodologies
and some that are maturing, and we will cover some approaches best described as
ongoing research.

XXii PREFACE

The goal of this textbook is to cover a representative sample of algorithms and
practices used in the IC industry to identify faulty product and prevent, to the extent
possible, tester escapes—that is, faulty devices that slip through the test process and
make their way into the hands of customers. However, digital test is not a “one size
fits all” industry.

Given two companies with similar digital products, test practices may be as dif-
ferent as day and night, and yet both companies may have rational test plans. Minor
nuances in product manufacturing practices can dictate very different strategies.
Choices must be made everywhere in the design and test cycle. Different individuals
within the same project may be using simulators ranging from switch-level to cycle-
based. Testability enhancements may range from ad hoc techniques, to partial-scan,
to full-scan. Choices will be dictated by economics, the capabilities of the available
tools, the skills of the design team, and other circumstances.

One of the frustrations faced over the years by those responsible for product qual-
ity has been the reluctance on the part of product planners to face up to and address
test issues. Nearly 500 years ago Nicolo Machiavelli, in his book The Prince,
observed that “fevers, as doctors say, at their beginning are easy to cure but difficult
to recognise, but in course of time when they have not at first been recognised, and
treated, become easy to recognise and difficult to cure.”” In a similar vein, in the
early stages of a design, test problems are difficult to recognize but easy to solve;
further into the process, test problems become easier to recognize but more difficult
to cure.

REFERENCES

1. Brandt, R., The Birth of Intel’s Pentium Chip—and the Labor Pains, Business Week, March
29, 1993, pp. 94-95.

2. Bass, Michael J., and Clayton M. Christensen, The Future of the Microprocessor Business,
IEEE Spectrum, Vol. 39, No. 4, April 2002, pp. 34-39.

3. Port, O., Gordon Moore’s Crystal Ball, Business Week, June 23, 1997, p. 120.
4. Foderaro, J. K., K. S. Van Dyke, and D. A. Patterson, Running RISCs, VLSI Des.,
September—October 1982, pp. 27-32.

5. Machiavelli, Nicolo, The Prince and the Discourses, in The Prince, Chapter 3, Random
House, 1950.

I CHAPTER 1

Introduction

1.1 INTRODUCTION

Things don’t always work as intended. Some devices are manufactured incorrectly,
others break or wear out after extensive use. In order to determine if a device was
manufactured correctly, or if it continues to function as intended, it must be tested.
The test is an evaluation based on a set of requirements. Depending on the complex-
ity of the product, the test may be a mere perusal of the product to determine
whether it suits one’s personal whims, or it could be a long, exhaustive checkout of a
complex system to ensure compliance with many performance and safety criteria.
Emphasis may be on speed of performance, accuracy, or reliability.

Consider the automobile. One purchaser may be concerned simply with color and
styling, another may be concerned with how fast the automobile accelerates, yet
another may be concerned solely with reliability records. The automobile manufac-
turer must be concerned with two kinds of test. First, the design itself must be tested
for factors such as performance, reliability, and serviceability. Second, individual
units must be tested to ensure that they comply with design specifications.

Testing will be considered within the context of digital logic. The focus will be on
technical issues, but it is important not to lose sight of the economic aspects of the
problem. Both the cost of developing tests and the cost of applying tests to individual
units will be considered. In some cases it becomes necessary to make trade-offs. For
example, some algorithms for testing memories are easy to create; a computer pro-
gram to generate test vectors can be written in less than 12 hours. However, the set of
test vectors thus created may require several millenia to apply to an actual device.
Such a test is of no practical value. It becomes necessary to invest more effort into
initially creating a test in order to reduce the cost of applying it to individual units.

This chapter begins with a discussion of quality. Once we reach an agreement on
the meaning of quality, as it relates to digital products, we shift our attention to the
subject of testing. The test will first be defined in a broad, generic sense. Then we
put the subject of digital logic testing into perspective by briefly examining the
overall design process. Problems related to the testing of digital components and

Digital Logic Testing and Simulation, Second Edition, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

2 INTRODUCTION

assemblies can be better appreciated when viewed within the context of the overall
design process. Within this process we note design stages where testing is required.
We then look at design aids that have evolved over the years for designing and
testing digital devices. Finally, we examine the economics of testing.

1.2 QUALITY

Quality frequently surfaces as a topic for discussion in trade journals and periodi-
cals. However, it is seldom defined. Rather, it is assumed that the target audience
understands the intended meaning in some intuitive way. Unfortunately, intuition
can lead to ambiguity or confusion. Consider the previously mentioned automobile.
For a prospective buyer it may be deemed to possess quality simply because it has a
soft leather interior and an attractive appearance. This concept of quality is clearly
subjective: It is based on individual expectations. But expectations are fickle: They
may change over time, sometimes going up, sometimes going down. Furthermore,
two customers may have entirely different expectations; hence this notion of quality
does not form the basis for a rigorous definition.

In order to measure quality quantitatively, a more objective definition is needed.
We choose to define quality as the degree to which a product meets its requirements.
More precisely, it is the degree to which a device conforms to applicable specifica-
tions and workmanship standards.! In an integrated circuit (IC) manufacturing envi-
ronment, such as a wafer fab area, quality is the absence of “drift"—that is, the
absence of deviation from product specifications in the production process. For digi-
tal devices the following equation, which will be examined in more detail in a later
section, is frequently used to quantify quality level:”

AQL=Y-D (1.1)

In this equation, AQL denotes acceptable quality level, it is a function of Y (product
yield) and T (test thoroughness). If no testing is done, AQL is simply the yield—that
is, the number of good devices divided by the total number of devices made. Con-
versely, if a complete test were created, then 7'= 1, and all defects are detected so no
bad devices are shipped to the customer.

Equation (1.1) tells us that high quality can be realized by improving product
yield and/or the thoroughness of the test. In fact, if ¥ = AQL, testing is not required.
That is rarely the case, however. In the IC industry a high yield is often an indication
that the process is not aggressive enough. It may be more economically rewarding to
shrink the geometry, produce more devices, and screen out the defective devices
through testing.

1.3 THETEST

In its most general sense, a test can be viewed as an experiment whose purpose is to
confirm or refute a hypothesis or to distinguish between two or more hypotheses.

THE TEST 3

Figure 1.1 depicts a test configuration in which stimuli are applied to a device-
under-test (DUT), and the response is evaluated. If we know what the expected
response is from the correctly operating device, we can compare it to the response of
the DUT to determine if the DUT is responding correctly.

When the DUT is a digital logic device, the stimuli are called zest patterns or test
vectors. In this context a vector is an ordered n-tuple; each bit of the vector is
applied to a specific input pin of the DUT. The expected or predicted outcome is
usually observed at output pins of the device, although some test configurations per-
mit monitoring of test points within the circuit that are not normally accessible dur-
ing operation. A tester captures the response at the output pins and compares that
response to the expected response determined by applying the stimuli to a known
good device and recording the response, or by creating a model of the circuit (i.e., a
representation or abstraction of selected features of the system®) and simulating the
input stimuli by means of that model. If the DUT response differs from the expected
response, then an error is said to have occurred. The error results from a defect in the
circuit.

The next step in the process depends on the type of test that is to be applied. A
taxonomy of test types” is shown in Table 1.1. The classifications range from testing
die on a bare wafer to tests developed by the designer to verify that the design is cor-
rect. In a typical manufacturing environment, where tests are applied to die on a
wafer, the most likely response to a failure indication is to halt the test immediately
and discard the failing part. This is commonly referred to as a go—nogo test. The
object is to identify failing parts as quickly as possible in order to reduce the amount
of time spent on the tester.

If several functional test programs were developed for the part, a common prac-
tice is to arrange them so that the most effective test program—that is, the one that
uncovers the most defective parts—is run first. Ranking the effectiveness of the test
programs can be done through the use of a fault simulator, as will be explained in a
subsequent chapter. The die that pass the wafer test are packaged and then retested.
Bonding a chip to a package has the potential to introduce additional defects into the
process, and these must be identified.

Binning is the practice of classifying chips according to the fastest speed at
which they can operate. Some chips, such as microprocessors, are priced according
to their clock speed. A chip with a 10% performance advantage may bring a 20-50%
premium in the marketplace. As a result, chips are likely to first be tested at their
maximum rated speed. Those that fail are retested at lower clock speeds until either
they pass the test or it is determined that they are truly defective. It is, of course, pos-
sible that a chip may run successfully at a clock speed lower than any for which it
was tested. However, such chips can be presumed to have no market value.

Stimulus —
Response

Figure 1.1 Typical test configuration.

4 INTRODUCTION

TABLE 1.1 Types of Tests

Type of Test

Purpose of Test

Production
Wafer Sort or Probe
Final or Package

Acceptance

Sample

Go-nogo

Characterization or
engineering

Stress screening (burn-in)

Reliability (accelerated
life)

Diagnostic (repair)

Quality

On-line or checking
Design verification

Test of manufactured parts to sort out those that are faulty
Test of each die on the wafer.
Test of packaged chips and separation into bins (mili-
tary, commercial, industrial).

Test to demonstrate the degree of compliance of a device
with purchaser’s requirements.

Test of some but not all parts.

Test to determine whether device meets specifications.

Test to determine actual values of AC and DC parameters
and the interaction of parameters. Used to set final
specifications and to identify areas to improve pro-
cess to increase yield.

Test with stress (high temperature, temperature cycling,
vibration, etc.) applied to eliminate short life parts.

Test after subjecting the part to extended high temperature
to estimate time to failure in normal operation.

Test to locate failure site on failed part.

Test by quality assurance department of a sample of each
lot of manufactured parts. More stringent than final
test.

On-line testing to detect errors during system operation.

Verify the correctness of a design.

Diagnosis may be called for when there is a yield crash—that is, a sudden, signif-
icant drop in the number of devices that pass a test. To aid in investigating the
causes, it may be necessary to create additional test vectors specifically for the pur-
pose of isolating the source of the crash. For ICs it may be necessary to resort to an
e-beam probe to identify the source. Production diagnostic tests are more likely to
be created for a printed circuit board (PCB), since they are often repairable and gen-
erally represent a larger manufacturing cost. Tests for memory arrays are thorough
and methodical, thus serving both as go—no-go tests and as diagnostic tests. These
tests permit substitution of spare rows or columns in order to repair the memory
array, thereby significantly improving the yield.

Products tend to be more susceptible to yield problems in the early stages of their
existence, since manufacturing processes are new and unfamiliar to employees. As a
result, there are likely to be more occasions when it is necessary to investigate prob-
lems in order to diagnose causes. For mature products, yield is frequently quite
high, and testing may consist of sampling by randomly selecting parts for test. This
is also a reasonable strategy for low complexity parts, such as a chip that goes into a
wristwatch.

To protect against yield problems, particularly in the early phases of a project,
burn-in is commonly employed. Burn-in stresses semiconductor products in order to

THE TEST 5

identify and eliminate marginal performers. The goal is to ensure the shipment of
parts having an acceptably low failure rate and to potentially improve product reli-
ability.’ Products are operated at environmental extremes, with the duration of this
operation determined by product history. Manufacturers institute programs, such as
Intel’s ZOBI (zero hour burn-in), for the purpose of eliminating burn-in and the
resulting capital equipment costs.®

When stimuli are simulated against the circuit model, the simulator pro-
duces a file that contains the input stimuli and expected response. This informa-
tion goes to the tester, where the stimuli are applied to manufactured parts.
However, this information does not provide any indication of just how effec-
tive the test is at detecting defects internal to the circuit. Furthermore, if an
erroneous response should occur at any of the output pins during testing of
manufactured parts, there is no insight into the location of the defect that
induced the incorrect response. Further testing may be necessary to distinguish
which of several possible defects produced the response. This is accomplished
through the use of fault models.

The process is essentially the same; that is, vectors are simulated against a model
of the circuit, except that the computer model is modified to make it appear as
though a fault were present. By simulating the correct model and the faulted model,
responses from the two models can be compared. Furthermore, by injecting several
faults into the model, one at a time, and then simulating, it is possible to compare the
response of the DUT to that of the various faulted models in order to determine
which faulted model either duplicates or most closely approximates the behavior of
the DUT.

If the DUT responds correctly to all applied stimuli, confidence in the DUT
increases. However, we cannot conclude that the device is fault-free! We can only
conclude that it does not contain any of the faults for which it was tested, but it could
contain other faults for which an effective test was not applied.

From the preceding paragraphs it can be seen that there are three major aspects of
the test problem:

1. Specification of test stimuli
2. Determination of correct response

3. Evaluation of the effectiveness of the stimuli

Furthermore, this approach to testing can be used both to detect the presence of
faults and to distinguish between several faults for repair purposes.

In digital logic, the three phases of the test process listed above are referred to as
test pattern generation, logic simulation, and fault simulation. More will be said
about these processes in later chapters. For the moment it is sufficient to state that
each of these phases ranks equally in importance; they in fact complement one
another. Stimuli capable of distinguishing between good circuits and faulted cir-
cuits do not become effective until they are simulated so their effects can be deter-
mined. Conversely, extremely accurate simulation against very precise models with

6 INTRODUCTION

ineffective stimuli will not uncover many defects. Hence, measuring the effective-
ness of test stimuli, using an accepted metric, is another very important task.

1.4 THE DESIGN PROCESS

Table 1.1 identifies several types of tests, ranging from design verification, whose
purpose is to ensure that a design conforms to the designer’s intent, to various kinds
of tests directed toward identifying units with manufacturing defects, and tests
whose purpose is to identify units that develop defects during normal usage. The
goal during product design is to develop comprehensive test programs before a
design is released to manufacturing. In reality, test programs are not always ade-
quate and may have to be enhanced due to an excessive number of faulty units
reaching end users. In order to put test issues into proper perspective, it will be
helpful here to take a brief look at the design process, starting with initial product
conception.

A digital device begins life as a concept whose eventual goal is to fill a perceived
need. The concept may flow from an original idea or it may be the result of market
research aimed at obtaining suggestions for enhancements to an existing product.
Four distinct product development classifications have been identified:’

First of a kind

Me too with a twist
Derivative
Next-generation product

The “first of a kind” is a product that breaks new ground. Considerable innovation
is required before it is implemented. The “me too with a twist” product adds incre-
mental improvements to an existing product, perhaps a faster bus speed or a wider
data path. The “derivative” is a product that is derived from an existing product.
An example would be a product that adds functionality such as video graphics to a
core microprocessor. Finally, the “next-generation product” replaces a mature
product. A 64-bit microprocessor may subsume op-codes and basic capabilities,
but also substantially improve on the performance and capabilities of its 32-bit
predecessor.

The category in which a product falls will have a major influence on the design
process employed to bring it to market. A “first of a kind” product may require an
extensive requirements analysis. This results in a detailed product specification
describing the functionality of the product. The object is to maximize the likelihood
that the final product will meet performance and functionality requirements at an
acceptable price. Then, the behavioral description is prepared. It describes what the
product will do. It may be brief, or it may be quite voluminous. For a complex
design, the product specification can be expected to be very formal and detailed.
Conversely, for a product that is an enhancement to an existing product, documenta-
tion may consist of an engineering change notice describing only the proposed
changes.

THE DESIGN PROCESS 7

Concept —» Allocate | _|Behavioral| | RTL | | Logic Physical

resources design design design design | Mfe.

Figure 1.2 Design flow.

After a product has been defined and a decision has been made to manufacture
and market the device, a number of activities must occur, as illustrated in Figure 1.2.
These activities are shown as occurring sequentially, but frequently the activities
overlap because, once a commitment to manufacture has been made, the objective is
to get the product out the door and into the marketplace as quickly as possible. Obvi-
ously, nothing happens until a development team is put in place. Sometimes the larg-
est single factor influencing the time-to-market is the time required to allocate
resources, including staff to implement the project and the necessary tools by which
the staff can complete the design and put a manufacturing flow into place. For a
device with a given level of performance, time of delivery will frequently determine
if the product is competitive; that is, does it fall above or below the performance—
time plot illustrated in Figure 1.3?

Once the behavioral specification has been completed, a functional design must
be created. This is actually a continuous flow; that is, the behavior is identified, and
then, based on available technology, architects identify functional units. At that
stage of development an important decision must be made as to whether or not the
product can meet the stated performance objectives, given the architecture and tech-
nology to be used. If not, alternatives must be examined. During this phase the logic
is partitioned into physical units and assigned to specific units such as chips, boards,
or cabinets. The partitioning process attempts to minimize I/O pins and cabling
between chips, boards, and units. Partitioning may also be used to advantage to sim-
plify such things as test, component placement, and wire routing.

The use of hardware design languages (HDLs) for the design process has become
virtually universal. Two popular HDLs, VHDL (VHSIC Hardware Description Lan-
guage) and Verilog, are used to

Specify an architecture

Partition the architecture into smaller modules

Synthesize an RTL description

Verify that a structural implementation corresponds to the architectural design
Check out microcode and/or diagnostic programs

Serve as documentation

Too little
Too late

Performance

Time

Figure 1.3 Performance—time plot.

8 INTRODUCTION

A behavioral description specifies what a design must do. There is usually little
or no indication as to how it must be done. For example, a large case statement
might identify operations to be performed by an ALU in response to different values
applied to a control field. The RTL design refines the behavioral description. Opera-
tions identified at the behavioral level are elaborated upon in more detail. RTL
design is followed by logic design. This stage may be generated by synthesis pro-
grams, or it may be created manually, or, more often, some modules are synthesized
while others are manually designed or included from a library of predesigned mod-
ules, some or all of which may have been purchased from an outside vendor. The use
of predesigned, or core, modules may require selecting and/or altering components
and specifying the interconnection of these components. At the end of the process, it
may be the case that the design will not fit on a piece of silicon, or there may not be
enough I/O pins to accommodate the signals, in which case it becomes necessary to
reevaluate the design.

Physical design specifies the physical placement of components and the routing
of wires between components. Placement may assign circuits to specific areas on a
piece of silicon, it may specify the placement of chips on a PCB, or it may specify
the assignment of PCBs to a cabinet. The routing task specifies the physical connec-
tion of devices after they have been placed. In some applications, only one or two
connection layers are permitted. Other applications may permit PCBs with 20 or
more interconnection layers, with alternating layers of metal interconnects and insu-
lating material.

The final design is sent to manufacturing, where it is fabricated. Engineering
changes must frequently be accommodated due to logic errors or other unexpected
problems such as noise, timing, heat buildup, electrical interference, and so on, or
inability to mass produce some critical parts.

In these various design stages there is a continuing need for testing. Require-
ments analysis attempts to determine whether the product will fulfill its objectives,
and testing techniques are frequently based on marketing studies. Early attempts to
introduce more rigor into this phase included the use of design languages such as
PSL/PSA (Problem Statement Language/Problem Statement Analyzer).® It provided
a way both to rigorously state the problem and to analyze the resulting design.
PMS (Processors, Memories, Switches)’ was another early attempt to introduce
rigor into the initial stages of a design project, permitting specification of a design
via a set of consistent and systematic rules. It was often used to evaluate architec-
tures at the system level, measuring data throughput and looking for design bottle-
necks. Verilog and VHDL have become the standards for expressing designs at all
levels of abstraction, although investigation into specification languages continues
to be an active area of research. Its importance is seen from such statements as
“requirements errors typically comprise over 40% of all errors in a software
project”!® and “the really serious mistakes occur in the first day.”>

A design expressed in an HDL, at a level of abstraction that describes intended
behaviors, can be formally tested. At this level the design is a requirements docu-
ment that states, in a simulation language, what actions the product must perform.
The HDL permits the designer to simulate behavioral expressions with input vectors

DESIGN AUTOMATION 9

chosen to confirm correctness of the design or to expose design errors. The design
verification vectors must be sufficient to confirm that the design satisfies the behav-
ior expressed in the product specification. Development of effective test stimuli at
this state is highly iterative; a discrepancy between designer intent and simulation
results often indicates the need for more stimuli to diagnose the underlying reason
for the discrepancy. A growing trend at this level is the use of formal verification
techniques (cf. Chapter 12.)

The logic design is tested in a manner similar to the functional design. A major
difference is that the circuit description is more detailed; hence thorough analysis
requires that simulations be more exhaustive. At the logic level, timing is of greater
concern, and stimuli that were effective at the register transfer level (RTL) may not
be effective in ferreting out critical timing problems. On the other hand, stimuli that
produced correct or expected response from the RTL circuit may, when simulated by
a timing simulator, indicate incorrect response or may indicate marginal perfor-
mance, or the simulator may simply indicate that it cannot predict the correct
response.

The testing of physical structure is probably the most formal test level. The test
engineer works from a detailed design document to create tests that determine if
response of the fabricated device corresponds to response of the design. Studies of
fault behavior of the selected circuit family or technology permit the creation of
fault models. These fault models are then used to create specific test stimuli that
attempt to distinguish between the correctly operating device and a device with the
fault.

This last category, which is the most highly developed of the design stages, due
to its more formal and well-defined environment, is where we will concentrate our
attention. However, many of the techniques that have been developed for structural
testing can be applied to design verification at the logic and functional levels.

1.5 DESIGN AUTOMATION

Many of the activities performed by architects and logic designers were long ago
recognized to be tedious, repetitious, error prone, and time-consuming, and hence
could and should be automated. The mechanization of tedious design processes
reduces the potential for errors caused by human fatigue, boredom, and inattention
to mundane details. Early elimination of errors, which once was a desirable objec-
tive, has now become a virtual necessity. The market window for new products is
sometimes so small that much of that window will have evaporated in the time that it
takes to correct an error and push the design through the entire fabrication cycle yet
another time.

In addition to the reduction of errors, elimination of tedious and time-consuming
tasks enables designers to spend more time on creative endeavors. The designer can
experiment with different solutions to a problem before a design becomes frozen in
silicon. Various alternatives and trade-offs can be studied. This process of automat-
ing various aspects of the design process has come to be known as electronic design

10 INTRODUCTION

automation (EDA). It does not replace the designer but, rather, enables the designer
to be more productive and more creative. In addition, it provides access to IC design
for many logic designers who know very little about the intricacies of laying out an
IC design. It is one of the major factors responsible for taking cost out of digital
products.

Depending on whether it is an IC, a PCB, or a system comprised of several PCBs,
a typical EDA system supports some or all of the following capabilities:

Data management
Record data
Retrieve data
Define relationships
Perform rules checks

Design analysis/verification

Evaluate performance/capabilities
Simulate
Check timing

Design fabrication

Perform placement and routing
Create tests for structural defects
Identify qualified vendors

Documentation

Extract parts list
Create/update product specification

The data management system supports a data base that serves as a central repository
for all design data. A data management program accepts data from the designer, for-
mats it, and stores it in the data base. Some validity checks can be performed at this
time to spot obvious errors. Programs must be able to retrieve specific records from
the data base. Different applications require different records or combinations or
records. As an example, one that we will elaborate on in a later chapter, a test pro-
gram needs information concerning the specific ICs used in the design of a board, it
needs information concerning their interconnections, and it needs information con-
cerning their physical location on a board.

A data base should be able to express hierarchical relationships.!! This is espe-
cially true if a facility designs and fabricates both boards and ICs. The ICs are
described in terms of logic gates and their interconnections, while the board is
described in terms of ICs and their interconnections. A “where used” capability for a
part number is useful if a vendor provides notice that a particular part is no longer
available. Rules checks can include examination of fan-out from a logic gate to
ensure that it does not exceed some specified limit. The total resistive or capacitive
loading on an output can be checked. Wire length may also be critical in some appli-
cations, and rules checking programs should be able to spot nets that exceed wire
length maximums.

ESTIMATING YIELD 1

The data management system must be able to handle multiple revisions of a design
or multiple physical implementations of a single architecture. This is true for manu-
facturers who build a range of machines all of which implement the same architecture.
It may not be necessary to maintain an architectural level copy with each physical
implementation. The system must be able to control access and update to a design,
both to protect proprietary design information from unauthorized disclosure and to
protect the data base from inadvertent damage. A lock-out mechanism is useful to pre-
vent simultaneous updates that could result in one or both of the updates being lost.

Design analysis and verification includes simulation of a design after it is
recorded in the data base to verify that it is functionally correct. This may include
RTL simulation using a hardware design language and/or simulation at a gate level
with a logic simulator. Precise relationships must be satisfied between clock and
data paths. After a logic board with many components is built, it is usually still pos-
sible to alter the timing of critical paths by inserting delays on the board. On an IC
there is no recourse but to redesign the chip. This evaluation of timing can be
accomplished by simulating input vectors with a timing simulator, or it can be done
by tracing specific paths and summing up the delays of elements along the way.

After a design has stabilized and has been entered into a data base, it can be fab-
ricated. This involves placement either of chips on a board or of circuits on a die and
then interconnecting them. This is usually accomplished by placement and routing
programs. The process can be fully automated for simple devices, or for complex
devices it may require an interactive process whereby computer programs do most
of the task, but require the assistance of an engineer to complete the task. Checking
programs are used after placement and routing.

Typical checks look for things such as runs too close to one another, and possible
opens or shorts between runs. After placement and routing, other kinds of analysis
can be performed. This includes such things as computing heat concentration on an
IC or PCB and computing the reliability of an assembly based on the reliability of
individual components and manufacturing processes. Testing the structure involves
creation of test stimuli that can be applied to the manufactured IC or PCB to deter-
mine if it has been fabricated correctly.

Documentation includes the extraction of parts lists, the creation of logic dia-
grams and printing of RTL code. The parts list is used to maintain an inventory of
parts in order to fabricate assemblies. The parts list may be compared against a mas-
ter list that includes information such as preferred vendors, second sources, or alter-
nate parts which may be used if the original part is unavailable. Preferred vendors
may be selected based on an evaluation of their timeliness in delivering parts and the
quality of parts received from them in the past. Logic diagrams are used by techni-
cians and field engineers to debug faulty circuits as well as by the original designer
or another designer who must modify or debug a logic design at some future date.

1.6 ESTIMATINGYIELD

We now look at yield analysis, based on various probability distribution functions.
But, first, just how important are yield equations? James Cunningham'? describes a

12 INTRODUCTION

situation in which a company was invited to submit a bid to manufacture a large
CMOS custom logic chip. The chip had already been designed at another company
and was to have a die area of 2.3 cm”. The company had experience making CMOS
parts, but never one this large. Hence, they were uncertain as to how to estimate
yield for a chip of this size.

When they extrapolated from existing data, using a computer-generated best-fit
model, they obtained a yield estimate Y= 1.4%. Using a Poisson model with
D, =2.1, where D, is the average number of defects per unit area A, they obtained an
estimate ¥ = 0.8%. They then calculated the yield using Seeds’ model,'* which gave
Y = 17%. That was followed by Murphy’s model.'* It gave ¥ = 4%. They decided to
average Seeds’ model and Murphy’s model and submit a bid based on 11% die sort
yield. A year later they were producing chips with a yield of 6%, even though D,
had fallen from 2.1 to 1.9 defects/cm?. The company had started to evaluate the neg-
ative binomial yield model Y = (1 + DyA/c)™* A value of o= 3 produced a good fit
for their yield data. Unfortunately, the company could not sustain losses on the prod-
uct and dropped it from production, leaving the customer without a supply of parts.

Probability distribution functions are used to estimate the probability of an event
occurring. The binomial probability distribution is a discrete distribution, which is
expressed as

P(k) = PA(1-P)" " (1.2)

n!
k!(n—k)
If P is the probability of a defect on a die, then P(k) is the probability of k defects on

the die, when there are a total of n = DyA,, defects, where A, is the area of the wafer.
The probability P is DyA/DyA,, = A/A,,. Substituting into Eq. (1.2) yields

P(k) = /?!(nn—ikﬂ(%)k(l _Ai)"_k (1.3)

w

To derive the equation for a die with no defects, set k = 0. This yields

P(k=0) = [1 _Aif‘)A“'

w

(1.4)

The first distribution that was frequently used to estimate yields was the Poisson
distribution, which is expressed as

_lk
e 'k

P(k) = fork=0,1,2, ... (1.5)

where A, is the average number of defects per die. For die with no defects (k = 0),
the equation becomes P(0) = eh If Ay = .5, the yield is predicted to be .607. In
general, the Poisson distribution requires that defects be uniformly and randomly
distributed. Hence, it tends to be pessimistic for larger die sizes. Considering again

ESTIMATING YIELD 13

the binomial distribution, if the number of trials, n, is large, and the probability p of
occurrence of an event is close to zero, then the binomial distribution is closely
approximated by the Poisson distribution with A =n- p.

Another distribution commonly used to estimate yield is the normal distribution,
also known as the Gaussian distribution. It is the familiar bell-shaped curve and is
expressed as

Pk) = Lo k-10720 (Lo < o) (1.6)
oAN2T
The variable u represents the mean, o represents the standard deviation, and &
represents the variance. If n is large and if neither p or ¢ is too close to zero, the
binomial distribution can be closely approximated by a normal distribution. This can
be expressed as

lim P(a <X "< b) = L_[be_"z/zdu (1.7)
noe A Jnpg N2me

where np represents the mean for the binomial distribution, @ is the standard
deviation, npq is the variance, and x is the number of successful trials.

When Murphy investigated the yield problem in 1964, he observed that defect
and particle densities vary widely among chips, wafers, and runs. Under these cir-
cumstances, the Poisson model is likely to underestimate yield, so he chose to use
the normalized probability distribution function. To derive a yield equation, Murphy
multiplied the probability distribution function with the probability p that the device
was good, for a given defect density D, and then summed that over all values of D,
that is,

Y = j:pf(D)dD (1.8)

He substituted p = ¢ for the probability that the device was good. However, he
could not integrate the bell-shaped curve, so he approximated it with a triangle func-

tion. This gave
-D,A\2
y =|1z¢ (1.9
D,A

By substituting other expressions for f(D) in Eq. (1.8), other yield equations result.
Seeds used an exponential distribution function f(D) = e?/Po/ D,,. Substituting
this into Eq. (1.8), he obtained

(1.10)

In 1973 Charles Stapper' derived a yield equation that is often referred to as a
negative binomial distribution. By substituting p(x) = e*A*/x! and the gamma

14 INTRODUCTION

1

AP into Murphy’s equation [Eq. (1.8)]
o
[

distribution function f(A) =

and integrating, he obtained
Y = (1+DyA/ o)™ (1.11)

The mean of the gamma function is given by u = o/A, whereas the variance
is given by o/A>. Compare these with the mean and variance of the negative
binomial distribution, sometimes referred to as Pascal’s distribution: mean = ng/p
and variance = ng/p’.

The parameter o in Eq. (1.11) is referred to as the cluster parameter. By selecting
appropriate values of ¢, the other yield equations can be approximated by
Eq. (1.11). The value of ¢ can be determined through statistical analysis of defect
distribution data, permitting an accurate yield model to be obtained.

1.7 MEASURING TEST EFFECTIVENESS

In this chapter the intent has been to survey some of the many approaches to digital
logic test. The objective is to illustrate how these approaches fit together to produce
a program targeted toward product quality. Hence, we have touched only briefly on
many topics that will be covered in greater detail in subsequent chapters. One of the
topics examined here is fault modeling. It has been the practice, for over three
decades, to resort to the use of stuck-at models to imitate the effects of defects. This
model was more realistic when (small-scale integration) (SSI) was predominant.
However, the stuck-at model, for practical reasons, is still widely used by commer-
cial tools. Basically put, this model assumes that an input or output of a logic gate
(e.g., an inverter, an AND gate, an OR gate, etc.) is stuck to a logic value O or 1 and
is insensitive to signal changes from the signal that drives it.

With this faulting mechanism the process, in rather general terms, proceeds as
follows: Computer models of digital circuits are created, and faults are injected
into the model. The fault-free circuit and the faulted circuit are simulated. If there
is a difference in response at an observable I/O pin, the fault is classified as
detected. After many faults are evaluated in this manner, fault coverage is
computed as

Fault coverage = No. faults detected / No.faults modeled

Given a fault coverage number, there are two questions that occur: How accurate is
it, and for a given fault coverage, how many defective chips are likely to become
tester escapes? Accuracy of fault coverage will depend on the faults selected and the
accuracy of the fault model relative to real defect mechanisms. Fault selection
requires a statistically meaningful random sample, although it is often the practice to

MEASURING TEST EFFECTIVENESS 15

fault simulate a universal sample of faults, meaning faults applied to all logic ele-
ments in a circuit. The fault model, like any model, is an imperfect replica. It is
rather simplistic when compared to the various, complex kinds of defects that can
occur in a circuit; therefore, predictions of test effectiveness based on the stuck-at
model are prone to error and imprecision. The number of tester escapes will depend
on the thoroughness of the test—that is, the fault coverage, the accuracy of that fault
coverage, and the process yield.

The term defect level (DL) is used to denote the fraction of shipped ICs that are
bad. It is computed as

DL = Number of faulty units shipped/ Total no. units shipped (1.12)

It has also been variously referred to as field reject rate and reject ratio. In this sec-
tion we adhere to the terminology used by the original authors in their derivations.

Over the past two decades a number of attempts have been made to quantify the
effectiveness of test programs—that is, determine how many defective chips will be
detected by the tester and how many will slip through the test process and reach the
end user. Different researchers have come up with different equations for comput-
ing defect level. The discrepancies are based on the fact that they start with differ-
ent assumptions about fault distributions. Some of it is a result of basing results on
different technologies, and some of it is a result of working with processes that
have different quality levels, different failure mechanisms, and/or different defect
distributions. We present here a survey of some of the equations that have been
derived over the years to compute defect level as a function of process yields and
test coverage.

In 1978 Wadsack'® derived the following equation:

yr=0-f)-(1-y) (1.13)

where yr denotes the field reject rate—that is, the fraction of defective chips that
passed the test and were shipped to the customer. The variable y, 0 <y < 1, denotes
the actual yield of the process, and f, 0 < f< 1, denotes the fault coverage. In 1981
Williams and Brown developed the following equation:

DL=1-y"D (1.14)
In this equation the field reject rate is DL (defect level), the variable Y represents the
yield of the manufacturing process, and the variable 7 represents the test percentage

where, as in Eq. (1.13), each of these is a fraction between 0 and 1.

Example If it were possible to test for all defects, then

f=1 and yr=(1-1)-(1-y)=0 from Eq. (1.13)
T=1 and DL=1-Y""Y=0 fromEq. (1.14)

16 INTRODUCTION

On the other hand, if no defective units were manufactured, then

y=1 and yr=(1-f)-(1-1)=0 from Eq. (1.13)
Y=1 and DL=1-19"7=0 fromEq. (1.14)

In either situation, no defective units are shipped, regardless of which equation is
used. L]

For either of these equations, if the yield is known, it is possible to find the fault
coverage required to achieve a desired defect level. Using Eq. (1.14), the test frac-
tion T'is

1 log(1-DL)
log(Y)

T = (1.15)

Example Integrated circuits (ICs) are manufactured on wafers—round, thin silicon
substrates. After processing, individual ICs are tested. The wafer is diced and the die
that tested bad are discarded. If the yield of good die is 60%, and we want a defect level
not to exceed 0.1%, what level of testing must we achieve? Using Eq. (1.15), we get

_log(1-0.001) _
log(0.6)

T =1 1-0.001956 = 0.9980 L]

This equation is pessimistic for VLSI. In later paragraphs we will look at other
equations that, based on clustering of faults, give more favorable results. Neverthe-
less, this equation illustrates an important concept. Test cost is not a linear function.
Experience indicates that test cost follows the curve illustrated in Figure 1.4.

This curve tells us that we reach a point where substantial expenditures provide
only marginal improvement in testability. At some point, additional gains become
exorbitantly expensive and may negate any hope for profitability of the product.
However, looking again at Eq. (1.14), we see that the defect level is a function of
both testability and yield. Therefore, we may be able to achieve a desired defect
level by improving yield.

Cost

0% 50% 100%
Percent tested

Figure 1.4 Typical cost curve for testing.

MEASURING TEST EFFECTIVENESS 17

Example Yield is improved to Y =70%; what percentage of testing must be

achieved to hold DL below 0.1%?

_log(1-0.001) _
log(0.7)

T =1 1-0.0028 = 0.9972 [] |
Equations (1.13) and (1.14) give the same results at the endpoints, but slightly
different results between the endpoints. To understand why, it is necessary to look at
the assumptions behind the derivations. Wadsack assumes that yi = (1 — y), where yi
represents the chips with i faults and y represents the actual functional yield.
Williams and Brown assume the existence of n faults, that all faults have equal prob-
ability P, of occurrence, and that the number of chips with i faults is

(-

Working out the derivations from these different starting points results in the differ-
ent equations. However, regardless of which equation is used, the key point is that,
in order to achieve an acceptable quality level AQL (=1 — DL), the fault coverage
has to be nearly perfect. In the words of Williams and Brown, the equations are
intended to “give estimates for quick calculations.” Wadsack, in his paper, points
out that even in a circuit with 100% fault coverage, a failure occurred on the tester
after the point where the test program had achieved 100% coverage of the faults.
But then he points out that, in general, his derivation tends to be pessimistic.

Other authors have found the equations to be pessimistic; that is, even with fault
coverage significantly less than that required by the equations, the quality level is
better than predicted by the equations. For instance, Wiscombe!” states that the
Williams—Brown model “predicts higher defect levels than seen in practice.” Max-
well et al. point out that for a defect level of less than 0.1%, the Williams—Brown
equation required fault coverage in excess of 99.6%. However, they were able to
realize those defect levels with about 96% fault coverage.'®

The question of fault coverage versus defect levels was studied by Agrawal et al.
in 1982." Their study was motivated by the observation that the defect level equa-
tions “produced satisfactory results for chips with high yield (typically, SSI and
MSI), but the predictions were too pessimistic for larger chips with lower yield.” The
authors hypothesize the existence of n faults for a faulty chip, and then examine the
consequences of that assumption. They derive the following equation:

(= 1)f
r(f) = A=A =y)e (1.16)

y+(1=f)(1—yye "V

In this equation, y is the yield, n is the average number of faults on a faulty chip, f is
the fault coverage, and r(f) is the field reject rate for f. If the fault coverage is held
fixed, then the defect level goes down as n, increases. The papers cited here suggest
that the value n = 3 appears to give reasonably good results at predicting defect level.

The model that was used to develop Eq. (1.16), referred to as the JSCC model,
was subsequently refined using what the authors called the CAD model.”’ A Poisson

18 INTRODUCTION

distribution is assumed for the faults, and the number of defects is assumed to have a
clustered negative binomial distribution. With those assumptions the authors derived
areject ratio 7(f) = [y(f) — y]/y, where

y(f) =[(1 +Ab(1 —e~)]™ (1.17)

In this equation, A is the chip area, f is the fault coverage, and a, b, and ¢ are model
parameters that are estimated by fitting y(f) versus f to the experimental data.

In yet another derivation,>' presented at a workshop in Springfield, Massachu-
setts, and referred to as the SPR model, the reject ratio r, = (y, — y)/y, is computed
as a function of the yield y,, after n vectors, and the true yield y. The variables y,
and y are computed as a function of the number of chips tested, the number of
applied vectors, and the number of chips failing at vector i. The authors point out
that the required data are derived from wafer probe. The calculations do not depend
on estimated fault coverage of the test vectors. In this same study?! the authors com-
pare the five models for defect level estimation.

Comparison of the five models was done by gathering statistics on a high-volume
chip at Delco Electronics. The chip was a 3-micron digital CMOS IC with 99.7%
fault coverage. The test program consisted of 12,188 clock periods, and the cumula-
tive fault coverage was computed after each vector. Of the 72,912 die initially con-
sidered, 847 chips that failed parametric test and 7699 chips that failed continuity
test were removed from consideration. Of the remaining 64,366 chips, 18,476 failed
the functional test. This resulted in an apparent yield of 71.30%. The true yield,
using the SPR model, was estimated to be 70.92%. The results of the comparison are
presented in Table 1.2.

In most columns the spread between these formulas varies by as much as a factor
of two. The one exception is the last column, where the SPR and JSSC models differ
by an order of magnitude. The bottom row of the table lists the actual fraction of
defects detected at various stages of testing the chips. For the rightmost column, cor-
responding to a fault coverage of 99.70%, all the vectors had been applied, so no
additional defects were found. However, each of the models predicts that additional
tester escapes will occur.

TABLE 1.2 Comparing Yield

Fault Coverage

Model
20% 50% 80% 91% 95% 98% 99.70%
SPR 0.11291 0.08005 0.03531 0.02160 0.00927 0.00702 0.00532
JSSC 0.21383 0.11373 0.03730 0.01548 0.00834 0.00362 0.00048
CAD 0.21714 0.12439 0.04556 0.01985 0.01090 0.00432 0.00064

Wadsack 0.23267 0.14542 0.05817 0.02617 0.1454 0.00582 0.00087
Williams ~ 0.24038 0.15788 0.06642 0.03046 0.01704 0.00685 0.00103

Actual 0.18440 0.08340 0.02830 0.01330 0.00740 0.00210 O

MEASURING TEST EFFECTIVENESS 19

Although the Williams—Brown model tends to be the least accurate, at least for
the data in this experiment, it appears to be the most popular, based on frequency of
appearance in the literature. This may be due in large part to its simplicity, which
makes it easy for engineers to explain the relationship between quality, process
yield, and fault coverage. Perhaps, more significantly, any of these models can tell
the user when the fault coverage must be improved. For example, if the user wants
no more than 1000 defects per million (DPM), then all of these models convey the
message that 98% fault coverage is insufficient.

The SPR model computes tester escapes without benefit of fault simulation. A
drawback to this approach is the fact that, without fault coverage estimates for the
test program, it could require several iterations on the test floor acquiring data before
the test program is adequate. By contrast, when developing a test program with the
aid of fault coverage estimates, it is more likely that the test will be at, or near,
required coverage levels before it is used on the test floor.

Up to this point, when talking about fault coverage, the number used in the
calculations was simply the number of modeled faults that were detected, divided
by the total number of modeled faults. It has been assumed, for a given test cover-
age, that the coverage is uniform across the circuit. However, that may not be the
case. Consider the test for a large chip, consisting of several functions. The test
program may be a concatenation of several smaller test programs, each of which
targets a single function. Suppose there are six clearly identifiable functions on
the chip, then there might be six distinct test programs targeting the individual
functions. The tests for five of the functions may be near 100%, while the test for
the remaining function may be closer to 70%. Gross defects that might be
detected in the other functions could escape detection in the function with low
coverage.

Maxwell*? showed that it is necessary to get a uniformly high coverage across the
entire area of the chip. Also worth noting is the fact that each function may have
some unique characteristics. For example, one function may be sensitive to noise.
Another may use unique elements from a standard library, one or more of which are
prone to failure. Conceivably a latch or flip-flop, for whatever reason, may have dif-
ficulty holding a particular state. These properties may not all be adequately
addressed in one or more of the test programs.

Other investigations of defect levels have been performed. McCluskey and
Buelow introduce the term fest transparency (TT).* It is the fraction of all defects
that are not detected by a test procedure:

TT = defects not detected / total no. defects = 1 — m/n

where 7 is the total number of defects and m is the number of defects detected. They
show that, for DL < 0.1% and Y > 90%, DL=TT-(1 —y). They state that it is
customary to estimate test transparency by the percentage of single-stuck faults that
are not detected by the test, 77 > 1 — T, where T is the test coverage. Using 1 — T as
an estimate for 77T gives DL=(1—-T)-(1 —y), which is the Wadsack equation
developed in 1978.

20 INTRODUCTION
1.8 THE ECONOMICS OF TEST

In previous sections we examined some factors that affect the quality of test pro-
grams. In this section we examine factors that influence the cost of test. Quality and
test costs are related, but they are not inverses of one another. As we shall see, an
investment in a higher-quality test often pays dividends during the test cycle.

Test related costs for ICs and PCBs include both time and resource. As pointed
out in previous sections, for some products the failure to reach a market window
early in the life cycle of the product can cause significant loss of revenue and may in
fact be fatal to the future of the product. The dependency table in Figure 1.5 shows
test cost broken down into four categories’>—some of which are one-time, non
recurring costs whereas others are recurring costs. Test preparation includes costs
related to development of the test program(s) as well as some potential costs
incurred during design of the design-for-test (DFT) features. DFT-related costs are
directed toward improving access to the basic functionality of the design in order to
simplify the creation of test programs.

Many of the factors depicted in Figure 1.5 imply both recurring and nonrecur-
ring costs. Test execution requires personnel and equipment. The tester is amor-
tized over individual units, representing a recurring cost for each unit tested, while
costs such as probe cards may represent a one-time, nonrecurring cost. The test-
related silicon is a recurring cost, while the design effort required to incorporate
testability enhancements, listed under test preparation as DFT design, is a nonre-
curring cost.

The category listed as imperfect test quality includes a subcategory labeled as
tester escapes, which are bad chips that tested good. It would be desirable for tester
escapes to fall in the category of nonrecurring costs but, regrettably, tester escapes

2
[5)
<]
2 o Es >
L=z = =) =
o 9 =) e B @
O B = B=1 % g
—_— 2 0= = o 2 95
VLT 0w < 08 I g (] ES)
E5o=5 8 »® 0= g§o
= 8 O E N eE =D
o LLRLESL LB IO
2288 E8S%r R 0ES
OO0 o 290 00T o
AEEAAPEEBRABRA
Test preparation | Test generation * *®
Tester program *
DFT design * %
Test execution Hardware || |k
Tester % IR %
Test related silicon w | |
Imperfect test Escape * * *
ualit;
quatity Lost performance *
Lost yield * *

Figure 1.5 Cost/benefit dependencies of DFT.

THE ECONOMICS OF TEST 21

are a fact of life and occur with unwelcome regularity. Lost performance refers to
losses caused by increases in die size necessary to accommodate DFT features. The
increase in die size may result in fewer die on a wafer; hence a greater number of
wafers must be processed to achieve a given throughput. Lost yield is the cost of dis-
carding good die that were judged to be bad by the tester.

The column in Figure 1.5 labeled “Volume™ is a critical factor. For a consumer
product with large production volumes, more time can be justified in developing a
comprehensive test plan because development costs will be amortized over many
units. Not only can a more thorough test be justified, but also a more efficient test—
that is, one that reduces the amount of time spent in testing each individual unit. In
low-volume products, testing becomes a disproportionately large part of total prod-
uct cost and it may be impossible to justify the cost of refining a test to make it more
efficient. However, in critical applications it will still be necessary to prepare test
programs that are thorough in their ability to detect defects.

A question frequently raised is, “How much testing is enough?” That may seem
to be a rather frivolous question since we would like to test our product so thor-
oughly that a customer never receives a defective product. When a product is under
warranty or is covered by a service contract, it represents an expense to the manufac-
turer when it fails because it must be repaired or replaced. In addition, there is an
immeasurable cost in the loss of customer goodwill, an intangible but very real cost,
not reflected in Figure 1.5, that results from shipping defective products.

Unfortunately we are faced with the inescapable fact that testing adds cost to a
product. What is sometimes overlooked, however, is the fact that test cost is recovered
by virtue of enhanced throughput.?* Consider the graph in Figure 1.6. The solid line
reflects quality level, in terms of defects per million (DPM) for a given process,
assuming no test is performed. It is an inverse relationship; the higher the required
quality, the fewer the number of die obtainable from the process. This follows from the
simple fact that, for a given process, if higher quality (fewer DPM) is required, then
feature sizes must be increased. The problem with this manufacturing model is that, if
required quality level is too high, feature sizes may be so large that it is impossible to
produce die competitively. If the process is made more aggressive, an increasing num-
ber of die will be defective, and quality levels will fall. Point A on the graph corre-
sponds to the point where no testing is performed. Any attempt to shrink the process to
get more units per wafer will cause quality to fall below the required quality level.

high
required quality
NS U '
Tg i benefit of test
o |
B
low

Process capability

Figure 1.6 The benefits of test.

22 INTRODUCTION

However, if devices are tested, feature sizes can be reduced and more die will fit
on each wafer. Even after the die are tested and defective die are discarded, the num-
ber of good die per wafer exceeds the number available at the larger feature sizes.
The benefit in terms of increasing numbers of good die obtainable from each wafer
far outweighs the cost of testing the die in order to identify those that are defective.

Point B on the graph corresponds to a point where process yield is lower than the
required quality level. However, testing will identify enough defective units to bring
quality back to the required quality level. The horizontal distance from point A to
point B on the graph is an indication of the extent to which the process capability
can be made more aggressive, while meeting quality goals. The object is to move as
far to the right as possible, while remaining competitive. At some point the cost of
test will be so great, and the yield of good die so low, that it is not economically fea-
sible to operate to the right of that point on the solid line.

We see therefore that we are caught in a dilemma: Testing adds cost to a product,
but failure to test also adds cost. Trade-offs must be carefully examined in order to
determine the right amount of testing. The right amount is that amount which mini-
mizes total cost of testing plus cost of servicing or replacing defective components.
In other words, we want to reach the point where the cost of additional testing
exceeds the benefits derived. Exceptions exist, of course, where public safety or
national security interests are involved.

Another useful side effect of testing that should be kept in mind is the informa-
tion derived from the testing process. This information, if diligently recorded and
analyzed, can be used to learn more about failure mechanisms. The kinds of defects
and the frequency of occurrence of various defects can be recorded and this informa-
tion can be used to improve the manufacturing process, focusing attention on those
areas where frequency of occurrence of defects is greatest.

This test versus cost dilemma is further complicated by “time to market.” Quality
is sometimes seen as one leg of a triangle, of which the other two are “time to mar-
ket” and “product cost.” These are sometimes posited as competing goals, with the
suggestion that any two of them are attainable.”> The implication is that quality,
while highly desirable, must be kept in perspective. Business Week magazine, in a
feature article that examined the issue of quality at length, expressed the concern
that quality could become an end in itself.?

The importance of achieving a low defect level in digital components can be
appreciated from just a cursory look at a typical PCB. Suppose, for example, that a
PCB is populated with 10 components, and each component has a defect level
DL = 0.999. The likelihood of getting a defect free board is (0.999)!° = 0.99004; that
is, one of every 100 PCBs will be defective—and that assumes no defects were
introduced during the manufacturing process. If several PCBs of comparable quality
go into a more complex system, the probability that the system will function cor-
rectly goes down even further.

Detecting a defective unit is often only part of the job. Another important aspect of
test economics that must be considered is the cost of locating and replacing defective
parts. Consider again the board with 10 integrated circuits. If it is found to be
defective, then it is necessary to locate the part that has failed, a time-consuming and

CASE STUDIES 23

error-prone operation. Replacing suspect components that have been soldered onto a
PCB can introduce new defects. Each replaced component must be followed by retest
to ensure that the component replaced was the actual failing component and that no
new defects were introduced during this phase of the operation. This ties up both tech-
nician and expensive test equipment. Consequently, a goal of test development must
be to create tests capable of not only detecting a faulty operation but to pinpoint,
whenever possible, the faulty component. In actual practice, there is often a list of sus-
pected components and the objective must be to shorten, as much as possible, that list.

One solution to the problem of locating faults during the manufacturing process
is to detect faulty devices as early as possible. This strategy is an acknowledgment
of the so-called rule-of-ten. This rule, or guideline, asserts that the cost of locating a
defect increases by an order of magnitude at every level of integration. For example,
if it cost N dollars to detect a faulty chip at incoming inspection, it may cost 10N
dollars to detect a defective component after it has been soldered onto a PCB. If the
component is not detected at board test, it may cost 100 times as much if the board
with the faulty component is placed into a complete system. If the defective system
is shipped to a customer and requires that a field engineer make a trip to a customer
site, the cost increases by another power of 10. The obvious implication is that there
is tremendous economic incentive to find defects as early as possible.

This preoccupation with finding defects early in the manufacturing process also
holds for ICs.?” A wafer will normally contain test circuits in the scribe lanes between
adjacent die. Parametric tests are performed on these test circuits. If these tests fail,
the wafer is discarded, since these circuits are far less dense than the circuits on the
die themselves. The next step is to perform a probe test on individual die before they
are cut from the wafer. This is a gross test, but it detects many of the defective die.
Those that fail are discarded. After the die are cut from the wafer and packaged, they
are tested again with a more thorough functional test. The objective? Avoid further
processing, and subsequent packaging, of die that are clearly defective.

1.9 CASE STUDIES

Finally, we present the results of two studies into test thoroughness versus AQL and
the consequences of decisions made with respect to test. The first is a classic study
published in 1985 that serves to underscore the importance of achieving high fault
coverage. The second is a study into the economics of multi-chip modules (MCMs).
A model was created and parameters were varied in order to discern their effect on
total product cost.

1.9.1 The Effectiveness of Fault Simulation

In this study, the results of which are shown in Figure 1.7, the authors were
concerned with the fact that at 96.6% fault coverage they were still getting too
many field rejects, and the costs of packaging and test were excessive.**® A decision
was made to improve the test program and determine what impact that would have
on the defect level.

24 INTRODUCTION

0 Number
ofdiein | (8:500) ~g-g
thousands Vectors
Number
of die

Figure 1.7 Fallout during test.

In their study, investigators analyzed 22,506 die. Of these, 4006 were eliminated
at the start of testing because of failures due to gross defects, including opens,
shorts, and so on. Then, 18,500 die were subjected to a functional test. The initial
test consisted of 858 vectors that provided 96.6% fault coverage. This test identified
6341 failing devices. Over time, the initial test was increased to 992 vectors to
address specific field reject problems encountered during production. During this
study the test was enhanced by the addition of another 298 vectors to bring the total
vector count to 1290. During their experiment, investigators recorded the vector
number at which failures occurred. The original 858 vectors uncovered 6341 defec-
tive chips. The added 432 vectors uncovered an additional 103 defective chips.

1.9.2 Evaluating Test Decisions

The second study examined test decisions involving (MCMs). The MCM is a hybrid
manufacturing technique in which several ICs are placed on an intermediate level of
packaging. It can be used to package incompatible technologies such as CMOS and
TTL, or it can be used to package digital circuits together with analog circuits that
can’t tolerate the noise generated by digital circuits. It can also be used to package
digital circuits together with memory, such as cache memory, or it can be used to
package two digital circuits that are either (a) too big to be placed on a single chip
with existing technology or (b) those in which yield of a single, larger chip may be
unacceptable. In this last instance, the MCM may be an intermediate phase until
manufacturing advances permit the individual digital chips to be integrated onto a
single die.

MCMs are often manufactured using known good die (KGD). The KGD is a bare
die that has gone through extensive testing. In a normal flow, wafer sort is performed
on individual die before they have been cut from the wafer. This is a test whose pur-
pose is to identify, as quickly as possible, those die that are grossly defective. Then,
those die that pass the test at wafer sort are packaged and tested more thoroughly. By
contrast, KGD must be thoroughly tested on the wafer because they will be sold as

CASE STUDIES 25

bare die, and the buyer will mount them directly onto the MCM without benefit of
an additional layer of packaging. As a consequence of this approach, the MCMs that
use these die must be processed in a clean room, which adds to manufacturing cost.

The cost of manufacturing MCMs is affected in significant ways by choices made
with regard to test. Some of the factors include: chip yield and the thoroughness of
test, the number of chips on the MCM, yield of the interconnect structure, yield of
the bonding and assembly processes, and effectiveness of test and rework for detect-
ing, isolating, and repairing defective modules. The High-Level Test Economics
Advisor (Hi-TEA) evaluates decisions made with respect to these and other factors,
including cost of materials and processes, yield parameters, and test parameters.”’
The metrics used by Hi-TEA are cost and quality: Hi-TEA attempts to optimize one
while the other serves as a constraint.

The Hi-TEA user enters many parameters and/or assumptions into the system.
Some of these inputs are easily obtained, such as the cost of labor and materials used
to package and test the MCMs. Other costs are initially guesses, which can be refined
as experience accumulates. In the paper cited here, the authors included several tables
contrasting MCM cost versus chip AQL. One of the interesting results brought out was
the trade-offs required to compensate for poor quality level of ICs used to populate the
MCMs in some of their examples. It was also interesting to note that as AQL for the
chips increased from 80% to 99.9%, total cost for MCMs followed a bell-shaped
curve, first increasing, then decreasing, so that with 99.9% AQL, it cost less to manu-
facture MCMs that met a given AQL goal. Another byproduct of higher chip AQL was
a significant reduction in the number of defective MCMs shipped to customers.

Figure 1.8 provides a summary of test cost versus quality trade-offs for several
different test and DFT strategies. The test vehicle for this study was an MCM that
contained a CPU, a coprocessor, and ten 4-Mbit SRAM chips. The clock speed for
this MCM was faster than that of any existing workstations at the time of the design.
It was assumed that there would be three defects per square inch for the CMOS CPU
and coprocessors, and six defects per square inch for the BICMOS SRAM wafers. It

900 - - - - 20,000
! - ! i | —o— Cost

830 3 3 1| —=— Defect level

860

840 |-

10,000

Cost ($)

820

Defect level (ppm)

800 |----- : : g
780 1 1 1 1 1 1 0

Base

95% die test
Partial DFT
Full DFT

Test controller
Partial assembly

Figure 1.8 Cost/quality trade-offs for various test/DFT strategies.

26 INTRODUCTION

was also assumed that 10% of the die would fail during burn-in. Test coverage at
wafer probe was 80%, and coverage at the die level was 99%. Substrate yield was
99.999% and test coverage for MCM test was 95% of all possible defects, including
faulty die, assembly errors, and so on.

From the base test, the next case reduced by half the test time for the die. As a
result, the fault coverage for the die decreased from 99% to 95%. From Figure 1.8 it
can be seen that, compared to the base case, final product cost increased by about
5% and defect level went up by almost 70%.

The next objective was to study the impact of DFT and built-in self-test (BIST)
on the cost and quality of the MCMs. The first experiment involved adding DFT and
BIST to the CPU and coprocessor. Compared to the base case, the use of partial
DFT reduced defect level from 10,000 to about 3000 ppm while reducing cost from
$845 to about $830. For the full DFT case the defect level remained about the same
as with the partial DFT case, but cost fell to about $805. An advantage that did not
get factored into these computations is the availability of the DFT features at higher
levels of integration, such as systems test.

The use of a test controller on the MCM was intended to evaluate the situation
where the manufacturer has no control over the ICs used in the design. In this sce-
nario, the test controller provides greater access to the individual chips on the
MCM. The cost of the additional test controller chip added $60 to the cost of the
MCM, but its presence helped to reduce the overall test cost slightly when com-
pared to the base case. The defect level was reduced by almost 80% relative to the
base case.

The final scenario considered testing the MCM after the SRAMs were attached.
If defects were encountered, they were repaired and the MCM retested. Then, when
the partial assembly passed the test, the CPU and coprocessor were mounted and the
MCM was retested. In this scenario the SRAMs can be considered hardcore (cf.
Section 9.7.1) and used to test the remaining logic on the MCM. Because diagnosis
is improved, it is less expensive to isolate defects and make repairs. Special fixtures
can be created to improve access to test points on the MCM. Note that this case pro-
vides the lowest overall cost of the MCM, although the defect level is slightly higher
than when DFT is used.

1.10 SUMMARY

During the past three decades a great deal of research has gone into the various fac-
ets of IC design, including system architectures, equipment used to create digital cir-
cuits with ever-shrinking feature sizes, and EDA tools used to facilitate the
migration from concept to digital product. Along the way, quality has benefited from
a better understanding of defect mechanisms, the development of better test methods
to identify and diagnose the causes of defects, and a better understanding of the
technical and economic trade-offs required to achieve desired quality levels.
Product reliability is another beneficiary as digital products have migrated from
SSI (small-scale integration), through very-large-scale integration (VLSI), into deep

SUMMARY 27

submicron (DSM). Greater integration has resulted in fewer assembly steps and
fewer soldering joints. As far back as 1979 it was reported that, based on five billion
device hours of experience, LSI devices with 70 to 100 gates per chip experienced
twice the failure rate of SSI devices with four to eight gates per chip. Put another
way, LSI devices experienced one-seventh the failure rate of SSI devices, on a per-
gate basis.>* CMOS technology, running at much lower power levels than equivalent
circuits implemented in previous technologies (ECL, TTL, etc.), has contributed to
improved reliability.

As the IC industry matures, and engineers gain a better understanding of the
many factors that contribute to yield loss, they are able to apply this new-found
knowledge to reduce both the sizes and the numbers of defects that occur in a given
die area, with the result that yields increase. This is all the more remarkable in view
of the fact that feature sizes continue to shrink and chip complexity continues to
increase. A relationship between complexity and minimum defect size is suggested
in Figure 1.9, where trends are projected to the year 2010.%!

The incentive to shrink die size is motivated by a rather basic imperative, improved
profitability.*> Consider a wafer with N die and a yield ¥. There will be ¥ x N good die
on the wafer. Each of these will be sold for Z dollars, producing an income of
Y X N x Z. This income must exceed the cost of designing, manufacturing, packaging,
testing, and marketing the chips. If die size is reduced, there will be more die on each
wafer, but the number of bad die may increase. If shrinking the die size causes a dis-
proportionately larger increase in the number of good die, then income increases,
assuming production costs do not go up disproportionately. Given a fixed selling price,
then, the object is to find die size and yield that maximize the product term Y X N X Z.

A simplistic analysis could lead to the conclusion that the number of good die
must increase disproportionately. Consider the following: If there were simply a
fixed number of point defects on a wafer, and they caused (1 —Y) die to fail, then
doubling the number of die on a wafer would produce N + (1 —Y) X N good die. In
effect, the overall yield increases. However, it is not quite that simple.

30 ; ; ‘ ; 1.0
25 i i
Relative decrease in — 0.8
0 _| minimum defect size :
&] ' ' ' @
g — 0.6 .=
g 15 4 3
g &
S 10| 04 3
5 _| Relative increase - 0.2
in complexity
— . ! !
0 | | | | 0
1995 1998 2001 2004 2007 2010

Year

Figure 1.9 Complexity versus defect size.

28 INTRODUCTION

As feature sizes shrink, supply voltages are reduced. This reduces power con-
sumption, heat dissipation, and failures caused by electric fields greater than the cir-
cuit can tolerate. But, reducing the supply voltage increases gate delay and thus
reduces the maximum clock rate. To compensate for this, the threshold voltage (the
voltage at which the transistor turns on) is reduced. If the threshold voltage is
reduced too far, leakage current becomes excessive. It is estimated that for every 60
mV that the threshold is lowered, leakage current increases by an order of magni-
tude.®* New failure mechanisms may be introduced into the process. Lower operat-
ing voltages imply less noise margin. Traces on the die are closer together, resulting
in greater potential for crosstalk. Greater capacitive coupling exists. Also, some
point defects on the wafer that may not have been problems at larger feature sizes
may become problems as feature sizes are reduced.

In summary, processes are improving, but as long as the universe is subject to
entropy, defects will continue to occur. The existence of defects implies a need for
test programs capable of detecting them, whether it be for reducing field rejects or to
help debug first silicon. The existence of chips with larger gate count implies a need
to develop more efficient test programs. The emergence of new fault mechanisms
implies a need for new test algorithms targeting those fault mechanisms. Further-
more, the ability to accurately compute defect level is important because it tells us
that, given levels of testability and yield beyond which we cannot hope to improve
(economically), we must expect a certain percentage of defective units shipped and
plan our business strategy accordingly, whether it be to stock more spare parts or to
improve our service department.

Another factor that has grown in importance in recent years is end-user expecta-
tions. In 1994, when a floating point problem was encountered in early Pentium
processors, the first inclination by Intel Corp. was to downplay the significance of
the problem, asserting that a typical user might only encounter an incorrect calcula-
tion once every 27 years. The outcry far exceeded anything that was anticipated by
Intel. They found that in order to maintain a favorable public image, it was necessary
to establish a generous return policy for anyone with a Pentium based microproces-
sor system. The resulting message from this experience is that, with electronic
products more pervasive than ever in many different end-user products, there is a
less forgiving public unwilling to understand or tolerate defective products. One slip
by a major vendor, and there will be another company waiting in the wings, ready to
step in and exploit the opportunity.

It is interesting to note that the delivery of correct and reliable computing is influ-
enced by factors that can be classified as nontechnical. For example, IBM’s Server
Group claims that the mean time between critical failures (MTBCEF) of its System/390
mainframe is 20 to 30 years, where MTBCEF is the average time between failures that
force a reboot and initial program load.** A large part of the reason for this is because
the core software is extremely stable, a change is implemented only if it is determined
beyond all doubt that a bug exists. Of course, the hardware must also be stable.

One of the design parameters for a new system being developed is mean time
before failure (MTBF). The goal is to keep a system up and running as long as possi-
ble. However, another parameter that often must be considered when developing a new

PROBLEMS 29

system is mean time to repair (MTTR). While it is desired not to have a system fail, in
some circumstances it may be even more desirable to be able to get a system up and
running again after it has failed. This may necessitate the inclusion of hardware whose
sole purpose is to help diagnose and isolate failure to a field replaceable unit (FRU).
Design-for-test or built-in self-test may be vitally necessary to achieve MTTR goals.

Change, and an urge for novelty, are key aspects of human existence, but some-
times these urges must be resisted. This ability to resist the urge to make changes
unless it is absolutely necessary to do so is cited as a major reason for Intel’s suc-
cess. In an article in the San Jose Mercury News, the story is told of a drop in yield at
one of Intel’s foundries.*> An investigation revealed that a processing change caused
wafers to move more quickly from one station to the next. As a result, the tempera-
ture of the wafers as they arrived at the next station deviated from what it had previ-
ously been, and the deviation was enough to adversely affect the yield of the die on
those wafers.

This drop in yield was notable because Intel reportedly practices a policy called
“Copy Exactly.” This practice involves building a fabrication plant as part of the
research and development process for a new product. The R&D process involves not
just the designers of a next generation chip, but also the people in manufacturing
who must fabricate and test it. Once a manufacturing process is put into place,
changes are not made until after considerable debate and considerable examination
of the data. This is basically an implementation of concurrent engineering, which is
defined as “a systematic approach to the integrated, concurrent design of products
and their related processes, including manufacture and support.”*

An appreciation for the relationship between test cost, yield, and reject rate can
be gained by considering an analogous situation in the field of communications.
When communicating through a noisy medium, communications can be made more
reliable by increasing transmission power. However, Shannon’s theorem for com-
munications in a noisy channel tells us that it is possible to make the transmission
error rate arbitrarily small by resorting to error correcting codes (ECC). The most
economic solution is found by factoring in both the cost of transmission power and
the cost of employing ECC circuitry to find a solution that allows the most reliable
communication at the highest possible rate, at the lowest possible cost.

Consider that the objective, when processing wafers, is to ship only good die. If
field reject rate is too high, it could be improved by resorting to larger feature sizes.
However, it can also be improved by employing a more thorough test that identifies
more of the defective die before they are shipped to customers. The most economic
solution is a complex function of process yield and test coverage.

PROBLEMS

1.1 For a semiconductor process with a yield Y = 0.7, compute the defect level
DL by means of Egs. (1.13) and (1.14) for values of T equal to 0.7, 0.8, 0.9,
and 0.975. Repeat using Eq. (1.16), with values of n, equal to 1 and 3. Repeat
all calculations for Y =0.9.

30

INTRODUCTION

1.2 Assume that the relative cost, C,;, of diagnosing and repairing defects,
expressed as a function of the percentage ¢ of faults tested, is
C, = 100-0.7¢. Furthermore, assume that the cost Cp of achieving a
particular test percentage 7 is C, = . What value of # will minimize
total cost?

t
100 —¢

1.3 Using Eq. (1.14), draw a graph of defect level versus fault coverage using
each of the following values of yield as a parameter: Y = {.40, .50, .70, .90,
.95}.

1.4 Using Eq. (1.5), calculate P(0) for A, = {.25, .5, .75, 1.0, 2.0}. Repeat using
Eq. (1.10) and assume DyA = {.25,.5,.75, 1.0, 2.0}. Repeat using Eq. (1.11),
for oo =2 and for o = 4.

1.5 Assume two randomly distributed defects per square inch, and assume that
each defect only affects one die. If there are four die on each square inch of
wafer, what is the yield? If feature sizes are shrunk so that there are nine die
per square inch, what is the yield?

1.6 Assume that the maximum allowable reject rate for a particular IC is 500
ppm. Use Eq. (1.5) to draw a graph of yield versus fault coverage for values
ofny=0,1,2,3,4,5.

1.7 Given an MCM with 20 die, each of which has an AQL of 99.5%, what is the
probability of a fault-free MCM?

REFERENCES

1. Doyle, E. A. Jr., How Parts Fail, IEEE Spectrum, October 1981, pp. 36—43.
2. Williams, T. W., and N. C. Brown, Defect Level as a Function of Fault Coverage, IEEE

Trans. Comput., Vol. C-30, No. 12, December 1981, pp. 987-988.

Rechtin, Eberhardt, The Synthesis of Complex Systems, IEEE Spectrum, July 1997,
Vol. 34, No. 7, pp. 51-55.

4. McCluskey, E. J. and F. Buelow, IC Quality and Test Transparency, Proc. Int. Test Conf.,

1988, pp. 295-301.

5. Donlin, Noel E., Is Burn-in Burned Out?, Proc. Int. Test Conf., 1991, p. 1114.

6. Henry, T. R., and Thomas Soo, Burn-in Elimination of a High Volume Microprocessor

Using IDDQ, Proc. IEEE Int. Test Conf., 1996, pp. 242-249.

. Weber, Samuel, Exploring the Time to Market Myths, ASIC Technol. News, Vol. 3, No.
5, September 1991, p. 1.

. Teichrow, D., and E. A. Hershey, III, PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Systems, IEEE Trans.
Software Eng., Vol. SE-3, No. 1, January 1977, pp. 41-48.

Bell, C. G., and A. Newell, Computer Structures: Readings and Examples, McGraw-
Hill, New York, 1971.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.
27.

28.

29.

30.

31.

REFERENCES 31

Davis, A. M., and D. A. Leffingwell, Using Requirements Management to Speed Delivery
of Higher Quality Applications, Technical Report 0001, Requisite, Inc., http:/
www.requirement.com/requisite.

Sanborn, J. L., Evolution of the Engineering Design System Data Base, Proc. 19th D.A.
Conf., 1982, pp. 214-218.

Cunningham, J. A., The Use and Evaluation of Yield Models in Integrated Circuit
Manufacturing, IEEE Trans. Semicond. Mfg., Vol. 3, No. 2, May 1990, pp. 60-71.
Seeds, R. B., Yield and Cost Analysis of Bipolar LSI, Proc. IEEE IEDM, Washington,
D.C., October 1967.

Murphy, B. T., Cost-Size Optima of Monolithic Integrated Circuits, Proc. IEEE, Vol. 52,
December 1964, pp. 1537-1545.

Stapper, C. H., Defect Density Distribution for LSI Yield Calculations, IEEE Trans.
Electron Devices, Vol. ED-20, July 1973, pp. 655-657.

Wadsack, R. L., Fault Coverage in Digital Integrated Circuits, Bell Syst. Tech. J., May—
June 1978, pp. 1475-1488.

Wiscombe, Paul C., A Comparison of Stuck-at Fault Coverage and I, Testing on Defect
Levels, Proc. Int. Test Conf., 1993, pp. 293-299.

Maxwell, P. C., R. C. Aitken, V. Johansen, and I. Chiang, The Effect of Different Test Sets
on Quality Level Prediction: When Is 80% Better than 90%?, Proc. Int. Test Conf., 1991,
pp. 358-364.

Agrawal, V. D., S. C. Seth, and P. Agrawal, Fault Coverage Requirement in Production
Testing of LSI Circuits, IEEE J. Solid-State Circuits, Vol. SC-17, No. 1, February 1982,
pp- 57-61.

Das, D. V., S. C. Seth, P. T. Wagner, J. C.Anderson, and V. D. Agrawal, An Experimental
Study on Reject Ratio Prediction for VLSI Circuits: Kokomo Revisited, Proc. 1990 Int.
Test Conf., pp. 712-720.

Seth, S. C. and V. D. Agrawal, On the Probability of Fault Occurrence, in Defect and Fault
Tolerance in VLSI Systems, ed. 1. Koren, pp. 47-52, Plenum, New York, 1989.

Maxwell, Peter C., Reductions in Quality Caused by Uneven Fault Coverage of Different
Areas of an Integrated Circuit, I[EEE Trans. CAD, Vol. 14, No. 5, May 1995, pp. 603-607.
Wei, S., P. K. Nag, R. D. Blanton, A. Gattiker, and W. Maly, To DFT or Not to DFT?, Proc.
Int. Test Conf., 1997, pp. 557-566.

Aitken, R. C., R. K. Scudder, and P. C. Maxwell, Never Mind the Cost of Test—Look at
the Value!, Test Cost Reduction Workshop, SEMI 1997, pp. D1-DS5.

Young, Lewis H., Electronic Business Today, October 1995, p. 50.

Business Week, August 8, 1994.

Thompson, Tom, How to Make the World’s Fastest CPUs, Byte Magazine, Vol. 22, No. 2,
February 1997, pp. bona3—bonal2.

Daniels, R. G., and W. C. Bruce, Built-In Self-Test Trends in Motorola Microprocessors,
IEEE Des. Test, Comput., April 1985, Vol. 2, No. 2, pp. 64-71.

Abadir, M. S., et al., Analyzing Multichip Module Testing Strategies, IEEE Des. Test
Comput., Spring 1994, Vol. 11, No. 1, pp. 40-52.

Slana, Matthew F., Workshop Report: Computer Elements for the 80’s, IEEE Comput.,
Vol. 12, No. 4, April 1979, p. 102.

Vallett, David P., IC Failure Analysis: The Importance of Test and Diagnostics, IEEE Des.
Test, July—September 1997, Vol. 14, No. 3, pp. 76-82.

32

32.

33.
34.
35.

36.

INTRODUCTION

Oldham, William G., The Fabrication of Microelectronic Circuits, Sci. Am., September
1977, Vol. 237, No. 3, pp. 111-128.

Pountain, Dick, Amending Moore’s Law, Byte Magazine, March 1998, pp. 91-95.
Halfhill, Tom R., Crash-Proof Computing, Byte Magazine, April 1998, pp. 60-74.

Gillmor, Dan, Curb on Tweaking Made Intel Strong, San Jose Mercury News, August 18,
1997, p. 1E.

Carter, Donald E., and B. S. Baker, Concurrent Engineering: The Product Development
Environment for the 1990s, Addison-Wesley, Reading, MA, 1992.

I CHAPTER 2

Simulation

2.1 INTRODUCTION

Simulation is an imitative process. It is used to study relationships between parame-
ters that interact in a system. In some cases it may point out errors that cause a design
to respond incorrectly. In other cases it permits optimization of a design for maxi-
mum performance or economy of operation or construction. In still other situations,
the system may be so complex that simulation is the only way that variables affecting
the design, and their interaction with each other, can be controlled and studied.

In order to imitate the behavior of a product or system, simulation employs mod-
els. A model is an imperfect replica. It must contain enough information to accu-
rately represent the behavior of the variables of interest in the process or system
being studied, but must not be so complex as to obscure details of the variables and
their relationships or so intricate that its cost approaches that of simply building the
device or system to be studied.

This chapter will focus on methods used to simulate digital logic circuits in order
to predict their behavior in the presence of various stimuli and environmental fac-
tors. Note that the accuracy of the prediction of circuit response depends on the
accuracy and level of detail of the circuit model provided to the simulator. In future
chapters we will examine fault simulation and other methods for verifying correct-
ness of designs and correctness of the fabricated product. Much can be learned by
comparing and contrasting methodologies used in simulation, and fault simulation,
with those used in design verification. In fact, as circuits get larger and more com-
plex, the arguments for integrating design and test activities become more compel-
ling. To the extent that the design effort can be leveraged in the manufacturing test
development task, the overall development cost for design and test can be reduced.

2.2 BACKGROUND

Early designers of digital logic implemented their circuits on printed circuit boards
(PCBs) using integrated circuits (ICs) characterized as small-scale integration (SSI),

Digital Logic Testing and Simulation, Second Edition, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

33

34 SIMULATION

medium-scale integration (MSI), and large-scale integration (LSI). Logic designers
seldom simulated their designs. Rather, they created profotypes. After the prototype
was debugged, layout of the PCB would begin. If design errors were discovered
after the PCB was fabricated, the errors were repaired with wires that were color-
coded to indicate an engineering change order (ECO).

The prototype is a physical mockup of the circuit being designed. Connections
are made by wire wrap or other means that can be easily altered to correct design
errors. It is used to evaluate logical correctness and, possibly, timing characteristics
of a design. The prototype is attractive because it can run at or near design speed, it
can be evaluated under actual operating conditions, it does not require detailed sim-
ulation models of the components used in the design, and it can be run with virtually
unlimited amounts of stimuli. Various types of test equipment can be hooked up to
the design to evaluate its performance, debug problems, and determine relative tim-
ing margins and voltage levels. If the system configuration includes operational soft-
ware and diagnostic tests, development and debug of this software can begin on the
prototype.

The prototype has its drawbacks. Many months of effort and great expenditure of
resources may be required to build the prototype.' It normally accommodates only a
single experiment at a time and a considerable amount of time may be required to
set up experiments. If the prototype goes down for any length of time because of
failure or damage to a critical part, the entire design team may be idled. Further-
more, with increasing amounts of logic being incorporated into single ICs, proto-
types offer less insight into timing issues.

In the late 1970s, simulation began to play a more important role in IC design.
Foundries emerged that accepted logic designs and converted them to working sili-
con. Much of the “glue” logic on PCBs that was implemented with SSI and MSI
parts began to find its way into ICs. This led to PCBs that were less densely popu-
lated, requiring fewer manufacturing steps. As a result, PCBs became more econom-
ical to produce, and a welcome byproduct of this evolution was an increase in
reliability.

The United States Department of Defense (DoD) recognized a problem in this
migration to custom ICs. The DoD required that there be a second source for com-
ponents used in digital circuits. Their concern was that a sole supplier might become
financially insolvent, and critical components used in weapons systems would no
longer be available. The advent of design tools and foundries capable of producing
unique digital functions prompted the DoD to initiate the VHSIC (Very High Speed
Integrated Circuit) program. The goal was to learn as much as possible about this
coming revolution in digital design.

To address the problem of sole sources for digital circuits, the DoD determined
that there would have to be a common language for describing digital designs. Then,
when a supplier provided a digital circuit for a DoD system, if it were not a standard,
off-the-shelf part that was available from two or more sources, the supplier would be
required to provide a formal description in a language sanctioned by the DoD. To
that end, DoD sponsored a conference at the Woods Hole Oceonographic Center in
the summer of 1981. Many experts on hardware description languages (HDLs) met

BACKGROUND 35

to discuss the various aspects of HDLs. A number of these languages already
existed. In fact, the IBM/360 family of computers had been described in APL (A
Programming Language) in 1963.% Other HDLs appeared over the years, the most
common of these being A Hardware Programming Language (AHPL),®> which is
based on APL, Computer Description Language (CDL),* and Digital Description
Language (DDL).>

From VHSIC and the Woods Hole conference, VHSIC Hardware Description
Language (VHDL) eventually emerged. At the same time that VHDL was being
defined and refined, the Verilog HDL was emerging as a commercial product. Ver-
ilog was initially proprietary, but eventually became an open language. As a result,
two widely accepted HDLs currently exist, and a large number of design and test
tools based on these languages have appeared in the marketplace.

Simulators based on these two languages have benefited from numerous
enhancements that have improved their efficiency, effectiveness, and ease of use.
Simulators exist that can operate on models described at levels of abstraction rang-
ing from switch level to behavioral. The behavioral descriptions can represent
designs equivalent to hundreds of thousands up to millions of logic gates. Further-
more, these simulators can process circuits described at multiple levels of abstrac-
tion: part behavioral, part gate-level, and part switch-level. The simulators support
creation of test stimuli with numerous constructs that provide flexible control of
simulation, afford visibility into intermediate results generated during simulation,
and include print and debug capabilities that enable the user to identify precisely
where timing and/or behavior fail to meet specifications.

The prototype, though not as popular as it once was, nevertheless endures.
Modern-day prototypes appear in the form of emulation systems made from field-
programmable gate arrays (FPGAs).® These are used to evaluate large, complex
designs that would take enormous amounts of time to simulate in software. With an
emulator running at clock speeds of 5 to 10 MHz, performance gains of up to six
orders of magnitude are possible over logic simulation on a workstation.

In a sense we have come full circle with the growing use of reusable macros, or
virtual components (VC), which are analogous to the MSI and L.SI components used
in previous generation designs. The emphasis is on “reusable,” meaning that the VC
is a general function that can be stored in a library and pulled into almost any
design. As an example, a counter may have parallel load, count-up and count-down
capabilities. A user might then hard-wire the VC to perform only a count-up opera-
tion. An IC that is designed using VCs becomes a system-on-a-chip (SoC). The com-
pany that designs the SoC, sometimes called a core module or drop-in function, may
not fabricate the design, but, rather, may make the design available to other compa-
nies in the form of RTL code. The other company then inserts or drops it into a
larger design. Companies that sell these designs do not sell components, rather, they
sell intellectual property (IP).

The behavior of these cores is usually described in Verilog and/or VHDL. A
design team could conceivably create a fairly large design completely out of core
modules, just as early designers connected SSI, MSI, and LSI components
together. Since core modules are used by many customers, designers who use

36 SIMULATION

them may feel comfortable in assuming that the cores are designed correctly and
would focus their design effort on verifying the interconnects between two or
more of these modules.

2.3 THE SIMULATION HIERARCHY

Digital systems can be described at levels of abstraction ranging from behavioral to
geometrical. Simulation capability exists at all of these levels. The behavioral
description is the highest level of abstraction. At this level a system is described in
terms of the algorithms that it performs, rather than how it is constructed. The devel-
opment of a large system may begin by characterizing its behavior at the behavioral
level, particularly if it is a “first of a kind” (cf. Section 1.4). A goal of behavioral
simulations is to reveal conceptual flaws.

When simulating behaviorally, the user is interested in determining things like
optimum instruction set mix. This is done by studying the effects of sequences of
instructions on data flow. Data flow through system elements can also be studied at
this level in order to detect potential bottlenecks. For example, it serves no useful
purpose to put a more powerful CPU into a system if the existing CPU is always
waiting for data from a memory or I/O unit. Trade-offs between hardware and soft-
ware can also be determined. If some software sequences are executed often, such as
when servicing interrupt requests, performance might be improved by implementing
the sequence in hardware. Partitioning, or modular decomposition, can also be per-
formed at this level, to determine the best allocation of functions to modules. When
behavioral simulations are complete, the behavioral model can serve as a specifica-
tion for the system design.

Once the system has been specified, a register transfer level (RTL) model, some-
times referred to as a functional model, can be used to describe the flow of data and
control signals within and between functional units. The circuit is described in terms
of flip-flops, registers, multiplexers, counters, arithmetic logic units (ALUs), encod-
ers, decoders, and elements of similar level of complexity. Data can be represented
at various levels of abstraction, ranging from Booleans to complex numbers, or can
be represented as ASCII strings. The building blocks and their controlling signals
must be interconnected so as to function in a manner consistent with the preceding
behavioral level description.

A logic model describes a system by means of switching elements or gates. At
this level the designer is interested in correctness of designs intended to implement
functional building blocks and units. Performance or timing of the design is a con-
cern at this level. Closely related to the logic model is the switch-level model used to
describe behavior of metal oxide semiconductor (MOS) circuits.” A switch-level
network consists of nodes connected by transistors. Each node has value 0, 1, Z, or
X and each transistor is open, closed, or indeterminate. Logic processing is aug-
mented by capabilities needed to perform strength resolution when a node is driven
by two or more MOS devices. The capacitance at a node may be sufficient to hold a
charge after all drivers are turned off, so the node behaves like a latch. If this

THE LOGIC SYMBOLS 37

property of MOS devices is recognized by a simulator, greater accuracy in predict-
ing circuit behavior may be possible.

A circuit level model is used on individual gate and functional level devices to
verify their behavior. It describes a circuit in terms of devices such as resistors,
capacitors, and current sources. The simulation user is interested in knowing what
kind of switching speeds, voltages, and noise margins to expect. Finally, the geomet-
rical level model describes a circuit in terms of physical shapes.

Simulation at a high level of abstraction requires less detailed processing; hence
simulation speed is greater and more input stimuli can be evaluated in a given
amount of CPU time. In most cases the loss of detail is known and accepted. How-
ever, there are instances where the designer may be unaware that information is lost,
information whose absence may obscure details essential to a proper understanding
of the circuit’s behavior. The importance of the information may depend on whether
the product being designed is synchronous or asynchronous. In synchronous
designs, clocking of bistable devices is usually controlled in such a way as to make
them less susceptible to unexpected pulses caused by transient signals. In asynchro-
nous designs, where designers have the freedom to create clock pulses for flip-flops
and latches, circuits are more susceptible to erratic behavior.

2.4 THE LOGIC SYMBOLS

Test problems, as well as other circuit issues, are often described most effectively
by means of schematic diagrams. Figure 2.1 introduces the logic symbols that are
used in this text, together with truth tables describing their behavior. In these sche-
matics the binary values, 0 and 1, are augmented with the values X and Z. X repre-
sents an unknown or indeterminate signal value, while Z represents a floating
signal. A net assumes the value Z when it is not being driven by any logic element,
it has effectively been disconnected from the circuit. In Figure 2.1(e), the tri-state
element has the enabling input En. When En = 1 the tri-state element behaves like a
buffer, and when En = 0 the tri-state output is disconnected from its input, regard-
less of what value appears at the input. That condition is represented by a Z on the
output.

A small bubble or circle on an input, output, or enable of a logic element repre-
sents an inverted signal. For example, the inverters shown in Figure 2.1(b) comple-
ment the logic value applied at the input. On an enable signal, such as the tri-state
buffer, a bubble indicates an active low enable, meaning that the output floats when
the enable is high and input data passes through the tri-state device when the enable
is low.

The inputs and outputs of logic functions are called terminals or ports. Any wire
that connects two or more terminals is called a ner. The term net will also apply to
any set or collection of interconnected terminals. An input terminal that is physically
accessible at an IC pin or logic board pin is called a primary input. An output termi-
nal that is physically accessible is called a primary output. An output terminal of a
logic function will also sometimes be called a node.

38 SIMULATION

1 F
1—|>—F
0 0
bl 1—G|>—F 1 0

(a) Buffer (b) Inverter
___________ _|____________
I L L, Iy F | I L I, I F
§2£| f—F 0 X X 0 | L F 00 0 0
3 X 0 X 0 | L 1 X X 1
XX 0 0 | X1 X 1
(c) AND gate L1111 | (DOR gate XX 11
____________ ===
En I F
En " | 1 L L F
0 X Z F
1 o o | 0 1 1
1 1 1 | 1 0 1
(e) Tri-state gate | (f) Exclusive-OR 1 1 0
____________ |l
I
D GATE D
S | S
o | o
G_| U | G_Ci U
R R
S C I S C
E | E
(g) NMOS I (h) PMOS
D |
I
NG—| |D—PG |
I
S I
(i CMOS |

Figure 2.1 Some basic switching elements.

The AND circuit and the OR circuit are commonly referred to as gates. The
AND, sometimes referred to as a conjunction, is high, or true, if all of its inputs are
high. A low on any input to the AND circuit is called a blocking signal; it can block
or gate out signals applied to other inputs, thus preventing them from passing
through to the output. The OR, or disjunction, is low if all of its inputs are low. A
logic 1 on any input to the OR is a blocking signal. Over time, the term gate has

SEQUENTIAL CIRCUIT BEHAVIOR 39

come to embrace the other elements (Exclusive-OR, tri-state, etc.), even though
their behavior as gates is not so evident.

An AND gate with a bubble on its output is a NAND gate. It has been known for
almost a century that the NAND can be used to implement other logic functions.®
The two-input NAND is often used as a measure of complexity for a circuit. For
example, if the size of a function is described as being 20,000 gate equivalents, those
20,000 gates are understood to be two-input NAND gates.

Logic functions can be expressed in terms of MOS transistors. The basic building
blocks are the NMOS and PMOS devices. The terminals are identified as S, G, and D,
denoting source, gate, and drain. The transistor conducts when the gate is active. The
NMOS device in Figure 2.1(g) conducts when the gate is at logic 1, and the PMOS
device conducts when the gate is at logic 0. The symbol L denotes a value of 0 or Z at
the drain, whereas H denotes a value of 1 or Z. The CMOS device has both negative
gate (NG) and positive gate (PG). The values on these gates are normally the comple-
ment of one another. The CMOS device conducts when NG is 1 and PG is 0. The tran-
sistor level model is more accurate in terms of representing the actual physical structure
of the circuit, but the level of detail may be so great as to obscure its basic functionality.

Logic operations can be described using Boolean equations. The equation

Z=A-B+C-D

is called a sum-of-products, sometimes said to be in disjunctive normal form. A dot
(-) indicates an AND operation, a plus (+) indicates an OR operation, and a bar
above a variable indicates that it is complemented. The same logic operation can be
described by

Z=(A+C) B+C)-(A+D)-(B+D)

This form is called a product-of-sums, also said to be in conjunctive normal form. For
this logic operation the sum of products is more economical, requiring two AND gates
and one OR gate, whereas the second expression requires four OR gates and one AND
gate. For other logic functions the product of sums may be more economical.

2.5 SEQUENTIAL CIRCUIT BEHAVIOR

A generic sequential circuit is often represented by the Huffman model’ in
Figure 2.2. The circuit consists of a combinational part and feedback lines Y, ..., Y,
which pass through delay elements d, ..., d; and then act as additional inputs to the
combinational logic. The set of values {y,, y,, ..., ¥, } constitute the present state of
the machine, while the values {Y|, Y,, ..., Y, } constitute the next state. Because there
are a finite number of possible states, the circuit is called a finite state machine. The
outputs z; are a function

Zi = Zi(xl’ ceey xn, yla sy yL)

40 SIMULATION

Xy ————— 0 ¢
[: : [d 2
. Combinational | ¢
X, hd logic L
[[
L3 [
L[] °

R

L Y,

et

Figure 2.2 Huffman model.

of the values on the inputs and the present state. The delay elements d|, ..., d; may
represent distributed delay inherent in the logic devices, they may represent lumped
delay elements specifically designed to delay signals by some known fixed amount,
they may be flip-flops controlled by one or more clock signals, or they may be com-
posed of elements from each of these types. If the devices are all controlled by a
common clock signal (or signals), then the circuit is synchronous; that is, its actions
are synchronized by some external signal(s). If the delays are inherent in the
devices, and not otherwise controllable by signals external to the circuit, the circuit
is classified as asynchronous.

A circuit that has both clocked and unclocked delays may be placed in either
category; the distinction often depends on the exact purpose of the asynchronous
signals. A circuit in which memory devices can be asynchronously set or reset, but
that is otherwise completely controlled by clock signals, is usually classified as syn-
chronous. Sequential circuits are sometimes referred to as cyclic, a reference to the
presence of feedback or closed loops, as distinguished from combinational circuits,
which are termed acyclic. However, authors will also sometime distinguish between
sequential cyclic and sequential acyclic circuits (cf. Section 5.4.1).

A frequently used memory element is the cross-coupled latch, implemented
using either NOR gates or NAND gates, as depicted in Figure 2.3. These latches
may appear by themselves or as constituent building blocks in other memory
devices. The value on output Y at time 7, ; is determined by values on the Set and
Reset input lines and by the present state of the latch. Given a present state y, and
values on its Ser and Reset inputs, the next state can be determined from a state table
(cf. Figure 2.3). The value within the state table, at the intersection of a row corre-
sponding to the present state and a column corresponding to the applied input
value(s), specifies the next state to which the circuit will transition.

Entries containing dashes denote indeterminate states. For the NOR latch the col-
umn corresponding to (Set,Reset) = (1,1) contains dashes. It would be illogical to set
and reset the latch simultaneously; and if the combination (1,1) were applied, fol-
lowed by the combination (0,0), the final state of each such device appearing in the

SEQUENTIAL CIRCUIT BEHAVIOR 41

Reset Set

Y Y
Set Reset
SR SR
00011011 001011011

ololo|1]- ol -|1]0o]o
Y Y

tf1jol1]- 1 =|1]o]1

(2) NOR Latch (b) NAND Latch

Figure 2.3 Cross-coupled latches.

circuit would depend on the physical properties of that device. A similar consider-
ation holds if the sequence {(0,0), (1,1)} were applied to the inputs of the NAND
latch. A latch may be preceded by gates that permit it to be controlled by a clock.
This is illustrated in Figures 2.4(a) and 2.4(b). In Figure 2.4(b) there is a single Data
input whose value is inverted in one of two paths so the latch never sees the illegal
input combination (0,0).

Clock-controlled flip-flops, or bistables as they are sometimes called, are used
extensively in digital circuits. The basic building blocks of sequential circuits are the
D (Delay) and the JK flip-flops. The D flip-flop simply delays a signal for one clock
period. The JK flip-flop behaves like the cross-coupled NOR latch but permits the
input combination (1,1). These, along with their state tables, are illustrated in
Figure 2.5. Another common flip-flop, the T (Toggle) flip-flop, switches state in
response to every active clock edge. A well-known theorem in sequential machine
theory states that any of these circuits can be configured to emulate any of the oth-
ers. For example, if the J and K inputs to a JK flip-flop are both tied to logic 1, the
resulting circuit becomes a T flip-flop. Note that the Preser and Clear inputs on the
D and JK flip-flop of Figure 2.5 are active low, so a logic 0 on the Preset input forces

| Y
Enable
Reset })O

Enable
(@ (®)

Figure 2.4 Gated latches.

42 SIMULATION

Preset —tL

I
— Ly o
D K — 0 JK
1110] 11
CLK — Ol | crk — 5 08 0 10 I
0[0]1

—_— (9]

Clear;‘r 2T o : Clear;r 1 1[0
D flip-flop | JK flip-flop

Figure 2.5 The standard flip-flops.

the Q output of these flip-flops to switch to a logic 1, while a 0 on the Clear
forces Q to a logic 0. The clock input (CLK) is active on a positive edge for both
the D and JK flip-flops.

The latch is similar in behavior to the D flip-flop. However, it is level-sensitive
rather than edge-sensitive, meaning that the clock is replaced by an enable (EN)
input and the value at the Data input appears at the output whenever the EN input is
active. When EN switches to the inactive state, the value at the Q output is unaf-
fected by signal changes at the Data input. Like the Preset and Clear lines, an active
low Enable is represented by a bubble at the EN input.

The flip-flops depicted above can be implemented as level-sensitive flip-flops or
as edge triggered flip-flops. A level-sensitive flip-flop responds to a high or low
clock level, whereas an edge-triggered flip-flop responds to a rising or falling clock
edge. The flip-flop in Figure 2.6 is a level-sensitive JK flip-flop implemented in a
master/slave configuration. When the clock is high, data can enter the first stage or
master. When the clock goes low, the data in the first stage are latched and the sec-
ond stage, the slave latch, becomes transparent so data that was in the first stage are
now transferred to the outputs.

The edge-triggered D flip-flop (DFF), shown in Figure 2.7, is somewhat more
complex in its operation.'® It has Preset and Clear lines with which the output Q can
be forced to either a 1 or O state independent of the values on the Data and Clock
lines. When the Preset and Clear are at 1 and the clock is low, then the complement
of the value at the Data input appears at the output of N,. Also, under these condi-
tions, the output of N, has the same value as the Data input. Therefore, the input to
N, at this time matches the value on the Data line, and the value on the input to N; is
the complement of the value on the Data input.

When Clock goes high, the values at the inputs to N, and N5 appear, inverted, at
their outputs. They are then inverted once again as they go through N5 and N so that
the output of N5 matches the value on the Data line. There is an important point to
note about this configuration: If Data is low when Clock goes high, then the output
of N5 goes low and prevents further changes in Data from propagating through N,. If
Data is high, then when Clock goes high, the high value at the output of N, causes a
0 to appear at the output of NV,. The 0 blocks changes at the Data input from propa-
gating through N, and N;.

SEQUENTIAL CIRCUIT BEHAVIOR 43

Preset
i
J Q
CLK F
[_
K 3 ¢
Clear

Figure 2.6 Level-sensitive JK flip-flop.

The circuit is sensitive to the rising edge of the Clock input. Data cannot get
through N, and N; when Clock is low, and shortly after Clock goes high the data are
latched so the flip-flop is insensitive to further changes at the Data input. However,
data changes during the positive edge transition can cause unpredictable results.
Therefore, these flip-flops are usually specified by their manufacturers with two key
parameters: setup and hold time. Sefup time is the interval during which a signal
must be stable at an input terminal prior to the occurrence of an active transition at
another input terminal. Hold time is the interval during which a signal must be stable
at an input terminal following an active transition at another input terminal. In the
flip-flop of Figure 2.7, setup and hold specify the duration of time during which the
Data input must be stable relative to the Clock input.

With several levels of abstraction available for representing circuit behavior, it is
reasonable to ask, “At what level of abstraction should a circuit be described?”
There is no clear-cut answer to this question. Different engineers, with different
objectives, find it necessary to work at different levels of abstraction. Consider the
following example:

Preset

Clock

Data

Clear

Figure 2.7 Edge-triggered delay flip-flop.

44 SIMULATION

Example The frequency divider in Figure 2.8(a) may appear to be well-behaved.
But if the latches are designed and used as shown in Figure 2.8(b), a pulse can be seen
that the designer may not have anticipated.'' If the unwanted pulse contains enough
energy, the following flip-flop may be clocked more often than expected. L]

Engineers responsible for designing and characterizing circuits for cell libraries
must be aware of, and must document, precise details of a circuit’s operation. Logic
designers who instantiate that circuit in their design must be aware that the Enable
has a minimum pulse width requirement of 8§ ns.

2.6 THE COMPILED SIMULATOR

Compilers for programming languages can be characterized as compiled or inter-
preted. Simulators are similarly characterized as compiled or event-driven. The
compiled simulator is created by converting a netlist directly into a series of
machine language instructions that reflect the functions and interconnections of the
individual elements of the circuit. For each logic element there exists a series of one
or more machine language instructions and a corresponding entry in a circuit value
table that holds the current value for that element. The event-driven simulator, some-
times called table-driven, operates on a circuit description contained in a set of
tables, without first converting the network into a machine language image. We will
first examine the compiled simulator.

The compiled simulator is constructed using the host computer’s repertoire of
machine language instructions. Each element in the circuit is evaluated using one or
more instructions of the host computer. The results are stored in a table that contains

oo Lo oH——

Enable o——

12 18 20
Data o

Enabl,
nable o 0 e 4 10

B

(b)

Figure 2.8 Frequency divider with spurious pulse.

THE COMPILED SIMULATOR 45

an entry for each logic element being simulated. The instructions that simulate the
circuit elements obtain their required input values from this table and store their
results back into the table. Circuit preparation for simulation includes rank-ordering,
defined below:

Definition 2.1 A state point is any primary input, primary output, or latch/flip-flop
input or output. Primary inputs and latch/flip-flop outputs are called input state
points. Primary outputs and latch/flip-flop inputs are called output state points.

Definition 2.2 A cone, also called a cone of logic, is the set of elements encoun-
tered during a backtrace from an internal circuit node, called the apex, to input state
points.

Definition 2.3 A predecessor of a logic element is a logic element that lies in its
cone.

Definition 2.4 A cone of logic is rank-ordered, sometimes said to be levelized, if
the elements in the cone are numbered such that every element in the cone has a num-
ber that is greater than that of any of its predecessors.

Definition 2.5 The level of a logic element in a combinational circuit is a measure
of its distance from the primary inputs. For any given gate, the level assigned is one
greater than the highest level assigned to the gates that drive it. The level of the pri-
mary inputs may be chosen to be 0 (0-origin) or 1 (1-origin).

The apex of a cone often coincides with an output state point, but may be any
internal node. When backtracing from an apex to input state points, all of the ele-
ments driving each element encountered during the backtrace are included in the
cone of logic. The input state points are the drivers of the circuit defined by the cone.
Note that if a cone is rank-ordered, then any sub-cone contained in that cone is also
rank-ordered. The simulator takes advantage of rank-ordering to ensure that no ele-
ment is evaluated until all of its predecessors have been evaluated. In Figure 2.9 the
input to flip-flop M is an output state point. The cone of logic driving that state point,
or apex, indicated by the dashed lines, contains the elements G, H, I, J, and K. The
input state points that drive this cone are the primary inputs B, C, D, E, F and the
output of flip-flop A.

A program for rank-ordering elements in a circuit begins by marking all of the
primary inputs. Then, each unmarked element in the circuit is examined. It is
marked if all of its inputs have been marked. If level numbers are required, the level
assigned to each gate is the highest level among the driving gates, plus one. After all
elements have been processed, if at least one additional element has been marked
and if there are elements that have not yet been marked, the process is repeated. For
a combinational circuit, the process terminates after a finite number of passes
through the circuit. For a sequential circuit, elements in a loop may not get marked
because they are interdependent; for example, element A cannot get marked because

46 SIMULATION

3_‘-
=
J

—

Clk
Clear

element B has not been marked, and element B cannot get marked because element A
has not been marked. A procedure for dealing with sequential loops is described in

Figure 2.9 Circuit for simulation example.

Section 5.3.2. Here we illustrate the operation of the compiled simulator.

Example A simulator will be created for the cone of combinational logic driving
flip-flop M in Figure 2.9. It will use assembler language instructions for the 80x86

IIliCI'OpI'OCCSSOI'.

; Set up stack for return values

PUSH DS ; Put return addr. on stack

MOV AX,0 ; Clear register

PUSH AX ; Put return addr. (0) on stack

; Initialize data segment address

MOV AX, DSEG ; Initialize DS

MOV DS, AX ; —— by way of Reg. AX
; Begin simulation

MOV AX, PI _ TABLE ; Load input A into Reg
MOV BX, PI_TABLE + 2 ; Load input B into Reg
AND AX, BX ; G=A&B

MOV GATE_TABLE, AX ; Store result for gate
MoV AX, PI_TABLE + 4 ; Load input C into Reg
MOV BX, PI _TABLE + 6 ; Load input D into Reg
AND AX, BX ; compute C & D

XOR AX, OFFFFFH ; Compute !(C & D)

MOV GATE_TABLE + 2, AX; H = !(C & D)

MOV AX, PI _TABLE + 8 ; Load input E into Reg
MOV BX, PI_TABLE + 10 ; Load input F into Reg

AX
BX

AX
BX

AX
BX

THE COMPILED SIMULATOR 47

AND AX, BX ; Compute E & F

MoV GATE_TABLE + 6, AX ; J = E & F

MoV AX, GATE_TABLE ; Load value of G into AX
MoV BX, GATE_TABLE + 2 ; Load value of H into BX
OR AX, BX ; compute G | H

MOV BX, PI_TABLE + 8 ; Load input E into Reg BX
OR AX, BX ; Compute result, gate I

MoV GATE_TABLE + 4, AX ; Store result for gate I

MOV~ AX, GATE_TABLE + 4 ; Load value of I into AX
MOV~ BX, GATE_TABLE + 6 ; Load value of J into BX
XOR AX, BX ; Compute I * J

MOV ~ GATE_TABLE + 8, AX ; Store K =1 ~ J

RET

The network is compiled into machine code by a preprocessor that reads a
description of the circuit expressed in terms of logic elements and interconnecting
nets. A table called PI_TABLE contains an entry for each primary input, while
another table, called GATE_TABLE, contains an entry for each gate in the circuit.
There is a one-to-one correspondence between primary inputs and locations in
PI_TABLE, and between circuit nets and locations in GATE_TABLE. The first step
in this simulation is to load the locations represented by PI_TABLE into Reg. AX
and PI_TABLE + 2 into Reg. BX. The values on the two primary inputs represented
by these locations are ANDed together and the result stored in GATE_TABLE, at a
location corresponding to the output of gate G. The next group of instructions com-
pute the value on the NAND gate H. Note that the host machine’s XOR instruction
is used, together with the argument OFFFFH, to complement the result before stor-
ing it at GATE_TABLE + 2.

The remaining gates are processed in similar fashion, and then the simulator
returns to the calling program. Note that when simulating the exclusive-OR gate the
simulator stores a result for gate / and then immediately loads the same value into
Register AX. Since the simulator is called repetitively with many input vectors,
every effort should be made to optimize its performance. This can be done by rank-
ordering the circuit. If a gate drives another gate, all of whose other inputs have been
processed, then the destination gate satisfies the rank-order criteria and can be the
next gate simulated. In that case, the value in the accumulator can be used without
being reloaded. It will still be necessary to save the calculated result in
GATE_TABLE if the driving gate drives two or more destination gates, or if the con-
trol program must provide the ability to inspect intermediate simulation results on
internal circuit nets after a simulation pass. L]

The compiled simulator can also be implemented using two tables or arrays:
the READ array and the WRITE array. In this implementation it is not absolutely

48 SIMULATION

necessary to rank-order a circuit. As each vector is read, new values on primary
inputs are stored in the READ array. Each element is then simulated as before,
except that they may be processed in random order. When an element is simulated,
its input values are obtained from the READ array and its result is stored in the
WRITE array.

After all elements have been simulated, contents of the READ and WRITE arrays
are compared. If they differ, the contents of the WRITE array are transferred to the
READ array and the circuit is again simulated. [In practice, it is simpler to exchange
names; the READ (WRITE) array in pass n becomes the WRITE (READ) array in
pass n + 1.] Eventually, after a finite number of passes, contents of the two arrays
must match if simulating a combinational circuit and the simulator can go on to the
next input vector. Although this obviates the need for rank-ordering, it may be quite
inefficient, requiring several passes before all input changes propagate to the outputs.

2.6.1 Ternary Simulation

In sequential circuits the values on many internal nets are determined by values on
feedback lines. When power is first applied to a circuit, these values are indetermi-
nate; they do not assume known values until the circuit is reset or until the latches and
flip-flops are loaded with known values from other circuit elements on which they are
functionally dependent. Hence it is necessary, at a minimum, to be able to represent a
third value, the indeterminate state. This requires the use of two binary values to rep-
resent the three simulation values. One such mapping establishes the following corre-
spondence between the three simulation values and the two-bit vectors:

0 00
I Ll
X 0,1

The simulation program must be expanded accordingly, but first the operations on
these two-bit vectors must be defined. It turns out that the processing is similar to
processing of single-bit values in most cases. For example, to AND a pair of argu-
ments, individual bit positions are ANDed. The OR operation behaves similarly.
Primitives that invert arguments, such as the Inverter and the exclusive-OR, require
special attention because a (1,0) is not the complement of an X. The inverter can be
processed by complementing the individual bits and swapping them. The exclusive-
OR of variables A and B is complicated by the fact that A and B could both be X. The
computation may best be processed as A -B + A - B.

2.6.2 Sequential Circuit Simulation

When simulating a rank-ordered combinational circuit described in terms of stan-
dard logic gates, operation of the compiled simulator is quite straightforward. How-
ever, sequential logic requires additional processing before the compiled simulator

THE COMPILED SIMULATOR 49

Set Set
1)
SO
SI
_ 2
Reset Reset
(a) Before cut (b) After cut

Figure 2.10 NAND latch.

can proceed. Consider the cross-coupled NAND latch of Figure 2.10(a). Before gate
1 is simulated, a value is needed from gate 2. But simulation of gate 2 requires a
value from gate 1. The latch could be extracted in its entirety from the circuit and
replaced with a call to an evaluation routine. Then, after simulation reached the
point where all inputs to the latch were stable, the evaluation routine could deter-
mine the new values on the output of the latch. For a NAND latch the evaluation
routine is not difficult to derive. For an asynchronous state machine comprised of
many states, the task of creating an evaluation routine is formidable. An alternate
approach is to cut feedback lines in the circuit model (cf. Section 5.3.2). If a cut is
made from gate 1 to gate 2, the circuit model of Figure 2.10(b) is obtained.

After all loops in the circuit have been cut, the network is compiled. The circuit
is now a pseudo-combinational circuit in which a feedback line has been replaced
by a pseudo-input, designated SI, and a pseudo-output, designated SO. The
pseudo-inputs are treated as primary inputs when rank-ordering and compiling the
circuit.

Before simulation commences, the control program sets all pseudo-inputs to the
X state. Then, during any single pass through the compiled simulator, each element
is simulated once. It may be the case that the value on a pseudo-output is not the
same as the value on the corresponding pseudo-input. In that case, the values on the
pseudo-outputs are transferred to the corresponding pseudo-inputs and simulation is
performed again. If the pseudo-outputs and pseudo-inputs continue to disagree, after
some predetermined number of passes, it is concluded that the circuit is oscillating
and the pseudo-inputs and pseudo-outputs that are oscillating are set to the X state.
The control program then permits additional passes through the simulator, each time
setting to X any additional pseudo-inputs that did not agree with their corresponding
pseudo-outputs. Eventually the circuit stabilizes with some of the pseudo-inputs in
the X state.

The pseudo inputs and pseudo outputs are analogous to having READ and
WRITE arrays, but only for feedback lines. In fact, if the entire circuit is simulated
using READ and WRITE arrays, then not only is it not necessary to rank-order the
circuit, it is also not necessary to cut the loops. It is, however, still necessary to
detect oscillations and inhibit them with the X state.

50 SIMULATION

2.6.3 Timing Considerations

Elements used to fabricate digital logic circuits introduce delay. Ironically, although
technologists constantly try to create faster circuits by reducing delay, sequential
logic circuits could not function without delay; the circuits rely both on correct logi-
cal operation of the components in the circuit and on correct relative timing of sig-
nals passing through the circuit. However, this delay must be taken into account
when designing and testing circuits. Suppose the inverter in the latch of Figure 2.8
has a delay of n nanoseconds. If Data makes a 0 to 1 transition and Enable makes a
1 to O transition approximately n nanoseconds later, the cross-coupled NAND latch
sees an input of (0,0) for about n nanoseconds followed by an input of (1,1). This
produces unpredictable results. The problem is caused by the delay in the inverter. A
solution to this problem is to put a buffer in the noninverting signal path so that sig-
nals Data and Data reach the NANDSs at the same time.

In the latch circuit just cited, a race exists. A race is a situation in which two or
more signals are changing simultaneously in a circuit. The race may be caused by
two or more input signals changing simultaneously, or it may be the result of a sin-
gle input change propagating along two or more signal paths from a net with multi-
ple fanout. Note that a latch or flip-flop implies a race condition since these devices
will always have at least one element whose signal both goes outside of the device
and also feeds back to an input of the latch or flip-flop. Races may or may not affect
the behavior of a circuit. A critical race exists if the behavior of a circuit depends on
the order in which signals arrive at a common function or device, such as a flip-flop.
Such races can produce unexpected and unwanted results.

2.6.4 Hazards

Unanticipated events in circuits can result from logic conditions that have been
ignored up to this point, namely, hazards. A hazard is a chance event; it is the pos-
sible occurrence in a circuit of a momentary value opposite to that which is
expected. Hazards can exist in combinational or sequential circuits, and they can be
the result of the way in which a circuit is designed or they may be an inherent prop-
erty of a function. In sequential circuits it is possible for unwanted and unexpected
pulses to occur in combinational logic and propagate to sequential elements where
they can cause erroneous state transitions to occur. Consider the circuit of
Figure 2.11.If A = B=R = 1 and S changes from 1 to O, then by virtue of the delay
associated with the inverter, both AND gates, and subsequently the OR gate, will
have a 0 output for a period corresponding to the delay of the inverter. After that
period, the output of the OR gate returns to 1, but the pulse may persist long
enough to set the latch. That pulse, sometimes referred to as a glitch or spike, can
be avoided by adding a third AND gate to create the product term A - B. This term is
addedtothe sum S=A-S+ S -B + A - B, and the glitch is avoided.

The hazard just illustrated is called a static hazard. A static hazard exists if the
initial and final values on a net are the same but at some intermediate time the net

THE COMPILED SIMULATOR 51

S

’(R B
R

Figure 2.11 Circuit with hazard.

may assume the opposite value. If the initial and final values are O (1), then the haz-
ard is sometimes called a 0-hazard (1-hazard). A dynamic hazard exists if the initial
and final values on a net are different and if, after achieving the final value, the net
may assume the initial state one or more times. In other words, there is a dynamic
hazard if it is possible to have 2n + 1 transitions on a net for some integer n greater
than 0. Note that the definition of a hazard only states that spurious transitions may
occur; because of the variability of propagation delays, they may or may not actually
occur.

Hazards are also categorized as logic or function hazards. Given a function f, a
p-variable logic hazard exists for a p-variable input change U to V if

L f(U) =f(V).
2. All 27 values specified for fin the subcube (cf. Section 4.3.1) defined by the p
changing inputs are the same.

3. During the input change U to V a spurious hazard pulse may be present on the
output.

The hazard illustrated in Figure 2.11 is a logic hazard. In the subcube defined by
A,S,B,R = (1,X,1,1), both values of fare 1. It has been shown that logic hazards can
be eliminated by including all prime implicants in the implementation of a circuit.'?
A function hazard exists for the function f and the input change U to V iff*

L fU) =fV).

2. There exist both 1s and Os specified for f within the 27 cells of the subcube
defined by the p inputs that changed.

Function hazards cannot be designed out of the circuit. Consider again the circuit
of Figure 2.11. There is a function hazard when going from A,S,B,R = (1,0,0,1)
to A,S,B,R = (0,1,1,1) because the input transition may go through the points
A,S,B,R =(0,0,0,1) and A,S,B,R = (0,0,1,1) and the function f has value O at both
points. The intermediate values assumed during operation will depend both on cir-
cuit delays and on the order in which the inputs change.

*We use iff as an abbreviation for “if and only if.”

52 SIMULATION

2.6.5 Hazard Detection

The compiled simulator performs logic evaluations. However, it ignores inherent
delays in circuit elements. Furthermore, the cutting of feedback lines presumes
that delay is lumped at that particular point where the cut occurred. Consider the
NAND latch with the feedback line cut (Figure 2.10). If a transition occurs in
which both Ser and Reset lines change from 0 to 1, then the simulation result is
totally dependent on where the cut occurred. With the cut illustrated in
Figure 2.10(b), gate 2 will be simulated first and the latch will stabilize at Q = 1. If
the cut was made from gate 2 to gate 1, then gate 1 will be simulated first and the
latch will stabilize at Q = 0. This problem results from the assumption that the
input changes arrived simultaneously and that the delays were lumped at one
point. By moving the cut, in effect lumping the delay at another point in the circuit
model, the simulator computed a different answer. In actual circuits, delay is dis-
tributed and the circuit could in fact oscillate if the input changes occurred suffi-
ciently close together.

It was pointed out in Section 2.6.4 that circuit behavior can be affected by
hazards. Hazards are a consequence of delay in circuit elements. The static haz-
ard, which causes a momentary change to the opposite state on signal lines that
should remain unchanged, may be of sufficient duration to cause a NAND latch
to change state. If the inputs are S,R = 1,1 and the present state is Q = 0, then a
momentary 1-0-1 glitch on the Set line could cause it to latch up in the O =1
state. But the compiled logic simulator will not detect glitches if it is only simu-
lating logic 1 and O.

To address this problem a ternary algebra, consisting of the symbols (0,1,X), was
proposed.'? The values were already in use to handle unknown values associated
with feedback lines. However, ternary values can be applied to inputs whenever a
change occurs. In effect, the ternary algebra describes the transition region in
switching devices. It permits an approximation to continuous signals, as illustrated
in Figure 2.12, by representing the “in between” time when a signal is neither a 0
or 1. In fact, if a signal fans out from a source, that signal could simultaneously rep-
resent a 0 to one device and a 1 to another device due to differences in switching
characteristics of the driven devices. The ternary algebra tables for the AND gate
and the OR gate are shown in Figure 2.13. The following two lemmas follow
directly from the ternary algebra tables.

Figure 2.12 The transition region.

THE COMPILED SIMULATOR 53

AND OR

—_

LT P

o o o |o
LT e
X o

o

Figure 2.13 Ternary algebra tables.

Lemma 2.1 If one or more gate inputs are changed from 0 to X, or 1 to X, the gate
output will either remain unchanged or change to X.

Lemma 2.2 If one or more gate inputs are changed from X to a known value, the
gate output will either remain unchanged or change from X to a known value.

The following theorems flow from the lemmas:

Theorem 2.1 If one or more ternary inputs to a combinational logic network
changes from 1 to X or 0 to X, then the network output either remains unchanged or
changes to X.

Theorem 2.2 If one or more ternary inputs to a combinational logic network
changes from X to 1 or X to 0, then the network output either remains unchanged or
changes from X to 1 or X to 0.

Theorem 2.3 The output f(a, ..., a,) of a combinational logic network may change
as a result of changing inputs ay, ..., a,, iff

f(X, vees X, ap+1’ L) an) =X

With these theorems a pair of procedures can be defined for determining whether or
not a circuit will be affected by static hazards, critical races, or essential hazards dur-
ing a given input state change. Using the Huffman model, proceed as follows:

Procedure A. Determine all changing Y signals. Changing inputs are first set to X. If
any Y; outputs change to X, change the corresponding y; inputs and resimulate. Con-
tinue until no additional ¥; changes are detected.

Procedure B. Determine which Y signals stabilize. Set changing inputs from X to their
new binary state and simulate. If any Y; changes from X to 1 or 0, then change the
corresponding y; and resimulate. Continue until no additional Y; changes occur.

Theorem 2.4 If feedback line Y}, = 1(0) after applying Procedure A and Procedure B
to a sequential circuit for a given input-state change starting in a given internal state,

54 SIMULATION

then the Y, feedback signal must stabilize at 1(0) for this transition regardless of the
values of the (finite) delays associated with the logic gates.

These theorems state that if ternary algebra is used when simulating, and unstable
feedback lines are handled in accordance with procedures A and B, then:

1. Hazards, races and oscillations are automatically detected.
2. For a circuit with n feedback lines, at most 2n simulation passes are required.

Example For the NAND latch of Figure 2.10(b), the original input Set = Reset = 0
results in a 1 on pseudo-input S1. With ternary simulation the Set and Reset lines both
switch from 0 to X, and then from X to 1. Procedure A is applied first. Gate 2 is sim-
ulated and the (1, X) combination on the inputs causes an X on the output. This value
is input to gate 1 and, together with the X on the other input, causes gate 1 to switch
to X. This X then appears on the pseudo-output.

Since the value on SO differs from the value on S/, the value on SO is transferred
to SI and the circuit is resimulated with the X values on the Set, Reset and pseudo-
input. The circuit is now stable with an X on S7 and SO. Procedure B is now applied.
The inputs are changed to 1 and the circuit is resimulated. Note, however, that the X
on the pseudo-input causes an X to occur on the output of gate 2; this in turn causes
an X on the output of gate 1 and, subsequently, on the pseudo-output SO. The circuit
is “stable” in the unknown state. L

2.7 EVENT-DRIVEN SIMULATION

A latch or flip-flop does not always respond to activity on its inputs. If an enable or
clock is inactive, changes at the data inputs have no effect on the circuit. Compiled
simulators in the past have used a method called stimulus bypass to take advantage
of this fact.'® Flip-flops were modeled as an integral body of machine code in which
the first few instructions checked key inputs to determine if internal activity were
possible. The property of digital networks, whereby a very small amount of activity
occurs during a given time step, is often termed latency. As it turns out, the amount
of activity within a circuit during any given timestep is often minimal and may ter-
minate abruptly.

Since the amount of activity in a time step is minimal, why simulate the entire
circuit? Why not simulate only the elements that experience signal changes at their
inputs? This strategy, employed at a global level, rather than locally, as was the case
with stimulus bypass, is supported in Verilog by means of the sensitivity list. The
following Verilog module describes a three-bit state machine. The line beginning
with “always” is a sensitivity list. The if-else block of code is evaluated only in
response to a 1 — O transition (negedge) of the reset input, or a 0 — 1 transition
(posedge) of the clk input. Results of the evaluation depend on the current value of
tag, but activity on tag, by itself, is ignored.

EVENT-DRIVEN SIMULATION 55

module reg3bit(clk, reset, tag, reg3d);
input clk, reset, tag;
output reg3;
reg [2:0] reg3;
always@(posedge clk or negedge reset)
if(reset == 0)
reg3 = 3'b110;
else // rising edge on clock
case(reg3)
3'b110: reg3
3'b011: reg3
3'b001: reg3
default: reg3
endcase
endmodule

tag ? 3'b011 : 3'b001;
tag ? 3'b110 : 3'b001;
tag ? 3'b001 : 3'b011;
3'b001;

Verilog will be used in this text to describe circuits. The reader not familiar with
Verilog, but familiar with C programming, should be able to interpret the Verilog
examples with little difficulty since Verilog is, syntactically, quite similar to C, and
the examples in this text use only the most basic features of the language. The inter-
ested reader not familiar with HDLs should consult texts dedicated to Verilog'* and
VHDL.'® The IEEE Verilog Language Reference Manual (LRM) is another valuable
source of information.'®

When a signal change occurs on a primary input or the output of a circuit ele-
ment, an event is said to have occurred on the net driven by that primary input or ele-
ment. When an event occurs on a net, all elements driven by that net are evaluated. If
an event on a device input does not cause an event to appear on the device output,
then simulation is terminated along that signal path.

Event-driven simulation can be performed in either a zero or a nominal delay
environment. A zero-delay simulator ignores delay values within a logic element; it
simply calculates the logic function performed by the element. A nominal-delay
simulator assigns delay values to logic elements based on manufacturer’s recom-
mendations or measurements with precision instruments. Some simulators, trying to
strike a balance between the two, perform a unit-delay simulation in which each
logic element is assigned a fixed delay, and since the elements are all assigned the
same delay, the value 1 (unit delay) is as good as any other.

The nominal delay simulator can give precise results but at a cost in CPU time.
The zero delay simulator usually runs faster but does not indicate when events
occur, so races and hazards can present problems. The unit-delay simulator lies
between the other two in range of performance. It records time units during simu-
lation, so it requires more computations than zero-delay simulation, but the mech-
anism for scheduling events is simpler than for time based simulation. However,
regarding all element delays as being equal can produce inaccurate results in tim-
ing sensitive circuits and may give the user a false sense of security. Unit delay

56 SIMULATION

simulation in sequential circuits does, however, have the advantage that time
advances; so if oscillations occur, they will eventually reach the end of the clock
period and be detected without a need for additional code dedicated to oscillation
detection.

2.7.1 Zero-Delay Simulation

Event-driven, zero-delay simulation will be considered first. The zero delay is obvi-
ously not a delay at all; the term simply denotes a simulation environment in which
propagation delay is ignored. When performing event-driven simulation, it is not
necessary to rank-order the circuit. Before simulating the first input pattern, all
nodes are initialized to X. Then, whenever an element assumes a new value, whether
it be a primary input changing as a result of new stimuli being applied or an internal
element changing as a result of event propagation, any elements driven by that ele-
ment are simulated.

The Event-Driven, Zero-Delay Simulator An event-driven, zero-delay sim-
ulator can be implemented by means of the READ/WRITE arrays described ear-
lier, and associating a flag bit with each entry in the arrays. If an event occurs at
the output of an element, the elements affected by that event are identified and
flagged for simulation in the next pass. When no new events occur during a pass,
the circuit is stable. Alternatively, elements that must be simulated in the next
pass can be placed on a first-in first-out (FIFO) stack, assuming they are not
already on the stack. When the stack is empty at the end of a pass, the circuit is
stable.

Example Event-driven simulation will be illustrated using the circuit in
Figure 2.14. At the first time interval, denoted by column heading 7, all elements
driven by inputs 1, 2, 3, and 5 are simulated. Simulation causes the outputs of gates 6
and 7 to switch from X to 0. Simulation of gate 8 produces a 1 on its output. These
changes cause gate 9 to be simulated, with the result that a 1 appears on its output.
At time ¢, input 1 changes from a 1 to 0. However, there is no change on the output
of gate 6, so simulation for time ¢#, is done. Input 2 changes at time #,, causing gate 9

ty (S I 4)

1 1 1 0 1 — 6
0 1 1 0 0 2 —
1 0 0 0 0 3 — 7\ 9
1 1 0 X X 4 — J
30

Figure 2.14 Zero-delay simulation.

EVENT-DRIVEN SIMULATION 57

to be simulated. The output of gate 9 does not change. Gate 7 is simulated at time
15, but again no output activity occurs. At time ¢4, input events cause all gates to be
simulated. [] |

In this tiny example it is difficult to appreciate the value of event driven simulation,
but in a circuit containing many thousands of gates, a situation as occurred in time ¢,
can happen frequently and can provide substantial savings in computer time. The
simulation at time #; was terminated almost immediately because a single input
change occurred that had virtually no effect on the circuit.

Hazard Detection Using Multiple Values The three-valued hazard analysis
can be used with event-driven, zero-delay simulation without having to rank-order
or cut the feedback lines in the model. Simply perform an intermediate X value sim-
ulation on all changing inputs and the circuit will stabilize. However, the three-val-
ued simulation will not detect dynamic hazards. A nine-valued simulation can be
performed to detect dynamic hazards.!” The nine values denote various combina-
tions of stable and changing signals. The values are used in conjunction with opera-
tor tables for the basic logic operations. The symbols are defined in Table 2.1. The
operation table for the AND gate is given in Table 2.2. From this table, any pair of
incoming signals to a two-input AND gate can be processed to determine whether
the result will cause a static or dynamic hazard. For example, if one of the inputs is a
constant 0, the output must be a constant 0. With a static 0-0 hazard on one input,
there will always be a static 0-0 hazard on the output unless another input to the
AND gate blocks it with a constant 0. The circuit in Figure 2.15 illustrates creation
of a dynamic 0-1 hazard in a pair of NAND gates. The table for the AND gate is eas-
ily extendable to n, n > 2, since the AND operation is commutative and associative.

Table 2.3 gives the hazard detection results for the NAND latch of Figure 2.10(a).
In this table the columns correspond to values on the Reset input and the rows corre-
spond to values on the Ser input. The values in the lower right quadrant of this table
contain two values. The actual value assumed at the output depends on the previous
state of the latch. If the Q output is presently true, then the first value is assumed. If
false, then the second value is assumed.

TABLE 2.1 Symbols for Hazard Detection

Symbol Meaning Complement

0 constant 0

constant 1

dynamic hazard 0-1
dynamic hazard 1-0

0-1 transition, hazard-free
1-0 transition, hazard-free
0-0 static hazard

1-1 static hazard

race condition

-~ =

>

*ZE > <~ — O —

*s=Z<

58 SIMULATION

TABLE 2.2 Hazard Detection During and Operation

AND 0 1 M W * A \ / \
0 0 0 0 0 0 0 0 0 0
1 0 1 M w * A v / \
M 0 M M M M M M M M
W 0 W M W * / \ / \
A 0 A M / ® A M / M
v 0 v M \ * M v M \
/ 0 / M / * / M / M
\ 0 \ M \ * M \ M \
TABLE 2.3 Hazard Detection for NAND Latch
0 A M / * 1 \% W \
0 1 \% W \ * 0 A M /
A 1 * W * * 0 A * /
M 1 \ W \ * 0 A M /
/ 1 ® W ® ® 0 A ® /
1 1 1 1 1 * 1-0 A 1-* 1-~
v 1 v W \ * v-0 W-A \-M W-/
W 1 * W * * v-0 A * W-/
\ 1 \% W \ * v-0 W-A \-M W-/

2.7.2 Unit-Delay Simulation

Unit-delay simulation operates on the assumption that all elements in a circuit pos-
sess identical delay time. It has the advantage that it is easier to implement than
nominal-delay simulation. In fact, when every element has unit delay, the READ/
WRITE array implementation described in Section 2.6 for zero delay simulation is
sufficient since each pass through the simulator corresponds to advancement of
events through one level of logic. Primary inputs can switch values while other
events are still propagating to outputs. When copying the WRITE array into the
READ array, if entries that change during the simulation pass are flagged, then per-
formance can be enhanced by simulating only those elements that experience events

at their inputs.

Figure 2.15

f

Creation of dynamic hazard.

EVENT-DRIVEN SIMULATION 59

When creating test stimuli for a timing-sensitive circuit, the unit-delay simulator
can give a false sense of security. Timing for the actual circuit may not resemble the
results predicted by the unit-delay simulator. When simulating test stimuli in order
to generate a test program, it may be necessary to insert additional gates with unit
delay into the circuit model so as to force the simulator to predict correct circuit
response for a given set of input stimuli. Another drawback to unit-delay simulation
is the fact that, because all elements have nonzero delay, the circuit cannot be rank-
ordered for simulation purposes. Hence, elements may be unnecessarily evaluated
several times in a single period.

Unit delay can be useful in applications such as gate arrays. These are inte-
grated circuits made up of a fixed array of rows and columns. At the intersection
of each row and column is an identical device that may be a NAND gate, a NOR
gate, or a collection of transistors and resistors. The logic designer implements a
function on a gate array by specifying the connections of switching elements at
row/column intersections. Metal layers are provided to accomplish the intercon-
nections. Switching elements connected in this way often have the same switch-
ing speed, in which case a unit delay is meaningful. If the switching speeds are
integral multiples of one another, then unit delay can still be effectively
employed.

2.7.3 Nominal-Delay Simulation

Zero-delay simulation with three or nine values can provide correct simulation
results because it can accurately predict hazards and races. However, it is worst-case
or pessimistic because it ignores the time dimension and collapses all computations
into zero time. As a result, it may see conflicts that do not occur in real time. A
designer may intend for an asynchronous state machine to receive two or more
events during the same clock period. The designer will make use of the delay in the
devices and, if necessary, incorporate additional delay into signal paths to ensure
that the signals arrive at the state machine in the correct sequence. The zero-delay
simulator, not recognizing the delay information, concludes that a race exists and
that an unpredictable state transition will occur. As a result, it may put the state
machine into an indeterminate state.

Nominal delay represents the real delay of a device. However, the accuracy of
that representation depends on how accurately the delay is calculated. For example,
the nominal delay along a signal path may be calculated solely from delay values
given for individual cells residing in a macrocell library. There was a time in the past
when these values would have been sufficient to give reasonably accurate delay val-
ues. Now, however, for devices operating on the leading edge of technology, the
contribution to total circuit delay by the components may be exceeded by the delay
inherent in their interconnections. As a result, an accurate accounting of the total
delay between points in a circuit is often possible only after layout, when delays are
calculated for the components and interconnections, and back-annotated to the cir-
cuit model.

60 SIMULATION

Original waveform 4“—,—\—
Output (inertial delay) ,—\—
Output (transport delay) |_| ,—\—

Figure 2.16 Transport versus inertial delay.

A number of types of delays exist for describing circuit behavior. The two major
hardware description languages, Verilog and VHDL, support inertial delay and
transport delay. Inertial delay is a measure of the elapsed time during which a signal
must persist at an input of a device in order for a change to appear at an output. A
pulse of duration less than the inertial delay does not contain enough energy to cause
the device to switch. This is illustrated in Figure 2.16 where the original waveform
contains a short pulse that does not show up at the output. Transport delay is mean-
ingful with respect to devices that are modeled as ideal conductors; that is, they may
be modeled as having no resistance. In that case the waveform at the output is
delayed but otherwise matches the waveform at the input. Transport delay can also
be useful when modeling behavioral elements where the delay from input to output
is of interest, but there is no visibility into the behavior of delays internal to the
device.

The length of time required to propagate a signal from one physical point to
another through wire is sometimes referred to as media delay; this time is approxi-
mately one nanosecond per foot of wire. As circuits continue to shrink and devices
continue to switch at faster speeds, the media delay becomes a significantly larger
percentage of the total elapsed time in a circuit and it is not unusual for media delay
to account for a majority of the cycle time on a high-performance circuit.

The amount of time it takes to switch from O to 1 is called rise time. The delay in a
transition from 1 to 0 is called fall time. The elapsed time required to switch from a 1
or 0 to Z is called turn off delay. Delays can also be characterized according to whether
they represent minimum delay, typical delay, or maximum delays. Thus the Verilog
tranif1 primitive could have as many as nine delay values associated with it. These
include min, typical, and max for each of the rise, fall, and turn-off delays. Differences
in rise and fall times are often due to capacitance and storage effects of transistors used
to implement switching circuits, whereas differences in minimum, typical, and maxi-
mum delay values are more likely to result from variations during manufacturing.

Manufacturer’s data books identify several kinds of propagation delay, and the
list of delays will generally depend on the product. For example, the manufacturer’s
data book may specify gy (Data Out Valid) to be the interval from when an active
clock edge appears at a device to when an n-wide output data bus contains valid data
for that device. A complete characterization of a complex functional unit usually
contains many such time intervals.

Ambiguity delay is sometimes used to express the difference between nominal
and maximum or minimum delays. This may be of use in PCBs populated by many

MULTIPLE-VALUED SIMULATION 61

ICs—some of which may run faster than nominal, and others of which may run
slower than nominal. This ambiguity may have to be considered if behavior of a
PCB does not match simulation predictions.

When applying a test to a circuit on a tester, ambiguity delay can result from
skew at the tester pins. Although the test program may specify that two or more sig-
nals change at the same time, the actual time between events on the tester may occur
picoseconds or nanoseconds apart due to various physical considerations. In asyn-
chronous circuits, in particular, it may be necessary to use the simulator to determine
if this skew or ambiguity delay represents a problem. This can be done by inserting
random delays at the circuit inputs so that events no longer occur simultaneously at
the start of a tester cycle. If the circuit is sensitive to delays at the inputs, staggering
the switching times may reveal the problems.

2.8 MULTIPLE-VALUED SIMULATION

When a device first powers up, there is uncertainty as to the states of its storage
elements—for example, flip-flops and latches. Races, hazards, undefined inputs,
and transition regions (when a signal value is between a 0 and 1) are additional
factors that contribute to uncertainty. Ternary simulation, which adds the symbol
X to the binary {0,1} values, has been used to represent indeterminate values. It is
also useful for resolving values in designs where two or more circuits may simul-
taneously drive a bus, although, as we shall see, conflicts can sometime be
resolved by examining combinations of signals. The resolution of these combina-
tions is not always performed in accordance with the rules of Boolean algebra.
The evaluation of transistor-level circuits also depends on multiple values, as well
as signal strengths.

A tri-state device is one in which the output may assume a logic 1 or logic O state,
or the output may be disconnected from the remainder of the circuit, in which case
the device has no effect on the circuit. In this third state, the output is in a high-
impedance state. This circuit is used when the outputs of two or more devices are
tied together and alternately drive a common electrical point, called a bus. A circuit
employing two tri-state drivers is illustrated in Figure 2.17.

When input A = 1, the tri-state device controlled by A behaves as an ordinary
buffer. When A = 0 the output E; assumes the high impedance state, represented by
the symbol Z. With a high impedance capability, two or more tri-state outputs can be

Figure 2.17 Circuit employing tri-state drivers.

62 SIMULATION

tied directly together. However, if this is done, one rule must be observed. Two tri-
state controls must not be active at the same time. In Figure 2.17, A and C must not
be simultaneously high. If both are high and if the output of one device is low and
the output of the other is high, then there is a low-resistance path from power to
ground; in a very short time, one or both of the devices could overheat and become
permanently damaged.

Note that the wire-gate in Figure 2.17 is represented by a resolution function, its
purpose is to indicate to the simulator that there are two or more elements driving
the net. A simulator could be designed to check every net for multiple drivers each
time it computes the value at that net, but wire logic is more efficient: It is inserted
into the circuit model when the model is created. Then, when the simulator encoun-
ters a wire-gate, it immediately enters a function that checks the outputs of all driv-
ers and resolves the signal driving that net.

Although circuit designs normally do not permit two or more tri-state devices to be
active simultaneously, design errors do occur and a logic designer may want to employ
simulation in order to identify conditions wherein two or more drivers become simul-
taneously active. This requires that the simulator be able to correctly predict the behav-
ior of bus-oriented circuits. It may be the case that, in the environment in which the IC
is intended to operate, no pair of tri-state controls will be simultaneously active. But,
when the IC is being tested, the tester represents an artificial environment. In this envi-
ronment it is possible for signals to simultaneously activate two or more tri-state driv-
ers. It is important that this situation be identified and corrected.

To resolve problems that may occur when the outputs of tri-state drivers are con-
nected together, a set of simulation values incorporating both value and strength
can be used. Figure 2.18 represents a resolution function, variations of which have
been used in commercial simulation products. The values shown in Figure 2.18 are
based on the binary values 0 and 1, but each of these values is extended by attach-
ing strengths and then by adding ranges of signals. First consider the strengths. A
logic 1 or O can be represented as strong, weak, or floating. The strong value is gen-
erated by a logic device that is driving an output. For example, an AND gate nor-
mally produces a driving 1 or O on its output. A weak value drives a node, but it has
a weaker strength than the strong value. The weak signal could be produced by a
small transistor. The floating 1 or O represents a charge trapped at a node. Ranges of

Strong 1 (S1) 3
SWI1 | SZ1 S7X SWX
Weak 1(W1)
WwzZ1 WzX WWX
Floating 1 (Z1)
— ——————-——-———-———-~]>Z }X
Floating 0 (Z0)
WzZ0 ZWX SZ0
Weak 0 (WO0)
SWO 7ZSX WSX
Strong 0 (SO) J

Figure 2.18 Logic ranges.

MULTIPLE-VALUED SIMULATION 63

values occur when there is uncertainty as to the correct value. For example, if a tri-
state device with an active high enable has a 1 on its input, and its enable has an X,
the output of the device could be a strong 1 if the enable were a 1 or it could be a
floating 1 if the enable were a 0.

Another ambiguous region occurs when a tri-state device with active-high enable
has an X on its input and a 0 on its enable. The output in that case could be a floating
1 or a floating 0. The range Z1 to ZO0 is represented as Z. To represent regions of
ambiguity, the chart in Figure 2.18 extends the six initial value/strength entries by
considering contiguous regions of values. The region from strong 1 to floating 1 is
designated SZ1. The region from strong 1 to weak 1 is denoted SW1. The region
from floating 1 to floating 0 is the familiar Z. If a signal is totally ambiguous (i.e., it
could take on any of the six primary values), its value is totally unknown, or X.
Other ranges may straddle both logic 1 and 0 values. For example, the value SZX
straddles the range from a strong 1 to a floating 0; hence the third character in the
identifier is an X. When the range lies completely in the region of logic 1 or logic 0,
the third characteris a 1 or 0.

Example To understand how the 21-value logic system can help to eliminate pes-
simism, consider again the circuit in Figure 2.17. Assume A =X and B=C=D=1.
If the circuit is simulated using ternary simulation, then the X at input A will produce
an X at ;. The signal at E, will be a 1. Since £, could be a 0 or 1, the wire-gate must
be assigned the value X.

Now, suppose the circuit is evaluated using the 21-value system. With an X on the
control input A and 1 on B, the value at £, could be a I or it could be a floating 1,
denoted as Z1. With a 1 on E,, a 1 on E; will resolve to a I at E. If E; has the value
Z1, then the values 1 and Z1 at the wire-gate will again resolve to a 1 at E;. In either
case, the output is resolved to a known value. N

The 21-value system can be extended further. The value X is normally used to
denote an unknown value. In Figure 2.17, if E; =0 and E, = 1, the 21-value logic
would assign an X to F;. But, the consequences of these assignments are more than
simply that the output is unknown. There is clearly a conflict, and it could cause per-
manent damage to an IC. Where two values are obviously and clearly driving a node
to opposite values, this should be spelled out as a conflict. Thus a 22nd value, C, can
be introduced, denoting a situation in which two devices are driving a node to oppo-
site values. Another useful value is U (uninitialized). It can be assigned to all nodes
at the start of simulation, and it can be used to identify nodes that have never been
initialized during a simulation. If the signal U persists at a node to the end of simula-
tion, the user can conclude that the node was never assigned a value. This may sug-
gest that the node requires a reset capability.

The example in Figure 2.17 illustrates a situation where two devices whose out-
puts are connected together must not have conflicting values. In other situations it is
not only permissible but desirable to have two or more devices simultaneously driv-
ing a net with conflicting values. This is the case in Figure 2.19. If the dynamic RAM
(DRAM) cell is selected, by virtue of the word line WL being active, the bit line BL

64 SIMULATION

Bit line

‘I Word line
[]

1
T

Figure 2.19 DRAM cell using transmission gate.

may be attempting to read the contents of the DRAM cell, or it may be trying to
write a value into the cell. When writing into the cell, the value on the bit line is a
strong 1 or 0, whereas the value in the capacitor is a floating 1 or 0. As a result, sim-
ulation of the circuit will result in a new value being written into the cell, regardless
of what value had previously been there.

2.9 IMPLEMENTING THE NOMINAL-DELAY SIMULATOR

A number of factors must be taken into consideration when implementing a simula-
tor. Events must be scheduled in the proper order in order to support concurrent
operation of the elements in the circuit being simulated. Sometimes events that were
scheduled have to be un-scheduled. Data structures and evaluation techniques must
be defined. The choice of evaluation technique can have a significant impact on sim-
ulation performance. Other aspects of simulation must be decided. What kind of
error handling is to be implemented for races, conflicts, setup and hold violations,
and so on?

2.9.1 The Scheduler

Nominal-delay simulation recognizes the inherent delay in logic elements. However,
because of this variability in their delays, individual elements cannot simply be
placed in a FIFO queue as they are encountered. The element being simulated may
experience an event at its output that occurs earlier than some elements previously
scheduled and later than others. Hence, it must be scheduled for processing at the
right time relative to other events. This can be done through the use of a linear linked
list. In this structure an event notice is used to describe an activity that must be per-
formed and the time at which it must be performed. The notices are arranged in the
order in which they must be performed. Included in each event is a pointer to the
next event notice in the list. When an event is to be scheduled, it is first necessary to
find its proper chronological position in the linked list. Then, the pointer in the pre-
ceding link is made to point to the newly inserted event, and the pointer that was in
the preceding event is inserted into this newly inserted event so that it now points to
the next event.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 65

Vertical
list

Present

TH1

T Imminent range T Remote range |

Figure 2.20 The converging lists scheduler.

To insert an event in this linked list, it is necessary to search, on average, half the
elements in the linked list and modify two pointers. As the number of events grows,
due to increased system size or increased activity, the average search time grows. To
reduce this time, the scheduling mechanism shown in Figure 2.20 is used.'® It is a
combination of a vertical time mapping table, also called a delta-t loop or “timing
wheel,”!” and a number of horizontal lists. The vertical list represents integral time
slots at which various events occur. If an event is to occur at time i, then either it is
the first event, in which case a pointer is inserted at slot i to identify the event to be
processed, or other events may already have been scheduled, in which case the
present event is appended to the end of the list. Note that the event may be the result
of a gate simulation, in which case the event is to be processed at future time, or the
event may be a print request or other such request for service. These service requests
scheduled on the wheel are often referred to as bulletins.

A further refinement, called nonintegral event timing,?° defines the slots in the
vertical list as intervals. If an event occurs within the time interval represented by
that slot, then it must be inserted into its correct position in the horizontal linked list.
Therefore, the search through a linked list must again be performed. However, the
search is through a much smaller list. Performance is enhanced by making the verti-
cal list as large as is practical, although not so big that a large average number of
slots go unused.

66 SIMULATION

To handle events that occur far in the future, imminent and remote ranges are
used. These are implemented by means of thresholds shown in the converging lists
scheduler of Figure 2.20. All but two of the wheel slots link directly to threshold
THI1. The remaining two slots link first to TH2 and TH3, and then to TH1. From
THI1, the linked list terminates on THS, which represents infinity. The thresholds are
control notices; they can be scheduled like elements and represent requests for ser-
vice, such as printout of simulation results. When inserting an item into a horizontal
list, if TH1 is encountered, then the item is inserted between TH1 and the item previ-
ously linked to TH1. If time of occurrence of an event exceeds imminent time, then
it is inserted into its appropriate slot in the remote list. During simulation, if TH2 or
TH3 is encountered, then imminent time is increased, the new maximum imminent
time is stored in control notice TH1, and items from the remote range are retrieved
and inserted (converged) into their proper place in the imminent range.

In order to obtain correct simulation results when an event is simulated, it is neces-
sary that any change at the inputs cause a simulation using the values that exist on the
other inputs at the time when the event arrives at the given input. Therefore, the input
change is simulated immediately, but the output value is not altered until some future
time determined by the delay of the element. This imitates the behavior of a logic ele-
ment with finite, nonzero delay. An event appears at a gate input; and at some future
time, depending on element delay, the effects (if any) of that event appear on the ele-
ment output and propagate forward to the inputs of gates that are driven by that gate.

If simulation does not result in a change on the output of an element, it is tempting
to assume that nothing further need be done with that element. However, it is possi-
ble that a simulation indicates no change, but a previously scheduled change
occurred and presently exists on the scheduler. For example, suppose a two-input
AND gate with propagation delay of 10 ns has values (1, 0) on its inputs at time ¢
when a positive pulse of duration 3 ns reaches the second input. The simulation result
at time ¢ is a 1, which differs from the 0 presently on the output, so the event is placed
on the scheduler for processing at time ¢ + 10. At ¢ + 3, when simulating the change
to 0, the simulator computes a 0 on the output, which matches the present value.
Therefore, the simulator may incorrectly conclude that no scheduling is required.

One solution to this problem is to always put the event on the scheduler regard-
less of whether or not there is a change on the output. Then, when it is processed
later, if its output value is equal to its present value, drop it from further processing.
In the example just given, the AND gate is simulated at time ¢ and placed on the
scheduler. It is simulated at # + 3 and again placed on the scheduler. At # + 10 it is
retrieved from the scheduler and its output is checked. The current value is 0 and the
new value is 1, so the element output is updated in the descriptor cell and the result
propagated forward. At ¢ + 13 the process is repeated, this time with the present
value equal to 1 and the computed value switching back to 0.

Another approach that can save scheduling time makes use of a schedule marker.
It is used as follows: Simulate the input event.

o If there is an output event, schedule the change and increment the schedule
marker.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 67

« If there is no output event and schedule marker equals 0, no activity is required.

o If there is no output event and schedule marker is greater than 0, schedule the
change and increment the marker.

« When an output event is processed, decrement the schedule marker.

Occasionally an event on the output of an element is followed almost immedi-
ately by another event with a pulse duration less than the inertial delay of the ele-
ment. In that case, the user may want to retain the glitch and propagate it to
succeeding logic to determine if it could cause a problem. While the glitch should
not propagate if all elements have delay values exactly equal to their nominal values,
delay values that vary slightly from nominal can cause the pulse to exceed the iner-
tial delay of the element.

It may be the case that the glitches are in data paths where, even if they do occur,
they are not likely to cause any problems and their presence clutters up the output
from the simulator. In that case it is desirable to suppress their effects. Consider a 2-
input AND gate with 7,-nanosecond propagation delay and suppose its present input
values are (1, 0). If it has inertial delay of ¢, nanoseconds and if a pulse of duration
t,, 1,<1;, appears on its lower input, then it is scheduled for a change at 7 + 7, and
again at t + 1, +1, nanoseconds. In that case, it would be desirable to delete the
change at 7 + #, from the scheduler before it is processed since it would otherwise
cause unwanted changes to be scheduled in successor elements.

If the time at which an element is placed on the scheduler is recorded, that informa-
tion can be used to determine if the duration of the output signal value exceeds the iner-
tial delay. In the situation just described, the time 7+ 1, is recorded. When the next
output change occurs at 7 + 7, + 1,, its time of occurrence is compared with the previ-
ous time. If the signal duration does not exceed the inertial delay, the recorded time of
the previous change is used to search the appropriate linked list on the schedule for the
event to be deleted. If a previous change occurred but its time was not recorded, it would
be necessary to search all time slots on the scheduler between 7 + 1, and 7 + 1, + 7.

2.9.2 The Descriptor Cell

During simulation, information describing each element in a circuit is stored in a
descriptor cell. The cell contains permanent information, including pointers for each
input and output, and descriptive information about the element represented by that
cell, such as its function and delay values. It also contains data that change during
simulation, including the schedule marker and logic values on the inputs and outputs
of the element. A descriptor cell is illustrated in Figure 2.21(a) for an element with
one output. The first few entries point to devices that drive the inputs of the element
represented by this descriptor cell. There is an entry for each input, and each entry
has a field that indicates the element input number. Since input values are stored in
the descriptor cell, the input number is used to access and update the correct bits in
the descriptor cell during simulation. The last entry points to destination input(s)
that are driven by this element.

68 SIMULATION

0] 4 Ao—

13 po—r71 P

2(2 ——o0G

311 Co— .

4 GHEEN

; [

6

(a) (b)
,/ ______ . F ‘\‘ o TTT T T T T T T~ ~
/ 0 // g C \
" 1| Descriptor //—-19 2 13 |- /// \\
1' #2001 09 ~ // //20 1 18 |=~ 2 Descriptor \\
: / \, " / gé Descriptor S8 0 14 < ll
\

N D / It 03[0 24 |- [\ |
{ ~9[2 2 | ’l \X/ \\ | E | ll
10 S AAN \ !
VT e NN T M2 s e
/)\ 12| Descriptor \ S\ G N 1 23 I~
\ A \ \ 16 . \
P10 19 =) N[T T 15 -~ 17| Descriptor N/
\ | N\ 180 20 =1
\ B // %g Descriptor \ 18 T
\\ Descriptor / S~ -

4
~S[o [10 =

(©

Figure 2.21 The descriptor cell.

An element with two or more outputs will have a corresponding number of out-
put entries in the descriptor cell. A simple circuit and its descriptor cell model are
illustrated in Figures 2.21(b) and 2.21(c), respectively. Each descriptor cell corre-
sponds to an element in the circuit model, and the nets that interconnect circuit ele-
ments are represented in the model by linked lists that thread their way through the
descriptor cells. For example, primary input A drives input 1 of gate D, which is
located at memory location 9 in this example. Therefore, the output pointer of
descriptor cell A points to location 9, corresponding to the first entry of D. Gate F
fans out to two places so the linked list extends through the descriptor cell for G, and
then to the descriptor cell for E. A pointer then returns to F, where the high order
field is 0. In the configuration illustrated here, when traversing the linked list to find
the fanout elements for a particular device, the traversal is halted when a word is
encountered in which the high-order field is 0.

To illustrate the scheduling process using the scheduler and descriptor cells, sup-
pose we want to schedule input A for a change at time ¢, To do so, we check the
schedule marker A. If it is not busy, we take the output pointer from cell A, location 2,
and attach it to the linked list at scheduler slot ; (assumes an integral timing sched-
uler). If nothing is scheduled at time ¢;, then schedule location ¢; contained a pointer
to one of the thresholds TH1, TH2, or TH3. The threshold pointer is placed in loca-
tion 2, while schedule location ¢, receives the value 9.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 69

If other elements are already scheduled for time ¢, then this operation automat-
ically links the descriptor cells. Suppose C had already been scheduled. Then the
schedule contains the value 14 and location 8 contains the threshold pointer. To
schedule a change on A, its output pointer is exchanged with the slot on the verti-
cal list. Slot #; on the vertical list then contains 9, location 2 contains the value 14,
and location 8 contains a pointer to threshold TH1, TH2, or TH3. Therefore, at
time #; a change on the first input of D will be simulated, as will a change on E.
When processing for time ¢#; is complete, all pointers are restored to their original
values.

If an element is busy, as indicated by its schedule marker, and it must be sched-
uled a second time, it becomes necessary to obtain an unallocated memory cell for
scheduling this second event. The address of the spare cell is placed in the schedule,
and the spare cell contains a pointer to the cell to be scheduled. If other events are
scheduled in the time slot, then this spare cell must also contain a link to the addi-
tional events.

Example The circuit in Figure 2.22 will be used to illustrate nominal delay simu-
lation. Alphabetic characters inside the logic symbols represent gate names and the
numbers represent gate delays. All nets are initially set to X. Detailed computations
are shown in Table 2.4. At time ¢, input D changes from X to 0. At time ¢, the inputs
are set to the values (X,1,1,1). At time ¢#,, input A changes from X to 0 and input C
changes from 1 to 0. At fg, input C changes back to 1. In this table, the times at which
activity take place are indicated, as well as the values on the inputs and the gates at
those times. For each of the logic gates, there are two values: The first is the logic
value on the output of the gate, and the second is the value of the schedule marker.
The comments indicate what activity is occurring. For example, at time #,, input D
changes, so gate F is simulated; its output changes from X to 0, so it is scheduled for
time #5 and its schedule marker is incremented to 1.

At time f,, E and F are both simulated because of input changes. There is no
change on the output of E and its schedule marker is 0, so it is not scheduled. How-
ever, F' does change from its present value so it is scheduled for update at time #; and
its schedule marker is again incremented. The remaining entries are similarly inter-
preted. Note that at time fg the output of F has the value 1, and it is simulated with
(1,1) on its inputs. Although the simulation result is a 1, F is put on the scheduler
because its schedule marker is nonzero. [] |

Figure 2.22 Circuit to illustrate timing.

70 SIMULATION

TABLE 2.4 Delay Calculations

A B C D E F G Comments
L | X X X 0 X0 X1 X0 SimulateF, schedule it for t5
t, X 1 1 1 X0 X2 XO Simulate £ and F, schedule F for ¢,
ty 0 1 0 1 X1 X3 XO0 Simulate Eand F, schedule E for #g, F

for 1,
X1 02 X0 F«0,simulate G, no change
X1 11 X1 F<«1,simulate G, schedule G for £,

00 12 X1 E<«0,simulate Fand G
G unchanged, schedule F for 7,5

ot IS
S O O
—_ = =
- o O
—_ =

ty 0 1 1 1 00 01 X2 F«0,simulate G, schedule G for 5
ty | 0 1 1 1 00 01 11 Ge«1

310 1 1 1 00 10 01 G+« 0,F«1,scheduleG fort,

t 10 1 1 1 00 00 10 Ge«1

2.9.3 Evaluation Techniques

A number of techniques have been developed to evaluate response of the basic logic
gates to input stimuli. For AND gates and OR gates, evaluation can be performed by
looping on input values, two at a time, using AND and OR operations of the host
computer’s machine language instruction set. As we saw, it also works for ternary
algebra. It is also possible to assign numerical values to ternary values as follows:

0-1
X-2
1-3

Then the AND of several inputs is the minimum value among all inputs and the OR
is the maximum value among all inputs.

For binary values (i.e., no Xs), it is possible to count 1s on AND gates and count
0s on OR gates. If an n input AND gate has n - i inputs at 1, for i > 0, then the output
evaluates to 0. Whenever an input changes, the number of inputs having value 1 is
incremented or decremented. If the number of inputs at 1 reaches n, the output is
assigned the value 1. A similar approach works for an OR gate except it is necessary
to count Os.

Logic gates can also be evaluated using a truth table. This approach has the
advantage that it will work with any circuit whose behavior can be described by a
truth table. It is quite efficient when input values are grouped together in the descrip-
tor cell so that the processing program can simply pick up the inputs field of the
descriptor cell and use it to immediately index into a table that contains the output
value corresponding to that input combination. It can also be used for ternary simu-
lation or n-valued simulation. It requires log,(n) bits for each input and the table can
become excessively large but the simulation is quite rapid.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 71

For logic gates such as the OR and the AND, three- or four-valued simulation
requires two bits for each input. A six-input gate then requires a truth table, or
lookup table, of 4096 two-bit entries. Only one table would be necessary because an
AND (OR) gate with fewer than six entries could be computed by using the same
table and filling on the left with 1s (0s). Furthermore, since AND and OR are both
associative operations, a gate with more than six inputs could be computed using
successive lookups.

The zoom table takes the truth table one step further. Rather than examine the
function code to determine gate type, truth tables for the various functions are
placed in contiguous memory. The function code is appended to the input values by
placing the function code adjacent to the input values in the descriptor cell. Then,
the catenated function/input value serves as an index into a much larger truth table to
find the correct output value for a given function and set of inputs. The program
implementation is more efficient because fewer decisions have to be made, one sim-
ple access to the value table produces the value regardless of the function.

For multiple-valued simulation, such as that described in Section 2.8 (Figure 2.18),
two-dimensional lookup tables can be created based on the logic/strength levels used
in the system. For example, if a 21-value system is used, then 21 X 21 lookup tables
are created. The input values are used to create an index into that table. The index is
used to retrieve the output response corresponding to these input values. For an n-input
AND or OR gate, this process is repeated by means of a loop until all inputs have been
evaluated.

Example For an AND gate with the number of inputs equal to “pincount” and with
the value at input i stored at pinval(i), using a 21 x 21 lookup table, the C code used
to evaluate the output response might appear as follows:

result = 1; // initialize result to 1
for (i = 0; i < pincount; i++) // loop through all inputs
result = lookup_table + result * 21 + pinval(i); (]

2.9.4 Race Detection in Nominal-Delay Simulation

The zero-delay simulator resorted to multiple-value simulation to detect transient
pulses caused by hazards. These unwanted signals are caused by delay in physical
elements and can be detected by the nominal delay simulator using just the logic
values {0,1} and individual element delay values—if the transients occur for nomi-
nal delay values. However, a hazard is only the possibility of a spurious signal, and
the transient may not occur at nominal delay values. But, individual physical ele-
ments usually vary from nominal ratings; and some combination of real devices,
each varying from its nominal value, may combine to cause a transient that would
not have occurred if all elements possessed their nominal values. To further compli-
cate matters, a transient may be innocuous or it may cause erroneous state transi-
tions. In a circuit with many thousands of elements, how do we decide what delay
values to simulate? Do we simulate only nominal delays? Do we also simulate
worst-case delays?

72 SIMULATION

Consider again the cross-coupled NAND latch. Erroneous behavior can occur if
unintended pulses arrive at either the Set or Reset input. If the latch is cleared and a
negative pulse of sufficient duration occurs on its Set line, it becomes set. Quite pos-
sibly, this situation will only occur for delay values that are significantly beyond
nominal value. Furthermore, in a circuit with many thousands of gates there may
only be a few asynchronous latches that are susceptible to glitches.

Potential problems can be addressed by identifying asynchronous latches, using
the gate ordering technique described earlier. Then, with the latch inputs identified
and grouped together, proceed with simulation. If a net changes value, and if that net
is flagged as an input to an asynchronous latch, check other nets in that set for their
most recent change. If another net previously changed within some user specified
time range, a critical race may exist. The race exists if some combination of delay
variances can combine to cause the first input change to occur later than the second
input change. Therefore, trace the changing signals back to primary inputs or to a
common origin. Increase the delay on all elements along the path to the latch input
whose event occurred first. Decrease the delay on the elements along the path to the
latch input that changed last, then resimulate. If this causes a reversal in the order in
which the two inputs change, then a critical race exists.

Subsequent action depends on the reason for the simulation. For design verifica-
tion, an appropriate course of action is to provide a message to the user advising
either that primary input events are occurring too close together or that an event at a
gate with fanout has caused a critical race. If patterns are being developed for the
tester, then a state transition that is dependent upon the order in which two or more
inputs change indicates a problem because it may be impossible to obtain repeatable
tests on the tester. Many PCBs may respond correctly when tested, but every so
often one or more fails. Attempts to isolate the problem can be frustrating because
the individual components respond correctly when tested.

One possible solution is to alter the input stimuli by postponing one or more of
the input stimuli changes to a later time period. This is sometimes referred to as
deracing. If the race results from an event at a common fanout point, then some-
where along one of the two paths it may be possible to identify a gate by means of
which an event can be inhibited. This is illustrated in Figure 2.23. An event reaches
both the Set and Clear inputs of a latch. One path goes through an OR gate, the other
path goes through other combinational logic. The event through the OR gate may be
inhibited by first setting a 1 on the other input.

2.9.5 Min-Max Timing

The earliest and latest possible times at which a signal can appear at some point in a
circuit can be determined through the use of min—max timing simulation. In this
method each element is assigned a minimum and a maximum switching time. Dur-
ing simulation, these minimum and maximum times are added to cumulative earliest
and latest times as the signal propagates through the circuit. The time interval
between the earliest and latest times at which a signal switches is called the ambigu-
ity region.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 73

Set

)

Clear

Figure 2.23 Blocking a propagation path.

The circuit in Figure 2.24 illustrates the computation of minimum and maxi-
mum delay values. The first block contains the numbers O and 10. These could
represent the range of uncertainty as to when a signal arrives at a PCB from a
backplane or from a tester due to skew caused by wiring, fixtures, and so on. The
next block represents logic with a timing range of 20-30 ns, after which the cir-
cuit fans out to two other blocks. The upper path has a cumulative delay ranging
from 25 to 47 ns by the time it arrives at the last block, and the bottom path has
a cumulative delay of 40-70 ns. If the rightmost block represents an AND gate
and if the signal arriving at the upper input is a falling signal, and the signal
arriving at the lower input is a rising signal, then the numbers indicate a time
region from 40 to 47 when there is uncertainty because the numbers imply that
the lower input may rise as early as time 40 and the upper input may not fall
until time 47.

A more careful analysis of the circuit reveals that there is a component 20/40 that
is common to both signal paths. This component represents common ambiguity. If
the common ambiguity is subtracted, it can be seen that the upper path will arrive at
the AND gate no later than 7 ns after it fans out from the common element. The sig-
nal on the lower path will not arrive until at least 13 ns after the upper input change
arrives. If this common ambiguity is ignored, then a pulse is created on the output of
the gate and propagated forward when it could not possibly occur in the actual
circuit. This pulse could result in considerable unnecessary activity in the logic
forward of that point where the pulse occurred.

25/47

20/40

R 507 ,/
20130 —’7

40/70

— 0/10 20/30

Figure 2.24 Min-max timing.

74 SIMULATION

If the block on the right were an edge-triggered Delay flip-flop in which the
upper input were the Data input and the bottom input were the Clock input, then
results of the common ambiguity may be more catastrophic. With the common
ambiguity, it is impossible to determine if the data arrived prior to the clock or after
the clock. Hence, it would be necessary to set the flip-flop to X. To get accurate
results, the common ambiguity must be removed.

A common ambiguity region can be identified with the help of the causative
link.?" This is simply a pointer included in the descriptor cell that points back to the
descriptor cell of the element that caused the change. If two inputs change on a
primitive and there is overlap in their ambiguity regions, then the simulator traces
back through the causative links to determine if there is a common fanout point that
caused both events. If a common source is found, then the ambiguity at the point is
subtracted from the minimum and maximum change times of the two signals in
question. If there is still overlap, then the block currently under consideration is set
to X during the interval when the signals overlap if it is a logic gate or its state is set
to X if it is a flip-flop.

2.10 SWITCH-LEVEL SIMULATION

Logic designers frequently find it necessary to simulate at different levels of abstrac-
tion. For a circuit containing hundreds of thousands, or millions, of gate equivalents,
simulation at the RTL level is necessary. Simulation at a lower level of abstraction
would require unacceptably long simulation times. However, on other occasions a
more detailed simulation level may be required. For example, if a new function is
created for a cell library, it may be designed at the transistor level and simulated at
that level to ensure that it responds correctly. When satisfied that it is correct, it is
added to the cell library and a gate or RTL level model may then be created for sim-
ulation purposes.

Consider the circuit in Figure 2.25, the intended function is F=FE-(A +
C)-(B+ D). But it was not designed by connecting AND and OR macrocells
together! Rather, it was created by means of a transistor network in such a way that,
depending on the values of A, B, C, D and E, there is always a connection from F to
either Vpp or Gnd (but not both). So, is it correct? It is important to verify that the
transistors have been connected correctly. The consequence of inserting such a
design into a cell library with subtle errors could be catastrophic, possibly affecting
more than one product release before being discovered.

The circuit in Figure 2.25 could be verified using Spice, an analog simulator that
models circuits at the electrical level and uses continuous values to the accuracy
possible (32 or 64 bits) on the host computer. For the small circuit in Figure 2.25,
Spice would be acceptable. However, for much larger circuits, Spice simulations
could require a great deal of CPU time. For such circuits, switch-level simulation
often represents a reasonable compromise between analog and gate-level simula-
tion, particularly when debugging.

SWITCH-LEVEL SIMULATION 75

VDD

S

>
L
9}

jk}lv

S
1
o
1
N U W

Figure 2.25 CMOS circuit.

Circuit behavior can, in general, be evaluated more rapidly when simulating at
the logic level. For example, consider the circuit in Figure 2.25. If inputs A,B,C,D,E
change from (0,1,1,0,1) to (1,1,1,0,1), an evaluation of one OR gate reveals that no
event occurs beyond the inputs to that OR gate. While this provides faster simula-
tion, when considering fault simulation, as will be seen in subsequent chapters, the
switch-level model more accurately predicts circuit behavior in the presence of
defects. Switch-level models can be accurately extracted from layout information,
ignoring unimportant details while retaining circuit information that represents
logic behavior. Hence modeling and simulation can be more precise at switch level
than at gate level while running faster than a detailed electrical simulation using
Spice.

Switch-level circuits are modeled as nodes connected by transistors that act as
voltage-controlled switches. When turned on, a transistor connects two nodes; and
when turned off, it isolates the nodes (i.e., the transistor acts as a very high resis-
tance). If a node has sufficient capacitance, it can act as a memory device when
isolated from all other nodes. This is known as dynamic memory. Other character-
istics of switch-level circuits include bidirectional signal flow, resistance ratios,
and charge sharing. The switch-level model uses discrete values to represent cir-
cuit elements and voltage levels, in contrast to Spice, which uses continuous val-
ues. This is accomplished by limiting the resistance and capacitance of the
transistors to a small number of discrete values. The number of discrete values is
just enough to permit representation of different circuit configurations, including
transistor ratios, and resolution of their logic values in the presence of different
signal values.

A switch-level model is a set of nodes {n,, n,, ..., n,} connected by a set of tran-
sistors {7, t,, ..., t,,}. Each node n; may be an input node or a storage node. Input

76 SIMULATION

nodes are those such as V,, Gnd, data, and clock inputs that drive transistor source
and drains. Storage node n, has state y; € {0, 1, X} and a size € {k, ..., k,,,,}. The
value X represents an uninitialized node or one whose logic value lies between 0
and 1, such as when values 1 and 0 are applied simultaneously to a node. Node sizes
are ordered such that k; < k, < -+ <k, ,,, where the ordering (<) denotes the capaci-
tance of a node relative to other nodes. Input nodes have size , (k,,,, < ®). The
number of sizes, max, is arbitrary but chosen so as to permit all relative sizes to be
correctly expressed. A node state is defined by the pair <v,s>, where v is the logic
value and s is the signal strength. The transistor ¢; has state z; € {0, 1, X} and
strength Y€ {%, %, --s Ynax)» Where the ordering 7, < 9 < -+ < ¥, indicates rela-
tive conductance. The state of a switch-level circuit is given by vectors y = (y, ¥,
.,) and z=1(zy, 2y, ..., Z,)- The excitation function E gives the steady-state
response of the nodes for an initial set of node states when the transistors are held
fixed in states determined by the initial node states

E(y) = Fly, z2(y)] (2.1

where z(y) denotes the vector of transistor states created when the nodes are in states
given by the vector y. The operation of a switch-level circuit can be simulated by
repeatedly computing the excitation states for the nodes and setting the nodes to
these states until a stable state is reached. This is expressed as

y = lim Efy) (2.2)
k — maxstep
where maxstep denotes the maximum number of iterations. If the circuit has not sta-
bilized at the end of maxstep steps, it may indicate oscillations in the circuit, which
suggests that some of the nodes should be set to X.

When a signal passes through a transistor, its strength is determined by the tran-
sistor size. This is indicated in Figure 2.26(a), where State(Vpp) =<1, @>,
state(Gnd) = <0, @> and state(A) = <0, w> or <1, w> depending on whether input A
has logic value 0 or 1. Transistor T, a depletion mode transistor, is a pullup with
strength 7, transistor 7, has strength 7. The state at node Z is determined by the
connection function.?? The first step in determining the state at a node is to find the
strength of the strongest applied signal(s). When A = 1, applied signals from Vpp
and Gnd converge at Z with strength 7, and 7%,. Since there are two signals driving
node Z, the signal value v at Z must be resolved. The set W of all applied signals
with maximum applied strength is formed. In this example, state }, is the strongest
signal and it has a single source. Once the set W is formed, the following rules

apply:

If W contains X or it contains both 0 and 1, then v = X.
If W contains 0 but does not contain 1 or X, then v = 0.
If W contains 1 but does not contain 0 or X, then v=1.
If W does not contain 0, 1, or X, then v ="Z.

SWITCH-LEVEL SIMULATION 77
A
VDD VDD
’_i 13,72 |;|T‘;V2
z
—

T4 v3 Te.v3

(b)

Figure 2.26 Switch-level circuits.

In this example, W = {0}, so v = 0. This operation is often denoted by the # operator,
and it uses the lattice structure depicted in Figure 2.27. In this structure, <0, x> and
<1, k> resolve to <X, k;>, whereas <0, k> and <e, K>, e € {0,1,X},j < i, resolves
to <0, k;>. In general the higher strength, often called the least upper bound (lub),
prevails.

Figure 2.26(b) contains a somewhat more complex circuit: It is a static RAM cell
made up of two cross-coupled inverters, I, (T and T,) and I; (T and Tg). The data
signal is inverted by inverter /; (T, and T,). If write is high, then the signal data
passes through 7§ where it shares a common node with transistor 7. But 7 has
strength 7y, and the data signal appearing at Ty may have strength 9, or 9. In either
case its strength is stronger than that of the signal coming from 75, so data will con-
trol 7,, which in turn controls /5. Note that if write = 0, then the value coming from
Ty is Z, so the signal coming from 7, will control 7.

<X, w>

<0, w> <1, w>

<X, Kiax™
<0, Kpax> <l, Kpax>
e o o

<0, k> <1, k>
<X, kK>

<0, k> <L, k>

<1, w>

Figure 2.27 Lattice representation of the # operator.

78 SIMULATION

So far, calculations have been intuitive. However, to implement a simulator capa-
ble of evaluating circuit behavior in response to applied stimuli, it is necessary to
define processing rules that anticipate all circumstances. For logic simulation, where
the elements are unidirectional, evaluation can consist of repeated table lookups
until the output response is resolved. In fact, if the circuit is expressed in terms of
unidirectional transistors (e.g., the Verilog nmos, pmos, and cmos primitives),
simple extensions to the gate-level simulator are sufficient.

However, when a circuit is modeled in terms of the Verilog tran, tranif) and
tranifl, rtran, rtranifO, rtranifl primitives, a gate-level simulator is no longer ade-
quate. As can be seen from Figure 2.26(b), some nodes are driven by two or more
transistors. The problem is compounded by the fact that the transistors have different
strengths. The state at a node can be calculated using the connection function, but
with a large number of bidirectional transistors, an event at a node could propagate
through many transistors, each event necessitating numerous additional calculations.

Early attempts at solving the problem of simulating switch-level elements
attempted to extend the capabilities of the gate-level simulator. One artifice to
achieve this modeled the bidirectional transistor as a pair of unidirectional transis-
tors connected back-to-back.? Unfortunately, the two transistors can form a cycle in
which signals become trapped. This is seen in Figure 2.28. In Figure 2.28(a) the
transistor controlled by input A is bidirectional, whereas in Figure 2.28(b) it has
been replaced by two unidirectional transistors with signal direction denoted by the
arrows.”* In Figure 2.28(a) the value at D is <4, 0>. Let B switch from 1 to 0. The
path from Gnd to C is blocked, so the contribution from the lower transistor, con-
trolled by input B, is Z. However, from Figure 2.28(b) it can be seen that one of the
back-to-back transistors controlled by input A is driving node C with state <4, 0>
and the other transistor is driving node D with <4, 0>. As a result the depletion tran-
sistor, with a strength of 3, cannot alter the value at D and so the output of the
NAND circuit is O when it should be 1.

(a) (b)

Figure 2.28 Trapped signal.

SWITCH-LEVEL SIMULATION 79

Figure 2.29 Partitioned network.

A large transistor network described in terms of bidirectional transistors, such as
the Verilog tran, tranifO and tranifl, can be quite confusing to analyze, even for
humans who can employ experience, intuition, and pattern recognition to decom-
pose a network into smaller subcircuits with recognizable features. For the computer
this human process must be replaced by a series of precise, methodical steps before
the computer can analyze and determine the behavior of the circuit. The first step in
this process is partitioning.

Two partitioning schemes have been devised, they are referred to as static parti-
tioning and dynamic partitioning. Static partitioning breaks a circuit into compo-
nents by cutting the leads that drive the gates. This is illustrated in Figure 2.29,
where a transistor network has been broken into three components, referred to as
channel connected components, labeled A, B, and C. The connection from transis-
tors ¢, and t, to transistor f4 is cut, so ¢, and f, become a standalone component
labeled A. Also, the connection from f5 and 4 to transistor #g is cut, causing #; and fg
to become a separate component labeled B. The remaining four transistors, f3, ty, s,
and t,, become component C. The second way to partition, dynamic partitioning,
uses the logic values on the transistor gates. If the value on a gate is O, then the tran-
sistor, for evaluation purposes, is nonexistent. However, this method requires that
the circuit be repeatedly partitioned as node values change in response to events on
input nodes.

Note that because individual components are evaluated independently from the
rest of the circuit, it is quite straightforward to merge switch-level simulation with
gate- and RTL-level simulation. Evaluating individual components can become
complicated, but the components themselves become unidirectional elements, so in
their interactions with other circuit components they can be scheduled like logic

80 SIMULATION

gates. If an event occurs on one or more inputs, the component is evaluated, and if
one or more of its outputs change, the components driven by the changing output(s)
are evaluated.

Component evaluation is based on events appearing at both of the original cir-
cuit inputs, these would be 1, and I, in Figure 2.29, and the inputs created by par-
titioning. Component A has a single input, /;. Component B also has a single
input, the wire driving the gate of transistor #g. That wire is also an output of com-
ponent C. The inputs to component C are /, and the two wires driving transistors f5
and 4.

In order to evaluate a component and find its steady state, it is necessary to find,
for a set of signal values applied to the input pins of the circuit, a set of steady-state
values v; at internal nodes n; such that v = f(v). From Eq. (2.2) it was seen that this
could require as many as maxstep iterations. The solution v is referred to as the least
fixed point of f. The discussion here, from Bryant,>>?® characterizes the problem by
means of the following expression:

v=ExxvyvG=*vy (2.3)

where v is the minimum set of steady-state signals satisfying the equation. In
Eq. (2.3) E is a matrix in which e; equals the strength of the strongest transistor
connecting storage node n; and input node i; or 0 if no such transistor exists. The
component x; of vector x is equal to @ if input node j; is 1, or A if input node i;is 0.
The components y; of vector y represent the size of node n;. The matrix G describes
the interconnections of the storage nodes; that is, g;; is equal to the strength of the
strongest transistor connecting nodes n; and n;. The operator v is the least upper
bound (lub) operation and * denotes matrix multiplication. In matrix multiplication,
individual elements are multiplied using the operator N, where a N b denotes the
minimum of a and b, and addition of the resulting product terms is accomplished
using the lub v.

Equation (2.1) is solved iteratively until it stabilizes—that is, until v = f(v). Note
that in this equation the value at node n; represents the combined effect of

1. The direct connection to each input node J; as determined by e; N x;
2. The initial charge y; at node n;

3. The connections g; M v; from node n; to other nodes in the circuit

What happens when the circuit contains Xs? Before addressing this question, some
definitions are in order. The vectors a and b obey the ordering a < b iff a; < b, (that is,
a; < b; or a;=b;) for all i. The lub of a set of signals € {0, 1, X} equals 1 (0) iff all
elements of the set are 1 (0), else it is X. Consider the mapping f: B" — T, its ter-
nary extension is defined as the function f*: T" — T" such that

f'(a)=1ub{f(®)b € B",b<a}

SWITCH-LEVEL SIMULATION 81

Expressed in words, when some inputs to f’ equal X, then each output assumes a
Boolean value iff it would assume this value for all possible combinations of Os and
Is. In the following matrix equations, that is essentially what the equations for u and
d provide.

r=E™" [|x[| Tyl T G™"r (2.4)
u =block(E™ -[x] T[y]T G™*. u, 1) (2.5)
d = block(E™* . Ty] T G™* . u, 1) (2.6)

In these equations, ||a|| denotes the strength of a, [a | denotes the strength of a if a
has state 1 or X, and O otherwise, and | @ | denotes the strength of a if a has state 0 or
X, and 0 otherwise. The operator T yields the maximum of its arguments, and the
dot (-) denotes matrix multiplication with N corresponding to element multiplication
and T corresponding to addition. Given two strength values a and b, block(a,b)
equals a if @ > b and it equals 0 otherwise. The matrices E™" and G™" represent the
matrices E and G, but with the proviso that transistors in the X state have 0 conduc-
tance. Conversely, E™* and G™ represent the matrices E and G but with transistors
in the X state assumed to be fully conducting.

A node n; will have state 1 iff no combination of transistor conductances could
cause the node to assume the value 0 or X. This implies that d; = 0. Likewise, n;
will have target state O iff u; = 0. As a result, the value at node n; is determined to
be

1 ifd, =0
n; =140 ifu, =0 2.7)
X otherwise

Example Component C of Figure 2.29 will be used to illustrate the evaluation
process. Initial input values will be I}, I, = (0, 1). The first step will be to evaluate

Eq. (2.4) for .
r = A ’}/2 A . z T K‘1 T A /}/2 . r (28)
AAA o K| |7 Al |

Component C has three input nodes, Vpp, Gnd, and 7,, and two storage nodes, n;
and n,. The matrix E indicates a connection between Gnd and 7, as a result of 7,
having value 1. There are no other direct connections between the input nodes and
the storage nodes. All three of the input nodes have strength @. The strengths of the
storage nodes are set to k;. The matrix G reflects the fact that transistor #, is con-
ducting, because node n;is a 1 (it is the complement of /). Therefore a connection

82 SIMULATION

exists between n; and n,. Note also that the matrix G is symmetric. Equation (2.8)
reduces to

I Pzl K] D
= T T)
I A K Ll 0 29

At this point it is necessary to make use of the following equation:
r = lim 50
]Hmfs() (2.10)

Equation (2.10) asserts that r can be solved by initializing r; and r, to 0 and then solv-
ing iteratively until a steady state is reached. That yields

=0 % % »
n=0 K % K
It still remains to solve Egs. (2.5) and (2.6) for u and d. Note that E, E™", and E™

are identical because none of the inputs or storage nodes are at X. The same is true
for G, G™™ and G™*, The matrix | x | evaluates to [0 0 ®]" so u becomes

A K, Bl W u,
= block 0 T ’ 2.11
u, A K %l w u, 210

For convenience, let u = block(v, u) and d = block(e, d). Setting v, = v, = 0 and then
iterating, we obtain

Vl = O Kl Kl

V2 = O Kl Kl
Solving for e is similar, except that | x| becomes [0 @ 0]T. Thus,

=0 % »n %
e&,=0 A % p

This results in

u, = block (v, r;) = block(k;, 1) =0
u, = block (v,, 1,) = block(k;, 1) =0

SWITCH-LEVEL SIMULATION 83

d, =block (e, r;) = block(p, ») =%
d, = block (e,, r,) = block($, ¥5) =%

From Eq. (2.7) it follows that n; =n, =0, so the output of component C is 0. That
becomes an input to component B, where it gets inverted, so Z = 1. N

This small example required a large number of mathematical computations in
order to achieve a final steady state. While it provides a theoretical basis for
switch-level simulation, it is not practical. In practice, simulation programs that
compute next state for a switch-level circuit bear a resemblance to those used in
gate-level simulation. This will be illustrated using the switch-level algorithm
adapted from Bose et al.’

We start with some definitions. A transistor is in the indefinite state if the value
on its gate is X. A path in a channel-connected component is a set of transistors in
which the source (drain) of one is connected to the drain (source) of another transis-
tor in the set. A definite path is one in which no transistors are in the indefinite state.
The strength of a signal along a path is the minimum of the signal strength at the
path source and the minimum strength transistor along the path. A path is blocked at
node i if i is the destination of a stronger path. A downgoing path originates at a
source node with logic value 0 or X, whereas an upgoing path originates at a source
node with logic value 1 or X.

The strength of the strongest downgoing definite path to node i that is unblocked
at all nodes prior to i is denoted def;. The strongest downgoing path, definite or
indefinite, to node i that is unblocked at all nodes prior to i is denoted indef; ;. The
strongest upgoing paths are denoted similarly, that is, def, ; and indef ;. The maxi-
mum strength of the signal flow through transistor j connecting nodes p and q is
denoted sw_max, s where v € {0,1}. Given a switch-level circuit with n nodes, the
algorithm follows:

// initialize nodes
for (all nodes 1)
if y;, € {0,X} then def,; = K;
else def, ; = 4
for (all nodes 1)
if y; € {1,X} then def, ;
else def, ; = 4
for (all transistors connecting nodes n and m)
sw_maxq ; = sw_maxy = A4
// compute strongest definite paths to nodes
for (all strengths s in decreasing order)
for (each i with def,; = s and s = def, ;)
for (each “on” transistor t connecting i to m)
if def, , does not dominate min(s,o;)

K

84 SIMULATION

set sw_max, . to max(sw_maXq ¢, Min(s, o))
set def, , to max(def, ,, min(s, o))
for (each i with def,; = s and s > def, ;)
for (each “on” transistor t connecting i to m)
if def, , does not dominate min(s, o)
set sw_max; , to max(sw_max, ., min(s, o))
set def, , to max(def; ,, min(s, o))
// quit early if no transistor is indefinite
if all transistors are definite
for (all nodes 1)
if def, ; dominates def, ; then set y; to O
else if def, ; dominates def, ; then set y, to 1
else set y; to X

Example Given the circuit in Figure 2.30, assume that V,, and Gnd have strength 7,
and the transistors have strengths between 3 and 6, as indicated. The storage nodes all
have strength 1; with the exception of the output F' (node n5), it has strength 2. The val-
ues on the gate inputs are A,B,C,D,E = (0,1,1,0,1). The pairs of numbers in the figure
represent the values sw_max; and sw_max, ;. So, for example, through the NMOS
transistor E (connected to V), the strength of the 1 signal is 6, while the strength of
the O signal is 0. Since the NMOS transistor A is turned off, both the 0 and 1 signals
through A are 0. Note, however, that the PMOS transistor A is on, so from node 5 there
is an upgoing signal of strength 3 through A. The PMOS transistor D is on, so the
strength of the O signal is 5 and the strength of the 1 signal is 0. The remaining
transistors are evaluated similarly.

= (<1, 6)
ny = (<1, 3)

C—| 3) (0,3) ny =(<2,3)

n,=(<1,3)
p—[® ©.0

ns=(5, <I)

(0,3)A—0|E4) s B—o||:4) (0,0)

Figure 2.30 Computing node signals.

SWITCH-LEVEL SIMULATION 85

Figure 2.31 Problems from evaluation ordering.

The definite pairs def,, ; and def ; are listed to the right of the drawing. For node
the values are (<1, 6). Since the NMOS transistor E is turned on, the upgoing signal
provided by Vp, is equal to the strength of transistor £, which is 6. There is no down-
going path to node n; from any transistor, so the O strength of node n, is, at most, the
node strength, which is 1. The strongest upgoing signal to node n, comes from tran-
sistor C. It has strength 3. The remaining nodes are evaluated similarly. Because there
is an upgoing path of strength 3 to the output node F, and a downgoing path of
strength <2 to node F, the output resolves to a logic 1.

Note that the algorithm calls for processing nodes in decreasing order of
strengths. The reason for this can be seen in this next example. LR

Example Figure 2.31 contains an inverter with an output transistor B.>* Start by
propagating the signal from V. It causes the signal <3, 1> to appear at the output.

Now consider what happens when the signal from Gnd is processed.The signal at
Gnd appears at node M as <4, 0>. This signal is attenuated as it passes through B to
become <3, 0> at output N. Now the two signals <3, 1> and <3, 0> are resolved to X
at N.

When Gnd is processed first, the signal <4, 0> appears at M. It is then propagated
through B, to the output, where it is attenuated to become <3, 0>. The signal from
Vpp is processed next. It reaches M, where it appears as <3, 1>. The signals <4, 0>
and <3, 1> at M resolve to <4, 0>. That signal is attenuated through transistor B to
become <3, 0> at N. [] |

Up to this point, no mention has been made of what to do when Xs are encoun-
tered. In the discussion of matrix calculations, the matrices u and d identify nodes
that conflict, and those that converge, when Xs are present. The conflicting nodes are
set to X, and the nodes that converge are set to the converged value. In the algorithm
described here, the extension of the algorithm for indefinite paths performs a similar
function:

for (all nodes 1) // compute strengths of indefinite

// paths to nodes
initialize indef, ; to def, ;

86 SIMULATION

initialize indef, ; to def, ;
for (all strengths s in decreasing order)
for (each i with indef, ; = s and s > def, ;)
for (each “on” or “indefinite” transistor t
connecting 1 to m)
if indef, , does not dominate min(s,o;)
set sw_max, , to max(sw_maxg ¢, Min(s, o))
set indef, , to max(def, ,, min(s, o))
for (each i with indef; ; = s and s = def, ;)
for (each “on” or “indefinite” transistor t
connecting i to m)
if indef, , does not dominate min(s, o)
set sw_max; , to max(sw_max, ., min(s, o))
set indef, , to max(indef, ,, min(s, o))

for (all nodes 1) // compute new logic values of
// nodes
if def, ; dominates indef, ; then set y;, to 0

else if def, ; dominates indef, ; then set y; to 1
else set y; to X

2.11 BINARY DECISION DIAGRAMS

Binary decision diagrams (BDDs) provide a means for representing circuit behavior
by means of graphs. In recent years they have grown in importance because of their
applicability to several areas of digital design, including simulation, automatic test
pattern generation, synthesis, and design verification. Here we discuss their applica-
tion to simulation—in particular, cycle simulation (see Section 2.12). In subsequent
chapters we discuss their application to other areas of electronic design automation
(EDA).

2.11.1 Introduction

Binary decision diagrams were introduced by Sheldon Akers in 1978.%% Akers’ work
was based on research into binary decision programs by C. Y. Lee.?” BDDs can be
used to represent Boolean expressions in a form that resembles a decision tree.
BDDs are implementation-free, they can determine the response of a circuit to input
stimuli but offer no insight into the structure of the circuit. This can be considered an
advantage, because it permits circuits described at very different levels of abstrac-
tion to be compared for equivalence.

We start with some basic definitions, derived from Aho et al.*® A graph G = (V,
E) is a finite, nonempty set of vertices V and a set of edges E. The edges are pairs of
vertices (v, v,) where v, v, € V. If the edges are ordered pairs, then the graph is said
to be a directed graph. In a directed graph the edge (v, v,) is said to be from v, to v,,

BINARY DECISION DIAGRAMS 87

where v, is called the fail and v, is the head. A path is a sequence of edges of the
form (v, v,), (v5, v3), ..., (v,,_y, v,). The path is from v, to v,, and is of length n — 1. A
cycle is a path that begins and ends at the same vertex.

A directed graph with no cycles is called a directed acyclic graph (DAG). A tree
is a DAG that satisfies the following properties:

1. There is exactly one vertex, called the root, which no edges enter.
2. Every vertex except the root has exactly one entering edge.
3. There is a unique path from the root to each vertex.

If (v;, v,) € V, where Vis a tree, then v, is the parent of v, and v, is the child of v|. A
vertex with no descendents is called a ferminal vertex, also called a leaf, the
remaining vertices are called nonterminal vertices. If a path exists from v; to v;,
then v; is an ancestor of v;, and v; is a descendent of v;. An ordered tree is one in
which some ordering rule is imposed on the children of each vertex. A binary tree is
an ordered tree in which each vertex v has at most two children, denoted low(v) and
high(v). The edge from vertex v to low(v) corresponds to the value v =0 and is
sometimes called the 0-edge. Likewise, the edge leading to high(v) corresponds to
the value v =1 and is sometimes called the /-edge. A nonterminal vertex v has
associated with it an attribute index(v) € {1, 2, ..., n}. A terminal vertex v has as
attribute a value value(v) € {0, 1}.

The number of vertices in a binary decision tree grows exponentially. A tree gen-
erated from three variables {x|, x,, x;} has seven nonterminal vertices and eight ter-
minal vertices. In general, a binary decision tree has 2" — 1 nonterminal vertices and
2" terminal vertices. This does not represent any appreciable savings over the corres-
ponding truth table with its 2" rows. However, a binary decision diagram (BDD)
offers significant potential savings. It permits many edges to terminate at any given
vertex. One immediately obvious gain is in the representation of the terminal verti-
ces. When all the terminal vertices have value O or 1, then there only need be two
terminal vertices, one with value O and the other with value 1. A computer program
used to represent the function can immediately free up 2" — 2 structures used to rep-
resent the terminal vertices.

Figure 2.32 Binary decision tree.

88 SIMULATION
Example Consider the binary tree in Figure 2.32. It corresponds to the equation
F=X X X3+ X, Xy Xy + X)Xy 0 Xy

The complete truth table corresponding to this BDD is

X X2 A3 S
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0 [] |

Note that in the binary decision tree the vertices are labeled x;, with the root ver-
tex labeled x;. In the discussion that follows, we will often label a vertex solely with
the subscript, which serves as its index. When using subscripts of the x; as indices,
indices of descendents will appear in ascending order; that is, if vertex v is nontermi-
nal, we require index(v) < index(low(v)) and index(v) < index(high(v)).

To evaluate a function for particular values of x,, x, and x5 in a truth table, search
down the truth table until matching values are found, then look for the value of the
function in the rightmost column of the same row. To evaluate a function using a
BDD, start at the root and follow the 0- and 1-edges corresponding to the binary val-
ues assigned to the variables. For example, if x; is 1, x, is 0 and x5 is 1, then take the
I-edge from vertex x, to vertex x,, take the 0-edge from vertex x, to vertex x;, and
take the 1-edge out of x;. This process terminates at a vertex assigned the value 0.

This BDD was generated by arbitrarily assigning variable x, as the root and cre-
ating a 0-edge and a 1-edge from that root. This causes two subgraphs to be cre-
ated. In each of these subgraphs the variable x, serves as the root. This process can
be repeated at the subgraphs with root x,. Further iterations eventually lead to ter-
minal vertices, with terminal values matching the values in the truth table entry cor-
responding to the edge values on the path from the root to the given terminal
vertex.

The reader may recognize this as a repeated application of Shannon’s expansion:

O X9y cees Xy ey X)) = X5+ fO, Xy ey Ly ey X)) + X+ (X, X9y 00, 0, sy X))

For the equation given in the example above, the first application of Shannon’s
expansion yields the results shown in Figure 2.33. Note that it is not necessary to
create the truth table for a Boolean expression. Continued applications of Shannon’s
expansion will yield the binary decision tree shown in Figure 2.32.

BINARY DECISION DIAGRAMS 89

f=%X1.%. X3+ X]. X . X3+ X . X5 . X3

0 1

f1=% . X3+ x;,.x3 Hr=%.%3

Figure 2.33 Applying Shannon’s expansion.

The BDD in Figure 2.32 was drawn in such a way that there was a terminal corre-
sponding to every entry in the truth table. However, many of the branches are unnec-
essary. For example, the rightmost path (x;, x,) = (1,1) leads to x5, but both terminal
vertices emanating from x; are 0, regardless of whether x; is O or 1. This branch of
the tree can be pruned and the 1-edge from x, can terminate with a 0. Another way to
shorten the graph is to represent the terminal vertex as x; or x;. This produces the
BDD shown in Figure 2.34(a). Note that a BDD can be redrawn with any variable as
the root. This often yields significantly different BDDs, as seen when comparing
Figures 2.34(a) and 2.34(b), which represent the same function.

This process can be reversed. A sum-of-products Boolean equation can be derived
from the BDD. First, label the branches emanating from x; as f; and f,. Then, f can be
expressed as f= x, - f; + x; - f>. Pursuing this a step further, vertex f; can be represented
as fi =X, g, + X, g, and vertex f, can be represented as f, =x,- i, + x,- h,. From
Figure 2.34 it can be seen that g, = X, g, = X3, h; = X3, and &, = 0. From here, the min-
terms for f are readily obtained (a minterm is a sum-of-products term in which every
variable appears in true or complement form). The maxterms can be found by tracing
all paths to leafs with value O (a maxterm is a product-of-sums term in which every
variable appears in true or complement form).

Some useful BDDs are illustrated in Figure 2.35. The D flip-flop in
Figure 2.35(a) retains its existing value if the clock, C, is 0. If C is 1 (and, assuming
a positive edge), then the value at the D input is transferred to the output Q. The for-
mula for this operation is Q**! = Q*C* + D¥C*. Behavior of the toggle flip-flop in
Figure 2.35(b) obeys the formula Q**! = C*T* Q* + C*Q* + T*Q*

Figure 2.34 Reduced BDD.

90 SIMULATION

Qk+]
Pl
[D
(a) (b

f
C S E;

A

B
A G B,

C

(e) () (€9)

Figure 2.35 Some useful BDDs.

Figure 2.35(c) implements the equation f=A - B- C + A - C. Figure 2.35(d) imple-
ments the same equation, but two new concepts are introducted in this BDD. First,
the right branch exiting from A now goes straight down and shares the variable C
with variable B. Second, there is a bubble on the edge emanating from B and termi-
nating on C. This bubble is used to indicate that the value is to be complemented.
So, if the BDD is traversed from the entry point at the top, through the left branch
emanating from A, and then through the right branch emanating from B, the final
result fis not C, but rather C; for example, if Cis 0, then f= 1. The general rule is: If
there are an odd number of bubbles (inversions) in the path from the entry point to
the terminal vertex, the result is complemented. If an even number of bubbles are
encountered, the result is not inverted.

Figure 2.35(e) illustrates the BDD for the expression f=A @ B @ C. In this
example, both edges emanating from A terminate at vertex B, and the edges emanat-
ing from B both terminate on vertex C. It clearly illustrates the rule concerning the
number of inversions mentioned in the previous paragraph. The BDDs in
Figure 2.35(f) represent a full-adder; they illustrate yet one more new concept. The

BINARY DECISION DIAGRAMS 91

edge out of C,,; terminates on E;. But E; is not an input variable. It is an intermedi-
ate variable whose value is calculated using the rightmost BDD in Figure 2.35(f).
Thus, if A;=B;=1 and C; =0, then E is determined to be 0. So, when calculating
the sum §; and carry C,_,, the left branch is taken out of E; in both BDDs to get a
carry of 1 and a sum of 0.

In Figure 2.35(g) all of these concepts are combined to get a complete set of
BDDs for a 4-bit adder with carry look-ahead (CLA). The values for the E; are
obtained from the BDD in Figure 2.35(f). To connect several of these together to
represent a 16- or 32-bit data path, it would be necessary to develop a BDD for a
CLA. The inputs to the CLA will be driven by the propagate (P), generate (G), and
C,,, outputs from the BDD in Figure 2.35(g).

Given a set of values assigned to the inputs of a circuit, BDDs can be used to
compute the circuit response to that set of values. The BDD can be stored in a data
structure using pointers. From the root this BDD can be traversed in a programming
language like C or C++ quite easily to obtain the circuit response to a given set of
inputs. Consider, for example, the reduced BDD in Figure 2.34(b). If x, =0, the
value of the expression is immediately determined to be equal to x;. Compare that
with the number of programming steps required to evaluate an RTL expression rep-
resenting the three original minterms. First, the variables have to be complemented.
Then, two AND operations are required to evaluate each minterm. Finally, the
results for the three minterms have to be ORed together to produce the final result.
For event-driven simulation the comparison becomes more complex because the
number of computations depends on how many inputs change and how far the
events propagate through the circuit. There is a fixed overhead associated with creat-
ing the initial BDDs in storage, but for large circuits with many input vectors, that
represents a small percentage of the overall computation time.

2.11.2 The Reduce Operation

In the discussion that follows we examine some algorithms introduced by Bryant.’!
Restrictions are imposed on the circuit description in order to achieve a canonical
form for BDDs representing the circuit. This will make it possible to describe algo-
rithms that reduce, merge, and otherwise manipulate BDDs. Given two combina-
tional circuits represented in a reduced, ordered BDD canonical form, it becomes
possible to compare the circuits in order to determine whether they represent differ-
ent functions, or are just different expressions of the same circuit. The two circuits
may originally be sum-of-products or product-of-sums, or one or both representa-
tions may be expressed at the RTL level. The canonical form also makes it possible
to synthesize circuits described at different representations or levels of abstraction to
the same resulting circuit.

The canonical form imposes a total ordering on the variables in a Boolean func-
tion of n variables. In this total ordering, the variables are numbered consecutively
from 1 to n, and this numbering remains constant throughout processing. To achieve
this ordering, it is convenient to simply label the variables as x;, 1 <i < n, as we
have done previously. Vertices are assigned indices corresponding to the subscripts,

92 SIMULATION

in ascending order. A graph formed in this fashion is called a function graph. Func-
tion graphs form a proper subset of conventional BDDs. By virtue of the numbering,
the graphs are also acyclic.

Definition 2.6 A function graph G having root vertex v denotes a function f,
defined recursively as

1. If v is a terminal vertex:
a. If value (v) =1, then f, = 1.
b. If value (v) =0, then f, = 0.

2. If v is a nonterminal vertex with index(v) = i, then f, is the function
Fo1s s %) = X5 Sy oos X) + X5 Figny(X1s s X,)

The formula for f, is Shannon’s expansion. A unique path from the root to a terminal
vertex is defined by assigning logic values to all the x;.

Definition 2.7 Function graphs G and G’ are isomorphic if there exists a 1-to-1
mapping o from the vertices of G onto the vertices of G’ such that for verticesve G
and v' € G, either v and v' are both terminal vertices with value(v) = value(v'), or v
and v' are both nonterminal vertices with index(v) = index(v'), o(low(v)) = low(v’'),
and ot(high(v)) = high(v").

Proving that two function graphs are isomorphic begins by mapping the root of G
onto the root of G'. The children of the root of G are then mapped onto the children
of the root of G'. This mapping continues until either there are no more vertices to
process, or an attempt to map a vertex in G to a vertex in G’ fails.

Definition 2.8 For any vertex v in a function graph G, the subgraph rooted by v is
defined as the graph consisting of v and all of its descendents.

Definition 2.9 A function graph G is reduced if it contains no vertex v with
low(v) = high(v), nor does it contain distinct vertices v and v’ such that the subgraphs
rooted by v and v' are isomorphic.

Theorem 2.5 For any Boolean function f, there is a unique (up to isomorphism)
reduced function graph denoting f. Any other function graph denoting f contains
more vertices.

The proof, by induction, can be found in Bryant’s original paper. We now pro-
ceed to describe some algorithms introduced by Bryant. The most important of these
algorithms are the Reduce algorithm, which transforms any arbitrary graph into a
unique, reduced graph representing the same function, and the Apply algorithm,
which performs a specified operation, such as AND, OR, XOR, and so on, upon two

BINARY DECISION DIAGRAMS 93

BDDs. However, first it is helpful to define a data structure that describes the
vertices in the BDD. The following structure, expressed in the C programming lan-
guage, contains information needed to process the vertices, and facilitates traversals
of the BDD:

struct vertex {
struct vertex *parent, *low, *high;

int index;

int id;

char value; // 0, 1 or X
char mark;

Table 2.5 describes the entries in this structure. The index is taken from the subscript
of variable x;. The id field can be used when assigning numbers to the vertices dur-
ing an operation. The mark field can be initially set to O or 1. Suppose the field is ini-
tially set to 0. Then, when traversing the BDD, mark can be set nonzero to indicate
that the vertex has been visited. A simple rule when traversing the graph is to start at
the root. Then, for vertex v, first visit low(v) if it is unmarked. If it is marked, and if
high(v) is also marked, then set the mark of vertex v nonzero, and move up to the
parent vertex. Repeat until all vertices are marked. This is described more formally
in the following procedure:

procedure Traverse(v:vertex)

{
v.mark := not v.mark;
// ... perform operations here
if (v.index < n+1)
{ // v nonterminal
if(v.mark != v.low.mark) Traverse(v.low);
if(v.mark != v.high.mark) Traverse(v.high);
}
return;
}

TABLE 2.5 Field Values for BDD Structure

Field Terminal Nonterminal
low null low(v)

high null high(v)
index n+1 index(v)

val value(v) X

94 SIMULATION

Traverse is a basic utility that is employed by other functions to perform tasks such
as to search BDDs or to assign unique integers to each vertex that it visits. For exam-
ple, a counter may be used and vertices assigned ids in either ascending or descend-
ing order.

It was previously stated that variables must adhere to a total ordering during pro-
cessing. All operations performed on a BDD must adhere to that same ordering of
the variables. If the order is changed, it must be changed for all operations. BDDs
that adhere to this ordering are referred to as ordered BDDs (OBDDs). If, in addition
to the ordering, the BDDs are reduced, using the Reduce algorithm, the OBDDs
become reduced, ordered BDDs (ROBDDs). The ROBDDs produced by the Reduce
algorithm are unique; hence if two circuits represented in BDD form, with their vari-
ables in the same order, are reduced to identical ROBDDs, then the original circuits
from which they were derived are identical.

The Reduce algorithm is given below, in a pseudo-language. It will be illustrated
using Figure 2.36. Note that it will be convenient to refer to a BDD representing
function f'as By The first step is to group the vertices into n + 1 lists, where each ver-
tex with index i is linked to list position i. This can be done using the Traverse algo-
rithm. Then the linked lists are processed, beginning with list n + 1—that is, the list
of terminal vertices.

function Reduce(v: vertex): vertex;
var subgraph: array[1..|G|] of vertex;
var vlist: array[1..n+1] of list;
{
Put each vertex u in list vlist[u.index] // use
/] Traverse
nextid = 0;
for(i = n+1; 1 >= 0; i--); // start with terminal
/] vertices
{
Q = empty set;
for(each u in vlist[i])do
if (u.index == n+1)
add <key,u> to Q // key=(u.value) (terminal
/1 vertex)
else if (u.low.id = u.high.id)
u.id = u.low.id; // redundant vertex
else add <key,u> to Q; // key = (u.low.id,
// u.high.id)
// NOTE: u.id not added to Q if (u.low.id == u.high.id)
sort(Q); /| by keys
oldkey = (—-1,-1); // unmatchable key
for(each <key,u> in Q) { //removed, in order

BINARY DECISION DIAGRAMS 95

if (key == oldkey)
u.id = nextid; // matches existing vertex
else { // unique vertex
nextid = nextid+1;
u.id = nextid;
subgraph[nextid] = uj;
u.low = subgraph[u.low.id];
u.high = subgraph[u.high.id];
oldkey = key;
}
}
return(subgraphfu.id]);
}
}

When processing the terminal vertices in vlist n + 1, a 2-tuple <key, u> is added
to set Q for each terminal vertex u € vlist[n + 1]. Key is actually the value O or 1 of
the terminal vertex. After all terminal vertices have been processed, the set Q is pro-
cessed. Two terminal vertices are retained, one for each binary value. The terminal
vertex with value O is assigned the id 1, and the terminal vertex with value 1 is
assigned the id 2. These ids appear in enclosed in diamonds in Figure 2.36.

After the terminal vertices have been processed, the nonterminal vertices are
processed, starting with vlist[n]. First, Q is reset to the empty set, and then each
of the four vertices linked to vlist[3] is processed in turn. Note that for i =n, if
u.low.id = u.high.id, then the low and high edges emanating from vertex u both ter-
minate on a terminal vertex with value O or 1. Hence, the vertex can immediately be
replaced by low(u). In Figure 2.36 the leftmost vertex with index 3 can be replaced
by the terminal vertex with value 0. In practice, the low(v) from the leftmost vertex
with index 2 can be connected to a terminal vertex with value 0.

Figure 2.36 Assigning ids to vertices.

96 SIMULATION

After the remaining vertices with index 3 have been processed, the set Q will
have three entries corresponding to index 3. The first entry in Q will have key <1,
2>, and the remaining two entries will both have key <2, 1>. The keys are sorted and
duplicates are discarded. In Figure 2.36, the rightmost vertex with index 3 is dis-
carded and the 1-edge from its parent vertex is reset so as to point to the other vertex
with key <2, 1>. The two remaining vertices with index 3 are assigned ids 3 and 4,
again enclosed in diamonds.

The next vlist to be processed is vlist[n — 1], in this case vlist[2]. The leftmost
vertex with index 2 is assigned key <1, 3>. The rightmost vertex with index 2 is dis-
carded because its low(«) and high(x) both point to the same vertex. Hence, the 1-
edge emanating from the root connects to the vertex with index 3 and id 4. The left-
most vertex is assigned id 5. Finally, vlist[1] is processed and assigned id 6. The
ROBDD that results from applying the Reduce algorithm to the BDD in Figure 2.36
is shown in Figure 2.37. To build the equivalent ROBDD from the original BDD, it
is necessary to keep track of the vertices in the ROBDD using linked lists. Then,
after the entire original BDD has been processed, a ROBDD is constructed using
the linked lists of vertices, adjusting pointers from discarded vertices to the vertices
that were assigned ids. Finally, the original BDD can be discarded and its memory
freed up.

It was stated earlier that variables must be ordered when creating ROBDDs.
However, there is no rule dictating the order, only that the same ordering must be
maintained during all processing. In fact, because ROBDDs are very sensitive to the
ordering chosen, a considerable amount of research has been expended trying to find
ideal orderings for the variables. For example, if the variables in Figure 2.37 are
rearranged so that x, becomes the root, then the ROBDD in Figure 2.38 results. It
represents the same function as the ROBDD in Figure 2.37, but has one more non-
terminal vertex. Some functions are extremely sensitive to ordering of the variables.

2.11.3 The Apply Operation

Given two functions f and g, and a logic operation {op), the result f{op)g can be
obtained by applying {op) directly to the expressions for fand g, using the distribu-
tive, commutative, and other familiar rules for manipulating Boolean expressions.

Figure 2.37 Reduced binary decision diagram.

BINARY DECISION DIAGRAMS 97

Figure 2.38 Another ROBDD for the same function.

Another approach is to apply {op) to the values of f and g in corresponding rows of
their truth tables. A third method, given complete binary decision trees for fand g, is
to apply {op) to corresponding terminal vertices of the trees. However, in practice, f
and g are likely to be reduced, and available computer memory, in all likelihood, is
not sufficient to permit expanding the OBDDs to binary decision trees. The Apply
algorithm addresses this problem. Given two OBDDs B, and B,, Apply operates on
them recursively and produces a resulting OBDD that represents By (op) B, Itis
based on the following recursion, obtained by performing {op) on Shannon’s expan-
sion for the functions fand g:

flopyg = xi- (f], _oCoprgl, _o)+xi-(f], _ {oprg|, _)) (212)

The Apply algorithm starts at the roots of two OBDDs B, and B,, corresponding
to functions f and g, and descend toward the terminal vertices. At any time during
the discussion that follows, the corresponding vertices of f and g that Apply is oper-
ating on will be considered roots r, and r, of corresponding subgraphs. The Apply
algorithm is constantly producing resulting vertices r; {op) r,. During this descent,
there are several possibilities that must be considered:

1. Roots ry and r are both terminal vertices.
2. Roots Iy and re are nonterminal vertices with identical indices i.

3. Iy is a nonterminal vertex with index i, and Te is either a terminal vertex or a
nonterminal with index j, for j > i.

If roots ry and re are both terminal vertices, then the value of the terminal vertex
for the resulting OBDD is value(ry) {op) value(r,). If roots r,and r, are nonterminal
vertices and have identical indices i, then the Apply algorithm is applied to the low

and high vertices of r, and r,; that is, the corresponding vertex of the resultant

98 SIMULATION

OBDD has a 0-arc to apply({op), low(r,), low(r,)) and a 1-arc to apply({op), high(ry),
high(r,)). This is basically an iteration of Shannon’s equation, as expressed in
Eq. (2.12). The third case requires a little more analysis. Note that there is actually a
fourth case where i > j, and ry is either nonterminal or terminal. However, the prob-
lem is symmetrical, so the processing follows that of case 3.

If the root r, has index j > i, then the subfunction corresponding to r, is indepen-
dent of the variable x;. In that case, g[, _, = g|, _ - S0

=X 8l o8l = (i+x) gl 0= 8l

Therefore g|, _, and g|, _, in Eq. (2.12) can both be replaced by g. As a result,

the O-arc in the resultant OBDD is determined by apply({op), low(ry), r,) and the
l-arc is determined by apply({op), high(ry), r,). If r, is a terminal vertex, then {op)
may cause the resulting vertex to assume a binary value, in which case the resulting
vertex is terminal. This would happen, as an example, if r, is terminal with binary
value 0 and {op) is an AND operation.

The Apply algorithm follows:

function Apply(v1l, v2: vertex; <op>: operator): vertex;
var T: array[1..|G1|, 1..|G2]|] of vertex;

function Apply-step(vi, v2: vertex): vertex;
/] recursive

{
u=T[vl.id, v2.id];
if (u != NULL)
return(u); // already evaluated
u = new vertex record;
u.mark = FALSE;
T[vi.id, v2.id] = u; // add vertex to table
u.value = vi.value <op> v2.value;
if (u.value != X) { // create terminal vertex
u.index = n+1;
u.low = NULL;
u.high = NULL;
}
else { // create nonterminal, continue descent
u.index = Min(v1.index, v2.index);
il
if (vi1.index == u.index)
{ vlow1l = vi.low; vhigh1 = vi1.high; }
else { vliowl = vi; vhight1 = vi; }

BINARY DECISION DIAGRAMS 99

e
if (v2.index == u.index)
{ vlow2 = v2.low; vhigh2 = v2.high; }
else{ vliow2 = v2; vhigh2 = v2; }
R

u.low = Apply-step(vliowl, vlow2);

u.high = Apply-step(vhigh1, vhigh2);
}
return(u);
}
{ // Main routine

initialize all elements of T to null;
u = Apply-step(vi,v2);
return(Reduce(u));

}

The Apply algorithm will be illustrated using the circuit in Figure 2.39. The OBDDs
By and B, represent the AND gates f and g. All O-arcs go directly to terminal vertex
with value 0. The object will be to synthesize an OBDD for the entire circuit, given
the OBDD:s for fand g.

The B, in Figure 2.40 is an expanded version of the B, in Figure 2.39. In
Figure 2.40 there are two vertices with index 2. Both edges terminate on a vertex
with index 3. Likewise, the vertex with index 3 has two edges terminating on the
terminal vertex with value 0. It would be possible to completely expand a BDD to
achieve a binary decision tree—that is, one in which all possible terminal vertices
exist. Then a logic operation could be applied to corresponding terminal vertices.
However, Apply does not pad the BDD in this way. Rather, if one BDD has a vertex

X1

X3

Xy

X5

Figure 2.39 OR’ing two BDDs.

100 SIMULATION

(1 83) o]

(4 83)
(f4 84)

o]
5
S

(a) (b)

(f47 g'i)
(4 84)

Figure 2.40 Applying the Apply algorithm.

at position 7 and the other does not, then Apply goes directly to the vertex at posi-
tion j, where j > i. If j=n + 1, then performing (op) on a pair of vertices may
cause a terminal vertex to be created. For example, if {op) is the AND operation,
and one vertex is a terminal vertex with value 0, then performing {op) on that ver-
tex and any other vertex from the other BDD will always result in a terminal ver-
tex with value 0.

The Apply algorithm will be illustrated by OR’ing ROBDDs B, and B, in
Figure 2.39. The calculations are shown in Figure 2.40(a), and the reduced ROBDD
is shown in Figure 2.40(b). The starting point for the Apply algorithm is the pair of
root vertices, f; and g;. The first step is to create a root vertex corresponding to the
OR of Byand B,. In Figure 2.40(a) this vertex is assigned the label (f}, g;). From
there, Apply begins its descent down the edges of each OBDD. It first calculates
low(f}, g,)- Starting at the low edge of f, it arrives at terminal vertex f;, with
index(f;) = 6. Since index(g,) = 4, which is less than index(f,), Apply remains at g,.
The OR operation is applied to terminal vertex f; and nonterminal vertex g;, and it
yields vertex g;.

Apply then calculates high(f;, g,). Index(high(f;)) =2 and index(high(g,)) =5,
so Apply stays at g;, rather than descending to its child vertex. The OR applied to f,
and g, is indeterminate, so a nonterminal vertex with index 2 is created and assigned
the label (f,, g;). Next, Apply processes vertices f; and g,. Low(f,) and low(g,) are
both terminal vertices with values 0, so performing the OR operation on these verti-
ces results in a terminal vertex that is assigned the label (f;, g3). Processing high(f,)
and high(g,) produces a vertex with label (f;, g,) and index 5. The remaining verti-
ces are processed in similar fashion.

CYCLE SIMULATION 101

Note that in Figure 2.40(a) some vertices appear more than once. For example,
vertex (f;, g,) appears three times. The subgraph with root (f,, g;) need not be pro-
cessed each time it is encountered. The table T is used to identify vertices in the
resultant BDD that have already been processed. When such a vertex is encountered,
a pointer to the original vertex is inserted in the BDD. This can result in significant
savings in processing time. Because T may represent a sparse matrix, the actual
implementation can be a hash table in order to minimize the amount of memory
required.

The Restriction algorithm is a useful utility. Given a function f, Restriction con-
verts finto f|, _,. Restriction traverses the BDD, like Traverse, looking for point-
ers to a vertex v such that index(v) = i. When such a pointer is encountered, it is
changed to point to low(v) if b = 0, or it is changed to point to high(v) if b = 1. Then
Reduce is called to reduce the graph.

The Composition algorithm is used to obtain a graph for a hierarchical network.
For example, an n-wide adder may contain n full adders connected in a ripple carry
configuration. The following equation represents a function f; for which function f,
is to be substituted for variable x;. The ROBDD for this function can be derived
directly through application of the Restriction and Composition algorithms, fol-
lowed by Reduce. A more efficient implementation of the Composition algorithm
can be found in Bryant’s original paper.>'

Floop, = BBl o+ (Al)

2.12 CYCLE SIMULATION

New design starts continue to grow in gate count, and the amount of CPU time
required to simulate these designs tends to grow disproportionate to gate count,
implying a growing need for simulation speed. A simple example helps to shed light
on this situation. Suppose a circuit has n functions and that, in the worst case, each
function interacts with all of the others. Ignoring for the moment the complexity of
the interactions, there are n X (n — 1)/2 potential interactions between the n func-
tions. Thus, in the worst case, the number of interactions grows proportional to the
square of the number of functions.

Handshaking protocols between functions also grow more complex. Internal
status and mode control registers act as extensions to device I/O pins. To verify the
growing number of interactions requires more stimuli. In addition, the growing
number of gates and functions in the circuit model generate more events that must
be evaluated during each clock cycle. The combination of more functionality and
more stimuli requires an exponentially growing amount of CPU time to complete
the evaluations. A consequence of this is a growing difficulty to create and simulate
enough stimuli to verify design correctness. As a result, design errors are more
likely to escape detection until after tape-out, at which time the discovery of errors
requires another expensive iteration through the design cycle.

102 SIMULATION

Cycle simulation is one of the answers to the growing need for greater verifica-
tion power. Cycle simulation evaluates logic elements and functions across clock
cycle boundaries without regard to intermediate values. Its purpose is to evaluate
input stimuli as rapidly as possible. Designs are required to be synchronous so that
every possible technique can be leveraged during simulation. Rank-ordering is used
so that elements only need to be evaluated once during each clock period. Circuit
delays are ignored, and the number of logic values is usually limited to three or four
{0, 1, X, Z}. Internal representation of the circuit may be in terms of binary decision
diagrams (BDDs), so intermediate values are totally obscured. To insure that a cir-
cuit operates at its intended speed when fabricated, circuit delays are measured by
timing analysis programs that are written specifically for that purpose and run inde-
pendently of simulation. The designer plays a role in this simulation mode by mod-
eling circuits at the highest possible level of abstraction without losing essential
details.

A number of methods have been developed to speed up simulation while reduc-
ing the amount of workstation memory required to perform simulations.
Figure 2.41 provides a taxonomy of such approaches.** From the figure it can be
seen that simulation performance can benefit from enhancements in software, hard-
ware, and circuit modeling. Chapter 12 will examine analytical methods for design
verification.

Modeling efficiencies can be realized in several ways. The Verilog HDL sup-
ports user defined primitives (UDPs). These permit a user to define the behavior
of small functions such as multiplexers, full-adders, latches, delay flip-flops,
and so on, by means of lookup tables rather than as interconnections of several
individual logic gates. A single table lookup then replaces several logic gate
evaluations.

Simulation
performance

Modeling
Behavioral
models

Special
architectures

Coding Algorithm
efficiencies improvements

Rank Tighter code Statistical Data flow Massively
ordering Compiled codg bias machines par al.lel
machines

Figure 2.41 Simulation performance factors.

CYCLE SIMULATION 103

B © U4 o Z

D o——
e
F

Figure 2.42 Computing output value efficiently.

U2

Statistical bias can be used to advantage both in the simulator and in the model.
Consider the circuit in Figure 2.42. In Verilog the circuit might be coded as

Z=A&B&(C|(D & (E|P)));

An intelligent simulator will process it as if it had been encoded as

if ((A==0) | (B==0)) Z=0;

else if (C == 1) Z = 1;

else if (D == 0) Z = 0;

else if ((E == 1) | (F==1)) Z = 1;
else Z = 0;

As soon as the value of Z has been determined, the simulator breaks out of the if/
else construct since there is no need for further processing. If logic values 0 and 1
are equally probable on all nets, then 50% of the time A is 0 and further calcula-
tions cease. Similar considerations hold for B, so that 75% of the time it is unnec-
essary to go beyond the first line. Similar considerations hold for the remaining
lines.

Rank-ordering was discussed in Section 2.6, where it was pointed out that it was
a necessary requirement for efficient simulation. An event-driven simulator does not
require rank-ordering to correctly simulate a circuit, but can benefit from it. If a
combinational array such as an ALU or multiplier is being evaluated, rank-ordering
can ensure that no element is evaluated more than once. However, either all elements
must be assigned zero delay or, if delay values are present, they must be ignored.
The simulator can be implemented with both the timing wheel and the READ/
WRITE array scheduling mechanisms. Then, the more efficient READ/WRITE
array can be used in place of the timing wheel when groups of zero-delay logic are
encountered in order to realize further CPU savings. In general, the use of two
scheduling mechanisms permits synchronous and asynchronous logic to be segra-
gated and processed separately.

Stimulus ordering refers to the practice of ordering stimuli at primary inputs in
such a way as to reduce the number of logic events propagating through a circuit.
When simulating a combinational circuit where simulation results do not depend

104 SIMULATION

on the existing state of the circuit, a common practice is to apply randomly gener-
ated stimuli to the circuit to verify its correctness. Large numbers of vectors can be
generated with very little effort on the part of the person performing the verifica-
tion. For example, if verifying an array multiplier, the logic designer can write a
computer program to randomly generate input arguments A and B as integers, mul-
tiply them to obtain the product, then decompose A and B into their binary equiva-
lents and apply them to the design. The binary result computed during simulation is
then converted to decimal and compared with the value computed by the computer
program.

When many random input values change from one vector to the next, a huge
number of simulation events can occur in a gate-level circuit model. On large com-
binational arrays with thousands, or tens of thousands, of logic gates, ordering vec-
tors based on their Hamming distances (cf. Chapter 10) can sometimes produce
major savings of simulation time. To understand the principle, consider a simple 2-
input AND gate. If the input combinations are ordered as A,B = {(0,0), (1,1), (1,0),
(0,1)}, there are a total of five input events. If the input combinations are reordered
as A,B = {(0,0), (0,1), (1,1), (1,0)}, each vector causes a single input event, so there
are a total of three input events. For a combinational block of logic, results are not
affected by the order in which vectors are simulated, so rearranging the input vectors
in order to minimize events from one vector to the next may yield significant savings
in CPU time.

In general, the goal of cycle-based simulation is to squeeze out all unnecessary
computations while correctly determining circuit response to input stimuli. In order
to eliminate computations, assumptions usually must be made. For example, it must
be safe to assume that hazards will not destabilize the circuit. To safely make this
assumption, state transitions must be synchronized by external clock(s) that are
unaffected by internal logic activity. Furthermore, the durations of clock periods
must be independent of circuit activity, and it is necessary to verify, independent of
simulation, that logic events in the circuit will propagate to their destinations within
the allotted time period.

If a circuit can be correctly simulated with only the values 0 and 1, the circuit
model can be further simplified, and control statements, such as case statements
and if statements, do not have to consider the consequences of indeterminate val-
ues. But, to get correct values, it must be possible to initialize all flip-flops to 1 or
0 at the beginning of simulation. Storage elements must be explicitly defined.
This means that storage created by feedback loops in combinational logic, such as
latches created by cross-coupled NAND or cross-coupled NOR gates, must be
forbidden.

Wherever possible, blocks of detailed circuitry should be replaced by models
expressed at a higher level of abstraction, eliminating intermediate variables along
the way. If, for example, an ALU has been thoroughly characterized and its behavior
can be expressed by a case statement, that code should be used in place of a more
detailed RTL or gate-level model. This is especially true when running regression
tests, provided that the circuitry expressed at a higher level of abstraction has not,
itself, become the subject of change activity. The circuit in Figure 2.43 can be used

CYCLE SIMULATION 105

I {}C

I

I3 .’_Di
D

Iy ——

I5

Figure 2.43 Circuit illustrating cycle simulation.

to illustrate this. A more concise description of its behavior is provided by the fol-
lowing Verilog code:

module 1itl alu (i1,i2,i8,1i4,i5,z);
input i1, i2, i3, i4, i5;
output z;
reg z;
always @(i1 or 12 or i3 or i4 or 1i5)
case({i3,14})
2'p00: z = i1 | i2;

2'b01: z = i1 ~ i2 ~ 1i5;
2'b10: z = i1 & 12;
2'b11: z = 1 (11 ~ i2 ~ i5);
endcase

endmodule

The use of ROBDDs to evaluate cones of logic can provide huge performance
gains. Consider first the evaluation of the circuit using a zero-delay simulator. All
the nets are initialized to X, and then the vector 1,, I, 15, I;, Is=(0, 0, 0, 0, 0) is
applied to the circuit. Every element in the circuit has to be evaluated. Now suppose
I, switches to 1. Gates J, K, N, and P switch states. Each logic gate evaluation
requires that the simulator acquire two or more values corresponding to the inputs of
that gate and perform the appropriate calculation. The evaluation of the RTL code
significantly reduces the amount of computation required.

Now consider what happens when ROBDDs are used. The ROBDD for the cir-
cuit in Figure 2.43 is shown in Figure 2.44. To determine the output response of the

106 SIMULATION

Figure 2.44 ROBDD for circuit in previous figure.

circuit for the input combination (0,0,0,0,0), simply traverse all the O-arcs of the
ROBDD. Recall from the previous section that there is a data structure for each ver-
tex, and the data structure contains pointers corresponding to the 0-edge and the 1-
edge. It is a simple matter to traverse these structures until arriving at a terminal ver-
tex, in this case the vertex with value 0. When I, changes to 1, the entire ROBDD is
again traversed; however, this time the path leads to the terminal vertex with value 1.

In both traversals it was only necessary to follow links in data structures corre-
sponding to four vertices. For a larger combinatorial array, such as an ALU, the sav-
ings in CPU time may be two or more orders of magnitude. The one drawback to
this approach is that BDDs for some arrays, such as multipliers, cannot be reduced.
When circuits contain large arrays whose BDD representation cannot be reduced
and are too large to fit into memory, a hybrid approach can be used. Those networks
can be rank-ordered and simulated using event propagation. Other judgments can
also be made; for example, if an RTL expression is obviously a counter, then the
entire block of code representing the counter can be treated as a single function and
simulated as such. This will require that the logic designer model constructs such as
counters unambiguously, so the simulator can recognize their behavior.

2.13 TIMING VERIFICATION

As systems grow larger and as design, simulation, and test grow more complex, syn-
chronous design techniques become more attractive. The use of one or more master
clocks to synchronize events makes it possible to simulate logical and functional
behavior in a zero delay environment. If, in addition, the system is provided with a
master reset that forces all memory elements into a known starting state, it becomes

TIMING VERIFICATION 107

possible to dispense with the indeterminate X value and restrict simulation to the
Boolean values 0 and 1.

A key feature of this design methodology is the fact that all registers and flip-
flops are controlled by one or more clock signals that are either not gated with
combinational logic or are gated only within the framework of a very closely con-
trolled set of design rules. This operation is illustrated in Figure 2.45 for a circuit
with a single clock. The elements labeled A, B, C, and D may be registers or single
flip-flops. At no time in this circuit is any clock signal generated or controlled by
logic operations performed in combinational logic. Clock line layout, powering, and
delay calculations are performed independently of the logic controlled by the clocks.

Just as clock distribution is a science independent of logic design, zero-delay
simulation requires an independent means for computing propagation delay along
signal paths. If delay is excessive, a signal will not reach its destination before the
next clock pulse. If the delay is too short, hold time requirements for the flip-flops
may be violated. Two methods for performing timing verification include path enu-
meration and block oriented analysis.>

2.13.1 Path Enumeration

Path enumeration starts at a particular element, either an I/O pin or a stored state
variable, and traces through the logic until a termination point is reached, either an
I/O pin or a stored state variable. Maximum element delays encountered along the
paths are added to accumulative a total as the program traces the path. Rise and fall
times are both used to precisely calculate propagation time.*

Example The circuit in Figure 2.46 will be used to illustrate path enumeration. To
calculate the propagation time required for a signal originating at E to reach L, start
at L and work back toward the inputs. Assume that a rising signal has reached L. In
that case the rise time for gate K is used as the initial sum. It is added to the rise time
for gates I and J. The fall time for G is added next because a O to 1 transition at the
output of gate J requires a 1 to 0 transition at input E. Next, the propagation time for
a falling signal to reach gate L is calculated. To get this value the fall times for gates
K, I, and J and the rise time for gate G are added. The larger of the two sums becomes
the propagation time from E to L. [] |

. Y N

\-g
Clock ©

Figure 2.45 Synchronous circuit.

108 SIMULATION

A o

B V)} —|—K\ L
c)= —L/
D

Figure 2.46 Path analysis circuit.

An important point in the rationale for timing verification is the fact that, at some
point during operation of a circuit, the signal along the path being calculated will be
the controlling signal for some output. For example, if inputs A,B,C and D in
Figure 2.46 are assigned the values (0,0,1,0), then the output is totally dependent on
the value assigned to input E. If it has value 0(1), then output L has value 0(1). When
the path being analyzed is the controlling signal, path enumeration must determine
which signal originating at the input, O or 1, takes longer to propagate to the output.
It must then determine, among all paths into a bistable, the path that has maximum
propagation delay when it has the controlling signal. The implicit assumption that
all other signals are set up to propagate the signal whose delay is being calculated
makes it possible to ignore the logic function performed by the elements along that
path. It is only necessary to know the rise and fall delays of each element and
whether or not the element inverts the signal.

2.13.2 Block-Oriented Analysis

In this method the program starts at some assumed time with signals at primary
inputs and bistables. Furthermore, required arrival times are assigned to destination
elements. The elements, or blocks, that are driven by the primary inputs and bista-
bles are processed to find the earliest and latest time at which a signal could propa-
gate through them. Then, elements driven by these elements are processed. In
general, no element is processed until all elements driving its inputs are processed.
This requires that the circuit be rank-ordered.

The block-oriented method identifies the worst path leading up to each block and
feeds this information forward. This is continued until a primary output or bistable is
reached. Then, the difference between the required arrival time and the propagation
time is computed. This value is called slack. A negative slack indicates excessive
propagation time.

After all paths have been propagated forward, computations are performed in the
opposite direction. The propagation value at the element that drives the primary out-
put or bistable is subtracted from the required arrival time to determine when the
signals must arrive at the inputs to this block. The previously computed propagation

TIMING VERIFICATION 109

numbers are subtracted to find the slack at the inputs to this block, and the process is
continued until the source elements are reached.

Example Referring again to Figure 2.46, assume each of the elements has identical
rise and fall delay of 5 units. Also, assume that input changes occur at time 0 and that
maximum propagation delay to output L is 18 units. Gates F and H can both be pro-
cessed to give delay of 5 units on their outputs, but J cannot be processed until G is
processed. After G is processed, the delay at the output of J is the greater of the values
on D and G plus the delay of J. Since the delay at G is 5 units, the delay at J is 10
units. In similar fashion, the delay at 7 is 15 units and the delay at primary output L is
20 units, which results in a slack of —2 at the output.

The computations are now performed in reverse, starting with the required arrival
time and using the previously calculated propagation times. The slack on the inputs
to K are +8, +8, and —2, derived by computing the required arrival time at the inputs
to K, 18 — 5 = 13, and subtracting from that the propagation delay at the outputs of F,
H, and I. The required arrival time at the inputs to F, H, and [is 13 — 5 = 8. The slack
at the inputs to F and H is 8 and the slack at the inputs to 7 are +8 and —2. Continuing,
we find that the slack at E is =2 and a critical path with excessive propagation time
has been identified. [] |

If looking for early arrival times, the computations use minimum values. If sepa-
rate rise and fall times are used, then pairs of numbers are maintained and inverting
elements must be identified. A falling edge delay at the output of an inverting ele-
ment is computed by taking the greater of the rise delays at its input and adding the
fall delay of the element.

The object of timing verification is to find signal paths having long (or short)
delay times. If propagation time along such paths is excessive, the path delay can be
reduced either by redesigning the logic, by selecting faster components, or by
assigning different physical dimensions to elements within an IC. A consequence of
redesigning circuits to switch faster is that they may then consume more power.
Increased power consumption may be offset by finding signal paths where the tim-
ing margin is greater than it needs to be and, if possible, redesigning the devices to
consume less power.>

A major benefit of timing verification is the fact that signal paths do not get over-
looked. Simulation only provides information on those signal paths that are exer-
cised by the applied stimuli. By contrast, during timing verification all paths are (or
can be) analyzed. However, some practical considerations must be taken into
account. Path enumeration can generate large amounts of data. It may be necessary
to reduce the amount of data generated so that the user is not overwhelmed. To
achieve this, it must be possible for the user to specify printout only of paths that fall
within some user-defined range, either above or below some threshold value.

For engineering design changes, it is not necessary to recompute all paths; there-
fore the user should have an option to specify signal paths of interest. Other consid-
erations include the ability to detect and properly handle feedback paths in
combinational logic, as well as paths that exceed some given clock period but which

110 SIMULATION

A — 7
C

B 6)
F

E
Z@OTD*

Figure 2.47 A false path.

are known to require two or more clock cycles to complete their operation. Clock
skew must be factored into the overall analysis since the time required for a clock
signal to reach numerous devices throughout a design, whether a chip or board, can
vary significantly.

The user may have to be careful to spot paths that appear to be problem paths but
which require logic combinations that cannot occur in practice. An example of this
is redundancies in combinational logic. Consider the circuit in Figure 2.47. The
delays are indicated at the inputs to the logic elements, and the rise and fall delays
are assumed to be identical. The total delay from input A to output F'is 9 units. From
B to F through C is 10 units and from B to F through D is 6 units. It would appear
that the longest delay path from any input to output F is 10 units. But, closer exami-
nation of the circuit reveals that it implements the function A-B + B, which can be
simplified to A + B, so the apparent longest path is redundant. This is an example of
a false path.

2.14 SUMMARY

Simulation techniques span the spectrum from switch-level to behavioral. At one
end of the spectrum, switch-level simulation provides considerable detail about the
behavior of virtually every transistor in the circuit. However, there is a price to pay
for this detail. Simulation takes much longer to complete. At the other end of the
spectrum, behavioral simulation provides very little detail. It is not concerned with
how the response is computed; its purpose is to investigate architectural parameters
and trade-offs. RTL and gate-level simulation lie somewhere in the middle of this
spectrum. The object at these levels is to design a circuit at the highest possible level
of abstraction that can be processed by synthesis tools. Nevertheless, there are occa-
sions, particularly with commodity chips, when design at the transistor level, at least
for part of the chip, may be necessary in order to meet performance goals or die size
restrictions.

The two basic approaches to simulation are interpreted and compiled. Interpreted
simulation does not require preprocessing circuits into machine language models.
For short simulation runs, an interpretive simulation may operate more efficiently,
since the compiled simulator has greater overhead when creating the model. A com-
piled simulation executes more efficiently once the circuit is compiled. Hence for

PROBLEMS 111

simulation jobs where large amounts of stimuli are to be applied, such as regression
suites that are run frequently, compiled simulation may be the preferred mode of
operation.

An understanding of the concepts underlying simulation, at its various levels of
abstraction, benefits users as well as those who implement the tools. By understand-
ing the concepts involved, including the cost/benefit trade-offs, the user can select
the right tool for his or her application. In future chapters we will see that this is true
of other aspects of test, including fault simulation and ATPG. A word of caution is in
order about abstraction. The process of abstraction strips away irrelevant detail in
order to focus on parameters of interest. Determining which detail is relevant and
which is irrelevant requires some judgment and experience. As an example, zero-
delay simulation runs faster than nominal-delay simulation, but if applied to an
asynchronous design, simulation results may become totally meaningless.

When dealing with digital circuits, large numbers of value/strength symbols may
seem unusual to the inexperienced logic designer. We are accustomed to thinking in
terms of 1s and Os. Nevertheless, this spectrum of values has proven its worth. One
of the early architects of a family of computers has explained to this author how a
persistent problem in one of the models was traced to an uninitialized node. A new
simulator, which incorporated the value U, representing uninitialized, was employed
after the model had been in service for six months, and it successfully identified the
troublesome node. On yet another occasion, a noisy bus caused reliability problems.
An interim solution was the use of a piece of wire acting as an antenna. When noise
became excessive, the clock was shut down. Eventually, with the help of simulation,
the noise problems were tracked down and resolved.

Simulation technology has made great strides in the past three decades, both in
terms of simulation speed and gate count of the circuits processed. Users have
become more sophisticated in their choice of simulator algorithm, using switch-
level where necessary, and behavioral simulation, sometimes aided by hardware
accelerators, where possible. Advances over the past decade in simulation technol-
ogy have been aided by the emergence and growing popularity of two hardware
design languages, Verilog and VHDL. Successive generations of these languages are
approaching a common base.

PROBLEMS

2.1 ProvethatA-B+C-D=A+C)-(B+C)-(A+D)-(B+D).
2.2 Design a JK flip-flop based on the D flip-flop.

2.3 Modify the compiled simulator of Section 2.6 to enable it to perform three-
valued simulation on the cone of logic in Figure 2.9.

2.4 Modify the compiled simulator of the previous problem so that it can perform
3-valued simulation on a cross-coupled NAND latch. Create pseudo-inputs
and pseudo-outputs, check for oscillations.

112

2.5

2.6

2.7

2.8

2.9

SIMULATION

X1

X2

Xg

o oo |—
o |lo = |—
o |= |o|o
o |= o |—

X3

Figure 2.48 Karnaugh map.

State a general rule determining the minimum duration necessary for the pulse
on the Enable line of the circuit in Figure 2.8(b) in order to prevent a glitch.

For the Karnaugh map in Figure 2.48:

(a) Identify a 1-hazard.
(b) Identify all transitions for which 1-hazards can be avoided.
(c¢) Find a dynamic hazard.

Using a Karnaugh map, explain why the hazard in the circuit of Figure 2.11
is prevented by the additional AND gate.

Assume that the buffers in Figure 2.49 have delays indicated by the
numbers following the pound signs, and assume that all gates have zero
delay. Also assume a signal change from A,B,C,D,E=(0,1,1,1,0) to
A,B,C,D,E = (1,0,0,0,1) occurs. How many evaluations are required by an
event-driven simulator to determine the state of the circuit? Count each
event propagation through the delay elements as one evaluation. Next,
assume that the buffers have zero delay and that the circuit is rank-ordered.
How many evaluations are required under those assumptions?

In Figure 2.50, if elements are evaluated starting with the event occurring at
input A,, and then in ascending order to input A, how many events must be
propagated? If the elements are evaluated in descending order, from input A,
to input A;, how many events must be propagated?

#1

#2
#4 c
D
#3
E

Figure 2.49 Delay calculations.

A
B

0—0
0—1
0—1

0—1
0—-1
0—-1

2.10

2.11

2.12

2.13

2.14

PROBLEMS 113

%W ~~~~~ j@?@?[%

Figure 2.50 Event propagation.

Rank-order the circuit in Figure 2.43 and assign level numbers to each of the
gates.

Using the delay flip-flop in Figure 2.7, cut the feedback lines and explain how
to perform a zero-delay simulation, using Procedures A and B of
Section 2.6.5. Apply the following sequence of inputs: Preset, Clock, Data,
Clear = {(1,0,1,0), (1,0,1,1), (1,1,1,1), (1,0,0,1), (1,1,0,1), (0,1,0,1)}. Show
details of your work.

Using the delay flip-flop in Figure 2.7, assume that the rise and fall
propagation times of the NAND gates are all 5 ns. What happens when an
active clock edge appears with a pulse width of 8 ns? What is the minimum
required setup time required for the circuit? What is the minimum required
hold time?

Consider the circuit in Figure 2.51. Assume the initial assignment of values
on the nodes are all Xs and that the circuit is rank-ordered; that is, no element
is evaluated until all its inputs have been evaluated. Assume the input values
are applied in ascending order; that is, A,B,C,D = {(0,0,0,0), (0,0,0,1), ...,
(1,1,1,1)}. How many evaluations are necessary to complete the simulation?
Suppose inputs are reordered as follows: A,B,C,D = {(0,0,0,0), (1,1,1,1),
(0,0,0,1), (1,1,1,0), ..., (0,1,1,1), (1,0,0,0)}. Now how many evaluations are
necessary? Find a stimulus ordering that minimizes the number of
calculations required to simulate all 16 input combinations.

Create a nine-valued simulation table capable of detecting hazards at an OR
gate.

O a = »

Figure 2.51 Counting events.

114

2.15

2.16
2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

SIMULATION

D A % x>

Figure 2.52 Path timing.

Given the following four combinations on the inputs of a three-input AND
gate, what is the resulting output for each of the combinations?

inputl M/ W M
input2 W A A *
input3 1 \ A M

Prove Lemmas 2.1 and 2.2 and Theorems 2.1 through 2.4.
Using Figure 2.52:

(a) Compute the timing of the paths from A, B, C, and D to the output for
both 1 and 0. Assume the rise time of the NAND gates is 8 ns and the
fall time is 5 ns.

(b) What maximum value would you get if you ignored the signal inver-
sions and just used average propagation delay? Maximum propagation
delay?

Referring to the circuit in Figure 2.29, describe the events that take place
when inputs /; and I, change from (0,0) to (0,1), then to (1,0), and then to
(1,1). What is the function of that circuit? Describe it in terms of Verilog
PMOS and NMOS transistors. Describe it in terms of tranifO and tranifl
transistors.

Partition the circuit in Figure 2.29 dynamically and evaluate the circuit for
the four input combinations. Show your calculations.

Partition the circuit in Figure 2.26(b) statically. Describe the events that occur
when the cell has value 0 and is being updated to store a logic 1.

In the example using Figure 2.30, change input B from 1 to X and recompute
the node and switch values.

Are the two circuits in Figures 2.53(a) and 2.53(b) equivalent? Explain your
answer.

Partition the circuit in Figure 2.54 into components. Apply various binary
combinations to inputs A, B, C to determine the function of the circuit.

Using the gate-level model in Figure 2.43, the RTL model (litl_alu), and the
ROBDD in Figure 2.44, contrast the amount of work that must be performed

PROBLEMS 115

ik |

"
c
.
4|

B-G| v B—o| 2

(@ (b)

Figure 2.53 Comparing circuits.

VDD
- —qj
o Z

L |k

1

9

n4

n3

Co {>Tl |

Figure 2.54 Determining the function.

to evaluate the following six input vectors: (0,0,1,1,0), (1,0,0,0,1), (1,1,0,1,0),
0,1,1,0,1), (1,1,1,0,1), (1,0,1,0,1). For the gate-level model, consider the
number of event-driven evaluations if the circuit elements all have one unit
of delay versus the number of evaluations if all elements have zero delay and
the circuit is rank-ordered.

2.25 Create a ROBDD for the function f=x - x, + x3-x;, + X5 X4.

116

SIMULATION

2.26 Create a ROBDD for the function f = x, - x, + X, - x5 + x5 - Xs. Compare it with

the ROBDD created in the previous problem. Can you generalize your
conclusion?

2.27 Create ROBDDs for the equations f; and f,, below. Use the Apply algorithm

to compute f; @ f,.

JI=X Xy X3 + XXy X3 + X)Xyt Xy

fr=(xx) @ x3

2.28 Prove Shannon’s expansion. Hint: Consider the function whose terms are

expressed in standard sum-of-products form; that is, every variable appears
in true or complement form in each term, and there is a term in the function
corresponding to every row in the truth table that evaluates to 1.

REFERENCES

10.
11.

12.

13.

14.

. Druian, R. L., Functional Models for VLSI Design, Proc. 20th D.A. Conf., 1983,

pp- 506-514.

Falkoft, A. D., K. E. Iverson, and E. H. Sussenguth, Formal Description of System/360,
IBM Syst. J., 3, 1964, pp. 198-262.

Hill, F. J., and G. R. Peterson, Computer Aided Logical Design: With Emphasis on VLSI,
4th ed., John Wiley & Sons, New York, 1993.

Chu, Y., Introduction to Computer Organization, Prentice-Hall, Englewood Cliffs, NJ,
1970.

Duley, J. R, and D. L. Dietmeyer, A Digital System Design Language (DDL), IEEE
Trans. Comput., Vol. C-17, September 1968, pp. 850-861.

Kumar, Jainendra, Prototyping the M68060 for Concurrent Verification, IEEE Des. Test,
Vol. 14, No. 1, January—March 1997, pp. 34-41.

Bryant, R. E., A Switch-level Model and Simulator for MOS Digital Systems, /EEE
Trans. Comput., Vol. C-33, No. 2, February 1984, pp. 160-177.

Sheffer, H. M., A Set of Five Independent Postulates for Boolean Algebras, Trans. Am.
Math. Soc., Vol. 14, 1913, pp. 481-488.

Huffman, D. A., The Synthesis of Sequential Circuits, J. Franklin Inst., Vol. 257, 1954,
pp. 161-190 and 275-303.

The TTL Data Book, 2nd ed., Texas Instruments, Dallas, TX, pp. 6-48.

Ulrich, E., and D. Hebert, Speed and Accuracy in Digital Network Simulation Based on
Structural Modeling, Proc. 19th D.A. Conf., 1982, pp. 587-593.

Eichelberger, E. B., Hazard Detection in Combinational and Sequential Switching
Circuits, IBM J. Res. Dev., Vol. 9, No. 2, March 1965, pp. 90-99.

Hardie, F. H., and R. J. Suhocki, Design and Use of Fault Simulation for Saturn Computer
Design, IEEE Trans. Electron. Comput., Vol. EC-16, No. 4, August 1967, pp. 412-429.
Thomas, Don, and Phil Moorby, The Verilog Hardware Description Language, 3rd ed.,
Kluwer, Boston, 1996.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

REFERENCES 117

Palnitkar, Samir, Verilog HDL, Prentice-Hall, Upper Saddle River, NJ, 1996.

IEEE 1364 Standard, Verilog Hardware Description Language Reference Manual
(LRM), IEEE Standards Assoc., Piscataway, NJ.

Fantauzzi, G., An Algebraic Model for the Analysis of Logical Circuits, IEEE Trans.
Comput., Vol. C-23, No. 6, June 1974, pp. 576-581.

Phillips, N. D., and J. G. Tellier, Efficient Event Manipulation: The Key to Large Scale
Simulation, Proc. 1978 IEEE Int. Test Conf., pp. 266-273.

Ulrich, E. G., Exclusive Simulation of Activity in Digital Networks, Commun. ACM,
Vol. 12, No. 2, February 1969, pp. 102-110.

Ulrich, E. G., Non-integral Event Timing for Digital Logic Simulation, Proc. 14th D.A.
Conf., 1976, pp. 61-67.

Bowden, K. R., Design Goals and Implementation Techniques for Time-Based Digital
Simulation and Hazard Detection, Proc. 1982 Int. Test Conf., pp. 147-152.

Hayes, J. P., A Logic Design Theory for VLSI, Proc. Caltech Conf. VLSI, January 1981,
pp- 455-476.

Holt, D., and D. Hutchings, A MOS/LSI Oriented Logic Simulator, Proc. 18th D.A.
Conf., 1981, pp. 280-287.

Bryant, R. E., A Survey of Switch-Level Algorithms, IEEE Des. Test, August 1987,
pp- 26—40.

Bryant, R. E., A Switch-Level Model of MOS Logic Circuits, VLSI 81, August 1981,
pp- 329-340.

Bryant, R. E., A Switch-Level Model and Simulator for MOS Digital Systems, /IEEE
Trans. Comput., Vol. C-33, No. 2, February 1984, pp. 160-177.

Bose, S., V. D. Agrawal, and T. G. Szymanski, Algorithms for Switch Level Delay Fault
Simulation, Proc. IEEE Int. Test Conf., 1997, pp. 982-991.

Akers, S. B., Binary Decision Diagrams, /EEE Trans. Comput., Vol. C-27, No. 6, June
1978, pp. 509-516.

Lee, C.Y., Representation of Switching Circuits by Binary Decision Programs, Bell Syst.
Tech. J., Vol. 38, July 1959, pp. 985-999.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974, pp. 51-55.

Bryant, E. Randal, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., August 1986, Vol. C-35, No. 8, pp. 677-691.

Miczo, A. et al., The Effects of Modeling on Simulator Performance, /EEE Des. Test,
Vol. 4, No. 2, April 1987, pp. 46-54.

Hitchcock, R. B., Timing Verification and the Timing Analysis Program, Proc. 19th D.A.
Conf., 1982, pp. 594-604.

Wold, M. A., Design Verification and Performance Analysis, Proc. 15th D.A. Conf., 1978,
pp- 264-270.

Ng, P. et al., A Timing Verification System Based on Extracted MOS/VLSI Circuit
Parameters, Proc. 18th D.A. Conf., 1981, pp. 288-292.

I CHAPTER 3

Fault Simulation

3.1 INTRODUCTION

Thus far simulation has been considered within the context of design verification.
The purpose was to determine whether or not the design was correct. Were all the
key control signals of the design checked out? What about the data paths, were all
the “corners” or endpoints checked out? Are we confident that all likely combina-
tions of events have been simulated and that the circuit model responded correctly?
Is the design ready to be taped out?

We now turn our attention to simulation as it relates to manufacturing test. Here
the objective is to create a test program that uncovers defects and performance prob-
lems that occur during the manufacturing process. In addition to being thorough, a
test program must also be efficient. If design verification involves a large number of
redundant simulations, there is unnecessary delay in moving the design to tape-out.
If the manufacturing test program involves creation of redundant test stimuli, there
is delay in migrating the test program to the tester. However, stimuli that do not
improve test thoroughness also add recurring costs at the tester because there is the
cost of providing storage for all those test stimuli as well as the cost of applying the
excess stimuli to every chip that is manufactured.

There are many similarities between design verification and manufacturing test
program development, despite differences in their objectives. In fact, design verifi-
cation test suites are often used as part (or all) of the manufacturing test program. In
either case, the first step is to create a circuit model. Then, input stimuli are created
and applied to the model. For design verification, the response is examined to ascer-
tain that it matches the expected response. For test program development the
response is examined to ensure that faults are being detected. This process, “apply
stimuli-monitor response,” is continued until, based on some criteria, the process is
determined to be complete.

Major differences exist between manufacturing test program development and
design verification. Test programs are often constrained by physical resources, such
as the tester architecture, the amount of tester memory available, or the amount of

Digital Logic Testing and Simulation, Second Edition, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

119

120 FAULT SIMULATION

tester time available to test each individual integrated circuit (IC). The manufactur-
ing test usually can only observe activity at the I/O pins and is considerably less
flexible in its ability to create input vectors because of limitations on timing genera-
tors and waveform electronics in the tester. Design verification, using a hardware
design language (HDL) and conducted within a testbench environment, has virtually
infinite flexibility in its ability to control details such as signal timings and relation-
ships between signals. Commands exist to monitor and display the contents of regis-
ters and internal signals during simulation. Messages can be written to the console if
illegal events (e.g., setup or hold violations) occur inside the model.

Another advantage that design verification has over manufacturing test is the fact
that signal paths from primary inputs to primary outputs can be verified piecemeal.
This simply means that a logic designer may check out a path from a particular
internal register to an output port during one part of a test and, if satisfied that it
works as intended, never bother to exercise that path again. Later, with other objec-
tives in mind, the designer may check out several paths from various input ports to
the aforementioned register. This is perfectly acceptable as a means of determining
whether or not signal paths being checked out are designed correctly. By contrast,
during a manufacturing test the values that propagate from primary inputs to internal
registers must continue to propagate until they reach an output port where they can
be observed by the tester. Signals that abruptly cease to propagate in the middle of
an IC or PCB reveal nothing about the physical integrity of the device.

An advantage that manufacturing test has over design verification is the assump-
tion, during manufacturing test development, that the design is correct. The assump-
tion of correctness applies not only to logic response, but also to such things as setup
and hold times of the flip-flops. Hence, if some test stimuli are determined by the
fault simulator to be effective at detecting physical defects, they can be immediately
added to the production test suite, and there is no need to verify their correctness. By
way of contrast, during design verification, response to all stimuli must be carefully
examined and verified by the logic designer.

Some test generation processes can be automated, for example, combinational
blocks such as ALUs can be simulated using large suites of random stimuli. Simula-
tion response vectors can be converted from binary to decimal and compared to
answers that were previously calculated by other means. For highly complex control
logic, the process is not so simple. Given a first-time design, where there is no exist-
ing, well-defined behavior that can be used as a “gold standard,” all simulation
response files must be carefully inspected. In addition to correct logic response, it
will usually be necessary to verify that the design performs within required time
constraints.

3.2 APPROACHES TO TESTING

Testing digital logic consists of applying stimuli to a device-under-test (DUT) and
evaluating the response to determine whether the device is responding correctly.
An important part of the test is the creation of effective stimuli. The stimuli can be
created in one of three ways:

APPROACHES TO TESTING 121

1. Generate all possible combinations.
2. Develop test programs that exercise the functionality of the design.
3. Create test sequences targeted at specific faults.

Early approaches to creation of stimuli, circa 1950s, involved the application of
all possible binary combinations to device inputs to perform a complete functional
verification of the device. Application of 2" test vectors to a device with n inputs was
effective if n was small and if there were no sequential circuits on the board.
Because the number of tests, 2", grows exponentially with n, the number of tests
required increases rapidly, so this approach quickly ran out of steam.

In order to exercise the functionality of a device, such as the circuit in Figure 3.1,
a logic designer or a test engineer writes sequences of input stimuli intended to drive
the device through many different internal states, while varying the conditions on
the data-flow inputs. Data transformation devices such as the ALU perform arith-
metic and logic operations on arguments provided by the engineer and these, along
with other sequences, can be used to exercise storage devices such as registers and
flip-flops and data routing devices such as multiplexers. If the circuit responds with
all the correct answers, it is tempting to conclude that the circuit is free of defects.
That, however, is the wrong conclusion because the circuit may have one or more
defects that simply were not detected by the applied stimuli. This lack of account-
ability is a major problem with the approach—there is no practical way to evaluate
the effectiveness of the test stimuli. Effectiveness can be estimated by observing the
number of products returned by the customer, so-called “tester escapes,” but that is a
costly solution. Furthermore, that does not solve the problem of diagnosing the
cause of the malfunction.

In 1959, R. D. Eldred' advocated testing hardware rather than function. This was
to be done by creating tests for specific faults. The most commonly occurring faults
would be modeled and input stimuli created to test for the presence or absence of
each of these faults. The advantages of this approach are as follows:

CONTROL | DATA PATH
I
Inst. | [1
Reg. I
Decode MUX — Regs.
Timing Logic e ‘
and | ‘
Control 4’|
| \'
P | L
Misc. l Status Reg.
control !

Figure 3.1 Functional view of CPU.

122 FAULT SIMULATION

1. Specific tests can be created for faults most likely to occur.

2. The effectiveness of a test program can be measured by determining how
many of the commonly occurring faults are detected by the set of test vectors
created.

3. Specific defects can be associated with specific test vectors. Then, if a DUT
responds incorrectly to a test vector, there is information pointing to a faulty
component or set of components.

This method advocated by Eldred has become a standard approach to developing
tests for digital logic failures.

3.3 ANALYSIS OF A FAULTED CIRCUIT

A prerequisite for being able to test for faults in a digital circuit is an understanding
of the kinds of faults that can occur and the consequences of those faults. To that
end, we will analyze the circuit of Figure 3.2. We hypothesize the presence of a fault
in the circuit, namely, a short across resistor R,. Then a test will be created that is
capable of detecting the presence of that fault.

3.3.1 Analysis at the Component Level

In the analysis that follows, the positive logic convention will be used. Any voltage
between ground (Gnd) and +0.8 V represents a logic 0. A voltage between +2.4 V
and +5.0 V (Vcc) represents a logic 1. A voltage between +0.8 V and +2.4 V repre-
sents an indeterminate state, indicated by the symbol X. The bipolar NPN transistors
Q, through Qg behave like on/off switches when used in digital circuits. A low volt-
age on the base cuts off a transistor so that it cannot conduct. The circuit behaves as
though there were an open circuit between the emitter and collector. A high voltage
on the base causes the transistor to conduct, and the circuit behaves as though a
direct connection exists between the emitter and collector.

With these definitions, it is possible to analyze the fault and its effects on the cir-
cuit. Note that with the resistor shorted, the base of Qj is held at ground. It will not
conduct and behaves like an open switch. This causes the voltage at the collector of
Q5 to remain high, a logic 1, which in turn causes the base of Q5 and the emitter of
Q, to remain high. O, will not be able to conduct because its base cannot be made
more positive than its emitter. However, Qs is capable of conducting, depending on
the voltage applied to its emitter by Q.

If Z is high (Z = 1), the positive voltage on the base of Qg4 causes it to conduct;
hence it is in effect shorted to ground. Therefore, the base of Q5 is more positive than
the emitter, transistor Q5 conducts, and the output goes low. If Zis low (Z = 0), Oy is
cut off. Since it does not conduct, the base and emitter of Q5 are at the same poten-
tial, and it is cut off. Therefore the output of Q5 goes high and the output of F is at
logic 1. As a result of the fault, the value at output F is the complement of the value
at input Z and is totally independent of any signals appearing at X,, X,, Y}, and ¥,.

ANALYSIS OF A FAULTED CIRCUIT 123

Vce

Rg

0s

Figure 3.2 Component-level circuit.

We now know how the circuit behaves when the fault is present. But how do we
devise input stimuli that will tell us if the fault is present? It is assumed that the out-
put F is the only point in the circuit that can be observed, internal nodes cannot be
probed. This restriction tells us that the only way to detect the fault is to create input
stimuli for which the output response is a function of the presence or absence of the
fault. The response of the circuit with the fault will then be opposite that of the fault-
free circuit.

First, consider what happens if the fault is not present. In that case, the output is
dependent not only on Z, but also on X, X,, Y}, and Y,. If the values on these inputs
cause the output of Q5 to go high, the faulted circuit cannot be distinguished from
the fault-free circuit, because the circuits produce identical signals at the output of
Q5 and hence identical signals at the output F. However, if the output of Q5 is low,
then an analysis of the circuit as done previously reveals that the output F equals Z.
Therefore, when Qj is low, the signal at F is opposite what it would be if the fault
were present, so we conclude that we want to apply a signal to the base of Q5 that
causes the collector to go low. A positive signal on the base will produce the desired
result. Now, how do we get a high signal on the base of Q;? To determine that, it is
necessary to analyze the circuits preceding Q.

Consider the circuit made up of Oy, R, D, and D,. If either X, or X, is at logic 0,
then the base of Q, is at ground potential; hence Q, acts like an open switch. Like-
wise, if Y| or Y, is at logic 0, then Q, acts like an open switch. If both Q; and Q, are
open, then the base of Q5 is at ground. But we wanted a high signal on the base of Q.
If either Q; or Q, conducts, then there is a complete path from ground through R,,
through Q, or Q,, through R, to Vcc. Then, with the proper resistance values on R,
R,, and R,, a high-voltage signal appears at the base of Q. Therefore, we conclude

124 FAULT SIMULATION

that there must be a high signal on X, and X, or Y, and Y, (or both) in order to deter-
mine whether or not the fault is present. Note that we must also know what signal is
present on input Z. With X; =X, =1 or Y|, =Y, = 1, the output F assumes the same
value as Z if the fault is not present and assumes the opposite value if the fault is
present.

3.3.2 Gate-Level Symbols

Analyzing circuits at the transistor level in order to calculate signal values that dis-
tinguish between good and faulty circuits is quite tedious. It requires circuit engi-
neers capable of analyzing complex circuits because, within a given technology,
there are many ways to design circuits at the component level to accomplish the
same end result, from a logic standpoint. In a large circuit with thousands of individ-
ual components, it is not obvious, exactly what logic function is being performed by
a particular group of components. Further complicating the task is the fact that a cir-
cuit might be implemented in one of several technologies, each of which has its own
unique way to perform digital logic operations. For instance, in Figure 3.2 the sub-
circuit made up of D, through Ds, Q, through Q5, and R, through R; constitutes an
AND-OR-Invert circuit. The same subcircuit is represented in a complementary
metal-oxide semiconductor (CMOS) technology by the circuit in Figure 3.3. The
two circuits perform the same logic operation but bear no physical resemblance to
one another!

3.3.3 Analysis at the Gate Level

The complete gate equivalent circuit to the circuit in Figure 3.2 is shown in
Figure 3.4. We already stated that Q, through Qs, D through Ds, and R, through R;
constitute an AND-OR-Invert. The components Q3, Rs, and R, constitute an Inverter
and the transistors Q,, Qs together make up an Exclusive-NOR (EXNOR, an exclu-
sive-OR with its output complemented.) Hence, the circuit of Figure 3.2 can be rep-
resented by the logic diagram of Figure 3.4.

. =
i

o

)
]

Figure 3.3 CMOS AND-OR-Invert.

1
1
_|
L L

THE STUCK-AT FAULT MODEL 125

Y, —
n— | Dt
: >

Figure 3.4 The gate equivalent circuit.

Now reconsider the fault that we examined previously. When R, was shorted, the
output of Q5 could not be driven to a low state. That is equivalent to the NOR gate
output in the circuit of Figure 3.4 being stuck at a logic 1. Consequently, we want to
assign inputs that will cause the output of the NOR gate, when fault-free, to be
driven low. This requires a 1 on one of the two inputs to the gate. If the upper input is
arbitrarily selected and required to generate a logic 1, then the upper AND gate must
generate a logic 1, requiring that inputs X, and X, must both be at logic 1. As before,
a known value must be assigned to input Z so that we know what value to expect at
primary output F for the fault-free and the faulted circuits. The reader will (hope-
fully) agree that the circuit representation of Figure 3.4 is much easier to analyze.

The circuit representation of Figure 3.4, in addition to being easier to work with
and requiring fewer details to keep track of, has the additional advantage of being
understandable by people who are familiar with logic but not familiar with transistor-
level behavior. Furthermore, it is universal; that is, a circuit can be represented in terms
of these symbols regardless of whether the circuit is implemented in MOS, TTL, ECL,
or some other technology. As long as the circuit can be logically modeled, it can be
represented by these symbols. Another important advantage of this representation, as
will be seen, is that computer algorithms can be defined on these logic operations
which are, for the most part, independent of the particular technology chosen to imple-
ment the circuit. If the circuit can be expressed in terms of these symbols, then the cir-
cuit description can be processed by the computer algorithms.

3.4 THE STUCK-AT FAULT MODEL

A circuit composed of resistors, diodes, and transistors can be represented as an
interconnection of logic gates. If this gate-level model is altered so as to represent a
faulted circuit, then the behavior of the faulted circuit can be analyzed and tests
developed to distinguish it from the fault-free circuit. But, for what kind of faults
should tests be created? The wrong answer can result in an extremely difficult prob-
lem. As a minimum, a fault model must possess the following four properties:

It must correspond to real faults.
It must have adequate granularity.
It must be accountable.

bl

It must be easily automated.

126 FAULT SIMULATION

The fault in the circuit of Figure 3.2 was represented as a NOR gate output stuck-
at-1 (SA1). What happens if diode D, is open? If that fault is present, it is not possi-
ble to pull the base of Q; to ground potential from input X,. Therefore input 1 of the
AND gate, represented by D, D,, R, and Q,, is SA1. What happens if there is an
open from the common connection of the emitters of O, and O, to the emitter of Q,?
Then, there is no way that Q, can provide a path from ground, through R,, Q,, and
R, to Vcc. The base of Q5 is unaffected by any changes in the AND gate. Since the
common connection of Q, and Q, represents an OR operation (called a wired-OR or
DOT-0OR), the fault is equivalent to an OR gate input stuck-at-0 (SAO0).

The stuck-at fault model corresponds to real faults, although it clearly does not
represent all possible faults. It has been well known for many years that test pro-
grams based on the stuck-at model can detect all stuck-at faults and still fail to iden-
tify all defective parts.” The term granularity refers to the resolution or level of
detail at which a model represents faults. A model should represent most of the
faults that occur within gate-level models. Then, if a test detects all of the modeled
faults, there is a high probability that it will detect all of the actual physical defects
that may occur. A fault model with fine granularity is more useful than a model with
coarse granularity, since a test may detect all faults from a fault class with coarse
granularity and still miss many microscopic defects.

An n-input combinational circuit can implement any of 2% functions. To verify
with absolute certainty that the circuit implements the correct function, it is neces-
sary to apply all 2" input combinations and confirm that the circuit responds cor-
rectly to each stimulus. That could take an enormous amount of time. If a randomly
chosen subset of all possible combinations is applied, there is no way of measuring
the effectiveness of the test, unless a correlation can be shown between the number
of test pattern combinations applied and the effectiveness of the test. By employing
a fault model, we can account for the faults, determining via simulation which faults
were detected and on what vector they were first detected.

Given that we want to use fault models, as well as employ simulation to deter-
mine how many faults are detected by a given test program, what fault model should
be chosen? We could assign a status for each of the nets in a circuit, according to the
following list:

fault-free
stuck-at-1
stuck-at-0

Given a circuit containing m nets that interconnect the various components, if all
possible combinations are considered, then there are 3" circuits described by the m
nets and the three possible states of each net. Of these possibilities, only one corre-
sponds to a completely fault-free circuit.

If all possible combinations of shorts between nets are considered, then there are

§(’") = 2" _m—1

1

THE STUCK-AT FAULT MODEL 127

shorts that could occur in an actual circuit. The reader will note that we keep bump-
ing into the problem of “combinatorial explosion”; that is, the number of choices or
problems to be solved explodes. To attempt to test for every stuck-at or short fault
combination is clearly impractical.

As it turns out, many component defects can be represented as stuck-at faults on
inputs or outputs of logic gates. The SAx, x € {0,1}, fault model has become univer-
sal. It has the attraction that it has sufficient granularity that a test which detects a
high percentage of the stuck-at faults will detect a high percentage of the real defects
that occur. Furthermore, the stuck-at model permits enumeration of faults. For an n-
input logic gate, it is possible to identify a specific set of faults, as well as their effect
on circuit behavior. This permits implementation of computer algorithms targeted at
those faults. Furthermore, by knowing the exact number of faults in a circuit, it is
possible to keep track of those that are detected by a test, as well as those not
detected. From this information it is possible to create an effectiveness measure or
figure of merit for the test.

The impracticality of trying to test for every conceivable combination of faults in
a circuit has led to adoption of the single-fault assumption. When attempting to cre-
ate a test, it is assumed that a single fault exists. Most frequently, it is assumed that
an input or output of a gate is SA1 or SAO. Many years of experience with the stuck-
at fault model by many digital electronics companies has demonstrated that it is
effective. A good stuck-at test which detects all or nearly all single stuck-at faults in
a circuit will also detect all or nearly all multiple stuck-at faults and short faults.
There are technology-dependent faults for which the stuck-at fault model must be
modified or augmented; these will be discussed in a later chapter.

Another important assumption made in the industry is the reliance on solid fail-
ures; intermittent faults whose presence depends on environmental or other external
factors such as temperature, humidity, or line voltage are assumed to be solid fail-
ures when creating tests. In the following paragraphs, fault models are described for
AND, OR, Inverter, and the tri-state buffer. Fault models for other basic circuits can
be deduced from these. Note that these gates are, in reality, low-level behavioral
models that might be implemented in CMOS, TTL, ECL, or any other technology.
The gate-level function hides the transistor level implementation details, so the tests
described here can be viewed as behavioral test programs; that is, all possible com-
binations on the inputs and outputs of the gates are considered, and those that are
redundant or otherwise add no value are deleted.

3.4.1 The AND Gate Fault Model

The AND gate is fault-modeled for inputs SA1 and the output SA1 and SAQ. This
results in n + 2 tests for an n-input AND gate. The test for an input SA1 consists of put-
ting a logic 0 on the input being tested and logic 1s on all other inputs (see Figure 3.5).
The input being tested is the controlling input; it determines what value appears on the
output. If the circuit is fault-free, the output goes to a logic 0; and if the fault is present,
the output goes to a logic 1. Note that if any of the inputs, other than the one being
tested, has a O value, that O is called a blocking value, since it prevents the test for the
faulted pin from propagating to the output of the gate.

128 FAULT SIMULATION

I, L, I, G F, F, F; F, Fs

Fy—1; SAl 00 0 0 0 0 0 0 1

Fy—1, SAl 0 0 1 0 0 0 0 0 1

0=, 01 0 0 0 0 0 0 1
1— L o1 F3—-I3SAl o0 1 1 0 1 0 0 0 1
1 —1 5 Fy— Out SAQ 1 0 o0 0 o0 0 0 o0 1
1 0 1 0 0 1 0 0 1

Fs—OwSAL 1 1 ¢ o 0 0 1 0 1

11 1 1 1 1 1 0 1

Figure 3.5 AND gate with stuck-at faults.

An input pattern of all 1s will test for the output SAOQ. It is not necessary to explic-
itly test for an output SA1 fault since any input SA1 test will also detect the output
SA1. However, an output SA1 can be detected without detecting any input SA1 fault
if two or more inputs have logic Os on their inputs, therefore it can be useful to retain
the output SA1 as a separate fault. When tabulating faults detected by a test, counting
the output as tested when none of the inputs is tested provides a more accurate esti-
mate of fault coverage. Note that a SAQ fault on any input will produce a response
identical to that of fault F,. The all-1s test for fault F, will detect a SAO on any input;
hence, it is not necessary to test explicitly for a SAO fault on any of the inputs.

3.4.2 The OR Gate Fault Model

An n-input OR gate, like the AND gate, requires n + 2 tests. However, the input val-
ues are the complement of what the values would be for an AND gate. The input
being tested is set to 1 and all other inputs are set to 0. The test is checking for the
input SAQ. The all-Os input tests for the output SA1 and any input SA1. A logic 1 on
any input other than the input being tested is a blocking value for the OR gate.

3.4.3 The Inverter Fault Model

The Inverter can be modeled with a SAO and SA1 on its output, or it could be mod-
eled with SA1 and SAO on its input. If it fails to invert, perhaps caused by a short
across a transistor, and if both stuck-at faults are detected, the short fault will be
detected by one of the stuck-at tests.

3.4.4 The Tri-State Fault Model

The Verilog hardware description language recognizes four tri-state gates: bufif0,
bufifl, notif0, and notifl. The bufifO (bufifl) is a buffer with an active low (high)
control input. The notif0 (notifl) is an inverter with an active low (high) control
input. Figure 3.6 depicts the bufif0. Behavior of the others can be deduced from that
of the bufif0.

Five faults are listed in Figure 3.6, along with the truth table for the good circuit
G, and the five faults F| through F’5. Stuck-at faults on the input or output, F5, F,, or
Fs5, can be detected while the enable input, En, is active. Stuck-at faults on the
enable input present a more difficult challenge.

THE STUCK-AT FAULT MODEL 129

En I G F, F, F, F, F
F, - En SAO L B
Al 0 0 0 zZ 0 1 1

E Fy—EnSA
" 2 1 1 1 7z 0o 1 1
I Out F3=18A0 1 0z 0 z z z 1
Fy—1SAl 1z 1 7 zZ 7 1

Fs— Out SA1

Figure 3.6 bufifO with faults.

If fault F; occurs, the enable is always active, so the bufifO is always driving the
bus to a logic 1 or 0. There are two possibilities to consider: One possibility is that
no other device is actively driving the bus. To detect a fault, it is necessary to have
the fault-free and faulty circuits produce different values at the output of the bufif0.
But, from the truth table it can be seen that the only way that good circuit G and
faulty circuit F'; can produce different values is if G produces a Z on the output and
F, produces a 1 or 0. This can be handled by connecting a pullup or pulldown resis-
tor to the bus. Then, in the absence of a driving signal, the bus floats to a weak 1 or 0.
With a pullup resistor—that is, a resistor connected from the bus to Vi, (logic 1)—a
logic 0 on the input of the bufifO forces the output to a value opposite that caused by
the pullup.

The other possibility is that another bus driver is simultaneously active. Eventu-
ally, the two drivers are going to drive the bus to opposite values, causing bus conten-
tion. During simulation, contention causes the bus to be assigned an indeterminate
X. If the signal makes it to an output, the X can only be a probable detect. In prac-
tice, the contending values represent a short, or direct connection, between ground
and power, and the excess current causes the IC to fail completely.

The occurrence of fault F, causes the output of the bufif0 to always be discon-
nected from the bus. When the enable on the good circuit G is set to 0, the fault-free
circuit can drive a 1 or O onto the bus, whereas the faulty circuit is disconnected; that
is, it sees a Z on the bus. This propagates through other logic as an X, so if the X
reaches an output, the fault F, can only be recorded as a probable detect. As in the
previous paragraph, a pullup or pulldown can be used to facilitate a hard detect—
that is, one where the good circuit and faulty circuit have different logic values.

3.4.5 Fault Equivalence and Dominance

When building fault lists, it is often the case that some faults are indistinguishable
from others. Suppose the circuit in Figure 3.7 is modeled with an SAQ fault on the
output of gate B and all eight input combinations are simulated. Then that fault is
removed and the circuit is modeled with an SAO fault on the top input of gate D and
resimulated. It will be seen that the circuit responds identically at output Z for both
of the faults. This is not surprising since the output of B and the input of D are tied to
the same net. We say that they are equivalent faults. Two faults are equivalent if there
is no logic test that can distinguish between them. More precisely, if 7, is the set of

130 FAULT SIMULATION

tests that detect fault @ and 7, is the set of tests that detect fault b, and if T, = T),, then
it is not possible to distinguish a from b. A set of faults that are equivalent form an
equivalence class. In such instances, a single fault is selected to represent the equiv-
alence class of faults.

Although a tester cannot logically distinguish which of several equivalent faults
causes an error response at an output pin, the fact that some equivalence classes may
contain several stuck-at faults, and others may contain a single fault, is sometimes
used in industry to bias the fault coverage. If an equivalence class representing five
stuck-at faults is undetected, it is deemed, in such cases, to have as much effect on
the final fault coverage as five undetected faults from equivalence classes containing
a single fault. From a manufacturing standpoint, this weighting of faults reflects the
fact that not all faults are equal; a fault class with five stuck-at faults has a higher
probability of occurring than a fault class with a single stuck-at fault.

In a previous subsection it was pointed out that the fault list for an n-input AND
gate consisted of n + 2 entries. However, any test for an input i SA1 simultaneously
tested the output for a SA1. The converse does not hold; a test for a SA1 on the out-
put need not detect any of the input SA1 faults. We say that the output SA1 fault
dominates the input SA1 fault. In general, fault @ dominates fault b if T), T,. From
this definition it follows that if fault ¢ dominates fault b, then any test that detects
fault b will detect fault a.

A function F is unate in variable x; if the variable x; appears in the sum-of-products
expression for F in its true or complement form but not both. The concept of fault
dominance for logic elements can now be characterized:

Theorem 3.1 Given a combinational circuit F(x, x,, ..., X,), a dominance relation
exists between faults on the output and input x; iff F is unate in x;.

A function is partially symmetric in variables x; and x; if F(x;, x;) = F(x;, x)). A
function is symmetric if it is partially symmetric for all input variable pairs x;, x;.
With those definitions we have:

Theorem 3.2 If a logic gate is partially symmetric for inputs i and j, then either
faults on those inputs are equivalent or no dominance relation holds.

Theorem 3.3 In a fan-out free circuit realized by symmetric, unate gates, tests
designed to detect stuck-at faults on primary inputs will detect all stuck-at faults in
the circuit.

D,
; B
Se 7z
[: C
Dy ———

Figure 3.7 Equivalent and dominant faults.

THE FAULT SIMULATOR: AN OVERVIEW 131

Equivalence and dominance relations are used to reduce fault list size. Since
computer run time is affected by fault list size, the reduction of the fault list, a pro-
cess called fault collapsing, can reduce test generation and fault simulation time.
Consider the multiplexer of Figure 3.7. An SAO fault on the output of NOR gate D is
equivalent to an SA1 fault on any of its inputs, and an SA1 fault on the output of D
dominates an SAQ fault on any of its inputs. SAO faults on the inputs to gate D, in
turn, are equivalent to SAQ faults on the outputs of gates B and C. Therefore, for the
purposes of detection, if SAOQ faults on the inputs of gate D are detected, SAO faults
on the outputs of gates B and C can be ignored.

3.5 THE FAULT SIMULATOR: AN OVERVIEW

The use of fault simulation is motivated by a desire to minimize the amount of
defective product shipped to customers. Recall, from Chapter 1, that defect level is a
function of process yield and the thoroughness of the test applied to the ICs. It is
obvious that the amount of defective product (tester escapes) can be reduced by
improving yield or by improving the test. To improve a test, it is first necessary to
quantify its effectiveness. But, how?

Fault simulation is the process of measuring the quality of a test. Test stimuli that
will eventually be applied to the product on a tester are themselves first evaluated by
applying them to circuit models that have been slightly altered to imitate the effects
of faults. If the response at the circuit outputs, as determined by simulation, differs
from the response of the circuit model without the fault, then the fault is detectable
by those stimuli. After the process is performed for a sufficient number of modeled
faults, an estimate 7, called the fault coverage, or test coverage, is computed. The
equation is

T = (# faults detected)/(# faults simulated)

The variable T reflects the quality or effectiveness of the test stimuli. Fault simula-
tion is performed on a structural model, meaning that the model describes the sys-
tem in terms of realizable physical components. The term can, however, refer to any
level except behavioral, depending upon whether the designer was creating a circuit
using geometrical shapes or functional building blocks. The fault simulator is a
structural level simulator in which some part of the structural model has been altered
to represent behavior of a fault. The fault simulator is instrumented to keep track of
all differences in response between the unfaulted and the faulted circuit.

Fault simulation is most often performed using gate-level models, because of
their granularity, although fault simulation can also be performed using functional or
circuit level models. The stuck-at fault model, in conjunction with logic gates, makes
it quite easy to automatically inject faults into the circuit model by means of a com-
puter program. Fault simulation serves several purposes besides evaluating stimuli:

o It confirms detection of a fault for which an ATPG generates a test.
» It computes fault coverage for specific test vectors.

132 FAULT SIMULATION
G
o 1

p |
D—

E

T

F

Figure 3.8 Circuit with fault.

Lo>—

o It provides diagnostic capability.
o It identifies areas of a circuit where fault coverage is inadequate.

Confirm Detection When creating a test, an automatic test pattern generator
(ATPG) makes simplifying assumptions. By restricting its attention to logic behavior
and ignoring element delay times, the ATPG runs the risk of creating test vectors that
are susceptible to races and hazards. A simulator, taking into account element delays
and using hazard and race detection techniques, may detect anomolous behavior
caused by the pattern and conclude that the fault cannot be detected with certainty.

Compute Fault Coverage The ability to identify all faults detected by each
vector can reduce the number of iterations through an ATPG. As will be seen in the
next chapter, an ATPG targets specific faults. If a fault simulator identifies faults that
were detected incidentally by a vector created to detect a particular fault, there is no
need to create test vectors to detect those other faults. In addition, the fault simula-
tor can identify vectors that detect no faults, potentially reducing the size of a test
program.

Example Suppose the pattern A,B,C,D,E,F = (0,1,1,1,0,0) is created to test for the
output of gate H SA1 in the circuit of Figure 3.8. Simulating the fault-free circuit pro-
duces an output of 0. Simulating the same circuit with a SA1 on the output of H
produces a 1 on the circuit output; hence the fault is detected. But, when the effects
of a SA1 on the upper input to gate G are simulated using the same pattern, we find
that this fault also causes the circuit to respond with a 1 and therefore is detected by
the pattern. Several other faults are detected by the pattern. We leave it as an exercise
for the reader to find them. L

Diagnose Faults Fault diagnosis was more relevant in the past when many dis-
crete parts were used to populate PCBs. When repairing a PCB, there was an eco-
nomic incentive to obtain the smallest possible list of suspect parts. Diagnosis can
also be useful in narrowing down the list of suspect logic elements when debugging
first silicon during IC design. When a dozen masks or more are used to create an IC
with hundreds of thousands of switching elements, and the mask set has a flaw that
causes die to be manufactured incorrectly, knowing which vector(s) failed and
knowing which faults are detected by those vectors can sometimes significantly
reduce the scope of the search for the cause of the problem.

THE FAULT SIMULATOR: AN OVERVIEW 133

M)
Perform logic
simulation Generate
more
vectors
St?tble Resolve races
pa r’ern or conflicts
no
Fault Record all coverage_yes -
simulate faults detected adequate DONE

Figure 3.9 Test stimuli evaluation.

Consider again the circuit in Figure 3.8. If the circuit correctly responds with a 0
to the previous input pattern, there would not have been a SA1 fault on the output of
gate H. If the next pattern applied is A,B,C,D,E,F = (0,0,1,1,0,1) and an incorrect
response occurs, the stuck-at-1 on the output of gate H would not be suspect. By
eliminating the signal path that contains gate H as a candidate, the amount of work
involved in identifying the cause of the defect has been reduced.

Identify Areas of Untesteds When a test engineer writes stimuli for a circuit,
he may expend much effort in one area of the circuit but very little effort in another
area. The fault simulator can provide a list of faults not yet detected by test stimuli
and thus encourage the engineer to work in an area of the circuit where very few
faults have been detected. Writing test vectors targeted at faults in those areas fre-
quently gives a quick boost to the fault coverage.

The overall test program development workflow, in conjunction with a fault sim-
ulator, is illustrated in Figure 3.9. The test vectors may be created by an ATPG or
supplied by the logic designer or a diagnostic engineer. The ATPG is fault-oriented,
it selects a fault from a list of fault candidates and attempts to create a test for the
fault. Because stimuli created by the ATPG are susceptible to races and hazards, a
logic simulation may precede fault simulation in order to screen the test stimuli. If
application of the stimuli causes many races and hazards, it may be desirable to
repair the stimuli before proceeding with fault simulation.

After each test vector has been fault-simulated, faults which cause an output
response that differs from the correct response are checked off in the fault list, and
their response at primary outputs may be recorded in a data base for diagnostic pur-
poses. The circuits used here for illustrative purposes usually have a single output,
but real circuits have many outputs and several faults may be detected in a given pat-
tern, with each fault possibly producing a different response at the primary outputs.

134 FAULT SIMULATION

By recording the output response to each fault, diagnostic capability can be signifi-
cantly enhanced. After recording the results, if fault coverage is not adequate, the
process is continued. Additional vectors are generated; they are checked for races
and conflicts and then handed off to the fault simulator.

3.6 PARALLEL FAULT PROCESSING

Section 2.6 contains a listing for a compiled simulator that uses the native instruc-
tion set of the 80 x 86 microprocessor to simulate the circuit of Figure 2.9. With
just some slight modifications, that same simulator can be instrumented to per-
form fault simulation. In fact, as we shall see, a fault simulator can be viewed con-
ceptually as a logic simulator augmented with some additional capabilities,
namely, the ability to keep track of differences in response between two nearly
identical circuits.

For purposes of contrast, we discuss briefly the serial fault simulator; it is the
simplest form of fault simulation. In this method a single fault is injected into the
circuit model and simulated with the same stimuli that were applied to the fault-free
model. The response at the outputs is compared to the response from the fault-free
circuit. If the fault causes an output response that differs from the expected response,
the fault is marked as detected by the applied stimuli. After the fault has been
detected, or after all stimuli have been simulated, the fault is removed and another
fault is injected into the circuit model. Simulation is again performed. This is done
for all faults of interest, and then the fault coverage T is computed.

In the serial fault simulator, fault injection can be achieved for a logic gate simply
by deleting an input. An entry in the descriptor cell of Figure 2.21 is blanked out and
the input count is decremented. When a net connected to the input of an AND gate is
deleted from the list of inputs to that AND gate, the logic value on that net no longer
has an effect on the AND gate; hence the AND gate behaves as though that input
were stuck-at-1. Likewise, deleting an input to the OR gate causes that input to
behave as though it were stuck-at-0.

3.6.1 Parallel Fault Simulation

When the 80 x 86 compiled simulator described in Section 2.6 processed a circuit, it
manipulated bytes of data. For ternary simulation, one bit from each of two bytes
can be used to represent a logic value. This leaves seven bits unused in each byte.
The parallel fault simulator can take advantage of the unused bits to simulate faulted
circuits in parallel with the good circuit. It does this by letting each bit in the byte
represent a different circuit. The leftmost bit (bit 7) represents the fault-free circuit.
The other seven bits represent circuits corresponding to seven faults in the fault list.
In order to use these extra bits, they must be made to represent values that exist in
faulted circuits. This is accomplished by “bugging the simulator.” Fault injection in
the simulator must be accomplished in such a way that individual faults affect only a
single bit position.

PARALLEL FAULT PROCESSING 135

A
B AT
c =/

H 1 \
) P
Lo[o[o[ofo[o[o]0]

E
J
F

Figure 3.10 Parallel fault simulation.

Example OR gate / in Figure 3.10 is modeled with a SAO on its top input. Bit 7
represents the fault-free circuit and bit 6 represents the faulted circuit. Prior to simu-
lation, the control program makes an alteration to the compiled simulator. The
instruction that loads the value from GATE_TABLE into register AX is replaced by
a call to a subroutine. The subroutine loads the value from GATE_TABLE into reg-
ister AX and then performs an AND operation on that value using the 8-bit mask
10111111. The subroutine then returns to the compiled simulator.

This method of bugging the model has the effect of causing the OR gate to always
receive a 0 on its upper input, regardless of what value is generated by AND gate G.
Suppose A=B=C=1and D=E=F=0.Inputs A, B, and C are assigned an 8-bit
vector consisting of all-1s, while D, E, and F are assigned vectors consisting of all-
0s. During simulation the good circuit, bit 7, will simulate the OR gate with input values
(1,0,0) and the circuit corresponding to bit 6 will simulate the OR with input
values (0,0,0). As a result, bit positions 7 and 6 of the result vector will receive
different values at the output of gate /. L]

In practice, the bugging operation can use seven bits of the byte. In the example
just described, bit 5 could represent the fault corresponding to the center input of
gate I SAO. Then, when the program loads the value from GATE_TABLE+2 into
register BX, it again calls a subroutine. In this instance it applies the mask 11011111
to the contents of register BX, forcing the value from gate H to always be 0, regard-
less of what value was computed for H. When bugging a gate output, the value is
masked before being stored in GATE_TABLE. If modeling a SA1 fault on an input,
the program performs an OR instruction using a mask containing Os in all bit posi-
tions except the one corresponding to the faulted circuit, where it would use a 1.

In a combinational circuit or a fully synchronous sequential circuit, one pass
through the simulator is sufficient to obtain fault simulation results. In an asynchro-
nous sequential circuit it is possible that the fault-free circuit or one or more of the
faulty circuits is oscillating. In a compiled model in which feedback lines are repre-
sented by pseudo-outputs and corresponding pseudo-inputs (see Section 2.6.2),
oscillations would be represented by differences in the values on pseudo-outputs and
corresponding pseudo-inputs. In this case it would be necessary to run additional
passes through the simulator in order to either (a) get stable values on the feedback
lines or (b) deduce that one or more of the circuits is oscillating.

136 FAULT SIMULATION

At the end of a simulation cycle for a given input vector, entries in the circuit
value table that correspond to circuit outputs are checked by the control program.
Values in bit positions [6:0] that differ from bit 7, the good circuit output, indicate
detected faults—that is, faults whose output response is different from the good cir-
cuit response. However, before claiming that the fault is detected by the input pat-
tern, the differing values must be examined further. If the good circuit response is X
and the faulted circuit responds with a O or 1, detection of that fault cannot be
claimed.

3.6.2 Performance Enhancements

In the 80x86 program, when performing byte-wide operations, parallel simulation
can be performed on the good circuit and seven faulted circuits simultaneously. In
general, the number of faults that can be simulated in parallel is a function of the
host computer architecture. A more efficient implementation of the parallel fault
simulator would use 32-bit operations, permitting fault simulation of 31 faults in the
time that the byte-wide fault simulator fault simulated 7 faults. Members of the IBM
mainframe family, which are able to perform logic operations in a storage-to-storage
mode, can process several hundred faulted circuits in parallel.

Regardless of circuit architecture, a reasonable-sized circuit will contain more
faults than can be simulated in parallel. Therefore, numerous passes through the
simulator will be required. On each pass a fault-free copy of the simulator is
obtained and bugged. The number of passes is equal to the total number of faults to
be simulated divided by the number of faults that can be simulated in a single pass.
It is interesting to note that although we adhere to the single-fault assumption, it is
relatively easy to bug the simulator to permit multiple-fault simulation.

The compiled simulator is memory efficient. Augmented with just a circuit value
table and a small control program, the compiled simulator can simulate very large
circuits. Simulation time is influenced by three factors:

The number of elements in the circuit
The number of faults in the fault list
The number of vectors

As the circuit size grows, the size of the compiled simulator grows, and, because
there are more elements, there will be more faults; therefore more fault simulation
passes are necessary. Finally, more vectors are usually required because of the
increased number of faults. As a result of these three factors, simulation time can
grow in proportion to the third power of circuit size, although in practice the degra-
dation in performance is seldom that severe.

A number of techniques are used to reduce simulation time. Most important are
the concepts of fault dominance and fault equivalence, which remove faults that do
not add information during simulation (cf. Section 3.4.5). Simulation time can be
reduced through the use of stimulus bypass and the sensitivity list (cf.
Section 2.7). These techniques avoid the execution of code when activity in that
code is not possible.

PARALLEL FAULT PROCESSING 137

Circuit partitioning can be useful in reducing simulation time, depending on the
circuit. If the subcircuits that drive two distinct sets of outputs have very few gates in
common, then it becomes more efficient to simulate them as separate circuits. The
faults that occur in only one of the two subcircuits will not necessitate simulation of
elements contained only in the other subcircuit. Circuit partitioning can be accom-
plished by backtracing from a primary output as follows:

Select a primary output.

Put gates that drive the primary output onto a stack.
Select an unmarked gate from the stack and mark it.
Put its unmarked driving gates onto the stack.

nok W=

If there are any unmarked entries on the stack, go back to step 3.

The gates on the stack constitute a subcircuit, called a cone, which can be pro-
cessed as a single entity. Where two subsets of outputs define nearly disjoint circuits
of approximately the same size, the simulator for each circuit is about half its former
size; there are half as many faults, hence perhaps as few as half as many vectors for
each circuit. Thus, total fault simulation time could decrease by half or more.

A practice called fault dropping is used to speed up fault simulation performance.
The simulator drops faults from the fault list and no longer simulates them after they
have been detected. Continued simulation of detected faults can be useful for diag-
nostic purposes, as we shall see later, but it requires additional simulation time.
Many faults, perhaps as many as half or more, are detected quite early in the simula-
tion, within the first 10% of the applied test vectors. By dropping those faults, the
number of passes through the fault simulator for each vector is significantly reduced.

States applied analysis* employs logic simulation to determine which faults are
detectable by a given set of test vectors. During fault simulation, an AND gate is
evaluated to determine if stuck-at-1 faults are detectable at its inputs. To detect a
fault on an input to an AND gate, it is necessary to have a 0 on the faulted input and
logic 1s on all other inputs. With that combination, a fault-free gate responds with a
0 at its output, and a gate with a stuck-at-1 fault on that input responds with a 1 at its
output. An analogous consideration applies to the OR gate. If, for a complete set of
test vectors, an n-input AND gate never receives an input stimulus consisting of a 0
on input i and 1s on the remaining n — 1 inputs, then the stuck-at-1 fault on input i
will never be sensitized. Since the fault is not sensitized, it is pointless to fault simu-
late that fault.

3.6.3 Parallel Pattern Single Fault Propagation

Parallel fault simulation uses the extra bits in a word to fault simulate n — 1 faults in
parallel, where 7 is the word size or register size of the host computer. Parallel pat-
tern single fault propagation (PPSFP) can be thought of as being orthogonal to par-
allel fault simulation.’> Each bit in a computer word represents a distinct vector. The
fault-free circuit is first simulated and the response at the output pins is recorded for

138 FAULT SIMULATION

that vector. Then, given a host computer with an n-bit wide data path, n vectors are
simulated in parallel. However, only one fault is considered, and the circuit is com-
binational.

Consider again the circuit of Figure 3.10. For the sake of illustration, assume that
we are going to apply all 64 possible input combinations to the six inputs. We would
start by applying 32 vectors to the fault-free circuit. Since we are going to apply all
combinations, we could simply create a truth table for the six values. Then, for the
first 32 vectors, the simulation values would be

= 01010101010101010101010101010101
= 00110011001100110011001100110011
= 00001111000011110000111100001111
= 00000000111111110000000011111111
= 00000000000000001111111111111111
= 00000000000000000000000000000000

MMO O W>

In this matrix, the leftmost column represents the first vector, the second column
represents the second vector, and the remaining columns are interpreted likewise.
The first row is the sequence of values applied to primary input A by each of the 32
vectors, the second row is applied to input B, and so on. As a result, this matrix
causes logic 0 to be applied to all inputs on the first vector, and on the second vector
the value on input A changes from O to 1. When simulating the fault-free circuit, the
simulation begins, as before, by ANDing together the values representing inputs A
and B. That is followed by ANDing C and D, then complementing the result.The
remaining operations are determined similarly. The result is

00010001000100010001000100010001 = AB = G
11111111111100001111111111110000 = CD = H
00000000000000000000000000000000 = EF = J
11111111111100011111111111111111 = AB + CD + E = I
11111111111100011111111111111111 = K

Vector K represents the fault-free response of the circuit for each of the 32 vectors.
To get the circuit response for a stuck-at-0 fault on the input to gate / driven by gate
G, replace the response vector AB by the all-0 vector and resimulate. The result is

11111111111100001111111111111111 = K

Note that, counting the leftmost bit as position 31, bit 16 is 0, where it had previ-
ously been a logic 1. Hence, we conclude that the vector A,B,C,D,E,F = 111100 will
detect a stuck-at-0 on the input to gate / that is driven by gate G.

In a much larger, more realistic circuit, made up of tens or hundreds of thousands
of gates, it is inefficient to simulate all of the gates. Rather, fault simulation can
begin at the point where the fault occurs, and proceed forward toward the outputs. If
the circuit is rank-ordered, then no element is evaluated until all of its predecessors

CONCURRENT FAULT SIMULATION 139

are simulated, so the correct values will already have been computed during simula-
tion of the fault-free circuit. For the faulted gate, the vector representing the values
on the input or output that is faulted is modified to represent the stuck-at value for all
of the applied vectors.

If a compiled fault simulator is used, a jump can be made into the compiled
netlist at the point where the fault exists. A table-driven simulator can simply pick
up the values at the fault origin and propagate logic events forward (recall that an
event is a signal change). Since, in combinational circuits it is not uncommon for a
high percentage of stuck-at faults, perhaps 50% or more, to be detected within the
first 32 vectors, many faults will only require one pass through the simulator. Further
savings can be realized on a circuit with many output pins by halting simulation as
soon as an error signal reaches any output pin.

3.7 CONCURRENT FAULT SIMULATION

It should be clear by now that the purpose of fault simulation is to evaluate the effec-
tiveness of a set of input vectors for detecting stuck-at faults in a circuit. The fault
simulator does this by determining whether or not the set of vectors establishes a
path from the point where the fault originates to one or more output pins, such that
the good circuit and faulted circuit respond differently all along that path. In addi-
tion, the parallel fault simulation algorithms use the host computer resources to pro-
cess either n faults in parallel or n vectors in parallel.

The concurrent fault simulation algorithm is capable of simulating n faults
simultaneously, where n may represent one fault or it may represent several thou-
sand faults.® Records are kept for each fault as it causes error signals to occur.
When the error signal is blocked, or prevented from propagating further in the cir-
cuit, no additional records are generated for that fault. The number of faults, n, that
can be simulated concurrently is limited only by the amount of memory available.
We begin by examining the underlying concepts of concurrent fault simulation in
detail for the case where 7 is one and then describe the concurrent fault simulation
algorithm more formally.

3.7.1 An Example of Concurrent Simulation

The circuit in Figure 3.11 will be used to illustrate concurrent fault simulation.
Assume the presence of a stuck-at-1 fault on the top input to gate H. The circuit will
first be analyzed without the stuck-at fault. The circuit is annotated with logic 1s and
0Os. With the values indicated, the 1 at primary input C is inverted by F to become a
0 at the input to H. That, in turn, causes the output of H to become a 1. However, the
signal cannot propagate because the 0 from G is a blocking signal at J and the 1 at
primary input E is a blocking signal at K. A second vector is now applied in which
the value of A switches to a 0. This causes the output of G to switch to a 1. That, in
turn, causes the output of J to switch to a 1.

140 FAULT SIMULATION

v o —

D 01—,_
1

E o

Figure 3.11 Simulating small changes.

Now consider what happens when the top input to gate H is SA1. In the presence
of the fault, H simply inverts the signal at input D. With a 1 at the D input, the output
of His a 0. As in the previous case, signal paths through both J and K are blocked
during the first vector. On the second vector, G switches to a 1 and the signal from H
is now enabled through the bottom input to J. However, the output of H is now a 0
because of the fault, so the output of J fails to switch, it remains a 0.

The stuck-at fault on the input to H affected only the signal path connecting H to
J and K, and the output response at J. Furthermore, the effect of the fault was visible
at an output only on the second vector. During the first vector the fault response
from H propagated to J and K, but the blocking signals J and K prevented the signal
from propagating to the output.

In this small circuit a fault affected a significant part of its behavior. In real cir-
cuits a fault may affect less than one percent of the circuit values. In such circum-
stances it makes no sense to simulate the entire faulted circuit. The simulator is more
efficient if it only keeps track of those signals that are affected by the fault. To do so,
it must have a way to record the circuit faults, and it must have a way to record cir-
cuit values that are affected by the faults. This can be done by allocating a field to
represent fault type in the data structures that represent the circuit topology.

For example, the data structure for an n-input AND gate may have a special code
to represent each of its inputs SA1. Another code might indicate a SAO on the out-
put. Additional codes can be used to represent shorts across adjacent pins, or internal
faults that can only be detected by special combinations on the inputs—for example,
Os on two or more inputs. Then, during simulation, the simulator checks the input
values at the gate currently being processed to determine if they cause any of the
faults at that gate to become sensitized. If a fault becomes sensitized, its effects are
propagated forward. This tremendous flexibility in modeling defects is one of the
major attractions of the concurrent fault simulator.

To propagate the effects of the fault, it is necessary to record all signal values that
differ from the values in the fault-free circuit wherever they occur. These can be
recorded using a flag to indicate that a particular element or net has values for the
faulted circuit that differ from the values computed for the original circuit. In many
cases the original circuit and the faulted circuit can be simulated simultaneously. For
example, on the first vector, the inverter produced a 0 at the input to H, whereas the
faulted circuit has a constant 1 at that input.

CONCURRENT FAULT SIMULATION 141

Now, when simulating gate H, its output produces a 1 for the original circuit and
a 0 for the faulted circuit, and these signals can be propagated simultaneously. But,
what happens when the value on input pin D is 0 for a particular vector? The output
of H is then a 1 regardless of what value appears at its upper input. If D changes to a
1 on the next vector, the original circuit retains a 1 at the output of H, but in the
faulted circuit H switches to 0. The simulator must be able to propagate this event
for the faulted circuit without corrupting the value existing in the original circuit.

3.7.2 The Concurrent Fault Simulation Algorithm

The operations described in the preceding subsection will be formalized; but before
doing so, it will be helpful to briefly review and summarize the operations that took
place. First, all differences between the original and modified circuits were explic-
itly identified. Although a stuck-at fault was assumed, the analysis could just as eas-
ily have been describing a design change, wherein we wanted to contrast circuit
behavior with and without the inverter labeled F. Then, two situations were identi-
fied for which it would be necessary to evaluate signals in the faulty circuit:

1. Whenever an event occurred in the original circuit for which a different signal
occurred in the faulted circuit.

2. Whenever an event in the original circuit did not propagate to the gate output,
but caused a signal in the faulted circuit to propagate to the gate output and
beyond—for example, the change at the output of gate G.

It was not obvious in this small circuit, but the error signal for the faulty circuit
could, in this second case, spread throughout the circuit and cause many hundreds or
thousands of differences. For example, if a fault caused the wrong function to be
selected in an ALU, over half of the gates in the ALU array could have incorrect
logic values.

Concurrent fault simulation is essentially a data processing task. Its purpose is to
record data that identify differences in simulation response between two or more cir-
cuits. While it can be used to distinguish differences between virtually any two cir-
cuits, its primary purpose is to compute fault coverage for test programs. The
differences that it records are those between the fault-free circuit and one or more
(usually many more) faulty circuits that are very similar to the fault-free circuit, dif-
fering only in that each of the faulty circuits represents a different fault. The goal is
to determine, for each of the faulty circuits, whether or not the effects of the mod-
eled faults are observable at a primary output where they can be detected by a tester.

To perform a concurrent fault simulation, it is necessary to define data structures
that record simulation differences between the circuits. However, first it must be
decided which differences are important. For example, one piece of information that
must be permanently maintained throughout simulation is the source, or location, of
defects for each of the faulted copies of the circuit. Another piece of information is
the value of error signals generated for each of the defects. When an error signal
arrives at a gate, it is also necessary to identify which pin or pins receive the error
signal.

142 FAULT SIMULATION

oy
o
olo
S

De

S

&
o
o|o

Q
S
ot el i el) ol B
&
[«
=]
=]

B :
o | i
Fl@ 1 0 J 0 1

®-1" il o] Bt

4 @

)®

0

Fr— 1

1| Hy
E o

(b

Figure 3.12 (a) Circuit for concurrent fault simulation. (b) Circuit with linked fault effects.

Recording information in the concurrent fault simulator is accomplished by
appending or linking new copies of a circuit element to the original element. These
copies appear wherever faults cause signal values in a circuit to differ from good cir-
cuit signals. Furthermore, new circuit elements are added for as long as the error sig-
nal continues to propagate. This is illustrated conceptually in Figure 3.12. In (a) the
fault-free circuit is illustrated with correct logic values at each net. In (b) a modified
version is illustrated in which each of the gates is replicated several times. In the fol-
lowing discussion, the element X is followed by the subscript i, which is interpreted
as follows:

CONCURRENT FAULT SIMULATION 143

0 fault-free circuit
1 input 1 SAX
n input n SAX

n+1 output SAO
n+2 output SAI

where the element X is assumed to have n inputs and SAX denotes SA1 for an AND
gate, SAO for an OR gate.

The purpose of the multiple copies of the various gates is to simultaneously rep-
resent the fault-free gate and instances of the gate where either faults originate or the
logic value at the input of the gate is affected by faults occurring at other gates. The
concurrent fault simulation algorithm recognizes two classes of faults, namely, fault
origins and fault effects. A fault origin (FO) is a gate at which a fault originates. An
input fault origin (IFO) occurs on a gate input, and an output fault origin (OFO)
occurs on the output. Fault origins are linked together and attached to the unfaulted
gate. A separate FO is used for each fault.

If an FO causes the input value at a destination gate to differ from that of the
fault-free gate, then a fault effect (FE) is created or diverged and attached to the fault
list of the destination gate. Whenever the output value of an FO or FE is different
from that of the corresponding unfaulted circuit, the FE or FO is said to be visible.
When the output of an FE or FO becomes visible, an FE is diverged at the destina-
tion gate. FEs continue to be diverged forward in the circuit until either the error sig-
nal is no longer visible or a primary output is encountered. When the error signal is
no longer visible, the FE is converged J

These concepts are illustrated in Figure 3.12(b). Note first that there are five cop-
ies of gate G. The copy G, driven by inputs A and B, corresponds to the fault-free
circuit. The remaining four copies are all IFOs. Copy G, (G5) has one input SA1
(SAO) and the other input driven by input B. Copy G, (G,) has one input SA1 (SA0)
and the other input driven by input A. There are two copies of gate F, one corre-
sponding to the fault-free circuit and an OFO corresponding to the output SAQ. Gate
H has a fault-free copy H,, and IFOs for SA1 faults on each of its inputs as well as an
OFO for a SA1 fault on its output. It also has an FE, which consists of unfaulted
copy H, driven by fault origin F,. Gates J and K also have several copies which are
interpreted similarly.

The circled logic values in the figure are used to denote signals that are SA1 or
SAOQ; hence the gate at which they occur are IFOs or OFOs. FEs are indicated by an
unfaulted copy of a gate in which one or more inputs are sourced by an FO or FE. In
the discussion that follows, the notation X,/Y; represents a fault effect that originates
at fault origin Y; and is diverged at gate X to drive an unfaulted copy X, of X. The
rise and fall delays for the elements are indicated above the unfaulted copy of the
elements.

Before describing the rules for concurrent fault simulation, we informally describe
what happens when an event occurs. Given the signal conditions and the attached

144 FAULT SIMULATION

fault effects indicated in Figure 3.12(b), suppose that primary input D changes to 0. It
drives not only the unfaulted circuit H,, but also some copies, including H, and the
fault effect H,/F,. Fault origin H, is unaffected by the event because the gate input
connected to primary input D is stuck-at-1. The OFOs H; and H, are unaffected by
any input change. The gate H,, in the unfaulted circuit must be simulated. The corre-
sponding gates H, and H,/F| in the faulted circuit must also be simulated.

When H,, is simulated, its output switches from 0 to 1, therefore it must be sched-
uled for processing at time ¢ + 4. Gate H, also changes but the value on H,/F, does
not change; therefore H, is scheduled but H,/F, is dropped from further processing.
Gates H, and H, are retrieved from the scheduler at time 7 + 4 and their outputs are
updated. Fault lists attached to gates in the fanout of gate H,, are processed. We
describe here only the processing for gate J;,. Fault effects H; and H,,/F| no longer
differ from H,, so they are converged and dropped from the fault list attached to J,.
However, H, and H; now differ from H,,, so those fault signals must be linked to the
fault list attached to J; that is, they are diverged at J,. Also, the change on H,
reaches the lower input of FEs J,,/G; and J,,/G,, so those FEs must be simulated.
Since the outputs of those FEs change, they must be placed on the scheduler.

The fault origin H; was also simulated. Its output is identical to that of the
unfaulted copy. A check of the fault list attached to J, shows that there is no fault
effect labeled H, in the list, so no further processing need take place. Those fault
effects that eventually reach a primary output—in this case J,, J,/G; and J,/G,—
define a sensitized path from the fault origin to the output; hence they correspond to
detected faults.

It is possible that the faulted copy changes and the unfaulted copy does not
change. For example, if the change on input D is followed by a change on input C,
then H, will change while H, remains unchanged. In that case, it is necessary to trace
the faulted output change to the destination gate(s) and perform divergence and con-
vergence, as the situation warrants. It is also possible that the unfaulted copy may
change in one direction while the faulted copy changes in the opposite direction, as
would be the case when primary input A changes. G, and G, change to 1, G, changes
to 0, and G, and G are unaffected. Furthermore, because the rise and fall times for G
are different, G, and G, are placed in different time slots on the scheduler.

This model expands and contracts as input signals change. The basic fault-free
circuit remains fixed, but the remainder of the circuit is quite fluid. Gates with fault
signals are added when fault effects cause the value on a gate input to differ from the
corresponding value on the good circuit. Gates in the fanout of a faulted element
continue to exist as long as the error signal persists. If the logic values on a gate
change so that an error signal is no longer distinguishable from the fault-free signal,
then that path terminates. When an error signal terminates, its forward propagation
path must be deleted in its entirety.

Implementation of the concurrent fault simulator does not require complete
descriptor cells for each fault signal that differs from the good circuit signal.
Rather, an abbreviated descriptor cell (ADC) is used for FEs and FOs, since much
of the information required by the simulator for the purpose of evaluation is identi-
cal for faulted and fault-free circuits. A typical format for the ADC is illustrated in

CONCURRENT FAULT SIMULATION 145

Figure 3.13. The fault-free cell and all related faulted cells are linked via pointers.
With the exception of the ADC, FOs and FEs are similar to regular gates. They use
the same functions as fault-free elements to schedule and evaluate elements. How-
ever, events on FOs and FEs can only affect FEs with the same identification num-
ber, whereas the signal from the good gate affects both the fault-free circuit and all
faulted circuits. The receiving pin number and the input states are needed to com-
pute the behavior of the element with the error signal and contrast it with the
response of the fault-free element. To help expedite processing, ADCs can be
ordered by fault identification number when linked to a descriptor cell.

When a logic change occurs on the output of a gate in a fault-free circuit, pro-
cessing for an FO or an FE depends on whether it is linked to the fault list for the
source gate, called the emission list (ELIST), or the fault list for the destination gate,
called the receive list (RLIST), or both. The rules are as follows:

If in ELIST only: Diverge a copy (an FE) of the destination gate with input states
identical to those that existed on the unfaulted destination gate before the
change arrived.

If in RLIST only: 1If it is an OFO, no action is taken. If it is an IFO, simulate
unless the input change occurred on the faulted input. If an FE, simulate with
the same change that occurred on the good gate.

If in both: 1If the FE or FO output value in ELIST is X, then take the same action
as when the FE or FO is in RLIST only. Otherwise, compare the input states of
the FE in the RLIST to the states on the unfaulted gate and converge if they
are identical.

Example The events that occur when input D changes from 1 to 0 are described
again. The event at D is applied to the input of H, and simulated. Because its output
changes, H, is scheduled for processing in time slot t + 4. After H,, is scheduled, its
attached fault list is processed. No faults were attached to primary input D, so there
is no ELIST; hence the “in RLIST only” rule is used. H; and H, are IFOs, so H| is
simulated but H, is not simulated. H; is an OFO; therefore no action is taken. H,/F,
is an FE so it is simulated with the same event that occurred on the unfaulted gate.

When H,, is retrieved from the scheduler, gates J, and K, are simulated. However,
only the processing for J, is described here. The output of gate J;, did not change; nev-
ertheless, the fault list attached to J, must be processed. J; is simulated and its output
changes, so it must be scheduled. J, is faulted on the input that changed, so no pro-
cessing is required. J; and J, are OFOs, so they are not processed. Fault effects G;
and G, are in the RLIST but not in the ELIST for H, so they are simulated and placed
on the scheduler.

Misc. | *next (Link to next ADC)

Receiving Pin no. | Fault ID | Input states SA1/SAO

Figure 3.13 Abbreviated descriptor cell.

146 FAULT SIMULATION

There are two FOs, H, and Hj, in the ELIST of H, that differ from H, and are not
in the RLIST, so it is necessary to diverge FEs J,/H, and J,/H; with input values
identical to the values on J, before the change arrived. There are two FEs, J,/F| and
Jo/Hj, that are in both the ELIST and the RLIST. The logic values on the inputs of
Jo/F, and J,/H; are identical to the values on the inputs of J, after the event arrived
from H; therefore the two FEs are converged. L]

Events originating in the good circuit can affect good circuits and possibly all faulted
circuits, according to the rules given above. However, events generated by a fault circuit
can only affect faulted circuits with the same fault ID. Therefore, when the output of H;
changed, the only fault IDs that it will affect are those labeled H, in the fault list
attached to J and K. Since there are none and since the output of /| remains identical
to the value on the unfaulted circuit Hy, no further processing is required.

3.7.3 Concurrent Fault Simulation: Further Considerations

Concurrent fault simulation was explained using the rather simple circuit of
Figure 3.11. That circuit had simple logic elements, including AND, OR, and XOR
gates. To fully appreciate the concurrent fault simulation algorithm, it is important to
realize that its operation is not materially affected by the types of elements in the cir-
cuit. Apart from the processing required to cope with divergence and convergence of
fault origins and fault effects, in other respects the processing of these short-lived
fault elements is identical to the processing of the more permanent good circuit ele-
ments. Fault modeling capabilities are far more flexible than for other fault simula-
tion algorithms because a faulted model can represent a delay fault or virtually any
other fault for which modeling code can be written.

Latches and flip-flops are processed in a manner similar to the logic elements. In
fact, user defined primitives (UDPs) found in many Verilog designs, as well as RTL
models, can be processed just like logic elements. A major problem with UDPs and
RTL models is the fact that granularity can be quite coarse. A UDP, even if it is
strictly combinational, may contain reconvergent logic, hence stuck-at faults on the
inputs of the UDP may not represent all possible internal stuck-fault modes. If an
RTL model has storage elements, the state of one or more of these elements may be
affected by an error signal entering the model. It is necessary to recognize that the
state is affected and the states for all error signals must be recorded, just as states for
logic gates are recorded.

If an RTL module has many sequential elements, fault processing may be accom-
plished by diverging individual copies of the RTL block for every fault that appears
at its inputs, as well as for every fault that causes one or more of its internal storage
elements to assume an incorrect value. This can require a massive amount of mem-
ory. An alternative approach, which may provide faster processing speed and more
efficient memory utilization, would be to create submodules for every latch or flip-
flop in the RTL module. Then, if a fault effect causes one or more of these flip-flops
or latches to assume an incorrect value, link lists of fault effects can be linked to
them just as they would if they were primitive gate-level elements. It would not be

DELAY FAULT SIMULATION 147

necessary to create an entire RTL block for a fault that affected only a single flip-
flop within the RTL module. The FEs that affected only a single flip-flop would only
be linked to that flip-flop.

When simulating sequential circuits, faults can cause a circuit to enter an incor-
rect circuit state and remain there for an indefinite period. A register may be loaded
from a bus, and that value may be held for many hundreds or thousands of clock
cycles, without being used. Finally, the value may be read by some other functional
unit, and the error signal may propagate forward and eventually be detected at an
output pin. If it is necessary to diagnose the source of an error at an output pin, it
may require some careful analysis to build a causal link back to the fault origin.

Efficient memory management is critical to good performance when performing
concurrent fault simulation. Virtual memory management is often used by operating
systems in order to share main memory among different jobs, but it is not practical
for concurrent fault simulation. The simulation run will simply thrash. If a run
requires more main memory that is available on the host system, the fault simulator
should split the fault list into two or more partitions and run them individually.

It is interesting to note that splitting the fault list can sometimes improve perfor-
mance even in cases where there is sufficient memory to perform the simulation in a
single pass through the fault simulator. This occurs because the fault simulator is
processing linked lists of fault effects; and as the fault list increases, these link lists
grow in length, with the result that traversing these link lists begins to seriously
impact performance. The number of passes is estimated based on circuit size, fault
list size, the amount of available memory, and the amount of memory used to imple-
ment the descriptor cells and abbreviated descriptor cells. Since some of the num-
bers are dependent on the implementation, they must be derived empirically.

A concurrent fault simulator will sometimes classify a fault as hypertrophic. A
hypertrophic fault spreads throughout a circuit and causes FEs to be linked to a great
many logic elements. An earlier paragraph described a fault in control logic that
caused the wrong function in an ALU to be performed. If an OR operation was sup-
posed to be performed, but a fault causes a subtract operation to be performed, then
conceivably half or more of the logic signals in the ALU could be incorrect. Some-
times a concurrent fault simulator will drop a hypertrophic fault on the assumption
that a fault so pervasive will inevitably cause an FE to reach an output and become
detected. A hyperactive fault is one that causes a large number of evaluations. Some-
times a fault can cause oscillations in a circuit. This is an especially serious problem
if a zero-delay loop is oscillating because the scheduler cannot advance time until
the oscillation is resolved. The oscillating signals can be set to X, or the fault origin
can be deleted.

3.8 DELAY FAULT SIMULATION

The emergence of deep submicron technology (DSM) has brought ever faster ICs. It
has also brought a growing vulnerability to delay faults—that is, manufacturing
imperfections that cause a device to fail to operate correctly at its intended clock

148 FAULT SIMULATION

speed—even though it may be functionally correct. Defects that would not have
affected performance in a previous generation device suddenly induce erratic behav-
ior. It may not be a solid defect, such as an open, or a short between two metal runs
on an IC. Rather, it might be a wire run with too much resistance, capacitance, or
loading, which manifests itself as excessive propagation delay, either at room tem-
perature or at the low or high end of the operating spectrum. For example, ICs
intended for the automotive market have to operate correctly at temperatures up to
120°F in the Arizona desert, and down to —50°F in the upper midwest and Canada.

As a result of these operating extremes, it has become increasingly important to
develop tests for critical paths—that is, those paths with the greatest delay from a
source to a destination. The source may be either a primary input or the output of a
flip-flop, while the destination may be a primary output or the input of another flip-
flop. This is illustrated in Figure 3.14. Rising edges emanate from U1 and U2. These
signals result from logic 1s on the inputs of Ul and U2 being clocked through the
flip-flops and replacing Os on their outputs. The rising edge from U1 passes through
some combinational logic, indicated by the pair of wavy lines, and reaches U3 as a
rising edge. The edge from U2 reaches U4 after experiencing an odd number of
inversions. The rising edge is blocked on its way to US, perhaps because it had to
pass through an AND gate whose other input is the blocking 0 value.

It was pointed out in Section 3.7.1 that the concurrent fault simulator is well-
suited to modeling many types of faults. Among those that it is well-suited to han-
dling is edge propagation. Whenever the value on the input of a flip-flop is the com-
plement of the value on its output, an edge emanates from the flip-flop on the next
active clock edge. A fault-effect (FE) can be diverged from that flip-flop which can
be processed in a manner analogous to the way in which FEs are processed for
stuck-at faults. If the FE representing the edge (an edge FE) reaches the input of one
or more destination flip-flops, it becomes trapped in that flip-flop.

Referring again to Figure 3.14, the input to U3 is an edge that originated at U1. If
the circuit is working correctly, a 1 is clocked into U3 during operation. If there is a
delay fault, the 1 fails to reach U3 before the next clock edge and a 0 gets clocked
into U3. This is represented by the 1/0 at the output of U3, which represents 1 on the
good circuit and 0 on the faulty circuit. Once a delay fault has been clocked in, it can
be treated like a stuck-at fault at the destination flip-flop. Propagation of the FE from
that point can be performed exactly as it is performed for stuck-at faults. If the FE
reaches an output, the tester can determine whether the delay fault affected U3.

Once an edge FE becomes trapped, it continues to exist until it either reaches an
output or converges. However, the FEs representing edges are removed at the end of
each clock period by a garbage collection routine. Another delay FE does not appear
at the flip-flop until once again the input and output of the flip-flop are complements
of one another. This is analogous to the fault origin (FO) for stuck-at faults. Note
that it is possible for an edge FE to initially becomes blocked at an AND gate or an
OR gate. Suppose an edge FE reaches a 2-input AND gate which has a 0 on its other
input. That other input may change from O to 1 after the edge FE arrives. In that
case, the edge FE should remain converged, because there is another path of longer
duration than the path from U1 to U3.

DIFFERENTIAL FAULT SIMULATION

149

_ ((1/0 ((

Ul —) U3 —) U6
9 9 9
] ((on ((

U2 —) U4 —) u7
T | 7
E C 0 0
) Us
9

Figure 3.14 Delay fault propagation.

The abbreviated descriptor cell, Figure 3.13, is slightly modified in order to
reflect that fact that the FE represents an edge rather than a stuck-at fault. The fault
ID has to be expanded in order to identify the source and destination of the edge. A
postprocessor can then use the fault IDs to identify all paths that have been exercised
by the test. The user can inspect the report to determine if the most critical paths
have been exercised. The delay fault simulation capability is easily integrated into
an existing concurrent fault simulator with very little effort. Of course the effective-
ness of edge fault simulation depends totally on the effectiveness of the vectors that
are evaluated. In Chapter 7 we examine methods for generating test vectors directed
at delay faults.

3.9 DIFFERENTIAL FAULT SIMULATION

The differential fault simulation (DSIM) algorithm described here, so called because
of its use of the differences between any two circuits, is based on the assumption
that the circuit being fault simulated is synchronous and that all circuit elements
have zero delay. These assumptions are not unlike those on which parallel fault sim-
ulation and PPSFP fault simulation are based. However, DSIM goes beyond them in
that it retains state information from one vector to the next; hence it can be applied
to sequential circuits.® In that respect, it bears a resemblance to the concurrent fault
simulation algorithm.

DSIM will be described with the help of some notation. The term B; ; denotes the
circuit status for the ith fault and the jth vector. The circuit state for faulty circuit
B;,, ; is derived from faulty circuit B; ; by simulating the differences of their fault
origins as the initial fault events. The circuit corresponding to i = 0 is the fault-free
circuit. The circuit state for By, ; is obtained by performing a logic simulation of the

150 FAULT SIMULATION

inputs for the jth vector. Note that when simulating a sequential circuit, there are
usually state differences at the storage elements, and these must also be evaluated.
The algorithm for DSIM follows:

for(i = 0; i < no_vectors; i = i+1) {

if(i == 0) [/ first vector
initialize circuit; // set all nodes to X
else {
remove previous injected fault; // fault-site event
/] source
restore current states; // state-difference event
/] source
apply primary input values; // input-difference event
// source

perform event-driven simulation;
record next-state differences;
store primary output values;
sensitized output_counter = 0;
for (all undetected faults) {
remove previous injected fault; // fault-site
// event source
inject current fault;
recover current states;// state-difference event
/| source
perform event-driven simulation;
record next-state differences;
if (sensitized output_counter > 0) // FE reached
// output pin
drop the fault;

The general approach in DSIM is to define events that must be propagated forward
to the outputs. For the fault-free circuit, events on primary inputs are referred to as
input difference event sources. For faulted circuits, both the previously injected
fault, which is removed, and the current fault, which is injected, are referred to as
fault site event sources. Regardless of whether the event is an input event or a fault
event, the operation is essentially the same: Establish the initial events and then per-
form event-driven simulation from the point where the event originated, until either
a primary output or a memory element is reached, or the events converge. If a fault
event reaches an output, an output counter is adjusted. After simulation of each
faulty circuit, if the counter has a nonzero value, the fault is detected.

DEDUCTIVE FAULT SIMULATION 151

Since error signals are only recorded at memory elements, the amount of memory
required to retain a history of each fault is considerably less than that required for
concurrent fault simulation. However, the fact that error signals are stored at mem-
ory elements implies that all memory elements must be explicitly identified. If all
storage elements are modeled as latch or flip-flop primitives, it becomes trivial to
identify them. However, if there are storage elements defined by feedback created by
logic primitives, such as cross-coupled NAND gates, or, worse still, more complex
feedback configurations, this may cause DSIM to compute erroneous results.

3.10 DEDUCTIVE FAULT SIMULATION

Deductive fault simulation’ simulates only the fault-free circuit. The simulator
deduces which faults are tested by each input vector and creates lists of those that
are sensitized at each node. In some respects it is analogous to concurrent fault sim-
ulation. As simulation proceeds, some faults cease to be sensitized, their effects
become blocked, and they are dropped by the simulator. Meanwhile, other faults
become sensitized and are added to the list of sensitized faults.

To illustrate, consider the fault-propagating characteristics of a three-input OR
gate. Associated with each input is a list of faults from preceding logic that are sen-
sitized up to the input of the OR gate. If the present values on the OR gate inputs are
all Os, then the fault list on the output of the OR gate is the union of the fault lists on
all the inputs. This follows from the fact that the fault list on any input is the set of
faults that cause that input to assume a value that is opposite to its correct value.
Conversely, if the fault-free signals at all three nodes are 1s, then a fault symptom
could propagate through the OR gate only if it could cause all three inputs to assume
incorrect values. Therefore, the set of faults that propagates to the output of the OR
gate is the set that results from the intersection of the fault lists at the three inputs. If
one or two inputs are at 1 and the other is at 0, then the computations get slightly
more complex.

Example Assume an OR gate for which the fault lists are:

A={124711)
B ={2,5,7.8)
C={137,12}

If all three input values are O, then the output faultlistis D = AuBU Cu {d,}
where d, represents a SA1 on the OR gate output. For the sets A, B, and C listed
above, D = {1,2,3,4,5,7,8,11,12,d,}. If all three inputs are at logic 1, then the output
fault list is the set D = AN B N C+{d,} where N denotes set intersection and
{d,} denotes the output SAQ. In this example, D = {7, d,}. If the upper two inputs
are logic 1s and the lower input is a 0, then the only way to get an incorrect output is
if a fault f changes the values of the upper two inputs but does not change the lower

152 FAULT SIMULATION

output—that is, if fe€ AN B - C. In this example, fault 2 fits that requirement;
hence it will propagate to the output if the OR inputs are {1,1,0}. To that intersection
the output fault d,, is added. The resultis D = {2, d,)}. If any single input is at 1, then
that input SAO will also propagate to the output and must be added to the list.

A general rule for processing OR gates follows:

«» To the fault list at each input, add the fault corresponding to that input SAQ if
the value on that inputisa 1,

o If all inputs are 0, then form the union of all these sets and add the fault corre-
sponding to the output SAIL.

o If one or more inputs are 1, then

o Form the intersection S of sets corresponding to inputs that have 1s.

o Form the union 7 of sets corresponding to inputs that have 0 values.

o Compute S—T.

o Add the fault corresponding to the output SAO. L]

Deductive fault simulation can require processing enormous lists of faults using
equations for manipulation of these lists which vary according to the values on the
inputs of the gate being processed. In an event-driven environment, extensive list
processing may be required even when no logic activity occurs. For example, if the
three input OR gate has values (1,1,0) on its inputs and if the inputs change to
(1,0,0) in response to a logic change, then the formula for computing the output fault
list changes; hence the output fault list for the gate must be recomputed, even though
no logic activity occurred on the output of the gate. If the fault list on the gate output
changes, then the fault list must be recomputed forward for gates in the fanout list of
that gate, and this must be continued until fault list changes cease. Further complica-
tions occur when performing n-value simulation, n > 3, and when sequential circuit
simulation is performed.

3.11 STATISTICAL FAULT ANALYSIS

We have been concerned, up to this point, with modeling faults and performing sim-
ulation on circuits in such a way that the effectiveness of a test program is deter-
mined by how many of the faults modeled in the circuit are detected. The objective
was to (a) get an accurate accounting of how many of the faults are detected and (b)
use this as a figure of merit for the test program. If the percentage of faults detected
is too low, then more test vectors must be created and fault simulated against the
remaining undetected faults. This is repeated iteratively with different sets of test
vectors in order to boost the fault coverage to an acceptable level.

The purpose of statistical fault analysis (Stafan) is to obtain an estimate of the
fault coverage without simulating all of the faults.!®!! A logic simulation is per-
formed on the circuit. During the logic simulation, statistics are compiled at the
various internal nodes. These statistics involve counting the numbers of 1s and Os
that occur on each internal net. The following entities are defined for each net in the
circuit:

STATISTICAL FAULT ANALYSIS 153

C1(n)—the one-controllability, the probability of net n having a value of one on a
randomly selected vector

CO(n)—the zero-controllability, the probability of net n having a value of zero on
a randomly selected vector

B1(n)—the probability of sensitizing a path from net n to a primary output, given
that the value of the line is one.

B0(n)—the probability of sensitizing a path from net n to a primary output, given
that the value of the line is zero.

During logic simulation, counters are maintained for each internal net. The zero-
count is incremented at the end of each vector when the value on that net is 0, and the
one-count is incremented when the value is a 1. After N vectors, the one- and zero-
controllabilities are computed as C1(n) = one-count/N and CO(n) = zero-count/N. A
third counter is maintained for each net. It is called the sensitization counter. It is
incremented if the net is sensitized to the output of the gate that it is driving. For an
n-input AND gate, input j is sensitized to the output if all other inputs are at logic 1.
For an OR gate, input j is sensitized to the output if all other inputs are at logic 0.
After N vectors, the one-level sensitization probability for net n is computed as
S(n) = sensitization-count/N.

At the start of simulation, the observabilities of all primary outputs are set to 1.
Then, observabilities are computed working back to the inputs. Consider an AND
gate with n inputs, and assume the AND gate drives net p. A value of 1 on input is
observable at p only when all inputs to the gate are at logic 1. This is the same as the
probability of C1(p). Note that C1(p) is the joint probabibility that net j equals one
and that j is observable at p. The conditional probability that j is observable at p,
given that j is a one, is C1(p)/C1(j). This term can then be used to determine the
observability of j. The equation is

N = S()H-Cl(p)
BO(j) = BO(p) o0

To this point there has been an implicit assumption that a net drives only one input.
That, however, seldom happens in practice. More likely, a net drives two or more
gate inputs. If net j drives two gates with output nets p and ¢ and if their paths to the
outputs are completely independent, then the observability of j is the probability of
the union of B1(p) and B1(g). However, independent paths are also rare. More likely,
the paths to the outputs share common logic. To address this issue, the authors pro-
pose the following equation:

B1(j) = (1-a)ymax|B1(ip)| +a O B1(i,)
1<k<m k=1
In this equation, i, through i, denote the fanout paths for net j. When o= 1, B1(j)
is observable independently through each of the m fanout branches, hence the
observability is the sum of the observabilities of the branches. However, when
o =0, then B1(j) is observable through fanout branches that are interdependent by
virtue of divergent and reconvergent logic, so B1(j) is at least as observable as the
largest of the individual observabilities.

154 FAULT SIMULATION

The discussion so far has centered on combinational circuits. Sequential circuits
require a more detailed analysis. Where the sequential nature of the circuit results
from cross-coupled NAND or NOR latches, the analysis involves conceptually cut-
ting the loop and analyzing it as an iterative array. Loop counters to count occur-
rences of loop-sensitization states are also used. The interested reader can find
details in the original sources. Here we discuss the actual computations of fault cov-
erage, once the various node statistics are generated during simulation. Assume that
we wish to detect an SA1 fault on net j. The probability of detection of that fault is
D1(j)=CO0(j)-BO(j); that is, it is the joint probability of controlling the net to a
zero and the probability of observing a zero on that net.

Given that the probability of detecting a given fault on any single vector is x, then
the probability X(N) of detecting that fault by a set of N vectors is X(N) =1 — (1 — 0V
that is, the probability is one minus the probability of not detecting the fault by any of
the N vectors. Because the number of vectors is finite, random errors were shown to
produce a biased estimate of fault coverage. Hence, the second term on the right-hand
side is divided by a correction factor:

N-1
W(x) = 1- Tﬁzé

In this correction factor, the term [is a constant of proportionality whose value is
determined empirically. With this correction factor, the probability of detecting fault
X; in a test program containing N vectors is

—Xim

fi(N) =1~ H W(‘xzm)
Once the probability of detection is known for a given fault, the cumulative fault
coverage for all K faults, for N vectors, can be determined from

K
FN) = 2 3 fi(V)

i=1
How effective is Stafan at predicting fault coverage for a set of test vectors? The
authors compared results with those obtained from a deterministic fault simulator on
a 64-bit ALU with 4376 faults. A set of 155 vectors produced 75.09% estimated
fault coverage. They then ranked the faults according to the probability of detection
provided by Stafan. Based on a coverage estimate of 75.09%, 3286 faults with high-
est probability were assumed to be detected, whereas the remaining 1090 faults were
assumed undetected. Of the 1090 undetected faults, 1036 were confirmed to be
undetected by the deterministic fault simulator. Of the 3286 faults that were
assumed to be detected by Stafan, all but 46 were confirmed to be detected by the
deterministic fault simulator. In their investigation of the effectiveness of Stafan, the
authors report that setting the parameter ov= 1 (independent paths to the outputs)
gave good correlation with deterministic fault simulation. For f3, the value %6 = 5.0
produced a good match with fault simulation. These values of o and 8 were found to
produce good results on other circuits as well.

FAULT SIMULATION PERFORMANCE 155

3.12 FAULT SIMULATION PERFORMANCE

Feature sizes of integrated circuits have shrunk with remarkable regularity over the
years, with the result that increasingly larger numbers of transistors are squeezed
onto a given area of silicon each year. One result of all this is that fault simulation of
large circuits can take many hours, or days. Hence, fault simulation performance is
of vital importance. It was pointed out at the beginning of this chapter that growing
circuit size implied a growing fault list as well as a larger number of test vectors
required to stimulate all the faults in the circuit. These three parameters—circuit
size, fault count, and number of vectors—suggest that simulation time may, in the
worst case, increase in proportion to the third power of circuit size. As a result, it is
vitally necessary to exploit every possible opportunity to improve fault simulation
performance.

Consider the performance of parallel fault simulation. A compiled, zero-delay
fault simulator is not able to correctly predict the behavior of asynchronous circuits
where correct response depends on being able to recognize and process critical
propagation delays. It will only handle combinational and synchronous sequential
circuits. When fault simulating a synchronous sequential circuit and processing 31
faults in parallel, together with the fault-free circuit, the parallel fault simulator
must simulate all of the vectors before processing another 31 faults, unless all of
the faults are detected before the end of the vector set is reached. (If a design imple-
ments full scan, it can be considered to be a combinational circuit for purposes of
analysis.)

The PPSFP fault simulator, by virtue of the fact that it simulates multiple vectors
in parallel, is only able to process combinational or full-scan circuits. However, in
this restricted environment, it is capable of operating extremely fast. In combina-
tional circuits, it is not uncommon for many (most) faults to be detected in the first
10 to 15 vectors. For these faults it only requires a single pass through the fault sim-
ulator to detect the fault and delete it from further consideration because PPSFP is
simultaneously simulating 32 vectors.

Dropping faults in the parallel fault simulator is more complicated because 31
faults are processed in parallel, and the vectors are usually simulated until all are
detected. The probability of selecting 31 faults that will all be detected before the
end of the simulation is usually quite low. It is possible to check the number of faults
detected at various points during simulation and, when some threshold is reached,
stop simulating that group of faults and restart with a new set, where the undetected
faults from the terminated group are kept and undetected faults from the fault list are
added to replace the faults that are dropped. That, of course, introduces some redun-
dancy into the process. Parallel fault simulation is one method that would benefit
from states applied analysis.

Numerous methods have been devised to speed up fault simulation. Some of
them were previously discussed, including fault dropping, states applied analysis,
and simulating only one representative fault from a set of equivalent faults. Other
methods for improving performance of fault simulation include rank-ordering, rear-
ranging vectors, and statistical fault simulation.

156 FAULT SIMULATION

It was mentioned in Section 2.6 that the circuit model for a compiled simulator
had to be rank-ordered in order to get correct results. Rank-ordering can also benefit
concurrent fault simulation. Given a circuit in which all or most of the circuit ele-
ments have zero delay, if the logic elements are simulated in random order, some of
the elements may be simulated multiple times during each vector. This is especially
true for large combinational blocks. In one particular incident, this author was fault
simulating a large combinational array multiplier in which the elements all had zero
delay and were randomly positioned in the circuit model. A counter inserted in the
fault simulator for debug purposes indicated that some logic gates in the cones of the
high-order output bits were being simulated a hundred times or more during each
vector. After rank-ordering and resimulating the circuit so that no element was simu-
lated until all its predecessors had been simulated, fault simulation time was reduced
from almost a full day down to about an hour.

When a concurrent fault simulator processes a combinational circuit, the amount
of activity during fault simulation is affected by the number of input event changes
that occur during each vector. Again, in some unpublished experiments performed
by this author, vectors were randomly applied to the array multiplier. The same vec-
tors were then reordered so as to reduce the number of input events from one vector
to the next, and again they were fault simulated. The rearranged vectors produced
significantly less total activity during simulation and, as a result, fault simulation
time was considerably less. Where pseudo-random vectors are generated and
applied to combinational logic, a cursory examination and rearrangement of the vec-
tors, based on Hamming distance (cf. Chapter 10), can yield a significant payback in
reduced simulation time.

Statistical fault sampling is another technique that is effective in reducing simula-
tion time for both concurrent and parallel fault simulation. It provides an estimate of
fault coverage, and hence the quality of a test, by simulating a small random sample
of the faults. Sufficient faults can be simulated to give an arbitrarily high level of
confidence that the fault coverage is within some range of the predicted value. Sta-
tistical fault simulation can be preceded by a states applied analysis.!? If analysis
reveals that the percentage of potentially detectable faults is not sufficient to yield
the required fault coverage, then there is no point in performing fault simulation
until the percentage of potentially detected faults is increased.

It is possible to combine the features of parallel and concurrent fault simula-
tion.!? The parallel value list (PV) simulates all faults in one pass, as in concurrent
fault simulation, but stores faulty values using individual bit positions in a word.
Each fault is uniquely identified by a group number and bit position pair. Faults
grouped together in a given parallel value word are chosen based on their proximity
to one another. If they are close together in the circuit and if no activity is present in
that area of the circuit, the fault word is dropped from forward propagation quickly.
The evaluation techniques also differ, depending on whether the output activity
occurred on the fault-free or the faulted copy of the gate.

Improvements to the concurrent fault simulation algorithm can be achieved
through coding techniques. In one example, a simulation program was repro-
grammed to take advantage of the computer architecture.'* Short loops with many

SUMMARY 157

branches, which can be destructive of performance in a pipelined architecture, were
modified via loop unrolling. A series of operations was recoded to operate on several
contiguous arguments. As an example, the following C code increases the total
amount of code but reduces the number of jumps that must be performed.

for (1 =0; 1i<32; i=1+4){
a(i) = b(i) + k;
a(i +1) =b(i + 1) + k;
a(i + 2) =b(i + 2) + k;
a(i + 3) =b(i+ 3) + k;
}

Since many programs are characterized by the fact that a high percentage of CPU
time is spent in a small part of the program, identifying high usage code (via soft-
ware profiling tools) and modifying it can sometimes significantly increase overall
performance of the program. In the example just cited, rearranging events for opti-
mized processing led to a reported three-to-one performance enhancement while
performing gate-level simulation. In contemporary processors with pipelined archi-
tectures, techniques to improve performance may depend heavily on the host work-
station, and a technique that provides significant improvement on one workstation
may provide little or no improvement on another workstation. Cache size in the host
computer also has a bearing on performance. Clearly, the bigger the cache, the better
the performance. But, for a given cache size, coding techniques that use code cur-
rently in cache, rather than fetching code from main memory, can provide signifi-
cant payback.

A number of approaches to speeding up fault simulation have involved hardware
acceleration architectures. The simplest approach is to use an accelerator architected
for design verification. Single faults are injected into the circuit model, and response
of the faulted model is compared to that of the fault-free model to determine if the
fault causes an incorrect response at an output pin. This is basically an adaptation of
the serial fault simulation method. Other accelerator approaches have been designed
specifically for fault simulation. Hardware accelerators tend to be competitive when
first announced; but because of the rapid rate at which standard workstations evolve in
performance, software programs running on the workstations gradually catch up and
eventually outpace the accelerators in terms of performance. Being an all-software
solution, they enjoy a cost advantage as well, since the workstation can serve both as a
fault simulation platform and as a general purpose workstation platform, so when not
being used for fault simulation they provide a payback by virtue of being used for
other applications.

3.13 SUMMARY

Digital electronics is pervasive: These devices appear in every aspect of our lives,
and consumers take for granted the presence of electronic devices that perform con-
trol functions found in so many of our appliances, entertainment centers, and modes

158 FAULT SIMULATION

of transportation. As a result, consumers are less tolerant of failing devices than they
once were. This makes it all the more imperative that devices be verified to be fault-
free by manufacturers. That, in turn, makes it imperative that manufacturers employ
test programs that are very thorough in ferreting out malfunctioning products. Fault
simulation is critical to the performance of this task.

Before the emergence of fault simulation, digital designs were tested using func-
tional test programs that attempted to verify the functionality of PCBs. For small
designs, using discrete components, it was not too difficult to identify and exercise
all “corners” of the design, as well as all combinations of inputs and internal states.
If a faulty product reached a customer, it would be analyzed upon return and a test
would be developed targeting that defect. As devices became more complex, and
more combinations of inputs plus internal states failed to be tested, it became appar-
ent that test programs would have to be evaluated to quantify their effectiveness at
separating good product from bad. Fault simulation programs were developed for
this purpose.

Several fault simulation algorithms have emerged over the past three decades. In
each instance the objective has been to reduce the number of computations and/or
memory requirements in order to render the problem tractable. Some differences in
approach result from differences in basic assumptions about the circuit being evalu-
ated. When simplifying assumptions are made, it is possible to take advantage of
those assumptions to produce a faster product, but one that will not function cor-
rectly when those assumptions do not hold. Hence, the user must understand the
capabilities and limitations of the tool that he or she chooses to use in order to obtain
maximum benefit from it.

But, even before understanding the algorithms, the user must understand that
fault coverage is an approximation to the true thoroughness of a test. Its accuracy
depends on the fault model chosen. With greater granularity, a greater number of
faults are used in a given circuit to estimate the fault coverage, and the fault cover-
age estimate will be more accurate. However, generating the estimate will be more
time-consuming.

The parallel and concurrent fault simulation algorithms have come to dominate
the field. Parallel fault simulation and PPSFP are quite powerful for circuits that
conform to design guidelines, including synchronous designs. Concurrent fault sim-
ulation requires more memory to perform effectively, but it is able to handle a wider
range of circuits, synchronous or asynchronous, as well as many more defect modes.

The deductive fault simulator was once used in at least one commercial fault
simulator (LASAR—Iogic automated stimulus and response), but it doesn’t have the
speed advantage of parallel fault simulation for synchronous circuits and it doesn’t
have the robustness of concurrent fault simulation for asynchronous circuits. One
interesting feature of LASAR was the use of the NAND gate to model all logic ele-
ments. It’s been well known since early in the twentieth century that NAND gates
could be used to model any other logic element.'> By relying on a single primitive,
the processing rules for deductive fault simulation were greatly simplified.

With growing circuit size, increased use of core modules, and the appearance of
more memory arrays in circuit models, the need for behavioral simulation capability

PROBLEMS 159

is growing. In fact, the ideal fault simulator will be able to process circuits ranging
from transistor level to high-level RTL. The concurrent fault simulator fits these
requirements; other fault simulation technologies come up short at one end or the
other, or both.

Effective use of simulation requires a knowledge of the design environment in
which the tools will be used. Assumptions that hold in one design environment may
not hold in another. Tools developed for use in combinational or synchronous
sequential designs may give totally inaccurate results if applied to asynchronous
sequential designs. On the other hand, the synchronous design environment permits
simplifying assumptions that can help to speed up simulation. However, perfor-
mance improvements in some instances are gained at the expense of generality; the
algorithms simply will not work on many circuits.

Many claims are made for the various algorithms that have been published over
the years. Making comparisons is difficult, because an algorithm that is quite effi-
cient on one circuit may perform rather poorly on other circuits. Some of the perfor-
mance advantages may be inherent in the algorithms, with a particular algorithm
being “tuned” to recognize and apply special processing techniques to certain, com-
monly occurring circuit configurations. But some of the performance advantages
seen in practice may be more a result of a general proficiency with which the algo-
rithms are coded. Effective coding can cause an algorithm to perform as much as
two or three times more efficiently than it might otherwise perform. Fault simulation
is one of those applications where 5—-10% of the software code consumes 95% of the
execution time. Recognizing and optimizing that 5—-10% of the code can yield a sig-
nificant payback.

PROBLEMS

3.1 Create the truth table for a three-input OR gate corresponding to that of the
AND gate in Figure 3.5. Show the response for SAO faults on the inputs and
the SAO and SA1 faults on the output.

3.2 Given a four-input AND gate with six faults: SA1 on each of the four inputs,
and SAO and SA1 on the output. Applying the following five vectors toggles
all pinstoOand 1:A,B,C,D = {(1000), (0100), (0010), (0001), (1111)}. What
is the fault coverage?

3.3 Given a 32-bit ALU with two 32-bit input ports, a carry-in, and five function
select bits (i.e., a total of 70 inputs), the test engineer creating the test program
decides to simply apply all possible combinations to the inputs. If vectors are
applied and response evaluated at the rate of 10,000,000 test vectors per
second, how long will it take to exhaustively test the circuit?

3.4 In Section 3.6 it was stated that detection of a fault could not be claimed if
the fault-free circuit responds with X and the faulty circuit responds with 0
or 1. Why?

160

3.5

3.6

3.7

3.8

3.9

3.10
3.11

FAULT SIMULATION

SAl

SA1 SAO0

Figure 3.15 Dominance relationships.

The bufif0 in Figure 3.6 drives a bus. If the enable is not active, the bus is
floating (disconnected from the driver). One way to cope with this situation
is to connect the bus to a pullup or pulldown. Then, if no driver is actively
driving the bus, the bus assumes a weak 1 (H) or a weak 0 (L) value that can
be overcome by an active 1 or 0. Recreate the truth table in Figure 3.6, assume
the existence of a pullup, and replace the Z’s by H’s. Explain how to detect
the stuck-at faults F'; through F in this situation.

A commercial fault simulator is likely to create 12 faults for the multiplexer
in circuit in Figure 3.7; identify them.

Generate a list of stuck-at faults for each of the primitive logic gates in
Figure 2.44. Using dominance and equivalence properties, collapse the fault
lists.

Given the following sets Ta through Te of tests for faults a, b, c, d, e, show all
dominance and equivalence relationships between these test sets.

Ta = {tl, 12, t3, t4, t5}

Tb= {13, 4}
Te = {13, t4, 16, 7}
Td= {13, 4}
Te = {12, t8}

Identify the dominance and equivalence relationships between the four faults
in the circuit of Figure 3.15.

Prove the dominance and equivalence theorems.
The circuit on the left, in Figure 3.16, is represented on the right by a
functional block. Find a set of vectors that detect all SAO and SAT1 faults on

the pins of the functional block model but fails to detect a SA1 on the top
input to AND gate D in the gate-level model.

A
c
Sel A
MUX ——
B
— >, el — |
B e —

Figure 3.16 Hidden fault.

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

PROBLEMS 161

-

ot

Figure 3.17 Using deductive fault simulation.

T T A% >

Finish the fault simulation example for Figure 3.10 in Section 3.6.1. What is
the result vector at the outputs of AND gate J and XOR K?

In the circuit of Figure 3.10, assume 10 faults: SA1 faults on the inputs to gates
G, H, and J, SAQ faults on the inputs to gate I, and an SA1 fault at input E. The
following four vectors are applied to the circuit: A,B,C,D,E,F = {(000011),
(010110), (110001), (001101)}. Perform parallel fault simulation on the circuit
and identify the faults detected by each vector. Perform states applied analysis;
is there any savings in computation time?

Perform parallel pattern single fault propagation (PPSFP) on the circuit of
Figure 3.10 using the faults and vectors defined in the preceding problem.

Again using the circuit in Figure 3.10, and the faults and vectors defined in
problem 3.13, use Stafan to estimate fault coverage for the 10 faults.

The four vectors of Problem 3.13 are applied to the circuit in Figure 3.10, and
the fourth vector responds incorrectly. What faults are most likely to have
occurred? What faults are most likely not to have occurred?

The circuit in Figure 3.17 has four stuck-at faults, indicated by the arrows.
Two vectors are applied: A,B,C,D,EF={(011011), (0O11111)}. Use
deductive fault simulation to determine all of the faults detected by each of
the two vectors.

Using concurrent fault simulation, along with the four faults and two input
vectors from the previous problem, determine which of the four are detected.
Show your work.

Using PPSFP, find all input combinations that will detect a SAO fault on the
input to gate / that is driven by gate H in Figure 3.10. Find all combinations
that will detect a SA1 on the lower input to gate K.

It was stated in Section 2.7 that a circuit had to be rank-ordered in order to
get correct results with a compiled simulator. Is that strictly correct? Explain.

For the circuit in Figure 3.10, write the code for a parallel fault simulator that
fault simulates a multiple fault consisting of a SAO on the output of G and a
SAT1 on the input of J driven by primary input E.

162

3.22

3.23

3.24

FAULT SIMULATION

J J

MUX
SAI/ |

Figure 3.18 A MUX with stuck-at faults.

Sel

For the circuit in Figure 3.10, write the code for a parallel fault simulator that
fault simulates a short between the output of G and the input of J driven by
primary input F. Assume that the short acts like a wired AND, that is, if either
the output of G or input J is at 0, the entire shorted network assumes the value 0.

Given the circuit in Figure 3.18, assume three faults: a SA1 on the left input
to each of the two indicated AND gates, and a SA1 on the select line Sel.
Which of the three faults can be detected when Sel is set to 0?

Joe bought a very old house and had Sam the electrician rewire the light
switches in the stairwell leading to the upstairs bedrooms so that the light
could be turned on and off both at the foot of the stairs and at the upstairs
landing. When Sam completed the wiring he turned on the circuit breaker and
the light came on. He went upstairs and flicked the switch to both positions,
and the light went off and came back on. Sam went downstairs and repeated
the exercise, with successful results. He then turned the light off. Later that
night Joe awakened and decided to go downstairs and check out the
refrigerator. He flipped the light switch but the light did not turn on. Explain
what happened.

REFERENCES

1. Eldred, R. D., Test Routines Based on Symbolic Logic Statements, J. ACM, Vol. 6, No. 1,
January 1959, pp. 33-36.

2. Wadsack, R. L., Fault Coverage in Digital Integrated Circuits, Bell Syst. Tech. J., May—
June 1978, pp. 1475-1488.

3. Mei, K. C. Y, Fault Dominance in Combinational Circuits, Digital Syst. Lab., Report No.
2, Stanford University, August 1970.

4. Case, G. R., SALOGS-IV, A Program to Perform Logic Simulation and Fault Diagnosis,
Proc. 15th D.A. Conf., 1978, pp. 392-397.

5. Waicukauski, J. A. et al., Fault Simulation for Structured VLSI, VLSI Syst. Des., Vol. 6,
No. 12, December 1985, pp. 20-32.

10.

11.

12.

14.

15.

REFERENCES 163

Ulrich, E. G., and T. Baker, Concurrent Simulation of Nearly Identical Digital Networks,
Computer, Vol. 7, No. 4, April 1974, pp. 39-44.

. Schuler, D. M., and R. K. Cleghorn, An Efficient Method of Fault Simulation for

Digital Circuits Modeled from Boolean Gates and Memories, Proc. 14th D.A. Conf.,
1977, pp. 230-238.

Cheng, W., and M. Yu, Differential Fault Simulation for Sequential Circuits, J. Electron.
Testing: Theory and Applications, Vol. 1, 1990, pp. 7-13.

. Armstrong, D.B., A Deductive Method for Simulating Faults in Logic Circuits, IEEE

Trans. Comput., Vol. C-21, No. 5, May 1972, pp. 464-471.

Jain, S. K., and V. D. Agrawal, Statistical Fault Analysis, IEEE Des. Test, Vol. 2, No. 1,
February 1985, pp. 38—44.

Jain, S. K., and V. D. Agrawal, STAFAN: An Alternative to Fault Simulation, Proc. 21st
D.A. Conf., 1984, pp. 18-23.

Case, G. R., A Statistical Method for Test Sequence Generation, Proc. 12th D.A. Conf.,
1975, pp. 257-260.

. Moorby, P. R., Fault Simulation Using Parallel Value Lists, Proc. ICCAD, 1983,

pp. 101-102.
Krohn, H. E., Vector Coding Techniques for High Speed Digital Simulation, Proc. 18th
D.A. Conf., 1981, pp. 525-529.

Sheffer, H. M., A Set of Five Independent Postulates for Boolean Algebras, Trans. Am.
Math. Soc., Vol. 14, 1913, pp. 481-488.

I CHAPTER 4

Automatic Test Pattern Generation

4.1 INTRODUCTION

In Chapter 3 we looked at fault simulation. Its purpose is to evaluate test programs in
order to measure their effectiveness at distinguishing between faulty and fault-free
circuits. The question of the origin of test stimuli was ignored for the moment; we
simply noted that test programs could be derived from test stimuli originally
intended for design verification, or stimuli could be written specifically for the pur-
pose of exercising the circuit to reveal the presence of physical defects, or stimuli
could be produced by an automatic test pattern generator (ATPG). We now turn our
attention to the ATPG. However, we also examine two alternatives to fault simula-
tion in this chapter: testdetect and critical path tracing. These two methods share
much common terminology, as well as methodology, with corresponding ATPGs, so
it is convenient to group them with their corresponding ATPGs.

A number of techniques have emerged over the past three decades to generate test
programs for digital circuits. For combinational circuits several of these, including
D-algorithm, PODEM, FAN and Boolean differences, have been shown to be true
algorithms, in the sense that, given enough time, they will eventually come to a halt;
that is, there is a stopping rule. If one or more tests exist for a given fault, they will
identify the test(s). For sequential circuits, as we will see in the next chapter, no such
statement can be made. Push-button solutions capable of automatically generating
comprehensive test programs for sequential circuits require assistance in the form of
design-for-test (DFT), which will be a subject for a later chapter. In this chapter, we
will examine the algorithms and procedures for combinational logic and attempt to
understand their strengths and weaknesses.

4.2 THE SENSITIZED PATH

In Section 3.4, while discussing the stuck-at fault model, it was pointed out that
whenever fault modeling alternatives were considered, combinatorial explosion

Digital Logic Testing and Simulation, Second Edition, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

165

166 AUTOMATIC TEST PATTERN GENERATION

resulted. The number of choices to make, or the number of problems to solve, liter-
ally explodes. The stuck-at fault model is a necessary consequence of the combina-
torial explosion problem. A further consequence of this problem is the single-fault
assumption. When attempting to create a test, it is assumed that a single fault exists.
Experience with the stuck-at fault model and the single-fault assumption indicates
that they are effective; that is, a good stuck-at test that detects all or nearly all single
stuck-at faults in a circuit will also detect all or nearly all multiple stuck-at faults and
short faults.

The stuck-at fault has been defined as the fault model of interest for basic logic
gates, and tests for detecting stuck-at faults on these gates have been defined. How-
ever, individual logic gates do not occur in practice. Rather, they are interconnected
with many thousands of other similar gates to form complex circuits. When embed-
ded in a much larger circuit, there is no immediate access to the gate. Hence it
becomes necessary to use surrounding circuitry to set up the inputs to the gate under
test and to cause the effects of the fault to travel forward and become visible at an
output pin where these effects can be observed by a tester.

4.2.1 The Sensitized Path: An Example

The circuit in Figure 2.43, repeated here as Figure 4.1, will be used to illustrate the
process. The goal is to find a test for an SAO on input 3 of gate K (i.e., the input
driven by gate H; on schematic drawings, inputs will be numbered from top to bot-
tom). Since gate K is an OR gate, the test for input 3 SAQ requires that input 3 be set
to 1 and the other inputs be set to 0. Two problems must be solved: First, logic
values must be computed on the primary inputs that cause the assigned test values to
appear at the inputs of K. Second, the values assigned to the primary inputs must
make the fault effect visible at the output. In addition, the values computed on the
primary inputs during these operations must not conflict.

Figure 4.1 Sensitizing a path.

THE SENSITIZED PATH 167

We attempt to create a sensitized path from the fault origin to the output. A sensi-
tized path of a fault f is a signal path originating at the fault origin f whose value all
along the path is functionally dependent on the presence or absence of the fault. If the
sensitized path terminates at a net that is observable by test equipment, then the fault is
detectable. From the response at the output, it can be determined whether or not the tar-
geted fault occurred. The process of extending a sensitized path is called propagation.

Gate H, which drives the faulted input of gate K, is an AND gate, and a logic 1 on
its output only occurs if all its inputs have logic 1 values. This is called implication; a
1 on the output of an AND gate implies logic 1 on all its inputs. This implication oper-
ation can be taken a step further. The top input of H is driven directly by 7,, and its
bottom input is driven by /,. Hence, both of these inputs must be assigned a logic 1.
This implication operation can be applied yet again. A 1 on the input to inverter A
implies a 0 on its output, and that O drives gate G. Therefore, the output of gate G is a
0. Fortunately, that O is consistent with the initial values assigned to the inputs of K.
Other implications remain. 7, drives NOR gate F with a 1, causing the output of gate F
to become 0. Again, that value is consistent with the original assignments to K.
Finally, /; drives NOR gate J, and gate J responds with a 0, so once again the assign-
ment is consistent with the required values on K.

All that remains to get a 1 from gate H is to get 1s from gate B and gate C. Gate B
is a two-input NAND gate, and it generates a 1 if either of its inputs is a 0. We
choose I5 and set it to 0. We still need to get a 1 from gate C. It is a two-input OR
gate and its upper input, from /5, was already set to 0. So, we set [, to 1.

All of the inputs to K have now been satisfied, so the output of K is a 0 if the
NOR gate is operating correctly, and the output of K is 1 if the fault exists. At this
point we introduce the D-notation. The letter D (discrepancy) represents a composite
signal 1/0, where the first number represents the value on the fault-free circuit, and
the second number represents the value on the faulty circuit. The letter D represents
the composite signal 0/1, meaning that the fault-free circuit has the value 0 and the
faulty circuit has the value 1. The output of gate K is D.

A D will now be propagated forward through gate M. To do so requires a logic 1
on the other input to M, driven by gate L. The output of gate D is a 0, by virtue of the
0 on input /5. However, a 1 can be obtained from gate E by assigning a 1 to input /s.
All of the inputs have now been assigned; the values are /,1,,5,1,,I5 = (1,1,0,1,1).

However, a problem seems to appear. NAND Gate M has a D and a 1 on its
inputs. That produces a D on the output. Now, gate N has a D and a D on its inputs.
That means that the fault-free circuit applies 0 and 1 to gate N, and the faulty cir-
cuit applies 1 and 0. So both the fault-free and the faulty circuits respond with a 0
on the output of gate N. One solution is to back up to the last assignment, /5 =1,
and change it to /5 = 0, so that the assignments on the primary inputs are [, I,, I3,
1, I5 = (1,1,0,1,0). Then, the output of E becomes 0. That causes the output of L to
become 0, which in turn causes the output of M to become 1. A D and 1 on the
input to N cause a D to appear on its output. Since L = 0, the other input to P is 0,
and the D makes it through P to the output Z. As we will see, if we had considered
all possible propagation paths, this last operation, changing the value on /5, would
not have been necessary.

168 AUTOMATIC TEST PATTERN GENERATION

4.2.2 Analysis of the Sensitized Path Method

The operation that just took place will now be analyzed, and some observations will
be made. The process of backing up and changing assignments is called justifica-
tion, also sometimes referred to as the consistency operation. The two processes,
propagation and justification, can be used to find a test for almost any fault in the cir-
cuit (redundant logic, as we shall eventually see, presents testing problems). Fur-
thermore, propagation and justification can be applied in either order. We chose to
start by propagating from the point of fault to an output. It would be possible to first
justify the assignments on the four inputs of gate H, then propagate forward to the
output, one gate at a time, each time justifying all assignments made in that step of
the propagation.

During the propagation phase all required assignments are placed on the assign-
ment stack. Then, in the justification phase, the assignment stack expands and con-
tracts. When the stack is finally empty, the justification phase is complete. In the
second approach, processing begins with the justification process, attempting to sat-
isfy initial assignments on the gate whose input or output is being tested. Each time
the assignment stack empties, control reverts to the propagation mode and the sensi-
tized path extends one gate closer to the outputs. Then, control again reverts to the
justification routine until the assignment table is again empty. Control passes back
and forth in this fashion until the sensitized path reaches an output and all assign-
ments are satisfied.

Implication When assignments are made to individual gates, they sometimes
carry implications beyond the immediate assignment. An implication is an assign-
ment that is a direct consequence of another assignment. Only one assignment is
possible. Consider the assignment of a logic 1 to the output of gate H. This implied
that all of its inputs must be 1, implying that /, and /, must both be 1. Once /; had
been assigned a 1, that implied a O on the output of inverter A, which in turn implied
a 0 on the output of G. These operations will be stated more formally in a later sec-
tion, because now it is sufficient to point out that these implications obviated the
need to make choices at various points during the operation.

The Decision Table During propagation and justification, gates are encountered
where choices must be made. For example, when a 0 was required from the NOR
gate labeled F, the value 1 was assigned to the upper input. This choice caused a
problem because it resulted in an assignment /; = 0 that conflicted with a previous
assignment /; = 1. Because a choice existed, it was possible to back up and make an
alternate choice that eventually proved successful. In large, complex circuits with
much fanout, complex multilevel decisions often must be made. If all decisions at a
given gate have been tried without success, then the decision stack must be popped
and a decision made at the next available decision point. Furthermore, assignments
to all gates following the point at which the decision was made must be erased, and
any mechanism used to keep track of decisions for the gate that was popped off the
decision stack must be reset. The decision table maintains a record of choices, or
alternatives.

THE SENSITIZED PATH 169

The implication operation is of value here because it can often eliminate a num-
ber of decisions. For example, the initial test for gate H assigned a logic 1 to input /,.
But assigning a 1 to I, forces—that is, implies—a 0 on the output of gate F. As a
result, if implication is performed, there is no need to justify F =0, and that in turn
eliminates the need to make a decision at gate F.

The Fault List The fault, input 3 of gate K, was selected arbitrarily in order to
demonstrate propagation and justification techniques. In actual practice the entire set
of stuck-at faults would be compiled into a fault list. That list would then be col-
lapsed using dominance and equivalence (cf. Section 3.4.5). Each time a test vector
is created for a fault in the circuit, that test vector would be fault simulated in order
to determine if any other faults are detected. The objective is to avoid performing
test vector generation on faults that have already been detected.

For example, the test for input 3 of K SA1 causes the fault-free circuit to assume
the value Z=0. If input 3 of K were actually SA1, the output would assume the
value 1. But several other faults would also cause Z to assume the value 1, the most
obvious being the output of P SA1. Other faults causing a 1 output include outputs
of gate N or gate O SAIl. In fact, any fault along the sensitized path that causes the
value on that path to assume a value other than the correct value will be detected by
the test vector.

The importance of this observation lies in the fact that if we can determine
which previously undetected faults are detected by each new test vector, then we
can check them off in the fault list and do not need to develop test vectors to spe-
cifically test for these faults. Several techniques for accomplishing this will be
described later.

Making Choices The sensitized path method for generating tests was used
during the early 1960s.! When this method reached a net with fanout during propa-
gation, it arbitrarily selected a single path and continued to pursue its objective of
reaching an output. Unfortunately, this blind pursuit of an output occasionally
ignored easy solutions.

Consider what happens when an attempt is made to propagate a test through gate
M in Figure 4.2. Assume that the inputs to gates M and Q are primary inputs and that
the upper input to gate N is driven by other complex logic. Assume also that gate P
drives a primary output while gate N drives other complex logic. Gate P is not diffi-
cult to control. Its lower input, driven by gate O, can be set to 1 with a 0 at either
input to Q. Gate N represents greater difficulties because a logic assignment at its
upper input must be justified through other logic, and a test at its output must be
propagated through additional logic. An arbitrary propagation choice could result in
an attempt to drive a test through the upper gate. In fact, if a program did not
examine the function associated with the fanout to gate P, it might go right past a
primary output and attempt to propagate a test through complex sequential logic at
the output of gate N.

170 AUTOMATIC TEST PATTERN GENERATION

D [—
}

Figure 4.2 Choosing the best path.

By ordering the inputs and fanout list for each gate, the program can be forced to
favor (a) inputs that are easiest to control and (b) the propagation path that reaches a
primary output with least difficulty whenever a decision must be made. An
algorithm called SCOAP, which methodically computes this ordering for all gates in
a circuit, will be described in Section 8.3.1.

The Reconvergent Path A difficulty inherent in the sensitized path is the fact
that it might not be able to create a test for a fault when a test does exist.” This can be
illustrated by means of the circuit in Figure 4.3. Consider the output of NOR gate B
SAQ. Inputs 7, and /3 must be 0 in order to get a 1 on the output of B in the fault-free
circuit. In order for the fault to propagate through gate E, input /; must be 0. Hence
the output of E is 0 for the fault-free circuit, and it is 1 for the faulty circuit. In order
for E to be the controlling input to gate H, the other three inputs to H must be set to 0.

To get a 0 at the output of F, one of its inputs must be set to 1. Since the output of B
is SAQ, input 7, must be set to 1. The output of gate C then assumes the value 0 which,
together with the 0 on I3, causes the output of gate G to become 1. The sensitized path
is now inhibited, so there does not appear to be a test for the fault. But a test does exist.
The input assignment (0,0,0,0) will detect a SAO fault at the output of gate B.

4.3 THE D-ALGORITHM

The inability to generate a test for the fault at the output of gate B in Figure 4.3
occurred because the sensitized path procedure always attempts to propagate fault

Figure 4.3 Effect of reconvergent fanout.

THE D-ALGORITHM 171

symptoms through a single path. In the example it was necessary to make a choice
because of the presence of fanout. In fact, that was the problem with the first exam-
ple, that used Figure 4.1. It was not necessary to perform that last operation in which
I5 was changed from 1 to 0. Even though the D and D canceled each other out at gate
N, the D at the output of gate M would have propagated through gate O and made it
to the output as a D. Rather than make a choice, the D-algorithm is capable of prop-
agating a sensitized signal through all paths when it encounters a net with fanout.

We start by formally defining the D-notation of Roth by means of the following
table.> The D simultaneously represents the signal value on the good circuit (GC)
and the faulted circuit (FC) according to the following table:

FC

G 0 1
0 0 D
1 D 1

Conceptually, the D represents logic values on two superimposed circuits. When the
good circuit and the faulted circuit have the same value, the composite circuit value
will be 0 or 1. When they have different values, the composite circuit value will be
D, indicating a 1 on the good circuit and 0 on the faulted circuit, or D, indicating a 0
on the good circuit and 1 on the faulted circuit.

At the output of gate B in Figure 4.3, where a SAQ fault was assigned, the fault-free
circuit must have logic value 1; therefore a D is assigned to that net. The goal is to
propagate this D to a primary output. Since the output of B drives two NOR gates, the
D is assigned to an input of gate £ and to an input of gate F. Suppose we require that the
other input to both of these NOR gates be the nonblocking value; that is, we assign
I, =1, =0. What value appears at the outputs of £ and F? The inputs are 0 and D on
both NOR gates, and the D represents 1 on the good circuit and 0 on the faulted circuit.
So NOR gate inputs 0 and 1 are ORed together and inverted to give a 0 on the output of
the fault-free circuit, and NOR gate inputs 0 and O are ORed and inverted to give a 1 on
the output of the faulty circuit. Hence, the outputs of gates E and F are both D.

Two sensitized paths, both of which have the value D, are now converging on H.
If NOR gates D and G both have output O, then the inputs to H are (0,0,0,0) for the
good circuit and (0,1,1,0) for the faulted circuit. Since H is a NOR gate, its output is
1 for the good circuit and O for the faulted circuit; that is, its output is a D. However,
we are not yet done. We need to obtain O from gates D and G. Since all of the inputs
are assigned, all we can do is inspect the circuit and hope that the input assignments
satisfy the requirement D = G = 0. Luckily, that turns out to be the case.

4.3.1 The D-Algorithm: An Analysis

A small example was analyzed rather quickly, and it was possible to deduce with lit-
tle difficulty what needed to be done at each step. A more rigorous framework will

172 AUTOMATIC TEST PATTERN GENERATION

now be provided. We begin with a brief description of the cube theory that Roth
used to describe the D-algorithm.
A singular cube of a function is defined as an assignment

(X ey Xy Vo oo V) = (€1, €9, o€, 1)

where the x; are inputs, the y; are outputs, and ¢; € {0, 1, X}. A singular cube in
which all input coordinates are O or 1 is called a vertex. A vertex can be obtained
from a singular cube by converting all Xs on input coordinates to Os and 1s.

A singular cube a contains the singular cube b if b can be obtained from a by
changing some of the Xs in a to 1s and Os. Alternatively, a contains b if it contains
all of the vertices of b. The intersection of two singular cubes is the smallest singular
cube containing all of their common vertices. It is obtained through use of the inter-
section operator that operates on corresponding coordinates of two singular cubes
according to the following table:

I 0 1 X
0 0 — 0
1 — 1 1
X 0 1 X

The dash (—) denotes a conflict. If one singular cube has a 0 in a given position and
the other has a 1, then they are in conflict; the intersection does not exist. Two singu-
lar cubes are consistent if a conflict at their output intersections implies a conflict on
their input intersections. In terms of digital logic, this simply says that a stimulus
applied to a combinational logic circuit cannot produce both a 1 and a 0 on an out-
put. The term singular is used to denote the fact that there is a one-to-one mapping
between input and output parts of the cube. We will henceforth drop the term singu-
lar; it will be understood that we are talking about singular cubes. Furthermore, to
simplify notation, we will restrict our attention in what follows to single output
cubes, the definitions being easily generalized to the multiple output case.

A cover C is a set of pairwise consistent, nondegenerate cubes, all referring to the
same input and output variables. Given a function F, a cover of F is a cover C such
that each vertex v € F is contained in some ¢ € C. A prime cube of a cover is one
that is not