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Foreword

In the latter part of the twentieth century, the topic of generalizations of
convex functions has attracted a sizable number of researchers, both in math-
ematics and in professional disciplines such as economics/management and
engineering. In 1994 during the 15th International Symposium on Mathemat-
ical Programming in Ann Arbor, Michigan, I called together some colleagues
to start an affiliation of researchers working in generalized convexity. The
international Working Group of Generalized Convexity (WGGC) was born.
Its website at www.genconv.org has been maintained by Riccardo Cambini,
University of Pisa.

Riccardo’s father, Alberto Cambini, and Alberto’s long-term colleague
Laura Martein in the Faculty of Economics, University of Pisa, are the co-
authors of this volume. My own contact with generalized convexity in Italy
dates back to my first visit to their department in 1980, at a time when the first
international conference on generalized convexity was in preparation. Thirty
years later it is now referred to as GC1, an NATO Summer School in Van-
couver, Canada. Currently WGGC is preparing GC9 which is to take place in
Kaohsiung, Taiwan. As founding chair and also current chair of WGGC, I am
delighted to see the continued interest in generalized convexity of functions,
augmented by the topic of generalized monotonicity of maps.

Eight international conferences have taken place in this research area, in
North America (2), Europe (5) and Asia (1). We thought it was now time to
return to Asia since our membership has shifted towards Asia.

As an applied mathematician I have taught mostly in management schools.
However, I am currently in the process of joining an applied mathematics
department. One of the first texts I will try out with my mathematics students
is this volume of my long-term friends from Pisa. I recommend this volume to
anyone who is trying to teach generalized convexity/generalized monotonicity
in an applied mathematics department or in a professional school. The volume
is suitable as a text for both. It contains proofs and exercises. It also provides
sufficient references for those who want to dig deeper as graduate students
and as researchers. With dedication and much love the authors have written a
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book that is useful for anyone with a limited background in basic mathematics.
At the same time, it also leads to more advanced mathematics.

The classical concepts of generalized convexity are introduced in Chaps. 2
and 3 with separate sections on non-differentiable and differentiable functions.
This has not been done in earlier presentations. Chapter 4 deals with the
relationship of optimality conditions and generalized convexity. One of the
reasons for a study of generalized convexity is that convexity usually is just a
convenient sufficient condition. In fact most of the time it is not necessary. And
it is a rather rigid assumption, often not satisfied in real-world applications.
That is the reason why economists have replaced it by weaker assumptions in
more contemporary studies. In fact, some of the progress in this research area
is due to the work of economists. I am glad that the new book emphasizes
economic applications.

In Chap. 5 the transition from generalized convexity to generalized mono-
tonicity occurs. Historically, this happened only around 1990 when I was
working with the late Stepan Karamardian after joining the University of
California at Riverside. He was a former PhD student of George Dantzig
at the University of California at Berkeley. We collaborated on the last two
papers he published, both on generalized monotonicity. (a new research area)
We had opened up together.

In 2005 Nicolas Hadjisavvas, Sandor Komlosi and I completed the first
Handbook of Generalized Convexity and Generalized Monotonicity with con-
tributions from many leading experts in the field, including Alberto Cambini
and Laura Martein, a proven team of co-authors who in their unique colorful
way have left an imprint in the field. The new book is further evidence of their
style.

Chapters 6 and 7 are devoted to specialized results for quadratic functions
and fractional functions. With this the authors follow the outline of the first
monograph in this research area, Generalized Concavity by Mordecai Avriel,
Walter E. Diewert, Siegfried Schaible and Israel Zang in 1988. Chapter 8 con-
tains algorithmic material on solving generalized convex fractional programs.
It defeats the objection sometimes raised that the area of generalized convex-
ity lacks algorithmic contributions. It is true that there could be more results
in this important direction on a topic which by nature is theoretical. Perhaps
the presentation in Chap. 8 will motivate others to take up the challenge to
derive more results with a computational emphasis.

Today Generalized Concavity (1988) is available to us as the first volume on
the topic, together with the comprehensive Handbook of Generalized Convexity
and Generalized Monotonicity (2005), an edited volume of 672 pages, writ-
ten by 16 different researchers including Alberto Cambini and Laura Martein.
In addition, the published proceedings of GC1–GC8 are available from rep-
utable publishing houses. The proceedings of GC9 will appear partially in the
prestigious Taiwanese Journal of Mathematics.

As somebody who has participated in all the conferences, GC1–GC8,
and who is co-organizing GC9 together with Jen-Chih Yao, Kaohsiung and
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who has been involved in most publications mentioned before, I congratulate
the authors for having produced such a fine volume in this growing area of
research. Like me they stumbled into it when no monographs on the topic
were available. I can see the usefulness of the book for teaching and research
for generations to come. Its technical level makes it suitable for undergraduate
and graduate students. The level is pitched wisely. The book is more accessible
than the Handbook as it assumes less background knowledge about the topic.
This is not surprising as the purpose of the Handbook is different. The new
book can serve as an up-to-date link to the Handbook. It also saves the reader
from going through the earlier proceedings with more dated results.

As someone who, like the authors, has not departed from the area of
generalized convexity in his career, I can highly recommend this excellent new
volume in our community of researchers. WGGC has been the background for
most recent publications in our field of study. It is the excitement of working
in teams which has been promoted by WGGC. A sense of community very
common in Italy is the background of this new volume. It made me happy
when I reviewed the manuscript first. I hope that many readers will come to
the same conclusion. My thanks and congratulations go to the authors for a
job well done.

I want to thank the authors for having taken the time to write Generalized
Convexity and Optimization with Economic Applications and for their diligent
effort to produce an up-to-date text and wish the book much success among
our growing community of researchers.

Riverside, California, Siegfried Schaible
June 2008 Chair of WGGC
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1

Convex Functions

1.1 Introduction

Convex and concave functions have many important properties that are useful
in Economics and Optimization. In this Chapter the basic properties of con-
vex and concave functions are explained, including some fundamental results
involving these functions. In particular, the role of convexity and concavity
in Optimization is stressed. Since a function f is concave if and only if −f is
convex, any result related to a convex function can easily be translated for a
concave function. For this reason only the proofs related to convex functions
are presented. For the sake of completeness, the corresponding results for the
concave case are summarized in Appendix B.

1.2 Convex Sets

From a geometrical point of view, a set S ⊆ �n is convex if, for any two
points in S, the line segment connecting these two points lies entirely in S
(see Fig. 1.1).

x2

x1

Fig. 1.1. Convex and not convex set

Formally, we have the following definition.
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Definition 1.2.1. A set S ⊆ �n is convex if

x1, x2 ∈ S ⇒ λx1 + (1 − λ)x2 ∈ S, ∀λ ∈ [0, 1]. (1.1)

The point x = λx1 + (1 − λ)x2, λ ∈ [0, 1], is said to be a convex combination
of x1 and x2. By [x1, x2] = {x ∈ S : x = λx1 + (1 − λ)x2, λ ∈ [0, 1]} we shall
denote the closed line segment joining x1 and x2.
By convention, the empty set and the singleton set (a set consisting of a sin-
gle point) are considered convex sets. The following are simple examples of
convex sets:
• The whole set �n;
• The line through x0 and direction u: r = {x ∈ �n : x = x0 + tu, t ∈ �};
• The hyperplane H = {x ∈ �n : αT x = β}, α ∈ �n, α �= 0, β ∈ �;
• The closed half-spaces associated with H : H+ = {x ∈ �n : αT x ≥ β},
H− = {x ∈ �n : αT x ≤ β}.

Theorem 1.2.1. The intersection of an arbitrary family of convex sets is
convex.

Proof. See Exercise 1.2.

Definition 1.2.2. A convex combination of finitely many points xi ∈ �n,
i = 1, ..., k, is a point x of the form

x =
k∑

i=1

λixi,

k∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., k.

The following theorem characterizes a convex set in terms of convex combi-
nations of its points.

Theorem 1.2.2. A set S ⊆ �n is convex if and only if every convex combi-
nation of finitely many points of S belongs to S.

Proof. Suppose that S is convex. The proof proceeds by induction on the
number k of points. For k = 2 the thesis is true by definition. Assuming that
every convex combination of k points of S belongs to S, we must prove that
every convex combination of k + 1 points x1, ..., xk, xk+1 ∈ S is a point of S.

Let z =
k+1∑
i=1

λixi,

k+1∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., k+1. If λk+1 = 0 or λk+1 = 1,

then z ∈ S by assumption. In any other case we can re-write z in the form

z = µ

k∑
i=1

λi

µ
xi + λk+1xk+1, µ =

k∑
i=1

λi = 1 − λk+1 > 0.

The induction assumption implies that the convex combination of k points

x̄ =
k∑

i=1

λi

µ
xi belongs to S so that we have z = µx̄ + (1 − µ)xk+1, that is z is

a convex combination of two points of S and so z ∈ S.
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The sufficiency follows by noting that we can consider, in particular, every
convex combination of two points in S so that S is convex by definition.

1.2.1 Topological Properties of Convex Sets

A key theorem is the following.

Theorem 1.2.3. Let S ⊆ �n be a convex set with intS �= ∅. Let x1 ∈ clS and
x2 ∈ intS. Then, λx1 + (1 − λ)x2 ∈ intS for all λ ∈ [0, 1).

Proof. The assumption x2 ∈ intS implies the existence of a ball B(x2, ε) of
radius ε > 0 and center x2 such that B(x2, ε) = {x :‖ x − x2 ‖< ε} ⊂ S.
We prove that each point y = λx1 + (1 − λ)x2, λ ∈ (0, 1) is an interior
point showing that the ball B(y, (1 − λ)ε) ⊂ S, i.e., every point z such that
‖ z − y ‖< (1 − λ)ε belongs to S. Set R = (1−λ)ε−‖z−y‖

λ . Since x1 ∈ clS there
exists a point z1 ∈ S such that ‖ z1 − x1 ‖< R. Let z2 = z−λz1

1−λ . We have
‖ z2 − x2 ‖= 1

1−λ ‖ z − λz1 − (1 − λ)x2 ‖≤ 1
1−λ ‖ z − λz1 − (y − λx1) ‖≤

≤ 1
1−λ ‖ z − y ‖ +λ ‖ z1 − x1 ‖< 1

1−λ (‖ z − y ‖ +λ (1−λ)ε−‖z−y‖
λ ) = ε.

Consequently, z2 ∈ S. By definition of z2 we have z = λz1 + (1 − λ)z2, i.e.,
z is a convex combination of two points of S and thus z ∈ S. The proof is
complete.

Theorem 1.2.4. Let S ⊆ �n be a convex set with intS �= ∅. Then, the fol-
lowing conditions hold:
(i) clS is convex;
(ii) intS is convex;
(iii) cl(intS) = clS;
(iv) int(clS) = intS.

Proof. (i) Let x1, x2 ∈ clS and let z ∈ intS. By Theorem 1.2.3, λx1+(1−λ)z ∈
intS for all λ ∈ [0, 1) so that µx2 + (1 − µ)(λx1 + (1 − λ)z) ∈ intS for all
µ ∈ [0, 1). Taking the limit as λ approaches 1, we have µx2 + (1−µ)x1 ∈ clS.
(ii) This follows directly from Theorem 1.2.3 by noting that the interior point
x1 is obtained for λ = 1.
(iii) Since intS ⊆ S, we have cl(intS) ⊆ clS. Consider now z ∈ clS and let
x ∈ intS. By Theorem 1.2.3, z + λ(x − z) ∈ intS, ∀λ ∈ (0, 1]; consequently,
z + 1

n (x − z) ∈ intS for all n so that taking the limit as n approaches +∞,
we have z ∈ cl(intS) and thus clS ⊆ cl(intS).
(iv) Since S ⊆ clS, we have intS ⊆ int(clS). Let z ∈ int(clS); then, there
exists ε > 0 such that the closed ball B̄(z, ε) = {x :‖ x−x2 ‖≤ ε} is contained
in clS. Let x ∈ intS and put y = z + ε z−x

‖z−x‖ ∈ B. By simple calculations,
setting λ = ε

ε+‖z−x‖ , we have z = λx + (1 − λ)y, so that z ∈ intS by Theo-
rem 1.2.3. Consequently int(clS) ⊆ intS and thus int(clS) = intS.
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Remark 1.2.1. Property (iii) of Theorem 1.2.4 implies that every boundary
point of S is a limit point of a sequence of interior points of S.

The following theorem points out that every interior point of a convex set S
may be expressed as a convex combination of two points of S, one of which is
arbitrary.

Theorem 1.2.5. Let S ⊆ �n be a convex set with intS �= ∅. Then, z ∈ intS
if and only if for every x ∈ S there exists µ > 1 such that x + µ(z − x) ∈ S.

Proof. See Exercise 1.5.

1.2.2 Relative Interior of Convex Sets

The properties stated in the previous theorems are established assuming that
the set of interior points of a convex set is nonempty; sometimes such an
assumption may appear to be a restrictive condition. For instance, a line on
the plane or a triangle in the ordinary space or, in general, a convex set which
lies entirely in a linear manifold, does not have interior points. In order to
extend the previous results to every convex set it is necessary to introduce
the concept of the relative interior of a convex set.
Let S be a convex set and let W be the smallest linear manifold containing S.
Then, the relative interior of S, denoted by riS, is the set of all interior points
of S with respect to the topology induced by �n on W ; in others words, a
point x0 ∈ riS if and only if there exists a ball B of radius ε and center x0

such that B ∩ S ⊂ W .
Obviously, riS = intS if and only if W = �n. In contrast to intS the relative
interior has the fundamental property that riS �= ∅ for every nonempty convex
set (see Exercise 1.9).
Properties stated in Theorems 1.2.3, 1.2.4 and 1.2.5 may be restated in terms
of the relative interior of a convex set.

Theorem 1.2.6. Let S ⊆ �n and let x1 ∈ clS and x2 ∈ riS. Then, λx1 +
(1 − λ)x2 ∈ riS for all λ ∈ [0, 1).

Theorem 1.2.7. Let S ⊆ �n be a nonempty convex set. Then, the following
conditions hold:
(i) riS �= ∅;
(ii) riS is convex;
(iii) cl(riS) = clS;
(iv) ri(clS) = riS;
(v) z ∈ riS if and only if for every x ∈ S there exists µ > 1 such that
x + µ(z − x) ∈ S.

1.2.3 Extreme Points and Extreme Directions

A point x belonging to a convex set S ⊆ �n is said to be an extreme point
of S if it is not possible to express x as a convex combination of two distinct
points of S.
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The following example points out that the set of extreme points may be empty,
finite, or infinite.

Example 1.2.1.
• A line does not have extreme points while a closed half-line has only one
extreme point;
• A rectangle has four extreme points in its vertices;
• Every boundary point of a ball is an extreme point of the ball.

Regarding the existence of an extreme point, we have the following theorem
(see [234]).

Theorem 1.2.8. The set of all extreme points of a compact convex set S
is nonempty. Furthermore, every x ∈ S may be expressed as a convex
combination of finitely many extreme points of S.

The last statement of Theorem 1.2.8 cannot be extended to an unbounded
convex set. For instance, a point of a closed half-line starting from x0 cannot
be expressed as a convex combination of its only extreme point x0. This
motivates the introduction of the concepts of recession direction and extreme
direction. Consider, firstly, the following theorem.

Theorem 1.2.9. Let S ⊆ �n be a closed convex set. Then, S is unbounded
if and only if there exists a half-line contained in S. Furthermore, if the half-
line x = x0 + td, t ≥ 0 is contained in S then, for every y ∈ S, the half-line
x = y + kd, k ≥ 0 is contained in S.

Proof. Obviously, the existence of a half-line contained in S implies the
unboundedness of S. Viceversa, the unboundedness of S implies the exis-
tence of a sequence {xn} ⊂ S such that lim

n→+∞ ‖ xn ‖= +∞. Let x0 ∈ S;

without loss of generality we can suppose that the sequence
{

xn−x0
‖xn−x0‖

}
con-

verges to a point d ∈ �n\{0}. In order to reach the thesis it is sufficient to
prove that the half-line x0 + td, t ≥ 0, is contained in S. The convexity of
S implies x0 + λ(xn − x0) ∈ S for all λ ∈ [0, 1]. For any fixed t > 0 choose
λn = t

‖xn−x0‖ ; the sequence
{
x0 + t

‖xn−x0‖ (xn − x0)
}

is contained in S so
that its limit, given by x0 + td, belongs to the closure of S for all t ≥ 0. The
thesis is achieved since clS = S.
The last statement of the theorem still needs to be proven. Since the half-
line x = x0 + td, t ≥ 0, is contained in S, we have xn = x0 + nd ∈ S for
all n. The convexity of S implies that, for every y ∈ S, y + λ(xn − y) =
y + λ(xn − x0) + λ(x0 − y) = y + λnd + λ(x0 − y) ∈ S for all λ ∈ [0, 1]. For
any fixed t ≥ 0 choose λn = t

n ; the sequence y + t
nnd + t

n (x0 − y) converges
to y + td so that y + td ∈ clS = S for all t ≥ 0. The proof is complete.

A direction d ∈ �n such that for every y ∈ S, the half-line x = y + kd, k ≥ 0
is contained in S, is called a recession direction.
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Theorem 1.2.9 establishes that the set of recession directions of a closed con-
vex set S is nonempty if and only if S is unbounded.
A recession direction d is said to be an extreme direction if it is not possible
to express d as a convex combination of two distinct recession directions.
Regarding the existence of an extreme point and extreme direction for an
unbounded closed convex set, we have the following theorem (see [234]).

Theorem 1.2.10. An unbounded closed convex set containing no lines has at
least one extreme point and one extreme direction.

The following fundamental representation theorem holds (see [234]).

Theorem 1.2.11. Let S ⊆ �n be a closed convex set containing no lines.
Then, x ∈ S if and only if x can be expressed as the sum x = y + d, where
y is a convex combination of extreme points of S and d is a positive linear
combination of extreme directions.

A polyhedron, defined as the intersection of finitely many closed half-spaces,
is a special convex set having a finite number of extreme points and extreme
directions. The extreme points of a polyhedron are also called vertices of the
polyhedron. A bounded polyhedron is called a polytope.

1.2.4 Supporting Hyperplanes and Separation Theorems

Theorems of separation play a fundamental role in Optimization. We will limit
ourselves to presenting some basic results which will be utilized later.
Let S be a convex subset of �n and let x0 be a boundary point of S.
A supporting half-space to S at x0 is a closed half-space containing S.
A supporting hyperplane to S at x0 is the boundary of a supporting half-space
to S at x0.
In other words, the hyperplane Hx0 = {x ∈ �n : αT x = αT x0} is a supporting
hyperplane to S at x0 if either S ⊆ H+

x0
= {x ∈ �n : αT x ≥ αT x0} or else

S ⊆ H−
x0

= {x ∈ �n : αT x ≤ αT x0}.
Without loss of generality we can assume that S ⊆ H+

x0
by replacing α with

−α if necessary.

Definition 1.2.3. Let S, T be two subsets of �n.
A hyperplane H = {x ∈ �n : αT x = β} is said to separate S and T if
αT x ≥ β, ∀x ∈ S, and αT x ≤ β, ∀x ∈ T .

In Fig. 1.2, a supporting hyperplane and a separating hyperplane are depicted.
Some fundamental results related to the existence of a supporting hyperplane
and to the existence of a separation hyperplane are found in the following
theorems whose proofs can be found in any text-book (see references at the
end of this Chapter).

Theorem 1.2.12. (Separation of a convex set and a point)
Let S be a closed convex subset of �n and let y0 /∈ S. Then, there exist
α ∈ �n\{0}, x0 ∈ S such that αT x ≥ αT x0 for all x ∈ S and αT y0 < αT x0.
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Theorem 1.2.13. (Existence of a supporting hyperplane at a boundary point)
Let S be a closed convex subset of �n and let x0 be a boundary point of S.
Then, there exists α ∈ �n\{0} such that αT x ≥ αT x0 for all x ∈ S.

x0

Supporting hyperplane Separating hyperplane

Fig. 1.2. Separating hyperplanes

Theorem 1.2.14. (Separation of two sets)
Let S1 and S2 be nonempty convex sets in �n. Then, there exists a hyperplane
which separates S1 and S2 if and only if riS1 ∩ riS2 = ∅.
The following corollary shows that every closed convex set can be represented
as the intersection of closed half-spaces.

Corollary 1.2.1. Let S be a closed convex subset of �n. Then, S is the
intersection of all its supporting half-spaces, i.e., S =

⋂
x0∈S

H+
x0

.

Proof. Obviously, S is contained in the intersection of all half-spaces H+
x0

. Let
y ∈ ⋂

x0∈S

H+
x0

and suppose that y /∈ S. Then, from Theorem 1.2.12, there exists

a supporting hyperplane at a point x0 belonging to the boundary ∂S of S such
that y /∈ H+

x0
and this is a contradiction.

1.2.5 Convex Cones and Polarity

A cone (with vertex at zero) in �n is a nonempty set C satisfying the following
property:

x ∈ C, k ≥ 0 ⇒ kx ∈ C.

A convex cone is a cone which is convex as a set.

Half-lines, lines, subspaces, and half-spaces through the origin are examples of
convex cones. The union of disjoint closed convex cones generates non-convex
cones.
A cone is convex if and only if it is closed under the operations of addition and
multiplication by a non-negative scalar as is shown in the following theorem.
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Theorem 1.2.15. A set C ⊆ �n is a convex cone if and only if the following
properties hold:
(i) x ∈ C, k ≥ 0 ⇒ kx ∈ C;
(ii) x, y ∈ C ⇒ x + y ∈ C.

Proof. If C is a convex cone, (i) follows by definition of a cone. Further-
more, if x, y ∈ C, the convexity of C implies 1

2x + 1
2y ∈ C and thus

2 · (1
2x + 1

2y) = x + y ∈ C, so that (ii) holds.
Assume now the validity of (i) and (ii) and let x, y ∈ C. Then, from (i) C
is a cone so that λx ∈ C, λ ≥ 0, (1 − λ)y ∈ C, λ ≤ 1, and from
(ii) λx + (1 − λ)y ∈ C, 0 ≤ λ ≤ 1, i.e., C is convex.

Corollary 1.2.1 may be specified in the case where S is a closed convex cone
obtaining the following corollary.

Corollary 1.2.2. Let C be a closed convex cone in �n. Then, C is the
intersection of all its supporting half-spaces at the origin.

Proof. Taking into account Corollary 1.2.1, it is sufficient to prove that a
supporting hyperplane Hx0 to C at x0 ∈ ∂C passes through the origin.
We have αT x ≥ αT x0, ∀x ∈ C. Since kx0 ∈ C for all k > 0 we have
kαT x0 ≥ αT x0, ∀k > 0, that is (k − 1)αT x0 ≥ 0, ∀k > 0 and this last inequal-
ity holds if and only if αT x0 = 0.

In some problems we are interested in the existence of a strict supporting
hyperplane to C at the origin, i.e., in the existence of a supporting hyper-
plane H such that H ∩ C = {0}. In order to fully illustrated this important
aspect, we shall first introduce, the notion of polarity.

Definition 1.2.4. Let C be a cone in �n. Then, the positive polar of C,
denoted by C+, is given by C+ = {α ∈ �n : αT c ≥ 0, ∀ c ∈ C}.
The opposite of C+ is referred to as the negative polar of C and is denoted
by C−. Equivalently, C− = {α ∈ �n : αT c ≤ 0, ∀ c ∈ C}.
Remark 1.2.2. It follows immediately from the definition that polarity is order-
inverting, i.e., if C1 ⊂ C2 then C+

1 ⊃ C+
2 .

The following theorem states the structure of C+ and, in addition, it charac-
terizes the elements of a closed convex cone in terms of its positive polar and
viceversa.

Theorem 1.2.16. Let C be a closed convex cone in �n. Then:
(i) C+ is a closed convex cone;
(ii) c ∈ C if and only if αT c ≥ 0 for all α ∈ C+;
(iii) c ∈ intC if and only if αT c > 0 for all α ∈ C+\{0};
(iv) C = C++, where C++ is the positive polar of C+;
(v) α ∈ intC+ if and only if αT c > 0 for all c ∈ C\{0}.
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Proof. (i) Let α1, α2 ∈ C+. Then, we have αT
1 c ≥ 0, αT

2 c ≥ 0 for all c ∈ C,
so that (α1 + α2)T c ≥ 0 and kαT

1 c ≥ 0, for all k ≥ 0. It follows, from Theo-
rem 1.2.15, that C+ is a convex cone. Consider now a sequence {αn} ⊂ C+

converging to an element α. By means of the continuity of the scalar product,
and by taking the limit in αT

n c ≥ 0, we obtain αT c ≥ 0 for all c ∈ C. Conse-
quently, C+ is a closed cone.
(ii) Taking into account the definition of C+, we must prove that the con-
dition αT c ≥ 0, ∀α ∈ C+ implies c ∈ C. If not, by Theorem 1.2.12 and by
Corollary 1.2.2, there exist γ ∈ �n\{0}, c0 ∈ ∂C, such that γT x ≥ γT c0 =
0, ∀x ∈ C and γT c < 0. The former inequality implies γ ∈ C+ contradicting
the latter which implies γ �∈ C+.
(iii) Let c ∈ intC. From (ii) we have αT c ≥ 0 for all α ∈ C+. Assume, by
contradiction, the existence of α ∈ C+, α �= 0, such that αT c = 0. Since c is
an interior point, there exists ε > 0 such that c + ε d ∈ C for every direc-
tion d of unitary norm. It follows that αT (c + ε d) = εαT d ≥ 0 for all d and
this is absurd since, by choosing d∗ = − α

‖α‖ , we have εαT d∗ < 0. Assume
now αT c > 0 for all α ∈ C+\{0}. We must prove that c ∈ intC. If not,
taking into account (ii), we have c ∈ ∂C so that, by Theorem 1.2.13, there
exists γ ∈ �n\{0} such that γT x ≥ γT c = 0, ∀x ∈ C, which contradicts the
assumption.
(iv) By applying (ii) to the polar cone C+, we have α ∈ C+ if and only if
zT α ≥ 0 for all z ∈ C++. By comparing this last inequality with (ii), the
thesis is achieved.
v) This follows by applying (iii) to the polar cone C+, taking into account
that C++ = C.

Remark 1.2.3. The proof of (i) of Theorem 1.2.16 points out that C+ is a
closed convex cone even if C is not closed and/or convex.

From (v) of Theorem 1.2.16, the existence of a strict supporting hyperplane to
C at the origin is equivalent to the condition intC+ �= ∅. As we will see, this
last condition is strictly related to the non-existence of lines contained in C. A
closed cone which does not contain lines, i.e., c ∈ C implies −c �∈ C, is called a
pointed cone. Equivalently, C is a pointed cone if and only if C∩ (−C) = {0}.
The set C ∩ (−C) is called the lineality space of C and it is denoted by �(C).
The following theorem holds, where dim C+ denotes the dimension of C+,
i.e., the maximum number of linearly independent vectors contained in C+

or, equivalently, the dimension of the smallest subspace containing C+.

Theorem 1.2.17. Let C be a closed convex cone in �n. Then:
(i) �(C) is the largest subspace contained in C;
(ii) dim �(C) + dim C+ = n;
(iii) intC+ �= ∅ if and only if �(C) = {0}.
Proof. (i) Let c ∈ C ∩ (−C); c ∈ C implies kc ∈ C for all k ≥ 0, while
c ∈ −C implies −kc ∈ C for all k ≥ 0, so that kc ∈ C ∩ (−C) for all k ∈ �.
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Furthermore, Theorem 1.2.15 implies that C ∩ (−C) is closed with respect
to the addition. It follows that �(C) is a subspace. Let W ⊂ C be a sub-
space; since w ∈ W implies −w ∈ W , we have w,−w ∈ C or equivalently,
w ∈ C ∩ (−C). Consequently W ⊆ �(C) so that �(C) is the largest subspace
contained in C.
(ii) Let c ∈ �(C) and α ∈ C+. Since c,−c ∈ C, we have αT c ≥ 0, αT (−c) ≥ 0,
so that αT c = 0 for all c ∈ �(C). It follows that α ∈ [�(C)]⊥, i.e., C+ ⊆ [�(C)]⊥.
Let V be the smallest subspace containing C+. If V ⊂ [�(C)]⊥, from
C+ ⊆ V ⊂ [�(C)]⊥ we have C++ = C ⊇ V + = V ⊥ ⊃ �(C) and this contra-
dicts (i). Consequently, V = [�(C)]⊥ so that dim C+ = dim V = dim [�(C)]⊥

Since dim �(C) + dim [�(C)]⊥ = n, (ii) follows.
(iii) It follows from (ii) by noting that intC+ �= ∅ if and only if dim V = dim
C+ = n or, equivalently, if and only if dim �(C) = 0, i.e., �(C) = {0}.

The following corollary, which is a direct consequence of (v) of Theorem 1.2.16
and of (iii) of Theorem 1.2.17, states a necessary and sufficient condition for
the existence of a strict supporting hyperplane to a cone at the origin.
Corollary 1.2.3. Let C be a closed convex cone in �n. Then, there exists
α ∈ �n such that αT c > 0 for all c ∈ C, c �= 0, if and only if C is pointed.
By noting that Theorem 1.2.17 implies riC+ = intC+ with respect to the
topology induced by �n on the subspace [�(C)]⊥, we have the following
theorem which generalizes (v) of Theorem 1.2.16.
Theorem 1.2.18. Let C be a closed convex cone in �n. Then α ∈ riC+ if
and only if
(i) αT c = 0 for all c ∈ �(C);
(ii) αT c > 0 for all c ∈ C\�(C).

1.3 Convex Functions

From a geometrical point of view, a function f is convex provided that the
line segment connecting any two points of its graph lies on or above the graph.
The function f is strictly convex provided that the line segment connecting
any two points of its graph lies above the graph (see Fig. 1.3).

x1 x2 x1 x2

Convex function Strictly convex function

Fig. 1.3. Examples of convex functions

From an analytical point of view, we have the following definitions.
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Definition 1.3.1. Let f be a function defined on a convex set S ⊆ �n.
(i) The function f is said to be convex on S if for every x1, x2 ∈ S

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2), ∀λ ∈ [0, 1]. (1.2)

(ii) The function f is said to be strictly convex on S if for every x1, x2 ∈ S

f(λx1 + (1 − λ)x2) < λf(x1) + (1 − λ)f(x2), ∀λ ∈ (0, 1). (1.3)

A function f defined on a convex set S ⊆ �n is concave if and only if −f is
convex on S. It follows that all the results related to convex functions that we
are going to establish can be easily stated in terms of concave functions. For
the sake of completeness, and also taking into account that concave functions
are more common in Economics, in Appendix B we shall give a summary of
the main properties of concave functions.
Simple examples of convex and concave functions are given below.

Example 1.3.1.
1. An affine function f(x) = aT x+ b, x ∈ �n is both convex and concave (not
strictly);
2. The function f(x) = x + | x |, x ∈ � is convex (not strictly);
3. The function f(x) = ax2 + bx + c, x ∈ � is strictly convex if a > 0 and it
is strictly concave if a < 0.

Obviously, a strictly convex function is convex, too; the converse statement is
not true as it follows from (i) or (ii) of Example 1.3.1.
The inequalities (1.2), (1.3), may be extended to any weighted average of its
values at a finite number of points as is shown in the following theorem.

Theorem 1.3.1. (Jensen’s inequality)
(i) A function f is convex on S if and only if for every x1, ..., xn ∈ S,

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n,

n∑
i=1

λi = 1. (1.4)

(ii) A function f is strictly convex on S if and only if for every x1, ..., xn ∈ S,

f

(
n∑

i=1

λixi

)
<

n∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n,

n∑
i=1

λi = 1. (1.5)

Proof. (i) Suppose that f is convex. The proof proceeds by induction on the
number n of points. For n = 2 the thesis is true by definition. By assuming that
(1.4) is verified for every convex combination of n points, we must prove that

f

(
n+1∑
i=1

λixi

)
≤

n+1∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n + 1,

n+1∑
i=1

λi = 1.
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If λi = 0 for some i, the thesis follows by means of the induction assumption,
otherwise we have (see the proof given in Theorem 1.2.2)

n+1∑
i=1

λixi = µx̄ + (1 − µ)xn+1, µ =
n∑

i=1

λi, x̄ =
n∑

i=1

λi

µ
xi.

By taking into account the convexity of f and the induction assumption, we
have

f

(
n+1∑
i=1

λixi

)
= f(µx̄ + (1 − µ)xn+1) ≤ µf(x̄) + (1 − µ)f(xn+1) ≤

≤ µ

(
1
µ

n∑
i=1

λif(xi)

)
+ λn+1f(xn+1) =

n+1∑
i=1

λif(xi).

The reverse statement follows by noting that if (1.4) is verified for every n of
points it is in particular verified for n = 2, so that by definition f is convex.
(ii) This follows analogously.

Associated with a convex function are the epigraph and the lower level sets
defined, respectively, as follows:

epif = {(x, z) : x ∈ S, z ≥ f(x)}; S≤α = {x ∈ S : f(x) ≤ α}.
A convex function is characterized by the convexity of its epigraph as is shown
in the following theorem.

Theorem 1.3.2. Let f be a function defined on a convex set S ⊆ �n. Then:
(i) f is convex if and only if epif is a convex set;
(ii) f is strictly convex if and only if epif is a convex set and it does not
contain any line segment.

Proof. (i) Let f be convex. If (x1, z1), (x2, z2) ∈ epif , then z1 ≥ f(x1),
z2 ≥ f(x2), so that, for every λ ∈ [0, 1], we have λ(x1, z1) + (1 − λ)(x2, z2) =
(λx1 + (1 − λ)x2, λz1 + (1 − λ)z2) ∈ epif since (λz1 + (1 − λ)z2) ≥ λf(x1) +
(1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2).
Assume now the convexity of epif and let x1, x2 ∈ S.
Since (x1, f(x1)) ∈ epif, (x2, f(x2)) ∈ epif , we have λ(x1, f(x1)) + (1 −
λ)(x2, f(x2)) = (λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)) ∈ epif , ∀λ ∈ [0, 1].
On the other hand (λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)) ∈ epif if
λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2), i.e., if f is convex.
(ii) The proof is similar to the one given in (i).

Regarding the lower level sets of a convex function we have the following
theorem.

Theorem 1.3.3. Let f be a convex function defined on a convex set S ⊆ �n.
Then, S≤α is convex for every α ∈ �.
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Proof. The thesis is true by convention if S≤α = ∅ or S≤α is a singleton
set. The points x1, x2 belong to S≤α if and only if f(x1) ≤ α, f(x2) ≤ α
so that, by means of the convexity of f , we have f(λx1 + (1 − λ)x2) ≤
(λf(x1)+(1−λ)f(x2) ≤ λα+(1−λ)α) = α. It follows that λx1 +(1−λ)x2 ∈
S≤α.

Remark 1.3.1. The necessary condition for a function to be convex stated in
Theorem 1.3.3 is not generally sufficient. For instance, any increasing nonlin-
ear concave single-variable function has convex lower sets but it is not convex.
This fact has led to the introduction of a new class of functions, as we will
see in the next chapter.

1.3.1 Algebraic Structure of the Convex Functions

The class of convex functions defined on a convex set is closed with respect to
the addition and with respect to the non-negative scalar multiplication. More
precisely, we have the following theorem.

Theorem 1.3.4. Let f1, f2, ..., fm be functions defined on a convex set S ⊆
�n and set f(x) =

m∑
i=1

αifi(x), αi ≥ 0. Then:

(i) If fi, i = 1, .., m, are convex on S, then f is convex on S.
(ii) If fi, i = 1, .., m, are strictly convex on S, then f is strictly convex on S.

Proof. See Exercise 1.24.

1.3.2 Composite Function

Another important property is related to the composition product.

Theorem 1.3.5. Let f : S → � be a convex function defined on a convex
set S ⊆ �n and let g : A → � be a non-decreasing convex function, with
f(S) ⊆ A. Then the composite function h(x) = g(f(x)) is convex on S.
Furthermore, if f is strictly convex and g is an increasing convex function,
then h is strictly convex.

Proof. See Exercise 1.25.

Let us note that the requirement of the convexity of g is essential to guar-
anteeing the convexity of the composite function. For instance, the function
h(x) = x is convex, the function g(x) = x3 is an increasing non-convex func-
tion and the composite function f(x) = g(h(x)) = x3 is not convex.
Theorems 1.3.4, 1.3.5 and the analogous ones for concave functions are
sometimes useful in constructing convex or concave functions.
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Example 1.3.2.
1. The function f(x) = eaT x+b, x ∈ �n is convex since the affine function
aT x+b is convex and the exponential function is an increasing convex function.
2. The function f(x) = (aT x + b)2 is convex on S = {x ∈ �n : aT x + b > 0}
since the affine function aT x + b is convex and the square function is an
increasing convex function on the set of positive real numbers.

Example 1.3.3.
1. The power f(x) = xα, x ≥ 0, is strictly concave for 0 < α < 1 and it is
strictly convex for α < 0 and for α > 1;
2. f(x) = log x, x > 0, is strictly concave.

Example 1.3.4. If f is a positive concave function, then z(x) = log f(x) is
concave since the logarithm function is increasing and concave.

Example 1.3.5. If f is a positive concave function, then 1
f is convex. In fact,

z(x) = log 1
f(x) = − log f(x) is convex as the opposite of the concave function

log f(x). It follows that ez(x) = 1
f(x) is convex.

1.3.3 Differentiable and Twice Differentiable Convex Functions

A convex function is continuous on the interior of its domain but not necessar-
ily differentiable. For instance, the convex function f(x) = |x| is continuous
on � but it is not differentiable at x = 0.
From a geometrical point of view, a differentiable function is convex if and
only if its graph lies on or above the tangent in any point of the graph; it is
strictly convex if its graph lies above the tangent in any point of the graph.
From an analytical point of view, the convexity of a function of one variable
may be characterized by means of its first and second derivatives, according
to the following properties:
• Let I be an open interval of the real line. A differentiable function f is
convex on I if and only if for every x0 ∈ I we have

f(x) ≥ f(x0) + f ′(x0)(x − x0), ∀x ∈ I. (1.6)

• Let I be an open interval of the real line. A twice differentiable function f
is convex on I if and only if

f ′′(x) ≥ 0, ∀x ∈ I. (1.7)

The extensions of (1.6) and (1.7) to functions of more variables are given
below.

Theorem 1.3.6. Let f be a differentiable function defined on a nonempty
open convex set S ⊆ �n. Then, f is convex on S if and only if for every
x0 ∈ S

f(x) ≥ f(x0) + (x − x0)T∇f(x0), ∀x ∈ S. (1.8)
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Proof. Assume the convexity of f . Then, for every x0, x ∈ S with x �= x0, we
have f(x0 +λ(x−x0)) ≤ f(x0)+λ(f(x)− f(x0)), ∀λ ∈ [0, 1] or, equivalently,

f(x0 + λ(x − x0)) − f(x0)
λ

≤ f(x) − f(x0).

It follows that lim
λ→0+

f(x0+λ(x−x0))−f(x0)
λ = (x−x0)T∇f(x0) ≤ f(x)− f(x0) so

that (1.8) is verified.
Conversely, let x1, x2 ∈ S. Setting x = x2, x0 = λx1 + (1 − λ)x2 in (1.8), we
obtain

f(x2) ≥ f(λx1 + (1 − λ)x2) + λ(x2 − x1)T∇f(λx1 + (1 − λ)x2). (1.9)

Setting x = x1, x0 = λx1 + (1 − λ)x2 in (1.8), we obtain

f(x1) ≥ f(λx1 + (1− λ)x2) + (1− λ)(x1 − x2)T∇f(λx1 + (1− λ)x2). (1.10)

By multiplying (1.9) and (1.10) by (1−λ) and λ, respectively, and by adding
them up we obtain (1 − λ)f(x2) + λf(x1) ≥ f(λx1 + (1 − λ)x2), ∀λ ∈ [0, 1],
i.e., the convexity of the function.

The following theorem points out that there is a strict and useful connec-
tion between the convexity of a function and the convexity of its restriction
along lines.

Theorem 1.3.7. Let f be a function defined on a convex set S ⊆ �n. Then,
f is convex (strictly convex) on S if and only if the restriction of f to each
line segment contained in S is a convex (strictly convex) function.

Proof. Let ϕ(t) = f(x0 + tu), t ∈ I, be the restriction of f on a line through
x0 ∈ S. Assuming the convexity of f , we must prove that ϕ(t) is convex, too,
i.e., ϕ(λt1+(1−λ)t2) ≤ λϕ(t1)+(1−λ)ϕ(t2), λ ∈ [0, 1]. Setting x1 = x0+t1u,
x2 = x0 + t2u, we have λx1 + (1 − λ)x2 = x0 + (λt1 + (1 − λ)t2)u so that
f(λx1 + (1 − λ)x2) = f(x0 + (λt1 + (1 − λ)t2)u) = ϕ(λt1 + (1 − λ)t2). The
convexity of f implies f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) or, equiv-
alently, ϕ(λt1 + (1 − λ)t2) ≤ λϕ(t1) + (1 − λ)ϕ(t2).
Assume now that every restriction of f on a line segment is convex; we must
prove that f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2), λ ∈ [0, 1]. We have
f(λx1 +(1−λ)x2) = f(x2 +λ(x1−x2)) = ϕ(λ). The convexity of ϕ(λ) implies
ϕ(λ · 1 + (1 − λ) · 0) ≤ λϕ(1) + (1 − λ)ϕ(0), i.e., the thesis.

The previous theorem is a simpler way to obtain a characterization that is
easier to check than (1.8) when the function is continuously twice differen-
tiable.

Theorem 1.3.8. Let f be a continuously twice differentiable function on a
nonempty open convex set S ⊆ �n. Then, f is convex on S if and only if its
Hessian matrix H(x) is positive semidefinite at each point x of S.
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Proof. Let x0 ∈ S, d ∈ �n and consider the restriction ϕ(t) = f(x0 + td) with
t such that x0 + td ∈ S. The thesis follows from Theorem 1.3.7 and from (1.7),
taking into account that ϕ′′(t) = dT H(x0 + td)d.

1.4 Convexity and Homogeneity

In this section we will point out the connection between homogeneity and
convexity.

Definition 1.4.1. Let C ⊆ �n be a convex cone. A function f : C → � is
said to be homogeneous of degree α ∈ � if for every x ∈ C

f(tx) = tαf(x), ∀t > 0.

In particular, a function f is homogeneous of degree zero, if for every x ∈ C
f(tx) = f(x), ∀t > 0; while a function f is said to be linearly homogeneous if
it is homogeneous of degree one, i.e., for every x ∈ C, f(tx) = tf(x), ∀t > 0.
Homogeneous functions appear frequently in Economics. For instance:
• The demand function D(p, R) = R

p , where p > 0 is the price of a good
and R > 0 is the income, is homogeneous of degree zero; this means that the
demand does not change if both the income and the price double, triple, ...,
as may happen when there is a change in the monetary unit;
• The production function f(L, K) = L

1
3 K

2
3 , where L > 0 is the labour

and K > 0 is the capital, is homogeneous of degree one; this means that
the production doubles, triples, .. if both the labour and the capital double,
triple,... This kind of property is expressed in Economics by saying that f
exhibits constant returns to scale.
Some other examples will be presented in Sect. 2.4.
The following theorem states some properties of homogeneous functions.

Theorem 1.4.1.
(i) Let f1, f2, ..., fm be homogeneous functions of degree αi, i = 1, ..., m,
respectively, defined on a convex cone C ⊆ �n. Then z(x) = f1(x) · f2(x) · ... ·
fm(x) is homogeneous of degree α1 + α2 + .... + αm.
(ii) Let f1, f2, ..., fm be homogeneous functions of the same degree α defined
on a convex cone C ⊆ �n. Then z(x) = (f1(x) + f2(x) + ... + fm(x))β is
homogeneous of degree αβ.

Proof. See Exercise 1.34.

The following theorem shows that linear homogeneity plus subadditivity
produces convexity.

Theorem 1.4.2. Let f be a linearly homogeneous function defined on a
convex cone C ⊆ �n. Then, f is convex if and only if for every x, y ∈ C

f(x + y) ≤ f(x) + f(y).



1.5 Minima of Convex Functions 17

Proof. Linear homogeneity and convexity imply subadditivity since f(x+y) =
f
(
2(x+y

2 )
)

= 2f(x+y
2 ) ≤ 2(1

2f(x) + 1
2f(y)).

On the other hand subadditivity and linear homogeneity imply convexity since
f(λx + (1 − λ)y) ≤ f(λx) + f((1 − λ)y) = λf(x) + (1 − λ)f(y).

1.5 Minima of Convex Functions

In this section we point out the role of convexity in Optimization. Knowing
whether or not a local minimum is also global is one of the most impor-
tant questions in Optimization. The assumption of convexity gives a positive
answer to this question as is stated in the following theorem.

Theorem 1.5.1. Let S ⊆ �n be a convex set and let f be a convex function
on S. Then:
(i) A local minimum point is also global;
(ii) The set S∗ of all minimum points is a convex set;
(iii) S∗ has at most one element if f is strictly convex.

Proof. (i) Let x0 ∈ S be a local minimum point of f and assume, by contra-
diction, the existence of x∗ ∈ S such that f(x∗) < f(x0). The convexity of S
implies x = λx∗ +(1−λ)x0 ∈ S, ∀λ ∈ [0, 1] and the convexity of the function
implies f(x) ≤ λf(x∗) + (1− λ)f(x0) < λf(x0) + (1−λ)f(x0) = f(x0), ∀λ ∈
(0, 1). In particular, when λ approaches to zero, we have f(x) < f(x0) for
every point x belonging to a neighbourhood of x0, contradicting the local
minimality assumption.
(ii) The thesis follows by convention if S∗ = ∅. Let x0 ∈ S∗ and consider
the lower level set S≤f(x0) = {x ∈ S : f(x) ≤ f(x0)}. Obviously we have
S≤f(x0) = S∗ so that the thesis follows by Theorem 1.3.3.
(iii) Assume, to get a contradiction, the existence of two elements x1, x2 ∈ S∗.
Since f(x1) = f(x2), by the strict convexity of f we have f(λx1 +(1−λ)x2) <
λf(x1)+ (1−λ)f(x2) = f(x1) = f(x2), ∀λ ∈ (0, 1) thereby contradicting the
global minimality assumption.

Knowing whether or not a critical point is a local minimum is another impor-
tant question. Once again, the assumption of convexity gives a positive answer
to this question.

Theorem 1.5.2. Let S ⊆ �n be a convex set and let f be a differentiable
convex function on S. Then, a critical point x0 ∈ S is a global minimum
point.

Proof. See Exercise 1.43.
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1.6 Exercises

1.1. Let B be a ball of center x0 and radius R. Verify that:
1. If z ∈ B, then every point x = x0 + t(z−x0), t ∈ (0, 1), is an interior point
of B;
2. If z1, z2 ∈ B, then every point x = λz1 + (1− λ)z2, λ ∈ (0, 1), is an interior
point of B;
3. B is a convex set;
4. Every boundary point of B is an extreme point.

1.2. Show Theorem 1.2.1.

1.3. Let S, T be convex sets. Prove that:
1. For every α, β ∈ �, Γ = αS + βT is convex. In particular, the sum S + T
and the product for a scalar kS, k ∈ � are convex sets.
2. The cartesian product S × T is convex.

1.4. Let S be a subset of �n. The set of all finitely many convex combinations
of points of S is called the convex hull of S and is denoted by convS. Show
that:
(a) convS is a convex set;
(b) convS is the smallest convex subset containing S.

1.5. Prove Theorem 1.2.5.

1.6. Let S ⊆ �n be a convex set with intS �= ∅. Show that there is at most
one boundary point on every half-line starting from an interior point of S.

1.7. The points x1, x2, ..., xk+1 of �n are said to be affinely independent if
x2 − x1, x3 − x1, ..., xk+1 − x1, are linearly independent. The convex hull of
S = {x1, x2, ..., xk+1} is called a (k-dimensional) simplex. Show that:
1. The smallest linear manifold W containing x1, x2, ..., xk+1 has dimension k;
2. The maximum dimension of a simplex is n.

1.8. Let S be a convex set of �n and let W be the smallest linear manifold
containing S. Show that:
1. dimW = k if and only if the largest simplex contained in S has dimension k;
2. W = �n if and only if W contains a n-dimensional simplex.

1.9. Let S be a nonempty convex set. Prove that riS �= ∅.
1.10. Prove that any point of a compact convex set S may be expressed as a
convex combination of the extreme points of S.

1.11. Prove that any point of a polytope may be expressed as a convex
combination of its vertices.

1.12. Prove that the sum of two convex cones is a convex cone.
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1.13. Let C be a convex cone in �n and let affC be the smallest subspace
containing C. Prove that:
1. affC = C − C;
2. intC �= ∅ if and only if affC = �n.

1.14. Let C be a convex cone with intC �= ∅. Prove that riC+ ∩ riC− = ∅.
1.15. Consider the cones C1, C2 in �n. Prove that C+

1 ∩ C+
2 = (C1 + C2)+.

1.16. Let U , V be closed convex cones in �n such that U∩V = {0}. Prove the
existence of α ∈ �n\{0} such that αT u ≥ 0, ∀ u ∈ U, and αT v ≤ 0, ∀ v ∈ V .

1.17. Let U , V be closed convex cones in �n such that U ∩ V = {0}. If U is
pointed, prove the existence of α ∈ �n\{0} such that αT u > 0, ∀ u ∈ U\{0},
and αT v ≤ 0, ∀ v ∈ V .

1.18. Let U , V be closed convex pointed cones in �n such that U ∩ V = {0}.
Prove the existence of α ∈ �n\{0} such that αT u > 0, ∀ u ∈ U\{0}, and
αT v < 0, ∀ v ∈ V \{0}.
1.19. Consider the linear programming problem

inf cT x, x ∈ S = {x ∈ �n : Ax ≤ b, x ≥ 0}.
Show that the infimum is −∞ or that it is attained at a vertex of S.

1.20. Prove that a function is of the form f(x) = aT x+ b, x ∈ �n if and only
if it is both convex and concave.

1.21. Let S ⊆ �n be a closed convex set. Show that the distance function
d(z) = min

x∈S
‖ z − x ‖ is convex.

1.22. (a) Let fi, i = 1, ..., m, be convex functions defined on the convex set
S ⊆ �n. Show that the function z(x) = max

i∈{1,..,m}
{fi(x)} is convex on S.

(b) Let fi, i = 1, ..., m, be concave functions defined on the convex set S ⊆ �n.
Show that the function z(x) = min

i∈{1,..,m}
{fi(x)} is concave on S.

1.23. Prove that the function f(x1, x2) = xα
1 xβ

2 , x1, x2 > 0, α, β ∈ � is
concave if and only if α ∈ [0, 1], β ∈ [0, 1], α + β ≤ 1 and it is convex if and
only if α ≤ 0, β ≤ 0.

1.24. Prove Theorem 1.3.4.

1.25. Prove Theorem 1.3.5.

1.26. Prove that (i) of Theorem 1.3.4 is equivalent to the following conditions:
1. The sum of two convex functions is a convex function;
2. The product between a convex function and a non-negative real number is
a convex function.
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1.27. Give an example showing that the product of two convex (concave)
functions is not a convex (concave) function.

1.28. Let f(x) = Ax + b be an affine function, where A is an m × n matrix,
b ∈ �m, and let g : �m → � be a convex function. Show that z(x) = g(Ax+b)
is a convex function.
State and prove a similar result for concave functions.

1.29. Show that if z(x) = log f(x) is a convex function, then f(x) is convex.
Give an example showing that the reverse is not true.

1.30. Let f be a negative convex function. Show that z(x) = 1
f(x) is concave.

1.31. Give an example showing that the reciprocal of a positive convex
function is not concave.

1.32. Let f : � → � be a differentiable convex function and let x0 be such
that f ′(x0) > 0. Show that lim

x→+∞f(x) = +∞.

1.33. Let S ⊆ �n be a nonempty open convex set and let f be a differentiable
function on S. Prove that f is strictly convex if and only if for every x0 ∈ S
we have f(x) > f(x0) + (x − x0)T∇f(x0), ∀x ∈ S, x �= x0.

1.34. Prove Theorem 1.4.1.

1.35. Prove that a function of one variable is homogeneous of degree α if and
only if it is of the form f(x) = kxα.

1.36. Let f be a linearly homogeneous function defined on a convex cone
C ⊆ �n. Prove that f is concave if and only if f(x + y) ≥ f(x) + f(y) for
every x, y ∈ C.

1.37. A relevant result regarding homogeneous functions is Euler’s Theorem:
let f be a differentiable function defined on the open convex cone C ⊆ �n.
Then, f is homogeneous of degree α if and only if xT∇f(x) = αf(x), ∀x ∈ C.
By using Euler’s theorem and the first characterization of convex functions,
prove that a differentiable linearly homogeneous function is convex if and only
if xT∇f(x0) ≤ f(x), ∀x, x0 ∈ int�n

+.

1.38. Use Euler’s theorem to prove that the Hessian matrix of a twice dif-
ferentiable linearly homogeneous function is singular at each point of the
domain.

1.39. Find the set of all global minimum points of the function
f(x) = (aT x + b) log(aT x + b), aT x + b > 0, a ∈ �n\{0}.
1.40. Let S ⊆ �n be an open convex set and let f be a non-constant differ-
entiable convex function on S. Show that f cannot have a global maximum.
Can f have a local maximum? Can f have a local strict maximum?
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1.41. Show that the quadratic form f(x) = 1
2xT Ax is convex if and only if

x0 = 0 is a local minimum.

1.42. Show that the convex quadratic function f(x) = 1
2xT Ax+aT x+a0 has

a global minimum point if and only if rankA = rank[A, a].

1.43. Prove Theorem 1.5.2.

1.44. Let S ⊆ �n be a convex set and let f : S → � be a concave function.
Prove that:
1. A local maximum point is also global;
2. The set S∗ of all maximum points is a convex set;
3. S∗ has at most one element if f is strictly concave;
4. If f is differentiable and x0 ∈ S is a critical point, then x0 is a global
maximum point.
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Non-Differentiable Generalized Convex
Functions

2.1 Introduction

In several economic models convexity appears to be a restrictive condition.
For instance, classical assumptions in Economics include the convexity of the
production set in producer theory and the convexity of the upper level sets of
the utility function in consumer theory.
On the other hand, in Optimization it is important to know when a local
minimum (maximum) is also global. Such a useful property is not exclusive
to convexity (concavity).
All this has led to the introduction of new classes of functions which have con-
vex lower/upper level sets and which verify the local-global property, starting
with the pioneer work of Arrow–Enthoven [7].
In this chapter we shall introduce the class of quasiconvex, strictly quasicon-
vex, and semistrictly quasiconvex functions and the inclusion relationships
between them are studied. For functions in one variable, a complete charac-
terization of the new classes is established. Examples of the most important
generalized convex functions in Economics are given.
We shall focus our attention on generalized convexity since a function f is gen-
eralized concave if and only if −f is generalized convex, so that every result
for a generalized convex function can be easily re-stated in terms of general-
ized quasiconcave functions. For the sake of completeness in Appendix B we
shall give a summary of the main properties of generalized concave functions.

2.2 Quasiconvexity and Strict Quasiconvexity

One way to generalize the definition of a convex function is to relax the
convexity condition, and require, from a geometrical point of view, that the
restriction of the function along a line joining any two points in the domain
lies under at least one of the endpoints. A function that verifies such a con-
dition is called quasiconvex. Figure 2.1 shows some examples of quasiconvex
functions.
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Fig. 2.1. Quasiconvex functions

From an analytical point of view, we have the following definition.

Definition 2.2.1. Let f be defined on a convex set S ⊆ �n. The function f
is said to be quasiconvex on S if

f(λx1 + (1 − λ)x2) ≤ max{f(x1), f(x2)} (2.1)

for every x1, x2 ∈ S and for every λ ∈ [0, 1] or, equivalently,

f(x1) ≥ f(x2) implies that f(x1) ≥ f(x1 + λ(x2 − x1)) (2.2)

for every x1, x2 ∈ S and for every λ ∈ [0, 1].

If the inequality in (2.1) is strict, the function is called strictly quasiconvex.
Formally:

Definition 2.2.2. A function f defined on a convex set S ⊆ �n is said to be
strictly quasiconvex if

f(λx1 + (1 − λ)x2) < max{f(x1), f(x2)} (2.3)

for every x1, x2 ∈ S, x1 �= x2, and for every λ ∈ (0, 1) or, equivalently,

f(x1) ≥ f(x2) implies that f(x1) > f(x1 + λ(x2 − x1)) (2.4)

for every x1, x2 ∈ S, x1 �= x2, and for every λ ∈ (0, 1).

It follows immediately, from the given definitions, that a strictly quasicon-
vex function is also quasiconvex; the converse is not true as is shown in the
following example.

Example 2.2.1.

1. The function f(x) =
{ |x|

x x �= 0
0 x = 0

is quasiconvex but not strictly quasi-

convex;
2. Every monotone function of one variable is quasiconvex and every increas-
ing or decreasing function of one variable is strictly quasiconvex; for instance,
the concave function f(x) = log x, x > 0 is strictly quasiconvex.
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As we have just pointed out, quasiconvexity may be viewed as a relaxation
of convexity. Unfortunately, in the new larger class of functions some proper-
ties of convex functions are lost. For instance, as we can deduce from (1) in
Example 2.2.1, a quasiconvex function may have interior discontinuity points,
a local minimum which is not global and an interior global maximum.
The relationships between convexity, strict convexity, quasiconvexity and
strict quasiconvexity are stated in the following theorem.

Theorem 2.2.1. Let S ⊆ �n be a convex set.
(i) If f is convex on S, then f is quasiconvex on S.
(ii) If f is strictly convex on S, then f is strictly quasiconvex on S.
(iii) If f is strictly quasiconvex on S, then f is quasiconvex on S.

Proof. (i) We have:
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1 − λ)f(x2) ≤ λmax{f(x1), f(x2)}+ (1− λ)
max{f(x1), f(x2)} = max{f(x1), f(x2)}.
Similarly we can prove (ii), while (iii) follows directly by definition.

Example 2.2.1 shows that the class of quasiconvex functions contains properly
the class of convex functions and the class of strictly quasiconvex functions.
Furthermore, there is not any inclusion relationship between the class of con-
vex functions and the class of strictly quasiconvex ones. In fact, a convex
function may have constant restrictions and a strictly increasing function of
one variable is strictly quasiconvex but not necessarily convex.
The relationships between convexity, strict convexity, quasiconvexity and
strict quasiconvexity are illustrated in Fig. 2.2 where the arrow (→) reads
“implies”.

convex quasiconvex

strictly
quasiconvex

strictly
convex

Fig. 2.2. Relationships between various types of convexity

An important case where quasiconvexity reduces to convexity is related
to homogeneity. More exactly, the homogeneity assumption combined with
quasiconvexity produces convexity as is shown in the following theorem.

Theorem 2.2.2. Let f be a homogeneous function of degree α = 1 defined on
a convex set S ⊆ �n.
If f(x) > 0 for all x ∈ S, then f is quasiconvex if and only if it is convex.
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Proof. From (i) of Theorem 2.2.1, convexity implies quasiconvexity without
any other assumption. Now we will prove, firstly, that homogeneity combined
with quasiconvexity implies subadditivity, i.e., for every x1, x2 ∈ S we have
f(x1 + x2) ≤ f(x1) + f(x2).
Let y1 = f(x1) > 0, y2 = f(x2) > 0. Since f is homogeneous of degree one,
i.e., f(tx) = tf(x), t > 0, we have f(x1

y1
) = f(x2

y2
) = 1, so that the quasicon-

vexity of f implies f((1− t)x1
y1

+ tx2
y2

) ≤ 1 ∀t ∈ (0, 1). By choosing t = y2
y1+y2

,
we have 1 − t = y1

y1+y2
, and f( x1

y1+y2
+ x2

y1+y2
) = 1

y1+y2
f(x1 + x2) ≤ 1. Conse-

quently, f(x1 + x2) ≤ (y1 + y2) = f(x1) + f(x2).
It remains to be proven that subadditivity and homogeneity imply convexity.
We have f(λx1+(1−λ)x2) ≤ f(λx1)+f((1−λ)x2) = λf(x1)+(1−λ)f(x2).

While a convex function may be characterized by the convexity of its epi-
graph, a quasiconvex function may be characterized by the convexity of its
lower level sets, as is shown in the following theorem.

Theorem 2.2.3. A function f defined on a convex set S ⊆ �n is quasiconvex
on S if and only if the lower level set L≤α={z ∈ S : f(z) ≤ α} is convex for
every α ∈ �.

Proof. Assume that f is quasiconvex and let x, y ∈ L≤α. Since f(x) ≤ α,
f(y) ≤ α, we have f(λx + (1 − λ)y) ≤ max{f(x), f(y)} ≤ α, so that
λx + (1 − λ)y ∈ L≤α.
In order to prove the converse statement, assume without loss of general-
ity, that max{f(x), f(y)} = f(x) and consider the lower level set L≤α with
α = f(x), that is L≤f(x) = {z ∈ S : f(z) ≤ f(x)}; obviously y ∈ L≤f(x).
Since L≤f(x) is convex, x + λ(y − x) ∈ L≤f(x) for every λ ∈ [0, 1], i.e.,
f(x + λ(y − x)) ≤ f(x) = max{f(x), f(y)}.

By means of a simple application of the previous Theorem, we obtain the
following result.

Theorem 2.2.4. Let f be a quasiconvex function defined on a convex set
S ⊆ �n and let S∗ be the set of all global minimum points of f . Then, S∗ is
convex.

Proof. If S∗ = ∅ the thesis follows by convention. Taking into account that
S∗ = {x ∈ S : f(x) = m} = {x ∈ S : f(x) ≤ m}, where m is the minimun
value of f on S, the convexity of S∗ follows from the convexity of the lower
level sets of a quasiconvex function.

As happens for a convex function and for a strictly convex function, (2.1)
and (2.3) may be extended to every convex combination of a finite number of
points.

Theorem 2.2.5. f is quasiconvex on a convex set S ⊆ �n if and only if, for
xi ∈ S, i = 1, .., p, we have
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f

(
p∑

i=1

λix
i

)
≤ max

i∈{1,..,p}
f(xi),

p∑
i=1

λi = 1, λi ≥ 0, i = 1, .., p. (2.5)

Furthermore, f is strictly quasiconvex on S if and only if the inequality in
(2.5) is strict.

Proof. The validity of (2.5) for p = 2 is equivalent to the definition of a
quasiconvex function.
Assume now that f is quasiconvex. We will prove that (2.5) holds by induction.
Since (2.5) is true for p = 2, we must prove that the validity of (2.5) for every
p elements implies that

f(λ1x
1 + ... + λpx

p + λp+1x
p+1) ≤ max

i∈{1,..,p+1}
f(xi)

with
p+1∑
i=1

λi = 1, λi ≥ 0, xi ∈ S, i = 1, ..., p + 1.

If λp+1 = 0, the thesis follows by means of the induction assumption, oth-
erwise, by setting λ0 = λ1 + ... + λp, we have λ0 + λp+1 = 1 so that

y = λ1
λ0

x1 + ..... + λp

λ0
xp is a convex combination of p points since

p∑
i=1

λi

λ0
= 1.

As a result, y ∈ S. On the other hand
p+1∑
i=1

λix
i = λ0y + λp+1x

p+1; the thesis

is reached by applying quasiconvexity to the points y, xp+1.
The last statement follows similarly.

Another main difference between convex functions and quasiconvex func-
tions is related to the algebraic structure. The class of convex functions is
closed with respect to the addition while the sum of quasiconvex (strictly
quasiconvex) functions is not in general quasiconvex (strictly quasiconvex).
For instance, the functions f(x) = x3, g(x) = −3x are quasiconvex and
strictly quasiconvex in � since they are strictly monotone, but their sum
h(x) = f(x) + g(x) = x3 − 3x is neither quasiconvex, nor strictly quasiconvex
since h(−2) = −2, h(0) = 0, and h(−1) = 2 > 0.
Fortunately, in contrast to the convex case, increasing functions combined
with quasiconvex functions produce quasiconvex functions, as is stated in the
following theorems.

Theorem 2.2.6. Let f be a quasiconvex function defined on a convex set
S ⊆ �n and let g : A → � be a non-decreasing function, with f(S) ⊆ A.
Then:
(i) kf , k > 0 is quasiconvex on S;
(ii) g ◦ f is quasiconvex on S.

Proof. (i) For the positivity of k and the quasiconvexity of f we have
(kf)(x1 + λ(x2 − x1)) = kf(x1 + λ(x2 − x1)) ≤ k max{f(x1), f(x2)} =
= max{kf(x1), kf(x2)}.
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(ii) Let x1, x2 ∈ S with f(x1) ≥ f(x2). Then, f(x1 + λ(x2 − x1)) ≤ f(x1),
for all λ ∈ [0, 1]. Since g is a non-decreasing function, g(f(x1)) ≥ g(f(x2))
implies g(f(x1 + λ(x2 − x1)) ≤ g(f(x1)), ∀λ ∈ [0, 1].

Theorem 2.2.7. Let f be a strictly quasiconvex function defined on a convex
set S ⊆ �n and let g : A → � be an increasing function, with f(S) ⊆ A.
Then:
(i) kf , k > 0 is strictly quasiconvex on S;
(ii) g ◦ f is strictly quasiconvex on S.

Proof. Similar to the proof given in Theorem 2.2.6.

Another useful composition theorem is the following.

Theorem 2.2.8. Let g(x) = Ax + b where A is an m × n matrix, b ∈ �m,
and let f be a quasiconvex function on a convex set S ⊆ g(�n).
Then, z(x) = f(Ax + b) is quasiconvex on S.

Proof. We have z(λx1 + (1 − λ)x2) = f(λ(Ax1 + b) + (1 − λ)(Ax2 + b)) ≤
max{f(Ax1 + b), f(Ax2 + b)} = max{z(x1), z(x2)}, ∀λ ∈ [0, 1].

Property (ii) of Theorem 2.2.6 leads to the following result which extends
Theorem 2.2.2.

Theorem 2.2.9. Let f be a homogeneous function of degree α ≥ 1 defined on
a convex set S ⊆ �n.
If f(x) > 0 for all x ∈ S, then f is quasiconvex if and only if it is convex.

Proof. Taking into account Theorem 2.2.2, case α > 1 remains to be consid-
ered. The function g(x) = [f(x)]

1
α is linearly homogeneous and quasiconvex

since it is the composite function g = z ◦f , where z(y) = y
1
α is increasing and

f is quasiconvex. It follows that f(x) = [g(x)]α is convex as the composite
function of a convex function and an increasing convex function.

Remark 2.2.1. Following the same line given in the proof of the previous the-
orem, it is easy to prove the following result.
Let f be a homogeneous function of degree α with 0 < α ≤ 1, defined on a
convex set S ⊆ �n.
If f(x) > 0 for all x ∈ S, then f is quasiconcave if and only if it is concave.

Example 2.2.2. The function f(x1, .., xn) = (
n∑

i=1

x2
i )

β is convex for β ≥ 1
2 .

In fact,
n∑

i=1

x2
i is convex so that, from Theorem 2.2.6, f is quasiconvex; on

the other hand f is homogeneous of degree α = 2β and consequently, from
Theorem 2.2.9, f is convex for β ≥ 1

2 .
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Remark 2.2.2. Theorems 2.2.3 and 2.2.6 are sometimes useful in identify-
ing quasiconvex functions or in constructing new quasiconvex functions from
existing ones. Examples will be given in Sect. 2.3.

The given definitions of generalized convexity point out that the behaviour of
the function is strictly related to the behaviour of its restriction on every line
segment. This connection is expressed in the following theorem.

Theorem 2.2.10. Let f be a function defined on a convex set S ⊆ �n. Then,
f is quasiconvex (strictly quasiconvex) on S if and only if the restriction of
f on each line segment contained in S is a quasiconvex (strictly quasiconvex)
function.

Proof. See Exercise 2.18.

Remark 2.2.3. As we shall see, by means of Theorem 2.2.10, several results
regarding generalized convexity of functions of several variables may be
derived from the corresponding results for functions of one variable. For this
reason we shall devote Sect. 2.5 to the study of generalized convex functions
of one variable.

The non-constancy of a strictly quasiconvex function along a line allows us to
characterize strictly quasiconvexity within quasiconvexity.

Theorem 2.2.11. Let f be a function defined on a convex setS ⊆ �n. Then,
f is strictly quasiconvex on S if and only if (i) and (ii) hold:
(i) f is quasiconvex on S;
(ii) Every restriction on a line segment is not constant.

Proof. (i) This follows from (iii) of Theorem 2.2.1 while (ii) follows directly
from (2.3).
Assume now that (i) and (ii) hold. If f is not strictly quasiconvex, there exist
x1, x2 ∈ S, λ̄ ∈ (0, 1), such that f(x1) ≥ f(x2) and f(x̄) = f(x1 + λ̄(x2 −
x1)) = f(x1); since f is not constant in [x1, x̄], there exists x0 ∈ (x1, x̄) such
that f(x0) < f(x1) = f(x̄). If f(x̄) = f(x1) > f(x2), the quasiconvexity of
f on the line segment [x0, x2] is contradicted. If f(x̄) = f(x1) = f(x2), there
exists x∗ ∈ (x̄, x2) such that f(x∗) < f(x̄) = f(x2) and this contradicts the
quasiconvexity of f on the line segment [x0, x

∗].

As we have pointed out by means of Example 2.2.1, a quasiconvex function
is not necessarily continuous. Under a continuity assumption, we have the
useful property that quasiconvexity on an open convex set S is preserved on
the closure of S. More precisely, we have the following result.

Theorem 2.2.12. Let f be a continuous function on the closure of a convex
set S ⊆ �n and quasiconvex on the interior of S. Then, f is quasiconvex on
the closure of S.
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Proof. Let x, y ∈ clS; we must prove that f(x +λ(y − x)) ≤ max{f(x), f(y)},
∀λ ∈ [0, 1]. If x, y ∈ intS the inequality is true by assumption. Let {xn} ⊂
intS, {yn} ⊂ intS be sequences converging to x and y, respectively, with
the convention xn = x for all n (yn = y for all n) if x ∈ intS (y ∈ intS).
We have f(xn + λ(yn − xn)) ≤ max{f(xn), f(yn)}, ∀λ ∈ [0, 1], so that the
thesis follows by taking the limit for n → +∞ and taking into account the
continuity of f .

2.3 Semistrict Quasiconvexity

In this section we shall introduce a class of generalized convex functions which
is intermediate between convex and quasiconvex ones. This class is obtained
by strengthening quasiconvexity.

Definition 2.3.1. A function f defined on a convex set S ⊆ �n is said to be
semistrictly quasiconvex if

f(λx1 + (1 − λ)x2) < max{f(x1), f(x2)} (2.6)

for every x1, x2 ∈ S, with f(x1) �= f(x2) and for every λ ∈ (0, 1) or,
equivalently,

f(x1) > f(x2) implies that f(x1) > f(x1 + λ(x2 − x1)) (2.7)

for every x1, x2 ∈ S, λ ∈ (0, 1).

As a direct consequence of the given definition, we have the following theorem.

Theorem 2.3.1. Let f be a function defined on a convex set S ⊆ �n.
(i) If f is strictly quasiconvex on S, then f is semistrictly quasiconvex on S;
(ii) If f is convex on S, then f is semistrictly quasiconvex on S.

Since a constant function is semistrictly quasiconvex but not strictly quasi-
convex, the class of strictly quasiconvex functions is properly contained in the
class of semistrictly quasiconvex ones.
The following examples point out that there is not any inclusion relation-
ship between the class of semistrictly quasiconvex functions and the one of
quasiconvex functions.

Example 2.3.1. Consider the function f(x) =
{

1 −1 ≤ x ≤ 1, x �= 0
2 x = 0

f is not quasiconvex since we have f(0) = 2 > max{f(1), f(−1)} = 1; on
the other hand, f is semistrictly quasiconvex, since, in order to apply the
definition, we must necessarily consider the points x1 = 0, x2 �= 0, so that
f(x1 + λ(x2 − x1)) = f(λx2) = 1 < f(x1) = 2.
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Example 2.3.2. Consider the function f(x) =
{

x 0 ≤ x ≤ 1,
1 1 < x ≤ 2

f is a non-decreasing function and hence quasiconvex, but it is not semistrictly
quasiconvex since we have f(0) = 0 < f(2) = 1 and f(3

2 ) = 1 = f(2).

Let us note that in Example 2.3.1, the function f is not lower semicontinu-
ous at x0 = 0. We shall prove that a sufficient condition for a semistrictly
quasiconvex function to be quasiconvex is the lower semicontinuity of the
function.

Theorem 2.3.2. If f is a lower semicontinuous and semistrictly quasiconvex
function on a convex set S, then f is quasiconvex on S.

Proof. Let x, y ∈ S such that f(x) ≥ f(y). If f(x) > f(y), the thesis follows
from (2.7). Let f(x) = f(y) and assume the existence of λ̄ ∈ (0, 1) such that
f(x̄) = f(x + λ̄(y − x)) > f(x). Since f is lower semicontinuous there exist
ε > 0 and a neighbourhood I of x̄ such that f(z) ≥ f(x̄) − ε, ∀z ∈ I. Since
f(x̄) > f(x), by choosing ε < f(x̄) − f(x), we have f(z) > f(x), ∀z ∈ I and,
in particular, ∀z ∈ I∩ [x, y]. Let z ∈ I∩ [x, y]. If z ∈ (x, x̄), then the semistrict
quasiconvexity of f is contradicted on the segment [z, y] if f(z) < f(x̄) or in
the segment [x, x̄] if f(z) ≥ f(x̄).
If z /∈ (x, x̄), the proof is analogous.

We can summarize the inclusion relationships between the various classes of
convex and generalized convex functions by means of the diagram of Fig. 2.3
which assumes lower semicontinuity. All inclusions are proper.

convex

quasiconvex

strictly
quasiconvex

strictly
convex

semistrictly
quasiconvex

Fig. 2.3. Relationships between various types of convexity under lower semiconti-
nuity

As happens in the quasiconvex case, the behaviour of a semistrictly quasicon-
vex function may be characterized by means of the behaviour of its restrictions
on every line segment. Such a property allows us to characterize semistrict
quasiconvexity within quasiconvexity and also to characterize strict quasicon-
vexity within semistrict quasiconvexity. More precisely, we have the following
results.
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Theorem 2.3.3. Let f be a function defined on a convex set S ⊆ �n. Then,
f is semistrictly quasiconvex on S if and only if the restriction of f to each
line segment contained in S is a semistrictly quasiconvex function.

Theorem 2.3.4. Let f be a lower semicontinuous function defined on a con-
vex set S ⊆ �n. Then, f is semistrictly quasiconvex if and only if (i) and (ii)
hold:
(i) f is quasiconvex;
(ii) Every local minimum is also global for each restriction on a line segment.

Proof. Assume that (i) and (ii) hold. If f is quasiconvex but not semistrictly
quasiconvex, then there exist x1, x2 ∈ S, λ̄ ∈ (0, 1) such that f(x1) > f(x2)
and f(x̄) = f(x1 + λ̄(x2 −x1)) = f(x1). From (ii), f is not constant in [x1, x̄],
otherwise each point x̃ ∈ (x1, x̄) is a local minimum which is not global for
the restriction ϕ(t) = f(x1 + t(x2 − x1)), t ∈ [0, 1]. Consequently, there exists
x0 ∈ (x1, x̄) such that f(x0) < f(x1) = f(x̄) and this contradicts the quasi-
convexity of f on the segment [x0, x2].
With respect to the converse statement, (i) follows from Theorem 2.3.2 while
(ii) is obvious.

The following theorem, whose proof can be found in [104, 209], shows that
the class of continuous semistrictly quasiconvex functions is the wider class
for which every local minimum is also global.

Theorem 2.3.5. Let f be a continuous quasiconvex function defined on a
convex set S ⊆ �n. Then, f is semistrictly quasiconvex if and only if every
local minimum point is also global for f on S.

Theorem 2.3.6. Let f be a lower semicontinuous quasiconvex function
defined on a convex set S ⊆ �n. Then, f is strictly quasiconvex if and only if
the following conditions hold:
(i) f is semistrictly quasiconvex;
(ii) Any restriction on a line segment attains its minimum at no more than
one point.

Proof. See Exercise 2.19.

The composition Theorem 2.2.6 may easily be extended to the semistrictly
quasiconvex case.

Theorem 2.3.7. Let f be a semistrictly quasiconvex function defined on a
convex set S ⊆ �n and let g : A → � be an increasing function, with f(S) ⊆ A.
Then:
(i) kf , k > 0 is semistrictly quasiconvex on S;
(ii) g ◦ f is semistrictly quasiconvex on S.

Composition theorems related to generalized convex functions are useful tools
in identifying or in constructing generalized quasiconvex functions. Some
examples are given below.
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Example 2.3.3. Let f be a positive and convex function defined on a convex
set S ⊆ �n and consider the increasing functions h1(y) = log y, y > 0,
h2(y) = yα, y > 0, α > 0. From Theorem 2.3.7 and taking into account
the inclusion relationships, we deduce the semistrict quasiconvexity of the
functions z(x) = log f(x), and z(x) = (f(x))α, α > 0.
Furthermore if f is positive and strictly convex, then z(x) = log f(x), and
z(x) = (f(x))α, α > 0 are strictly quasiconvex.

Example 2.3.4. Let f be a quasiconcave (strictly quasiconcave, semistrictly
quasiconcave, respectively) function constant in sign defined on a convex set
S ⊆ �n. Then, the reciprocal function z(x) = 1

f(x) is quasiconvex (strictly
quasiconvex, semistrictly quasiconvex, respectively).
In fact, since h(t) = − 1

t is an increasing function, the composite function
h(f(x)) = − 1

f(x) is quasiconcave (strictly quasiconcave, semistrictly quasicon-
cave, respectively), so that z(x) = 1

f(x) is quasiconvex (strictly quasiconvex,
semistrictly quasiconvex, respectively).
Note that the reciprocal of a constant in sign concave function is not convex
but it is quasiconvex.

As is known, the class of convex functions is not closed with respect to the
ratio. In the following theorem generalized convexity of a ratio is investigated.

Theorem 2.3.8. Let f and g be functions defined on a convex set S ⊆ �n,
and let

z(x) =
f(x)
g(x)

Then, the following properties hold:
(i) If f is non-negative and convex, and g is positive and concave, then z is
semistrictly quasiconvex;
(ii) If f is non-positive and convex, and g is positive and convex, then z is
semistrictly quasiconvex;
(iii) If f is convex, and g is positive and affine, then z is semistrictly
quasiconvex.

Proof. (i) We must prove that z(x) = f(x)
g(x) < f(x0)

g(x0) = z(x0) implies that
z((1 − λ)x0 + λx)) < z(x0), λ ∈ (0, 1).
Taking into account the convexity of f and the concavity of g, together
with their sign, we have f((1 − λ)x0 + λx) ≤ (1 − λ)f(x0) + λf(x) <

(1−λ)f(x0)+λf(x0)
g(x0) g(x) = f(x0)

g(x0) ((1−λ)g(x0)+λg(x)) ≤ f(x0)
g(x0) g((1−λ)x0+λx).

It follows that f((1−λ)x0+λx)
g((1−λ)x0+λx) < f(x0)

g(x0) , i.e., z((1 − λ)x0 + λx) < z(x0).
(ii) This can be proven similarly.
(iii) This follows from (i) and (ii) by noting that an affine function is both
convex and concave.



34 2 Non-Differentiable Generalized Convex Functions

2.4 Generalized Convexity of Some Homogeneous
Functions

In this section we shall characterize the quasiconcavity of some classes of
homogeneous functions which appear frequently in Economics.

2.4.1 The Cobb–Douglas Function

One of the most important production or utility functions is the Cobb–
Douglas function defined as:

f(x) = Axα1
1 xα2

2 ....xαn
n , A > 0, xi > 0, αi > 0, i = 1, ..., n. (2.8)

The main properties of the Cobb–Douglas function, which is homogeneous of

degree α =
n∑

i=1

αi (see Theorem 1.4.1), are stated in the following theorem.

Theorem 2.4.1. The Cobb–Douglas function (2.8) is quasiconcave and is

concave if and only if α =
n∑

i=1

αi ≤ 1.

Proof. Since log f(x) = log A +
n∑

i=1

αi log xi is a concave function as a pos-

itive linear combination of concave functions, the function f(x) = elog f(x)

is quasiconcave. The last statement follows by means of the property that a
positive homogeneous function of degree α ≤ 1 is concave if and only if it is
quasiconcave.

Remark 2.4.1. If U : �n
+ → � is a utility function which represents the pref-

erences of the consumer and ϕ : � → � is an increasing function, then the
monotone transformation ϕ◦U is a utility function which represents the same
preferences. It follows that the Cobb–Douglas utility function

U(x) = Axγ1
1 xγ2

2 ....xγn
n , A > 0, xi > 0, γi > 0, i = 1, ..., n,

n∑
i=1

γi = 1 (2.9)

represents the same preferences as the Cobb–Douglas function (2.8). In fact,
by setting β = 1

α1+...+αn
, we have that ϕ(z) = zβ is an increasing func-

tion and furthermore ϕ(f(x)) = (Axα1
1 xα2

2 ....xαn
n )β = Aβxα1β

1 xα2β
2 ....xαnβ

n =

Aβxγ1
1 xγ2

2 ....xγn
n with

n∑
i=1

γi = β

n∑
i=1

αi = 1. This justifies the use of utility

functions of the kind (2.9) found in consumer theory.
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2.4.2 The Constant Elasticity of Substitution (C.E.S.) Function

Another important function in Economics is the C.E.S. function defined by

f(x) = (a1x
β
1 +a2x

β
2 + ...+anxβ

n)
1
β , ai > 0, xi > 0, i = 1, ..., n, β �= 0 (2.10)

The main properties of the C.E.S. function, which is linearly homogeneous,
are stated in the following theorem.

Theorem 2.4.2. The C.E.S. function (2.10) is quasiconcave if and only if
β ≤ 1 and it is convex if and only if β ≥ 1.

Proof. By setting g(x) = a1x
β
1 + a2x

β
2 + ... + anxβ

n, we have f(x) = (g(x))
1
β .

When β < 0, g is convex as a linear combination of positive convex functions;
it follows that 1

g is a quasiconcave function (see Example 2.3.4) so that f

is quasiconcave as an increasing transformation of 1
g . When 0 < β ≤ 1, g

is concave as a positive linear combination of concave functions, so that f is
quasiconcave as an increasing transformation of g. Finally, when β ≥ 1, g is
convex as a linear combination of convex functions, so that f is quasiconvex
as an increasing transformation of g. The thesis follows from Theorem 2.2.2
since the C.E.S. function is linearly homogeneous.

2.4.3 The Leontief Production Function

Another important homogeneous function of degree α is the Leontief produc-
tion function defined by

f(x) =
(

min
i

{
xi

ai

})α

, xi > 0, ai > 0, i = 1, ..., n, α > 0. (2.11)

The following theorem holds.

Theorem 2.4.3. The Leontief production function (2.11) is quasiconcave and
it is concave if and only if α ≤ 1.

Proof. The function g(x) = min
i
{xi

ai
} is concave as the minimum of a finite

number of concave functions, so that f is an increasing transformation of g and
thus it is quasiconcave. The last statement follows from Remark 2.2.1.

2.4.4 A Generalized Cobb–Douglas Function

Consider the function z(x) =
k∏

i=1

(fi(x))αi , αi > 0, where fi(x), i = 1, ..., k,

are positive concave functions on a convex set S ⊆ �n. Since log z(x) =
k∑

i=1

αi log fi(x) is a concave function (as a positive linear combination of

concave functions), the function z(x) = elog z(x) is quasiconcave.
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2.5 Generalized Quasiconvex Functions in One Variable

Theorems 2.2.10 and 2.3.3 suggest carrying on the study of generalized con-
vexity for one real variable function with the aim of extending the obtained
results for functions of several variables.
A complete characterization of quasiconvexity is given in the following theo-
rem where the parenthesis 〉 or 〈 indicates that the corresponding end point
can or cannot belong to the interval.

Theorem 2.5.1. Let ϕ be a function defined on the interval [a, b] ⊆ �. Then
ϕ is quasiconvex if and only if one of the following conditions is verified:
(i) ϕ is non-increasing or non-decreasing in [a, b];
(ii) ϕ is non-increasing in [a, b) but not in [a, b] or ϕ is non-decreasing in
(a, b] but not in [a, b];
(iii) there exists t0 ∈ (a, b) such that ϕ is non-increasing in [a, t0〉 and non-
decreasing in 〈t0, b], where at least one of the two intervals is closed.

Proof. It is easy to verify that the validity of (i) or (ii) or (iii) implies the qua-
siconvexity of ϕ. Assume now the quasiconvexity of ϕ. Set � = inf{ϕ(t), t ∈
[a, b]} (note that � may be −∞) and let {tn} ⊂ [a, b] be such that ϕ(tn) → �
when tn → t0. The following exhaustive cases occur: t0 = a, t0 = b, t0 ∈ (a, b).
case t0 = a.
We will prove that ϕ is non-decreasing in (a, b]. If not, there exist t1, t2 ∈ (a, b]
with t1 < t2, such that ϕ(t1) > ϕ(t2) ≥ �. Since � is the infimum value of ϕ,
there exists n̄ such that a < tn̄ < t1 < t2 with ϕ(tn̄) < ϕ(t1) and this contra-
dicts the quasiconvexity of ϕ applied to the interval [tn̄, t2].
If ϕ(a) = ϕ(t0) = � then ϕ is non-decreasing in [a, b], otherwise ϕ is non-
decreasing in (a, b] but not in [a, b] since ϕ(a) > �.
case t0 = b.
By means of similar arguments, it is easy to prove that ϕ is non-increasing in
[a, b); furthermore, ϕ is non-increasing in [a, b] if ϕ(b) = ϕ(t0) = �.
case t0 ∈ (a, b).
We will prove that ϕ is non-increasing in [a, t0) and non-decreasing in (t0, b].
If not, there exist t1, t2, t̂1, t̂2 ∈ [a, b] such that t1 < t2 < t0 < t̂1 < t̂2 with
ϕ(t1) < ϕ(t2) and ϕ(t̂1) > ϕ(t̂2). Since � is the infimum value of ϕ, there exists
n̄ such that t2 < tn̄ < t̂1 with ϕ(tn̄) < ϕ(t2), ϕ(tn̄) < ϕ(t̂1) and this contra-
dicts the quasiconvexity of ϕ in the intervals [t1, tn̄], [tn̄, t̂2], respectively.
It remains to be proven that at least one of the two intervals [a, t0〉, 〈t0, b] is
closed.
Set �1 = inf{ϕ(t), t ∈ [a, t0)}, �2 = inf{ϕ(t), t ∈ (t0, b]}. Let us note that at
least one of the two infimum is finite, otherwise there exist t1 < t0, t2 > t0,
such that ϕ(t1) < ϕ(t0) and ϕ(t2) < ϕ(t0), and this contradicts the quasicon-
vexity of ϕ in the interval [t1, t2].
Now we will prove that ϕ(t0) ≤ max{�1, �2}; if not, taking into account that
the function is non-increasing in [a, t0) and �1 < ϕ(t0), there exists t1 < t0
such that ϕ(t1) < ϕ(t0). In a similar way, since the function is non-decreasing
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in (t0, b] and �2 < ϕ(t0), there exists t2 > t0 such that ϕ(t2) < ϕ(t0). It fol-
lows that the function ϕ is not quasiconvex on the interval [t1, t2] and this is
absurd.
Finally, let us note that � = min{�1, �2, ϕ(t0)}. If � = �1 then ϕ(t0) ≤ �2 and
ϕ is non-decreasing in [t0, b]. If � = �2 then ϕ(t0) ≤ �1 and ϕ is non-increasing
in [a, t0]. If � = ϕ(t0), then ϕ is non-increasing in [a, t0] and non-decreasing in
[t0, b].
The proof is complete.

Theorem 2.5.1 may be specified in the case where ϕ is a lower semicontinuous
function.

Theorem 2.5.2. Let ϕ be a lower semicontinuous function defined on the
interval [a, b] ⊆ �. Then, ϕ is quasiconvex if and only if there exists t0 ∈ [a, b]
such that ϕ is non-increasing in [a, t0] and non-decreasing in [t0, b], where one
of the two subintervals may be reduced to a point.

Proof. Assume that ϕ is quasiconvex. The lower semicontinuity of ϕ on [a, b]
implies the existence of its minimum value m. Set A = {t ∈ [a, b] : ϕ(t) = m};
A is a closed interval since ϕ is quasiconvex and lower semicontinuous. Let
t0 ∈ A. The function ϕ is non-increasing in [a, t0] when t0 �= a, since the
existence of t1, t2 ∈ [a, t0), t1 < t2 with ϕ(t1) < ϕ(t2) contradicts the quasi-
convexity of ϕ in [t1, t0].
In the same way it can be proven that ϕ is non-decreasing in [t0, b], t0 �= b,
so that the thesis follows when a < t0 < b.
When a = t0 = b, ϕ is constant in [a, b]; when a = t0 and t0 < b, ϕ is constant
in [a, t0] and non-decreasing in [t0, b].
When a < t0 and t0 = b, ϕ is non-increasing in [a, t0] and constant in [t0, b].
In each case the thesis follows.
The converse statement follows immediately.

The given characterizations of quasiconvex functions can be specialized to
the subclass of strictly quasiconvex functions as is stated in Corollary 2.5.1
and in Corollary 2.5.2.

Corollary 2.5.1. Let ϕ(t) be a function defined on the interval [a, b] ⊆ �.
Then, ϕ(t) is strictly quasiconvex if and only if one of the following conditions
holds:
(i) ϕ is increasing or decreasing in [a, b];
(ii) ϕ is decreasing in [a, b) but not in [a, b] or increasing in (a, b] but not in
[a, b];
(iii) there exists t0 ∈ (a, b) such that ϕ is decreasing in [a, t0〉 and increasing
in 〈t0, b] where at least one of the two intervals is closed.

Corollary 2.5.2. Let ϕ be a lower semicontinuous function defined on the
interval [a, b] ⊆ �. Then, ϕ is strictly quasiconvex if and only if there exists
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t0 ∈ [a, b] such that ϕ is decreasing in [a, t0] and increasing in [t0, b], where
one of the two subintervals may be reduced to a point.

Since the class of semistrictly quasiconvex functions is contained in the class of
quasiconvex ones under the lower semicontinuity assumption, Theorem 2.5.2
may be specified as follows.

Corollary 2.5.3. Let ϕ(t) be a lower semicontinuous function defined on the
interval [a, b] ⊆ �. Then, ϕ(t) is semistrictly quasiconvex if and only if there
exist α, β ∈ [a, b] such that ϕ is decreasing in [a, α], constant in [α, β] and
increasing in [β, b], where one or two subintervals may be reduced to a point.

Proof. By referring to the proof given in Theorem 2.5.2, consider the closed
interval A = {t ∈ [a, b] : ϕ(t) = m} and let α = minA, β = maxA. We must
prove that ϕ(t) is decreasing on the interval [a, α] and increasing on [β, b]. In
this regard it is sufficient to note that the existence of t1, t2 ∈ [a, α] such that
t1 < t2 < α and ϕ(t1) ≥ ϕ(t2), contradicts the semistrictly quasiconvexity
of ϕ on the interval [t1, α]. Similarly, it can be proven that ϕ is increasing in
[β, b].

2.6 Exercises

2.1. Which of the following functions are quasiconvex, semistrictly quasicon-
vex or strictly quasiconvex?
(a) f(x) = x | x |; (b) f(x) = x | x | −x2; (c) f(x) = x | x | +x2;

(d) f(x) =

⎧⎨⎩
1

x−1 0 ≤ x < 1
0 x = 1
1

x+1 x > 1

2.2. Sketch a graph of a continuous function and the graph of a discontinuous
function of one variable which satisfies the following conditions:
decreasing in [0, 1], constant in [1, 2], decreasing in [2, 3], constant in [3, 4],
increasing in [4, 5], constant in [5, 6] and increasing in [6, 7].
Is this function quasiconvex, strictly quasiconvex or semistrictly quasiconvex?

2.3. Let f : [a, b] → � and let x0 ∈ (a, b). Assume that f(x0) = α,
lim

x→x−
0

f(x) = −∞, lim
x→x+

0

f(x) = −∞. Show that f is not quasiconvex.

2.4. Are the following functions quasiconvex, semistrictly quasiconvex or
strictly quasiconvex?

(a) f(x) = log
n∑

i=1

x2
i ; (b) f(x) = log

n∑
i=1

xi, xi > 0, i = 1, ..., n;

(c) f(x) = (
n∑

i=1

exi)β , β > 0.
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2.5. Let f be a function defined on the convex set S ⊆ �n. Prove that:
(a) if f is positive and convex, then − 1

f is quasiconvex;
(b) if f is negative and quasiconvex (strictly quasiconvex) then 1

f is quasicon-
cave (strictly quasiconcave).

2.6. Let f, g be functions defined on a convex set S ⊆ �n. Using the charac-
terization of quasiconvex functions in terms of its lower level sets, prove that
the function z(x) = f(x)

g(x) is quasiconvex if f is non-negative and convex and g

is positive and concave.

2.7. Let f and g be functions defined on a convex set S ⊆ �n, and let z(x) =(
f(x)
g(x)

)α

, α > 0. If f is non-negative and convex, and g is positive and concave,
then z is semistrictly quasiconvex.

2.8. Let f and g be functions defined on a convex set S ⊆ �n, and let z(x) =
f(x)
g(x) . Prove that z is strictly quasiconvex if one of the following conditions
holds:
1. f is non-negative and strictly convex and g is positive and concave;
2. f is non-negative and convex and g is positive and strictly concave;
3. f is non-positive and strictly convex and g(x) is positive and convex.

2.9. Apply Theorem 2.2.3 to show that the linear fractional function
f(x) = aT x+a0

bT x+b0
, bT x + b0 > 0, is both quasiconvex and quasiconcave.

2.10. Show that the following functions are quasiconvex:
(a) f(x, y) = log x4

y+1 , y > −1;

(b) f(x, y) = log x2−xy+y2

4−y2 , −2 < y < 2;
(c) f(x, y) = log(x4 + y2) − log(y − 1), y > 1.

2.11. Show that the following functions are convex:

f(x1, ..., xn) = (
n∑

i=1

x4
i )

1
3 ; g(x, y) = x2

y ; h(x) = (aT x)2

bT x .

2.12. Show that the function f(x, y) = xy, x, y ≥ 0 is quasiconcave and that
the function f(x, y) =

√
xy, x, y ≥ 0 is concave.

2.13. Show that the ratio z(x) = f(x)
g(x) is semistrictly quasiconcave when f is

non-negative and concave and g is positive and convex.

2.14. Show that the function z(x) = f(x) · g(x) is semistrictly quasiconcave
when f is non-negative and concave and g is positive and concave.

2.15. Show that the function f(x) = (aT x+a0)(bT x+ b0) is semistrictly qua-
siconcave if aT x+a0 ≥ 0 and bT x+ b0 > 0 while it is semistrictly quasiconvex
if aT x + a0 ≤ 0 and bT x + b0 > 0.
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2.16. Let f be a quasiconvex function defined on the convex set S ⊆ �n.
Prove that f cannot have an interior strict local maximum point.

2.17. Give an example which shows that a quasiconvex function may have an
interior global maximum point which is not a local minimum.

2.18. Show Theorem 2.2.10.

2.19. Show Theorem 2.3.6.

2.20. Let f be a non-constant lower semicontinuous semistrictly quasiconvex
function on the convex set S ⊆ �n. Show that f , in contrast to the quasiconvex
case, cannot have an interior global maximum.

2.21. Give an example which shows that the assumption of lower semiconti-
nuity in Exercise 2.20 cannot be relaxed.

2.22. Show that, in contrast to the quasiconvex case, a non-constant lower
semicontinuous semistrictly quasiconvex function cannot have an interior local
maximum point which is not a local minimum.

2.23. Give a direct proof of the statement: if f is convex then f is semistrictly
quasiconvex.
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3

Differentiable Generalized Convex Functions

3.1 Introduction

in this chapter we shall consider, under the differentiability assumption, the
classes of generalized convex functions introduced in the previous chapter.
Furthermore, a new class is defined: that of pseudoconvex functions, which is
perhaps the most important of all.
Several first order and second order characterizations of quasiconvexity and
pseudoconvexity are also established, some of which turn out to be useful tools
in determining special classes of generalized convex functions.
By combining generalized convexity and generalized concavity, quasilinearity
and pseudolinearity are introduced and studied.
In the last section, the notion of convexity and generalized convexity at a
point is introduced. This represents a significant relaxation of the concept of
generalized convexity, since the convexity of the domain of the function is not
required.

3.2 Differentiable Quasiconvex and Pseudoconvex
Functions

3.2.1 Differentiable Quasiconvex Functions

A differentiable function is convex if and only if its graph lies on or above
the tangent at any point of the graph. Similarly, a differentiable function is
quasiconvex if and only if any of its level sets lies on or below the tangent at any
point of the level set. In order to express this geometrical property analytically,
we shall begin to characterize the quasiconvexity of a differentiable function
of one variable.
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Theorem 3.2.1. Let ϕ be a differentiable function1 on an interval I ⊆ �.
Then, ϕ is quasiconvex on I if and only if the following implication holds:

t1, t2 ∈ I, ϕ(t1) ≥ ϕ(t2) ⇒ ϕ′(t1)(t2 − t1) ≤ 0. (3.1)

Proof. Let t1, t2 ∈ I such that t1 < t2 ( t1 > t2) and ϕ(t1) ≥ ϕ(t2). The
quasiconvexity of ϕ implies ϕ(t) ≤ ϕ(t1), ∀t ∈ [t1, t2]( ∀t ∈ [t2, t1]) so that
ϕ is locally non-increasing (locally non-decreasing) at t1 and, consequently,
(3.1) holds.
Assume now that (3.1) holds. If ϕ is not quasiconvex, there exist t1, t2 ∈ I
with t1 < t2, such that M = max{ϕ(t), t ∈ [t1, t2]} > max{ϕ(t1), ϕ(t2)}. Let
t̄ = inf{t ∈ [t1, t2] : ϕ(t) = M}; the continuity of ϕ implies the existence of
ε > 0 such that ϕ(t) < M, ∀t ∈ (t̄ − ε, t̄) and ϕ(t) > max{ϕ(t1), ϕ(t2)}, ∀t ∈
(t̄ − ε, t̄). The Mean Value Theorem applied to the interval [t̄ − ε, t̄] implies
the existence of t∗ ∈ (t̄ − ε, t̄) such that ϕ′(t∗) > 0. Consequently, we have
ϕ(t∗) > ϕ(t2) with ϕ′(t∗) > 0 and this contradicts (3.1).

Remark 3.2.1. Theorem 3.2.1 cannot be specified for a strictly or a semistrictly
quasiconvex function in the sense that (3.1) cannot be improved. For instance,
the function ϕ(t) = −t2, t ∈ [0, 1] is both strictly and semistrictly quasiconvex
and we have ϕ(0) = 0 > ϕ(1) = −1 with ϕ′(0) = 0.

Theorem 3.2.1 allows us to obtain the following characterization of a differ-
entiable quasiconvex function in more than one variable.

Theorem 3.2.2. Let S ⊆ �nbe a convex set and let f be a differentiable func-
tion on S. Then, f is quasiconvex on S if and only if the following implication
holds:

x1, x2 ∈ S, f(x1) ≥ f(x2) ⇒ ∇f(x1)T (x2 − x1) ≤ 0. (3.2)

Proof. Assume f is quasiconvex and let x1, x2 ∈ S with f(x1) ≥ f(x2). Con-
sider the restriction ϕ(t) = f(x1 + t(x2 − x1)), t ∈ [0, 1]. We have ϕ(0) ≥ ϕ(1)
so that Theorem 3.2.1 implies that ϕ′(0) = (x2 − x1)T∇f(x1) ≤ 0 and (3.2)
holds.
Assume now that (3.2) holds. If f is not quasiconvex, there exists a restriction
ϕ(t) = f(x1 + t(x2 − x1)), x1, x2 ∈ S, t ∈ [0, 1], which is not quasi-
convex (see Theorem 2.2.10) and consequently, from Theorem 3.2.1, there
exist t1, t2 ∈ [0, 1] such that ϕ(t1) ≥ ϕ(t2) and ϕ′(t1)(t2 − t1) > 0. Set
x̄1 = x1 + t1(x2 − x1), x̄2 = x1 + t2(x2 − x1); we have f(x̄1) ≥ f(x̄2)
and ϕ′(t1) = (x2 − x1)T∇f(x̄1) = 1

t2−t1
(x̄2 − x̄1)T∇f(x̄1). Consequently,

ϕ′(t1)(t2 − t1) = (x2 − x1)T∇f(x̄1) > 0 and this contradicts (3.2).

The following theorem points out that corresponding to a strict inequality on
the left-hand side of (3.2) we also have a strict inequality on the right-hand
side when S is open and x1 is not a critical point.
1 The differentiability of a function g on a set X ⊆ �n means that g is differentiable

on an open set containing X.
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Theorem 3.2.3. Let f be a differentiable quasiconvex function on an open
convex set S ⊆ �n. Then, the following implication holds:

x1, x2 ∈ S, f(x1) > f(x2), ∇f(x1) �= 0 ⇒ ∇f(x1)T (x2 − x1) < 0. (3.3)

Proof. Assume the existence of x1, x2 ∈ S such that f(x1) > f(x2) and
(x2 − x1)T∇f(x1) ≥ 0. Since f is quasiconvex, we necessarily have (x2 −
x1)T∇f(x1) = 0. For the continuity of f , there exists ε > 0 such that
y = x2 + ε∇f(x1) ∈ S with f(y) < f(x1) (note that y �= x2 since ∇f(x1) �= 0).
Consequently, for the quasiconvexity of f , we have (y − x1)T∇f(x1) ≤ 0. On
the other hand, y − x1 = (y − x2) + (x2 − x1), so that (y − x1)T∇f(x1) =
(y − x2)T∇f(x1) + (x2 − x1)T∇f(x1) = ε ‖ ∇f(x1) ‖2> 0, and this is a con-
tradiction.

Let us note that assumption ∇f(x1) �= 0 is essential for the validity of
Theorem 3.2.3. In fact, the function ϕ(t) = −t2, t ∈ [0, 1], is quasiconvex,
ϕ(0) = 0 > ϕ(1) = −1 but ϕ′(0) = 0.

Remark 3.2.2. As we have pointed out in Remark 3.2.1, it is not possible to
obtain a characterization of a strictly or a semistrictly quasiconvex function
in terms of the sign of the directional derivatives. Nevertheless, it is possible
to characterize a strictly quasiconvex function when f does not have critical
points as is stated in Theorem 3.2.4.

Theorem 3.2.4. Let f be a differentiable function on an open convex set
S ⊆ �n and assume that ∇f(x) �= 0, ∀x ∈ S. Then, f is strictly quasiconvex
if and only if the following condition holds:

x1, x2 ∈ S, f(x1) ≥ f(x2) ⇒ ∇f(x1)T (x2 − x1) < 0. (3.4)

Proof. Assume that f is strictly quasiconvex. If f(x1) > f(x2), the the-
sis follows from Theorem 3.2.3. If f(x1) = f(x2) the strict quasiconvexity
implies the existence of t∗ ∈ (0, 1) such that f(x1) > f(x∗) with x∗ =
x1 + t∗(x2 − x1). From Theorem 3.2.3 we have (x∗ − x1)T∇f(x1) < 0 or,
equivalently, t∗(x2 − x1)T∇f(x1) < 0, so that (3.4) holds.
Assume now the validity of (3.4). From Theorem 3.2.2 the function is quasi-
convex . If f is not strictly quasiconvex, there exist x1, x2 ∈ S, t∗ ∈ (0, 1),
such that f(x1) ≥ f(x2), f(x1) = f(x∗) where x∗ = x1+t∗(x2−x1). Consider
the restriction ϕ(t) = f(x1 + t(x2 − x1)), t ∈ (0, 1). Equation (3.4) applied to
points x∗, x2 implies ϕ′(t∗) < 0. Consequently, there exists t1 ∈ (0, t∗) such
that ϕ(t1) > ϕ(t∗) and this contradicts the quasiconvexity of ϕ(t) on [0, t∗].

3.2.2 Pseudoconvex Functions

It is known that a critical point for a convex function is also a global mini-
mum. This useful property does not hold for quasiconvex, strictly quasiconvex



44 3 Differentiable Generalized Convex Functions

and semistrictly quasiconvex functions (for instance, the critical point for the
strictly quasiconvex function ϕ(t) = t3 is not a global minimum). This is the
reason for introducing of the following class of pseudoconvex functions.

Definition 3.2.1. A differentiable function f , defined on an open convex set
S ⊆ �n, is called pseudoconvex if

x1, x2 ∈ S, f(x1) > f(x2) ⇒ ∇f(x1)T (x2 − x1) < 0. (3.5)

If the inequality on the right hand-side of (3.5) still holds when f(x1) = f(x2),
the function is called strictly pseudoconvex. Formally,

Definition 3.2.2. A differentiable function f , defined on an open convex set
S ⊆ �n, is called strictly pseudoconvex if

x1, x2 ∈ S, x1 �= x2, f(x1) ≥ f(x2) ⇒ ∇f(x1)T (x2 − x1) < 0. (3.6)

It follows, immediately, from the given definitions, that a strictly pseudocon-
vex function is pseudoconvex, too. The converse statement is not true; in fact,
a constant function is pseudoconvex but it is not strictly pseudoconvex.
A function f is said to be pseudoconcave (strictly pseudoconcave) if and only
if −f is pseudoconvex (strictly pseudoconvex). Consequently, the results that
we are going to establish can be easily adapted to the pseudoconcave case.
For the sake of completeness, in Appendix B we shall summarize the main
properties of pseudoconcave functions.

Remark 3.2.3. Note that, when f(x1) = f(x2), x1, x2 ∈ S, x1 �= x2, the strict
pseudoconvexity implies that f is decreasing at x1 in the direction u = x2−x1

since the directional derivative ∇f(x1)T (x2 − x1) is negative. In particular, if
x1 is a local minimum, it is necessarily a strict local minimum.

The following theorem shows that a critical point for a pseudoconvex function
is a global minimum as happens in the convex case.

Theorem 3.2.5. Let f be a differentiable function on an open convex set
S ⊆ �n and let x0 ∈ S be a critical point. If f is pseudoconvex, then x0 is a
global minimum for f . Furthermore, x0 is unique if f is strictly pseudoconvex.

Proof. Assume that there exists y ∈ S such that f(y) < f(x0). Then
∇f(x0) = 0 implies that ∇f(x0)T (y−x0) = 0, which contradicts (3.5). It fol-
lows that x0 is a global minimum for f and, furthermore, taking into account
Remark 3.2.3, it is unique if f is strictly pseudoconvex.

Let us note that pseudoconvexity requires that (3.5) is satisfied at all points of
the domain in contrast to quasiconvexity which implies that (3.5) is satisfied
when ∇f(x1) �= 0 (see Theorem 3.2.3). More exactly, we have the following
theorem.
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Theorem 3.2.6. Let f be a differentiable function on an open convex set
S ⊆ �n.
(i) If f is pseudoconvex on S, then f is quasiconvex on S;
(ii) If ∇f(x) �= 0, ∀x ∈ S, then f is pseudoconvex on S if and only if it is
quasiconvex on S.

Proof. (i) Assume that f is not quasiconvex. Then, there exist x1, x2 ∈ S
with f(x1) ≥ f(x2) such that ∇f(x1)T (x2 − x1) > 0. Consider the restriction
ϕ(t) = f(x1 + t(x2 − x1)), t ∈ [0, 1]. Since ϕ′(0) = ∇f(x1)T (x2 − x1) > 0,
ϕ attains its maximum value at an interior point t0 ∈ (0, 1), so that ϕ(t0) =
f(x0) > f(x1) = ϕ(0) ≥ f(x2) = ϕ(1) and ϕ′(t0) = ∇f(x0)T (x2 − x1) = 0,
where x0 = x1 + t0(x2 − x1). On the other hand, the pseudoconvexity of f ,
applied to points x0, x2, implies that ∇f(x0)T (x2 − x1)(1− t0) < 0, and this
is a contradiction.
(ii) It remains to be proven that a quasiconvex function is pseudoconvex when
there are no critical points. This follows from Theorem 3.2.3.

As for the classes of generalized convex functions introduced in the previ-
ous chapter, a function is pseudoconvex (strictly pseudoconvex) if and only
if it is pseudoconvex (strictly pseudoconvex) over each restriction on a line
segment. This property leads us to carry on the study of pseudoconvexity
of a single-variable function with the aim of obtaining characterizations for
functions of more than one variable.

Theorem 3.2.7. Let ϕ be a differentiable function on an open interval I ⊆ �.
Then, ϕ is pseudoconvex (strictly pseudoconvex) on I if and only if for every
t0 ∈ I such that ϕ′(t0) = 0, t0 is a local minimum (strict local minimum)
for ϕ.

Proof. Assume the pseudoconvexity of ϕ. Let t0 ∈ I such that ϕ′(t0) = 0 and
assume that t0 is not a local minimum for ϕ. Then, there exists t∗ ∈ I such
that ϕ(t∗) < ϕ(t0). The pseudoconvexity of ϕ implies that ϕ′(t0)(t∗ − t0) < 0
and this is absurd since t0 is a critical point.
Assume now that every critical point is a local minimum. If ϕ is not pseu-
doconvex, there exist t1, t2 ∈ I such that ϕ(t1) > ϕ(t2) implies that
ϕ′(t1)(t2 − t1) ≥ 0.
We can assume without loss of generality that t1 < t2 so that ϕ′(t1) ≥ 0.
If ϕ′(t1) = 0, t1 is a local minimum point and thus there exist ε > 0,
t̄ ∈ (t1, t1 + ε) such that ϕ(t̄ ) ≥ ϕ(t1) > ϕ(t2). If ϕ′(t1) > 0 we can find
t̄ ∈ (t1, t2) with ϕ(t̄ ) > ϕ(t1) > ϕ(t2). In each case the maximum value of
ϕ(t) on [t1, t2] is reached at an interior point. The largest maximizer point t0
is such that ϕ(t0) > ϕ(t) for all t ∈ (t0, t2] with ϕ′(t0) = 0, and this contra-
dicts the assumption that every critical point is a local minimum. The proof
is complete, taking into account Remark 3.2.3.

The following theorem is a direct consequence of Theorem 3.2.7.
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Theorem 3.2.8. Let f be a differentiable function on an open convex set
S ⊆ �n. Then, f is pseudoconvex (strictly pseudoconvex) on S if and only if
for every x0 ∈ S and u ∈ �n such that uT∇f(x0) = 0, the function ϕ(t) =
f(x0 + tu) attains a local minimum (strict local minimum) at t = 0.

Remark 3.2.4. We have already remarked that a quasiconvex function may
have local and also global interior maximum points, but cannot have a strict
local maximum point and also a semistrict local maximum point defined as
follows:
Let ϕ be defined on the open interval I ⊂ �.
A point t0 ∈ I is said to be a semistrict local maximum point for ϕ if
there exist t1, t2 ∈ I with t1 < t0 < t2, such that ϕ(λt1 + (1 − λ)t2) ≤ ϕ(t0)
for every λ ∈ [0, 1] and max{ϕ(t1), ϕ(t2)} < ϕ(t0).
This special type of local maximum point, introduced by Dewert, Avriel, and
Zang in [94], is stronger than the concept of a local maximum, but weaker
than a strict local maximum.
By means of the non-existence of this kind of point, it is possible to charac-
terize quasiconvexity in the non-differentiable and in the differentiable case
(see Exercises 3.1, 3.4, 3.6, 3.25).

Referring to Theorem 3.2.6, we shall point out that within the class of quasi-
convex fuctions, pseudoconvexity may be specified by means of its behaviour
at a critical point. The following theorem holds.

Theorem 3.2.9. Let f be a continuous differentiable function on an open
convex set S ⊆ �n. Then, f is pseudoconvex (strictly pseudoconvex) on S if
and only if the following conditions hold:
(i) f is quasiconvex on S;
(ii) If x0 ∈ S, ∇f(x0) = 0, then x0 is a local minimum (strict local minimum)
for f .

Proof. If f is pseudoconvex, then (i) follows from Theorem 3.2.6, while (ii)
follows from Theorem 3.2.5.
Assume now that (i) and (ii) hold. By applying Theorem 3.2.8 we must
prove that if x0 ∈ S and u ∈ �n are such that uT∇f(x0) = 0, the func-
tion ϕ(t) = f(x0 + tu) attains a local minimum at t = 0. If ∇f(x0) = 0,
the thesis follows from (ii); if ∇f(x0) �= 0, the continuity of the gradient
map implies the existence of an open neighbourhood U(x0) of x0 such that
∇f(x0) �= 0, ∀x ∈ U(x0). Theorem 3.2.6 implies that f is pseudoconvex on
U(x0) and Theorem 3.2.7 implies that the function ϕ(t) = f(x0 + tu) attains
a local minimum at t = 0. The proof is complete, taking into account Remark
3.2.3.

Remark 3.2.5. In [82, 89] a more elaborate proof of Theorem 3.2.9 is given
without the assumption of continuity of the gradient map.
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Remark 3.2.6. Let us note that Theorems 3.2.6 and 3.2.9 cannot be extended
to the closure of S. More exactly, a pseudoconvex function on an open set is
not necessarily pseudoconvex on the closure of S. Consider for instance the
quasiconvex function f(x, y) = −xy, (x, y) ∈ int�2

+. Such a function is also
pseudoconvex since its gradient does not vanish in int�2

+. On the other hand,
f is quasiconvex on �2

+ (see Theorem 2.2.12) but it is not pseudoconvex on
�2

+ since the gradient vanishes at the origin which is not a global minimum.

Theorems 3.2.6 and 3.2.9 are sometimes useful in verifying the pseudoconvex-
ity of a function.

Example 3.2.1. Consider the Cobb–Douglas function f(x) = xα1
1 ·....·xαn

n , x =
(x1, ..., xn), xi > 0, αi < 0, i = 1, ..., n. Since f is quasiconvex and ∇f(x) �= 0,
f is also pseudoconvex.

Example 3.2.2. An affine function f(x) = aT x + b is pseudoconvex since it is
constant if a = 0 and it is quasiconvex if a = ∇f(x) �= 0.

Theorem 3.2.10. Consider the ratio z(x) = f(x)
g(x) where f and g are differ-

entiable functions defined on an open convex set S ⊆ �n.
(i) If f is convex and g is positive and affine, then z is pseudoconvex;
(ii) If f is non-negative and convex, and g is positive and concave, then z is
pseudoconvex;
(iii) If f is positive and strictly convex, and g is positive and concave, then z
is strictly pseudoconvex;
(iv) If f is non-negative and convex, and g is positive and strictly concave,
then z is strictly pseudoconvex.

Proof. By Theorem 2.3.8 z is quasiconvex, so that, taking into account The-
orem 3.2.9, it is sufficient to prove that a critical point x0 (if one exists)
is a local (strict local) minimum. We have ∇z(x) = ∇f(x)·g(x)−f(x)·∇g(x)

(g(x))2

so that ∇z(x0) = 0 if and only if ∇f(x0) = z(x0)∇g(x0). Consequently,
∇f(x0)T (x − x0) = z(x0)∇g(x0)T (x − x0) and we have:
z(x0)∇g(x0)T (x − x0) = z(x0)(g(x) − g(x0) if g is affine;
z(x0)∇g(x0)T (x−x0) ≥ z(x0)(g(x)− g(x0) if z(x0) ≥ 0, where the inequality
is strict if g is strictly concave. In each case we have:
f(x) ≥ f(x0) + ∇f(x0)T (x − x0) = f(x0) + z(x0)∇g(x0)T (x − x0) ≥
f(x0) + z(x0)(g(x) − g(x0)) = z(x0)g(x), where the first (second) inequality
is strict if f (g) is strictly convex (strictly concave) and thus f(x)

g(x) ≥ z(x0) =
f(x0)
g(x0)

, ∀x ∈ S, where the inequality is strict if f (g) is strictly convex (strictly
concave).

Another useful theorem in constructing new pseudoconvex functions from
existing ones is the following.
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Theorem 3.2.11. Let f : S ⊆ �n → � be a pseudoconvex (strictly pseudo-
convex) function on an open convex set S and let φ : � → � be a differentiable
function such that φ′(z) > 0, ∀z ∈ �. Then, the composite function φ ◦ f is
pseudoconvex (strictly pseudoconvex).

Proof. φ is an increasing function so that φ◦f is quasiconvex. Since ∇φ(f(x)) =
φ′(f(x))∇f(x), we have ∇φ(f(x)) = 0 if and only if ∇f(x) = 0. It follows
that x0 is a local (strict local) minimum point for f and, consequently, it is a
local (strict local) minimum for φ◦f . The thesis follows from Theorem 3.2.9.

Example 3.2.3. Let f be a pseudoconvex (strictly pseudoconvex) function on
an open convex set S ⊆ �n. Taking into account that the derivative of the
exponential function φ(z) = ez is positive, g(x) = ef(x) is pseudoconvex
(strictly pseudoconvex) on S.
Furthermore, when f is positive on S, the functions g(x) = log f(x), g(x) =√

f(x), g(x) = (f(x))α, α > 0, are pseudoconvex on S.

Remark 3.2.7. With the aim of extending the concept of pseudoconvexity to
the non-differentiable case, in [217] and in [275] the following class of func-
tions has been introduced. This reduces to a pseudoconvex function under the
differentiability assumption:
For every x1, x2 ∈ S, there exists a positive number b(x1, x2), depending on
x1, x2, such that

f(x1) > f(x2) ⇒ f(x1 + λ(x2 − x1)) ≤ f(x1)− (1− λ)λb(x1, x2), ∀λ ∈ (0, 1).

3.2.3 Relationships

In this subsection we shall complete the inclusion relationships between the
various classes of convex and generalized convex functions.
The following theorem shows that the class of pseudoconvex functions is
intermediate between the quasiconvex and semistrictly quasiconvex functions.

Theorem 3.2.12. Let f be a differentiable function defined on an open convex
set S ⊆ �n.
(i) If f is pseudoconvex on S, then f is semistrictly quasiconvex on S;
(ii) If f is strictly pseudoconvex on S, then f is strictly quasiconvex on S.

Proof. (i) Let x1, x2 ∈ S with f(x1) > f(x2) and set ϕ(t) = f(x1 + t(x2 −
x1)), t ∈ [0, 1]. If f is not semistrictly quasiconvex, then there exists t̄ ∈ (0, 1)
such that f(x1 + t̄(x2 − x1)) ≥ f(x1) > f(x2). Consequently, ϕ attains its
maximum value at a point t0 ∈ (0, 1) with ϕ(t0) = f(x1 + t0(x2 − x1)) >
f(x2) and ϕ′(t0) = 0. By applying pseudoconvexity to points x0 = x1 +
t0(x2 − x1) and x2, we have ∇f(x0)T (x2 − x0) = (1− t0)∇f(x0)T (x2 − x1) =
(1 − t0)ϕ′(t0) < 0, i.e., ϕ′(t0) < 0, and this is a contradiction.
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(ii) From (i), f is semistrictly quasiconvex on S so that, taking into account
Theorem 2.3.6, it remains to be proven that every restriction on a line segment
attains its minimum at no more than one point. If not, there exist at least
two minimum points, x1, x2 ∈ S with f(x1) = f(x2). Strict pseudoconvexity
implies that ∇f(x1)T (x2 − x1) < 0, and this is a contradiction.

Let us note that there is a strict inclusion relationship between the class
of pseudoconvex (strictly pseudoconvex) functions and the semistrictly quasi-
convex (strictly quasiconvex) ones. Consider, for instance, function f(x) = x3

which is increasing and hence strictly quasiconvex; on the other hand, f is
not pseudoconvex since f ′(0) = 0 but x0 = 0 is not a global minimum.
Nevertheless, the classes of quasiconvex, semistricly quasiconvex and pseu-
doconvex functions collapse when there are no critical points as is stated in
Theorem 3.2.6.

Remark 3.2.8. Let us note that there is not any inclusion relationships between
the class of pseudoconvex functions and the strictly quasiconvex ones. In fact,
a constant function is pseudoconvex but not strictly quasiconvex, while f(x) =
x3 is strictly quasiconvex but not pseudoconvex.

We can summarize the inclusion relationships between the various classes of
convex and generalized convex functions by means of the diagram in Fig. 3.1,
assuming differentiability.

strictly
convex

pseudoconvex

quasiconvex

strictly
pseudoconvex

strictly
quasiconvex

semistrictly
quasiconvexconvex

Fig. 3.1. Relationships between various types of convexity under differentiability

Examples in two variables showing that the inclusions are proper are given
below.

Example 3.2.4.
1. f(x, y) = x + y, (x, y) ∈ �2 is convex, strictly quasiconvex but not strictly
convex.
2. f(x, y) = (x + y)3 + x + y, (x, y) ∈ �2 is pseudoconvex but not convex.
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3. f(x, y) = (x+y)3, (x, y) ∈ �2 is semistrictly quasiconvex but neither pseu-
doconvex, nor strictly quasiconvex.

4. f(x, y) =
{−(x + y)2 x + y < 0

0 x + y ≥ 0 is quasiconvex but not semistrictly

quasiconvex.

Finally, we shall prove that the class of strictly pseudoconvex functions is the
intersection between the class of the pseudoconvex functions and the class of
the strictly quasiconvex ones.

Theorem 3.2.13. Let f be a continuous differentiable function defined on an
open convex set S ⊆ �n. Then, f is strictly pseudoconvex on S if and only if
f is both pseudoconvex and stricly quasiconvex on S.

Proof. Assume that f is both pseudoconvex and stricly quasiconvex on S.
Taking into account Theorem 3.2.9, it remains to be proven that a local min-
imum point x0 ∈ S is strict. If not, there exist a neighbourhood I of x0 and
x1 ∈ I ∩ S such that f(x1) = f(x0). The strict quasiconvexity of f implies
f(x0 + t(x1 −x0)) < f(x0), ∀t ∈ (0, 1), and this contradicts the local optimal-
ity of x0.
The converse statement is obvious.

Remark 3.2.9. When ∇f(x) �= 0, ∀x ∈ S, since pseudoconvexity collapses to
quasiconvexity, strict quasiconvexity implies pseudoconvexity. The converse is
not true since, for instance, the function f(x1, x2) = x1 + x2 is pseudoconvex
with ∇f(x1, x2) �= 0, but it is not strictly quasiconvex since it is constant on
any level set.
Furthermore, taking into account Theorem 3.2.13, strict quasiconvexity col-
lapses to strict pseudoconvexity.

3.3 Quasilinearity and Pseudolinearity

By requiring that a function is both convex and concave we obtain an affine
function which verifies all properties of a convex and concave function. Simi-
larly, we can require that a function is both quasiconvex and quasiconcave (or
both semistrictly quasiconvex and semistrictly quasiconcave or both pseudo-
convex and pseudoconcave) in order to obtain classes of functions for which all
properties of a generalized convex function and generalized concave function
hold.

3.3.1 Quasilinearity and Semistrict Quasilinearity

A function f is said to be quasilinear (semistrictly quasilinear) if it is both
quasiconvex and quasiconcave (semistrictly quasiconvex and semistrictly qua-
siconcave).
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Taking into account the various characterizations of a quasiconvex(semistrictly
quasiconvex) and quasiconcave (semistrictly quasiconcave) function, we have
the following theorems.

Theorem 3.3.1. Let f be a function defined on a convex set S ⊆ �n. Then,
f is quasilinear on S if and only if one of the following conditions holds:
(i) x1, x2 ∈ S, min{f(x1), f(x2)} ≤ f(x1 + λ(x2 − x1)) ≤ max{f(x1), f(x2)},
for all λ ∈ [0, 1];
(ii) The lower level sets and the upper level sets of f are convex;
(iii) Any restriction of f on a line segment is a non-increasing or a non-
decreasing function.

Theorem 3.3.2. Let f be a function defined on a convex set S ⊆ �n. Then,
f is semistrictly quasilinear on S if and only if one of the following conditions
holds:
(i) x1, x2 ∈ S, f(x1) �= f(x2), min{f(x1), f(x2)} < f(x1 + λ(x2 − x1)) <
max{f(x1), f(x2)}, λ ∈ [0, 1];
(ii) Any restriction of f on a line segment is an increasing function or a
decreasing function or a constant function.

Similarly to the quasiconvex case, a semistrictly quasilinear function is not
necessarily a quasilinear function (see Example 2.3.2; the function is quasi-
linear but not semistrictly quasilinear). In order to mantain the inclusion
relationships between the class of semistrictly quasilinear functions and the
class of quasilinear functions, we must require continuity (see Theorem 2.3.2
and its analogous theorem for the quasiconcave case).

Theorem 3.3.3. A continuous semistrictly quasilinear function is a quasilin-
ear function.

The converse statement of the above theorem is not true; for instance, the
function of one variable f(x) = x|x| − x2 is continuous and quasilinear but it
is not semistrictly quasilinear.
Let us note that a continuous non-constant semistrictly quasilinear function is
both strictly quasiconvex and strictly quasiconcave, so that there is no reason
to introduce the class of the “strictly quasilinear functions”.
Property (ii) of Theorem 3.3.1 implies that every level set Γk of a quasilinear
function is convex since it is the intersection of the two convex sets Γ≥k,
Γ≤k. Let us note that Γk is not necessarily the boundary of Γ≥k or Γ≤k. For
instance, consider the continuous quasilinear function

f(x) =

⎧⎨⎩
−x2 x ≤ 0
0 0 < x ≤ 2

(x − 2)2 x > 2

We have Γk=0 = [0, 2], Γ≥0 = [0, +∞), Γ≤0 = (−∞, 2], so that the sets Γ≥0,
Γ≤0 have different boundary points; note also that intΓk=0 �= ∅.
This kind of situation does not happen for a continuous semistrictly quasilin-
ear function as is shown in the following theorem.
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Theorem 3.3.4. Let f be a non-constant continuous semistrictly quasilinear
function on an open convex set S ⊆ �n. Then, the following conditions hold:
(i) intΓk = ∅ for every nonempty level set Γk;
(ii) A point of the level set Γk is a boundary point of upper level set Γ≥k and
a boundary point of lower level set Γ≤k.

Proof. (i) By contradiction, assume that intΓk �= ∅ and let x0 ∈ intΓk. For
every x ∈ S, consider the line segment [x0, x]; since x0 ∈ intΓk, there exists
x̃ ∈ (x0, x) such that [x0, x̃] ⊂ Γk. Consequently, the restriction of the function
f along the line segment [x0, x] is constant in [x0, x̃] so that it is also constant
(see (ii) of Theorem 3.3.2) in [x0, x]. Then, we have f(x0) = f(x) for every
x ∈ S, i.e., f is a constant function and this contradicts the assumption.
(ii) Let x0 ∈ Γk. Since intΓk=0 = ∅, for every neighbourhood I of x0

there exists x̄ ∈ I such that f(x̄) �= f(x0). Consider the restriction ϕ(t) =
f(x0 + t(x̄ − x0)), t ∈ (−ε, ε). From (ii) of Theorem 3.3.2, ϕ is increasing or
decreasing so that (ii) holds.

The following theorem shows that the level sets of a continuous semistrictly
quasilinear function are the intersections of its domain with hyperplanes.

Theorem 3.3.5. Let f be a non-constant continuous function defined on an
open convex set S ⊆ �n. Then, f is semistrictly quasilinear if and only if
every nonempty level set Γk can be expressed in the form Γk = S ∩Hk, where
Hk is a hyperplane.

Proof. Assume that f is a semistrictly quasilinear function. From Theo-
rem 3.3.4 we have intΓk = intΓ≥k ∩ intΓ≤k = ∅ so that the convexity
of Γ≤k and Γ≥k implies the existence of a hyperplane Hk which separates
Γ≤k and Γ≥k, that is the existence of αk ∈ �n\{0} such that Hk = {x ∈
�n : αT

k (x − x0) = 0}, x0 ∈ Γk, αT
k (x − x0) ≥ 0, ∀x ∈ Γ≥k and

αT
k (x−x0) ≤ 0, ∀x ∈ Γ≤k. It follows that Γk is contained in the hyperplane Hk

and thus Γk ⊆ S ∩Hk. On the other hand, αT
k (x−x0) > 0, ∀x ∈ Γ>k = intΓ≥k

and αT
k (x − x0) < 0, ∀x ∈ Γ<k = intΓ≤k, so that x ∈ S ∩ Hk implies x ∈ Γk.

Consider now the converse statement and assume, by contradiction, that f
is not semistrictly quasilinear. Then, from (i) of Theorem 3.3.2 there exists
a restriction ϕ of f on a line segment with end-points x0, x1 ∈ S, such that
either min

t∈[0,1]
ϕ(t) < min{f(x0), f(x1)}, or max

t∈[0,1]
ϕ(t) > max{f(x0), f(x1)}, or

both.
Consider the first case (the second case is similar). Let t∗ be such that
min

t∈[0,1]
ϕ(t) = ϕ(t∗) < min{f(x0), f(x1)}, and let x∗ = x0 + t∗(x1 − x0). Con-

sider level set Γf(x∗) and let H be a hyperplane such that Γf(x∗) = S ∩ H .
Since x0, x1 ∈ Γ>f(x∗), we have x0, x1 /∈ H . On the other hand, x∗ ∈ H
implies that x0, x1 are in opposite halfspaces and this is a contradiction.
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Corollary 3.3.1. Let f be a non-constant continuous function defined on �n.
Then, f is semistrictly quasilinear if and only if each of its nonempty level
sets is a hyperplane.

The characterization of quasilinearity in terms of its level sets is more com-
plicated (for details see [211]). Nevertheless, in the differentiable case the
convexity of the level sets suggests a characterization of quasilinearity based
on the behaviour of the function at points belonging to the same level set. In
this regard, the following theorem holds.

Theorem 3.3.6. Let f be a differentiable function on an open convex set
S ⊆ �n. Then, f is quasilinear on S if and only if the following implication
holds:

x, y ∈ S, f(x) = f(y) ⇒ ∇f(x)T (y − x) = 0 (3.7)

Proof. Let f be quasilinear. If f(x) = f(y), then the convexity of the level set
Γ = {z ∈ S : f(z) = f(x)} implies that [x, y] ⊂ Γ so that the restric-
tion ϕ(t) = f(x + t(y − x)), t ∈ [0, 1] is constant. Consequently, we have
ϕ′(0) = ∇f(x)T (y − x) = 0.
Assume now that (3.7) holds. If f is not quasiconvex, taking into account
(3.7), there exist x, y ∈ S such that f(x) > f(y) and ∇f(x)(y − x) > 0; it
follows that the restriction ϕ(t) = f(x + t(y − x)), t ∈ [0, 1] has a maximum
point t∗ with ϕ(t∗) > ϕ(0) > ϕ(1). The continuity of the function implies the
existence of a point t̄ ∈ (0, 1) such that ϕ(t̄) = ϕ(0). Setting x̄ = x + t̄(y − x)
we have f(x̄) = f(x) so that (x̄ − x)T∇f(x) = 0 and this is absurd since
(x̄ − x)T∇f(x) = t̄(y − x)T∇f(x) > 0. The quasiconvexity of f follows.
Similarly, it can be proven that f is quasiconcave and thus the thesis follows.

Remark 3.3.1. Consider the quasilinear function f(x) = x3; setting x = 0,
y = 1, we have f ′(x)(y − x) = 0 with f(x) �= f(y). This means that the
implication in (3.7) cannot be reversed. As we shall see in the next subsection,
such a property characterizes the functions which are both pseudoconvex and
pseudoconcave.

3.3.2 Pseudolinearity

A differentiable function f defined on an open convex set S ⊆ �n is said to
be pseudolinear if it is both pseudoconvex and pseudoconcave.
Taking into account the results given for a pseudoconvex function and the
analogous results for a pseudoconcave function, we have the following theorem.

Theorem 3.3.7. Let f be a differentiable function on an open convex set
S ⊆ �n. Then, the following properties hold:
(i) If f is pseudolinear on S, then ∇f(x) �= 0 for all x ∈ S or f is a constant
function;
(ii) If f is pseudolinear on S, then f is also semistrictly quasilinear on S;
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(iii) f is pseudolinear on S if and only if the derivative of any of its non-
constant restrictions on a line is constant in sign.

Proof. (i) Since for a pseudolinear function, a critical point is both a global
minimum and a global maximum, the gradient of a non-constant pseudolinear
function does not vanish on its domain.
(ii) This follows from Theorem 3.2.12 and from its analogous theorem in the
pseudoconcave case.
(iii) This follows from Theorem 3.2.7 respectively and from its analogous the-
orem in the pseudoconcave case.

Let us note that the converse statement of (ii) of Theorem 3.3.7 is not true.
For instance, the semistricly quasilinear function f(x) = x3 is not pseudolin-
ear.
A pseudolinear function can be characterized by means of its behaviour at
points belonging to the same level set strengthening condition (3.7) as is
shown in the following theorem.

Theorem 3.3.8. Let f be a differentiable function defined on an open convex
set S ⊆ �n. Then, f is pseudolinear on S if and only if the following double
implication holds:

x, y ∈ S, f(x) = f(y) ⇐⇒ ∇f(x)T (y − x) = 0 (3.8)

Proof. Since a pseudolinear function is also quasilinear, taking into account
(3.7), it remains to be proven that (y − x)T∇f(x) = 0 implies f(x) = f(y).
Setting ϕ(t) = f(x + t(y − x)), t ∈ [0, 1], we have ϕ′(0) = (y − x)T∇f(x) = 0,
so that, for (i) of Theorem 3.3.7, ϕ is constant in [0, 1] and this implies
f(x) = f(y).
Assume now that (3.8) holds. From Theorem 3.3.6 the function f is quasi-
linear. If ∇f(x) �= 0, ∀x ∈ S, quasilinearity implies pseudolinearity; if there
exists a critical point x0 ∈ S, from (3.8) f is constant and hence pseudolin-
ear.

Properties (i) and (ii) of Theorem 3.3.7, together with Theorem 3.2.6 and the
analogous theorem for the pseudoconcave case, imply that the study of pseu-
dolinearity is equivalent to the study of the subclass of semistrictly quasilinear
functions having no stationary points.

Theorem 3.3.9. Let f be a non-constant differentiable function on an open
convex set S ⊆ �n. Then, f is pseudolinear on S if and only if the following
properties hold:
(i) Each of the level sets of f is the intersection of S with a hyperplane;
(ii) ∇f(x) �= 0 for all x ∈ S.

Let us note that when a level set of a function f is contained in a hyper-
plane, the gradient of f is orthogonal at each point of the level set. From
Theorem 3.3.9 it follows that the normalized gradient map, x → ∇f(x)

‖∇f(x)‖ , is
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constant on each level set of a pseudolinear function. A direct proof of this
last statement is given in the following theorem.

Theorem 3.3.10. Let f be a function defined on an open convex set S ⊆ �n

and assume ∇f(x) �= 0 for all x ∈ S. Then, f is pseudolinear on S if and
only if its normalized gradient map is constant on each level set.

Proof. Let f be pseudolinear. We must prove that the normalized gradient
map is constant on each level set, i.e.,

f(x) = f(y) ⇒ ∇f(x)
‖ ∇f(x) ‖ =

∇f(y)
‖ ∇f(y) ‖ (3.9)

Set Γ1 = {d ∈ �n : dT∇f(x) = 0}, Γ2 = {d ∈ �n : dT∇f(y) = 0}.
We have Γ1 = Γ2. Indeed, if d ∈ Γ1, from (3.8) it results that f(x + td) =
f(x) = f(y) for every t such that x + td ∈ S. From (3.8), it also follows that
(x + td − y)T∇f(y) = 0 and (x − y)T∇f(y) = 0; consequently, dT∇f(y) = 0
and thus d ∈ Γ2. In an analogous way we can prove that Γ2 ⊆ Γ1.
Since Γ1 = Γ2, it results that ∇f(x)

‖∇f(x)‖ = ± ∇f(y)
‖∇f(y)‖ . Set u = ∇f(y)

‖∇f(y)‖ and assume

that ∇f(x)
‖∇f(x)‖ = −u; for a suitable t ∈ (0, ε) points z1 = x+ tu, z2 = y+ tu are

such that f(z1) < f(x), f(z2) > f(y). The continuity of f implies the existence
of λ ∈ (0, 1) such that f(z) = f(x) = f(y) with z = λz1+(1−λ)z2. From (3.8)
we have (z − y)T u = 0; on the other hand, (z − y)T u = (λ(x − y) + tu)T u =
t ‖ u ‖ 2 > 0 so that f(y) �= f(z) and this is a contradiction.
Consequently, we have ∇f(x)

‖∇f(x)‖ = ∇f(y)
‖∇f(y)‖ .

Assume now that (3.9) holds. Let x, y ∈ S and set ϕ(t) = f(x + t(y − x)), t ∈
[0, 1]. If ϕ′(t) is constant in sign, then ϕ(t) is quasilinear on the line seg-
ment [0, 1]. Otherwise, from elementary Analysis, there exist t1, t2 ∈ (0, 1)
such that ϕ(t1) = ϕ(t2) with ϕ′(t1)ϕ′(t2) < 0. Set z1 = x + t1(y − x), z2 =
x + t2(y − x). Since f(z1) = ϕ(t1) = ϕ(t2) = f(z2), we have ϕ′(t2) =
(1−t2)(y−x)T∇f(z2) = (1−t2)(y−x)T∇f(z1)

‖∇f(z2)‖
‖∇f(z1)‖ = 1−t2

1−t1
ϕ′(t1)

‖∇f(z2)‖
‖∇f(z1)‖ .

Since ϕ′(t1)ϕ′(t2) < 0, we get a contradiction.
It follows that the restriction of the function over every line segment con-
tained in S is quasilinear, so that f is quasilinear and also pseudolinear, since
∇f(x) �= 0, ∀x ∈ S.

Theorem 3.3.10 can be strengthened when f is defined on the whole space
�n, in the sense stated in the following theorem.

Theorem 3.3.11. A non-constant function f is pseudolinear on the whole
space �n if and only if its normalized gradient map is constant on �n.

Proof. Let f be pseudolinear on �n and assume that its normalized gradi-
ent map is not constant on �n. Then, there exist x1, x2 ∈ �n such that
∇f(x1)

‖∇f(x1)‖ �= ∇f(x2)
‖∇f(x2)‖ . From Theorem 3.3.10, we have f(x1) �= f(x2). Set

Γ1 = {d ∈ �n : dT∇f(x1) = 0} and Γ2 = {d ∈ �n : dT∇f(x2) = 0}. By not-
ing that x ∈ x1 + Γ1 implies (x − x1) ∈ Γ1, we have (x − x1)T∇f(x1) = 0
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so that, from (3.8), f(x) = f(x1). Analogously, we have f(x) = f(x2) for all
x ∈ x2 + Γ2. On the other hand, ∇f(x1)

‖∇f(x1)‖ �= ∇f(x2)
‖∇f(x2)‖ implies the existence

of x̄ ∈ (x1 + Γ1) ∩ (x2 + Γ2), so that f(x1) = f(x̄) = f(x2), and this is a
contradiction.
The converse statement follows from Theorem 3.3.10.

From a geometrical point of view, the previous theorem states that the level
sets of a non-constant pseudolinear function, defined on the whole space �n,
are parallel hyperplanes; viceversa if the level sets of a differentiable function,
with no critical points, are hyperplanes, then the function is pseudolinear.

In the following examples we shall use Theorem 3.3.9 for constructing pseu-
dolinear functions and for verifying the pseudolinearity of given functions.

Example 3.3.1. The linear fractional function (b �= 0)

f(x) =
aT x + a0

bT x + b0
, bT x + b0 > 0

is pseudolinear.
It is easy to verify that the feasible level sets are open semi-hyperplanes.
Furthermore, we have ∇f(x) = (bT x+b0)a−(aT x+a0)b

(bT x+b0)2
so that ∇f(x) �= 0 if a, b

are not proportional. If a = kb, f reduces to f(x) = k + a0−kb0
bT x+b0

. In both cases
(i) and (ii) of Theorem 3.3.9 hold and thus the linear fractional function is
pseudolinear.

Example 3.3.2. Theorem 3.3.9 suggests constructing pseudolinear functions
starting from a family of lines or hyperplanes.
Consider, for instance, the family of lines y = kx+1√

k+1
. We have (

√
k + 1 y)2 =

(kx + 1)2, k2x2 + (2x− y2)k + 1− y2 = 0, k = −2x+y2±|y|
√

y2−4x+4x2

2x2 , so that
the given family of lines may be interpreted as the level sets of function

f(x, y) =
−2x + y2+ | y |

√
y2 − 4x + 4x2

2x2
.

From Theorem 3.3.9, the function is pseudolinear on each convex set S such
that ∇f(x, y) �= 0, for all (x, y) ∈ S. For instance, f is pseudolinear on
S = {(x, y) : x > 1, y > 0}.
Another way to construct a pseudolinear function from known functions is to
apply the following theorem whose proof follows from Theorem 3.2.11 and its
analogous theorem for pseudoconcave functions.

Theorem 3.3.12. Let f : S ⊆ �n → � be a pseudolinear function on an
open convex set S and let φ : � → � be a differentiable function such that
φ′(z) > 0, ∀z ∈ �, or φ′(z) < 0, ∀z ∈ �. Then, the composite function φ ◦ f is
pseudolinear on S.
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Example 3.3.3. If g(x) is a pseudolinear function on a convex set S ⊆ �n,
then the function f(x) = eg(x) is pseudolinear on S.

3.4 Twice Differentiable Generalized Convex Functions

In this section we shall present some characterizations of a twice differentiable
generalized convex function.

3.4.1 Quasiconvex Functions

The Hessian matrix of a twice differentiable convex function is positive
semidefinite or, equivalently, it has non-negative eigenvalues. As a result, the
Hessian of a quasiconvex function which is not convex necessarily has some
negative eigenvalue. The following theorem states that the Hessian cannot
have two or more negative eigenvalues.

Theorem 3.4.1. Let f be a twice continuously differentiable quasiconvex
function defined on an open convex set S ⊆ �n. Then, for every x ∈ S,
the Hessian matrix ∇2f(x) has at most one negative eigenvalue.

Proof. Let x0 ∈ S and suppose that ∇2f(x0) has two (or more) negative eigen-
values. Denote with v1, v2, ..., vn a set of n orthogonal eigenvectors of ∇2f(x0)
and assume, without loss of generality, that the eigenvalues associated with
v1 and v2 are negative. Let E be the subspace spanned by v1 and v2 and set
E∗ = E\{0}. We have uT∇2f(x0)u < 0 for every u ∈ E∗. If ∇f(x0) = 0, then
uT∇f(x0) = 0, uT∇2f(x0)u < 0 imply that x0 is a strict local maximum for
the restriction of f on the line through x0 and direction u, and this contradicts
the quasiconvexity of f . If ∇f(x0) �= 0, the intersection between E and the
orthogonal subspace to ∇f(x0) has dimension equal to 1 or 2, so that there
exists u ∈ E∗ such that uT∇f(x0) = 0, uT∇2f(x0)u < 0 and, once again, we
get a contradiction.

Theorem 3.4.1 establishes a necessary condition for a twice differentiable func-
tion to be quasiconvex. The following example shows that such a condition is
not sufficient.

Example 3.4.1. Consider the function f(x1, x2) = x2
1 − x2

2, x1, x2 > 0. It is
easy to verify that the Hessian matrix has one negative eigenvalue and one
positive eigenvalue. The restriction of f on the half-line x2 = 2x1−3, x1 ≥ 3

2 ,
is given by ϕ(x1) = x2

1 − (2x1 − 3)2 = −3x2
1 + 12x1 − 9; such a function has

a critical point at x1 = 2 which is a strict local maximum, so that f is not
quasiconvex.

Another necessary condition for a twice continuously differentiable function
to be quasiconvex is stated in the following theorem.
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Theorem 3.4.2. Let f be a twice continuously differentiable quasiconvex
function defined on an open convex set S ⊆ �n. Then, the following property
holds:

x0 ∈ S, u ∈ �n, uT∇f(x0) = 0 ⇒ uT∇2f(x0)u ≥ 0. (3.10)

Proof. It sufficient to note that the condition x0 ∈ S, u ∈ �n, uT∇f(x0) = 0,
uT∇2f(x0)u < 0 implies that x0 is a strict local maximum point for the
restriction of f on the line through x0 and direction u, and this contradicts
the quasiconvexity of f .

Condition (3.10) does not guarantee the quasiconvexity of f . In fact, in Exam-
ple 3.4.1, condition (3.10) is verified for x0 = (2, 1)T and u = (1, 2)T but f is
not quasiconvex. Nevertheless, requiring the non-existence of critical points,
condition (3.10) becomes sufficient too, as is shown in the following theorem
(see also [219, 79, 82]).

Theorem 3.4.3. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n such that ∇f(x) �= 0 for all x ∈ S. Then, f is
quasiconvex on S if and only if (3.10) holds.

Proof. Taking into account Theorem 3.4.2, it remains to be proven that
the condition (3.10) implies the quasiconvexity of f . Let x0, x1 ∈ S such
that f(x1) ≤ f(x0) and let x(t) = tx1 + (1 − t)x0, t ∈ [0, 1]. By contra-
diction, assume that f is not quasiconvex; the continuity of f implies the
existence of t0 ∈ (0, 1) such that t0 = max{t ∈ [0, 1] : ϕ(t) = M} where
M = max

t∈[0,1]
{ϕ(t)}. Setting ϕ(t) = f(x(t)) we have f(x(t)) < f(x(t0)), ∀t > t0

and ϕ′(t0) = (x1 − x0)T∇f(x(t0)) = 0.
Consider the function ψ(β, α) = f(β∇f(x(t0)) + α(x1 − x0) + x(t0)).
It results ψ(0, 0) = f(x(t0)) and ∂ψ

∂β (0, 0) =‖ ∇f(x(t0)) ‖2. Since ∇f(x(t0)) �=
0, we have ∂ψ

∂β (0, 0) > 0, so that, by means of the Implicit Function Theo-
rem, there exists a differentiable function β(α) with α belonging to a suitable
neighbourhood I of 0 such that β(0) = 0 and

f(z(α)) = f(x(t0)), ∀α ∈ I (3.11)

where z(α) = β(α)∇f(x(t0)) + α(x1 − x0) + x(t0).
From (3.11), through differentiation, we have

∇f(z(α))T [β′(α)∇f(x(t0)) + (x1 − x0)] = 0 (3.12)

and

(β′(α)∇f(x(t0)) + (x1 − x0))T∇2f(z(α))(β′(α)∇f(x(t0)) + (x1 − x0)) +
+ ∇f(z(α))T β′′(α)∇f(x(t0)) = 0 (3.13)

Set α = 0 in (3.12); since ∇f(z(0))T∇f(x(t0)) =‖ ∇f(x(t0)) ‖2, we obtain
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β′(0) ‖ ∇f(x(t0)) ‖2 +(x1 − x0)T∇f(x(t0)) = β′(0) ‖ ∇f(x(t0)) ‖2= 0,

so that β′(0) = 0.
Taking into account (3.12), (3.10) applied to the vectors z(α) and u =
β′(α)∇f(x(t0)) + (x1 − x0) becomes

(β
′
(α)∇f(x(t0)) + (x1 − x0))T∇2f(z(α))(β′(α)∇f(x(t0)) + (x1 − x0)) ≥ 0,

so that, from (3.13), we have β′′(α)∇f(z(α))T∇f(x(t0)) ≤ 0, ∀α ∈ I.
Since ∇f(z(0))T∇f(x(t0)) > 0, the continuity of the gradient map implies
the existence of α∗ such that ∇f(z(α))T∇f(x(t0)) > 0, ∀α ∈ (−α∗, α∗);
consequently, we have β′′(α) ≤ 0, ∀α ∈ (−α∗, α∗), i.e., the function β(α)
is concave in (−α∗, α∗). Since β(0) = β′(0) = 0, the concavity implies
β(α) ≤ 0, ∀α ∈ (−α∗, α∗). Setting α = t − t0 the last inequality reduces to
β(t−t0) ≤ 0, ∀t ∈ (t0−α∗, t0+α∗). Since f(x(t)) < f(x(t0)), t > t0, and taking
into account (3.11), where now α(x1−x0)+x(t0) = (t− t0)(x1−x0)+x(t0) =
x(t), we necessarily have β(t − t0) �= 0, ∀t ∈ (t0 − α∗, t0 + α∗) so that
β(t− t0) < 0, ∀t ∈ (t0−α∗, t0 +α∗). By means of Taylor’s expansion we have
f(x(t0)) = f(β(t− t0)∇f(x(t0))+x(t)) = f(x(t))+∇f(x(t))T∇f(x(t0))β(t−
t0) + o(t − t0) and thus, for t > t0 sufficiently close to t0, taking into account
that ∇f(x(t))T∇f(x(t0)) > 0 and β(t − t0) < 0, we have f(x(t)) > f(x(t0))
and this is a contradiction.

The following theorem states another second order characterization for qua-
siconvexity without any assumption on the gradient map.

Theorem 3.4.4. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n. Then, f is quasiconvex on S if and only if the
following conditions hold:
(i) x0 ∈ S, u ∈ �n, uT∇f(x0) = 0 imply uT∇2f(x0)u ≥ 0;
(ii) x0 ∈ S, x1 ∈ S, f(x1) < f(x0), ∇f(x0) = 0, uT∇2f(x0)u = 0 with
u = x0−x1, imply that for all ε > 0 there exists k ∈ (0, ε) such that x0+ku ∈ S
and f(x0) ≤ f(x0 + ku).

Proof. Obviously, the quasiconvexity of f implies (i) and (ii). With respect
to the converse statement, referring to the proof given in Theorem 3.4.3, the
case ∇f(x(t0)) = 0 remains to be considered. By setting u = x(t0) − x0, we
have uT∇f(x(t0)) = 0 so that, from (i) and taking into account that x(t0) is
a maximum point on the segment [x0, x1], it results that uT∇2f(x(t0))u = 0.
Since f(x0) < f(x(t0)), (ii) implies the existence of k > 0 such that
f(x(t0)) ≤ f(x(t0) + ku) and this is a contradiction since for k > 0, i.e.,
for t > t0, function f is decreasing on the segment [x(t0), x1].
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3.4.2 Pseudoconvex Functions

For a twice continuously differentiable (strictly) pseudoconvex function both
Theorems 3.2.7 and 3.2.8 may be stated in terms of the first and second
derivatives as follows.

Theorem 3.4.5. Let ϕ be a twice continuously differentiable function defined
on an open interval I ⊆ �. Then, ϕ is (strictly) pseudoconvex on I if and
only if for every t0 ∈ I such that ϕ′(t0) = 0 either ϕ′′(t0) > 0 or ϕ′′(t0) = 0
and t0 is a (strict) local minimum for ϕ.

Theorem 3.4.6. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n. Then, f is (strictly) pseudoconvex on S if
and only if for every x0 ∈ S and u ∈ �n such that uT∇f(x0) = 0, either
uT∇2f(x0)u > 0 or uT∇2f(x0)u = 0 and function ϕ(t) = f(x0 + tu) attains
a (strict) local minimum at t = 0.

The following theorem specifies Theorem 3.2.9; the given characterization is
more suitable for establishing the pseudoconvexity of a function.

Theorem 3.4.7. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n.
Then, f is (strictly) pseudoconvex on S if and only if the following conditions
hold:
(i)

x ∈ S, u ∈ �n, uT∇f(x0) = 0 ⇒ uT∇2f(x0)u ≥ 0 (3.14)

(ii) If x0 ∈ S is a critical point for f , then x0 is a (strict) local minimum for
f on S.

Proof. If f is (strictly) pseudoconvex, then (i) and (ii) follow directly from
Theorems 3.2.9 and 3.4.2.
For the converse statement, taking into account Theorem 3.2.8, we must prove
that uT∇f(x0) = 0 implies that ϕ(t) = f(x0 + tu) attains a (strict) local min-
imum at t = 0.
If ∇f(x0) = 0, then the thesis follows from condition (ii). If ∇f(x0) �= 0 the
continuity of the gradient map implies that ∇f(x) �= 0 for all x belonging to
a suitable neighbourhood I(x0) of x0 so that, from Theorem 3.4.3, (i) implies
that f is quasiconvex on I(x0). The thesis follows from Theorem 3.2.6 and
Theorem 3.2.8.

Corollary 3.4.1. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n. If ∇f(x) �= 0 for all x ∈ S, then f is pseudo-
convex on S if and only if condition (3.14) holds.
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3.4.3 Characterizations in Terms of the Bordered Hessian

Let us note that condition (3.14) is equivalent to studying the positive semidef-
initeness of a quadratic form on a linear subspace; this kind of study has been
carried out for a long time (see for instance [91, 112]).
As regards our aim, let us recall the following notations and results [82].
Let a ∈ �n, a �= 0 and A be a real symmetric matrix of order n.

Let B =
[

0 aT

a A

]
the so-called bordered matrix. For all nonempty subset

R ⊆ {1, 2, .., n}, denote with |R| the cardinality of R and with BR =
∣∣∣∣ 0 aT

R

aR AR

∣∣∣∣
the bordered principal minor of order |R| of B, where AR is obtained from A
by deleting rows and columns whose indices are not in R and aR is obtained
analogously from a.

Furthermore denote with Br =
∣∣∣∣ 0 aT

r

ar Ar

∣∣∣∣ the bordered leading principal minor

of order r, r = 1, .., n, of B, where Ar is obtained from A by keeping the first
r rows and the first r columns and ar is obtained analogously from a.

Theorem 3.4.8. Let a ∈ �n, a �= 0 and let A be a real symmetric matrix of
order n. The following conditions are equivalent:
(i) aT h = 0 implies hT Ah ≥ 0;
(ii) For all nonempty subset R ⊆ {1, 2, .., n} we have BR ≤ 0.

Theorem 3.4.9. Let a ∈ �n, a �= 0 and let A be a real symmetric matrix of
order n. The following conditions are equivalent:
(i) aT h = 0, h �= 0 implies hT Ah > 0;
(ii) Br < 0, r = 1, .., n.

Theorem 3.4.8 allows a restatement of Theorems 3.4.2, 3.4.7, and Corollary
3.4.1, in terms of the so-called bordered Hessian defined as

D(x) =
[

0 ∇T f(x)
∇f(x) ∇2f(x)

]
By denoting with DR(x), R ⊆ {1, 2, .., n}, the bordered principal minors of
D(x) and with Dr(x), r = 1, .., n, the bordered leading principal minors of
D(x), we have the following theorems.

Theorem 3.4.10. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n. If f is quasiconvex on S, then the following
condition holds:

DR(x) ≤ 0, ∀x ∈ S, ∀R ⊆ {1, 2, .., n}, R �= ∅ (3.15)

The following example points out that condition (3.15) is not sufficient for
quasiconvexity or pseudoconvexity.
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Example 3.4.2. Consider the function f(x1, x2) = −(x1 − x2)2.

The bordered Hessian is D(x) =

⎡⎣ 0 −2(x1 − x2) 2(x1 − x2)
−2(x1 − x2) −2 2
2(x1 − x2) 2 −2

⎤⎦.

For R = {1} and R = {2}, we have respectively∣∣∣∣ 0 −2(x1 − x2)
−2(x1 − x2) −2

∣∣∣∣ = −4(x1 − x2)2 ≤ 0∣∣∣∣ 0 2(x1 − x2)
2(x1 − x2) −2

∣∣∣∣ = −4(x1 − x2)2 ≤ 0.

For R = {1, 2}, it results that DR(x1, x2) = |D(x1, x2)| = 0.
Consequently, condition (3.15) is verified, but f is not pseudoconvex (in par-
ticular, not quasiconvex) since its critical points are global maximum points.

Theorem 3.4.11. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n. Then, f is (strictly) pseudoconvex on S if and
only if conditions (i) and (ii) hold:
(i)

DR(x) ≤ 0, ∀x ∈ S, ∀R ⊆ {1, 2, .., n}, R �= ∅ (3.16)

(ii) If x ∈ S is a critical point for f , then x is a (strict) local minimum for f
on S.

Theorem 3.4.12. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n, with ∇f(x) �= 0 for all x ∈ S. Then, f is
pseudoconvex on S if and only if (3.16) holds.

Theorem 3.4.9 allows us to state a sufficient condition for pseudoconvexity.

Theorem 3.4.13. Let f be a twice continuously differentiable function defined
on an open convex set S ⊆ �n. Then, a sufficient condition for f to be
pseudoconvex on S is

Dr(x) < 0, ∀x ∈ S, ∀r = 1, 2, .., n (3.17)

Proof. (3.17) is equivalent to stating that for every u �= 0 such that uT∇f(x) =
0 we have uT∇2f(x)u > 0. The thesis follows from Theorem 3.4.6.

The sufficient condition expressed in Theorem 3.4.13 still holds for a strictly
quasiconvex function.

Theorem 3.4.14. Let f be a twice differentiable function defined on an open
convex set S ⊆ �n. If condition (3.17) holds, then f is strictly quasiconvex
on S.

Proof. It is sufficient to note that f cannot have a constant restriction. In fact,
if ϕ(t) = f(x0 + tu) is constant, then uT∇f(x0) = 0, uT∇2f(x0)u = 0, while
(3.17) implies uT∇2f(x0)u > 0.
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Remark 3.4.1. Let us note that the sufficient condition (3.17) is sometimes
very restrictive. In fact it cannot be verified by any function that has level sur-
faces containing line segments (for instance, affine functions or, more generally,
pseudolinear functions).

The following examples show some applications of the given results in terms
of the bordered Hessian.

Example 3.4.3. Consider the function

f(x1, x2) = 2x2 +
x1

x2 + 1
, (x1, x2) ∈ S = {(x1, x2) ∈ �2 : x2 + 1 > 0}.

It results that ∇f(x1, x2) = ( 1
x2+1 , 2 − x1

(x2+1)2 )T �= 0, ∀(x1, x2) ∈ S.

The bordered Hessian is D(x1, x2) =

⎡⎢⎢⎢⎣
0 1

x2+1 2 − x1
(x2+1)2

1
x2+1 0 −1

(x2+1)2

2 − x1
(x2+1)2

−1
(x2+1)2

2x1
(x2+1)3

⎤⎥⎥⎥⎦.

In order to study the pseudoconvexity of f , we shall begin to calculate the
bordered leading principal minors of D(x1, x2).
It results that∣∣∣∣ 0 1

x2+1
1

x2+1 0

∣∣∣∣ = − 1
(x2+1)2 < 0, |D(x1, x2)| = − 4

(x2+1)3 < 0.

From Theorem 3.4.13, f is pseudoconvex on S.

Example 3.4.4. Consider the function f(x1, x2) = −x2
1 − 2x1x2.

Since ∇f(x1, x2) = (−2x1 − 2x2,−2x1)T , the function does not have critical
points on int�2

+ so that, in order to study the pseudoconvexity of the function,
we can refer to Theorem 3.4.12.

The bordered Hessian is D(x1, x2) =

⎡⎣ 0 −2x1 − 2x2 −2x1

−2x1 − 2x2 −2 −2
−2x1 −2 0

⎤⎦.

We have∣∣∣∣ 0 −2x1 − 2x2

−2x1 − 2x2 −2

∣∣∣∣ = −(−2x1− 2x2)2 ≤ 0,

∣∣∣∣ 0 −2x1

−2x1 0

∣∣∣∣ = −4x2
1 ≤ 0,

|D(x1, x2)| = −8x2
1 − 16x1x2 ≤ 0.

It follows from Theorem 3.4.12 that f is pseudoconvex on int�2
+. Since the

gradient of f vanishes at the origin which is a global maximum point, f is not
pseudoconvex on �2

+.
Note that, from Theorem 2.2.12, f is quasiconvex on �2

+.

3.5 Generalized Convexity at a Point

In this section we shall introduce the notion of convexity and generalized
convexity at a point which will allow us to state, in the next chapter and
in a more general form, local-global property, first-order sufficient optimality
conditions and constraint qualifications.
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The notion of convexity and generalized convexity at a point represents a sig-
nificant relaxation of the concept of generalized convexity since it does not
necessarily require the convexity of the domain of the function. For a bet-
ter understanding, consider Definition 2.1; quasiconvexity is introduced by
requiring that (2.2) holds for each point of the line segment [x1, x2]; such
an assumption can be relaxed in different ways. The more general one is
that for a fixed point x0 and for any x ∈ S, (2.2) holds for each point of
the intersection of the line segment [x0, x] with S. In what follows we con-
sider the case of such an intersection (in general it may also be a finite set)
which coincides with the line segment [x0, x], i.e., the case of the domain of
the function is star-shaped at a point. More precisely, we have the following
definition.

Definition 3.5.1. Let S be a subset of �n and let x0 be a point of S. S is said
to be star-shaped at x0 if x ∈ S implies x0 + t(x − x0) ∈ S for all t ∈ [0, 1].

From the given definition is follows that a convex set is star-shaped at each
of its points. The following Fig. 3.2 shows some examples of non-convex star-
shaped sets.

x0
x0

x0

Fig. 3.2. Non-convex star-shaped sets

By considering a star-shaped set as a domain, we shall introduce the following
definitions of generalized convex functions at a point.

Definition 3.5.2. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S.
(i) f is said to be quasiconvex at x0 ∈ S if

x ∈ S, f(x) ≤ f(x0) ⇒ f(x0 + t(x − x0)) ≤ f(x0) (3.18)

for every t ∈ [0, 1].
(ii) f is said to be strictly quasiconvex at x0 ∈ S if

x ∈ S, x �= x0, f(x) ≤ f(x0) ⇒ f(x0 + t(x − x0)) < f(x0) (3.19)

for every t ∈ (0, 1).
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(iii) f is said to be semistrictly quasiconvex at x0 ∈ S if

x ∈ S, x �= x0, f(x) < f(x0) ⇒ f(x0 + t(x − x0)) < f(x0) (3.20)

for every t ∈ (0, 1].

In an analogous way the definitions of convexity and strict convexity at a
point can be given.

Definition 3.5.3. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S.
(i) f is said to be convex at x0 ∈ S if

f(x0 + t(x − x0)) ≤ f(x0) + t(f(x) − f(x0)) (3.21)

for every x ∈ S and for every t ∈ [0, 1].
(ii) f is said to be strictly convex at x0 ∈ S if

f(x0 + t(x − x0)) < f(x0) + t(f(x) − f(x0)) (3.22)

for every x ∈ S, x �= x0 and for every t ∈ (0, 1).

Some graphs of convex and generalized convex functions at a point but not
on the whole domain are depicted in Fig. 3.3. More precisely, in case a) the
function is convex at x0 = (0, 0), in case b) the function is quasiconvex (nei-
ther semistrictly quasiconvex nor strictly quasiconvex) at x0, and in case
c) the function is strictly and semistrictly quasiconvex (not convex) at x0.

x1

x2

0

(a)

x1

x2

0

(c)

x1

x2

0

(b)

Fig. 3.3. Convex and generalized convex functions at a point

Convexity and generalized convexity at a point represent, as we have pointed
out before, a significant relaxation of convexity. For this reason, as we shall
see, not all the results developed so far throughout this chapter and the pre-
vious ones, hold true.
With respect to the relationships between the introduced classes of convex
and generalized convex functions at a point, we have the following theorem
whose proof follows directly from the given definitions.
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Theorem 3.5.1. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S.
(i) If f is convex at x0 ∈ S, then f is both quasiconvex and semistrictly
quasiconvex at x0;
(ii) If f is strictly convex at x0 ∈ S, then f is strictly quasiconvex at x0;
(iii) If f is strictly quasiconvex at x0 ∈ S, then f is both quasiconvex and
semistrictly quasiconvex at x0.

The inclusion relationship between the class of quasiconvex functions and the
class of lower semicontinuous semistrictly quasiconvex functions (see Theo-
rem 2.3.2) does not hold for generalized convexity at a point even if S is a
convex set and f is a continuous function, as is pointed out in the following
examples.

Example 3.5.1. Consider the function

f(x) =
{−x2 −1 ≤ x ≤ 1
−x2 + 6x − 6 1 < x ≤ 3 +

√
3

.

It can be verified that f is continuous and semistrictly quasiconvex at x0 = 0
but it is not quasiconvex at x0 since f(0) = f(3+

√
3) = 0 with f(3) = 3 > 0.

Example 3.5.2. Consider the function

f(x) =
{

0 −1 ≤ x < 1
−x + 1 1 ≤ x ≤ 2 .

It is easy to verify that f is quasiconvex at x0 = 0 but it is not semistrictly
quasiconvex at x0 since, for instance, we have f(x0) = 0 > f(2) = −1, but
f(1) = 0.

The reason for which there is no any inclusion relationship between quasi-
convexity and semistrictly quasiconvexity at a point, is related to the given
definitions where nothing is said about the behaviour of the function when
f(x) > f(x0). In Exercise 3.34 we shall present alternative definitions for
which the inclusion relationship still holds.
Due to the generality of the given definitions, also the first-order characteri-
zations of convexity and quasiconvexity do not hold. More precisely, (1.8) and
(3.2) are necessary but not sufficient conditions for a function to be convex
or quasiconvex, respectively, as is stated in Theorem 3.5.2 and in Example
3.5.3.

Theorem 3.5.2. Let S ⊆ �n be a star-shaped set at x0 ∈ S, and let f be a
function defined on an open set containing S and differentiable at x0.
(i) If f is convex at x0, then

f(x) ≥ f(x0) + (x − x0)T∇f(x0), ∀x ∈ S; (3.23)

(ii) If f is quasiconvex at x0, then

f(x) ≤ f(x0) ⇒ (x − x0)T∇f(x0) ≤ 0, ∀x ∈ S. (3.24)
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Proof. (i) From (3.21) we have f(x0+t(x−x0))−f(x0)
t ≤ f(x)− f(x0), ∀t ∈ (0, 1].

By taking the limit when t approaches to 0+, (3.23) is obtained.
(ii) From (3.18) we have f(x0+t(x−x0))−f(x0)

t ≤ 0, ∀t ∈ (0, 1]. By taking the
limit for t → 0+, (3.24) is obtained.

The following example shows that (3.23) and (3.24) are not sufficient con-
ditions for convexity and quasiconvexity at x0, respectively.

Example 3.5.3. Consider S = {x ∈ � : x ≤ 3}, x0 = 0 ∈ S, and the function
f(x) = x(1 − x)(x − 2).
Since f ′(x0)(x − x0) = −2x, it is easy to verify that (3.23) and (3.24) hold.
By applying (3.21) for x = 2, we have f(2t) ≤ 0, ∀t ∈ [0, 1]. Since f(2t) > 0,
∀t ∈ (1

2 , 1), the function is not convex at x0.
Furthermore, f is not quasiconvex at x0 since we have f(2) = 0 = f(0) with
f(x) > 0, ∀x ∈ (1, 2).

Peseudoconvexity at a point of a star-shaped set can be defined by relaxing
relations (3.5) and (3.6).

Definition 3.5.4. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S.
(i) f is said to be pseudoconvex at x0 ∈ S if f is differentiable at x0 and

x ∈ S, f(x) < f(x0) ⇒ (x − x0)T∇f(x0) < 0; (3.25)

(ii) f is said to be strictly pseudoconvex at x0 ∈ S if f is differentiable at x0

and
x ∈ S, f(x) ≤ f(x0) ⇒ (x − x0)T∇f(x0) < 0. (3.26)

It easy to prove that the class of differentiable and convex functions at a
point x0 is properly contained in the class of pseudoconvex functions at
x0. Unfortunately, there are not any inclusion relationships among quasi-
convexity, semistrictly quasiconvexity and pseudoconvexity at a point. For
instance, the function given in Example 3.5.3 is pseudoconvex at x0 but it
is neither quasiconvex or semistrictly quasiconvex at x0, while the function

f(x) =
{

0 x = 0
x2 log | x | 0 < x ≤ 1 is quasiconvex and semistrictly quasiconvex

at x0 = 0 but not pseudoconvex at x0.
As is shown in Theorem 3.2.6, quasiconvexity implies pseudoconvexity when
the gradient does not vanish on the feasible convex set. In order to extend
this property to a star-shaped set in addition to differentiability at a point we
need the continuity of the function on its domain, as is stated in the following
theorem.

Theorem 3.5.3. Let f be a continuous function defined on an open set S ⊆
�n which is star-shaped at x0 ∈ S. If f is differentiable and quasiconvex at
x0 ∈ S with ∇f(x0) �= 0, then f is pseudoconvex at x0.
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Proof. The proof is analogous to the one given in Theorem 3.2.3 (it is sufficient
to replace x1 with x0).

Let us note that the converse statement of Theorem 3.5.3 is not true (see
Example 3.5.3).
The following example points out that the assumption of continuity on the
whole set is essential in the proof of Theorem 3.5.3.

Example 3.5.4. Consider S = {(x1, x2) ∈ �2 : x1 ≥ −1}, x0 = (0, 0) ∈ S and

f(x1, x2) =
{

x1x2 + x2 (x1, x2) �= (−1, 0)
−1 (x1, x2) = (−1, 0)

Since S∗ = {(x1, x2) ∈ S : f(x1, x2) ≤ f(0, 0)} = {(x1, x2) ∈ S : x2 ≤ 0}
is a convex set and x0 is the maximum point for f on S∗, the function
is quasiconvex at x0. On the other hand, f(−1, 0) = −1 < f(0, 0) and
∇f(0, 0)T (−1, 0) = 0, so that f is not pseudoconvex at x0.

3.6 Exercises

3.1. Show that an upper semicontinuous function ϕ, defined on an open
interval I, is quasiconvex if and only if it does not attain a semistrict local
maximum point at any interior point t ∈ I (see Remark 3.2.4).

3.2. Show that a strict local maximum is a semistrict local maximum and
give an example which shows that the converse statement is not true.

3.3. Give an example which shows that the assumption of upper semiconti-
nuity in Exercise 3.1 cannot be relaxed.

3.4. Let ϕ be a differentiable function on the open interval I ⊆ �. Show that
ϕ is quasiconvex on I if and only if every point t0 ∈ I such that ϕ′(t0) = 0
cannot be a semistrict local maximum point.

3.5. A differentiable convex function f : � → � that has a positive derivative
at a point x0 verifies the following limit: lim

x→+∞f(x) = +∞. Is this result still

valid for a quasiconvex function?

3.6. Let f be a differentiable function on the open convex set S ⊆ �n. Show
that f is quasiconvex on S if and only if for every x0 ∈ S and u ∈ �n such that
uT∇f(x0) = 0, ϕ(t) = f(x0 + tu) does not attain a semistrict local maximum
point at t = 0.

3.7. Which of the following functions is pseudoconvex?
(a) f(x) = x | x | − x2; b) f(x) = x | x | + x2.

3.8. Let f be a differentiable function on an open convex set S ⊆ �n. Show
that f is pseudoconvex on S if and only if the following conditions hold:
1. f is semistrictly quasiconvex on S;
2. If x0 ∈ S is a critical point for f , then x0 is a local minimum point for f .
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3.9. Let f be a positive or negative pseudoconcave (strictly pseudoconcave)
function on a convex set S ⊆ �n. Show that the reciprocal function z(x) =

1
f(x) is pseudoconvex on S (strictly pseudoconvex).

3.10. Verify that the following functions are pseudoconvex:

(a) f(x) = log
n∑

i=1

xi, xi > 0, i = 1, .., n;

(b)f(x) = log
n∑

i=1

x3
i , xi > 0, i = 1, .., n;

(c) f(x, y) = log(x4 + y2) − log(y − 1), y > 1.

3.11. Show that the function f(x, y) = y + 1
x+1 , x > −1 is pseudoconvex.

3.12. Show that the following functions are pseudoconvex:
f(x, y) = x2+x+y

x+1 , x + 1 > 0; g(x, y) = xy+3y−5
x+3 , x + 3 > 0.

3.13. Show that the Cobb–Douglas function f(x) = Axα1
1 xα2

2 ....xαn
n , A > 0,

xi > 0, αi > 0, i = 1, .., n, is pseudoconcave.

3.14. Show that the C.E.S. function f(x) = (a1x
β
1 +a2x

β
2 +..+anxβ

n)
1
β , ai > 0,

xi > 0, i = 1, .., n, β �= 0 is pseudoconcave if and only if β ≤ 1.

3.15. Show that the generalized Cobb–Douglas function z(x) =
k∏

i=1

(fi(x))αi ,

αi > 0, i = 1, .., k, is pseudoconcave if fi(x), i = 1, .., k, are positive concave
functions.

3.16. Let f, g be two differentiable functions on an open convex set S ⊆ �n.
Show that the function z(x) = f(x) · g(x) is:
(a) pseudoconcave if both functions are positive and concave;
(b) pseudoconvex if one function is negative and convex and the other one is
positive and concave;
(c) strictly pseudoconvex if one function is negative and strictly convex and
the other one is positive and concave.

3.17. Show that the function z(x) = f(x)
g(x) , where f and g are differentiable

functions defined on an open convex set S ⊆ �n, is strictly pseudoconvex if f
is negative and strictly convex, g is positive and convex, or f is negative and
convex, g is positive and strictly convex.

3.18. Let f be a continuous function defined on a convex set S ⊆ �n. Show
that f is quasilinear on S if and only if each of its level sets is convex.

3.19. Show that pseudolinearity is equivalent to requiring that the logical
implication in the definition of pseudoconvexity and pseudoconcavity can be
reversed, i.e., f is pseudolinear if and only if (i) and (ii) hold:
1. x1, x2 ∈ S, f(x2) < f(x1) ⇐⇒ (x2 − x1)T∇f(x1) < 0;
2. x1, x2 ∈ S, f(x2) > f(x1) ⇐⇒ (x2 − x1)T∇f(x1) > 0.
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3.20. Verify that the function f(x, y) =
x + 2 − y

√
(x + 2)2 + y2 − 1

(x + 2)2 + y2
, sug-

gested in [211], is pseudolinear on int�2
+.

3.21. Verify that f(x, y, z) = 2x + y − z − 1
2x+y−z+4 is pseudolinear on S =

{(x, y, z) : 2x + y − z + 4 > 0}.
3.22. Find a pseudolinear function whose level sets are the following family
of planes:
1. k2 − 2αk − (ax + by + cz) = 0; 2. k2z − 2(x + y)k + z = 0.

3.23. Show that the following functions are pseudolinear on int�2
+:

(a) f(x, y) = −x−1+
√

x2 + 2x + 4y + 1; (b) f(x, y) = x−y+
√

(x − y)2 + 4y;

(c) f(x, y) = 1+
√

xy+1
x ; (d) f(x, y) = y+x

√
1−x2+y2

y2−x2 , y > x > 1.

3.24. Show that the following functions are pseudolinear in their domain:

(a) f(x) = log(aT x + a0); (b) f(x) = log
n∑

i=1

xi, xi > 0, i = 1, .., n;

(c) f(x) = log aT x+a0
bT x+b0

; (d) f(x) = ex1+...+xn , xi > 0, i = 1, .., n.

3.25. Let f be a twice continuously differentiable function defined on an open
convex set S ⊆ �n. Show that f is quasiconvex on S if and only if for
every x0 ∈ S, u ∈ �n such that uT∇f(x0) = 0, either uT∇2f(x0)u > 0
or uT∇2f(x0)u = 0 and ϕ(t) = f(x0 + tu) does not attain a semistrict local
maximum point at t = 0.

3.26. By means of Theorems 3.4.6 and 2.2.12, verify that the function
f(x1, x2) = −x2

1 − x1x2 is pseudoconvex on int�2
+ and quasiconvex on �2

+.

3.27. By means of the bordered Hessian, verify the pseudoconvexity of the
function f(x1, x2) = 3x2 + x2−x1

x2+1 , x2 > −1.

3.28. Which of the following functions is pseudoconvex on int�2
+?

(a) f(x1, x2) = −x2
1 − x2

2 − 6x1x2;
(b) f(x1, x2, x3) = −x1x2 − x2

3 + x3.

3.29. Which of the following functions is pseudoconvex?
(a) f(x1, x2) = − x2

2
x1+1 , x1 > −1;

(b) f(x1, x2) = 2x1 + 3x2 + x2+5
x2+1 , x2 > −1.

3.30. Is f(x1, x2) = −(x1 − x2)2 pseudoconvex on each of the two open half-
planes associated with the line x1 = x2?

3.31. Find conditions on the parameters a, b, c ∈ � for which the quadratic
function f(x1, x2) = 1

2 (ax2
1 + 2bx1x2 + cx2

2) is pseudoconvex on int�2
+ and

quasiconvex on �2
+.
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3.32. Let f be a twice continuously differentiable function defined on an open
convex set S ⊆ �n and assume that ∇f(x) �= 0, ∀x ∈ S. Show that f is
pseudolinear on S if and only if (i) and (ii) hold:
1. DR(x) ≤ 0 if | R | is odd;
2. DR(x) = 0 if | R | is even.

3.33. Verify that the following functions are pseudolinear on S:
(a) f(x1, x2) = (x1 + 2x2)3 + x1 + 2x2, S = �2;
(b) f(x1, x2) = 2x1 + x2 + 4x1+2x2+3

2x1+x2+6 , S = {(x1, x2) ∈ �2 : 2x1 + x2 + 6 > 0}.
3.34. The reason for which there are not any inclusion relationships between
quasiconvexity and semistrictly quasiconvexity at a point, is related to the
given definitions where nothing is said about the behaviour of the function
when f(x) > f(x0). One way to avoid such a situation is to give a different
definition of quasiconvexity and semistrictly quasiconvexity at a point. Con-
sider a star-shaped set at a point x0 and define quasiconvexity and semistrictly
quasi convexity at a point requiring that (3.27) and (3.28) hold respectively:

f(x0 + t(x − x0)) ≤ max{f(x), f(x0)}, t ∈ [0, 1] (3.27)

f(x0 + t(x − x0)) < max{f(x), f(x0)}, t ∈ [0, 1] (3.28)

Prove the following proposition: let f be a continuous function defined on a
star-shaped S ⊂ �n at x0. If f is semistrictly quasiconvex at x0 according to
(3.28) then f is quasiconvex at x0 according to (3.27).

3.35. Give an example showing that the lower semicontinuity of the function
is not enough to guarantee the proposition given in Exercise 3.34.
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4

Optimality and Generalized Convexity

4.1 Introduction

In this chapter, the role of generalized convexity in Optimization is stressed.
After presenting the Fritz John and Karush–Kuhn–Tucker necessary opti-
mality conditions, which are proven by means of separation theorems, some
constraint qualifications involving generalized convexity are illustrated.
One of the main reasons for introducing generalized convexity is the need to
extend the fundamental properties of convex functions related to Optimiza-
tion. In this regard, we shall see that semistrict quasiconvexity guarantees the
local-global property and that this property, together with the minimality of
a critical point and the sufficiency of the Karush–Kuhn–Tucker conditions, is
guaranteed by pseudoconvexity.
In deriving sufficient optimality conditions and in investigating constraint
qualifications, it will be clear that only generalized convexity at a point is
needed, so that the given results are presented in a general form.
Under generalized convexity assumption, it will be proven that a maximum
point is always located at the boundary of the domain; by requiring gener-
alized convexity and generalized concavity, we have the important property
that a minimum and a maximum point (if they exist) are attained at the
boundary of the feasible set.
Finally, some classical applications in Economics will be presented.

4.2 Necessary Optimality Conditions Via Separation
Theorems

In the differentiable case, when the domain of the function is described by
constraint functions, the classical and well-known necessary optimality condi-
tions are the Fritz John conditions and the Karush–Kuhn–Tucker conditions.
Usually, the approach in deriving the Fritz John conditions is based on a sep-
aration theorem between a suitable subspace V and the non-positive orthant,
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while the Karush–Kuhn–Tucker conditions are derived by using a theorem of
the alternative such as Farkas’ Lemma. In this section, by studying the inter-
section between a subspace V and the non-positive orthant, we shall suggest
a different proof of the Karush–Kuhn–Tucker conditions.
With this aim in mind, some preliminary results are needed.
Let us recall that a face F of �s− is defined as

F = {z =
∑
j∈J

γj(−ej), γj ≥ 0}

where ej is the unit vector having the j-th component equal to one and all
others equal to zero and J is a proper subset of the set of indices {1, ..., s}.
We shall use the convention F = {0} when J = ∅.
The following lemma holds.

Lemma 4.2.1. Let V be a linear subspace of �s such that V ∩ int�s− = ∅.
Then, there exists a hyperplane which separates V and int�s

−, i.e., there exists
α ∈ �s such that

α ≥ 0, α �= 0, αT z = 0, ∀z ∈ V. (4.1)

Proof. Since V and int�s− are convex sets, by Theorem 1.2.14 there exists
α ∈ �s, α �= 0 such that αT z ≥ 0, ∀z ∈ V and αT z ≤ 0, ∀z ∈ �s

−. This last
inequality implies αT (−ei) = −αi ≤ 0, i.e., αi ≥ 0, i = 1, .., s. By noting that
z ∈ V implies −z ∈ V , we have αT z ≥ 0 and αT (−z) ≥ 0, so that αT z = 0
for each z ∈ V .

Let us note that, in general, the vector α in (4.1) is not unique. It may hap-
pen that one or more components of α is zero whatever α may be. In order to
look more closely at this aspect, we shall investigate the intersection between
V and the boundary of the non-positive orthant by means of the so-called
conical extension V ∗ = V + �s

+ which is a convex and closed cone.
The following lemma points out that a subspace V and its conical extension
have the same behaviour with respect to the intersection with int�s

−.

Lemma 4.2.2. The following properties hold:
(i) V ∩ int�s− = ∅ if and only if V ∗ ∩ int�s− = ∅;
(ii) A hyperplane Γ separates V and �s

− if and only if Γ separates V ∗ and �s
−.

Proof. (i) Since V ⊂ V ∗, obviously V ∗ ∩ int�s
− = ∅ implies V ∩ int�s

− = ∅.
Assume now that V ∩ int�s

− = ∅ and suppose, by contradiction, that there
exists z ∈ V ∗ ∩ int�s

−. We have z = v + w, v ∈ V, w ∈ �s
+, so that

v = z − w ∈ int�s
− since z ∈ int�s

−; consequently, V ∩ int�s
− �= ∅, which

contradicts the assumption.
(ii) Let Γ be a hyperplane which separates V and �s

− of equation αT z = 0,
α ≥ 0. From Lemma 4.2.1 we have αT z = 0, ∀z ∈ V . Let v∗ = v + w ∈ V ∗,
v ∈ V, w ∈ �s

+. We have αT v∗ = αT v + αT w = αT w ≥ 0, i.e., Γ separates
V ∗ and �s

−. The converse statement is obvious.
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When V ∩ int�s− = ∅, we shall see that the intersection between the conical
extension of V and the non-positive orthant is a face. The relevance of this
result is due to the fact that it is possible to determine a set of indices J , which
corresponds to multipliers which are zero in all separating hyperplanes, and
also establish the existence of a separating hyperplane with positive multipliers
associated with the indices which are not in J .
More precisely, we have the following theorem.

Theorem 4.2.1. Let V be a linear subspace of �s such that V ∩ int�s− = ∅.
Then the following conditions hold:
(i) V ∗ ∩ �s

− is a face F = {z =
∑
j∈J

γj(−ej), γj ≥ 0}, where J is a proper

subset of the set of indices {1, ..., s};
(ii) If J �= ∅, for each hyperplane of equation αT z = 0, α ≥ 0 which separates
V and �s−, we have αj = 0, ∀j ∈ J . Furthermore, there exists a separating
hyperplane such that αi > 0, ∀i /∈ J ;
(iii) If J = ∅, i.e., V ∩ �s

− = {0}, there exists a separating hyperplane such
that αi > 0, ∀i ∈ {1, ..., s}.
Proof. (i) If V ∩ �s

− = {0}, the thesis follows by convention. Let z ∈
V ∩ �s−, z �= 0. Since V ∩ int�s− = ∅, z is a boundary point of �s−
and thus there exists a proper subset of indices Jz ⊂ {1, .., s} such that
z =

∑
j∈Jz

γj(−ej), γj > 0. Taking into account that V ∗ = V + �s
+ is a convex

cone, we have
1
γk

(z +
∑

j∈Jz,j �=k

γje
j) = −ek ∈ V ∗, for every k ∈ Jz. Repeating

this process for every element of V ∩ �s−, we obtain a subset J = ∪Jz . Since
V ∩ int�s

− = ∅, J is properly contained in {1, ..., s}. Consequently, the inter-
section V ∗ ∩�s

− is given by {z =
∑
j∈J

γj(−ej), γj ≥ 0}, i.e., it is a face of �s
−.

(ii) Let αT z = 0, α ≥ 0 be the equation of a hyperplane which separates V
and �s−; from (ii) of Lemma 4.2.2, we have αT z ≥ 0, ∀v ∈ V ∗. Since j ∈ J
implies −ej ∈ V ∗, it results that αT (−ej) = −αj ≥ 0, i.e., αj ≤ 0, so that
necessarily we have αj = 0 for every j ∈ J . Consider now the case i /∈ J ,
so that −ei /∈ V ∗. Since V ∗ is the intersection of its supporting hyperplanes
passing through the origin, there exists a hyperplane which separates V ∗ and
�s

− and which does not contain −ei; the equation of such a hyperplane is of
the kind (αi)T z = 0, αi ≥ 0 where, necessarily, αi

i > 0. Let β =
∑
i/∈J

αi. We

have βj = 0, j ∈ J , βi > 0, i /∈ J . Furthermore βT z = 0, ∀z ∈ V , since
(αi)T z = 0, ∀z ∈ V , so that (ii) follows.
(iii) This follows by noting that J = ∅ implies βi > 0, i = 1, .., s.
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Corollary 4.2.1. Let V be a linear subspace of �s such that V ∩ int�s− = ∅.
Then, there exists α ≥ 0 such that αT v = 0 for all v ∈ V ∗ with αi > 0 if and
only if (−ei) /∈ V ∗.

Proof. The thesis follows from (ii) of Theorem 4.2.1 by noting that j ∈ J if
and only if (−ei) ∈ V ∗.

Remark 4.2.1. By means of Corollary 4.2.1 it is possible to derive some the-
orems of the alternative. For instance, by setting V = {Bx, x ∈ �n}, where
B is an s × n matrix, we have that system Bx ≤ 0 (i.e., Bx ∈ �s

−\{0})
has no solutions if and only if there exists α ∈ int�s

+ such that αT B = 0
(Stiemke’s Theorem of the Alternative). In Exercises 4.1, 4.2, and 4.3, we
shall see some extensions of Corollary 4.2.1 and their equivalence with some
classical theorems of the alternatives.

Now we shall see how the previous results allow us to derive the Karush–
Kuhn–Tucker conditions from the Fritz John conditions. To this end consider
the following problem

P : min f(x), x ∈ S = {x ∈ X : gi(x) ≤ 0, i = 1, ..., m}

where f , gi, i = 1, ..., m are functions defined on an open set X ⊆ �n.
Corresponding to a feasible point x0, let I(x0) be the set of indices associated
with the constraints binding at x0, i.e., I(x0) = {i ∈ {1, ..., m} : gi(x0) = 0},
and let k ∈ [1, m] be its cardinality. We can assume, without loss of generality,
that I(x0) = {1, ..., k}.
The following theorem holds.

Theorem 4.2.2. Let x0 be a feasible point for problem P . Suppose that f ,
gi, i ∈ I(x0), are differentiable at x0 ∈ S and that gi, i /∈ I(x0), are continu-
ous at x0. If x0 is a local minimum point, then (i) and (ii) hold:
(i) There exist multipliers λ0, λi, i ∈ I(x0), not all zero, such that:⎧⎨⎩λ0∇f(x0) +

∑
i∈I(x0)

λi∇gi(x0) = 0

λ0 ≥ 0, λi ≥ 0, i ∈ I(x0)
(4.2)

(ii) There exist multipliers that verify (4.2) with λ0 > 0 if and only if

W ∩ (int�− ×�k
−) = ∅. (4.3)

where W = {z = (∇f(x0)T d,∇g1(x0)T d, ....,∇gk(x0)T d)T , d ∈ �n}.
Proof. The continuity of the constraint functions not binding at x0 implies
that x0 is also a local minimum point for the problem minf(x), x ∈ S∗ =
{x ∈ X : gi(x) ≤ 0, i ∈ I(x0)}.
(i) We have W ∩ int�k+1

− = ∅, otherwise there exists a direction d ∈ �n
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such that dT∇gi(x0) < 0, i ∈ I(x0), and dT∇f(x0) < 0, i.e., d is a decreasing
feasible direction1, and this contradicts the local optimality of x0. By applying
Lemma 4.2.1 to the convex sets W and int�k+1

− , there exist non-negative
multipliers λ0, λi, i ∈ I(x0), not all zero, such that

λT z = λ0z0 + λ1z1 + .. + λkzk = 0, ∀z = (z0, z1, .., zk)T ∈ W (4.4)

i.e., (λ0∇f(x0) +
∑

i∈I(x0)

λi∇gi(x0))T d = 0, ∀ d ∈ �n.

By choosing d = λ0∇f(x0) +
∑

i∈I(x0)

λi∇gi(x0), the thesis follows.

(ii) (4.3) implies −e1 /∈ W ∗ = W + int�k+1
+ so that, from (ii) of Theorem 4.2.1,

it is possible to choose a separating hyperplane (4.4) with λ0 > 0. Conversely,
if λ0 > 0 in (4.4), then (4.3) holds. In fact, if z = (z0, z̄) ∈ W ∩ (int�−×�k−),
we have λT z = 0 = λ0z0 + λT z̄ < 0 and this is absurd.

Remark 4.2.2. The necessary optimality conditions (4.2) are known as the
Fritz John conditions, while (4.2) together with λ0 > 0 are known as the
Karush–Kuhn–Tucker conditions.

As regards to (4.2), it may happen that the multiplier associated with the
objective function vanishes even if convexity is required, as is shown in the
following example.

Example 4.2.1. Consider problem P where f(x1, x2) = x1, g1(x1, x2) = x2
1 −

x2, g2(x1, x2) = x2. The feasible set is S = {(0, 0)} so that x0 = (0, 0) is a
global minimum point for the problem. On the other hand, ∇f(x0) = (1, 0)T ,
∇g1(x0) = (0,−1)T , ∇g2(x0) = (0, 1)T and consequently, (4.2) is verified if
and only if λ0 = 0, λ1 = λ2 > 0, even if all the functions are convex.
Note that W = {z = (d1,−d2, d1)T , d1, d2 ∈ �}∩(int�−×�2−) �= ∅ according
to (ii) of Theorem 4.2.2.

When λ0 = 0 in (4.2), it is not possible to deduce the behaviour of the objec-
tive function at x0; for this reason, the problem of finding conditions which
imply λ0 �= 0 assumes a relevant aspect. Any condition which ensures λ0 �= 0
in (4.2) is called a constraint qualification.
In the next section we shall point out the role played by convexity and gen-
eralized convexity in establishing some constraint qualifications.
When a constraint qualification holds, the Karush–Kuhn–Tucker conditions
may be stated as follows.

Theorem 4.2.3. (The Karush–Kuhn–Tucker conditions)
Consider problem P and let x0 be a feasible point. Suppose that f , gi, i ∈
I(x0), are differentiable at x0 ∈ S and that gi, i /∈ I(x0), are continuous at
1 A vector d ∈ �n, d �= 0 is a feasible direction at x0 ∈ S if there exists ε > 0 such

that x = x0 + td ∈ S, ∀t ∈ [0, ε].
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x0. If x0 is a local minimum point and a constraint qualification holds, then
there exist non-negative multipliers λi, i ∈ I(x0), such that:

∇f(x0) +
∑

i∈I(x0)

λi∇gi(x0) = 0 (4.5)

Remark 4.2.3. By assuming the differentiability at x0 of all the constraint
functions, the Fritz John conditions and the Karush–Kuhn–Tucker conditions
may be restated, respectively, as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ0∇f(x0) +
m∑

i=1

λi∇gi(x0) = 0

λ0 ≥ 0, λi ≥ 0, i = 1, ..., m
λigi(x0) = 0, i = 1, ..., m.⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇f(x0) +

m∑
i=1

λi∇gi(x0) = 0

λi ≥ 0, i = 1, ..., m
λigi(x0) = 0, i = 1, ..., m.

In Sect. 4.4 we shall see that the necessary Karush–Kuhn–Tucker conditions
become sufficient under suitable generalized convexity assumptions.

4.3 Generalized Convexity and Constraint Qualifications

As we have already remarked, a constraint qualification is a condition which
ensures λ0 > 0 in the Fritz John conditions. Since W ∩ (int�− × �m

− ) = ∅ is
a necessary and sufficient condition for the existence of such a positive multi-
plier, any condition which implies (4.3) is a constraint qualification.
Several constraint qualifications are suggested in the literature and their inter-
relationships are studied. In this section we shall limit ourselves to stressing
the role of convexity and generalized convexity in establishing some constraint
qualifications.
To this end, let x0 be a local minimum point for problem P , where f and
gi, i ∈ I(x0) = {i : gi(x0) = 0}, are differentiable at x0 and X is star-shaped
at x0. Consider the following subsets of I(x0):
J = {i ∈ I(x0) : gi(x) is pseudoconcave at x0};
J1 = {i ∈ I(x0) : gi(x) is concave at x0};
IL = {i ∈ I(x0) : gi(x) is linear}.
We shall prove that each of the following statements is a constraint qualifica-
tion.

1. The weak-reverse constraint qualification
Functions gi(x), i ∈ I(x0), are pseudoconcave at x0.
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2. The reverse constraint qualification
Functions gi(x), i ∈ I(x0), are concave at x0.

3. The weak Arrow–Hurwicz–Uzawa constraint qualification

∃d ∈ �n : dT∇gi(x0) ≤ 0, ∀i ∈ J, dT∇gi(x0) < 0, ∀i ∈ I(x0)\J.

4. The Arrow–Hurwicz–Uzawa constraint qualification

∃d ∈ �n : dT∇gi(x0) ≤ 0, ∀i ∈ J1, dT∇gi(x0) < 0, ∀i ∈ I(x0)\J1.

5. Slater’s weak constraint qualification
Functions gi(x), i ∈ I(x0), are pseudoconvex at x0 and there exists x∗ ∈ S
such that gi(x∗) < 0, ∀i ∈ I(x0).

6. Slater’s constraint qualification
Functions gi(x), i ∈ I(x0), are convex at x0 and there exists x∗ ∈ S such
that gi(x∗) < 0, ∀i ∈ I(x0).

7. Slater’s second constraint qualification
Functions gi(x), i ∈ I(x0), are convex on the convex set X and for each
i ∈ I(x0) there exists xi ∈ S such that gi(xi) < 0.

8. The modified Slater–Uzawa constraint qualification
Functions gi(x), i ∈ I(x0)\IL, are pseudoconvex at x0 and there exists
x∗ ∈ S such that gi(x∗) < 0, ∀i ∈ I(x0)\IL and gi(x∗) ≤ 0, ∀i ∈ IL.

9. Martos’ constraint qualification
Functions gi(x), i ∈ I(x0), are pseudoconvex at x0 and quasiconvex
at x0 for each i ∈ J . Furthermore, there exists x∗ ∈ S such that
gi(x∗) < 0, ∀i ∈ I(x0)\J.

10. Arrow–Enthoven’s constraint qualification
Functions gi(x), i ∈ I(x0), are continuous on X and quasiconvex at x0

with ∇gi(x0) �= 0. Furthermore, there exists x∗ ∈ S such that, for all
i ∈ I(x0), gi(x∗) < 0.

The following theorem holds.

Theorem 4.3.1. W ∩ (int�−×�m
− ) = ∅ if one of the conditions (1–10) holds,

i.e., every condition (1–10) is a constraint qualification.

Proof. The proof is given by assuming, by contradiction, the existence of a
direction d∗ ∈ �n such that ∇f(x0)T d∗ < 0,∇gi(x0)T d∗ ≤ 0, i ∈ I(x0).

1. Since gi, i ∈ I(x0), is pseudoconcave at x0, by setting x = x0 + td∗, the
inequality ∇gi(x0)T (x−x0) = t∇gi(x0)T d∗ ≤ 0 implies that gi(x0 + td∗) ≤
gi(x0) for every t such that x0 + td∗ ∈ X . Consequently, d∗ is a feasible
direction, so that ∇f(x0)T d∗ < 0 contradicts the optimality of x0.



80 4 Optimality and Generalized Convexity

2. This is a particular case of 1.
3. By setting d̂ = d∗ + 1

nd, we have ∇gi(x0)T d̂ = ∇gi(x0)T d∗ + 1
n∇gi(x0)T d.

Consequently, ∇gi(x0)T d̂ ≤ 0, ∀i ∈ J , and ∇gi(x0)T d̂ < 0, ∀i ∈ I(x0)\J .
The pseudoconcavity of gi at x0, i ∈ J , together with the condition
∇gi(x0)T d̂ < 0, i ∈ I(x0)\J , implies that d̂ is a feasible direction. Fur-
thermore, for a large enough n, ∇f(x0)T d̂ = ∇f(x0)T d∗+ 1

n∇f(x0)T d < 0
and this contradicts the optimality of x0.

4. This is a particular case of 3.
5. The pseudoconvexity of gi at x0, i ∈ I(x0), implies ∇gi(x0)T (x∗−x0) < 0,

so that d = x∗−x0 is a feasible direction. By setting d̂ = d∗ + 1
nd, we have

∇gi(x0)T d̂ < 0, and, for a large enough n, ∇f(x0)T d̂ < 0, so that d̂ is a
feasible decreasing direction which contradicts the optimality of x0.

6. This is a particular case of 5.
7. Let x∗ be a convex combination of the vectors xi, i.e., x∗ =

∑
i∈I(x0)

αix
i,

αi > 0,
∑

i∈I(x0)

αi = 1. By means of Jensen’s Inequality, we have that

gi(x∗) =
∑

i∈I(x0)

αigi(xi) < 0, and 6) holds.

8. The assumptions imply that d = x∗ − x0 is a feasible direction. By setting
d̂ = d∗+ 1

nd, for a large enough n, d̂ is a feasible decreasing direction which
contradicts the optimality of x0.

9. Since gi(x∗) ≤ gi(x0), ∀i ∈ I(x0), the quasiconvexity of gi implies
∇gi(x0)T (x∗ − x0) ≤ 0, ∀i ∈ I(x0). In particular, from the pseudocon-
vexity of gi we have ∇gi(x0)T (x∗−x0) < 0, ∀i ∈ I(x0)\J . Set d = x∗−x0

and consider d̂ = d∗ + 1
nd. We have ∇gi(x0)T d̂ < 0, ∀i ∈ I(x0)\J

and ∇gi(x0)T d̂ ≤ 0, ∀i ∈ J . Taking into account the pseudoconcavity
of gi, i ∈ J , d̂ is a feasible direction and since, for a large enough n,
∇f(x0)T d̂ < 0, the optimality of x0 is contradicted.

10. This is a particular case of 9.

Remark 4.3.1. Condition (9) is given in a different form with respect to the
original constraint qualification suggested by Martos [211] since he introduced
pseudoconvexity at a point in a more restrictive form than Definition 3.5.4.
More precisely:
A function h is pseudoconvex at x0 if (i) and (ii) hold:
(i) h(x) < h(x0) ⇒ ∇h(x0)T (x − x0) < 0
(ii) h(x) ≤ h(x0) ⇒ ∇h(x0)T (x − x0) ≤ 0.
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4.4 Sufficiency of the Karush–Kuhn–Tucker Conditions

Consider problem P again. As we shall see, the validity of the Karush–Kuhn–
Tucker conditions does not guarantee the optimality of x0 (see Example
4.4.1 below); nevertheless, these conditions become sufficient under a suit-
able generalized convexity assumption on the objective function and on the
constraints.

Example 4.4.1. Consider problem P where f(x1, x2) = −x2
1 − x2

2 + 2x1 +
4x2, g(x1, x2) = −x2. With respect to the feasible point x0 = (1, 0), we have
∇f(x0)+4∇g(x0) = 0, so that the Karush–Kuhn–Tucker conditions hold but
x0 is not a local minimum point for the problem since f(x1, 0) < f(1, 0) for
every x1 �= 1.

Theorem 4.4.1. Consider problem P and let x0 be a feasible point. Suppose
that f is pseudoconvex at x0 ∈ S and that gi, i = 1, .., m, are differentiable
and quasiconvex at x0. If there exist λi ∈ �, i = 1, .., m, such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇f(x0) +
m∑

i=1

λi∇gi(x0) = 0

λi ≥ 0, i = 1, ..., m
λigi(x0) = 0, i = 1, ..., m

(4.6)

then x0 is a global minimum point for P .

Proof. Assume, by contradiction, the existence of a feasible point x̄ such that
f(x̄) < f(x0). From the pseudoconvexity of f we have ∇f(x0)T (x̄ − x0) < 0.
Since gi(x̄) ≤ 0 = gi(x0), i ∈ I(x0), the quasiconvexity of gi implies
∇gi(x0)T (x̄ − x0) ≤ 0, i ∈ I(x0).
From the complementarity condition λigi(x0) = 0, i = 1, ..., m, we have

λi = 0, ∀i /∈ I(x0), so that ∇f(x0)T (x̄ − x0) +
m∑

i=1

λi∇gi(x0)T (x̄ − x0) < 0,

and this contradicts (4.6).

Remark 4.4.1. Let us note that the pseudoconvexity assumption in Theo-
rem 4.4.1 cannot be substituted with quasiconvexity or semistrict quasicon-
vexity. Consider, for instance, the problem

min (x1 + x2)3, (x1, x2) ∈ S = {(x1, x2) ∈ �2 : −x2 ≤ 0}.
The objective function is semistrictly quasiconvex (in particular quasiconvex)
and g(x1, x2) = −x2 is quasiconvex. It is easy to verify that the point (0, 0)
verifies conditions (4.6) with λ = 0, but it is not a local minimum point for
the problem.

By requiring a generalized convexity assumption on the whole set X , we have
the following corollaries.
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Corollary 4.4.1. Consider problem P where f is pseudoconvex on an open
convex set X and gi, i = 1, 2, ..., m, are differentiable and quasiconvex on X.
If x0 ∈ S verifies (4.6), then x0 is a global minimum point for P .

Corollary 4.4.2. Consider problem P where f , gi, i = 1, 2, ..., m, are differ-
entiable and quasiconvex on an open convex set X, with ∇f(x) �= 0, for all
x ∈ S. If x0 ∈ S verifies (4.6), then x0 is a global minimum point for P .

Some applications of the sufficiency of the Karush–Kuhn–Tucker conditions
in Economics shall be given in Sect. 4.8.

4.5 Local-Global Property

One of the most important questions in Optimization is knowing whether a
local minimum is also global and a critical point is a global minimum. These
important properties are not exclusive of convex functions but they hold under
suitable generalized convexity assumptions. In this section, we shall point out
the role of generalized convexity in establishing a local-global property for
a minimum point. Since such a property involves only the behaviour of the
function at a point, we can relax generalized convexity assumptions together
with the convexity of the domain by requiring only generalized convexity at a
point and the star-shapedness of the domain. By following this approach, all
the results will be given in a more general form.

Theorem 4.5.1. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S. Then, the following properties hold:
(i) If x0 is a strict local minimum point and f is quasiconvex at x0, then x0

is a strict global minimum point for f on S;
(ii) If x0 is a local minimum point and f is semistrictly quasiconvex at x0,
then x0 is a global minimum point for f on S;
(iii) If x0 is a local minimum point and f is strictly quasiconvex at x0, then
x0 is the unique global minimum point for f on S.

Proof. (i) Suppose that x0 ∈ S is a strict local minimum point, i.e., there exists
a neighbourhood I of x0 such that f(x) > f(x0), ∀x ∈ I ∩ S. If x0 is not a
strict global minimum point, there exists x̄ ∈ S such that f(x̄) ≤ f(x0). By
the quasiconvexity of f at x0 we have f(x0 + λ(x̄ − x0)) ≤ f(x0), ∀λ ∈ [0, 1],
so that x0 + λ(x̄ − x0) ∈ I ∩ S for a small enough λ and thus x0 cannot be a
strict local minimum.
(ii) The proof is similar to the one given in (i).
(iii) Since a strictly quasiconvex function at x0 is also semistrictly quasiconvex
at x0, then a local minimum point is also global.
Assume now that there exists another global minimum point x1 ∈ S. The
strict quasiconvexity at x0 implies that f(x0+λ(x1−x0)) < f(x0), ∀λ ∈ (0, 1)
and this contradicts the optimality of x0.
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The following examples point out that a non-strict local minimum point
is not necessarily global for a quasiconvex function and that the semistrict
quasiconvexity does not guarantee the uniqueness of a global minimum point.

Example 4.5.1. Consider f(x) =
{−x2 −1 ≤ x ≤ 0

0 0 < x ≤ 2
The function is quasiconvex at x0 = 1 which is a local but not global minimum
point.

Example 4.5.2. Consider f(x) =
{

0 0 ≤ x < 2
(x − 2)2 2 ≤ x ≤ 3

The function is semistrictly quasiconvex at x0 = 0; on the other hand, any
point of the interval [0, 2] is a global minimum.

In the differentiable case, unlike the pseudoconvex case (see Theorem 3.2.5),
strict quasiconvexity is not sufficient for the optimality of a critical point. For
instance, the strictly quasiconvex function f(x) = x3 has a critical point at
x0 = 0, which is not a minimum point.
The following theorem shows that the class of pseudoconvex functions is the
only one, among the classes of generalized convex functions, which maintains
all the properties of convex functions related to minimum points.

Theorem 4.5.2. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S. If x0 is a local minimum point and f is pseudoconvex at
x0, then x0 is a global minimum point.

Proof. Assume the existence of x̄ ∈ S such that f(x̄) < f(x0). Since f is pseu-
doconvex at x0, we have ∇f(x0)T (x̄ − x0) < 0 so that f is locally decreasing
along the feasible direction d = x̄ − x0, and the local optimality of x0 is con-
tradicted.

Within the class of pseudoconvex functions, the strictly pseudoconvex func-
tions guarantee the uniqueness of the global minimum point. More precisely,
as a direct consequence of the previous Theorem and of Remark 3.2.3, we have
the following result.

Theorem 4.5.3. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S. If x0 is a local minimum point and f is strictly pseudoconvex
at x0, then x0 is the unique global minimum point.

Let us note that a point is not necessarily a local minimum for a function f
even if it is a local minimum for the restriction of f on every line segment.
Consider, for instance, f(x1, x2) = (x2 − x4

1)(x2 − x2
1), x1, x2 ≥ 0. It can

be verified that x0 = (0, 0) is a local minimum for f on every line segment
starting from x0. On the other hand, with respect to the restriction of f
on the curve x2 = x3

1, x1 ≥ 0, we have ϕ(x1) = −x5
1(x1 − 1)2, so that

ϕ(x1) < 0 = ϕ(0) = f(0, 0), ∀x1 > 0. Consequently, x0 is not a local minimum
for f .
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As we have remarked several times, for a generalized convex function f there
is a strict connection between the behaviour of f and the behaviour of its
restrictions on a line segment. This connection allows us to obtain the following
result, as a direct consequence of Theorems 4.5.1 and 4.5.2.

Theorem 4.5.4. Let f be a function defined on a set S ⊆ �n which is star-
shaped at x0 ∈ S.
(i) If f is quasiconvex at x0 ∈ S and x0 is a strict local minimum point with
respect to every line segment [x0, x] ⊂ S, then x0 is a strict global minimum
point for f on S.
(ii) If f is semistrictly quasiconvex at x0 ∈ S and x0 is a local minimum point
with respect to every line segment [x0, x] ⊂ S, then x0 is a global minimum
point for f on S.
(iii) If f is differentiable and pseudoconvex at x0 ∈ S and x0 is a local mini-
mum point with respect to every line segment [x0, x] ⊂ S, then x0 is a global
minimum point for f on S.

Let us note that all the previous results hold in the more restrictive assumption
of generalized convexity on a convex set.

4.6 Maxima and Generalized Convexity

In this section we shall study the property of a maximum point, if one exists,
related to generalized convexity. We shall see that a maximum point is always
located on the boundary of the domain or, equivalently, is attained at an inte-
rior point if and only if the function is constant on the whole domain. This
important property does not hold in general for a minimum point which can
be located anywhere.
We shall begin to prove that if the maximum value of a semistrictly quasicon-
vex function is reached at a relative interior point of S, then the function is
constant on S.

Lemma 4.6.1. Let f be a continuous and semistrictly quasiconvex function
on a convex set S ⊆ �n. If x0 ∈ riS is such that f(x0) = max

x∈S
f(x), then f is

constant on S.

Proof. Assume that there exists x̄ ∈ S such that f(x̄) < f(x0). From (v)
of Theorem 1.2.7, there exists x∗ ∈ S such that x0 is an interior point of
the line segment [x∗, x̄]. Since f is a continuous function, without loss of
generality, we can assume that f(x∗) > f(x̄). The semistrictly quasicon-
vexity of f implies f(x) < f(x∗), ∀x ∈ ri[x∗, x̄] and this is absurd, since
x0 ∈ ri[x∗, x̄].

From Lemma 4.6.1, we directly have the following result.
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Theorem 4.6.1. Let f be a continuous and semistrictly quasiconvex function
on a convex and closed set S ⊆ �n. If f attains its maximum value on S,
then it is reached at some boundary point.

The previous theorem can be strengthened when the convex set S does not
contain lines.

Theorem 4.6.2. Let f be a continuous and semistrictly quasiconvex func-
tion on a convex and closed set S ⊆ �n containing no lines. If f attains its
maximum value on S, then it is reached at an extreme point.

Proof. If f is constant, then the thesis is obvious. Let x0 be such that
f(x0) = max

x∈S
f(x). From Theorem 4.6.1, x0 belongs to the boundary of S.

Let C be the minimal face of S containing x0; if x0 is not an extreme point,
then x0 ∈ riC. It follows from Lemma 4.6.1 that f is constant on C. On
the other hand, C is a convex closed set containing no lines (see [234]), so
that C has at least one extreme point x̄ (see Theorem 1.2.10) which is also
an extreme point of S. Consequently, f attains its maximum value at the
extreme point x̄.

Let us note that a quasiconvex function may have a global maximum point
which is not a boundary point. For instance, the function

f(x) =
{−x2 + 2x 0 ≤ x ≤ 1

1 x > 1

is quasiconvex, since it is non-decreasing; on the other hand, f attains its
maximum value at any point x ≥ 1 which is not a boundary point of the
domain S = [0, +∞).
In order to extend Theorem 4.6.2 to the class of quasiconvex functions,
additional assumptions on the convex set S are required.

Theorem 4.6.3. Let f be a continuous and quasiconvex function on a convex
and compact set S ⊆ �n. Then, there exists some extreme point on which f
assumes its maximum value.

Proof. From Weierstrass’ Theorem, there exists x̄ ∈ S with f(x̄) = max
x∈S

f(x).

Since S is convex and compact, it is also the convex hull of its extreme points
(see Theorem 1.2.8), so that there exists a finite number x1, ..., xh of extreme

points such that x̄ =
h∑

i=1

λixi,
h∑

i=1

λi = 1, λi ≥ 0. Since f is quasiconvex,

we have f(x̄) ≤ max{f(x1), ..., f(xh)} (see Theorem 2.2.5) and the thesis fol-
lows.

Taking into account the inclusion relationships between the classes of general-
ized convex functions, we have the following results related to a pseudoconvex
function.
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Corollary 4.6.1. Let f be a pseudoconvex function on a convex and closed
set S ⊆ �n. If f assumes maximum value on S, then it is reached at some
boundary point.

Corollary 4.6.2. Let f be a pseudoconvex function on a convex and closed
set S ⊆ �n containing no lines. If f assumes maximum value on S, then it
is reached at an extreme point.

From a computational point of view, the previous results are very important
since they establish the need to investigate the boundary of the feasible set
in order to find a global maximum. Nevertheless, for a generalized convex
function, a local maximum is not necessarily global, so that the problem of
maximizing a quasiconvex or a pseudoconvex function is a very difficult one.
In the next section we shall see that this kind of difficulty vanishes if f is
pseudolinear.

4.7 Minima, Maxima and Pseudolinearity

In this section we shall stress how suitable the behaviour of pseudolinear func-
tions is, with respect to optimality.
As we have already remarked, a minimum point for a pseudoconvex function
f can be located anywhere but, when f is also pseudoconcave, Corollary 4.6.1,
applied to −f , allows us to state that the minimum value (if one exists) is
attained at a boundary point. Consequently, for a pseudolinear function, both
the minimum and the maximum are reached at a boundary point.
The following theorem gives a necessary and sufficient condition for a bound-
ary point to be a global minimum (maximum) under the pseudoconvexity
(pseudoconcavity) assumption.

Theorem 4.7.1. Let f be a function defined on a convex set S ⊆ �n and let
x0 be a boundary point of S.
(i) If f is pseudoconvex, then x0 is a global minimum point for f if and only
if the following inequality holds:

∇f(x0)T (x − x0) ≥ 0, ∀x ∈ S (4.7)

(ii) If f is pseudoconcave, then x0 is a global maximum point for f if and only
if the following inequality holds:

∇f(x0)T (x − x0) ≤ 0, ∀x ∈ S (4.8)

Proof. (i) Assume that x0 is a minimum point for f and suppose, by contra-
diction, the existence of x ∈ S such that ∇f(x0)T (x − x0) < 0. Taking into
account the convexity of S, d = x − x0 is a decreasing feasible direction and
this contradicts the optimality of x0. With respect to the converse statement,
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assume the existence of x∗ such that f(x∗) < f(x0). From the pseudoconvex-
ity of f we have ∇f(x0)T (x∗ − x0) < 0 and this contradicts (4.7).
(ii) It is sufficient to note that −f is pseudoconvex.

With respect to an optimization problem which has a pseudolinear objec-
tive function defined on a polyhedral set S, we have the useful property that
when the maximum and/or the minimum value exist, they are attained at a
vertex of S (see Corollary 4.6.2).
By denoting with d1, ..., dk the edges starting from a vertex x0 ∈ S, the nec-
essary and sufficient optimality conditions stated in Theorem 4.7.1 may be
specified by means of the following theorem.

Theorem 4.7.2. Let f be a pseudolinear function defined on a polyhedral set
S ⊆ �n. Then:
(i) A vertex x0 ∈ S is a minimum point for f if and only if ∇f(x0)T di ≥ 0,
i = 1, . . . , k.
(ii) A vertex x0 ∈ S is a maximum point for f if and only if ∇f(x0)T di ≤ 0,
i = 1, . . . , k.

When S is a polyhedral compact set, the previous results may be extended to
a quasilinear function.

Theorem 4.7.3. Let f be a quasilinear function defined on a polyhedral com-
pact set S ⊆ �n. Then:
(i) A vertex x0 ∈ S is a minimum point for f if and only if ∇f(x0)T di ≥ 0,
i = 1, . . . , k.
(ii) A vertex x0 ∈ S is a maximum point for f if and only if ∇f(x0)T di ≤ 0,
i = 1, . . . , k.

The optimality conditions stated in the previous theorems have suggested
some simplex-like procedures for optimization problems having pseudolinear
function as objective. These problems include linear programs and linear frac-
tional programs which arise in many practical applications. Some sequential
methods will be presented in Chapter 8.

4.8 Economic Applications

Assumptions of generalized convexity/concavity are found in several branches
of Economics. For instance, a fundamental result in game theory regarding
the existence of a Nash equilibrium involves generalized concavity:
“a game in strategic form has at least one Nash equilibrium if the strategy
set is a compact and convex subset of an Euclidean space and if any payoff
function is continuous and quasiconcave” (see for instance [99], [113], [115]).
Another useful application is the following generalization of the well-known
Von Neumann min-max theorem:
“if X ⊂ �n, Y ⊂ �n are two compact and convex sets, F : X × Y → � is
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a function which is upper semicontinuous and quasiconcave with respect to
the first argument and lower semicontinuous and quasiconvex with respect to
the second one, then F has a saddle point (x0, y0), i.e., min

y∈Y
max
x∈X

F (x, y) =

max
x∈X

min
y∈Y

F (x, y) = F (x0, y0)” (see for instance [24]).

Applications of the Theory of Measurement and the Theory of Aggregation
in Economics are found in [100] and characterizations of merely quasiconcave
trader’s utility functions are given in [278].
In this section we shall focus on some parametric constrained problems which
are of great interest in Utility Theory and in the Theory of Firm.
In such problems, the optimal attainable value of the objective function
depends, for a fixed vector of parameters (exogeneous variables), on the values
of the choice variables. Consequently, the solutions’ values and the optimal
value of the objective function become functions of the parameters. A central
part of the economic analysis is to show the properties of these functions.
In what follows we shall utilize two useful results regarding the following
optimization problems.

P (α) : max f(x), x ∈ S = {x ∈ X ⊆ �n : g(x, α) ≤ 0}, α ∈ A ⊆ �s

P (β) : min f(x, β), x ∈ S = {x ∈ X ⊆ �n : g(x) ≤ 0}, β ∈ B ⊆ �s

where X, A, B are open convex sets, and f, g are functions defined on X .
For the sake of simplicity, we shall assume the existence of optimal solutions
for problem P (α) and P (β) for every fixed α, β. By setting z(α), ψ(β) the
optimal value of P (α) and P (β), respectively, we have the following theorems.

Theorem 4.8.1. Consider problem P (α). If g(x, α) is concave in the param-
eter α, then z(α) is quasiconvex.

Proof. Let α1, α2 ∈ A and let xλ, λ ∈ [0, 1] be an optimal solution of problem
P (λα1 +(1−λ)α2). By means of the concavity of g with respect to α, we have
0 ≥ g(xλ, λα1+(1−λ)α2) ≥ λg(xλ, α1)+(1−λ)g(xλ, α2). Consequently, since
both λ and 1 − λ are non-negative, at least one of g(xλ, α1) and g(xλ, α2) is
non-positive. Assume, without loss of generality, that g(xλ, α1) ≤ 0. Then, xλ

is feasible for problem P (α1) so that z(α1) ≥ f(xλ). It follows that, for every
λ ∈ [0, 1], max{z(α1), z(α2)} ≥ z(α1) ≥ f(xλ) = z(λα1 + (1 − λ)α2) and the
thesis is achieved.

Theorem 4.8.2. Consider problem P (β). If f(x, β) is concave in the param-
eter β, then ψ(β) is concave.

Proof. Let β1, β2 ∈ B and let xλ, λ ∈ [0, 1] be an optimal solution of problem
P (λβ1+(1−λ)β2). Since g(xλ) ≤ 0, xλ is feasible for both problems P (β1) and
P (β2) and this implies f(xλ, β1) ≥ ψ(β1) and f(xλ, β2) ≥ ψ(β2). By means
of the concavity of f with respect to β, we have f(xλ, λβ1 + (1 − λ)β2) =
ψ(λβ1 + (1 − λ)β2) ≥ λf(xλ, β1) + (1 − λ)f(xλ, β2) ≥ λψ(β1) + (1 − λ)ψ(β2)
and the thesis is achieved.
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4.8.1 The Utility Maximization Problem

In this subsection we shall discuss the role of convexity/concavity and gener-
alized convexity/concavity in consumer theory.
A consumer is an economic entity who gains satisfaction from the consump-
tion of commodities and who uses the resources available (income) to buy
commodities.
The consumer’s problem consists of choosing the consumption bundle in order
to maximize the satisfaction gained from its consumption, subject to the con-
straint that the total cost is not greater than the consumer’s income.
To formalize this constraint let p = (p1, ..., pn)T the price vector, where pi > 0
is the price of one unit of commodity i and let x = (x1, ..., xn)T the consump-
tion bundle, where xi ≥ 0 is the amount of commodity i, i = 1, ..., n. If the
total cost pT x is not greater than the consumer’s income m, we must have the
constraint pT x ≤ m which is referred to as the consumer’s budget constraint.
The set of all feasible consumption bundles S = {x ∈ �n

+ : pT x ≤ m}, m > 0,
is called the budget set.
The consumer’s behaviour is summarized in a preference relation which is
described by means of a utility function U : �n

+ → �+ which assigns a non-
negative numerical value to each consumption bundle x ∈ �n

+.
U(x) > U(y) means that x is preferred to y;
U(x) = U(y) means that x is indifferent to y;
U(x) ≥ U(y) means that x is preferred or indifferent to y.
The consumer’s problem may now be stated as the following utility maximiza-
tion problem:

PUM : max U(x), x ∈ S = {x ∈ �n
+ : pT x ≤ m}, p > 0, m > 0.

Regarding the utility function U , we shall consider the following basic assump-
tions:

A1 U is continuous on �n which means that the consumer’s preferences can-
not exhibit “jumps”;

A2 The upper level sets of U are convex or, equivalently, U is a quasiconcave
function. The convexity of the upper level sets means that if the consumer
is indifferent between x and y, then any weighted average of the bundles
x and y cannot be worse than either x or y.

A3 U is differentiable on an open set containing �n
+ and ∇U(x) > 0 for all

x ∈ int�n
+. This means that the consumer prefers more goods to fewer

goods.

Assumption A1 implies that the problem PUM has at least one solution for all
positive prices and non-negative levels of income since a continuous function
on a compact set achieves a maximum (Weierstrass’ Theorem). For given p



90 4 Optimality and Generalized Convexity

and m, the set x(p, m) of solutions is known as the consumer’s demand cor-
respondence; when x(p, m) is single-valued for all (p, m), it is known as the
consumer’s demand function.
Assumption A2 implies that x(p, m) is a convex set. Furthermore, if U is
strictly quasiconvex, then x(p, m) consists of a single element or, equivalently,
x(p, m) is a demand function.
Assumption A3 implies Walras’ law: pT x = m, ∀x ∈ x(p, m). In fact, an opti-
mal solution for PUM cannot be an interior point since the gradient does not
vanish in int�n

+ and furthermore, pT x > 0 for all x ∈ �n
+, x �= 0.

Let us note that if x(p, m) is a solution for PUM for given (p, m), then it
is also a solution for (λp, λm), for any positive scalar λ, since the budget
set is unchanged if prices and income are scaled up or down proportionally
(λpT x = λm ⇔ pT x = m). It follows that x(λp, λm) = x(p, m), λ > 0, i.e.,
the demand function is homogeneous of degree zero.

For each p > 0 and m > 0, the utility value U(x(p, m)) of the problem
PUM is denoted by v(p, m) and is called the indirect utility function. The
basic properties of this function are given in the following theorem (for details
see [93]).

Theorem 4.8.3. The indirect utility function v(p, m) is:
(i) Homogeneous of degree zero in (p, m);
(ii) Quasiconvex in (p, m);
(iii) Strictly increasing in m and non-increasing in pj, for any j = 1, ..., n.

Proof. (i) This follows by noting that x(λp, λm) = x(p, m) so that v(λp, λm) =
U(x(λp, λm)) = U(x(p, m)) = v(p, m).
(ii) This follows from Theorem 4.8.1, taking into account that function
g(p, m) = pT x − m is linear (in particular, concave) in (p, m).
(iii) m1 < m2 implies that S1 = {x ∈ �n

+ : pT x ≤ m1} ⊂ S2 = {x ∈ �n
+ :

pT x ≤ m2} so that v(p, m1) ≤ v(p, m2). The strict inequality follows from
Walras’ law. Similarly, if p̄j < p̂j , the feasible set S̄j associated with p̄j con-
tains the feasible set Ŝj associated with p̂j, so that v is non-increasing in pj .

Another class of generalized concave functions which is useful in Economics
is the class of strongly pseudoconcave functions which is a subclass of the one
of the strictly pseudoconcave functions.

Definition 4.8.1. A differentiable function f defined on an open convex set
S ⊆ �n is said to be strongly pseudoconcave if it is strictly pseudoconcave and
for every x0 ∈ S and v ∈ �n such that ∇f(x0)T v = 0, there exist ε > 0, α > 0
such that x0 ± εv ∈ S and ϕ(t) = f(x0 + tv) ≤ ϕ(0) − 1

2αt2, for 0 ≤ t < ε.

It can be proven (see [93]) that a sufficient condition for the local continuous
differentiability of a consumer’s system of demand functions is obtained by
assuming that the direct utility function is continuously twice differentiable
and strongly pseudoconcave locally.
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4.8.2 The Expenditure Minimization Problem

The expenditure minimization problem consists of choosing a consumption
bundle in order to minimize the amount that the consumer must spend at
prices p to get utility (expressed by a function U) not lower than a fixed level
u. Formally, we have:

Pe : min pT x, x ∈ S = {x ∈ �n
+ : U(x) ≥ u}, p > 0, u > 0.

The problem is well-posed since it has at least one solution. In fact, let x̄ be
a feasible solution and let S1 = {x ∈ �n

+ : pT x ≤ pT x̄}. Obviously, problem
Pe is equivalent to problem min pT x, x ∈ S̄, where S̄ = S ∩ S1. Since S̄
is compact (S1 is compact and S is closed from the continuity of U), from
Weierstrass’ Theorem the minimum is achieved.
Property A3 of the utility function implies that every optimal solution is
binding to constraint U(x) ≥ u, while property A2 implies that the set of
optimal solutions is convex and it consists of one single element if U is strictly
quasiconvex.
For each p > 0 and u > 0, the optimal value of problem Pe is denoted by e(p, u)
and is called the consumer’s expenditure function. The basic properties of this
function are given in the following theorem (for details see [93]).

Theorem 4.8.4. The expenditure function e(p, u) is:
(i) Homogeneous of degree one in p;
(ii) Concave in p;
(iii) Strictly increasing in u and non-increasing in pj, for any j = 1, ..., n;
(iv) Convex in u if U is concave.

Proof. (i) For every λ > 0 we have e(λp, u) = min
x∈S

(λpT )x = λ min
x∈S

pT x =

λe(p, u).
(ii) This follows from Theorem 4.8.2, taking into account that the function
f(x, p) = pT x is linear (in particular, concave) in p.
(iii) The proof is analogous to the one given in (iii) of Theorem 4.8.3.
(iv) Let e(p, u1) = pT x1 and e(p, u2) = pT x2. Since U(x1) ≥ u1, U(x2) ≥ u2,
from the concavity of U we have U(λx1+(1−λ)x2) ≥ λU(x1)+(1−λ)U(x2) ≥
λu1 +(1−λ)u2. Consequently, λx1 +(1−λ)x2 is feasible for problem Pe with
u = λu1+(1−λ)u2. It follows that e(p, λu1+(1−λ)u2) ≥ pT (λx1+(1−λ)x2) =
λpT x1 + (1 − λ)pT x2 = λe(p, u1) + (1 − λ)e(p, u2).

4.8.3 The Profit Maximization Problem and the Cost
Minimization Problem

A firm is an economic entity which transforms inputs of goods into outputs
of goods by some production process. We assume that only one output y
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is produced by using n inputs x1, ..., xn and that the producer’s technol-
ogy can be summarized by a production function F (x), where F (x) is the
maximal amount of output that can be produced from the input vector
x = (x1, ..., xn)T .
A standard assumption in Economics is the convexity of the firm’s production
set Y = {(x, y) ∈ �n+1

+ : F (x) ≥ y}, a set which represents the production
plans that are technologically feasible for the firm. This assumption is equiv-
alent to requiring that U is quasiconcave.
The producer’s profit maximization problem consists of choosing the input
levels x that the Firm buys and uses and the output level y that it produces
and sells in order to maximize its profit, given prices p0 of output and p1, ..., pn

of inputs.
Taking into account that the profit of the firm is p0y − pT x, the profit
maximization problem may be formulated as follows:

Π : max(p0y−pT x), (x, y) ∈ Y = {(x, y) ∈ �n+1
+ : F (x) ≥ y}, p0 > 0, p > 0.

Assume that problem Π is well-defined for given (p0, p), and let π(p0, p) be
its maximum value. The function π(p0, p) is called the profit function. The
basic properties of this function are given in the following theorem.

Theorem 4.8.5. The profit function π(p0, p) is:
(i) Homogeneous of degree one;
(ii) Convex;
(iii) Non-decreasing in p0 and non-increasing in pj, for any j = 1, ..., n.

Proof. (i) For every λ > 0 we have

π(λp0, λp) = max
(x,y)∈Y

λ(p0y − pT x) = λ max
(x,y)∈Y

(p0y − pT x) = λπ(p0, p).

(ii) This follows from Theorem 4.8.2, taking into account that the function
−p0y + pT x is linear (in particular concave) in (p0, p) and that π(p0, p) =
max

(x,y)∈Y
(p0y − pT x) = − min

(x,y)∈Y
(−p0y + pT x).

(iii) The proof is obvious.

The cost minimization problem consists of choosing a vector input x in order
to minimize the amount that the producer must spend at prices p to get a
pre-assigned output level y0. Formally, we have:

C : min pT x, x ∈ S = {x ∈ �n
+ : F (x) ≥ y}, p > 0, y > 0.

From a mathematical point of view, the cost minimization problem and the
expenditure minimization problem are the same problem. It follows that C is
a well-posed problem and every optimal solution is binding to the constraint
F (x) ≥ y. The value of the problem C for fixed (p, y) is denoted C(p, y) and
it is called the cost function for which we have the following basic properties.



4.9 Invex Functions 93

Theorem 4.8.6. The cost function C(p, y) is:
(i) Homogeneous of degree one in p and non-decreasing in y;
(ii) Concave in p;
(iii) Convex in y if F is concave.

4.9 Invex Functions

We shall conclude this chapter by presenting the main properties of a new class
of generalized convex functions, the so-called invex functions, introduced by
Hanson [135] with the aim of extending the validity of the sufficiency of the
Karush–Kuhn–Tucker conditions. The term invex was created by Craven [75]
and it stands for invariant convex.
Since the papers by Hanson and Craven, a great number of contributions
related to invex functions and their generalizations, especially with regard to
optimization problems, have been made (see for instance [21, 76, 77, 120, 137,
138, 146, 206, 221, 231, 235]; further references may be found at the end of
the book).

Definition 4.9.1. The differentiable function f defined on an open set X ⊆
�n is invex if there exists a vector function η(x, y) defined on X × X such
that

f(x) − f(y) ≥ ηT (x, y)∇f(y), ∀x, y ∈ X (4.9)

Obviously, a differentiable convex function (on an open convex set X) is also
invex (it is sufficient to choose η(x, y) = (x − y)).
A meaningful property characterizing invex functions is stated in the following
theorem.

Theorem 4.9.1. A function is invex (with respect to some η) if and only if
every stationary point is a global minimum point.

Proof. Let f be invex with respect to some η(x, y). If x0 is a stationary point
for f , from (4.9), we have f(x) − f(x0) ≥ ηT (x, x0)∇f(x0) = 0, ∀x ∈ X , so
that x0 is a global minimum point. Now we shall prove that (4.9) holds for
the function η(x, y) defined as

η(x, y) =

{
0 if ∇f(y) = 0
(f(x)−f(y))∇f(y)

‖∇f(y)‖2 if ∇f(y) �= 0

If y is a stationary point and also a global minimum for f , we have f(x) −
f(y) ≥ 0 = ηT (x, y)∇f(y); otherwise, ηT (x, y)∇f(y) = f(x) − f(y), so that
(4.9) holds.

It immediately follows from Theorem 4.9.1 that every function without sta-
tionary points is invex.
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Moreover, since a stationary point is a global minimum point for a pseudo-
convex function, the class of pseudoconvex functions is contained in the class
of invex functions. Instead, there is not any inclusion relationships between
the other classes of generalized convex functions and the class of invex func-
tions; in fact, the function f(x) = x3 is strictly quasiconvex but not invex,
since x = 0 is a stationary point but it is not a minimum point; the following
example shows that there exist invex functions which are not quasiconvex.

Example 4.9.1. Consider the function f(x, y) = x2y2 on �2.
All the stationary points of f , given by (x, 0), (0, y), x, y ∈ �, are global
minimum points, so that f is invex. On the other hand, by setting A =
(0,−4), B = (3,−1), we have f(A) = 0 < f(B) = 9 and (A − B)T∇f(B) =
(−3,−3)(6,−18)T = 36 > 0, so that f is not quasiconvex.

Some useful properties of generalized convex functions are lost in the invex
case. For instance, the previous example shows that the set of all minimum
points is not a convex set.
Now, we shall prove the sufficiency of the Karush–Kuhn–Tucker conditions
under suitable invex assumptions.

Theorem 4.9.2. Consider problem P and let x0 be a feasible point. Suppose
that f, gi, i ∈ I(x0), are invex functions with respect to the same η(x, y). If
there exist λi ∈ �, i = 1, .., m, such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇f(x0) +
m∑

i=1

λi∇gi(x0) = 0

λi ≥ 0, i = 1, ..., m
λigi(x0) = 0, i = 1, ..., m

(4.10)

then x0 is a global minimum point for P .

Proof. For any feasible point x, we have f(x) − f(x0) ≥ ηT (x, x0)∇f(x0) =
−
∑

i∈I(x0)

λiη
T (x, x0)∇gi(x0) ≥ −

∑
i∈I(x0)

λi(gi(x) − gi(x0)) ≥ 0.

Consequently, x0 is a global minimum point.

The invex functions also play a role in stating constraint qualifications. We
shall present two conditions. The first one can be viewed as a generalization
of Slater’s constraint qualification, while, unlike the first one, the second one
cannot be embedded in the general separation approach suggested in Sect. 4.3.

Theorem 4.9.3. Conditions (i) and (ii) are constraint qualifications.
(i) The functions gi(x), i ∈ I(x0), are invex at x0 with respect to the same
η(x, x0) and there exists x∗ ∈ S such that gi(x∗) < 0, i ∈ I(x0).
(ii) Generalized Karlin constraint qualification:
The functions gi, i ∈ I(x0), are invex with respect to the same η and there
exists no vector p ∈ �s, p ≥ 0, p �= 0, such that

∑
i∈I(x0)

pigi(x) ≥ 0, ∀x ∈ X.
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Proof. (i) From Theorem 4.2.2, we must prove that W ∩ (int�− × �m− ) = ∅.
Assume, by contradiction, the existence of a direction d∗ ∈ �n such that
∇f(x0)T d∗ < 0,∇gi(x0)T d∗ ≤ 0, i ∈ I(x0).
Since gi(x∗) < gi(x0) = 0, i ∈ I(x0), from the invexity of gi, i ∈ I(x0), we
have η(x∗, x0)T∇gi(x0) < 0, i ∈ I(x0), so that d = η(x∗, x0) is a feasible
direction. By setting d̂ = d∗ + 1

nd, we have ∇gi(x0)T d̂ < 0, and, for a large
enough n, ∇f(x0)T d̂ < 0, so that d̂ is a feasible decreasing direction which
contradicts the optimality of x0.
(ii) The optimality of x0 implies the following Fritz John conditions: there
exist λ0 ≥ 0, λi ≥ 0, (λ0, λ1, ..., λs) �= 0, i ∈ I(x0), such that

λ0∇f(x0) +
∑

i∈I(x0)

λi∇gi(x0) = 0

Assume that λ0 = 0, i.e.,
∑

i∈I(x0)

λi∇gi(x0) = 0. For the invexity assumption,

we have gi(x)−gi(x0) ≥ ηT (x, x0)∇gi(x0), ∀i ∈ I(x0), so that
∑

i∈I(x0)

λigi(x) ≥

ηT (x, x0)
∑

i∈I(x0)

λi∇gi(x0) = 0, and this contradicts the generalized Karlin

constraint qualification.

Remark 4.9.1. Invexity also plays an important role in duality theory, since
it is possible to establish duality results involving Wolfe dual or alternative
duals by weakening the classical convexity requirements (see for instance [19,
20, 75, 77, 98, 135, 137, 161, 162, 163, 164, 165]).

4.10 Exercises

4.1. Show that Corollary 4.2.1 is equivalent to Farkas’ Lemma which follows:
Let A be an m×n matrix and c ∈ �n. Then, exactly one of the following two
systems has a solution:
system 1 Ax ≤ 0, cT x > 0 for some x ∈ �n

system 2 yT A = cT , y ≥ 0 for some y ∈ �m

where Ax ≤ 0 means Ax ∈ �m−\{0}.
4.2. Let A and B be matrices of dimension m × n, s × n, respectively. Prove
that exactly one of the following two systems has a solution:
system 1 Ax < 0, Bx � 0
system 2 αT A + βT B = 0, α ∈ �m

+\{0}, β ∈ �s
+

where Ax < 0, Bx � 0 mean Ax ∈ int�m
− , Bx ∈ �s

−, respectively.

4.3. Let A and B be matrices of dimension m × n, s × n, respectively. Prove
that exactly one of the following two systems has a solution:
system 1 Ax < 0, Bx ≤ 0
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system 2 αT A+βT B = 0, with α ∈ �m
+\{0}, β ∈ �s

+ or α ∈ �m
+ , β ∈ int�s

+

where Ax < 0, Bx ≤ 0 mean Ax ∈ int�m
− , Bx ∈ �s

−\{0}, respectively.

4.4. Referring to minimization problem P , consider the following cones:
C0 = {d ∈ �n : ∇gi(x0)T d < 0, i ∈ I(x0)};
C = {d ∈ �n : ∇gi(x0)T d ≤ 0, i ∈ I(x0)};
F = {d ∈ �n\{0} : ∃ ε > 0 : x0 + td ∈ S, ∀ t ∈ (0, ε)};
T = {d ∈ �n : ∃{xn} ⊂ S, xn → x0, ∃αn → +∞ : αn(xn − x0) → d}.
Prove, by means of (4.3), that each of the following conditions is a constraint
qualification:
(i) C0 �= ∅ (Cottle’s constraint qualification);
(ii) clF = C (Zangwill’s constraint qualification);
(iii) T = C (Abadie’s constraint qualification).

4.5. Consider problem P ∗ : min
x∈S

f(x), where S = {x ∈ X : gi(x) ≤ 0, hj(x) =

0, i = 1, ..., m, j = 1, .., p}. Assume that f is pseudoconvex, gi, i = 1, .., m, are
quasiconvex, hj , j = 1, .., p, are pseudolinear and that there exists a feasible
point x0 verifying the following conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇f(x0) +
m∑

i=1

λi∇gi(x0) +
p∑

j=1

µj∇hj(x0) = 0

λigi(x0) = 0, i = 1, .., m
λi ≥ 0, i = 1, .., m, µj ∈ �, j = 1, .., p

Prove that x0 is a global minimum point for P ∗.

4.6. Let S be a compact convex set and let f be a continuous convex function
over S. By applying Jensen’s Inequality, prove that a global maximum of f is
attained at an extreme point of S.

4.7. Consider the utility maximization problem and the expenditure mini-

mization problem corresponding to utility function U(x) =
n∏

i=1

xαi

i , xi > 0,

αi > 0, i = 1, .., n,

n∑
i=1

αi = 1. Show that:

(a) the consumer’s demand function of commodity i is xi(p, m) = mαi

pi
;

(b) the consumer’s expenditure function is e(p, u) = u
n∏

i=1

(
αi

pi
)−αi .

4.8. Consider the profit maximization problem corresponding to the Cobb–

Douglas production function F (x) =
n∏

i=1

xαi

i , xi > 0, αi > 0, i = 1, .., n,

n∑
i=1

αi < 1. Show that:
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(a) The output supply function is y(p0, p) = pγ
0

n∏
j=1

(
αj

pj
)θj , where γ =

n∑
i=1

αi

1−
n∑

i=1

αi

and θj = αj

1−
n∑

i=1

αj

.

(b) The demand function for input i is xi(p0, p) =
αi

pi
pδ
0

n∏
j=1

(
αj

pj
)θj , where

δ = 1

1−
n∑

i=1

αi

.

4.9. Consider the following parametric problem

P (α) : min f(x), x ∈ S = {x ∈ X ⊆ �n : g(x) ≤ α}, α ∈ A ⊆ �s

where X, A are open convex sets and f, g are functions defined on X . By
assuming the existence of optimal solutions for every fixed α, prove that the
optimal value function z(α) of P (α) is a convex function.

4.10. Consider the standard linear parametric problem

P (θ) : min cT x, x ∈ S = {x ∈ �n : Ax = b + θu, x ≥ 0}.

Prove that the optimal value function z(θ) of P (θ) is a convex function.
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5

Generalized Convexity and Generalized
Monotonicity

5.1 Introduction

As convexity plays an important role in solving mathematical programming
problems, so, too, does monotonicity in solving variational inequality and
nonlinear complementarity problems. Pioneering work was done by Cot-
tle, Dantzig, Karamardian, Stampacchia, and many others (see for instance
[71, 74, 134, 154, 155]).
Convexity and generalized convexity, which are central properties in many
branches of Operational Research, gave rise to gradient maps with certain
generalized monotonicity properties which are inherited from the generalized
convexity of the underlying function. Subsequently, generalized monotonicity
properties have been extended to general maps; various concepts were intro-
duced in the literature (see for instance [87, 157, 158, 286]).
In this chapter we shall present the main concepts of generalized monotonic-
ity and their relationships with the corresponding concepts of generalized
convexity. The main references are Chaps. 2 and 9 of the recent Handbook
of Generalized Convexity and Generalized Monotonicity [132] together with
[49, 253, 254].
Economic Applications in Economics of generalized monotonicity can be found
in [27, 148, 149, 151, 152, 184, 287].

5.2 Concepts of Generalized Monotonicity

In this section we shall introduce some classes of generalized monotone maps
which are related, as we shall see in the next section, to the classes of gener-
alized convex functions studied in the previous chapters.
Let S be a subset of �n and F : S → �n be a map. The definitions of a
monotone and a strictly monotone map are a natural generalization of the
classical notions of non-decreasing and increasing functions of one variable.
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Definition 5.2.1.
(i) F is monotone on S, if for all x1, x2 ∈ S,

(x2 − x1)T (F (x2) − F (x1)) ≥ 0. (5.1)

(ii) F is strictly monotone on S, if for all x1, x2 ∈ S, x1 �= x2,

(x2 − x1)T (F (x2) − F (x1)) > 0. (5.2)

Obviously, a strictly monotone map is monotone, too, but the converse state-
ment is not true.
As regards the classes of generalized monotone maps that we are going
to introduce, let us point out that pseudomonotonicity was introduced by
Karamardian in [156], while quasimonotonicity was introduced by Hassouni
in [139] and, independently, by Karamardian and Schaible in [157].

Definition 5.2.2. F is pseudomonotone on S, if for all x1, x2 ∈ S,

(x2 − x1)T F (x1) ≥ 0 ⇒ (x2 − x1)T F (x2) ≥ 0 (5.3)

or, equivalently,

(x2 − x1)T F (x1) > 0 ⇒ (x2 − x1)T F (x2) > 0. (5.4)

Definition 5.2.3. F is quasimonotone on S, if for all x1, x2 ∈ S,

(x2 − x1)T F (x1) > 0 ⇒ (x2 − x1)T F (x2) ≥ 0. (5.5)

In [130], strict quasimonotonicity and semistrict quasimonotonicity were
introduced.

Definition 5.2.4. Let S be convex.
(i) F is strictly quasimonotone on S, if F is quasimonotone on S and for all
x1, x2 ∈ S, there exists x̄ ∈ ri[x1, x2] such that

(x2 − x1)T F (x̄) �= 0. (5.6)

(ii) F is semistrictly quasimonotone on S, if F is quasimonotone on S and
for all x1, x2 ∈ S, with x1 �= x2, the following implication holds:

(x2−x1)T F (x1) > 0 ⇒ ∃ x̄ ∈ ri

[
x1 + x2

2
, x2

]
, such that (x2−x1)T F (x̄) > 0.

(5.7)

The inclusion relationships between the classes of generalized monotone
functions that have been introduced are stated in the following theorem.
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Theorem 5.2.1. Let S ⊆ �n be a convex set and let F : S → �n be a map.
(i) If F is monotone on S, then F is pseudomonotone on S;
(ii) If F is pseudomonotone on S, then F is semistrictly quasimonotone on
S;
(iii) If F is semistrictly quasimonotone on S, then F is quasimonotone on S;
(iv) If F is strictly monotone on S, then F is strictly quasimonotone on S;
(v) If F is strictly quasimonotone on S, then F is semistrictly quasimonotone
on S.

Proof. (i) and (iii) follow directly from the definitions.
(ii) Since pseudomonotonicity implies quasimonotonicity, (5.7) remains to
be proven. Let x1, x2 ∈ S be such that (x2 −x1)T F (x1) > 0 and con-
sider the point x̄ = x1 + t̄(x2 −x1), t̄ ∈ (1

2 , 1). We have (x̄−x1)T F (x1) =
t̄(x2 −x1)T F (x1) > 0; the pseudomonotonicity of F implies (x̄−x1)T F (x̄) > 0
or, equivalently, (x2 − x1)T F (x̄) > 0. Consequently, (5.7) holds.
(iv) Since strict monotonicity implies quasimonotonicity, (5.6) remains to be
proven. Assume, by contradiction, the existence of x1, x2 ∈ S such that
(x2 − x1)T F (x̄) = 0 for all x̄ ∈ ri[x1, x2]. Let x̄1 = x1 + t1(x2 − x1),
x̄2 = x1 + t2(x2 − x1), with 0 < t1 < t2 < 1. From the strict monotonicity we
have (x̄2−x̄1)T (F (x̄2)−F (x̄1)) > 0, i.e., (t2−t1)(x2−x1)T (F (x̄2)−F (x̄1)) > 0.
Consequently, 0 = (x2 −x1)T F (x̄2) > (x2 −x1)T F (x̄1) = 0, and this is a con-
tradiction.
(v) Let x1, x2 ∈ S such that (x2 − x1)T F (x1) > 0. The quasimonotonicity of
F implies that (x2−x1)T F (z) ≥ 0 for all z ∈ ri[x1, x2]. By applying the strict
quasimonotonicity to points x1+x2

2 and x2, the thesis is achieved.

The diagram of Fig. 5.1 summarizes the inclusion relationships between the
various classes of monotone and generalized monotone maps.

strictly
monotone

quasimonotone

monotone

strictly
quasimonotone

pseudomonotone

semistrictly
quasimonotone

Fig. 5.1. Relationships between various types of monotonicity
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All inclusions are proper as is shown in the following example.

Example 5.2.1.

(a) The map F (x) =
{

0, 0 ≤ x ≤ 1
x − 1, 1 < x ≤ 2 is semistrictly quasimonotone and

pseudomonotone but not strictly quasimonotone.

(b) The map F (x) =
{−x + 1, 0 ≤ x ≤ 1

0, 1 < x ≤ 2 is quasimonotone but not

semistrictly quasimonotone.
(c) The map F (x) = −| x | is strictly quasimonotone but not pseudomono-
tone.

(d) The map F (x) =

⎧⎨⎩
0, 0 ≤ x < 1

−1 + x, 1 ≤ x < 2
−x + 3, 2 ≤ x ≤ 3

is semistrictly quasimonotone

but not pseudomonotone.

An important case where quasimonotonicity reduces to pseudomonotonicity
is stated in the following theorem.

Theorem 5.2.2. Let S ⊆ �n be an open convex set and let F : S → �n be a
continuous map such that F (x) �= 0 for all x ∈ S. Then, F is pseudomonotone
on S if and only if F is quasimonotone on S.

Proof. Since pseudomonotonicity implies quasimonotonicity, the converse
statement remains to be proven. Assume, by contradiction, the existence of
x1, x2 ∈ S such that (x2 − x1)T F (x1) ≥ 0 and (x2 − x1)T F (x2) < 0. From
the quasimonotonicity assumption, we necessarily have (x2 − x1)T F (x1) = 0.
Since F (x1) �= 0, there exists u ∈ �n such that uT F (x1) > 0. From the
continuity of F and the continuity of the scalar product, there exists ε > 0
such that (x2 + εu− x1)T F (x2 + εu) < 0. Since F is quasimonotone, we have
(x2 + εu − x1)T F (x1) ≤ 0, i.e., εuT F (x1) ≤ 0, and this is a contradiction.

Let us note that a quasimonotone map is not necessarily continuous. Under
a continuity assumption, we have the useful property that quasimonotonicity
on an open convex set S is preserved on the closure of S, as is shown in the
following theorem.

Theorem 5.2.3. Let S ⊆ �n be a convex set with a nonempty interior, and
let F : clS → �n be a continuous map. If F is quasimonotone on intS, then
F is quasimonotone on clS.

Proof. We must prove that if x, y ∈ clS are such that (y − x)T F (x) > 0,
then (y − x)T F (y) ≥ 0. If x, y ∈ intS, this is true by assumption. Let
{xn} ⊂ intS, {yn} ⊂ intS, be sequences converging to x and y, respec-
tively. For a large enough n, it results that (yn − xn)T F (xn) > 0 so that, for
the quasimonotonicity of F on intS, we have (yn − xn)T F (yn) ≥ 0. Conse-
quently, the continuity of F and the continuity of the scalar product imply
lim

n→+∞(yn − xn)T F (yn) = (y − x)T F (y) ≥ 0.

The proof is complete.
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5.2.1 Differentiable Generalized Monotone Maps

The defining inequalities of various kinds of generalized monotonicity are, in
general, hard to verify, so many studies have been devoted to deriving some
characterization results.
Some necessary and/or sufficient conditions for quasimonotone and pseu-
domonotone differentiable maps are stated below. All proofs are omitted and
can be found in [89].

Theorem 5.2.4. Let S ⊆ �n be a convex set and let F be a differentiable
map on S. If F is quasimonotone on S, then

x ∈ intS, v ∈ �n, vT F (x) = 0 ⇒ vT JF (x)v ≥ 0 (5.8)

where JF (x) denotes the Jacobian matrix of F evaluated at x.

Theorem 5.2.5. Let S ⊆ �n be an open convex set and let F be a continu-
ously differentiable map on S. Then:
(i) F is quasimonotone on S if and only if (5.8) and (5.9) hold

x, x − v ∈ S
F (x) = 0, JF (x)v = 0

vT F (x − v) > 0

⎫⎬⎭⇒
{∀t̄ > 0, ∃t ∈ (0, t̄ ] so that

vT F (x + tv) ≥ 0 (5.9)

(ii) F is pseudomonotone on S if and only if (5.8) and (5.10) hold

x ∈ S, F (x) = 0,
JF (x)v = 0

}
⇒
{∀t̄ > 0, ∃t ∈ (0, t̄ ] so that

vT F (x + tv) ≥ 0 (5.10)

5.3 Generalized Monotonicity of Maps of One Variable

The following theorem characterizes the generalized monotonicity of maps of
one variable.

Theorem 5.3.1. A function f : � → � is:
(i) Monotone if and only if it is non-decreasing;
(ii) Strictly monotone if and only if it is increasing;
(iii) Pseudomonotone if and only if there exist disjoint consecutive intervals
(possibly empty) I1, I2 and I3 such that I1 ∪ I2 ∪ I3 = � and f is negative on
I1, zero on I2 and positive on I3;
(iv) Quasimonotone if and only if there exist disjoint intervals I1 and I2, one
of which may be empty, such that I1 ∪ I2 = � and f is non-positive on I1 and
non-negative on I2;
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(v) Strictly quasimonotone if and only if there exist disjoint intervals I1 and
I2 (one of which may be empty) with I1 ∪ I2 = �, such that f is non-positive
on I1, non-negative on I2 and there does not exist an open interval I in which
f(x) = 0 for all x ∈ I;
(vi) Semistrictly quasimonotone if and only if there exist disjoint intervals I1

and I2 (one of which may be empty) with I1 ∪ I2 = �, such that f is non-
positive on I1 and non-negative on I2; furthermore, if f(x) > 0 (f(x) < 0),
then there does not exist an open interval I ⊂ (x, +∞) (I ⊂ (−∞, x)) such
that f(z) = 0 for all z ∈ I.

Proof. (i) and (ii) follow directly from the definitions.
(iii) Let I1 = {x ∈ � : f(x) < 0}, I2 = {x ∈ � : f(x) = 0}, and
I3 = {x ∈ � : f(x) > 0}. The pseudomonotonicity of f implies that if there
exists x1 ∈ I1 (x3 ∈ I3) , then y ∈ I1 (y ∈ I3) for all y < x1 (y > x3). It follows
that I1, I3, if nonempty, are intervals such that infI1 = −∞, supI3 = +∞.
Consequently, I2 = �\(I1 ∪ I3), if nonempty, is an interval, too, of end points
l1, l2 with l1 = supI1 or l1 = −∞ if I1 = ∅, and l2 = infI3 or l2 = +∞ if
I3 = ∅.
As regards the converse statement, it is sufficient to note that the inequality
f(x)(y − x) > 0 implies that x, y ∈ I3 or x, y ∈ I1.
(iv) This follows similarly to (iii).
(v) This follows directly from the definition, taking into account (iv).
(vi) Assume that f is semistrictly quasimonotone and let x ∈ � such that
f(x) > 0. By contradiction, let I = [a, b] ⊂ (x, +∞) such that f(z) = 0 for
all z ∈ I. Set ā = inf{z : f(y) = 0, ∀y ∈ [z, b]}. Obviously, x < ā ≤ a and,
for a small enough ε > 0, there exists x̄ ∈ [ā − ε, ā], such that f(x̄) > 0. By
applying (5.7) with x1 = x̄ and x2 = b we get a contradiction.
Conversely, the existence of I1, I2 which verify the assumptions, implies the
quasimonotonicity of f so that (5.7) remains to be proven. If not, there exist
x1, x2 ∈ � such that f(x1)(x2−x1) > 0 and f(x̄) = 0 for all x̄ ∈ ri[x1+x2

2 , x2],
and this is a contradiction.

The results given in the previous theorem allow us to recognize the gener-
alized monotonicity of a function of one variable by means of its graph. In
Fig. 5.2(a) a quasimonotone function is depicted which is not semistrictly,
strictly quasimonotone, or pseudomonotone; Fig. 5.2(b) depicts the graph of
a function which is strictly quasimonotone but neither strictly monotone, nor
pseudomonotone.
As happens for generalized convex functions, characterizations of generalized
monotonicity may be derived from the characterizations for maps of one vari-
able. More precisely, let S ⊆ �n be a convex set and let F be a map defined
on S. For all z ∈ S and u ∈ �n, consider the set:

Iz,u = {t ∈ � : z + tu ∈ S}
and the map of one variable



5.4 Generalized Monotonicity of Affine Maps 105

x1

x2

(a)

x1

x2

(b)
Fig. 5.2. Graphs of generalized monotone maps

Fz,u(t) = uT F (z + tu).

The following theorem holds.

Theorem 5.3.2. F is monotone, strictly monotone, pseudomonotone, quasi-
monotone, strictly quasimonotone, and semistrictly quasimonotone on S if
and only if, for all z ∈ S and u ∈ �n, Fz,u is monotone, strictly monotone,
pseudomonotone, quasimonotone, strictly quasimonotone, and semistrictly
quasimonotone on Iz,u, respectively.

Proof. It is sufficient to note that, by setting x1 = z + t1u, x2 = z + t2u, we
have (t2 − t1)Fz,u(t1) = (x2 − x1)T F (x1) and (t2 − t1)Fz,u(t2) = (x2 −
x1)T F (x2), so that to any assumption of generalized monotonicity on F there
corresponds the same kind of generalized monotonicity on Fz,u.
For the converse statement, set z = x1, u = x2 − x1.

5.4 Generalized Monotonicity of Affine Maps

One of the most important problems in studying generalized monotonicity is
how to find characterizations of generalized monotone maps. In Sect. 5.2.1 we
presented some results related to the differentiable case; now we shall present
the main results related to the affine case.
The following theorem points out that, for an affine map, quasimonotonicity
reduces to pseudomonotonicity even if the map assumes zero value in some
points.

Theorem 5.4.1. Let S ⊆ �n be an open convex set and let F (x) = Mx + q.
Then, F is pseudomonotone on S if and only if F is quasimonotone on S.

Proof. Since pseudomonotonicity implies quasimonotonicity, the converse
statement remains to be proven. If F (x) �= 0 for all x ∈ S, the thesis follows
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from Theorem 5.2.2. If Mx + q = 0, assume, by contradiction, the existence
of x, y ∈ S such that (y − x)T (Mx + q) = 0 and (y − x)T (My + q) < 0.
Consider x1 = x + t1(y − x) where t1 < 0 is such that x1 ∈ S. Since
y − x = y−x1

1−t1
, we have (y − x1)T F (y) < 0 so that, from the quasimono-

tonicity of F , (y − x1)T F (x1) ≤ 0. On the other hand, (y − x1)T F (x1) =
(1− t1)(y−x)T (Mx + q + t1M(y − x)) = (1− t1)(y−x)T ((1− t1)(Mx+ q)+
t1(My + q)) = t1(1 − t1)(y − x)T (My + q) ≤ 0, i.e., (y − x)T (My + q) ≥ 0,
and this is a contradiction.

For an affine map, the characterizations given in Theorem 5.2.5 reduce to
condition (5.8). More precisely, we have the following theorem for which, for
the sake of completeness, we shall propose a direct proof.

Theorem 5.4.2. Let S ⊆ �n be an open convex set and let F (x) = Mx + q.
Then, F is pseudomonotone on S if and only if

x ∈ S, v ∈ �n, vT (Mx + q) = 0 ⇒ vT Mv ≥ 0. (5.11)

Proof. Assume that F is pseudomonotone on S and let x ∈ S, v ∈ �n, such
that vT (Mx + q) = 0. Consider the point y = x + tv where t ∈ �\{0} is such
that y ∈ S. We have (y−x)T (Mx+q) = 0, so that from the pseudomonotonic-
ity of the map, (y−x)T (My + q) ≥ 0, i.e., tvT (Mx+ q + tMv) = t2vT Mv ≥ 0
and (5.11) holds.
Conversely, assume by contradiction that F is not pseudomonotone, i.e.,
assume the existence of x, y ∈ S such that (y − x)T (Mx + q) ≥ 0 and
(y − x)T (My + q) < 0. From the continuity of the affine map, there exists
x̄ = x + t̄(y − x), t̄ ∈ [0, 1), such that (y − x)T (Mx̄ + q) = 0. We have

(y−x)T M(y−x) = (y−x)T M

(
y − x̄

1 − t̄

)
=

1
1 − t̄

(y−x)T (My+q−Mx̄−q) =

1
1 − t̄

(y − x)T (My + q) < 0. By setting v = y − x, (5.11) is contradicted.

Remark 5.4.1. Theorem 5.4.1 implies that (5.11) is also a characterization of
quasimonotonicity of an affine map on an open convex set. Furthermore, note
that the proof of pseudomonotonicity given in Theorem 5.4.1 does not require
the openess of the domain S, so that (5.11) is a sufficient condition for pseu-
domonotonicity and quasimonotonicity even if S is not open.

The following example points out that a quasimonotone affine map on a convex
set with a nonempty interior does not necessarily verify (5.11).

Example 5.4.1. Consider the map F (x) = Mx on �2
+, where M =

[
0 −1
−2 0

]
.

By setting x = (x1, x2)T , y = (y1, y2)T , we have that (5.12) implies (5.13),

(y − x)T Mx = −x2(y1 − x1) − 2x1(y2 − x2) > 0 (5.12)
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(y − x)T My = −y2(y1 − x1) − 2y1(y2 − x2) ≥ 0 (5.13)

This is true, if y1−x1 and y2−x2 are both negative. If y1−x1 > 0 (y1−x1 ≤ 0)
and y2 − x2 ≤ 0 (y2 − x2 > 0), then −y2(y1 − x1) ≥ −x2(y1 − x1) and
−2y1 > (y2 − x2) ≥ −2x1(y2 − x2), so that (5.12) implies (5.13). Since the
case y1−x1 ≥ 0, y2−x2 ≥ 0 cannot occur, the map is quasimonotone on �2

+.
Now, we shall show that (5.11) does not hold at the boundary point x =
(0, 0)T . In fact, we have Mx = 0, so that vT Mx = 0 for all v ∈ �2, but
vT Mv = −3v1v2 < 0 if v1v2 > 0.
Finally, note that the map is pseudomonotone on int�2

+ but is not pseu-
domonotone on �2

+ since, by choosing x = (0, 0)T , y = (1, 1)T , we have
(y − x)T F (x) = 0, and (y − x)T F (y) = −3 < 0.

Example 5.4.1 shows that (5.11) does not necessarily hold at a boundary point
x for which Mx + q = 0. In general, we have the following theorem whose
proof can be found in [133].

Theorem 5.4.3. Let S ⊆ �n be a convex set with a nonempty interior, and
let F (x) = Mx + q be quasimonotone on S.
(i) If there exist x ∈ S, v ∈ �n, such that (5.11) does not hold, then x belongs
to the boundary of S and F (x) = 0.
(ii) If F has no zeros on the boundary of S, then F is pseudomonotone on S.

The link between the generalized monotonicity of F (x) = Mx + q and the
intrinsic properties of the matrix M has been studied by several authors (see,
for instance, [84, 88]). Results related to the case S = �n

+, which is of par-
ticular interest because of its relevance to complementarity problems, can be
found in [50, 84, 126, 127, 128].
Now, we shall point out how generalized monotonicity is preserved under an
affine transformation.
Consider the variable transformation z = Ax+ b, where A is an m×n matrix
and b ∈ �m. Let Z ⊆ �m be a convex set and S = {x ∈ �n : Ax + b ∈ Z}.
Theorem 5.4.4. Let G : Z → �m and let F (x) = AT G(Ax + b). If G
is quasimonotone, pseudomonotone, strictly quasimonotone, and semistrictly
quasimonotone on Z, then F is quasimonotone, pseudomonotone, strictly
quasimonotone, and semistrictly quasimonotone on S, respectively.

Proof. It is sufficient to note that, for every x1, x2 ∈ S, by setting z1 =
Ax1 +b, z2 = Ax2 +b, we have (x2−x1)T F (x1) = (A(x2−x1))T G(Ax1 +b) =
(z2 − z1)T G(z1), (x2 − x1)T F (x2) = (z2 − z1)T G(z2), so that to any assump-
tion of generalized monotonicity on G there corresponds the same kind of
generalized monotonicity on F .



108 5 Generalized Convexity and Generalized Monotonicity

5.5 Relationships Between Generalized Monotonicity
and Generalized Convexity

In this section we shall point out the connection between the generalized
convexity of a function f and the generalized monotonicity of its gradient
map ∇f .
We shall begin with the classical result related to convexity and monotonicity.

Theorem 5.5.1. Let S ⊆ �n be a convex set and let f be a differentiable
function on S.
(i) f is convex on S if and only if ∇f is monotone on S;
(ii) f is strictly convex on S if and only if ∇f is strictly monotone on S.

Proof. (i) Assume that f is convex on S and let x1, x2 ∈ S. We have:

f(x2) ≥ f(x1) + (x2 − x1)T∇f(x1) (5.14)

f(x1) ≥ f(x2) + (x1 − x2)T∇f(x2) (5.15)

By adding (5.14) and (5.15), we obtain (x2 − x1)T (∇f(x2) −∇f(x1)) ≥ 0,
i.e., ∇f is monotone on S.
Conversely, assume, by contradiction, the existence of x1, x2 ∈ S such that
f(x2) < f(x1)+(x2−x1)T∇f(x1). From the Mean Value Theorem, there exists
x̄ = x1 + t̄(x2 − x1), t̄ ∈ (0, 1), such that f(x2) = f(x1) + (x2 − x1)T∇f(x̄),
so that we have (x2 − x1)T∇f(x̄) = f(x2) − f(x1) < (x2 − x1)T∇f(x1), i.e.,

(x2 − x1)T (∇f(x̄) −∇f(x1)) =
1
t̄
(x̄ − x1)T (∇f(x̄) −∇f(x1)) < 0, and this

contradicts the monotonicity assumption.
Similarly, (ii) can be proven.

The following lemma is useful in establishing the connection between the
pseudoconvexity (quasiconvexity) of a function and the pseudomonotonicity
(quasimonotonicity) of its gradient map.

Lemma 5.5.1. Let S ⊆ �n be a convex set and let f be a differentiable func-
tion on S.
(i) Assume that ∇f is pseudomonotone on S.
If x1, x2 ∈ S are such that (x2 − x1)T∇f(x1) ≥ 0, then the restriction of f
on [x1, x2] is non-decreasing.
If x1, x2 ∈ S are such that (x2 − x1)T∇f(x1) > 0, then the restriction of f
on [x1, x2] is increasing.
(ii) Assume that ∇f is quasimonotone on S.
If x1, x2 ∈ S are such that (x2 − x1)T∇f(x1) > 0, then the restriction of f
on [x1, x2] is non-decreasing and f(x1) < f(x2).

Proof. (i) Let ϕ(t) = f(x1 + t(x2−x1)), t ∈ [0, 1], and set y = x1 + t(x2−x1).
If (x2 − x1)T∇f(x1) ≥ 0, then (y − x1)T∇f(x1) ≥ 0 for all y ∈ [x1, x2], so
that the pseudomonotonicity of ∇f(x) implies that (y − x1)T∇f(y) ≥ 0 for



5.5 Generalized Monotonicity and Generalized Convexity 109

all y ∈ [x1, x2]. It follows that (y−x1)T∇f(y) = t(x2 −x1)T∇f(y) = tϕ′(t) ≥
0, ∀t ∈ [0, 1]. Consequently, ϕ(t) is non-decreasing on [0, 1].
Similarly, the condition (x2−x1)T∇f(x1) > 0, together with the pseudomono-
tonicity of ∇f(x), implies that ϕ(t) is increasing on [0, 1]. Consequently, (i)
holds.
(ii) The condition (x2 − x1)T∇f(x1) > 0, together with the quasimono-
tonicity of ∇f(x), implies that ϕ(t) is non-decreasing on [0, 1]; furthermore,
ϕ′(0) = (x2 − x1)T∇f(x1) > 0 implies that ϕ(t) is locally increasing at t = 0.
Consequently, (ii) holds.

Theorem 5.5.2. Let S ⊆ �n be a convex set and let f be a differentiable
function on S.
(i) f is pseudoconvex on S if and only if ∇f is pseudomonotone on S;
(ii) f is quasiconvex on S if and only if ∇f is quasimonotone on S.

Proof. (i) Assume that f is pseudoconvex on S and let x1, x2 ∈ S such that
(x2 − x1)T∇f(x1) ≥ 0. Consequently, f(x1) ≤ f(x2). Since f is quasiconvex,
too, we have (x1−x2)T∇f(x2) ≤ 0, i.e., (x2−x1)T∇f(x2) ≥ 0, so that ∇f(x)
is pseudomonotone on S.
Conversely, assume by contradiction the existence of x1, x2 ∈ S such that
f(x1) > f(x2) and (x2 − x1)T∇f(x1) ≥ 0. This last inequality implies, from
(i) of Lemma 5.5.1, that f is non-decreasing on [x1, x2], so that f(x1) ≤ f(x2),
and this is a contradiction.
(ii) Assume that f is quasiconvex on S and let x1, x2 ∈ S such that
(x2−x1)T∇f(x1) > 0. Consequently, f(x1) < f(x2) and (x1−x2)T∇f(x2) ≤
0, i.e., (x2 − x1)T∇f(x2) ≥ 0, so that ∇f(x) is quasimonotone on S.
Conversely, assume by contradiction the existence of x1, x2 ∈ S such that
f(x1) ≥ f(x2) and (x2 − x1)T∇f(x1) > 0. From (ii) of Lemma 5.5.1, we get
a contradiction.

Theorem 5.5.3. Let S ⊆ �n be a convex set and let f be a differentiable
function on S.
(i) f is strictly quasiconvex on S if and only if ∇f is strictly quasimonotone
on S;
(ii) f is semistrictly quasiconvex on S if and only if ∇f is semistrictly
quasimonotone on S.

Proof. (i) If f is strictly quasiconvex on S, then f is quasiconvex, too, so
that, from (ii) of Theorem 5.5.2, ∇f(x) is quasimonotone on S. If (5.6) does
not hold, then there exist x1, x2 ∈ S such that (x2 − x1)T∇f(x̄) = 0 for all
x̄ ∈ [x1, x2], and this implies the constancy of f on [x1, x2], contradicting the
strict quasiconvexity of f (see Theorem 2.2.11).
Conversely, if ∇f(x) is strictly quasimonotone, it is quasimonotone, too, so
that f is quasiconvex. Furthermore, condition (5.6) with F = ∇f , implies
that f is not constant on each interval [x1, x2] ⊂ S, and thus f is strictly
quasiconvex.
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(ii) If f is semistrictly quasiconvex on S, then f is quasiconvex, too, so
that, from (ii) of Theorem 5.5.2, ∇f(x) is quasimonotone on S. If ∇f(x)
is not semistrictly quasimonotone, then there exist x1, x2 ∈ S such that
(x2 − x1)T∇f(x1) > 0 and (x2 − x1)T∇f(x̄) ≤ 0 for all x̄ ∈ ri[x1+x2

2 , x2].
The quasimonotonicity of ∇f(x) implies that (x2 − x1)T∇f(x̄) = 0 for all
x̄ ∈ ri[x1+x2

2 , x2], so that f is constant on [x1+x2
2 , x2]. On the other hand,

from (ii) of Lemma 5.5.1, f(x1) < f(x2) and this contradicts the semistrict
quasiconvexity of f on [x1, x2].
Conversely, the semistrict quasimonotonicity of ∇f(x) implies the quasicon-
vexity of f .
Assume now, by contradiction, the existence of x1, x2, x̄ ∈ ri[x1, x2] ⊂ S such
that f(x1) > f(x2) and f(x̄) = f(x1). Let t̃ = max{t ∈ [0, 1] : ϕ(t) = f(x1 +
t(x2−x1)) = f(x1) = ϕ(0)}; obviously, t̃ ∈ (0, 1). Let ε > 0 be such that ε < t̃

2
and t̃ + ε < 1. Then, there exist t̄ ∈ (t̃, t̃ + ε) such that ϕ′(t̄) < 0. By setting

ȳ = x1+ t̄(x2−x1), we have ϕ′(t̄ ) = (x2−x1)T∇f(ȳ) =
1
t̄
(ȳ−x1)T∇f(ȳ) < 0,

i.e., (x1 − ȳ)T∇f(ȳ) > 0. From (5.7), there exists x̂ ∈ ri[x1,
x1+ȳ

2 ] such that
(x1 − ȳ)T∇f(x̂) > 0. Since x̂ ∈ ri[x1, x̃] with x̃ = x1 + t̃(x2 − x1), we have
(x1 − ȳ)T∇f(x̂) = 0, and this is a contradiction.

5.6 The Generalized Charnes–Cooper Transformation

As we have remarked several times, it is often difficult to test the pseudocon-
vexity of a function as well as the pseudomonotonicity of a map.
In this section we shall introduce a nonlinear variable transformation, a gener-
alized Charnes–Cooper transformation. We shall see that this transformation
preserves the pseudomonotonicity of the gradient map of a differentiable func-
tion f , or, equivalently, the pseudoconvexity of f . This property will be utilized
in the next chapter in order to obtain pseudoconvexity results for particular
classes of functions.
Consider the following transformation

y =
Ax

bT x + b0
(5.16)

defined on the set Γ = {x ∈ �n : bT x + b0 > 0}, where A is a nonsingular
matrix of order n, b ∈ �n and b0 �= 0.
We refer to (5.16) as the generalized Charnes–Cooper transformation since,
when A = I, it reduces to the variable transformation originally suggested by
Charnes A. and Cooper W. W. in [64] (see also Sect. 7.4).

Theorem 5.6.1. The inverse of the transformation (5.16) is given by

x =
b0A

−1y

1 − bT A−1y
(5.17)
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defined on the set Γ ∗ = {y ∈ �n : b0
1−bT A−1y > 0}.

Proof. From (5.16), we have A−1y = x
bT x+b0

, bT A−1y = bT x
bT x+b0

= 1− b0
bT x+b0

,

so that 1
bT x+b0

= 1−bT A−1y
b0

.
The thesis is achieved, taking into account that bT x + b0 > 0 implies that

b0
1−bT A−1y > 0 and that x = (bT x + b0)A−1y.

Let f be a differentiable function defined on an open convex set S ⊆ �n and
consider the function ψ(y) obtained by applying the generalized Charnes–
Cooper transformation to f(x), hereby, assuming that S ⊆ Γ .
The following theorem, whose proof can be found in [49], shows that the gen-
eralized Charnes–Cooper transformation preserves the pseudomonotonicity of
the gradient of a function.

Theorem 5.6.2. Let f be a differentiable function defined on an open con-
vex set S ⊆ Γ . Then, ∇f(x) is pseudomonotone if and only if ∇ψ(y) is
pseudomonotone.

Taking into account that a function is pseudoconvex if and only if its gradient
map is pseudomonotone, we have the following result.

Corollary 5.6.1. The generalized Charnes–Cooper transformation (5.16) pre-
serves pseudoconvexity of an arbitrary differentiable function f , i.e., f(x) is
pseudoconvex if and only if ψ(y) is pseudoconvex.

Unfortunately, both the generalized Charnes–Cooper transformation and
the classic Charnes–Cooper transformation do not preserve, in general, the
pseudomonotonicity of a map, as is shown in the following example.

Example 5.6.1. The map F (x) = x3, x ∈ � is pseudomonotone (see (iii) of
Theorem 5.3.1). Consider the transformation y = − x

x+1 (x > −1). We have
x = − y

y+1 (y > −1). Then F (x(y)) = (− y
y+1)3 is not pseudomonotone for

y > −1. To see this, let y1 = − 1
2 , y2 = 1. Then (y2 − y1)F (x(y1)) = 3

2 > 0,
but (y2 − y1)F (x(y2)) = − 3

16 < 0.

The following results establish conditions under which the Charnes–Cooper
transformation (A = I) preserves the pseudomonotonicity of a map.

Theorem 5.6.3. If the map F (y) is homogeneous of degree one and pseu-
domonotone on a cone C ⊆ �n, then the transformed map Φ(x) = F ( x

bT x+b0
)

is pseudomonotone on C̄ = C ∩ {x ∈ �n : bT x + b0 > 0}.
Proof. We must prove that if x, z ∈ C̄ are such that (z − x)T Φ(x) > 0, then
(z − x)T Φ(z) > 0.
We have (z − x)T Φ(x) = (z − x)T F ( x

bT x+b0
) = 1

bT x+b0
(z − x)T F (x) > 0, i.e.,

(z − x)T F (x) > 0. Since z, x ∈ C, taking into account the pseudomonotonic-
ity and the homogeneity of F , we have (z − x)T F (z) > 0, which implies that
(z − x)T F ( z

bT z+b0
) > 0.
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Corollary 5.6.2. If My is a pseudomonotone map on a cone C ⊆ �n, then
the map Mx

bT x+b0
is pseudomonotone on C̄ = C ∩ {x ∈ �n : bT x + b0 > 0}.

Remark 5.6.1. Theorem 5.6.3 cannot be extended to the generalized Charnes–
Cooper transformation when A �= I. Consider for instance the map Φ(y) =

My, where M =
[

0 2
−1 0

]
, which is pseudomonotone on the interior of �2

+. By

applying the generalized Charnes–Cooper transformation y = Ax
bT x+b0

, A =[
3 0
0 1

]
, b =

(
1
1

)
, b0 = 1, we obtain the map Φ(x) = M Ax

bT x+b0
which is

not pseudomonotone on int�2
+ since for zT = (1, 2), xT = (1

3 , 1) we have
(z − x)T M Ax

bT x+b0
= 1

7 > 0, while (z − x)T M Az
bT z+b0

= − 1
12 < 0.

Finally, we shall present conditions under which the generalized Charnes–
Cooper transformation taken as a map, not as a variable transformation,
is pseudomonotone. With this aim in mind, consider, firstly, the following
theorem.

Theorem 5.6.4. Let G : �n → �n, g : �n → �, and consider the map
F (x) = G(x)

g(x) defined on H = {x ∈ �n : g(x) > 0}. If G is pseudomonotone
on S ⊆ �n, then F is pseudomonotone on S̄ = S ∩ H.

Proof. We must prove that if x, z ∈ S̄ are such that (z − x)T F (x) > 0,
then (z − x)T F (z) > 0. We have (z − x)T F (x) = (z − x)T G(x)

g(x) > 0, i.e.,
(z−x)T G(x) > 0. The pseudomonotonicity of G implies that (z−x)T G(z) > 0,
i.e., (z − x)T G(z)

g(z) = (z − x)T F (z) > 0.

Corollary 5.6.3. If the affine map Ax is pseudomonotone on S ⊆ �n, then
the map y = Ax

bT x+b0
is pseudomonotone on S̄ = S∩{x ∈ �n : bT x+b0 > 0}.

The following corollary gives a sufficient condition for the pseudomonotonicity
of the generalized Charnes–Cooper transformation.

Corollary 5.6.4. The map y = Ax
bT x+b0

is pseudomonotone on the half-space
Γ = {x ∈ �n : bT x + b0 > 0} if the matrix A is positive semidefinite.

Corollary 5.6.4 shows that the classic Charnes–Cooper transformation (A = I)
is a pseudomonotone map.
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6

Generalized Convexity of Quadratic Functions

6.1 Introduction

Generalized convexity of quadratic functions has been widely studied; the
main historical references are Martos [209, 210, 211], Ferland [108], Cottle
and Ferland [73], Schaible [236, 243, 242, 248].
In this Chapter we shall put together some results related to generalized
convex quadratic functions. After noting that quasiconvexity can differ from
convexity only on a proper subset S of �n and that quasiconvexity reduces to
pseudoconvexity on an open set, in Sect. 6.3 we shall characterize the maximal
domains of quasiconvexity and pseudoconvexity of a quadratic function in the
general form suggested by Schaible in [251]. All the results that we are going
to develop are obtained by means of a different approach based on the second
order characterization of pseudoconvexity given in Corollary 3.4.1 and on the
properties established in Sect. 6.2.
The results will be specified in Sect. 6.4 in order to obtain the criteria estab-
lished by Martos [209, 210, 211] related to generalized convexity over the
non-negative orthant �n

+.

6.2 Preliminary Results

Since the symmetric matrix Q associated with a quasiconvex (not convex)
quadratic form has one and only one negative eigenvalue (see Theorem 3.4.1),
in this section we shall establish, for these matrices, some properties which
will play a fundamental role in characterizing the generalized convexity of a
quadratic function.
To this end we shall introduce the following notations:

• λ1, ..., λn are the eigenvalues of the n × n symmetric matrix Q;
• {v1, ..., vn} is an orthonormal basis of eigenvectors associated with λ1, . . . ,

λn. In order to define each of the eigenvectors uniquely, we shall assume
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that the first component of any eigenvector is positive (this can be obtained
by multiplying it by (−1) if necessary).

• kerQ is the kernel of Q, i.e., kerQ = {x ∈ �n : Qx = 0};
• rankQ is the rank of Q, i.e., the maximum number of linearly independent

columns (or rows) of Q;
• ν−(Q) is the number of the negative eigenvalues of Q (according to their

multiplicity).

Regarding the number of the negative eigenvalues of Q we have the following
useful lemma.

Lemma 6.2.1. Let Q be an n×n symmetric matrix and assume the existence
of two vectors u, w such that

uT Qu < 0, wT Qw < 0, uT Qw = 0.

Then, Q has at least two negative eigenvalues.

Proof. Let u =
n∑

i=1

αiv
i, w =

n∑
i=1

βiv
i, αi, βi ∈ �, i = 1, ..., n. We have

uT Qu =
n∑

i=1

α2
i λi, wT Qw =

n∑
i=1

β2
i λi, uT Qw =

n∑
i=1

αiβiλi.

The assumptions imply that
n∑

i=1

α2
i λi < 0 and

n∑
i=1

β2
i λi < 0, so that at least

one eigenvalue is negative. Without loss of generality assume λ1 < 0. If α1 = 0
or β1 = 0, then obviously we have a second negative eigenvalue. If α1β1 �= 0,
we have

n∑
i=1

(β1αi − α1βi)2λi = β2
1

n∑
i=1

α2
i λi + α2

1

n∑
i=1

β2
i λi − 2α1β1

n∑
i=1

αiβiλi =

= β2
1

n∑
i=1

α2
i λi + α2

1

n∑
i=1

β2
i λi.

Consequently,
n∑

i=1

(β1αi − α1βi)2λi < 0 so that a second negative eigenvalue

exists and the thesis is achieved.

6.2.1 Some Properties of a Quadratic form Associated with a
Symmetric Matrix Having One Simple Negative Eigenvalue

Now we shall establish some fundamental properties which will be used in
the next sections in characterizing the quasiconvexity and pseudoconvexity of
quadratic functions.



6.2 Preliminary Results 117

From now on we shall assume λ1 < 0, λi > 0, i = 2, .., p, and λi = 0,
i = p + 1, .., n.
The following lemma holds.

Lemma 6.2.2. Let Q be an n× n symmetric matrix and assume ν−(Q) = 1.
Then, the following conditions hold:
(i) If u ∈ �n is such that uT v1 = 0, then either u ∈ kerQ or uT Qu > 0;
(ii) u ∈ kerQ if and only if uT Qu = 0 and uT v1 = 0.

Proof. (i) Let u =
n∑

i=1

αiv
i. We have 0 = uT v1 = α1, so that u =

n∑
i=2

αiv
i.

If u �∈ kerQ, there exists i ∈ {2, .., p} such that αi �= 0. It follows that
uT Qu =

∑p
i=2(αi)2λi > 0.

(ii) If u ∈ kerQ, obviously we have uT Qu = 0 and uT v1 = 0. The converse
statement follows directly from (i).

Now we shall introduce the following opposite cones associated with the
matrix Q:

T = {x : xT Qx ≤ 0, xT v1 ≥ 0}, −T = {x : xT Qx ≤ 0, xT v1 ≤ 0}

We shall see in the next section that cones T and −T will play a fundamental
role in characterizing the maximal domains of the quasiconvexity and pseu-
doconvexity of a quadratic function.
The following theorems hold, where ∂T denotes the boundary of T . Note that
since T and −T are opposite cones, the properties of −T can be easily derived
from the ones which will be established for T .

Theorem 6.2.1. Let Q be an n×n symmetric matrix and assume ν−(Q) = 1.
Then, the following conditions hold:
(i) kerQ = T ∩ (−T );
(ii) T is a pointed cone if and only if kerQ = {0}.
Proof. (i) From (ii) of Lemma 6.2.2 we have kerQ ⊆ T ∩(−T ). If x ∈ T ∩(−T )
we necessarily have xT Qx ≤ 0, xT v1 = 0; consequently, (i) of Lemma 6.2.2
implies that x ∈ kerQ.
(ii) Since T is pointed if and only if T ∩ (−T ) = {0}, the thesis follows
from (i).

Theorem 6.2.2. Let Q be an n×n symmetric matrix and assume ν−(Q) = 1.
Then, the following conditions hold:
(i) x0 ∈ intT if and only if xT

0 Qx0 < 0 and xT
0 v1 > 0;

(ii) x0 ∈ ∂T \kerQ if and only if xT
0 Qx0 = 0 and xT

0 v1 > 0;
(iii) intT ∩ int(−T ) = ∅;
(iv) T ∪ (−T ) = {x ∈ �n : xT Qx ≤ 0};
(v) int(T ∪ (−T )) = intT ∪ int(−T ).



118 6 Generalized Convexity of Quadratic Functions

Proof. (i) This is obvious.
(ii) This follows by noting that xT

0 Qx0 = 0 if and only if x0 ∈ ∂T ∪ ∂(−T )
and that x0 �∈ kerQ if and only if xT

0 v1 �= 0.
(iii) It follows from (i) and from its analogous result for cone −T .
(iv) This follows directly from the definitions of T and −T .
(v) Since int(T ∪ (−T )) = {x ∈ �n : xT Qx < 0} ⊇ intT ∪ int(−T ), we
must prove that intT ∪ int(−T ) ⊇ {x ∈ �n : xT Qx < 0}. Let x such that
xT Qx < 0. From Lemma 6.2.2 we necessarily have xT v1 �= 0 and the thesis
follows.

The following theorem points out the convexity of cones T and −T .

Theorem 6.2.3. Let Q be an n × n symmetric matrix. If ν−(Q) = 1, then
T is a closed convex cone.

Proof. Let P be the orthonormal matrix which has the eigenvectors v1, ..., vn

as columns, and let H be the diagonal matrix with the first p diagonal entries
given by (−λ1)−

1
2 , (λ2)−

1
2 ,..., (λp)−

1
2 , and all the others equal to 1. It is well

known that the linear transformation x = PHy reduces the quadratic form

xT Qx to the canonical form
p∑

i=2

y2
i − y2

1 =‖ ȳ ‖2 − y2
1 , where ȳ = (y2, .., yp)T .

Let C = {(y1, ȳ) : ‖ ȳ ‖2 − y2
1 ≤ 0, y1 ≥ 0} = {(y1, ȳ) : ‖ ȳ ‖≤ y1, y1 ≥ 0}.

It is easy to verify that C is a closed cone; we shall prove that C is convex.
Let z = (z1, z̄) ∈ C, w = (w1, w̄) ∈ C. Since ‖ z̄ ‖ ≤ z1, ‖ w̄ ‖ ≤w1, we have
‖ tz̄ + (1 − t)w̄ ‖ ≤ t ‖ z̄ ‖ +(1 − t) ‖ w̄ ‖ ≤ tz1 + (1 − t)w1 for all t ∈ [0, 1].
Consequently, tz + (1 − t)w ∈ C for all t ∈ [0, 1] so that C is convex.
Taking into account that xT v1 = yT HT PT v1 and that v1 = Pe1, where e1 is
the unit vector e1 = (1, 0, .., 0)T , we have xT v1 = yT He1 = (−λ1)−

1
2 yT e1 =

(−λ1)−
1
2 y1. Consequently, y1 ≥ 0 if and only if xT v1 ≥ 0 and this implies

PH(C) = T . The thesis follows from the linearity of the transfor-
mation PH .

Remark 6.2.1. Given a convex set C and a linear map A, one has A(riC) =
ri(AC), but, in general, the image of a closed convex set is not closed. When
C is a closed convex cone such that C∩(−C) = kerA, then A(clC) = cl(AC).
Consequently, from (i) of Theorem 6.2.1 and from Theorem 6.2.3, we have the
following corollary.

Corollary 6.2.1. Let Q be an n×n symmetric matrix and assume ν−(Q) = 1.
Then, the following conditions hold:
(i) Q(intT ) = ri(Q(T )), Q(int(−T )) = ri(Q(−T ));
(ii) Q(T ) and Q(−T ) are closed convex cones.

Consider now the set

Z = {z ∈ �n\{0} : ∃w ∈ intT such that zT w = 0}
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and denote with T + and T− the positive polar and the negative polar of T ,
respectively. The following theorem characterizes Z in terms of the two polar
cones.

Theorem 6.2.4. Let Q be an n × n symmetric matrix. If ν−(Q) = 1, then
Z = (T + ∪ T−)c.

Proof. Since w ∈ intT if and only if either zT w > 0 for all z ∈ T + or zT w < 0
for all z ∈ T−, we necessarily have Z ∩T + = ∅ and Z ∩T− = ∅. Consequently,
Z ⊆ (T + ∪ T−)c. Consider now an element z ∈ (T + ∪ T−)c and assume by
contradiction that zT w �= 0, ∀ w ∈ intT . The convexity of intT implies that
zT w > 0 ∀ w ∈ intT or zT w < 0, ∀ w ∈ intT , i.e., z ∈ (T + ∪ T−), and this is
a contradiction. It follows that (T + ∪T−)c ⊆ Z and the thesis is achieved.

The following lemma characterizes the image of the cones T and −T under the
linear transformation z = Qx. The obtained results will play a fundamental
role in characterizing the maximal domains of quasiconvexity of a quadratic
function.

Lemma 6.2.3. Let Q be an n× n symmetric matrix and assume ν−(Q) = 1.
Then: Q(intT ) = riT−, Q(T ) = T−, Q(int(−T )) = riT +, Q(−T ) = T +,
Q((T ∪ (−T ))c) = Z ∩ (kerQ)⊥.

Proof. First of all we shall prove that Q(intT ) ⊆ riT−, Q(int(−T )) ⊆ riT +,
Q((T ∪ (−T ))c) ⊆ (riT− ∪ riT +)c.
Let x0 ∈ intT . Since xT

0 Qx0 < 0, Qx0 /∈ T+ and, taking into account
Lemma 6.2.1, Qx0 /∈ Z. Consequently, Qx0 ∈ T−and, from Corollary 6.2.1,
Q(intT ) ⊆ riT−. Similarly we have Q(int(−T )) ⊆ riT +.
Now we shall prove that Q((T ∪ (−T ))c) ∩ riT− = ∅.
Let z0 ∈ (T ∪ (−T ))c, i.e., zT

0 Qz0 > 0, and let x0 ∈ intT , so that Qx0 ∈ riT−.
If Qz0 ∈ riT−, then Q([z0, x0]) ⊆ riT− because of the convexity of riT−. On
the other hand, x0 ∈ intT , z0 /∈ T imply the existence of x̄ ∈ [z0, x0]∩ ∂T for
which Qx̄ ∈ ∂T−. Since Qx0 ∈ riT−, we get a contradiction.
In a similar way it can be proven that Q((T ∪ (−T ))c) ∩ riT + = ∅, so that
Q((T ∪ (−T ))c) ⊆ (riT− ∪ riT +)c.
Since kerQ = T ∪ (−T ) implies that T + ∩ T− ⊆ (kerQ)⊥ = ImQ = {w =
Qx, x ∈ �n}, from Corollary 6.2.1 the thesis is achieved.

6.3 Quadratic Functions

Consider the quadratic function

Q(x) =
1
2

xT Qx + qT x (6.1)

where Q is an n × n symmetric matrix, q ∈ �n and let
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Q0(x) =
1
2

xT Qx (6.2)

be the quadratic form associated with (6.1).
In this section we shall characterize quadratic functions which are generalized
convex.
The following theorem shows that quasiconvexity reduces to convexity if the
domain is the whole space �n.

Theorem 6.3.1. The quadratic function Q(x) is quasiconvex on �n if and
only if Q(x) is convex on �n.

Proof. Since convexity implies quasiconvexity, the converse statement remains
to be proven. By contradiction, assume that Q(x) is not convex. Then, Q has
at least one negative eigenvalue λ1. Let w be a normalized eigenvector asso-
ciated with λ1 and let ϕ(t) = Q(tw) = 1

2 λ1t
2 + t qT w, t ∈ �. The restriction

ϕ(t) has a strict local maximum point at t̄ = − qT w
λ1

and consequently, ϕ(t),
and in turn Q(x), is not quasiconvex which contradicts the assumption.

Theorem 6.3.1 implies that quasiconvexity can differ from convexity only on
a proper subset S of �n. From now on, following Martos [211], we shall insert
the word “merely” to distinguish quadratic quasiconvex (pseudoconvex, etc.)
functions that are not convex.

Remark 6.3.1. From Theorem 3.4.1, a necessary condition for a quadratic
function to be merely quasiconvex is that the matrix Q has one simple negative
eigenvalue, i.e., ν−(Q) = 1.

Remark 6.3.2. Note that for quadratic functions, quasiconvexity reduces to
semistrict quasiconvexity since Q(x1) > Q(x2), x1, x2 ∈ S, implies that the
restriction of Q(x) on the line through x1 and x2 is a decreasing or a strictly
convex quadratic function.

The following theorem shows that quasiconvexity reduces to pseudoconvexity
on every open convex set of �n.

Theorem 6.3.2. The quadratic function Q(x) is quasiconvex on an open
convex set S ⊆ �n if and only if it is pseudoconvex on S.

Proof. Since pseudoconvexity implies quasiconvexity, the converse statement
remains to be proven. The thesis follows from Theorem 6.3.1 if Q(x) is con-
vex, otherwise Q has one simple negative eigenvalue λ1. Let w be a normalized
eigenvector associated with λ1. From Theorem 3.2.6, it is sufficient to prove
that the gradient of Q(x) cannot vanish. By contradiction, assume the exis-
tence of x0 ∈ S such that ∇Q(x0) = Qx0 + q = 0, and consider the restriction
ϕ(t) = Q(x0 + tw). Since ϕ(t) = 1

2 λ1t
2 + Q(x0), this restriction has a strict

local maximum point at t = 0, so that ϕ(t) and in turn Q(x), is not quasi-
convex, which contradicts the assumption.
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quasiconvexity

convexity

semistrict
quasiconvexity

pseudoconvexity

Fig. 6.1. Relationships between various types of convexity for quadratic functions

For quadratic functions on open convex sets, the diagram in Sect. 3.2.3 is sim-
plified as is shown in Fig. 6.1.
Note that Theorem 6.3.2 implies:

• A quadratic function which is merely pseudoconvex on an open convex set
S has no critical points;

• A quadratic function which is merely quasiconvex on a convex set S is
merely pseudoconvex at least on intS;

• A quadratic function which is merely pseudoconvex on an open convex set
S is merely quasiconvex (not necessarily pseudoconvex) on the closure of
S (see Theorem 2.2.12).

Remark 6.3.3. It is important to point out that any characterization of pseu-
doconvexity of a quadratic function Q(x) on an open convex set S allows us to
simultaneously obtain criteria for the quasiconvexity of Q(x) on the closure of
S. This fact simplifies the analysis in the sense that, in order to characterize
the quasiconvexity of Q(x) on S, it is sufficient to study the pseudoconvexity
on the interior of S.

The following corollary points out that the second order characterization of
pseudoconvexity (see Corollary 3.4.1) becomes easy to handle for quadratic
functions.

Corollary 6.3.1.
(i) The quadratic function Q(x) = 1

2 xT Qx+ qT x is pseudoconvex on an open
convex set S if and only if (6.3) holds

x ∈ S, w ∈ �n, wT (Qx + q) = 0 ⇒ wT Qw ≥ 0. (6.3)

(ii) The quadratic form Q0(x) = 1
2 xT Qx is pseudoconvex on an open convex

set S if and only if (6.4) holds

x ∈ S, w ∈ �n, wT Qx = 0 ⇒ wT Qw ≥ 0. (6.4)
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Now we are able to find the maximal domains of quasiconvexity (pseudocon-
vexity) of a quadratic form and of a quadratic function.

Theorem 6.3.3. Let Q be an n × n symmetric matrix. If ν−(Q) = 1, then
the quadratic form Q0(x) = 1

2 xT Qx is merely quasiconvex on the closed
convex cones T,−T . Furthermore, T and −T are the maximal domains of
quasiconvexity of Q0(x).

Proof. Taking into account Remark 6.3.3, we shall prove that Q0(x) is pseu-
doconvex on intT . If not, from (ii) of Corollary 6.3.1, there exist x0 ∈ intT ,
w ∈ �n such that wT Qx0 = 0 and wT Qw < 0. Since xT

0 Qx0 < 0, from
Lemma 6.2.1 Q has at least two negative eigenvalues, which contradicts the
assumptions. Similarly, we obtain that Q0(x) is pseudoconvex on int(−T ).
By means of Theorem 2.2.12, Q0(x) is quasiconvex on T and on −T .
The maximality of the domains remains to be proven. To see this, assume that
Q0(x) is pseudoconvex on an open set S such that S ∩ (T ∪ (−T )) �= ∅ and
let y ∈ S, y /∈ T ∪ (−T ). Then yT Qy > 0 and, from Lemma 6.2.3, Qy ∈ Z.
Consequently, there exists x0 ∈ intT such that xT

0 Qy = 0, xT
0 Qx0 < 0, which

contradicts (6.4). The thesis is achieved.

Taking into account Remark 6.3.1, Theorem 6.3.3 may be re-stated as follows.

Theorem 6.3.4. A quadratic form Q0(x) is merely quasiconvex on a convex
set S, with intS �= ∅, if and only if
(i) ν−(Q) = 1;
(ii) S ⊆ T , or S ⊆ −T .

We shall prove that the maximal domains of quasiconvexity of a quadratic
function are obtained by the ones (±T ) associated with the quadratic form
by means of a suitable translation. To this end, firstly we shall state the
following theorem which gives a necessary condition for a quadratic function
to be quasiconvex and which points out that, unlike the convex case, the sum
of a quasiconvex function with a linear function is not, in general, quasiconvex.

Theorem 6.3.5. Assume that the quadratic function Q(x) = 1
2 xT Qx + qT x

is merely quasiconvex on an open set S ⊂ �n. Then, rankQ = rank[Q, q].

Proof. The thesis is trivial if q = 0. Consider ImQ = {Qx, x ∈ �n} and
assume by contradiction that q /∈ ImQ. Then, for every fixed x ∈ �n,
Qx + q /∈ ImQ and, in particular, Qx + q /∈ T + ∪ T− ⊆ ImQ. From
Lemma 6.2.3, we have Qx + q ∈ Z so that, from Theorem 6.2.4, there
exists w ∈ intT such that wT (Qx + q) = 0. Let x0 ∈ S and consider the
restriction ϕ(t) = Q(x0 + tw). By means of simple calculations we have
ϕ′(0) = wT (Qx0 + q) = 0, ϕ′′(0) = wT Qw < 0, so that t = 0 is a strict
local maximum for ϕ(t) and this implies that Q(x) is not quasiconvex on S,
which contradicts the assumption. It follows that q ∈ ImQ or, equivalently,
rankQ = rank[Q, q].
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Remark 6.3.4. Note that w ∈ ImQ if and only if w ∈ (kerQ)⊥. In particular,
rankQ = rank[Q, q] implies that q ∈ (kerQ)⊥.

Theorem 6.3.6. Consider the quadratic function Q(x) = 1
2 xT Qx+qT x, and

assume the existence of s ∈ �n such that Qs + q = 0.
(i) Q(x) is merely quasiconvex on the closed convex cones s + T, s− T if and
only if Q0(x) = 1

2 xT Qx is merely quasiconvex on T , −T , respectively.
(ii) If ν−(Q) = 1, then s + T and s − T are the maximal domains of
quasiconvexity of Q(x) and we have

s + T = {x ∈ �n : (x − s)T Q(x − s) ≤ 0, (v1)T (x − s) ≥ 0} (6.5)

s − T = {x ∈ �n : (x − s)T Q(x − s) ≤ 0, (v1)T (x − s) ≤ 0} (6.6)

Proof. (i) From (i) of Corollary 6.3.1, Q(x) is pseudoconvex on s ± intT if
and only if (6.3) holds with S = s ± intT . Since x ∈ s ± intT if and only if
x − s = u ∈ ±intT , we have Qx + q = Q(x − s) = Qu so that (6.3) is equiva-
lent to (6.4) with S = ±intT . Consequently, Q(x) is merely pseudoconvex on
s± intT if and only if Q0(x) is merely pseudoconvex on ±intT and the thesis
follows.
(ii) Theorem 6.3.3 implies that ±T are the maximal domains of quasiconvex-
ity of Q0(x) so that, taking into account (i), s ± T are the maximal domains
of quasiconvexity of Q(x).
Finally, x ∈ s ± T if and only if x − s ∈ ±T , so that (6.5), (6.6) hold.
The proof is complete.

Remark 6.3.5. If Q is a singular matrix, then a stationary point of Q(x) is not
unique. However, the characterization of the maximal domains of quasicon-
vexity is independent of the particular stationary point used. To see this, let
s1, s2 be two distinct stationary points, i.e., Qs1 + q = Qs2 + q = 0. We have
s1 = s2 + u, u ∈ kerQ ⊂ T ∪ (−T ). It follows that s1 ±T = s2 + u±T =
s2 ±T .

The previous results allow us to characterize the merely quasiconvexity of a
quadratic function.

Theorem 6.3.7. The quadratic function Q(x) = 1
2 xT Qx + qT x is merely

quasiconvex on a convex set S with nonempty interior if and only if the fol-
lowing conditions hold:
(i) ν−(Q) = 1;
(ii) There exists s ∈ �n such that Qs + q = 0;
(iii) S ⊆ s ± T .

Proof. Assume that Q(x) is merely quasiconvex on S. We necessarily have
ν−(Q) = 1 and, from Theorem 6.3.5, (ii) follows; (iii) is a direct consequence
of Theorem 6.3.6.
Conversely, the thesis follows from Theorem 6.3.3 and from Theorem 6.3.6.
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Corollary 6.3.2. If Q(x) = 1
2 xT Qx+qT x is merely quasiconvex on a convex

set S with nonempty interior, then Q0(x) is merely quasiconvex on S − s,
where s is such that Qs + q = 0.

Proof. The thesis follows from Theorem 6.3.7, taking into account Theorem
6.3.3.

From Theorem 6.3.2, all the characterizations obtained so far for a quadratic
quasiconvex function hold for a quadratic pseudoconvex function if the convex
domain S is contained in s ± intT .
The following theorem characterizes the strict pseudoconvexity of a quadratic
function.

Theorem 6.3.8. The quadratic function Q(x) = 1
2 xT Qx + qT x is strictly

pseudoconvex on a convex set S ⊆ s ± intT with nonempty interior if and
only if the following conditions hold:
(i) Q(x) is pseudoconvex;
(ii) Q is nonsingular.

Proof. Assume that Q(x) is strictly pseudoconvex. Since Q(x) is pseudoconvex,
too, we must prove that Q is nonsingular. If not, let x0 ∈ S and u �= 0 such that
Qu = 0. Taking into account that q = −Qs, we have ϕ(t) = Q(x0+tu) = ϕ(0)
for all t and this contradicts the strict pseudoconvexity of ϕ and, in turn, the
strictly pseudoconvexity of Q(x).
Assume now that (i) and (ii) hold. If Q(x) is not strictly pseudoconvex,
then there exist x1, x2 ∈ S, x1 �= x2, such that Q(x1) = Q(x2) and
∇Q(x1)T (x2 − x1) = (Qx1 + q)T (x2 − x1) = 0. Set u = x2 − x1 and consider
the restriction ϕ(t) = Q(x1 + tu). We have ϕ′(t) = uT Qu t + (x1 − s)T Qu.
Since ϕ is pseudoconvex and ϕ′(0) = 0, t = 0 is a minimum point and thus
we necessarily have uT Qu = 0. This last equality implies that u ∈ ±T so that
Qu ∈ T+ or Qu ∈ T−. The nonsingularity of Q implies that Qu �= 0 and,
since x1−s ∈ ±intT , we have (x1−s)T Qu �= 0, and this is a contradiction.

The following examples clarify the results given in Theorem 6.3.4 and in
Theorem 6.3.7.

Example 6.3.1. Consider the quadratic form Q0(x) = 2x2
1 − x2

2 − x1x2.

We have Q =
[

4 −1
−1 −2

]
, λ1 = 1−√

10 < 0, λ2 = 1 +
√

10 > 0, v1 = v
‖v‖ with

v = (1, 3 +
√

10)T .
Theorem 6.3.4 implies that Q0(x) is quasiconvex on the maximal domains T ,
−T . It is easy to verify that T = {x = α(1, 1)T + β(−1, 2)T , α, β ≥ 0}, so
that the positive and negative polars of T are respectively,
T + = {x = α1(−1, 1)T + β1(2, 1)T , α1, β1 ≥ 0},
T− = {x = α1(−1, 1)T + β1(2, 1)T , α1, β1 ≤ 0}.
Now we shall verify that the image of T under the linear transformation Q is
T−.
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In fact, Q(T ) = {y = αQ(1, 1)T + βQ(−1, 2)T , α, β ≥ 0} = {y =
−3α(−1, 1)T −3β(2, 1)T , α, β ≥ 0} = {y = α1(−1, 1)T +β1(2, 1)T , α1, β1 ≤
0} = T−.
By means of similar calculations we can verify that Q(−T ) = T +.
The cones T , −T and the supporting hyperplane (v1)T x = 0 are drawn in
Fig. 6.2.

T

-T

0

v1

(v1)Tx=0

Fig. 6.2. Maximal cones

Let us note that the nonsingularity of Q implies that the quadratic function
Q(x) = Q0(x)+ qT x is quasiconvex for every q ∈ �n on the maximal domains
s + T and s − T , where s = −Q−1q.

Example 6.3.2. Consider the quadratic function Q(x) = −x2
1 − x2

2 − 2x1x2 +

2x1+2x2. We have Q =
[−2 −2
−2 −2

]
, q = (2, 2)T , λ1 = −4 < 0, λ2 = 0, v1 = v

‖v‖

with v = (1, 1)T .
Note that Q(x) is a concave function; nevertheless, since rank Q = rank [Q, q],
Q(x) is also merely quasiconvex on s+T and on s−T , where s is any vector of
the kind s = (s1,−s1+1)T , s1 ∈ �. Taking into account that xT Qx ≤ 0, ∀x ∈
�2, we have s+T = {x ∈ �2 : (v1)T (x−s) ≥ 0} = {x ∈ �2 : x1 +x2−1 ≥ 0}.
The following theorem characterizes the merely quasiconvexity of a quadratic
function over a half-space.

Theorem 6.3.9. The quadratic function Q(x) = 1
2xT Qx + qT x is merely

quasiconvex on the half-space H = {x ∈ �n : hT x + h0 ≥ 0} if and only if
(6.7) holds:

ν−(Q) = 1, kerQ = h⊥, ∃ β ∈ � : q = βh, h0 ≤ β
‖ h ‖4

hT Qh
. (6.7)

Proof. Assume that Q(x) is merely quasiconvex on H . From Theorem 6.3.7,
we have H ⊆ s+T ⊆ Γ = {x ∈ �n : (v1)T (x− s) ≥ 0}, or H ⊆ s−T ⊆ Γ1 =
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{x ∈ �n : (v1)T (x − s) ≤ 0}. Since H ⊆ Γ or H ⊆ Γ1, ∂H and ∂Γ are nec-
essarily parallel hyperplanes so that h = kv1, k �= 0, i.e., h is an eigenvector
associated with the negative eigenvalue λ1. Obviously, k > 0 implies H ⊆ Γ ,
while k < 0 implies H ⊆ Γ1. We shall limit ourselves to considering the case
k > 0 since the other one is perfectly analogous.
Note that H ⊆ Γ if and only if h0 ≤ −hT s; when h0 = −hT s we have
H = s + T = Γ and T = {x ∈ �n : xT Qx ≤ 0, hT x ≥ 0}.
Since the quadratic form 1

2xT Qx is merely quasiconvex on T and on −T ,
by means of continuity, we have 1

2xT Qx ≤ 0, ∀ x ∈ �n and, because
ν−(Q) = 1, this implies that kerQ = h⊥ and ImQ = {kh, k ∈ �}. Since
rankQ = rank [Q, q], there exists β ∈ � such that q = βh. If β = 0,
we have s ∈ kerQ = h⊥ so that h0 ≤ −hT s = 0 and (6.7) holds. If
β �= 0, we can choose any s ∈ s0 + h⊥, where Qs0 = −q. In particular,
s = (s0 + h⊥) ∩ ImQ is an eigenvector of Q and thus Qs = λ1s. It follows
that h0 ≤ −hT s = −hT Qs

λ1
= hT βh

λ1
= β ‖h‖2

λ1
= β ‖h‖4

hT Qh .
Conversely, by choosing s = − β

λ1
h, it is easy to verify that (6.7) implies (i),

(ii), and (iii) of Theorem 6.3.7.

Corollary 6.3.3. The quadratic function Q(x) = 1
2xT Qx + qT x is merely

quasiconvex on the half-space H = {x ∈ �n : hT x + h0 ≥ 0} if and only if
Q = µhhT , q = βh, with µ < 0 and h0 ≤ β

µ .

6.4 Quadratic Functions of Non-negative Variables

By specifying the results given in the previous section, it is possible to establish
criteria for generalized convex quadratic functions on �n

+. These results were
obtained for the first time by Martos in [209, 210], by introducing of the
concept of positive subdefinite matrices.
Now we shall characterize the quasiconvexity of a quadratic form on the non-
negative orthant. The first result points out the relationships between the
non-negative orthant and maximal cone T .

Theorem 6.4.1. The quadratic form Q0(x) is merely quasiconvex on �n
+ if

and only if the following conditions hold:
(i) ν−(Q) = 1;
(ii) �n

+ ⊆ T .

Proof. From Theorem 6.3.4, Q0(x) is merely quasiconvex on �n
+ if and only

if (i) holds and either �n
+ ⊆ T or �n

+ ⊆ −T . This last inclusion cannot hold;
in fact (v1)T x ≤ 0, ∀x ∈ �n

+ implies that v1 ∈ �n
− and this is a contradiction

since the first non-zero component of v1 is positive. The thesis follows.

The following theorem characterizes a quadratic form on the non-negative
orthant in terms of the sign of the elements of matrix Q.
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Theorem 6.4.2. The quadratic form Q0(x) is merely quasiconvex on �n
+ if

and only if
(i) ν−(Q) = 1;
(ii) Q ≤ 0 1.

Proof. Assume that (i) and (ii) hold and let Γ be the subspace spanned by
the normalized eigenvectors associated with the non-negative eigenvalues of
Q; we have Γ = {x ∈ �n : (v1)T x = 0}. Since xT Qx ≥ 0 for all x ∈ Γ , and
xT Qx ≤ 0 for all x ∈ �n

+, Γ is a supporting hyperplane to �n
+ at the origin,

so that v1 ∈ �n
+. Consequently, the elements of �n

+ satisfy the inequalities
xT Qx ≤ 0, (v1)T x ≥ 0 so that �n

+ ⊆ T and the thesis follows from Theorem
6.4.1.
Assume now that Q0(x) is merely quasiconvex on �n

+.
From Theorem 6.4.1, (i) holds and furthermore �n

+ ⊆ T so that xT Qx ≤ 0
for all x ∈ �n

+; in particular (ei)T Qei = qii ≤ 0, i = 1, ..., n. Consider

now the submatrix of Q, Qij =
[

qii qij

qij qjj

]
and the restriction ϕ(xi, xj) =

1
2 (qiix

2
i + 2qijxixj + qjjx

2
j ).

Since ϕ(xi, xj) ≤ 0, ∀(xi, xj) ∈ �2
+, we have qij ≤ 0 when qiiqjj = 0. Consider

the case qii < 0, qjj < 0. The quasiconvexity of ϕ implies that Qij has at
most one negative eigenvalue, so that qiiqjj − q2

ij ≤ 0. If qiiqjj − q2
ij < 0, the

equation qiix
2
i +2qijxixj + qjjx

2
j = 0 has, for every fixed xj (or xi), two roots

which cannot be positive since ϕ(xi, xj) ≤ 0, ∀(xi, xj) ∈ �2
+; consequently,

qij ≤ 0.
If qiiqjj − q2

ij = 0, we have ϕ(xi, xj) = 1
2qii

(qiixi + qijxj)2. This function has
a line r of critical points which are global maximum points; since the quasi-
convexity of ϕ implies that r ∩ int�2

+ = ∅, we necessarily have qij ≤ 0.
It follows that qij ≤ 0, ∀i, j = 1, .., n, i.e., Q ≤ 0 and the proof is complete.

Theorem 6.4.3. Let Q(x) be merely quasiconvex on �n
+. Then, Q0(x) is

merely quasiconvex on �n
+.

Proof. From (ii) of Theorem 6.3.6, either �n
+ ⊆ s + T or �n

+ ⊆ s − T . Let
v1

j > 0 be the first non-zero component of v1; since tej ∈ �n
+, ∀t > 0,

we have (v1)T (tej − s) = tv1
j − (v1)T s > 0, for a large enough t. It fol-

lows that �n
+ ⊆ s + T . Consequently, we must prove that �n

+ ⊆ T , i.e.,
xT Qx ≤ 0, (v1)T x ≥ 0, ∀x ∈ �n

+. Assume the existence of x̄ such that
x̄T Qx̄ > 0 ((v1)T x̄ < 0). Since tx̄ ∈ �n

+, ∀t > 0, for a large enough t we have
(tx̄ − s)T Q(tx̄ − s) > 0 ((v1)T (tx̄ − s) < 0) and this is a contradiction.
Consequently, �n

+ ⊆ T , so that Q0 is merely quasiconvex on �n
+.

The following example shows that the converse statement of Theorem 6.4.3
does not hold; we need some additional assumptions on the vector q which
will be given in Theorem 6.4.4.
1 Q ≤ 0 means qij ≤ 0, ∀i, j.
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Example 6.4.1. Consider the quadratic function Q(x1, x2) = −x1x2 +x1−x2.

We have Q = 1
2

[
0 −1
−1 0

]
, q =

(
1
−1

)
.

Q0(x1, x2) = −x1x2 is merely quasiconvex on �2
+ according to Theorem 6.4.2.

On the other hand, Q(x1, x2) is not quasiconvex on �2
+, since its restriction

on the line x2 = x1 + 2 has a strict local maximum point at (1, 3).

Theorem 6.4.4. The quadratic function Q(x) = 1
2 xT Qx + qT x is merely

quasiconvex on �n
+ if and only if the following conditions hold:

(i) ν−(Q) = 1;
(ii) Q ≤ 0;
(iii) There exists s ∈ �n such that Qs + q = 0, qT s ≥ 0;
(iv) q ≤ 0.

Proof. Assume that (i–iv) hold. From Theorem 6.3.6 we must prove that
�n

+ ⊆ s + T = {x ∈ �n : (x − s)T Q(x − s) ≤ 0, (v1)T (x − s) ≥ 0}.
We have (x − s)T Q(x − s) = xT Qx + 2qT x − qT s, so that (ii), (iii) and
(iv) imply that (x − s)T Q(x − s) ≤ 0, ∀ x ∈ �n

+. From Theorem 6.4.2
and Theorem 6.4.1 we have �n

+ ⊆ T and this implies that v1 ∈ �n
+.

On the other hand, sT v1 = 1
λ1

sT Qv1 = − 1
λ1

qT v1 ≤ 0, and, consequently,
(v1)T (x − s) ≥ 0, ∀ x ∈ �n

+, so that �n
+ ⊆ T .

Assume now that Q(x) is merely quasiconvex on �n
+. From Theorem 6.3.7

we have ν−(Q) = 1, Qs + q = 0 for some s ∈ �n, and �n
+ ⊆ s +T , while

from Theorem 6.4.3 and from Theorem 6.4.2, we have Q ≤ 0 and �n
+ ⊆ T . It

remains to be proven that q ≤ 0 and qT s ≥ 0. The inclusion �n
+ ⊆ s+T implies

that 0 ∈ s+T , i.e., s ∈ −T . Consequently, sT Qs ≤ 0 and since qT s = −sT Qs,
we have qT s ≥ 0. Furthermore, from Lemma 6.2.3, Qs ∈ T+, i.e., q ∈ T−; it
follows that qT x ≤ 0, ∀ x ∈ T and, in particular, qT x ≤ 0, ∀ x ∈ �n

+ so that
q ≤ 0.
The proof is complete.

6.5 Pseudoconvexity on a Closed Set

The aim of this section is to characterize the maximal domains of pseudo-
convexity of a non-convex quadratic function. In particular, we are interested
in analyzing pseudoconvexity on the non-negative orthant �n

+ since many
extremum quadratic problems have a feasible region contained in �n

+ and not
just in int�n

+. Since �n
+ is a closed set, we shall refer to the notion of pseu-

doconvexity at a point given in Sect. 3.5.
Since a non-convex quadratic function is quasiconvex on a convex set S if
only if it is pseudoconvex on intS, we must further investigate the study of
the pseudoconvexity on the boundary of S, starting from the maximal domains
of quasiconvexity of a quadratic form.
Regarding this, the following lemma holds.
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Lemma 6.5.1. Consider the quadratic form Q0(x) = 1
2xT Qx, and assume

ν−(Q) = 1.
Then, Q0(x) is pseudoconvex at x0 ∈ ±T if and only if ∇Q0(x0) �= 0.

Proof. Since Q0(x) is merely pseudoconvex on ±intT (see Theorem 6.3.3 and
Theorem 6.3.2), we must investigate the boundary of cones T and −T . We
shall consider ∂T since the other case is analogous.
Q0(x) is pseudoconvex at x0 ∈ ∂T if and only if (6.8) holds:

x0 ∈ ∂T, x ∈ T, Q0(x) < Q0(x0) ⇒ (x − x0)T Qx0 < 0. (6.8)

Obviously, (6.8) implies that ∇Q0(x0) = Qx0 �= 0.
Conversely, let x0 ∈ ∂T ; we necessarily have Q0(x0) = 0, so that Q0(x) <
Q0(x0) = 0 implies that x ∈ intT . On the other hand, Qx0 �= 0 implies that
Qx0 ∈ T−\{0} so that xT Qx0 < 0, ∀x ∈ intT . Since (x−x0)T Qx0 = xT Qx0,
the thesis is achieved.

The following theorems, which are a direct consequence of Lemma 6.5.1, char-
acterize the maximal domains of pseudoconvexity of a non-convex quadratic
form.

Theorem 6.5.1. Consider the quadratic form Q0(x) and assume that
ν−(Q) = 1. Then the following properties hold:
(i) Q0(x) is merely pseudoconvex on the maximal domains T \kerQ,−T \kerQ;
(ii) Q0(x) is merely pseudoconvex on T \{0},−T \{0} if and only if Q is
non-singular.

Theorem 6.5.1 may be re-stated as follows.

Theorem 6.5.2. A quadratic form Q0(x) is merely pseudoconvex on a convex
set S with nonempty interior if and only if
(i) ν−(Q) = 1;
(ii) S ⊆ T \kerQ, or S ⊆ −T \kerQ.

Taking into account (i) of Theorem 6.2.1, the maximal domains T \kerQ and
−T \kerQ can be characterized by means of the inequalities (v1)T x > 0,
(v1)T x < 0, respectively. More exactly, we have the following theorem.

Theorem 6.5.3. Consider the quadratic form Q0(x) = 1
2 xT Qx and assume

ν−(Q) = 1. Then, the maximal domains of pseudoconvexity of Q0(x) are given
by

T \kerQ = {x ∈ �n : xT Qx ≤ 0, (v1)T x > 0}
−T \kerQ = {x ∈ �n : xT Qx ≤ 0, (v1)T x < 0}.

The relation between the pseudoconvexity of a quadratic function and the
pseudoconvexity of the corresponding quadratic form is specified in the
following theorem.
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Theorem 6.5.4. Consider the quadratic function Q(x) = 1
2 xT Qx + qT x,

and assume the existence of s ∈ �n such that Qs + q = 0. Then, Q(x) is
pseudoconvex on s ± T if and only if Q0(x) = 1

2 xT Qx is pseudoconvex on
±T .

Proof. Q(x) is pseudoconvex at x0 ∈ s + T if and only if

x ∈ s + T, Q(x) < Q(x0) ⇒ ∇Q(x0)T (x − x0) < 0. (6.9)

Set y0 = x0 − s ∈ T , y = x − s ∈ T . We have Q(x) = 1
2 (x − s)T

Q(x − s) − 1
2sT Qs = Q0(y) − 1

2sT Qs, Q(x0) = Q0(y0) − 1
2sT Qs. It follows

that Q(x) < Q(x0) if and only if Q0(y) < Q0(y0). Furthermore, ∇Q(x0) =
Qx0 + q = Q(x0 − s) = Qy0 = ∇Q0(y0), so that ∇Q(x0)T (x − x0) < 0 if and
only if ∇Q0(y0)T (y − y0) < 0. Consequently, (6.9) is equivalent to

y0 ∈ T, y ∈ T, Q0(y) < Q0(y0) ⇒ ∇Q0(y0)T (y − y0) < 0

i.e., the pseudoconvexity of Q(x) on s+T is equivalent to the pseudoconvexity
of Q0(y) on T .
Analogously, the pseudoconvexity of Q(x) on s− T is equivalent to the pseu-
doconvexity of Q0(y) on −T .

The following lemma extends Lemma 6.5.1 to a quadratic function.

Lemma 6.5.2. Consider the quadratic function Q(x) = 1
2xT Qx + qT x with

ν−(Q) = 1, and assume the existence of s ∈ �n such that Qs + q = 0. Then,
Q(x) is merely pseudoconvex at x0 ∈ s ± T if and only if ∇Q(x0) �= 0.

Proof. From Theorem 6.5.4, Q(x) is merely pseudoconvex at x0 ∈ s±T if and
only if Q0 is merely pseudoconvex at y0 = x0 − s ∈ ±T .
Since Qy0 = Q(x0 − s) = Qx0 + q = ∇Q(x0), the thesis follows from Lemma
6.5.1.

As a direct consequence of the previous results, we have the following
characterization of the maximal domains of pseudoconvexity of a quadratic
function.

Theorem 6.5.5. The quadratic function Q(x) = 1
2xT Qx + qT x is merely

pseudoconvex on a convex set S with nonempty interior if and only if the
following conditions hold:
(i) ν−(Q) = 1;
(ii) there exists s ∈ �n such that Qs + q = 0;
(iii) S ⊆ s + (T \kerQ) = {x ∈ �n : (x− s)T Q(x− s) ≤ 0, (v1)T (x− s) > 0},
or S ⊆ s − (T \kerQ) = {x ∈ �n : (x − s)T Q(x − s) ≤ 0, (v1)T (x − s) < 0}.

6.5.1 Pseudoconvexity on the Non-negative Orthant

The above criteria can be specified to the case where S is the non-negative
orthant.
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Theorem 6.5.6. Let Q0(x) = 1
2xT Qx be merely quasiconvex on �n

+. Then,
Q0(x) is merely pseudoconvex on �n

+\{0} if and only if Q does not contain a
column (or a row) of zeros.

Proof. From Lemma 6.5.1, Q0(x) is pseudoconvex on �n
+\{0} if and only if

Qx �= 0, ∀x ∈ �n
+\{0}. By denoting with qj the j-th column of Q, j = 1, ..., n,

we have Qx =
n∑

j=1

xjq
j , xj ≥ 0. Since Q ≤ 0 (see Theorem 6.4.2), Qx = 0 if

and only if for some j we have qj = 0.

Theorem 6.5.7. Let Q(x) = 1
2xT Qx + qT x be merely quasiconvex on �n

+.
Then, Q(x) is merely pseudoconvex on �n

+ if and only if q �= 0.

Proof. From Lemma 6.5.2, Q(x) is pseudoconvex on �n
+ if and only if

Qx + q �= 0, ∀x ∈ �n
+. Since Q ≤ 0, q ≤ 0 (see Theorem 6.4.4), the the-

sis follows.

Remark 6.5.1. Further developments, such as the criteria of quasiconvexity
and pseudoconvexity in terms of the bordered Hessian, can be found in the
References at the end of this Chapter.

6.5.2 Generalized Convexity of a Quadratic form on �2
+

By applying Theorems 6.4.2 and 6.5.6 to a 2×2 matrix we obtain the following
criteria.

Theorem 6.5.8. Consider the matrix Q =
[

α β
β γ

]
. Then, the quadratic form

Q0(x) = 1
2xT Qx is merely quasiconvex on �2

+ if and only if the following
conditions hold:
(i) α ≤ 0, β ≤ 0, γ ≤ 0, (α, β, γ) �= (0, 0, 0);
(ii) αγ − β2 ≤ 0.
Furthermore, Q0(x) is pseudoconvex on �2

+\{(0, 0)} if and only if in addition
to (i) and (ii) we have (α, β) �= (0, 0) and (β, γ) �= (0, 0).

Example 6.5.1. Consider the matrices

A =
[

α 0
0 0

]
, α < 0; B =

[
0 β
β 0

]
, β < 0;

C =
[

0 0
0 γ

]
, γ < 0; D =

[
α β
β 0

]
, α < 0, β < 0.

The quadratic forms associated with all the matrices are quasiconvex on �2
+

but only the quadratic forms associated with the matrices B and D are
pseudoconvex on �2

+\{(0, 0)}.
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6.6 A Special Case

The necessary and sufficient conditions stated in the previous sections are, in
general, not easy to use for testing the quasiconvexity (pseudoconvexity) of a
quadratic function. Nevertheless, when Q(x) has a particular structure, it is
possible to obtain a characterization that is easy to test. In this section we
shall consider the following class of functions:

f(x) = (aT x + a0)(bT x + b0) + cT x. (6.10)

Theorem 6.6.1. Consider the function f in (6.10) and assume that the vec-
tors a and b are linearly independent. Then, f is merely quasiconvex on a
convex set S ⊂ �n with nonempty interior if and only if
(i) there exist α, β ∈ � such that c = αa + βb;
(ii) S ⊆ {x ∈ �n : aT x + a0 + β ≥ 0, bT x + b0 + α ≤ 0} or
S ⊆ {x ∈ �n : aT x + a0 + β ≤ 0, bT x + b0 + α ≥ 0}.
Proof. We have f(x) = 1

2xT Qx + qT x + q0, where

Q = abT + baT , q = b0a + a0b + c, q0 = a0b0.

The linear independence of a and b implies that dim(ImQ) = dim({z =
µ1a + µ2b, µ1, µ2 ∈ �}) = 2, so that dim(kerQ) = n − 2. Consequently, tak-
ing into account that the quadratic form xT Qx = 2aT xbT x is not constant
in sign, we necessarily have a unique negative eigenvalue, i.e., ν−(Q) = 1.
From Theorem 6.3.7, f is quasiconvex on S if and only if there exists
s ∈ �n such that Qs + q = 0 and S ⊆ s + T or S ⊆ s − T . We have
Qs + q = 0 if and only if q ∈ ImQ or, equivalently, if and only if there exist
α, β ∈ � such that c = αa + βb, i.e., if and only if (i) holds. Furthermore,
Qs + q = (bT s + b0 + α)a + (aT s + a0 + β)b so that Qs + q = 0 if and
only if bT s = −(b0 +α) and aT s = −(a0 +β). By means of simple calcula-
tions we have (x − s)T Q(x − s) = 2(aT x + a0 + β)(bT x + b0 + α) and thus
(x − s)T Q(x − s) ≤ 0 if and only if (ii) holds.
The proof is complete.

Remark 6.6.1. When a and b are linearly dependent, f is convex on �n or
it is concave on �n. In this last case f turns out to be quasiconvex on a
convex set S if and only if c = αa and S is contained in one of the two half-
spaces associated with the hyperplane given by the set of critical points of the
function (see also Exercise 6.13).

Corollary 6.6.1. Consider the function f in (6.10) and assume that a and
b are linearly independent. Then, f is merely pseudoconvex on a convex set
S ⊂ �n with nonempty interior if and only if
(i) there exist α, β ∈ � such that c = αa + βb;
(ii) S ⊆ {x ∈ �n : aT x + a0 + β > 0, bT x + b0 + α ≤ 0} ∪ {x ∈ �n :
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aT x + a0 + β ≥ 0, bT x + b0 + α < 0} or
S ⊆ {x ∈ �n : aT x+a0 +β < 0, bT x+b0 +α ≥ 0}∪{x ∈ �n : aT x+a0 +β ≤
0, bT x + b0 + α > 0}.
Proof. Taking into account that ∇f(x0) = 0 if and only if x0 ∈ {x ∈ �n :
aT x + a0 + β = 0, bT x + b0 + α = 0}, the thesis follows from Lemma 6.5.2.

In order to characterize the quasiconvexity of f on �n
+, we shall state, firstly,

the following lemma.

Lemma 6.6.1. Consider the matrix Q = abT + baT . Then, Q ≤ 0 if and only
if a ≥ 0, b ≤ 0 or a ≤ 0, b ≥ 0.

Proof. Obviously, if a ≥ 0, b ≤ 0 or a ≤ 0, b ≥ 0, then Q ≤ 0. Conversely, since
the thesis is trivial if a = 0 or b = 0, we shall consider the case a �= 0, b �= 0.
Assume, by contradiction, the existence of i, j such that ai > 0, aj < 0 and

consider the submatrix Qij =
[

2aibi aibj + ajbi

aibj + ajbi 2ajbj

]
. If bibj �= 0, aibi ≤ 0,

ajbj ≤ 0 imply that bi < 0, bj > 0, respectively, so that aibj +ajbi > 0 and this

is absurd. If bi = 0 and bj �= 0, we have Qij =
[

0 aibj

aibj 2ajbj

]
, so that ajbj ≤ 0

implies that bj > 0 while aibj ≤ 0 implies that bj < 0 and, once again, we get
a contradiction. The case bj = 0, bi �= 0 is analogous, so that the case bi = 0,
bj = 0 remains to be considered. Let k be such that bk �= 0 and consider the

submatrix
[

aibk + akbi aibj + ajbi

2akbk akbj + ajbk

]
=
[

aibk 0
2akbk ajbk

]
; aibk < 0 implies that

bk < 0 while ajbk < 0 implies that bk > 0 and this is absurd. Consequently,
we have a ≥ 0 or a ≤ 0. For symmetric reasons, the components of b also have
the same sign so that, necessarily, a ≥ 0, b ≤ 0 or a ≤ 0, b ≥ 0. The thesis is
achieved.

Theorem 6.6.2. Consider the function f in (6.10) and assume that a and b
are linearly independent. Then, f is merely quasiconvex on �n

+ if and only if
there exist α, β ∈ � such that c = αa+βb and one of the following conditions
holds:
(i) a ≥ 0, b ≤ 0, α ≤ −b0, β ≥ −a0;
(ii) a ≤ 0, b ≥ 0, α ≥ −b0, β ≤ −a0.

Proof. From Theorem 6.4.4 we have Q = abT + baT ≤ 0, while from Lemma
6.6.1 we have a ≥ 0, b ≤ 0 or a ≤ 0, b ≥ 0. The thesis follows from Theorem
6.6.1.

Corollary 6.6.2. Consider the function f in (6.10) and assume that a and b
are linearly independent. Then, f is merely pseudoconvex on �n

+ if and only if
there exist α, β ∈ � such that c = αa+βb and one of the following conditions
holds:
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(i) a ≥ 0, b ≤ 0 and α < −b0, β ≥ −a0 or α ≤ −b0, β > −a0;
(ii) a ≤ 0, b ≥ 0 and α > −b0, β ≤ −a0 or α ≥ −b0, β < −a0.

Proof. Referring to Theorem 6.5.7, it is sufficient to note that b0a+a0b+c �= 0
if and only if a0 + β �= 0 or b0 + α �= 0.

6.7 Exercises

6.1. Let Q(x) = 1
2xT Qx+qT x be merely quasiconvex on a convex set S ⊂ �n

with intS �= ∅. Prove that Q(x) is bounded from above on S.

6.2. Consider the quadratic program sup{Q(x) : x ∈ S}, where Q is merely
pseudoconvex on the closed convex polyhedron S ⊂ �n. Prove that the
supremum is attained at an extreme point of S provided S has one.

6.3. Consider the function Q(x) = 2x2
1 − x2

2 − x1x2 − 4x1 + x2.
(a) Find the maximal domain s + T of quasiconvexity of Q(x);
(b) Prove that Q(x) ≤ −2, ∀x ∈ s + T ;
(c) Verify that f(x) =

√−2 − Q(x) is concave on s + T .

6.4. Find a quadratic form Q0(x) whose maximal domain of quasiconvexity
is the cone T = {x ∈ �2 : x = α(−1, 1)T + β(1,−2)T , α ≥ 0, β ≥ 0}.
6.5. Find the maximal domains of quasiconvexity and the maximal domains
of pseudoconvexity of Q(x1, x2) = 2x2

1 − x1x2 − x2.

6.6. Consider Q(x1, x2) = −4(x1−3x2)2+4(x1−3x2). Find a closed half-space
H such that H is a maximal domain of quasiconvexity of Q(x1, x2).

6.7. Consider the closed half-space H = {(x1, x2) ∈ �2 : 3x1 + 2x2 + 6 ≥ 0}.
Give an example of a quadratic function having H as a maximal domain of
quasiconvexity.

6.8. Let Q(x) be a merely quasiconvex quadratic function on a closed half-
space H . Can Q(x) be pseudoconvex on H?

6.9. Give an example of a merely quasiconvex quadratic form such that:
(a) T contains �2

+ properly;
(b) �2

+ contains T properly;
(c) T ∩ �2

+ �= T , T ∩ �2
+ �= �2

+.

6.10. Prove that the maximal domains of quasiconvexity of a quadratic form
Q0(x1, x2) are �2

+ and �2− if and only if Q0(x1, x2) = kx1x2 with k < 0.

6.11. Let Q0(x) = 1
2xT Qx be merely pseudoconvex on �2

+. Prove that
Q(x) = Q0(x)+ qT x is merely pseudoconvex on �2

+ for all q ≤ 0 if and only if

Q =
[

0 β
β 0

]
, β < 0.
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6.12. Consider the function f(x) = (aT x + a0)(bT x + b0) and assume that a
and b are linearly independent. Show that f is quasiconvex on a convex set
S ⊂ �n with intS �= ∅ if and only if S ⊆ {x ∈ �n : aT x+a0 ≥ 0, bT x+b0 ≤ 0}
or S ⊆ {x ∈ �n : aT x + a0 ≤ 0, bT x + b0 ≥ 0}.
6.13. Consider the function f(x) = (aT x + a0)(bT x + b0) + cT x and assume
that a and b are linearly dependent. Prove that f is merely quasiconvex on
a suitable convex set S ⊂ �n with intS �= ∅ if and only if there exist k < 0,
α ∈ �, such that b = ka, c = αa.
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[11], Cottle R. W., and Ferland J. A. [72, 73], Ferland J. A. [107, 108, 109],
Giorgi G., and Thielfelder J. [122], Martos B. [209, 211], Schaible S. [236, 237,
238, 239, 243, 247, 242, 251], Schaible S., and Ziemba W. T. eds. [248].



7

Generalized Convexity of Some Classes
of Fractional Functions

7.1 Introduction

Economic applications are often characterized by maximizing the efficiency
of an economic system. This leads to optimization problems whose objective
function is a ratio. Examples include maximization of productivity, maxi-
mization of return on investment, maximization of return/risk, minimization
of cost/time. Linear fractional and generalized fractional problems may be
found in different fields such as data envelopment analysis, tax program-
ming, risk and portfolio theory, logistics and location theory (see for instance
[14, 15, 66, 67, 166, 214]). The interest in studying fractional problems is con-
firmed in the extensive survey (with twelve hundred entries) which appeared
in [256]; another updated survey may be found in [114].
Since the early sixties, the close relationship between generalized convexity
and fractional programming has been highlighted and from the beginning,
fractional programming has benefited from advances in generalized convexity,
and vice versa (see, for instance, [114, 256]).
In this chapter we shall characterize the pseudoconvexity of some of the most
important classes of fractional functions such as the ratio between a quadratic
and a linear function and the sum of a linear and a linear fractional function.
We shall also point out how Charnes–Cooper’s variable transformation turns
out to be a useful tool in studying the pseudoconvexity of some other classes
of functions.

7.2 The Ratio of a Quadratic and an Affine Function

Consider the following quadratic fractional function

f(x) =
n(x)
d(x)

=
1
2xT Qx + qT x + q0

dT x + d0
(7.1)
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on the set D = {x : dT x + d0 > 0}, where Q is an n × n symmetric matrix,
q, d ∈ �n, d �= 0 and q0, d0 ∈ �.
We have seen in Theorem 3.2.10 that when n(x) is convex on D, then f is
pseudoconvex on D; for this reason in what follows we shall assume that Q is
not positive semidefinite.
The following examples show that the pseudoconvexity of the numerator on
D does not guarantee the pseudoconvexity of f on D and viceversa.

Example 7.2.1. Consider the function

f(x1, x2) =
n(x1, x2)
d(x1, x2)

=
− 1

2 (x1 − x2)2 − 4x1 + 4x2

x1 − x2 − 1

Taking into account Corollary 6.3.3, n(x1, x2) is pseudoconvex on D =
{(x1, x2) : x1 − x2 − 1 > 0} since we have hT = (1,−1), β = −4, µ = −1,
h0 = −1 < β

µ = 4. On the other hand, f(x1, x2) is not pseudoconvex on
D since the restriction ϕ(t) = f(x0 + tu), xT

0 = (3, 1), uT = (1, 0), is

not pseudoconvex. In fact, we have ϕ(t) =
− 1

2 (2 + t)2 − 4(2 + t)
t + 1

, ϕ′(t) =
1

2(t + 1)2
(
9− (t+1)2

)
, so that t0 = 2 is a feasible strict local maximum point

for ϕ(t) and, consequently, ϕ(t) is not pseudoconvex.

Example 7.2.2. Consider the function

f(x1, x2) =
n(x1, x2)
d(x1, x2)

=
1
2 (x2

1 − x2
2) + 1

1 − x2

on the convex set D = {(x1, x2) : 1 − x2 > 0}. The Hessian matrix of f is

∇2f(x1, x2) =

[
1

1−x2

x1
(1−x2)2

x1
(1−x2)2

x2
1+1

(1−x2)3

]
.

Since ∇2f(x1, x2) is positive definite on D, the function is convex and, in
particular, pseudoconvex on D. On the other hand, n(x1, x2) is pseudoconvex
on the maximal domains T,−T , where T = {(x1, x2) : x2

1 − x2
2 ≤ 0, x2 ≥ 0}.

Since D �⊆ T and D �⊆ −T , n(x1, x2) is not pseudoconvex on D.

The previous examples show that the study of the pseudoconvexity of the
ratio between a quadratic function and an affine function is not easy to carry
on. A complete characterization of the pseudoconvexity of f can be found
in [44]. Before presenting this result, we shall point out some properties of a
quadratic function which are mantained in the ratio.
The following theorem shows that for function f quasiconvexity reduces to
pseudoconvexity.

Theorem 7.2.1. Consider the function f, where the matrix Q is not positive
semidefinite. Then, f is quasiconvex on D if and only if f is pseudoconvex
on D.
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Proof. We have

∇f(x) =
1

dT x + d0
[Qx + q − f(x)d],

(dT x + d0)∇2f(x) = Q +
1

dT x + d0

[
2f(x)ddT − (Qx + q)dT − d(Qx + q)T

]
.

Since hT∇f(x) = 0 if and only if hT (Qx + q) = f(x)hT d, we have

(dT x+d0)hT∇2f(x)h = hT Qh+
2dT h

dT x + d0

[
f(x)(dT h)−hT (Qx+q)

]
= hT Qh.

From the quasiconvexity of f we have (see Theorem 3.4.4)

x ∈ D, hT∇f(x) = 0 ⇒ hT∇2f(x)h ≥ 0.

It follows that ∇f(x) �= 0, ∀x ∈ D, since ∇f(x) = 0 implies that (dT x +
d0)hT∇2f(x)h = hT Qh ≥ 0 for all h ∈ �n in contradiction with the assump-
tion on matrix Q. The thesis follows from Theorem 3.2.6.

The following theorem states a necessary condition for f to be pseudocon-
vex. In particular, the theorem shows that the pseudoconvexity of f implies
the pseudoconvexity of the quadratic function n(x) on its maximal domains.

Theorem 7.2.2. Consider the function f, where the matrix Q is not positive
semidefinite. If f is pseudo convex, then the following conditions hold:
(i) ν−(Q) = 1;
(ii) rankQ = rank[Q, q] = rank[Q, d].

Proof. (i) Since Q is not positive semidefinite we have v−(Q) ≥ 1. Suppose
by contradiction v−(Q) > 1 and let v1 and v2 be two linearly independent
eigenvectors associated with two negative eigenvalues of Q. Let W be the lin-
ear subspace generated by v1 and v2. Since dim W = 2 and dim d⊥ = n− 1,
there exists v ∈ W ∩ d⊥, v �= 0; v ∈ W implies that v is a linear combination
of v1, v2 so that vT Qv < 0. Consider the line x = x0 + tv, x0 ∈ D, t ∈ �
which is contained in D since dT x + d0 = dT x0 + d0 > 0. It is easy to verify
that the restriction ϕ(t) = f(x0 + tv) is of the kind ϕ(t) = αt2 + βt + γ with
α < 0 and this contradicts the pseudoconvexity of f .
(ii) The thesis is obvious if Q is nonsingular. Otherwise, let vi, i = 1, ..., p, be
eigenvectors associated with the non-null eigenvalues of Q and let vj , j = p+
1, ..., n, be eigenvectors associated with the null eigenvalues. Since ν−(Q) = 1,
let v1 be such that Qv1 = λ1v

1, λ1 < 0. In correspondence to a feasible point
x0 assume the existence of vj , j = p + 1, ..., n, such that ∇f(x0)T vj �= 0.
Consider the restriction ϕ(t) = f(x0 + tv), where v = v1 + kvj , k ∈ �.
We have ϕ′(0) = ∇f(x0)T v = ∇f(x0)T v1 + k∇f(x0)T vj so that, for k∗ =
−∇f(x0)T v1

∇f(x0)T vj
, it results that ϕ′(0) = 0 and ϕ′′(0) =

vT Qv

dT x0 + d0
=

λ1 ‖ v1 ‖2

dT x0 + d0

< 0. It follows that ϕ(t) is not pseudoconvex and this is a contradiction.
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Consequently, ∇f(x0)T vj = 0, ∀j ∈ {p + 1, ..., n}, i.e., ∇f(x0) ∈ ImQ, i.e.,

there exists u ∈ �n, u �= 0 such that Qu =
Qx0 + q − f(x0)d

dT x0 + d0
or, equivalently,

there exists u0 such that Qu0 = q − f(x0)d. Since f is not constant on D,
let x1 ∈ D with f(x1) �= f(x0). Analogously, there exists u1 ∈ �n such that

Qu1 = q−f(x1)d. We have Q
u0 − u1

f(x1) − f(x0)
= d, so that rankQ = rank[Q, d]

and, consequently, rankQ = rank[Q, q].

The fundamental result regarding the characterization of the pseudoconvexity
of the ratio between a quadratic function and an affine function is given in
the following theorem whose proof can be found in [44].

Theorem 7.2.3. The function

f(x) =
n(x)
d(x)

=
1
2xT Qx + qT x + q0

dT x + d0

is pseudoconvex on D = {x ∈ �n : dT x + d0 > 0} if and only if one of the
following conditions holds:
(i) ν−(Q) = 0 (i.e., Q is positive semidefinite);
(ii) ν−(Q) = 1, x̄ and ȳ exist so that Qx̄ = −q and Qȳ = d, dT ȳ = 0,
dT x̄ + d0 = 0 and n(x̄) ≥ 0;
(iii) ν−(Q) = 1, x̄ and ȳ exist so that Qx̄ = −q, Qȳ = d, dT ȳ < 0 and
(dT x̄ + d0)2 + 2n(x̄)dT ȳ ≤ 0.

Remark 7.2.1. It can be shown [55] that the study of the pseudolinearity of f
is equivalent to the study of the pseudolinearity of the sum between a linear
and a linear fractional function which will be carried out in the next section.

When the quadratic function n(x) assumes a particular form, it is possible to
specify Theorem 7.2.3. Consider, for instance, the following function studied
in [52]:

g(x) =
(aT x + a0)(bT x + b0) + cT x + c0

dT x + d0

a, b, c, d ∈ �n, d �= 0, a0, b0, c0, d0 ∈ �, x ∈ D = {x ∈ �n : dT x + d0 > 0}.
Regarding the pseudoconvexity of g, we have the following characterization
related to the case where the vectors a, b are linearly independent (the case
where a, b are linearly dependent is suggested in Exercise 7.3).

Theorem 7.2.4. Consider the function g where a, b are linearly independent.
Then, g is pseudoconvex on D if and only if there exist γ1, γ2 ∈ � such that
c = γ1a + γ2b, there exist δ1, δ2 ∈ � such that d = δ1a + δ2b, and one of
the following conditions holds: (i) d0 = δ1(γ2 + a0) + δ2(γ1 + b0), δ1δ2 = 0,
c0 + a0b0 ≥ (γ1 + b0)(γ2 + a0);
(ii)
[
d0−δ1(γ2 +a0)−δ2(γ1 +b0)

]2 +4δ1δ2

[
c0 +a0b0− (γ1 +b0)(γ2 +a0)

] ≤ 0,
δ1δ2 < 0.
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Proof. We have g(x) =
1
2xT Qx + qT x + q0

dT x + d0
where Q = abT + baT , and

q = b0a + a0b + c, q0 = a0b0 + c0. With reference to Theorem 7.2.3, tak-
ing into account that ν−(Q) = 1 and that ImQ is the subspace generated
by a and b, the existence of x̄, ȳ such that Qx̄ = −q, Qȳ = d is equivalent
to stating that c and d are linear combinations of a and b. More precisely,
we have
c = γ1a + γ2b, γ1 = −(bT x̄ + b0), γ2 = −(aT x̄ + a0),
d = δ1a + δ2b, δ1 = bT ȳ, δ2 = aT ȳ.
By means of simple calculations we have
dT ȳ = 2δ1δ2, dT x̄ + d0 = −δ1(γ2 + a0) − δ2(γ1 + b0) + d0,
n(x̄) = c0 + a0b0 − (γ1 + b0)(γ2 + a0).
It follows that (ii) and (iii) of Theorem 7.2.3 are equivalent to (i) and (ii)
together with c, d ∈ ImQ.

7.3 The Sum of a Linear and a Linear Fractional
Function

Consider the function

f(x) = aT x +
cT x + c0

dT x + d0

where a, c, d ∈ �n, d �= 0, c0, d0 ∈ �, x ∈ D = {x ∈ �n : dT x + d0 > 0}.
Such a class of functions has been studied by several authors in the framework
of optimization problems (see Chapter 8).
In general, f may have local minimum points which are not global as is shown
in the following example.

Example 7.3.1. Consider the function f(x1, x2) = −x1 +x2 +
−2x1 − 7x2 − 6

x1 + x2 + 1
on the domain S = {(x1, x2) ∈ �2 : x1 ≥ 0, 0 ≤ x2 ≤ 4, x1 − x2 ≤ 4}. It is
easy to verify that (0, 0) is a local minimum point, while the global minimum
is attained at (8, 4).

In order to guarantee the local-global property, the results given in The-
orem 7.2.3 (see also Exercise 7.14) may be utilized for characterizing the
pseudoconvexity of f on D. In this section we shall present a general approach
which allows us to characterize the pseudoconvexity of f on an arbitrary open
convex set S ⊆ D. The obtained results will also allow us to study in Sect. 7.5
the pseudoconvexity of the sum of two linear fractional functions.
The gradient and the Hessian matrix of f are given, respectively, by

∇f(x) = a +
1

dT x + d0

(
c − cT x + c0

dT x + d0
d

)
(7.2)
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∇2f(x) =
1

(dT x + d0)2

[
−(cdT + dcT ) + 2

cT x + c0

dT x + d0
ddT

]
(7.3)

The following theorem shows that the linear independence of a, c, d implies
that f is not pseudoconvex on S, whatever the open convex set S be.

Theorem 7.3.1. Let f be pseudoconvex on an open convex set S ⊆ D. Then,
the vectors a, c, d are linearly dependent.

Proof. The thesis clearly holds if n = 2. Let n ≥ 3 and assume that
rank[a, c, d] = 3. We have ∇f(x) �= 0, ∀x ∈ S, and rank[∇f(x), a, d] = 3,

∀x ∈ S. Let A =

⎡⎣∇T f(x)
aT

dT

⎤⎦; for every fixed x ∈ S the linear map

A : �n → �3 is surjective so that there exist w1, w2 such that ∇f(x)T w1 = 0,
aT w1 = 0, dT w1 < 0 and ∇f(x)T w2 = 0, aT w2 > 0, dT w2 = 0.
By setting w = w1 + w2 we have ∇f(x)T w = 0, aT w > 0, dT w < 0.
We shall prove that ∇f(x)T w = 0 implies wT∇2f(x)w < 0, ∀x ∈ S.
The equality ∇f(x)T w = 0 implies

aT w +
cT w

dT x + d0
− cT x + c0

(dT x + d0)2
dT w = 0. (7.4)

If x ∈ S is such that cT x + c0 = 0, from (7.4) cT w = −aT w(dT x + d0) < 0,
so that wT∇2f(x)w < 0.
Consider now the case cT x + c0 �= 0. If cT w = 0, from (7.4) we have
cT x + c0

dT x + d0
dT w = aT w(dT x + d0) so that

wT∇2f(x)w =
2

(dT x + d0)2
aT w dT w(dT x + d0) < 0.

If cT w �= 0, from (7.4) we have cT w =
cT x + c0

dT x + d0
dT w−aT w(dT x+d0) so that

wT∇2f(x)w =
2

dT x + d0
aT w dT w < 0.

To sum up, condition ∇f(x)T w = 0 implies that wT∇2f(x)w < 0 for all
x ∈ S and, consequently, f is not pseudoconvex on S (see Theorem 3.4.7) and
this contradicts the assumption. The linear dependence of a, c, d follows.

The following theorem characterizes the maximal open domains of pseudo-
convexity of function f .

Theorem 7.3.2. Consider the function f . The following conditions hold:
(i) if a = αd, α ≥ 0, then f is pseudoconvex on D;
(ii) if c = γd, c0 − γd0 ≥ 0, then f is pseudoconvex on D;
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(iii) if a = αd, α < 0, and c = γd, c0 − γd0 < 0, then f is pseudoconvex on
every open convex set S such that:

S ⊆ {x ∈ �n : dT x + d0 > d∗0}
or

S ⊆ {x ∈ �n : 0 < dT x + d0 < d∗0}

where d∗0 =

√
c0 − γd0

α
;

(iv) if c = βa+γd, β > 0 and rank[a, d] = 2, then f is pseudoconvex on every
open convex set S such that:

S ⊆ {x ∈ �n : βaT x + c0 − γd0 > 0, dT x + d0 > 0};
(v) if c = βa+ γd, β < 0 and rank[a, d] = 2, then f is pseudoconvex on every
open convex set S such that:

S ⊆ {x ∈ �n : βaT x + c0 − γd0 > 0, dT x + d0 + β > 0}
or

S ⊆ {x ∈ �n : βaT x + c0 − γd0 < 0, 0 < dT x + d0 < −β}.
In any other case f is not pseudoconvex on S ⊆ D whatever the open convex
set S be.

Proof. Taking into account Theorem 7.3.1, we must analyze the exhaustive
cases rank[a, c, d] = 1, rank[a, c, d] = 2.
• rank[a, c, d] = 1.
Let a = αd, c = γd. We have

∇f(x) =
1

(dT x + d0)2
[α(dT x + d0)2 − (c0 − γd0)]d

∇2f(x) =
2

(dT x + d0)3
(c0 − γd0)ddT .

If c0 − γd0 ≥ 0, then ∇2f(x) is positive semidefinite on D so that f is convex
(in particular, pseudoconvex) on D.
Consider now the case c0 − γd0 < 0.
If α ≥ 0, then ∇f(x) �= 0 for all x ∈ D so that ∇f(x)T v = 0 implies that
vT∇2f(x)v = 0 and, consequently, f is pseudoconvex on D.
If α < 0, then ∇f(x) = 0 for all x ∈ D∗ = {x ∈ �n : dT x + d0 = d∗0}, where

d∗0 =

√
c0 − γd0

α
; choosing v such that dT v �= 0, we have vT∇2f(x)v < 0 for

every x ∈ D∗, so that f is not pseudoconvex on every open convex set S such
that S ∩ D∗ �= ∅, while it is pseudoconvex on every open convex set S ⊂ D
such that S ∩ D∗ = ∅. Consequently, (iii) holds.
• rank[a, c, d] = 2.
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The following two exhaustive cases occur:
(a) a = αd and rank[c, d] = 2;
(b) c = βa + γd and rank[a, d] = 2.
(a) We have

∇f(x) =
1

dT x + d0

[
c +
(

α(dT x + d0) − cT x + c0

dT x + d0

)
d

]
The linear independence of c and d implies that ∇f(x) �= 0, ∀x ∈ D. For every

v ∈ �n such that ∇f(x)T v = 0, we have vT∇2f(x)v =
2

dT x + d0
α(dT v)2.

Consequently, if α ≥ 0, then f is pseudoconvex on D, while, in the case
α < 0, f is not pseudoconvex on every open convex set S ⊆ D since we can
choose v such that dT v �= 0.
Note that if a = αd, α ≥ 0, then f is pseudoconvex on D either when
rank[a, c, d] = 1 or when rank[a, c, d] = 2, and thus (i) holds.
(b) We have

∇f(x) =
1

dT x + d0

[
(dT x + d0 + β) a − βaT x + c0 − γd0

dT x + d0
d

]

∇2f(x) =
1

(dT x + d0)2

[
−β(adT + daT ) + 2

βaT x + c0 − γd0

dT x + d0
ddT

]
.

It follows that ∇f(x) = 0 if and only if β < 0 and x ∈ Γ where

Γ = {x ∈ �n : dT x + d0 + β = 0, βaT x + c0 − γd0 = 0}.
Since rank[a, d] = 2, for every x ∈ Γ the Hessian matrix ∇2f(x) is indefinite
so that f is not pseudoconvex on every open convex set S such that S ∩ Γ �= ∅.
If ∇f(x) �= 0 and dT x + d0 + β = 0, then ∇f(x)T v = 0 implies that dT v = 0,
so that vT∇2f(x)v = 0. If ∇f(x) �= 0 and dT x+d0+β �= 0, then ∇f(x)T v = 0

implies that aT v =
βaT x + c0 − γd0

(dT x + d0 + β)(dT x + d0)
dT v, so that

vT∇2f(x)v =
2

(dT x + d0)2
βaT x + c0 − γd0

dT x + d0 + β
(dT v)2.

Consequently, if β > 0, then ∇f(x) �= 0 for all x ∈ D and f is pseudoconvex
on every open convex set S such that S ⊆ {x ∈ �n : βaT x+c0−γd0 > 0}∩D
and (iv) holds.
If β < 0, then f is pseudoconvex on S if

S ⊆ {x ∈ �n : βaT x + c0 − γd0 > 0, dT x + d0 + β > 0}
or

S ⊆ {x ∈ �n : βaT x + c0 − γd0 < 0, dT x + d0 + β < 0} ∩ D

and (v) holds.
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If β = 0 and c0 − γd0 ≥ 0, then f is convex on D. Consequently, if c = γd
and c0 − γd0 ≥ 0, f is convex (in particular, pseudoconvex) on D either when
rank[a, c, d] = 1 or when rank[a, c, d] = 2 so that (ii) holds.
The proof is complete.

Corollary 7.3.1. The function f is pseudoconvex on D if and only if it
assumes one of the following forms:

(i) f(x) = αdT x +
cT x + c0

dT x + d0
, α ≥ 0;

(ii) f(x) = aT x +
c0 − γd0

dT x + d0
+ γ, c0 − γd0 ≥ 0.

Remark 7.3.1. Note that in case (ii) of the previous Corollary the function f
is convex on D.

The following theorem states the results given in Theorem 7.3.2 in terms of
pseudoconcavity.

Theorem 7.3.3. Consider the function f . The following conditions hold.
(i) If a = αd, α ≤ 0, then f is pseudoconcave on D.
(ii) If c = γd, c0 − γd0 ≤ 0, then f is pseudoconcave on D.
(iii) If a = αd, α > 0, and c = γd, c0 − γd0 > 0, then f is pseudoconcave on
every open convex set S such that:

S ⊆ {x ∈ �n : dT x + d0 > d∗0}
or

S ⊆ {x ∈ �n : 0 < dT x + d0 < d∗0}

where d∗0 =

√
c0 − γd0

α
.

(iv) If c = βa + γd, β > 0 and rank[a, d] = 2, then f is pseudoconcave on
every open convex set S such that:

S ⊆ {x ∈ �n : βaT x + c0 − γd0 < 0, dT x + d0 > 0}.
(v) If c = βa + γd, β < 0 and rank[a, d] = 2, then f is pseudoconcave on
every open convex set S such that:

S ⊆ {x ∈ �n : βaT x + c0 − γd0 < 0, dT x + d0 + β > 0}
or

S ⊆ {x ∈ �n : βaT x + c0 − γd0 > 0, 0 < dT x + d0 < −β}.
In any other case f is not pseudoconcave on S ⊆ D, whatever the open convex
set S be.

By combining Theorems 7.3.2 and 7.3.3, the characterization of the pseudo-
linearity of f is achieved.
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Theorem 7.3.4. Consider the function f .The following conditions hold:
(i) if a = 0, then f is pseudolinear on D;
(ii) if c = γd, with c0 − γd0 = 0, then f is pseudolinear on D;
(iii) if a = αd, c = γd, with α(c0 − γd0) < 0, then f is pseudolinear on D;
(iv) if a = αd, c = γd, with α(c0 − γd0) > 0, then f is pseudolinear on every
open convex set S ⊆ D such that

S ⊆ {x ∈ �n : dT x + d0 > d∗0}
or

S ⊆ {x ∈ �n : 0 < dT x + d0 < d∗0}

where d∗0 =
√

c0−γd0
α .

In any other case f is not pseudolinear on S ⊆ D whatever the open convex
set S be.

We have studied the pseudoconvexity of f by assuming dT x + d0 > 0; the
obtained results can be easily adapted to the case dT x + d0 < 0, re-writing f

as follows: f(x) = aT x +
−cT x − c0

−dT x − d0
.

In the following example we find the maximal open convex domains of the
pseudoconvexity of function f when the denominator is either positive or
negative.

Example 7.3.2. Consider the function

f(x1, x2) = 2x1 + 32x2 +
−2x1 + 3x2 + 2
3x1 + 13x2 + 1

With respect to the domain D = {(x1, x2) ∈ �2 : 3x1 + 13x2 + 1 > 0} it
is easy to verify that (iv) of Theorem 7.3.2 holds with β = 1

2 , γ = −1, so
that f is pseudoconvex on every open convex set S ⊆ D+

1 = {(x1, x2) ∈ �2 :
x1 + 16x2 + 3 > 0, 3x1 + 13x2 + 1 > 0}.
In order to study the pseudoconvexity of the function f on the half-plane
{(x1, x2) ∈ �2 : 3x1 + 13x2 + 1 < 0}, we can re-write f as follows:

f(x1, x2) = 2x1+32x2+
2x1 − 3x2 − 2

−3x1 − 13x2 − 1
. By reapplying again Theorem 7.3.2,

case (v) occurs so that f is pseudoconvex on every open convex set contained
in D−

1 = {(x1, x2) ∈ �2 : x1 + 16x2 + 3 < 0, 3x1 + 13x2 + 3
2 < 0} or in

D−
2 = {(x1, x2) ∈ �2 : x1 + 16x2 + 3 > 0, − 1

2 < 3x1 + 13x2 + 1 < 0}.
The maximal domains of the pseudoconvexity of the given function are
depicted in Figure 7.1.

Remark 7.3.2. In [55] it has been shown that the ratio (7.1) between a
quadratic function and an affine function is pseudolinear on D if and only
if it reduces to the sum of a linear and a linear fractional function satisfying
(i–iii) of Theorem 7.3.4.
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Fig. 7.1. Maximal domains

7.4 Pseudoconvexity and the Charnes–Cooper Variable
Transformation

Charnes–Cooper’s transformation of variables was originally suggested by
Charnes A. and Cooper W. W. in [64] with the aim of transforming a lin-
ear fractional optimization problem into an equivalent linear programmming
problem (see also Sect. 8.2). Subsequently, this transformation and its gener-
alizations have been utilized in different contexts [13, 248, 256]. According to
a recent approach [48, 49], Charnes–Cooper’s transformation also turns out to
be a useful tool in studying the pseudoconvexity of some classes of functions
since it preserves pseudoconvexity.
More precisely, consider Charnes–Cooper’s transformation

y =
x

bT x + b0
(7.5)

where b ∈ �n\{0}, b0 ∈ �\{0}, x ∈ S = {x ∈ �n : bT x + b0 > 0}.
This map is a diffeomorphism and its inverse is

x =
b0y

1 − bT y
(7.6)

where y ∈ S∗ = {y ∈ �n :
b0

1 − bT y
> 0}.

We shall see how Charnes–Cooper’s transformation may be utilized in order
to study the pseudoconvexity of the following fractional function

f(x) =
1
2xT Ax + aT x + a0

(bT x + b0)2

where A is an n × n symmetric matrix, a, b ∈ �n, b �= 0, a0, b0 ∈ �, b0 �= 0,
x ∈ S = {x ∈ �n : bT x + b0 > 0}.
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By performing the transformation x =
b0y

1 − bT y
, we obtain the following

quadratic function

f(x(y)) = ψ(y) = yT Qy + qT y + q0

where

Q =
1
2
A − abT + baT

2b0
+

a0

b2
0

bbT , q =
1
b0

(a − 2
a0

b0
b), q0 =

a0

b2
0

, (7.7)

y ∈ S∗ = {y ∈ �n :
b0

1 − bT y
> 0}.

From Corollary 5.6.1, the function f(x) is pseudoconvex on S if and only if the
quadratic function ψ(y) is pseudoconvex on the half-space S∗ or, equivalently,
when ψ(y) is convex on �n or is merely pseudoconvex on S∗ (see Corollary
6.3.3). In any case, the problem reduces to express the results related to the
characterization of the pseudoconvexity of ψ(y) in terms of the initial data
of f(x). This has been done in [58], where the following results are given,
according to cases kerA = b⊥ and kerA �= b⊥.

Theorem 7.4.1. Consider the function f with A = δbbT , δ ∈ �.
Then, f is pseudoconvex on S if and only if one of the following conditions
holds:
(i) a = γb, γ ∈ � and δb2

0 − 2γb0 + 2a0 ≥ 0;
(ii) a = γb, γ ∈ �, δb2

0 − 2γb0 + 2a0 < 0 and γ ≤ δb0.

Theorem 7.4.2. If kerA �= b⊥, the function f is pseudoconvex on the half-
space S if and only if A is positive semidefinite on b⊥ and one of the following
conditions holds:
(i) there exists α ∈ � such that Ab − ‖b‖2

b0
a = αb with

α ≥ b0b
T a − 2 ‖b‖2

a0

b2
0

; (7.8)

(ii) Ab− ‖b‖2

b0
a �= αb for every α ∈ �, there exist a∗, b∗ ∈ �n such that Ab∗ = b,

Aa∗ = a, b∗ ∈ b⊥, bT a∗ = b0 and

a∗T a ≤ 2a0; (7.9)

(iii) Ab − ‖b‖2

b0
a �= αb for every α ∈ �, there exist a∗, b∗ ∈ �n such that

Ab∗ = b, Aa∗ = a, b∗T b �= 0 and

a0 − a∗T a

2
+

1
2bT b∗

(
b0 − bT a∗)2 ≥ 0; (7.10)

(iv) Ab − ‖b‖2

b0
a �= αb for every α ∈ � and there exist µ∗ ∈ �, a∗ ∈ �n such

that a = Aa∗ + µ∗b, b /∈ ImA and

a0 − µ∗b0 − 1
2
a∗T Aa∗ ≥ 0. (7.11)
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Remark 7.4.1. The pseudoconvexity of f on S implies that A has at most one
negative eigenvalue (see Exercise 7.4).

Remark 7.4.2. When kerA �= b⊥, then f is pseudoconvex on S if and only if
the quadratic function ψ(y) is convex on �n. The following example shows
that the convexity of ψ(y) does not guarantee the convexity of f and, at
the same time, points out that Charnes–Cooper’s transformation does not
preserve convexity.

Example 7.4.1. Consider the function

f(x1, x2) =
x2

1 − x2
2 + x1 − x2 + 1
(x2 + 1)2

(x1, x2) ∈ S = {(x1, x2) ∈ �2 : x2 + 1 > 0}.
According to (7.7) we have Q =

[
1 − 1

2− 1
2 1

]
.

Since Q is positive definite, ψ(y) is convex on �2 but f(x1, x2) is not convex.
In fact, the restriction of f on the line x2 = 1

2x1 is ϕ(x1) = f(x1,
1
2x1) =

3x2
1 + 2x1 + 4
(x1 + 2)2

, so that ϕ′′(x1) =
4(8 − 5x1)
(x1 + 2)4

. Consequently, ϕ is concave for

x1 > 8
5 and convex for −2 < x1 < 8

5 .

Remark 7.4.3. As we have pointed out, Charnes–Cooper’s transformation may
be a useful tool in studying the pseudoconvexity of new classes of gen-
eralized fractional functions which turn out to be equivalent (under this
transformation) to classes of functions whose pseudoconvexity has already
been characterized.
Charnes–Cooper’s transformation may also be applied for reducing a class of
functions into one for which the study of pseudoconvexity is easier to carry
on. This kind of approach has been used, for instance, in [59], where the ratio
between a quadratic form and the cube of an affine function has been trans-
formed into the product between a quadratic form and the cube of an affine
function.

7.5 Sum of Two Linear Fractional Functions

In the class of generalized convex functions, particular attention is devoted
to the sum of the ratios of linear fractional functions because of its various
applications in economic as well as in non-economic fields [114, 246, 250, 256].
Unfortunately, for the sum of two or more ratios, none of the properties of
single ratio linear fractional function are still true. In particular, the sum may
have several local not global minimum points. For this reason, the study of the
pseudoconvexity of this particular class of functions becomes relevant. Results
regarding this topic may be found in [28, 44, 48, 49].
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In this section we shall focus our attention on the sum of two linear fractional
functions whose pseudoconvexity can be studied by means of Charnes–
Cooper’s transformation.
Consider the function

h(x) =
mT x + m0

pT x + p0
+

qT x + q0

bT x + b0

defined on S = {x ∈ �n : pT x + p0 > 0, bT x + b0 > 0}, where m, p, q, b ∈
�n, p, b �= 0 and m0, p0, q0, b0 ∈ �, p0, b0 �= 0.
The following theorems characterize the pseudoconvexity of h on S.

Theorem 7.5.1. Consider the function h where rank[p, b] = 2. Then, h is
pseudoconvex on S if and only if one of the following conditions holds.
(i) There exists α ≥ 0 such that

p0m − m0p = α(p0b − b0p). (7.12)

(ii) There exists γ ∈ � such that

p0q − q0p = γ(p0b − b0p),
q0 − γb0

p0
≥ 0. (7.13)

(iii) There exist β > 0, δ ∈ �, λ1 ≥ 0, λ2 ≥ 0 such that

p0q − q0p = β(p0m − m0p) + δ(p0b − b0p) (7.14)

β(p0m − m0p) = λ1(−p) + λ2(p0b − b0p) (7.15)

q0 − δb0 − (λ1 + λ2b0)
p0

≥ 0. (7.16)

Proof. By applying Charnes–Cooper’s transformation y =
x

pT x + p0
whose

inverse is x =
p0y

1 − pT y
, function h is transformed into

ψ(y) =
(p0m − m0p)T y

p0
+

(p0q − q0p)T y + q0

(p0b − b0p)T y + b0
+

m0

p0

while domain S is transformed into

S∗ =
{

y ∈ �n :
1 − pT y

p0
> 0,

(p0b − b0p)T y + b0

p0
> 0
}

.

From Corollary 5.6.1, h is pseudoconvex on S if and only if ψ is pseudoconvex
on S∗, so that the study of pseudoconvexity of h can be performed by applying
Theorem 7.3.2 to the function ψ which can be expressed as follows:
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ψ(y) =
(p0m − m0p)T y

p0
+

(
p0q−q0p

p0

)T
y + q0

p0(
p0b−b0p

p0

)T
y + b0

p0

+
m0

p0
.

Since rank[p, b] = 2, the hyperplanes 1− pT y = 0, (p0b− b0p)T y + b0 = 0 are
non-parallel, so that case (iii) and case (v) of Theorem 7.3.2 cannot occur.
Consequently, ψ is pseudoconvex on S∗ if and only if (i) or (ii) or (iv) of
Theorem 7.3.2 holds. As a result:
(i–ii) follow from (i) and (ii) of Theorem 7.3.2, respectively;
(iii) From (iv) of Theorem 7.3.2 we have (7.14).
Now we shall prove that S∗ is contained in

D =
{

y ∈ �n :
β(p0m − m0p)T y + q0 − γb0

p0
> 0,

(p0b − b0p)T y + b0

p0
> 0
}

if and only if (7.15) and (7.16) hold.

Consider the cone C =
{

y ∈ �n : −pT y

p0
≥ 0,

(p0b − b0p)T y

p0
≥ 0
}

and let ȳ

be such that 1−pT ȳ = 0, (p0b− b0p)T ȳ + b0 = 0; S∗ = ȳ +C ⊆ D if and only
if the half-space β

p0
(p0m−m0p)T y ≥ 0 supports C at the origin (this is equiv-

alent to (7.15)) and 1
p0

[β(p0m−m0p)T ȳ+q0−δb0] ≥ 0. This last inequality is
equivalent to (7.16) since 1

p0
[β(p0m−m0p)T ȳ + q0 − δb0] = 1

p0
[λ1(1− pT ȳ) +

λ2[(p0b−b0p)T ȳ+b0]− (λ1 +λ2b0)+q0−δb0] = 1
p0

[q0−δb0− (λ1 +λ2b0)] ≥ 0.
The proof is complete.

Consider now the case rank[p, b] = 1. The function h assumes the form

h1(x) =
mT x + m0

pT x + p0
+

qT x + q0

kpT x + b0
.

When k = 0, h1 reduces to the sum of a linear and a linear fractional function
whose pseudoconvexity has been characterized in Sect. 7.3. When k = b0

p0
, h1

reduces to a linear fractional function which is pseudolinear. For these reasons
and in order to avoid the trivial case S = ∅, in what follows we assume k > 0
or k < 0 and p0k − b0 �= 0.
The following theorem holds.

Theorem 7.5.2. Consider the function h where b = kp, k �= 0, and assume
S �= ∅. Then, h is pseudoconvex on S if and only if one of the following
conditions holds.
(i) There exists α ≥ 0 such that

p0m−m0p = α(kp0 − b0)p. (7.17)

(ii) There exists γ ∈ � such that
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p0q − q0p = γ(kp0 − b0)p,
q0 − γb0

p0
≥ 0. (7.18)

(iii) There exist α < 0, γ ∈ �, such that p0m−m0p = α(kp0 − b0)p,

p0q− q0p = γ(kp0 − b0)p with q0−γb0
p0

< 0. Furthermore, k ≥
√

q0 − γb0

p0α

if p0k − b0 < 0, or k ≤
√

q0 − γb0

p0α
if p0k − b0 > 0.

Proof. By applying Charnes–Cooper’s transformation y =
x

pT x + p0
whose

inverse is x =
p0y

1 − pT y
, the function h is transformed into

ψ(y) =
(p0m − m0p)T y

p0
+

(p0q − q0p)T y + q0

(p0k − b0)pT y + b0
+

m0

p0

while domain S is transformed into

S∗ =
{

y ∈ �n :
1 − pT y

p0
> 0,

(p0k − b0)pT y + b0

p0
> 0
}

.

Since 1 − pT y = 0, (p0k − b0)pT y + b0 = 0 are parallel hyperplanes, case (iv)
and case (v) of Theorem 7.3.2 cannot occur, so that ψ is pseudoconvex on S∗

if and only if (i) or (ii) or (iii) of Theorem 7.3.2 holds.
Consequently (i) and (ii) follow from (i) and (ii) of Theorem 7.3.2, respectively,
while (iii) follows from (iii) of Theorem 7.3.2, taking into account that

S∗ ⊆
{

y ∈ �n :
(p0k − b0)pT y + b0

p0
>

√
q0 − γb0

p0α

}

if and only if p0k − b0 < 0 and k ≥
√

q0 − γb0

p0α
, while

S∗ ⊆
{

y ∈ �n : 0 <
(p0k − b0)pT y + b0

p0
<

√
q0 − γb0

p0α

}

if and only if p0k − b0 > 0 and k ≤
√

q0 − γb0

p0α
.

Remark 7.5.1. It is important to note that regarding characterization of
pseudoconvexity given in Theorem 7.5.1 and in Theorem 7.5.2, there is no
difference between using y =

x

pT x + p0
and y =

x

bT x + b0
.

In terms of pseudoconcavity we have the following results.
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Theorem 7.5.3. Consider the function h where rank[p, b] = 2. Then, h is
pseudoconcave on S if and only if one of the following conditions holds.
(i) There exists α ≤ 0 such that

p0m − m0p = α(p0b − b0p). (7.19)

(ii) There exists γ ∈ � such that

p0q − q0p = γ(p0b − b0p),
q0 − γb0

p0
≤ 0. (7.20)

(iii) There exist β > 0, δ ∈ �, λ1 ≤ 0, λ2 ≤ 0 such that

p0q − q0p = β(p0m − m0p) + δ(p0b − b0p) (7.21)

β(p0m − m0p) = λ1(−p) + λ2(p0b − b0p) (7.22)

q0 − δb0 − (λ1 + λ2b0)
p0

≤ 0. (7.23)

Theorem 7.5.4. Consider the function h where b = kp, k �= 0, and assumes
S �= ∅. Then, h is pseudoconcave on S if and only if one of the following
conditions holds.
(i) There exists α ≤ 0 such that

p0m − m0p = α(kp0 − b0)p. (7.24)

(ii) There exists γ ∈ � such that

p0q − q0p = γ(kp0 − b0)p,
q0 − γb0

p0
≤ 0. (7.25)

(iii) There exist α > 0, γ ∈ � such that p0m−m0p = α(kp0−b0)p, p0q−q0p =

γ(kp0 − b0)p with q0−γb0
p0

> 0. Furthermore, k ≥
√

q0 − γb0

p0α
if p0k − b0 < 0,

or k ≤
√

q0 − γb0

p0α
if p0k − b0 > 0.

By combining the characterization of pseudoconvexity and pseudoconcavity
of the function of h, the following result on pseudolinearity is obtained.

Theorem 7.5.5. The function h is pseudolinear on S if and only if one of
the following conditions holds.
(i) p0m − m0p = 0.
(ii) There exists γ ∈ � such that p0q − q0p = γ(p0b − b0p) with q0 − γb0 = 0.
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(iii) There exist α, γ ∈ �, such that:
p0m − m0p = α(p0b − b0p), p0q − q0p = γ(p0b − b0p) with α q0−γb0

p0
< 0.

(iv) there exist k, α, γ ∈ �, k �= 0, such that:

b = kp, p0m−m0p = α(p0b− b0p), p0q − q0p = γ(p0b− b0p), α
q0 − γb0

p0
> 0,

and k ≥
√

q0 − γb0

p0α
if p0k − b0 < 0, or k ≤

√
q0 − γb0

p0α
if p0k − b0 > 0.

Proof. The proof follows taking into account of the results related to pseu-
doconvexity given in Theorem 7.5.1 and in Theorem 7.5.2 and of the ones
related to pseudoconcavity given in Theorem 7.5.3 and in Theorem 7.5.4.

Example 7.5.1. Consider the function

h(x1, x2) =
2x1 + 4x2 + 4
2x1 − 3x2 + 5

+
2
5x1 − 3

5x2 + 2
x1 + 2x2 + 1

on S = {(x1, x2) ∈ �2 : 2x1 − 3x2 + 5 > 0, x1 + 2x2 + 1 > 0}.
We have:

p0q − q0p = (−2, 3)T , p0m − m0p = (2, 32)T , p0b − b0p = (3, 13)T

so that (iii) of Theorem 7.5.1, holds with β = 1
2 , γ = −1, λ1 = λ2 = 1, and

thus the given function is pseudoconvex on S.
The obtained result can also be achieved by applying Charnes–Cooper’s
transformation z1 =

x1

2x1 − 3x2 + 5
, z2 =

x2

2x1 − 3x2 + 5
and its inverse

x1 =
5z1

1 − 2z1 + 3z2
, x2 =

5z2

1 − 2z1 + 3z2
.

The transformed function f(z1, z2) = 2z1 + 3z2 +
−2z1 + 3z2 + 2
3z1 + 13z2 + 1

+ 4 is

pseudoconvex on H+
1 = {(z1, z2) : z1 + 16z2 + 3 > 0, 3z1 + 13z2 + 1 > 0}

(see Example 7.3.2). It is easy to verify that the feasible set S is transformed
into S∗ = {(z1, z2) : 1−2z1 +3z2 > 0, 3z1 +13z2 +1 > 0}, which is contained
in H+

1 .

7.6 Exercises

7.1. Consider the quadratic fractional function f(x) =
1
2xT Qx + qT x + q0

dT x + d0

where Q =

⎡⎣−1 2 −1
2 −1 −1
−1 −1 2

⎤⎦ , q =

⎛⎝−3
3
0

⎞⎠ , d =

⎛⎝ −√
3

3 + 2
√

3
−3 −√

3

⎞⎠, d0 = −3−3
√

3,

q0 ∈ �.
Find q0 such that f is pseudoconvex on D = {x : dT x + d0 > 0}.
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7.2. Consider the quadratic fractional function f(x) =
1
2xT Qx + qT x + q0

dT x + d0

where Q =

⎡⎣−1 2 −1
2 −1 −1
−1 −1 2

⎤⎦ , q =

⎛⎝−4
−1
5

⎞⎠ , d =

⎛⎝−2
1
1

⎞⎠, d0 = 4, q0 ∈ �.

Find q0 such that f is pseudoconvex on D = {x : dT x + d0 > 0}.

7.3. Consider the function g(x) =
(aT x + a0)(kaT x + b0) + cT x + c0

dT x + d0
, d �= 0.

Prove that g is pseudoconvex on S = {x ∈ �n : dT x + d0 > 0} if and only if
one of the following conditions holds:
(i) k ≥ 0;
(ii) k < 0, ∃ γ, δ such that c = γa, d = δa and k(a0δ − d0)2 ≥ δ

[
d0γ − c0δ +

(a0k − b0)(a0δ − d0)
]
.

7.4. Consider the function f(x) =
1
2xT Ax + aT x + a0

(bT x + b0)2
, where A is an n × n

symmetric matrix, a, b ∈ �n, b �= 0, a0, b0 ∈ �, b0 �= 0. By assuming that f is
pseudoconvex on S = {x ∈ �n : bT x + b0 > 0}, show that A has at most one
negative eigenvalue.

7.5. Give an example which shows that the ratio between a quadratic convex
function and the square of an affine function is not convex.

7.6. Consider the function f(x) =
1
2xT Ax + aT x + a0

(bT x + b0)2
, where A is positive

definite, b �= 0, b0 �= 0.
Show that f is pseudoconvex on S = {x ∈ �n : bT x + b0 > 0} if and only if

2a0 − aT A−1a +
(b0 − bT A−1a)2

bT A−1b
≥ 0.

7.7. Give an example which shows that the pseudoconvexity of the function

f(x) =
1
2xT Ax

(bT x + b0)2
does not imply the convexity of f even if A is positive

definite.

7.8. Consider f(x) =
1
2xT Ax + aT x + a0

(bT x + b0)2
, where A is a nonsingular symmet-

ric matrix, b �= 0, b0 �= 0.
Show that f is pseudoconvex on S = {x ∈ �n : bT x + b0 > 0} if and only if
one of the following conditions holds:
(i) bT A−1b = 0 and 2a0 ≥ aT A−1a;

(ii) bT A−1b �= 0 and 2a0 − aT A−1a +
(b0 − bT A−1a)2

bT A−1b
≥ 0.
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7.9. Consider f(x) =
aT x + a0

(bT x + b0)2
, b �= 0, b0 �= 0. Show that f is pseudo-

convex on S = {x ∈ �n : bT x + b0 > 0} if and only if one of the following
conditions holds:
(i) a = kb and a0 − kb0 ≥ 0;
(ii) a = kb, k ≤ 0 and a0 − kb0 < 0.
In particular, show that in case (ii) f is a concave function while in case
(i) f is convex when k > 0.

7.10. Find a0 such that the function

f(x1, x2, x3) =
1
2x2

1 + x2
2 + 3

2x2
3 + 2x1x2 + x1 + 2x2 + a0

(x1 + 1)2

is pseudoconvex on S = {x ∈ �3 : x1 + 1 > 0}.
7.11. Find a0 such that the function

f(x1, x2, x3, x4) =
1
2x2

1 + 2x2
2 − x2

3 + 1
2x2

4 + 2x1x2 + x1 + 2x2 + x4 + a0

(2x1 + 4x2 − 2
√

2x3 + 2)2

is pseudoconvex on S = {x ∈ �3 : 2x1 + 4x2 − 2
√

2x3 + 2 > 0}.
7.12. Find b0 such that the function

f(x1, x2, x3) =
x2

1 + x2
2 − x2

3 + 2x1x2 + x1 + x2 − x3 + 1
(x3 + b0)2

is pseudoconvex on S = {x ∈ �3 : x3 + b0 > 0}.
7.13. Find a2 such that the function

f(x1, x2, x3) =
x2

1 + x2
3 + x1 + a2x2 + x3 + 1

(x2 + 1)2

is pseudoconvex on S = {x ∈ �3 : x2 + 1 > 0}.

7.14. By specifying Theorem 7.2.3, show that h(x) = aT x+
cT x + c0

dT x + d0
, d �= 0,

is pseudoconvex on H+ = {x ∈ �n : dT x + d0 > 0} if and only if one of the
following conditions holds:
(i) a = kd, k ≥ 0;
(ii) There exists t ∈ � such that c = td and c0 ≥ td0.

7.15. Find the maximal domains of pseudoconvexity of the following frac-
tional functions, by assuming the positivity of the denominator:

(a) f(x1, x2) = 3x1 + 2x2 +
9x1 − 4x2 + 15
x1 + 4x2 + 3

;



7.7 References 157

(b) f(x1, x2) = −5x1 + x2 +
20x1 − 7x2 + 10

2x1 − x2 + 8
;

(c) f(x1, x2) = −6x1 − 10x2 +
9x1 + 15x2 + 4
3x1 + 5x2 + 2

;

(d) f(x1, x2) = −x1 + 3x2 +
x1 + x2 − 1

−2x1 + 6x2 + 7
.

7.16. Find the maximals domain of pseudoconvexity of the following para-
metric fractional functions, by assuming the positivity of the denominator.

(a) f(x1, x2) = 4x1 + (6 + θ)x2 +
2x1 + 4x2 − 3
2x1 + 3x2 + 5

;

(b) f(x1, x2) = −x1 − x2 +
x1 + x2 + c0

2x1 + 2x2 + 3
.

7.17. Verify the pseudoconvexity of the functions

(a) f(x1, x2) =
2x1 − x2 + 2
x1 + 2x2 + 4

+
x1 + 2x2 + 5
3x1 + x2 + 5

,

(b) g(x1, x2) =
7x1 − x2 + 8
x1 + 2x2 + 4

+
−2x1 + x2 + 1
3x1 + x2 + 5

,

on the domain S = {(x1, x2) ∈ �2 : x1 + 2x2 + 4 > 0, 3x1 + x2 + 5 > 0}.

7.18. Find m0 such that f(x1, x2) =
2x1 + m0

x1 − x2 + 3
+

x1 − 3x2 + 7
x1 + x2 + 1

is

pseudoconvex on S = {(x1, x2) ∈ �2 : x1 − x2 + 3 > 0, x1 + x2 + 1 > 0}.
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8

Sequential Methods for Generalized Convex
Fractional Programs

8.1 Introduction

In spite of the relevance of the role played by generalized convexity in math-
ematical programming, research in finding efficient numerical methods for
solving generalized convex optimization problems has not yet been sufficiently
developed. The only text-book in which solution methods for pseudolin-
ear functions and generalized convex quadratic functions are proposed is
Martos’ [211].
In this chapter we shall deal with generalized fractional problems which can
be solved by means of simplex-like procedures and which have the advantage
of finding the optimal solution of the problem through a finite number of iter-
ations.
Due to the very important role that linear fractional problems have had in
the development of fractional programming, and in the various methods that
have appeared in the literature, in Sect. 8.2 we shall present the theoretical
properties together with the main solution methods.
In Sect. 8.3 we shall present the theoretical properties and a sequential method
for solving a problem whose objective function is the sum between a linear
and a linear fractional function which also allows us, together with Charnes–
Cooper’s transformation, to solve a problem that has as an objective the sum
of two linear fractional functions.
In Sect. 8.4 we shall consider two generalized multiplicative problems.
The algorithms described are based on the common idea of associating with
the problem a suitable parametric program which is easier to solve. This kind
of approach and some of its applications will be described in a general form
in Sect. 8.5.
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8.2 The Linear Fractional Problem

Linear fractional functions are perhaps the most popular for modelling objec-
tives in Optimization after, of course, linear and quadratic functions.
A linear fractional problem consists of maximizing (minimizing) the ratio of
two affine functions subject to linear constraints. From an analytical point of
view, a linear fractional problem may be described in the following standard
form:

PLF : max
x∈S

(
f(x) =

cT x + c0

dT x + d0

)
, S = {x ∈ �n : Ax = b, x ≥ 0}

where c, d ∈ �n, c0, d0 ∈ �, A is an m × n real matrix, b ∈ �m. We shall
assume d �= 0, d0 �= 0, dT x + d0 > 0 for all x ∈ S, and rankA = m < n.
Since the objective function f is pseudolinear, a local maximum point for
problem PLF is also global and at least one optimal solution (if one exists) is
reached at a vertex of S (see Corollary 4.6.2).
When the feasible set S is unbounded, the existence of an optimal solution
for PLF is not ensured; in this regard, the following theorem holds.

Theorem 8.2.1. Consider the linear fractional problem PLF and let L be
the supremum of f on S.
(i) L = max

x∈S
f(x) if and only if there exists a vertex x0 ∈ S such that L = f(x0);

(ii) if the supremum L is not attained, then there exists an extreme direction
u such that L = lim

t→+∞f(x0 + tu), where x0 ∈ S.

(iii) L = +∞ if and only if there exists an extreme direction u such that
dT u = 0, cT u > 0.

Proof. (i) If the supremum L is attained as a maximum, then there exists a
feasible point x̄ such that f(x̄) = L. Consider the linear problem

P̄ : max(cT x + c0), x ∈ S̄ = S ∩ {x ∈ �n : dT x + d0 = dT x̄ + d0}.
Obviously x̄ is an optimal solution for P̄ and, because of the linearity of the
problem, the maximum is reached at a vertex x̂ of S̄ which belongs to an edge
s of S starting from a vertex x0 ∈ S. Let x = x0 + tu, t ≥ 0, be the equation
of the ray containing s and consider the restriction ϕ(t) = f(x0 + tu), t ≥ 0.

The derivative ϕ′(t) =
cT u(dT x0 + d0) − dT u(cT x0 + c0)

(tdT u + dT x0 + d0)2
is constant in sign

so that, taking into account that x̂ belongs to the edge s, we necessarily have
ϕ′(t) ≤ 0, ∀t ≥ 0. If ϕ′(t) < 0, ∀t ≥ 0, we have x̂ = x0; if ϕ′(t) = 0, ∀t ≥ 0,
f is constant on s, so that the vertex x0 is optimal for PLF .
The converse statement is obvious.
(ii) Let {xn} ⊂ S be a sequence such that {f(xn)} converges to L and consider
the following sequence of linear problems:

Pn : max f(x), x ∈ Sn = S ∩ {x ∈ �n : dT x + d0 = dT xn + d0}.
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It is well-known that the supremum of the linear problem Pn is not finite if
and only if there exists a feasible point x0 and an extreme direction u, such
that lim

t→+∞f(x0 + tu) = +∞. In this case the supremum of PLF is +∞, too,

and (ii) holds; furthermore, lim
t→+∞f(x0 + tu) = +∞ implies that dT u = 0, so

that the extreme direction u is feasible for any Sn and thus the supremum of
Pn is +∞ for every n.
Consider now the case of a finite supremum for every n; this supremum is
attained at a vertex yn of Sn which belongs to an edge of S. Taking into
account that f(yn) ≥ f(xn), we have lim

n→+∞f(yn) = L. Since L is not attained,

{yn} is necessarily divergent in norm and f(yn) �= L for all n. Since S has a
finite number of edges (in particular, half-lines), there exists a subsequence of
{yn}, which, without loss of generality, we can assume to be the same sequence,
contained in a half-line whose equation is of the kind x = x0 + tu, t ≥ 0,
where x0 is a vertex of S. Let tn be such that yn = x0 + tnu. We have
lim

n→+∞f(yn) = lim
tn→+∞f(x0 + tnu) = L and (ii) holds.

(iii) If L is not attained, from (ii) there exist an extreme direction u and a

feasible point x0 such that L = lim
t→+∞f(x0 + tu) = lim

t→+∞
tcT u + cT x0 + c0

tdT u + dT x0 + d0
.

Obviously, we have L = +∞ if and only if dT u = 0 and cT u > 0.

Corollary 8.2.1. Let D be the set of optimal solutions for the linear problem
min
x∈S

(dT x + d0). Then, the supremum L of PLF is +∞ if and only if D is

unbounded and sup
x∈D

(cT x + c0) = +∞.

Proof. Note that D �= ∅ since the linear function dT x+d0 is lower bounded on
S. Let x0 ∈ D and assume L = +∞. From (iii) of Theorem 8.2.1 there exists
an extreme direction u such that dT u = 0, cT u > 0, so that the half-line
x = x0 + tu, t ≥ 0, is contained in D and we have sup

x∈D
(cT x + c0) = +∞.

Conversely, there exists a ray s ⊆ D of equation x = x0 + tu, t ≥ 0, such that
dT u = 0 and sup

x∈s
(cT x + c0) = +∞. This last equality implies that cT u > 0 so

that, from (iii) of Theorem 8.2.1, L = +∞.

Remark 8.2.1. When a linear fractional problem has no optimal solutions, it
may happen that the supremum is finite.

Consider, for instance, problem PLF with f(x1, x2) =
x1 + 2x2

x2 + 2
and S =

{(x1, x2) ∈ �2 : x1 − x2 ≤ 2, x1 ≥ 0, x2 ≥ 0}. It can be verified that
uT = (1, 1) is an extreme direction and the supremum (not attained) of the
problem is L = lim

t→+∞f(x̄ + tu) = 3 for every feasible point x̄ ∈ S.

Because of the potentially broad applications of linear fractional program-
ming, several solution methods have been suggested. The interested reader is
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referred to the book [269] and excellent bibliographies collected by Stancu–
Minasian in [264, 265, 266, 268] and by Schaible in [114, 249].
Below, we shall present a selection of such methods.
The pseudolinearity of the objective function of the linear fractional problem
PLF implies that the maximum value (if it is attained) is reached at a vertex.
Due to this property, it is possible to solve PLF by using a simplex-like proce-
dure, i.e., a technique similar to the Simplex Method in linear programming.
We shall use the following standard notations.
Given a basic feasible solution xi (which is a vertex of S) and the correspond-
ing basis B, we shall partition the matrix A as A = [B : N ] and the vectors
x, c and d as xT = (xT

B , xT
N ), cT = (cT

B , cT
N ), dT = (dT

B, dT
N ).

Set:
c̄0 = cT

BB−1b + c0, d̄0 = dT
BB−1b + d0,

c̄T
N = cT

N − cT
BB−1N , d̄T

N = dT
N − dT

BB−1N ,
c̄j and d̄j the j-th component of c̄N and d̄N , respectively.
The function f , expressed in terms of the basic and non-basic variables, is

given by f(xB, xN ) = f(B−1b − B−1NxN , xN ) =
c̄T
NxN + c̄0

d̄T
NxN + d̄0

.

8.2.1 Isbell–Marlow’s Algorithm

The first sequential method for solving the linear fractional problem PLF was
suggested by Isbell and Marlow [144]. The basic idea of the method, which
works on a compact feasible region, is to generate a finite sequence of ver-
tices x1, ..., xh, starting from an initial basic feasible solution x0, such that
f(x0) < f(x1) < ... < f(xh) = max

x∈S
f(x).

Each vertex xi+1, i = 0, ..., h− 1, is an optimal solution for the linear problem
max
x∈S

ψi(x) where ψi(x) = cT x + c0 − f(xi)(dT x + d0).

The method is based on the theoretical property stated in the following
theorem.

Theorem 8.2.2. x∗ is optimal for problem PLF if and only if it is optimal
for the linear problem P ∗ : max

x∈S
[ψ∗(x) = cT x + c0 − f(x∗)(dT x + d0)].

Proof. Let x∗ be optimal for PLF and assume, by contradiction, the existence
of x̄ ∈ S such that ψ∗(x̄) > ψ∗(x∗) = 0. Then, we have f(x̄) > f(x∗) which
contradicts the optimality of x∗.
Conversely, if x∗ is optimal for P ∗, then ψ∗(x) ≤ ψ∗(x∗) = 0, ∀x ∈ S, so that
f(x) ≤ f(x∗), ∀x ∈ S, and this implies the optimality of x∗ for PLF .

Theorem 8.2.2 implies that if the vertex xi+1 is such that ψi(xi+1) > 0, then
f(xi+1) > f(xi), while if ψi(xi+1) = 0 then xi+1 is an optimal solution for
PLF .
Isbell–Marlow’s algorithm can be summarized as follows:
Step 0. Find a basic feasible solution x0. Set i = 0, xi = x0 and go to Step 1.
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Step 1. Find an optimal solution xi+1 for the linear problem max
x∈S

ψi(x). If

ψi(xi+1) = 0, Stop: xi+1 is an optimal solution for PLF , otherwise go to Step 2.
Step 2. Set i = i + 1 and go to Step 1.
In order to point out how Isbell–Marlow’s method works, as well as the others
which will be described in the next subsections, we shall refer to the following
linear fractional problem in the standard form.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max f(x1, ..., x6) =
3x1 − x2 − 22
x1 + 2x2 + 2

x1 − 2x2 + x3 = 3
5x1 + 3x2 + x4 = 54

x2 + x5 = 8
−2x1 + x2 + x6 = 4

xi ≥ 0, i = 1, .., 6

(8.1)

Starting from the initial basic solution x0 = (0, 0, 3, 54, 8, 4)T , we must solve
the problem max

x∈S
[ψ0(x) = 3x1−x2−22−f(x0)(x1 +2x2 +2) = 14x1 +21x2].

By applying the Simplex Algorithm we obtain the following optimal table.

−252 0 0 0 − 63
5 − 14

5 0

x3 13 0 0 1 − 1
5

13
5 0

x6 8 0 0 0 2
5 − 11

5 1

x1 6 1 0 0 1
5 − 3

5 0

x2 8 0 1 0 0 1 0

The new basic solution is x1 = (6, 8, 13, 0, 0, 8)T and, since ψ0(x1) = 252 > 0,
we must solve the linear problem max

x∈S
ψ1(x), where ψ1(x) = 3x1 − x2 − 22−

f(x1)(x1 + 2x2 + 2) = 7
2x1 − 21.

Starting from the basic solution x1, we get the following optimal table
corresponding to the basic solution x2 = (9, 3, 0, 0, 5, 19)T .

− 21
2 0 0 − 21

26 − 7
13 0 0

x5 5 0 0 5
13 − 1

13 1 0

x6 19 0 0 11
13

3
13 0 1

x1 9 1 0 3
13

2
13 0 0

x2 3 0 1 − 5
13

1
13 0 0

Since ψ1(x2) = 21
2 > 0, we must solve the linear problem max

x∈S
ψ2(x), where

ψ2(x) = 3x1 − x2 − 22 − f(x2)(x1 + 2x2 + 2) = 49
17x1 − 21

17x2 − 378
17 . Starting
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from the basic solution x2, we get the following optimal table corresponding
to the basic solution x3 = x2 = (9, 3, 0, 0, 5, 19)T .

0 0 0 − 252
221 − 77

221 0 0

x5 5 0 0 5
13 − 1

13 1 0

x6 19 0 0 11
13

3
13 0 1

x1 9 1 0 3
13

2
13 0 0

x2 3 0 1 − 5
13

1
13 0 0

Since ψ2(x3) = 0, x3 is the optimal solution for the given linear fractional
problem.

8.2.2 Charnes–Cooper’s Algorithm

The idea of the method suggested by Charnes and Cooper in [64] is to use a
variable transformation in order to reduce the linear fractional problem to a
linear one.
Let

y = tx, t =
1

dT x + d0
(8.2)

When S is bounded, t is positive for all x ∈ S so that, by applying (8.2) to
problem PLF , we obtain the following linear problem:

PL : max
(y,t)∈SL

(cT y + c0t)

where SL = {(y, t) ∈ �n+1 : Ay − bt = 0, dT y + d0t = 1, y ≥ 0, t ≥ 0}.
Problem PLF and problem PL are equivalent in the sense stated in the
following theorem.

Theorem 8.2.3. Consider problem PLF and assume that the feasible set S is
bounded.
(i) If x̂ is an optimal solution for PLF , then (ŷ, t̂) is an optimal solution for

PL where t̂ =
1

dT x̂ + d0
, ŷ = t̂x̂.

(ii) If (ŷ, t̂) is an optimal solution for PL, then t̂ > 0 and x̂ =
ŷ

t̂
is an optimal

solution for PLF .

Proof. Firstly, note that if (y, t) ∈ SL, then t > 0. If not, let (ȳ, 0) ∈ SL and
consider a sequence {(yn, tn)} ⊂ SL such that yn → ȳ, tn → 0+. Then, the
sequence {xn = yn

tn
} ⊂ S is such that lim

n→+∞ ‖ xn ‖ = lim
n→+∞

1
tn

‖ yn ‖ = +∞
and this contradicts the boundedness of S. Consequently, to any element
(y, t) ∈ SL there corresponds an element x =

y

t
∈ S and vice versa.
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Since
cT x + c0

dT x + d0
=

cT y + c0t

dT y + d0t
= cT y + c0t, ∀ x ∈ S, ∀ (y, t) ∈ SL, y = tx,

t =
1

dT x + d0
, (i) and (ii) follow.

Now, we shall apply Charnes–Cooper’s algorithm for solving Problem (8.1)
whose feasible region is bounded.

Set y = tx, t =
1

x1 + 2x2 + 2
. We have the following linear problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (3y1 − y2 − 22t)
y1 − 2y2 + y3 − 3t = 0
5y1 + 3y2 + y4 − 54t = 0
y2 + y5 − 8t = 0
−2y1 + y2 + y6 − 4t = 0
y1 + 2y2 + 2t = 1
yi ≥ 0, t ≥ 0, i = 1, .., 6

(8.3)

Starting from the initial basic feasible solution (y0, t0) = (0, 0, 3
2 , 27, 4, 2, 1

2 ),
we obtain the following table.

11 14 21 0 0 0 0 0

y3
3
2

5
2 1 1 0 0 0 0

y4 27 32 57 0 1 0 0 0

y5 4 4 9 0 0 1 0 0

y6 2 0 5 0 0 0 1 0

t 1
2

1
2 1 0 0 0 0 1

By applying the usual simplex algorithm we obtain the following tables.

13
5 14 0 0 0 0 − 21

5 0

y3
11
10

5
2 0 1 0 0 − 1

5 0

y4
21
5 32 0 0 1 0 − 57

5 0

y5
2
5 4 0 0 0 1 − 9

5 0

y2
2
5 0 1 0 0 0 1

5 0

t 1
10

1
2 0 0 0 0 − 1

5 1

6
5 0 0 0 0 − 7

2
21
10 0

y3
17
20 0 0 1 0 − 5

8
37
40 0

y4 1 0 0 0 1 −8 3 0

y1
1
10 1 0 0 0 1

4 − 9
20 0

y2
2
5 0 1 0 0 0 1

5 0

t 1
20 0 0 0 0 − 1

8
1
40 1
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1
2 0 0 0 − 7

10
21
10 0 0

y3
13
24 0 0 1 − 37

120
221
120 0 0

y6
1
3 0 0 0 1

3 − 8
3 1 0

y1
1
4 1 0 0 3

20 − 19
20 0 0

y2
1
3 0 1 0 − 1

15
8
15 0 0

t 1
24 0 0 0 − 1

120 − 7
120 0 1

− 2
17 0 0 − 252

221 − 77
221 0 0 0

y5
5
17 0 0 120

221 − 37
221 1 0 0

y6
19
17 0 0 320

221 − 25
221 0 1 0

y1
9
17 1 0 114

221 − 2
221 0 0 0

y2
3
17 0 1 − 64

221
5

221 0 0 0

t 1
17 0 0 7

221 − 4
221 0 0 1

The basic feasible solutions generated by Charnes–Cooper’s algorithm are:
(y0, t0) = (0, 0, 3

2 , 27, 4, 2, 1
2 ), (y1, t1) = (0, 2

5 , 11
10 , 21

5 , 2
5 , 0, 1

10 ),

(y2, t2) = ( 1
10 , 2

5 , 17
20 , 1, 0, 0, 1

20 ), (y3, t3) = (1
4 , 1

3 , 13
24 , 0, 0, 1

3 , 1
24 ),

(y4, t4) = ( 9
17 , 3

17 , 0, 0, 5
17 , 19

17 , 1
17 ).

The last basic solution is optimal for the linear problem PL.
The basic feasible solutions of the feasible region S associated with the pre-
vious ones are:
x0 = y0

t0
= (0, 0, 3, 54, 8, 4)T , x1 = y1

t1
= (0, 4, 11, 42, 4, 0)T ,

x2 = y2

t2
= (2, 8, 17, 20, 0, 0)T , x3 = y3

t3
= (6, 8, 13, 0, 0, 8)T ,

x4 = y4

t4
= (9, 3, 0, 0, 5, 19)T .

The last basic solution is optimal for the linear fractional problem (8.1).

8.2.3 Martos’ Algorithm

Martos’ algorithm, suggested in [207], together with Charnes–Cooper’s are the
best known sequential methods for solving a linear fractional problem. The
algorithm works on a compact feasible set and generates a finite sequence of
vertices corresponding to increasing levels of the objective function, the last
of which is optimal for the problem. The optimality of a vertex xi is tested
by means of the necessary and sufficient condition (8.4) which is equivalent,
taking into account the introduced notations, to the one stated in Theorem
4.7.2

γ̄T
N = d̄0c̄

T
N − c̄0d̄

T
N ≤ 0. (8.4)

The algorithm may be described as follows.
Step 0. Compute a basic feasible solution x0; go to Step 1.
Step 1. Compute γ̄N and set J = {j : γj > 0}. If J = ∅, Stop, x0 is an
optimal solution. Otherwise, select k such that γ̄k = max

i∈J
{γ̄i}; go to Step 2.

Step 2. The non-basic variable xk enters the basis by means of a primal sim-
plex iteration. Let x0 be the new basic solution and go to Step 1.

Now, we shall apply Martos’ algorithm to solve Problem (8.1).
The simplex table associated with the vertex x0 = (0, 0, 3, 54, 8, 4)T is the
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following

22 3 −1 0 0 0 0

−2 1 2 0 0 0 0

x3 3 1 −2 1 0 0 0

x4 54 5 3 0 1 0 0

x5 8 0 1 0 0 1 0

x6 4 −2 1 0 0 0 1

where in the first row and in the second row we can read the reduced costs c̄N

and d̄N of the numerator and of the denominator of the objective function,
respectively.
We have γ̄T

N = 2(3,−1) + 22(1, 2) = (28, 42), J = {1, 2}. Since γ̄2 > γ̄1, the
non-basic variable x2 enters the basis. We obtain:

26 1 0 0 0 0 1

−10 5 0 0 0 0 −2

x3 11 −3 0 1 0 0 2

x4 42 11 0 0 1 0 −3

x5 4 2 0 0 0 1 −1

x2 4 −2 1 0 0 0 1

We have γ̄T
N = 10(1, 1) + 26(5,−2) = (140,−42), J = {1}, so that the non-

basic variable x1 enters the basis. We obtain:

24 0 0 0 0 − 1
2

3
2

−20 0 0 0 0 − 5
2

1
2

x3 17 0 0 1 0 3
2

1
2

x4 20 0 0 0 1 − 11
2

5
2

x1 2 1 0 0 0 1
2 − 1

2

x2 8 0 1 0 0 1 0

We have γ̄T
N = 20(− 1

2 , 3
2 ) + 24(− 5

2 , 1
2 ) = (−70, 42), J = {6}, so that the

non-basic variable x6 enters the basis. We obtain:
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12 0 0 0 − 3
5

14
5 0

−24 0 0 0 − 1
5 − 7

5 0

x3 13 0 0 1 − 1
5

13
5 0

x6 8 0 0 0 2
5 − 11

5 1

x1 6 1 0 0 1
5 − 3

5 0

x2 8 0 1 0 0 1 0

We have γ̄T
N = 24(− 3

5 , 14
5 ) + 12(− 1

5 ,− 7
5 ) = (− 84

5 , 252
5 ), J = {5}, so that the

non-basic variable x5 enters the basis. We obtain:

−2 0 0 − 14
13 − 5

13 0 0

−17 0 0 7
13 − 4

13 0 0

x5 5 0 0 5
13 − 1

13 1 0

x6 19 0 0 11
13

3
13 0 1

x1 9 1 0 3
13

2
13 0 0

x2 3 0 1 − 5
13

1
13 0 0

We have γ̄T
N = 17(− 14

13 ,− 5
13 ) − 2( 7

13 ,− 4
13 ) = (− 252

13 ,− 77
13 ). Since J = ∅, the

basic solution x4 = (9, 3, 0, 0, 5, 19)T is optimal.
Note that the basic feasible solutions generated by Martos’ algorithm are
x0 = (0, 0, 3, 54, 8, 4)T , x1 = (0, 4, 11, 42, 4, 0)T , x2 = (2, 8, 17, 20, 0, 0)T ,
x3 = (6, 8, 13, 0, 0, 8)T , x4 = (9, 3, 0, 0, 5, 19)T .

Remark 8.2.2. It is worth noting that Wagner and Yuan in [277] show that
Martos’ algorithm is equivalent to Charnes–Cooper’s algorithm in the sense
that both methods lead to an identical sequence of pivot operations starting
from the same basic feasible solution. This property can be verified by means
of problem (8.1) solved in Sect. 8.2.2 with Charnes–Cooper’s algorithm and
in this Subsection with Martos’ algorithm.
Bitran in [26] shows that Martos’s algorithm is better than Isbell–Marlow’s
algorithm in terms of the number of pivot operations.

8.2.4 Cambini–Martein’s Algorithm

This method differs from Martos’ algorithm as regards the choice of the
entering variable in the pivot operation. An important advantage to the new
method with respect to the previous ones, is that the suggested choice of the
entering variable allows us to solve the linear fractional problem for every
feasible region (bounded or unbounded).
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In order to describe the algorithm, we shall introduce the concept of optimal
level solution which will be developed in a general setting in Sect. 8.5.
A point x̄ ∈ S is said to be an optimal level solution if it solves the linear
problem max(cT x + c0), x ∈ S ∩ {x ∈ �n : dT x + d0 = dT x̄ + d0}.
Obviously, any optimal solution for the linear fractional problem (if one exists)
is also an optimal level solution.
Cambini–Martein’s algorithm, suggested in [33], generates a finite sequence
of vertices x0, ..., xh which are optimal level solutions which correspond to
increasing levels of the objective function f , such that f(xh) = max

x∈S
f(x) or

the supremum of the linear fractional problem is the limit lim
t→+∞f(xh + tu),

where u is a suitable extreme direction starting from xh.
In correspondence to a basic feasible solution xi, using the usual notations,
consider the vector γ̄N given by (8.4) and the set J = {j : γ̄j > 0}, where γ̄j

is the j-th component of γ̄N ; the following theorem holds.

Theorem 8.2.4. Let xi be a vertex of S which is also an optimal level solu-
tion. Assume J �= ∅ and d̄j > 0 for all j ∈ J . Then:
(i) Every point of the edge sk corresponding to the non-basic variable xk is an
optimal level solution if and only if the index k is such that

c̄k

d̄k
= max

j∈J

c̄j

d̄j
(8.5)

(ii) The problem max
cT x + c0

dT x + d0
, x ∈ S∩{x ∈ �n : dT x = dT x̄} is equivalent

to the problem max
cT x + c0

dT x + d0
, x ∈ S ∩ {x ∈ �n : dT x ≤ dT x̄} for every

x̄ ∈ sk.

Proof. (i) Let H = {x ∈ �n : dT x + d0 = d̄0 + θ}, θ > 0 and consider the
linear problem max(cT x + c0), x ∈ S ∩ H .
Let wj be the intersection between the hyperplane H and the edge sj starting

from the vertex xi. The value of the function cT x + c0 at wj is
c̄j

d̄j
θ + c̄0.

Since h /∈ J implies that the function f is not increasing along the edge sh,
we have f(wh) ≤ f(xi) < f(wj) for all h /∈ J and for all j ∈ J , so that

max
x∈S∩H

f(x) = max
j∈J

f(wj) =
1

d̄0 + θ
max
j∈J

(
c̄j

d̄j
θ + c̄0).

Taking into account that θ > 0, in the last equality the maximum is reached
at an index k, thus verifying (8.5).
(ii) The thesis follows by noting that the function f is increasing along the
edge sk.
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The algorithm starts solving the linear problem P0 : min
x∈S

(dT x + d0). Tak-

ing into account Corollary 8.2.1, the supremum of PLF is +∞ if and only
if sup

x∈D
(cT x + c0) = +∞, otherwise an optimal solution x0 of max

x∈D
(cT x + c0)

is an optimal level solution corresponding to the minimum value m of the
denominator. Because of this, if J �= ∅, every increasing direction corresponds
to an increasing level of the denominator so that d̄j > 0 for all j ∈ J and,
consequently, (8.5) can be applied in order to find the index k. The non-basic
variable xk enters the basis by performing a pivot operation and a new opti-
mal level solution is found. If it is not possible to perform a pivot operation,
then the algorithm stops.
In general, by applying Theorem 8.2.4, a finite sequence of optimal level solu-
tions x0, .., xi, .., xh is generated (h may be equal to zero).
With respect to xh, if J = ∅, then it is an optimal solution for PLF , otherwise
the edge sk associated with the index k determined by (8.5) is a ray.
The generated sequence of optimal level solutions and the ray sk verify the

following properties, where X =
h−1⋃
i=0

[xi, xi+1] ∪ sk:

• For every x̄ ∈ X , f(x̄) = maxf(x), x ∈ S ∩ {x ∈ �n : dT x ≤ dT x̄};
• If dT x̂ < dT x̃, x̂, x̃ ∈ X , then f(x̂) < f(x̃);
• For every feasible level ξ of the denominator there exists x̄ ∈ X such that

f(x̄) = maxf(x), x ∈ S ∩ {x ∈ �n : dT x + d0 = ξ}.
If xh is not an optimal solution of PLF , then the supremum is not attained
and we have

sup
x∈S

f(x) = sup
x∈sk

f(x) = lim
xk→+∞

c̄kxk + c̄0

d̄kxk + d̄0
=

c̄k

d̄k
.

In fact, assume the existence of x∗ ∈ S such that f(x∗) > sup
x∈sk

f(x) and

consider the level ξ∗ = dT x∗ + d0. Let x̂ ∈ X be an optimal solution for
the problem maxf(x), x ∈ S ∩ {x ∈ �n : dT x + d0 = ξ∗}. Since f is
increasing on X , we have sup

x∈sk

f(x) > f(x̂) ≥ f(x∗) and this is a contra-

diction.
The main steps of the algorithm may be described as follows.
Step 0. Solve the problem P0 : min

x∈S
(dT x + d0). If the optimal vertex x0 of

P0 is unique, then set i = 0 and go to Step 1. Otherwise, solve the problem
P1 : max(cT x + c0), x ∈ S ∩ {x ∈ �n : dT x = dT x0}. If P1 does not have
optimal solutions, then Stop: sup

x∈S
f(x) = +∞. Otherwise let x0 be an optimal

vertex of P1. Set i = 0 and go to Step 1.
Step 1. Compute γ̄N = d̄0c̄N − c̄0d̄N and set J = {j : γ̄j > 0}. If J = ∅, Stop:

xi is an optimal solution for PLF ; otherwise let k be such that
c̄k

d̄k
= max

j∈J

c̄j

d̄j

and go to Step 2.



8.2 The Linear Fractional Problem 171

Step 2. Compute uk = B−1Nk. If uk ≤ 0, then Stop: sup
x∈S

f(x) =
c̄k

d̄k
, other-

wise perform a primal simplex iteration with xk as an entering variable. Let
xi+1 be the new basic solution. Set i = i + 1 and go to Step 1.

Consider Problem (8.1) again. The denominator x1 + x2 + 2 of the objec-
tive function reaches its minimum value at x0 = (0, 0, 3, 54, 8, 4)T which is the
only solution so that it is the initial optimal level solution. The simplex table
associated with x0 is

22 3 −1 0 0 0 0
−2 1 2 0 0 0 0

x3 3 1 −2 1 0 0 0
x4 54 5 3 0 1 0 0
x5 8 0 1 0 0 1 0
x6 4 −2 1 0 0 0 1

where in the first row and in the second row we can read the reduced costs c̄N

and d̄N of the numerator and of the denominator of the objective function,
respectively.

We have γ̄T
N = (28, 42), J = {1, 2}. Since max

j∈J

c̄j

d̄j
=

c̄1

d̄1
, the non-basic variable

x1 enters the basis. We obtain

13 0 5 −3 0 0 0
−5 0 4 −1 0 0 0

x1 3 1 −2 1 0 0 0
x4 39 0 13 −5 1 0 0
x5 8 0 1 0 0 1 0
x6 10 0 −3 2 0 0 1

We have γ̄T
N = 5(5,−3)+13(4,−1) = (77,−28), J = {2}, so that the non-basic

variable x2 enters the basis. We obtain

−2 0 0 − 14
13 − 5

13 0 0

−17 0 0 7
13 − 4

13 0 0

x1 9 1 0 3
13

2
13 0 0

x2 3 0 1 − 5
13

1
13 0 0

x5 5 0 0 5
13 − 1

13 1 0

x6 19 0 0 11
13

3
13 0 1

We have γ̄T
N = 17(− 14

13 ,− 5
13 ) − 2( 7

13 ,− 4
13 ) = (− 252

13 ,− 77
13 ).

Since J = ∅, x2 = (9, 3, 0, 0, 5, 19)T is an optimal solution for the problem.
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Remark 8.2.3. As we have already pointed out, Cambini–Martein’s algorithm
differs from Martos’ algorithm in the choice of the entering variable in the
pivot operation. By means of this different choice the average number of ver-
tices examined by Cambini–Martein’s algorithm is, almost always, lower than
the number of vertices generated by Martos’ algorithm (see [102]).

8.2.5 The Case of an Unbounded Feasible Region

As we have already remarked, Cambini–Martein’s algorithm works on every
feasible set. In this regard, consider the following two examples related to
linear fractional problems having an unbounded feasible region. In the former
an optimal solution exists, while in the latter the supremum is finite but not
attained.

Example 8.2.1. Consider the linear fractional problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max

2x1 + 3x2 − 1
x1 + 2x2 + 2

−6x1 + x2 + x3 = 2
x1 − 2x2 + x4 = 4
5x1 − x2 + x5 = 47
xi ≥ 0, i = 1, .., 5

The denominator of the objective function reaches its minimum value at the
vertex x0 = (0, 0, 2, 4, 47)T which is the only solution so that x0 is the initial
optimal level solution. The simplex table associated with x0 is

1 2 3 0 0 0
−2 1 2 0 0 0

x3 2 −6 1 1 0 0
x4 4 1 −2 0 1 0
x5 47 5 −1 0 0 1

We have γ̄T
N = (5, 8), J = {1, 2} and max

j∈J

c̄j

d̄j
=

c̄1

d̄1
. The non-basic variable x1

enters the basis. We obtain:

−7 0 7 0 −2 0
−6 0 4 0 −1 0

x3 26 0 −11 1 6 0
x1 4 1 −2 0 1 0
x5 27 0 9 0 −5 1

We have γ̄T
N = (14,−5), J = {2}, so that the non-basic variable x2 enters the

basis. We obtain:
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−28 0 0 0 17
9 − 7

9

−18 0 0 0 11
9 − 4

9

x3 59 0 0 1 − 1
9

11
9

x1 10 1 0 0 − 1
9

2
9

x2 3 0 1 0 − 5
9

1
9

We have γ̄T
N = (− 2

9 ,− 14
9 ). Since J = ∅, the vertex x2 = (10, 3, 59, 0, 0)T is the

optimal solution for the given problem.

Example 8.2.2. Consider the linear fractional problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

2x1 + 3x2 − 1
x1 + 2x2 + 2

−6x1 + x2 + x3 = 2
x1 − 2x2 + x4 = 4
xi ≥ 0, i = 1, .., 4

Starting from the initial optimal level solution x0 = (0, 0, 2, 4)T , the algorithm
generates the optimal level solution x1 = (4, 0, 26, 0)T which corresponds to
the following simplex table.

−7 0 7 0 −2
−6 0 4 0 −1

x3 26 0 −11 1 6
x1 4 1 −2 0 1

We have γ̄T
N = (14,−5), J = {2}. Since the column associated with x2 is

(−11,−2)T , it is not possible to perform a primal simplex iteration and the

given problem does not have any optimal solutions. The supremum is
c̄2

d̄2
=

7
4

which is reached along the ray of equation x = x1 + ku, k ≥ 0, where uT =
(2, 1, 11, 0).

Remark 8.2.4. Regarding Charnes–Cooper’s algorithm, when the feasible re-
gion is unbounded it may happen that a point of the kind (ȳ, 0) becomes
feasible for the linear problem PL. In this case Charnes–Cooper’s transforma-
tion is meaningless. Nevertheless, when (ȳ, 0) is an optimal solution for PL

(this happens if and only if the supremum of PLF is finite and not attained),
it is possible to establish a connection between (ȳ, 0) and an extreme direction
u of S such that sup

x∈S
f(x) = lim

k→+∞
f(x̄ + ku), x̄ ∈ S. This connection will be

shown by solving the linear fractional problem given in Example 8.2.2.
By means of Charnes–Cooper’s transformation, the problem is transformed
into the following linear problem:
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PL :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max (2y1 + 3y2 − t)

−6y1 + y2 + y3 − 2t = 0
y1 − 2y2 + y4 − 4t = 0
y1 + 2y2 + 2t = 1

yi ≥ 0, t ≥ 0, i = 1, .., 4

Starting from the initial basic solution (0, 0, 1, 2, 1
2 )T , we obtain the following

simplex table.
1
2

5
2 4 0 0 0

y3 1 −5 3 1 0 0
y4 2 3 2 0 1 0
t 1

2
1
2 1 0 0 1

By applying the simplex algorithm, the following tables are obtained.

− 5
6

55
6 0 − 4

3 0 0

y2
1
3 − 5

3 1 1
3 0 0

y4
4
3

19
3 0 − 2

3 1 0

t 1
6

13
6 0 − 1

3 0 1

− 20
13 0 0 1

13 0 − 55
13

y2
6
13 0 1 1

13 0 10
13

y4
11
13 0 0 4

13 1 − 38
13

y1
1
13 1 0 − 2

13 0 6
13

− 7
4 0 0 0 − 1

4 − 7
2

y2
1
4 0 1 0 − 1

4
3
2

y3
11
4 0 0 1 13

4 − 19
2

y1
1
2 1 0 0 1

2 −1

The optimal solution is (ȳ, 0) where ȳT = (1
2 , 1

4 , 11
4 , 0). Every vector u propor-

tional to ȳ is a direction such that lim
k→+∞

f(x̄ + ku) = sup
x∈S

f(x), x̄ ∈ S and the

optimal value 7
4 of PL is the supremum of PLF .

Remark 8.2.5. Unlike Charnes–Cooper’s algorithm, Isbell–Marlow’s algorithm
and Martos’ algorithm cannot be applied in the unbounded case. In fact, by
applying Isbell–Marlow’s algorithm to the linear fractional problem given in
Example 8.2.1, starting from x0 = (0, 0, 2, 4, 47)T , we have sup

x∈S
ψ0(x) = +∞

even if the linear fractional problem has optimal solutions.
With respect to Martos’ algorithm, starting from x0 and taking into account
that γ̄2 > γ̄1, the non-basic variable x2 enters the basis obtaining the following
simplex table.

−5 20 0 −3 0 0
−6 13 0 −2 0 0

x2 2 −6 1 1 0 0
x4 8 −11 0 2 1 0
x5 49 −1 0 1 0 1

We have γ̄T
N = (55,−8), J = {1} but the variable x1 cannot enter the basis.

The value 5
6 is the limit of the linear fractional function along the feasi-

ble ray of equation x = x1 + ku, k ≥ 0, where x1 = (0, 2, 0, 8, 49)T and
u = (0, 6, 0, 11, 1)T . This value is not the supremum of the function which is
attained as a maximum at x2 = (10, 3, 59, 0, 0)T .
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Consequently, the algorithm suggested by Isbell and Marlow and the one
suggested by Martos do not process the linear fractional problem in the
unbounded case.

8.3 A Generalized Linear Fractional Problem

In this section we shall present a sequential method for solving an optimization
problem whose objective function is the sum between a linear and a linear
fractional function. This method, together with the use of Charnes–Cooper’s
transformation, will also allow us to solve a problem that has as an objective
function the sum of two linear fractional functions (see Sect. 8.3.2).
Consider the problem

P : min
(

f(x) = aT x +
cT x + c0

dT x + d0

)
, x ∈ S = {x ∈ �n : Ax = b, x ≥ 0}

where a, c, d ∈ �n, d �= 0, c0, d0 ∈ �, A is an m × n real matrix,
rankA = m < n, b ∈ �m, and dT x + d0 > 0 for all x ∈ S.
When a = 0, problem P reduces to the linear fractional problem considered
in Sect. 8.2. For this reason, we shall assume a �= 0.
Sequential methods for solving problem P without any assumption of gen-
eralized convexity on f have been suggested by some authors [34, 173, 202].
Recently, the algorithm suggested in [34] has been specified when f is pseu-
doconvex [60]. Before describing this algorithm we shall point out some
theoretical properties of problem P .

Theorem 8.3.1. Let � be the infimum of problem P .
(i) � is attained as a minimum if and only if there exists a feasible point x0

belonging to an edge of S such that f(x0) = �.
(ii) If � is not attained as a minimum, then there exists a feasible point x0

and an extreme direction u such that � = lim
t→+∞f(x0 + tu).

(iii) � = −∞ if and only if there exists a feasible point x0 and an extreme
direction u such that � = lim

t→+∞f(x0 + tu) = −∞.

Proof. (i) If the infimum is attained as a minimum, then there exists a feasible
point x̄ such that � = f(x̄). Consider the problem

P̄ : min f(x), x ∈ S̄ = S ∩ {x ∈ �n : dT x + d0 = dT x̄ + d0}.

Obviously x̄ is an optimal solution for P̄ and since P̄ is a linear problem the
minimum is also reached at a vertex of S̄ which belongs to an edge of S. The
converse statement is obvious.
(ii) The proof is similar to the one given in (ii) of Theorem 8.2.1.
(iii) This follows immediately from (i) and (ii).
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The pseudoconvexity of f on D = {x ∈ �n : dT x + d0 > 0} is equivalent to
stating (see Corollary 7.3.1) that f assumes one of the following forms:

(I) f(x) = αdT x +
cT x + c0

dT x + d0
, α > 0

(II) f(x) = aT x +
c0 − γd0

dT x + d0
+ γ, c0 − γd0 > 0.

The functions in (I) and (II) behave differently with respect to the infimum,
in the sense that when the infimum is not attained, in the first case it is −∞,
while in the second case it may also be finite. In this regard, the following
theorems hold.

Theorem 8.3.2. Consider problem P where a = αd, α > 0. Then the infi-
mum of P is −∞ if and only if there exists an extreme direction u such that
dT u = 0, cT u < 0. In any other case the infimum is attained as a minimum.

Proof. Let x0 be a feasible point and let u be an extreme direction. Consider

the restriction f(x0 + tu) = αtdT u + αdT x0 +
tcT u + cT x0 + c0

tdT u + dT x0 + d0
. Since x =

x0 + tu ∈ S, ∀t ≥ 0, we necessarily have dT u ≥ 0.
We have lim

t→+∞f(x0 + tu) = +∞ if and only if dT u > 0 or dT u = 0, cT u > 0;

the limit is −∞ if and only if dT u = 0, cT u < 0 and it is finite if and only if
dT u = cT u = 0. In this last case, f(x0 + tu) = f(x0) for all t ≥ 0. The thesis
follows from Theorem 8.3.1.

Theorem 8.3.3. Consider problem P where c = γd, c0 − γd0 > 0.
(i) The infimum of P is −∞ if and only if there exists an extreme direction
u such that aT u < 0.
(ii) The infimum is finite and not attained as a minimum if and only if there
exists an extreme direction u such that aT u = 0, dT u > 0, and there does not
exist an extreme direction v such that aT v < 0.
In any other case the infimum is attained as a minimum.

Proof. Let u be an extreme direction and consider the restriction

f(x0 + tu) = taT u + aT x0 +
c0 − γd0

tdT u + dT x0 + d0
+ γ

where x0 is a feasible point.
We have lim

t→+∞f(x0 + tu) = +∞ if and only if aT u > 0; the limit is −∞
if and only if aT u < 0 and it is finite and less than f(x0) if and only if
aT u = 0, dT u > 0. The thesis follows from Theorem 8.3.1.

8.3.1 Sequential Methods

The obtained theoretical properties allow us to establish an algorithm for
solving problem P . The idea of the algorithm is to associate with problem P
the following linear parametric problem:
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P (θ) : min
x∈S(θ)

(
aT x +

cT x + c0

dT x + d0

)
, S(θ) = S ∩ {x ∈ �n : dT x + d0 = δ0 + θ}

where δ0 = min
x∈S

(dT x + d0).

By setting Θ = {θ : S(θ) �= ∅}, we have

inf
x∈S

f(x) = inf
θ∈Θ

inf
x∈S(θ)

z(θ) (8.6)

where in case (I)

z(θ) = α(δ0 − d0 + θ) +
ψ(θ)
δ0 + θ

, ψ(θ) = min
x∈S(θ)

(cT x + c0)

while in case (II)

z(θ) = φ(θ) +
c0 − γd0

δ0 + θ
+ γ, φ(θ) = min

x∈S(θ)
aT x.

In both the cases problem P can be solved by means of a simplex-like proce-
dure based on a suitable post-optimality analysis. Note that (8.6) implies a
decreasing (increasing) value of f(x) corresponding to a decreasing (increas-
ing) value of z(θ), so that to a local minimum for z(θ) there corresponds a
local minimum for f(x) which is also global for the pseudoconvexity of the
function.
Below we shall describe a sequential method for solving problem P in case (I)
and a sequential method for solving problem P in case (II).

• Case I a = αd, α > 0.
By taking into account Theorem 8.3.2, the infimum of problem P is −∞ if
and only if the infimum of the affine function cT x + c0 on S(0) is −∞. If this
is not the case, consider the parametric problem

PI(θ) : min
x∈S(θ)

(cT x + c0)

Let x0 ∈ S be an optimal vertex for PI(0), and set x0 = (xB0 , 0) where B0 is
the set of indices associated with its basic variables. By applying sensitivity
analysis we find (xB0 (θ), 0) = (xB0 + θuB0 , 0) which is optimal for P (θ) for
every θ belonging to the stability interval [θ0, θ1] = {θ : xB0(θ) ≥ 0}. If
z′(0) ≥ 0, then (xB0 , 0) is an optimal solution for P . If there exists θ̄ ∈ [θ0, θ1]
such that z′(θ̄) = 0, then (xB0 (θ̄), 0) is an optimal solution for P , otherwise
for θ > θ1 the feasibility is lost and it is restored by applying a dual simplex
iteration. We then find a new stability interval and we repeat the analysis. By
proceeding in this way, a finite sequence of basis Bk, k = 0, 1, ..., and a finite
sequence of stability intervals [θk, θk+1], k = 0, 1, ..., are generated.
With the usual notations, corresponding to the basis Bk, we have

(xBk
(θ), 0) = (xBk

+ θuBk
, 0), ψ(θ) = cT

Bk
xBk

+ θcT
Bk

uBk
+ c0, θ ∈ [θk, θk+1]
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so that

z(θ) = α(δ0 − d0 + θ) +
cT
Bk

xBk
+ θcT

Bk
uBk

+ c0

δ0 + θ
, θ ∈ [θk, θk+1]

z′(θ) = α +
ξBk

(δ0 + θ)2
, ξBk

= δ0c
T
Bk

uBk
− cT

Bk
xBk

− c0, θ ∈ [θk, θk+1]

The algorithm can be described as follows:
Step 0. Solve the linear problem min

x∈S
(dT x + d0) and let δ0 be its optimal

value. Solve problem PI(0) : min(cT x + c0), x ∈ S ∩ {x : dT x + d0 = δ0}.
If PI(0) has no solutions, then Stop: inf

x∈S
f(x) = −∞.

Otherwise let x0 be an optimal solution for PI(0) which is also an optimal
solution for Problem P (θ0) with θ0 = 0. Set k = 0 and go to Step 1.
Step 1. Determine [θk, θk+1] the stability interval associated with the opti-
mal solution (xBk

(θk), 0) = (xBk
+ θkuBk

, 0) for P (θk). Compute ξBk
=

cT
Bk

uBk
(δ0) − cT

Bk
xBk

− c0. If ξBk
≥ 0, Stop: (xBk

+ θkuBk
, 0) is an opti-

mal solution for P , otherwise go to Step 2.

Step 2. Compute θ̃ = −δ0 +

√
−ξBk

α
.

If θ̃ ∈ [θk, θk+1], Stop: (xBk
+ θ̃uBk

, 0) is an optimal solution for P , otherwise
let i be such that xBki

+ θk+1uBki
= 0. Perform a dual simplex iteration, set

k = k + 1 and go to Step 1.

Example 8.3.1. Consider the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

(
x1 + x2 +

−80x1 − 60x2 + 1
x1 + x2 + 1

)
x1 − 4x2 + x3 = 2

x2 + x4 = 2
xi ≥ 0, i = 1, .., 4

Step 0. x0 = (0, 0, 2, 2)T is the only solution for the problem min
x∈S

(x1 +x2+1)

and we have δ0 = 1; go to Step 1.
Step 1. With respect to the problem PI(θ) the simplex-table associated with
x0 is given by

−1 −80 −60 0 0 0
x3 2 1 −4 1 0 0
x4 2 0 1 0 1 0
x5 θ 1 1 0 0 1

In order to restore the optimality of x0, we perform a pivot operation on the
underlined element. We obtain

−1 + 80θ 0 20 0 0 80
x3 2 − θ 0 −5 1 0 −1
x4 2 0 1 0 1 0
x1 θ 1 1 0 0 1
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The stability interval is [0, 2], ξB0 = −81. Since ξB0 < 0, go to Step 2.

Step 2. We have θ̃ = −δ0 +
√
− ξB0

α = −1 + 9 = 8. Since θ̃ > 2, we perform
a pivot operation on the underline element, according to the dual simplex
algorithm. We obtain

7 + 76 θ 0 0 4 0 76

x2 − 2
5 + 1

5 θ 0 1 − 1
5 0 1

5

x4
12
5 − 1

5 θ 0 0 1
5 1 − 1

5

x1
2
5 + 4

5 θ 1 0 1
5 0 4

5

and go to Step 1.
Step 1. The stability interval is [2, 12] and ξB1 = −69. Since ξB1 < 0, go to
Step 2.

Step 2. We have θ̃ = −δ0 +
√

− ξB1
α = −1 +

√
69 ∈ [2, 12], so that

(− 2
5 + 4

5

√
69,− 3

5 + 1
5

√
69, 0, 13

5 − 1
5

√
69) is the optimal solution for problem P .

• Case II c = γd, c0 − γd0 > 0.
If the infimum of the linear function aT x is −∞, then the infimum of problem
P is −∞, too, otherwise consider the parametric problem

PII(θ) : min
x∈S(θ)

aT x

Starting from a vertex x0 ∈ S which is an optimal solution for PII(0), and
referring to the notations introduced before and with respect to the stability
interval [θk, θk+1], we have

z(θ) =
c0 − γd0

δ0 + θ
+ aT

Bk
xBk

+ θaT
Bk

uBk
+ γ, θ ∈ [θk, θk+1]

z′(θ) = aT
Bk

uBk
− c0 − γd0

(δ0 + θ)2
, θ ∈ [θk, θk+1]

If aT
Bk

uBk
< 0 and θk+1 = +∞, then the infimum of the problem is −∞;

if aT
Bk

uBk
= 0 and θk+1 = +∞, then the infimum is aT

Bk
xBk

and it is not
attained as a minimum;

if aT
Bk

uBk
> 0, we have z′(θ̃) = 0 with θ̃ = −δ0 +

√
c0 − γd0

aT
Bk

uBk

. If θ̃ < θk, then

(xBk
(θk), 0) is an optimal solution for P ; if θ̃ ∈ [θk, θk+1], then (xBk

(θ̃), 0) is
an optimal solution for P .
In any other case, we consider the vertex (xBk

(θk+1), 0) and we apply a
dual simplex iteration in order to find a new stability interval; we repeat
the analysis.
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The algorithm can be described as follows:
Step 0. Solve the problem min

x∈S
(dT x + d0) and let δ0 be the optimal value.

Solve problem PII(0) : min aT x, x ∈ S ∩ {x : dT x + d0 = δ0}. If PII(0) has
no solutions, Stop: inf

x∈S
f(x) = −∞.

Otherwise let x0 be an optimal solution for Problem PII(0) which is also an
optimal solution for Problem P (θ0) with θ0 = 0. Set k = 0, and go to Step 1.
Step 1. Determine [θk, θk+1] the stability interval associated with the opti-
mal solution (xBk

(θk), 0) = (xBk
+ θkuBk

, 0) of P (θk). Compute aT
Bk

uBk
. If

aT
Bk

uBk
< 0 and θk+1 = +∞, Stop: the infimum of problem P is −∞; if

aT
Bk

uBk
< 0 and θk+1 is finite, go to Step 2; if aT

Bk
uBk

= 0 and θk+1 = +∞,
Stop: the infimum of P is aT

Bk
xBk

and it is not attained as a minimum; if
aT

Bk
uBk

= 0 and θk+1 is finite, go to Step 2; if aT
Bk

uBk
> 0, go to Step 3.

Step 2. Let i be such that xBki
+ θk+1uBki

= 0. Perform a dual simplex
iteration, set k = k + 1 and go to Step 1.

Step 3. Compute θ̃ = −δ0 +

√
c0 − γd0

aT
Bk

uBk

.

If θ̃ ∈ [θk, θk+1], Stop: (xBk
+ θ̃uBk

, 0) is an optimal solution for P ; if θ̃ < θk,
Stop: (xBk

+ θkuBk
, 0) is an optimal solution for P ; if θ̃ > θk+1, let i be such

that xBki
+ θk+1uBki

= 0. Perform a dual simplex iteration, set k = k +1 and
go to Step 1.

Example 8.3.2. Consider the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

(
−2x1 + 6x2 +

12
x1 + 2x2 + 1

)
x1 − 2x2 + x3 = 3
−x1 + x2 + x4 = 1
xi ≥ 0, i = 1, ..., 4

Step 0. The linear problem min
x∈S

(x1 + 2x2 + 1) has the only solution x0 =

(0, 0, 3, 1)T , and we have δ0 = 1; go to Step 1.
Step 1. With respect to problem PII(0) the simplex-table associated with x0

is given by
0 −2 6 0 0 0

x3 3 1 −2 1 0 0
x4 1 −1 1 0 1 0
x5 θ 1 2 0 0 1

In order to restore the optimality of x0, we perform a pivot operation on the
underlined element. We obtain

2θ 0 10 0 0 2
x3 3 − θ 0 −4 1 0 −1
x4 1 + θ 0 3 0 1 1
x1 θ 1 2 0 0 1
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The stability interval is [0, 3]. Since aT
B0

uB0 = −2 < 0, go to Step 2.
Step 2. We perform a pivot operation on the underline element according to
the dual simplex algorithm. We obtain

15
2 − 1

2 θ 0 0 5
2 0 − 1

2

x2 − 3
4 + 1

4 θ 0 1 − 1
4 0 1

4

x4
13
4 + 1

4 θ 0 0 3
4 1 1

4

x1
3
2 + 1

2 θ 1 0 1
2 0 1

2

Go to Step 1.
Step 1. The stability interval is [3, +∞]. Since aT

B1
uB1 = 1

2 > 0, go to Step 3.

Step 3. It results that θ̃ = −δ0 +
√

c0−γd0
aT

B1
uB1

= −1 + 2
√

6 ∈ [3, +∞].

Then, (1+
√

6,−1+ 1
2

√
6, 0, 3+ 1

2

√
6)T is the optimal solution for the problem.

Example 8.3.3. (The infimum is finite but not attained).
Consider the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min

(
−3x1 + 4x2 +

5
x1 + 2x2 + 1

)
3x1 − 4x2 + x3 = 6
−x1 + x2 + x4 = 4
xi ≥ 0, i = 1, ..., 4

Step 0. x0 = (0, 0, 6, 4)T is the only solution for problem min
x∈S

(x1 + 2x2 + 1)

and we have δ0 = 1; go to Step 1.
Step 1. With respect to PII(0) the simplex-table associated with x0 is given
by

0 −3 4 0 0 0
x3 6 3 −4 1 0 0
x4 4 −1 1 0 1 0
x5 θ 1 2 0 0 1

In order to restore the optimality of x0, we perform a pivot operation on the
underlined element. We obtain

3θ 0 10 0 0 3
x3 6 − 3θ 0 −10 1 0 −3
x4 4 + θ 0 3 0 1 1
x1 θ 1 2 0 0 1

The stability interval is [0, 2]. Since aT
B0

uB0 = −3 < 0, go to Step 2.
Step 2. We perform a pivot operation on the underline element, according to
the dual simplex algorithm. We obtain
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6 0 0 1 0 0

x2 − 3
5 + 3

10 θ 0 1 − 1
10 0 3

10

x4
29
5 + 1

10 θ 0 0 3
10 1 1

10

x1
6
5 + 2

5 θ 1 0 1
5 0 2

5

Go to Step 1.
Step 1. The stability interval is [2, +∞]. Since aT

B1
uB1 = 0, the infimum of

the problem is 6 and it is not attained as a minimum.

8.3.2 The Sum of Two Linear Fractional Functions

The optimization of a sum of linear ratios arises in various areas, such as
multi-stage stochasting shipping [4], layered manifacturing [195, 196], cluster
analysis [228], multiobjective bond portfolio [177], and combinatorial opti-
mization [227] (for several others economic applications see [114, 256]). This
kind of problems is difficult to be solved since it does not have any gener-
alized convexity properties; it has attracted the interest of researchers for a
number of years and different approaches for solve them have been proposed.
For instance, in [106] an approach in the so-called image space is suggested, in
[68, 96, 181, 187] branch-and-bound procedures are given, and in [23] suitable
transformations are used which reduce the problem in another one simpler to
be handle.
For the particular case of the sum of two linear ratios, some others algorithms
have been proposed, also in the framework of bicriteria problems, where a
compromise solution is sought (see for all [41, 34]).
In this section we shall present a simplex-like procedure under pseudoconvex-
ity assumptions on the sum of two linear fractional functions.
When the sum of two linear ratio is pseudoconvex on the feasible set, the
problem

P : min
x∈S

(
h(x) =

mT x + m0

pT x + p0
+

qT x + q0

bT x + b0

)
, S = {x ∈ �n : Ax = b, x ≥ 0}

may be transformed by means of Charnes–Cooper’s transformation into an
equivalent one with the sum of a linear and a linear fractional function
as objective. Consequently, we may use the simple simplex-like procedures
described before in this section for determing the optimal solution (if one
exsits) for P .
At this regard consider the following problem

P :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

(
x1 + x2

1 − x1
+

1 − 81x1 − 60x2

x2 + 1

)
3x1 − 4x2 + x3 = 2
2x1 + x2 + x4 = 2
xi ≥ 0, i = 1, ..4
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It is easy to verify that pT x + p0 = 1 − x1 > 0, bT x + b0 = x2 + 1 > 0,
for all x = (x1, x2, x3, x4)T ∈ S. The objective function is pseudoconvex on
S for (i) of Theorem 7.5.1; by applying Charnes–Cooper’s transformation
yi =

xi

1 − x1
, i = 1, .., 4, whose inverse is xi =

yi

1 + y1
, i = 1, .., 4, we obtain

the problem

P ∗ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

(
y1 + y2 +

1 − 80y1 − 60y2

y1 + y2 + 1

)
y1 − 4y2 + y3 = 2

y2 + y4 = 2
yi ≥ 0, i = 1, ..4

By referring to Example 8.3.1, the optimal solution for P ∗ is given by
(y1, y2, y3, y4) = (− 2

5 + 4
5

√
69,− 3

5 + 1
5

√
69, 0, 13

5 − 1
5

√
69), so that the optimal

solution for P is given by (x1, x2, x3, x4) = (−2+4
√

69
3+4

√
69

, −3+
√

69
3+4

√
69

, 0, 13−√
69

3+4
√

69
).

8.4 Generalized Linear Multiplicative Programs

In this section we shall consider the following class of generalized linear
multiplicative problems:

P : min
x∈S

[
f(x) = cT x + (aT x + a0)(dT x + d0)p

]
where S = {x ∈ �n : Ax = b, x ≥ 0}, c, a, d ∈ �n, a, d �= 0, a0, d0 ∈ �,
p ∈ �\{0}, A is an m × n real matrix, rankA = m < n.
We shall study problem P in the case p = 1 and in the case c = 0.

8.4.1 The Sum of a Linear Function and the Product
of Two Affine Functions

Consider the problem

P1 : min
x∈S

[
f1(x) = cT x + (aT x + a0)(dT x + d0)

]
As we have seen in Sect. 6.6, function f1 is not generalized convex so that
problem P1 may have several local minimum points which are not global.
Methods for solving problem P1 have been proposed in [173, 174, 257]. In par-
ticular in [174, 257], the problem is solved by means of the following parametric
linear programming problem.

P1(θ) : z(θ) = min
x∈S(θ)

[
cT x + (ξ + θ)(aT x + a0)

]
where S(θ) = S ∩ {x ∈ �n : dT x + d0 = ξ + θ}, and ξ is a feasible level,
i.e., S(0) �= ∅.
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The algorithm proposed in [174] finds the optimal solution for P1 by solving
P1(θ) for all the feasible levels, from the minimum level ξmin = min

x∈S
(dT x+d0)

to the maximum level ξmax = max
x∈S

(dT x+d0), assuming the compactness of S.

The algorithm proposed in [257] works for every feasible region (bounded or
unbounded) and finds the optimal solution for P1 (if one exists) by generating
a finite sequence of local minimum points, the last of which is the global one.
This algorithm may be easily adapted to the case where f1 is pseudoconvex
on S.
Taking into account Corollary 6.6.1 and Theorem 6.13, we shall consider the
case which corresponds to the linear independence of a, d since, when a, d are
linearly dependent, P1 reduces to a problem which is very easy to solve.
According to Corollary 6.6.1, we can suppose that the affine function dT x+d0

is lower bounded on S.
Set ξ0 = min

x∈S
(dT x + d0) and consider the parametric problem P1(θ) with

ξ = ξ0.
If P1(0) does not have any solutions, then inf

x∈S
f1(x) = −∞, otherwise let x0 be

a basic optimal solution for P1(0) and let B0 and N0 be the set of indices asso-
ciated with its basic variables and with its non-basic variables, respectively.
By applying sensitivity analysis we find (xB0(θ), 0) = (xB0 +θuB0 , 0) which is
optimal for P1(θ) for every θ belonging to the interval [0, θ1] = F0∩O0, where
F0 = {θ ∈ � : xB0 + θuB0 ≥ 0}, and O0 = {θ ∈ � : c̄N0 + (ξ0 + θ)āN0 ≥ 0}.
If z′(0) ≥ 0, then (xB0 , 0) is optimal for P1; if there exists θ′ ∈ (0, θ1] such
that z′(θ′) = 0, then (xB0(θ′), 0) is optimal for P1, otherwise, if θ1 = +∞,
inf
x∈S

f1(x) = −∞, while if θ1 is finite, the feasibility or the optimality is lost

and it is restored by applying a dual simplex iteration or a primal simplex
iteration. By means of this procedure, a finite sequence of basis Bk and a
finite sequence of intervals [θk, θk+1] are generated.
In correspondence to the basis Bk, with the usual notations, set:
xk(θ) = (xBk

(θ), 0) = (xBk
+ θuBk

, 0);
f̄Nk

= c̄Nk
+ (ξ0 + θ)āNk

;
Fk = {θ ∈ � : xBk

+ θuBk
≥ 0};

Ok = {θ ∈ � : f̄Nk
≥ 0}.

The optimal value function z(θ) is of the form z(θ) = λθ2 + µθ + γ, where
λ = aT

Bk
uBk

, µ = cT
Bk

uBk
+ aT

Bk
xBk

+ ξ0a
T
Bk

uBk
; if λ �= 0, let θ′ = − µ

2λ be the
critical point of z(θ).
The algorithm may be described as follows:
Step 0. Solve the linear problem min

x∈S
(dT x + d0) and let ξ0 be its optimal

value. Solve problem P1(0) with ξ = ξ0. If P1(0) does not have solutions,
Stop: inf

x∈S
f1(x) = −∞, otherwise let x0 be a basic optimal solution for P1(0),

set θ0 = 0, k = 0, and go to Step 1.
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Step 1. If z′(θk) ≥ 0, then Stop: (xBk
(0), 0) is an optimal solution for P1,

otherwise, calculate Fk, Ok and θ′. If θ′ ∈ Fk ∩ Ok, then Stop: (xBk
(θ′), 0) is

an optimal solution for P1, otherwise go to Step 2.
Step 2. If θk+1 = sup(Fk∩Ok) = +∞, then Stop: inf

x∈S
f1(x) = −∞, otherwise

go to Step 3.
Step 3. If Fk ∩ Ok = Fk, apply a dual simplex iteration, set k = k + 1 and
go to Step 1. If Fk ∩Ok = Ok, apply a primal simplex iteration, set k = k + 1
and go to Step 1.

Example 8.4.1. Consider the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min [−6x1 − 12x2 + (−x1 − 4x2 + 42)(x1 + x2 − 11)]

−x1 + x2 + x3 = 16
x1 + 3x2 + x4 = 56

−4x1 − 25x2 + x5 = −250
xi ≥ 0, i = 1, .., 4

By setting d = (1, 1)T , a = (−1,−4)T we have c = αa + βd, α = 2, β = −4;
since ii) of Corollary 6.6.2 holds, the objective function is pseudoconvex on
the feasible set S.
The problem min

x∈S
(x1 + x2 − 11) has as its only solution x0 = (0, 10, 6, 26, 0)T

and the corresponding minimum value is ξ0 = −1.
The parametric linear programming problem becomes:

P1(θ) : min
x∈S(θ)

[(−θ − 5)x1 + (−4θ − 8)x2 + 42θ − 42] ,

S(θ) = S ∩ {x ∈ �5 : x1 + x2 − 11 = −1 + θ}
We have x0(θ) = (0, 10 + θ, 6− θ, 26− 3θ, 25θ)T and z(θ) = −4θ2 − 6θ − 122.
It results that z′(0) < 0, O0 = [0, +∞), F0 = [0, 6], θ′ = − 3

4 /∈ F0 ∩ O0 = F0;
by means of a dual simplex iteration the variable x1 enters the basis. We have
x1(θ) = (−3+ 1

2θ, 13+ 1
2θ, 0, 20−2θ, 63+ 29

2 θ)T and z(θ) = − 5
2θ2− 27

2 θ−131.
It results that z′(6) < 0, O1 = [6, +∞), F1 = [6, 10], θ′ = − 27

10 /∈ F1∩O1 = F1;
by means of a dual simplex iteration the variable x3 enters the basis. We have
x2(θ) = (−13+ 3

2θ, 23− 1
2θ,−20+2θ, 0, 273− 13

2 θ)T and z(θ) = 1
2θ2− 81

2 θ−161.
It results that z′(10) < 0, O2 = [10, +∞), F2 = [10, 46], θ′ = 81

2 . Since
θ′ ∈ F2 ∩ O2 = [10, 46], x2(θ′) = (191

4 , 11
4 , 61, 0, 39

4 )T is the optimal solution
for the problem.

8.4.2 The Product Between an Affine Function
and the Power of an Affine Function

Consider the problem

P2 : inf
x∈S

[
f2(x) = (aT x + a0)(dT x + d0)p

]
, S = {x ∈ �n : Ax = b, x ≥ 0}
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In order to consider the objective function for every value of the exponent
p, it is necessary to have dT x + d0 > 0 for all x ∈ S. Furthermore, to avoid
trivial cases, we shall assume the linear independence of the vectors a, d.
Before to present a sequential method for solving problem P2, we shall study,
firstly, the pseudoconvexity of the function f2.

Theorem 8.4.1. Consider the function f2(x) = (aT x+a0)(dT x+d0)p where
a, d are linearly independent, p ∈ �, p �= 0. Then, f2 is pseudoconvex on the
half-space D+ = {x ∈ �n : dT x + d0 > 0} if and only if one of the following
conditions holds:
(i) p ∈ [−1, 0), and aT x + a0 > 0 for all x ∈ D+;
(ii) p ∈ (−∞,−1] ∪ (0, +∞), and aT x + a0 < 0 for all x ∈ D+.

Proof. We have ∇f2(x) = (dT x + d0)p−1
[
(dT x + d0) a + p(aT x + a0) d

]
, so

that the linear independence of a, d implies that ∇f2(x) �= 0, x ∈ D+.
The function f2 is pseudoconvex on D+ if and only if vT∇f2(x) = 0 implies
that vT∇2f2(x)v ≥ 0 (see Corollary 3.4.1).

We have vT∇f2(x) = 0 if and only if aT v = −p(aT x + a0)dT v

dT x + d0
, so that

vT∇2f2(x)v = p(−p− 1)(dT x + d0)p−1(aT x + a0)(dT v)2.
Since the linear independence of a, d implies the existence of v such that
dT v �= 0 and vT∇f(x) = 0, it follows that vT∇2f2(x)v ≥ 0 if and only if (i) or
(ii) holds.

An algorithm for solving problem P2 has been proposed in [30, 31, 198, 199]
when p is an integer and in [51] for all p �= 0. Now, under the pseudoconvex-
ity assumption, we shall present two different methods for solving problem
P2. The former is based on a parametric approach, while the latter extends
the approach given in Sect. 8.2.4, i.e., primal simplex iterations are performed
according to the rule (8.5) where now “max” is replaced by “min”.

A Parametric Approach

Consider the following parametric linear problem associated with problem P2:

P2(θ) : z(θ) = min
x∈S(θ)

(ξ0 + θ)p(aT x+ a0), S(θ) (8.7)

= S ∩ {x ∈ �n : dT x+ d0 = ξ0 + θ}

where ξ0 = min
x∈S

(dT x + d0).

Note that ξ0 exists since the affine function dT x + d0 is lower bounded on S.
If P2(0) does not have any solutions (this may happen in case (ii) of Theorem
8.4.1), then inf

x∈S
f2(x) = −∞, otherwise let x0 be a basic optimal solution

for P2(0) and let B0 be the set of indices associated with its basic variables.
By applying sensitivity analysis we find (xB0(θ), 0) = (xB0 + θuB0 , 0) which
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is optimal for P2(θ) for every θ belonging to the interval [0, θ1] = F0, where
F0 = {θ ∈ � : xB0 + θuB0 ≥ 0}.
If z′(0) ≥ 0, then (xB0 , 0) is optimal for P2; if there exists θ′ ∈ (0, θ1] such
that z′(θ′) = 0, then (xB0(θ′), 0) is optimal for P2, otherwise, if θ1 = +∞,
inf
x∈S

f2(x) = lim
θ→+∞

z(θ), while, if θ1 is finite, the feasibility is lost and it is

restored by applying a dual simplex iteration. By means of this procedure,
a finite sequence of basis Bk and a finite sequence of intervals [θk, θk+1] are
generated.
The optimal value function z(θ) is of the form z(θ) = (ξ0 +θ)p(αθ+β) and its
derivative is z′(θ) = (ξ0 + θ)p−1 ((p + 1)αθ + pβ + αξ0), where α = aT

Bk
uBk

,
β = aT

Bk
xBk

+ a0.
The algorithm may be described as follows (note that the value of the limit
lim

θ→+∞
z(θ) changes according to the case p > 0 or p < −1).

Step 0. Solve the linear problem min
x∈S

(dT x + d0) and let ξ0 be its optimal

value. Solve problem P2(0) with ξ = ξ0. If P2(0) does not have any solutions,
Stop: inf

x∈S
f2(x) = −∞, otherwise let x0 be a basic optimal solution for P2(0),

set θ0 = 0, k = 0, and go to Step 1.
Step 1. If z′(θk) ≥ 0, then Stop: (xBk

(0), 0) is an optimal solution for P2,
otherwise calculate Fk and θ′. If θ′ ∈ Fk, then Stop: (xBk

(θ′), 0) is an optimal
solution for P2, otherwise go to Step 2.
Step 2. If θk+1 is finite, apply a dual simplex iteration, set k = k + 1 and go
to Step 1, otherwise Stop: inf

x∈S
f2(x) = −∞ if p > 0, inf

x∈S
f2(x) = 0 if p < −1.

Example 8.4.2. Consider the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min(−x1 − x2 + 6)(x1 + 2x2 − 9)2

x1 − x2 + x3 = 16
2x1 + 3x2 + x4 = 42

−7x1 − 10x2 + x5 = −70
xi ≥ 0, i = 1, .., 5

The objective function is pseudoconvex on the feasible region S since we have
S ⊂ {(x1, x2) ∈ �2 : −x1 − x2 + 6 < 0, x1 + 2x2 − 9 > 0}.
The problem min

x∈S
(x1 + 2x2 − 9) has as its only solution x0 = (10, 0, 6, 22, 0)T

and the corresponding minimum value is ξ0 = 1.
The parametric linear programming problem becomes:

P2(θ) : min
x∈S(θ)

(1 + θ)2(−x1 − x2 + 6),

S(θ) = S ∩ {x ∈ �5 : x1 + 2x2 − 9 = 1 + θ}
We have x0(θ) = (10+ θ, 0, 6− θ, 22− 2θ, 7θ)T and z(θ) = (1+ θ)2(−4− θ). It
results that z′(0) < 0, F0 = [0, 6], θ′ = −3 /∈ F0; by means of a dual simplex
iteration, the variable x2 enters the basis.
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We have x1(θ) = (14 + 1
3θ,−2 + 1

3θ, 0, 20 − 5
3θ, 8 + 17

3 θ)T and z(θ) =
(1 + θ)2(−6 − 2

3θ). It results that z′(6) < 0, F1 = [6, 12], θ′ = − 19
3 /∈ F1; by

means of a dual simplex iteration, the variable x3 enters the basis. We have
x2(θ) = (54 − 3θ,−22 + 2θ,−60 + 5θ, 0, 88 − θ)T , z(θ) = (1 + θ)2(−26 + θ).
It results that z′(12) < 0, F2 = [12, 18], θ′ = 17.
Since θ′ ∈ F2, x2(θ′) = (3, 12, 25, 0, 71)T is the optimal solution for the
problem.

A Non-parametric Approach

Using the notations introduced in Sect. 8.2, the matrix A is partitioned as
A = [B : N ] and the vectors x, a and d as xT = (xT

B , xT
N ), aT = (aT

B, aT
N ),

dT = (dT
B , dT

N ).
Set:
ā0 = aT

BB−1b + a0, d̄0 = dT
BB−1b + d0,

āT
N = aT

N − aT
BB−1N , d̄T

N = dT
N − dT

BB−1N ,
āj and d̄j denote the j-th component of āN and d̄N , respectively.
In correspondence to the non-basic variable xNk

, let
ϕ(xNk

) = (āNk
xNk

+ ā0)(d̄Nk
xNk

+ d̄0)p.
We have ϕ′(xNk

) = (d̄Nk
xNk

+ d̄0)p−1[(p + 1)āNk
d̄Nk

xNk
+ āNk

d̄0 + pd̄Nk
ā0].

Denote with x∗
Nk

the critical point of ϕ(xNk
) and let x̄Nk

= min
uj>0

xBj

ūj
, where

uj is the j-th component of the column u = B−1Nk, where Nk is the column
of N associated with xNk

. By convention, set x̄Nk
= +∞ if B−1Nk ≤ 0. The

main steps of the algorithm may be described as follows.
Step 0. Solve the linear problem min

x∈S
(dT x+d0) and let ξ0 be its optimal value.

Solve the problem P ∗ : min(aT x+a0), x ∈ S∩{x ∈ �n : dT x+d0 = ξ0}. If P ∗

does not have any optimal solutions, then Stop: inf
x∈S

f2(x) = −∞. Otherwise,

let x0 be an optimal vertex for P ∗. Set i = 0 and go to Step 1.
Step 1. Set J = {j : d̄j > 0}. If J = ∅, Stop: xi is an optimal solution for P2;

otherwise, let k be such that
āk

d̄k
= min

j∈J

āj

d̄j
and go to Step 2.

Step 2. If u ≤ 0, then Stop: the infimum is −∞ or 0 according to the case
p > 0, p < −1; otherwise, calculate x̄Nk

and x∗
Nk

. If x∗
Nk

∈ [0, x̄Nk
], then

Stop: (xB − x∗
Nk

B−1Nk, 0) is the optimal solution for P2, otherwise, perform
a primal simplex iteration with xNk

as the entering variable. Let xi+1 be the
new basic solution. Set i = i + 1 and go to Step 1.

Example 8.4.3. Consider the problem given in Example 8.4.2 again. The
simplex-table associated with x0 = (10, 0, 6, 22, 0)T is given by
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4 0 3
7 0 0 − 1

7

−1 0 4
7 0 0 1

7

x3 6 0 − 17
7 1 0 1

7

x4 22 0 1
7 0 1 2

7

x1 10 1 10
7 0 0 − 1

7

where in the first row and in the second row we can read the reduced costs
āN and d̄N , respectively. We have: J = {2, 5}, min

j∈J

āj

d̄j
=

ā5

d̄5
, x̄5 = 42, z(x5) =

(− 1
7x5 − 4)(1

7x5 + 1)2, and x∗
5 = −21 /∈ [0, 42].

The non-basic variable x5 enters the basis by means of a primal simplex
iteration.

10 0 −2 1 0 0
−7 0 3 −1 0 0

x5 42 0 −17 7 0 1
x4 10 0 5 −2 1 0
x1 16 1 −1 1 0 0

We have: J = {2}, x̄2 = 2, z(x2) = (−2x2 − 10)(3x2 + 7)2, and x∗
2 = − 37

9 /∈
[0, 2]. The non-basic variable x2 enters the basis by means of a primal simplex
iteration.

14 0 0 1
5

2
5 0

−13 0 0 1
5 − 3

5 0

x5 76 0 0 1
5

17
5 1

x2 2 0 1 − 2
5

1
5 0

x1 18 1 0 3
5

1
5 0

We have: J = {3}, x̄3 = 30, z(x3) = (1
5x3−14)(1

5x3 +13)2, and x∗
3 = 25. Since

x∗
3 ∈ [0, 30], the optimal solution for the problem is x∗ = (18, 2, 0, 0, 76)T +

25(− 3
5 , 2

5 , 0, 0,− 1
5 )T = (3, 12, 25, 0, 0, 71)T .

8.5 The Optimal Level Solutions Method

The algorithms described in Sect. 8.3 and in Sect. 8.4 are based on the com-
mon idea of associating with an optimization problem a suitable parametric
program which easier to solve. This kind of approach has been suggested in
many papers (see for instance [29, 30, 31, 32, 33, 34, 35, 145, 280, 281]) and
leads to efficient solution methods. For this reason, in this section we shall
present the general approach given in [101].
Consider the following problem
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P : inf
x∈S

[Φ(x) = F (x, g(x))]

where S is a nonempty set of �n, g is a continuous function defined on S and
F is a continuous function defined on {(x, ξ) : x ∈ �n, ξ = g(x)}.
By means of the following variable transformation

T : S → S ×�, x → (x, ξ), ξ = g(x)

problem P is transformed into the following one

P ∗ :

⎧⎨⎩
inf F (x, ξ)
x ∈ S
g(x) = ξ, ξ ∈ Ξ = g(S).

Problems P and P ∗ are equivalent in the sense that P has an optimal solution
x̄ if and only if P ∗ has an optimal solution (x̄, ξ̄) with ξ̄ = g(x̄).
Obviously, transformation T is useful when the transformed problem is easier
to handle than the original one.
In order to point out some relationships between P and P ∗ we shall give the
following definitions.

Definition 8.5.1. A real number ξ is said to be a feasible level for P if ξ ∈ Ξ
or, equivalently, if there exists x̄ ∈ S such that g(x̄) = ξ.
The set of all the feasible levels of P will be called the feasible levels set for P .

Definition 8.5.2. The point x̄ ∈ S is said to be an optimal level solution for
P corresponding to the level ξ if x̄ is an optimal solution for the problem

P (ξ) :
{

inf F (x, ξ), x ∈ S(ξ)
S(ξ) = {x ∈ S : g(x) = ξ}.

The whole set of optimal level solutions corresponding to the same level ξ is
denoted by Lξ and L = ∪

ξ∈Ξ
Lξ is called the optimal level solutions set for P .

Let us note that if there exists a feasible level ξ such that the infimum of P (ξ)
is −∞, then the infimum of problem P is −∞, too, and vice versa. In general,
we have

inf
x∈S

Φ(x) = inf
ξ∈Ξ

inf
x∈S(ξ)

F (x, ξ).

If problem P has optimal solutions, then

min
x∈S

Φ(x) = min
ξ∈Ξ

inf
x∈S(ξ)

F (x, ξ).

Note that problem P may have optimal solutions even if the infimum of P (ξ)
is finite and not attained, as is shown in the following example.
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Example 8.5.1. Consider problem P where Φ(x1, x2) =
−x1

x2 + 1
+ x2 − x1 and

S = {(x1, x2) : x1 − x2 ≤ 4, x1 ≥ 0, x2 ≥ 0}.
By setting g(x1, x2) = x2 − x1, problem P is transformed into the following
parametric problem

P ∗ :

⎧⎨⎩ inf

( −x1

x2 + 1
+ ξ

)
(x1, x2) ∈ S, x2 − x1 = ξ, ξ ∈ [−4, +∞).

In correspondence to the feasible level ξ = 0, the infimum of problem P (0) is
−1 and it is not attained. Nevertheless, (4, 0) is the optimal solution for P ,
corresponding to the level ξ = −4.

When Lξ �= ∅ for all ξ ∈ Ξ, we have

min
x∈S

Φ(x) = min
ξ∈Ξ

min
x∈S(ξ)

F (x, ξ). (8.8)

Set z(ξ) = min
x∈S(ξ)

F (x, ξ).

The relation (8.8) points out that to a global minimum point x̄ for P there
corresponds the minimum level ξ = g(x̄) for the function z(ξ), ξ ∈ Ξ and vice
versa. When x̄ is a non global local minimum point, then the corresponding
level ξ̄ is not necessarily a local minimum for z(ξ) (see [101]). Fortunately,
the converse statement is true under suitable assumptions, as is stated in the
following theorem.

Theorem 8.5.1. Consider the parametric problem P ∗ and assume that Ξ is
an interval and Lξ �= ∅ for all ξ ∈ Ξ. If ξ̄ is a local minimum point for the
optimal value function z(ξ), then each point x̄ ∈ Lξ̄ is a local minimum point
for P . Furthermore, if S is a convex set and Φ(x) is semistrictly quasiconvex
on S, then each point x̄ ∈ Lξ̄ is a global minimum point for P .

Proof. Let ε > 0 be such that z(ξ) ≥ z(ξ̄) for all ξ ∈ (ξ̄ − ε, ξ̄ + ε). Since
g(x̄) = ξ̄, the continuity of g implies the existence of a neighborhood I(x̄) of
x̄ such that g(x) ∈ (ξ̄ − ε, ξ̄ + ε) for all x ∈ I(x̄). Assume, by contradiction,
the existence of x∗ ∈ I(x̄) such that Φ(x∗) < Φ(x̄) and let ξ∗ = g(x∗). Then,
we have z(ξ∗) ≤ F (x∗, ξ∗) = Φ(x∗) < Φ(x̄) = z(ξ̄), and this contradicts the
local optimality of ξ̄.
The last statement follows from Theorem 4.5.1.

The general approach that we have described allows us to include several
parametric algorithms in the framework of the optimal level solutions method.
Recently in [53, 54], this method has been proposed in order to solve a non-
convex optimization problem by means of a parametric convex program.
In [53] the following optimization problem is considered:
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P : inf
x∈S

[
f(x) =

1
2
xT Qx + qT x − (dT x)2

]
, S = {x ∈ �n : Ax ≥ b}

where Q is a symmetric positive definite n × n matrix, q, d ∈ �n, A is an
m × n matrix, b ∈ �m.
The objective function f is a d.c. function, i.e., the difference of convex func-
tions, so that P is not in general a generalized convex problem.
Problem P is solved by means of the optimal level solutions approach, by
considering the following parametric strictly convex quadratic problem:

P (ξ) : inf
x∈S(ξ)

(
1
2
xT Qx + qT x − (ξ)2

)
, S(ξ) = S ∩ {x ∈ �n : dT x = ξ}

In [54] the following nonlinear multiplicative problem is studied:

P : inf
x∈S

[
f(x) =

(
1
2
xT Qx + qT x + q0

)(
dT x + d0

)p]
,

where S = {x ∈ �n : Ax ≥ b}, Q is a symmetric positive definite n×n matrix,
q, d ∈ �n, q0, d0, p ∈ �, p �= 0, A is an m × n matrix, b ∈ �m.
The objective function f is not in general a generalized convex function.
Nevertheless, the following parametric strictly convex quadratic problem is
associated with P :

P (ξ) : inf
x∈S(ξ)

(
1
2
xT Qx + qT x + q0

)
ξp, S(ξ) = S ∩ {x ∈ �n : dT x + d0 = ξ}

The study of generalized convexity of the described problems is still an
open problem; its characterization would allow us to improve the suggested
methods.
Finally, we shall point out that also the problem of minimizing the ratio of a
quadratic and an affine function (see Sect. 7.2) can be embedded in the opti-
mal level solutions method.
Consider the problem

PQ : inf
x∈S

[
f(x) =

1
2xT Qx + qT x + q0

dT x + d0

]
where S = {x ∈ �n : Ax ≥ b}, Q is a symmetric n×n matrix, q, d ∈ �n, d �=
0, q0, d0, p ∈ �, p �= 0, A is an m × n matrix, b ∈ �m.
By setting dT x + d0 = ξ, the following parametric quadratic problem is
obtained

PQ(ξ) : inf
x∈SQ(ξ)

(
1
2
xT Qx + qT x + q0

)
ξ−1

where SQ(ξ) = S ∩ {x ∈ �n : dT x + d0 = ξ}.
By means of a suitable optimality conditions, an optimal solution of problem
PQ can be found making use of any of the known algorithms of parametric
quadratic programming. In [200, 201], an algorithm is suggested in the case
where the matrix Q is positive definite.
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9

Solutions

Chapter 1

1.1 (i) We have ‖ x − x0 ‖=| t |‖ z − x0 ‖<‖ z − x0 ‖≤ R.
(ii) The proof follows from (i) if x0 belongs to the segment [z1, z2]; in the
opposite case, the vectors z1−x0, z2−x0 are linearly independent so that, by
the Schwartz inequality, ‖ λz1+(1−λ)z2−x0 ‖=‖ λ(z1−x0)+(1−λ)(z2−x0) ‖
< λ ‖ z1−x0 ‖ +(1−λ) ‖ z2−x0 ‖≤ λR+(1−λ)R = R, so that λz1+(1−λ)z2

is an interior point for λ ∈ (0, 1).
(iii) This is a direct consequence of (ii).
(iv) Let z be a boundary point of B. If z is not an extreme point, then z
belongs to a segment [z1, z2] contained in B so that z is an interior point of
B, and this contradicts the assumption.

1.2 Let {Si, i ∈ I} a family of convex sets and let S =
⋂
i

Si. If x, y ∈ S, then

x, y ∈ Si, ∀i, so that the convexity of Si implies λx + (1 − λ)y ∈ Si for every
i and, consequently, λx + (1 − λ)y ∈ S.

1.3 (i) z1, z2 ∈ Γ = αS + βT if and only if there exist s1, s2 ∈ S, t1, t2 ∈ T ,
such that z1 = αs1 + βt1, z2 = αs2 + βt2. We have z = λz1 + (1 − λ)z2 =
α(λs1 + (1 − λ)s2) + β(λt1 + (1 − λ)t2). The convexity of S, T implies that
s∗ = λs1 + (1−λ)s2 ∈ S, t∗ = λt1 + (1−λ)t2 ∈ T for every λ ∈ [0, 1], so that
z = αs∗ + βt∗ ∈ Γ , ∀λ ∈ [0, 1].
(ii) Let (s1, t1), (s2, t2) ∈ S × T . From the convexity of S and T we have
λ(s1, t1)+(1−λ)(s2, t2) = (λs1+(1−λ)s2, λt1+(1−λ)t2) ∈ S×T, ∀λ ∈ [0, 1].

1.4 (a) Let z1, z2 ∈ convS. Then, there exist m points x1, ..., xm ∈ S such

that z1 =
m∑

i=1

αixi, αi ≥ 0, i = 1, ..., m,
m∑

i=1

αi = 1, and there exist k points

xm+1, ..., xm+k ∈ S such that z2 =
m+k∑

j=m+1

αjxj , αj ≥ 0, j = m + 1, ..., m + k,
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m+k∑
j=m+1

αj = 1. We have z = λz1 + (1 − λ)z2 =
m+k∑
i=1

γixi, where γi = λαi for

i = 1, ..., m, and γi = (1 − λ)αi for i = m + 1, ..., m + k.
It follows that z is a linear combination of elements of S. From the non-
negativity of λ, 1 − λ, αi, it results γi ≥ 0, i = 1, ..., m + k.

It remains to be proven that
m+k∑
i=1

γi = 1. We have
m+k∑
i=1

γi =
m∑

i=1

γi +
m+k∑

i=m+1

γi =

λ
m∑

i=1

αi + (1 − λ)
m+k∑

i=m+1

αi = λ + (1 − λ) = 1.

(b) This follows by (a) and by Theorem 1.2.2.

1.5 Let z ∈ intS. Then, there exists a ball of radius ε > 0 and center z
contained in S; in particular, for every direction d, z + αd ∈ S, ∀α ∈ (0, ε).
Let d = z − x and consider the half-line y = x + t(z − x), t ≥ 0. By setting
t = 1 + α = µ, the thesis is achieved.
Assume now that for every x ∈ S there exists µ > 1 such that y = x + µ(z −
x) ∈ S. We have z = 1

µy + (1 − 1
µ)x with 0 < 1

µ < 1 and 1
µ + (1 − 1

µ) = 1.
Consequently, z is a convex combination of two points of S and thus, from
Theorem 1.2.3, is an interior point.

1.6 Let x0 ∈ intS and assume that there exists an half-line x = x0+tu, t ≥ 0,
having two boundary points: y = x0 + t1u, z = x0 + t2u, with 0 < t1 < t2.
Then, we have y = t1

t2
z + (1 − t1

t2
)x0, so that, from Theorem 1.2.3, y is an

interior point and this contradicts the assumption.

1.7 (i) This follows by noting that

W = {z ∈ �n : z = x1 +
k+1∑
i=2

ci(xi − x1), ci ∈ �, i = 2, ..., k + 1}.
(ii) This follows by noting that the maximum number of linearly independent
vectors is n.

1.8 (i) From Theorem 1.2.2, S contains the convex hull of points of S; the
thesis follows from (i) of Exercise 1.7.
(ii) This is a direct consequence of (i).

1.9 Let k be the dimension of the smallest linear manifold W containing S.
From Exercise 1.8, W contains a k-dimensional simplex. Since every point of

the form λ1(x2 − x1) + ... + λk(xk+1 − xk), λi > 0,
k∑

i=1

λi = 1, belongs to the

relative interior of the simplex, S has a nonempty relative interior.

1.10 This follows from Theorem 1.2.11 taking into account that there are
not extreme directions.
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1.11 This follows from Theorem 1.2.11 taking into account that there are
not extreme directions and, furthermore, that a polytope has a finite number
of vertices.

1.12 Let U and V be convex cones. From (i) of Exercise 1.3, the sum U + V
is convex. Furthermore, if z ∈ U + V , there exist u ∈ U and v ∈ V such
that z = u + v. It follows that for each k ≥ 0, ku ∈ U and kv ∈ V , so that
ku + kv = k(u + v) = kz belongs to U + V for every k ≥ 0.

1.13 (i) It is sufficient to prove that C − C is a subspace and that affC
contains necessarily C and −C.
(ii) hint: the dimension of affC is equal to the maximum number of linearly
independent vectors contained in C.

1.14 Let c ∈ intC. The thesis follows by noting that αT c > 0 for all α ∈ riC+

and αT c < 0 for all α ∈ riC−.

1.15 If α ∈ C+
1 ∩ C+

2 , we have αT c1 ≥ 0 for all c1 ∈ C1, and αT c2 ≥ 0
for all c2 ∈ C2, so that αT (c1 + c2) ≥ 0 for all c1 ∈ C1, c2 ∈ C2 and thus
C+

1 ∩ C+
2 ⊆ (C1 + C2)+. Conversely, α ∈ (C1 + C2)+ implies αT (c1 + c2) ≥ 0

for all c1 ∈ C1, c2 ∈ C2. Setting c2 = 0, we deduce α ∈ C+
1 ; analogously

setting c1 = 0, we have α ∈ C+
2 , so that (C1 + C2)+ ⊆ C+

1 ∩ C+
2 .

1.16 It is sufficient to apply Theorem 1.2.14.

1.17 The thesis is equivalent to prove that intU+ ∩ V − �= ∅. If not, since
intU+ and V − are convex sets, there exists γ �= 0, γ ∈ �n such that γT z ≥ 0
for all z ∈ U+, and γT z ≤ 0 for all z ∈ V −. It follows that γ ∈ U++ ∩ V −−,
i.e., γ ∈ U ∩ V , and this contradicts the assumption.

1.18 The proof is similar to the one given in Exercise 1.17.

1.19 Let x1, ..., xk be the vertices of the polyhedron S and let d1, ..., dh be the
extreme directions. From Theorem 1.2.11, a feasible point x can be expressed

as x =
k∑

i=1

αixi +
h∑

j=1

βjdj , αi ≥ 0, i = 1, ..., k,

k∑
i=1

αi = 1, βj ≥ 0,

j = 1, ..., h.

We have cT x =
k∑

i=1

αic
T xi +

h∑
j=1

βjc
T dj . If cT dj∗ < 0 for some j∗, then

by setting αi = 0, i = 1, ..., k, and βj = 0, j = 1, ..., h, j �= j∗, we have
lim

βj∗→+∞
βj∗cT dj∗ = −∞ so that the infimum is −∞. If cT dj ≥ 0, j = 1, ..., h,

or if there are not extreme directions, by setting cT xs = min{cT x1, ..., c
T xk},

we have cT x ≥
k∑

i=1

αic
T xs = cT xs, so that the infimum is attained at the

vertex xs.
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1.20 If f(x) = aT x+ b, we have f(λx1 + (1−λ)x2) = aT (λx1 + (1−λ)x2) +
λb + (1 − λ)b = λ(aT x1 + b) + (1 − λ)(aT x2 + b). It follows that both the
definitions of convex and concave functions are verified.
Assume now that f is both convex and concave, so that f(λx1 +(1−λ)x2) =
λf(x1) + (1 − λ)f(x2), ∀λ ∈ [0, 1]. We consider the cases f(0) = 0, f(0) �= 0.
case f(0) = 0.
We must prove (i) f(kx) = kf(x), ∀k ∈ �, (ii) f(x1 + x2) = f(x1) + f(x2).
(i) If k ∈ [0, 1], we have kx = kx + (1 − k) · 0, so that f(kx) = kf(x) +
(1 − k)f(0) = kf(x). If k > 1, we have x = 1

k (kx) + (1 − 1
k ) · 0 and thus

f(x) = 1
k f(kx); consequently f(kx) = kf(x), ∀k > 1.

If k < 0, we have 0 = 1
2 (kx) + 1

2 (−kx), so that 0 = f(0) = 1
2f(kx) +

1
2f(−kx) and f(kx) = −f(−kx). Since −k > 0, then f(−kx) = −kf(x)
and consequently f(kx) = kf(x), ∀k < 0 and (i) holds.
(ii) f(x1+x2) = f(2(1

2x1+ 1
2x2)) = 2f(1

2x1+ 1
2x2) = f(x1)+f(x2). By setting

ai = f(ei), we have f(x) = f

(
n∑

i=1

xie
i

)
=

n∑
i=1

xif(ei) =
n∑

i=1

xiai = aT x.

case f(0) �= 0.
Let g(x) = f(x) − f(0). We have g(λx1 + (1 − λ)x2) = f(λx1 + (1 − λ)x2) −
λf(0) − (1 − λ)f(0) = λg(x1) + (1 − λ)g(x2). Since g(0) = 0, g is of the kind
g(x) = aT x so that, setting f(0) = b, we have f(x) = aT x + b.

1.21 Let x∗ be the optimal solution of d(λz1 +(1−λ)z2) = min
x∈S

‖ λz1 + (1−
λ)z2−x ‖. We have ‖ λz1+(1−λ)z2−x∗ ‖ = ‖ λ(z1−x∗)+(1−λ)(z2−x∗) ‖≤
λ ‖ z1 − x∗ ‖ +(1 − λ) ‖ z2 − x∗ ‖≤ λ min

x∈S
‖ z1 − x ‖ +(1 − λ) min

x∈S
‖ z2 − x ‖

=λd(z1) + (1 − λ)d(z2).

1.22 (a) Since fi(λx1 + (1 − λ)x2) ≤ λfi(x1) + (1− λ)fi(x2), ∀λ ∈ [0, 1], we
have z(λx1+(1−λ)x2) = max

i∈{1,..,m}
{fi(λx1+(1−λ)x2)} ≤ λ max

i∈{1,..,m}
{fi(x1)}+

(1 − λ) max
i∈{1,..,m}

{fi(x2)} = λz(x1) + (1 − λ)z(x2), ∀λ ∈ [0, 1].

(b) The proof is similar to the previous one.

1.23 We have H(x1, x2) = xα−2
1 xβ−2

2

[
α(α − 1)y2 αβxy

αβxy β(β − 1)x2

]
. By using the

Hessian matrix characterization of convex and concave functions, f is convex
if and only if α(α − 1) ≥ 0, β(β − 1) ≥ 0, | H(x1, x2) | =αβ(1 − α − β) ≥ 0,
while f is concave if and only if α(α−1) ≤ 0, β(β−1) ≤ 0, | H(x1, x2) | ≥ 0.
By solving the systems, the thesis is achieved.

1.24 (i) We have f(λx1 + (1 − λ)x2) =
n∑

i=1

αifi(λx1 + (1 − λ)x2)≤
n∑

i=1

αi(λfi(x1) + (1 − λ)f(x2)) = λf(x1) + (1 − λ)f(x2).
(ii) This follows from (i) substituting ≤ with <.
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1.25 We have f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2); since g is non-
decreasing, it results g(f(λx1 + (1−λ)x2)) ≤ g(λf(x1) + (1−λ)f(x2)). From
the convexity of g, the thesis is achieved.

1.26 (i) and (ii) are obtained applying (i) of Theorem 1.3.4 in the cases m = 1
and m = 2 with α1 = α2 = 1. Conversely, if f1, f2 are convex functions, then
α1f1(x) and α2f2(x) are convex for (i), as well as their sum from (ii).

1.27 f(x) = x, g(x) = −x are convex functions but the product h(x) = −x2

is not convex; f(x) = x, g(x) = x are concave functions but the product
h(x) = x2 is not concave.

1.28 We have z(λx1+(1−λ)x2) = g(A(λx1 +(1−λ)x2)+b) = g(λ(Ax1 +b)+
(1−λ)(Ax2 + b)) ≤ λg(Ax1 + b)+ (1−λ)g(Ax2 + b) = λz(x1) + (1−λ)z(x2).

1.29 f(x) = ez(x) is convex from Theorem 1.3.5; f(x) = x is convex but
z(x) = log f(x) = log x is not convex.

1.30 Hint: −f is positive and concave (see Example 1.3.5).

1.31 f(x) = x2 + 1 is convex but h(x) = 1
f(x) is not concave.

1.32 We have f(x) ≥ f(x0) + f ′(x0)(x− x0), so that lim
x→+∞f ′(x0)(x− x0) =

+∞.

1.33 Let x0, x ∈ S with x �= x0. Since f is convex, too, (1.8) holds, i.e.,
f(x) ≥ f(x0) + ∇f(x0)T (x − x0), ∀x ∈ S. By contradiction, assume the
existence of x̄ �= x0 such that f(x̄) = f(x0) + ∇f(x0)T (x − x0). The strict
convexity implies f(λx0 +(1−λ)x̄) < λf(x0)+(1−λ)f(x̄) for everyλ ∈ (0, 1),
so that f(λx0 + (1− λ)x̄) < f(x0) + (1− λ)(x̄ − x0)T∇f(x0). By replacing in
(1.8) x with λx0 + (1 − λ)x̄, we get a contradiction.
The proof of the converse statement is similar to the convex case.

1.34 (i) z(tx) = f1(tx) · f2(tx)... · fm(tx) = tα1f1(x) · tα2f2(x)... · tαmfm(x) =
t
∑m

i=1 αif1(x) · f2(x)... · fm(x) = t
∑m

i=1 αiz(x).
(ii) z(tx) = (f1(tx) + f2(tx) + ... + fm(tx))β = (tαf1(x) + tαf2(x) + ... +
tαfm(x))β = tαβ(f1(x) + f2(x) + ... + fm(x))β = tαβz(x).

1.35 Obviously, f is homogeneous of degree α. For the converse statement,
let f(1) = k; it results f(t) = f(t · 1) = tαf(1) = ktα.

1.36 Hint: see the proof given in Theorem 1.4.1

1.37 Assume that f is both linearly homogeneous and convex. From the
convexity assumption, we have f(x) ≥ f(x0) + ∇f(x0)T (x − x0) = f(x0) −
∇f(x0)T x0 +∇f(x0)T x. By Euler’ Theorem, we have ∇f(x0)T x0 = f(x0), so
that f(x) ≥ ∇f(x0)T x. Assume now that f is linearly homogeneous and
that f(x) ≥ ∇f(x0)T x, ∀x, x0 ∈ int�n

+. By Euler’ Theorem, we have
∇f(x0)T x0 = f(x0), so that ∇f(x0)T x − ∇f(x0)T x0 ≤ f(x) − f(x0) or,
equivalently, f(x) ≥ f(x0) + ∇f(x0)T (x − x0), ∀x, x0 ∈ int�n

+.
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1.38 The relation xT∇f(x) = f(x) implies, by differentiation, that ∇f(x) +
∇2f(x)x = ∇f(x), i.e., ∇2f(x)x = 0, ∀x ∈ int�n

+. It follows the singularity
of H(x).

1.39 The gradient and the Hessian of f are ∇f(x) = (1 + log(aT x + b))a,
∇2f(x) = aaT

aT x+b , respectively, so that the Hessian is semidefinite positive for
every x of the domain and, consequently, the function is convex. Since the
domain of S is an open set, the set of all global minimum reduces to the set
of all critical points given by S∗ = {x : aT x + b = e−1}.
1.40 Since S is open, the existence of a global maximum x0 implies that
∇f(x0) = 0. On the other hand, the convexity of f implies that x0 is a global
minimum, so that f is constant, and this contradicts the assumption.
A convex function may have a local maximum point (consider for instance
f(x) = x2 − x | x |), but it cannot have a strict local maximum.

1.41 We have ∇f(x) = Ax so that ∇f(0) = 0; the convexity of f implies
that x0 = 0 is a global minimum. Conversely, there exists a ball B of center
x0 = 0 such that xT Ax ≥ 0, ∀x ∈ B. Corresponding to z ∈ �n, there
exist x ∈ B, k ∈ � such that z = kx. It follows that f(z) = 1

2zT Az =
1
2k2xT Ax ≥ 0, ∀z ∈ �n, so the the quadratic form is positive semidefinite
and, consequently, f is convex.

1.42 The convexity of f implies that x0 is a global minimum if and only
if is a critical point. On the other hand, x0 is a critical point if and only if
verifies the system ∇f(x0) = Ax0 + a = 0, and this is equivalent to say that
rankA = rank[A, a].

1.43 By the first order characterization of convexity, f(x) ≥ f(x0) + (x −
x0)T∇f(x0), ∀x ∈ S so that ∇f(x0) = 0 implies f(x) ≥ f(x0), ∀x ∈ S.

1.44 Hint: see the proof of Theorem 1.5.1 and Exercise 1.43.

Chapter 2

2.1 (a) f is strictly quasiconvex; (b) f is quasiconvex; (c) f is semistrictly
quasiconvex; (d) f is quasiconvex and semistrictly quasiconvex. Note that f
is not lower semicontinuous.

2.2 The function is quasiconvex.

2.3 Since it is possible to choose x1 ∈ (x0 − ε, x0), x2 ∈ (x0, x0 + ε) such that
f(x1) < α, f(x2) < α, f is not quasiconvex on [x1, x2].

2.4 By referring to Example 2.3.3 we have: (a) f is strictly quasiconvex;
(b) f is both quasiconvex and quasiconcave; (c) f is strictly quasiconvex.

2.5 (a) Set L≤α = {x ∈ S : − 1
f(x) ≤ α}. If α ≥ 0, then L≤α = S, otherwise

L≤α = {x ∈ S : f(x) ≤ − 1
α}. In each case L≤α is a convex set.
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(b) By referring to Example 2.3.4 we have that − 1
f is (strictly) quasiconvex

and consequently 1
f is (strictly) quasiconcave.

2.6 Set L≤α = {x ∈ S : f(x)
g(x) ≤ α}; if α < 0, then L≤α = ∅. If α ≥ 0, L≤α =

{x ∈ S : f(x) − αg(x) ≤ 0}, so that L≤α is the lower level set of the convex
function h(x) = f(x)−αg(x). Consequently L≤α is a convex set and the thesis
follows from Theorem 2.2.3.

2.7 The function z can be viewed as the composition product between the
non-negative function h(x) = f(x)

g(x) and the increasing function s(y) = yα. The
thesis follows from Theorem 2.3.7 and from (i) of Theorem 2.3.8.

2.8 (i) We must prove that z(x1) = f(x1)
g(x1) ≥ f(x2)

g(x2)
= z(x2) implies

z(λx1 + (1 − λ)x2) < z(x1), λ ∈ (0, 1).
Taking into account the strict convexity of f and the concavity of g, together
with their sign, we have f(λx1+(1−λ)x2) < λf(x1)+(1−λ)f(x2) ≤ λf(x1)+
(1 − λ) f(x1)

g(x1)
g(x2) = f(x1)

g(x1)
(λg(x1) + (1 − λ)g(x2)) ≤ f(x1)

g(x1) g(λx1 + (1 − λ)x2).

It follows f(λx1+(1−λ)x2)
g(λx1+(1−λ)x2) < f(x1)

g(x1) , i.e., z(λx1 + (1 − λ)x2) < z(x1), λ ∈ (0, 1).
The proofs of (ii) and (iii) are similar.

2.9 The lower and upper level sets are half-spaces.

2.10 Apply Theorem 2.2.3 and Theorem 2.2.6.

2.11 It is sufficient to note that all the functions are quasiconvex and
homogeneous of degree α ≥ 1.

2.12 Apply Theorem 2.4.1 .

2.13 Hint: see (ii) of Theorem 2.3.8.

2.14 Taking into account Example 2.3.4, we have that 1
g is a positive con-

vex function, so that −z(x) = −f(x)
1

g(x)
is semistrictly quasiconvex (see (ii) of

Theorem 2.3.8).

2.15 The thesis follows from (ii) of Theorem 2.3.8 by noting that an affine
function is both convex and concave.

2.16 By contradiction, assume the existence of an interior strict local max-
imum point x0 and let x1 be a feasible point. Then, there exists ε > 0 such
that x = x0 + t(x1 − x0) ∈ S and f(x) < f(x0), ∀t ∈ [−ε, ε]. By setting
y = x0 − ε(x1 − x0), z = x0 + ε(x1 − x0), we have x0 = 1

2y + 1
2z with

f(x0) > max{f(y), f(z)}, and this contradicts the quasiconvexity of f .

2.17 See (b) of Exercise 2.1.

2.18 Let f be a function defined on a convex set S ⊆ �n and let ϕ(t) =
f(x0 + tu), t ∈ I, the restriction of f on a line segment through x0. The
function ϕ(t) is quasiconvex if and only if verifies the implication:
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t1, t2 ∈ I, ϕ(t1) ≥ ϕ(t2) ⇒ ϕ(t1 + λ(t2 − t1)) ≤ ϕ(t1), ∀λ ∈ [0, 1]. By setting
x1 = x0 + t1u, x2 = x0 + t2u, we have x1 +λ(x2−x1) = x0 + t1u+λ(t2− t1)u.
The thesis follows by noting that ϕ(t1) ≥ ϕ(t2) and the logical implication
ϕ(t1 + λ(t2 − t1)) ⇒ ϕ(t1 + λ(t2 − t1)) ≤ ϕ(t1), ∀λ ∈ [0, 1] are equivalent to
f(x1) ≥ f(x2), and f(x1 + λ(x2 − x1)) ≤ f(x1), ∀λ ∈ [0, 1], respectively.

2.19 If f is strictly quasiconvex, then obviously (i) and (ii) hold. Assume
now the validity of (i) and (ii). We must prove that f(x1) ≥ f(x2) implies
f(x1 + t(x2 − x1)) < f(x1), ∀t ∈ (0, 1). This implication follows from (i) if
f(x1) > f(x2). Consider the case f(x1) = f(x2) and assume, by contradiction,
that f is not strictly quasiconvex. Then, taking into account (i), there exist
t∗ ∈ (0, 1) such that f(x1 + t∗(x2 − x1)) = f(x1) = f(x2). The restriction
ϕ(t) = f(x1 + t(x2 − x1)), t ∈ [0, 1] cannot be constant in [0, 1] otherwise
any of its point is a global minimum, and this contradicts (ii). It follows that
ϕ(t) attains its minimum value at a point t̃ ∈ (0, 1) such that ϕ(t̃) < ϕ(0) =
ϕ(t∗) = ϕ(1). Consequently, ϕ(t) is not semistrictly quasiconvex on [0, t̃ ] if
t∗ < t̃ or it is not semistrictly quasiconvex on [t̃, 1] if t∗ > t̃.

2.20 Assume that x0 ∈ intS is a global maximum. The non-constancy of f
implies the existence of x1 ∈ S such that f(x1) < f(x0); since x0 is an interior
point and the function is lower semicontinuous, there exists ε > 0 such that
the line segment I = {x = x1 + t(x0−x1), t ∈ [0, 1+ε]} is contained in S and,
furthermore, f(x) > f(x1), ∀x ∈ I. By choosing t∗ ∈ (1, 1 + ε) and by setting
x∗ = x1 + t∗(x0−x1) we have x0 ∈ [x1, x

∗] with f(x0) ≥ max{f(x1), f(x∗)} =
f(x∗), and this contradicts the semistrictly quasiconvexity of f which requires
f(x0) < f(x∗).

2.21 It is sufficient to consider the function f(x) = 0 if x �= 0, f(0) = 1.

2.22 Assume that x0 ∈ intS is an interior local maximum point which is not
a local minimum. Then, in a suitable neighbourhood of x0, there exists a point
x1 ∈ S such that f(x1) < f(x0). We achieve the thesis like as in Exercise 2.20.

2.23 Assume f(x1) > f(x2). The convexity of f implies f(λx1 +(1−λ)x2) ≤
λf(x1) + (1 − λ)f(x2) < λf(x1) + (1 − λ)f(x1) = f(x1).

Chapter 3

3.1 Obviously, a quasiconvex function cannot have semistrict local maximum
points. Assume now that ϕ is not quasiconvex; then, there exist t1, t2 ∈ I
and t0 ∈ (t1, t2) such that max{ϕ(t1), ϕ(t2)} < ϕ(t0). From the generalized
Weierstrass’ Theorem ϕ attains maximum value at a point t∗ ∈ (t1, t2) for
which max{ϕ(t1), ϕ(t2)} < ϕ(t0) ≤ ϕ(t∗). Consequently t∗ is a semistrict
local maximum and this is absurd.
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3.2 Consider the function f(x) =

⎧⎨⎩
−x2 x ≤ 0
0 0 < x ≤ 2

−(x − 2)2 x > 2
.

The point x0 = 1 is a semistrict local maximum but it is not a strict local
maximum point.

3.3 Consider the function ϕ(t) =
{

t + 2 t < 0
−t t ≥ 0 . ϕ(t) is not upper semicon-

tinuous, does not have any kind of maximum points and is not quasiconvex.

3.4 Obviously, a quasiconvex function cannot have semistrict local maximum
points. Assume now that ϕ is not quasiconvex; then there exist t1, t2 ∈ I
and t0 ∈ (t1, t2) such that max{ϕ(t1), ϕ(t2)} < ϕ(t0). From the Weierstrass’
Theorem, ϕ attains maximum value at an interior point t∗ ∈ (t1, t2) for which
max{ϕ(t1), ϕ(t2)} < ϕ(t0) ≤ ϕ(t∗). Consequently, t∗ is a semistrict local
maximum point with ϕ′(t∗) = 0, and this is a contradiction.

3.5 The answer is negative. Consider for instance the quasiconvex function
f(x) = arctanx. We have f ′(0) = 1 > 0 and lim

x→+∞f(x) = π
2 .

3.6 See Exercise 3.4.

3.7 (b).

3.8 The thesis follows from Theorem 3.2.9 and from Theorem 3.2.12.

3.9 It is sufficient to note that the derivative of the function φ(y) = − 1
y is

positive for all y �= 0, so that − 1
f(x) is pseudoconcave (strictly pseudocon-

cave) if f is pseudoconcave (strictly pseudoconcave). It follows that 1
f(x) is

pseudoconvex (strictly pseudoconvex).

3.10 Apply Theorem 3.2.11.

3.11 We prove the pseudoconvexity of f by showing the pseudoconvexity of
all its restrictions.
The restriction of f on a vertical line is an affine function which is pseu-
doconvex. The restriction of f on the line y = mx + q, x > −1, is
ϕ(x) = mx + q + 1

x+1 , and its derivative is ϕ′(x) = m(x+1)2−1
(x+1)2 . When m ≤ 0,

ϕ is pseudoconvex since it is decreasing without critical points. If m > 0, we
have a feasible critical point at x0 = −1 +

√
m−1 which is a local minimum.

Since any restriction is pseudoconvex, f is pseudoconvex.

3.12 Apply Theorem 3.2.8.

3.13 From Theorem 2.4.1 the function is quasiconcave and it is also pseudo-
concave since ∇f(x) �= 0, ∀x ∈ int�n

+.

3.14 From Theorem 2.4.2 the function is quasiconcave and it is also pseudo-
concave since ∇f(x) �= 0, ∀x ∈ int�n

+.
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3.15 Since log z(x) is a concave (in particular, pseudoconcave) function
and the derivative of the exponential function is positive, elog f(x) = z(x)
is pseudoconcave (see Theorem 3.2.11).

3.16 (a) This is a particular case of Exercise 3.15; (b) −z(x) is pseudoconcave;
(c) −z(x) is strictly pseudoconcave.

3.17 From Theorem 3.17, the function z1(x) = g(x)
−f(x) is strictly pseudoconvex,

so that z(x) = − 1
z1(x) = f(x)

g(x) is strictly pseudoconvex (see also the solution
of Exercise 3.9).

3.18 Assume that f is not quasiconvex. Then, there exist x1, x2 ∈ S, t∗ ∈
(0, 1) such that f(x∗) > max{f(x1), f(x2)} with x∗ = x1 + t∗(x2 − x1). By
setting ϕ(t) = f(x1 + t(x2 − x1)), t ∈ [0, 1], the continuity of f implies the
existence of t1, t2 ∈ [0, 1] such that t1 < t∗ < t2 and ϕ(t1) = ϕ(t2). Let
z1 = x1 + t1(x2 − x1), z2 = x1 + t2(x2 − x1) and consider the level set
Γ = {x ∈ S : f(x) = f(z1) = f(z2)}. The convexity of Γ implies [z1, z2] ⊂ Γ ,
and this is a contradiction since x∗ ∈ [z1, z2] and f(x∗) > f(z1). Similarly, it
can be proven that f is quasiconcave so that the thesis holds.
The converse statement follows from (ii) of Theorem 3.3.1.

3.19 Obviously, (i) and (ii) imply the pseudolinearity of f . Let f be pseudo-
linear. We must prove that (x2 − x1)T∇f(x1) < 0 implies f(x2) < f(x1).
Assume, to get a contradiction, that f(x2) ≥ f(x1). If f(x2) > f(x1) the
pseudoconcavity of f implies (x2 − x1)T∇f(x1) > 0 and this is absurd. If
f(x2) = f(x1) the quasilinearity of f implies that f is constant on the line
segment [x1, x2], so that (x2 − x1)T∇f(x1) = 0 and this is absurd. Con-
sequently (i) holds. Similarly it can be proven that (x2 − x1)T∇f(x1) > 0
implies f(x2) > f(x1), so that the thesis follows.

3.20 We have {(x, y) ∈ int�2
+ : f(x, y) = k} = {(x, y) ∈ int�2

+ : (1−k2)y2 =
(k(x+2)−1)2}. The level sets of the function are the intersection of the positive
orthant with the lines kx−√

1 − k2 y +2k− 1 = 0 if 1
2 ≤ k < 1, and with the

lines kx +
√

1 − k2 y + 2k − 1 = 0 if −1 < k < 1
2 .

Since ∇f(x, y) �= 0, ∀(x, y) ∈ int�2
+, f is pseudolinear on int�2

+.

3.21 By setting f(x, y, z) = k, we have (2x + y − z)2 + (4 − k)(2x + y −
z) − 1 − 4k = 0, i.e., 2x + y − z = k−4±√

k2+8k+20
2 . It follows that the fea-

sible level sets are parallel hyperplanes. Since ∇f(x, y, z) = (2, 1,−1)T +
1

(2x+y−z+4)2 (2, 1,−1)T �= 0, f verifies (i) and (ii) of Theorem 3.3.9 so that it
is pseudolinear.

3.22 (i) f(x, y, z) = α +
√

ax + by + cz + α2, ax + by + cz + α2 > 0.

(ii) f(x, y, z) = x+y+
√

(x+y+z)(x+y−z)

z , (x, y, z) ∈ int�2
+, z < x + y.
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3.23 The level sets of the given functions are the following family of lines:
(a) 2kx−4y +k2 +2k = 0; (b) 2kx+(4−2k)y−k2 = 0; (c) k2x− y−2k = 0;
(d)

√
1 + k2x − ky + 1 = 0.

3.24 Apply Theorem 3.3.12.

3.25 Hint: see the characterization of quasiconvexity given in Exercise 3.6.

3.26 By setting u = (u1, u2)T , we have uT∇f(x1, x2) = 0 if and only if
u1(−2x1 − x2) + u2(−x1) = 0 or, equivalently, for all (x1, x2) ∈ int�2

+, u2 =
u1(−2− x2

x1
) so that uT∇2f(x)u = −2u2

1−2u1u2 = 2u2
1(1+ x2

x1
) > 0. Theorem

3.4.6 implies that f is pseudoconvex on int�2
+ and it is also quasiconvex on

�2
+ as a consequence of Theorem 2.2.12.

3.27 The bordered Hessian is D(x1, x2) =

⎡⎢⎢⎢⎣
0 −1

x2+1 3 + x1+1
(x2+1)2

−1
x2+1 0 1

(x2+1)2

3 + x1+1
(x2+1)2

1
(x2+1)2

−2(x1+1)
(x2+1)3

⎤⎥⎥⎥⎦
and we have D1(x1, x2) = − 1

(x2+1)2 < 0, D2(x1, x2) = − 6
(x2+1)3 < 0, so that

from Theorem 3.4.13, f is pseudoconvex.

3.28 (a).

3.29 (b).

3.30 The answer is positive.

3.31 a ≤ 0, b ≤ 0, c ≤ 0, ac − b2 ≤ 0.

3.32 Apply Theorem 3.4.12 and its analogous for pseudoconcave functions.

3.33 Apply conditions (i) and (ii) given in Exercise 3.32.

3.34 If f(x) �= f(x0), (3.28) implies (3.27). Assume that f(x) = f(x0) and
that (3.27) is not verified. Then, there exists t ∈ (0, 1) such that y = x0 +
t(x−x0) ∈ S with f(y) > f(x) = f(x0). The continuity of the function implies
that the restriction of f on the line segment I of end points x0, x attains its
maximum value at an interior point x∗ ∈ riI so that we have f(x∗) ≥ f(y) >
f(x0). Since in the interval I∗ of end points x∗, x, the function f assumes any
intermediate value between f(x∗) and f(x), there exists a point z ∈ riI∗ such
that f(x) < f(z) < f(x∗). Consequently f(x∗) > max{f(z), f(x0)} and this
contradicts (3.28) with x = z.

3.35 Consider the function f(x) =
{

x
1−x 0 ≤ x < 1
0 x = 1

The function f is not quasiconvex at x0 = 0 according to (3.27), since f(x0) =
f(1) = 0 but f(x) > 0, ∀x > 0. On the other hand, for every x such that
f(x) �= f(0), (3.28) is verified since f is increasing in [0, 1).
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Chapter 4

4.1 Set V = {(−cT , Ax), x ∈ �n}. System 1 is impossible if and only if
V ∩ (int�− × �m

− ) = ∅. Since −e1 /∈ V ⊂ V ∗, Corollary 4.2.1 implies the
existence of α > 0, β ∈ �m

+ such that α(−cT x) + βT Ax = 0, ∀x ∈ �n or,
equivalently, −αcT + βT A = 0. By setting y = 1

αβ, the thesis is achieved.

4.2 System 1 is impossible if and only if

(W1 × W2) ∩ (int�m
− ×�s

−) = ∅ (9.1)

where W1 = {Ax, x ∈ �n}, W2 = {Bx, x ∈ �n}.
By setting W = W1 ×W2, from (9.1) we have W ∩ int�m+s

− = ∅ so that there
exist α ∈ �m

+ , β ∈ �s
+, (α, β) �= (0, 0) such that αT w1 + βT w2 = 0, ∀w1 ∈

W1, ∀w2 ∈ W2.
The existence of a separating hyperplane for which α ∈ �m

+\{0} remains to
be proven.
If α = 0 for every separating hyperplane, then from (i) and (ii) of Theorem
4.2.1, there exists w̄ ∈ W ∗ ∩ (int�m

− × �s
−) and this implies the existence of

w ∈ W ∩ (int�m− ×�s−), and this contradicts the impossibility of system 1.
Assume now that system 2 has a solution. Then, system 1 is impossible,
otherwise there exists x̄ ∈ �n such that Ax̄ < 0, Bx̄ � 0 for which we have
αT Ax̄ + βT Bx̄ < 0.

4.3 System 1 is impossible if and only if

(W1 × W2) ∩ (int�m
− ×�s

−\{0}) = ∅ (9.2)

where W1 = {Ax, x ∈ �n}, W2 = {Bx, x ∈ �n}.
By setting W = W1 ×W2, from (9.2) we have W ∩ int�m+s

− = ∅ so that there
exist α ∈ �m

+ , β ∈ �s
+, (α, β) �= (0, 0) such that αT w1 + βT w2 = 0, ∀w1 ∈

W1, ∀w2 ∈ W2.
It remains to be proven that if α = 0 for every separating hyperplane, then
necessarily we have β > 0.
Since α = 0 implies β ∈ �s

−\{0}, from (i) and (ii) of Theorem 4.2.1, there
exists w̄ ∈ W ∗ ∩ (int�m

− × �s
−\{0}), and this implies the existence of w ∈

W ∩ (int�m− ×�s−\{0}), contradicting the impossibility of system 1.
The proof of the converse statement is similar to that given in Exercise 4.2.

4.4 The proof of each statement is given by contradicting (4.3), that is
assuming the existence of a direction d∗ ∈ �n such that ∇f(x0)T d∗ < 0,
∇gi(x0)T d∗ ≤ 0, i ∈ I(x0).
(i) Let d̂ = d∗ + 1

nd where d ∈ C0. We have ∇gi(x0)T d̂ < 0, i ∈ I(x0) and
∇f(x0)T d̂ < 0 for n large enough, so that d̂ is a feasible decreasing direction
and this contradicts the optimality of x0.
(ii) We have d∗ ∈ C = clF so that there exists a sequence of feasible direc-
tions {dn} converging to d∗. Consequently it is possible to choose a feasible
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sequence of points {xn} converging to x0 such that lim
n→+∞

xn−x0
‖xn−x0‖ = d∗

‖d∗‖ .

Since f(xn) ≥ f(x0), we have lim
n→+∞

f(xn)−f(x0)
‖xn−x0‖ = ∇f(x0)

T d∗

‖d∗‖ ≥ 0 and this

contradicts the assumption ∇f(x0)T d∗ < 0.
(iii) We have d∗ ∈ C = T so that ∃ {xn} ⊂ S, ∃ {αn} ⊂ �+, such that
xn → x0, αn → +∞, αn(xn − x0) → d∗. Since f(xn) ≥ f(x0), we have
∇f(x0)T d∗ ≥ 0 and this contradicts the assumption ∇f(x0)T d∗ < 0.

4.5 Assume, by contradiction, the existence of x̄ ∈ S∗ such that f(x̄) <
f(x0). The assumptions of generalized convexity imply ∇f(x0)T (x̄− x0) < 0,
∇gi(x0)T (x̄ − x0) ≤ 0, i = 1, ..., m, and ∇hj(x0)T (x̄ − x0) = 0, j = 1, .., p.

Consequently (∇f(x0) +
m∑

i=1

λi∇gi(x0) +
p∑

j=1

µj∇hj(x0))T (x̄ − x0) < 0 and

this contradicts the Karush–Kuhn–Tucker conditions.

4.6 Let x0 be a global maximum of S. From Theorem 1.2.8, x0 can be
expressed as a convex combination of finitely many extreme points x1, .., xm of

S. Applying the Jensen’ Inequality (see (1.4)), we have f(x0) = f
( m∑

i=1

λix
i
)
≤

n∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n,
m∑

i=1

λi = 1. If f(xi) < f(x0) for all i, then

f(x0) <

n∑
i=1

λif(xi) = f(x0) and this is absurd. It follows that f(xi) = f(x0)

for some i and the thesis is achieved.

4.7 Applying the Karush–Kuhn–Tucker conditions which are necessary and
sufficient for optimality because of the pseudoconcavity of U(x), we have
xi(p, m) = 1

λ
αi

pi
U(x).

Taking into account that
n∑

i=1

pixi = m =
1
λ

U(x)
n∑

i=1

αi =
1
λ

U(x), the thesis

is achieved.

(b) In this case, since
n∑

i=1

αi = 1, we have xi(p, m) = λuαi

pi
, U(x) = u =

λu

n∏
i=1

(
αi

pi
)αi , so that λ =

n∏
i=1

(
αi

pi
)−αi and e(p, u) =

n∑
i=1

pixi = u

n∏
i=1

(
αi

pi
)−αi .

4.8 Since the objective function p0y − pT x is linear and F is concave, we
can apply the Karush–Kuhn–Tucker conditions which become necessary and
sufficient for optimality.

We have xi(p0, p) = αi

pi
p0F (x) and F (x) = y =

n∏
i=1

xαi

i . This last equality

implies (a) and by substitution, (b) follows.
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4.9 Let x1, x2 be optimal solutions of problems P (α1), P (α2), respectively.
We have g(x1) ≤ α1, g(x2) ≤ α2, so that the convexity of g implies g(λx1 +
(1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2) ≤ λα1 + (1 − λ)α2. By setting ᾱ =
λα1 + (1 − λ)α2, it follows that x̄ = λx1 + (1 − λ)x2 is feasible for problem
P (ᾱ) and consequently, z(ᾱ) ≤ f(x̄). From the convexity of f we have z(ᾱ) ≤
λf(x1) + (1 − λ)f(x2) = λα1 + (1 − λ)α2.

4.10 Referring to Exercise 4.9, it is sufficient to note that f(x) = cT x and
g(x) = Ax − b − θu are convex functions.

Chapter 6

6.1 Q(x) = 1
2 (x − s)T Q(x − s) − 1

2sT Qs. Since 1
2 (x − s)T Q(x − s) ≤ 0, we

have Q(x) ≤ − 1
2sT Qs.

6.2 See Corollary 4.6.2.

6.3 (a) s = −Q−1q = (1, 0)T , s +T = {x = (1, 0)T + α(1, 1)T + β(−1, 2)T ,
α ≥ 0, β ≥ 0}.
(b) Note that Q(x) = 1

2 (x − s)T Q(x − s) − 1
2sT Qs with 1

2sT Qs = 2. Since
1
2 (x − s)T Q(x − s) ≤ 0, we have Q(x) ≤ −2.
(c) The Hessian matrix of f is negative semidefinite on s + T .

6.4 Q(x1, x2) = −2x2
1 − 3x1x2 − x2

2.

6.5 The function is quasiconvex on s +T and on s−T where s = (−1,−4)T

and T = {(x1, x2) = α(0, 1)T + β(1, 2)T , α ≥ 0, β ≥ 0}; Q(x1, x2) is
pseudoconvex on (s ± T )\{s}.
6.6 H = {(x1, x2) ∈ �2 : x1 − 3x2 + h0 ≥ 0}, h0 ≤ −1.

6.7 Q(x1, x2) = −2(3x1 + x2)2 + β(3x1 + 2x2), β ≤ −12.

6.8 The answer is negative since every boundary point of H is necessarily a
critical point of Q(x).

6.9 (a) Q(x1, x2) = −x1x2 − x2
2; (b) Q(x1, x2) = −x1x2 + x2

2;
(c) Q(x1, x2) = x2

1 − x2
2.

6.10 It is easy to verify that the maximal domains of quasiconvexity
of Q0(x1, x2) = kx1x2, k < 0 are �2

+ and �2−. Conversely, by setting
2Q0(x1, x2) = αx2

1 + 2βx1x2 + γx2
2, we have, from Theorem 6.5.8, α ≤ 0,

β ≤ 0, γ ≤ 0. If α < 0, then Q0(1, 0) < 0 so that, by continuity, Q0(x1, x2) < 0
on a suitable neighbhourhood of (1, 0) and this implies that �2

+ �= T . It follows
that α = 0 and, by similar arguments, that γ = 0.

6.11 It is easy to verify, by applying Theorem 6.5.7, that Q0(x) = βx1x2 +
q1x1 + q2x2, β < 0 is merely pseudoconvex on �2

+ for all q = (q1, q2)T ≤
0. Conversely, note that Q is necessarily nonsingular, so that we must have
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qT s = −qT Q−1q ≥ 0 for all q ≤ 0 or, equivalently, (see also Theorem 6.5.8),
γq2

1 − 2βq1q2 + αq2
2 ≥ 0 for all q1 ≤ 0, q2 ≤ 0. Since α ≤ 0, β ≤ 0, γ ≤ 0,

necessarily we have α = γ = 0, β < 0.

6.12 Apply Theorem 6.6.1 to the case c = 0.

6.13 Follow the same line of the proof given in Theorem 6.6.1.

Chapter 7

7.1 Case (ii) of Theorem 7.2.3 occurs; f is pseudoconvex if and only
if q0 ≥ −3.

7.2 Case (iii) of Theorem 7.2.3 occurs; f is pseudoconvex if and only if
q0 ≥ 10.

7.3 The proof is similar to the one given in Theorem 7.2.4.

7.4 Suppose, by contradiction, that v−(A) > 1 and let v1 and v2 be two
linearly independent eigenvectors associated with two negative eigenvalues
of A. Let W be the linear subspace generated by v1 and v2. Let us note
that dim(kerA) ≤ n − 2, so that kerA �= b⊥ and W ∩ b⊥ �= ∅. Let v ∈
W ∩ b⊥, v �= 0. Since v is a linear combination of v1 and v2, we have vT Av < 0.
Consider the line x = x0 + tv, x0 ∈ S, t ∈ � which is contained in S
since bT x + b0 = bT x0 + b0 > 0. It is easy to verify that the restriction
ϕ(t) = f(x0 + tv) is of the kind ϕ(t) = αt2 + βt + γ with α < 0 and this
contradicts the pseudoconvexity of f .

7.5 Consider f(x, y) = x2+y2−10
(x+1)2 and its restriction on the line y = x + 3,

i.e., ϕ(x) = 2x2+6x−1
(x+1)2 . We have ϕ′(x) = −2x+8

(x+1)3 , so that x = 4 is a strict
local maximum point for ϕ(x). Consequently, ϕ(x) and in turns f(x), is not
pseudoconvex.

7.6 Let us note that cases (ii–iv) of Theorem 7.4.2 do not occur since the
non-singularity of A implies the existence of α satisfying (i). In fact, we have
b − ‖b‖2

b0
A−1a = αA−1b, so that α = ‖b‖2(b0−aT A−1b)

b0bT A−1b
. By substituting α in

(i) of Theorem 7.4.2, together with aT b = ‖b‖2

b0
aT A−1a + αbT A−1b, the thesis

is achieved.

7.7 Consider f(x, y) = x2+y2

(x+y+1)2 and its restriction on the line x = 0.

7.8 The non-singularity of A implies the validity of (i) of Theorem 7.4.2
with α = ‖b‖2(b0−aT A−1b)

b0bT A−1b . If bT A−1b �= 0, (ii) follows (see also the proof

given in Exercise 7.6). If bT A−1b = 0, from b − ‖b‖2

b0
A−1a = αA−1b, we have

bT A−1a = b0. Substituting in (i) of Theorem 7.4.2 the thesis is achieved.
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7.9 (i) and (ii) follow directly from Theorem 7.4.2 by setting A = 0. The
Hessian matrix of f , given by ∇2f(x) = 2k(bT x+b0)+6(a0−kb0)

(bT x+b0)4
bbT , is negative

semidefinite in case (ii), while it is positive semidefinite in case (i) with k > 0.
In case (i) with k < 0, the function f is not necessarily convex as can be
verified by analyzing the function f(x) = −x+5

(x+1)2 .

7.10 Case (i) of Theorem 7.4.2 occurs; f is pseudoconvex on S if and only
if a0 ≥ 1

2 .

7.11 Case (ii) of Theorem 7.4.2 occurs; f is pseudoconvex if and only if
a0 ≥ 1.

7.12 Case (iii) of Theorem 7.4.2 occurs; f is pseudoconvex if and only if
b0 ∈ [− 1

2 , 3
2 ], b0 �= 0.

7.13 Case (iv) of Theorem 7.4.2 occurs; f(x) is pseudoconvex if and only
if a2 ≤ 1

2 .

7.14 Firstly, consider the case where a and d are linearly independent.
The function h is obtained from g of Theorem 7.2.4 by setting b = d, b0 = d0,
a0 = 0. Since d = δ1a + δ2d if and only if δ1 = 0, δ2 = 1, condition (ii) of
Theorem 7.2.4 never occurs. Furthermore, condition (i) of Theorem 7.2.4 is
equivalent to having d0 = γ1 + d0, c0 ≥ (γ1 + d0)γ2, so that γ1 = 0, c0 ≥ γ2d0

and c = γ1a + γ2d = γ2d. Consequently, (ii) holds with t = γ2.
Consider now the case where a and d are linearly dependent, i.e., a = kd.
We have h(x) = k(dT x)2+(kd0d+c)T x+c0

dT x+d0
. If k ≥ 0, the numerator is a convex

function so that (i) holds (see also Theorem 3.2.10). If k < 0, by referring to
Theorem 7.2.3, we have Q = 2kddT , q = kd0d + c, q0 = c0. Since Qȳ = d if
and only if dT ȳ = 1

2k , case (ii) of Theorem 7.2.3 never occurs since k < 0. By
referring to (iii) of Theorem 7.2.3, Qx̄ = −q is equivalent to stating that c = td
with t = −k(d0 + 2dT x̄), while the condition (dT x̄+ d0)2 + 2n(x̄)dT ȳ ≤ 0 is
equivalent to c0 ≥ td0.

7.15 (a) Case (iv) of Theorem 7.3.2 occurs;
D = {(x1, x2) ∈ �2 : 3x1 + 2x2 + 6 > 0, x1 + 4x2 + 3 > 0}.
(b) Case (v) of Theorem 7.3.2 occurs;
D1 = {(x1, x2) ∈ �2 : 5x1 − x2 − 15 > 0, 2x1 − x2 + 8 > 2},
D2 = {(x1, x2) ∈ �2 : 5x1 − x2 − 15 < 0, 0 < 2x1 − x2 + 8 < 2}.
(c) Case (iii) of Theorem 7.3.2 occurs;
D1 = {(x1, x2) ∈ �2 : 3x1 + 5x2 + 2 > 1},
D2 = {(x1, x2) ∈ �2 : 0 < 3x1 + 5x2 + 2 < 1}.
(d) Case (i) of Theorem 7.3.2 occurs;
D = {(x1, x2) ∈ �2 : −2x1 + 6x2 + 7 > 0}.
7.16 (a) When θ = 0, case (i) of Theorem 7.3.2 occurs; D = {(x1, x2) ∈ �2 :
2x1 + 3x2 + 5 > 0}.
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When θ > 0, case (iv) of Theorem 7.3.2 occurs; D = {(x1, x2) ∈ �2 : 4x1 +
(6+ θ)x2 −8θ+10 > 0, 2x1 +3x2 +5 > 0}. When θ < 0, case (v) of Theorem
7.3.2 occurs;
D1 = {(x1, x2) ∈ �2 : 4x1 + (6 + θ)x2 − 8θ + 10 > 0, 2x1 + 3x2 + 5 + 1

θ > 0},
D2 = {(x1, x2) ∈ �2 : 4x1 +(6+θ)x2−8θ+10 < 0, 0 < 2x1 +3x2 +5 < − 1

θ}.
(b) When c0 = 3

2 , f reduces to a linear function.
When c0 > 3

2 , case (i) of Theorem 7.3.4 occurs;
D = {(x1, x2) ∈ �2 : 2x1 + 2x2 + 3 > 0}.
When c0 < 3

2 , case (ii) of Theorem 7.3.4 occurs;

D1 = {(x1, x2) ∈ �2 : 2x1 + 2x2 + 3 >
√

3
2 − c0},

D2 = {(x1, x2) ∈ �2 : 0 < 2x1 + 2x2 + 3 <
√

3
2 − c0}.

7.17 (a) Case (iii) of Theorem 7.5.1 occurs, with β = 1, δ = −1, λ1, λ2 = 1.
(b) Case (ii) of Theorem 7.5.1 occurs, with γ = −1.

7.18 f is pseudoconvex if and only if m0 ≥ 4. When m0 = 4, case (i) of
Theorem 7.5.1 occurs, with α = 1. When m0 > 4, case (iii) of Theorem 7.5.1
occurs, with β = 2

m0−4 , δ = −m0+2
m0−4 , λ1 = 2, λ2 = 2

m0−4 .
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171. Komlósi S., On pseudoconvex functions, Acta Sciences Mathematics, 569–586,
1993.
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273. Szilágyi P., A class of differentiable generalized convex functions, in General-
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A

Mathematical Review

In this Appendix, we shall collect definitions, notation, and some basic results
from Linear Algebra and Analysis that are used frequently in the book. More
details can be found in the standard text-books on these topics.

A.1 Sets

If S is a set and x is an element of S, we write x ∈ S. We write x /∈ S if x is
not an element of S.
The union of two sets S and T , denoted by S ∪ T , is the set consisting of the
elements which belong to either S or T .
The intersection of two sets S and T , denoted by S ∩ T , is the set consisting
of the elements which belong to both S and T .
If every element of a set S belongs to a set X , we say that S is a subset of
X and we write S ⊂ X if the inclusion is proper (that is there exists at least
one element x of X such that x /∈ S), otherwise we write S ⊆ X .
The complement of a set S ⊂ X , denoted by Sc, is the set {x ∈ X : x /∈ S}.
The Cartesian product of the sets S, T , denoted by S × T , is defined as
S × T = {(s, t) : s ∈ S, t ∈ T }.

Maps
Let S, T be sets. A map F from S to T is an association with to every element
of S associates an element of T ; if x ∈ S, then we denote by F (x) the element
of T associated with x by F . We call F (x) the value of F at x or also the
image of x under F . The set of all elements F (x), for all x ∈ S, denoted by
F (S), or ImS, is called the image of F .

Sets of Real Numbers
The set of real numbers (also referred to as scalars) is denoted by �.
If a and b are real numbers, [a, b] denotes the set of real numbers x satisfying
a ≤ x ≤ b. A rounded, instead of a square, bracket denotes strict inequality
in the definition.
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For any real number x, the absolute value of x, denoted by | x |, is defined as
follows:

| x |=
⎧⎨⎩

x x > 0
−x x < 0
0 x = 0

If S is a subset of � bounded below, that is there exists m ∈ � such that
x ≥ m, ∀x ∈ S, then there is a greatest real number � such that x ≥ � for all
x ∈ S. The number � is called the infimum of S and is denoted by inf S.
We write � = −∞, if S is not bounded below.
Similarly, the least upper bound or supremum L of a set S is denoted by sup S
and we write L = +∞, if S is not bounded above.

A.2 The Euclidean Space �n

An n-vector is an ordered n-tuple of real numbers and it will be viewed as

column vector, that is x =

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠.

The set of all n-vectors is denoted by �n. For any x ∈ �n, xT denotes the
transpose of x, which is an n-dimensional row vector. For typographical rea-
sons, we shall write x = (x1, ..., xn)T , or xT = (x1, ..., xn).
In �n vector addition and scalar multiplication are defined by the formulas
x + y = (x1 + y1, ..., xn + yn)T , αx = (αx1, ..., αxn)T .
The zero vector, denoted by 0, is a vector consisting entirely of zeros.
The i-th unit vector, denoted by ei, consists of zeros except for a 1 at the i-th
position.
One of the important features of �n is that it is an n-dimensional linear space
(also referred as a vector space) which is a set of elements x, y, z, ... called
vectors, for which the operations of addition of vectors and multiplications of
vectors by scalars α, β, γ, .. are defined and are subject to the following basic
rules from which all others can be derived:
• x + y = y + x, x + (y + z) = (x + y) + z;
• there exists a vector 0 such that x + 0 = x for all x. For each x there is an
element (−x) such that x + (−x) = 0;
• αx = xα, α(βx) = (αβ)x, (α + β)x = αx + βx, 1 · x = x, 0x = 0, where 0
in the left member denotes the scalar zero.
A subspace V of �n is a subset of �n with itself constitutes a linear space.
V is a subspace of �n if and only if it is closed with respect to the addition
and with respect to the multiplication by a scalar, that is αx + βy ∈ V for
every x, y ∈ V and for every α, β ∈ �.
A linear manifold W of �n is a translated subspace, that is a set of the form
W = w + V = {w + x, x ∈ V }.
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A set of m vectors x1, ..., xm is said to be a set of linearly independent vectors

if a relation of the form
m∑

i=1

αix
i = 0 holds if and only if α1 = ... = αm = 0.

Vectors are linearly dependent if they are not linearly independent.

If S is a nonempty subset of �n, the set of all linear combinations x =
s∑

i=1

αix
i

of vectors x1, ..., xs in S is a subspace called the subspace generated or spanned
by S.
Given a subspace V of �n, a basis for V is a collection of vectors of V that
are linearly independent and that spanned V . Every basis of a given subspace
has the same number of elements. This number is said to be the dimension of
V , denoted dimV , and it is equal to the maximum number of linearly inde-
pendent vectors in V . The unit vectors e1, .., en constitutes a basis of �n.
A subspace of �n is proper if and only if its dimension is less than n. The
dimension of a linear manifold W = w+V is the dimension of V and we write
dimW = dimV .
Linear manifolds of dimension 0, 1 and 2 are called points, lines and planes,
respectively. An n − 1-dimensional linear manifold is called a hyperplane.
Let U , V be subspaces of �n. Then, U∩V and U +V = {u+v, u ∈ U, v ∈ V }
are subspaces verifying the relation dim(U+V ) = dimU+dimV −dim(U∩V ).

The Scalar Product
The scalar or inner product xT y of two vectors x, y ∈ �n is defined as

xT y =
n∑

i=1

xiyi

The basic properties of the scalar product are as follows:
• xT x ≥ 0 for every x; xT x = 0 if and only if x = 0;
• xT y = yT x;
• (αx + βy)T z = αxT z + βyT z.
The vectors x, y are said to be orthogonal if xT y = 0.
If V is a subspace of �n, the orthogonal complement of V , denoted by V ⊥,
consists of all vectors that are orthogonal to every vector on V ; V ⊥ is a sub-
space and together V and V ⊥ span �n in the sense that every x ∈ �n can
be written uniquely in the form x = v + w with v ∈ V , w ∈ V ⊥. We have
dimV + dimV ⊥ = n.
A set of vectors x1, ..., xs is said to be orthogonal if (xi)T xj = 0, i, j =
1, ...s, i �= j; if in addition (xi)T xi = 1, i = 1, ...s, the set of vectors is called
orthonormal. An important fact is that every subspace �n has an orthogonal

basis which reduces to an orthonormal basis substituting xi with
xi

(xi)T xi
.

Several times, in the book the vectors x1, ..., xs are denoted by x1, ..., xs;
however, this variation in notation will be clear in the context.
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By means of the scalar product, a hyperplanes may be characterized as fol-
lows:
H ⊂ �n is a hyperplane if and only if there exist α ∈ �n\{0}, β ∈ �, such
that H = {x ∈ �n : αT x = β}, with α, β unique up to a common non-zero
multiple.
Corresponding to a hyperplane H there are the positive and negative closed
half-spaces

H+ = {x ∈ �n : αT x ≥ β}, H− = {x ∈ �n : αT x ≤ β}
and the positive and negative open half-spaces

intH+ = {x ∈ �n : αT x > β}, intH− = {x ∈ �n : αT x < β}
Moreover, every linear manifold of �n is an intersection of a finite number
of hyperplanes.
In particular any line may be expressed as an intersection of n−1 hyperplanes.
A line may be also usefully expressed in parametric form.
The line through x1 ∈ �n and x2 ∈ �n, with x1 �= x2, is

{x ∈ �n : x = x1 + λ(x2 − x1), λ ∈ �}
The line through x0 and direction u with x0, u ∈ �, is

{x ∈ �n : x = x0 + tu, t ∈ �}

The set r = {x ∈ �n : x = x0 + tu, t ≥ 0} is the half-line through x0 and
direction u, while the set

[x1, x2] = {x ∈ �n : x = x1 + t(x2 − x1), t ∈ [0, 1]}

is the line segment of end points x1, x2.

Matrices
A matrix is a rectangular array of numbers, called elements. We write

A =

⎡⎢⎣ a11 a12 · · · a1n

...
...

. . .
...

am1 am2 · · · amn

⎤⎥⎦
for a matrix A having m rows and n columns. Such a matrix is referred as an
m × n matrix. The notation A = [aij] is used.
The transpose of A, denoted by AT , is the n×m matrix AT whose ij element
is aji.
An m × n matrix whose elements are all zero is called a zero matrix and
denoted by O.
The sum of two m × n matrices A = [aij] and B = [bij] is the matrix
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A+B = [aij + bij]. The product λA of a matrix A and a scalar λ, is obtained
by multiplying each element of A by λ. The product AB of an m × n matrix

A and an n×p matrix B is the m×p matrix C with elements cij =
n∑

k=1

aikbkj .

Let A be an m× n matrix. The range space or image of A, denoted by ImA,
is the set of all vectors z ∈ �m such that z = Ax for some x ∈ �n, i.e.
ImA = {z ∈ �m : z = Ax, x ∈ �n}. ImA is the subspace of �m spanned by
the columns of A and its dimension is the maximum numbers of the columns
of A which are linearly independent. The kernel of A, denoted by kerA, is the
set of all vectors x ∈ �n such that Ax = 0, i.e., kerA = {x ∈ �n : Ax = 0}.
kerA is a subspace of �n and we have dim(kerA) + dim(ImA) = n.
The rank of an m×n matrix A, denoted by rankA, is equal to the maximum
number of linearly independent columns in A. This number is also equal to
the maximum number of linearly independent rows in A. A is said to be of
full rank if the rank of A is equal to the minimum of m and n.

Square Matrices, Eigenvalues, and Quadratic Forms
Let A be a square matrix (a matrix with m = n). We use I to denote the
identity matrix that is the matrix [aij ] with aij = 0 for i �= j, and aii = 1 for
i = 1, 2, ..., n. A is said to be symmetric if AT = A, i.e., aij = aji for all i, j.
A is diagonal if aij = 0 whenever i �= j. A is nonsingular or invertible if there
is a matrix A−1, called the inverse of A, such that A−1A = I = AA−1. A is
nonsingular if and only if its determinant, denoted by detA, is non-zero.
If A and B are square matrices we have:
(AB)T = BT AT , (A−1)T = (AT )−1, (AB)−1 = B−1A−1.
Corresponding to an n×n square matrix A, a scalar λ and a non-zero vector
x satisfying the equation Ax = λx are said to be, respectively, an eigenvalue
and eigenvector of A; λ is an eigenvalue of A if and only if A−λI is singular or,
equivalently, if and only if det(A − λI) = 0. This last result, when expanded,
yields an n-th order polynomial equation which can be solved for n complex
roots λ which are the eigenvalues of A.
When A is symmetric we have the following special properties:
(a) the eigenvalues of A are real numbers;
(b) eigenvectors associated with distinct eigenvalues are orthogonal;
(c) there is an orthogonal basis for �n, each element of which is an eigenvec-
tor.
A symmetric n×n matrix A is said to be positive definite if xT Ax > 0 for all
x ∈ �n, x �= 0. It is called positive semidefinite if xT Ax ≥ 0 for all x ∈ �n.
We have the following properties:
• For any m × n matrix A, the matrix AT A is symmetric and positive semi-
definite. AT A is positive definite if and only if rankA = n;
• A square symmetric matrix is positive semidefinite (positive definite) if and
only if all of its eigenvalues are non-negative (positive);
• The inverse of a positive definite matrix is positive definite.
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A.3 Topological Concepts

The Euclidean norm of a vector x is defined by

‖ x ‖=
√

xT x

From the properties of the scalar product there follows the following basic
properties:
1. ‖ x ‖ ≥ 0 for all x ∈ �n; ‖ x ‖ =0 if and only if x = 0;
2. ‖ αx ‖ =α ‖ x ‖ for every α ∈ � and every x ∈ �n;
3. ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖ for all x, y ∈ �n (triangle inequality);
Another important inequality, called the Cauchy-Schwartz inequality, states
that for any two vectors x, y, we have
4. | xT y | ≤ ‖ x ‖‖ y ‖ with equality holding if and only if y = αx for some
scalar α.
The Euclidean norm allow us to define some topological concepts.
A ball around x0 and radius ε is the set B(x0, ε) = {x ∈ �n :‖ x − x0 ‖< ε}.
Such a ball is also referred to as the neighborhood of x0 of radius ε.
Let S be a set of �n. A point x0 is an interior point of S if there exists ε > 0
such that B(x0, ε) ⊂ S. A point x0 is an accumulation point or a limit point of
S if every ball around x0 contains a point x �= x0 belonging to S. A point x0

is an isolated point of S if x0 ∈ S but it is not a limit point of S. A point
x0 is a boundary point of S if every ball around x0 contains points in S and
points not in S. Finally a point x0 is an exterior point of S if it is interior to
the complement of S.
A set S is:
• open if all of its points are interior points;
• closed if it contains all of its limit points;
• bounded if it is contained in a ball;
• compact if it is closed and bounded.
The complement of an open set is closed, and the complement of a closed set
is open.
The interior of S, denoted by intS, is the set of its interior points. The interior
of a set is always open. The boundary of S, denoted by ∂S, is the set of its
boundary points.
A set S is closed if and only if ∂S ⊆ S. The closure of S, denoted by clS, is
the smallest closed set containing S.
The union of open sets is open. The intersection of finitely many open sets is
open.
The union of finitely many closed sets is closed. The intersection of closed sets
is closed.
Every linear manifold in �n is closed.
A sequence of vectors x1, ..., xk, ..., denoted {xk}, is said to converge to the
limit x if ‖ xk − x ‖→ 0 as k → +∞, that is if for any given ε > 0, there is
a N such that k ≥ N implies ‖ xk − x ‖< ε. If {xk} converges to x, we write
xk → x or lim

k→+∞
xk = x.



A.4 Functions 235

A set S is closed if and only if the limits of convergent sequences in S are in
S, that is {xk} ⊂ S, xk → x implies x ∈ S.
A point x is a limit point of the sequence {xk} if there is a subsequence of
{xk} convergent to x.
An important result, known as the Bolzano-Weierstrass Theorem, states that
a set S is compact if and only if every sequence of elements of S has a
subsequence that converges to an element of S.

A.4 Functions

A map f from S ⊂ �n to � is referred as a real-valued function defined on S.
A map F from S ⊂ �n to �m is referred as a vector-valued function defined
on S. F can be equivalently expressed by F (x) = (f1(x), ..., fm(x)), where
fi(x), i = 1, ..., m, are real-valued functions defined on S.
In this book, a real-valued function is referred as a function. This variation
will be clear in the context.

Continuity
Let S be a nonempty set of �n and let f be a function defined on S.
• f is said to be lower semicontinuous at x0 ∈ S, if for each ε > 0 there exists
δ > 0 such that x ∈ S and ‖ x − x0 ‖< δ implies f(x) > f(x0) − ε.
The lower semicontinuity of f at x0 ∈ S is equivalent to the following state-
ment: f is lower semicontinuous at x0 ∈ S, if for any sequence {xn} ⊂ S such
that xn → x0 and f(xn) → z, we have z ≥ f(x0).
• f is said to be upper semicontinuous at x0 ∈ S, if for each ε > 0 there exists
δ > 0 such that x ∈ S and ‖ x − x0 ‖< δ implies f(x) < f(x0) + ε.
The upper semicontinuity of f at x0 ∈ S is equivalent to the following state-
ment: f is upper semicontinuous at x0 ∈ S, if for any sequence {xn} ⊂ S such
that xn → x0 and f(xn) → z, we have z ≤ f(x0).
• f is said to be continuous at x0 ∈ S, if it is both lower semicontinuous
and upper semicontinuous at x0 or, equivalently, if for each ε > 0 there exists
δ > 0 such that x ∈ S and ‖ x − x0 ‖< δ implies ‖ f(x) − f(x0) ‖< ε.
The continuity at x0 ∈ S is equivalent to the following statement: f is con-
tinuous at x0 ∈ S, if for any sequence {xn} ⊂ S such that xn → x0 we have
f(xn) → f(x0).
• f is said to be continuous (lower semicontinuous, upper semicontinuous) on
S if f is continuous (lower semicontinuous, upper semicontinuous) at every
element of S.
• The Euclidean norm and the scalar product are continuous functions.
Sums and products of continuous functions are continuous functions; a com-
posite of continuous functions is a continuous function.
• Let S be a nonempty set of �n and let F (x) = (f1(x), ..., fm(x)) be a
vector-valued function on S. F is said to be continuous (respectively, lower
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semicontinuous, upper semicontinuous) on S if each function fi, i = 1, ..., m,
is continuous (respectively, lower semicontinuous, upper semicontinuous) on S.

Infimum of a Function
Let f be a real-valued function on S ⊆ �n. The infimum of the image f(S),
i.e., the largest number � (with � = −∞ admitted) such that f(x) ≥ � for all
x ∈ S is called the infimum of f on S. It is denoted by inf

x∈S
f(x). In general,

the value inf
x∈S

f(x) may or may not be attained. If there is a point x0 ∈ S such

that f(x0) = inf
x∈S

f(x), this is expressed by writing f(x0) = min
x∈S

f(x).

Such a point x0 is called a global minimum for f on S and f(x0) is the mini-
mum value of f on S.
Similarly, the supremum of the image f(S), i.e., the smallest number L (with
L = +∞ admitted) such that f(x) ≤ L for all x ∈ S is called the supremum
of f on S. It is denoted by sup

x∈S
f(x). If there is a point x0 ∈ S such that

f(x0) = sup
x∈S

f(x), this is expressed by writing f(x0) = max
x∈S

f(x).

Such a point x0 is called a global maximum for f on S and f(x0) is the max-
imum value of f on S.
It is clear that on S

inf
x∈S

f(x) = −sup
x∈S

(−f(x)) ; sup
x∈S

f(x) = −inf
x∈S

(−f(x))

One of the basic problems in Optimization is to determine conditions which
imply the existence of the minimum and/or the maximum value of a function.
With this regards, the following theorem holds.

The Generalized Weierstrass Theorem
Let S be a nonempty compact set of �n. Then:
(i) A lower semicontinuous function f on S attains its minimum value on S,
i.e., there exists x0 ∈ S such that f(x0) = min

x∈S
f(x).

(ii) An upper semicontinuous function f on S attains its maximum value on
S, i.e., there exists x0 ∈ S such that f(x0) = max

x∈S
f(x).

(iii) A continuous function on S attains its minimum and maximum values
on S, i.e., there exists x1 ∈ S, x2 ∈ S such that f(x1) = min

x∈S
f(x) and

f(x2) = max
x∈S

f(x).

Derivatives and Differentiability
Let S be an open set of �n, and let f be a function defined on S. We define
its partial derivative at a point x ∈ S by

∂f(x)
∂xi

= lim
t→0

f(x + tei) − f(x)
t
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if the limit exists. Assuming all of these partial derivatives exist, the gradient
of f at x0 is defined as the column vector

∇f(x) =

⎛⎜⎜⎜⎜⎝
∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xn

⎞⎟⎟⎟⎟⎠ .

We shall say that f is differentiable at x0 ∈ S if the gradient of f at x0 exists
and

f(x) = f(x0) + ∇f(x0)T (x − x0) + o(x − x0)

where o(x − x0) is such that lim
x→x0

o(x − x0) = 0.

The function f is said to be differentiable on an open set S if it is differentiable
at every point of S.
If f is differentiable on an open set S it is obviously differentiable on an
arbitrary subset of S (not necessarily open). For such a reason, we shall say
that f is differentiable on a subset X ⊂ �n if it is differentiable on an open
set containing X.
The gradient of f thus takes the place of a derivative. The rules for derivative
hold as usual: if f , g are differentiable on S, and α ∈ �, then

∇ (f(x) + g(x)) = ∇f(x) + ∇g(x); ∇αf(x) = α∇f(x)

∇ (f(x)g(x)) = g(x)∇f(x) + f(x)∇g(x)

∇
(

f(x)
g(x)

)
=

g(x)∇f(x) − f(x)∇g(x)
(g(x))2

If f is differentiable on an open set S and the gradient ∇f(x) is a continuous
function of x, f is said to be continuously differentiable on S.
If in addition, each partial derivative is a continuously differentiable function,
we say that f is twice continuously differentiable on S. We use the notation
∂2f(x)
∂xi∂xj

to indicate the i-th partial derivative of ∂f(x)
∂xj

at a point x ∈ S.

The matrix whose ij-th entry is ∂2f(x)
∂xi∂xj

, is called the Hessian matrix, or Hes-
sian, of f and it is denoted by ∇2f(x). If f is twice continuously differentiable
on S, the Hessian of f is symmetric.

If F (x) = (f1(x), ...fm(x)) is a vector-valued function defined on an open set
S ⊆ �n, it is called differentiable (respectively, continuously differentiable) if
each component fi of F is differentiable (respectively, continuously differen-
tiable). The Jacobian matrix of F , denoted by J(F (x)), is the m × n matrix
whose i-th row is the transpose of the gradient ∇fi(x), i.e.,
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J(F (x)) =

⎡⎢⎢⎢⎢⎢⎣
∂f1(x)

∂x1
· · · ∂f1(x)

∂xn

∂f2(x)
∂x1

· · · ∂f2(x)
∂xn

...
. . .

...
∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

⎤⎥⎥⎥⎥⎥⎦
The Directional Derivative
Let S be an open set of �n, and let f be a function defined on S. For any
x0 ∈ S and for any u ∈ �n, setting ϕ(t) = f(x0 + tu), we define the one-sided
directional derivative of f at x0 in the direction u, to be

ϕ′(0) = lim
t→0+

ϕ(t) − ϕ(0)
t

= lim
t→0+

f(x0 + tu) − f(x0)
t

provided that the limit exists.
If f is differentiable on S, we have

ϕ′(t) = ∇(f(x0 + tu))T u; ϕ′(0) = ∇f(x0)T u.

The Second Directional Derivative
If f is a twice continuously differentiable function on S, we have

ϕ′′(t) = uT∇2f(x0 + tu)u; ϕ′′(0) = uT∇2f(x0)u.

The Mean Value Theorem
Let S be an open set of �n, and let f be a continuously differentiable function
on S. If x1, x2 ∈ S, then there exists θ ∈ [0, 1] such that

f(x2) = f(x1) + ∇f (x1 + θ(x2 − x1))
T (x2 − x1)

Furthermore, if f is a twice continuously differentiable function on S, then
then there exists θ ∈ [0, 1] such that

f(x2) = f(x1)+∇f(x1)T (x2−x1)+
1
2
(x2−x1)T∇2f (x1 + θ(x2 − x1)) (x2−x1)

Implicit Function Theorem
Consider a set of m equations in n variables

hi(x) = 0, i = 1, 2, ..., m.

The implicit function theorem addresses the question as to whether if n − m
of the variables are fixed, the equations can be solved for the remaining m
variables. Thus, selecting m variables, say x1, ..., xm, we wish to determine if
these may be expressed in terms of the remaining variables in the form

xi = φi(xm+1, ..., xn), i = 1, ..., m.
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Theorem Let x0 = (x0
1, ..., x

0
n) ∈ �n be such that:

(i) hi(x) = 0, i = 1, ..., m.;
(ii) The functions hi, i = 1, ..., m, have continuous partial derivatives of order
p in some neighborhood of x0 for some p ≥ 1;
(iii) The m × m Jacobian matrix

J =

⎡⎢⎢⎢⎢⎢⎣
∂h1(x

0)
∂x1

· · · ∂h1(x
0)

∂xm

∂h2(x
0)

∂x1
· · · ∂h2(x

0)
∂xm

...
. . .

...
∂hm(x0)

∂x1
· · · ∂hm(x0)

∂xm

⎤⎥⎥⎥⎥⎥⎦
is nonsingular.
Then, there exists a neighborhood of x̂0 = (x0

m+1, ..., x
0
n) ∈ �n−m such that

for x̂ = (xm+1, ..., xn) in this neighborhood there are functions φi(x̂), i =
1, 2, ..., m, such that
(i) φi has continuous partial derivatives of order p, i = 1, 2, .., m;
(ii) x0

i = φi(x̂0), i = 1, ..., m;
(iii) hi (φi(x̂), φ2(x̂), ..., φm(x̂), x̂) = 0, i = 1, ..., m.

Local Minima and Maxima
Let S be a subset of �n, and let f be a function defined on S.
A point x0 ∈ S is said to be a local minimum for f on S if there exists a ball
B(x0, ε) around x0 and radius ε such that

f(x) ≥ f(x0), ∀x ∈ B(x0, ε) ∩ S

If B(x0, ε) can be chosen so that the strict inequality f(x) > f(x0) holds for
all x ∈ B(x0, ε)∩S, x �= x0, the point x0 is said to be a strict local minimum.
It is clear that a global minimum is a local minimum. The converse, however,
is not true.
The corresponding definitions for a local maximum and for a strict local maxi-
mum are obtained from the definitions just given by reversing the inequalities
and replacing “minimum” by “maximum”.

Necessary Optimality Conditions
Let x0 be an interior point of S. If x0 is a local minumum or a local maximum
and f is differentiable at x0, then ∇f(x0) = 0.
The above condition is called a first-order optimality condition since it uses
the first partial derivatives of f .
A point x0 such that ∇f(x0) = 0 is referred as a critical point.
Necessary optimality conditions stated in terms of the Hessian of f are called
second-order optimality conditions. One such condition is given below.
Let x0 be an interior point of S. If x0 is a local minumum (respectively, local
maximum) and f is twice continuously differentiable on S, then ∇f(x0) = 0
and ∇2f(x0) is positive semidefinite (respectively, negative semidefinite).
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Sufficient Optimality Conditions
Let f be a twice continuously differentiable function on S. If ∇f(x0) = 0 and
∇2f(x0) is positive definite (respectively, negative semidefinite), then x0 is a
strict local minimum point (respectively, strict local maximum).



B

Concave and Generalized Concave Functions

In this Appendix, for the sake of completeness and taking also into account
that concave and quasiconcave functions are more frequently encountered in
Economics, we shall present the definitions and the main properties of these
functions.

Definitions
Let S ⊆ �n be a convex set. A function f defined on S is said to be:
(a) concave on S if if for all x1, x2 ∈ S,

f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2), ∀λ ∈ [0, 1].

(b) strictly concave on S if for all x1, x2 ∈ S, with x1 �= x2,

f(λx1 + (1 − λ)x2) > λf(x1) + (1 − λ)f(x2), ∀λ ∈ (0, 1).

(c) quasiconcave on S if for all x1, x2 ∈ S,

f(λx1 + (1 − λ)x2) ≥ min{f(x1), f(x2)}, ∀λ ∈ [0, 1].

(d) strictly quasiconcave on S if for all x1, x2 ∈ S, x1 �= x2,

f(λx1 + (1 − λ)x2) > min{f(x1), f(x2)}, ∀λ ∈ (0, 1).

(e) semistrictly quasiconcave on S if for every x1, x2 ∈ S, with f(x1) �= f(x2),

f(λx1 + (1 − λ)x2) > min{f(x1), f(x2)}, ∀λ ∈ (0, 1)

(f) pseudoconcave on S (under differentiability assumption) if for all x1,
x2 ∈ S,

f(x1) < f(x2) ⇒ ∇f(x1)T (x2 − x1) > 0.

(g) strictly pseudoconcave on S (under differentiability assumption) if for all
x1, x2 ∈ S, x1 �= x2,
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f(x1) ≤ f(x2) ⇒ ∇f(x1)T (x2 − x1) > 0.

A semistrictly quasiconcave function on the convex set S is not necessarily
a quasiconcave funtion. This is true by assuming the upper semicontinuity of
f on S.
An important case where quasiconcavity reduces to concavity is related to
homogeneity:
if f is a homogeneous positive function of degree α with 0 < α ≤ 1 on the
convex set S ⊆ �n, then f is quasiconcave if and only if it is concave.
In the differentiable case, quasiconcavity reduces to concavity when the func-
tion has not critical points:
if f is a differentiable function on the open convex set S ⊆ �n such that
∇f(x) �= 0, ∀x ∈ S, then f is pseudoconcave on S if and only it is quasicon-
cave on S.
The inclusion relationships among the various classes of concave and general-
ized concave functions are illustrated in Figure B.1 assuming differentiability.
All inclusions are proper.

strictly
concave

pseudoconcave

quasiconcave

strictly
pseudoconcave

strictly
quasiconcave

semistrictly
quasiconcaveconcave

Fig. B.1. Relationships between various types of concavity

Properties
Let S ⊆ �n be a convex set.
• If f is a concave function on S, then the upper-level set S≥α = {x ∈ S :
f(x) ≥ α} is convex for every α ∈ �.
• A non-negative linear combination of concave functions on S is a concave
function on S.
• A non-negative linear combination of strictly concave functions on S is a
strictly concave function on S.
• If fi, i = 1, ..., m are concave functions on S, then z(x) = min

i∈{1,..,m}
{fi(x)} is

concave on S.
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• If g : � → � is a non-decreasing concave function and h : S → � is a
concave function on S, then the composite function f(x) = g(h(x)) is concave
on S.
• If g : � → � is an increasing concave function and h : S → � is a strictly
concave function on S, then the composite function f(x) = g(h(x)) is strictly
concave on S.
• If f is a quasiconcave (respectively, strictly quasiconcave, semistrictly qua-
siconcave) function on S and g : � → � be an increasing function, then the
composite function g ◦ f is quasiconcave (respectively, strictly quasiconcave,
semistrictly quasiconcave) on S. This result still holds for a quasiconcave func-
tion even if g is a non-decreasing function.
• If f is pseudoconcave on S and φ : � → � is a differentiable function such
that φ′(z) > 0, ∀z ∈ �, then the composite function φ ◦ f is pseudoconcave.
• Let g(x) = Ax + b where A is an m × n matrix, b ∈ �m and let f be a
quasiconcave (pseudoconcave) function on S. Then, z(x) = f(Ax + b) is qua-
siconcave (pseudoconcave) on S.

Characterizations
Let S ⊆ �n be a convex set and let f be a function defined on S.
• f is concave on S if and only if its hypograph hypof = {(x, z) : x ∈ S, z ≤
f(x)} is a convex set.
• f is strictly concave on S if and only if its hypograph is a convex set and
does not contain any line segments.
• f is quasiconcave on S if and only if all of its upper level sets
S≥α = {x ∈ S : f(x) ≥ α} are convex.
• f is quasiconcave (respectively, strictly quasiconcave, semistrictly quasicon-
cave) on S if and only if the restriction of f on each line segment contained
in S is a quasiconcave (respectively, strictly quasiconcave, semistrictly quasi-
concave) function.
• f is strictly quasiconcave on S if and only f is quasiconcave and every
restriction on a line segment is not constant.
• f is semistrictly quasiconcave on S if and only f is quasiconcave and every
local maximum is also global for every restriction on a line segment.

Under differentiabilty assumptions:
• f is concave if and only if

f(y) ≤ f(x) + ∇f(x)T (y − x), ∀x, y ∈ S.

and it is strictly concave if and only the inequality is strict.
• f is concave if and only if its Hessian matrix is negative semidefinite at each
point of S. If the Hessian matrix of f is negative definite at each point of S,
then f is strictly concave.
• f is quasiconcave on S if and only if the following implication holds:

x1, x2 ∈ S, f(x1) ≤ f(x2) ⇒ ∇f(x1)T (x2 − x1) ≥ 0.
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Note that both for a strictly and a semistrictly quasiconcave function there is
not a first-order characterization.
• f is quasiconcave on S if and only
(i) x0 ∈ S, u ∈ �n, uT∇f(x0) = 0 imply uT∇2f(x0)u ≤ 0;
(ii) x0 ∈ S, x1 ∈ S, f(x1) > f(x0), ∇f(x0) = 0, uT∇2f(x0)u = 0 with
u = x0 − x1, imply that for every ε > 0 there exists k ∈ (0, ε) such that
x0 + ku ∈ S and f(x0) ≥ f(x0 + ku).

• f is (strictly) pseudoconcave on S if and only if f is quasiconcave on S
and every critical point is a (strict) local maximum for f on S.
• f is (strictly) pseudoconcave if and only if for every x0 ∈ S and u ∈ �n such
that uT∇f(x0) = 0, the function ϕ(t) = f(x0 + tu) attains a (strict) local
maximum at t = 0.
• f is (strictly) pseudoconcave on S if and only if for every x0 ∈ S and u ∈ �n

such that uT∇f(x0) = 0, either uT∇2f(x0)u < 0 or uT∇2f(x0)u = 0 and the
function ϕ(t) = f(x0 + tu) attains a (strict) local maximum at t = 0.
• f is (strictly) pseudoconcave if and only if
(i) x ∈ S, u ∈ �n, uT∇f(x0) = 0 ⇒ uT∇2f(x0)u ≤ 0;
(ii) x ∈ S, ∇f(x) = 0 ⇒ f has a (strict) local maximum at x.

• f is pseudoconcave if and only if
(i) (−1)|R|DR(x) ≥ 0, ∀x ∈ S, ∀R ⊆ {1, 2, .., n}, R �= ∅;
(ii) x ∈ S, ∇f(x) = 0 ⇒ f has a local maximum at x
where DR(x), R ⊆ {1, 2, .., n} are the bordered principal minors of the bor-

dered Hessian D(x) =
[

0 ∇T f(x)
∇f(x) ∇2f(x)

]
.

• A sufficient condition for f to be pseudoconcave is

(−1)kDk(x) > 0, ∀x ∈ S, ∀k = 1, 2, .., n

where Dk(x), k = 1, .., n are the bordered leading principal minors of the
bordered Hessian.

Maxima and Minima
The set of all maximizers is convex for all classes of generalized concave func-
tions and the Karush-Kuhn-Tucker conditions become sufficient for global
optimality under suitable assumptions of generalized concavity.

Sufficiency of the Karush–Kuhn–Tuckers Conditions
Consider the problem

P : max f(x), x ∈ S = {x ∈ X : gi(x) ≥ 0, i = 1, 2, ..., m}
where f , gi, i = 1, ..., m are functions defined on the open set X ⊆ �n, and
let x0 be a feasible point. Suppose that f is pseudoconcave at x0 ∈ S, and
the gi, i = 1, .., m, are differentiable and quasiconcave at x0. If there exist
λi ∈ �, i = 1, .., m, such that
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∇f(x0) +

∑m
i=1 λi∇gi(x0) = 0

λi ≥ 0, i = 1, ..., m
λigi(x0) = 0, i = 1, ..., m

then x0 is a global maximum point.

• Let f be a continuous and semistrictly quasiconcave function on the convex
and closed set S. If f attains its minimum value on S, then it is reached at
some boundary point.
• Let f be a continuous and semistrictly quasiconcave function on the convex
and closed set S containing no lines. If f attains its minimum value on S,
then it is reached at an extreme point.

Some Classes of Generalized Concave Functions
Let f and g be functions defined on a convex set S ⊆ �n, and let

z(x) =
f(x)
g(x)

Then, the following properties hold.
(i) If f is non-positive and concave on S, g is positive and concave on S,
then z is semistrictly quasiconcave on S; z is pseudoconcave if f and g are
differentiable on S;
(ii) If f is non-negative and concave on S, g is positive and convex on S, then
z is semistrictly quasiconcave on S; z is pseudoconcave on S if f and g are
differentiable on S;
(iii) If f concave on S and g is positive and affine on S, then z is semistrictly
quasiconcave on S; z is pseudoconcave on S if f is differentiable on S.
• The product

z(x) = f(x) · g(x).

is quasiconcave if f is non-negative and concave, and g is positive and concave.
• The function z(x) =

∏k
i=1(fi(x))αi , αi > 0 where fi(x), i = 1, ..., k, are

positive-valued concave functions on the convex set S ⊆ �n is quasiconcave.
In particular, the Cobb-Douglas function:

f(x) = Axα1
1 xα2

2 ....xαn
n , A > 0, xi > 0, αi > 0, i = 1, ..., n

is pseudoconcave.
• The constant elasticity of substitution

f(x) = (a1x
α
1 + a2x

α
2 + ... + anxα

n)
1
α , ai > 0, xi > 0, i = 1, ..., n, α �= 0

is quasiconcave if and only if α ≤ 1.
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