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Preface to the Second Edition

The rate of obsolescence of knowledge in the field of technology is very fast these
days. However, certain basic principles and methods of analysis remain the same
even amidst rapid technological changes. The subject matter of linear systems is
one such example. Therefore, most of the material in this second edition remains
the same as in the first edition published about a decade ago. The text has been
thoroughly edited to remove many errors which had crept into the first edition.
Some of the explanations have been simplified to make them more understandable
to the students. Additionally, there are a few signiticant changes also. These arce:

®* A new chapter on discrete-time systems has been added in view of the increas-
ing importance of digital technology. The need for its inclusion was also
pointed out by the reviewers and some users of the book.

®  The chapter on analog computer simulation has been dropped as it has now
become obsolete.

®  The chapter on digital computer simulation has also been dropped. but be-
cause of an entirely difterent reason. Simulation studies have become so im-
portant that a number of packages with far grecater degree of sophisticaiion are
now commercially available. Therefore the somewhat elementary treatment
given to the topic in the first edition has now become redundant.

1t is hoped that with these changes the book will prove more useful to the stu-
dents and the teachers of the subject in different branches of engineering.

July, 1998 AN, TRIPATHI
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Preface to the First Edition

The study of linear systems deals with the dynamic behaviour of physical systems.
Such systems are vsually represented by a set of linear mathematical relations,
called the mathematical model of the system. Their analysis involves generating
solutions to these mathematical equations under different working conditions. A
number of mathematical techniques have been adopted, developed and refined to
give the engineers different tools for the analysis of linear systems. It must, how-
cver, be emphasised that the engineer’s interest in the subject of linear systems
analysis is not merely to learn how to solve mathematical equations: he is inter-
ested in interpreting these solutions to find practically useful characteristics of
engineering systems so that he can design better systems or operate the existing
ones more efficiently. In representing the solution, and even in the process of
arriving at them, he uses a combination of physical reasoning—based upon en-
gineering common sense—and the usual mathematical methods. Itis in this process
of correlating the abstract mathematical arguments with the actual physical be-
haviour of systems that a student of engineering derives his twin levels of satisfac-
tion: enjoyment of aesthetically pleasing mathematical methods of analysis and
generation of satisfactory solutions for practical problems.

This book has been written for an undergraduate course in Linear Systems
Analysis. Till about a decade back the topics of this course were taught partly in
the Network Theory course and partly in the Controt Systems course ot Electrical
and Electronics Engineering, usually in the final or the pre-final years. Realising
the importance of these fundamental topics to scveral other courses, many Indian
universities now offer a full course on the subject in the sccond year of the four-
year degree programme. Some institutions have found it possible to give even two
courses in this subject. However, in most of the older institutions, where it is not
casy to reduce the burden of the traditional subjects, it does not appear feasible to
have more than one such course. The selection of topics to be included in, or
rather those which could be excluded from, such a single course becomes neces-
sarily more difficult.

Onc approach. followed in some of the textbooks, is to reduce the sysiem
modelling aspects to a minimum and give full coverage only to the analysis tech-
nigues. This is because the modelling process of realistic practical systems re-
quires a somewhat maturer understanding of the particular engineering discipline
to which the system belongs. And since one cannot possibly master all the varied
disciplines on whose problems the general systems approach is applicable, the task
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of formulating the mathematical model is not attempted in the introductory
textbooks on systems analysis. This book adopts a different approach. It devotes
its first two chapters to the mathematical modelling of systems from different en-
gineering disciplines and their classification into different types from the systems
viewpoint. Even though later on techniques for the analysis of only linear, time-
invariant, continuous-time, lumped parameter systems are discussed, mathemati-
cal models are derived for non-linear, time-varying, discrete-time and distributed
parameter systems also. It is felt that unless the student is exposed to realistic
problems with different types of equations as their mathematical model, he may
come out with the patently wrong view that the world consists of only linear sys-
tems; or that a particular model will represent the physical system under all work-
ing conditions. The experience of teaching these topics for over fifteen years, at
different levels—starting from M.Tech. level to the second year B. Tech. level--in-
dicates that usually a student does not appreciate the generality of the systems
approach unless the details of the modelling process for problems from different
engineering disciplines are explained to him. The selection of variables, the
knowledge of appropriate physical laws applicable to the system, and most impor-
tantly, the simplifying assumptions to be made, require proper engineering judge-
ment and engineering common sense. And this engineering attitude has to be
cultivated right from the early undergraduate courses.

The author believes that a topic should be taught in the classroom and covered
in the texthook in sufficient depth so that the student appreciates its origin, its
development, its application and its relation to other topics. Pedagogically it is

" less than satisfactory to include a lot of topics and then given only a brief exposure
to them in the hope that they will be mastered at a higher level. This approach has
meant that certain important topics, like the discrete time systems, random vari-
ables, and distributed parameter systems had to be left out of the present book.

The above approach, however, does not mean that every detail and every
derivation must be presented to the student so that he merely reads through them,
leaving no new peaks to be conquered by the student himself. The most satisfying
and exhilarating aspect of learning is the opportunity of deriving some new result
or finding some new application for a given technique. A majority of the problems
given at the end of chapters are meant for this purpose. They are not drill exercise
where one substitutes the given values in the formulas already derived and follows
predestined procedures to get the desired result. The problems usually call for
sufficient intellectual exercise on the part of the student and complement the text
by exploring new angles.

While the first two chapters are devoted to mathematical modelling and clas-
sification of different types of physical systems, the third chapter describes stand-
ard test signals and gives the differential equation approach, called the ‘classical
method’, of analysing first and second order systems. Then follow chapters on
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special techniques of analysing linear systems: Fourier Series, Fourier Transform,
Laplace Transform and State Variables. Chapter seven presents a concise treat-
ment of the important aspects of feedback systems. Usually students of electrical
and electronics engineering will have a full course on feedback control systems
later on in thelr course and for them this chapter may be omitted. It may be found
more useful for mechanical and chemical engineering students for whom it may
not be possible to have another course in this area.

Chapter nine deals with analog computer simulation of linear as well as non-
linear systems. Earlier this topic merited either a full course, or at least halt a
course as a part of Analog and Digital Computers. However, the march of digital
technology has deprived this topic, a very interesting and usetul one for engineers,
of its independent status. 1t is now compressed into a single chapter and covered
either as a part of linear systems course or as a part of the feedback control systems
course. The last chapter, chapter ten, gives an introduction to the topic of Digital
Computer Simulation of continuous time dynamic systems. It-also develops a
simple simulation package using FORTRAN language. It is hoped that students
will have access to computer facility for using this package for solving their exer-
cise problems in this as well as other courses.

The contents of this book have been taught for the past five years to the second
year students of Electrical and Electronics Engineering of the Banaras Hindu
University. The author is thankful to the students for providing tecdbacks, which
have gone into the improvement of the text, and also to his friends and colleagues
for their helptul suggestions. He would also like to thank Sri Amit Tripathi for this
help with drawings and the cover design.
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CHAPTER 1

Systems and Their Models

LEARNING OBJECTIVES
After studying this chapter you should be able to:
(

—

) identify the variables and the parameters for electrical, mechanical,
thermal and liquid level systems;

(i1)  construct mathematical models for relatively simpler problems from
different engineering disciplines;

(ili)  obtain electrical analogies for many non-electrical systems;

(iv) appreciate the need and significance of simplifying assumptions and
approximations usually made in mathematical modelling; and

(v) appreciate the generality of the systems approach.

One of the most important activities of an engineer is the application of his
knowledge and creative skills in designing new systems, and redesigning existing
ones to improve their performance. However, before he can start designing sys-
tems, the engineer must have a good understanding of the behaviour of the system
under different working conditions. The process of determining how a system will
behave under different conditions is called ‘analysis’. Apart from being a prereq-
uisite for design, a thorough understanding of the methods of analysis of engineer-
ing systems is essential for almost every other engineering activity, e.g.
determining the optimum but safe working conditions, diagnosing and locating
faults, preventive measures against failures, etc.

An alert reader would immediately ask several questions: (i) what is meant by
‘behaviour’ of a system? (ii) what are the different ‘working conditions’? and (iii)
what is a ‘system’ anyway? Instead of giving general definitions of these terms, it
would be more instructive at this stage to take a few examples of engineering
systems and to understand the concepts associated with these terms in the context
ot specific examples,
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1.1 Automobile Ignition System

In the petrol-driven automobile engine, the power stroke is produced by igniting
the compressed air-fuel mixture at the end of the compression stroke. The igniting
spark is produced by flash-over across a small air-gap in the spark plug due to the
high voltage applied across it. The function of the ignition system is to apply this
high voltage at the appropriate time and in the appropriate cylinder of the engine.

A schematic diagram of the system is shown in Fig. 1.1. The main components
of the system are; spark plug, ignition coil, spring-loaded contact points, engine-
driven cam rotor, capacitor and the car battery. The closing and opening of the
contact points by the cam causes sudden change in the primary current of the igni-
tion coil, inducing very high voltage in the secondary winding. This high voltage
appears across the spark plug producing the igniting spark. A capacitor is con-
nected across the contact points to prevent sparking and consequent wear-out of
the points. In the car engine there are four cylinders and four spark plugs. The
high voltage of the secondary of the ignition coil passes through a ‘distributor’ which
directs it to the appropriate cylinder. However, for our study it is sufficient to assume
only one spark plug connected directly to the ignition coil, as shown in Fig. 1.1.

o

gniton
“coil
+ -
Spark
lug’
Rotor t plug
Battery

= =
Fig. 1.1 Schematic Diagram of Automobile Ignition System

Let us now list some of the important questions whose answers will give us a
proper understanding of the performance of this system:

1. How does the voltage across the spark plug change as a function of
time? In other words, what is the waveform of the voltage across the
spark plug?

2.  What is the maximum value of this voltage and at what time does it

occur?

3. How do the voltage waveform, its peak value and the time of peak volt-
age depend upon the rotor speed, battery voltage, number of primary
and secondary turns and the value of capacitor?

The outcome of the analysis process will be the answer to these questions and
will describe ‘the behaviour of the system under different conditions’.
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The system description given at the beginning of this subsection and the
schematic diagram (Fig. 1.1) give us a broad qualitative understanding of how this
system works. However, they are not sufficient to give quantitative answers to the
questions raised here. To find such answers we must establish the ‘structure’ of
the system in a more precise way. Further, we must establish quantitative relation-
ships between the spark plug voltage and other quantities of the system. These two
steps together will establish a mathematical model of the system.

Since the system is clearly an electrical system, its structure is best studied by
drawing the equivalent circuit diagram. Electrical circuits are drawn in terms of
idealised elements; resistance R, inductance L, capacitance C and ideal voltage
and current sources. The equivalent electrical circuit of the automobile ignition
system of Fig. 1.1 is shown in Fig. 1.2. In this circuit the physical battery is rep-
resented by an ideal d.c. voltage source E, the primary of the coil by the series
combination of R and L, the coupling between the primary and the secondary
windings by the mutual inductance M, the capacitor by C and the points by an ideal
switch §. The spark plug is represented by the open terminals of the secondary.
This representation is valid so long the flash-over has not taken place across the
air-gap of the spark plug. The variable quantities of interest in this electrical sys-
tem are the secondary voltage v,, primary current / and the battery voltage E.

2

Fig. 1.2. Circuit Model of the Automobile Ignition System

1.1.1 System Variables and Parameters

The term ‘variables’ used in the previous paragraph has a special significance in
systems analysis. The variables of interest in a system model can generally be
classified as output variable(s), input variable(s) and internal variables. In the
present problem the output variable is the secondary voltage v,, the input variable
is the battery voltage E and internal variables are primary current i and capacitor
voltage v.. These input, output and internal variables together are called the system
variables. In general, they are functions of time. The values of these variables, at
any instant of time, will obviously depend upon other conditions like the initial
voltage across the capacitor or the initial current through the inductance at the
instant when the input is applied. Such conditions are called the initial conditions
of the system.
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In the present problem there is only one input variable E and only one output
variable v,. Such systems are called single-variable systems. In many physical
systems we have more than one input or more than one output variable. These are
called multi-variable systems. In this book, we will be interested only in single-
variable systems.

The designation of a variable as an input, output or internal variable depends
upon the problem under study and also on the questions whose answers are to be
given by the analysis. Consider, for example, another situation related to the
automobiles 1gnition system. One may want to study the magnitude, waveform,
peak value, etc. of the current in the primary of the ignition coil when the spark
does take place. The circuit model will then be altered to have a short circuit
across the secondary terminals. The output variable will then be the primary cur-
rent {. The current flowing in the secondary winding will now be an internal vari-
able.

Other pairs of words used to designate the input-output variables are: stimulus-
response, excitation-response, cause-effect, etc.

In addition to the system variables, the behaviour of a system is dependent upon
certain fixed quantities like, R, L and C in the present problem. Although the
system variables are dependent on these quantities, the values of R, L and C are
independent of the system variables. They are only dependent upon the elements
of the system and their inter-connections. Such fixed quantities, not depending
upon either the system variables or the initial conditions are called the parameters
of a system. For electrical systems, the parameters are resistance, inductance and
capacitance. Other types of systems will have different parameters, as we shall study
later on. Ttis common to use small (lower case) letters to denote variables or functions
of time and bold-face letters to denote parameters or constant quantities.

Let us summarise our study so far. The first step in the analysis of a physical
systern 1s to know the nature of study or the questions to be answered. Next, we
must study the structure of the system and identify the parameters, the variables of
interest and the initial conditions of the system. The change in the output and other
internal variables, in response to different inputs and initial conditions, is called
the ‘behaviour’ of the system and its study is the prime objective of systems
analysis.

In order to study the behaviour of a system we must establish functional
relationships between different variables. These relationships are given by a set of
mathematical equations, called the mathematical model of the system.

1.1.2  Mathematical Model

Let us illustrate the method of obtaining mathematical models by modelling the
automobile ignition system. As mentioned earlier, the mathematical model is a set
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of equations relating the different system variables. This relationship is governed
by the physical laws applicable to the particular system. The system under study
here is an electrical one and is represented by an electrical circuit. The appropriate
physical laws applicable to such systems are the Kirchhoff’s taws. Thus, the sys-
tem model will be obtained by applying Kirchhoff’s laws to the circuit of Fig. 1.2.

Let us assume that the current through the coil and the voltage across the
capacitor are zero, prior to the closure of the switch. The instant at which the
switch is closed is denoted by £ = 0. Applying Kirchhoff’s voltage law around the
primary circuit we get,

vo +vg=F or Lg—;+iR=E. (1.1)

This equation relates the input variable £ with the internal variable i. The output
variable v, is related to the internal variable i by the relationship,

dl
dt

The set of eqns. (1.1) and (1.2), together with the initial condition i (0) = O and
v, (0) = 0 constitutes the mathematical model of the system for this operating condition.

(1.2)

There is another operating condition for which the above model does not pro-
vide the correct response. This condition occurs when the switch S is opened after
remaining closed for some time. In this case the capacitor C will be in series with
R and L. The circuit equation will be,

di 1
L—+Ri+ < )id=E. 13
dt C -[ (1.3)
Differentiating once to remove the integral term and noting that £ is a constant d.c.
voltage we get,
di di =i

Lo + RS+

P c= 0. (1.4)

Thus, for this operating conditions, eqn. (1.4) together with eqn (1.2) and ap-
propriate initial conditions, constitutes the mathematical model of the system.
Solution of these equations will give answers to the questions raised in the begin-
ning. In later chapters, we shall study methods for solving these equations, the
characteristics of their solutions and their engineering significance.

1.1.3  Simplifying Assumptions

The model-building process always involves approximations and simplifying as-
sumptions, valid for a particular set of operating conditions. This is because the
physical reality is always so complex that it is not possible to make a manageable
model taking into account all the aspects with all their details. The ability to
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recognise those aspects which are essential and have to be retained, as against
those which can be neglected, is extremely important in engineering analysis. In
making and using a mathematical model, the approximations and the simplifying
assumptions made, and the conditions under which they are valid must be clearly
understood. A model valid for one set of assumptions for a given working condi-
tion may not be valid for another working condition.

In the ignition system model, the iron cored ignition coil has been modelied by
a series combination of resistance R and inductance L. Let us examine the
simplifying assumptions tacitly made in this modelling process. The value of in-
ductance L is assumed to be independent of current i, that is, the inductance is
assumed to be linear. Now, inductance of a coil is given by its flux linkages per
ampere. Hence, a linear inductance L implies that the magnetising curve between
current and flux of the coil is a straight line. This straight line approximation is
usually satisfactory provided the core is not driven into the magnetic saturation
region. If at any point of operation the primary current is large enough to saturate
the core, the linear inductance model will not be valid and its use will give incor-
rect answers.

If the current through a coil does not change, then its inductance L has no effect
and the coil can be modelled simply by aresistance R. For moderate rate of change
of current, i.e. for low frequencies (up to a few kHz) the coil can be modelled by
a series combination of R and L. At high frequencies (up to a few hundred kHz)
the distributed inter-turn capacitances will also have to be taken into account. At
still higher frequencies even the circuit theory approach will not be applicable and
the mathematical model will have to be built using field theory and Maxwell’s
equations.

Another significant point concerns the resistance R of the coil. At low frequen-
cies R will be just the ohmic resistance of the coil wire. At somewhat higher fre-
quencies, R will have to include an additional component to account for the iron
losses in the core. At still higher frequencies, we may have to add yet another
component to account for the skin effect. All these considerations may not be
applicable in the case of an ignition coil but are worth remembering whenever
modelling an iron ¢ re coil.

The above discussion shows that there is nothing like ‘the’ model for a given
system. We can only have ‘a’ model valid for a set of assumptions and operating
conditions. While the physical system remains the same its model will be different
for different situations. Therefore, we should not equate the physical system with
its mathematical model.

In this section we have considered the modelling process for an ¢electrical sys-
tem. Let us now consider a mechanical system and build its mathematical model
using the techniques developed so far.
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1.2 Automobile Suspension System

The object of this system is to damp out vibrations and jerks produced in a vehicle
due to uneven road surface. The suspension system absorbs these jerks and
prevents them from being transmitted to the passengers, thus improving the riding
quality of the vehicle.

The weight of passengers and car body is transferred to the axle through a
spring and a shock absorber. The shock absorber consists of an oil-filled cylinder
having a piston with orifices in it. The piston-end is connected to the car body and
the cylinder-end to the axle. Motion of the piston, and any mass connected to it,
is opposed by the viscous friction of oil being forced through the orifices. The
structure of the system is shown in Fig. 1.3, The mass of the car body and pas-
sengers is represented by the mass M, suspension springs by the ideal spring with
spring constant K, and the shock absorber by an ideal dash-pot with coefficient of
viscous friction D. Thus, the parameters of the system are: mass M, coetficient of
viscous damping D and the spring constant K.

Car body and

Xa( ‘*) M passengers
Spring K D Shock dbsorber
Xy (t) (Bash pot)

t re Road surface

Fig. 1.3. Automobile Suspension System

The system variables are: displacement x, velocity « and acceleration a. In the
present problem the input variable is the vertical displacement x; (¢ ) of the axle
due to undulations in the road surface. The output variable is the vertical motion
x2 (t ) of the mass M. The mathematical model should relate these input and output
variables.

The physical law governing the behaviour of this mechanical system is the
D’ Alembert’s principle. It states that the algebraic sum of externally applied for-
ces and the forces resisting motion in any given direction is zero. In the present
case there is no explicit externally applied force. The net displacement of the mass
is (x — x) = x. The forces opposing the motion are:

du d*x
by the mass M, MG_ME_M?I?—
by the spring, Kx
by the dash-pot, Du = D%.

Applying D’ Alembert’s principle we get,
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& x dx
M e + D o + Kx = 0. (1.5)

Equation (1.5), together with appropriate initial conditions, is the mathematical
model of the system. Its solution will show how x varies as a function of time
following an initial displacement x(0). Whether the ride will be smooth or jerky
can be assessed by the nature of this solution.

A number of simplifying assumptions have been implicitly made in the above
modelling process. It is assumed that the shock absorber and the suspension
spring can be represented by an ideal dash-pot and an ideal spring. Further, the
spring effect of the inflated tube and the tyre and also of the seats has been
neglected. The car body is supported at four places, near each wheel. In the
present model, a single suspension has been considered independently, i.e. it has
been assumed that the displacement of one suspension unit does not affect the
others. In fact the coupled motion of the front and the rear suspensions gives rise
to a ‘pitching’ motion of the vehicle. However, consideration of all these aspects
would make the model more and more complicated. How complex a model one
makes depends upon how precise answers are needed. It is usual in engineering
practice to begin the analysis with a fairly simple model and then go on adding
other complexities as required by the problem refinements.

1.3 Systems and Their Models

Let us now compare the previous two examples and generalise some of the sys-
tems concepts based on the experience of these two examples. The two problems
are from two different areas of engineering: the ignition system from electrical
engineering and the suspension system from mechanical engineering. The
parameters, the variables, the laws governing their behaviour, the operating con-
ditions and the simplifying assumptions made are all different for the two systems.
And yet their mathematical models are very much similar. Both the models, given
by eqgns. (1.4) and (1.5), are ordinary, linear differential equations of order two.
The methods for solving these two equations will be the same, the solutions will
have the same characteristics and their physical interpretations would also be
similar. On the basis of these similarities, both these systems are classified under
one category—linear dynamic system of order two. The analysis technique, once
developed for a second order system, would be applicable to any second order
system, irrespective of whether the system is electrical, mechanical, thermal or
hydraulic in nature. This general approach of developing an analysis technique,
based on the type of mathematical model of the system, is the key factor
which permits a common systems approach to be used for studying problems
from different branches of engineering and even non-engineering disciplines, like
biological systems, economic systems, management systems, €tc.
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We have repeatedly used the word system, without defining it. Defining such
basic terms is always a somewhat difficult task. The definition given below
should be interpreted as clarifying the concept associated with the term ‘system’
rather than a precise definition for it.

Definition of a system: A system is any structure of inter-connected components
created to perform some desired function. It has distinct inputs and outputs and it
produces an output signal in response to an input signal. The functional relation-
ship between the inpufs and the outputs is given by a set of mathematical equations
and this set is called a model of the system.

The key factors to be examined in developing a mathematical model for a sys-
tem are: (i) the structure, i.e. the components and their inter-connections; (ii) the
parameters; (i) the variables; (iv) the inputs and the outputs; and (v) the initial
conditions. Once these factors are properly identified, the required model is ob-
tained by making suitable simplifying assumptions and then applying the ap-
propriate physical laws applicable to the system. Further analysis is carried out
using this model.

The suitability of a model depends upon the working conditions and the ques-
tions one wants to answer. For example, the equivalent circuit and the mathemati-
cal model for determining the frequency responsc of a transistor is different tfor
low, medium and high frequencies. The same transistor can also be modelled as a
thermal system when we want to find its heat dissipation properties.

1.3.1 Across and Through Variables

Building mathematical models for an electrical system is very much simplified by
first building its circuit model, i.e. its equivalent circuit. This circuit model is built
using idealised two terminal elements R, L and C with well-defined terminal volt-
age (v)-current (i) relations:

Vg = Rl, Vy, = L ’Z%, ﬂnd Ve = JC_ -[ i dl

In addition to these passive elements, the circuit model also uses two terminal
source elements—the ideal voltage source and the ideal current source.

The electrical properties of these two terminal elements are given in terms of
the voltage ‘across’ the element and the current ‘through’ the element. An ‘across’
variable defines some state of one terminal with respect to the other and a
‘through’ variable, the flow or transmisston of some quantity through the element.
According to this general definition of “across’ and ‘through’ variables, the desig-
nation of voltage as an *across’ and current as a ‘through’ variable for electrical
systems is self-explanatory. This concept is applicable for non-electrical systems
also.

Lor translational mechanical systems, the three idealised clements arc: the
mass. the dash-pot and the spring. The parameters associated with these elements
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are mass M, coefficient of viscous friction D, and the spring constant K, respec-
tively. The variables associated with these elements are force f and velocity u.
The two terminal representations of these elements and their terminal force-velocity
relations are given in Fig. 1.4. For the mass, one terminal is some stationary frame or
the ‘ground” with respect to which all the motion is described. Here force is the
‘through’ variable as it acts through the element, and velocity is the ‘across’ variable
because it describes the motion of one terminal with respect to the other.

}

Mass Dashpot Spring

—mMdu

=M= t=Du t=k{udt
=Kx

Fig. 1.4 Idealised Elements for Translational Mechanical Systems

In line with ideal voltage and ideal current sources for the electrical networks,
ideal force source and ideal velocity source are used as the active elements in a
mechanical system. An ideal force source produces a given force through its ter-
minals, irrespective of the load connected between them. Similarly, an ideal
velocity source produces the specified velocity across its terminals, irrespective of
the load connected between them.

In rotational mechanical systems, the parameters are moment of inertia J, rota-
tional damping coefticient Dy und torsional constant Ky . The variables are torque
T, angular velocity ®, angular displacement 8 and angular acceleration or. By com-
parison with the translational system, the terminal relations are:

dw

t=7 0 t=Dwand v =Ko | ©dr = K6,

Angular velocity is the ‘across’ variables and torque the ‘through’ variable.

1.3.2  Electrical Analogies

Earlier in this section we noted that systems from different areas can be repre-
sented by the same mathematical model, e.g. the ignition system and the suspen-
sion system. Such systems, having the same type of defining equations, are called
analogous systems. Because of the ease of experimental studies. it 1s useful to
construct efectrical analogy of non-electrical systems.

The mathematical model for a series RLC circuit shown in Fig. 1.5 (a) will be
the same as eqn. (1.3) except for the different forcing function ¢ (¢). Similarly the
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Fig. 1.5 Analogous Electrical and Mechanical Systems

mathematical model of the mechanical system of Fig. 1.5 (b) will be the same as
egn. (1.5) except for the forcing function f{t). These are given by the following
two equations:

di o1 [
LRI+ [idw) =ew. (1.6)
Mﬂ+D +K_[ dr = f(t 1.7)

0 u wdt = f(t). (1.

By comparing these two equations we can determine the analogous parameters
and variables as in Table 1.1. In this method of developing an electrical analogy
for the mechanical system, force is equated with voltage; hence it is called the
Sforce-voltuge analogy.

Table 1.1 The Force-Voltage Analogy

__ Mechanical system Electrical system
Force, [(1) Voltage. eft)
Velocity, uft) Current, i(t)
Mass, M Inductance, L
Viscous friction, D Resistance, R
Spring constant, K - Inverse capacitance, 1/C e

By the duality principle of electrical circuits, the series circuit of Fig. 1.5(a),
driven by voltage sourcc e, is equivalent to the parallel electric circuit of Fig. 1.6,
driven by a current source i. The circuit equation for Fig. 1.6 is:

EE

Fig. 1.6 Dual of Fig. 1.5(a)
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L de ] ,
C—J+Ge+zjem=,. (1.8)

Comparing elements of eqn. (1.7) with those of eqn. (1.8), we get the force-current
analogy, as shown in Table [.2.

Table 1.2 The Force-Current Analogy

Mechanical system v Electrical system
Force. f(1) Current. if1)

Velocity. uf1) Voltage, eft)

Mass. M Capacitance, C
Viscous friction, D Conductance,
Spring constant, K ) Inverse inductance, //L

The force-current analogy is more direct because the across and through vari-
ables of both the systems are treated analogous to each other. In the force-voltage
analogy, the across variable of one is treated as analogous to the through variable
of the other.

For experimental studies, setting up a mechanical or a thermal system model is
not so easy. However, its analogous electrical circuit can easily be set up with
commonly available electrical components in the laboratory. Such an clectrical
model is quite flexible; changes in the parameters can be casily etfected and dif-
ferent torcing functions can be easily simulated. Thus, the behaviour of the non-
clectrical system can be conveniently studied experimentally by studying the
response of its analogous electrical model.

In the following sections of this chapter, we consider examples of systems from
some other areas of engineering. as well as non-engineering disciplines.

1.4  An Electromechanical System: The Loudspeaker

A loudspeaker converts electrical signals into sound signals in the form of
mechanical vibrations of the surrounding air; hence, it is an electromechanical
system. It construction is shown in Fig. 1.7(a).

’7 -
_ 7% /Cone afs R 4 c
Coil —» :’I’I’radiator [ T
—= | i :\ + Bl M
v u
\\\\\ Blu CD D
\\‘\\ l !
Permanent magnet b ) d
(a) (b)

Fig. 1.7 (a) Loudspeaker Construction, (b) Equivalent Circuit
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The permanent magnet produces a strong magnetic field in its air gap. A coil
(called the voice coil) of a few turns of fine wire, wound on a light former, is able
to move freely in the air-gap. The voice coil is attached to a light but stiff cone
radiator made of paper or fibre. The cone radiator is clamped at its periphery
through a flexible support so that it keeps the cone (and the attached voice coil) in
proper position and yet permits oscillations of the cone as a whole in the axial
direction.

The audio-frequency input signal voltage is applied across the coil. The result-
ing current in the voice coil interacts with the magnetic field to produce an axial
force on it and the cone. The cone, and hence the air mass surrounding it, vibrates
at the signal frequency to produce the output sound.

The input variable is the voltage signal v(¢) and the output variable is the axial
velocity of the cone radiator u(z). Let us now develop a mathematical model relat-
ing the input and the output variables.

The input voltage will produce a current in the voice coil which will be related
to it by the Kirchhoff's voltage law. The voltages opposing the applied voltage
are: (i) voltage drop in the resistance of the coil; (ii) voltage drop in the induc-
tance of the coil; and (iii) the back e.m.f. induced in the coil due to its motion in a
magnetic field. Because of the small number of turns, the coil inductance is small;
hence, the voltage drop due to inductance may be neglected in comparison with
the other two voltages. Equating the applied voltage to the sum of the opposing
voltages we get,

Ri + Blu = v (1.9)

where,

-
1

v(t), the input voltage;

u(t), the axial velocity of the coil and the cone;

&
It

-~
I

i(t), the current through the coil;

resistance of the coil;

R
B = flux density in the air gap; and
! = length of the coil.

The coil current { will react with the linking magnetic flux to produce an axial
force faccording to the relation,

f = Bii. (1.10)

This force will produce motion of the cone and the surrounding air mass, which,
according to the D’ Alembert’s principle will be given by the relation,



14 Linear Systems Analysis

du
M dt+Du_f (1.1

where,

M = mass of the cone and the surrounding air mass in contact with it,
and

D = coefficient of viscous friction due to the motion of the cone through
the air.

In arriving at the relation (1.11), the spring effect of the cone suspension has been
neglected.

The intermediate (or the internal) variables of the system are the coil current
and the force f. The parameters are R, B, [, M and D. Equations (1.9), (1.10) and
(1.11) may be combined into one by eliminating the internal variables to give a
single equation as the mathematical model of the system:

2 g2
Mﬂ+(Bl +D]u=ﬂv. (1.12)

dt R R

Figure 1.7(b) shows a mixed electrical and mechanical network model of the
system. Note the use of ideal force source with a symbol similar to a current
source.

In addition to a number of simplifying assumptions made in the above deriva-
tion, the determination of parameters M and D is somewhat ambiguous. M in-
cludes the effective mass of the air being vibrated by the cone. Its determination
will, at best, be an approximation. Further, both M and D will depend heavily on
the shape, size and material of the enclosure in which the speaker is housed. The
enclosure design is thus quite an important factor for determining the speaker per-
formance.

1.4.1 Frequency Response

The main performance measure of interest in a speaker is its frequency response.
An ideal speaker should reproduce all the input signals in the audio-frequency
range, 20 Hz to 20 kHz, without any distortion. One,way to measure this perfor-
mance is to plot the ratio of the magnitudes of the output and the input signals for
sinusoidal inputs, as a function of frequency. This is called the magnitude
response. 1deally this curve should be a flat line, i.e., a line parallel to the frequen-
cy axis. This ideal is approximated to some extent in high fidelity speakers only.
In ordinary speakers, the magnitude ratio decreases quite sharply with increasing
frequency. For good reproduction at low frequencies the size of the cone should
be large. However, a large cone has a high mass associated with it. Therefore, it
will produce considerable attenuation at high frequencies, resulting in poor high
frequency performance. In some high fidelity systems this difficulty is solved by
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having two speakers, a large one for low frequency signals (called the ‘woofer’)
and a small one for high frequency signals (called the ‘tweeter’). A frequency
selective network in the amplifier separates the low and high frequency signals and
directs them to their respective speakers.

In addition to the magnitude response curve, a plot of the phase difference be-
tween the sinusoidal input and the output versus frequency, called the phase
response, is also of interest. The magnitude response and the phase response
together are called the frequency response of a system.

1.4.2 Transducers

A loudspeaker may also be thought of as a device for converting electrical signals
into sound signals. Such devices, which convert signals from one form of energy
to another form, are called transducers. As an example of another
electromechanical transducer we may mention the permanent magnet moving coil
galvanometer. It converts electrical voltage or current signals into angular deflec-
tions of a needle. In electrical and electronic instrumentation systems, a large
variety of transducers are used to convert non-electrical signals like temperature,
pressure, flow, displacement, etc. into electrical form. Note that the term
transducer is reserved for only signal level devices and not those which handle
energy at power level. Power level energy conversion devices, like motors and
generators, are called energy converters and not transducers.

1.5 A Thermal System

Efficient methods of heat dissipation from large power silicon devices like power
transistors, rectifiers, thyristors, etc. is an important consideration in the design of
power electronics equipment. The metal casing of such a device i1s embedded into
a heat sink, an aluminjum section with a number of cooling fins. The cooling fins
increase the heat dissipation area and hence keep the device temperature within the
required limits.

The power dissipation in the device, due to the flow of current through the
silicon p-n junction, causes generation of heat at the junction. From the junction
the heat flows to the outer metal casing, from the casing to the heat sink, and finally
from the heat sink to the surrounding air mass. The junction temperature is a criti-
cal factor and it should not exceed the rated maximum value even under the worst
loading condition. The junction temperature depends upon the rate at which the
cooling system dissipates heat. The analysis of the heat-dissipating thermal sys-
tem would aim at answering questions like:

(1)  What is the steady state temperature of the junction for a steady current
through the device?

(i) How does the junction temperature change (as a function of time) for a
specified variation in current (as a function of time)?
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(i)  What is the peak value of temperature and after how much time is it
reached, following a sudden increase in the load current?

Answers to these questions will enable the equipment designer to select suitable
heat sink or cooling system to ensure safe operation of the device, even under
adverse operating conditions.

Let us first identify the variables and the parameters of a thermal system. The
variables of interest are the temperature T and the rate of heat flow gq. The tempera-
ture would be the ‘across’ variable and the heat flow rate the ‘through’ variable.
The parameters for conduction of heat through a solid body are the thermal resis-
tance and the thermal capacitance of the body. The two equations of heat flow are:

d
T oand g = &= (1.13)

where,

= rate of heat flow (cal/sec);

= temperature difference (degree Kelvin);

Ry = thermal resistance (sec—"K/cal);
Cr = thermal capacitance (cal/’K); and
wr = thermal energy (cal).

The two heat flow relations (1.13) are very much similar to the current-voltage
relations in electrical circuits. The similarity between the two systems becomes
clearer if we note the analogies between the two systems, given in Table 1.3,

Note that in thermal systems there is no parameter analogous to inductance.
(Why?7)

Analogous to electrical systems, we try to model a thermal system in terms of
idealised elements Rrand Cr. However, unlike the ordinary electrical circuits, the
thermal resistance and capacitance are not located at one point of space but dis-
tributed over it. Accordingly the variables T and g are also functions of space
co-ordinates, in addition to being functions of time. Systems of this type are called
distributed parameter systems and their modelling is done in terms of partial dif-
ferential equations. However, a simplified model made by using lumped
parameters is useful for approximate analysis and, in many cases, 1s adequate for
practical purposes.

Table 1.3 Electrical Analogy of a Thermal System

Electrical system Thermal system
Voltage, v Temperature, ©
Current, { Heat flow rate, ¢
Resistance, R Thermal resistance, Rt

Capacitance, C Thermal capacitance, Cr
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Let us now construct a lumped parameter model using suitable approximations
and assumptions. The heat flow path from the junction to the ambient air is
divided into four parts: the junction, the casing, the heat sink and the atmosphere.
Let us assume that the thermal capacities of the casing and the heat sink are Cr,
aand Cr, repectively. The thermal capacity of the junction is small compared to
those of the casing and the heat sink, and is therefore neglected. Let us assume that
the thermal resistance between these parts is localised at their boundaries: Ry
between the junction and the casing, Ry, between the casing and the heat sink, and
Ry between the sink and the atmosphere. In line with the lumped parameter
model, it is further assumed that the temperatures over each one of these parts is
constant: 7, the junction temperature, T¢ the casing temperature, T the heat sink
temperature and T, the ambient temperature.

Figure 1.8(a) shows the assumed temperature distribution by solid lines. The
actual temperature distribution will be more like the dotted curve. Further, the
heat flow is assumed to be in one direction only. Figure 1.8(b) shows the cor-
responding electrical network analogous to the thermal system. The object of the
mathematical model is to relate the junction temperature with the rate of heat flow
¢, This heat rate g; will be equal to the power dissipated at the junction in watts,
inultiplied by the Joule’s constant.

The network mode] has been used as an intermediate stage in the development
ot the mathematical model. The derivation of the mathematical model for the
system, using Kirchhoft’s law on the analogous electrical system of Fig. 1.8(b), is
left as an exercise for the reader.

Junction casing heat sink
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Fig. 1.8 Heat Dissipation from a Silicon Device: (a}) Temperature Distribution and
(b) Electrical Analogy

1.6 A Liquid Level System

Figure 1.9 shows a liquid level system. The inflow and the outflow from the tank
is controlled by inlet and outlet valves. Under steady-state conditions the valve
openings are such that the rate of inflow is equal to the rate of outflow. Under this
condition, the liquid level in the tank will be constant. Now, assume that the inlet
valve opening is suddenly increased, increasing the inflow rate. It is of interest to
find how the liquid level in the tank will change as a function of time.
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Fig. 1.9. A Liquid Level System

The variables of the system are the input and output flow rates and the liquid
level in the tank. The parameters are the valve resistance and the area of cross-sec-
tion of the tank. Let us first consider the valve characteristics.

If the flow through the valve is laminar, the flow rate and the difference in
liquid levels across the valve, called the ‘head’, are related by an Ohm’s law type
of relation,

(1.14)

> (x

where,
Q = liquid flow rate through the valve;
H = head across the valve; and

R = resistance of the valve.

However, more commonly the flow is turbulent. In that case, the relation between
the flow rate and the head is non-linear and is given by:

—
Q= \/% . (1.15)

Use of such a non-linear relation will make the mathematical model also non-
linear. Analysis with non-linear models is more complex and therefore the use of
a linear model is preferable. To get a linear model, a technique called linearisation
around an operating point is commonly used.

A plot of the non-linear relation (1.15) is shown in Fig. 1.10. The slope of the
valve characteristic is different at different points. However, if we assume that the
change in the head is small around an operating point P (Q;, H,), the ‘incremental’
resistance is constant around this point. That is

h h
= =R = — 1.16
q orqg=-p (1.16)
Equation (1.16) gives a liner relationship between small changes 4 and h around
an operating point.

Let us now go back to the problem of modelling the liquid level system of Fig.

1.9. The question to be answered now is: what is the physical law governing the
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Fig. 1.10 Valve Characteristic
fluid flow in this situation? In other words, what is the relationship among the

inflow rate, the outflow rate and the liquid level? Such a relationship can be
derived from a very general principle which can be stated as,

input = output + accumulation. (1.17)
The validity of eqn. (1.17) is self-evident.

Equation (1.17) is called the continuity equation and is useful for a number of
physical systems like mass transfer, heat transfer, flow systems, etc. Even the
Kirchhoft’s current law at a node can be thought of as a particular form of the
continuity equation. There can be no accumulation of charge at a node. Therefore
the rate of charge inflow must be equal to the rate of charge outflow at a node. In
other words, the current into a node must be equal to the current out of the node.

In the present problem, we are interested in the rates of input flow and output
flow. Taking derivatives of terms in eqn. (1.17), we can rewrite the continuity
equation as

rate of inflow = rate of outflow + rate of accumulation. (1.18)

The accumulation of the liquid in the tank would be given by its area of cross-
section multiplied by the change in liquid level, or the accumulation = A X A.

Therefore, the rate of accumulation = A % Thus, eqn. (1.18) gives,

61i=Q()+A% : (1.19)

From egn. (1.16) we have,

_h
(10—R-

Substituting it in eqn. (1.19), and rearranging terms we get.
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AR%’;—+h=Rq,. (1.20)

This equation relates the input ¢, with the output s and is the required mathemati-
cil model of the liquid level system.

Let us now compare this model with that of the electric circuit of Fig. 1.11.
Writing the node equation we have,

v
(,dt+R—l

or

CRﬂ+v
dt

Py
i }R —

Fig. 1.11 Electric Circuit Model

"
=

(1.21)

1T
O

Comparing eqns. (1.21) and (1.20), we can establish the analogy given in Table
I .4.

Table 1.4 Electrical Analogy of Liquid Level System

_ Llecrrical sysiem Liquid level system
Voltage, v Head. h
Current., ¢ Flow rate, ¢
Resistance. R Resistance. R

Capacitance, ¢ Area of cross-section of the tank, A

Liquid level and liquid flow systems of this type, and those of more complex
types, are frequently encountered in process industries and water supply systems.
The method of analysis given here can be generalised to include the flow of gases
as well. Such analysis is also useful in pneumatic and hydraulic control systems.

1.7 A Biomedical System

In this section we take up the modelling of a non-engineering system. The
developments in the succeeding paragraphs will show that the techniques of model
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building for such systems are not different from those for engineering systems.
This will further illustrate the generality of the systems approach.

When a drug is injected into the body, it suddenly raises the concentration of
that drug in the blood. In due course of time, some part of this drug is passed out
from the blood stream (renal excretion) and the remaining part is converted into
other chemicals (metabolism). As a result, the drug concentration in the body
gradually reduces. We would like to build a mathematical model of the process
from which the drug concentration at any time after the injection can be calculated.
Note that the form of drug inlet may be a one-shot injection, injection.at regular
intervals or continuous infusion through a drip line.

The variables of interest in this problem are:
drug density or concentration = ¢(¢), (mg/litre)
drug inflow rate = g; (¢ ), (mg/sec)

drug outflow rate = g (1 ), (mg/sec)

The volume rate of outflow (renal excretion + metabolism) is generally a known
constant, say K. Therefore,

q0 = Kc. (1.22)

Also, the total volume of blood in the body isa.  tant, say V. Thus, V and K
are the two parameters of the system.

The physical law governing the system can be written in terms of the continuity
equation, i.e., eqn. (1.18). Applying it to the present case we get,

dv
g9 = qo + __ﬁd_cl
t
or
dc
th + g9 = g: (1.23)

Substituting for go from egn. (1.22) we have,
dc
vV at + Kc = gq. (1.24)

This is the required mathematical model. Note that this model is the same as that
for the liquid level system, given by eqn. (1.20). Both are first order linear dif-
ferential equations.

1.8 Concluding Comments

In this chapter we have studied the methodology for constructing mathematical
models for common types of systems from different branches of engineering. -
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These models are important because the analytical study and the design of en-
gineering systems is based on their mathematical models. The modelling process
requires a knowledge of the structure of the system, its variables and parameters,
and the physical laws governing the system. Generally, two types of relations
between the system variables are needed: an Ohm’s law types of relation and a
continuity equation type of relation. A number of simplifying assumptions are
usually required to obtain a simple enough model.

The analysis of systems involves solving the equations describing the mathe-
matical model for different inputs and for different working conditions. The result
of mathematical analysis is then interpreted in terms of the behaviour of the physi-
cal system under study. Commonly used methods of analysis will be developed in
later chapters. The analysis procedure depends only on the type of mathematical
equations of the model and not upon the branch of engineering to which the prob-
lem belongs. For example, the mathematical models for all the different systems
discussed in this chapter are given by linear differential equations of order one or
two. In systems terminology all these systems are classified as linear dynamic
systems of order one or two. Their techniques of analysis and the characterisation
of the solutions will be identical. This general method of studying systems, in-
volving modelling, analysis, design, optimisation, etc., is the subject matter of a
new branch of engineering, called the ‘systems engineering’. The term
‘engineering’ used in this title is somewhat of a misnomer, as the same techniques
are now being increasingly employed in studying and solving probiems from a
number of non-engineering disciplines like, biology, economics, management
science, resource planning, etc. Thus, it is important for engineers to develop a
‘systems approach’ to the solution of real life problems, be they engineering or
non-engineering problems.

GLOSSARY

System (definition): It is a structure of inter-connected components créated to perform some desired
function. It has distinct input(s) and output(s) and produces an output in response to an input.

Mathematical Model: A set of mathematical equations relating the output to the input is called a math-
ematical model (or simply a model) of the system.

System Variables: (Input, output and internal variables.) In general they are functions of time. The
behaviour of the system is characterised by the system variables.

Across and Through Variables: An ‘across’ variable defines some state of one terminal with respect to
the second terminal of a two-terminal device. The ‘through’ variable defines the flow or trans-
mission of some quantity through the element.

Single and Multi-Variable Systems: When there is only one input and one output the system is called
a single-variable system. If there are more than one inputs and/or outputs the system is called
a multi-variable system.

Initial Conditions: The valses of output and other internal variables of the system at the instant when
the input is applied, i.e., at t = 0, are called initial conditions.
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System Parameters: Those fixed quantitics which characterise the properties of the system, and are not
dependent upon system variables, are called svstem parameters.

Analogous Systems: Different types of systems (vsually from different branches of engineering)
having same type of defining mathematical model are called analogous systems.

Electrical Analogy: When a non-electrical system is equated to an electrical network with the cor-
responding variables and parameters of the two systems identificd, the equivalent electrical
network and its mathematical model is called the electrical analogy of the non-electrical sys-

tem.

Transducers: Devices which convert signals from one form of energy to another are called
trunsducers.

PROBLEMS

[.1 A w filter. shown in Fig. 1.12, is frequently connected between a rectifier and the load to
smoothen out the ripples. Let the load be a pure resistance Ry. Let the input to the filter be
a voltage source with open circuit voltage v and internal resistance R,. Develop a mathe-
matical model relating the input voltage v, to the output load current iz.

o—«r—”&%\—l—o
From
— rar TC CFTo —»
rectifier I load
Fig. 1.12
1.2, A permanent magnet moving coil galvanometer may be considered a transducer, converting
input electrical voltage v(7) into angular deflection 0 (r) of a pointer. Develop a mathémati-
cal model relating the input and the output.

1.3, Usually a d.c. motor is thought of as an energy converter. However, in many control ap-
plications, it is treated as an actuator for converting electrical voltage inte angular motion
of the rotor shaft. When the input voltage is applied to the armature, with field connccted
to a constant voltage supply, the motor is said to be armature controlled. Develop a math-
ematical model for the armature-controlled motor, treating angular velocity of the shaft as
the output and the armature voltage as the input.

1.4.  Develop both the f~v and the f-i analogies for the mechanical systern shown in Fig. 1.13.
Since this system has two dependent variables, x1 and x2, it is called a system with two
degrees of freedom.

D Ky

1;15 K
Er

2
Fig. 1.13

[.5.  In a rotational mechanical system, the gears perform the same function as a transformer in
an electrical system. The shaft of a d.c. motor is coupled to a large flywheel through a pair
of gears. Develop a mathematical model relating the angular position of the flywheel (out-

My

My
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put) 8 (1), to the motor torque (input) T (1 ). Also develop an analogous electrical circuit for
this mechanical system.

A thermometer may be considered a thermal system. Develop its mathematical model relat-
g the length of mercury column x(7) as an output and the temperature T (1) of the substance
surrounding the bulb as the input. What assumptions are commonly made in using ther-
mometers as femperatore sersors?

An clectric immersion heater has a rating of K kilowatts. The thermal conductance of the
heater assembly is Gy and its thermal capacitance Cy. The heater is immersed in a liquid
tank with good- thermal insulation on the tank walls. The thermal conductance and the
thermal capacttance of the liquid are G and Cz2. Determine a mathematical model for find-
ing the change in liquid temperature as a function of time when the heater is switched on.
Draw an analogous electrical circuit identifying the analogous variables and parameters of
the thermal and the electrical systems.

Two water tanks of different arcas of cross-section A and A2 and different liquid levels Hy
and Az are conneeted through a ground pipeline with a pormally closed valve. Derive the
cquations for determining the liquid levels as functions of time, following u sudden opening
of the connecting valve.

In the studies of population dynamism it has been empirically established that the rate of
increase in the population of a species at any time is proportional to the total population at
that time. Give a mathematical model for this situation. Now. assume that the food avail-
able to the species is limited. How would you modify the model to account for this fact?

The rate of dissolution of a chemical in water is proportional to a product of two factors;
(1) arnount of undissolved chemical, and (i1) the difference between the concentration in a
saturated solution and the concentration in the actual liquid. Develop a mathematical model
for calculating the variation of concentration as a function of tune.



CHAPTER 2

Classification of Systems

LEARNING OBJECTIVES
After studying this chapter you should be able to:
(1) determine whether a system is linear or non-linear;
(i)  identify and characterise different types of commonly encountered non-
linearities; and
(iii)  classify a system according to the type of its mathematical model.

The definition of a system given in the previous chapter is very general and
includes under it a large variety of different engineering and non-engineering sys-
tems. The methods of analysis and the characteristics of the solutions are also
different for them. The object of systems classification is to bring under one
category systems having certain common features. The basis of classification is
the type of equation describing the mathematical model. Systems described by
one type of equation are put under one category. In this chapter we shall classify
systems into the following independent categories:

(1) Linear or non-linear system

(2) Dynamic or static system

(3) Time invariant or time-varying system

(4) Continuous time or discrete time system

(5) Lumped parameter or distributed parameter system.

(6) Deterministic or stochastic system

2.1 Linear and Non-linear Systems

The linearity principle: The word ‘linear’ intuitively suggests something pertain-
ing to a straight line. If the input x and the output y of a system are related by a
straight line, as shown in Fig. 2.1, we may say that it is a linear system. The
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mathematical equation relating the input to the output is then y = mux, a lincar
algebraic equation. A resistor obeying Ohm’s law, or a spring obeying Hooke's
law, arc examples of such linear systems.

We will be dealing with different types of systems with different mathematical
models. Most of them will not have simple aigebraic equations as their models.
Their models may be in terms of differential equations, difference equations, cte.
We therefore need a more general criterion for deciding the linearity of a system.
With this aim in view, let us re-examine the relationship shown in Fig. 2.1. One
clearly noticeable property of such a relationship is that if the magnitude of the
input is increased & times, from x, to Ax,, the output magnitude is also increased
& times, from y; to ky,. This property can be generalized for inputs and outputs
which are functions of time.  For a linear system if an input x, (1) gives an output
Vi (1), ben (7)) — vy (1), then kx (r) — ky, (t). This property is called
homogeneity and is a property of all linear systems. In other words homogeneity
is a necessary condition for a system to be linear.

OQutput y

y=mx

Input x

—-

Fig. 2.1 Linear Relation
Another necessary condition for linearity is the property of superposition. Su-
perposition implies that if an input x; (1) gives an output ¥, (). t.e.. x; (1)
— y; (¢ ). and another input x, (1) — y; (¢t) then, if the two inputs are applied
together, the output will be the sum of the two individual outputs, i.e.,

{x() + @)} = {nl) + @)
These two conditions of homogeneity and superposition together constitute a set
of necessary and sufficient conditions for a system to be linear. The following
statement is a definition of linearity.
Definition: A system is called linear if and only if it possesses both homogeneity
and superposition properties. Thatis, ifx; (#) — v (+) and x,(t) — y.(r)and
for any real numbers k; and &, the relationship

{hix () + k@) = Lhy() + k)

is true, then the system is linear.
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We may think of the physical system as a device for performing certain math-
ematical operations on the input, as given by the equations of its model, to produce
the output. In this approach the physical system is conceived as a mathematical
operator. In line with this view, the input-output relationship is written as,

y@)y=Hix@)|

where H is a mathematical operator, representing the system. For linear systems
the operator H will be a linear operator.

For actual physical systems superposition implies homogencity. The inputs
and outputs are real functions which exist physically. For sucn systems the
property of homogeneity can be derived from the property of superposition. How-
ever, there are mathematical operators which satisfy superposition but not
homogeneity. These are pathological cases and not of any interest in the analysis
of physical systems. Therefore, for determ.ning whether a physical system i
lincar or not we shall test only for superposition.

. As will be discussed in the next section, a system whose mathematical model is
an algebraie equation is called a static system. For such systems it is easy to deter-
mine whether the system is linear or not. Non-finear algebraic equations like. '
vty =X () or y () = Nx (1), clearly fail to satisfy the superposition property
and hence cannot represent linear systems.

Let us examine a system with model,

y(@)=mx () + c. (2.1)

For input  x(t). output y () =mx (t) +c¢c and for input
X (f) . output y» =nix; (+)+c. Forthe combined input { x, (¢) + x (¢) }, the
output fromeqn (2. 1)is given by y{(¢) = m { x, (1) + x2(t) } + ¢, which is nat
equaltoy, (+) + y (t). Hence, superposition does not apply foregn. (2.1). Thus,
we get the surprising result that the system represented by eqn. (2.1) is not linear.
The input-output relationship of eqn. (2.1) is drawn in Fig. 2.2. I this straight line
passed through the origin, the corresponding equation would obey superposition.
The straight line passing through origin would mean that the output of the system

y 4 Output
Y= MX+C

inputx -

/

Fig. 2.2 Input-Output Relationship
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is zero for zero input. Systems having this property are called initially relaxed
systems. Thus, we arrive at the conclusion that an initially relaxed system, repre-
sented by a linear algebraic equation, will be linear. The techniques of linear
analysis are still applicable to the system of egn. (2.1) if ¢ is treated as an initial
condition.

[n this book, we will be interested mainly in the techniques of analysing linear
dynamic systems. Such systems have linear differential equations as their models.
It can be easily verified that the operation of differentiation is a lincar operation.
Therefore, a differential equation containing linear terms in the dependent variable
and its derivatives will be a linear differential equation. Presence of non-linear
terms, like & or (dx ) /dt or x (d® x) /df will make the equation, and the system
represented by it, non-linear.

Example 2.1:— An armature controlled d.c., motor is connected to a propeller air
tan (Fig. 2.3). The speed-torque curve of the tan can be approximated by a square law
relation, T = &, ®’. Develop a mathematical model for determining the angular

velocity o of the motor as a function ol time for a given input voltage v (f ).

Fig. 2.3

The armature circuit can be modelled as a series combination of armature resis-
tance. armature inductance and a source with a voltage equal to the back e.m.t.
The armature inductance is small because of the small number of turns in the ar-
mature coil. Hence, the voltage drop across this inductance is neglected in cotn-
parison with the other voltages. The application of Kirchhotf’s law around the

armature circuit gives,
vi=IiR + ko

where 7 is the armature current, K the armature resistance. © the angular speed and
k- the back e.m.f.

As the ficld is connected to a constant voltage supply, the field current and
henee the field flux, are constant. Theretore the torque developed by the armature.
bemye proportional to the product of the armature current and the tield fhas will be

gnen by T = Avy
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Applying D" Alembert’s principle to the mechanical load we get,

t=J— + ko
dt

whcre J is the moment of inertia of the load and the armature. Combining the three
equations above we get,

B{f(/m+km+£ﬁmz—v

ky dt : k; "
This is the required mathematical model. Note that the presence of @ term makes
it a non-linear. first order ditferential equation.

In engineering practice, it is usually an induction motor which is used for driv-
ing propeller tans. The speed-torque characteristics of the induction motor are
highly non-linear. In such cases graphical, rather than analytical, technigues are
used for determining system response.

Common types of non-linearities: Most of the components from which physical
systems are constructed are essentially non-linear. However, their behaviour over
a limited range of inputs can be approximated by linear relations. A resistor is
linear tor low values of current but becomes non-linear for higher values because
of increase in temperature. An iron core coil has linear inductance for low values
«of current, but if the current is large enough to cause saturation of the core, its
inductance becomes non-finear. All active devices like transistors, diodes. thyris-
tors, etc., are intrinsically non-linear. Some of the non-linearities commonly en-
countered in engineering systems are discussed below.

1. Spring type non-linearity: The relationship between the applied force f
and the resulting displacenent x for a linear spring is given by
[ = kyx. However, for higher values of force, most springs deviate
from this linear relationship. A better approximation of the spring char-
acteristic is the non-linear equation

f=kx+ ki (2.2)

If k; is positive, we get the “hard’ spring characteristic and it it is nega-
tive we get the ‘soft’ spring characteristic, shown in Fig. 2.4. Any non-
linearity of this type is commonly referred to as *hard’ spring or ‘soft’
spring non-linearity.

2. Saturation: An input-output characteristic of the type shown in Fig. 2.5
is culled saturation type non-linearity. Transistors, operational
amplifiers. magnetic and electromagnetic components all sutfer from
this type of non-linearity. ’

+ Triction: In mechanical systems we have two types of friction: (i) vis-
cous friction and (i) static or Coulomb’s friction (see Fig. 2.6). For



30 Linear Systems Analysis
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Fig. 2.4 Spring Characteristics
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Fig. 2.5 Sataration Non-linearity
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Fig. 2.6 Friction Characteristic

viscous friction, the force-velocity relation is f = kv, where & 1y the
coefticient of viscous friction. This relationship is linear. Viscous fric-
tion arises in situations like motion of solid bodies through gases or
liquids, relative motion of well-lubricated surtaces, etc. When there is
relative motion between rough surfaces, the friction between themn is
called sliding friction. Tt praoduces an opposing force whose magnitude
is nearly constant at all velocities. Just before the commencement of
motion, the opposing friction force is higher than the sliding friction. Tt
is called the staric friction. The sliding and the static frictions are non-
linear.

When a body moves at o very high speed through a fluid or when the
tluid tlow relative to the body 1s turbulent. the torce of friction s nearly
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proportional to the square of velocity. The friction between air and the
blades of a fan is of this type. This friction is again non-linear.

4. Hysteresis: When the increasing and decreasing portions of the input-
output relationship follow different paths, as in the magnetisation curve
of iron, we get hysteresis type of non-linearity (Fig. 2.7). Similar non-
linearity also arises in case of backlash of gear trains, relays and
electromechanical contactors. .

Flux

Current

Fig. 2.7 Hysteresis

5. Dead zone: Figure 2.8 shows the dead zone type of non-lineurity en-
countered in relays, motors and other types of actuators.

Qutput

Dead 1°"|?
_/-1 I h »Input

Fig.2.8 Dead Zone

Non-linear systems: Presence of any one of the non-linearities listed above would
make the system non-linear. The resulting mathematical model would also be
non-linear. Analysis of such non-linear models is quite complex. Only some
selected types of non-linear equations have been solved analytically, and that too
with considerable approximations. Herative numerical methods, suitable for com-
puter analysis, are available for some more types of non-linear equations. How-
ever, there are no general methods for solving such equations. Therefore, it is a
common engineering practice to make only linear models of physical system by
either totally ignoring non-linearities or linearising them by the technique of sec-
tion 1.6 or otherwise. This is because very elegant and extensive theorics are
available for the analysis of linear systems. The rest of this book will be devoted
to a study of linear systems only.
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If the linearisation process is too gross and the results predicted by the linear
model do not match with experimental results, or where more accurate results are
required, we will have to go in for a non-linear model. In such cases, computer
simulation studies are more fruitful. Even in such situations, analysis is first done
on an approximate linear model to get a fee! for the nature of system behaviour.
The non-linear effects are then introduced into this linear model as second order
cffects to obtain more accurate answers.

Non-linear systems have certain peculiar forms of behaviour which are not en-
countered in linear systems. Some of these peculiarities are ncted here. In a lincar
system the form of output does not depend on the magnitude of the input. Increas-
ing the input magnitude merely scales up the output, but the form remains the
same. In non-linear systems the form of output may change, at times drastically,
with changes in input magnitude. For example, in a non-linear system the output
may settle down to finite values for small inputs, whereas for mput magnitudes
beyond a particular value, the output may go on increasing continuously, making
the system unstable.

When a linear system is excited by a sinusoidal signal, its output will also be u
sinusoid of the same frequency. In a non-linear system the output may be non-
sinusoidal and may contain frequency components not present in the input. In
some non-linear systems, on application of excitation, the output very quickly
goes into modes of cyclic oscillations. These oscillations may persist even after
removal of the excitation, provided the system has some energy source to replenish
the losses inherent in any physical oscillation. Many electronic oscillators are
built around such non-linearities. These are called ‘relaxation’ oscillators.
Another peculiarity of non-linear systems is the ‘jump’ phenomenon. When the
input signal frequency (or magnitude) is being continuously increased, the output
magnitude also increases, but, at some point, it may suddenly jump from one value
to another. Linear systems are better behaved and do not exhibit such
peculiarities.

It should be noted that the classification of a system as lincar or non-linear is
really a classification of its selected model. In different situations the same system
can be modelled as a linear or non-linear system. Thus, one should not take it that
nature has created two types of systems, one linear and the other non-linear. In
fact, this point is valid for all other categories of system classification.

2.2 Dynamic and Static Systems

Example 2.2:— Consider the resistive network shown in Fig. 2.9. The input-out-
put relation, i.e., the mathematical model of this system is given by the algebraic
equation,

v
R- + R;

i(t) = =kv(r).
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B2 output

i(t)

Input R R3

Fig. 2.9 A Resistive Network

In this case the output waveform will be a replica of the input waveform, its
magnitude at any time being equal to the input magnitude at that time multiplied
by constant k. Thus, the output at any instant depends upon the value of the input
at that instant only. One can say that the system is instantaneous or memoryless.
Such systems are called static systems. If the input to a static system does not
change with time, then its output also will not change with time; i.e., there is no
‘motion” and hence the designation static. When only the steady state is of interest,
many systems are modelled by algebraic equations and treated as static systems.

As opposed to static systems, we have dynamic systems whose models are
given by differential equations (or difference equations). In such differential
equation models, time is the independent variable. The output is always a tunction
of time, even when the input is a constant. Thus, there is ‘motion’ and hence the
name dynamic. In such systems the output depends not only upon the input but
upon the initial conditions also. Recall that the solution of an nth order differential
equation requires a knowledge of the initial value of the depended variable and its
first n—1 derivatives. These initial values of the system variables must be existing
because of past inputs to the system. In fact the output at any instant ¢, is depend-
ent upon the values of the input at all instants prior to and up to #,, 1.e., for time in
the range ~e < t < t;. The system thus ‘remembers’ its past inputs or has
‘memory’. All the models developed in Chapter | are dynamic models.

Let us examine the factors which make a system static or dynamic. Any electri-
cal circuit made up of only resistive elements will be static, howsoever complex
the circuit may be, while a circuit with even a single inductance are capacitance
will always be dynamic. This is because a capacitor or inductor can store energy
whereas a resistor can only dissipate it. Thus we conclude that the presence of an
energy storage element makes a system dynamic. Mass and spring provide energy
storage clements in a mechanical system. System variables associated with
storage of energy cannot change instantaneously through or across that element;
e.g., voltage across a capacitor, current through an inductor, velocity across a
mass, force through a spring. A sudden change of current through inductor would
mean infinite rate of change of energy, i.e, infinite power—a physical impos-
sibility. Therefore, even for a sudden change in the input, the system variables in
adynamic system will not change instantaneously. Thus, dynamic systems are not
“instantancous’.
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There are many problems in the area of biological systems, economic systems,
population dynamics, etc., where there is no well-defined concept of energy or
energy storage elements. Even in these areas, we get systems modelled by dif-
ferential equation. This happens whenever the rate of change (growth or decay
rate) of asystem variable is dependent upon the value of the variable at that instant.
All systems having this characteristic are classified as dynamic systems.

Let us consider the experimental response of the static system of the resistive
network of Fig. 2.9 to a sudden change in the value of input voltage from zero to
V. Such signals are called step signuls and the response to them, step response.
This step response is plotted in Fig. 2.10(a) and (b). In Fig. 2.10(a) the time scale
1s in seconds and we get the output as an exact replica of the input, as predicted by
its static model. In Fig. 2.10(b) the time scale is in nano-seconds. The experimen-
tally determined output is no longer a replica of the input; more likely, it is chang-
ing as an exponential function, as in the case of a first order dynamic system. Thus,
the static model is not valid. This is because stray capacitances between conduc-
tors and between the turns of the resistor will make the circuit an R-C network
rather than a purely resistive one. In fact, probably every static system will behave
as a dynamic system if the time scale is expanded into nano-seconds in the region
where the input is changing.

Figure 2.10 illustrates once again that a mathematical model of a system is valid
only for a set of assumptions and particular working conditions. Its classification
into a particular category depends on the model selected. As far as the choice
between static and dynamic models is concerned, we may generalise the pre-
vious example to conclude that if the transient response is much too fast and is
not of much importance compared to the steady statc response, the selected
model will be static; if transients are of interest, the model for analysis should
be dynamic.

Input ——————Input
—Output - — Output
t in seconds = tin nano—sccond!;
(a) Ab)

Fig. 2.10 Step Response of Static System

Static models are commonly encountered in socio-economic systems like
resource allocation problems or optimisation problems. In such cases, they are
usually functions of many variables. Their analysis is relatively straightforward
requiring solution of linear algebraic equations only.
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2.3 Time Invariant and Time-varying Systems

In section 1.1.1, we defined parameters of a system as the quantities which depend
only on the properties of systein elements and not on its variables. These
parameters appear as coefficients of the dependent variable and its derivatives in
the differential equation mode! of dynamic systems. For example, in eqn. (1.4) ot
the automobile ignition system,

L LR ﬂ +5 =0

L C
parameters R, L and C appear as coefficients. If these parameters become functions
of the dependent variable [i(t) in this case], then the system becomes non-linear.
However, the coefficients can be functions of the independent variuble t without
affecting the property of linearity. When the parameters are fixed, i.e., do not
change with time, the system to which they belong is called a time invariant sys-
tem. When one or more parameters are functions of time, the system is called a
time-varying system. The terms stationary system and non-stationary system arc
also used in place of time invariant and time-varying systems.

Example 2.3:— The equation of motion of a rocket in vertical flight is a good
example of a time-varying system. As the rocket goes up, it burns fuel to develop
the required thrust. Consequently its mass goes on reducing. Let its initial mass be
M, and k the rate at which the fuel is being burnt. Then its mass at any time ¢ after
the take-off would be given by m(f) = M, — kt. The equation of motion, i.e., the
mathematical model of the system will be,

m(t)f—tz+D@ = F (2.3)
where,
m(t} = time-varying mass of the rocket;
x (¢) = vertical displacement;
D = coefficient of friction between rocket body and atmosphere; and

F = thrust developed by the rocket.

Equation (2.3) is a time-varying differential equation. However, it is still a
linear equation. The technique of solving time-varying differential equations is
somewhat more involved than the method for time invariant equations. The main
difference between these two types of systems is that the solution does not depend
upon the instant of time at which an input is applied for the time invariant system,
whereas it does change if the instant of application of the input is changed in the
case of time-varying system. In this book we shall study only time invariant sys-
tems.



36 Linear Systems Analysis

2.4 Continuous Time and Discrete Time Systems

In all the examples considered so far. the system variables like voltage v(r).
velocity u(f), etc., were continuous functions of time, i.e., they are defined for
every instant of time and their values can change at any instant. The systems to
which such variables belong are called continuous time systems. As opposed to
this, in the mathematical modelling of many processes, we encounter system vari-
ables which are either defined at only specitied instants of time or can change their
values only at these specified instants, as in a digital clock. Such signals are called
discrete time funcrions and the systems to which they belong are called discrete
tire systems. A graphical plot of a discrete time function is shown in Fig. 2.1 1(b).

x(tn)or
x{n)
x(t)
o ] .
7 lj-,l tito 4 b

(a) (b)
Fig.2.1Ha) A Continuous Time Function and (b} A Discrete Time Function

It should be compared with the plot of a continuous time signal in Fig. 2.11(a).
Here. ,, 1, 8, ..., 1, are the specified instants of time, or the sequence of instants at
which the function is defined or can change its magnitude. This second alternative
15 shown by the dotted lines in Fig. 2.11(b). The intervals between the specitied
instants may be fixed or variable.

For a continuous time function x, its functional dependence on the variable time
is shown by writing it as x(1). For discrete time functions, since the function
is defined only at the sequence of instants £, it is written as x(z,) or simply x(n).
Just as the independent variable 1, is a sequence of time instants, variable x(s1) is
a sequence of numbers, x(1) corresponding to ¢, x(2) corresponding to 15, and so
on.

Discrete time functions arise in the modelling of instrumentation and control
systems employing multiplexing, computer control or digital signal processing.
Before taking up an example of such a system let us clarify an area of possible
confusion.

In the description ‘continuous time function’, the term continuous refers to the
independent variable time and not to the function dependent on time. The function
may possess discontinuities of different kinds, even when the time variable is con
tunuous. Figure 2.12 shows some continuous time functions. In Fig. 20120, the
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Fig.2.12 Continuous Time Signals

function itselt is discontinuous at ¢ = t;; in Fig. 2.12(b), the function is continuous
but ils first derivative is discontinuous at ¢t = #; and in Fig. 2.12(c) we have a
function which is continuous and possesses continuous derivatives of all orders
(except at 1 = 0). Mathematicians have even devised a function which is discon-
tinuous at every instant of time! However, in all these cases the time is still a
continuous variable. The continuity, or otherwise, of the function has nothing to
do with the concept of continuous time and discrete time functions.

Example 2.4:— We now take up the modelling of a computer-controlled furnace,
shown in Fig. 2.13(a). The temperature of an electric furnace is to be varied in
accordance with the curve given in Fig. 2.13(b). The slope and the duration of
different segments of this curve may have to be varied depending upon the-
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Fig. 2.13 Computer-controlled Furnace: (a) Schematic Diagram and
(b} Desired Temperature Profile
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material being heated and the nature of processing required. This type of
‘programmable’ furnace controller is required in processing of special ceramic
materials. The required programine, i.e., the curve between time and the desired
furnace temperature, is stored in the memory of a computer. For such a storage,
both the time and temperature variables will have to be sampled and digitised. By
sampling we mean that only specified values of time, say at one minute intervals,
and the corresponding temperatures will be taken up for storage. Thus, the stored
function of desired temperature will be a discrete function of time, represented by
x(n). In fact, storage of any time function in a computer can only be as a discrete
function of time.

In practice a process computer for such an application will be used for perform-
ing many other tasks in addition to controlling the furnace temperature. That is, it
will be used in a multiplexed or time-sharing mode. At specified instants, say, at
[-minute intervals, the computer will take up furnace control. At these instants it
will compare the actual furnace temperature with the desired temperature at that
instant stored in its memory. It will alter the setting of the power controller depend-
ing upon this comparison. For example, if the desired temperature and the actual
temperature are equal it will make no change in the setting. It the actual tempera-
ture ts lower than the desired temperature, it will step up the power input to the
furnace. And so on.

tor the purpose of performing such a temperature control, the information
regarding the actual furnace temperature must be made available to the computer.
Now the temperature is the output of the system and the computer is controlling
the input to it. Therefore, we say a feedback must be provided to the computer
regarding the value of the cutput. Control systems having feedback links are calfed
feedback control systems. Most of the modern automatic control systems utilise
this teedback principle.

The temperature transducer in the furnace will usually generate an “analog’
clectrical signal proportional to the temperature. This analog signal will have o be
digitised and time-sampled to make it intelligible to the computer. Thus, the feed-
back will also be a discrete time signal, represented by y(n). The input signal to the
power controller will also appear only at the specified instants of time. Hence this
will also be a discrete time signal, represented by e(n). To indicate the discrete
time nature of these signals a switch has been included in series with the signal
lines. It is assumed that all the switches are closed only at the specified instants of
tume. These specified instants are called ‘sampling’ instants and accordingly such
a discrete time system is also called a sampled dara system.

The discrete time system variables are thus identified as: actual furnace
temperature. ie.. the output y(n). desired temperature x(n1), and the input to the
power controller e(n). The input to the power controller will adjust the rate of heat
flow () 1.e.. the power input to the furnace. This setting will remain fixed be-
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tween the sampling intervals. The input heat rate g(n) will be proportional to the
setting e(n). Let us assume that the ‘control law’ is such that e(n) is directly propor-
tional to the difference between y(n) and x(n). Thus

gin) = Kie(n) = K, K, [x(n) — y(n)] (2.4)
The mathematical model of the furnace, relating the input heat rate and the
output temperature will be a first order differential equation. Therefore, for a tixed
input heat rate between the sampling intervals, the temperature will increase ex-
ponentially. However, if the sampling interval is small compared to the thermal
time constant of the furnace, we may assume that the temperature change is linear
between two consecutive sampling instants, The rate of this change will be propor-
tional to the input heat rate, or

ytl) - y(n)

AT = Kiq (n)

= K, Ky K3 [x(n) — y(n)] (2.5)

where A T is the sampling interval, 1.e. the time between ¢, and ¢,., . Assuming
A T to be constant, we may write eqn. (2.5) as

yir+1)y ~yn) = Klx(n) -yl
where constant K = A T K, K, Ky Rearranging,

yin+1)y = = Ky y(n) = Kx(n). (2.06)
Equation (2.6) is the required mathematical mode! of the system.

Equations of this type are called difference equations. They are used to describe
mathematical models of discrete time systems. Difference equations are analogous
to differential equations for continuous time systems. Modelling and analysis tech-
niques for discrete-time systems are discussed in chapter 9.

2.5 Lumped Parameter and Distributed Parameter Systems

Let us once again consider a thermal system. This time we would like to stady the
heating of an iron slab, like the ones encountered in steel mills. To simplity matters
let us assume that it is being heated from only one end. Further, there is no dissipa-
tion of heat from the sides and that the heat flows in only one direction, as shown
in Fig, 2.14. We will like to model it as a dynamic system so that we can answer

Heat

source iron slab

iy

_— X

Fig. 2.14  One Dimeansional Heat Flow
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questions like; how does the temperature of the slab change as a function of time
following a sudden change in the input heat rate? Thus the system variables, in this
case the slab temperature, must be functions of time and the model a differential
equation.

The next question which comes immediately to the mind is: temperature at
which point in the slab? It is obvious that the temperature at any instant of time
will be ditferent at different points along the length of the slab. In fact there will
be a temperature gradient along the length. Therefore the system variable tempera-
ture will have to be treated not only as a function of time but also as a function of
space co-ordinate x. Thus, it becomes a function of two independent variables,
time ¢ and distance x along the length, i.e., T = T (4, x). The differential equation
relating the input heat rate to the output variable T (¢, x) will then be a partial
differential equation.

In an carlier example of a thermal system (section 1.5, Fig. 1.8) we had divided
the region of heat tlow into three distinct regions and assumed that the temperature
ot cach region (T, T¢ and Ts) was the same over the whole region. Therefore,
instead of having a single temperature variable as a function of length (and, of
course, of time) we had three temperature variables as functions of only time. The
thermal properties of the three regions were characterised by distinct two terminal
elements. The system variables could change only at the nodes of the inter-conrec-
. tions of these two terminal elements. This is only an approximation because the
fixed thermal characteristics of the system, i.e., the parameters of the system, ther-
mal capacitance and thermal resistance, are actually distributed all over the space
and not lumped between two terminals. Owing to this reason, the model of section
[.5 was called a lumped parameter systern. In treating temperature T = T (¢, x) as
a continuous function of space co-ordinate x (and a function of time), we are not
making any lumping and treating the system parameters as continuously dis-
tributed in space. Such a system is called a distributed parameter system and its
mathematical model is given by a partial differential equation.

Distributed parameter models are encountered in areas like heat flow, diffusion
processes, torsion in long shafts, vibrating strings and air columns (e.g.. in musical
instruments like sitar and flute) and in long transmission lines. Because of its im-
portance to electrical and electronics engineers, let us model a transmission line.
The transmission line may be for power transmission or signal transmission.

Example 2.5:— A transmission line will have the parameters, series resistance,
inductance. capacitance and parajlel conductance associated with it. These
parameters will be uniformly distributed over the length of the line. To simplify
matters. let us assume that the line is lossless, i.e.. the series line resistance and
parallel line conductance are zero. In that case the circuit model of a small length
A xof the line will be as shown in Fig. 2.15. Here. L and C are the inductance and
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the capacitance per unit length of the line. The variables of the system are current

i (x, 1) and voltage v(x, t).

. L Bx L &
ilxt) 2 2 ilx+Ax,1)
1
| [
v (x,t) C Ox v(x+ax,t)
. | ¥
[ Ax >

Fig. 215 A Small Scction of Lossless Transmission Line

Applying Kirchhoff’s voltage law around the loop A x we get,

Axdilx1) by dx difx+ Ax,

+v{x+Ax, ) =vixt
2 ot 2 ar vt Axn = v

L
or rearranging,

Ax
L2

581; lilx +Ax. D)+ i(x,n] = —lvlx+Ax, 1) - vix,nl

Dividing by A x we get,

~

[vix + Ax,1) - v(,x',t)]_
Ax

9 li(x+Ax, t) + i(x.0] = — (2.7)

2 d1
[n the limitas Ax — 0, the r.h.s. of eqn. (2.7) equals the derivative of v(x, £} with

respecttox. Onthe Lhs. i(x + Ax, 1) —  (x, ). Thatis, eqn. (2.7) becomes,

[ di(x,) B dv(x, 1)
Co9r T ox

Qr.

di ov
L — = - =—.
dt 0x
Applymg Kirchhoff™s current law to the node in Fig. 2.15 and going through
sumilar steps we get another equation,

(2.8)

v __ di

a T (2.9)

We now combine eqns. (2.8) and (2.9) into a single equation. With this in view we
tahe the partial derivative of egn. (2.8) with respect to x and that of egn. (2.9) with

respect to - This gives.,
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i Fv
Lava = a2 (210
and
Fv R ul
“9F T Taox (211

Reversing the order of taking derivative, multiplying eqn. (2.11) by L and then
substituting eqn. (2.10) in it we get,

v v
LC PR B
Oor
7 -5 21

where k = 1/V(LC).

Equation (2.12) s the required mathematical model of the transmission line.
This type of equation arises frequently in many other distributed parameter sys-
tems and is called the wave equation. The constant k used in eqn. (2.12) is called
the velocity of propagation. An equation similar to egn. (2.12) will relate time and

space variations of current ifx, r).

Equation (2.12) pertains to a lossless line where R = G = 0. Some other
stmplifying assumptions, leading to useful results arc as follows:

(1) R/ = G/C. This case is called the distortionless line.
(2) G =L =0.This is useful for a leakage-free, non-inductive cables.

In the above example of transmission line, the space distribution of the vari-
ahles v and i were single dimensional. In other problems, we may encounter two
dimensional distribution, e.g., vibration of plates, percussion type of musical in-
struments (say tabla). or three-dimensional distribution, e.g. vibration of air mass
i a speaker enclosure, propagation of electromagnetic waves in space. These will
cive rise to more complex partial differential equations as their models.

In many cases the time and effort required to generate solutions for partial dif-
lerential cquation models are not justifiable. A simpler solution would do. In such
cases the distnibuted parameter system is modelled by an equivalent Tumped
parameter model. For example. the lossless transmission line is frequently
modelled by one or more sections of the equivalent 7 or T network shown in Fig.
2.16. The accuracy of representation improves as more number of such sections

are connected in series.
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Fig. 2.16 Lumped Parameter Approximation of a Lossless Transmission Line

2.6 Deterministic and Stochastic Systems

Let us consider a ship-mounted naval gun, firing on a land target. For a specified
gun angle (both in the horizontal and vertical planes) the firing of the gun should
land the shells at the same spot. One would like to build a model relating the gun
angle with the location of the point hit by the shell. Such a model will be usetul if,
for example, a computer were to control the gun. However the chances of all the
shells hitting exactly the same spot are extremely low. At best, one can define a
general area in which the shells will land. With somewhat greater insight, we can
associate with each point in this area a probability of the shell landing there. A
mathematical model, taking into account the uncertainty in the output and relating
the probability of the output with the input is called a stochastic model and the
system with which it is associated, a stochastic system. In a stochastic model the
actual output for a given input is uncertain: only its probability of occurrence can
be predicted. In contrast the systems modelled earlier were deterministic systems
because their output could be exactly determined for a given input.

The uncertainty regarding the output in the naval gun problem is because of
various factors like roll and pitch of the ship due to waves, slight difterences in
shell sizes, shape and fire power, effect of air currents and even our inability to set
the gun angle to an exact value. These could be grouped into two categories: (i)
uncertainties in the exact values of parameters and (i) random noise signals picked
up at the input and other points of the system. The effect of noise signals is par-
ticularly damaging in communication systems. A signal under transmission will
always be corrupted by atmospheric and other noise signals. However, from a
knowledge of the statistical properties of different types of noises, comimunication
engineers are able to make stochastic models of the system and use these models
to design filters to reduce the effect of noises.

2.7 Concluding Comments

In the preceding sections of this chapter we have had a bird’s eyeview of the dit-
ferent clusses of systems, nature of their mathematical models and the engineering
and non-engineering areas in which they arise. In the recent past, engincers have
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been able to develop techniques for analysing all these systems. The fantastic
growth of modern technology owes a great deal to these analytical techniques.
However, in this introductory text we shall have time to explore the analytical
techniques for only one class of systems. In terms of our classification scheme, this
class can be correctly designated as linear, dynamic, time invariant, deterministic
systems. We will include both the continuous time and discrete time systems in
this class. For the sake of brevity, this string ot adjectives is usually reduced to its
first word, ‘linear’. Henceforth, by the term linear system we will mean the class
of systems defined above.

Linear system models are the ones most commnoniy used in engineering. This is
because linear models are easier to build, several excellent techniques exist for
their analysis and, finally, the answers given by linear models are satistactory in
migjority of the situations.

GLOSSARY

Linearity: A system is called lincar if, and only if, it possesses the properties of homogencity ancd
super-position, that is, if x((r) — vy (1) and x2 (1) = v2 (1), and for any real numbers &y and
k2 the following relationship is satisfied;

i, () + () = kv () + kv, ()

Statse versus Dysamic Svstems: The mathematical models of static systems e given by algebraie
cquations whercas dynamic systems are modelled by differential equations. Static systems are
instantaneous, i.c.. their output at any instant of time depends upon the value of input at that
instant only Dynamic systems have memory, i.e.. their output at any instant depends upon the
whole past history of the input.

Tine-varving Systems:  When the parameters of a system are functions of time, the system is called a
tune-varving svstem. The mathematical model is given by time-varying (or non-stationary ) dit-
ferential equations.

Discrete Time Signals and Systems.  1f the value of asignal is defined only at aset of specified instants
or if i.s value can change only at specified instants, the signal is called a discrere tme signal
Systems in which such signals arise are called discrete time systems Vheir mathematical model
is given in terms of difference equations. Such systems are also called sampled data systems

Dustiiboted Parameter Systems:  When the system parameters are distributed over space. the system
variables become functions of space co-ordinates (in addition to being functions of time). Sys-
teins having such variables are called distributed parameter systems and their models are given
by partial differential cquations.

Stochastie Svstems.  When one or more variables or parameters of a systeni are not known precisely
but can be described only in terms of its probability function. the system 1s caiied a stochasti

sVsiem.
Al &
PROBLEMS
21 Clanaty the sysiem models given by the following equations.
r /
dox dyx
() R
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(i) d;: P s
dr dt

R
- dt

wy Ldxbde ey
Xt Xt
2. .

v) ‘{;} 3E L = sinor
dr- dar

What approximations/assumptions are generally made to obtain linear models for the fol-
lowing systems?
(1) A pendulum,

(i) A transistor amplifier
(i) A d.c. generator
(1v) A hydraulic press.
A power-dissipating resistor bank is made from a heating element whose temperature coel-
fictent of resistance is o, The thermal resistance and capacitance of the bank are Rrand Cr
Develop a mathematical model for determining the temperature of the heating element as a
function of time when a constant voltage source is switched on across the bank. Comment
on the type of model obtained.
The technique of linearisation around an operating point, mentioned in section 1.6, is based
upon the expansion of a function by Taylor's seties, Let the input-output be related by the
equation,

y=flo)
where f(vy is a non-lincar function of x. To linearise it around an operating point x = x|, we
(st expand v around x = vy by Taylor's series as,

A I
Y o= flan + (=-x) {*”lm Q*,”“) af S’i) +
X =y = de | “

A . 2
Smce variations around xy are assumed to be small, terms containing (v - x3)” ond other
higher powers may be neglected. Then,

df(x)

yo= )+ - ) -
dx

=X
which is the required linear velation between y and x

. - . 3 . . .
Linearise the equation y = 0.5 x " around point x = 2. Calculate the error involved in using
this linear modef for determuning v arx =2,2.1.2.2, 23 and 2.4,
A series RC circuit is connected 10 a d.e. source. The capacitor is a paraliel pdate capacitor.
with one plate fixed and the other oscillated by a cam, such that the distance between the

plates is a sinusoidal function of time, Determine the mathematical model for computing
current in the eircuit. To which class does this model belong?

An experimental study o determine the mathematical model of a continuous time systein
cave the following results.

Input = constant K
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Output, measured at one-second intervals = 1, 3, 6, 10, 15, 21, 28, 36, 45, .... Determine the
mathematical model of the system. To which class does it belong? Can you give example
of a physical system corresponding to this model?

The netwerk shown in the Fig. 2.17 is called a ladder network. Treating the voltage at the
nodes as a discrete variable, determine a difference equation for the ath node voltage v(n).

v(1) v(2) v(n) v{ke1) vik)
R
2R 2R

2.8

Fig. 2.17 Ladder Network

Suppose that a pair of rabbits can produce a new pair every month. Let us further suppose
that the rabbits become fertile after one month. Develop an equation for deterimining the
total number of rabbits in any month, starting with one pair of rabbits. To which class does

this equation belong?



CHAPTER 3

Analysis of First and Second
Order Systems

LEARNING OBJECTIVES
After going through this chapter you should be able to:

(i) know the mathematical representation and important characteristics of
standard test signals;

(i)  obtain the transient and the steady state responses of linear systems as
solutions of linear differential equations;

(itli)  characterise the response of first order systems, and second order sys-
tems with underdamped, overdamped and critically damped charac-
teristics;

(iv) represent second order systems in terms of a generalised equation using
damping ratio { and frequency of natural oscillation m, as parameters;
and

(v) obtain the numerical measures—rise time, peak time, percentage over-
shoot and settling time—for second order underdamped response in
terms of { and w,.

The central object of analysis of physical systems is to generate solutions of the
model equations for different types of inputs and initial conditions. Our interest
here is limited to linear dynamic systems only. Their mathematical models are
ordinary linear differential equations. The order of a system is defined as the order
of its governing differential equation. In this chapter, we take up the analysis of
only first and second order systems. It is presumed here that the reader is familiar
with the methods of solving linear differential equations. Therefore, only a brief
review of the classical method of solving such equations is given in the next
sechion.
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The engineer’s interest in systems analysis does not end with solving linear
differential equations. He or she wants to idenafy the specific characteristics of
these solutions and to relate them to the actual modes of system behaviour. This
understanding of system behaviour is essential to operate and maintain a given
system in an efficient manner and to design better and more efficient systems.
Therefore, mathematical analysis is merely a tool for the engineer. However, a
mastery over this tool is essential for his successful performance. This book aims
at helping the engineer learn these mathematical tools.

3.1 Review of the Classical Method of Solving Linear Differential
Equation

Consider the general nth order, ordinary, linear, time-invariant differential equa-

tion,
dy a7 d
—‘}%+a,,_,72+...+a|jf+a(y=x 3.1)

where y = y(1) is the dependent variable and x = x(z), the forcing function. The
coefficients ay, a,. . ., a, are constants. In the systems terminology x is the input,
y the output and a’s the parameters. The solution of eqn. (3.1) consists of two
parts—the complementary function y.(¢) and the particular integral y,(¢). The com-
plete solution is given by y(£) = y.(2) + y,(1).

The complementary function: The complementary function y.(¢) is the solution
of the homogeneous equation corresponding to eqn. (3.1), obtained by equating its
right-hand side to zero, i.e.,

d ! d
Zi‘%+a,,_|FlX+...+a;—ﬁ+an)’=0 (3.2)

Clearly, the form of the solution of eqn. (3.2) will not depend upon the forcing
function x but only on the parameters of the system. Hence, in systems terminol-
ogy y.(t) is called the natural, or the unforced, or the source-free response. The last
term is more commonly used in network theory where the forcing function is in
the form of voltage or current source.

The solution of the homogeneous eqn. (3.2) is obtained as,
Yy = Gy (@ + Gy (1) + ...+ Coyalt) (3.3)

where C;, C,...C, are constants dependent upon the initial or the boundary condi-
tions, and functions y(f), ..., y.(f) depend on the roots of the characteristic al-
gebraic equation,

P4 a "'+ . tar+a =0 (3.4)
If the n roots, ry, 1y, ..., 1, of eqn. (3.4) are all real and distinct then,

yi()) = exp(rit), i =1,2,...n and
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(0 =C exp(nd + G ;:xp (n) + ...+ Cexp(r,t) (3.5

For other types of roots, the components y,(r) of y.(¢) take the following forms:
(1) for each real distinct root r, the function ¢”;

(2) for each real root of multiplicity &, the functions ¢” , te”, . . ., Fote

»

(3) for eachdistinct complex pair of roots a + jb, the functions ¢“ cos bt and
e sin bt; and

(4) for each complex pair of roots a  jb with multiplicity £ the functions
e’ cosht, e“sinbt,te” cosht, te”sinbt,..., =5 e*cosbt,
£~ " sin bt.

Example 3.1:— Solve the homogeneous differential equation,

% -3 % ~2y =0
The characteristic equation is,
Fr-3-2=20
or,
r+1YEr-2=20

and has three roots r =1, —1 and +2. Thus, there is a root of multiplicity 2 at 1.
Therefore, the complementary function is,

y. () = (C + Cnye’ + Cyé™

Example 3.2:— Solve the homogeneous differential equation,

dy &y dy
ar " ar ta 7Yl
The characteristic equation is,

P-F+r—-1=20

Il

or F+1) (-1 =0

The three roots are r = +j, —j and +1. There is a pair of imaginary roots * j.
Therefore,

y((t) = Cl e + C2 e"’ + C3 e_j’

Ci e + Cycost + jCysint+ Cycost—jCysint

It

Ciée +(C+ G)cost + j(C; — Cy)sint

The particular integral: The particular integral y,(#) is dependent upon the type of
forcing function or input x(¢). Amongst the many methods for determining the
particular integral, the method of undetermined coefficients is particularly useful
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in the analysis of physical systems. The forcing functions commonly encountercd
in engineering systems are: exponential (e), polynomial in z, sin o7 or cos .
Many other types of forcing functions can be equated or approximated by com-
binations of these functions. In the method of undetermined coetficients, we
presume the form of solution y,(t) depending upon the form of the forcing func-
tion, as given in table 3.1.

Table 3.1:  Assumed form of particular integral

Forcing function x(t) yp(t) to be ussumed

Exponential, Ke™ (i)  Ae™if uis not a root of the characteristic equation,
i) Are”ifuisa simple root; and
(ity AP ¢ ifaisaroot of maltiplicity 2, and so on.
Polynomial, K1* (£ positive) () Ag + A+ ... +acflif the characteristic cquation
docs not have zero as a solution;

(i) Integral of polynomial (i) if zero 1s a solution of the
characteristic equation.

K cos wr or K sin oy A cos wt + B sinwr.

The values of constants in the assumed form of y,(¢) are determined by substitu-
tion of the assumed y,(¢) in the original equation.

Example 3.3:— Find the particular solution for the differential equation,

&y b
dt2+2dt+y—t3+t.

Assume,

y,,([) = A() + A[t + Aztz + A;r}.
Substituting it in the given equation we have,
(Ap + 2A,+2A4) + (A +4 A, +06A) L+ (A + 6ANP+ALE = 1+1

Equating coefficients of like powers of ¢ on both the sides we get,

Ao+ 2A, + 24, = 0
A+ 4A, + 645 = |
A + 64y =0

Ay =1

Solving these equations we get An =-26,A, = 19, A, =-6and A; = 1.
Therefore

y (&) = =26+ 191 — 67 +1.
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Example 3.4:— Find y,(¢) for the differential equation,
%} +y = 2¢% cos3t.
Assume,
y,(t) = Ae” cos3t + Be¥sin3t
Substitution of this assumed y,(¢) in the given equation we get,
(9B — 45A) €” cos 3t — (9A + 45B) €” sin3t = € cos 3.

Equating the coefficients of cos 3¢ and sin 3¢ on the two sides we get,

9B —45A =1 and 94 + 45B =0
-5 |
or A = 734 and B = 234
Therefore,
e* .
Yl = 234 (sin3t - 5cos3p).

Initial conditions and the complete solution: The complete or the general solution
is the sum of the complementary function y.(f) and the particular integral y,(f).
That is,

y@ = y.@ +y©®.

This solution, however, still contains unknown constants C,, C,, ...., C,. The
values of these constants should be so chosen that y() equals at least one known °
solution point. For this, one must know the value of y(¢) and its first (n—1) deriva-
tives at some point of time. Usually, this point of time is the starting time £, i.e., ¢
= 0. The value of y(¢) and its first (n—1) derivatives at ¢t = 0 are called the initial
conditions. Sometimes this known solution point is given for some other value of
time ¢° # 0. The values of y and its first n-1 derivatives at ¢t = ¢’ are called
boundary conditions. Thus, a knowledge of initial conditions or boundary condi-
tions is necessary to determine the values of unknown constants in the complete
response. Only then is the solution y(f) completely specified.

Solution of problems with specified boundary values (these are called bound-
ary value problems) is somewhat more difficult than that of problems with
specified initial conditions (i.e., initial value problems). Fortunately, most of the
engineering problems are initial value problems.

The initial conditions may also be considered as additional inputs similar to the
forcing function. Thus, it can be assumed that the solution y(f) or the output is
because of two two factors—(i) due to the initial condition and (ii) due to the
forcing function.

It should be noted that the values of C,, G, ..., C, depend not only on the initial
conditions but also on the forcing function x(r). Therefore, these constants should



52 Linear Systems Analysis

be determined only from the complete response y(f) and not from y (¢) alone. These
points are illustrated in the example that follows.

Example 3.5:— Determine the complete solution for the equation in example 3.3
with initial conditions,

y(0) = - 25 and % = 20.

r={
The characteristic equationis ¥ + 2r + | = 0 or (r+ 1)’ = 0. The roots

are r =~ 1, ~ |. Thus, the complementary functionisy. = C,e” + C,te”.

The particular integral has already been determined in example 3.3 as
yf) = —26 + 19t —6£ + . The complete solution is,

o = ye )+ 50

Ce'+ Cyte’ =26+ 19t -~ 6F+1-

Let us now determine the values of constants C, and C, to completely specify y(?).
Atr=0,

y©0) = C; - 26 =-25

Therefore, C; = 1. Now by differentiating the solution y(f) we get,

% = —Cle"‘ + Czé’ﬂ - Czte_t + 19 - 121 + 37
At =0,

& =-C,+C,+ 19 = 20

dt =0
or C, = 2. Thus, the complete solution is,

y() = e + 2te’ -~ 26 + 191 ~ 67 + 1.

3.2 Transient and Steady-State Response

In the previous section we looked upon the problem of analysis as the problem of
determining solutions of differential equations. Let us now interpret the form of
this solution in terms of the general properties of linear dynamic systems.

The unforced or the natural term of the solution contains terms like C, exp (rif).
If even one of the r;’s is positive (or has positive real part for a complex r;), then
the response will contain an exponential term with a positive exponent. The mag-
nitude of this positive exponential term will go on increasing as ¢ increases, tend-
ing to oo as [ — . Systems in which the response goes on continuously
increasing, or becoines unbounded, are called unstable systems. Such systems do

-
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occur in engineering and other physical systems. However, it is clear that their
usefulness is limited unless some means of control is applied to make the response
bounded. Otherwise, the output and other system variables will reach such high
magnitudes that either the system will be damaged or non-linearities would set in,
limiting the magnitudes. The study of stability of systems is a very important area
in the field of control theory and is discussed in Chapter 7.

For stable systems, the roots of the characteristic equation will be negative (or
will have negative real part). In that case, the negative exponential terms in the
complete response will go on reducing and finally tend to zero as 1 — oo. In most
of the cases, the magnitudes of these components become zero in a very short time.
Hence, this component of response, i.e., y.(¢) is called the transient response.

As opposed to y (1), the component y,(#) of the response does not decay to zero
as t — oo but persists as long as the input x(¢) remains applied. Its form is also
similar to that of the applied input. Hence, this component of response is called the
steady-state response. The complete response thus is the sum of the transient
response and the steady-state response. In the period immediately following 1 = 0,
the response is affected by both transient and steady-state components. However.
affer the transients have decayed only the steady-state component remains.

It should be noted that the form of the transient component is always a decaying
exponential (real or complex), whereas its actual magnitude is dependent upon
constants Cy, C; ,...,C, which are affected both by the initial conditions and the
applied input.

The choice of instant ¢ =0 is somewhat arbitrary. Generally, it is selected as the
time at which the input is applied to the system. The values of initial conditions
take care of the effect of all other past inputs. The value of response at any time
t; > 0 is thus affected by both the initial conditions at t = 0 and the input from
t=0uptot=r.

It should be noted that the phenomena of transient response is associated only
with dynamic systems. A static system will have no transients. It can have no
initial conditions or memory and its output at any instant will depend only on the
value of the input at that instant of time. The output will not be affected by the past
values cf the input.

3.3 Standard Test Signals and Their Properties

As mentioned earlier, perhaps repeatedly, the essence of analysis is to generate
solutions for different types of input signals (or excitations). In actual operation,
physical systems may be subjected to almost all possible types of input signals.
However, for the purpose of theoretical analysis, as well as for experimental
studies, we use only some selected types of input signals. These signals are so
chosen that the system response to them reveals significant properties of the sys-
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tem and gives an insight into its physical behaviour, We now study the forms,
mathematical representations and the properties of these standard test signals.

Step signal: A unit step function is shown in Fig. 3.1. lts value prior to t = 0 is
zero. It suddenly jumps to unit magnitude at ¢ = O and remains at this magnitude
for all times ¢ > 0. It is represented by the symbol u(r).

That is,

wt) = 1fort 2=0

= for t <0
A'(t)
1 ult)
-0 —
Fig. 3.1 A Unit Step Function y

A step input of magnitude £ will be represented as ku(r). A step function at
t = t; # 0(Fig. 3.2) will be represented as a delayed step by u (¢ - ;). So long as
the quotient in the brackets is negative, i.e., # < ¢, the function has zero value. It
becomes unity fort = 1.

u(t-119)

)

Fig. 3.2 Delayed Step

Step functions arise in practice when a switch is suddenly closed or opened in
an electrical system or a valve is closed or opened in a fluid flow system or a mass
is given an initial displacement and then allowed to oscillate in a mechanical sys-
tem. The response to step input is called the step response of the system. It clearly
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" reveals the dynamic and the transient behaviour of physical systems. It is also a
very useful signal in the experimental study of physical systems. As we shall study
later, the step response has an extremely useful property. If the response of a sys-
tem to a step input is known, its response to any input can be determined.

Many other signals having discontinuities can be represented in terms of step
signals. For example, a pulse can be represented as a sum of two steps, one positive
step at t = t, and one negative step at t = b, i.e., the pulse function (Fig. 3.3) is
A = Au(t—1) — Au (t — 1).

()
Al
't] 'ty -t
' I
A b Au(t-ty)
e e d———l——
|
It ot
Y
-Au (t-t7)
CA T T

Fig. 3.3 Pulse Function

Another useful role of the step function is to define the range of time to lie
between zero and infinity for a general signal f (f). Normally the range of time is
takenas from—eo to + o0 ,je.,— oo < t < + o, However, if we want to define
the tunction only for 0 € ¢ < oo, we multiply it by a unit step function. Thus, the
signal f(1) u(r) means that its value is zero prior to t = 0 and equal to f(¢) for
rz0.

Ruamp signal: A ramp signal is shown in Fig. 3.4 and is represented by
A(r) = ktu(r). The multiplication by u(t) is to show that the value of the function
is zero prior to ¢ = 0. The ramp signal may also be considered as a particular case
of the more general polynomial function ff) = kit + k; £+ ..., when only
ki is non-zero. Another way of looking at the ramp is as the integral of the step func-
tion.

t(t)

Fig. 3.4 A Ramp Signal
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A ramp signal may also be used in representing signals of other forms. For
example, the triangular pulse shown in Fig. 3.5 may be represented as

fiy = tu(t) -20¢-Dut-D+@E-2u(=2) (3.6)
A1)
] ______
]
]
|
1 -
1 2 Tt

Fig. 3.5 A Triangular Pulse

Ramp signals arise in ‘tracking’ situations. For example, while tracking aircraft
a radar antenna is rotated at a continuous angular velocity. The mechanism which
controls the angular movement of the antenna normally responds to the input sig-
nals corresponding to the required angular position. Therefore, to make it rotate at
a constant velocity, a ramp input signal must be given. Yet another example of the
ramp signal is the input signal to the programmable temperature controller, shown
in Fig. 2.13(b).

Exponential signal:  Signals of the type f(f) = k ¢, with a positive or negative
exponent are frequently encountered in linear dynamic systems. The natural
response of systems consists of exponential terms only. If this output is an input to
another physical system, we have to consider solutions of equations with this ex-
ponential function as the forcing function.

The most characteristic property of the exponential function can be expressed by
its time constant. The time constant is the value of time for which the exponent be-
comes unity. Thus, time constant T = 1/a for the exponential function ¢ The ex-
ponential signal has the interesting property that if a tangent to it is drawn at point p, it
will meet the r-axis at a distance T from the intercept of point p on the r-axis.

For the decaying exponential signal, the value of the signal at 1 = 0 is obviously
k. Atthe instant t = T the value becomes f(1)= ke '= (kx 1)/2.718=0.368k .
That is. in one time constant the exponential decays to 36.8% of its initial value
(Fig. 3.6). The value of the time constant can therefore be defined as the time
required for the decaying exponential to reduce to 36.8% of its initial value.

Although theoretically a decaying exponential never becomes zero. after a
period of 1 = 5 1, its value reduces to k e = 0.0067 k. This is small enough to be
treated as zero for all practical purposes. Therefore, in engineering analysis it is
common to assume that a decaying exponential becomes negligibly small after
five time constants.
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At (1) =ket!T
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Fig. 3.6 Decaying Exponential Signal
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Another interesting and useful property of an exponential function is that its
derivatives of all orders are also exponential. That is why this function invariably
appears in the solution of differentia, equations.

When the coetficient of ¢ in the exponent becomes imaginary, the exponential
function represents a sinusoidal function,
f = k " = k(cosht £ j sinbf) (3.7)
as given by Fuler’s relation.
The sinusoidal signal represented by eqn. (3.7) has amplitude £ and trequency
b. 1f the exponent 1s complex (with negative real part), i.e.,
fiy = k™Y = ke (cos bt * fsinbt) (3.8)

the exponential function represents a decaying sinusoidal signal as shown in Fig.
3.7. We shall encounter such signals in the analysis of second order systems.

fer)
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Fig. 3.7 Decaying Sinusoidal Signal
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Sinusoidal Signal:  The response of a system to sinusoidal signal reveals some of
its most important properties. The analysis of dynamic systems relies on two main
techniques—the time domain and the frequency domain techniques. The latter is
dependent on the response of the system to sinusoidal inputs with frequency vary-
ing trom zero to infinity. In practical testing also, response to sinusoidal signals or
the frequency response of systems is very helpful.

A stnusoidal signal is shown in Fig. 3.8(a) and is represented by the equation,
) = Asinot (3.9)

Its peak amplitude (many a time referred to as just amplitude) is A and the frequen-
¢y, wradians/second. If at the instant t = (, the value of the function is not zero, as
in Fig. 3.8(b), the equation becomes,

) = Asin(wr + 8) 3.10)

AN
VAR Vil

Fig. 3.8(a) A Sinusoidal Signal

t(t)

1 Xr /
ok v& v

Fig. 3.8(b) Phuse Shift

}\/\/

Fig. 3.8(c) Cosine Function
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where angle 6 is called the phase angle of the sinusoid. If the phase angle is /2,
the function f(n=Asin(wt+n/2) = Acos wt, can also be called a cosine
function .

The frequency can also be expressed as ® = 2 =t f, where fis the frequency in
hertz, abbreviated to Hz. In older times, f was expressed in cycles/second. The
time period of the function is 7 = 2n/® or {/f seconds. The higher the frequency,
the smaller will be its period. The power supply frequency is 50 Hz with a period
of 20 milliseconds. The radio frequency range is 20 kHz to [ GHz with & period
from 0.05 milliseconds to | nano-second. The microwave range is 1| GHz to 100
GHz with periods from 1 nanosecond to 10 picoseconds.

As can be easily verified from trigonometric relations, the sum of two
sinusoidal signals of the same frequency will also be sinusoidal, even it they have
a phase shift between them. However, the sum of signals with ditferent frequen-
cies is not sinusoidal. In fact, non-sinusoidal signals can be shown to be equal to
sum of different frequency sinusoidal signals, (This is the subject matter of the
next chapter on Fourier series.)

Addition of sinusoidal functions of the same frequency is very much simplified
by considering them as rotating vectors, as shown in Fig. 3.9.

Fig. 3. Sinusoidal Signal as a Rotating Vector

The rotating vector with a magnitude A, angular velocity ® rad/sec and an initial
displacement 6, will have intercepts on the vertical axis given by f(r) = A sin
(ot + 8), which is the same as the general form of the sinusoidal function given
by eqn. (3.10). The function f can also be written as,

' =AZ06 3.1

When written in this form, the function is called a phasor with magnitude A and
phase angle 8. A phasor diagram like Fig. 3.10 is used as an aid in understanding
and manipulation of phasors. For example, consider addition of two phasors,

I

f| (f) A[ sin ((l)f + 9,) = A] £9|

and fr(t) = Ay sin(wr + 8:) = A, £6s.
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B —

Fig. 3.10 Phasor Diagram

Their phasor representations are shown in the phasor diagram (Fig. 3.11). The sum
of the two functions can be obtained by vector addition of A, and A; as shown in
Iig. 3.11. Since A; and A; are special types of vectors (i.e., rotating vectors), called
phasors, such addition is called phasor addition.

Fig. 3.11 Addition of Two Phasors

The horizontal and vertical axes in the phasor diagram may be considered as the
real and the imaginary axes. Then the phasor A of Fig. 3.10 can also be expressed
as a complex number. 1.e.,

AZO = a+jb (3.12)

Use of complex numbers simplifies the numerical work. For example, with this
representation, Ay £6, =a, + j b and A; £6; = ay; + jb,. Their sum is given by,

A|46| +/‘\zée = AZO = ((1|+a2)+j(bl + l)_r).

In the steady-state analysis of electrical networks, the phasor and complex number
representations of sinusoids is used very trequently. Here the variables are voltages
and currents. To make it easy for practical purposes, these vaniables are represented as
phisors not with their peak amplitudes but with their r.m.s. values.

The complex exponential representation of the sinusoidal function is alrcudy
siven egn. (3.7). This form is very useful for the dynamic analysis of systems and
will be used quite frequently later n this text.
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Impulse function: The impulse function is one of the most important functions
encountered in the analysis of linear systems. Its characterisation and properties
are dealt with in Section 5.3.

3.4 First Order Systems

As mentioned earlier, the order of a system is the same as that of its defining
differential equation. A first order system is one whose mathetnatical model is a
first order differential equation. As an example of a first order system let us ana-
lyse the response of a series R-L circuit.

Step response of an R-L circuit:  Let us suppose that an electrical system is rep-
resented by a resistance R in series with an inductance L. Further, let the system be
connected to a d.c. source of voltage E for a sufficiently long time. At time ¢ =0,
the source is suddenly replaced by a short circuit. The object of the analysis is to
determine current i(¢) fort > 0.

The mathematical model for the system, valid fort > 0, is given by,

di .
LS +Ri =0 (3.13)

The complementary function or the transient response is given by,

{
ir = C, exp L—-%t] = C et .

The term L/R = 1 is the time constant of the system. Since the right-hand side,
i.e., the forcing function in eqn. (3.13) is zero, the particular integral or the steady-
state response is also zero. Hence, the complete response is given by,

i =i, = C e (3.14)

The constant C, in eqn. (3.14) is determined by the initial condition, i.e., the value
of current at ¢ = 0. Prior to ¢ = 0, the steady-state current in the circuit was £/R. This
fact is represented mathematically by the statement i(07) = E/R. The minus sign
over the zero indicates that it is the value at ¢ = 0, when this point is approached
from the negative side. However, the value of initial condition required is i (0%);
the value of function / (f) at ¢ = 0, when this point is approached from the positive
side. To determine i(0") we take recourse to physical reasoning. We know that the
current through an inductor cannot change in zero time. In other words, the current
cannot be discontinuous. This is so because of the basic terminal v - i relation of
inductance, v = Ldi/dr. A discontinuous current will require an infinite voltage.
a physical impossibility. Hence, we conclode that ¢ (07) = i(07) = £/R. This type
of physical reasoning is trequently required for the determination of initial condi-
tions.



62 Linear Systems Analysis

Substituting the mitial condition at t = 0 1n egn. (3.14), we get C, = E/R. Therefore,

i = %w” (3.15)

Equation (3.15) gives the solution of the problem. A plot of the response i as a
tunction of time will be the same as that shown in Fig. 3.6 with k = E/R.

The transient response of a first order system is completely specified by only
two factors: (i) the time constant T and (ii) the initial magnitude.

Sinusoldal response:  Let us now assume that the series R-L circuit is connected
o a source with voltage v =V, sinor, at + = 0. The mathematical model is
given by,

L‘—g + Ri = V, sinor. (3.16)
{

The torm of the transient response remains the same as given by egn. (3.14),
i, = C e
Let us assume that the form of the particular integral or the steady-state response is,
i, = Acos®f + Bsinwr
Substituting it in egn. (3.16) we get,
(RA+ Bol) cosot + (RB — AwlL) sinwt = V, sin wr.
Comparing the coefticients of sine and cosine terms on both sides of the equation,

RA + BolL = 0 and RB — AL =V,

Qr,
—wl R
A = e S Vm and B = S B Vm
R+ (wl) R+ (wl)y
Therelore,
. RV, . wlV,
i, = 53— SiIn®t — — ——, COS W .
R+ (oLly R° + (wL)

Define VR + (oL = Z and,

N>

= cos @ and E)ZA = sin@

as per Fig. 3.12. Then,

. vHI - .
[, = *Z' (cos B sint — sinB coswr)
Vi .
= " sin(wr—96)
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R

Fig. 3.12 Relation between R, wL and Z

The symbol Z stands for the well-known concept of impedance of an a.c. circuit
and 6 is the phase difference between the current and the voltage.

The complete solution of the problem is,
i = i,, + i\’.\
-1/T vl" .
= C e +? sin (@t — 8)

If the circuit is assumed to be inifially relaxed, then,

V,
0) = 0 = C, — = sin@

V4
or
C = % sin O .
Then,
. | Z .
i = > le™" sin© + sin (w¢ ~ 0)] 3.17)

A plot of the different components of the response is shown in Fig. 3.13.

At
i
~
\\ 7/ tr
el 2
7 >
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y

Fig. 3.13 Sinuseidal Response of a First Order System
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An alternate problem would be the determination of i(f) for v = V,, cos ot.
The reader is urged to work out this problem and compare the response with the
previous problem.

3.5 Second Order Systems

Compared to the first order systems, the second order systems are by far more
interesting and important in the analysis of physical systems—particularly those
of interest to engineers. This is because a large number of important systems are
intrinsically second order. Many a time systems of higher order can also be closely
approximated by second order models. Even if this reduction in the order of the
systein is not possible, the properties of higher order systems can be understood in
terms of the characteristics of the second order system.

In systems where the concept of energy applies, a system with two types of
independent energy storage elements will give rise to a second order model. In
electrical systems energy is stored in the magnetic field of an inductance and in the
electric tield of a capacitance. Hence, presence of both L and C in an electrical
system will give rise to a second order model. In a mechanical system, kinetic
energy is stored in the mass or inertia and potential energy in linear or torsional
spring. Thus, a system having both mass and spring will have a second order
model.

As a vehicle for understanding the properties of the second order systems let us
consider the series RLC circuit of Fig. 3.14.

v+<> ) L

C
[ 1
i T

Fig. 3.14 Series RLC Circuit

Series RLC circuir: The switch is closed at time ¢ = 0. Applying Kirchhotf's
voltage law around the loop we get,

di . 1 c o
Ldt + Ri + C J:, idt = v. (3.18)

This is an integro-differential equation. To convert it into a differential equation,
differentiate once to get,
di di { dv

L-—+ R+ +— =

. .19
dr dt C dt (319
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Transient response:  The characteristic equation is

Ly’+Ry+—'— = 0

C
Its roots are,
R RY |
b = — i I = — T - -
LR Y) [214] LC
Therefore,
/'“ - Cl e(—‘l+h)l + C’g (,('(1—/))1
where
R \/ RY i
(X—2L and b = (211]—[‘(7 .

While o will always be real, b may be real or imaginary depending on whether
RI2L is more than or less than 1/VLC.

We thus have the following three cases:

(1) b isreal, i.c.,i > ﬁ or R > 2 \/% .

Then o must be greater than b and we have

Ciexp (—ait) + C; exp(—aat) (3.20)

It

[y
where ay =0 — b and a; = o+ b.

The transient response will thus be the sum of two decaying exponentials which
will tend to zero as t — <o as in the case of a first order system. This is called the

overdamped case.

” PR S I _ \/.L_
(2) bis zero, 1e., 5, T Vic or R =2 c

Then the two roots are equal and,
Il = (Cy + Cy) ™. (3.21)

This 1s called the critically damped case and is the dividing line between the over-
damped case and the underdamped case described next.

The value of o for critical damping is,

o = X o 1
T 2L ANIC
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.. . R - /
(3) bis imaginary: i < ﬁ or R <2 %
I et b = jB where B is a real number. Then.

i = ¢ (C ¢P 4+ CyetP

e G+ Cy) cos Pt + j(C — C) sinPr]

e™ |Bicos Br + B, sin ]
[where B, =C + G and B, = j(C, — )l
e Asin(fr+ 0), (3.22)

where A = VB + B{and

B,
0 = an' —.
an B,
Thus, the natural response in this case is a sinusoid with frequency B, phase angle
8. and the magnitude exponentially decaying by a factor o This case is called
the underdamped case, with a damping factor o = R/2L and frequency
B = V(I/LC) — (R/2LY.

Thus, the amplitude and the duration of the transient response is very much
dependent on the value of resistance R. If R is high, the system is overdamped.
When R is progressively reduced, we get a critical value of resistance which gives
critical damping. When R is reduced below this value, the response becomes os-
cillatory and the system is underdamped. The shape of the natural response of a
second order system for the conditions of overdamping, critical damping, and un-

derdamping is shown in Fig. 3.15.

p

QOverdamped

Criticalydamped
Underdamped

Response

Fig. 3.15 Natural Response of Second Order System
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Seep input response with zero initial conditions:  Let v(f) = Ku(t). Then the
forcing function dv/dt in eqn. (3.19) becomes zero for ¢ > 0. Therefore, the
steady-state response i, = 0. This is obvious because with a series capacitor
steady-state current due to a constant voltage will be zero. Let us now determine
the unknown constants in the complete response for the underdamped case:

i= i 4y =i, = Ae ™ sin(Br+6). (3.23)

At 1t = 0, i = 0 as the system is assumed to be initially relaxed. Therefore,
{07y = i(07) = 0= A sin 8. Since the magnitude A cannot be zero (otherwise
the problem becomes trivial), 8 must be zero. Thus, we get,

i) = Ae™ sinPe
Then,

di
dt

It

—aAe sinBr+ PAe™cosPr (3.24)

When the switch is closed at ¢ = (), initially the current is zero. Hence, there is no -
voltage across the resistor and vg(0) = 0. Also, the integral of current would be
zero. Hence the voltage across the capacitor, v.(0) = 0. Thus, the whole of the
applied voltage must appear across the inductance only. The voltage across the
inductance is given by L (di/dt). Therefore, from eqn. (3.24), we have.

di K
dt - Ba = L
[
orA = K/(BL). Thus, the response of the system to a step input of magnitude
K is given by,
i = B‘Ii‘ e sinBr. (3.25)

An interesting case occurs when R is reduced to zero. For R = 0, the frequency
of oscillation becomes B = 1/VLC and the damping factor o = 0. Since there is
no damping in the system, t is called the undamped system and the frequency of
oscillation 1s given a special name w,, the frequency of undamped oscillation or
natural oscillation. Thus, ®, = 1/YLC. The response i(r) given by egn. (3.25)

becomes,
. Cc .
i =K . sin , 1. (3.26)

Equation (3.26) shows that the response of this undamped LC circuit, or the oss-
less LC circuit, to a step will be sustained sinusoidal oscillations. In fact. even after
the step input is removed, the oscillations would continue indefinitely. Physically,
what happens is that energy is continuously being exchanged between the mag-
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netic field of the inductance and the electric field of the capacitance. As there is
no resistance in the circuit to dissipate the initial energy, the oscillations would
continue indefinitely with the constant initial amplitude. However, this situation is
only an idealisation because any physical system will always possess some resis-
tance and hence the magnitude of oscillations will decay according to eqgn. (3.23).

With resistance R = (), the mathematical model reduces to,

&k i dv
LS + = ==
dat  C  dt
This is the equation of a simple harmonic motion, which, in general terms is
written as,

& x
dr

+> = An. (3.27)

x|

The oscillatory solution has a frequency of Vk.

3.6 The General Equation for Second Order Systems

In the previous section, the parameters of a second order system were redefined in
terms of the undamped natural frequency ®,, a damped frequency P and a damping
tactor o It is of importance to know how much this damping factor deviates from
the value o. required for critical damping. To focus attention on this property, a
new parameter § is defined as the ratio of the actual damping factor o to the value
of dumping factor for critical damping o.. That is { = o /.. The factor { is
called the damping ratio.

For studying the properties of second order systems, the system equation is
written in the following general form:

&y
dr

+2Cw, % + iy = @ x(1) (3.28)

where £ is the damping ratio and ®, the undamped frequency of natural oscilla-
tions. lor the electrical system of RLC circuit of Fig. 3.14 with egn. (3.19) as the
model. the new system parameters { and ®, can be expressed in terms of RLC as,

—

Q—ﬁ-—-&/—gi—ﬁ g‘mdm:—l“
T o INLC T 2 YL of " JLC

For the second order mechanical system [Section 1.2, eqn. (1.5)] we have.

D K
=P d oo, = V2
S = vy Moo M

Let us now obtain the solution for eqn. (3.28). The characteristic cquation iy
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P +20m,r+mw =0
withroots: r, rn = {2V - 1] w,.

If £ > 1, the roots are real and distinct and the system is overdamped. lf { = 1.
the roots are equal and the system is critically damped. If { < 1, the roots are
complex leading to underdamped response. However, if { is negative, the roots
will have a positive real part and the system will be unstable. Thus, a knowledge
of the value of the damping ratio is sufficient to reveal the nature of the transient
response.

Step response with zero initial conditions:

(1) Overdamped case (L > 1) : The transient component of the solution of
eqn. (3.28) withx = u () is,

Vo = Crexp (6= NE = 1) 0,01+ Crexp (L +VE =~ 1) o,¢].

The steady-state component is y,, = 1. Therefore the complete response is,

i + C, exp [(—Q—\/G—I) W]+ Cexp (= + N - 1) o]

The constants C, and C; are determined from the initial conditions,

¥

_ dy _
y0) = 0 and d = 0.

=4

Evaluating these constants and substituting them in the above expression we get,

y = sz/gzL exp [(C-NE-1)w,1]

C;\Qﬁ: exp [ C+NC - 1) wr] (329

(ii) Critically damped case (C = 1) : The roots of the characteristic equation

will be equal, i.¢., , = r, = —®,. Therefore, the solution is,
y =1+ Ce™+ Cat
Evaluating the constants from the given initial conditions we get,
y o= 1 — e (1+t+wi) (3.30)
(i) Underdamped case ({ < 1) : In this case, the roots will be complex. i.e.,
ro= (=L +j W) o, and r; = (=§ - | W) 0.

The complete solution is,

v=1+Cexp (=C+jVI=C)w, ] +Cexp (- —j V1= «;‘77)(1),,/].
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Evaluating the constants C and C, from the given initial conditions,

dy
= d — =

¥0) 0 an ar| 0,

we get,
1
=1 - ———— e %'sin[o, (VI -~ L)1+ 8 (3.31)

y g [0, ( &) J

where,

8 = tan” (N1 - §°/C).

Equation (3.31) reveals the oscillatory nature of the step response of an under-
damped second order system. The frequency of oscillationis @, Y1 — ' = w,,
the damped natural frequency, and varies with . When { = 0, the response be-
comes undamped and the oscillations continue indefinitely.

Transient response specifications: As indicated by eqn. (3.31), the transient
response of a second order underdamped system is completely characterised by
" the system parameters, { and ®,. A typical response of this type is shown in Fig.
3.16. From the practical application point of view the following numerical
measures of this curve are of interest.

sk 4

Qver shoot/'\ _Lt 5%
' P et —

|
t
| 's
|
1 ]‘f - I -1
0 T 11‘ 21 |3 |1‘ >t in secs
[+

Fig. 3.16 Step Response of Second Order System for { =04, w, = 1.0

(1) Rise time (t,) - This is a measure of how fast the system is. It is normally
taken as the time for the step response to rise from 10% to 90% of its final value.
For underdamped systems, sometimes it is also taken as the time for 0-100%
change.

(2) Peak time (t,): This is the time required to reach the peak value of the step
response.

(3) Percentage overshoot (PO): The percentage by which the maximum over-
shoot (which is the first overshoot and occurs at time r = #,) exceeds the steady-
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state value is called the percentage overshoot. It is a measure of the relative
stability of the system.

(4) Settling time (1,): The time at which the step response enters a +5% band
around the steady-state value and thereafter stays within this band is called the
settling time.

These points are marked for the curve in Fig. 3.16.

The value of these performance measures, in terms of { and @, can be derived
from eqn. (3.31) as follows. Taking ¢, as the time to reach 100% of its final value,
y(t) =1 att=1, Substituting y(f) =1 and t = ¢, in eqn. (3.31) we get,

sin (@, V1 =21 +6)=0

or,
-0
= 3
t, Y (3.32)
To obtain ¢, we equate the derivative of y () to zero. That is,
dy(n _ Lo - -
dt - \[lv_ §2 exp ( C(Dnt) sin (wdtp + 9)
~w, exp ~Lw,0) cos(w; t, +0) = 0
or.

sin (@1, + 0) = IC;CZ

But, V1 — £/ = tan @ = sin 8/cos 0. Therefore at t = ¢, ,

cos (w2, + 0).

sin{®, 1, + 8) cos0 = sin B cos (w,t,+ ).

The above relation is satisfied when ®, 7, = mn. Therefore,
T
(o= & 333
A ©, (3.33)

Substituting expression (3.33) for ¢, in eqn. (3.31), and noting that sin 8

=V I - we get,
YOmx = | +exp (En/ N1 = ).

Therefore, the percentage overshoot is given by,

PO = 100 exp (-Ln/N1 = ). (3.34)
The settling time ¢, can be approximated by the expression,

3

t, = ﬁ' (3.35)
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Sometimes the £ 5% criterion is replaced by  2%. In that case,

t — i,_
y = C(t)n

It is normally assumed that during the period 0 to ¢, the system gives its transient
response and thereafter the steady-state response.

Itis also important to be able to visualise the shape of the transient response of
a second order system for different values of its parameters § and ,. Figure 3.17
shows the variation of the shape for different values of { for a fixed w, = |
rad/sec. It shows that as { is reduced, the maximum overshoot increases and the
response becomes more oscillatory. For { = 0, the system has no damping and it
¢xhibils continuous oscillations. Too high an overshoot may cause damage to the
system while a high value of { will make the system slow. As shown by the figure,
values of { greater than unity make the system overdamped. Such a system does
not have any oscillatory response.

24 $=-0
.2
4
+6
1.0} 2
1
2
1 2 tinsecs
0 —

Fig. 3.17 Variation of the Transient Response of a Second Order System
with Damping Ratio for a Fixed w, = 1
Figure 3.18 shows the variation in the transient response with varying o, and a
fixed C. The effect of decreasing m, is like expanding the response along the time
axis. While the percentage overshoot remains fixed, both the rise time and the
settling time increase with reduced ,.

The method of analysis using differential equations and their solutions is called
the classical method of analysis. The algebra of the classical method becomes
somewhat tedions ¢ven for second order systems with inputs other than the step
input. Therefore, such problems are better handled by the use of more powerful
transform techniques discussed in Chapter 6. However, the steady-state analysis
for sinusotdal inputs is well established and straightforward. This method uses the
impedance concept and phasor diagrams and is well known to electrical and
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I 1 — . -t in SECS
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Fig. 3.18 Variation of the Transient Response of a Second Order System
with w, for a Fixed { =0.5

electronic engineers. The application of the impedance concept to non-electrical
systems, however, is not very common. Later on, we shall define a generalised
impedance concept, applicable to any type of system, in connection with the
Iaplace transform techniques.

The algebra involved in the solution of higher order equations becomes very
much more tedious. It becomes still more difficult if the solution has to be
generated for different types of working conditions. Numerical methods, imple-
mented on computers, can take care of the tedium but they do not indicate the
general properties of the system. Therefore, for the analysis of higher order sys-
tems, recourse is almost always taken to the more powerful Laplace transform
techniques discussed in Chapter 6.

GLOSSARY

Order of a System:  The order of the differential equation representing the model of the system is
called the arder of the system.

Natural Response (or unforced response or source free response):  This is the solution of the
homogeneous equation, obtained by replacing the r.h.s. or the forcing function of the differen-
tial equation equal o zero: i.e., it is the complementary function of the differcatial equation
model.

Initial Conditions:  The value of the dependent variable and its (n~1) derivatives for an sth order
system, at the time at which the input is applied (usuvally 1 = 0), are called the inirial conditions
of the system,

Time Constant The time required by a decaying exponential function to reduce to 36.8% of its initial
value is called the time constant of the exponential function.
Overdamped, Underdamped and Criticallv Damped Svstems:  In a second order system, when the

roots of the characteristic equation are real. the response decays to zero without changing sign.
i.c.. without oscillations. Such a system is called overdamped svstemr When the roots are com-
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plex the response is oscillatory-—a decaying sinusoid. Such a system is called underdamped.
The borderline between these two cases occurs when the roots are real and equal. This system
is called a eritically damped system.

Damping Facror:  In a sccond order systein, the response decays exponentially. The coefficient o of
time 7 in the exponent is called the damping fuctor.

Damping Ratie: The ratio of the actual damping factor to its value required for critical damping is
called the dumping ratio . € > | means an overdamped system, { < | is an underdamped
system and § = | is a critically damped system. { = 0 means an undamped system. § < 0
micans an unstable system.

PROBLEMS

31 Determine the complete solution of the equation,

2
i1—'2~+3‘—1')—+ y:d—x+.x
dr dr ) dr

for(i)x = # and (i) x = ¢~ with initial conditions,

w0) = dy = 0.
' L P

3.2, Deseribe a problem where it would be difficult to distinguish between the steady-state and
the transient parts of the solution.

3.3, Write mathematical expressions for the functions of time illustrated in Fig. 3.19.

Y (a) t2

Fig. 3.19

3.4.  Determine the mathematical model of the circuit shown in Fig. 3.20, treating ¢; as the input
and e, as the output, This circuit is also called a differentiating circuir. Find the conditions
under which the circuit can work as a differentiator. How would you experimentally
demonstrate that the circuit acts as a differentiator?

C

[ o
o—| o
ei R o
Oo— O~ ¥o

Fig. 3.20



3.5

3.6

aT

3.8.

3.9.

Analysis of First and Second Order Systems 75

Determine the mathematical model of the circuit shown in figure 3.21 and show that it can
work as an integrating circuit.

€0

+—i—1
o

Fig. 3.21

If the current through an inductive circuit is suddenly interrupted, e.g., by opening a series
switch, dangerously high voltages may be generated in the circuit (why?). What possible
damages can this voltage cause? One of the methods of reducing this high induced voltage
is to connect a resistance in parallel to the inductive circuit. The following problem indicates
how the rating of this resistor can be calculated.

The field coil of a 200 V d.c. shunt generator has an inductance of 20 H and resistance of
200 ohms. Calculate the ratings of the resistor to be connected in parallel with it to reduce
the maximum voltage across the field coil to 2000 V when its circuit is suddenly opened.
(Note that the ratings of a resistor would include its ohmic value, power dissipation, maxi-
mum current and maximum voltage.) Can you suggest other possible methods for reducing
the voltage?

A device represented by a series RC circuit is connected to a sinusoidal source through a
switch. The switch is electronically controlled such that it can be closed at any phase angle
6 of the sinusoidal wave. The peak amplitude of the source voltage is 10 V. There is an
initial voltage of 5 V across the capacitor. Find the valuc of 0 for which there will be no
transient.

A quantity of 0.25 g of a drug was injected into a patient at 1 = 0. Thereafter, the concentra-
tion of the drug in the blood was determined at regular intervals. The experimental obser-
vations could be described satisfactorily by the equation,

o) = 00125 7
where () is the drug concentration in g// and ¢ is in hours.

Determine and sketch c(¥) if the same drug is infused continuously for 24 hours at the rate
of 0.25 g/hr starting at 1 = 0.

A thyristor used for power control is controlled such that it is on for one second, off for the
next second, on again for one second and so on. (Such an arrangement is called pulse width
control with u 50% duty cycle.) When on, the thyristor carries a constant current of 10A with
a voltage drop of 1 V across it. A heat sink js connected to its casing. The parameters of the
system are as follows: Thermal resistance; junctiontocase RTy = 0.15 °C/W; case to heat
sink R72 = Q0.1°C/W, and heat sink to ambient air RT3 = 0.25 'C/W.

Thermal capacitance: case ¢y = 0.1 x 107 cal/°C and heat sink Cpz = 0.2 x 10°® cal’C.
Ambient temperature = 30°C.
(i)  Determine and plot junction temperature as a function of time.

(i) Study the effect of duty cycle on the junction temperature 7 and determine 77 for
duty cycle of (a) 25%, (b)75%.
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3.10.

301

Determine the response of the general second order system with zero input and initial con-
ditions is (0) = 0 and y(0) = K. Sketch the response as a function of time.

In the antomobile ignition system of Section 1.1, assume the following values of
parameters: L = 50 mH, C = 0.5 uF, R = 20 ohms, M = S H and V = 12 V. Determine the
waveform and the maximum value of voltage across the spark plug. Does this maximum
value occur on the ‘make’ of the switch or on the ‘break’ of the switch? Find out what is the
normal peak firing voltage for car engines and compare the value obtained in this problem
with the actual required value. What are the desirable features of the ignition system for
impraving the efficiency of the engine?

The natural response of a second order system is shown in Fig. 3.22. Determine
€,y and @, Does this problem give you an idea of how to determine system parameters
experimentalty?

.

Amplitude —»
-—
E
>4—-
v

Fig.3.22

A mass M = 100 kg is moving with a constant steady-state velocity V, = 10 m/sec on
frictionless rollers until it is engaged by a dashpot to decelerate it (Fig. 3.23). Determine the
damping coefficient B of the dashpot such that the velocity of the mass is reduced to less
than 0.05 Vp in 5 seconds after the engagement.

A platform of weight 100 kg rests on a spring-dashpot unit. The spring coefficient is 3000
N/m and the coefficient of viscous friction of the dashpot is 300 N-sec/m. A man weighing
100 kg suddenly steps on the platform. Determine and sketch the subsequent motion of the
platform.

AN ML N

St ArrrrTIT I

Fig. 3.23

For a series RLC circuit, connected to a constant voltage source V through a switch, deter-
mine the system equations, treating voltage across the capacitor as the output. Choose cir-
cuit parameters to obtain @ = 100 rad/sec and { = 0.1. Find the maximum voltage
across the capacitor when the switch is closed.



CHAPTER 4

Fourier Series

LEARNING OBJECTIVES
After studying this chapter you should be able to:

(i) represent a periodic function in terms of the trigonometric or the cx-
ponential form of the Fourier series;

(ii) determine the magnitudes of the harmonic components of a non-
sinusoidal waveform;

(i)  calculate the r.m.s. values of non-sinusoidal voltages and currents and
the power in a circuit having such waveforms;

(iv) obtain the response of a linear system to non-sinusoidal periodic inputs,
using the Fourier series; and

(v) calculate the value of the Fourier coefficients grapbically or numerical-
ly.

In the previous three chapters we have studied the mathematical modeliing of
linear systems and the classical method of solving differential equations to deter-
mine and characterise the response of these systems to different types of inputs. In
this chapter and the remaining chapters, we will study some of the special tools
developed to aid the analysis and to give a better appreciation of the properties of
physical systems. The Fourier series is one such powerful tool. Originally
developed by John Baptiste Joseph Fourier (1768-1830), a French mathematician,
for the study of heat conduction in metallic rods, it is now widely used in electrical,
electronic and other systems for analysing non-sinusoidal periodic signals and tor
finding the response of linear systems to such signals.

In areas like control, communication, network analysis, power control, etc., the
steady-state response of systems to sinusoidal signals is of crucial importance.
This is because sinusoidal signals occur naturally in most of these systems. The
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system response to these signals reveals a number of very significant properties of
linear systems. This response can be very easily calculated using the impedence
concept and phasor diagrams.

In addition to sinusoidal signals, one frequently encounters non-sinusoidal sig-
nals also in modern electrical and electronic systems. In the field of power
electronics, where large amounts of power are controlled by solid-state devices,
like thyristors, power transistors etc., the voltage and current waveforms are al-
most always non-sinusoidal. In electromechanical power converters, like trans-
formers, alternators, motors, etc., magnetic saturation, electrical and mechanical
imbalances, etc., make the current and voltage waveforms non-sinusoidal. In
electronic systems, the inherent device non-linearities, saturation in amplifiers, ef-
fect of noise, etc., produce non-sinusoidal signals. Signal analysis techniques are
now employed for studying diverse types of non-sinusoidal signals like those aris-
ing in speech analysis, seismic signals, atmospheric studies, bioelectric signals like
ECG, EEG, EMQ, etc. Increasing use of digital control and instrumentation sys-
tems has made response to rectangular pulses an important area of study. The tech-
niques used for handling all such diverse types of signals are the Fourier series and
the Fourier transforms. Some of the commonly encountered non-sinusoidal
waveforms are shown in Fig. 4.1.

S \L
\

(a) Voltage waveform in a.c. power control with thyristor

(b) No load magnetising curve of a transformer

(¢) Clipping action due to amplifier saturation
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(d) Rectangular pulse train
Fig. 4.1 Some Non-sinusoidal Periodic Waveforms
4.1 Representation of a Periodic Function by Fourier Series

Let f(t) be an arbitrary, though a well-behaved, periodic function of time with a
period T. The significance of the term ‘well-behaved’ will be discussed later (Sec-
tion 4.9). The requirement of this good behaviour on the part of the function is
not very restrictive in the study of physical systems, because all physically occur-
ring or physically realisable time signals are ‘well-behaved’. Associated with
the period T will be a frequency @ = 2 =n/T. Fourier's theorem states that
this arbitrary function can always be expressed as a sum of an infinite series as
follows:

. ay . . .
fy = ? + a;cosWt + G cos2W +...+bsinwt + basin2 o+ ...

- %-FZ (a, COSR®I + bysinn . (4.1)

n=1
Equation (4.1) is known as the trigonometric form of the Fourier series.

The frequency w of the given function f{¢) is called the fundamental frequency.
The Fourier series of eqn. (4.1) represents the given function f{z) by the sum of
sinusoidal components having freque\hcics which are integral multiples of the fun-
damental frequency. The component having frequency 2 ® is called the second
harmonic, 3 o the third harmonic, and so on. The component a,/ 2 is the zero
frequency, or the constant, or the d.c. component.

Like any sinusoid, the fundamental frequency component and each of the har-
monics is completely specified by three factors: frequency, amplitude and phase
angle. The frequencies of all the components are automatically fixed by the fun-
damental frequency of the given periodic function f{r). Coefticients a, and b,,
called the Fourier coefficients, determine the magnitude and the phase angle of the
harmonic terms. This is more clearly brought out by writing the summation term
inegn. (4.1) as,

a, cosnwt + b, sinnwt = ¢, cos(nwt + ¢,)
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where ¢, = Val + b} is the amplitude of the nth component and ¢, = — tan™
{b,/ a,) its phase angle. Also, a, = ¢,. Then eqn. (4.1) can be rewritten as,

f( % + crcos (@ + ¢;) + c;cos (2ot + ¢y) + ...

- (4.2)
=5 + E ¢, cos (nwr+9,)

The next problem is to determine the values of the coefficients a, and b,. This
problem is tackled as follows. Let us select the fundamental interval of the given
function f{t) as — 7/2 to +7/2. Multiplying both sides of eqn. (4.1) by the factor
cosmwt, m=1,2,3,. .. and integrating from — 7/2 10 +7/2, we get,

T/2 ay T/2
r f() cosmwt dt = — J' cosmwt dt
-T2 2 -T/2

T/2
+ f Z a,cosn®t cosm®tdt.
~-7/2
I

T/2
+ J Z b, sinn o cos m ot dt 4.3)
-T2
n=1
The first and the third integrals on the right-hand side of eqn. (4.3) are zero for all
values of m and n. The second integral is also zero for m # n. For m = n, its value
is (T/2) a,,. Therefore,
2 T/2

a, == | f@cosnwrd, n=012_. (4.4)
T -T/2

Note that with # = 0, eqn. (4.4) gives the value of the constant term a,.

Similarly, multiplying both sides of eqn. (4.1) by sin mowt, m=1,2,3, ..., and
using procedures and arguments similar to those in the previous paragraph we get.

2 T/2
b, = = J. f( sinnoed, n=1,2,... (4.5)
T -T/2

Once the coefficients a, and b, are determined from egns. (4.4) and (4.5), the
Fourier series representation of the given periodic function f{t) is completely
specified, either in the form (4.1) or in the alternative form (4.2). Let us now apply

1(t)
A

1 7. I

|
g 1L 4L t
F I3 ¢ 2

Fig. 4.2 Rectangular Waveform
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these results for determining the Fourier series representation for a rectangular
waveform shown in Fig. 4.2,

Example 4.1(a):— The waveform shown in Fig. 4.2 has an ‘on’ period = ‘off’
period = 772 and is called a rectangular pulse train with 50% duty cycle. For this
waveform, the Fourier coefficients a, and b, are determined as follows:

2 J-T/2 d
a, = - t) cos nwt dt

T /2 f() ( n
2 T/4

= - A cos not dt
T -T/4
2A . T/4 2A . nm

= — = — — = 2
an':smnu)t-‘_T/4 g sin , 0,1,2,... (4.6)

Equation (4.6) gives,
2A 2A 2A

alz?a%:O,03=—§704=0705=§,..-

Substituting n = 0 directly in eqn. (4.6) makes a, = 0/0. Using L’Hospital’s rule,
we get,

2A.—.cosﬂ
a(,=n——>0 = A.

Therefore, the constant or the d.c. value a,/2 = A/2. This average value A/2
could be determined from merely an inspection of the waveform of Fig. 4.2.

T/2
b, = J[ f (@) sin not dt
T -T/2
T/4
= 27: '[—7/4 Asinnwtdt = 0.

Thus, the Fourier series for the given waveform becomes,

A 24 2A 2A
=5+ ~ 3= cos = - .. 4.7
f® + n cos Wt 3 08 3wt + g cos 5 ax 4.7)

ro

We note from eqn. (4.7) that in this series only cosine terms arc present and all sine
terms are zero. Further, it contains only odd harmonics: all even harmonics are
zero.

Example 4.1(b):— Let us now shift the vertical axis of the waveform, as shown
in Fig. 4.3. With this change,
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2 T/2
a, = 7 _[ A cos not dt
0
2A ) 7/2
= [smnmt]ﬂ =Qforn=1223,...

For n = 0, application of L’Hospital’s rule gives a, = A.

2 (72 . 2A T/2 2A
b, = 7. A ot dt = —— | - Wt = — |1 - )
7 sin n an[ cos n ) 27”1,: cosnn]
Af(t)
_) A (
-t
-1 0 I 3T
3 2 2
Fig. 4.3
The Fourier series representation becomes,

[ = AE + % sin ot + —32% sin 3 ot + i-/:t sin Swf + ... (4.8)

Comparing egns. (4.7) and (4.8), we note that the representation in (4.8) con-
tains only sine terms while (4.7) contains only cosine terms. However, both (4.7)
and (4.8) contain only odd harmonics. Thus, we may conclude that horizontal
shifting of the vertical axis does not add any new frequencies: it merely alters the
magnitudes of sine and cosine terms.

Example 4.1(c):— We now shift the horizontal axis as shown in Fig. 4.4. This
shift will make the average or the d.c. value a, /2 = 0. The Fourier series for Fig.
4.4 will be the same as eqn. (4.8), except that the constant term will be zero. We
can thus conclude that shifting the horizontal axis only alters the average or the
constant term; it has no effect on other components of the Fourier series.

“f(t)

| Aod

T2 Tz T
-Al2

Fig. 4.4
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As shown by eqns. (4.7) and (4.8), many of the Fourier coefficients may be zero
in the Fourier series representation. In eqn. (4.7), b, = 0 for all n and a, = 0 for all
even values of n. Similarly, in eqn. (4.8), a, = 0 for all n and b, = 0 for all even
values of n. It would simplify matters if we could predict right at the beginning
which of the Fourier coefficients would be zero. This aspect will be studied in the
next section.

4.2 Symmetry Conditions

The waveform of Fig. 4.2 is symmetrical about the vertical axis, such that
f() = f(= 1 forall values of t. Functions having this type of symmetry are called
even functions. The Fourier series for such even functions should also contain only
even functions. Now, cosine is an even function while sine is not. Hence, we con-
clude that the Fourier series expansion of an even function will contain only cosine
terms. This is verified by example 4.1(a).

Functions which are anti-symmetrical about the vertical axis, such that
() = — f(— 1) for all ¢, are called odd functions. (The waveform shown in Fig. 4.4
is an odd function.) Since the sine function is an odd function while cosine is not,
it is clear that the Fourier series for an odd function will contain only sine terms.
This is verified by examnple 4.1(c).

We note that the Fourier series of example 4.1(b) (waveform of Fig. 4.3) also
contains only sine terms and therefore it must be odd. However, this fact is not
obvious from the waveform of Fig. 4.3. But, when the horizontal axis is shifted in
Fig. 4.4 to remove the average or the d.c. value, the odd symmetry of the function
1s clearly brought out. Therefore, the property of evenness or oddness of a function
should be explored only after removing the average value term by a suitable shift
of the horizontal axis.

We further note that an even function, like that of Fig. 4.2, can be made odd by
simply shifting the vertical axis by 7/4. The choice of location of the vertical axis
is arbitrary for periodic functions, which, in general, exist for ail 7, from
— oo (0 + oo. Therefore, the property of evenness or oddness of a function is not a
fundamental property of the function but depends on where we choose to locate
the 1 = U point.

The rectangular waveforms of Figs. 4.2, 4.3 and 4.4 bave a more fundamental
type of symmetry which is not affected by the shifts in horizontal and vertical axes.
This is exemplified by the fact that the Fourier series expansions for all of them
[egns. (4.7) and (4.8)] contain only those frequency components which are odd
multiples of @. In other words, the expansions contain only odd harmonics: all
even harmonic components have zero magnitude. To investigate this type of sym-
metry, let us start with Fig. 4.4, i.e. after the removal of the average value.
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We note that the waveform is anti-symmetrical about the horizontal axis in
every cycle, i.e., the positive and negative half cycles are equal in amplitude and
opposite in sign. More precisely,

f[t + g] = —f(1). (4.9)

Let us investigate the effect of this type of symmetry (also called half-wave sym-
metry) on the values of the Fourier coefficients.

The expression (4.4) for a, can be broken into two parts as follows:

2 J.T/2 d
n = t ot dat
a T 1., f(r) cosn
2 } 2 T/2
- = f £y cosnot dt + 2 [ f(t) cosnor dr (4.10)
T -T2 T ~s

Let the variable in the first integral in eqn. (4.10) be changed from ¢ to (¢t — 772).
This does not cause any change in the value of the integral. With this change. the
first integral in eqn. (4.10) becomes,

! 102
I_T/zf(t) cos not dt = _[ f[ ~g]cosnw( ——2’[}(1(, (4.11)

[}

] [ Tj
= cos | nWt - nw=
2

cos ( hwt —n m)

Now,

21~

COos nw [I -

Il

= COSnm: cosnT.

Substituting this, and the symmetry condition (4.9), ineqn. (4.11) we get,

) T/2
_r T{) cosnwr dt = f —f(® cosnwt cosnm dt
-n 8

T/2
= —COSnN _[ f(r) cos nwt dt. 4.12)
0

Substituting (4.12) in (4.10) we get,

2 T/2 e
a, = — .. COSHT _[ f(t) cosnwt dt+ = J J () cos nwt dt
T [ T 0
2 772
= ? (1 — cosnm) _[“ Fr) cos nor dr. (3 13)
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An entirely analogous derivation for b, gives,

2 T/2
by = % (1= cosnm) fu F(1) sin not dr. (4.14)
When n = even, cos nt = 1. Therefore, eqns. (4.13) and (4.14) give a,= b, =0
for even values of n. Thus, we conclude that a function possessing the symmetry
condition (4.9) will have only odd harmonics in its Fourier series expansion: coef-
ficients of all even harmonics will be zero.

If, instead of the symmetry condition (4.9), a function satisfies the complemen-
tary symmetry condition,

f[ri§]=f(t> @.15)

then the multiplier term in eqns. (4.13) and (4.14) becomes (1 + cos n ®). In that
case a, and b, are zero for all odd values of n. We then conclude that the Fourier
series expansion of a function satisfying the symmetry condition (4.15) will con-
tain only even harmonics: the coefficients of all odd harmonics will be zero. How-
ever, this is not a very significant result because eqn. (4.15) merely means that the
period of the function is half, i.e., 7/2 instead of 7. Naturally, all the frequency
components then will be double of those corresponding to period T and hence will
be cven.

In all problems relating to Fourier series expansion of a given non-sinusoidal
periodic waveform, the symmetries should first be noted (after removing the
average terin). Existence of symmetries considerably simplifies the evaluation of
Fourier coefficients. After solving a few problems, it would be clear that if one
symmetry exists the limit of integration in the expressions for a, and b, can be
reduced to half the period with twice the function magnitude. With two sym-
metries, the limit becomes one-fourth of the period with four times the function
magnitude.

If a given function has neither of the two symmetries, it can still be written as a
sum of two tunctions, possessing complementary symmetries (see problem 4.3).

4.3 Convergence of Fourier Series

The amplitude of harmonic components of the rectangular waveform of example
(4.1) was given by the expression (2A)/nm. Thus, the magnitude of a particular
harmonic is inversely proportional to its order n. We also note that for the rectan-
gular waveform the function is discontinuous, having two discontinuities in a
period. In order to correlate the rapidity with which the magnitudes of harmonic
components decrease as n — o and the smoothness property of a given function,
we now take one more example—a triangular waveform.



86  Linear Systems Analysis
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Fig.4.5 Triangular Waveform

Exam;'ale 4.2:— Let us determine the Fourier series expansion for the triangular
waveform shown in Fig. 4.5. We note that here the function is continuous at every
point, but its first dqri/\@iye/fs/cﬁscontinuous at two points in every cycle. Thus,
the triangular waveform is more ‘smooth’ than the rectangular waveform.

We first note the symmetries of the waveform. Since f(f) = —f(—1), itis an
odd function. Therefore, its Fourier series will have only sine terms. Further
flt £(T712)] = —f(2). Therefore, the series will contain only odd harmonics.
Also, because of the symmetry about the ¢ axis, we conclude that the d.c. value will
be zero. Hence, the form of the Fourier series will be,

f(® = bysinwt+bysin30t+. ..
The coefficients are given by,
774

72
b, = 3T [" ro sinneordr = % [ F@ sinnot ar
1]

~TI2

Intherange 0 < ¢ < T/4,

Therefore,

T14
b, =% [ 2 (sinnord

0 T
i T/ 4
164 | [ smnmt:[
= — — | — tcosnwt + — ——
" no nw |
:@ 5 sin be:c:ause(n)=M ,n=135
T (= 2 T
. [7
_ 44 .onm
T 2
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Thus,

4A
- (4.16)

f@ == [sin ot —

sin3m¢ sin5ot
2t

Equation 4.16 reveals that the harmonic coefficients for the triangular wave are
proportional to 1/n%. Thus, their magnitudes decay faster than the harmonic mag-
nitudes for the square wave, as n — oo. For a waveform where both the function
and its first derivative are continuous but the second derivative is discontinuous,
the harmonic magnitudes decay still faster, being proportional to |/r*. In general,
if the function and its (r — 1) derivatives are continuous in the range — T /2 to T/2,
but the rth derivative is discontinuous, then the Fourier coefficient for the nth har-
monic is proportional to 1/a” * . Thus, the ‘smoother’ the function is, the more
rapidly the higher harmonic magnitudes decay. In fact, if the function and all its
derivatives are continuous, its Fourier series converges most rapidly. Such a func-
tion will simply be a sinusoid and its Fourier series will contain just one term!

There is another type of convergence property which is of interest. The Fourier
series expansion of a function contains an infinite number of terms. The sum of
these terms, for any value of time, must equal the value of the function at that time,
i.c., the Fourier series must converge at every point of £(#). This is so for functions
which are continuous. For functions having discontinuities, the Fourier series con-
verges to the correct value of f(#) at every continuous point; at the points of dis-
continuity it converges to a value equal to that of the midpoint of the discontinuity.

The problem of representation of any arbitrary function by trigonometric series
had evoked considerable in:erest amongst mathematicians at the beginning of the
nineteenth century. Other mathematicians of the time, like Euler, believed that
such a representation was possible only for continuous functions. Fourier
demonstrated in 1807 that it was possible for discontinuous functions as well. A
problem then arose as to whether all functions could be represented by the Fourier
series or whether there were some conditions to be satisfied by a function for
having such a representation. This problem was solved by Dirichlet in 1837, who
gave a set of sufficient conditions. These are called Dirichlet conditions and will
be described in Section 4.9.

To get a feel of the idea of representing an arbitrary function by a trigonometric
series, let us consider the representation of the rectangular waveform by eqn. (4.7).
If we take only the first two terms of the series, i.e., the d.c. component and the
fundamental component to represent the function, we get the result shown in Fig.
4.6(a). If we include the third harmonic also, we get the waveform shown in Fig.
4.6(b). Figure 4.6(c) show the effect of including terms up to the fifth harmonic.
Thus, we see that as more and more terms are added to the series, its sum ap-
proaches closer and closer to the given function. In the limit, if we include an
infinite number of terms, the sum of the Fourier series should exactly equal the
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f(t)
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Fig. 4.6

given function at all instants of time. This is true for all instants of time except for
those points where the function is discontinuous. In the case of a rectangular func-
tion, the sum of the Fourier series converges to A/2, the midpoint of discontinuity,
or the average value of the function, as shown in Fig. 4.6(d).

Figure 4.6(d) points to another interesting fact regarding rectangular
waveforms. The figure shows an overshoot on both the sides of the discontinuity.
One would think that the magnitude of this overshoot would tend to zero as the
number of terms in the Fourier series is increased to infinity. This is not so. In the
limit, the overshoot converges to a constant amplitude of 18% of the average value
in both the directions. This is called the Gibb’s phenomena. It reveals that at a
point of discontinuity, the given function cannot be approximated to a tolerance of
better than + 18%, even if very large number of terms are used in the Fourier series
representation. Of course, a redeeming feature is that the time occupied by this
overshoot does tend to zero and therefore in practice the overshoot may not have
much effect. In situations where this error is not acceptahle, other types of
trigonometric series may be used to represent the function.

In approximating one function by another function, like in approximating the
rectangular function by a partial sum of Fourier components in Fig. 4.6. a question
arises as to what should be the criterion for judging the ‘closeness’ between the
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two functions? There are many possibilities: we may choose the maximum dif-

ference between the two functions or the average value of the difference over a

period, or some similar function as this criterion. One commonly used criterion is

the mean square error criterion. Suppose f(r) is a given function, and f” () an

approximating function. Then f(f) ~f’ (£) = e(r) is the difference or the error
+ 772

function. Its mean square value will be -IT:J. i €’ (£) dt. With this criterion for

closeness, the approximating function which minimises this mean square value
will be considered the closest to the given function. Now, the Fourier series ap-
proximation is only one of the several methods of approximating periodic func-
tions. It has the important property of minimising the mean error square function.
(1t should be noted that the series given by eqn. (4.1) is a general trigonometric
series: it becomes a Fourier series only when its coefficients a, and b, are calcu-
lated by eqns. (4.4) and (4.5).]

4.4 Exponential Form of Fourier Series

The harmonic components in the Fourier series can also be written in their ex-
ponential form using the relations,

sin not = 2—11 (exp (Jnw t) —exp (— jnw 1))
i
cos ney = 5 (exp (jnwy t) + exp (—jnwt))
In terms of these exponential expressions, the trigonometric series (4.1) becomes,

a,+ jb,

f() = % + [ n ;jb" exp (jnw1) + exp (- jno z)] (4.17)
n=1|

The coetticients of the exponential terms are complex conjugates. Writing them as,

al'l + j’bll
2

_ a,—jb,

o, = > and o, =

and for the sake of symmetry, oy = ay/2, eqn. (4.17) may be written compactly as,

f = 2 o exp(jnoi (4.18)

The coefficient o, in eqn. (4.18) is given by,

172
[ f@expjnotydin = oo =1,0,1.2. 400 (4.19)

|
o, = -
" T -m
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Equation (4.18), together with eqn. (4.19), gives the exponential or the complex
form of the Fourier series. In comparison, the trigonometric form, i.e., eqn. (4.1),
is called the real form of the Fourier series.

The Fourier coefficients o, are complex numbers. They are related to the coef-
ficients a, and b, of eqn. (4.1), or ¢, of eqn. (4.2), by the relation,
o _ Naj+b;
2 2
One of the advantages of this exponential form is that there is only one Fourier
coefticient @, to determine, as against two coefficients a, and b, in the real form.
Further, this single complex coefficient contains both the magnitude and the phase
angle information. For mathematical manipulations also the compact exponential
form of egn. (4.18) is often more useful than the real form of eqn. (4.1)

Example 4.3:—Find the complex Fourier coefficients for the half-wave rectified
signal shown in Fig. 4.7,

t(t)

-2 -1 .0 1 2 3
Fig. 4.7 Half-Wave Rectified Signal

Function f(r) has a period T = 2 and frequency @ = 2rn/ 7T = m. The mathe-
matical description of the function over one period 1s given by,

. . . A ) .
Sy = Asinwt = Asinmt = 2_1 (exp (jut) — exp (—jm)) for 0<1<1

= 0 for—1<¢<0
Using egn. (4.19) to determine o, we get,

o, = Asinmt exp (—jnmt) dt

o | —

4]

Y J:) lexp (—jm(n—1)1)~exp(~jn(n+ 1)} di

Y jmn—1) i+ 1)

_A {_exp(—jn(n—l)t)+exp(—-jn(n+ l)t)l(
4j ,

A l—exp(-jn(n—l))_l—exg(ﬁ—jn(n+lﬁ
Y mn=1 Jr(n+ 1)
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. i[z—(ml) exp(—jn(n—l))+(n—l)exp(—j1r(n+l))}

T 4n =1
A forn = 0
n
_ ¥ Lf— forn = 1
A .
— forn = even
(I —n%)
0 forn = odd (n # 1).

Thus, the exponential form of the Fourier series becomes,

on A A , A . Aexp (j2nd
f = x4 ©XP (m) + 4 exp (- /jxt) =
_Aexp (—j2mr
™

4.5 Power and r.m.s. Values

In an electrical circuit if v (r) and i (r) are the voltage and current, then the
average power consumed in the circuit is given by the relation,

1

W=T

r
j” v ()i (r)dt (4.20)
When the voltage and current are sinusoidal and of the same frequency, with a
phase angle ¢ between them, then elementary circuit theory derivation gives,
W = VIcos 0, where V and [ are the r.m.s. values of the voltage and the current.
The ratio of the real power W to the apparent power V/ is called the ‘power factor’
of the circuit and is equal to cos ¢.

The question that arises next is: how to calculate the power and power factor in
acireuit if either voltage or current or both are non-sinusoidal, periodic functions?
In order to slightly generalise the problem, let us consider any two arbitrary peri-
odic functions f; (¢) and f, (¢) and let us determine their average product:

W= —lT“ J‘“ LH@Of () dr. 4.21)

Expand both the functions into their Fourier series as,

+oo 400

=% o, and (1) = T PBnem

Then, eqn. (4.21) becomes,

T + 00

h) o, B'" ei(n+m)wr dt .

1
W= =
T G pm=~o
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Since the Fourier series for both f; and £, are convergent, their product will also be
convergent. Hence. the integration of the product series can be carried out term by
term, i.e.,

1 +oo

7
2 Z o B j e/(n+m)(nldl
n Hm
T NIRRT 0

o 2
| + ()/ (m+mr _ |
- Y‘ (anm .

T om: e jn+nm o

=
il

]

Since i and m are integers, the term ¢ * ™ 2% will have a value | for all # and m.
Hence, the term inside the bracket will be zero for all n and m, except when
n = —ni, when it takes the form (/0. Using 1" Hospital’s rule, this term becomes
equal to 21/ w for n = — m. Therefore,

. 27
W= — -
T . :Z_w o 0]
Replacing (2n) / @ by T we get,
W = Z Ly, B—n = O Bi) + Z ((xu -n + oy, Bn) - (422)

n==es n=
Both o, and B, are complex numbers. Theretore, they will have a magnitude and
a phase angle. Let,
o, =lo,l exp(y8,) and B, = 1B, lexp(j0.).
Then
o, B .+o B, =lo, I 1B, [exp ” 6, — 9',,)} + exp{—/j(6,-0)} 1.
Therefore,

W=owa+ 2 X lo,l B, lcos(0,-90,). (4.23)
n=1
For electrical circuits, f) (£) = v (#) and f5 () = i (1). Then o =V, and By, = 1,
are the d.c. values of voltage and current. Forn # 0, o, = (v’f Vay/2and B, =
2 1)/ 2, where V,, is the r.m.s. value of the nth harmonic voltage and /, the r.m.s
value of the ath harmonic current. The nth harmonic component of voltage 15
v, (1) = Vi, €Os (n0Z+ 6,) . In terms of @, the nth harmonic voltage is.

It

a,exp(jrnon+o., exp (—jnot) =lo,l exp j(nwr+8,)
+lo, ! exp | —j(nor+8,)]

2lo, cos(nwr+0,)

Hence. Vi max = 21 o, I
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The phase angle between the voltage and the current is ¢, = 0, —6’,. There-
fore, the total power is given by,
W = ‘/()1()+V|[|COS¢|+V’2/2COS¢2+... (424)

Equation (4.24) gives the important result that the total power in the circuit is the
sum of the d.c. power and the power due to each harmonic component. The power
factor of each harmonic component wilt be different; being cos ¢, for the nth har-
monic.

Let us now consider the case f; (¢) = fa (£) = f(¢). The average value of the
product term can still be considered as a ‘power’ term, i.e.,

’
1
W= _ (1 dt. 425
T J.n o ( )
From eqn. (4.23) we get,

B+2 % ol (4.26)

n=1

w

= Wy+ W, +Wo+. ..

Thus, W, is the ‘power’ of the nth harmonic component. A plot of W, versus
nw is called the power spectrum of a signal and is quite useful in the area of signal
analysis.

If the function f (¢) in eqn. (4.25) is a voltage or a current, this equation defines
the mean square value of the function. Designating the root mean square value (the
r.m.s. value) of the voltage by V, and f (f) = v (1), from eqns. (4.25) and (4.26) we
get.,

[ T
v3=7j

] = n=|

- - VI’I“-’!K I
VOdt=od+2 3 lo,P=o5+2 Z [—2—]
n=1

il

. e (V2w Y
of+2 X [T = Vi+(VI+Vi+..)
n=1
where V,is the d.c. component, V, the r.m.s. value of the fundamental, V; the r.m.s.

value of the second harmonic, and so on.

4.6 Analysis with Fourier Series

In this section we consider some examples to show how Fourier series is used in
the analysis of linear systems, particularly in the analysis of electrical circuits.

Example 4.4:—Figure 4.8(a) shows a waveform which is commonly encountered
in thyristor a.c. voltage controliers. In every half cycle the ‘firing angle’ of the
thyristor is delayed by an amount o Thus, the conduction takes place for the in-
terval (r — o). In the given waveform o= n /2. Treating this waveform as the
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Y-
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/ v(t)
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(a) (b)
Fig. 4.8

input to an impedence Z, calculate the resulting output i, the current through the
load.

Since the input is a non-sinusoidal periodic voltage, let us first expand it into its
Fourier series. The waveform is symmetrical about the horizontal axis; hence, the
average or the d.c. value will be zero. Further f [t + (T/ 2)] = —f (). Therefore, its
Fourier series will contain only odd harmonics. Let us now determine the coeffi-
cients a, and b,. Before doing that, let us change the independent variable from ¢
to wt. The period then becomes T'= 2x and the integrals for «, and b, become,

ay = Jﬁn f(w?) cos nw t d(w 1)

ai-

b, =

| Flonsinnordar . (4.27)
For this problem,

flw) = Asingt for — — <ot £ 0, and + % L wtEn

S

and zero elsewhere in one period. Therefore,

I b
d; = _r
B

~n/2

Asin ot cos not d (W) + —:t _rl A sin ot cos not d(wr) . (4.28)
"2

For n = | the integral term becomes,

f A sin wf cos not d(wr) = A J sin o cos ot d(wr)

=% | sin 20t d(or)
= — % cos 20t .

Putting the limits of integration as in eqn. (4.28) we get,
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(1

I

- % [ cos 2(nt]

ay

- f;{- [ cos 2mwt ]"
/2

- n/2

—f—n[(|+|)+(|+1)] = —%

Forn # 1, the integral term becomes

jA sinwzcosn ! dlwt)

Alcos(n=Nor cos(n+l)en |
2 n—1 n+1

Putting the limits of integration as in eqn. (4.28) we get,

)

o = A | |cos(n—1)wr 4 cos (n—1)ox
el 2T n—-1 n—1
-n2 xf2

[t} 4
{cos(n+l)mt} {cos(n+l)mt} }
| n+l . (n+1) o
Evaluating the above expression we get,

A A A
y = T, ds = — T-Ldp =+ T
b4 3n in

and so on.

Now. for the coetficients b, we have,

b,

-1
T " -w2

95

%J [sin(n+l)u)t—sin (n- I)(ot]d(wt)

) 4
. . 1 . .
'r Asinw! smnu)!d((ot)+;_[ Asinwt sinnwt d(wt).
w2

(4.29)

For n = [, the integral term in eq. (4.29) becomes,

[ Asinorsinnor don = A sin*or don

% J(l — cos2w)d(wi)

A of — sin 2ot
=35 |

Putting the limits as in eqn. (4.29) we get,

Q0 n

b = A mt_sin2u)t + mt_sin20)t _ A
T 2 2 T2

-2 /2
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Forn # |, the integral term in eqn. (4.29) becomes,

jAsinwtsinna)t dwt) = % j [ cos (n— 1) wt—cos (n+ I)u)t] d (wr)

Al sin(n—l)er sin(n+1)wr
2 n—1 n+ | '
Putting in the limits, as in eqn. (4.29) we get,

0 n

b o= A {—sinw—l)w} +{w}
2n n—1 n—1

- n/2 n2

) n

_|sin(r+1)or _]sin(n+1)ox
n+ (n+1)

-2

(SRt

From the above expression we have,

0 b4 i}

b = A | [ sin2 ot + sin2@r ) (sind
YToom 2 2 4
-2 w2 ~n/2

n

sin 4 wt
(o] -0
w2

In fact, tor all higher odd values of #, all the terms will be identically zero. Hence,

we get an interesting situation where only the fundamental frequency sine com-
ponent is present.

Combining all the terms together we have,

(N = A cos f + —Asinmt+Ac s 3 ot A cosSwt
\ - 2 7 2 r % 3n ;
A A A
oo - - ¢ + — cos | — . 3
* 3n cos 7 wt sn cos Y ot P cos 11 wr (4.30)

Combining the first two terms we get,
d*oswt+A-%in(ot~ éz+dz cos (Dt—E~¢

- 5 oo 5 ! = N\ 5
where
-1 A/J —_ ‘..m‘l _2_

Al2 ‘ T

To obtain numerical values, let us assume that v (£) is 230 V, 50 Hz single phase

supply voltage. Then A = 230 V2 and eqn. (4.30) becomes,

¢ = tan
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vty = 192 cos (wr—122.5")
2302 cosSwt  cos 7wt
+ cos3 ot — + - ...
T 3 3
= 192 cos (r — 122.5%)
+ l()4[cos30)t - @—S{y + &SZ—(‘)—I - ... )

Let the Joad impedance Z be a series RLC circuit with R = 10 ohm, L =0.] H
and C = (1077 ) uF. The value of impedance will be different for ditferent fre-
quency components. For the fundamental frequency @ = 2 nf = [00% rad/sec,

Z (W)

. j . |
R A lon — -
+jol -0 'U”[ "7 T0x 1007 x B x 10"]

10 + j(10% — 107), (taking = = 10)
= 10 ohm.

At the third harmonic frequency we have,

ZBw) = IO+j[3()n - ”qﬂ]

= 10+ /64 = 649 Z81.1°
ZBw = lO+j[50n—%}

= [0+ j151 = 151.1 £3839°
Z (Tw) = l()+j(70n—l—(;l§]

]

10 + 216 = 216 Z84.1°.

Since the system is linear, the principle of superposition applies. Therefore, the
total current will be the sum of harmonic currents. We can calculate the harmonic
currents individually by dividing the harmonic voltage by impedance at that fre-
quency. Thus,

1922 — 122.5°

imnd:uncnlul = ‘IO— = 192 £ - 1225°
or
lpgamenat = 19.2 (cos of — 122.5%)
a4
[t bmone = _w‘l Z - 81.1°

649
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= 1oL - 8lI1
104
iy ih harmonie — . - 33 — . °
ot 5x 1511 28397 - 0334 839
. 104 .
Leventh harmonic — 3 X 2'6 é 84|u - 016 4 e 84] .
Thus, the expression for current 1s
i) = 192cos(wr — 122.5") + 1.6 cos Bor—-81.1°)

—033cos (5w —83.97) + 0.16 cos (Twr — 84.1°)+. ..

[t may be noted that the current harmonics decay much more rapidly than voltage
harmonics because of the increased impedance at higher harmonic frequencies.

Example 4.5:— A 2 ohm resistive load is supplied from a full-wave rectifier
connected to 230 V, 50 Hz single phase supply. Determine the average and the
r.m.s. values of load current. Hence determine the proportion of d.c. power and a.c.
power to the total power in the load. Investigate the effect of adding an inductance
in series with the load.

Let us first determine the Fourier coefficients for the given waveform. For Fig.
49 we note that v (1) = v(=8and v [ t+(T/2)] = v (). With these two sym-
metry conditions, the Fourier series will have only even, cosine terms. Also, the
integration need be carried out only for the quarter period, i.e., from 0 to 7t/2, and
the integral multiplied by 4. Thus, we have,

4A w3
a == [ sinor cosnor diwr), n =024, ...
i

4A {cos (n—=1)or cos(n+ 1)t :|m
1

27 n—1 n+
_ 2A | cos (n—1)(r/2) _cos(n+t 1)(n/2) _ 1
T om n— | n+ n—1 n+l |-
{‘v(t)

A=|2302Volts

=t

m 0 m 27

Fig. 4.9 Full Wave Rectifier Qutput  ~ .
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For all even values of n, the cosine terms inside the brackets will have a value 0.
Therefore,

Lo 2A[ 4] 4A _ 4x230V2 _ - 414
" owm e+l on-1 | m@E-1 m@E-1)  @@-1)
The d.c. value a/2 = + 207, a; = — 138, a4 = - 27.5, a, = — 11.8 . Thus,

v(t) = 207—-138cos2wt — 27.5cosd4 ot — 11.8cosbmr—. ..

For the purely resistive load of 2 ohm, the load current is given by,

i(y= 1035-69cos2mwr — 13.7cos4 ot — 59cos 6 wt — 4.31)

The average or the d.c. value of the load current is simply the first term, i.e.,
Lie. = 1035 A,

The r.m.s. value of the load current is given by,

homs, = [103.52+2l(692+ 13.77+59%+ .. )" = [15A.

L. = [% 697+ 13.72+ 592+ .. . )]''? = 50 A.

d.c.power = RxFE. =2x103.5° = 21.5kW.
ac.power = RxFP, = 2x50° = 5kW.

Total power = 21.5+5 = 26.5kW = 2x 115~

Ratio of d.c. power to total power = ;—é—g x 100 = 81.1 %.
L 5
Ratio of a.c. power 1o total power = 365 x 100 = 18.9 %.

Let us now investigate the effect of introducing an inductance L =3.18 mH in
series with the load. The load impedance for different harmonic components be-
comes,

Z, = NR+QnfLy Zcos™ R 283245

Z
Zy =447 £634°, 2, = 632 £73.5".
Thus,
i(f) = 103.5-48.8 cos (2wt — 45" ) — 6.16 cos (4wt — 63.4°)

~ 1.86 cos (60t —73.5")—. .. (4.32)

Comparison of eqns. (4.31) and (4.32) shows that the effect of the series induc-
tance is to reduce the magnitude of harmonics, specially those of higher har-
monics. The d.c. value remains the same.
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L. = [103.5% + % (4882 +6.16°+ 1867+ ... 1" = 108 A.

L.

[ %(48.82+6.162+ 1.862+...) )" = V1211 = 348A.

dc.power = RxFB, = 2x103.5" = 21.5kW.

ac.power = Rx[P, = 2x34.8" = 242KkW.

Total power = 23.92 kW.
L, 21.5

Ratio of d.c. power to total power = 239 x 100 = 90 %.
L, 242

Ratio of a.c. power to total power = 539 % 100 = 10 %.

Apparent power or volt-amperes = 230 x 108 = 24.8 kVA
real power (total power)
apparent power

23.92
248

Il

Power tactor of the load

= 0.96.

If the load contains an iron core, power will be dissipated as iron losses, in
addition to the power consumed by the resistance of the load. These iron losses are
dependent upon frequency. Hence higher harmonics, though small in magnitude,
may still cause appreciable iron loss. The use of series inductance, called the *filter
choke’, is helpful in reducing harmonics and hence these losses. However. this
advantage must be compared with the cost of such chokes which must be capable
of carrying full load current.

4.7 Graphical Method

The techniques developed so far can expand a given periodic waveform into its
Fourier series, provided an analytical expression relating the function with time is
known. The waveforms arising out of experimental work may have any odd shape
and it may not be possible to express them analytically. Graphical methods may
then have to be used to determine Fourier coefficients. In order to develop such a
graphical procedure, let us have a second look at the determination of the Fourier
coefficients for the rectangular waveform shown in Fig. 4.10. This is the same
waveform as shown in Fig. 4 4.

The expression for coefficients b, is given by,

b, = _[ flwdsinnwtd(wt) = % _[ % sinnwt d (w1).
-1 4]

1
T
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Fig. 4.10

Thus, the Fourier coefficient b, is equal to the integral of the instantaneous product
of the signal waveform and a unit sine wave of harmonic frequency. For the fun-
damental frequency the integral over O to ©t of the sine wave alone is given by,

J:sin ot d(®f) = I:—cos wt J: =2

For the second harmonic we have,

n

n2
[ sin2wtd@n+ [ sin20t dor)
1} 2

i

[ sin20r d(or)
{1

= | [— cosflu)t:rl2 + % [—~ cos2wt]

2 t n/2

L3

= % [+2-2] = 0.

For the third harmonic, we have

/3

/3
r sin 3wt d(wt) + .[Z sin 3wt d{of)
1) w3

1l

[ sin 30t d(wry
{

+ r sin 3wt d(wt)
2n/3

2n/3

{3 n
- 1 |: (cos 3(1)t) + (cos 3u)t) + (cos 30)t)Z } }
3 ) 3 /3

- % (-2+2-2) = 2.

It

Continuing in this way, the results up to fifth harmonic are shown in Fig. 4.11.

Since the magnitude of the signal waveform is constant A/2 over the period 772,
the coefficients b, are given by,
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m ) Fundamental, net integral over
5 -0t 0—n=2
\/277

Second hanmonic, net integral
over)— =0

Third harmonic. net integral
over ) — n=2/3.

Fourth harmonic, net integral
over ) — m =10,

Fifth harmonic. net integral
over 0 — m=2/5

1)|—"—‘A“'2=“2A
e e

[)zzé():ﬂ
T

b _A 2 _2A

T w3 3n

m:‘i-o:o
Tt

b A2 24

ST op 57 5w

These values are the same as those derived in eqn. (4.8).

Now consider a stepped waveform shown in Fig. 4.12. The values of the in-
tegrals of the unit sine wvave over partial periods (0—-m/3), (n/3— 27/3)and
(213 - m), for the fundamental and other harmonics are shown in Fig. 4.12. Using
these values, the integral of the product f (7) sin not over 0 — 7 will be as follows :

A 1A A i

I 34
Fundamental: i) + 5 1+ 14
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Therefore,

Therefore,

Third harmonic:

Therefore,
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Fig. 4.12
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Theretore,
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A 2 A 3 A L A 2 A 1
Fifth harmonic: & . 2 - 2. 3. A L A4 2 A 1
i harmome: 4 s T 10 T2 102 572 0
_A 3 A 2_3
4 10 4 5 20
. 2 34 34
Therefore, bs = 20 = 1om

and so on.

It is suggested that the reader should verify these resulis by calculating the
values of these Fourier coefficients analytically, according to eqn. (4.5).

If the waveform has some arbitrary shape, it should first be approximated by a
stepped waveform. This process, in effect, means that the interval (0 —2r) is
divided into subintervals and in each subinterval, we approximate f(r) by a con-
stant equal to the value of f (£) at the midpoint of the subinterval. The unit sine and
cosine functions are also divided into the same number of subintervals. The values
of their integrals over each subinterval are then determined. The integral of the
product over the whole period 2% is the sum of integral products over the subinter-
vals. This procedure thus gives a graphical or numerical method of determining the
Fourier coefficients. A computer programme could be written to implement this
procedure.

4.8 Frequency Spectrum

In sections 4.1 and 4.4, we developed two alternative but equivalent forms of
Fourier series. The real form is given by eqn. (4.2) as,

f@ =

. o
-f + X ¢,cos (not + ¢,)
n=1

and the complex form by egn. (4.18) as,

f{) = X o,exp(jnae).

These representations show that the Fourier components have a magnitude
¢, = 2la, !} and a phase angle §,. A plot of ¢, for different values of harmonic
frequencies no is called the amplitude spectrum of the function f (¢). A plot of the
phase angle ¢, versus no is called the phase spectrum. These two plots together
are called the Fourier spectrum or the frequency spectrum. In many problems, the
phase angle information is not so important, and only the amplitude spectrum is of
inierest.

;

Equation (4.2) or eqn. (4.18) gives the Fourier serics for periodic functions,
where the harmonic frequencies are integral multiples of the fundamental frequen-
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Fig.4.13 A Line Spectrum

cy. Therefore, the independent variable nm in the spectrum plot will be defined
only for discrete values of n =0, 1, 2, 3 ... That is, nw will be a discrete variable.
The amplitude spectrum will look like that given in Fig. 4.13 and will consist of a
set of lines spaced at intervals of ®. Such a spectrum is called a line spectrum.

In the exponential form of egn. (4.18), o, is a complex number. We can also
consider o, as a function of discrete variable no and express it as o (nw). This
function is defined by eqn. (4.19). Rewriting egns. (4.18) and (4.19) together, we
get the pair,

F) = X oy exp(jnot)

=00

1" :
o (nw) = T I—rxz f () exp (—jnwt) dt

Here,n=~eo, .. ,— 1,0, 1,2, ..., . Either of the two expressions in the above
pair is a complete description of the given function. In eqn. (4.18) the independent
variable is time ¢ and, hence, f (¢) is the signal description in the time domain. In
eqn. (4.19), the independent variable is the discrete variable nw and, hence,
o (nw) is the signal description in the frequency domain. The frequency spectrum
plot contains all the information which f (¢) contains. In situations where the rela-
tive magnitude of frequency components is more important than the distribution
of the signal magnitude as a function of time, e.g., in voice signals, frequency-
modulated communication signals, EEG records, etc., the frequency domain
description is more usetul than the time domain description.

Example 4.6;:—Determine and plot the Fourier spectrum for the square waveform
shown in Fig. 4.4.

From eqn. (4.19) we get,

— - l J” A ~jnwr ” A; —jnwt
a,,—(x(n(o)—T[ _m[ 2]8 dt+J-“ 5 € dt

For n = 0 we have,
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_t]_A T AT _
a"“T[ 2(()+2]+2[2+0H—0.

Forn=1,23, . replacing T by (2m)/w we get,

(O] A [ Y ) /0 ‘
oanw) = - — — e MO dr 4 e~y
( ) 21‘{ 2 L -n/m 1
a LA ¢)
In 2 - jnw ~ jne
L ~R/W O
_A (l-cosnm) (4.33)
2 jnxm

For all even values of n, cos nt = | and, hence, o (nw) =0 for n = even. For all
odd values of n, cos nt =~ 1 and, hence, & (n®) = A/(jnr) for n = odd.

The amplitude and the phase angle are given by,
2A FLT
21, = — and ¢, = — — for n = odd.
nm 2
Figure 4.14 shows the amplitude spectrum. The envelope of this line spectrum

is simply a rectangular hyperbola, with an equation, y = 1/x. This figure places
directly in evidence the convergence property discussed in Section 4.3.

2A

2A ~

7Y} I SR R
s T‘\\\\
] =&

0 w 3w Sw

Lt
nw

Fig. 4.14 Amplitude Spectrum of the Square Wave

Example 4.7:— Let us now determine the Fourier spectrum for the rectangular
waveform with amplitude A, repetition period 7, and a variable pulse period Tp, as
shown in Fig. 4.15. It is also called the ‘gate’ function. This type of waveform is
encountered in many signal-processing and power-processing applications. For
example, in a battery-driven vehicle for controlling the speed of a d.c. motor, the
battery voltage is “chopped’ into this rectangular waveform, using solid state chop-
pers. The average value of voltage and current (and hence power) supplied to the
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motor can be varied by either varying 7, with fixed T, or varying T with fixed T,,.
The tormer is called the pulse width modulation and the latter, pulse frequency
modulation. 1t is apparent that this form of power control will produce harmonic
voltages and currents in the motor which will contribute to the heating of the motor
but will not contribute to its torque output. It is, therefore, necessary to know the
magnitudes of these harmonics, i.e., the frequency spectrum, so that either arran-
gement may be made to reduce the harmonics or alternatively the motor specially
designed to work satisfactorily even in the presence of these harmonics.

at(t)

L Tp

\j

R 773 -T2

Fig. 4.15 A Rectangular Pulse Train with Variable Pulse-Period

From Fig. 4.15 we get,

1 T2 v
o, = = Ae ' dt.
T I,m ‘
Forn =0,
1 72 T,
=—| At =t
o =7 [A] b T

Forn=1,2,3,.., wehave,

A ~jnwr 72

4

=T [ 'rm}
jna |,

= A |:e)nm7‘,,/2 _ e—/nmr,,/z]
jnoT

A T,
= i sin (nﬂ: T]

Let us rewrite the final expression as,

o, = 2L ——— (4.34)
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The ratio T,/T is called duty ratio of the waveform. A duty ratio of 0.5 gives a
square waveform. Let us denote it by the symbol 8, i.e., T,/T = 8. Then eqn. (4.34)
becomes,

sin ndn
o, = A5, (4.35)

Equation (4.35) shows that the variation of o, with n is given by a function of the
form (sin m)/m, m = ndn. Such a function is quite important in signal analysis and
is therefore given a special symbol, ‘Sinc m’. Thus, Sinc m = (sin m)/m. It is
illustrated in Fig. 4.16 and has the property that Sinc m = | for m = 0; for other
integral values of #d, its value is zero.

bSincm

N N
\_"

Fig. 4.16 Sinc Function

it oscillates with decreasing peak amplitudes as m increases; however, it is not a
‘periodic’ function. It is available as a tabulated mathematical function.

In terms of the Sinc function, eqn. (4.35) becomes o, = A & Sinc ndn. The task
of plotting the amplitude spectrum becomes considerably simplified by the use of
Sinc function.

Let 7, = 1/10and - = 1/2. Then & = 1/5 ard o, = A/5 Sin¢ (nm)/5. The fun-
damental frequency of the signal is ® = (21)/T = 4%. Therefore, the lines in the line
specirum will be spaced 4n apart. The actual spectrum plot is shown in Fig. 4.17.

4 1%nl

P

u:|>

I

0477 1271 0T -7 nw

_ ey o

Fig. 4.17 Speetrum of a Rectangular Waveform
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It shows that the d.c. value, corresponding to n = 0, has the highest amplitude. We
also note that the values of the 5th, 10th and other 5th multiple frequencies have
zero magnitude. This is a general resul, i.e., all harmonics, whose frequencies are
1/8 or its integral multiples, will have zero magnitude. This fact is made use of in
suppressing selected harmonics, particularly 3rd, 5th etc., in chopper power con-
verters.

Now suppose that the repetition period T is increased from % to 1, keeping T,

fixed. Then &= 1/10: The fundamental frequency of the signal now reduces to
o =27. Thus, the lines. in the spectrum will be spaced only 2m apart. In other
words, the spectrum becomes ‘dense’. The maximum magnitude also reduces to
A/10. If T is further increased, the spectrum will become denser still. In the limit
as T — oo, the spacing between the lines tends to zero and the line spectrum be-
comes a continuous spectrum. The variable o, = o (n®) changes from a discrete
variable to a continuous variable as @ — 0. In that case, the summation sign in
eqn. (4.18) changes to an integration sign. Thus, the Fourier series becomes a
Fourier integral. The pair of eqns. (4.18) and (4.19) then define a transform pair
called the Fourier transform.

What is the physical significance of T — co 7 It means that the repetition rate of
the function is infinite. In other words, the function does not repeat itself, i.e., it is
a non-periodic function. Such non-periodic functions in the time domain are rep-
resented by Fourier transform in the frequency domain. The study of Fourier trans:
forms will be the subject matter of the next chapter.

4.9 Concluding Comments

Dirichlet conditions: In the beginning of section 4.1, it was implicitly stated that
»- every periodic function may not necessarily have a Fourier series representation.
In order to be representable by Fourier series, the function must be ‘well behaved’.
This requirement of good behaviour means that the periodic function f(f) must
satisfy a set of conditions, called the Dirichler conditions, given as follows:

(H _[

(2)  f() can have at the most only a finite number of discontinuities in one
period.

T2

Lf(6) | di < oo,
Y171

(3) f(1)can have at the most only a finite number of maxima and minima in
one period.

These conditions are important from the point of view of mathematics. However,
all physically realisable signals always satisfy these conditions and hence they do
not impose any restrictions in the Fourier series analysis of physical systems.
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Orthogonal functions: The determination of the Fourier coefticients a, in eqn.
{4.1) is possible by eqn. (4.4) only because the cosine function possesses the
property,

r cos nwt cos mwt d(wt) = 0, forall m # n.

~R

Similarly b, can be determined by egn. (4.5) only because,

x
_[ sin nt sin mot d(wr) = 0, forall m = n.
-

Functions possessing this property are called a set of orthogonal functions.
Similarly, the exponential form of the Fourier series, eqn. (4.18), is possible be-
cause the set of functions ¢, n =0, 1,£2, ... constitute an orthogonal set. An
arbitrary function can be represented not only in terms of functions €™, but also
in terms of any set of orthogonal functions. Some of the other useful orthogonal
sets are as follows:

. l (1” ,

Legendre polynomials: P,(t) = —— - (-1

gendre poly O =g =D
Laguerre polynomials: L) =¢ ar (e’ ).

GLOSSARY

Harmonics:  The frequency components with integral multiples of the fundamental frequency are
called harmonics. Hf the fundamental frequency is w, the component with frequency 2o in its
Fourier serics representation is called the second harmonic, the component with frequency 3w,
the third harmonic, and so on. ‘

Even Function. W) = f(—1), itis called an even function. An even function is symmetrical about
the vertical axis and its Fouricr scries expansion contains only cosine terms.

Odd Funetion: (1) = ~ (-0, itis calledan odd funcrion, It is anti-symmetrical about the vertical
axis and its Fourier series expansion contains only sine terms.

Fourter Spectrum or Frequency Spectrum: A plot of the amplitude of harmonic components versus
frequency s called the amplitude spectrum and a plot of the phase angle against frequency, the
phase spectrum. The two together are called the Fourier or the frequency spectrum.

Line Spectrum: When the frequency is a discrete variable, as in the case of periodic functions, the
spectrum consists of a set of equally spaced lines. Such a spectrum is called a line spectrum.

Tune Domain and Frequency Domain: When a function f{t) is described as a function of time as the
independent variable, it is called a description in the time domain. When the same function is
described as a function of frequency (discrete variable no for periodic signals and continuous
variable w for non-pedodic signal), it is called a description in the frequency domain.

Dury Rarnio: For a periodic function, which has a non-zero value for a part of the pertod Ton and a zero
value for the remaining part Tors, the ratio of the on-period to the total period T = Ton + Totr is
called the duty ratio 8. Thatis, 8 = To/T.
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PROBLEMS

4.1.  Sketch the waveform of a periodic function whose Fourier series has:
(1)  Only odd harmonics but both sine and cosine terms are present.
(1) Only even harmonics but both sine and cosine terms are present.
(i1)  Only sine terms but all harmonics are present.
(iv)  Only cosine terms but all harmonics are present.

4.2.  Find the Fourier series for the waveform shown in Fig. 4.18, both in the real form and in the
complex form.

t1)

.y

~1 0 1 2
Fig.4.18

4.3.  Represent the waveform shown in Fig. 4.19 as a sum of an even function and an odd func-
tion. Determine its Fourier series using the even and the odd components.

t(t)
/ | A /l
-1 ‘0 R
-A
Fig.4.19
4.4.  The Fourier series of a voltage waveform is given by
v = 10 + 190 sin 100 1t + 109 sin300 ¢ +@ sinS00me + ...
n In Sn

(i)  Sketch the waveform, noting its important characteristics.
(1)  Give the reasoning followed in arriving at this waveform.
(iii)  What would be the power developed by v(¢) in a |-ohm resistor ?
(iv)  What would be the power factor of the load when this voltage is applied across a
series RLC circuit with R = 100obm, L= 1 Hand C = 100/n° pF?

4,5.  Sketch a periodic function which is continuous with continuous first derivative but discon-
tinuous second derivative. Determine its Fourier cocfficients and show that their rate of
convergence as n — oo is proportional to n.

4.6.  One method of a.c. power contro] using thyristors is called the on-off method. In this
method, mains voltage is applied across the load for some time fon and is then switched otf
for time tof;. Load power is controlled by varying the ratio of fon and foir. In a simplified
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situation assume that the 50 Hz mains supply 1s on for one cycle, off for the next cycle and
on again. Determine the Fourier series for this voltage waveform.

4.7, Sketch the waveform of a periadic function from the following information:
(1) Its Fourier series contains only cosine terms.
(1i}  All even harmonics are absent.
(i1} The period of the function is 4 seconds,
(iv)  During the interval O to | second, the function is a ramp with slope +1.

4.8.  Figure 4.20 shows the output voltage vy of a three-phase rectifier circuit. Determine the
frequency spectrum of vo. Compare it with the spectrum for full-wave single phase rectifier
of Examplc 4.5.

A
vo
/A /
':, \\‘ rl \1_ /[ \ 'l/ A L o
\ AAVARVARY 37 v
Y ) X
\_b'/\ ’x\\ //\ ,,\\‘,/\\_
Fig. 4.20

49.  Arectangular voltage waveform of magnitude 10 V, duty ratio 75% and frequency 50 Hz s
applied across a resistance of | ohm in series with an inductance of 100 mH. Determine the
steady-state current in the circuit. Also find the power and power factor of the load circunl.

4.10.  The differential equation model of a first order system, with input x(¢) and output ¥(1) s

given by dy/dt+2y = x. Determine the steady-state responsc of the system if the input x is
the triangular waveform of Fig. 4.5.



CHAPTER 5

Fourier Transform

LEARNING OBJECTIVES
After a study of this chapter you should be able to:

(i) determine the Fourier transform and the spectrum of non-periodic func-
tions of time;

(i)  determine the impulse response from the differential equation model of
a system,

(iii)  determine the response of linear systems in the time domain, using the
convolution integral; and

(iv) determine the response of linear systems in the frequency domain, using
the Fourier transform techniques.

The previous chapter described how to represent a periodic signal in terms of
its frequency components with the help of Fourier series. Such a representation
permits determination of the response of a linear system to non-sinusoidal, peri-
odic excitations in terms of its response to sinusoidal input. We know take up the
next logical question of how to represent a non-periodic signal in terms of its fre-
quency components. Such a representation is obtained with the help of the Fourier
transform. It gives us a method of determining the response of a linear system to
non-periodic excitations in terms of its response to the sinusoidal signal. Fourier
transform techniques are particularly useful in the analysis of filters, communica-
tion systems, sampling processes and other areas of signal analysis.

5.1 From Fourier Series to Fourier Transform

In the development of Fourier series we used the symbol ® to denote the fun-
damental frequency of a periodic signal, its harmonics being 2 @, 3 o,
4 @, ... In the study of Fourier transform, we will have to distinguish between
the fundamental frequency of a given signal and the general frequency variable.
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Theretore, we shall use the symbol @, to denote the fundamental frequency of a
particular periodic signal and reserve ® for the general frequency variable. The
exponential form of Fourier series for a given periodic signal of fundamental fre-
quency @, can then be written as,

| /2

(i = E o, exp (jnwot) and o, = T J () exp (—jnayt)dt (5.1)
~T/2

where oy = 2n/ T, T being the fundamental period of the given waveform.

To extend the Fourier methods from periodic to non-periodic signals, let us start
with a periodic rectangular pulse train of repetition period 7 and pulse period 7,,.
Its frequency spectrum will be a line spectrum with 6y, as the spacing between the
lines. The signal and its spectrum are shown in Figs. 5.1(a) and (b). Now, let the
repetition period T be doubled, to 27, keeping T, fixed. The fundamental frequen-
¢y will be halved to o) /2. The spectral lines will now be more closely spaced,
with spacing of @y, /2, as shown in in Fig. 5.1(d).

11 Ab Fwo

[
A
k],
7

S ‘ U nwo
(a) (b)
IUS)
- e
fa— 21 —»]
(¢)
4
Ab wol2
QI w,
(d)

Fig. 5.1 The Effect of Increasing Repetition Period on the Line Spectrum
of a Rectangular Pulse Train

Let this process of increasing T (keeping T, fixed) continue still further till 7
tends to infinity. The pulse then repeats itself after infinite time, i.e., the pulse does
not repeat itself. We have thus moved from a periodic signal to a non-periodic
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signal. In the process, the duty ratio & = 7,/T — 0 and the fundamental fre-
quency @, = 2w/ Tbecomessmallerand smaller,i.e.,®, — dw. Then, we can
write | /T = dw/2 7. The spectrum becomes more and more dense with the gap
between the spectral lines reduced to dm. Thus, the frequency variable rwy, of the
Jine spectrum becomes a continuous variable ¢. With these changes introduced in
the Fourier series of eqn. (5.1), the coefficient &, becomes a continuous function
of o. Or,

o, = o(w) = g—: E f@ e’ dr (5.2)

Substituting this value of o, in the expression for f(r) we get,

- dw
fy= & & [ [ r@ e dr] e
ne—we 2T o
With the variable nw, changing to a continuous variable , the summation sign in
the above expression must change into an integration and we get,

o = [ 42 [ [ 10 e dt] o

1 - — Jt j wr
= 5 J: [L ) e dt} v dw . (5.3)

The quantity inside the brackets in egn. (5.3) will be a function of w. Let us call
it F(w). Then, egn. (5.3) becomes,

R = ﬁ f: Fl®) ¢ do. (5.4)

Equation (5.4) is called the Fourier integral. Thus, the Fourier series of eqn. (5.1)
turns into the Fourier integral of eqn. (5.4) as we go from a periodic signal to a
non-periodic signal.

For a moment let us go back to the line spectrum of Fig. 5.1. As the lines come
closer, the magnitude of the spectrum reduces. In the limitas T — o, o, — 0.
Therefore, instead of o, let us define o, T as the spectrum. This quantity will be
finite and, from eqn. (5.1) and definition of F(w), will be equal to F() in the limit.
F(w), defined as,

A
“n
—

Flo) = r Re) e™ dr (5.

is a continuous function of ® and is called the Fourier transform of f(1). It permits
us to represent a function of time as a function of frequency. Correspondingly.
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relation (5.4) is called the inverse Fourier transform of F(w) and gives a method
of characterising a function of frequency as a function of time.

Relations (5.4) and (5.5) are called the Fourier transform pair. This pair is
represented by f{f) <> F(®), meaning that F(w) is the Fourier transform of f{r) and
ft) is the inverse Fourier transform of F(w). This relationship is also written as,

F(w) = Ff¢) and 1) = F' F(w).

Both the time domain description ) and the frequency domain description F(w)
of the signal contain all the information about the signal and are equivalent, alter-
nate methods of representing a given signal.

The quantity F(w) is a complex function of ®. Graphically it can be plotted in
two parts: (i) |F((J))| vs. wand (11) £ F(w) vs. @ The first one is the
amplitude plot and the second, the phase plot. Together they constitute the fre-
quency spectrum of the given signal. In this plot, it is necessary to consider both
the positive and the negative frequencies, i.e., the range of @ is from —eo to + co.

jor

This is because a physically existing signal f{z) can be realised from ¢ only if we

consider both the positive and negative values of 0. For example, a physical signal

ei [ 4+ e-jmr

cos Ot =
2

The conditions for the existence of the Fourier transform of a function fr) are
similar to those for the existence of the Fourier series for periodic functions. In the
present case, the conditions will be specified over the range —o0 < t < + oo in-
stead of =772 < t <+ T/2, which was the range for the periodic functions. These
conditions may be stated as follows-

(1) The function must be absolutely integrable in the sense,

r lF () dt < oo

(2) It may have at the most a finite number of discontinuities in the range
—oo L | < + oo,

(3) It may have at the most a finite number of maxima and minima in the
range —oo < t < + oo,

The first condition rules out any periodic function or functions iike step. ramp,
etc., which exist for all the time. If the function has infinities, they must be in-
tegrable. A physically realisable function will always satisfy the other two condi-
tions.

Let us re-examine the association between the line spectrum «, of the Fourier
series and the continuous spectrum F(®) of the Fourier transform. The complex
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quantity o, gives the magnitude and the phase angle of the nth harmonic com-
ponent of a periodic signal and is defined as,

I T/2
o = o | @ exp (o) di
-T/2
where @y = 2 1t/ 7T is the frequency of the periodic signal f(f). When we go over
to the non-periodic case by letting T — oo, the discrete variable o, = o (n wy,)
becomes a continuous variable o (®). But because of multiplication by /T in the
above expression, the magnitude la(w)l — 0. However the product o (w). 7

does approach a finite non-zero value and this value is F(w). That is,

im o @) .T = | f@) e’ dt = F(o),
T— o0 — oo

where f{1 ) satisties Dirichlet’s conditions given above. Although F(m) is now
called the (continuous) spectrum of f (t) |F((n)| does not give the amplitude of
the frequency component @.

To assign physical significance to F(®) we now write it as,

Fw) = limo(w) . T = 2xrn - o (®)

P do®
Since this expression involves division by d®, we may call F {(w) as the frequency
density of the signal f{r). Another descriptive term used for F () is relative fre-
quency distribution. This term arises because although the absolute amplitude of
each frequency component is infinitely .small, their relative magnitudes are dis-
played by a plot of |F(w)| vs. ®. We shall contend ourselves with the term
spectrum for F(w) .

5.2 Fourier Transforms of Some Common Signals

A rectangular pulse: A rectangular pulse of amplitude A and duration ~772 to
+772 is shown in Fig. 5.2(a). Since this signal is encountered quite frequently it
may be given a special symbol, f,(2). To derive its Fourier transform, we proceed

as follows:

o0

J,,, ) €79 dr

F o)

fm A eio gt

-T7/2

A [e—,u;r/z _ e+]u)f/2:|
—j(l)

sin(®w7T/2)
(wT/2)
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= AT Sinc "’TT (5.6)

Although the bandwidth of the spectrum shown in Fig. 5.2(b) is theoretically in-
finite, for most practical purposes it may be assumed that the significant frequency
components lie in the range = 2n/7T < o < + 2n/T. Thus, if a channel has a
bandwidth 4n/ T, it will be able to transmit the rectangular pulse more or less
faithtully. Now, if the pulse width T is reduced, the channel bandwidth, required
for its faithful transmission will be more. For example, a pulse of | millisecond
duration will require a channel of bandwidth 13 kHz while a | microsecond pulse
will require 13 MHz. Realising a large bandwidth channel is more complex and
expensive. Hence the statement, that it is more difficult to transmit (without dis-
tortion) a short duration pulse than a long duration pulse.

At () =tp(1) 4Fw)
AT
A
I _Ar~__m TN AT W
2 2 T T T T
(a) (b}

Fig. 5.2 Rectangular Pulse and Its Frequency Spectrum

It the rectangular pulse of Fig. 5.2(a) is shifted to the right by an amount 772, so
that its duration becomes O to 7, its Fourier transform becomes,

T .
Fw) = f” A e dr,

Working it out we get,

sin(w7)/2

Fw) = AT @72

exp (—joT/2)

AT sine &L wir, (5.7)

Equation (5.7) shows that the amplitude spectrum remains the same but a phase
lag, equal to £ ® T/ 2, is added.

This is a general property of the Fourier transform, i.e., if the time function is
shifted by an amount £, its Fourier transform is multiplied by exp (— joyy). That s,
it (1) &> F(w), then f{t — 1) < F(m) exp (—jor). This is called the shifting
property of the Fourier transform.
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A triungular pulse:  Instead of determining the transform directly, we first note
that the triangular pulse of Fig. 5.3(a) can be obtained by integrating a pair of
square pulses shown in Fig. 5.3(b). We therefore enquire what happens to its
Fourier transtform when a time function is differentiated or integrated.

Let f(1) & F(w). Then,

]‘(1) = Jw F((D) ei(o: dw.

i
2n
Differentiating both sides of this equation with respect to ¢, we get

df () [ - ,
=t = F(w " da.
dt 2n J_m [jw ( )]e

Theretore, we conclude that when a time function is differentiated, its Fourier
transform is multiplied by jo. If the function is differentiated n times, the trans-
formy is multiplied by (jw)", i.e.,

T (e .

LIO oy F). (5.8)

df
Conversely, if the tunction is integrated its Fourier transform gets divided by jo,
e,

ﬂ“](t)
A
t(1)
AT AT
-7 t
-t
I B
. T A
{a) (b)
dr)
AT
-4 2 21
T T T T

Fig. 5.3 (a) A triangular Pulse; (b) A Pair of Square Pulscs;
and (c) Spectrum of Triangular Pulsc
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[ 1@ dr o

F ()
o (5.9

Coming back to the triangular pulse, we note that the function fi(£) of Fig. 5.3(b)

can be written as,

Hh@ = f,e+T/2) - f,¢t-T/2).

Recalling that f, (#) <> AT Sinc (07/2) and using the shifting property, the
Fourier transform of f\(t) is given by,

Fi{w)

AT[Sinc (DTT e’®7’2 — Sinc (DTT e‘j‘”/z}

AT Sinc %T [ej(oT/Z _ e<j(A)T/2]

Now, since f (#) of Fig. 5.3(a) is the integral of fi(z) of Fig. 5.3(b), using the
integration property of eqn. (5.9), we get the Fourier transformation F(w) of f(#) as,

Fi{w
Fl) = 7@
J
Al joT/2 —-twT/2
= AT Sinc ol e - ¢
2 jo
jor/2 _  -jeT/?
— AT Sinc 22 & -—€¢ 7
2 b 0T
)
= AT? Sind ‘”—f (5.10)

The spectrum of the triangular wave is shown in Fig. 5.3(c).

The decaying exponential: The function ft) = A e™ u(t) is shown in Fig.
5.4(a). Its Fourier transform F () is given by,

F(o) = Jm Ae ™ u(t) exp (—jordt

_ 4] ep-erion]
—(a+jo) 0

A .
a+jw

5.11)

The magnitude and the phase angle of F(w) are given by,
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A LE ()
tty=ast urt) AlF (W 2
A
a
(2]
> T/ ____:
(a) (b) (c)

Fig. 5.4 The Decaying Exponential and Its Spectrum

IF ()| = —A—
Na’ + o’
and LZF(®w) = tan' (~w/a).

The magnitude and phase spectra are shown in Figs. 5.4(b) and (c¢).

The Gausian function: The Gaussian function f(f) = exp (— ') shown in Fig.
5.5(a) occurs frequently in the study of stochastic systems. The normalised form,
with f(0) = 1, has the property that the area under the curve is unity, 1.¢.,

J: fo dr = J: exp (-m£) dr = L

The Fourier transform of the Gaussian function is given by,

F = | exp(-nf) exp (-jor) dr.

Replacing frequency o (rad/sec) by A (Hz), ® = 2 ®h, we have,

Fh) = r exp (—T) exp (—j2mhi) dt

AE(h)= ETThz

A t(1)= M2
1 1
1 1 s 1 . 1 1 I Fl —
-1 -5 0 .5 1 -1 =5 0 5 1 ninHz
(a) ()

Fig. 5.5 The Gaussian Function and Its Spectrum
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- j: exp [ (¢ + 2jh0)] di.

To complete the square in the exponent, multiply the function by
expl-n (jB)2] = exp (nh),ie,

exp (RhY) F(h) = fm exp [~ {F+2jht + (R} | dt

or F(hy = exp (-1 h") r exp [ ~m(t + jh)) dt.

Let the variable of integration be changed from t to T = ¢ + jA Then dr = dt.
However, the limits of integration remain the same for all finite 4. Hence,

F(h)y = exp (-nh?) r exp (-7 T) dt.

The integrand on the right-hand side is also a Gaussian function and hence the
value of the integral is unity. Thus,

F(h) = exp (=1 h?) . (5.12)

Thus, the Gaussian function has the interesting property that its Fourier transform
is also Gaussian as a function of frequency £ in Hz.

Table of Fourier transform pairs:  Starting with a few basic transforms and using
the fundamental theorems and properties we can build up a fairly comprehensive
table of Fourier transform pairs. Such a table (Table 5.1) is particularly useful for
finding the inverse transforms.

5.3 The Impulse Function

Onc of the key concepts in the analysis of linear systems is the impulse response
of a system. An impulse is a singularity function and has properties which are
somewhat different from those of ordinary functions of time. Ordinary functions
are specified by defining the relation for obtaining the value of the function (a
number) tor every value of its argument in some specified field. But an impulse is
defined by the effect it produces when interacting with an ordinary function of
time. A unit impulse & (1). occurring at ¢ = 0, is defined by the property,

[ swroa=ro (5.13)

where f (¢) is an ordinary function of time, continuous at the origin. A quantity
defined in this special way, by the cffect it produces, is called a generalised func-
tion or a distribution. Some of the properties of the generalised function §(z),
defined by eqn. (5.13), are now given.
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Table 5.1 Fourier Transform Pairs

Time function Fourier transform

‘9 (t)

| AT Sinc %I'
112014712 2

Rectangular pulse or gate function

t(t)
AT
AT Sine’ %I
-7 T t

Triangular pulse

1y =ae® ()
, A
a+jm

L d
t

2

Decaying exponential

t)=t62u(t)

(a+] oy

()= éMsin waptu(t)

A\" - - [

2 3
(@a+jw)” + i

|
S
N
r
|
'

6 _arje
' (a+jof + of
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I. Scaling: Thisis given as,

[ k8010 = ks (5.14)

where £ is a real constant and & § (¢) an impulse of strength &, occurring at £ = 0.

2. Shifting: This is written as,

[ se-wyrw = ru (5.15)

—o0

provided f(#) is continuous at ¢ = ¢). Here, 8 (£ — ) is a unit impulse at t = 1,. From
the above relations we can say that the effect of an impulse at ¢ = #,, interacting with
a function f{t), is to ‘pluck out’ the value of the function at £ =1,.

3. Equivalence: Let ¢() be an ordinary function with the following properties:
(1) it is infinitely smooth, i.e., it possesses derivatives of all orders, and (ii) the
value of the function is zero outside some finite interval of time, ie., for
{ = —co and £ =+ oo, ¢ (1) = 0. Such a function is called a fest function.
Then, two generalised functions g,(f) and g.(t) are equivalent, i.e., g,(f) = g2) if,

[ ewoma =[anooda (5.16)

—o0

Now let us define another generalised function u(r) by the following effect it
produces on any test function ¢ (7) :

J: u(ty o) dt = J: O (1) dt. (5.17)

Thus, the effect of the generalised function u (¢), operating on the test function
® (1), is to find the area under the curve ¢ (¢) in the interval O to oo. Note that u(1) is
similar to the ordinary step function. However, as defined here, it has some special
properties also, e.g., it possesses a derivative.

Let u’ (¢) be the derivative of u(t). Let us determine the effect u’(z) will produce
on a test function ¢ (¢). This effect is given by the defining integral,

f; (1) (@) dr

Integrating by parts we get,

o

- _r; u(t) o () dr

—a

T wwoewd=uw o

——o

The first term on the r.h.s. is equal to zero because of the property (ii) of the test
signal ¢ (7). From the defining relation (5.17) the second term becomes,
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[ wovoa= ] ooa

YORN
-6

I}

Therefore we get,

[ wwoewa = 9.

However, substituting ¢ (#) in place of A7) in egn. (5.13) we also have,

[ swewa = 0.

Therefore, from the equivalence property (5.16) we get,
w (t) =38 (5.18)

Thus, we conclude that the derivative of the generalised function u(f) is the
generalised tunction & (f). Similarly, for higher derivatives, i.e.,

u” (f) = & (), (called a ‘doublet’)
u” (1) = 8" (1), (called a ‘triplet’), and so on.

Defined as an ordinary function, the step function will not have derivatives. But
defined as a generalised function, it can have derivatives of any order. It is one of
the main advantages of the theory of generalised functions that we can define
derivatives for discontinuous functions also. Such derivatives will be in terms ot
the impulse function and its derivatives.

As an ordinary function, the unit impulse may be thought of as the limiting casc
for a pulse of width A and amplitude | /A (i.e., with unit area) as A tends to zero.
In that case, the unit impulse will be a function of infinite magnitude, zero dura-
tion, and finite area of unity, as shown by the sequence (a), (b) and (c) of Fig. 5.6.

Symbolically, the impulse is represented by Fig. 5.6(d), with its strength indi-
cated by the number near the arrow. Although Fig. 5.6 shows impulse as the limit-
ing case of a sequence of unit area rectangular pulses, the shape of the pulse is not
material. We could get impulse as the limiting case of a unit area triangular pulse
or a Gaussian pulse or any pulse with unit area.

Let us now determine the Fourier transform of an impulse. From the basic
definitions of Fourier transform [eqn. (5.5)] and the unit impulse [eqn. (5.13)] we get,

Fo() = | 80 exp (—jwn dr = exp (—j®.0) = |
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1
a1 A
A
—t +
— 4 fa— _.I A |4_ Bl
() (b)
1
A
1
A ! t
(c) {d)
Fig. 5.6 Impulse Function
ie.,
8@ « | (5 19)

constitute a Fourier transform pair. This result can easily be extended to,
k8(H) © kand 6(1—1) ¢ exp (—jwn).

Equation (5.19) means that the spectrum of a unit impulse is a constant equal to
unity for ® ranging from —eo to + oo, This flat spectrum can be viewed as the
limiting case for the spectrum of a pulse (Fig. 5.2) as the pulse tends to an impulse
An impulse has zero duration: hence, pulse period T in Fig. 5.2(a) tends to zero.
Thus, the curve in Fig. 5.2(b) will cut the ® axis at infinity. In other words, it will
be a line parallel to the ® axis with a magnitude AT = 1. In practical terms, it means
that to transmit a unit impulse faithfully we require a channel of infinite bandwidth.

5.4 Convolution

Chapter 3 described the classical method, using ditterential equations, tor deter-
mining the response y(z) of a linear system for an input x(f). Since only functions
of time, x(1), y(¢) and their derivatives are involved in the solution process, we say
that the classical method is a method in the time domain. There 1s another method
for determining the system response in the time domain which uses the concepis
of impulse response and convolution.

When an initially relaxed system is subjected to a unit itnpulse at its input, the
resulting output of the system is called its impulse response (Fig. 5.7) and 1s rep-
resented by the symbol A(?). Because the superposition principle is valid for linear
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Input Qutput
B E—— System EE—
x{t) =5§(t) y(t)=h(t)

Fig. 5.7 Impulsc Response

systems, the response to an impulse of strength & will be kh(¢). Since the system is
time invariant, its response to a unit impulse occurring at t = T. i.e., to & (1 - 1),
will be A(r — T). If two impulses k, 8(z) and k» & (r — T) are applied together, the
response will be &y A(1) + k> h(r — 7). If the system is subjected to an impulse train

o

givenby Xk, 8 (1 — n A), the response of the linear system will be,

"
Y khar-nA).
.

Now, let the system be subjected to an arbitrary input x(¢). The function x(f) can
be approximated by a series of rectangular pulses as shown in Fig. 5.8. The width
of each pulse is A and the height is equal to the value of x(¢) at the midpoint of the
particular pulse, i.e.. the pulse amplitude of the nth pulse (centered at nA) will be
x(nr A). Thus, the area of the nth pulse is Ax (rn A). The approximation to x(t) be-
comes better and better as A i1s made smaller and smaller. Also, when A is sufti-
ciently small, the response of the system to a pulse is the same as its response (0
an impulse of strength equal to the pulse area (as will be demonstrated later).
Theretore, the response of the system to a very narrow pufse at n A will be
A x(nA) . h(t—-nA), and the output y(£) will be the sum of responses due to all
the pulses, te.,

v = 3 A-x(nd) h(t-nh).

n=~o

Ax()
/‘\!\-X(nA)
T /Ir | \\\\
>/|r | i |
e | \ i ! i l
| 1 | | !
! | |
| | |
| ! 1 | | I
] | 1 1 i ] >t
-3A 2A -A & 24 nd

Fig. 5.8 Approximation of a Function by Pulses
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Inthelimit,as A — 0, Acanbereplaced by d T, n A by the continuous variable
T, and the summation by integration. Thus,

y() = r x(™) h(t-1) d1. (5.20)

—oo

The integral in eqn. (5.20) is called the convolution integral. Equation (5.20) is
symbolically written as,

yO = x(®) * h()
which means that-the output of a linear, relaxed system to any arbitrary input can
be obtained by convolving the input with the impulse response of the system. Thus,
if the impulse response of a system is known, its response to any input can be
obtained by relation (5.20). In other words, the impulse response completely char-
acterises a system.

The convolution operation is a general mathematical operation between any
two tunctions. That is,

foxnw = [ i@ pe-vdan

It is easy to show that fi(£) * f> () = £ (£) * fi (1), L.e., eqn. (5.20) can also be writ-
ten as,

y(@® = r h(D) x t—-1) d7T.

In the analysis of physical systems, £ = 0 is chosen ac the instant at which the
input is applied to the system. Thus, x(¢) = () for ¢ < 0. Therefore, the lower limit of
the convolution integral in eqn. (5.20) can be made zero instead of —ee. Also, the
output of a physical system at any time ¢, will depend upon the values of the input
only up to #,. This is obviously so because a physical system cannot respond to an
input not yet applied to it. (This is called the property of causality.) Thus, the upper
limit for T in egn. (5.20) will be #,. That is, the output of a physical system at t = ¢,
will be

y(t) = J:) x(Y) ht-7) dr.

Since ¢, can have any value ¢, we have

y = f x(Y) h(t—71) dT. 52D

Example 5.1:— The impulse response of a linear system is given by
() = 2 e [Fig. 5.9¢a)]. Determine its response to (i) a step input and (ii) a pulse
of magnitude 10, duration 2, centred at ¢t = 3.

Solution: The step response is determined directly from eqn. (5.21) as,
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y(B J:) u(t) 2exp [-(t-1))dt

2¢e” J‘ edt = 2(1—-e).
)
(i1) The given pulse is shown in Fig. 5.9(b). It can be expressed mathematically as,

f) = 10[u(1=2)—u(t-4)]
Using egn. (5.21) the response is,

y( _J.:’ W0[u(t-2)—u(t~4)1-2 expl—-(t—T) dt

20¢” |:JJ u(t=2)e'dt - JJ u(T—4)e‘dT]-
0 0

The first integral will be zero for T up to 2 because of the multiplying factor
u (T —2) . Therefore, the lower limit on the first integral should be 2. Similarly, the
lower limit in the second integral should be 4. Thus,

y(8) = 20e”" [(¢— ey u(t—2) — (¢' =Y u(t — 4)]

001D u@=2) = {1-€ u(t-4)]

A plot of y (2) is shown in Fig. 5.9(c).

Graphical convolution:

Impulse response testing is a very useful experimental technique. When a mathe-
matical mode! cannot be built due to lack of information about the system, such
experimental techniques are the only methods available for finding system charac-
teristics. For practical test purposes, an impulse is approximated by a narrow pulse
such that its width is less than the smallest time constant of the system. Of course,

Ax(t) Ay(t)
h(t) 100F———

2 )
|

]

I

t v »t ] — t
1 2 3 4 12345¢€7
(a) (b) (c)
(a) (b) (©)

Fig. 5.9(a) Impulse Response, (b)Input, (c) Output
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the pulse should have sufficient energy to excite the system into giving a recor-
dable output. In such a case, # (1) will be known only graphically. Many a time
even the system input may be known only graphically. In the absence of analytical
expressions for either x(2) or h(f), the evaluation of the convolution integral cannot
be done analytically. Recourse is then taken to cither graphical or numerical tech-
niques. Even when analytical expressions are available, it is conceptually helpful
to visualise the convolution as a graphical process. We therefore consider a graphi-
cal interpretation of the convolution between two functions fi(f) and f(1). To be
specific, let fi(z) be the input pulse x(r) of Fig. 5.9(b) and fo(t) the impulse response
shown in Fig. 5.9(a). Then,

!

YO = AOLO = | x@ he-ndr

Now x(t) is simply x(¢) with 7 replaced by T. Let us find out & (t — 1) for a specific
Ctimer=¢,ie, At - 7). It is easier first to find A(T — ¢)). It will be A(T) shifted to
the right by f,. The effect of changing the sign of the argument, from
(t—1) to (£ ~ 1), is to take the mirror image of the function around the vertical
line at 1. The process is illustrated in Figs. 5.10 (b), (¢) and (d).

h =2a-"T
x(0 ; (7) =2e
10~--
2
1
(b)

—- T
i kR O S
1(a)!
h(t; 0k A : h {T-ty)
H ) ’
I 25—
I
2-—-—= ! 1
{ i
' I ‘[\
| ——-
H > 11=3 T
Y 2 3 4 5 T (c)
A hy(t) ¢
(D ht,-0 (D :
Y(H )=
t
/ﬁ%mn (4-DdT
X T2 3 4 § %
(e) (¢

Fig. 5.10 THustration of Graphical Convolution
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Next, we multiply the functions in Figs. 5.10(a) and (d) to get the curve in Fig.
5.10(e). Its integral, i.e., the area under the curve in Fig. 5.10(e), will be the value
of output y(#,) at the instant ¢,. To obtain the output at another instant t,, h(?) is
shitted to the right by #;, folded along the vertical axis at £, the resulting figure
multipiied by x(f) and the product curve integrated to get y(,). This process is
repeated for all instants of time to get the complete y(1).

In this particular problem for values of time less than 2 there will be no common
overlapping area between x(f) and A(¢ — T). Hence, the product will be zero and the
output will be zeroup to =2,

If the values of fi(2) and fi(r) are stored as sequences of numbers in a digital
computer, one could develop a computer programme for performing the convolu-
tion numerically.

Impulse response from differential equation model:

In linear systems analysis, the starting point is quite frequently the differential
equation model of the system. In this subsection we develop a method for solving
a given difterential equation with impulse as the forcing function to determine the
impulse response /i(t) of the system.

Let us start with a first order system. Assume the initial condition to be zero.
That is, we want the solution of equation,
dy
a i + by = 3,y = 0. (5.22)
Let us approximate the impulse response as the limiting case of the response for a
rectangular pulse of magnitude M = 1 /A and duration A (area equal to unity), as
A tends to zero.

InFig. 5.11(a) A, is many times larger than the system time constant a/b. So the
output starts like the step response. reaches its steady-state value M,/b before the
pulse is removed, and then decays exponentially with the time constant a/b. That
is, after the removal of the pulse the response is the same as the natural response
with initial condition M/b. In Fig. 5.11(b) the pulse is made much narrower. The
response start exponentially towards the steady-state value M,/b. However, the
pulse gets terminated much earlier, by which time the response has reached some
value o, Thereafter, it behaves as the natural response with initial condition .

In Fig. 5.11(c) the pulse width is still smaller. The output starts exponentially
with an initial slope (Myb)(alb) = M+/a. la the very short time A; the slope will
not be altered much from its initial value. Hence, at the end of the pulse duration
the output would have reached a value (M:/a)As. But M; = 1/ A,. Therefore,
o = | /a. This means that if the pulse is sufficiently narrow, the output would
reach a value 1/a at the end of the pulse period, irrespective of the actual pulse
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Fig. 5.11 Impulse Response of a First Order System as the Limiting Case of
Its Pulse Response

width. In the limit as A — 0, the pulse becomes an impulse. In this case, the
output would reach a value of 1/a in zero time. Thereafter the response would be
the same as the natural response with initial condition l/a.

Thus, we reach the important conclusion that the response of a first order sys-
tem, with its model given by eqn. (5.22), to a unit impulse is the same as its natural
response with the initial condition y(0) = 1/a. In an electrical R-C circuit, one could
think that the unit impulse source is able to transmit unit amount of charge to the
capacitor, by a current of infinite amplitude and zerc duration, and then the circuit
behaves as if it had only an initial voltage across the capacitor.

The extension of this physical reasoning to a second order system,
ay + ay+ay = 8¢,
would show that jts unit impulsc response will be the same as its natural response

with initial condition y (0) = 1/4, and y(0) = 0. Similarly, the unit impulse
response of an ath order system,

ay™ + a, YU+ ay +ay = 3,

will be the same as its natural response with initial conditions,
YWU0) = 1/a, and ¥(0) = y(0) = ... = y"P(0) = 0.
It has already been shown that an impulse may be thought of as the derivative

of the step function. Thus, if we know the step response of a system, its impulse
response will simply be the derivative of its step response.

Example 5.2:— Determine the output of the system shown in Fig. 5.12 for a
single, half-wave sinusoidal pulse.
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x(t)
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Abk- Input IVC.:'y(t)
x(t)
TOu!put
t o 0
T
Fig. 5.12

Solution:  Let us first determine the impulse response of the system. The system
equation is,

dy _x=y Yy, =
c it R or RC dt+y X.

The impulse response will be the natural response with initial condition y(0) =

1/RC. The natural response is given by,

Yo = ie"”c , fort> 0.

RC

Therefore,

1
h(t) = yn = ‘R?e /RC-

The input to the system, shown in Fig. 5.12, may be written as,

x(8)

1
A =1, £t<T
smT 0

=0 t>T

The output y(z) is given by,

(1) x(1) * h(f) = A _r sin %“ Texp {-(t-T)/RC} dt, 01T

re
A T R
= 2e | sn % cew (-@-v/re)ar, [>T

Evaluating the integral on the r.h.s. by parts we get,

for 0t LT

For the particular case when RC=1and T = T we get,

y(t)=—'§*(sint—cost+e"), for 0 <1t £ T.
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Ayt)

Fig.5.13

Fort = T, the upper limit of the integral is 7. Substituting this value and solv-
ing we get,
e—l

y{ = AT(I + €%, fort 2T

The solution is shown in Fig. 5.13.

Remarks: The use of convolution technique may look somewhat more compli-
cated for pen-and-paper analysis. However, it is well suited for programming on a
computer. [t has many other useful applications: e.g., in filtering and smoothing of
data, particularly in the digital handling of large observational data. More impor-
tantly, for the linear systems, it establishes the basis for the powerful transform
methods of analysis in the frequency domain, as will be demonstrated in the next
sub-section.

The convolution theorem :

Let £, (1) and f5 (#) be two functions in the ime domain with £, (@) and F, (w) as
their Fourier transforms, i.e., fi(f) & F,(®) and f(f) <> Fy(w). Letthe convolu-
tion of fi(t) with fa(#) be equal to y(r), L.e., y(¢) = fi(t)*fo(1). Let y(1)¢> Y(w). The
questions we now pose is: what is the relationship between Y(®), F,(w) and
Fy (w)?

From the definition of convolution we have,
o = [ AmAc-dr
Therefore,

Y(w)

r exp (—jwr) y (1) dr

— o

[ epeion [ th@pe-vdua.

Interchanging the order of integration we get,
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Yw) = J: Hin) [J: exp (—job fo (1) dt] dr.

The quantity inside the brackets is, by definition, the Fourner transform of
f2 (1 = 7). From the shifting property of the Fourier transform we conclude,

L (=1) & F(w) exp (—jot).

Hence,

Hw) r fi(T) Fr(w) exp (—jwt) dT.

i

F> (w) r fi(t) exp (-jor)dt.
The integral term above is equal to Fy(w). Therefore,

Y(w) = Fi(w). F;(w). (5.23)

The result given in eqn. (5.23) is called the convolution theorem. Stated in
words: the operation of convolution between two time functions results in the mul-
tiplication of their Fourier transtorms. This is one of the most powerful results of
the convolution theory.

To see the implication of the convolution theorem for linear systems analysis,
let fi(t) be the input x(r) <> X(w) and fo(t) = h(t) & H(w), the impulse
response of the system. Since y(¢) = x(r) * h(f), therefore,

V@) = Xw).Hw). (5.24)

H(w) is called the system function. Equation (5.24) means that in the frequency
domain, the output is simply the product of the Fourier transform of the given input
and the system function. Thus, the response of a system to any arbitrary input can
be obtained if the system function is known. If the output is desired as a tunction
of time. it can be obtained by taking the Fourier inverse of Y(w). This is usually
done with the help of a table of transform pairs. This means a great simplification
of the analysis procedure. The differential and integral operations of the time
domain methods are replaced by simple algebraic operations in the frequency
domain, And this is why transform methods are so very popular.

A knowledge of the system function H(w) permits us to find the output for any
given input. Hence, H(w) is yet another method of characterising the system and
may be called its mathematical model in the frequency domain.

5.5 Analysis with Fourier Transforms

Example 5.3:— Determine the current { in the inductor of Fig. 5.14 for the applied

-2
voltage v(r) = 107,
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=100
o M
v(t) L=t
i
O
Fig. 5.14

Solution: First let us determine the system function H{®). The mathematical model
of the system is di/dt + i = v(t). The impulse response of the system will be the
natural response of the system with i(0) = |. That is, A(z) = ¢”'. Using table 5.1 the
system function is,

|
1 +jo

Ho) = F() =

The Fourier transform of the input is,
Vw) = FIv(D] = F(10e™) = 10/2 +jw).

10

Output o) = V(o) H{w) = m

The expression on the r.h.s. can be expanded into partial fractions as,

1 1
l(w) = 10[1+jm - 2+joo]'

We take the Fourier inverse of each term on the r.h.s. (using the table of Fourier
transforms), to get ,

i) = 10(" — ™).

As illustrated by this example, the steps in this analysis procedure are as fol-
lows:

(1)  Find the system function H(w).
(2) Determine the Fourier transform of the given input function.
(3) Multiply the two together to obtain output as a Fourier transform.

(4) Determine output as a function of time by finding the inverse of its
Fourier transform, using a table of Fourier transform pairs.
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The first step will be explored further in the next subsection.

Determination of the system function H(®):

In Example 5.3, the method for determining H(w) was: write the differential equa-
tion model of the system; determine its impulse response h(?); find the Fourier
transform of A(r) to get H(w). This procedure is somewhat cumbersome and if
followed tor relatively more complex problems, it will reduce the advantage of
simplicity of the Fourier transform analysis. We, therefore, explore the possibility
of finding a more direct method of determining H().

In the electrical circuit of Example 5.3, the input is a voltage and the output a
current. If the input voltage were a periodic sinusoidal voltage of frequency o, say
}\/ (o), then, the elementary circuit analysis tells us that the steady-state current
[ (o) will also be sinusoidal. The amplitude and the phase angle of the current
I (ay) may be found out from the basic relation,

Vi = Z () (@),

where Z(a);) 1s the impedance of the circuit at frequency oy, We are using a cir-
cumflex over the symbols for current and voltage variables to indicate that they are
the phasor expressions for sinusoidal variables and not the Fourier transform of a
transient, non-periodic time function. The above relation is valid for any frequen-
cy, i.e.,

Q(w) = Z(u))?((n) or /1\ (w) = G(w) O(w)

where G(w) = 1/Z(w) is the admittance of the circuit.

The role of admittance G(w) or impedance Z(®) in the steady-state sinusoidal
analysis can be viewed s follows, It modifies the magnitude and the phase angle
of the sinusoidal input V (®0) or Xw) to produce another sinusoidal signal of the
same frequency but of different amplitude and phase angle. The modifications in
the amplitude and the phase angle will be different at different frequencies because
G(w) and Z(w) are frequency dependent. We now look again at the fundamental
relation, i.e., eqn. (5.24):

" Y(®) = Hm) X(w).

The Fourier transform X (®) converts the function of time, input x(¢), into its
sinusoidal components having different magnitudes | X (@)| and phase angles
Z X(w) for different frequencies. The system function H(®) modifies these mag-
nitudes and phase angles to produce output Y (®). Thus, H(®) performs the same
function as Z(w) or G(w).

Therefore, we conclude that the system function H(w) is the same as our
familiar Z(w) or G(w) of the a.c. circuit theory, i.e., Hw) = Z(®w) [orG(w)].
The determination of the impedance or admittance of an electrical circuit is a
straightforward matter, For Example 5.3, we can easily verify that its admittance
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is 1/(1 + jw), the same as the expression for H(®) determined from its impulse
response.

In the elementary circuit theory, it is tacitly assumed that a sinusoidal voltage
will always produce a sinusoidal current of the same frequency. This is a fun-
damental property of linear systems. That is, for a linear time invariant system, a
sinusoidal input will produce a sinusoidal output of the same frequency. This result
can be verified as follows.

Let the output of a linear, time invariant system be y(f) for a sinusoidal input
x(t) = exp (jout). Let us delay the input by ¢, i.e., let the input be
x{(t—1) = exp [jowy (t—1;)]. Because the system is time invariant, the output to
x(t—+t) will be y(t—t). But the input function can be written as
x(t—1) = exp (—jwyt) exp (jo). Since the system is linear, the output will
also be multiplied by the constant exp (—joyt;). Therefore,

=) = y (1) exp(jwy4) or y(1) = y (£—1,) exp (jou).
The above result is true for any ¢, i.e., t; can have any arbitrary value. In particular,
for 1, =t, we get,

(0 = y0) exp (jown)

Now, y(0) is not a function of 7. Therefore, we conclude that for a linear system, a
sinusoidal input produces a sinusoidal output of the same frequency. The mag-
nitude and the phase angle of the output will depend on the complex quantity y(0).

In fact, we can generalise the result of the previous paragraph into the state-
ment; a linear time invariant system will produce an exponential output, may be
with different amplitude and time shift, for an exponential input ¢”, whether the
exponent s is real, imaginary or complex. This is because the model of a linear
system will be a linear differential equation. Thus, the operations performed on the
input to produce the output will be some combination of the operations of integra-
tion and differentiation. The exponential function has the interesting property that
the result of integrating or differentiating it is also an exponential. And hence the
statement that a linear system will give an exponential output for an exponential
input. Note that when s in the exponent of €” is imaginary, i.e., equal to jo. we get
a steady sinusoidal variable. In such a case, the Fourier methods are useful for
analysis. When s becomes complex, s = ©+j ® (with 0 negative), ¢" represents
decaying sinusoids. The variable s is then called a complex frequency. Any given
signal can be resolved into its components of complex frequency s by the use of
Laplace transform, as will be studied in the next chapter.

Example 5.4:—For the network shown in Fig. 5.15(a), determine the system func-
tion H(®) and hence its response to (i) a decaying exponential function x(t) = ™
shown in Fig. 5.15(c) and (ii) a decaying sinusoidal function x(t) = e sin 2¢
shown in Fig. 5.15(d).
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C
—
+ o—-AMAm—
Input R Output
x(1) R2 y(t)
- O— -0
(a) {b)
X(t ) :6‘
1
>
(c)
Fig.5.15

Solution: From the equivalent circuit of Fig. 5.15(b) we have,

Z R jo+ 1 /R C
VAR VA

L R jo+(I/RCH1/RO)
JOR, C+ 1

H(w) =

R,

For the particular case R,C = R.C = | we get,
H(w) = (] +jw)/ (2 +j w).

{1) For the input x(#) = ¢”.

X(m) = Flxn] = l +ﬁ‘

Qutput Y(w)

I

X(m) H (o)

| l4je 1
I+jo 2+jo 2+

Taking the Fourier inverse we get,
0 = M) = e
(i1) For the input x(rf) = € sin 2t,

X(w) = Flx()] = ﬁzﬁg(ﬁomTab]eS,l)
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21 + jw) '
(2 +jw) [(1 +jw)* + 4]

Y(w) = X(w).Hw) =

The expression for Y(w) can be expanded into partial fractions as,

A + Bw+ C
2+jo (1 +jo)+4°

Y(w) =

Equating the numerators for these two expressions of Y(w), we get
A=-25B=2/5,C=2, o,

-2/5 + 2+j2w/5

2+j0  (1+jw)’+2?

-2/5 2 1 +jo N 4 2 _

2+4j0 5 (1+jw)*+2> 5 (1+jo)+2?

Y(w)

Taking the Fourier inverse of each term, with the help of Table 5.1, we get,

Y@ = F'UY)] = ~25.e¥ +2/5. ¢ cos2t+4/5 . e sin 2t

Fourier methods enable us to resolve an arbitrary function of time into its
sinusoidal frequency components. The Fourier series does it for periodic signals
and the Fourier transform for non-periodic signals. Such a resolution of a signal in
the time domain into a signal in the frequency domain is most useful in the analysis
of those linear systems whose characteristics can be expressed more conveniently
in terms of their frequency response. The analysis can then be carried out in the
frequency domain as illustrated by the two problems above. Many problems, like
filtering, sampling, modulation, etc., in control and communication systems, are
analysed by the above techniques. In the following subsection, we will very briefly
look at one of the problems in filtering to show the use of Fourier techniques in
solving problems in that area.

Filters:

A filter is used either to suppress or to extract particular frequency components
from a given signal. It may be realised using RLC components with, or without,
active electronic components. It could also be any other signal-processing device,
€.g., transducer, amplifier, transmission channel, etc. In fact, any linear system can
be thought of as a filter, provided its frequency response is such that for some
frequency range the output is zero. The characteristics of a filter are expressed by
the amplitude and phase angle plots of its system function H(®). The classification
of filters into low pass, high pass and band pass filters is demonstrated in Fig. 5.16.

The magnitude plots shown in Fig. 5.16 are for ideal filters with sharp cut-off
frequency .. In actual filters, the cut off would be more gradual. For example,
Fig. 5.17 shows the amplitude plot for a physical low pass filter.
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Fig. 5.16 Classification of Filters
fHw)

e

Fig. 5.17 Amplitude Plot of a Physical Low Pass Filter @

Some of the problems studied in the theory of filters are: (i) What should be the
system function H(®) to extract a useful signal from a ‘noisy’ signal ? (ii) Given a
particular filter characteristic H(w), predict how it will alter the ‘shape’ of signals
passing through it. (i) What are the distortions produced by filters and on what
factors do they depend? All these problems are studied with the help of Fourier
transforms.

Example 5.5:—Consider the transmission of a pulse through a filter having the
characteristics shown in Fig. 5.18.

IH(w) 1
{\ © ¢ (u)=LH ()
K
— =) ~Wio
(a) Amplitude plot (b) Phase plot

Fig. 5.18 Frequency Characteristics of an All Pass Filter

Because the amplitude spectrum is constant for all frequencies, such a filter is
called an all pass filter. Further, its phase characteristic is a lincar function of ®.

Let the Fourier transform of the input pulse shown in Fig. 5.19(a) be X(®). Then
the output of the filter will be,
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x(t) y(t)

to t
(a) Input (b) Output

Fig. 5.19 Transmission of a Pulse through a Distertionless All Phase Filter

Y(w) X(m) H(w)

KXl 2 - o,

Il

K Ix(w)| exp (= o 1)

Now, from the shifting property of the Fourier transform, we know that a
change in the phase angle in the frequency domain means a time shift in the time
domain. Therefore, output,

M = F' Y(w) = 5K |X((D)| exp (—-jor) = Kx(t—-1t).

The output pulse, shown in Fig. 5.18(b), has exactly the same shape as the input,
except that its magnitude everywhere will be attenuated by a factor K and it will
be delayed in ime by 1, .

The information content of a signal is in its shape. The shape determines the
relative magnitudes of its different frequency components. Multiplication by a
constant and delay in time do not alter the relative magnitudes of the frequency
components and, hence, the information content of the signal. In the present case,
all the information coded into input pulse can be completely recovered from the
output pulse. Filters having this property are called distortionless tilters.

I the input signal 1s known to contain only limited frequency components (i.¢.,
it is ‘band limited’), then the fiiter will not produce any distortion if its pass band
1s reduced, so long as it is greater than the signal bandwidth. The phase relation-
ship should of course be linear.

As mentioned earlier, a physical filter will always produce some distortion.
These distortions are classified into two parts: (i) the amplitude distortion and (ii)
the phase distortion. If the amplitude spectrum of the filter is not constant. it
produces amplitude distortion and if its phase spectrum is not a linear function of
w, it produces phase distortion.

5.6 The DFT and the FFT

Fourier transforms are also used in analysing field data in areas like remote sensing,
seismic signals, bioelectric signals (EEG, ECG, etc.). Because of the large number
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of data, recourse has to be taken to computer handling and analysis. The computer,
however, will accept only digital values of signals at discrete instants of time. The
Fourier transform determined from these discrete values of signal is called the
discrete Fourier transform (DFT).

The DFT will correspond more closely to the Fourier transform of the original
analog signal (or the continuous time signal) if the discrete instants of time, at which
the signal is sampled, are close to each other. For this reason, the number of signal
samples to be stored and handled by the computer will be quite large for the usual types
of signals in the application areas mentioned above. Both the storage space and the
computer time needed for computing the DFT may become prohibitively large. This
is 50 because the number of multiplications needed, hence the computer time required,
for calculating the DFT from N signal samples is proportional to N °.

A technique called the fust Fourier transform (FET), (developed in 1965) dras-
tically reduces the computer time for computation of the discrete Fourier trans-
form. In the FFT the nhumber of multiplications required is proportional to N log,
N. If the number of samples is N = 256, for example, the ordinary DFT will require
256" multiplications, while the FFT will require only 256x8 multiplications. Thus,
the computer time will be reduced by a factor of nearly 1/32.

GLOSSARY

Fourier Transform:  The Fourier transform of a time function f{2), satisfying the Dirichlet conditions,
18 given by,
Flw) = r A e dt.

The time function f{r) can be obtained from the frequency function F{©) by the inverse Fourier
transform,

= ﬁ Jio Flwy o' dw.
This pair of transforms is symbolically represented by f{f) <> F(w).

Shifting Property of Fourier Transform:  If the time function /(1) is shifted by an amount 1, its Fourier
transform is multiplied by exp (jor), i.c., if i «> Fl), then fit — f) & Flw) exp
(— jor).

Differentiation and Integration Property: 11 < F(w) then,

0]
¢

i > jw F(w)

and J_/(I) dr & l(_;n) .

Impuise Function:  As a ‘generalised function’ the unit impulse 8(t) occurring at ¢ = 0 is defined by,

[ & a = f0)

where function f{1) is continuous at ¢ = 0. As an ordinary function it may be thought of as the
limiting case of a sequence of pulses of unit area, duration A and height 1/A as A — 0.
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Impulse Response:  The output of a linear, initially relaxed system to a unit impulse input is calied its
impulse response and is represented by the symbol A(r). The Fourier transform of unit impulse is 1.

Convolution Integral:  The convolution between two functions fi(1) and fa(1) is given by,

noenn = | h@pe-vdr

Convolution Theorem: Let h(1) & H(w) ,x() & X{w) and y(1) «» Y(w). i y{(1) = x(1) * h(1), then
Y{w) = X(w). H{w).

System Function:  The Fourier transform of the unit impulse response A(1) is called the system function
H(®), ie., H@) = ¥ [h()].

Filters:  Any device used to either extract or suppress certain frequency components from a given
signal is called a filter. A Jow pass filter suppresses high frequencies but allows low frequency
components to pass through it. A high pass filter suppresses low frequencies and passes high
frequencies. A band pass filter allows frequencies in a certain frequency range to pass through
it and suppresses all frequency components above or below this pass band.

Distortions ina Filter:  1f the amplitude spectrum of the system function H(w) of a filter is not constant
w.r.t. @ in its pass band, it produces amplitude distortions. If its frequency spectrum is not a
linear function of w, it produces phase distortions.

PROBLEMS

5.1.  Determine the Fourier transform for the following functions of time.
W fin = e u).
() fin = 2a/@+7)
W gy = e
W iy = [ =1y 1] € u,
5.2.  Determine the Fourier transform and sketch the spectrum for the functions of time described
by Fig. 5.20¢a-d).

t(t)
A
a -t
{a) (b)
t(t) £(t)
W0F-—17———-
2l
! .
7 3 4 2 3 4
(c) (d)

Fig. 5.20
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Let f{1) <> F{w). Prove the following properties of Fourier transforms:

® Scaling: flar) < T?)J F [%]

(i) Frequency modulation: f{tyexp (juwg 1) <> F {0~ o).
(iii)  Frequency convolution: ¥lfi () . (0] = 1/2n . Fy{(0) * F2(w)
where fi(t) & Fi(®) and f2 (1) & F(w).

Prove the statement that the convolution of a function with an impulse is the function itself,
e,

= su-vsw a
Determine and sketch the impulse response of a second order system with

@, = 2 rad/sec and £ = 0.5.

The impulse response of a system is given by A(r) = re” , 1 > 0. Determine and sketch
its response to a triangular pulse of magnitude |, duration 2, centred at 1 = 2 using (i) the
convolution integral and (ii) the Fourier transform.

Determine and sketch the voltage across the capacitor of a series RC circuit when its input
is a voltage pulse of amplitude { /A and duration A, with: (i) A = 10 RC; (ii)A = RC; and
(iii) A = 0.1 RC What conclusions do you derive from a comparison of these three cases?

The amplitude spectrum of an amplifier is constant over the frequency range 0-1 kHz. tts

phase spectrum is given by £ H{w) = -2 x 10_3/'radians where fis the frequency in Hz.
Determine the minimum duration of a rectangular pulse which can be amplified by this
amplifier without distortion.

A filter has the system function
H(w) = ju/(l +jaw).
(i)  Plot the frequency response of the filter and, hence, determine the type of the filter

(i1)  Find its output for a single sine wave input.



CHAPTER 6

Laplace Transform

LEARNING OBJECTIVES
Atter studying this chapter you should be able to:
(1) determine the Laplace transform F(s) of any function of time f(1);
(i1)  determine the transfer function models of linear time invariant systemns;

(1)  determine the Laplace inverse of a transtorm, using partial fraction cx-
pansion; and

(iv) determine the response to linear systems to any type of input, non-
period or periodic, with or without initial conditions.

A non-periodic function of time f (¢ ) can be represented in the frequency
domain by its Fourier transform F (), provided it is absolutely integrable in the
sense,

_[_Z LF)) dt < oo

However, many useful functions-like the step function, the ramp function. the
exponentially increasing function—do not satisty this condition and therefore do
not possess a Fouricr transform.” This difficulty is overcome in the Laplace trans-
tform by resolving the time function into decaying sinusoidal components. The
frequency variable then becomes a complex frequency s = ¢ + jw. Thus, the
Laplace transform is a generalisation of the Fourier transtorm and is perhaps the
most powerful tool in the analysis of linear system.

’ Fourier transform for such functions can still be defined in terms of a limiting case of sequences.
Howevur, Fourier transforms, so defined, contain singularity functions of frequency and hence
the analysis using such functions is not so straightforward.
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6.1 From Fourier Transform to Laplace Transform

Let f(¢) be any function, including those which do not converge to zero as 1 — oo
(like a step function) and hence do not satisty the integrability condition of the
Fourier transform. To promote convergence of this function, let us multiply it by

(2R3

an exponentially decaying factor ¢7°’, where the value of the real constant G is

such that,
[T rme=idi< o
Then, function f(7) e”°’ will have a Fourier transform given by,

F (o)

I_: (1) exp (-G 1) exp (—jwu) dt

J7 fwexp (- +jo) dr.

Giving (0 + j ) a new symbol, 5, i.e., s = G + jw, we get,

F) =" f) exp (~stydt. 6.1y

F(s) is called the Laplace transform of f(t) and is defined by eqgn. (6.1). To get the
inverse Laplace transform we start with eqn. (5.4) for the inverse Fourier trans-
torm which states that,

1 - jar
10 =y [T F@er do.

Change the variable of integration in this equation from wto s = 6 + j®. Then, do
= ds/j. The limits of integration @ = — oo and ® = + o« become § = G — j e and
§ =0+ joo. With these changes eqn. (5.4) becomes,

f@ = 27;1 fc: F(s) exp (st)ds. (6.2)

Equations (6.1) and (6.2) define the direct and the inverse Laplace transforms
denoted by F(s) = £ (f) and f(1) = £~' F(s). The pair is denoted by £ (1) <> F(s).

In the analysis of physical systems the values of input, output and other vari-
ables are usually counted after an instant t = 0, the time at which the input is
applied to the system. That is, the values of functions prior 1o r = 0 are usually
zero. Hence, the lower limit of the defining integral (6.1) may be made zero, i.c.,

F(s)= 7 f0) exp (-snydr. (6.3)

The Laplace transform defined by eqn. (6.3) is called the unilateral Laplace trans-
Jorm as opposed to eqn. (6.1), which is called the bilateral Laplace transform. We
are concerned only with the unilateral Laplace transforms.



148 Linear Systems Analysis

The complex variable s = 6 + jo and can be represented graphically in a ‘com-
plex s-plane’ or simply the s-plane. In the s-plane the real or the x-axis is the
variable ¢ and the imaginary or the y-axis is jo. A particular value of s = s, is
defined by its real and imaginary coordinates ¢, and jw,, as shown in Fig. 6.1.

Fig. 6.1 The s-plane

The convergence factor o, needed to force a function f{¢) to converge and hence
have a Laplace transform will be different for different functions f{r). In fact for
every f(1) there will be a range over which ¢ may take its values. “This range of
will define a region in the s-plane. This region is called the region of convergence
of the Laplace transform of f{t). The regions of convergence for some of the func-
tions are shown in Fig. 6.2. For a function like u(z), any positive value of ©, i.c.

o

(Excluding jw
axis)

rf(t)=u(t)

or
I/f(t ) =t{ertN)
—t

I 7

t1) =&t jw /
|4—t % =0
+a V

Fig. 6.2 Regions of Convergence for Some Functions

]
T
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o > 0, is sufficient to cause convergence. Hence, the entire right half of the s-
plane, excluding the jo axis, is the region of convergence for the Laplace trans-
form of a step function. Ramp function f (1) = ¢, or any other power of ¢, will also
have the entire right half of s-plane, except the jw axis, as its region of conver-
gence.

The above graphical considerations also give us a correlation between the
Fourter transform and the Laplace transform. Since replacing the variable s by jw
in the definition of the Laplace transform gives the definition of the Fourier trans-
form, it may be thought that replacing s by j® in any Laplace transform expression
will give the Fourier transform of the corresponding time function. However, all
the functions which have Laplace transforms do not necessarily have Fourier
transforms. In fact, only those functions will have a Fourier transform for which
¢ =0 gives a valid Laplace transform. In other words, if the jw-axis is included in
the region of convergence of the Laplace transform, only then replacing s by jo
converts the Laplace transform into the Fourier transform. If the jor-axis is not
included in the convergence region, it means that the function is not integrable
and, hence, has no Fourier transform.

From the above discussion, it should not be assumed that we can always tind

some ¢ which will make any given function convergent. For functions like ¢ or
¢ there is no value of ¢ which will make the function convergent when multiplied
by exp (- of). Therefore, such functions are not Laplace transformable. Functions
for which there is some value of real constant @, such that,

f: If(0) exp (G17)ldr < oo,

are called functions of exponential order. The Laplace transform is defined only
for such functions. Fortunately in linear system analysis we seldom encounter
functions which are not of exponential order.

6.2 Properties of Laplace Transform
Linearity: The Laplace transformation is a linear operation, i.e., if fi(£) &> Fi(s)
und f>(1) — Fa(s), then,

(AL +BLOT D [AF(s) + BF2(s)]. (6.4)
This property can be verified directly from the definition of the Laplace transform.

Shifting property: This is a direct extension of the shifting property of the Fourier
transform, given in Section 5.2. If a function f{¢) is shifted to the right by an
amount g, the Laplace transform of the shifted function is given by,

L[/([ - I])) H(l - I())] = J: f(t — ) e™ dr.
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Note that the lower limit of integration has been shifted to #,, because the function
is zero in the range 0 to #,. Changing the variable of integrationto T = r— 1, we
gett=1 + t, and hence, dt = dt. The lower limit of integration changes back to
zero.

With these changes, we have

Life =l =] fe-n e a
='|-(:°f(t) exp [—s(T+ f)]ldrt

= exp (- st) J: f(r) exp (=s1)dT = exp (—sty) F(s5).
That is, if f (¢) &> F(s) then,
f{t — 1)) & exp(—tys) F(s) (6.5)

This is called the time shift property.
Multiplication by ™ . Let f (1) <> F(s). Then,

Lle 1= f0 e di= Fsva). (6.6)

This 1s called the frequency shift property.
Time differentiation and integration: 1n this case we have,
) dz (t) _ AP — 5
L|: ar ~J-“f(t)e dt .
Integrating by parts we get,

oo

i

+ s f: () e dt

0

[Frwerd=roer

- f(0) + sF(s)

il

or LIfP@]=sF() - f0). (6.74)
Extending the result to the nth derivative we get,

LIS ()1 =s"F(s) = s O =572 f(0) = .= ["7' (0). (6.7b)
Similarly,

L [.[,: yEU] dl:| = _[: [ ‘I £ dt:I e dt.

[ntegrating by parts we get,
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o0

w1 [T e d.

{

L[J(: f(t)a't] - = J £ dt

The first term on the r.h.s. is equal to zero. The second term is F (s)/s.

[J f(t)dt] FS(S) (6.8)

Multiplication and division by t: Differentiating F(s) w.r.t. s,

dF(s) _

PO [y % a=-["115010var.
Therefore,

cif) = - 426, 6.9)
Further,

Jirwas=]" [ [7rw e dt] ds.
L

Interchanging the order of integration we get,

“Feyds = | TFe | [T erds [de= [T LD e g
.[_\ Jq) J._, -[()

Therefore,

L[@J:f‘” F(s) ds (6.10)

Initial and final value theorems: From eqn. (6.7a) we have,

LI OV =]] e di=sF) - £O).
Tn the limit, as s —> oo, the integral term becomes zero. Therefore,

lim s F(s) = f(0). 6.11)
Equation (6.11) is called the initial value theorem and permits the evaluation of the
initial value of a function tfrom its Laplace transform, without the need for tinding
its inverse. If f(1) is discontinuous at =0, eqn. (6.11) gives the value of f (0) when
zero is approached from the positive side, i.e., f(0%).

Now, let s approach the lower limit, i.e., s — 0. Then, from eqn. (6.7a) we
have,

lim f: fryedr = lim [sF(s) — [(0)].
R 1] ]



152 Linear Systems Analysis

With s — 0, the left-hand side integral becomes,

[ 75 wde=iim 7o) - £(0).

Theretore,
lim sF(s) = lim f(f). (6.12)
v i) 1 oo

Equation (6.12) is called the final value theorem.

6.3 Laplace Transforms of Some Common Functions

The Laplace transforms of most of the commonly encountered functions can be
derived from a knowledge of the transform for only a few elementary functions,
and from the properties listed in the previous section.

In these derivations, it is assumed that f(¢) = 0 for 1 <0, i.e.. all the functions are
multiplied by u (7).

1. The exponential function, f (¢) = ¢*:

L [eml — J.(;“ e{ll e-,w d[ = J.(:ﬂ e—(‘\—-u) dt = (6'3)

(s —a) .
2. The unit step function, £ (¢) = u (z):

Il ¢ is made equal to zero in the exponential function ¢, we get the step function.
Theretore, making a = 0 in eqn. {(6.13) we get,

Lu() = (6.14)

1.

s

3. The sine function, f(f) = A sin ®:

Aexp (jwr LA exp (—jot)
2 2

L]Asingt] = L

Using relation (6.13) for writing the Laplace transform of the exponential terms
we get,

L[Asinmt]=i[ L — :|

2j | s—-joo s+jo

Simplifying the r.h.s. we get,

A
LlAsinwt] = 2. (6.15)
S+
4. The cosine function, f () = A cos ot:
Following the same procedure as for the sine function we get,
LlAcosar] = 522 (6.16)

2+’
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5. Decaying sine and cosine functions:

Using the frequency shift property [eqn. (6.6)], eqns. (6.15) and (6.16) directly

give,

. A®
= = s ‘;‘l
£ LeTshol] = e T o
i _ _A(s+a) )
Lle“coswt] = —{.s+a)2+m2 (6.18)

6. The ramp function, f (1) = t:
Treating the ramp function as a multiplication of the unit step function by 1, i.e.,
[(1) = ru(1), and using eqn. (6.9) for multiplication by ¢ we get,

_d(s) _ _12. . (6.19)

Lltu@] = 2le $

7. Powersofr, f(1)=1"
A direct extension of the considerations for the ramp function gives,

n!
Srni

L]r] = (6.20)

8. f(h=te™ )
Using eqgn. (6.19) for the ramp function and the property given by [eqn. (6.6)] we get,

—ar ] — _L_. .
Llte”] = Ghap (6.21)

9. f(n=01-e"yu(n):

This frequently encountered function is the unit step response of a first order sys-
tem. From the linearity property we have,

LIfO]=L[u@®—-e™ u(@]
gk Ao W
s (s+a) - s(s+a) (6.22)

10. f(n=Ae"sin(w+0):

Let us first find the Laplace transform for A sin (@t + 8) and then use eqn. (6.6).

L [Asin(wt+6)] =A L [sin®tcos 8+ cos of sin 8 ]

= A [mcosﬁ ssine]

+
S+aF S+

el wcos O +5sin B
- s+ w?
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+ Therefore,

wcos B+(s+a)sin B
(s +a)+ o’

L[Ae"sin(wt+8)] = A {6.23)

V1. Rectangular pulse:
Expressing the pulse as a sum of two step functions, £ (¢) = u(t)~u(t - T), and using
the shifting property [(eqn. 6.5)] for the second term we get,

1 A
rra (©24)

LIf1 =

12. Unit impulse:

In the definition [eqn. (5.13)] of a unit impulse,

J.:., S(fBdt = flo),

we substitute f(r) = ¢™ to get the Laplace transform of the unit impulse. Since we
are assuming all functions to be zero for ¢ < 0, the lower limit of the above integral
can be made zero. Thus, just like the Fourier transform, we have,

L18W1=]"8@erdr=(eM=1. (6.25)

The Laplace transform of an impulse of strength k will be simply k and that of
S (t—1) will be ™.

For convenience, the common functions and their Laplace transforms are listed
in Table 6.1.

Table 6.1 Laplace Transforms of Common Signals

Time function f(t) Laplace transform F (s)
L& /(s — a)
2w 1/s
3 A sin o Aw/ (.v2 + coz)
4. Acosar As! (5 + )
5. Ae“sinwr Aw/ (s + a)* + ©7]
6. Ae™ cosaf AG+a)/ (s +a) +w')
7. 1/52
8 4" ntf s
9. re™ 1/ (s+a)
10. e n!/[(s+a)"”]
i 1-e a/s(s+a
12. Ao sin(wr+0) A®cos 0+ (s+a)sin 6] /[ (s + a)’ + )]
13.  Rectangular pulse Q-e™s

Unit Amplitude
DurationQ-T

14. Impulse of strength k, k &) k
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6.4 The Transfer Function

Let x (£) <> X (s) be the input to a system and k() <> H(s) the impulse response of
the system. Then the output y(t) <> Y(s) in the time domain is given by the con-
volution integral,

y0 =] x@he-vadr. (6.26)

Taking the Laplace transform of both sides of eqn. (6.26) we get,

Y(s) = J: e [ J“ x(t)h(r—t)dt}dt.

The upper limit of the integral inside the brackets can be made e without altering
its value, because h (t — 1) = 0 for T > . Also, the order of integration can be
interchanged. Thus,

Y(s) = _[ " x (1) [I: e h(t—'c)dt]dr.

0

From the shifting property [eqn. (6.5)], the term inside the brackets is equal to exp
(— sty H (5). Therefore,

Y(s) = H(s) J.: x(yexp(—stvydt = H(s) X (s). 6.27)

Equation (6.27) is the result of application of the convolution theorem to the
Laplace transform. A similar result is relation (5.24) for the Fourier transform. It
means that the effect of convolution of two functions in the time domain is the
multiplication of their Laplace transforms in the s-domain. Theterm H ()= L[k
(1) 1 is called the transfer function. Thus, if the transfer function H (s) of a system
is known, its response to any input can be found out, using relation (6.27). This
fact 1s the cornerstone of the linear systems analysis.

Since relation (6.27) is an algebraic relation we could also write it as,

) = Y8

H(s) =+ o) (6.28)
Equation (6.28) gives another way of defining the transfer function of a linear
system: it is the ratio of the Laplace transform of the output to the Laplace trans-
form of the input for an initially relaxed system. (Note that the impulse response
is, by definition, the response of an initially relaxed system to a unit impulse.)
Thus, if we know the Laplace transforms of the input-output pair, we can find the

transfer function of the system.

It can be seen that the system function H (®), defined in connection with the
Fourier transform, and the transfer function H (s) defined here, are very much
similar to each other. In fact, subject to certain conditions as mentioned in section
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6.1, H (w) can be obtained from H (s) by replacing s by jw. However, H(s) is more
general in the same way as the Laplace transform is more general than the Fourier
transform.

Since the knowledge of H (s) completely characterises a system, it is also
known as the mathematical model of the system in the s-domain.

The Laplace transform method of analysis makes it possible to obtain the out-
put of a linear system to any type of input: periodic, non-periodic, converging or
non-converging (provided it is of an exponential order). The basic steps in the
analysis procedure may be summarised as follows:

(1) Obtain the Laplace transform of the input X(s).
(2) Obtain the transfer function H (s).

(3) Multiply the two together to get the Laplace transform of the output,
e, Y(s)=X(s) H(5).

{4) Find the Laplace inverse of Y (5) to get y (1).

The first step, i.e., the determination of the Laplace transform of the input has
already been covered in the previous sections. We now discuss the second step.

Determination of transfer function:

If the analytical expression for the impulse response £ (¢} of a linear system is
known, the determination of its transfer function, which is the Laplace transforin
of h(1), is quite straightforward. However, if we have to start from the given sys-
tem itself, which is most frequently the case, we formulate the differential equation
model first and determine the transfer function from this differential equation.
This is illustrated by the following examples.

Example 6.1:—Transfer function of a d.c. generator: When considered as an
clectromechanical energy converter, the'd.c. generator converts mechanical power
into electrical power. In many control applications, a d.c. generator is used as a
power amplifier, amplifying the small input power to its field winding into a very
large armature power output delivered to the load. In the family of amplifiers, the
d.c. generator is called a ‘rotating amplifier’. Let us determine its transfer func-
tion, treating the signal voltage applied across the field winding as the input and
the voltage across the armature terminals as the output, under the no-load condi-
tion.

Let us first write the system equations with reference to Fig. 6.3. The equation
relating the input voltage to the field current is given by,
di;

L=+ Ry =, (i)
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-0 ¢ O

Fig. 6.3 A d.c. Generator
The field current produces magnetic flux ¢, which in turn produces the output
voltage v,. In the portion prior to saturation, the magnetising curve of the d.c.
generator may be assumed linear. In that case, the output voltage v, is a linear
function of the field current /, i.e.,

v, = kiy. (@)
Combining eqns. (i) and (it) we get the differential equation of the system as,

Lav, R, _ (iii)
kK dt Tk TV !

Taking the Laplace transform of both the sides, with initial conditions assumed to
be zero, we have,

SV + RO =Y. (i)
where v, () >V, (s)and v, (1) & V; (s).

From eqn. (iv), the transfer function H (s) = V, (s)/ V, (s) is given as,

1 __k WL
(L/k)s + Rk~ Ls+R ~ s+FR/IL

H(s) = (6.29)

The input may be viewed as the ‘cause’ and the output as the ‘effect’. Thus, the
transfer function relates the effect to the cause. This overall cause-effect relation-
ship is made up of a number of links in the form of a cause-effect chain. In the
previous problem, for example, the first cause v; produces an immediate effect i;.
Treating i; as the cause, we find that it produces a flux ¢ as the effect. Next, the
cause ¢ produces the effect v,. Each one of these cause-effect links gives rise to
one system equation.

Unlike the previous example, which is quite simple, other problems may have
a large number of cause-effect links and, hence a larger number of equations. One
method of finding the transfer function is to combine all those differential/al-
gebraic equations into a single equation, relating the input and the output, and then
take its Laplace transform. A simpler method is to take the Laplace transform of
each system equation and then combine these equations to get the overall transfer
tunction. This second method is easier because the operation of taking the Laplace
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transform converts a differential equation into an algebraic equation, and combin-
ing these algebraic equations is easier than combining differential equations. The
approach to be followed is the same as that described in Chapter | for making the
differential equation model of a system.

Example 6.2:—Vibration table: High reliability electronic sub-assemblies for use
in locations which are subjected to severe vibrations, like military mobile units,
locomotives, aircraft, etc., have to be pretested for failures due to vibration. For
this purpose, sample units are placed on a vibration table and vibrated continuous-
ly at controlled frequencies and amplitudes for a specified period, say, eight hours.
A schematic diagram of the vibration table is shown in Fig. 6.4. The variable
frequency alternating current flowing in the coil reacts with the flux of the per-
manent magnet yoke to produce an oscillatory force on the coil and the table at-
tached to it. The test sample is suitably secured to this vibrating table. The object
of analysis here is to determine the transfer function relating the output x(t), the
vertical displacement of the plateform, to the input v(t), the voltage applied to
the coil.

Test sample

Ledt spring’

Variable
equency

source C’9 v

3 Permanent
-1 magnet

TI777 777777777 7777777 77/ 77777777

Fig. 6.4 Vibration Table

The input voltage v (f) = Vcos ot produces a current i in the coil. The
relationship between v and i can be obtained by applying Kirchhoff’s voltage law
around the electrical circuit. The applied voltage will be opposed by the voltage
drop across the resistance R and inductance L of the coil. In addition, there will be
an opposing back e.m.f. due to the motion of the coil in the magnetic field of the
permanent magnet. Its magnitude will be proportional to the linear velocity of the
coil. Thus, the electrical equation is,

, di - .
R1+LF;+K,x=v. (1)

Now, treating the current as the cause, the effect it produces is the force f. Since
the magnetic flux is constant, f and i will be linearly related. i.e.,

Kyi=f. (ii)
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The force f, acting on the mechanical system, produces a displacement x. Neglect-
ing damping due to air friction, the mechanical equation is,

MXx+ Kyx=f. (ii1)
where M is the total moving mass and K the spring constant of the leaf spring.

Eliminating the algebraic eqn. (ii) by writing Ky for f in eqn. (iii) and taking
this term to the left we get,

-Ki+Mx+Kyx=0. (iv)

Taking the Laplace transform of the two system eqns. (i) and (iv) (assuming all
initial conditions to be zero) we get,

(R+ LI+ Kys X(s) = V(). (v)
—KI(s) + (Ms* + K3) X{(5) = 0. (vi)
Combining the algebraic eqns. (v) and (vi), we get the transfer function,

_X(s) _ K;
TV(E) O (R+LyMs* + K3) + K Ky s

H(s)

K;
T LMs* + RMs® + (K, K, + KsL)s + K3 R

(6.30)

The differential equation model of the system shows that it is a third order
system. Accordingly, the denominator of the transfer function, eqn. (6.30), is a
third order polynomial. This is a general property of the transfer function, i.e., the
order of the denominator polynomial is the order of the system.

Transfer function from the differential equation model (general case):

A general nth order system is represented by an nth order differential equat.on,

d'y

da! d
o ta, ot v g @

+ = .
dr- dt ayy = x (1)

Taking the Laplace transform of both sides of this equation, with initial conditions
assumed to be zero, gives,

(" +a,, S '+ ras+a) Y(5) = X(5).
Therefore, the transfer function of the system is,

Y 1
X (s) S +a, S+ +as +a

H (s)

In general, the governing differential equation may contain derivatives of input
also: The system equation will then be,
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d"y " dy
+ n- * 7
dr T4 g Tyt wy
d"x d" ' x dx
= + by PRI + b Iw‘b«)y

and its transfer function,

- Y(S) _ Sm + bm_1 Sm_] + - + b[S + b()
X)) s"+ a0 "+ +as+a

6.31)

Equation (6.31) is the most general form of the transfer function of a linear system.
It consists of a ratio of two polynomials in s i.e., it is a rational function of s. The
powers of s are all integral powers. Another condition satisfied by physical sys-
tems is that the order of the numerator polynomial m is less than or at the most
equal to the order of the denominator polynomial. To demonstrate the need for
this condition, let us take an example which violates this req+:ircment. Let,

S+ 257 +25+ 1
S +2s5s+2

H(s) =

Performing long division, it can be rewritten as,

l

HO =s+ 5 5700

If the input to this system is x (£) <> X(s), then the output y(#) <> ¥(z) will be given by,

- __X()
YO =sX60+ 7 5772

The Laplace inverse of the first term would be the derivative of the input. That is,
if the input is a step function, the output will have an impulse term. Such a be-
haviour is not encountered in physical systems. In dynamic systems, because of
the differential relation, the input is always integrated to give an output, never
differentiated. At worst, ¢.g., in a static system, the output may be a constant times
the input. And hence the conclusion that in the transfer function of a physical
system, the order of the numerator polynomial is either less than or, at the most,
equal to the order of the denominator polynomial.

The form of response of a system is very much governed by the denominator of
its transfer function. Hence, the denominator is called the characteristic polyno-
mial of the system and the equation formed by equating it to zero, i.e.,

Sn+ a, -1 Sﬂ_l + .- +a|s+a(,=0
is called the cheracteristic equation of the system.
Poles and zeros:

Factorising the numerator and the denominator the general transfer function, eqn.
(6.31), can also be written as,
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-z (s—2z) - (5—2m)
HE) = =p) 5=p) - (5-p)

(6.32)

There will be m factors of the mth order numerator polynomial and n factors of the
nth order denominator polynomial. Constants py, . . ., p, will be the roots of the
characteristic equation. Similarly z,, . . ., z,, will be roots of the equation 5" + b,, |
8" '+ ...+ bys+by=0. These constants could be real or complex. Some of them
could also be equal.

When the comp'lex variable s assumes any one of the values py, . . ., p, the value
of the transter function H(s) becomes infinity. Hence, these values, i.e., p,..., p,
are called the poles of the system. Similarly, when s assumes any value equal to
21, ...y 2wy H(s) becomes zero. Hence, 74, ..., Z,, are called the zeros of a system. An
nth order system will always have n poles. The number of its zeros is not fixed and
can have any value m, so long as m < n. When the poles or zeros are complex, they
will always occur in pairs as complex conjugates because the coefficients a’s and
£’s in the numerator and denominator polynomials are all real numbers.

In Section 6.1, we defined a complex plane or the s-plane, with G as the x-axis
and jw as the y-axis, over which the variable s = ¢ + jo assumes values. Poles are
special points in the s-plane where the function H(s) and its derivatives do not
exist. The magnitude of H(s) tends to infinity at these points. The poles are there-
fore called singularities of H(s).

Example 6.3:— Determine, and display graphically, the poles and zeros of the
transfer function,

2 -1

H(s)=sz+4s+ 13

Solution: The roots of the numerator and denominator polynomials are z;, 2, =%
I 'and p, pp =-2 £ 3. Thus,

s+D-1 _+hHs-1D)
(5+2+j3) (s+2-j3) ~ [(s+2)*+37

H(s) =

The pole-zero diagram is shown in Fig. 6.5. This particular transfer function has
two real zeros: one in the right half and one in the left half of the s-plane. It has
two complex poles in the left half of the s-plane.

Pole-zero diagrams are very useful in the analysis of systems because all the
dynamic properties of a system can be understood from a knowledge of the loca-
tion of the poles and zeros of its transfer function.

6.5 Partial Fraction Expansion

The third step of the analysis procedure is to multiply the transform of the input
X(s) and the system transfer function H(s) to obtain the transform of the output
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bjw

Fig. 6.5 A Pole-Zero Plot

¥(s). This step requires no elaboration. We now come to the last step, i.e., finding
the inverse transform of Y(s) to get y(¢).

Application of the fundamental inversion formula (6.2) gives,

1 a+je

bt
XTI Y(s) & ds.

y@ =
The integral above indicates contour integration in the complex s-plane and may
be evaluated using the theory of complex variables. The evaluation of y(¢), how-
ever, can be done more simply in most of the cases using the method of partial
fraction expansion.

Y(s) is a product of two functions, H(s) and X(s). As we have already seen in
the previous section, H(s) for physical systems is a rational function of 5, i.e,, a
ratio of two polynomials in s, with the order of the denominator polynomial higher
than, or equal 1o, that of the numerator polynomial. A look at Table 6.1 of the
Laplace transform pairs shows that the transforms for most of the common func-
tions are also rational functions of s with the highest power in the denominator
greater than that of the numerator. (Note that items 13 and 14 do not confirm to
this pattern.) Therefore, the product function ¥(s) can also be expressed as a ratio
of two polynomials in s, i.e.,

CN(E) S ST o + 0
_D(S)_ d,,Sn+d,,_|S"_l+"'+d|S+d()

withm < n

Y (s)

where ¢’s and d’s are real constants, and m and n are integers. Factorising the
denominator we get,

MN(s)
dy(s=p) (s=p) - (5—pa)

Y(s) = (6.33)

vhere py, ..., p, are the roots of the denominator polynomial D(s).
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We now discuss the techniques of partial fraction expansion of expression
(6.33) for two cases: (1) when all the roots are distinct and (ii) when some of the
roots are repeated.

Partial fraction expansion for distinct roots:
The procedure is illustrated with the help of the following example.
Example 6.4:— Determine the Laplace inverse of the output transform,
s+ 1
Y() = 4——5————
) 4+ 55+ 65
Solution: Factorising the denominator polynomial,

s+ 1

() = s(s+2)(s+3) ‘

Since all the roots of the denominator polynomial, s =0, — 2, - 3, are distinct, the
expression for Y(s) can be expanded into partial fractions as

o s+ 1 _i As As
Vis) = s+ (s+3) s * s+2 * s+3

0]

To obtain the value of the constant A,, we multiply both sides of egn. (i) by s and
then equate s to 0. That is,
_ A|+ AzS + A}S
=0 S+2 S+3 v = (}

The effect of the above operation is that the r.h.s. will contain only A,, Hence,

s+ 1 '
s(s+2)(s+3)

§

A _~L-s —l.
DT S(s+2) (s+3) ., 6

Similarly, for A, we multiply both sides of eqn. (i) by (s + 2) and then equate s to
—2. Then,

U RS I I B |
ss+3) | ., —-2x1 2
and
A= s zs++]2) s = TZ '
Therefore,
s+ 1 16 12 273

Y(s) = —————— =

s+ DG+3) s +s+2—x+3 ' (1)

The above result can be readily checked by evaluating both sides for some value
of s, say s = |. Then,
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2 |
Lhs = 15354 T %
b o b2 1
r.hs. = 6 + 73 34 6

The result'of this partial fraction expansion is that the response transform ¥{(s)
has been expanded into a number of simpler terms. The inverse transform for each
of these simple terms can be readily found by referring to the table of transforms.
Each term ot the form A/(s + a) will have its inverse as A ™. Therefore, perform-
ing the inversion operation on eqn. (ii) term by term we get,

S i | A2 B
LY=L [s}-FL |js+2} £ |:s+3}

-2 2_
e-r__e.'&r_
3

y ()

1
gu(t)+

i

b | —

Generalising on the basis of the above example, an nth order output transform
can be expanded as,

A A A,
Y(s) = L LA W (6.34)
s+ ” Ay +[)2 s + pn
The valuc of the nth constant A, in eqn. (6.34) is given by,
A, = Y(s) (s=p)l_, - (6.35)

n the previous cxample, all the roots of the denominator polynomial are real.
Let us now take an example with complex roots.

Example 6.5:— Determine the Laplace inverse of,
Y() =5 + 55+ 8s+6).
Solution:  Factorising the denominator,

— 5 .
T (543 (P 4+25+2)

Y (s5)

The roots of the second factor in the denominator are —1 £ j1. One way of finding
the partial fraction expansion would be to treat the complex roots also in the same
fushion as the real roots and proceed as in the previous problem. That is, write Y(s)

HEW

5
(s+3)(F+25+2)

Y (s)

A . Az + As
s+3 s+ 1+ (s+1—-j1)
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The constants A, and A; will then be complex conjugates. Evaluating them and
combining their Laplace inverses, which will be in the form of exponentials with
irnaginary exponents, will be somewhat tedious. An easier approach is as follows.

The second order polynomial term may be written as [(s + 1)* + 1] after com-
pleting the square, and treated as a single factor in the partial fraction expansion.
The numerator term assumed for this second order factor should be a first order
polynomial. That is,

= 5 — Al A25+A3 .
T = (s +3) ($*+25+2) s+3  [(s+1)P2+1%]- (M
A=Y +3) Loy = oo =

' T 9-6+42 0

To evaluate A, and A; we multiply both sides of the egn. (i) by the entire
denominator. Then the Lh.s. will be simply the numerator, i.e., 5, and

5=A("+25+2) + (A25+A43) (5+3).
Substituting the already calculated value of A, = 1, we get
5=(+A)s+ 2+3A+ A3)s + (2 + 34y).

Comparing the coefficients of like powers of s on both sides of this equation, we
get,

1 + A, = 0, therefore A; = — 1
2 +3A; =5, therefore A; = 1.
Thus,

1 -5+ 1

e = 3 6+ 12+ 17

Il

1 _ s+ 1 +2 | )
s+ 3 [(s + D+ 17] [(s+ 1) + 17]

A look at the Table 6.1 (items 5 and 6) shows that the second and the third factors
are Laplace transforms of decaying cosine and sine functions, respectively.
Therefore,

y() = LY () =€V ~etcost+ 2e sin 1.

Partial fraction expansion for repeated roots:

If some of the roots of a polynomial have equal values, we say more than one root
exists at the same point in the s-plane or that the root has a multiplicity greater than
one. The technique of partial fraction is somewhat different in this case, as il-
lustrated by the following example.
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Example 6.6:— Find the Laplace inverse of,

S+ 25+ 1

YO =

Here, we have a root of multiplicity 3 at s = — 1. In this case the partial fraction
expansion takes the form,

2

ve) == (tisl)tz = (sfl1)3 * (s;hl)2 * (s:‘-sl) 0
To evaluate A;, we multiply both sides by (s + 1)’ to get,

S+ 242 = A +AGE+HD) +AG+ 1P (ii)
Now equating s =— |, we get A, = |. That is,

A=Y@ s+ 1) oy
A, cannot be obtained by multiplying eqn. (i) by (s + 1)’ and equating s to —1.
Therefore, differentiate both sides of eqn. (ii) with respect to 5. This gives,

5’} s+ 25 +2) = dis (A) + % [Az (s +1)] + d% [As(s + 1)*]

or, 2s+2=0+A2+%[A3(s+1)2]. (i)

Now, equating s to —1 gives A; = 0. That is,
d 3
A = a.— [Y()(s+1)--y.
s

Similarly, for A, the formula is,

i &

As =51 42

[ Y(s) (s + 1)3]\-=-1'
Applying this formula, we get A; = 1. Thus,

i
T AT

Y (s)

Therefore,

y@ = H;_' + e"=[§+1] e’

Generalising on the experience of this example, if the jth root has multiplicity
k, then corresponding to it the partial fraction expansion should have terms,

Aji Ap Ay + Aj

Gl T erpy T T Grpr T )
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The coefficients are determined from the formula

1 k=1

A= e [ Y (636)

Ak*li! ds*” ==
Example 6.7:— Find the Laplace inverse of

s+ 1

TN

Here we have a root of multiplicity 2 at the origin and a pair of complex roots
at s =+ j2. Expanding Y(s) into partial fractions,

A A Ays + A
Multiply both sides by the denominator s* (s* + 4) we get,
S+ = A (F+4) + A 5(s*+4) + (A 5+AY) 5
= (A +A) S + (A + A) S + 4A,s + 4A4A,.
Equating coefficients of like powers of s on both sides of the equation we get,
A+ A =0, 4 + A, =0,4A =1, 4A = 1.
- This gives,
Ai=1/4, Ay = 1/4, A; = —1/4dand A, = — 1/4.

Therefore,

Q0 S U S —
T4 45 4GP+ 4) 4P+ 4

and

y() = L' Y(s) = % [t-}-u(t) — cos2t ~ % sin 2t]
Thus, we have the choice of either using formula (6.35) for the case of non-
repeated roots or formula (6.36) for the case of repeated roots or the method of
dividing by the denominator as shown in Examples 6.5 and 6.7 for determining the
coefficients (A’s). If the number of roots is small, say, 3 or 4, the second alterna-
tive is many a time easier. However, there is no clear-cut guideline as to which
method to select for a particular problem.

6.6 Analysis with Laplace Transforms

Having learnt the mathematical techniques for performing all the four steps of the
analysis procedure, we are now ready to solve some of the typical problems in
linear systems analysis, using Laplace transform techniques.
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Example 6.8:— The transfer function of an armature-controlled d.c. motor, relat-
ing the output speed to the input armature voltage is given by,

Determine the output speed as a function of time when the armature is suddenly
connected to a 240 V voltage source. Also determine the steady-state r.p.m. of the
motor.

Solution: The input is a step voltage of magnitude 240 V. Therefore, its Laplace

transtorm X(s) = 240/s. The output ¥(s) is given by,

240 x 0.03 _ 72 _
s(s+0.06)  s(s + 0.06)

Y(5) = X(s)H(s) =

Expanding into partial fractions we get,

7.2 A A,

Yo = 67000 s V5006

According to formula (6.35):

7.2
—_ = l
A =5 % 006) / =
A2 = 7—2 = - 120
5
y=—0.06
Therefore, Y(s) = 120/5s — 12045+ 0.06) .

Taking the Laplace inverse term by term we have,

y() = L7 Y(s) = 120 (f) — 120 ™%
The output is the angular speed w(s), i.e.,

o) = [ 120u () - 120 %'} rad/sec.
The steady-state speed is achieved as 1 — oo. Thus,

®(f) |, = 120 rad/sec. = 1150 rp.m.

This value of steady-state speed could have been obtained straightaway by using
the final value theorem [eqn. (6.12)] as,
2

.
0@ |50 =5Y6) |50 = ong = 120 radfsec.

Examination of the response y(2) indicates that it consists of two components,
120 u(?) and 120 ¢, The second somponent tends to zero as time tends 1o in-
finity. Hence, this is the transiest ¢oniponent of the response. The first com-
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ponent persists as long as the input remains applied. Hence, it is the steady-state
component of the response. The first component arises because of the term A /s
associated with the input and the second term from A,/(s + 0.06), associated with
the transfer function. Therefore, the first term is the forced response, while the
second is the natural response of the system. This is a general feature of the
response of any linear system. In general we have,

NG Ny ()
O = Dio) = GrpGep- - G+
and
X(s) = 220 s

T D) (stq)(s+g) - (s+q)

The partial fraction expansion of the output transform takes the form,

Nf(S)N2(S)
Y() = X(s).H(s) =
() = X&) H ) = o T Gap) G ray - 5+a)
Al An An+| An+r
== Py Dy B
s+ S+ p, s+ q s+q,

The output y(r) is given by,
s =LY =[Aiexppn+- - +A exp (—p D]
+ [Arexp g )+ HA L exp (= D]

The first bracket gives the transient response, which is a combination of the
natural modes of the system. The second bracket gives the steady-state or the
forced component of response. The method of evaluation of the constants A, A,
and A,, i, ..., A, indicates that their values are dependent upon both the p’s and ¢’s.
Hence, we conclude that although the form of the transient response is dependent
only on the system parameters, the actual value depends both on the system-
parameters and the forcing function (or the input). This conclusion was also
derived in Chapter 3 in the classical method of analysis using differential equa-
tions.

Example 6.9:— Now let us alter the previous problem as follows. Assume that
the applied voltage is varied linearly from 0 to 240 V in 2 minutes (by a thyristor
converter) and then kept constant at 240 V. Determine the output speed as a func-
tion of time.

The input signal is shown in Fig. 6.6. As a function of time, it can be written

as,

x() =2t = 2(t — 120)u (1= 120).
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260~~~

| -

120 tin secs

Fig. 6.6

That is, the input is a sum of two ramp functions: one starting at ¢ = 0 with slope
+ 2 and the other starting at ¢ = 120 sec with slope — 2. Using the time shift proper-
ty [egn. (6.5)] we get,

22
X(s)zg_i___ien(}..

t

0.03 22 s
Y(s) = X(s).H(s) = 006 |:;_2_ -5 e 120.:|

__006 006
T S (s+0.06) s (s+0.06)

« The Laplace inverse of the second term will be simply the first term shifted to the
right by 120 seconds. Therefore, let us first determine,

_ o[ o0 ]
n@ =L [f(no.o:s)]

Now,

0.06 A A As

2(5+006) & s 5+006

From eqn. (6.36) for repeated roots, we have,

A o006 .| _ 006
"7 2 (s+0.06) s+006 | _,
4| @ 006 - _ _006
27| ds s+0.06 -0 ~ (s+0.06) y=0
- 1637
-7 006 '
0.06 0.06
Ay = —————— (5§ + 0.06) =
*T (s +0.06) NPTV S
)
- = 637

0.06
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':l’herefore,
1@ = nu@) = 1637 u()+1637 .
The complete response will be,

y{®

yi(®—y (@t —120)u(z-120)

tlu(@)—(@— 120y u(t—120) |- 1637 [u () —u (t—120) ]
+ 16.37 [e—()()(»l _ e-(,()(14l2())l u(t___ 120) 'I .

The plot of the responses for Examples 6.8 and 6.9 are shown in Fig. 6.7(a) and
6.7(b), respectively.

A&nin rad/sec ‘}mm radisec
1504
1201 120 -
0 Input e
90 904
/
60- 60 // utput
30- 304 //
——— v T —- ) T T +—7 Y ——~
0 30 60 90120 150 9 30 60 90 120 150 180 210 20
tin sec tin sec
(a) (b}

Fig. 6.7 (a) Response of Example 6.8 and (b) Response of Example 6.9

Consideration of initial conditions:

The transfer function is defined for an initially relaxed system. That is, the very
definition of transfer function assumes that all the initial conditions are zero. 1f the
initial conditions are present, we must go back to the differential equation and
include initial conditions while taking its Laplace transform. The technique is
illustrated with the help of the following example.

Example 6.10:— Determine the response of the series RLC circuit of Fig. 6.8
with an initial current in the inductor and an initial voltage across the capacitor.

Fig. 6.8
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Solution:  Applying Kirchhoff’s voltage law around the loop,

Vg + Vr + Ve =¥

or

. di L,
Rz+L-E+E ntdt+v,(0)=v

Taking the Laplace transform of eqn. (i) we get,

RI(s) + L[sI(s) -i<0>1+-1§?'+ Kggﬁ,z Vis)
Oor
[R + LS + l] I(s) = V(s) + Li(©) - ve(®)
Cs s
Theretore,
1(s) = V(s) + Li(0) — ve(O)/s

R+ Ls + 1/(Cs)

()

(i)

The term U/[R + Ls + 1 / (Cs)] is the transfer function of the system. The effect of
initial conditions is to alter the input excitation of the system. The numerator in
eqn. {ii) may be considered as the ‘total excitation’. Determination of the inverse
transform of 7 (s) to get i(#) follows the usual partial fraction expansion techniques.

Solution of differential equations:

The Laplace transform method is commonly used for solving linear differential
equations. The process of taking the Laplace transform converts a differentiai
equation into an algebraic equation. Obtaining the solution (as a function of )
then involves only algebraic manipulations. The Laplace transform method also
avoids the tedium of determining (n — 1) unknown coefficients from the given
initial conditions. The general procedure is illustrated by the following example.

Example 6.11:— Solve the second order differential equation.

4y dy
E'Z)‘+d| Zyl*+aoy=x(t)

using Laplace transform.

Solution:  Taking Laplace transtform of both the sides,

[V () = sy @ =y + a/[sY(s) = y(O)] + a Y (s) = X(5)

or

(s*+a, s + ay) Y(s) = [j' O+ 550 +ayM] + X(s).

Theretore,
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y (0) + sy (0) +a,y (0) + X () ‘
sS+a s+ay ss4a s+a

Y(s) =

The first term on the r.h.s. gives the response due to the initial conditions and the
second term due to the forcing function. Combining the two terms we get,

YO +sy@+aiy @] + X()
s2+a|s+ao

Y() =

Thus, the initial conditions are treated as additional inputs. The numerator may
then be called the total excitation. The process of taking the Laplace inverse of ¥
(s) to get the solution y(¢) follows the usual method of partial fraction expansion
given in the previous section.

Response to sinusoidal signals: generalised impedance function

Example 6.12:— Determine the current in a series RLC circuit connected to a
sinusoidal voltage source, switched-on at t = 0. Assume initial conditions to be |
Zero.

Solution: For the sake of numerical simplicity, let us assume that R=L=C=|
and the sinusoidal input voltage has a magnitude of I volt and frequency of 2
rad/sec. Then, from Example 6.10 we have,

1 Cs ) L
H = = = )
O = R Lo+ G~ LCf+RCs +1 s vs+1 W
The Laplace transform of the input is,
X(s) = L sin2t = 2/(s5°+2%.
The output current Y (s) = H(s) X (s) or,
2s
Y(s) = :
©) = Frst D+ D
Expanding into partial fractions we get,
Y(s) = 2s As+B Cs+ D (i)

= +
(P+s+1D) (7+2)  S+s+1 s+ 22

To determine the constants A, B, C, D multiply eqn. (ii) by the entire denominator.
Then we have,

25 = (As + B)(s*+4) + (Cs+ D) (s*+s+1)
= (A+O)s+(B+C+D)s’+(4A+C+D)s+(@4B+D).
Equating coefficients of like powers on both sides of the equation we get,
A+C=0,B+C+D=0,4A+C+D=2,48B+D =0

Solving these we get,
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A=6/13, B=-2/13, C=-6/13, D=8/13.

Thus,
2 3s—1 35 — 4
Ye) =13 |:(sz+s+1) - (s2+22):|
2 s+ 05 25 V0.75
T 13 (s+057+ (V075 )Y  (NO.75 ) (s+0.5)%+(V0.75 )*
2 ) 2
K [ e s2+22]

Therefore,

~0.51

y () el3 (cos 0.866 t — sin 0.866 1) — % (3 cos 2t — 2 sin 21)

It

62 s 2.
=3 e sin (0.866¢t — 6)) + NS sin (21-86y) (iii)

where sin®, = 1/V2 or8, =45° andsin 9, = 3/VI3 or 6, = 56.2°.

The first term in the solution y(¢) is the transient response of the system arising
from the natural mode of behaviour. This natural mode is an underdamped second
order system with an undamped natural frequency of oscillation @, =1, damped
natural frequency = 0.866 and damping ratio { = 0.5. The second term in egn. (iii)
gives the steady-state response of the circuit. It shows that the peak amplitude of
the current is 2/ V13 and it lags behind the applied voltage by an angle 56.2°. This
steady-state value could have been obtained straightaway by using the elementary
circuit theory technique of dividing the voltage phasor by the impedance phasor.
In the present problem impedance Z is given by,

1
=R+joL+ —=1+j|2 -
¢ J jocC J[

The steady-state current is then given by

Vo 2 o
IM_Z—’W}A 56.2

or,

2 )
Iy = m‘ sin (2t 56.2 ) .

This is the same result as that given by the steady-state term of egn. (iii). We note
that impedance Z(®) is obtained by replacing s = jo in the expression for 1/H(s).
Thus, if only the steady-state response is desired we divide V() by Z(®w). How-
ever, if the complete response, including the transient response, is desired we
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divide V (s) by H(s). Thus, H(s) can be called the generalised impedance or trans-
form impedance of a function of complex frequency s.

The generalised impedance Z(s) is very useful in network analysis. [The
reciprocal of Z(s) is called admittance. When the reference is to either impedance
or admittance, a common term ‘immittance’ is used.] The network immittance
function completely characterises it and serves the same function as the transfer
function. To simplify computation of the immittance function, the terminal volt-
age-current relations of the basic circuit elements are defined directly in terms of
the transformed variables, as shown in Fig. 6.9.

Circuit element v-i relutions V(s)-I(s) relations
(in time domain) (in s-domain)
+ v = o v=Ri Vi) = R1(s)
i .
+ v -
L d
1 ¢ —»ilo) Vet a V(s) = SL I (s) - Li0)
+ v —
- 1 1. _ LQQ v(0)
! +ve(0)— V== Ju idt+ ve(0) Vis) = cs T s

Fig. 6.9 Terminal v—i Relations of Basic Circuit Elements in Time and s-domains

The advantage of using generalised impedance function in network analysis is
demonstrated by the following example.

v

Example 6.13:— Determine the siep response of the thermal system for heat
dissipation in a power transistor, described in Chapter 1, Section 1.5.

The electrical equivalent circuit of the given thermal system is reproduced in
Fig. 6.10. The input is the rate of heat dissipation in the power semiconductor
device i.e., power loss in watts. The output is the rise in the junction temperature
T,. Ry’s are thermal resistances and Cy's thermal capacitances of various parts.

X R R R
UL W} T2 T

G)q |lc“, TCr,

Fig. 6.10 Electrical Equivalent of a Thermal System
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Electrical circuit theory tells us that the voltage across AB (i.e., T;) will be the
current through A (i.e., ¢) multiplied by the equivalent impedance Z of the net-
work to the right of AB.

Since we are interested in the complete response, let us determine Z(s) for the
transformed network shown in Fig. 6.11. For numerical simplicity let us assume
the values of all the parameters to be unity. The steps in the evaluation of Z(s) are
indicated in Fig. 6.12.

R'ﬁ Rry. R

1
TcTzs

RT1= RT2= RT3=CT]= CT2=1

1
2(s) -
e Teys
B O 8

Fig. 6.11 Transformed Network of Fig. 6.10

70 < Rry - |/(CT2.\‘)_ I
T R F IACT) s+

~ _s+2
¢, S T L-Pzz 22 =R+ Zv=
1
B8 O +

A
7 = L/(Crys) - 22 _ s+2
23 R VA (e 0 I - SR PR
B
A
2
2(s) Zs) = Ry, + 2y = LF4+3
ST+ 35+ 1
B

Fig. 6.12 Evaluation of Z(s) for Fig. 6.11

Now, temperature 7(s) will be given by,

Ti(s) = Q) Z(s),
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where Q(s) = Laplace transform of the input heat rate ¢(f). Since input is given as
a unit step input, O(s) = 1/s. Therefore,

S +4s5+3

T)=—"T"—"""-
s () s(T+3s+ 1)
Factorising the denominator and using partial fraction expansion we get,

B + C .
s +262 s+ 038

T)(s) = % +

Evaluating A, B and C we get,

3 0.1 19
L= -"7i26 s+038

Taking the Laplace inverse, we have,

T, =3u(@) — 0.1 & —~ 1.9 %,

Analysis with periodic non-sinusoidal input:
A periodic signal with period 7 satisfies the relation,
f@=f@+nT), n=1223,..

Let fi(2) be the first cycle of the periodic function f (). Then the second cycle will
be the first cycle shifted to the right by 7, and so on. That is,

FO=LO+A0-Du@-D + L —-2Nu(@ —-27) + ...
Taking the Laplace transform, using the time shift property, we get,

F(s)=Fi(s)+ Fi(s)e* "+ Fi(s)e ™ + ..

Fy(s)

Fis)(l +e T+ e+ )= o (6.37)

Example 6.14:— Determine the current in a series R-L circuit driven by a square
wave voltage source of amplitude | and half period 7/2 = 1, as shown in Fig. 6.13.

k v(t)
i) =1

’ -
ot v(t) IER=’
Il - <

Fig.6.13 RL Circuit Driven by Square Wave
Solution:  Application of Kirchhoff’s voltage law gives,
(Ls + R) I(s) = V()
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or

Vis)  _ V(@)

I(S)zr(Ls+R) T+l

For determining the Laplace transform of the input square wave voltage, let us first
determine the transform of the first cycle. As a time function, v(t), the first cycle
of v(t) can be expressed in terms of step functions as,

i) =u() - 2u(t — D +u(t~2)

Therefore,

I 2e > 1 s
~ - +E— == (-2 + e ).
N S § §

Vis) =

Then, according to eqn. (6.37) for periodic functions,

Vi () )

1 — e

Vis) =

In the present problem, 7= 2. Therefore,

-2 +e®

I
Vis) =
() s(1 — e
Therefore,

V() 1264 ed
s+ 17 s+ 1) -e®

=————[(1 =2 " +e®)(A+e¥+e™ +e™

+ ...)1

— _ —% -2 _ - 38 ~ds _
—s(s+l)(l 2" + 2e 2"+ 2¢ c)

Let I/s(s+ 1)=F(s)and Let £' F (s)=f(¢). Then,
I(s) = F(s) (1 =2 + 262 —2¢™ 2% .)

Each exponential term in the series on the r.h.s. shifts the function to the right by
T/2 = 1. Therefore,

iO=fO) -2f¢-Dut - 1) +2ft—-2)u(t-2)— ..
Note that the r.h.s. of the above expression is not exactly an infinite series. In the

first half cycle, only the first term is present. In the second half cycle, only the first
and the second terms are present. And so on.

Let us now determine f(t) = £ F(s).

1 1 |
F(S)zs(s+l)_s-s+l
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Therefore, f (1) = (1 — €™y u (£). Then in the nth half cycle the first n terms will be
present. That is,

iM=lu@®-2u@-)+2u@-2)—...+2(=1)"""uft—(n—-1)}]
—le'u®-2e" Vu@-D+2e" 2 u(t-2) + ...
+2=D ey —(n- DY)

The term inside the first brackets on the r.h.s. is an oscillating term of the form [1 -
242 -2...]. Therefore, in the nth half cycle its value will be simply (- 1)"". This
gives,forn—-1<¢t<n,

=)' -—e"[l-2e+2+ .. +2=1y"e '],

The expression inside the brackets is a finite geometric series. For such a series.
we have the basic mathematical result,

1 -x

l+x+xX+ ..+ "' =
1 —x

Writing the terms inside the square brackets as,

[2{l-e+&-E+.. +(-1)yte '} 1]1=2 1-Cef ]

we have,

e+ 1 e+ 1

i) =1yt e [ﬂ ¥ ——«2(‘6’)"}

2(-1e" " (e—-1)e’
+ -
e+l e+ 1

=1y

This is the expression for current in the nth half cycle, where the value of f will be
ranging from (n— 1) toni.e. (n — 1) £t <n. Hence the term "' will always range
from 0 to 1. Therefore, the first two terms give the steady-state response and the
tbird term, which decays exponentially, is the transient response. That is,

o=t 2O 0
e
T er ) €

The transient response, the steady-state response and the total response for the first
four half cycles are shown in Fig. 6.14.

If only the steady-state response of the circuit is of interest, one need not resort
to the complexity of first determining the complete response and then take out only
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Fig. 6.14 Response of Circuit in Fig. 6.13

the steady-state term. For steady-state analysis with nonsinusoidal voltages, we '

have two alternatives. One method would be to use the Fourier series techniques
of Chapter 4. When the object of analysis includes information like relative mag-
nitudes of voltage and current harmonics, d.c. and a.c. power components, power
factor, etc. Fourier series analysis is very useful. However, if the shape of the
output waveform, that is, the output as a function of time, is of interest, adding
harmonic components to get this wavelorm is not very convenient. In that case,
the La}place transform method now described is more useful.

To develop the technique for steady-state analysis, we note that the response of
alinear system to a periodic input will also be periodic, i.e., the output wave shape
will repeat itself after every period 7. If the output function has no discontinuities,
this means that its value at the beginning and at the end of any cycle will be the
same. If y,(?) is the steady-state output,

Yo T) =y, [(n+ 1) T].

Since this is true for any #, it is also true for n = 0, and, hence,

y-\'-\' (0) = yA'S (T) -

This process of matching the values at the beginning and the end of a cycle of
steady-state response simplifies its determination. This is demonstrated by deter-
mining only the steady-state response of Example 6.14.

In Example 6.14 the positive and negative half cycles of the input are equal and
opposite to each other. Therefore, the half cycles of the output will also be equal
and opposite. That is,

yu(O) = Y (T/Z) .

-~
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We will use this condition for finding the steady-state response. Writing the
system equation for the steady-state response for the first positive half cycle, we
have,

diy,
dt

Taking the Laplace transform we get,

L +Ri,=10<51t<1 (i1)

Ls1,(s) — Li, (0) + RI,(s) = /s
or

1 Li, (0) ‘
s(Ls+R) Ls+ R

[\.\ (s) =

With numerical values L=R=1,

l i.\l\' ( )
s (8) = + : .
L 5) s(s+ 1) s+ 1

Here, i,, (0) should not be confused with i(0): i, (0) is the value of the current at
the beginning of a half cycle (any half cycle) when steady-state conditions have
been reached, whereas i(0) is the value of the initial current at ¢ = 0 when the
switch, connecting the source to the load, is closed. It should be noted that i(0) will *
effect only the transient component of response; it will have no effect on the
steady-state value. Also, it should be noted that so far i,,(0) is not known.

Taking the Laplace inverse of the expression for I, (s), we get,
ik@=01-eH+i,0e", 051t <1,
Now, applying the condition i,(0) = - i, (T'/ 2), we get,
i () == [(1-e™)+i, (0) ™).
With numerical value 772 = 1 we get,
i +eYy==(1-¢t).

Therefore,

1—¢" e—1

b (0) = - l+e' e+l

Substituting this in the expression for i,.(f) we get,

. ) _ e—1 _
l.\'.\'([) - kl e!) e+l €
{1-0n
S -2 << (iii)

l+e
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The expression for i, in eqn. (iii) is the same as in expression (i) obtained
earlier forn=1.

In the present problem, since the differential eqn. (ii) for i, (1) is a first order
equation, it would have been equally easy to solve eqn. (ii) directly, with the con-
dition i, (0) = ~ i,(T/2), without taking the Laplace transform. However, for
higher order systems, the solution of the differential equation by Laplace trans-
form technique is easier.

GLOSSARY

Laplace Transform: The Laplace transform of a function f (1) is defined by,
Foy=cf0=]"1we"ar,

where s, the complex frequency variable, is given by s = ¢ + jo. The time function may he
obtained from F (s) by the inversc Laplace transform,

=2 FE) = 2—'" j’:i: F(s) €" ds.

s-plane: A plane with ¢ as its x-axis and jo as y-axis is called the complex frequency plane or the
s-plane. A point in this plane, with coordinates &) and ji, defines a value of s, i.e., 51 =01 +
Jjor.

Transfer Function: The ratio of the Laplace transform of the output to that of the input for an initially

relaxed linear system is called its transfer function H(s). H(s) is also equal to the Laplace
transform of the impulse response of the system, i.e., H(s) = £ A(1).

Characteristic Equation:  The denominator of the transfer function determines the form of its be-
haviour and, hence, is called the characteristic polynomial of the system. The denominator
polynomial equated to zero is called the characteristic equation of the system.

Poles and Zeros: The transfer function can be written in the factorised forn as,

(s=z1) (s—22) ... (s—2m) )

(s=p1)(s—p2) ... (s—pn)

The values of s = 2y, 2. ..., zm, for which H(s) becomes zero, are called the zeros of the system. The
values of 5 = pi, pz2. ..., pa for which H(s) becomes infinity are called the poles of the system.
Zeros are the roots of the numerator polynomial and poles the roots of the denominator polyno-
mial of the transfer function.

H(s) = <n.

Generalised Impedance: In an electrical circuit, the ratio of the Laplace transform of the voltage to that
of the current is called the generalised impedunce, 1.e., Z(s) = V(s)/I(s). The ordinary im-
pedance for sinusoidal inputs can be obtained from Z(s) by replacing s by jw.

PROBLEMS

6.1.  Determine the Laplace transforms of the following functions:
@ ey =7 sin 21,
®  fy=e 1.
©  fin= 14+,

) ) =te“sinbt.
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(€) f(1)=sin Pr/Pt.
M ro=1/2,
(g) f =sin(101+60°).
6.2.  Determine the Laplace transform of the functions sketched in Figs. 6.15 (a-d).

6.3.  Determine the Laplace inverse of the following functions and sketch them:

@ (s+2)/(7+ 1)

) H[SE+25+2)]
© L/[s(-eM

@ i)

1heo
L
7 3 !
(b)
A
1
TR 4 5
= (Periodic )
(d)
Fig. 6.15

64.  Determine the initial value of £ (£), i.e., F(O") and f* (0") for F(s)= 1 / (s + | )2,
6.5.  Determine the transfer functions for the following systems:
(i)  The automobile ignition system of Chapter |, Section 1.1.
(i)  nfilter of problem 1.1.
(iii)  The system whose response is shown in Fig. 3.22, problem 3.12.

(iv)  The ‘phasc lead’ and ‘phase lag’ networks shown in Fig. 6.16.

Ry
R
vi 2 Vo
]—C
O- O
Fig. 6.16

6.6.  Solve the following differential equations using Laplace transform:
G) 2X+x+3x = u() with x(0)=0, x(0)=—-1.
VRN 20 wa x+ w3 x=0 with x(0)=aand x (0) = b.

i) 74 ¥+ x=¢" with¥()=x@©) =0 andx() = I.

183
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6.7.

6.8.

6.9.

6.10.

612,

The impulse response of a system is given by h(#) = (2¢7 + Pa) u{t).

Determine its output when a triangular input of peak amplitude 10, duration 4, centred at 2
1s apphied as input to the systerm.

When connected to a 100 V d.c. source, an armature-conirolled d.c. motor runs at a steady-
state speed of 100 rad/sec. The armature resistance is | ohm, the torque constant 0.1 n-
m/amp. and the time constant 4 sec. The armature circuit accidently gets opened at 1 = 0
and reclosed at # = 1. Determine and plot the motor speed as a function of time.

A sinusoidal voltage of magnitude 10V and frequency 10 rad/sec 1s switched onat 1 = 0
across a series RLC circuit with R = L = C = |. Determine the transient and the steady-state
values of the voltage across the resistor.

The input voltage v in Fig. 6.17 has a peak magnitude £ | V and half cycle duration of |
sec. R=L=C=1. Determine the steady-state output voltage v, and sketch it. Determine
the peak value of the voltage across Cfor L= C=1and R=0.1, 1, and 10.

L
01190

Vi

t( vi R Yo o
ul

Fig. 6.17

When cxcited by a unit step input, the time response of a linear system can be approximated
by 1 —e” Find the transfer function of the system,

Figure 6.18 shows the schematic diagram of an accelerometer. The output casing is fixed
on the body whosc acceleration is to be measured, e.g., an aircraft. The deflection x of the
mass and y of the case are with respect to the external inertial space. The deflection z of the
pointer is z = (x — y). Determine the transfer function with z as the output and acceleration
of the case as the input. How should the parameters of the system be sclected to make the
pointer deflection z proportional to acceleration?

Case

k<
N
Jlu‘un

L .

177777 777777777 /71

Fig. 6.18



CHAPTER 7

Feedback Systems

LEARNING OBJECTIVES

After studying this chapter you should be able to:

(1)

(1)

(iii)

(v)

(v)

(vi)

determine the overall transfer function of an interconnected system,
using block diagram reduction techniques;

represent a given system by its signal flow graph and use the techniques
of signal flow graph reduction to determine its overall transfer function;

determine the response of feedback systems and to control the transient
response by gain adjustment of the forward path;

determine whether a given system is stable or unstable, using the Routh-
Hurwitz criterion;

calculate the steady-state error of feedback systems due to step, ramp,
and parabolic inputs; and

appreciate the advantages as well as the problems of feedback control
systems.

7.1 Interconnection of Systems

Larger systems are usually made up of interconnected smaller systems, which are
then called subsystems of the main system. The subsystems may themselves be
interconnections of still smaller systems. Each one of these subsystems will be
described by a transfer function relating its input and output variables. That is, for
the ith subsystem, we have

Yi(5) = Xi(s) Hi(s).

In this section we will study the methods for obtaining the transfer function of the
overall system from a knowledge of the transter function of its subsystems. We
first start with only two subsystems. These two subsystems may be connected in
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the following three ways: (i) series or cascade connectiou, {ii) parallel connection
and (iii) feedback connection.
Series connection :

The series connection of two subsystems is shown in Fig. 7.1. This connection
arises when the output of one subsystem is the input to the next subsystem.

X(s)=X(s) Yi{s)=Xq(s) Yo(s)=Y(s)
—® Hy(s) M Hy(s) =

Fig. 1 Series Connection of Two Subsystems

The output Y(s) = Y, (s) = Xz (s) H2 (5). But X; (5) = ¥, (5) = X, (5) H, (5).
Therefore, Y (s} = X,(s) H, (s) H; (s) = X (s) H, (s) H, (5). Thus the overall transfer
function of the system relating the input X(s) to the output Y (s) is,

H(s) = H (s) Ha(s). 7.n

In deriving eqn. (7.1) and in drawing Fig. 7.1, it is tacitly assumed that the
process of connecting the second subsystem to the output of the first subsystem -
does not alter the relationships between the variables of the first subsystem. If this
is not the case, we say that the second subsystem ‘loads’ the first subsystem. Equa-
tion (7.1) is then no longer valid. The overall transfer function of series-connected
subsystems is equal to the product of the individual subsystem transfer functions
- only when a subsystem does not ‘load’ its preceding subsystem. This is illustrated
in Fig. 7.2. The interconnection of the two tanks in Fig. 7.2(a) does not produce
any ‘loading effect’. Hence, the overall transfer function is the product of the trans-
fer functions of the individual tanks. In Fig. 7.2(b), however, the outflow rate of
the first tank depends not only on its inflow rate but also on the liquid level in the
second tank. Hence, the second tank ‘loads’ the first one, and the transfer function
is not equal to the product of the individual transfer functions. For finding the
transfer function in this case, the equations of the whole system will have to be
considered together. Similarly, if two low pass filters are cascaded directly the

Fig. 7.2 Different Interconnections of Two Tanks
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overall transfer function is not equal to the product of their individual transfer
functions. However, if the two are connected through a buffer amplifier in be-
tween, no loading effect will be produced and H (s) = H, (s) H (s), as given by
egn. (7.1)

If two first order subsystems are cascaded, it is normal to assume that the over-
all system will be a second order system. However, in some cases it may not be so.
For example, let,

1 s+1
H (s) = Tl and H,(s) = ot

[\

Then, H(s) = H\(s) Hs) = 1/(s+2).

The pole of the first subsystem at s =— 1 gets cancelled by the zero of the second
subsystem at the same location. Thus, in this case, the order of the overall system
transfer function is less than the sum of the individual subsystem orders.

Parallel connection :

As shown in Fig. 7.3, the two subsystems receive the same input X (s) in the case
of a parallel connection. The two outputs, Y, (s) and Y, (s) are summed up at a
summing junction to produce output ¥ (s5) = Y, (s) + Y2 (s). The symbol ® is used
to indicate the summing operation.

- Y ()
Hs) A V(8)=Vy (5)4Y,
X(s) =n 2{s)
—
+
Ha(s) |
Yz{s)
Fig. 7.3 Parallel Connection
Now,
Y(s) = () +Ya(s) = X(s) H  (5)+ X (5} Ha (5)

= X() [H () +H,(s)].

Thus, the overall transfer function for the parallel connection is,

H(s) = H,(s)+H,;(s). (7.2)

Feedback connection :

In the feedback connection, shown in Fig. 7.4, the summing junction adds the input
X(s) and the negative of the output Y- (s) of the second subsystem to produce the
input to the first subsystem. In other words, X, (s) = X (5) ~ Y2 (s). The output Y,(s)
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X
x(s) ) Y, (s)=Y(s)

Yz(S)

Hz (S) o

Fig. 74 Feedback Connection

of the first subsystem is the system output. That is Y(5) = X, (s) H, (5). But X, (s)
=X (5) — Y (5) H; (5). Therefore,

Y(s) = (X ()= Y(s) Ha(s) | Hi(s)
or [T+ H, () Ha(s) 1 Y (s) = X(5)Hi(s)

XG) His)
1+ H\ (s5) Hy(s5)

Thus, the overall transfer function is,

or Y(s) =

Y (5) _ H, (s) .
X(s) 1+H (s)Hy(s)

In the system of Fig. 7.4, the output signal is ‘fed back’ to the input through
H, (s) . At the summing junction, this feedback signal is subtracted from the input
signal. Hence, this is called a negative feedback system. In case Y, (s) adds to the
input X (), we have positive feedback. It is straight forward to show that for posi-
tive feedback the overall transfer function is.

H(s) = (7.3)

H(s)

1 — H\(s) Hys)

Use of feedback is the key to almost all modern automatic control systems.
Feedback is also used in a variety of signal-processing applications, e.g., feedback
in amplifiers. In such applications, the feedback path is added by the designer to
some existing system as an external element. However, feedback may be inherent-
ly present in the modelling process of many physical systems. This is illustrated by
the following example.

H(s) = 7.4

Example 7.1 : — Develop a block diagram for a d.c. generator, used as a rotating
amplifier, supplying current to a resistive load.

Solution: The circuit diagram of the system is shown in Fig. 7.5. The input signal
is V; () and the output, V, (s). In addition, we have four intermediate variables—
tield current I;(s), armature current /,(s), air gap flux ®(s) and induced voltage
E (5). Input V, (s) produces the field current J;(s), the two being related by the
equation,
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I4(s) Ry la(s) Ra La

Vits) , § = 6 LS Vol®
¢f [] l

Fig. 7.5 d.c. Generator

(Lis+R) s = Vi(s). (i

The field current produces the field flux,

(I)f(.\') = K| I/(S) (")

The air gap flux is the difference between the field flux and the armature reaction
flux d,, ie..

B(s) = D) -D, (5). (ii1)
The air gap flux induces a voltages £(s) in the armature, which is linearly propor-
tional to it, 1.e.,

E(s) = K, ®(s). (iv)

The induced voltage E(s) causes the armature current /, according to the relation,

(sL,+R,+R.) 1,(5) = E(s) (v)

The armature reaction flux is directly proportional to the armature current, i.e.,

D, (5) = Kl (s) (vi)
And finally the output,

Vi(s) = RiL(s). (vii)
The cause-effect relationships given mathematically by egns. (i) to (vii) can be
displayed more effectively by the block diagram shown in Fig. 7.6. Figure 7.6
places in evidence the inherent feedback action of the armature reaction flux. In
fact, whenever a subsequent variable affects preceding variables in the cause- ef-
fect chain, we have a teedback action.

1a ()
vits)[ If (s) P15 G (s) E(s) 1 Wo(s)
—. A —,

R
Ly s+Ry K1 Y K2 Las+RaeRL || ©

$a (s)

K3

Fig. 7.6 Block Diagram of d.c. Generator
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Vi(s)h | Ky |O4ls) _ &) Ky lals)
LisHRt|  +9 Las+Ry+R| | RL >Yo (s)
dals) '
Ky
(a)
Vils) | K (s) K2 lals)
i Mk Rl |—=(V
L¢s+Ry Las+(Ra+RL+ KaK3) I Vols)
(b)
Vi (s) K1 KaRL
— —»Vp(s)
(Lgs+Ry) (1as +Ra*R -+ KoKz
(c)

Fig. 7.7 Block Diagram Reduction of Fig. 7.6
7.2 Block Diagram Reduction

In situations like that of Example 7.1, the overall transfer function of the system
may be obtained either by combining the system equations or by reducing the
block diagram to a single block. The expression in this single block will be the
system transter function. In this section we study the techniques for reducing com-
plex block diagrams into a single block.

Three types of reductions for combining blocks connected in series, parallel, or feed-
back configurations have already been described in the previous section. The steps in-
volved in simplifying a block diagram, when these three reduction methods are sufficient,
are shown by simplifying the block diagram of Fig. 7.6 in Figs. 7.7 (a), (b} and (¢).

When the loops are interlwined in the case of more complex block diagrams,
we need additional techniques for block diagram simplification. The techniques
required for such cases are illustrated by the next example.

Example 7.2 : — Simphfy the block diagram shown in Fig. 7.8.

Hg

A -
X(s)+ Hap hy 3 . Hy Hyg Y (S)
8 i

Hg

Fig.7.8 A Complex Block Diagram



Feedback Systems 191

It is not possible to use any one of the three previous combinations because of
the intertwining loops.
Mavement of pick-off points:  If the ‘pick-off” points of the feedback loops could
be altered by moving them forward (i.e., towards the input) or backward, some
simplification could result. For example, if the pick-off point of Hy could be
moved back to location 2 from location 3, the H; block and the feedback around it
could be combined into one block. However, this shift should not alter the feed-
back signal being received at the summing junction A. To ensure this, the transter
function H, should be altered to Hs /H+. The shifting of pick-oftf point and the
subsequent reductions are shown in Figs. 7.9 (a), (b), and (c).

A = +
X, Hy | H, Hj w H, -Y(5)
8 ¢ z 1
Hsng
(a)

X(s)+ A
( » H, H, = Hf-Hpe Ay Y (s)
B Ti
He/ H,
(b)
1Hs |
x(s)+ A - Hz H 2
H | Hz Hy H .
> 1 e 1-Hy 4 ] Y(s)
He TH,
(c)

Fig. 7.9 Reduction of Block Diagram of Fig. 7.8
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For further reduction, one more shift in the pick-off point is needed. We could
shift either pick-off point of H,, /H, backwards to location 1 or shift pick-off point
of Hs forward to location 2. Let us follow the second alternative. Once again, the
process of shifting the pick-oft point should not alter the signal being received at
the summing junction B. To ensure this, the transfer function Hs should be multi-
plied by H,. This shitt and the resulting simplifications are shown in Fig. 7.10.

H"HS

Y(s)

H, —-»

Y{s)

(a)
xs) g B HzH3
— L 1"H3 +H2H3 H4 HS 2
(b)
X(s) + A HyHyHy

1-H;3+H, HaH, Hs 2

Y(s)

HS IH3
(c)
X(s) HiHaH3 H,
T RGP
(d)

Fig. 7.10 Further Reduction of Fig. 7.8
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Mavement of summing junctions : The block diagram reduction of Fig. 7.8 has
been achieved in Figs. 7.9 and 7.10 by the movement of pick-off points. In a
similar fashion we could move summing junctions also. For example, let us move
the summing junction into which H, feeds from B to A. The process of shifting
should not alter the signal received at the input of H,. To ensure this the feedback
block Hs should be divided by H|. This shift and further reductions are shown in
Fig. 7.11.

It should be noted that the locations of the two summing junctions at the input
end of Fig. 7.11 (a) have been interchanged in Fig. 7.11 (b). This is quite permis-
sible as it does not alter the signal being received at the input of the next block. The
overall transfer function arrived at in Fig. 7.11 (d) is the same as the transfer func-
tion in Fig. 7.10 (d).

H, *=Y(s)

H, ~-Y(s)

I——IFL'E%
=t

(b)

Hy HaH3Hs
1-HgtHyH Hg ™

{c)

»Y(s)

X(S) H] Hz H3 Hl.
(d)

Fig. 7.11 Reduction of Fig. 7.9 by Movement of Summing Junction

»Y(s)
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7.3 Signal Flow Graph

A block diagram shows the interconnected parts through which the input signal
moves towards the output. The characteristics of the different elements of the path
are shown by the transfer function blocks. The same information can be displayed,
somewhat more neatly, by a line diagram in which the summing junctions and
pick-off points are represented simply as nodes: the paths are indicated by lines;
the direction of flow of the signal by arrows; and the path characteristic by its
transfer function, written along the line. Such a line diagram is called a signal flow
graph. The signal flow graphs for Example 7.1 (Fig. 7.6) and Example 7.2 (Fig.
7.8) are shown in Figs. 7.12 (a) and (b).

1 S R
ListRe Iy Ky O K2 E Las*RIRL g RL

! Yo

Fig. 7.12 Signal Flow Graph for (a) Fig. 7.6 and (b) Fig. 7.8

A system variable is associated with each node. The line joining any two nodes
is called a directred branch. The transfer function relating the variable at the output
end of the line to the variable at its input end is called the branch transmittance.
The signal going to all the outward directed branches from a node is the sum of the
signals coming on incoming branches. For example, for the node @ in Fig. 7.12
(a), the incoming signal is KJ;— K31, = ®. The outgoing signal is this sum.
Therefore, £ = K, (K, I;— K5 1,). If we write similar eq~uati0ns for each node, we
gct the original system eqgns. (i) to (vii) of Example 7.1, written out in a slightly
different form:

Vi
=1
Lf s+ Rf

For node /; :

For node @ : K] ]f‘K;la = &.

Fornode E : K. ® = E.
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E

Fornode /, : ————————
noee e S+ R+ R,

= Iu~

FornodeV, : I,R, = V,.

The signal flow graph may, therefore, be thought of as a graphical repre-
sentation for a set of algebraic equations. Instead of simplifying the algebraic
equations step by step 1o obtain a single equation relating the input to the output,
i.e., the transfer function of the system, we simplity the signal flow graph to obtain
a single equivalent branch connecting the input node to the output node.

The rules for simplification of a signal flow graph are similar to those for block
diagram manipulations. Four of these basic rules, which follow straightaway from
the basic definitions, are summarised in Table 7.1 for quick reference.

Table 7.1 Rules for Simplification of Signal Flow Graph

I Scries connection:

X1 Hi X Hy X XyHyHy  Xq

I

(B8]

Parallel connection:

H
X, H+H, X
v pX, = oLor
Hy
3. Feedback connection:
HaH;
H HyH
Xy ﬁ::a _ X4h H, g? X} 1—H§-]13X3
Hy Xz Hy X3 X3 X3
4. Removal of a node:
X, X,
H, HiH;
H3  Hye X,
HaH3

X H, Xz
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The following example illustrates the use of these rules for simplifying signal
flow graphs.
Example 7.3 : — Simplify the signal flow graph of Fig. 7.12 (b) to obtain the
transfer function between X and Y.

Solution: The signal flow graph is reproduced in Fig. 7.13 (a). The subsequent

step-by-step reduction of the graph is shown in Fig. 7.13 (b) to (g).
-H
5

"HAHS

~HyHa Hg
(c) Removal of node X,

(d) Addition of parallel branches

Hy(1-H,H, Hs)

—HiHa Hg

(e) Removal of node X4
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Hy—HyH Hg—HoHyH He

\
X O - (@, - QO
HiHg X3 H3Hg

(f) Addition of parallel loops

X Y
O —)
H,y H2H3H4

1- H3+H1H2'HS+H2H3 H4HS

(g) Final graph

Fig. 7.13 Reduction of Signal Flow Graph

The transfer function derived from the signal flow graph reduction is the same as
that obtained by the block diagram reduction in Example 7.2.

The sequence of steps for reduction of a signal flow graph to a single branch.
as illustrated above, is not a unique one. It is usually not possible to ascertain
beforehand which sequence will involve minimum computation. A major ad-
vantage of the signal flow graph technique is the availability of a formal procedure
for reduction of a flow graph tfrom mere inspection. This procedure is called
Mason’s formula. Certain terms need to be defined before this formula can be
used. These terms are as follows.

Source node: The node at the input end which has only outward branches, e.g.,
node X in Fig. 7.13 (a).

Sink node: The node at the output end which has only inward branches, e.g., node
Y in Fig. 7.13 (a).

Forward path (or simple path): A sequence of outward directed branches from
source node to sink node such that no node is encountered more than once. Figure
7.13 (a) has only one forward path (X, X,, X5, X3, X4, Ys, Y). Other graphs may have
more than one forward path.

Forward path transmittance: The product of all the individual branch transmit-
tances in a forward path, e.g., in Fig. 7.13(a) the forward path transmittance is H,
H, Hy H,.

Loop: Itis a path starting at a node and terminating at the same node. Figure 7.13
(a) has three loops: (i) { X\, X2, X3, Xi}; (11) { X3, X4, X3, }; (ii1) { Xz, X5, Xo, X, Xa}.
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Loop transmittance: The product of branch transmittances in a loop. The three
loop transmittances of Fig. 7.13 (a) are: (i) — H\ H, Hg; (i) Hs; (iii) — H, Hy Hy Hs.

Non-touching or disjoint loaps : 1Loops which do not have any common nodes.
In Fig. 7.13 (a) none of the three loops is disjoint.

Determinant of a graph, A = | — (sum of all loop transmittances) + (sum of the
products of all possible pairs of non-touching loop transmittances) — (sum of the
products of all possible triplens of non-touching loop transmittances) + .....

Cofactor with respect to a particular forward path k, A, = 1 — (sum of all loop
transmittances of the loops that do not touch the k th forward path) + (sum of the
products of all possible pairs of non-touching loop transmittances of loops which
do not touch the kth forward path) — (sum of the products all possible triplens of
non-touching loop transmittances of loops which do not touch the kth forward
path) + ... Thus, A, is the cofactor of the element corresponding to the kth forward
path in the graph determinant A, with the transmittance of all the loops touching
the kth path removed.

Mason’s formula gives the net transmittance or the graph transmittance from a
source node to a sink node. In our terminology, this graph transmittance is the
transter function relating the output to the input. The formula is,

H = —i—% G Ay (1.5)
where
H = graph transmittance or the transfer function;
A = the determinant of the graph;
G, = transmittance of the kth forward path; and
A, = cofactor of the kth forward path, as defined avove.

The procedure for using this formula is illustrated by applying it to Example 7.3.
By an inspection of Fig. 7.13 (a), we note that there is only one forward path with a
transmittance H, H, H; H,. There are three loops with transmittances (i) — H, H: H,,,
(i) H; and (i1i) — H, Hy H, Hs . All the loops touch each other, so there are no non-
touching loops. Fusther, all the loops touch the forward path. Hence,

A =1-Hy+H H,Hs+ H, Hy Hy Hg
Ak = l

H, Hy Hy Hy |
l—H3+H| H2H6+H2H3H4Hﬁ

Therefore, H =
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Thus, Mason’s formula permits reduction of the graph in almost a single step,
without the need for a step-by-step graphical reduction procedure. This is a great
help, especially in the case of more complex graphs.

Example 7.4 : — Find the overall transfer function of the system whose signal
flow graph is shown in Fig. 7.14.

Solution: There are three forward paths:

G, = HHH,H\H H H; G, = H H,HHs He and G = H H, Hy H,, .
There are three loops:

L, = -HHy; L, = —HyH¢Hy and Ly = —HyH, Hs Hg Hy .

Out of these, L, and L, do not have any node in common and hence are non-touch-
ing loops. Therefore, the determinant of the graph is,

A = \+HHy+HHyHy+ Hy Hy Hs Ho Hy + Hy Hyy Hy He H,.

For path G,, all the loops touch it. Therefore its cofactor A, = 1.

Fig. 7.14 A Signal Flow Graph

Similarly, A, = 1. However, for the third path G, loop L, is non-touching. Hence
A} = l +H4H|”.

The overall transfer function, according to eqn. (7.5) is,

I
I

[
X[G.A.+GZA2+63A3]

_ H{HyHs H, Hs Hy+ H, HyHy Hs Ho + Hi Hy Hy Ho + Hi Hy Hy Ho Hy Hyg
B \+H,Ho+ Ho Hy Ho+ Hy Hy H Hy + H, H\y Hy He Hy

It has been mentioned earlier that the signal flow graph may also be viewed as
a graphical representation for simultaneous algebraic equations. The variables in
these algebraic equations may be Laplace transforms of the system variables, or
any other set of algebraic variables. Thus, the process of simplification of a graph
is equivalent to solving a set of algebraic equations. Mason’s formula for the signal
flow graph corresponds to Crammer’s rule for solving algebraic equations. This is
demonstrated by the following example.
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Example 7.5 : — Simplify the flow diagram of Fig. 7.15 to obtain the graph trans-
mittance. Verify it by using Crammer’s rule.

Solution:  There are two forward paths:

Gl = H1H2H3 and G?_:H4H3.

H4
o MENX
Hy N H
_HS
Fig.7.15
There is only one loop; L, = — H,Hs. Therefore, A = |+ H, Hs and

A, = A, = 1. Therefore,

G|A|+62A2 _ H|H2H3+H3H4
A - I + H, H;s

H =

Now, let us write the algebraic equations for the given graph:

X| = H(X“Hsz;Xz = H4X+H2X1, and Y = H}Xz.

Rewriting these equations in the matrix form we get,

1 H, 0] [x X,
- H] i 0 Xz =X H4
0 ~-Hy +1 Y 0

The determunant tor Crammer’s rule 1s,

| H; 0
A = "'Hz | 0 =1+ H2H5
0 "‘H; + 1

which is the same as the determinant of the signal flow graph. Cofactor for the
output Y,

! Hs H,

Ay = | - H, 1 H, ! = HiHy+ H Hy Hs
0 -H, 0
and
Y - H= HyH,+ H, H, Hs
X 7T T 1+H,H,

which is the same result as that obtained by the signal flow graph.
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7.4 Feedback Control Systems

Automatic control action is vital to the modern technological achievements like
space programmes, aviation, as well as to the established industries like power
generation, chemical processing, paper mills, and steel mills. The basis of this
automatic action is the feedback principle of control.

As an example of a feedback control system, let us consider the speed control
of a d.c. motor for application in a paper mill. Paper from primary paper rolls (15-
to 20-tt. wide paper) is passed through a number of rollers in a ‘rewinder’ mill to
give it the required surface finish or to cut it into rolls of desired width. Paper is
‘reeled out’ by one d.c. motor and ‘reeled in’ at the other end of the roller bank
by another d.c. motor. As the roll diameters change at these two ends, the
paper tension also changes. The motor speeds have to be controlled continuously
to keep the paper tension constant. If the tension is less, the quality of the surface
finish gets altered. There is also a chance of warping and fouling of the paper line.
If the tension is more, the paper may tear up leading to loss of paper and processing
time.

Depending on the roll diameters and the required paper tension, the drive con-
troller generates a signal for the desired motor speed. This signal, called the refer-
ence signal or the desired output, is the input to the speed controller. The actual
motor speed is measured by a tachogenerator which gives a voltage proportional
to the instantaneous speed. This is called the output signal. The input and the out-
put signals are compared in a summing junction in the speed controller which
generates a signal proportional to the difference between them. This signal is
called the error signal. The voltage applied across the motor armature is propor-
tional to this error signal. If the error is zero, i.e., the output is equal to the input,
no control action is called for and the armature voltage remains unaltered at its
previous value. If the error is positive, indicating that the output speed is less than
' the desired value, the armature voltage is increased to speed up the motor. When
the input and output speeds match again, the voltage is not altered. In this fashion,
by constantly comparing the input and the output signals, and then tnitiating ap-
propriate control action, the motor speed automatically follows the set reference
value. Since the output is fed back to the input, such a system is called a feedback
control system.

Let us represent the speed control system in terms of the block diagram of
Fig.7.16. The d.c. motor with its associated thyristor power converter and
mechanical load connected to it (in this case, the paper roll) is called the ‘plant’ to
be controlled. The input to this plant will be the thyristor firing angles (which, in
turn, sets the armature voltage level) and the output will be the motor speed. The
relationship between the input and the output of the plant will be given by its
transfer function G(s). The input to this plant will be given by the ‘controller’.
Actually, the summing junction is also a part of the controller only. The dynamics
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+ ErrorOontroller u(s) | Plant ,Outpgt
Gels) G(s) Cls)

Sensor |

reference " H (s)

Fig. 7.16 Block Diagram of a Feedback Control System

of the controller are given by its transfer function G.(s). The output is sensed by
some transducer which generates a signal proportional to the output. The charac-
teristics of this sensor and other components in the feedback path are given by the
transfer function H(s). The block diagram of Fig. 7.16 is the representation for any
general feedback control system. The symbols for the variables —C () for the
output; R (s) for the reference input, U (s) for the control signal; and E (s) for the
error signal—are also standard symbols in control theory.

Many a time the dynamics of the controller and/or feedback sensor can be
neglected. Then the transfer functions G.(s) and H(s) become constants. In many
cases, the controller transfer function is simply the gain of some amplifier,
i.e..G(s) = K. Again, in many cases the feedback transfer function is simply unity.
Such systems are called unity feedback systems and represented by the block
diagram of Fig. 7.17. Note that Fig. 7.17 is a special case of Fig. 7.16 with
G{(s)=Kand H (s) = 1.

R(s) 4 cls)

KG(s)

-
i

Fig. 7.17 Unity Feedback System

Let us now introduce some of the terms in control theory terminology. The
‘open loop’ transfer function of Fig. 7.16 is G(s) G(s) H(s). The ‘forward path’
transfer function is G.{s) G(s), The ‘closed loop’ transfer function, according to
eqn. (7.3), is given by,

i) G.(5)G () .
R(s) =~ 1+G.(5)G(s)H(s)

(7.6)

The closed loop transfer function of the unity feedback system of Fig. 7.17 is given
by,

Cs) _ _KG(s)
RG) 1+ KG(s)

(7.40)
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As mentioned in Chapter 6, since G(s) is a ratio of two polynomials in s, eqn. (7.6)
or eqn. (7.7) will also be a ratio of two polynomials. That is,

C(s) _ N(s) _ cns" + Cn- ST es + e

R(s) = D(s) " +dois" "+, +dis +d 7:8)

with m < n. The denominator is called the characteristic polynomial and the
equation,

S 4 dy S L+ ds +do = 0 (19)

15 called the characteristic equation of the closed loop system. The roots of egn.
(7.9) are the closed loop poles and their locations determine the form of the
system’s natural response.

Some of the important problems in the analysis of feedback control systems
are: (i) transient response; (ii) stability; (i) accuracy; and (iv) sensitivity. In the
following sections, we investigate the main points concerning these problems.

7.5 Transient Response

The unit step signal serves as a standard test signal for characterising the transient
response of linear systems. The procedure for determining the complete response
to a step input, using the Laplace transform method has already been described in
Chapter 6.

Let us first investigate the effect of feedback on the transient response of a first
order system. Consider the system shown in Fig. 7.18. The closed loop transfer
function of the system is,

C(s) _ K )
R(s) s+ 1+ Ka

R(s ) K C(s)

Fig. 7.18 A First Order System

The step response of the system is given by,

kK _A L A
C(S)_s(s+l+Ka)_ s+s+1+Ka

withA, = K/(1+Ka) and A, = =K /(1 +Ka).
The Laplace inversion of C(s) gives,

c(®) = Awlt)+Arexp[-(1 +Ka) 1.
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The first term gives the steady-state component and the second term the transient
component of the response. The transient term is a decaying exponential term with
a time constant equal to 1 /(1 + Ka), which can be controlled by a proper choice
of K and a. K may be the gain of an amplifier and a the gain (rather the attenua-
tion) of a potentiometer. By controlling these two constants, the time constant of
the closed loop system can be made as small as desired. A smaller time constant
means a faster acting system. Thus, even a slow acting plant can be made quick
acting by the action of feedback.

The transient or the dynamic properties of a first order system are all summed
up in a single factor; the time constant of the system. We now take up the more
interesting case of a second order system.

Transient response of second order systems:

Second order systems are important because of two reasons. First, a number of
physical systems give rise to second order models, e.g., R—L-C electrical circuit,
mass-spring-dashpot mechanical system, etc. Second, the response of even higher
order systems can usually be approximated by a second order system. In fact, the
design specifications of most of the control systems are usually given in terme« ~f
performance criteria of second order systems.

As mentioned in Section 3.6, the general equation for a second order system
with output c(?) is given by,
d’c

;t? + 22;0),,

de

2 — 2 e
i + @, c=wir(). (7.10)

The input r(z) has been multiplied by a constant @2 so that when r(?) is constant,
the steady-state output is equal to r(t). In other words, the steady state gain of the
system is unity. The transfer function of the system is,

C(s) _ 0% .
R(s) 8 +2Lms + ol

(7.11)

The system is overdamped when { > 1, critically damped when { = | and under-
damped when { < 1. The underdamped case is more important and henceforth,
we assume the system to be underdamped.
The unit step response of eqn. (7.11) is,
o _
s+ 20w, s + @F)

C(s)

Expanding by partial fractions we get,

Cls) = w; _ Ay, Ars + As ‘
(s) = s+ 20 s+ @) s S +2Lm,5 + 0

Multiplying both sides by the denominator we get,
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A+ 20@,5 + @) + (A5 + Ay s = o
or
(A + A) " + (20w, A, + A))s + A @ = -

Equating coefficients of like powers of s on both sides of the above equation we
get,

A =1, 20wdA +A; =0 and A +4;, = 0.
From the above we get,

Al = ,AA=-1land Ay = -20m,.
Therefore,

s+ 20w, '
s+ 20w, + o

C(s) = -

1
s

We now take the Laplace inverse of the above expression to get ¢(t). For this
purpose the second term on the r.h.s. is rewritten as,

s+28w, Lo, + (s + L)
f+20@,s+ o  (s+ L)+ (@ V1 32

i (u),,4|_c2)§+(s+§0),,)\fiv_?
Vicg s+ Lw) + @V _gy

1 (o Vl_c2)‘cosﬂ+(s+Cu),,)sin9
Vi (s + L) + (@ V- g2)
wherecos® = § andsin@ = v _¢2.

The above expression now corresponds to item 12 of Table 6.1 and its Laplace
inverse is given by,

VIL—I;T exp (- Lo, sin{m,,(\jl_€2)t+ 0}

Therefore,

e = 1—Vll_—czexp(—Cwnt)sin{w"wl_e;z)we}

where 8 = tan"'Vq _¢2 /.
Replacing ®, Vi — < by w, we get,

o) = 1 - ‘EL—E exp(l — L w,t) sin (0t + 0) (7.12)

Notice that relation (7.12) is the same as eqn. (3.31).
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The first term on the r.h.s. of eqn. (7.12) is the steady-state response and the
second term the transient response. The transient response is oscillatory, i.e., a
decaying sinusoid with frequency @, ‘Jl _ (;2 . Here, w, is the natural frequency of
undamped oscillations and ®, \/ii :Ezf = @, the frequency of damped oscilla-
tions. If the damping ratio is zero, the system will have oscillations of constant
amplitude. However, such systems are called unstable systems and this condition
is avoided. A plot of the transient response and its characteristics have already
been described in Section 3.6.

In the design of control systems the transient behaviour is specified by the fol-
lowing measures: (i) rise time, #,; (il) percentage overshoot, PO; and (iii) settling
time 7,. The expressions for these are (Section 3.6);

n-6

1, o 0 = 100 exp( ?;Tc/\/]_g),t\

-3
= fa.

The parameters under control are { and ®,. As the PO depends only on {, the
damping ratio is selected first to satisfy the PO requirement. The value of @, is
then chosen to satisfy either the ¢, or the ¢, requirement. Usually £ is selected be-
tween 0.4 and 0.7; 0.4 gives an overshoot of 25% and 0.7 about 5%.

Correlation between transient response and location of poles:

As mentioned earlier, the shape of the transient response (i.e., the natural response)
of a system is determined by the roots of its characteristic equation, i.e. the poles
of the system. From eqn. 7.11, the characteristic equation of a second order system
is 57+ 20 w,s + ®2 = 0. The roots of this equation are,

S1, §2 = — M, ijO),,Vl_Cz.

Thus, the location of the system poles in the s-domain is dependent on the
parameters { and ,. Figure 7.19 shows this dependence. The distance of the poles
from the origin is equal to , and the intercept on the jm-axis equal to the damped

Increasing gyn

Increasing ' “C=n, 1-42
sin' ¢,
8

1 o o

Fig. 7.19 Pole Locations in Terms of { and on
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frequency of oscillation w, . As { is varied keeping , fixed, the poles move along
the arc of a circle with radius ®, and centre at origin. When £ = 0, both the poles
lie on the jw-axis, giving steady-state oscillations. When { = 1, both the poles
move on to the same location on the o-axis. Increasing £ beyond 1 moves the
poles apart but they remain on the real axis. Thus, poles on the real axis give an
overdamped response and complex poles give an underdamped oscillatory
response. Poles nearer the jo axis cause more oscillations than those away from
Jo axis. Of course, poles in the right half of the s-plane will make the system
unstable.

We now take up an example of a feedback control system, study its basic com-
ponents and their functions, obtain its mathematical model and study its transient
behaviour.

Example 7.6 : — The schematic diagram of a position control system is shown in
Fig. 7.20. The objective is to control the angular position 8, of the output shaft. The
input, i.e., the desired angular position 8, is set on the potentiometer P,. Poten-
tiometer P; is coupled to the output shaft. The pair P, and P, act as the error detec-
tor, generating a voltage proportional to 6; — 8, . The amplifier amplifies this
voltage to drive the armature of a d.c. motor.

ity y— - 7
o vat astl //
R PG

= 3 gEul;
—_ <-g°/ 2 A 1 0
~ = =0 | L e

nA -y B

T

Fig. 7.20 Schematic Diagram of a Position Control System

The motor armature is coupled to the mechanical load through a gear train which
reduces the speed in the ratio n : | (n > 1). Develop the transfer function of the
system and find its step input response.

Solution: Let us first determine the transfer function relating the error signal e to
the output 8,. The cause-effect chain, relating ¢ to 8,, may be written as,

Armature voltage : v, = Ae.

v‘,-Kléu vy~ kin (':)(,.

R, R,

Armature current: i,

Torque: 1, = K3 i, .

These three equations can be combined into one as follows:
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w0 = Bhpp - Kt g
= K3 E (S) - K4 s eo (S) . (l)

The motor output torque T, will drive the mechanical load; the armature inertia
J. plus the load inertia and viscous friction, referred to the armature shaft. The load
inertia J;, and viscous friction B, will be multiplied by n* when referred to the
armature shaft. Thus, the total inertia at the motor shaft is,

J o= J, + 0.
Similarly, the total viscous friction at the motor shaft is,
B = B, +n*B, .
Thus, the equation of the mechanical motion is,
Jo,+ B8, =1,
or
Jn é,, + B'n é,, =T,.
Taking the Laplace transform, and replacing J'’n = J and B'n = B, we get,
Js?0,(s)+ Bs8,(s) = T, (). (ii)
Replacing 1,(s) in eqn. (ii) by the expression (1) we have,
(JsP+Bs5)0,(s) = KiE(s)— K0, (5) (1ii)
Therefore, the plant transfer function is,

9,, (3) _ K3
Es) ~ sUs+B+K)

(iv)
Now, the effect of feedback is to make
E(s) = Ks[0(s)—0.(s)].
Substituting this expression in eqn. (iii) we get,
(Js*+ Bs)P, (5) = KiKs0,(s) — (K:Ks+ Kys) 8, (5).
Thus. the closed loop transfer function is,

9,,(5) - K3K5

- 2 (V)
6:(s) Js*+ (B + Kys + K:K

Expression (v) can be rewritten in the standard form as,

Cs) _ o
R(s) §2+20m,s + o

where,
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B+ K
= KIS = SRR

Let the system parameters be so chosen that { = 0.5 and ®, = 4 rad/sec, The
performance measures of the step input response can then be calculated according
1o the egns. (3.32) to (3.55) as follows:

." _r2
6 = tan"—l—cq— = tan"' 1.735 = 1.065 rad

W, = o,V - = 3.47 rad/sec.

Therefore,

0.6 sec.

:

t, = ©/w,; = 0.785 sec.
100exp (- Cn /N1 - ) = 164%
3/Lw, = 1.5 sec.

o
]
I

t.\

~Control of transient response through feedback:

‘Figure 7.21 shows a second order overdamped plant. Feedback control is
employed around it with a feedback gain a and forward path gain K. We now
show that by controlling K and «, the system may be made to have any desired

dynamic response.

R(s)s  « 2 C(s),_
A T sty (S¢2) o
G(s)
a
H(s)

Fig, 7.21 Second Order Overdamped Plant
The closed loop transfer function is,

Cis) _ KG(s) : 2K
R(s) ~ 14+ KG(s)H() ~ (s+ ) (s+2)+2Ka

or

i) 2K
R(s)  $+35+(2+2Ka)

Comparing with the standard form,
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20w, = 3 and @} = 2+ 2Ka.

Therefore,

Y 3
= N2+ ' = :
) 2Ka and & TV 1 2Ka
Thus, by suitably selecting the values of K and @, we can get any desired transient
response.

The roots of the characteristic polynomial of the closed loop system are,

-
3, 0-4Q+2Ka)

S$193 82 = — x
) 2

[S]

By suitably selecting K and 4, the poles can be located anywhere on the real axis
oron a vertical line passing through 6 = — 3/2. Thus, the feedback can be used to
control the transient response of a feedback control system.

7.6 Stability

The transient response of linear systems consists of exponential terms of the form
¢, exp (r, B, where the coefficients r; in the exponent are the roots of the charac-
teristic equation of the system. In the transfer function representation of systems,
the characteristic equation is the denominator polynomial equated to zero, and the
roots r; are the same as the poles of the system. If all the roots are negative (or have
negative real parts in the case of a complex root), the transient response decays to
zero as f increases to infinity. On the other hand, if even a single root is positive
{or has a positive real part in the case of a complex root), the transient response
will go on increasing without bounds. We then say that the system is unstable.
Thus, the condition for stability of a linear system is that all the roots of its char-
acteristic equation should be negative (or have negative real parts in the casc of the
complex roots) or all the system poles must lie in the left half of the s-plane.

When a pair of complex poles lie on the jw-axis, a step input response produces
sinusoidal oscillations of constant magnitude. Such a system is on the borderline
between stable and unstable conditions and is called a marginally stable system.
However, even a slight change in the parameters may push the poles into the right
half of the s-plane, making the system unstable. Hence, for practical purposes a
marginally stable system is also classified as an unstable system.

The use of feedback usually has a tendency to destabilise a stable plant. The
reason for this is as follows. A prime requirement of any control system is that it
should have a low steady-state error. As we shall see later, this requires that the
gain of the open loop transfer function, | KG(s) H(s) I, be high. This gain can easily
be increased by increasing the forward path gain K, which is usually the gain of an
amplitier. However, increasing K shifts the closed loop poles to the right, leading
the system towards instability. This is illustrated by the following example.
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Example 7.7 : — The open loop transfer function of a unity feedback system is,

K K

G = NG+ (+3) 467411546

Determine the location of its closed loop poles for increasing values of K. Also
determine the limiting value of K beyond which the closed loop system with unity
feedback becomes unstable.

Solution:  All the three poles of the plant, s, =~ 1,5, = —2 and 53 = -3, are
negative. Hence, the plant, i.e., the uncontrolled system (without feedback) is
stable. The transfer function of the closed loop system is,

Cs) _ _Gls) K
R(s) 1+G(s) 4658+ 11s+6+K

The characteristic equation of the closed loop system is,
1+G(s) =0
or

SH687+1ls+6+K = 0.

In order to obtain the roots or the poles of the closed loop system, we must
factorise the above closed loop characteristic equation for different values of K.
This is done as follows.

(1) K=0: The closed loop characteristic equation becomes the plant char-
acteristic equation. Hence, the closed loop poles will be the same as the open loop
poles. That is,

si=—=1,8=-2,5=-3
(2) K=46: The characteristic equation is

S+ +1s+12 = (s+4)(s*+ 25+ 3).

That is,
5,8 = —1 ij\/z and 53 = — 4.
3) K=24:
S+H682+15+30 = (s+5)(5* +5+6).
That is,
s, = —05%j¥23/2 and 5, = — 5.
4) K=60:

S+6s2+1ls+66 = (5+6) (s*+11).

That is,
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S, 8 = ijV'] and .8’32—6_

The locus of the closed loop poles for increasing values of X is shown in Fig.
7.22 Such a diagram, showing the movement of the roots of the closed loop char-
acteristic equation, is also called a root locus diagram. This figure shows that for
values of gain K greater than 60, the closed loop poles will enter the r.h.s. of the
s-plane. The system will then become unstable.

K= 60=24=6

X T — -
-6 5 -4 -3 2 3 4 o

L -j2

K=24 )

- _j3

K =60 )

LN

Fig. 7.22 Locus ef Closed Loop Poles (Root Locus)

It is quite obvious that an unstable system cannot perform any useful function.
Not only that, unstable operation is dangerous and may damage the plant. There-
fore, it is absolutely necessary that the feedback control systemn be so designed that
it does not become unstable under any condition of operation. The methods of
determining whether a feedback system is stable or not form an important part of
the study of control systems.

The most direct method for determining the stability is to factorise the closed
loop characteristic polynomial | + G(s) H(s) in order to determine the roots ot the
characteristic equation 1 + G(s) H(s) = 0. If all the roots have negative real parts,
i.c., it all the closed loop poles lie in the L.h.s. of the s-plane, the system is stable.
Otherwise it is unstable. However, factorising a polynomial is a tedious work and
becomes almost impossible if the order of the polynomial is high. Therefore, dif-
ferent techniques have been developed for predicting the stability without the need
for factorising the characteristic polynomial. In the following subsection we study
one of these techniques.
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The Routh-Hurwitz stability criterion:

For testing the stability of a system, we need not know the exact location of its
poles. All that we need to test is whether all the system poles are in the Lh.s. of the
s-plane or not. Routh Hurwitz criterion is a method for such a testing.

The characteristic equation of an sth order closed loop system is,
S'vd, " +d, "+ +dis+d, = 0. (7.13)

Let the roots of this equation be sy, 54, . . ., 5,. Then, from the properties of the
roots of algebraic equations, we have,

dyoy = —-(S|+Sz+...+s,,)

it

d,,-g + (S[SQ + o5 tHSsis .. )

(i.e., the sum of the products of roots, taken two at a time)
d,,43 = - (S|S2S3+S]S2 Sq+ L. )

(i.e., the sum of the products of roots, taken three at a time)

d“ = (—])"S|S3.....S,,. (7~l4)

From the relations (7.14), we can derive the following necessary condition for all
the roots 5. ... , 5, to be negative (or have negative real parts): all the coefficients
d,_, .., d, must be non-zero and positive. If this condition is violated, one or
more of the roots will be positive and the system unstable. However, this is only a
necessary condition and not a sufficient condition. If it is satisfied, we proceed to check
for the Routh-Hurwitz criterion which is both a necessary and a sufficient condition.

We tirst formy a Routh array as follows. The first two rows are made up of the
coefticients of the characteristic eqn. (7.13) as,

Row [, 5" I dyo2 na-g
Row2,s"" ' | dooy duos dyes
Let us denote the elements of row 3 by ds), ds, . . . . Then,
| ] dy -
d“ - dn—i ’ dnAI dn—d
/ T v!“ l dn-J
@ = (l,,, ( dn- | dn—S

and so on. Thus, the array up to the third row is,

Row 1, s | d,,-z d,, -4
Row 2,5"‘1 dn~| du—} dn-i
Row 3,s" 7% | da dn  dn

The elements of the fourth row, da, dss, ... are formed as,
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l d —1i d -3

d —_— n n—3
“ dfn dSl d32

1 |d,. dos

dip = - —— '
“ dy | du  dn

and so on. Thus a new row is formed out of the elements of the preceding two rows
according to the formula given above. This procedure is continued till we reach the
(n + 1)th row corresponding to s". The Routh-Hurwitz criterion is stated in terms
of the first column of this array. It states: the characteristic polynomial (7.13) has
no roots outside the 1 h.s. of the s-plane if all the elements of the first column of the
Routh array are non-zero, positive numbers. Further, the number of roots in the
r.h.s. of the s-plane is equal to the number of sign reversals in the first column.

Example 7.8 : — Examine the stability of a system having the characteristic poly-
nomial s* + 105" + 355% + 505 + 24.

Solution:  Since all the coefficients of the given characteristic polynomial are
positive we can proceed to perform the Routh-Hurwitz test. The first two rows of
the Routh array are,

34

5.3

1 35 24
10 50 0

The missing elements are assumed to be zero. The elements of the third row are
calculated according to the rule given above as,

S U T T - 2 o I I B S
== 95110 50‘ =30 d”_“ 10 } 10 0} =24
The Routh array up to the third row is,
st 1 35 24
s$110 50 0
2|30 24
The elements of the fourth row are
1110 50 _ .. _
du = =35 | 30 24’ =42, di = 0.
Thus the array up to the fourth row is,
st 1 35 24
$110 50 0
s |30 24
s 42 0
The element in the last row is,
b (30 24| _
ds, = 42‘42 0‘ = 24,
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Thus, the complete array is,

§ I 35 24
$S110 50 0
2130 24

s | 42

' | 24

Examining the first column of the Routh array we find that there is no change in
the sign of the elements. All the elements in the first row are non-zero positives.
Hence, all the roots lie in the 1.h.s. of the s-plane and the system is stable. We can
verify  this result by factorising the given polynomial as
(s+1D){s+2)(s+3)(s+4).

The results of the Routh-Hurwitz analysis are not altered if all the elements of
a row are multiplied or divided by a positive constant. For example, in Example
7.8, the second row could be divided by 10 to give

s 35 24
s11 5 0

This helps in simplifying the numerical work. The third row remains the same, i.e.
(30, 24). Dividing cach element by 6, we get (5, 4). The fourth row then becomes
(21/5, 0), which can be written as (1, 0). The last row becomes 4. The complete
array becomes

35 24
0

4
3
2

S B

)

5
§
s

{
A

a

The result about stability is the same since it is dependent only on the sign of the
terms in the first column and not their numerical values.

Example 7.9 : — Let us now alter one of the poles from — 1 to + | in the previous
example. The polynomial then becomes,

5-DE+2)E+3)(+4) = s +85+ 1757 - 25— 24,

Since two of the terms have negative signs, it violates the necessary condition, and
we can at once conclude that one or more roots are outside the L.h.s. s-plane and
the system is unstable. Developing the Routh array we get,

s 1 17 =24
5 g8 =2
=4 —-1)
5?2 18 ~-24
(=3 -4
s 13/3
5§ -4
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There is one sign reversal in the first column, from + 13/3 to — 4. Hence, we cor-
rectly conclude that one of the roots is in the r.h.s. s-plane.

Example 7.10 : — Let us now shift one of the poles to the origin. The charac-
teristic polynomial then becomes s* + 9s5® + 26 5> + 245 + 0.5°.

Since one of the coefficients is zero, we may directly conclude that the system
is unstable. However, let us continue with the development of the Routh array.

st I 26 0

§ 9 24
(=3 8)

5 70/3 0

§ 8

s 0

Since once of the elements in the first column is zero, the system is unstable.
Also the array tells us that one of the roots is at the jw-axis.

Example 7.11 : — Develop the Routh array for the polynomial,
(FHDE+1) = s+ +s+ 1

Solution:  The first two rows are,

Then the first element of the third row,

(I_ﬂ:*l‘l l’

o1

We cannot proceed any further if the first element of any row is 0, because the
next term will have an impermissible multiplier — 1/0. To avoid this difficulty let
us replace ds, by a small number €. Then array up to the third row becomes,

s
§ 11
s | g 0
Proceeding further,
d4| = —l/e ] : } = l,

and the complete array is,

3
N
2

1
s
S| E=

S

S — —
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We conclude that the system is unstable because one of the elements in the first
column is zero. We also derive another property. If the sign of the elements (in the
first column) before and after a zero element is the same, then the system has a pair
of poles on the jw-axis. In this case, the poles are located at + j. Another property
of the Routh array is that if the last element in the first column is zero, (Exatiiple
7.10), the polynomial has a root at the origin.

Example 7.12 : — Develop the Routh array for the polynomial,

S+ 45427 =254 = ST 1) (P +2) (5 +2).
Solution: The first two rows are,

S 1 =2
12 2 -4

Since the second row is equal to the first row multiplied by 2, all the elements in

the next derived row, i.e., the third row, will be 0. Replacement of the zeros by €
will not help in this case. The procedure to be followed in such cases is as follows.:

Form an auxiliary polynomial P (s) with the coefficient of the second row: in
this case, P (5) = 2s* + 257 — 4. Then take the derivative of P (s) to get dP (s)/ ds
= 85" + 4s. The elements of the third row are the coefficients of this derivative.
That is,

s 1 1 =2

st 2 2 -4

s 8 4
(=2 1

Proceeding further we complete the array as,

s

D

5 1 1 =2
st 2 2 -4
5 2 1
52 1 -4

5

4

Since there is one sign reversal in the first column, the array correctly tells us that
one of the roots is in the r.h.s. of the s-plane.

A situation like this, i.e., when all the elements of a derived row become equal
to zero or when a row can be obtained by multiplying the preceding row by a
constant, arises when the polynomial has pairs of roots located diagonally opposite
to each other in the s-plane. In the present problem, we have two pairs of such
roots:s = £ 1 and s=%jV2. These roots are found by the auxiliary polynomial
P (s5). In the present problem,

P(s) = 2542574 = 2(s5" = 1) (5" +2).
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As far as stability is concerned, we conclude that if the elements of the second row
of the Routh array are obtained by multiplying the elements of the first row by a
constant, then the system is unstable.

7.7 Accuracy

The accuracy of a feedback system is measured by its steady-state error, i.e., by the
difference between the input and the output under steady-state conditions. The
smaller the error, the more accurate the system is. From the basic feedback con-
figuration shown in Fig. 7.23, the expression for the error £ (s) is,

E(s) = R(s)~C(s)H(s).

R(s) + o E(8) [T ()

H(s)

Fig.7.23 Basic Feedback Configuration

The closed loop transfer function is,

Cl) _ KG (s) .
R() ~ 1+KG(s)H(s)
Therefore,
COHG = RO TR 15
Hence,

E (s)

KG(s) H(s)
Rmpﬂ+mmmJ'
1

R (s) m (7.15)

The expression for steady-state error can be derived by using the final value
theorem in eqn. (7.15). Then,

en = lime () = lim sE(s) = lim —— R 0)

—— . 7.16
t—ea =0 s—0 1+ KG(s) H (5) ( )

For evaluation of e,, in eqn. (7.16) the input function R (s) must be known. How- -
ever, the input can be any function of time. For the purpose of error analysis, i.e.,
for defining the steady-state accuracy of the system, we settle down to three basic
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input functions: the step, the ramp and the parabolic function. Analytically, these
test functions are ¢, ¢' and £~

For the unit step input () = u (), R(s) = l/sandegn. (7.16) gives,

e, = lim sls = !
» T Le 1+KG(s) H(s) | +KG (o) H(0)

The constant term KG (0) H (o) is given a special symbol K, and the name posi-
tion error coefficient. In terms of K, ,

l .
I +K,

(7.17)

e.\.\' =

To get a small steady-state error 10 a step input, K, must be made high. This can
be achieved by increasing the forward path gain K. Thus, the higher the gain, the
smaller the error.

For a unit ramp input r () = ¢, R(s) = 1 /5% and eqn. (7.16) gives,

e, = lim __sis lim S —
o oo L+ KG(s) H(s) B o SKG(s) H(s)

The constant term,

lim sKG(s) H(s)

y—=20

is called the velocity error coefficient K,. In terms of K, the steady-state error due
to a ramp input is,

1
e = (7.18)
Similarly, for a parabolic input r (f) = £#/2, R(s) = 1 /s and,

3

e = lim ——o B fim L
= P 1+KG(S) H(s) - P S2 KG(S‘) H(S).

Calling
lim s* KG(s) H(s)

s o0

the acceleration error coefficient K,, the steady-state error due to a parabolic input
is given by,

€y = — (719)

In all the three cases, the steady-state error is inversely proportional to the error
coefficient. This error coefficient can be increased, and consequently the error
reduced, by increasing the gain K. However, increasing K may lead to instability.
The main challenge of control system design is to reconcile these contradictory
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requirements of increasing X to reduce error and yet maintain a proper stability
margin.

In most of the cases, it is required that the steady-state error of the closed loop
system due to a step input be zero. For this to be so,
K, = lim KG(s) H(s)
s — 0
must be infinite. Now, KG(s) H(s) is the open loop transfer function, with a
numerator polynomial and a denominator polynomial. In the factored form it can
be written as,

K(s+a)(s+a)... )

KG(s) H(s) = S(s+b)(s+by) ...

It the power n of the free s term, 5 ", in the denominator is zero, then it is clear
that

K, = lim KG(s) H(s)
A =l

will not be infinite. However, if n = | or more, K, will always be infinite. Thus, the '
power # of the term 5" in the denominator of KG(s) H(s) is important in deciding
" whether one or more of the error coefficients will be infinite (i.e., the correspond-
ing steady-state error will be zero). Therefore, the open loop systems are classified
according to the power n of the free s term, 5", in the denominator of their transfer
function. A system is called type 0 if n =0, type |, if n =1, type 2, if n =2 and so
on. (Note that the order of a system is an entirely different entity from the type of
a system.) For unity feedback systems, the type of the open loop transfer function
is the same as the type of the plant transfer function. Let us now study the error
coefficients and the steady-state errors for different rypes of systems.

Type O system: For ease of computation, let us assume unity feedback, i.e. H(s)
= 1. Also, let G(s) = /(s + 1). The position error coefficient i1s K, = K and the
steady-state error e, = /(1 + K). By making K large, e, can be reduced but it can-
not be completely eliminated. Hence, a type 0 system will always have some
steady-state error due to a step input.

The velocity error constant,

K, = limsKG(s) H(s) = imKs/(s+1) = 0.
30 sy =0
Hence, steady-state error due to a ramp input will be infinite. That is, a type 0
system cannot follow a ramp input. Similarly, the steady-state error to a parabolic
input will also be infinite. Thus, from the accuracy point of view, the type O system
is not very effective.

Type 1 system: Let H(s) = | and G(s) = l/s (s +1). Then,
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K, = IimK/s(s+1) = oo,
s =}
Hence, the steady-state error due to a step input will be zero. The velocity error
coefficient,
K, = limK/(s+1)=K
s 0
will be finite. Therefore, the system will follow a ramp input with a finite steady-
state error which ¢an be made small by increasing K, but cannot be totally
eliminated. The acceleration error coefticient K, will be zero and, hence, the type
I system cannot follow a parabolic input.

Type 2 system: 1t is straightforward to show that both K|, and K. will be infinite
for a type 2 system. Thus, the system will accurately follow step and ramp inputs
without anysteady-state error. However, K, will be finite and therefore there will
be some steady state error to a parabolic input.

The free s term in the denominator represents integration of the input. A plant
with a single s term in the denominator has one integration; with 57 it has two
integrations, and so on. Such integrations arise naturally in physical systems. For
example, in an armature-controlled d.c. motor with the angular position of the
shaft as the output, a constant voltage across the armature results in a continuously
increasing output. Thus, the plant integrates the input once to produce the output
and hence is of type 1 |eqn. (iv), Ex. 7.6]. However, if the shaft velocity is con-
sidered the output, there is no integratior} and the transfer function is type 0.

The terms ‘position’, ‘velocity’ and ‘acceleration’, used with error co-effi-
cients, are derived from position control systems (or position ‘servomechanism’)
where a step input produces a fixed output position; a ramp input gives a fixed
output velocity; and a parabolic input gives a constant acceleration. However, the
same terms are used for all control systems, whether the output is temperature or
pressure or any other physical quantity.

Example 7.13 : — Determine the stcady-state crror due to step and ramp inputs
for a unity feedback system with plant transfer {function,

K{s+1)

Gls) s(E+2)(s+3)
for K= 1, 6 and 60.

Solution:  As the plant is type 1, K, = oo and the stcady-state error due to a step
input will be zero. So, we consider only the ramp input (Fig. 7.24). From the
definition of K,

K{s+1) K

Ko = lim S KGO HO) = i o %)~ 6

The steady-state errore,, = 1/ K. = 6/K.
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ess

- {

Fig. 7.24 Steady-state Error due to Ramp Input

ForK = 1, e, = 6.
ForK = 6, e, = 1.

For K = 60, e, = 0O.1.

7.8 Sensitivity

Theoretically any desired dynamic response can be obtained from a plant by cas-
cading a series controller with a proper transfer function G, (s), without using any
feedback. Such a control is called ‘open loop’ control. However, the performance
of an open loop control will change due to any change in its parameter values. The
parameters may change because of environmental conditions or becavse of
ageing; the resistance of coils change with temperature, the gain of transistors
change with time, and the friction of a bearing is dependent upon the level of
lubrication. In many cases, the parameter values may not even be known accurate-
ly or may be very much different from the values assumed at the design stage. The
performance of the open loop system will also change because of unwanted ‘noise’
signals which will always be affecting any physical system. We then say that the
performance of the system is ‘sensitive’ to parameter variations and to unwanted
noise signals. One of the prime reasons for using feedback is that it reduces the
sensitivity of the system to both parameter variations and external noises or distur-
bances.

To demonstrate the effect of feedback in reducing the sensitivity to parameter
variations, consider a two-stage amplifier, each stage having a gain of 100, con-
stant over the frequency range of interest. The transfer functions G((s) and Gy(s)
of each stage are then just 100. The overall transfer function is 10,000. Now, sup-
pose the gain of the second stage changes by 10%, to become 90. Then, the overall
gain also changes by 10% to become 9000. Since a 10% change in the gain of one
of the components causes a 10% change in the overall gain, we say that the sen-
sitivity of the system is 1.
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Now, suppose we put a feedback around the second unit with a resistive poten-
tial divider so that the feedback H(s) = 0.5. Then, the closed loop transfer function
of the second unit becomes,

G(s) 100

e (s) = (4G H®) ~ 1+100x.5 ~ 09

The overall gain of the system becomes, G(s) = Gi(s) G,s) = 100 X 1.965
= [965. With a change in the open loop gain of the second unit, the changed gain
of the closed loop is G'2(s) = 20/(1 +90 x 0.5) = 90/46 = 1.955 and the overall
gain G’ (s5) = 1955. The overall gain variation is now only 10, from 1965 to 1955,
or 10x 100 /1965 =0.512%, as compared to 10% in the system without feedback.
The sensitivity of the feedback system is only 0.512/10 = 0.0512 as compared to
in | the previous case. This demonstrates the effect of feedback in reducing the
sensitivity of the system to parameter variations. Of course, the net gain of the
amplifier has been reduced because of the feedback. To regain the original gain,
one more stage (with appropriate gain) may be added to the amplifier.

For any feedback amplifier with a forward path gain A and feedback factor 3,
the closed loop gain is A/(1 + BA). If the loop gain PA is much larger than 1, then
the overall gain is simply 1/B, which is independent of the forward path gain A.
Hence, any variation in the value of A does not affect the overall gain. In other
words the system becomes totally insensitive to changes in A.

Let us now consider any plant with a transfer function G(s), input R(s) and
output C(s). Then, for the open loop system without feedback, C(s) = G(s) R(s).
Now, suppose that the plant transfer function changes to G(s) + A G(s) because of
narameter variations. Then, the open loop output becomes, C'(s) = [G(s) +
A G(s)] R(s). The change in the output is,

[C'(s) - C(s)] = AC(s) = AG(s) R (5).

Let us now use a feedback around the plant with a transfer function H(s). The
closed loop transfer function (without parameter variation) is G(s) / [1 + (G(s)
H(s)] and the output,

. _G)RE)
&) = T66) He)
With G(s) changed to G(s) + A G(s), the changed output becomes,

[G(s) + A G(s)] R(s)
1 +(G(s) + A G(s)] H(s)’

C'(s) =

With | A G(s) | << | G(s) |, the change in the output is,

A G(5)

Cs) =€) = 8CO) = 1600 HE)

R(s).
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Thus the effect of feedback is to reduce the change in the output by a factor of
L/ 11+ G(s) H(s)]. If the loop gain G(s) H(s) is kept large, which can easily be
done by increasing the forward path gain X, the change in output due to changes
in G(s) can be kept as small as desired.

Let us now compare the effect of noise in the open loop and in the closed loop
systems. In the open loop system of Fig. 7.25 (a), the transter function from the

noise to the output is,

C6) _ s
NGS) = Gy(s) .
N(s)
R(s) + C(s)
~___;Cn(s)_’_ Gof(s)p—m
(a)

(b)

Fig. 7.25 Reduction of Noise by Feedback

For the closed loop system of Fig. 7.25 (b), input R(s) is assumed to be zero for
considering the transfer function from N(s) to C(s). Then,

C(s) = [N(s) = Gi(s) H(s) C(5)] Gafs)
or,

[ 1+ Gi(s) Gafs) H(s)] C(s)} = N(5) Gs)
or,

Cs) _ Gy
N(sY 1+ Gi(s) Gofs) H(s)'

Once again, by keeping the loop gain G\(s) Ga(s) H(s) large, the effect of noise on
the output can be reduced.

Concluding comments: 1n this chapter, we have given a brief account of the im-
portant aspects of the feedback systems. These aspects are, transient response,
stability. accuracy and sensitivity, All these aspects are affected by feedback.
However, these requirements place conflicting demands on the feedback system.
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Reconciling these conflicting demands is the interesting, though challenging, task
of control system design.

GLOSSARY

Feedback: The process of comparing the output signal with the input signal to produce the control
signal applied to a plant is called feedback. If the output signal opposes the input, it is called
negutive feedback; if it aids the input it is called positive feedback.

Block Diugram: Each subsystem in a large system is depicted graphically by a functional block,
showing the input, the output and the transfer function relating the two. A diagram showing the
interconnections of such functional blocks of a system is called a block diugram.

Signal Flow Graph: This is a line diagram, consisting of nodes and directed branches, which shows
the flow of signals in a system. Each node represents a variable and each branch a subsystem
with a specified transfer function. The overall transfer function of the system is obtained by
simplifying its signal flow graph into a single branch between the input and the output nodes.
Mason’s formula gives a general method for signal flow graph reduction.

Stability: 1f the output of a system grows without bounds, it is called an unstable system. For the
system to be stable all the roots of its characteristic equation must have only negative real parts.
In other words, all the system poles must lie in the left half of the s-plane. The Routh-Hurwitz
method is a technique for determining the stability of a system without finding the roots of its
characteristic equation.

Error Coefficients: They determine the steady-state accuracy of a feedback system:

Position error coefficient: K, = lim KG(s) H(s).
s—o0
Velocity error coefficient: Ky = lim s KG(s) H(s).

=0

Acceleration error coefficient: Ky = lim 52 KG(s) H(s).
=0

The steady-state error of a system due to a unit step input is 1/(1 + K},), due to a ramp input,
1/K,, and due to a parabolic input (0 1), /K.

Type of a System:  In the factored form, if the denominator of KG(s) H(s) has no free s term, it is called
a type 0 system, if it has a free s terms it is called a type | system, and if it has a free 2 term it
is called a rype 2 system. A type 0 system will have a finite steady-state error due to a step input.
A type | system will have zero steady-state error due to a step input but a finite steady-state
error due to a ramp input. A type 2 system will have zero steady-state error for both step and

ramp inputs and a finite steady-state error due to a parabolic (& t2) input.

Sensitivity:  The sensitivity of a performance measure p of a system to variations in the parameter a is
defined as,

§ = % change in p
“ " 9% change in a’

PROBLEMS

7.1 Figure 7.26 shows an interconnection of two RC low pass filters. Treating ¢ach filter as a
subsystem, develop a block diagram representation for this circuit. This problem illusirates
that when loading cffects are present, the overall transfer function of series-connected sub-
systems is not equal to the product of their individual transfer functions.
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| R | R l

' | | [ I
x(s) | Lc | = |vis)

I | |
e

Filter1 Filter 2

I | I

Fig.7.26

7.2 Develop the block diagram representation for the two-tank system shown in Fig. 7.2 (b).
Use block diagram reduction techniques to obtain its transfer function.

7.3 Simplify the block diagram in Fig. 7.27 to determine the overall transfer function of the
system.

LY (s)

Fig.7.27

7.4 Draw the signal flow graph for the network shown in Fig. 7.28. Determine the transfer
function relating V,,(s} and Vi(s) by simplifying the flow graph.

*'\Jvi (s)

Fig.7.28

7.5  Determine and sketch the unit impulse response of a second order system.

7.6 A first order plant has a time constant of 2 seconds. Discuss how its time constant can be
halved using feedback.
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7.9

7.12

7.14

7.18

Feedback Systems 227

Determine and sketch the unit ramp response of a second order system.

When supplied from a 200 V d.c. source, an armature-controlled d.c. motor develops a
torque of 10 N-m and runs at a steady-state speed of 100 r.p.m. The supply is then switched
off and the speed plotted as a function of time. This speed-time curve is a decaying exponen-
tial with a time constant of 2 seconds. From these experimental data, obtain the transfer
function of the d.c. motor.

The forward path transfer function of a plant is,

__K
Tosls+ D)

G(s)

The constant feedback factor is (0.5. Show the location of closed loop poles for K = 1, 2 and
10. Sketch the step response of the closed loop system from a knowledge of pole locations.
A tachogenerator feedback is often used in position control systems to reduce the magnitude of
transicnt oscillations. The effect of this feedback on the system is shown in Fig, 7.29. The
forward path plant is such that it has a steady-state gain of 10, damping ratio 0.1 and w, = 4
rad/sec. Determine the tachogenerator gain K7 to make the closed loop damping ratio = 0.6.

8ols)

C(s)-—-eg,(s)

= 94ls)

Fig.7.29
Determine whether the closed loop systems, whose characteristic polynomials are given
below, are stable or not. Also give information about the number of closed loop poles in the
left half of the s-plane, on the jw-axis and in the right half of the s-plane:

() S +25+5+2.

(iiy s*+55+ 1357+ 195+ 10.

(i) s'+s'-sTHs-2

The plant transfer function of a unity feedback system is,

K

GO = T Grheed)

Determine the range of K for stable operation of the closed loop system.

The characteristic polynomial of a third order system s given by 5+ das® + d\5 + dy. Deter-
mine the relations to be satisfied by the coefficients d,, di and > for stable operation of the
system.

Feedback can also be used to stabilise an unstable plant. Determine the range of K for stable
operation of the closed loop system having plant transter function,

G(s) = K(s+2/s(s—-1)
and unity feedback.
A unity feedback system has the plant transfer function,

K
Gy = s(s+ 1) (s+10)
The input to the system is r (7) = 1 + ¢. Determine the value of K which will give a steady-
state error of 1. 1.



CHAPTER 8

State Variables

LEARNING OBJECTIVES
After studying this chapter you should be able to:

(i) formulate state variable equations for systems from their differential
equation and transfer function models;

(ii)  obtain the transfer function from a given state variable representation;

(iii)  determine the state transition matrix and solve state variable equations;
and,

(iv) diagonalise a matrix and derive the normal, or the standard, form of
state variable representation.

As illustrated by many previous examples, the modelling process of linear sys-
tems involves setting up a chain of cause-effect relationships, beginning from the
input variable and ending at the output variable. This casc-effect chain includes a
number of internal variables. These variables are eliminated, both in the differen-
tial equation model and in the transfer function model, to obtain the final relation-
ship between the input and the output. Analysis of systems with this input-output
relationship model will not give any information about the behaviour of the inter-
nal variables for different operating conditions. For example, the analysis of a
vibration table (Ex. 6.2) with the transfer function model [eqn. (6.30)], gives no
clue as to when the coil current will saturate the magnetic path or exceed its safe
operating limit. Therefore, for a better understanding of the system behaviour its
mathematical model should include the internal variables also. The state variable
techniques of system representation and analysis make the internal variables an
integral part of the system model and thus provide more complete information
about the system behaviour. In order to appreciate how these internal variables are
included in the system representation, let us once again examine the cause-effect
chain, i.e., the mathematical modelling process, by means of a specific example.
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Example 8.1 :— Field-controlled d.c. motor. Field-controlled d.c. motors are
used as actuators in low power instrument servos, e.g., for controlling the position
of a pointer over a dial. The control signal is applied across the field winding while
the armature is supplied from a constant current source. This arrangement is more
convenient because the field winding requires much less current than the armature.
(However, for large power motors it becomes difficult to supply the required
amount of constant armature current through a constant current source, and then
armature control is used instead of field control.) The input signal is the voltage
across the field winding, e, and the output is the angular position of the armature
shaft, 8. The schematic ~ ~ram of such a system is shown in Fig. 8.1.

i R b
i T[] ﬁ?[

2

Fig.8.1 Field-controlled d.c. motor

—n

i

Treating input voltage e as the cause, the effect it produces is the field current
i, the two being related by the equation,
di

LE+Rt=e. (i)

We now treat current i as the cause. The effect it produces is the field flux ¢.
Making the usual assumption of linear magnetic relation we get,

o = ki (ii)

where k, is a constant. The field flux interacts with the constant armature current
1, to produce a torque t. This relation is given by,

T=k . (iii)

The torque produces angular velocity w. The relation between T and @ is given by,

dw .
J— +Bwm=1 (iv)
dt
where J and B are, respectively, the net moment of inertia and the coefficient of
viscous friction o» the armature shaft. And, finally the output is related to the

angular velocity ® by the relation,

a8 _
dr

v
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The set of eqns. (i) to (v) gives the complete cause-effect chain, relating the
input e to output 0, through the internal variables i, ¢, T and ®. The differential
equation model, or the transfer function model, can be easily obtained by eliminat-
ing the internal variables and combining these five equations into one. But that is
not our intention here. We would like to develop a model which includes the inter-
nal variables also.

8.1 State Variables

In Example 8.1, there are four internal variables and one output variable. As there
is nothing to distinguish the internal variables from the output variables, we shall
call the combined set of the internal variables and the output variables as system
variables. Thus, for the field-controlled d.c. motor there are five system variables,
{i,0,7,@,0}.

We also notice that in this set of five system variables, some are related to
others through linear algebraic equations [eqgns. (ii) and (ii1)]. This means that their
values (at all instants of time) can be obtained from the knowledge of other system
variables, merely by linear combinations. In other words, even if the number of
variables is reduced, this reduced set can still represent the system completely. For
the purpose of finding a mathematical model to represent a system, we will
naturally choose a set of variables with the minimum possible number of elements.
Such a set would be obtained when none of the selected variables is related to the
others through linear algebraic equations, i.e., when the variables are linearly in-
dependent.”

A little consideration shows that the number of linearly independent variables
in Example 8.1 is only three. However, the set of three linearly independent vari-
ables is not unique. The sets {i,®,08}, {¢,®,8 } and (1,®,0} arc all
linearly independent and any one of these could be used to represent the system.
Choosing the first set {i , @, 9}, we can write the system equations as,

di di R, e

LE+Ri=eorz=—zl+z (vi)

J‘;—(:)+Bu)=k.k2ior%h2=£l—;2-é—§w (vii)
and

dg? = . (viii)
*  Asetof variables (x1, x2, .. ., xn} are called linearly independent if a linear algebraic equation,

such as,
ar x1+ax2+...+anxin=0
. does not exist between them for any non-zero values of constants a1, a2. . . ., dn.
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The set of eqns. (vi), (vii) and (viil) constitutes a mathematical model for the
system. It is a set of three first order differential equations. Its complete solution
for any given input e(r) applied at £ = 0, will require a knowledge of the value of
selected variables {i , W, 9} at t = (. To put it differently, we can say that if the
values of {i , @, 9} att =0 are known, then the values of these variables at any time
>0, in response to a given input e (r), can be obtained by the solution of eqns. (vi),
(vi1) and (viii). A set of system variables having this property is called a set of state
variables. The set of values of these variables at any time ¢, is called the state of
the system at time ¢,. The set of first order differential equations—Ilike eqns. (vi),
(vii) and (viii), relating the first derivative of the state variables with the variables
themselves—is called a set of state variable equations and constitutes the state
variable model of the system. It is also to be noted that the number of state vari-
ables needed to form a correct and complete model of the system is equal to the
order of the system.

8.2 Standard Form of State Variable Equations

In the state variable method of analysis, standard symbols are used for state vari-
ables. The notations for writing state variable equations have also been stand-
ardised. To understand these, we start with eqns. (vi),(vii) and (viii) of the previous
section.

Let the state variables be represented as, 8 = x;,, ® = x; and i = x3. Then,
the state equations can be written as,

X.t = X2

B
- = Xz + k|k2.X3

X:z= 7
X ——Bx +le
3 = LB L ¢

These three equations can be written more systematically in the matrix form as,

X 0 1 0 X 0
n|=|0 —-BAd kk x| +| 0 e (ix)
;t'_; 0 0 - R/L X3 1/L

The output variable is simply equal to one of the state variables in this problem.
In general, the output can be any linear combination of the state variables. To
provide for this generality, the output is also written in the matrix form as,

Xy
6=x=[100]]| x (x}
X3
Equations (ix) and (x) constitute the state variable model of the field-controlled
d.c. motor.
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In the standard form the input variable is designated by the symbol u and the
output by the symbol y. The state variable model! for an nth order system is written
as.

x = Ax+bu (8.1)
y =¢x (8.2

where X is n X | vector, called the state vector, A is n X n matrix called the state
matrix, b is n x| input matrix, ¢ = 1x n output matrix, and u and y are the scalai
input and output. In the expanded form, we have,

Xy dy A Ay,
X2 ayn  uan (57
X = S A =
e Uy Uy oy,
bl
b, )
h = l.e=lae ) (8.3
b,

The system variables x, u and y are functions of time while matrices A, b and ¢
consist of constant coefficients. Equation (8.1) is called a vector differentiul equa-
non and is a compact way of writing a set of » first order differential equations.

In the standard form of eqns. (8.1) and (8.2), the variables are x, u and y while
the parameters are the matrices A, b and ¢. Assuming the standard form repre-
sentation, a system is completely detined by these matrices. Theretfore, many a
time a system is referred to simply as the set {A, b, ¢}.

Equations (8.1) and (8.2) represent a linear, time invariant, single-input-singie-
output system. However, the state variable technique provides an easy and general
method of representing other classes of systems also. For example, if the system is
not linear, the vector state equation is written as a general functional relationship
between X and x and u, i.e.,

x =f (x,u) (8.4)
where f may be a set of non-linear relations.

State variable representation is also convenient for multivariable systems,
where the number of inputs and outputs is more than one. Let there be m inputs and
r outputs. Then the scalar « becomes a vector u with dimension m and output y
becomes y with dimension 7. The order of the system, that is, the number of state
variables remains n. The representation for such a multivariable system is then,

x = Ax+ Bu (8.5



State Variables 233

y = Cx (8.6)

where the dimensions of parameter matrices A, B, C and variables x, u and y are:

dimA =nxn X =nxl
dimB'=nxm u=mxl
dimC = rxn y=rxl

The output eqn {8.6) means that the output is a linear combination of state
variables. The state variables, in turn, are effected by the input u. Thus, the input
affects the output only through the state variables in these equations. However, it
is possible that for some systems the input affects the output directly also. To allow
the standard form of state variable representation to have sufficient generality to
include this possibility also, the output equation is written as,

y = Cx + Du, withdim D = rxm.

Thus, the most general form of the state variable model for linear systems is the
pair of equations,

X = Ax + Bu (8.7)

y = Cx + Du. (8.8)

As seen {rom Example (8.1), the set of linearly independent system variables
which can be selected as state variables to represent a system is not unique. For
field-controlled d.c. motor at least three different sets could be selected as state
variables. Thus, the selection of state variables to represent any given system is not
unigque. Theoretically, the number of possible state variable sets for a system is
infinite. For example, if {x), xz, x3} s a set of state variables, then {(awx + axx2),
X, X3} ts also a set of state variables, for all different values of ¢; and a,.

8.3 Phase Variables

In the state variable representation of Example 8.1, we had selected physically
meaningful variables like current, velocity, angular displacement, as the state vari-
ables. From the engineering viewpoint, such a choice is obviously very desirable.
However, from the mathematical point of view this is not necessary. The selected
state variables may not correspond directly with any physical quantity. From a
possible infinite number of state variable sets, we choose only those which give
some desirable advantages. One such choice of state variables leads to mathemati-
cally convenient forms of matrices A, b, and c. In this choice, the output and its
first (n — 1) derivatives (the system is assumed to be of order n) are chosen as the
state variables. Such a special set of state variables is called a set of phase vari-
ables. To illustrate the state variable representation of systems using phase vari-
ables, we again consider the field controlled d.c. motor.
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Example 8.2:— Obtain the phase variable representation of the field-controlled
d.c. motor.

Solution: Combining eqns. (i) to (v) of Example 8.1, the differential equation
representation of the system is given by,
a0 40

do
dt3 +azﬁ+a15+au9=be

a2=[ ],au=0

RB _ kik
JL' T T UL

where,

+

<l
~ =

Dl

ay =

Since it is a third order system, three state variables will be needed for its repre-
sentation. Define them as,

x—Gx—iQ—mand —@—@-
PERRT g T BEw T dr

Then the state equations become,

X = X
X.z = X3
.X._} = — @y X; — QX1 — Az X3 + be.

In the matrix form the state equations become,

X 0 1 0 X 0
x.z = 0 0 1 X | + 0)e
x} -4y —a4y —a X3 b

The output y = 8 = x;. Therefore the output equation becomes,

y =11 0 0] Xy
X
X3

This is the desired state variable representation.

Generalising on the basis of Example 8.2, for an ath order system with a dif-
ferential equation model,
d x d 'x

+ a + +a@+ax—f(t)
dar n-1 dt,,._l e 1 4t ] s

the phase variables will be,



X, = x

Lod _ du

T dr dr ’
L _fx _dn
Todf dt

. _d 'y dx,
R e 1

State Variables

ror this choice of state variables, the system matrices will be,

[0

0 | 0

0 0 1

0 0 0

— Uy — —a;
and e =1 00 ...

0 0

0 0

0 1
— Ayt

2

35

(8.9)

Matrix A has a particular structure which is also called a canonical form. Given
the system differential equation, the state variable representation in terms of phase
variables can be written out directly by mere inspection of the differential equa-
tion. The particular forms of the matrices in egn. (8.9) are helpful in many mathe-
matical manipulations. The phase variable form of representation is also very
convenient to derive if the initial system description is in the form of a transfer

function.

Example 8.3:— The transfer function of a system is,

2

) = The+2)

Obtain a state variable representation for the system.

Solution:

or

From the given transter function,

Y(s) _ 2

Uis) ~ s +3s+2

(2 4+ 35 +2) Y(5) = 2U(5).

Taking the Laplace inverse of the above equation, the differential equation model

of the system is,
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&y dy -
P + 3 & + 2y = 2u(l).

Choosing phase variables y and y as the state variables, the system matrices are,

0 1|9 .
A—I:_z _3]b—[2J,c—[l 0].

In general, the transfer function may include zeros also. In that case, the
numerator of the transfer function will also be a polynomial in s. The general form
of the transfer function of an nth order system is,

DS + by "+ L+ Bys + by
ST ST L as +oa

G(s) = ,m<n (8.10)

To obtain a state variable representation for this transfer function we proceed as
follows.

Let us break up the expression for G(s) into two parts as,

M) _ X K

GO = 0w = U X0
lLet
Xi(s) 7,' |11
U(s) S'+a, 8"+ ras+an
and
Y(s) 1
L g T by ST L+ bus+ by 8.12
X((S) bm s+ b 1§ + + 1§ ) ( )

Now, expression (8.11) does not contain any zeros. Therefore, its state variable
description, using phase variables as state variables, can be obtained directly by
the method described earlier, From expression (8.12) we get,

Y(5) = (b 8"+ by 8" L+ Bis + by) Xi(s)
or

n- dm—l
¥ = b, Q + b al

d
m~l —mer T oo by l“"’b()xl
df" dtin 1 (1[

= bm Xps1 bm~lxm +...+ b|X2 + b()xl

(where X,. Xa, ... X Xms1, ... X, are the phase variables) or,
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y(@ = [byby...by_ b, 0...0] . (8.13)

Hence, the effect of zeros is to alter the ¢ matrix in the state variable representation
as in expression (8.13). Matrices A and b remain the same as in eqn. 8.9.

As stated at the beginning of this section, though phase variable representation

.is convenient, the phase variables may not correspond to physically meaningful

variables. For example, in a thermal system with temperature as the output, the

phase variables will be first and higher derivatives of temperature. Now, the nth
derivative of temperature is not a very meaningful physical quantity.

8.4 State Variables for Electrical Networks

The number of state variables needed for correct representation of a system is
equal to the ‘order’ of the dynamic system. The order of a system, in turn, is equal
to the number of independent energy storage elements, particularly in
electromechanical systems where the concept of energy is valid. In electrical sys-
temns, energy is stored in the magnetic field of an inductor and in the electrical field
of a capacitor. Therefore, it is natural to select the variables associated with induc-
tors and capacitors as the state variables. These are the currents through the induc-
tors and the voltages across the capacitors. The set consisting of currents in
inductors and voltages across capacitors will be linearly independent. Also, if the
values of these variables at time ¢ = 0 are known, then their values for any instant
¢t > 0 can be calculated for any given input. Thus, the set of currents in inductors
and voltages across capacitors meets the conditions required to make it a set of
state variables.

Example 8.4 :— Find a state variable model for the circuit in Fig.8.2. Voltage v,
across the capacitor is the output and e(#) is the input.

L
AT
—_.-iL

+
e(t) €=

vc

1l [+

Fig. 8.2 RLC Series Circuit

Solution: Let the state variables be defined as x; = v, and x> = i,;. Then, the sys-

tem equations are,

(?—’:-l.c:l.[, or X-[=—-X2. (')
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Applying Kirchhoff’s voltage law around the loop we get,

Vet vtV =e

or
vp =L dildt =e - Rii, — v,
or
Jv2=-lx,-£x2+ie. (ii)
L L L

Writing eqns. (i) and (ii) in the standard matrix form, we get the state equations as,
X, 0 1/C X 0
X -1/L -R/L X3 1/L

The output equation is,

ve=y=I[l 01[2]

Example 8.5:— In the circuit shown in Fig. 8.3, the inputs are ¢, and e, and the
outputs are v, , v; and v,.. Obtain a state variable model for this system.

“1\ > - ve C)_ez
[

Fig. 8.3

Solution: 'We note that in this problem the number of input variables and the
output variables is more than one. Hence, it is a multivariable system. The object
of this example is to demonstrate that making a state variable model for a multi-
variable system is almost as easy.as that for a single variable system.

As there are three independent energy storage elements, L, , L, andC, three
state variables will be required for a correct representation of the system. There are
three outputs and two inputs.

Let the state variables be selected as,

=6 = x(; ipp =10 =X and v, = x3.
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The state equations will be the expressions for derivatives of selected state vari-
ables as functions of the state variables themselves. To obtain these expressions,
we first apply Kirchhoff’s voltage law to the-two loops to get,

, di

11R1+L17;+Vc=€l

, di

12R2+Lz;tz+vc=ez.
From these equations we get,
i di, Rli 1v+1 Rnx 1x+ R

-] -V, —g = —_— -— —

YT odr L L L L Lt
X—@~—&i——l—v+'l—e-~—&x—ix+Le
2T dr T T L L LT T L LT LY

For the third state equation, we apply Kirchhoff’s current law to the central node
to get,

dv. .
C Tt = (i) + iy

or

1 1
X3 = S X+ = X,

C c

In the standard matrix form the state equations are,

- % o - lL 1 1 0]
xl 1 i X =
L, e
. R, 1 1
X | = 0 -2 - =llxn [+ -~
L, L, 0 L ||,
2
. 1o g Lo o
C C

The outputs, as linear combinations of state variables, are given by the relations,
MW=V = eV 2=V, =e—Vv; and y; = v

or

Y1 —X3+€|;y2=—X3+€2; and Y3 = X

In the standard form, the output equations are,

i 0 0 -1 x 1 0 .
ya{=|0 0 -1 xn |+]0 1 [E‘].
Y3 00 1 X3 0 0 2
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Note that in this problem, the system representation uses the D matrix of eqp (8.8).

8.5 Transfer Function and State Variables

Both the transfer function and the state variable methods are alternate ways of
representing the same physical system. Therefore, it may be required to obtain one
type of representation from the other. Let us first consider how to obtain the trans-
fer function representation from a given state variable representation.

Let us start with the standard from of state variable equations for single variable
system [eqns. (8.1) and (8.2)],

x = Ax + bu and y = cx.
Taking the Laplace transform of both sides of these two equations we get,
sX () —x(0) = AX () + bU(s); and Y(s) = X (5).

In the transfer function representation, all initial conditions are assumed to be
zeros. Therefore, x(0) = 0. Then, the above equation becomes,

(T = AYX(s) = bU ()
or
X(s) = (I — A bU(s).

Substituting this expression for the Laplace transform of state variables into the
output equation we get,

Y() = ¢ (sT — Ay bU(s).
The transter function is then given by,

_Y®
T U(s)

G(s) =c@I-A)"'b

_oladjsT= A b
T det[sI - A]

‘(8.14)

Thus, for any given state variable representation A, b, ¢, eqn. (8.14) can be used
to obtain its transfer function representation.

From the expression (8.14) we note that the poles of the system are the roots of
the equation det [sl — A] = 0. This expression is called the characteristic equation
of the matrix A and its roots the eigenvalues of A. Thus, the poles of a system are
the same as the eigenvalues of its state matrix.

Example 8.6 :— Obtain the transfer function representation for a system repre-
sented by matrices,
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0 1 0 0
A= 0 0 1/;b={0;e=[21 0]
-10 -2 -3 1
Solution: The solution is as follows;
[s -1 0
[SI-Al=|0 s -1

10 2 s+3

det[sI-A] = 5(s*+35+2)+10 = $+3s+ 25+ 10

[ +35+2 —10 —10s
s+3 - s2+3s -25—-10
1 s 52

adj [sT - A]

$+35+2 543 1
= - 10 $£+3s s
—10s -25-10 s°

1
[210]|s|=s5+2

S2

clad)(s1-A)lb

Therefore,

s+2
S+35+25+ 10

G(s) =

As illustrated by example 8.6, it is easy to see that the transfer function cor-
responding to a given state variable representation will always be unique. How-
ever, since there is an element of choice in the selection of the state variables,
starting from a given transfer function, we can arrive at different state vanable
representations. The method of deriving the state variable model from a given
transfer function, with phase variables selected as state variables, is straightfor-
ward and has been described in Section 8.3. However, should we wish to choose
physically meaningful state variables or any other set of state variables, a
knowledge of the transfer function alone is not sufficient. We must know the
details of the system in terms of all the equations in the cause-effect chain relating
the input to the output or the corresponding block diagram representation.

8.6 Solution of State Equations

For the purpose of analysis, we have to solve the state equation (8.1), which is in
the form of a vector differential equation. The solution is to be obtained for any
arbitrary input function u(f) for a given set of initial values of state variables, vec-
torx ..o = x(0).
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The method of solution for the vector differential equation 1s similar to that for
the scalar differential equation. Therefore, let us first review the steps in the solu-
tion of a scalar first order differential equation,

X = ax+bu with Xl;=0 = 2. (8]5)
Transferring the ax term of eqn. (8.15) to Lh.s. and multiplying both sides by the
integrating factor e™*' we get,

ex—ae” x = " bu

—ut

The Lh.s. of the above equation is the derivative of ¢ * x. Therefore,

dEe"x) _
i = e “ by

or,

e x = I:) e ““hu (1) dt+c

where ¢, is the constant o1 integration. Thus,

!
x= [, #UObuyde + e,

Att =0, xl,_o = x. Therefore, ¢, = x,. Hence, the complete solution for eqn.
(8.15) is,

X = xet + j“ "9 by (1) di. (8.16)

The first term on the r.h.s. of eqn. (8.16) is the transient response and the second
term the steady-state response, which is the convolution of the impulse response
¢ and the forcing function bu (f).

The integrating factor used above is, by definition,

w A ar o
e’—1+at+—2—!—+?+... (8.17)
It could be used as an integrating factor to obtain the solution given by eqn. (8.16)
because of the property,

d eﬂf

— = t .18
7 ae” (8.18)

which can be verified directly from eqn. (8.17)

It appears reasonable to assume that a similar vector version of the integrating
factor can be used to solve the vector differential equation,

x = Ax + bu (8.19)
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for any given scalar input 4 = u(z) and initial condition vector x (0). For this, we
must first define the vector exponential function, analogous to the scalar ¢* as
follows:

lexp(At)] = {I + At + Azz!tz + A;f + } (8.20)
Differentiating the series in eqn. (8.20) term by term we get,
—P——dex (A7) [0 + A+ A+ A;tz + }
[ (I + At + %+ ]]
[[I + Ar + Z!tz + .. ]A}
= [Aexp(At)] = [{exp (A) } Al (8.21)

Equation (8.21) is the vector version of result (8.18). Thus, we can use exp (—Af)
as the integrating factor for solving the vector differential equation (8.19).

Shifting the term Ax to the Lh.s. in eqn. (8.19) and then premultiplying both
sides by the integrating factor exp ( — Af) we get,

fexp(—ADIx — [exp(—At) | Ax = [exp (— At) | bu

or,

f}t [exp(~Ar)x] = [exp(—At) ] bu.

Integrating both sides of the above equation w.r.t. time and following the same
steps as in the scalar case, we get the solution of eqn. (8.19) as,

x (1) = exp (A1) x(0) + _[“ explA(t—T)1bu(t)dt  (8.22)

Equation (8.22) is the desired solution of the state equation. It is expressed in
terms of the matrix function exp (A¢). Because of its importance in linear systems
analysis, this function is given a special name, the state transition matrix, and
assigned the symbol @ (z). Thus,

(I)(t):exp(At):[I+At+ A;tz + ] (8.23)

In terms of ®@ (1), the solution of the state equation is written as,

L x(@) =@ (0x(0) + f“ @t~ t)bu(r)dr. (8.24)
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The elements of matrix @(z), as defined by eqn. (8.23), will be in the form of
infinite series. Therefore, the solution of the state equation x(¢), given by egn.
(8.24), will also be in terms of infinite series. Presence of such terms will make it
difficult to appreciate the characteristics of the solution or to use it for further
analysis. Hence, it is imperative that we develop methods to compute the elements
of @(t) in a closed from. There are a number of methods available for this purpose.
In the following sections, we will study some of the more useful and commonly
used methods. It may be mentioned that the function exp (Af) has many interesting
properties and the study of these properties is an important arca in the theory of
functions of matrices (see problem 8.10).

8.7 Determination of ®(r) Using Caley-Hamilton Theorem

Let us first recall some of the basic results from the theory of matrices. For an
n X n matrix A, and a scalar A, the equation,

det|[A — AIl =0 (8.25)

is called the characteristic equation of A. Expanding the Lh.s. of eqn. (8.25), the
characteristic equation can be written as,

A+ a,,-.?x.""’-i—a,,_z kn-? + ...+ alK + ay = 0 (826)

The n roots of this nth order polynomial equation, A, A,, ..., A,, are called the
eigenvalues of matrix A. The Caley-Hamilton theorem states that every matrix
satisfies its own characteristic equation. In other words, eqn. (8.26) will be satis-
fied if A is replaced by A, i.e.

A"+a,._, An_l+ AP o a1A+a()I=0 (827)

We will verify this result for a particular case, without proving the Caley-Hamilton
thcorem.

Example 8‘7 :— Show that the Caley-Hamilton theorem is satisfied by the matrix,

3 0 0
A=|0 -2 |
0 4 1

Solution: The characteristic equation is given by,

3~-A 0 0
det| 0 -2-A 1 = A -2A7-9A+ 18 = 0.
0 4 1-A
The roots of the characteristic equationare A, = 3, A, = 2 and A; = — 3. Now,

9 0 O 27 0 0
A'=|0 8 —-1|and A*=| 0 -20 7
0-4 5 0 28 1
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Substituting these values in the characteristic equation, we get

27 00 9 0 O 3 00 1 00
0-20 7|-2/0 8 -1]-9/0 -2 1(+18(0 1 0|=0
0 28 1 0-4 5 0 41 001

which verifies the theorem.

Our interest in the Caley-Hamilton theorem is because it provides a method for
expressing the higher powers of a matrix A in terms of its lower powers. This can
be better understood with reference to Example 8.7. Substituting A for A in the
characteristic equation we get,

AP-2A2-9A+181 = 0
or A = 2A%+9A - 18L
Then.

A* = AA® = A(2A’+9A - 18])

= 2A° + 9A% - I8A.
Substituting for A® once again, we get,
A* = 22 A+ 9A - 18]) + 9A* - 18A = 13A%- 361

and so on for other higher powers of A. That is, A*, A* and all other hi gher powers
of A can be written in terms of a polynomial in A with the highest power term A”.
Generalising this result for a matrix of dimension n, we can say that A" and other
higher powers of A can be expressed as a polynomial in A with highest power
term A"~ ! by the use of Caley-Hamilton theorem.

Now, in the infinite series expression (8.20) for ®(r) = exp (At), we have all
powers of A, right up to infinity. The result of the previous paragraph means that
all these higher powers of A, A", A"* ', ..., can be expressed as polynomials in A
with the highest power (n — 1). Therefore, it follows that the infinite series (8.20)
can be written with only finite number of terms as,

ATE AP

S TREY

exp(A) =1 + At +

=HOI+AOA+LOA+ . +fHi (DA™ (8.28)
where f, (1), fi (1), ..., /-1 (¢) are scalar functions of time. The highest power of A
in eqn. (8.28) is only n — 1 as opposed to infinity in eqn. (8.20).

Our next problem is the determination of f (), fi (1), ..., f. (#). The difficulty
associated with a direct evaluation of these functions may be illustrated by con-
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sidering the matrix A of Example 8.7. Using the expressions for A3, A%, ..., deter-
mined earlier, we can write,

A (2A* + 9A - 18D F + (13A* - 36D

exp(At)=I+At+T+ 31 a1 + .
187  36r 97
=(l —T—-T-...]I+[t+§!*+0+ ]A
£ 22 13 2
+[§+—i+4—!+.,.]A
Thus, the coefficient terms f; (£), fi (¢) and £ (7) of eqn. (8.28) become,
187  3e¢
Jo (@) = 1—3! —-4—!—...]
3
fi () = t+9—r+0+...]
31
£ 13
po=| L2, B0, ]

It is difficult to visualise the closed form expression for fiy(#), fi (¢) and f; (¢) from
the above expressions. Therefore, we will have to try some other approach for the
determination of these functions.

Consider the expansion of function €~ where A is an eigenvalue of the state
matrix A. This infinite series is given by,

2 3
e“’=1+kz+}32!—t2+7”3—!ﬁ+

Using eqn. (8.26), powers of A equal to and greater than n can be written in terms
of a polynomial of A with the highest power equal to n — 1. Then, following the
same procedure as that for exp (Af), we can express " in terms of a polynomial in
A with the highest power A"~ A little observation will show that the coefficients
of this polynomial will be the same functions f, (), fi (1), L (), ..., f,-1 {#) as in
eqn. (8.28). That is,

= fO+FiOA+LHON+ . +f_ (O (8.29)

Equation (8.29) is valid for every eigenvalue of matrix A. Hence,
expM ) =L+ OMALHEOM+ . +fio (O
expMat) = @O +fiOa+LOM+ . +fi (O]

expMat) = O+ OM+LO N+ +Hioa O (8.30)
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In the set of n equations given by egn. (8.30), the numerical values of
Ar, Az, ..., Ay are known. Hence, these are essentially n algebraic equations in n
unknowns fy(t), fi(0), ... f» (t), which can be straightaway obtained by solving
equations (8.30).

Example 8.8 :— Determine the state transition matrix for the matrix A in Ex-
ample 8.7.

Solution:  Since A is a 3 X 3 matrix, n = 3. Therefore, the expansion of exp (Ar)
will contain A? as the highest power of A. Thus,

exp (A1) = fu(I+fi () A+f (1) A%

The eigenvalues of A have already been determined in Example 8.7 as,
Ay = 3, h, = 2and A; = — 3. Therefore, eqn. (8.30) gives,

63, =Jo (t) + 3f1 (t) + 9f2 (t)
e =f(O+2f(D+4-H )
Y = (-3 (1) + 9 ).

Solving these three equations we get,

9 .
ﬁ)(t)=—€3'+§€2’+§€_3'
_1 31_1 -3t
fl(t)—ge ge
I ISU PSR I !
fz(t)—-6e 5 ¢ +3Oe

Substituting these relations, and already calculated values of A and A?, in the ex-
pression for exp (A1) we get,

e’ 0 0
1 -3 1 2
D) =exp (A1) = 5 4 S
4 x a3 1 2 -3
0 5 (e 3¢ %) 5 @de + e

Example 8.9 :— Determine the state transition watrix for the state matrix,

-1 1 0
A= 0 —1 1
0 0 -2

Solution: Let us first determine A%
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1 =2 ]
A?=AA=| 0 I -3
0 0 4
Now,
exp(AN = LI+ fi(DA + (D) A® (1)

The characteristic equation is given by,

~1-2A | 0
det [A — AI] = 0 —1-2 I =+ 1R +2) =0.
0 0 -2-2

The eigenvalues are A, = A, = — | and A; = — 2. Thus, unlike in Example 8.8,
where all the roots were distinct, here we have a case of repeated roots. In this case,
two of the equations in eqn. (8.30) will be indentical. The method for obtaining
three independent equations is as follows.

The first equation in (8.30), corresponding to A,, is,

expMD) = i +[ (O M+L ()M (i1)

Take the derivative of this equation w.r.t. A, to get,

texp(M D) = fil) + 20 M (i)

This is treated as the second equation in (8.30). The third equation corresponding
to A; is, of course,

exp (hat) = fo (D +fi (D M+ 12 (D) M (iv)
Substituting the values of A; and A, in eqns. (ii), (iii) and (iv) we get,

e’ =ful) - fi() + ()

te' = fi() - 2H0)

e =L - 2@ + 0.
Solving these three equations we get,

fol) =2te’ + e

i) =@Bt=-De’ + 2%

L) =@~ e’ + e
Substituting the values of A and A” in eqn. (i) we get,

1 0 0 -1 1 10

O =expAD =B 0 1 0|+1H0 0 -1 1
0 0 1 0 0 -2
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-2 1
+HM [0 1 -3
0 0 4
f=fith  H-2h f
= 0 hi=fith  f-3h v)
0 0 fo=2fi+4f

Substituting the expression for fy (£), fi (¢) and f; (¢) in eqn. (v) we get,

e’ te (-lDe'+e¥
q)(t) = 0 e—l e—t_e«2t
0 0 e

8.8 Determination of ®(¢) by Diagonalising A

Let us first assume that matrix A is given in a diagonal form to begin with. In the
case of a third order matrix, for example, A may be,

d 0 0
A= 0 dz 0
0 0 ds

The characteristic equation will be,
det[A—AIl = (di—A)(d2—N) (ds—A\) = 0.

Thus, the eigenvalues are A, =d,, A, =d, and A, = ds, assuming distinct eigen-
values. In other words, the diagonal elements of A will be the eigenvalues them-
selves. That is,

Ay 0 0
A = 0 Kz 0
0 0 As

The mathematical operations involved in determining the expression,

2
exp(At)=I+At+%'~t2—+

become quite straight forward when A is diagonal. For example,

A0 0 Ao o]
A'=|0 M O0f, A=l0 & O
0 0 M 0 0 3
and so on. Thus,
;5 Aty 0 0
N T o (At 0
exp (A1) = o 5 i Mty

0 0 =0 4!
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exp (M) 0 0
= 0 exp (Aqt) 0 (8.31)
0 0 exp (A3

Thus, if A is given in the diagonal form, ®(¢) can be written by mere inspection of
A. Substitution of eqn. (8.31) in eqn. (8.24) will give the solution of the sate equa-
tion as,

xi=exp(Mt)x (0) + J’”' exp M (f = 1) ] bru () d1

Il

X2

exp (A1) x (0) + _[, exp[A =T ]hu(t)dt (8.32)

and so on.

When matrix A is diagonal, it means that the state equation are in a ‘decoupled’
from:

= }\4 X, + b,u

b
|

= 7\/_;x2 + bzu

RN
N
I

X, = A Xn + bou

That is, the expression for x, contains only x, and no other state variable. Each of
the first order state equations can then be solved independently, resulting in the
same expressions as those in eqn. (8.32). Determination of @ (), and expression
of the solution in the form of eqn. (8.24) are then superfluous.

The assumption made at the beginning of this section that matrix A is given in
the diagonal form is a bit too drastic. In system modelling, we seldom get the state
matrix A in a diagonal form. Thus, in order to benefit from the simple procedure
for obtaining ® (r) described so far in this section, we must first establish a method
for diagonalising a given non-diagonal matrix A. For this purpose we recall some
more results of matrix theory.

The effect of multiplying a matrix by a vector (i.e., a column matrix) is to
produce another vector whose elements are linear combinations of the original
vector. That is, if u and v are two n-dimensional vectors such that,

Av=u,

then the # X n matrix A is called a linear transformation which ‘transforms’ vector
v to vector u. If u is looked upon as a vector in some n-dimensional space, the
effect of the linear transformation is to produce a new vector in the same space. If
the effect of this transformation on a vector is such that its direction does not get
altered but only the magnitude changes by a factor equal to an eigenvalue of A,
ie.,
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Av = hv (8.33)

then vector v is called an eigenvector of A. There will be one eigenvector for each
distinct root A;. Let us assume that all the roots of A are distinct. Then there will be

1 eigenvectors, vy, vy, ...v,. Let us call the matrix formed by these eigenvectors as
P. That is,

P= [Vx Vi ...Vn].

Then it is clear that,

AP = AP = PA (8.34)
where,
A0 .0
A = (_) A ... 0
0 0 .. A

Premultiplying eqn.(8.34) by P, we have,

P' AP = A (8.35)

Equation (8.35) shows how to transform a given marrix A, with distinct eigen-
values, into a diagonal matrix with eigenvalues as diagonal elements. The eigen-
vectors v, i = 1, 2, ...n, can be obtained from eqn. (8.33) by first writing it as,

A-AD)v=0,i=1,2,...,n
and then solving it for each A, to get the elements of v, (8.36)

Example 8.10:— Find the linear transformation P for diagonalising the matrix,

AN

Soluiion. The characteristic equation is,

det [A-A1] = det[:;‘ ~3—71»] =0
or
M+3A+2 = (A+D(A+2) = 0.
Therefore, the eigenvalues are A, = —1 and A, = —2. Let the eigenvectors be

v; and v,. Then

[A - MIlvy =

|
<
=
=

| E—
|

B -
i
[N

| S
=
I
<
=

[
!
_——

[A - XI]v, =

1
o
Q
=

| — |
|
[ SO I o)
|
—_—
| M
N

]
o
<

~N

]

|
N —
| I—



252 Linear Systems Analysis
Therefore,

P =lvww] =
pro_ adiP -2 0] _[ 2 1
TdetP .~ 1 | T -1 -1

SR BE ] I IS I B

This verifies the result of eqn. (8.35).

|
—
|
_——
|
N —
[ I

We now come back to the main job of determining the state transition matrix
® (1) = exp (A:). Having diagonalised the matrix A by the linear transformation
P, we can write from egn. (8.35),

A = PAP! (8.37)
Replucing expression (8.37) for A in the infinite series for exp (Af), we get,

(PAP'Y 7

exp (At) = 1+ PAP't + X

the kth term being [ (P A P)* /"] /k !. However, we can write the kth matrix
power as,

AY = PAPYHY = PAPY (PAPY) ... (PAPY) = PA'PL

Therefore,
2 3ia
exp (At) = P[IAt+1\2fZ+A3‘r +...]F‘
[fexp(Mit) 0 0
- p O exp(Azt) --- 0 p-!
0 0 o exp(Aat)

Example 8.11:— Determine the state transition matrix for the state matrix A
given in Example 8.10.

Solution: The linear transformation P for diagonalising A has already been
developed in Example 8.10 as

SR

The eigenvalues are A, = —1 and A, = —2. Substituting these values in eqn.
(8.38) we get,

®() = exp (An) = [_{ _'2} [‘3(; 892.] [_f _’1]
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_ 2e’ ~ e—2! e’ — e—ZI
T =2+ 2677 e+ 277

Remark: The methods for determining the state transition matrix, described in
Sections 8.7 and 8.8, are purely time domain methods and well suited for computer
implementation. However, they are not very suitable for hand calculations. For
this purpose, the technique using the Laplace transform of state equations is much
better. This technique is described in the next section.
8.9 Determination of ®(¢) Using Laplace Transform
Taking the Laplace transform of the state equation,

X = Ax + bu
we get, sX(s) — x(0) = AX(s) + bU ()
or X(s) = I - A" x(0) + sI — Ay bU(s).

The matrix (s/ — AY"'is called the resolvent matrix and given the symbol ®(s),

. le.,

d(s) = IT-A)"
The solution for the state equation can then be written as,

X(s) = D(s) x(0) + D (s5) bU(s). (8.39)
Taking the Laplace inverse of eqn. (8.39), we get,

x() = L' X(s) = £ [D)] x0) + £ [P(s)bU(s)]

dx0) + | -1 bu(mdr,

which is the same expression as eqn. (8.24). Thus we have,
&1 = L' [¥)] = £'[sT-AT".
Example 8.12;:— Determine ®(r) for the state matrix A = [ _ (2) B ; ] .

Solution: This is the same matrix as used in Examples 8.10 and 8.11.

-1
wom=[1 o)

det [sT— Al =s(s+N+2=8F+35+2=(s+ (s +2)

U
udj[sI—A]=|isT3 _f] =[S_+23 :}
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Therefore,
_ A L adifs1-A]
D) = [sI-AT" = det [sT—A]
s+ 3 |
s+ DG+2) s+ (+2)
-2 s

s+DGE+2) G+ +2)

Taking the Laplace inverse of each term we get,

e’ ~ &7 e — e
PO = L0 = [_ 2¢7 42" — '+ Zevz']

which is the same expression as derived in Example 8.11.

8.10 Linear Transformation of State Variables

It has already been mentioned that the same physical system can be represented by
different sets of state variables. For example, the field-controlled d.c. motor can be
represented by three different sets of physical variables {i, @, 8}, {¢ ., 6},
{t,w, 8} or phase variables {0, 8, 6}. The system matrices A, b and ¢ cor-
responding to these different sets of state variables will, of course, be different.
However, since these different sets of state variables are the different repre-
sentations of the same system, they must obviously be related to each other. A
comparison of the four ditferent sets of state variables for the ficld-controlled d.c.
motor shows that one set can be obtained from the other by means of a linear
combination. For example, in the sets {i, ®,8} and {t,®, 8}, two of the state
variables are the same while the third ones are related by the linear equation
T = k, ko 1. Thus,

T k[ k2 0 0 i
0| = 0 I 0 w
6 0 0 1 6

In general, if two sets of state variables, say, X and z represent the same system,
they must be related to each other by a linear transformation,

x=Qz (8.40)
where Q is a non singular constant matrix.

Let the system matrices associated with set x be {A, b, ¢} and those with z be
{ A", b’, ¢"}. The question we now ask is: how are these two sets of matrices re-
lated to each other when x and z are related by eqn. (8.40)?

For the choice x, the system representation is,
X = Ax+bu (8.41)

y = ¢x
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Differentiating both sides of eqn. (8.40) we get,

x = Qz (8.42)
Substituting eqns. (8.40) and (8.42) in eqn. (8.41) we get,
Qz = AQz + bu (8.43)
y = ¢Qz

Since Q is a non-singular matrix, premultiplying both sides of eqn. (8.43) by Q™'
we get,

i

Q! AQz + Q' bu
y = ¢Qz (8.44)

Comparing eqn. (8.44) with the standard form of representation we have,

z

A" = Q' AQ;b" = Q'b; andc” = cQ (8.45)

Equation (8.45) is the answer to the question of the previous paragraph. It shows
the relationship between two sets of system matrices corresponding to two dif-
ferent choices of state variables.

We now derive an important property of the state variable representation: the
eigenvalues of a system remain unaltered under linear transformation of its state
variables. That is, for the linear transformation (8.40), the eigenvalues of-.
A and A* = Q7' AQ are the same. To prove this result, we note that the eigen-
values of A are the roots of the characteristic egn. (8.25):

det [A — Al = 0.
Hence, if we can show that,
det [A — Al] = det [A® — Al
the above result will be proved. Now, Q' Q = 1. Therefore,
det [Q AQ - AQ' Q]
det Q'[A — ALQ
det Q7' .det[A — AIl. det Q

because the determinant of a product is equal to the product of the determinants.
Since the determinant is a scalar quantity, we can rewrite the above expression as,

det [A" ~ AI]

il

1l

det [A*—M] = det[A - AIl det Q7'. detQ.
But the product of determinants is equal to the determinant of the product. There-
fore,

detQ7!.detQ = detQ'Q = detl = L

Therefore,
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det [A" — Al = det[A — Al}

Hence the above result. This result shows that the eigenvalues of a system repre-
sent its truly invariant properties, being the same whatever be the state variable
representation. These eigenvalues are therefore called the natural modes of the
system,

In Section 8.8, we used a particular linear transformation P with the property of
diagonalising matrix A (eqn.8.35), i.e.,

P'AP = A

With this transformation, the new state variable set z = P x, with systein
matrices defined as,

A" = P'AP=A; b = P'band ¢ = cP

gives state equations which are ‘decoupled’, as explained in Section 8.8. This form
ot state variable representation is called the normal form representation. At times,
it is also called the canonical form, though some authors call the phase variable
form as the canonical form.

The state variable representation can also be given a geometrical interpreta-
tion. The state of a system at any time #, 1s an ordered set [x(¢,), x2(t)), ..., X.(¢))],
where x| () is the value of the state variable x; at time ¢,. This set defines a point
in an n-dimensional space, called the state space. As the time advances, the state
of the system changes, either due to its stored energy alone, i.e, due to the initial
conditions alone, or due to an external forcing function (the input) along with the
initial conditions. The succession of these changing states generates a path in the
state space, called the state trajectory. Since the matrix @ (¢) determines these
successions, it is called the state transition matrix.

Every point in the state space when joined to the origin, gives rise to a state
vector, The representation of any vector space is always with respect to a set of
unit reference vectors. For example, in a two-dimensional space a common choice
of reference vectors is a set of two unit vectors at right angles to each other, i.e.,
orthogonal to each other. The set of these reference vectors is called the basis of
the vector space. There is no sanctity about a particular basis. We choose the basis
according to some need and change it when the need changes. The same vector
will be represented by different sets, e.g. {x,(t]), x(t), .. .x,,(t,,)} and
{xf ), xa(t), ... .x (t,)} when the basis is changed. The linear transformation
discussed in this section can thus be seen to be a change in the basis of the state
space.

8.11 Analysis with State Variables

Example 8.13:— For the R-L-C circuit shown in Fig. 8.4, the output is the voltage
across the inductance. Determine the output for:
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R i
oy
et) Ly ve.
I

Fig. 8.4

(Y iM=0,v.(0)=10ande(t)=0.
(i) i(0)=1,v.(0)=0and e (¢)= unit step.
(iii) i (0)=v.(0) =0and e (¢) = unit impulse.

Solution: This circuit has already been discussed in Example 8.4. As shown
there, with state variables x, = v, and x; = i,, the state equations are,

HERAR AR EPAL

However, the output equation in the present problem will be different. Application
of Kirchhoff’s voltage law gives,

vo = e—(IR+v,) = —x;—Rny+e.

In the standard matrix form,

vo=[-1—R] [Z]Jre

For the sake of numerical simplicity, let us choose the parameters as C=0.5, L =
| and R = 2. The system matrices then become,

- 0 20 p_19. 2
A—[_l _2],b_[]],c_[—1—2].

In the present problem the expression for output v, contains not only the state
variables x, and x, but also the input e. The direct effect of input on the output is
expressed by the matrix D in a multivariable system [eqn. (8.8)]. In the case of
single variable systems, matrix ID reduces to a single constant d. Here d = 1.

Let us determine the state transition matrix @ () by first determining the resol-
vent matrix @ (s) and then taking its Laplace inverse:

s =2
[s1-Al= [1 s+2:|

det [sT-A]=s+2s+2=(+ D"+ 1%

The eigenvalues of A are (=1 +j) and(~1 —j) .
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adj[sI—A]=[s+2 2}
-1 K
Therefore,
s +2 2
_ e _adilsT~Al | s P 5+ 14D
) =Tl - Al = s T- A = ~ s

G+ 1D +12 (s+ 1D+ 1°

Taking the Laplace inverse term by term we get,
e’ (sint + cos ¢ 2e¢’sint
o@ = | €6 ) .
—e'sint e’ (cost — sint)

() i@®=0,v.(0)=10and e (1) =0: In this case the input or the forcing
function is zero. Therefore, the state equations become homogeneous, i.e.,
x = Ax. In control terminology, such systems are also called autonomous sys-
tems. The solution of state equations, given by eqn. (8.24), reduces to
X (5 = D () x (0). In this case,

o[

x| 10e” (sint + cos?)
x| |- 10¢"sint

From the output equation we have,

Therefore,

vo=—x —2x,=10¢" (sint— cost).

A plot of the state variables xi, x; and the output v, as functions of time is shown
in Figs. 8.5(a), (b) and (c). Further, Fig. 8.6(a) shows the state space trajectory for
this problem. Since it is a second order system, the state space reduces to a state
plane which can be easily drawn on paper. This diagram shows the transition of
the state from its initial value x(0) to the final value, which is the origin in this case.
This diagram is quite helpful in appreciating the dynamic properties of the system.
The present system is only slightly underdamped. Therefore, the state plane
trajectory goes only slightly into the negative x; region before reaching the origin.
A system with much less damping may have a trajectory like Fig. 8.6(b). A system
without damping will have a closed curve like Fig. 8.6(c) as its state trajectory,
while an unstable system may have a trajectory like Fig. 8.6(d). When the state
variables are phase variables, such figures are called the phase-plane diagrams.

_For non-linear systems, where the analytical methods are difficult to use, the
phase-plane analysis is an important tool for their study.
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Fig. 8.5 Plot of State Variables and the Output



260 Linear Systems Analysis

107X,

(a)

Fig. 8.6 State Plane Trajectories
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(i) i(O)=1v.(0)=0ande (t)=u(t) Here we have to determine the
complete response. According to eqn. (8.24) we have,

Xl ou (@ 02() x (0)
X2 0 () 0 (t) x (0)
ot -1 6t -7 b,
t, [ Ou(t ~ ) Onlt - r)] [bz] umdr.

In the present problem x, (0) = 0 and xy(0) = . Therefore, the response due to
the initial conditions is,

—¢n(z) _ | 2¢”'sint
K*10) T | e (cost ~ sint)

Since b, = 0 and b, = 1, the response due to the forcing function is,

. 270" sin(1r — tu(Ddr

! e fcos(t=1) — sin(t-1) ) u(m)dt

Let (1 — 1) = x in the above expression. Then ¢t = — dx, and the limits of in-
tegration become T=0 - x=¢ and =1 - x=0. The expression for response
due to the forcing function then becomes,

[¢]
-2 J e sin x dx
!
0 4] s
- _[ e™ cosx dx + j €™ sin x dx
! H
The above integrals can be evaluated using the formulas:

€ (sinx + cosx)
2

_[e"‘sinxdx=—

e (sinx — CoS Xx)
2

_[ e* cos x dx =

Thus, the response due to the forcing function is,

1 — &' (sint + cos?)
e’ sint

Summing the responses due to the initial conditions and the forcing function, we

get the total response:

[x,} _ |:2e’sint+1 - e’ (sint+cost):|

Xz e’ (cost—sing) + e7sint

|t + eTsine — e’ cos t
e’ cost
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The output v, is given by,
W = —x = 2x+ e(t)
Therefore,

Vg = — {l + e’ sint - e"cost} — 2¢’cost + |

—e¢' (sint + cosf) =~ 2 ¢ sin( t+ g]

(iii) Impulse response with zero initial conditions: The output without initial
conditions will be given by combining eqn. (8.24) with the output equation, i.e.,

r
vy = _[“ cO@-1)bd() dt + 8().
Since the convolution of a function with an impulse is the function itself, we get,

vo = c®(b + 8

Substituting the values of the matrices in the above expression we get,

1 -2 [%(z) qm(r)] m L 50

]

Vi

G (1) 02 (D)
~ G - 20n@) + 8()

il

~2e¢'sint —2e'(cost — sint) + O (f)

il

—2e’ cost + ()

8.12 Concluding Comments

An examination of Example 8.13 indicates that the system response due to initial
conditions and due to forcing function can be calculated separately, once ® () has
been determined. In the transfer function approach, since the initial conditions are
assumed to be zero, the presence of initial conditions necessitates additional steps
of converting the transfer function back into the differential equation form. Thus,
the state variable technique is more efficient in handling initial conditions.

The state variable technique gives not only the output response but the variation
of all the state vaiiables as functions of time. In Example 8.13, we know not only
the output v,(£) but also i(r) and v.(¢). Thus, when the current will reach its maxi-
mum value, or what this maximum value will be, can easily be found from the
solution. Such information is almost always necessary in practical problems.

State variable analysis is in the time domain, and hence, is well suited for
numerical and computer techniques. Frequency domain techniques, like the
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Fourier transform or the Laplace transform, are not very amenable to computer
handling. The computer technique for solving a higher order differential equation
is to first convert it into a set of first order differential equations, just like the state
variable representation. Therefore, state variable techniques are very well suited
for computer simulation and analysis of large interconnected systems. However,
for pen and paper analysis, the transfer function methods are more appropriate.

The state variable formulation handles single variable as well as multivariable
systems with about equal ease. Many of the important properties of such systems,
as well as their design, are studied through state variable techniques. Similarly, the
representation of discrete time, time varying as well as non-linear systems can
easily be done in the state variable framework. And finally, the vector differential
cquation form of state variable technique provides a very compact form for writing
4 large number of equations for real life systems.

However, the above arguments do not mean that the state variable techniques
are the best for all problems. For many problems, Fourier transform or Laplace
transform methods are easier to use and provide a much better insight into the
problem. We conclude by saying that an engineer should have mastery over all the
different tools of analysis, so that he can select the one best suited for a particular
problem or solve the same problem with two or more different techniques to get a
better understanding of the problem.

GLOSSARY

State Variubles: A set of minimum number of linearly independent system variables, such that their
values for any time t > 0 can be calculated from a knowledge of their values at 1 = 0 for any
given input, is called u set of stute variables. The state of a system at any time 1, is the sct of
values of its state variables at time 7. The set of state variables representing a system is not
unique; however, their number is always equal to the order of the system.

Phuse Variables: When the set of state variables consists of the output and its first (n-1) derivatives
(for an nth order system), they are called phase variables.

State Variable Equations;  The standard form of state variable equations for an nth order system, with
m inputs and r outputs, is,

x = Ax + Bu (the state equation)

y = Cx + Du (the output equation)
where the vectors x, u and y have dimensions, n x 1, mx 1 and rx I, respectively, and the
dimensions of matrices are: dim A =nxn, dim B =nxm, dim C =rxn,

dim D = ;x m. Forsingle variable system matrices, B, C and D become column matrix b with
dimension # x |, row matrix ¢ with dimension | x n and constant d, respectively. .

Canoncal Form: The special steucture of matrix A, given in egn. (8.9), for phase variable repre-
sentation is called the canonical form. Sometimes, this term is also used to designate the
diagonal state matrix, with diagonal elements as the eigenvalues of the system.

State Transitton Marvix: 1t is the name given to the matrix exp (Ar) and is designated by
D). e D) = exp (A1),
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Linear Transformation of State Variables: Let x be a set of state variables for a system, represented
by system equatiors X = AX+bu, y = cx. If a new set of state variables z is defined, then
it must be related to the set x by a linear transformation x = Qz, where Q is a constant, non-sin-
gular, n X n matrix. 1f the system equations for representation withzarez = A'z + b’ u then
the system matrices of these two representations are related by,

A" = Q'l AQ; b’ = Q‘l b;¢’ = cQ.
The eigenvalues of a system remain unaltered under linear transformation of its state variables.

Normal Form Representation:  When the state variables are so selected that the state matrix is
diagonal, with diagonal elements equal to the eigenvalues (distinct eigenvalues), the repre-
sentation is called the normal form representation.

State Space:  The n-dimensional vector space, where the values of n state variables x at a time define
a point. is called the state space.

Phuse Plane:  'When the number of state variables is only two, the state space becomes a two-dimen-
sional state plane, which can be casily drawn on paper. When the two state variables are phase
variables, this plane is called the phase plane.

PROBLEMS

8.1.  Develop a state variable model for the loudspeaker, described in Chapter 1, Section 1.4,
treating displacement x of the cone as the output and voltage v to the voice coil as the input.
Comrment on the different possible choices of state variables.

82, Determine a state variable model for two water tanks, interconnected through a ground
pipeline with a valve. Assume both tanks to have inflows from the top, with inflow rates g1
and g2, and outflow from the bottom, with outflow rates, ¢"( and ¢, respectively.

8.3.  Obtain astate variable model for a system described by the following differential equation:

3 2
1 d

loi%+5i22+2l+\y =20 % 4 0x
dar dt dt dt

8.4.  Obtain the state equations for a system described by a pair of simultancous differential
equations,

yita@i-y)tani-y) = 0
2+ b=y} + b2 (va—yp) = k[fO) - »l

8.5  Devclop a state variable representation for the system shown by the block diagram of
Fig. 8.7. Choose the state variables as the physical variables shown at the output of each

block.
u 2 X3 S+2 X2 |1 | n=Y
S+5 S+1 3

Fig. 8.7

%.6.  Obtain a state variable model for the electrical circuit shown in Fig. 8.8. Can there be a
combination of circuit parameters such that the output voltage is identically zero for any
input v,(t)?
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8.12
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Fig. 8.8

A system is described by the matrices,

0 1 0 0
A=|0 0 Il; b=[0]; e=[1 20}
0 -2 -3 1

Determine its transfer function.

The system matrices for the state variable representation of a system are,

-1 a].._To] ._
A=[ 0_2],b—[1],c—[l,0].

Determine the complete state response and the output response of the system for the initial

state
x(0y = l:_ (l)]

and a ramp input, applied at ¢ = 1. Sketch the time response and also the state space trajec-
tory.

Find the linear transformation for diagonalising the state matrix A of Problem 8.8. Obtain
the normal state variable representation for Problem 8.8, using this linear transformation.

Prove the following properties of the state transition matrix:
W o' = o
(i) D +n) = O() D).

Obtain the unit impulse response of a system with system matrices

e G L i L FI G K]

Develop a phase variable representation for the system shown in figure 8.7 (problem 8.5).
The physical variable representation for this system has already been derived in Problem
8.5. Determine the linear transformation Q which relates these two representations.



CHAPTER 9

Discrete-time Systems

LEARNING OBJECTIVES
After studying this chapter you should be able to:

(1) model adiscrete-time system by difference equation, by z-transfer func-
tion and by state variables,

(it)  solve the system model to obtain response for different types of com-
mon test signals.

Discrete-time systems were introduced in Chapter 2. Section 2.4 gave a brief
description of discrete-time signals. A mathematical model for a computer con-
trolled furnace in terms of a difference equation was also presented. This chapter
develops the modelling and analysis techniques for discrete-time systems.

9.1 Discrete-time Signals

As opposed to a continuous-time signal which is defined for all instants of time, a
discrete-time signal is defined only at discrete instants of time 1,, 1, ..., 1, ... There-
fore it is represented by the symbol x (¢,) or simply x (n), x being the magnitude of
the signal at the n™ instant. Such signals occur in many engineering and non-en-
gineering systems. A common example is the signal given out by a computer or
any other digital system used in control and instrumentation applications. It may
also result because of sampling of a continuous-time signal at discrete instants of
time. The time interval between two successive discrete instants.

A T = tn - tn—l
may in general be variable, but in this study we will assume it to be fixed.

A discrete-time signal may be defined for both positive and negative integral
values of n, as shown in figure 9.1. However in the study of physical systems it is
generally assumed that a signal starts after some specified instant, which is taken
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“x(n )

! [ | [

—3l -2 1 0 1 2 3 4 5

>y

Fig. 9.1 Graphical representation of a discrete-time signal.

as instant 7 = 0. This fact is explicitly indicated by writing x(n) = 0 for n < (.
Unless stated otherwise this fact will be implicitly assumed in this study.

Figure 9.2 shows another kind of signal which can be characterised by discrete-
lime sequence x(n). Actually it is a continuous-time signal whose values can
change only at discrete instants of time. The value of x(n) is the magnitude during
the #" titne interval. Thus the discrete sequence x(rn)is x(1), x(2}, x(3), ... as shown
in this figure.

A}x(n)

x

-~
)
~—r

Ne-_——

~
w
ab—-
o
~
@
A
T
-
o

Fig. 9.2 A continuous-time signal modelled as discrete-time signal

Figure 9.3 illustrates graphically the effect of shift operations on a discrete time
signal. A left shift by one step advances the signal by one step as shown by figure
9.2(b). Similarly a right shift retards the signal (figure 9.2(c)). Mathematically,
if there is left shift by & steps, x(n) is replaced by x(n + k) and for a right shift, by
x{n - k).

The transpose of a discrete-time signal is obtained by replacing - n for nin its
mathematical description. The transpose of

x(n)y=¢*"
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x(n)=¢"
4.48 4
4
2.72
165
I LY 2
. | [ 1.8 .
-4 -3 -1 0 1 2 3 4 n
(a)
4.48 x(n+1)
i 4
2.72
1.65
1
‘ 3 2
| | S .
-4 3 -2 0 1 2 3 4 n
(b)
4.48 x(n—~1)
3 ﬂ\
272
|1.65
61
38 22
. [ 1 »

-4 -3 -2 -1 0 1 2 3 &
(c)
Fig. 9.3 Shift operation on a discrete-time signal;
(a) original signal x (n) = e - 5
(b) advance operationx (n + 1) = ¢ 3@ * D
(c) retard operationx (n- 1) = PR

x(-n) = ¢e?"

and is shown in figure (9.4).
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4L.48
+e's'\ 4

p

|- PO
~

\_.g

——e

4 3 2 90 1 2 13 ¢«

Fig. 9.4 Transposcofx (n) = ¢ "

The integration operation of continuous-time signal x(¢) is equivalent to the
summation operation for discrete-time signal x(n}. The result of summation is also
a discrete-time signal and its value at any instant n is equal to,

n

Y x(k).

k=10
The difference operation corresponds to the differential operation on con-
tinuous-time signals. It is of two kinds,
forward difference Ax(n) = x(n+ 1) — x(n)

and backward difference Vx(n) = x(n) — x(n-1).

9.2 Modelling of Discrete-time Systems

In a discrete-time system the input is a discrete-time signal x(n) and the output
another discrete-time signal y(n), as shown in figure 9.5. In other words, the sys-
tem receives asequercex (n) = { x (1), x(2), ..., x(n), ...} as input and proces-
ses it to produce another sequence y (n) = { y(1),y(2),....,y(n), ...} as the
output.

Discrete
Input ————— time L = Qutput
x(n) system y(n)

Fig. 9.5 Block diagram of a discrete-time system

A mathematical model of a discrete-time system in terms of difference equation
was derived in section 2.4. We now consider some more examples of modelling
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engineering as well as non-engineering discrete-time systems using difference
equations.

Example 9.1:— A bank pays an interest of a% per month on amounts standing for
one full month. Part of a month and the date of deposit are not counted for interest
calculation. A person makes regular deposits of Rs x (n) in the nth month. What
will be the standing amount to his credit at the beginning of a month?

Treating the bank account as a discrete-time system, its input is x (») and output
¥ (n), the standing amount at the beginning of a month. This amount will be a sum
of three components: (i) standing amount at the beginning of the previous month,
y (n—1); (ii) interest for one month on y (n — 1); (iii) deposit during the (n - 1)*
month, x (1 - 1). Writing it mathematically,

y(n) = y=1) + 705 y(=1) + x(n=1)
Or, rearranging,
a
y(n)—(]+m6]y(n—])—x(n-—l) 9.1

This first order difference equation is the required mathematical model of the
given system. We note that if we had started with a consideration of y (r +1), the
standing amount at the beginning of (7 + 1) month, instead of y (n), we would
have got,

y(n+l)—[l+£6]y(n)=x(n) 9.2)

as the mathematical model of the system. It is quite straight forward to see that
equations (9.1) and (9.2) are equivalent.

Example 9.2:— A problem of pattern recognition.

A specified pattern, say 111, 18 said to occur at the nth digit in a binary sequence
if the pattern is recognised when the ath digit is scanned, when scanning from lefl
to right. For example, in the five digit sequence 10111, the pattern 111 is said to
occur at the fifth digit. After one such successful recognition the search starts

afresh. For example, in the eight digit sequence 11110111, the pattern 111 is
recognised at the third and the eighth digits but not at the fourth. The problem is
to find the number of n digit sequences y (n) where the pattern 1] occurs at the
nth place.

It is obvious that one and two digit binary sequences cannot contain the three
digit pattern 111. Therefore, we have y (1) = y(2) = 0. There is only one three
digit sequence in which 111 will be recognised at the third place. Therefore
y{(3) = 1. Similarly, 0111 is the only four digit sequence for which the given
pattern will be recognised at the fourth place. Thusy (4) = 1. Forn =35 there are
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two sequences 00111 and 10111 where 111 will be recognised at the fifth place.
Thus y (5) = 2. Proceeding on these line we can establish by direct enumeration
that y (6) = 5, ¥(7) =9, y(8) = 18. Thus the elements of sequence y(n) are,

y(1) =0
y(2) =0
y(3) =1
y4) =1
y(5) =2
y(6) =5
y( =9
y(8) =18

The above pattern has the relationship,
YA+ y@ +y(H=1=2

yH @ +y@=2=2"

I
i

yG)+y@® +yQ@3) =4

That is. for the # bit sequence we have the relation,

Y)Y+ yn=-D+yn-2)=2"3n=34,5,..

(9.3)

The solution of this second order difference equation will be the answer to our

pattern recognition problem.

Example 9.3:— The ladder network shown in figure 9.6 is called on R-2R net-
work because of its special topology. The network has (r + 1) nodes, with node
voltages ranging from v, to v, The problem is to find a general expression for

determining the voltage v, of the n™ node.
Applying Kirchhotf’s current law at the node v (n — 1) we get,

vin=2) - v(n-1) _v(=1) vn-1) = v(n)
R ~ 2R R

Multiplying both sides by 2R and rearranging we get,

vin) — % vin-1)+vmn -2y=0,n=23....r

(9.4)
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v(0) v(1) v(in-2) vin-1) vin) v(r-1) v(r)
—-

§ 2R R

Fig. 9.6 A ladder network
Forn = 0, v (0) = V, the given source voltage. To determine v (1) we write the
Kirchhotf’s loop equation around the first loop to get,

, , Vv
3Rz-—V0rt—3R

where i is the loop current. Now,
v(l) =2Ri

Therefore,
2
==
v(l) 3 |4

The values of v (0) and v ( 1) are the initial conditions for the second order dif-
ference equation (9.4) whose solution will be the answer to the given problem.

9.3 Solution of Difference Equation

The method for solving difference equation is analogous to that for differential
equation. Let us consider a first order difference equation without any forcing
function,

yn+l) —ay(n)=20 (9.5)
where a is a constant. This equation can also be written as,
yin+ 1)
yw l)_ .
y(m)

which mean the ratio of two successive values of the sequence y(n) is a constant.
Such a sequence is a geometric sequence with ratio a. The value of an element in
such a sequence is given by,

y(n) = Ka' (9.6)

where K is a constant. That (9.6) is the solution of (9.5) can be readily verified by
direct substitution. To determine K, put n = 0 in (9.6). Then,
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y(0) = K
Therefore the solution of the first order homogeneous difference equation (9.5) is,
y(n) =y o 9.7

Let us now include a forcing function of the form,
x(n) =cb"
where ¢ and b are constants. The difference equation then becomes,
yin+tl)=ayn)+ch (9.8)

The solution of equation (9.8) will be the sum of two components, the
hemogeneous solution or the unforced response given by (9.7) and a particular
solution whose general form depends on the forcing function x (n). For the given
forcing function, the general form of the particular solution can be assumed as,

yp (n) = PH 9.9)
where P is another constant to be determined. Substituting (9.9) into (9.8) we get,

PV =agPb" + b

<
T b-a
and,
C b”
Yp (ﬂ) = E__ a : (9 IO)
The solution of (9.9) then is,
, cb"
y(n) =Kd" + b
For n=0,
i ¢
, = K + ——
y (0) g
K=y(@) - bga
Hence the complete solution is,
¢ cb”
. - - L g 9.11
y () {y(O) b_a}a t g (9.11)

Example 9.4:— Let us use the above result to solve the bank account problem of
example 9.1. Let the interest rate be 1% per month and the monthly deposit Rs
1O0/-. With these values equation (9.1) becomes,
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y(r) - 10ly(n—-1) = 100
which can also be written as,
y(r+1)=101y(n) + 100.1"7 (9.12)
Comparing (9.12) with (9.8) the parameters of the latter are,
a=101,b=1¢=100
Further we see that y(o) = 0.

Substituting these values in (9.11) we get the solution as,

_ 100 . _ 100
yin) =501 1OV - 74
= 10,000 [ (1.01)" ~ 1] (9.13)

Equation (9.12) can also be solved directly by calculating the values of y (n)
step-by-step.

For n=20 y()=101 y©) + 100 = 100
n=1y2)=101y() + 100

= 1.01 x 100 + 100 = 201
n=2y@3)=101 y(Z) + 100

it

1.01 x 201 + 100 = 303.01

and so on. Verify that the same values are given by the analytical solution (9.13)
also.

We now study the method for solving difference equations of higher orders.
The general form of a difference equation of order r can be written as,

ym)+a yn-1)+ayn=-2)+ ... +a_, y(n-r+1)+aymn-r
=byx(ny+ b xtn-)+ ...+ b, x(n—-m+1)+ b,x(n—-m) (9.14)

Since the input is applied at the instant n =0, x(n) = 0 for n< 0. Also, in a
causal systemm < r.

Equation (9.14) means that the value of the output (or the response) at the nth
instant of the system described by this equation, is dependent on the values of the
output at (n - r) previous instants, and the values of the input at the nth instant and
at m previous instants.

Analogous to the differential equation the solution of the difference equation
(9.14) also has two parts: the homogeneous or the complementary solution y, (n)
and the particular solution y, (n). The complete solution is the sum of these two
parts.
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Homogeneous solution:— 1t is the solution of the homogeneous equation cor-
responding to (9.14), which is obtained by equating the right hand side to zero.
That is,
y(n)y+ayn-1)+ ... +ayn-r=290 (9.15)
Let us assume that the solution of equation (9.15) is of the form,
y(n)y=Ad"

where A is a constant and o some appropriately chosen complex number. Sub-
stituting this assumed solution in (9.15) we get,

A +a A + .. +a A0 =0

or

o g o+ g, =0

n—r

Taking out " ™" as the common factor,
(T L+ a)=0
or

'y L ta =0 (9.16)

o+ a o
Equation (9.16) is called the characteristic equation of (9.15).

Letoy, 0, ..., o, be the distinct roots of this characteristics equaton. Then the
solution of (9.15) is given by,

y(n)=c of + 02+ ...+ ¢ O (9.17)

where ¢, ¢a, ..., c¢,are constants which are determined by the given initial condi-

tions.
Example 9.5:— Solve the homogeneous difference equation,
yn) —y(n-=1) -yn-2)=0
The corresponding characteristic equation is,
of —o -1 =0

Its roots are,

5

o -l-+—\/§andoc—
1 = 2 2 = 2

Therefore the solution is,

oy ST [N T
y{n) =« > 2 5

where the unknown constants ¢, and ¢, can be found from the initial conditions.
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The form of solution is different if the characteristic equation has repeated
roots. Let o, be a root of multiplicity £. The term corresponding to o, in the
solution wiil then have the form,

ol +onel + et ol + .+ Conf ol
Example 9.6:— Solve the homogeneous equation,
y(n)y-3y(n-2) - 2yn-3) =0.
The corresponding characteristic equation is,
o -3a-2=0
Factorising,
(a+ 1) (-2) = 0.

The roots are -1, -1 and 2. Thus the root -1 is of multiplicity two. Therefore the
solution is,

yr)=a )+ n=10)"+ ¢ 2

(C1 + C‘gﬂ) (— 1)" + 3 (2)”

Compare this example with example 3.1 of Chapter 3 to see the similarity in the
solutions of differential and difference equations.

Particular Solution:— The form of particular solution y, (# ) depends on the forc-
ing function x(n). The form of y, (n ) to be assumed is given in table 9.1 for some
simple cases.

Table 9.1
N Forcing function x(n) Form of particular solution y, (n)
n* Au+A|n+A2n2+...+Aknk
" A d",if ais not a root of the characteristic equation.

Airnd" + A2d", if ais a distinct root of the characteristic equation.

el . . M . e
Antad + And + Ayd,ifais a root of multiplicity 2, and so on.

The values of the unknown constants Ay, A, ... etc. in the assumed form of
y, (n) are determined by substituting the assumed expression in the given equa-
tion.

Complete Solution:— Tt is obtained by adding the complementary and the par-
ticular solutions and then finding the unknown constants ¢, ¢, ... etc. from a
knowledge of given initial or boundary conditions. The process is illustrated with
the help of the following example.
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Example 9.7:— Solve the difference equation,
y(n)+3y(n-1)+2y(n-2)=u(n)
with initial conditions y (0) = | and y(-= 1) = 0.
The character equation is,
o +3a+2=0
or,
o+ 1)(a+2)y=0
Therefore the roots of the characteristic equation are,
o, =—1and o, = - 2.

Then the homogeneous solution is,

Ye(n) = co (1) + 2 (=2)"

277

The forcing function u (n ), a discrete-time unit step function, can be written as,

un) = n"
Therefore the form of particular solution is,

Yo (n) = Ay
Substituting it in the given equation,

A() + 3A() + 2A() =1

or,
ael
The form of complete solution is,
yn) =y (n)+ y(n)
= (=1)"+c(=2)+ %
At n=0,
y(0)=c.+c2+-1-=l
6
At n=-1{,

y(=1)=c¢ (- 1)_l + (;2(_2)-1 + _é_ -0

Solving the above two simultaneous equations we get,
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1 4
c,=—5andcz=§

The complete solution is therefore,

y) == d e

9.4 Discrete-time Convolution

Convolution is a powerful technique for finding the response of a linear, discrete-
time system to any arbitrary input. Application of this technique for continuous-
time systems was given in section 5.4. On parallel lines we develop the
convolution technique for discrete-time systems.

A unit function or delta function 8 (n ), analogous to the impulse function for
continuous time systems, is defined as,

S(n)y=1forn=20

it

0 for n # (0) (9.18)

A delta function occurring at instant j and having a magnitude a; will be repre-
sented by,

a; & (n—j)

a; for n = j

0 forn#j
Let the response of a discrete system to the unit delta function & (n ) be represented
by the sequence h(n). Then its response toa; & (n — Hwillbe g, h (n—j), ie.
h(n) is shifted to the right by j instants and its magnitude multiplied by a;.

Now, let x (j) be a discrete-time sequence. It is easy to see that x (j) is a train of
delta functions. Since superposition is applicable for linear systems, the response

y (n) of the system to x (j) will be the sum of responses due to the individual ele-
ments of this train. In other words,

yin)= 3, x()hn-j) (9.19)

j=0

Relation (9.19) is called the discrete-time convolution or the convolution sum
between the input sequence x (j) and the system’s response h (#), and is symboli-
cally represented as,

yr) =x@G) * h(n). 9.20

Example 9.8:— The delta ‘response of a system is given by,

h(n)=§];'
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Determine its response to an input sequence x ( /) described by,
x({G)=1forj=0,1,2,3, and
=0 for j 2 4.

Applying the convolution technique, the response is given by,

[

Y xG) k=) .

i=0

xO@ h(n) +x(1)YA(r~D) + x2Yh(n-2) + x(3) h (n-3)

1]

y{(n)

Il

hn) + hin—=1) + (n-2) + h(n-3).

From this expression, the response can be calculated sequentially starting from n
= 0. It should be noted that in this step-by-step calculation # (n) = 0 for n<0.
Proceeding in this manner we get,

1

Y(O)zh(o)‘ga—l
1 4
y=hM)+hO=7+1=3
)’(2)—’1(2)+h(1)+h(0)~i+%+1=_1§1
111 40
YO =h@A+hQ+ M +hO) = g+m+5+ 1=

y(4)=h(4)+h(3)+h(2)+h(1)=%+——+—+

- L, 1 1 40
yS)=hB)+h@)+h3B)+ h(2) +34+ 4—32—243
and so on. It is easy to develop an algorithm for computer solution. A plot of
h (n), x (j) and y (n) is shown in figure 9.7.

It should be noted that the delta response is defined for an initially relaxed
system only, i.e. for a system with zero initial conditions. Therefore the response
obtained by the convolution technique is the zero-state response. If the system has
initial conditions, the response due to them alone is obtained by solving the sys-
tems homogeneous difference equation, as discussed earlier. This response is
called the zero-input response. The complete response is the sum of zero-state and
zero-input responses.

Application of the convolution technique requires a knowledge of the systems |

delta response. This response could be determined experimentally. The response
to any arbitrary input can then be determined by either numerical or graphical
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h{n)
I\
1
13
1/9
1127 ver -
I y 1243
0 1 2 3 4 5 6 n
x(j) (a)
[ 3] 4 1 4
0 1 2 3 2 s K3 i
(b)
40127
1319
{n) )
y“ 4
1
40181
401243
] P
0 1 2 3 4 5 6 "
()

Fig. 9.7: (a) Delta response of the system, & (n) (b) given input x ()
(c)outputy (n) = x () * h (n)
convolution. However if the systems model is given mathematically, its delta
response needs to be derived analytically. For a first order system described by its

difference equation model this derivation is straight-forward. Let the system
model be,
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yn)y=ayn-1)+x(n), y(n)y=90forn <0.

For obtaining its delta response, input x(n) is replaced by the unit delta function
& (n). The output then becomes the delta response / (n). The system equation can
then be written as,

hiny=a h(n—=1) + 8(n).
Solving this equation sequential, starting with n = 0 we get,
hO)=ah(-H+8(0)=al+1=1
h(1)=ah(© +3(1) =al +0=a
h2y=ah(l) +8Q) =aa + 0 =4d°
Thus,
hn)=4d".
The derivation of delta response of higher order systems is easier if we use the
z-transform technique. This technique is illustrated by example 9.11 in section 9.7.

9.5 The z-Transform

The z-transform is as powerful a tool of analysis for discrete-time systems as
Laplace transform is for continuous-time systems. The z-transform of a discrete-
time sequence f{n) is defined as,

Zf(n)=F@)=fO) +f()z" +fQ) 77+ ...
where z 1s a complex variable. The above relation can also be written as,

oo

F@y= Y fm)z" 9.21)

n=0

Compare this definition for z-transform with that of Laplace transform,

Lio =F6) = [ fe) e a,

as given by cquation (6.3).

If the lower limit of summation in (9.21) is made n = — co we get the double-
sided z-transform. In physical systems the signal is applied at some specified in-
stant which is treated as n = 0 and it is assumed that f(n) = 0 for n<0.
Therefore we will discuss here only the single-sided z-transform as defined by
(9.21).

z-Transform of some common discrete sequences:—

1. Delta function:

It is defined as,
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d(ny=1forn=20

Oforn =0
Using definition (9.21),

Y () "

n=(}

Z8(n)

i

SOV +dM 7' +82)7 + ...

=1,
2. Discrete unit step:
It is defined as, un)=1forn=>0
=0 for n < 0.
Using definition (9:21),
Zum)=U@)= Y, u(n)z~"=1+—zl—+zl~2+... (9.22)

n=0

The infinite series (9.22) converges if | z| > 1, and in that case it can be written in
the closed form as,

[

Uz) - (9.23a)

= — (9.23b)
z—1

Since z is a complex variable, the region of convergence of U(z) given by (9.23)
is represented graphically in the z-plane as the region outside the unit circle, as

shown in figure 9.8.
%
1

7

Fig. 9.8 Region of convergence of the z-transform for the discrete unit step function.

z-plane
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3. Geometric sequence:

Let fn) = (;} forn 20

=0 forn <0
Its z-transform is,

Fy= Y [(_'lj o

n=0

1 1
=1+ —+ —
az  (az)
I
L
az
_ az
az—1

=% for Izl > 1
1 a

a

For f{n) = 4", this gives,

z i
F = = ,lzl > a.
(@) z-a | — a7z

4. Functionf(n) = —

1f
g
‘Q

Then, F(z)

I
|
|

2
+a+] a +
z 2|z
exp (%],Izl>()
ra

It

In this case the region of convergence is entire z-plane except the origin.

283
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Properties of z-tranforms

. Linearity:— It is straightforward to show that the z-transform is a linear
operator. Thus if,

filny e Fi(z)Yand fi(n) & F, (2)
are two z-transform pairs, then,

[Aﬁ (n)+Bf2(n)]<—9[AF|(z)+BF2 (z)] (9.24)

2. Right shift.— Let a sequence f(n) with z-transform F () be shifted one step to
the right. The shifted signal is represented by f (n — 1). The z-transform of the
shifted signal is,

Zfin-1)= 2 fn=-1) "

nzbh
=f=D)+fO) 7+ M+ Q7+
=fED+ T [FO+FD T A FQ T ]
=7 F@)+ f(=1)
ff(—1) = 0,as will be the case if f (n) = O for < O, then,
Zf(n—1) =7"' F(z)
Generalising this result for right shift by & steps,
Zfn-k) =7 FER)+ 75 f=1D) + 7 f(=2) + ...
+ 7 f(—k+ D) + f(=k) (9.25)
andiff(n) = 0 for n < 0.
Zfin-k=7"F() (9.26)

3. Left shifi:—Let F(z) be the z-transform of f{n). Then the z transform of f(n + 1)
is,

Zfn+ 1) =Y fr+l)

=f)+fQ7' +fB3) T+ ...
Z[f(l) IV QT+ FBR) T+ ]
z[ Fz) ~ f(O))

It the shift is & steps to the left,

[}

I

Zfm+k)y = [F@z) = fO - ' f(D)... =% fk=1)] 9.27)
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4. [Initial value and final value theorems.—

" In the defining equation,

Fiz)y= 3 fn)z"

n=1
=fO)+f(N7"' +fR) 7T+ ...
if 2 — o, then all other terms of the r.h.s. except the first become zero.

Therefore,

f(0) = Lim F(z) (9.28)

Z oo

This is the initial value theorem for the discrete-time function.

To derive the more useful final value theorem consider ihe expression,

oo

S Lftn) —fr=-1)]1 2" f(n) =0 for n < 0

n=0
Using the right shift theorem we can write,

oo

Y [fn)y~fr=-Dlz"=F@)~-2"'FE)=(0-2") F() (929

n=0

If we expand the Lh.s. of (9.29) and let z — 1, all other terms will cancel out
cxcept f (== ). Therefore we have,

fleo) = Lim (I1-2"") F(z) (9.30)

z— |

which is the tinal value theorem. Equation (9.30) can also be written as,
f{eo) = Lim (z—-1) F(z) 930
z-1
For (9.30) or (9.31) to be meaningful the indicated limits must exist. Otherwisc
the final value theorem is not applicable.

5. Multiplicationbyn:—Letf(n) & F(z)be az-transform pair. If f{n) is mul-
tiplied by n. the z-transform of the product is given by,

o

Z nf(n)yz”

n=0

Z afn)

~z 2 fn) (=nz

n=40

The term — n 27"~ " is the derivative of z7". Therefore,
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; c d
Znfn)y=-z 3, fl) )
[
= -z ;‘,’ 2 fony 2

d
zZ F(z)

Cdz

Find the z-transforin of a discrete ramp function with unit slope.

Example 9.8:
A discrete ramp is obtained by multiplying a discrete unit step function by n.

That is,
fr)y=nun).
Then
Zf(n)y=Znun) = —zlll“ U(z)
az
Since,
1
U (Z) = T 1
&
theretfore,
. d |
Zfn) =~z 4 [——I_{. ]
a1
(="

<«

(- 1)

Example 9.10:— Find the z-transform of a discrete sinusoidal signal

I.et the exponential signal,
flr)y =¢e'® =coswt + jsinwt, + =0

be sampled with a sampling interval 7. The sampled sequence is,

f(”) — (,jconT - lejo)'l'ln

Treating it as geometric sequence of form 4",

-
<
LT

)]
22
|

7 [(‘i w T]n

7

£

z—(cosoT + jsinwT)
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_ F
(z-cosoT) ~ jsinoT

Z —zcos®T . zsinw7T

T2 -2zcoswT+1 17 - 2zcosmT + 1

Expanding the L.h.s. of the above equation,

2 .

.. ¥ —zcoswT zsinwT
ZlcosonT+jsinonT] = -
[ J ] 2 -2zcoswT+1 1 Z2-27cosoT+ 1

Equating the real and the imaginary parts we get,

Z —zcoswT
2 —2zcosoT + 1

ZlcosnwT] =

zsinwT
22 -2zcosoT + 1

and Z[sinnoT] =

A list of z-transforms for commonly used discrete-time functions is given in
table 9.2

Table 9.2: Commonly used z-Transform Pairs

Functionf(n), nz 0 z-Transform F (z)
1. Unit delta S(n) i
2 Uni LA S
. nit step u(n) -1 -
z 7!
3. Unit ramp nu(n) . or -
@-1  (1-z'Y
4 n Z_ o 1
a z-a | -qgz7!
az
5 nd" R
@z - a)
2
6 n Z
n+ Ha T —a
o’ a
a exp |—
7 i p (z]
sin o
8. sinan Lan

2 -2zcosa + 1

2
2 —zCosqQ

9. cosan )
Z° ~2zcosa + |

9.6 The z-Transfer Function

As discussed in section 9.4, if i (n) is the delta response of a discrete-time system,
then its response to any input x (n) is given by the convolution sum (9.19). That
is,
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o

y(m)y= Y x@G)h(n-j).

1=10

The z-transform of y(n} is,

I
tv1 H
e
—~
=
e
NI

Y(z)

= Y x()h(-j|z"

n=l j=0

oo oo

= Y " Y x(G) h(n-j)

n=1M j=0
Interchanging the order of summation,

oo o0

Yz)= 3, x() 2, " hn-j) (9.32)

= n=l
From the shifting property (9.26), the second summation in the above equation is,

oo

Y 7" h(n-j)

Zh(n—j)

7 Zh(n)

7 H(z)
. where H(z) is the z-transform of A(n).

Substituting this result in (9.32) we get,

oo

Y x() 7T H()

j=0

Y{(z)

X)) H@) (9.33)

Equation (9.33) means that the convolution of two discrete-time sequences results
in the multiplication of their z-transforms in the z-domain. Similar result for the
Laplace transform of continuous-time signals is given by equation (6.27).

From equation (9.33) we have,
Y(z)
X(z)

H(z) is called the z-transfer function of the discrete-time system. As seen from
(9.34), it is the ratio of the z-transform of the output to the z-transform of the input.
It has the same important role as the transfer function in the Laplace transform

H(iz) = (9.34)
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analysis of continuous-time linear systems. Note that H (z) is the z-transform of
the delta response & (r) of an initially relaxed system, i.e., a system with zero initial
conditions. Hence the z-transfer function is a mathematical model of an initially
relaxed system. From a knowledge of this model the output of the system to any
input can be obtained by using the relation (9.33) and then taking the z-inverse to
obtain y(n).

Determination of the z-transfer function:—

The initial analysis of a given discrete-time system usually results in its difference
equation model. To use the more convenient z-transfer function method of
analysis we need to derive the system’s z-transfer function from this difference
equation model.

Let the system be described by a general " order difference equation,
yn)y+ayn-D+.. . +ayn-rN=byxin)
+bhyx(n—-D+.. . +by,x(n—m) (9.35)

with m < r. Now we take the z-transform of both sides of equation (9.35). To do
so we recall the shifting property (9.26),

Zf(n—k)=27"'F()
where F(z) is the z-transform of f{n). Using this property we get,
[14"(1|Z_l + ... + arZ“’] Y(Z) = [b() + blZ_l + ... + me_m] X(Z)
or

Y(Z) _ b() + blé'l + ... + b,,,Z—'"
X(z) l+az'+...+az7"

Hz) = (9.36)

Equation (9.36) gives s straightforward method of obtaining the z-transfer function
from the given difference equation description of a system.

9.7 Analysis with z-Transform

The use of z-transform and the z-transfer function for finding the response of dis-
crete-time systems is illustrated by the following example.

Example 9.11:— The z-transfer function of a system is given as,

1
H@) =~
Z-3itg

Find its (i) delta response and (ii) discrete unit-step response with zero initial con-
ditions.

(i) Delta response:— The output is given by the relation,
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Y{z)=X@)  H(z)
If the input is a delta function then X (z) = 1 from table 9.2, and

Y@z)=H@) =

To obtain,

hin)y =2"' Y(z)

we expand Y{z) in partial fractions as,

S T T AR T A
Z 4Z 8 Z ) Z 4
4

It
|

To find the inverse z-transform of terms like these we note that,

i _ F4
:z!——

z2—a z—a

The inverse z-transform of the second factor on the r.h.s. is " and multiplication
by z” ' means it is shifted one step to the right. Therefore,

z! . la =g

Applying this result we get,

n-1 -1
hn) =2 H (@) = 4 [%j - 4(—})

(i1} For the discrete unit-step function, table 9.2 gives,

- -2
Zu(n)—z__1
Therefore,
_ _Z 1
Y(Z)_z—l 1 1
25 11273
Az Bz Cz
B T
-5 175

Multipying both sides (z-1) and then putting z = 1,
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1 8
A= ==
A VAR
2 4
Similarly,
B——8,andC=lg
3
Therefore,
8 2 gz 16 2
Y(Z)"3z_1 3 _l+3 1
2= 5 2=

Taking inverse z-transform, using table 9.2, we get the required solution,

|

yn) =3 un) - 8

1Y, 16 (1Y
2 3 14

Example 9.12:— Find the unit-step response in the previous example with initial

conditions y (0) = 0, y(1) = 1.

Since the z-transfer function is defined with zero initial conditions, we first
convert the systems z-transfer function model into difference equation model to
include the effect of initial conditions. The given model is,

_Yz) _ 1
SR (T RPN S
Z 42 g
or [zz—%z+é]Y(z)=X(z)=zfl

Taking inverse z-transform of both the sides,

y(n+2) - —Z y{n+1)

Now, to find its z-transform with non-zero initial conditions we use

(9.27) to get,

BY) - 2y@ -2y =3 kY@ - 23O + 3 ¥@) = =

Regrouping,

1 _
+ g y(n) = u)

]Y(z) =[(zz - %:) ¥(0) + Z)‘(l)} +

equation
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3
(22~;z)y(0)+zy(l)
Z
or, Y{z) = +
2_}_ +_1_ (Z—l) ZZ___3_Z+1
LTt Ty 47 g

=Y (z) + Va(z)

Y, (z) is the zero-input response due to initial conditions alone and Y, (z ) the zero-
state response due to forcing function alone. Substituting the given values of ini-
tial conditions y(0) and y(1) we get,

2z
Yi(z) = = -
PUEEVURN A D ]
4 8 2 4

Taking inverve z-transform,

y /l n I n
nwrn)=2 YJ(Z)=4L“2‘J ~4[Z].

The inverse z-transform of y,(z) is already found in the previous example as,

) = Lue) - 8 (%] -2 [i]

Adding these two compcnents,

y(n)=y )+ y.(n)

n n

WROIRECRR]

Regrouping,

y{n) =§u(n) - 4[%} +§ [%J

9.8 State-Variable Description

We have seen the advantages of state-variable technique for the analysis of con-
tinuous-time systems in chapter 8. This technique is even more advantageous for
discrete-time systems. One reason for this advantage is that many discrete-time
systems can be directly modelled in terms of state-variable description, as il-
lustrated by the following example.

Example 9.13:— Let x, (n ) be the number of small fish in an areca during the nth
time interval. In the absence of any predator fish, their rate of growth is dependent
on their number and the amount of food available. The small fish population can
then be described as,
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xi(n+1)=ax(n)+ bF (9.37)
where, F = amount of food available
and a, b = constants.

Let us now assume that the same area also has predator fish which eat the small
tish. Let their number be x, (n ) during the n" time interval. The biological law
that the rate of growth of the species is dependent on their number and the amount
of available food, is applicable to the predator fish also. Since the small fish is the
food for them, the predator fish population can be described as,

xan+l)y=cx, (n) +dx (n) (9.38)
where ¢, d are constants.

The presence of predator fish will reduce the small fish population, the reduc-
tion being proportional to the number of predator fish. Therefore equation (9.37)
is altered as,

xix+)=ax(n) —ex,(n) +bF (9.39)

Let us further assume that the economic worth of the total fish population y(r) is
given by,

y(n)y=gxi(n) + hx,(n) (9.40)

Treating x; (n) and x; (n) as the state-variables and y(n) as the output, the
state-variable description of the system is,

xxn+l)y| _|a —el||x(n) + b -
na+) | ld cllx@n) 0
}"(”):lgh][X|(n):|

X2 (n)

In general, the output expression may contain a term directly proportional to the
input. Including this generalisation, the standard form of state-variable repre-
sentation for an r' order discrete-time system is written as,

x(n+1)=Ax(n)+bu)
y(n)y=cx(n) +du(n) (9.41)
where,
A = r X r state matrix
b = r x | column matrix
¢ = | X r row matrix

u{n; = input sequence
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y (n) = output sequence
[Note that in the context of state-variable analysis the symbol u(n) represents
any input sequence and not just the unit discrete-step sequence. ]
State-variable model from difference equation

1f the given description is in terms of a difference equation, the technique for ob-
taining the state-variable model is shown in the following example.

Example 9.14:— Obtain a state-variable model of the system represented by the
ditference equation,

3y(n) =2y(n—-1)+2yn-2) =5f(n).

This second order difference equation will need two state-variables for its
proper representation. Let us choose them as,

xi(ny=ym-2)and x, (n) = y(n-1).

From the given difference equation we get,

xin+l)y=yhn-1)=x(@)

Xon+ 1) =yn)

i

2 2 5,
gy(n—l) - g y(n—-2) + gf(n)

200 - 2a )+ 250

Writing the above equations in the standard matrix form of state-variable equa-
tions we get,

[0 1] [x@)] 0
l:x; (n+;)}= 22 l +] 5 lrem)
X (nt1) i 3 3_ _xz(n) 3
2 2)[xnm)]
y(n) = 33 + 3 ).
)Cz(")J

This procedure can be generalised for an r'" order system. Let the given r' order
difference equation be,

ym)y+ayn-H+amynr-2) + ...

+ a_,yln~—r+1)+ayn-r)==5bfn) (9.42)

Define state-variables as,

xi(n)y =yn-r)



Discrete—time Systems

xn)y=yMn-r+1)

X-1(n) =y((n-2)
x(n)=yn-1)
Then the state equations are,

nn+ ) =vin-r+1) =x@)

xn+l)y=yn-r+2) =x(n)

Xg(n+ ) =yn-2+1) = x,(n)
x.(n+1) = y(n)

-a, x, (nYy—-a,_; xa(n) - ... ~a xn)+ bf(n)

In the standard matrix form the state-equation is,
X (n+)=Ax(n)+b f(n)

and the output equation,

y(n) =cx(n) + df(n)

where,
0 1 0 0
0 0 | 0 0
A= D s b= -
0 0 o ... | 0
@ —Qp-t —Ar_7 ... — Ay b
c=[-a —a.y..-a1]l;d=5>b

295

As with continuous-time systems, the state-variable model derived above is not
unique. There are severale ways of choosing state-variables, ahd each choice will

give a different state-variable model.

State-variable model from z-transfer function

Let us first consider the case where the given z-transfer function has no zeros, as

in the following example.

Example 9.15:— Obtain the state-variable model of the system described by the

z-transfer function,

1
+ @7+ ay?

H(Z) = 1 +a,z—'
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We first convert the z-transfer function model to a difference equation model. For
this let,

Y(z)
F(z)

H@z) =
Then,
V+a7'+a7?+a7?) Yz =F@)
Taking its inverse z-transform we get,
yn)y+ay(n—1) +ayn-2) +a yn-3) =fn)

Using the procedure of the previous example we get the state-variable model as,

o 1 0 0
x(n)y=10 0 1 |x(n)y+{0|[f(n)
~a3 —a; —Q, 1

yin)=[-a ~ar —a;] x(n) + f(n)

where,
yn-3)
x(n) =|y@n-2)
y(n-1)

Let us now consider the general case where the given z-transter function has
both poles and zeros. Let,

by + b7 '+ ..+ b "
HiE) = — l T e m< r (9.43)

Let us express H(z) as a product of two z-transfer functions. That is,

Yz) _G) Y@)

H(z) = o T Fe) G
where,

G(z) _ 1

F(Z) B b+ a[Z-r+ . ‘a7’ (944)
and,

Y(z)

- '_' e m - 945
G @) by + by + + bz (9.45)
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The z-transter function (9.44) is written as,

(l+az'+ ... +a7")YG@@)=F(@)

Taking the inverse z-transform of both the sides,

gny+agn-N+ ... +agh-r)=fn) (9.46)

which is the same as equation (9.42) with b = 1 and variable y replaced by g.
Therefore the state-variables model of (9.46) will be the same as that for (9.42)
with state-variables defined as,

xi(n) =gln=r)

xo(n) =gh-r+1)

xn)y=gkr-1)
Now consider the z-transfer function given by (9.45).
[t can be written as,
Y() = [b(, T R T Tl L hz] G(z)
Tuaking z-inverse of both the sides we get,
yi)y=bygn)+bgn-1+ ...+ b,g(n—m).
Substituting for g(n) from (9.46) we get,
y(n)=—-byaygn-1 — ... — b,a,g(n—r) + byf(n)

+bign=-1D+ ...+ b,gn—m)

i

(b| - b()al) X,(I’l) + ... + (bm - b()am) xr—m+1(n)
_b()am+l xr-m(”) = e 7 b(,a,x. (n) + bﬂf(n)

In the matrix form the output equation above can be written as,

»\'(/l):[—[)()Ll,~....—‘b()am+| (b," - b()am) (b] - b.,a.)] i X\ (n)
x,._,,,(n)
xr~m+l (n)
X (n)
+ byf(n) (9.47)

The presence of zeros thus alters the output equation as given by (9.47). The state
equations remain the same as that for the case without zeros.
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As pointed out earlier also, the state-variable model derived here is not unique.
There are other procedures for choosing state-variables and they give different
state-variable models.

9.10 Solution of State-variable Equations

We now look at the problem of solving state-variable equations to obtain the
response of a discrete-time system to a given input. As for a continuous-time sys-
tem, the response consists of two parts, the unforced or the zero-input response and
the forced response.

The unforced response:— The state equation for an unforced system is,

x(n+1)=A x (n) (9.48)

This equation can be solved sequentially, starting with n=0.

For n=0, x(1) = A x{0)

n

1, x(2) = A x(1) = A* x (0)

I

n=2,x3) =A x(2) = A'x(0)

Thus if the initial state is x (0), the state at any instant n is,

X (n)=A"x (0

This is the vector version of the unforced response of a first order difference
cquation given by (9.7). The r x r matrix A" is called the state transition matrix
for the discrete-time system and given the symbol @ (n ). Thus,

x(n)=A"x(0) =®n) x(0) (9.49)

The Forced response:— With a forcing function (i.e. input) present the system
state equations are, ’

X (n+D)=Ax(n)+bu) (9.50)

where u (n) is the external forcing function. Following the sequential procedure
once again we get,

x(1) = Ax(0) + bu ()
x(2) =Ax(l) +bu(l) =A>x0)+ A bu© +bu(l)
Xx(3)=Ax(2) +bu(2) =A'x@0) +A’bu@) +Abu(l)+b u

x(m)y=A"x () + A'bu(® + A 2bu(l) + ... + A"bu(n-1)
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n-1

=A'x©0) + Y AT"UD b () (9.51)

j=0
Using the notation of the state transition matrix this result can also be written as,

n-|
x(n)=®@n)x@ + Y, dE—j+1) bu() (9.52)

j=0
The first term on the r.h.s. of (9.52) is the zero-input or the unforced response
which will be the system response with u(n) = 0. The second term is the
response which will result if the initial state x (0) = 0. Therefore it is called the
zero-state response. The complete response is the sum of these two, zero-state and

zero-input, responses.

Example 9.16:— The assets of an electric power distribution company can be
divided into two parts; (i) low voltage (LV) equipment and (i1) high voltage (HV) .
equipment. The company earns a profit of 20% on its total current assets. All the’
profit is reinvested for purchasing additional equipment; 50% for LV and 50% for HV
equipment. The company raises additional investment of Rs u(n) million in the n®
year of its operation. 75% of this investment goes for purchasing LV equipment and
25% for HV equipment. The company starts from a scratch with an initial investment
of Rs 800 million. The investment in succeeding years reduces as,

u(n) =2002°"*H, nz0

The rate of depreciation for LV equipment is 20% and 10% for HV equipment.
Calculate the assets of the company for the first three years of its operation.

Let x, (n) and x, (n) be the worth of LV and HV equipments in the n" year.
Then the profit earned in the n" year is 0.2 {x; (n ) + x; (n} } . The worth of the
LV equipment in the (n+1)" year will be equal to the sum of three components:

(i) The discounted value of worth of LV equipment in the n" year.
(i) The worth of LV equipment purchased out of profit of n™ year

(iii) The worth of LV equipment purchased out of fresh investment in the n®
year.

That is,

xn+)=08x(n)+0l{xn)+ x(r)} +075u(n).
Similarly the worth of HV equipment is,

X2 (n+1) =09x%n)+01 {xx(n)+x@0)} +025u(n).

Rearranging in matrix form,

xi(n+t1)( |09 0.1 x1{n) 0.75
l:x;(n+l):|—|:0.l l.(]]l:xz(n)]"'l:().zs:l uin) (9.53)
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with initial state,

xl(o) —_ 0 — -nt
[xz(o):l = [O:I and u(n) = 200 (27"

and output (net worth)y (n) = x;(n) + x,(n ).~

The state-variable equation (9.53) is solved sequentially, starting with n=0.
)C(]) — 0.9 0.1 X (0) 0;75 (~+2)
0. [x(Z)}_[O.I 1.0”;@(0) *loa2s | 2002770
_[09 01 0.75 |
‘[01 10“ ]*{o‘zs_ 800
k4
. =] _To901][xm]  [o075 i
(i) For n =1, [xz(z)] = [0.1 1.0] [xz(x)} * _0.25] 20027°77)
_[09 017][ 600 0.75
= [0.1 1.0} [200] * [0.25] 400
560 1 . [3007] _[ 860
260 100 | 7 | 360
o B x@]_[0901][x@ 0.75 242
() Forn = 2, [xz(s)] “lod 1.0] [xz(z)] * [0.25] 200275
_Jo09 017860 0.75
o 1.0] [360] * [0.25] 200
_[810 L[ 150 _[ 960
= | 446 50 | | 515

Thus the net asset (in millions of rupees) of the company, y(n) = {x, (n)
+ x3(n)}is,

(i) Forn

1

i

fi

y(©0) = x(0) + x20) = 0
y() =x(1) + x (1) = 800
y(2) = xi(2) + x5 (2) = 1220
y(3) =x(3) + »(3) = 1475

We now look at the analytical solution {(9.51) or (9.52) of the state-variable
equation for calculating x(n) for any n without the necessity of first calculating the
value of x(i1) of all the previous instants of n. To be able to do so we need a method
to calculate the state-transition matrix @ (n) = A”". In chapter 8§ we had studied
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three methods for computing the state-transition matrix & (¢ ) for continuous-time
systems. Note that the definition of this matrix is different for discrete-time sys-
tems. However the method of calculating @ (n) is similar to the method for
& (1) for continuous-time systems.

Calculation of state-transition matrix ® (n ) using Caley-Hamilton theorem:—

The objective is to determine A" from the knowledge of its lower order charac-
teristic polynomial.

Let ¢ (A) be the #" order characteristic polynomial of the » X r matrix A. Then,
gy =det AI-Al=X+a X'+ ... +uaq (9.54)
LetX, Az, ..., A, be the roots of the characteristic equation,
gy =X +a N '+ . +a =0 (9.53)
Now let us take the term A", # > r, and divide it by ¢ (A). This gives,
q—?;»;) =M@Q) + %

where M (A) is the quotient polynomial and N (A) the remainder polynomial.
Equation (9.56) can be written as,

(9.56)

AM=gqM) M) + N (9.57)

Atany of itsroots A; { = A;, A;, ..., A) the characteristic polynomial is zero.
That is,

g\ =0 for &y = A, A o, A,
Therefore substituting A; in (9.57) we get,

Al = N (9.58)
The remainder polynomial N (L) has order {r-1) and a form,

N@A) =Bo+ BiA+BaA?+ ...+ By A7
Therefore,

AN=NMA)=PBo+B Ai+B A+ +B o A (9.59)

i=12, ...,

Now let us take recourse to the Caley-Hamilton theorem which states that every
matrix satisties its own characteristic equation. Therefore we can substitute A for
A in the characteristic equation (9.55), i.e.,

qA) = A +aq A"+ ... +a_,A+aql=0

Similarly we can also substitute A for A in equation (9.57) to get,
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A" = g(A) M(A) + N(A)
and since g (A) = 0, we have
A" = N(A)
=Bl + B A+ B A+ ...+ A (9.60)
This is the desired result, which shows how to find ® (1) = A" from a polynomial
of iower order (r-1).

To be able to use (9.60) we need to know the values of coefficients
Bo, Bi, ..., B, (. These are obtained from equation (9.59). For each value of char-
acteristic root A;, equation (9.59) will give one algebraic equation. Thus for r
roots Ay, A, ..., A, their will be r equations. Knowing the values of the roots,
these r equations are solved to get the values of coefficients By, B, ... B,- ..

The use of this method is illustrated by the following example.

Example 9.17:— A nuclear reactor has two types of particles, o and B. The
reaction is such that every second an o particle breaks-up into three B particles,
and a [} particle into one o and two P particles. How many particles of each type
will be present in the reactor after n seconds if initially there is only one ¢ particle
in it?

Let x, (n) and x; (n) be the numbers of o and P particles after n seconds.
From the given description of the system we can write the system’s state equations
as,

xi (n+1) =x@)

Xxx(n+1)=3x®n) + 2xn)
with

x (0 =1 and x(0) = 0.

The solution of this homogeneous system is given by equation (9.49). How-
ever to use it we need to determine the state transition matrix © (n ). In the present
problem the state matrix A is,

.l

The characteristic equation for this A is,

A -1 _ a2 2=
det[_3k_2j|—k 2A-3=0
The roots of the characteristic equation are A, = —1 and A, = 3

We now need to calculate the coefficients By and B, of equation (9.60) for this
second order system. Using equation (9.59) for each of the roots we get,
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Bn - BI =(=1)
and
B(, + 3 B] = 3”
Solving these two simultaneous equations we get,
3/1+3 _~|Il 3/!__ _Ill
B() = % and B| = +)

The state-transition matrix given by (9.60) is,
(D(II)ZAHZB()I"FB[A
with values of B, and P, as calculated above.

Let us now use the knowledge of @ (n ) to calculate the number of particles, say
after two seconds. Forn =2,

(§)

(%)
s
.2

3+

)

Bu(2) = C _ s md ) =5 o

&~

Therefore,

AT=B )T+ B2 A

13 0 + 0 2| |3 2
1o 3 6 4| |6 7
(Check this result by direct multiplication A = A x A.)

The number of particles after two seconds is

al-12b] -]

Let us now determine the number of particles after 8 scconds. A direct calcula-
tion of A" in this case would be tedious. Using the analytical method developed
here,

= 1641

43
B ) = S

B (8) = 3—’(# = 1640

Therefore,

A = By(8) I + B, (8) A

[iear 0 01
”[ 0 I640j|+ “’40[3 2}
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_[1641 1640
= 4920 4921

Then,
x®_ .. _[641 164071 1
[XZ(S):I = A () = [4920 4921“0]
_[1641
T 14920
PROBLEMS
9.1 A batch process in a chemical plant has a mixing tank of 100 litre capacity with an inlet and

an outlet valve. At the beginning of the ™ cycle of operation, 10 litres of solution with a
fractional concentration of y(n) is drawn out and an equal amount with fractional concentra-
tion x(n) is added to the tank. The contents of the tank are then thoroughly mixed for a
specified fixed time. The next cycle is started by drawing another 10 litres of solution, and
the process is repeated.

(a)  Derive the difference equation model of the process, relating output y(n) with input -~
x(n).
(b)  Solve the difference equation if the initial concentration y (0) = 0.1 and the input
concentrationis x (n ) =0.8.
9.2 Solve the following difference equations.
(@) y(n)+2y(n~1)=x{n) - x(n-1)with initial condition y(0) = | and x(n) =
nt.
by yn)+3y(r-D+ 2y (n~-2)=x(n)+ x(n-1) with initial conditions
y0) =y(l) =0 and x(n) = (~=2)" for n 2 Oand
=0 forn < 0.

~~
|

9.3 The input sequence x(n) to a discrete-time system is x(0)=1,x(1)=2,x(2)=3 and
x{n) =0 for n 2 3. The resulting output sequence is. y() =1, y(l}) = -1,
y2)y=3y3) =-1,y4) =6andy(n) =0 for n 2 5.

Determine the impulse tesponse Ai(n) of the system.
9.4 Find the z-transform of the following functions.
i) x(r)y=nn+1)
G}y x(n)=n’
(iii) x(n) = sin2n
i) x(n) = nta"
9.5  Find the sum of the sequence,
o)y =2"3" 4237 42232y e 23ty 3
[Hint: Use convolution and z-transform.]
9.6  Solve the difference equations of problem 9.2 using the z-transform.
9.7 Two discrete-time systems, cach halving a delta response of,
hin) =3""

are connected in cascade. Find the response of the composite system for inputs (i) unit defta
function and (i1} unit discrete-step.
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9.8 The z-transfer function of a system is given as,
2(7z - 2
Hy=—2 -2
(z~02) (z-0.5)
Find its response to a unit discrete-step input with zero initial conditions.
9.9 The mathematical model of a discrete-time system is described by the cquation,
Y)Y+ 3y(n-0D + 2y(n=2) = f(n) - fn- 1.
Find a state-variable mode! of the system and solve it to obtain the response to a unit delta
function with zero initial conditions.

9.10  Show that

B 271 nz("‘l)
. [0 "

21
lfA—[Oz]

901 Show how to use z-transform to find the state-transition matrix for a discrete-time system.
Use this method to determine the state-transition matrix for the state-mairix,

W

9.12  Show how to obtain the z-transfer function H(z) from a given state-variable model. Use this
method to obtain H(z) for a system described by,

A=[_(2)_g],b=[::l,c=[l —4].
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