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PREFACE 

This volume was planned as a textbook for a graduate course on 

nonlinear multivariable feedback systems. Most of it was prepared 

while the author was teaching a similar course at the Department of 

Systems Sciences and Mathematics of the Washington University in 

St. Louis, in the 1983 fall semester. The purpose of -the volume is to 

present a self-contained description of the fundamentals of the theory 

of nonlinear feedback control systems, with special emphasis on the 

differential-geometric approach. 

In the last decade, differential geometry has proven to be as 

successful to the study of nonlinear systems as Laplace transform and 

complex functions theory were in the '50s to the study of single-input 

single-output linear systems and linear algebra in the '60s to the 

study of multivariable linear systems. Typical "synthesis" problems 

like disturbance isolation, noninteraction, shaping of the input-output 

response via feedback, can be dealt with relative ease, with tools that 

are well within the reach of a (mathematically oriented) control 

engineer. The purpose of this volume is to make the reader aquainted 

with major methods and results, and to make him able to explore the 

constantly growing literature. 

The book is organized as follows. Chapter I introduces invariant 

distributions, a fundamental tool in the analysis of the internal struc- 

ture of nonlinear systems. With the aid of this concept, it is shown 

that a nonlinear system locally exhibits Kalman-like decompositions 

into "reachable/unreachable" parts and/or "observable/unobservable" 

parts. Chapter II explains to what extent there may exist global de- 

compositions, corresponding to a partition of the whole state space 

into "lower dimensional" reachability and/or indistinguishability sub- 

sets. Chapter III describes various "formats" in which the input-output 

map of a nonlinear system may be represented, and provides a short de- 

scription of the fundamentals of realization theory. Chapters IV and V 

deal with the synthesis of feedback control laws. In the first of these, 

disturbance decoupling and noninteracting control are dealt with,along 

the so-called "geometric approach", that proved to be quite successful 

for the solution of similar synthesis problems in linear multivariable 

systems. In Chapter V it is shown that nonlinear state-feedback may be 

used in order to make a given system to behave, internally and/or ex- 



IV 

ternally, like a linear one. In particular, feedback may be used in 

order to shape the input-output behavior in some prescribed way. 

The reader is supposed to be familiar with the basic concepts 

of linear systems theory. Moreover, some knowledge of the fundamentals 

of differential geometry is required. There are several excellent text- 

books available to this end, and some of them are quoted among the refer- 

ences. However, in order to make the volume as much as possible self- 

contained, and particularly to unify the notations, the most important 

notions and results of frequent usage are collected - without proof - 

in the Appendix. 

The author of this book is particularly grateful to Professor 

A. Ruberti, for his constant encouragement, to Professors J. Zaborszky 

and T.J. Tarn for their interest and generous support, to Professor 

A.J. Krener who, especially in the course a joint research venture, 

was a source of inspiration for many of the ideas developed in this 

volume. The author would also like to thank Professor M. Thoma for his 

encouragement during the preparation of this work and Professors C. 

Byrnes, M. Fliess, P. Kokotovic and S. Monaco for many stimulating 

discussions. 

Rome, March 1985 
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CHAPTER I 

LOCAL DECOMPOSITIONS OF CONTROL SYSTEMS 

I. Introduction 

In this section we review some basic results from the theory of 

linear systems, with the purpose of describing some fundamental pro- 

perties which find close analogues in the theory of nonlinear systems. 

Usually, a linear control system is described by equations of the 

form 

= Ax + Bu 

y = Cx 

in which the state x belongs to X, an n-dimensional vector space and 

the input u and the output y belong respectively to an m-dimensional 

vector space U and £-dimensional vector space Y. The mappings 

A : X ~ X, B : U ~ X, C :X ~ Y are linear mappings. 

Suppose that there exists a d-dimensional subspace V of X with 

the following property: 

(i) V is invariant under the mapping A, i.e. is such that Ax 6 V for 

all x 6 V; 

then, it is known from linear algebra that there exists a basis for X 

(namely, any basis (v I .... ,v n) with the property that (Vl,...,v d) is 

also a basis for V) in which A is represented by means o9 a block- 

triangular matrix 

A11 A12 

0 A22 

whose elements on the lower (n-d) rows and left d columns are vanishing. 

Moreover, if this subspace V is such that: 

(ii) V contains the image of the mapping B, i.e. is such that Bu E V 

for all u E U; 

then, choosing again the same basis as before for X, regardless of the 

choice of basis in U, the mapping B is represented by a matrix 

0 
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whose last n-d rows are vanishing. 

Thus, if there exists a subspace V which satisfies (i) and (ii), 

then there exists a choice of coordinates for X in which the control 

system is described by a set of differential equations of the form 

Xl = AIIXl + A12x2 + BIu 

~2 = A22x2 

By x I and x 2 we denote the d-vector and, respectively, the n-d vector 

formed by taking the first d and, respectively, the last n-d coordina- 

tes of a point x of X in the selected basis. 

The representation thus obtained is particularly interesting when 

studying the behavior of the system under the action of the control 

u. At time T, the coordinates of x(T) are 

T 
f 

x I (T) = exp(A11T)x I (0) +~exp(A11 (T-T))AI2exp(A22T)dTx2(0) + 

0 

T 
t 

+ i exp (At I (T-T))BlU (T) dT 

0 

x 2(T) = exp(A22T)x 2(0) 

From this we see that the set of coordinates denoted with x 2 does 

not depend on the input u but only on the time T. The set of points 

that can be reached at time T, starting from x(0), under the action of 

the input lies inside the set of points of X whose x 2 coordinate is 

equal to exp(A22T)x2(0). In other words, if we let x°(T) denote the 

point of X reached at time T when u(t) = 0 for all t E [0,T} , we ob- 

serve that the state x(T) may be expressed as 

x(T) = x°(T) + v 

where v is a vector in V. Therefore, the set of points that can be 

reached at time T, starting from x(0), lies inside the set 

S T = x°(T) + V 

Let us now make the additional assumption that the subspace V, 

which is the starting point of our considerations, is such that: 

(iii) V is the smallest subspace which satisfies (i) and (ii) (i.e. 

is contained in any other subspace of X which satisfies both (i) 



and (ii)). 

It is known from the linear theory that this happens if and only 

if 
n-1 

V = ~ Im(AiB) 
i=0 

and, moreover, that in this case the pair (AII,B I) is a reachable pair, 

i.e. satisfies the condition 

rank(B I A11B I ... A~;IBI) = d 

or, in other words, for each x I E ~d there exists an input u, defined 

on [0,T], such that 

T 

x I = [ exp(A11 (T-T))B~U(T)dT 

0 

Then, if V is such that the condition (iii) is also satisfied, 

starting from x(0) we can reach at time T any state of the form 

x°(T) + v with v E V or, in other words, any state belonging to the 

set S T . This set is therefore exactly the set of the states reachable 

at time T starting from x(0) . 

This result suggests the following considerations. Given a linear 

control system, let V be the smallest subspace of X satisfying (i) and 

(ii). Associated with V there is a partition of X into subsets of the 

form 

x+V 

with the property that each one of these subsets coincides with the 

set of points reachable at some time T starting from a suitable point 

of X. Moreover, these subsets have the structure of a d-dimensional 

flat submanifold of X. 

An analysis similar to the one developed so far can be carried 

out by examining the interaction between state and output. In this 

case we consider a d-dimensional subspace W of X such that 

(i) W is invariant under the mapping A 

(ii) W is contained into the kernel of the mapping C (i.e. is such 

that Cx = 0 for all x 6 W) 

(iii) W is the largest subspace which satisfies (i) and (ii) (i.e. 

contains any other subspace of X which satisfies both (i) and 

(ii)). 

Then, there is a choice of coordinates for X in which the control 

system is described by equations of the form 
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Xl = A11Xl + AI2X2 + BIU 

x2 = A22x2 + B2u 

y = C2x 2 

From this we see that the set of coordinates denoted with x I has 

no influence on the output y. Thus any two initial states whose last 

n-d coordinates coincide produce two identical outputs under any input, 

i.e. are indistinguishable. Actually, any two states whose last 

n-d coordinates coincide are such that their difference is an element 

of W and, then, we may conclude that any two states belonging to a set 

of the form x+W are indistinguishable. 

Moreover, we know that the condition (iii) is satisfied if and 

only if 

n-1 
W = ~ ker(CA i) 

i=0 

and, if this is the case, the pair (C2,A22) is observable, i.e. sa- 

tisfies the condition 

rank(C~ A½2C ~ ... (A~2)d-Ic~) = d 

or, in other words, 

C22exp(A22t)x 2 - 0 ~ x 2 = 0 

Then, if two initial states are such that their difference does 

not belong to W, they may be distinguished from e~ch other by the out- 

put produced under zero input. 

Again we may synthesize the above discussion with the following 

considerations. Given a linear control system, let ~ be the largest 

subspace of X satisfying (i) and (ii). Associated with W there is a 

partition of X into subsets of the form 

x+W 

with the property that each one of these subsets coincides with the 

set of points that are indistinguishable from a fixed point Qf X. Mo- 

reover, these subsets have the structure ~f ~ d-dimensional flat sub- 

manifold of X. 

In the following sections of this chapter and in the following 

chapter we shall deduce similar decompositions for nonlinear control 



systems. 

2. Distributions on a Manifold 

The easiest way to introduce the notion of distribution A~ on a 

manifold N is to consider a mapping assigning to each point p of N a 

subspace A(p) of the tangent space T N to N at p. This is not a rigo- 
P 

rous definition, in the sense that we have only defined the domain N 

of A without giving a precise characterization of its codomain. Defer- 

ring for a moment the need for a more rigorous definition, we proceed 

by adding some conditions of regularfty. This is imposed by assuming 

that for each point p of N there exist a neighborhood U of p and a set 

of smooth vector fields defined on U, denoted {~ : i C I}, with the 
1 

property that, 

A(q) = span{Ti(q):i E I} 

for all q E U. Such an object will be called a smooth distribution on 

N. Unless otherwise noted, in the following sections we will use the 

term "distribution" to mean a smooth distribution. 

Pointwise, a distribution is a linear object. Based on this pro- 

perty, it is possible to extend a number of elementary concepts re- 

lated to the notion of subspace. Thus, if {T.:i 6 I} is a set of vector 
l 

fields defined on N, their span, written sp{Ti:i E I}, is the distribu- 
(*) 

tion defined by the rule 

sP{Ti:i 6I}: p ~ span{Ti(P):i 6I} 

If A I and A 2 are two dLstributions, their sum A I + A 2 

taking 

A I +A 2 ": p ~A I (p) +A 2(p) 

is defined by 

and their intersection g I ~ A 2 by taking 

A I M A 2 : p ~ AI (p) ~ A2(P) 

(*) In order to avoid confusions, we ,use the symbol span{-} to denote any B-linear 
combination of elements of some ~-vector space (in particular, tangent vectors 
at a point). The symbol sp{'} is used to denote a distribution (or a codistribu- 
tion, see later). 
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A distribution A I i8 contained in the distribution A 2 and is written 

A 1C A 2 if At(p) C A2(p) for all p 6 N. A vector field T beZong8 to a 

distribution A and is written T 6 A if T(p) E A(p) for all p 6 N. 

The dimension of a distribution A at p E N is the dimension of 

the subspace A(p) of TpN. 

Note that the span of a given set of smooth vector fields is a 

smooth distribution. Likewise, the sum of two smooth distributions is 

smooth. However, the intersection of two such distributions may fail 

to be smooth. This may be seen in the following example. 

(2.1) Ezamp~e. Let M = 2 2 , and 

= sp{_ 8 + --~ } 
A I ~x I 8x 2 

A 2 = sp{(1+Xl)~1 + ~x 2 

Then we have 

(A I N A2 ) (x) = {0} if x I ~ 0 

(A I 63 A 2) (x) = A I (x) = A2(x) if x I = 0 

This distribution is not smooth because it is not possible to find a 

smooth vector field on 2 2 which is zero everywhere but on the line 

x I = 0. [] 

Since sometimes it is useful to take the intersection of smooth 

distributions A I and A 2 , one may overcome the problem that A I N A2 is 

possibly non-smooth with the aid of the following concepts. Suppose A 

is a mapping which assigns to each point p ~ N a subspace A(p) of TpN 

and let M(A) be the set of all smooth vector fields defined on N which 

at p take values in A(p), i.e. 

M(A) = {T e V(N):T(p) 6 A(p) for all p 6 N} 

Then, it is not difficult to see that the span of M(A), in the 

sense defined before, is a smooth distribution contained in A. 

(2.2) Remark. Recall that the set V(N) of all smooth vector fields de- 

fined on N may be given the structure of a vector space over ~ and, 

also, the structure of a module over C~(N), the ring of all smooth 

real-valued functions defined on N. The set M(A) defined before (which 

is non-empty because the zero element of V(N) belongs to M(A) for any 



4) is a subspace of the vector space V(N) and a submodule of the module 

V(N). From this is it easily seen that the span of M(4) is contained 

in 4. [] 

Note that if 4' is any smooth distribution contained in 4, then 

4' is contained in the span of M(4), so the span of M(4) is actually 

the largest smooth distribution contained in 4. To identify this distri- 

bution we shall henceforth use the notation 

smt(A) = 4 sp M(A) 

i.e. we look at the span of M(A) as the "smoothing" of 4. Note also 

that if ~ is smooth, then smt(~) = 4. 

Thus, if A I N 42 is non-smooth, we shall rather consider the dis- 

tribution smt(41N 42). 

(2.3) Remark. Note that M(A) may not be the unique subspace of V(N), 

or submodule of V(N), whose span coincides with smt(4). But if M' is 

any other subspace of V(N), or submodule of V(N), with the property 

that sp M' = smt(&), then M' c M(~). 

(2.4) Example. Let N = ~, and 

4 = sp{x ~} 

Then M(4) is the set of all vector fields of the form c(X)~x where 

c(x) is a smooth function defined on ~ which vanishes at x = 0.Clearly 

is smooth and coincides with smt(A). There are many submodules of 

V(~) which span 4, for instance 

M~ = {T 6 V~):T(x) = c(x)x~-~ and c 6 C~)} 

M 2 {T 6 V~):T(x) = c(x)x 2 ~ = ~-~ and c 6 C~(~)} 

Both are submodules of M(A), M 2 is a submodule of M I but M I is not a 

submodule of M 2 because is not possible to express every function 

c(x) x as 6(x)x 2 with 6 6 C ~) . [] 

(2.5) Remark. The previous considerations enable us to give a rigorous 

definition of a smooth distribution in the following way. A smooth 

distribution is a submodule M of V(N) with the following property: if 

0 is a smooth vector field such that for all p E N 

8(p) 6 span{T(p):T 6 M} 
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then 8 belongs to M. [] 

Other important concepts associated with the notion of distribu- 

tion are the ones related to the "behavior" of a given A as a "func- 

tion" of p. We have already seen how it is possible to characterize 

the quality of being smooth, but there are other properties to be con- 

sidered. 

A distribution A is non~ingular if there exists an integer d such 

that 

(2.6) dim A(p) = d 

for all p E N. A singular distribution, i.e. a distribution for which 

the above condition is not satisfied, is sometimes called a distribu- 

tion of variable dimension. If a distribution A is such that the con- 

dition (2.6) is satisfied for all p belonging to an open subset U of 

N, then we say that A is nonsingular on U. A point p is a regular point 

of a distribution A if there exists a neighborhood U of p with the pro- 

perty that A is nonsingular on U. 

There are some interesting properties related to these notions, 

whose proof is left to the reader. 

(2.7) Lemma. Let A be a smooth distribution and p a regular point of 

g. Suppose dim g(p) = d. Then there exist an open neighborhood U of 

p and a set {T I ..... T d} of smooth vector fields defined on U with the 

property that every smooth vector field T belonging to A admits on U a 

representation of the form 

d 

(2.8) • = ~ ci~ i 
i=I 

where each c. is a real-valued smooth function defined on U. [] 
1 

A set of d vector fields which makes (2.8) satisfied will be cal- 

led a set of local generators for g at p. 

(2.9) Lemma. The set of all regular points of a distribution A is an 

open and dense submanifold of N. 

(2.10) Lemma. Let A 1 and A 2 be two smooth distributions with the pro- 

perty that A 2 is nonsingular and At (p) C A2(p) at each point p of a 

dense submanifold of N. Then A I C A2" 

(2.11) Lemma. Let A I and A 2 be two smooth distributions with the pro- 

perty that A I is nonsingular, A I C A 2 and At(p) = A2(p) at each point 

p of a dense submanifold of N. Then A 1 =A 2. [] 



We have seen before that the intersection of two smooth distribu- 

tions may fail to be smooth. However, around a regular point this 

cannot happen, as we see from the following result. 

(2.12) Lemma. Let p be a regular point of ~1 , A 2 and A 1 Q A 2. Then 

there exists a neighborhood U of p with the property that A 1 n A 2 

restricted to U is smooth. [] 

A distribution is ¢nvoluti~e if the Lie bracket [TI,T 2] of any 

pair of vector fields T I and T 2 belonging to A is a vector field which 

belongs to A, i.e. if 

q l  • ,5, [ 2  C A ~ [ ' ~ 1 " t 2 ]  E A 

(2.13) Remark. It is easy to see that a nonsingular distribution of 

dimension d is involutive if and only if, at each point p, any set of 

local generators TI,...,T d defined on a neighborhood U of p is such 

that 

d 
4 = ~ c~.~° [ 

where each c~. is a real-valued smooth function defined on U. [] 
z3 

If f is a vector field and A a distribution on N we denote by 

[ f,A] the distribution 

(2.14) [f,A] = sp{[ f,T] • V(N):T e A} 

Note that [ f,A] is a smooth distribution, even if A is not. Using this 

notation, one can say that a distribution is involutive if and only if 

[f,A] C A for all f • &. 

Sometimes, it is useful to work with objects that are dual to the 

ones defined above. In the same spirit of the definition given at the 

beginning of this section, we say that a eodistribution ~ on N is a 

mapping assigning to each point p of N a subspace ~(p) of the cotangent 

space T (N). A smooth codistribution is a codistribution ~ on N with 
P 

the property that for each point p of N there exist a neighborhood U 

of p and a set of smooth covector fields (smooth one-forms) defined on 

U, denoted {wi:i 6 I}, such that 

~(q) = span{ei (q) :i E I} 

for all q C U. 

In the same manner as we did for distributions we may define the 
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dimension of a codistribution at p, and construct codistributions by 

taking the span of a given set of covector fields, or else by adding 

or intersecting two given codistributions, etc. always looking at a 

pointwise characterization of the objects we are dealing with. 

Sometimes, one can construct codistributions starting from given 

distributions and conversely. The natural way to do this is the fol- 

lowing: given a distribution A on N, the annihiZator of A, denoted A i, 

is the codistribution on N defined by the rule 

A i :p v* * ~ { ETpN : (v*,v)= 0 for all v 6 A(p)} 

! 

Conversely, the annihilator of ~, denoted ~-, is the distribution 

defined by the rule 

~i ,v )= 0 for all v E ~(p)} : p ~ {v E TpN: (v* * 

Distributions and codistributions thus related possess a number 

of interesting properties. In particular, the sum of the dimensions of 

A and of A ± is equal to the dimension of N. The inclusion A I C A 2 is 

± D ± satisfied if and only if the inclusion A I A 2 is satisfied. The an- 

nihilator (A I A &2 )± of an intersection of distributions is equal to 
± I 

the sum A 1 + A 2. 

Like in the case of the distributions, some care is required when 

dealing with the quality of being smooth for codistributions construc- 

ted in some of the ways we described before. Thus it is easily seen 

that the span of a given set of smooth covector fields, as well as sum 

of two smooth codistributions is again smooth. But the intersection of 

two such codistributions may not need to be smooth. 

Moreover, the annihilator of a smooth distribution may fail to be 

smooth, as it is shown in the following example. 

(2.15) Example. Let N = 

8' 
A = sp{x ~} 

Then 

Ai(x) = {0} if x ~ 0 

AA(x) = T N if x : 0 
x 

and we see that A i is not smooth because it is not possible to find a 

smooth covector field on I~ which is zero everywhere but on the point 
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x = 0. [] 

Or, else, the annihilator of a smooth codistribution may not be 

smooth, as in the following example. 

(2.16) EmampZe. Consider again the two distributions A I and A 2 describ- 

ed in the Example (2.1). One may easily check that 

± = sp{dx I - dx2} A I 

i = sp{dXl _ (I +xl)dx 2} A 2 

L I is The intersection At A A2 is not smooth but its annihilator At +A2 

smooth, because both A I and A 2 are smooth. [] 

One may easily extend Lemmas (2.7) to (2.12). In particular, if 

p is a regular point of a codistribution e and dim S(p) = d, then it 

is possible to find an open neighborhood U of p and a set {m1'''''md } 

of smooth covector fields defined on U, such that every smooth covector 

field m belonging to ~ can be expressed on U as 

d 

e = [ ci~ i 
i=I 

where each c i is a real-valued smooth function defined on U. The set 

{~1'''''~d } is called a set of local generators for ~ at p. 

We have seen before that the annihilator of a smooth distribution 

A may fail to be smooth. However, around a regular point of A this 

cannot happen, as we see from the following result. 

(2.17) Lemma. Let p be a regular point of A. Then p is a regular point 

of A i and there exists a neighborhood U of p with the property that A ~ 

restricted to U is smooth. [] 

We conclude this section with some notations that are frequently 

used. If f is a vector field and ~ a codistribution on N we denote by 

Lf~ the smooth codistribution 

(2.18) Lf~ = sp{Lfw • V~(N):~ • ~} 

If h is a real-valued smooth function defined on N, one may as- 

sociate with h a distribution, written ker(h~), defined by 

ker(h~) : p ~ {v 6 TpN : h~v = 0} 

One may also associate with h a codistribution, taking the span of the 
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covector field dh° It is easy to verify that the two objects thus de- 

fined are one the annihilator of the other, i.e. that 

(sp(dh))± = ker(h#) . 

3. Frobenius Theorem 

In this section we shall establish a correspondence between the 

notion of distribution on a manifold N and the existence of partitions 

of N into lower dimensional submanifolds. As we have seen at the be- 

ginning of this chapter, partitions of the state space into lower di- 

mensional submanifolds are often encountered when dealing with reach- 

ability and/or observability of control systems. 

We begin our analysis with the following definition. A nonsing~lar 

d-dimensional distribution A on N is completely integrable if at each 

p 6 N there exists a cubic coordinate chart (V,~) with coordinate func- 

tions ~1,...,~n , such that 

(3.1) A(q) = span{ (~I) q ..... (~d)q} 

for all q C V. 

There are two important consequences related to the notion of 

completely integrable distribution. First of all, observe that if there 

exists a cubic coordinate chart (V,~), with coordinate functions 

~I .... '~n ' such that (3.1) is satisfied, then any slice of V passing 

through any point p of V and defined by 

(3.2) Sp = {q E V:~i (q) = ~i (p) ; i = d+1 ..... n} 

(which is a d-dimensional imbedded submanifold of N), has a tangent 

space which, at any point q, coincides with the subspace &(q) of T N. q 
Since the set of all such slices is a partition of V, we may see 

that a completely integrable distribution A induces, locally around 

each point p E N, a partition into lower dimensional submanifolds, and 

each of these submanifolds is such that its tangent space, at each 

point, agrees with the distribution A at that point. 

The second consequence is that a completely integrable distribu- 

tion is inuoiutive. In order to see this we use the definition of in- 

volutivity and compute the Lie bracket of any pair of vector fields 

belonging to A. For, recall that in the ~ coordinates, any vector 

field • defined on N is represented by a vector of the form 
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~(~) = (~1(~) ...Tn(~))' 

The components of this vector are related to the value of the vector 

field • at a point q by the expression 

~(q) = T 1 (~(q))(~1)q +-.-+Tn(~(q)) (~n)q 

If T is a vector field of A and (3.1) is satisfied, the last n-d 

components Td+1 (~),...,Tn(~) must vanish. Moreover, if @ is any other 

vector field of 4, also the last n-d components of its local repre- 

sentation 

e(() = (@1(~) ...@n(()) ' 

must vanish. From this one deduces immediately that also the last n-d 

components of the vector 

9e 3~ 

a r e  v a n i s h i n g .  S i n c e  t h i s  v e c t o r  r e p r e s e n t s  l o c a l l y  t h e  v e c t o r  f i e l d  

I T , e ]  one  may c o n c l u d e  t h a t  [ T , e ]  b e l o n g s  t o  ~ ,  i . e .  t h a t  A i s  i n v o -  

lutive. 

We have seen that involutivity is a neceGsa~y condition for the 

complete integrability of a distribution. However, it can be proved 

that this condition is also sufficient, as it is stated below 

(3.3) 2~eorem (Frobenius). A nonsingular distribution is completely 

integrable if and only if it is involutive 

Proof. Let d denote the dimension of A. Since A is nonsingular, given 

any point p @ N it is possible to find d vector fields ~1,...,Td E 

with the property that TI(q) ..... Td(q) are linearly independent for 

all q in a suitable neighborhood U of p. In other words, these vector 

fields are such that 

~(q) = span{T 1(q) ..... Td(q) } 

for all q 6 U. 

Moreover, let rd+1,...,Tn be any other set of vector fields with 

the property that span{Ti(p) : i = I .... n} = T N. With each vector 
' p T i 

field T i , i = 1,...,n, we associate its flow #t and we consider the 

mapping 
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F : C (0) > N 
E 

(~1 ,~n) ~T1 
T 2 ~n 

: . . . . . . .  ~n(p) %1°~2 °" 

where Ce(O) = {~ ~ ~n:l~il < e, 1 £ i 3 n}. 

If 8 is sufficiently small, this mapping: 

(i) is defined for all ~ 6 Ce(O ) and is a diffeomorphism onto its 

image 

(ii) is such that for all ~ 6 Co(O) 

F,(~i) ~ e A(F(~)) i = I ..... d (*) 

We show now that (i) and (ii) are true and, later, that both imply 

the thesis. 

Proof of (i). We know that for each p 6 N and sufficiently small Itl 

the flow ~(p) of a vector field T is defined and this makes the func- 

tion F defined for all (~I ..... ~n ) with sufficiently small l~iI.More- 

over, since a flow is smooth, so is F. lle prove that F is a local dif- 

feomorphism by showing that the rank of F at 0 is equal to n. 

To this purpose, we first compute the image under F,) of the 

E tangent vector (~) at a point ~ C (0) Suppose F is expressed in 
~i ~ ~ " 

local coordinates. Then, it is known that the coordinates of F~(~)p 
• ~ ~ ~i ~ in the basls {(~-~) ,..., (~--~-) } of the tangent space to N at the 

I q ~n q 
point q = F(~) coincide with the elements of the i-th column of the 

jacobian matrix 

~F 

By taking the partial derivative of F with respect to ~i we ob- 

tain 

T1 (#~i-1 ~ (.Ti ~Tn(p)) = 
8F~i = (#~1)* "'" ~i-I )~ ~i.w~i o .. . o ~n 

T1 (¢Ti-1 ~i CTn 

= (~I)~ "'" ~i_1 )~ Yi o ~i ..... ~n(p) = 

= (~i), (~Ti-1 Ti =-~i-1 °~i-1 "" ~-~I(F(~)) ... ~i_1), o . o 

(*} Note that (~i)~ ~ is a tangent vector at the point ~ of CE(O) 
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In particular, at ~ = 0, since F(0) = p, 

F,(%)0 = Ti (p) 

The tangent vectors Tl(p),...,Tn(p) are by assumption linearly inde- 

pendent and this proves that F, has rank n at p. 

Proof o~ (ii). From the previous computations, we deduce also that, at 

any ~ 6 Ce(0), 

F,(~i) = TI (~Ti-1 .Ti-1 T 1 
(~{1)~ ... {i_I )~ T i o9_[i_ I ..... #_~1 (q) 

where q = F(~). 

If we are able to prove that for all q in a neighborhood of p, for Itl 

small, and for any two vector fields T and @ belonging to A, 

(~}, T o~St(q)_ E ~(q) 

i.e. that (~), ~ o#St is a (locally defined) vector field of 4, then 

we easily see that (ii) is true. 

To prove the above, one proceeds as follows. Let 8 be a vector 

field of A and set 

V i(t) = (~8 t)_ ~ T i o¢8t(q) 

for i = 1,...,d. 

Then, from a well known property of the Lie bracket we have 

dVi = 
dt (#@-t) ~[ 8'Ti] °~St (q) 

Since both T i and 8 belong to A and A is involutive, there exist func- 

tions I. • defined locally around p such that l] 

d 

I 0,~ i] = ~ lij~ j 
j=1 

and, therefore, 

dVi = (~St)~[ 
dt 

d d 
8 Tj o¢St(q) j~lliJ j~1 lij (~t (q))] = (~8t (q))vj(t) 
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The functions Vi(t) are seen as solutions of a linear differential 

equation and, therefore,it is possible to set 

[V1(t)...Vd(t)] = [VI(0)...Vd(0)]X(t) 

where X(t) is a dxd fundamental matrix of solutions. By multiplying on 

the left both sides of this equality by (~)~ we get 

[ T1o~(q)...TdO~(q)] =[ (~)~T1(q)... (~)~d(q)]X(t) 

and also, by replacing q with %~t(q) 

Since X(t) is nonsingular for all t we have that, for i = 1,...,d, 

e 
(~t),Tio#8_t(q) C span{Y I (q) ..... Tp(q) } 

i.e. 

¢~ (t),~io~@t(q) C A(q) 

This result, bearing in mind the possibility of expressing any 

vector T of A in the form 

d 
T = ~ ciT i 

i=1 

completes the proof of (ii). 

From (i) and (ii) the thesis follows easily. Actu~lly, (i) makes 

it possible to consider on the neighborhood v = F(CE{0)) of p the 

at coordinate chart (V,F-I). By definition, the tangent vector (~)q 

a point q E V coincides with the ima~e~under F, of ~the tangent vector 

(~)~ at the point ~ ='F-1(q) E C£(0). From (ii) we see that the 

tangent vectors 

are elements of A(q). Since these vectors are linearly independent, 

they span A(q) and (3.1) is satisfied. [] 
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There are several interesting system-theoretic consequences of 

Frobenius' Theorem. The most important one is found in the correspond- 

ence, established by this Theorem, between involutive distributions 

and local partitions of a manifold into lower dimensional submanifolds. 

As we have seen, given a nonsingular and completely integrable, i.e. 

involutive, d-dimensional distribution & on a manifold N, around each 

p 6 N it is possible to find a coordinate neighborhood V on which A 

induces a partition into submanifolds of dimension d, which are slices 

(and,therefore, imbedded submanifolds) of V. Conversely, given any 

coordinate neighborhood V, a partition of V into d-dimensional slices 

defines on V a nonsingular completely integral distribution of dimen- 

sion d. 

We examine some examples in order to further clarify these con- 

cepts 

(3.4) Example. Let N = A n and let x = (Xl,...,Xn) be a point on ~n. 

Suppose V is a subspace of ~n, of dimension d, spanned by the vectors 

v i = (Vil ..... Vin) I ~ i ~ d 

We may associate with V a distribution, denoted A V , in the following 

way. At each x 6 A n, ~v(X ) is the subspace of T~ n spanned by the 

tangent vector~ 

n, 

j Ivij (~ x I _< i < d 

It fs easily seen that this distribution is nonsingular and in- 

volutive, thus completely integrable. 

Now, suppose we perform a (linear) change of coordinates in 

~n, ~ = ~(x) such that 

~i(vj ) = ~ij 

In the ~ coordinates, the. subspace V will be spanned by vectors of the 

form (1,0 ....... 0), (0,1 .... ,0), etc., while the subspace Av(X) by the 

tangent vectors (~)x ..... (~)x" Thus, we see that the condition 

(3.1) i~s satisfied globally on ~n in the ~ coordinates. 

The slices~ 

S = {x e An: ~i(x) = c i , i = d +I ..... n} 

characterize a global partition of ~ n anrd each of these is such that 
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its tangent space, at each point x, is exactly ~v(X). It is worth 

noting that each of these slices corresponds to a set of the form 

x+V 

Thus, the partitions of the state space X discussed in section I may 

be thought of as global partitions induced by a distribution associated 

with a given subspace of X. 

(3.5) Ezample. Let N = ~2 and let x = (Xl,X 2) he a point on ~2. Con- 

sider the one-dimensional nonsingular distribution 

)__~ +__!_~ } 
& = sp{ (exp x 2 ~x I ~x 2 

If we want to find a change of coordinates that makes (3.1) satisfied, 

we may proceed as follows. Recall that, given a coordinate chart with 

coordinate functions ~i,~2 , a tangent vector v at x may be represented 

as 

v Vl ( )x x 

where the coefficients v I and v 2 are such that v I = Lv~ I and v 2 = Lv~ 2. 

Since the tangent vector 

T(x) = (exp x 2) (~1)x + (~2)x 

spans A(x) at each x E ~2, if we want that (3.1) is satisfied we have 

to have 

T(x) = (LT~ I) (-~1)x + (LT¢ 2) ( )x = ( )x 

for all x @ U, or 

by 

~I 2£I 
1 = (LT~ I) = (exp x2)~--~i + ~x 2 

~2 ~2 
0 = (LT~2) = (exp x2)~ I + ~x2 

A solution of this set of partial differential equations is given 

~I = ~I (x) = x2 

~2 = ~2 (x) = Xl - exp(x2) 
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The mapping ~ = ~(x) is a diffeomorphism ~ : ~2 ~2 and solves 

the problem of finding the change of coordinates that makes (3.1) sa- 

tisfied. Note that ~2 is globally partitioned into one-dimensional 

slices, each one being the locus where the function {2(x) is constant, 

i.e. the locus of points (xl,x2) such that 

x I = exp(x2) + constant O 

The procedure described in the Example (3.5) may easily be ex- 

tended. For, let A be a nonsingular involutive distribution of dimen- 

sion d. Let (U,~) be a coordinate chart with coordinate functions 

~1,...,~n. Given any point p E U it is possible to find d vector fields 

TI ..... T d 6 A with the property that TI(q) .... ,Td(q) are linearly in- 

dependent for all q in a suitable neighborhood U' CU of p. In other 

words, these vectors are such that 

A(q) = span{T I (q) ..... Td(q) } 

for all q 6 U'. 

In the coordinates ~1,...,~n , each of these vector fields is 

locally expressed in the form 

n 

If (V,~) is another coordinate chart around p with coordinate 

functions ~ l , . . . , ~ n  t h e  c o r r e s p o n d i n g  e x p r e s s i o n s  f o r  T i h a s  t h e  f o r m  

n 
X i = [ (%) j=1 (LTi~J) 

For ( 3 . 1 )  t o  b e  s a t i s f i e d ,  i . e .  f o r  

sP{T I T d} = sP{~ I 
. . . . . . . . . .  3~d } 

on V, we must have 

LT. ~j = 0 
l 

on V, for i = 1,...,d and j = d +1,...,n and, moreover 

rank 

LT I LT 1 

L~d~ 1 ... LTd~ d 

= d 
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on V. These conditions characterize a set of partial differential equa- 

tions on V, which has to be satisfied by the new coordinate functions 

~I ..... ~n" 
Setting, as usual 

-I 
~ij(x) = (LTi~j)o ~ (x) 

where x = (Xl,...,x n) E ~n, it is possible to express the functions 

LT.~ j involved in the previous conditions as follows 
l 

n ~(~jo-1) 

LTi~j (x) = k:1[ Tik(X) SXk 

-I 
Therefore, using just ~i(x) to denote the composite function ~jo9 

one has 

(x) , 

n ~j 
LTi~ j (x) = k=~iTik(X)~x k 

Setting 

T(x) = 

T11 (x)...Tdl (x) 

Tin (x) . . . Tdn (x) 

the previous equations for L~j become 
1 

K(x) 

~ T(x) = (3.6) $---~ 

0(n-d)×d 

in which K(x) is some d×d matrix of real valued functions, nonsingular 

for all x @ 9(V). 

Thus, we may conclude that finding a coordinate transformation 

= ~(x) that makes (3.1) satisfied corresponds to solving a partial 

differential equation of the form (3.6). 

Note that the matrix T(x) is a matrix of rank d at x = ~(p) be- 

cause the tangent vectors TI(p),...,Td(p) are linearly independent. 

Therefore the matrix ~-~ can be nonsingular at x = ~(p) and this, ac- 

cording to the rank Theorem, guarantees that ~ = ~(x) is a local dif- 

feomorphism. 

(3.7) Remark. There are alternative ways to describe the equation (3.6). 
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For instance, one may easily check that solving these equations cor- 

responds to find n-d functions 11,...,ln_ d defined on a neighborhood 

V of p with values in ~ with the following properties 

(i) the tangent eovectors dll(p) , .... dln_d(p) are linearly independ- 

ent 

(ii) (dli(q),Tj(q) ) = 0 for all q 6 V, i = I .... ,n-d and j =1,...,d. 

In fact, if (V,~) is a coordinate chart that makes (3.6) satis- 

fied, then the functions 

li = ~i+d 

will satisfy (i) and (ii). Conversely, if 11,...,In_d is a set of func- 

tions that satisfies (i) and (ii), then it is always possible to find 

d functions ~1,...,~d defined on V and with values in ~ which, to- 

gether with the functions ~d+1 = h1'''''~n = in-d ' define a coordinate 

chart (V,~) with ~ solving the equations (3.6). 

From (ii) we deduce also that there is a set of covector fields 

{dll,...,dln_ d} with the property that at each q 6 V, <dli(q),v ) = 0 

for all v E A(q). Thus 

dl i(q) 6 A ±(q) i = 1 ..... n-d 

Moreover, the tangent covectors dll (q),...,dl n d(q) are linearly in- 
- ± 

dependent for all q in a neighborhood of p and A (q) has exactly di- 

mension n-d. Therefore, we may conclude that the set of covector fields 

{dll,...,dln_ d} spans A ± locally around p. 

In short, we may state this result by saying that a nonsingular 

distribution of dimension d is integrable if and only if its annihi- 

lator is locally spanned by n-d exact one-forms. 

(3.8) Remark. We note that the involutivity of A corresponds to the 

property that any two columns Ti(x) and Tj(x) of the matrix T(x) are 

such that 

i 3 
(-~-~ ~j(x)- -~x ~i(x))e Im(T(x)) 

for all x E ~(V). 

(3.9) Remark. We know that, given a set of functions {li:i E I}, de- 

fined on N and with values in ~, we can define a codistribution 

= sp{dli:i ~ I}. It is easily seen that if ~ is nonsingular then ~± 

is completely integrable. For, let d denote the dimension of ~, take 

a point p 6 N and a set of functions 11,...,I d with the property that 
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~(p) = span{dl I (p) ..... dld(p)) 

If U is a neighborhood of p with the property that dl1(q),...,dld(q) 

are linearly independent at all q C U, it is seen that ~ is spanned on 

U by the exact forms dl1,...,dh d. As a consequence of our earlier 

discussions, ~i is completely integrable. 

The notion of complete integrability can be extended to a given 

collection of distributions. There are two cases of special importance 

in the applications. 

Let AI,~2,...,A r be a collection of neeted distributions, i.e. a 

set of distributions with the property 

41C A 2 C ... C ~r 

A collection of nested nonsingular distributions on N is completely 

integrable if at each point p E N there exists a coordinate chart (V,~) 

with coordinate functions ~i,...,~ n such that 

A i(q) = span{ (~1)q ..... (~d)q} 
1 

for all q E V, where d i denotes the dimension of 4 i. 

The following results extends Frobenius Theorem 

3.10) Theorem. A collection 41C 42 C ... C 4 r of nested nonsingular 

distributions is completely integrable if and only if each distribu- 

tion of the collection is involutive. 

Preof. The same construction described in the proof of Theorem (3.3) 

can be used. [] 

A collection AI,...,4 r of distributions on N is said to be in- 

dependent if 

(i) A i is nonsingular, for all i = I, .... r 

(ii) A i N ( ~ A~) = 0, for all i = I ..... r 
j~i ~ 

A collection of distributions ~1,...,~r is said to span ~he tan- 

gent space if for all q 6 N 

41 (q) +A 2(q) + ... +~r(q) = TqN 

An independent collection of distributions 41,...,& r which spans 

the tangent space is said to be simultaneously integrable if at each 

point p E N there exists a coordinate chart (V,~), with coordinate 
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functions ~i,...,~ n such that 

(3.11) Ai(q) = span{ (~ ) . (~-~)q} 
~s.+1 q' "'' z si+1 

for all q 6 V, where s I = 0 and 

s i = dim(g I + ... +Ai_ I) 

for i = 2,...,r+I. 

The following result is an additional extension of Frobenius 

Theorem 

(3.12) Theorem. An independent collection of distributions AI,...,A r 

which spans the tangent space is simultaneously integrable if and only 

if, for all I < i < r, the distribution 

r 

-- A. (3.13) Di j=~1 ] 

jT~i 

is involutive. 

Proof. Sufficiency. Let n i = dim(Ai). Using Theorem(3.3), at each point 

p one may find a neighborhood V of p and, for each I < i < r, a set of 

coordinate functions ~% , I ~ j ~ n, defined on V with the property 

that 

D i = sp{ ~ : I < j < n-n.} 

An easy computation shows that the covector fields 

In r ,... d r 
d~In_n I+1 .... d~ .... d~n_nr " " +I ' ~n 

are linearly independent at p. Thus, the set of functions 

{~:n-ni+1 < j < n; I < i < r} defines on V a set of coordinate func- 

tions. 

Since D i is tangent to the slice of v where all the coordinate 

functions ~i i is n_n.+1,...,~ n are held constant, one deduces that A l 

tangent to the~slice of V where all the coordinate functions 
~k k 
n_nk+1,...,~ n , for all k ~ i, are held constant. This yields (3.11). 

The necessity is a straightforward consequence of the definition. 
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4. Invariant Distributions 

The notion of distribution invariant under a vector field plays, 

in the theory of nonlinear control systems, a role similar to the one 

played in the theory of linear systems by the notion of subspace in- 

variant under a linear mapping. 

A distribution A on N is invariant under a vector field f if the 

Lie bracket [ f,T] of f with every vector field T 6 A is a vector field 

which belongs to A, i.e. if 

(4.1) [f,~] a 

(4.2) Remark. There is a natural way to see that the previous defini- 

tion generalizes the notion of invariant subspace. Let N = ~n, A a 

linear mapping A : ~n ~An and V a subspace of ~n invariant under A, 

i.e. such that AV C V. Suppose V is spanned by the vectors 

V i = (Vil ..... Vin) I ~ i ~ d 

and consider, as in the Example (3.4), the flat distribution AV spanned 

by the vector fields 

n ~ I < i < d 
~i = [ vij 8x -- -- 

j=1 j 

With the mapping A we associate a vector field fA represented, in the 

canonical basis (~1)x ..... (~n)X of T~ n by the vector 

fA (x) = Ax 

(note that the right-hand-side of this expression represent 

of coordinates of an element of the tangent space at x to ~ n and not 

a vector of coordinates of a point in ~n). 

It is easily seen that the distribution ~V is invariant under the 

vector field fA in the sense of our previous definition. For, observe 

that any vector field ~ in A V can be represented in the form (2.8) where 

cl,...,c d is any set of real-valued functions defined locally around x. 

Computing the Lie bracket of fA and T we have 

d d d 

[ fA'T] = i=I~ [ fA'CiTi] = i=I[ Ci[ fA'Ti] + i=I~ (LfACi)Ti 

Moreover, ~Ti ~fA (x) 
[ fA,~i] (x) = --~fA(x) ~ri(x) =-ATi(x) 
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Note that Ti(x), 

Aii(x) E V. Then, 

[ fA, TI (x) e Av(X ) 

that proves the assertion. [] 

The notion of invariance under a vector field is particularly 

useful when referred to completely integrable distributions, because 

it provides a way of simplifying the local representation of the given 

vector field. 

(4.3) Lemma. Let & be a nonsingular involutive distribution of dimen- 

sion d and assume that A is invariant under the vector field f. Then, 

at each point p 6 N there exists a coordinate chart (U,~) with coord- 

inate functions (I .... '(n ' in which the vector field f is represented 

by a vector of the form 

regarded as a point of IR n, is an element of V, so also 

for each x, [fA, li] (x) 6 Av(X) and 

(4.4) f(() = 

fI(~I ..... ~d,(d+1 ..... ~n ) 

fd(~1 ..... ~d,~d+1 ..... ~n ) 

fd+1(~d+1 , .... ~n ) 

fn(~d+1,...,~n ) 

Proof. The distribution A, being nonsingular and involutive, is in- 

tegrable and, therefore, at each point p E N there exists a coordinate 

chart (U,~) that makes (3.1) satisfied for all q E U. Now, let 

fl (~),...,fn(~) denote the coordinates of f(q) in the canonical basis 

of T N associated with (U,~), and recall that 
q 

n 
f(q) = [ fi(~(q)) ( ) 

i=I 

The invariance condition (4.1) implies, in particular,that 

[ f, ~j] (q)E span{ (~1)q ..... (~d)q} 

for all q E U and j = 1,...,d. Therefore we must have that 

[ f, %] = I fi ~i'~j] =- ( ) e sp{~ ~ . ~ } 
i=I i=I ~j ~i 51 .... ~d 
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~f. 
From this we see that the coefficients ~ are such that 

~f. 
- 0 

f o r  a l ±  i = d + l , . . . , n  a n d  j = 1 , . . . , d  a n d  a l l  ~ E ~ ( U ) .  T h e  c o m p o n e n t s  

fd+1,...,fn are thus independent of the coordinates ~1,...,~d , and 

the (4.4) are proved. [] 

The following properties of invariant distributions will be also 

used later on. 

(4.5) Lemma. Let A be a distribution invariant under the vector fields 

f~ and f2" Then ~ is also invariant under the vector field [fl,f2] . 

Proof. Suppose T is a vector field in A. Then, from the Jacobi identity 

we get 

[[ fl,f2] ,T] = [ f1,[ f2,T] ]-[ f2,[ f1,T]] 

By assumption [ f2,T] 6 A and so is [ f1,[f2,T]] . For the very same 

reasons [f2,[f1,T]] 6 ~ and thus from the above equality we conclude 

that [I fl,f21 ,T] e 4. [] 

(4.6) Remark. Note that the notion of invariance under a given vector 

field f is still meaningful in the case of a distribution A which is 

not smooth. In this case, it is simply required that the Lie bracket 

[f,T] of f with every smooth vector field in ~ be a vector field in 4. 

Since [ f,T] is a smooth vector field, it follows that if ~ is a 

(possibly) non-smooth distribution invariant under the vector field f, 

then also smt(A) is invariant under f. [] 

When dealing with codistributions, one can as well introduce the 

notion of invariance under a vector field in the following way. 

A codistribution ~ on M is inv~riant under a vector field f if 

the Lie derivative along f of any covector field ~ @ ~ is a covector 

field which belongs to ~, i.e. if 

4.7) Lf~ C 

It is easily seen that this is the dual version of the notion of 

invariance of a distribution. 

(4.8) Lemma. If a smooth distribution A is invariant under the vector 

field f, then the codistribution ~ = 4 ± is invariant under f. If a 
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smooth codistribution ~ is invariant under the vector field f, 

the distribution A = ~I is invariant under f. 

Proof. We shall make use of the identity 

then 

(Lf~,T)= Lf(~,T )- (~,[ f,T] ) 

Suppose A is invariant under f and let T be any vector field of A. Then 

[ f,T] E ~. Let ~ be any covector field in ~. Then, by definition 

(~,T > (p) = 0 

for all p 6 N, and also 

(~,[ f,T]) (p) = 0 

This yields 

( Lfw,T > (p) = 0 

Since A is a smooth distribution, given any vector v in A(p) we 

may find a vector field T in A with the property that T(p) = v and, 

then, the previous result shows that 

(Lfw(p),v > = 0 

for all v 6 A(p), i.e. that Lf~(p) E ~(p). From this it is concluded 

that Lf~ is a covector field in ~. 

The second part of the statement is proved in the same way. [] 

(4.9) Remark. Note that in the previous Lemma, first part, we don't 

need to assume that the annihilator A i of A is smooth, nor, in the 

second part, that the annihilator ~ of ~ is smooth. However, if both 

A and A ~ are smooth, we conclude from the Lemma that the invariance of 

A under f implies and is implied by the invariance of A l under the same 

vector field. In view of Lemma (2.17) this is true, in particular, when- 

ever A is nonsingular. [] 

By making use of these notions one may give a dual formulation of 

Lemma (4.3). Instead of a nonsingular and involutive distribution A, 

we have to consider (see Remark (3.7)) a nonsingular codistribution 

of dimension n-d with the property that for each p E N there exist a 

neighborhood U of p and n-d functions ~d+1,...,{n defined on U with 

values in ~ such that 
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~(q) = span{d~d+ I (q) ..... d~n(q) } 

for all q E U. 

If ~ satisfies these assumptions and if ~ is also invariant under 

f, then it is possible to find d more real-valued functions ~I .... '~d 

defined on U with the property that, choosing as local coordinates on 

U the functions ~i ' I ~ i ~ n, for each q 6 U the vector field f is 

represented by a vector f(~) of the form (4.4). 

5. Local Decompositions of Control Systems 

Throughout these notes we deal with nonlinear control systems 

described by equations of the form 

m 

(5.1a) x = f(x) + ~ gi(x)u i 
i=I 

(5.1b) Yi = hi(x) (i = I ..... Z) 

The state x of this system belongs to an open subset N of I~ n, 

while the m components u 1,...,u m of the input and, respectively, the 

i components yl,...,y i of the output are real-valued functions of time. 

We shall make later on some further assumptions on the class of admis- 

sible input functions to be considered. The vector fields f'g1''" "'gm 

are smooth vector fields defined on N and assumed to be complete. The 

output maps hl,...,h i are real-valued smooth functions defined on N. 

(5.2) Remark. One may define systems with the same structure as (5.1), 

with the state evolving on some abstract manifold N (not necessarily 

diffeomorphic to an open subset of l~n). In this case, instead of (5.1), 

which is an ordinary differential equation defined on an open subset 

of l~n,one should consider a description based upon an ordinary dif- 

ferential equation defined on the abstract manifold N. The vector 

fields f'q1'''''gm will be defined on N and so the output functions 

hl,...,h i. If we let p denote a point in N then, instead of (5.1), we 

may use a description of the form 

m 
(5.3a) ~ = f(p) + [ gi(P)U i 

i=I 

(5.3b) Yi = hi(P) (i = I ..... £) 

with the understanding that p stands for the tangent vector at the 



29 

point p to the smooth curve which characterizes the solution of (5.3a) 

for some fixed initial condition. 

If this is the case, then (5.1) may be regarded as a local re- 

presentation of (5.3) in some coordinate chart (U,~) with the under- 

standing that x = ~(p). [] 

The theory developed so far enables us to obtain for this class 

of systems decompositions similar to those described at the beginning 

of the Chapter. The relevant results may be formalized in the fol- 

lowing way. 

(5.4) Proposition. Let A be a nonsingular involutive distribution of 

dimension d and assume that A is invariant under the vector fields 

f,gl,...,g m. Moreover, suppose that the distribution sp(gl,...,g m} is 

contained in 4. Then, for each point x 6 N it is possible to find an 

open subset U of x and a local coordinates transformation ~ = ~(x) 

defined on U, such that, in the new coordinates, the control system 

(5.1a) is represented by equations of the form 

m 

(5.5a) ~I = fl (~I'~2) + [ gil (61'~2)ui 
i=I 

(5.5b) ~2 = f2(~2 ) 

where (~I,~2) is a partition of ~ and dim(~ I) = d. 

Proof. From Lemma (4.3) it is known that there exists, around each 

e N, a coordinate chart (U,~) with coordinate functions ~i,...,{ n 

with the property that the vector fields f,gl,...,g m are represented 

in form (4.4). Moreover, since by assumption gi 6 A for all i=1,...,m, 

then the vector fields gl,...,g m in the same coordinate chart are re- 

presented by vectors whose last (n-d)-components are vanishing. This 

coordinate chart (U,~) may obviously be considered as a local change 

of coordinates around x and therefore the Proposition is proved. [] 

(5.6) Proposition. Let A be a nonsingular involutive distribution of 

dimension d and assume that A is invariant under the vector fields 

f,gl,...,g m. Moreover, assume that the codistribution sp{dhl,...,dh Z} 

is contained in the codistribution 4 ± . Then, for each x @ N it is pos- 

sible to find an open subset U of x and a local coordinates trans- 

formation ~ = ~(x) defined on U, such that, in the new coordinates, 

the control system (5.1) is represented by equations of the form 

m 

(5.7a) %1 = fI(~I'~2) + ~ gi1(~1'~2)ui 
i=I 
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m 

(5.7b) 6 2 = f2(~2 ) + [ gi2(~2)ui 
i=I 

(5.7c) Yi = hi (~2) 

where (~1,~2) is a partition of ~ and dim(~ I) = d. 

Proo]'. As before, we know that there exists, around each x E N, a 

coordinate chart (U,~), with coordinate functions ~I' "'''~n ' with 

the property that the vector fields f'g1' "'''gm are represented in the 

form (4.4). Moreover, we have assumed that 

A C [sp{dh I ..... dh£}] ! 

For each point x of the selected coordinate chart we have in part- 

icular, for j = 1,...,d, 

(~j)x E A(X) C [i=I~ span{dhi(x)}]~=i=In [span{dhi(x)}] ~ 

As a consequence, for j = 1,...,d and i = I .... ,£ and for all 

x EU 

> = 0 ( dh i (x) , (~-~j) x 

or, in other words, we see that the local representation of h i in the 

selected coordinate chart is such that 

~h 
1 

= 0 ~j 

for all j = 1,...,d and i = I,...,£ and for all ~ E ~(U). We conclude 

that h i depends only on the local coordinates ~d+1'''''~n on U and 

this completes the proof. [] 

The two local decompositions thus obtained are very useful in 

understanding the input-state and state-output behavior of the control 

system (5.1). 

Suppose that the inputs u i are piecewise constant functions of 

time, i.e. that there exist real numbers T o = 0 < T I < T 2 < ... such 

that 

ui(t ) = ~ki for T k _< t < Tk+ I 

Then, on the time interval [Tk,Tk+1), the state of the system evolves 
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along the integral curve of the vector field 

f + glu +... +gmUm 

passing through the point X(Tk). In particular, if the initial state 
o 

x at time t ~ 0 is contained in some neighborhood U of N, then for 

small t the state x(t) evolves in U. 

Suppose now that the assumptions of the Proposition (5.4) are 

satisfied and that x O belongs to the domain U of the coordinate trans- 

formation ~(x). If the input u is such that the x(t) evolves in U, we 

may use the equations (5.5) to describe the behavior of the system. 

From these we see that the local coordinates (~1(t),~2(t)) of x(t) are 

such that ~2(t) is not affected by the input. In particular, let x°(T) 

denote the point of U reached at time T when u(t) = 0 for all t6[0,T], 

i.e. the point 

o 
x (T) = ~ x °) 

%T f being the flow of the vector field f, and let (~(T),~(T)) denote 

the local coordinates of x°(T). We see that the set of points that 

can be reached at time T, starting from x °, lies inside the set of 

°(T) This set is points whose local coordinates ~2 are equal to ~2 " 

actually a 8lice of U passing through the point x°(T). 

Thus, we see that locally the system displays a behavior strictly 

analogous to the one described in section I. Locally, the state space 

may be partitioned into submanifolds (the slices of U), all of dimen- 

sion d, and the points reachable at time T, along trajectories that 

stay in U for all t 6 [0,T], lie inside the slice passing through the 

point x°(T) reached under zero input. 

The Proposition (5.6) is useful in studying state-output interac- 

tions. Suppose we take two initial states x a and x b belonging to U 

with local coordinates (~,~) and (~,~) such that 

a b 
~2 = ~2 

i.e. two initial states belonging to the same slice of U. Let x~(t) 

and x~(t) denote the values of the states reached at time t, starting 

from x a and x b under the action of the same input u. From the equa- 

tion (5.7b) we see immediately that, if the input u is such that xa(t) 
U 

and x~(t) both evolve in U, the ~2 coordinates of x~(t) and of x~(t) 

are the same, no matter which input u we consider. Actually these 
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a 
coordinates ~2(t) and ~ (t) are solutions of the same differential 

equation (the equation (5.7b)) with the same initial condition. If we 

take into account also the (5.7c) we have the equality 

hi   ltl) o h l  (tl) 

which holds for every input u. We may conclude that x a and x b are in- 

distinguishable. 

Again, we find that locally the state space may be partitioned 

into submanifolds (the slices of U), all of dimension d, and pair of 

points of each slice both produce the same output (i.e. are indistin- 

guishable) under any input u which keeps the state trajectory evolving 

on U. 

In the next sections we shall reach stronger conclusions, showing 

that if we add to the hypotheses contained in the Propositions (5.4) 

and (5.6) the further assumption that the distribution ~ is "minimal" 

(in the case of Proposition (5.4)) or "maximal" (in the case of Pro- 

position (5.6)), then from the decompositions (5.5) and (5.7) one may 

obtain more informations about the set of states reachable from x ° and, 

respectively, indistinguishable from x °. 

We conclude this section with a remark about a dual version of 

Proposition (5.6). 

(5.8) Remark. Suppose that ~ is a nonsingular codistribution of di- 

mension n-d with the property that for each x E M there exist a neigh- 

borhood U of x and n-d real-valued functions ~d+1,...,~n defined on U 

such that 

(x) = span{d~d+l (x) .... ,d~ n(x)} 

for all x 6 U. Let ~1,...,~d be other functions defining, together 

with ~d+1' .... ~n ' a coordinate transformation on U. In these coord- 

inates, the one-form dh i will be represented by a row vector 

dhi(~) = (¥ii (~)'''Xin (~)) 

whose components are related to the value of dh i at x by the expression 

dhi(x) = Xil (~(x)) (d~1)x+ ... +Xin(~(x)) (d~n) x 

If we assume that the covector fields dhl,...,dh Z belong to ~, then, 

since ~ is spanned by d~d+1,...,d~ n on U, we must have 
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7ij(~) = o 

for all I < i < £, I < j < d and all ~ in ~(U). But since 

~h. 

¥ij (6) = 

one concludes that hl,...,h Z are independent of ~1,...,~d on U, like 

in (5.7c). [] 

6. Local Reachabilit~ 

In the previous section we have seen that if there is a non- 

singular distribution A of dimension d with the properties that: 

(i) A is involutive 

(ii) A contains the distribution sp{g I .... ,gm } 

(iii) A is invariant under the vector fields f,gl,...,g m 

then at each point x E N it is possible to find a coordinate trans- 

formation defined on a neighborhood U of x and a partition of U into 

slices of dimension d, such that the points reachable at some time T, 

starting from some initial state x O E U, along trajectories that stay 

in U for all t E [0,T] , lie inside a slice of U. Now we want to in- 

vestigate the actual "thickness" of the subset of points of a slice 

reached at time T. 

The obvious suggestion that comes from the decomposition (5.5) 

is to look at the "minimal" distribution, if any, that satisfies (ii), 

(iii) and, then, to examine what can be said about the properties of 

points which belong to the same slice in the corresponding local de- 

composition of N. It turns out that this program can be carried out in 

a rather satisfactory way. 

We need first some additional results on invariant distributions. 

If ~ is a family of distributions on N, we define the smallest or 

minimal element as the member of D (when it exists) which is contained 

in every other element of 0. 

(6.1) Lemma. Let A be a given smooth distribution and TI,...,T q a 

given set of vector fields. The family of all distributions which are 

invariant under TI,...,~ q and contain A has a minimal element, which 

is a smooth distribution. 

Proof. The family in question is nonempty because the distribution 

sp{V(N)} clearly belongs to it. Let A I and A 2 be two elements of this 

family, then it is easily seen that their intersection A I N A 2 con- 
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tains A and, being invariant under TI,...,T q , is an element of the 

same family. This argument shows that the intersection ~ of all elements 

in the family contains A, is invariant under TI,...,Y q and is con- 

tained in any other element of the family. Thus is its minimal element. 

must be smooth because otherwise smt(~) would be a smooth distribu- 

tion containing A (because A is smooth by assumption), invariant 

under T 1 .... ,Tq (see Remark (4.6)) and possibly contained in 2. [] 

In what follows, the smallest distribution which contains A and 

is invariant under the vector fields TI,...,T q will be denoted by the 

symbol 

(~I' .... ~q I~ ) 

While the existence of a minimal element in the family of distri- 

butions which satisfy (ii) and (iii) is always guaranteed, the non- 

singularity and the involutivity require some additional assumptions. 

We deal with the problem in the following way. Given a distribution A 

and a set TI,...,T q of vector fields we define the nondecreasing se- 

quence of distributions 

(6.2a) A 0 = 

q 

(6.2b) A k = Ak_ I + [ [Ti,Ak_ I] 
i=I 

There is a simple consequence of this definition 

(6.3) Lemma. The distributions A0,AI,... generated with the algorithm 

(6.2) are such that 

A k C (T I ..... TqlA ) 

for a l l  k .  I f  t h e r e  e x i s t s  a n  i n t e g e r  k s u c h  t h a t  /Xk, = A k , + l  , t h e n  

Ak~ = (T I ..... TqIA ) 

Proof. If A' is any distribution which contains A and is invariant 

under T i , then it is easy to see that A' DA k implies A' DAk+ I. For, 

we have 

q q 

Ak+ I = A k + ~ [Ti,A k] =A k + ~ sp{[ ~i,T] :~ 6 Ak} 
i=I i=I 

q 

C A k + [ sp{[yi,T]:y e A'} C A' 
i=I 
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Since A' DA 0 , by induction we see that A' DA k for all k. 

If Ak+ = Ak++1 for some k we easily see that Ak# D A (by defini- 

tion) and Ak, is invariant under TI,...,~ q (because [Ti,Ak+] C Ak~+I = 

= Ak~ for all I ~ i ~ q). Thus Ak+ must coincide with (TI,...,TqlA>.O 

The property Ak~ = Ak~+1 expresses a sort of finiteness quality 

of the sequence ~0,AI,..., and such a property is clearly useful from 

a computational point of view. The simplest practical situation in 

which the chain of distributions (6.2) satisfies the assumption of 

Lemma (6.3) arises when all the distributions of the chain are non- 

singular. In this case, in fact, since by construction 

dim A k ~ dim Ak+ I ~ n 

it is easily seen that there exists an integer k < n such that 

Ak~ = Ak~+1. 
If the distributions A0,AI,... are singular, one has the fol- 

lowing weaker result. 
+ 

(6.4) Lemma. There exist an open and dense subset N of N with the 

property that at each point p E N 

(~I ..... Tq IA > (p) = An-I(P) 

Proof. Suppose U is an open set with the property that, for some k , 

Ak+(p) = Ak++1(p) for all p 6 U. Then, it is possible to show that 

(~I,...,TqlA) (p) = Ak+(p) for all p 6 U. For, we already know from 

Lemma (6.3) that (TI,...,TqlA) D Ak+ . Suppose the inclusion is 

proper at some p 6 U and define a new distribution A by setting 

~(p) = Ak~(p) if p e U 

~(p) = (T I ..... TqlA ) (p) if p ~ U 

This distribution contains A and is invariant under T 1,...,Tq. 

For, if T is a vector field in ~, then [ Ti,~] e (~I ..... Tq IA ) 

(because ~ C (~I ..... Tq IA ) ) and, moreover, [ Ti,T ] (p) e Ak~(p ) for 

all p 6 U (because, in a neighborhood of p, T 6 Ak~ and [Ti,A k] C~). 

Since ~ is properly contained in (TI,...,TqlA) , this would con- 

tradict the minimality of (T I,...,TqlA ) . 

Now, let N k be the set of regular points of A k. This set is an 

open and dense submanifold of N (see Lemma (2.9)) and so is the set 

N = N 0 D N I P ... ANn_ I. In a neighborhood of every point p E N the 
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distributions A0,...,An_ I are nonsingular.This,together with the pre- 

vious discussion and a dimensionality argument, shows that 

An_ I =(TI,...,TqlA } on N and completes the proof. [] 

(6.5) Rema~. If the distribution A is spanned by some of the vector 

fields of the set {TI,...,Tq}, then, it is possible to show that there 

exists an open and dense submanifold N of N with the following pro- 

perty. For each p E N there exist a neighborhood U of p and d vector 

fields (with d = dim (TI,..., TqlA } (p)) 81,...,8 d of the form 

@i = [ Vr' [ Vr-1 ..... [v1'v0] ] ] 

where r ~ n-1 is an integer which may depend on i and v0,...,v r are 

vector fields in the set {TI,...,Tq}, such that 

<T I ..... TqlA } (q) = span{81(q) ..... 8d(q)} 

for all q 6 U. 

This fact may be proved by induction using as N the subset of 

N defined in the proof of Lemma (6.4). Let d O denote the dimension of 

A 0 (which may depend on p but is constant locally around p). Since, 

by assumption, A 0 is the span of some vector fields in the set 

{TI,...,Tq}, there exist exactly d O vector fields in this set that 

span A 0 locally around p. Let d k denote the dimension of A k (constant 

around p) and suppose A k is spanned locally around p by d k vector 

fields 81,...,8dk of the form 

8 i = [Vr,[Vr_ I ..... [vl,Vo]]] 

where v 0 ..... v r (with r <_ k and possibly depending on i) are vector 

fields in the set {T1,...,~q}. Then, a similar result holds for 

Ak+ I. For, let T be any vector field in A k. From Lemma (2.7) it is 

known that there exists real-valued smooth functions cl,...,Cdk de- 

fined locally around p such that T may be expressed, locally around 

p, as T = c181 + ... + c a 8_ . If rj is any vector in the set {r I ..... Tq} 
-k dk 

we have 

[Tj,c181 +.--+cdkedk] =Cl[~j,e]+...+Cdk[~J,ed k]+(L~.c1)81+'''+(LT3c~)8 ~ J  

As a consequence 
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Ak+1 = Ak + [ TI'Ak] + "'" +[Tq'Ak] = 

sP{@i,[Tl,@ i] ..... [Tq,0i] : i = I ..... d k} 

since Ak+ I is nonsingular around p, then it is possible to find ex- 

actly dk+ I vector fields of the form 

e i = [Vr,[Vr_ I ..... [Vl,Vo]]] 

where Vo,...,v r (with r ~ k+1 and possibly depending on i) are vector 

fields in the set {TI,...,Tq}, which span ~k+1 locally around p. [] 

The previous remark is useful in getting involutivity for the 

distribution (TI,...,TqlA) . 

(6.6) Lemma. Suppose ~ is spanned by some of the vector fields 

and that (T I .... ,TqlA ) is nonsingular. Then (~I,...,TqlA) TI,...,T q 

is involutive. 

Proof. We use first the conclusion of Remark (6.5) to prove that if 

~I and T 2 are two vector fields in An_ I , then their Lie bracket 

[~i,T2] is such that [TI,T21 (p) 6 An_1(p) for all p E N . Using again 

Lemma (2.7) and the previous result we deduce, in fact, that in a 

neighborhood U of p 

d I ! c1.%j] 6sP{Si,Sj,[Si,0j] :i,j =I d} [ T I ' T 2 ]  = [ i = 1  [ C 8 i , j  1 J . . . . .  

where ei,e j are vector fields of the form described before. 

In order to prove the claim, we have only to show that [ 8i,8 j] (p) 

is a tangent vector in An_ I (p). For this purpose, we recall that on 

N the distribution An_ I is invariant under the vector fields 

TI,...,T q (see Lemma (6.4)) and that any distribution invariant under 

vector fields ~I and T 2 is also invariant under their Lie bracket 

[TI,T 2] (see Lemma (4.5)). Since each 8 i is a repeated Lie bracket of 

the vector fields TI,...,Tq, [Si,An_ I] (p) C An_ I (p) for all 1<i<d and, 

thus, in particular [ 8i,8 j] (p) is a tangent vector which belongs to 

An_ 1 (P). 
Thus the Lie bracket of two vector fields T I ,T 2 in An_ 1 is such that 

[TI,~2] (p) 6 An_ I (p). Moreover, it has already been observed that 

(TI,...,~q[A) = An_ I in a neighborhood of p and, therefore, we con- 

clude that at any point p of N the Lie bracket of any two vector 

fields TI,T 2 in (T I ..... TqlA > is such that [TI,~ 2] (p) e(T I ..... TqlA>(p). 

Consider now the distribution 
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= (T I ..... TqIA ) +sp{[8i,Sj] :8i,8 j 6 (rl, .... TqI~ )} 

which, by construction, is such that 

O (~I .... 'Tq IA ) 

From the previous result it is seen that A(p) =(TI,...,TqI6 ) (p) 

at each point p of N , which is a dense set in N. By assumption, 

(T1, .... TqlA ) is nonsingular. So, by Lemma (2.11) we deduce that 

= (T1,...,TqI6) , and, therefore, that [8i,8 j] e (~I,...,TqlA) 

for all pair 8i,8 j 6 {T1,...,TqlA ) . This concludes the proof. [] 

(6.7) Remark. From Lemmas (6.4),(6.6) and (2.11) it may also be 

deduced that if A is spanned by some of the vector fields TI,...,T q 

and An_ I is nonsingular, then 

(~1'''''Tq IA ) = An-1 

and (~1,...,~qlA) is involutive. 

We now come back to the original problem of the study the 

smallest distribution which contains sp{gl,...,gm} and is invariant 

under the vector fields f, gl,...,g m. From the previous Lemma it is 

seen that if (f,gl,...,gml sp{gl,...,gm}) is nonsingular, then it is 

also involutive and, therefore, the decomposition (5.5) may be per- 

formed. We will see later that the minimality of (f'gl ..... gmlSp{gl ..... gm }) 

makes it possible to deduce an interesting topological property of 

the set of points reached at some fixed time T starting from a given 

point x °. However, before doing this, it is convenient to analyze 

some other characteristics of the decomposition (5.5). 

Consider the distribution (f,gl,...,gmlsP{f,gl,...,gm}), i.e. 

the smallest distribution invariant under f,gl,...,g m and which con- 

tains sp{f,gl,...,g m} (note that now not only the vector fields 

gl,...,g m but also the vector field f is assumed to belong to this 

distribution). 

If this distribution is nonsingular, and therefore involutive by 

Lemma (6.6), it may indeed be used in defining a local decomposition 

of the control system (5.1) similar to the decomposition (5.5). We 

are going to see in which way this new decomposition is related to 

the decomposition (5.5) and why it may be of interest. 

In order to simplify the notation, we set 

(6.8a) P = (f'gl ..... gmlsp{gl ..... gm }) 
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(6.8b) R = (f,gl,...,gmlsP{f,gl,...,gm}) 

The relation between p and R is described in the following state- 

ment 

(6.9) Lemma. The distributions P and R are such that 

(a) P + sp{f} C R 

(b) if x is a regular point of P + sp{f}, then 

(P + sp{f}) (x) = R(x) 

Proof. By definition, P C R and f E R, so (a) is true. 

It is known from the proof of Lemma (6.6) that, around each point 

x of an open dense submanifold N of N, R is spanned by vector fields 

of the form 

8 i = (v r ..... [Vl,V0]] 

where r ~ n-1 is an integer which may depend on i, and Vr,...,Vl,V 0 

are vector fields in the set {f,gl,...,gm }. 

It is easy to see that all such vector fields belong to P+sp{f}. 

For, if 8 i is just one of the vector fields in the set {f,gl,...,gm } it 

either belongs to P (which contains gl,...,gm ) or to sp{f}. If 8 i has 

the general form shown above we may, without loss of generality, assume 

that v 0 is in the set {gl,...,gm }. For, if v 0 = f and v I = f, then 

8 i = 0. Otherwise, if v 0 = f and v I = gj , then -8i = [Vr'''''[f'gj]] 

has the desired form. Any vector of the form 

8 i = Iv r ..... [vl,gj]] 

with v r ..... v I in the set {f'gl .... ,gm } is in P because P contains gj 

and is invariant under f,gl,...,g m and so the claim is proved. 

From this fact we deduce that on an open and dense submanifold 

N of N, 

R C p + sp{f} 

and therefore, since R D p + sp{f} on N, that on N 

R = P + sp{f} 

Suppose that P + span f has constant dimension on some neighbor- 
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hood u. Then, from Lemma (2.11) we conclude that the two distributions 

R and P + sp{f} coincide on U. [] 

(6.10) Coro~Zary. If P and P + sp{f} are nonsingular, then 

dim(R) - dim(P) < I. [] 

If P and P + sp{f} are both nonsingular, so is R and, by Lemma 

(6.6), both P and R are involutive. Suppose that P is properly con- 

tained in R. Then, using Theorem (3.10),one can find, locally around 

each x 6 N, a neighborhood U of x and a coordinate transformation 

= ~(x) defined on U such that 

(6.11a  P(x  = x ..... )x } 
r-1 

(6.11b) R(x) = sP{(~)x''1 "'' (9)~%r-I x ' (7~r)X ~ 

for all x 6 U, where r = dim(R). 

In the ~ coordinates the control system 

equations of the form 

(5.1a) 

m 

%1 = fI(~I ..... ~n ) + ~ gi1(~l ..... ~n)Ui 
i=1 

is represented by 

m 

~r-1 = fr-1 (61 ..... ~n )+I~I`= gi,r-1 (~I .... '~n)Ui 

(6.12) ~r = fr(~r ..... ~n ) 

~r+1 = 0 

 n-0 

The last components of the vector field f are vanishing because, 

by construction,f 6 R. In the particular case where R = P also 

the r-th component of f vanishes and the corresponding equation for ~r 

is 

~ r  = 0 

From the equation (6.12) we see that any trajectory x(t) evolving 

on the neighborhood U actually belongs to an r-dimensional slice of U 
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passing through the initial point. This slice is in turn partitioned 

into (r-1)-dimensional slices, each one including the set of points 

reached at a prescribed time T. 

(6.13) Remark. A further change Of local coordinates makes it pos- 

sible to better understand the role of the time in the behavior of 

the control system (6.12). We may assume, without loss of generality, 

that the initial point x ° is such that ~(x °) = 0. Therefore we have 

~i(t) = 0 for all i = r+1 .... ,n and 

%r = fr(~r '0 .... ,0) 

Moreover, if we make the assumption that f ~ P, then the function fr 

is nonzero everywhere on the neighborhood U. ~ow, let ~r(t) denote 

the solution of this differential equation which passes through 0 at 

t = 0. Clearly, the mapping 

P : t ~--+ ~r(t) 

is a diffeomorphism from an open interval (-e,c) of the time axis 

onto the open interval of the ~r axis (~r(-e),~r(e)). If its inverse 
-I 

p is used as a local coordinate transformation on the ~r axis one 

easily sees that the new coordinate 

~r = p-1 (~r) = t 

satisfies the differential equation 

~r = I 

In these new coordinates, points on the r-dimensional slice of U 

passing through the initial state are parametrized by (~1,...,{r_1,t). 

In particular, the points reached at time T belong to the(r-1)-dimen- 

sional slice 

S = {x 6 U: ~r(X) =T, ~r+1 (x) =0 ..... ~n(X) = 0}. [] 

(6.14) Remark. If f is a vector field of P then the local representa- 

tion (6.12) is such that fr vanishes on U. Therefore, starting from a 

point x ° such that ~(x °) = 0 we shall have ~i(t) = 0 for all i=r,...,n 

and the state x(t) shall evolve on a (r-1)-dimensional slice of U pas- 

sing through x °. [] 
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By definition the distribution R is the smallest distribution 

which contains f,gl,...,g m and is invariant under f,gl,...,g m. Thus, 

we may say that in the associated decomposition (6.12) the dimension 

r is "minimal", in the sense that it is not possible to find another 

set of local coordinates ~i,...,~ '''''~n ' with ~ strictly less than 
r 

r, with the property that the last n-r coordinates remain constant 

with the time. We shall now show that, from the point of view of the 

interaction between input and state, the decomposition (6.12) has even 

stronger properties. Actually, we are going to prove that the states 

reachable from the initial state x ° fill up at least an open subset of 

the r-dimensional slice of in which they are contained. 

(6.15) Theorem. Suppose the distribution R (i.e. the smallest distribu- 

tion invariant under f,gl,...,g m which contains f'gl .... ,gm ) is non- 

singular. Let r denote the dimension of R. Then, for each xO 6 N it is 

possible to find a neighborhood U of x O and a coordinate transforma- 

tion 6 = {(x) defined on U with the following properties 

(a) the set R(x °) of states reachable starting from x ° along trajec- 

tories entirely contained in U and under the action of piecewise 

constant input functions is a subset of the slice 

S o = {x eU:~r+ I (x) =~r+1 (xO) ..... ~n (x) = ~n (xO) } 
x 

(b) the set R(x °) contains an open subset of S 
o 

x 

Proof. The proof of the statement (a) follows from the previous discus- 

sion. We proceed directly to the proof of (b), assuming throughout the 

proof to operate on the neighborhood U on which the coordinate trans- 

formation ~(x) is defined. For convenience, we break up the proof in 

several steps. 

(i) Let 81, .,8 k be a set of vector fields, with k < r, and let 

'%t denote the corresponding flows. Consider the mapping 

F : (_£,£)k ~ N 

,#k I (x o) 
(tl,...,tk) ' tk ..... ¢tI 

where x ° is a point of N and suppose that its differential has 

rank k at some Sl,...,s k , with 0 ~ s i < e for I ~ i ~ k. For 

e sufficiently small the mapping 
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(6.16) : (S1,S)x...×(Sk,e) -~ N 

(tl,...,tk) i , F(tl,...,tk) 

is an embedding. 

Let M denote the image of the mapping (6.16) (which depends on 

the point x°). Consider the slice of U 

S o 
x 

= {x e U : ~i(x) = ~i(x°), r + I ~ i ~ n} 

If the vector fields 81,...,8 k have the form 

m 
J 

8j = f + [ giui 
i=1 

with u z3. E ~ for I . . . .  < i < m and I < j < k, then for e small M is an 

embedded submanifold of S o" This implies, in particular,that for each 
x 

x6M 

(6.17) TxM C R(x) 

where R, as before, is the smallest distribution invariant under 

f,gl,...,g m which contains f,gl,...,g m (recall that R(x) is the tangent 

space to S o at x). 
x 

(ii) Suppose that the vector fields f,gl,...,g m are such that 

(6.18a) f(x) 6 TxM 

(6.18b) gi(x) e Tx M I ~ i ~ m 

for all x 6 M. We shall show that this contradicts the assumption k < r. 

For, consider the distribution ~ defined by setting 

&(x) = TxM for all x 6 M 

&(x) = R(x) for all x 6 (N\M) 

This distribution is contained in R (because of (6.17)) and contains 

the vector fields f,gl,...,g m (because these vector fields are in R 

and, moreover, it is assumed that (6.18) are true). 

Let T be any vector field of ~. Then T 6 R and since R is inva- 

riant under f,g1,-'-,gm , then for all x 6 (N\M) 
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(6.19a) If,T] (x) 6 ~(x) 

(6.19b) [gi,T] (x) 6 ~(x) I ! i ! m 

Moreover since T,f,g1,...,g m are vector fields which are tangent 

to M at each x 6 M, we have also that (6.19) hold for all x 6 M, and 

therefore for all x E N. 

Having shown & is invariant under f,gl,...,g m and contains 

f,gl,...,g m , we deduce that A must coincide with R° But this is a 

contradiction since for all x ~ M 

dim &(x) = k 

dim R(x) = r > k 

(iii) If (6.18) are not true, then it is possible to find m real 

numbers u~ +1 k + l  ,...,u m and a point x E M such that the vector field 

m k+l 
ek+ I = f + ~ giui 

i=I 

satisfies the condition 0k+1(x ) ~ T_ M. 

x .k+1 
Let x = F(s~ ..... s~) be this point and ~t 

8k+ I. Then the mapping 

denote the flow of 

k+1 
F' : (-s,e) ~ N 

(t I ,t k tk+1) I , ~k+1 oF(tl,...,tk ) 
,... , tk+ I 

at the point (s{ ..... s~,0) has rank k+1. 

For, note that 

(F')*(~t i) (s~,. s' = (F) (~t i) .., k,0) * (s~ ..... s k) 

for i = 1,...,k and that 

(F'),(~--~I) (s~ ..... s~,0) = 9k+I (~) 

The first k tangent vectors at x are linearly independent, be- 

cause F has rank k at all points of (s1,s)x...×(Sk,e). The (k+1)-th 

one is independent from the first k by construction and therefore F' 

has rank k+1 at (Sl,...,Sk,0). 
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' > s , we may conclude that the mapping F' has rank k+1 Since s i i 

at a point (s~ ' ) with 0 ~ s i _ _ .... ,Sk+ 1 , ' < e for I < i < k+1. 

Note that given any real number T > 0 it is always possible to 

choose the point x in such a way that 

(s~-Sl)+...+(s~-s k) < T 

For, otherwise, we had that any vector field of the form 

m 
8 = f + 

i=Igiui 

would be tangent to the image under F of the open set 

{(t I ..... tk) E (Sl,e)×...×(Sk,e) : (tl-Sl)+...+(tk-Sk) < T} 

and this, as in (ii),would be a contradiction. 

(iv) We can now construct a sequence of mappings of the form (6.16). 

m I 
Let @ 1 = f + ~lgiu i be a vector field which is not zero at x ° 

i 
(such a vector field can always be found because, otherwise, we would 

have R(x O) = {0}) and let M 1 denote the image of the mapping 

F~ : (0,E) ~ N 

tl . , ~1 (x O) 
t 1 

Let x = F1(s~) be a point of M I in which a vector field of the 

form 82 = f + m[ giui2 is such that 82(x) ~ T_M I. Then we may define 

the mapping i=I x 

F2 : (s11 'e)x(0'c) ~ N 

I , ~22oQI~ tl (x °) (tl,t 2 ) 

Iterating this procedure, at stage k we start with a mapping 

Fk : (s k-l,c)x...x(sk_ Ik-l,£)x(0,c) ~ N 

(tl, ,tk_1,tk ) I , #k I (x O) 
• . . t k ..... ~tl 
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and we find a point x = Fk(S~ ..... s~) of its image ~ and a vector 

m k+1 
field 8k+ I = f + [ giui such that 8k+1(x) ~ T_~. This makes it 

i=I x 
sk-1 possible to define the next mapping Fk+1" Note that s2 > i for 

k > 0 i = I,...,k-I and s k 

The procedure clearly stops at the stage r, when a mapping Fr is 

defined 

Fr : (s~-1'e)x'''×(srr--I '6)x(0'6) ~ N 

r 
(t1'''''tr-1'tr) ' ' ~t ..... ~ (x°) 

r 1 

(v) Observe that a point x = Fr (tl .... 'tr) in the image M r of the 

embedding Fr can be reached, starting from the state x ° at time t=0, 

under the action of the piecewise constant control defined by 

ui(t) = u k for t 6 |t1+...+tk_1,t1+t2+...+tk ) 

Thus, we know from our previous discussions that M r must be contained 

in the slice of U 

S o = {x 6 U: ~i(x) = ~i(x°), r+1 ~ i ~ n} 
x 

The images under Fr of the open sets of 

U r (s[ -1 c)x r-l,e)x(0,e) 
= , • . .× (Sr_ I 

are open in the topology of M r as a subset of U (becauseFr is an embed- 

ding) and therefore they are also open in the topology of M r as a sub- 

set of S (because S is an embedded submanifold of U). Therefore we 
o o 

x x 
have that M r is an emebedded submanifold of S o and a dimensionality 

x 
argument tell us that M r is actually an open submanifold of S o " [] 

x 

(6.20) Theorem. Suppose the distributions P (i.e. the smallest distri- 

bution invariant under f,gl,...,g m which contains g1' .... gm)and P+sp{f} 

are nonsingular. Let p denote the dimension of P. Then, for each x ° 6M 

it is possible to find a neighborhood U of x ° and a coordinate trans- 

formation ~ = ~(x) defined on U with the following properties: 

(a) the set R(x°,T) of states reachable at time t = T starting from x ° 

at t = 0, along trajectories entirely contained in U and under the 
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action of piecewise constant input functions, is a subset of the 

slice 

S ={x E U: (p+1=~p+1 ({~ (x°)) ; (p+2 (x)=(p+2 (x°) ,... , ~n (x) =~n (x°) } 
x°,T 

(b) the set R(x°,T) contains an open subset of S 
o 

x ,T 

Proof. We know from Lemma (6.9) that R is nonsingular. Therefore one 

can repeat the construction used to prove the part (b) of Theorem 

(6.15). Moreover, from Corollary (6.10) it follows that r, the di- 

mension of R, is equal either to p+1 or to p. 

Suppose the first situation happens. Given any real number 

T ~ (0,£), consider the set 

UTr = {(tl'''''tr) e Ur : tl+ ...+t r = T} 

where U r is as defined at the step (v) in the proof of Theorem (6.15). 

From the last remark at the step (iii) we know that there exists al- 
r-1 r-1 

ways a suitable choice of s I ,...,Sr_ I after which this set is not 

empty. 

the image Fr(U T)~ consists of points reachable at time T Clearly 

and therefore is contained in R(x°,T). Moreover, using the same 

as in (v) , we deduce that the set Fr (UT) is an open subset arguments 

of S 
°,T 
If p = r, i.e. if P = R, the proof can be carried out by simply 

adding an extra state variable satisfying the equation 

~ n + l  = 1 

and showing that this reduces the problem to the previous one. The 

details are left to the reader. [] 

7. Local Observability 

We have seen in section 5 that if there is a nonsingular distri- 

bution A of dimension d with the properties that 

(i) A is involutive 

(ii) A is contained in the distribution sp{dhl,...,dhz}l 

(iii) A is invariant under the vector fields f,gl,...,g m 

then, at each point x 6 N it is possible to find a coordinate trans- 
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formation defined in a neighborhood U of x and a partition of U into 

slices of dimension d, such that points on each slice produce the 

same output under any input u which keeps the state trajectory evolv- 

ing on U. We want now to find conditions under which points belong- 

ing to different slices of U produce different outputs, i.e. are 

distinguishable. 

In this case we see from the decomposition (5.7) that the right 

object to look for is now the "largest" distribution which satisfies 

(ii), (iii). Since the existence of a nonsingular distribution & 

which satisfies (i), (ii), (iii) implies and is implied by the ex- 

istence of a codistribution ~ (namely 4 ± ) with the properties that 

(i') ~ is spanned, locally around each point p e N, by n-d exact 

covector fields 

(ii') ~ contains the codistribution sp{dh I .... ,dh Z} 

(iii') ~ is invariant under the vector fields f,gl,...,g m 

we may as well look for the "smallest" codistribution which satisfies 

(ii'), (iii'). 

Like in the previous section, we need some background material. 

However, most of the results stated below require proofs which is are 

similar to those of the corresponding results stated before and, for 

this reason, will be omitted. 

(7.1) Lemma. Let ~ be a given smooth codistribution and TI,...,T q a 

given set of vector fields. The family of all codistributions which 

are invariant under TI,...,Tq and contain ~ has a minimal element, 

which is a smooth codistribution. [] 

We shall use the symbol <~1,...,~ql~ ) to denote the smallest 

codistribution which contains ~ and is invariant under TI,...,Tq. 

Given a codistribution ~ and a set of vector fields TI,...,T q 

one can consider the following dual version of the algorithm (6.2) 

(7.2a) ~0 = ~ 

q 

(7.2b) ~k = ~k-1 + [ L~i~k-1 
i=I 

and have the following result. 

(7.3) Lemma. The codistributions ~0,~i,... generated with the algo- 

rithm (7.2) are such that 

~k C (T I ..... Tq{fl ) 
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for all k. If there exists an integer k such that ~k~ =~k++1 , then 

~k = (TI' .... Tq I~ ) [] 

The dual version of Lemma (6.4) is the following one 

(7.4) Lemma. There exists an open and dense subset N of N with the 
% 

property that at each point p 6 N 

(T I .... ,~ql~ ) = ~n_1(p) 

(7.5) Remark. If the codistribution ~ is spanned by a set dll,...,dl s 

of exact covector fields, then there exists an open and dense sub- 

manifold N of N with the following property. For each p 6 N there 

exists a neighborhood U of p and d exact covector fields (with 

d = dim(T1,...,Tql~ ) (p)) ~1,...,~d which have the form 

~i = d(Lvr...LvllJ) 

where r ~ n-1 is an integer which may depend on i, vl,...,v r are 

vector fields in the set {TI,...,T q} and lj is a function in the set 

{ll,...,Is }, such that 

(T I ..... Tql~ ) (q) = sP{~1(q) ..... ~d(q)} 

for all q E U. 

This may easily be proved by induction as for the corresponding 

statement in Remark (6.5). [] 

(7.6) Lemma. Suppose ~ is spanned by a set dll,...,dk s of exact co- 

vector fields and that (TI,...,TqI~) is nonsingular. 

Then (TI,...,TqI~)± is involutive. 

Proof. From the previous Remark, it is seen that in a neighborhood of 

each point p in an open and dense submanifold N , the codistribution 

(T I, .... rqlA ) is spanned by exact covector fields. 

Therefore, the Lie bracket of any two vector fields TI,T 2 in 

(T 1 ..... Tql~ )I is such that [TI,T2] (p) 6 (TI,...,TqI~)±(p) (see 

Remark (3.9)). 

From this result, using again Lemma (2.11) as in the proof of 

Lemma (6.6), one deduces that {TI,...,TqI~ )I is involutive. D 

(7.7) Remark. From Lemmas (7.4),(7.6) and (2.11) one may also deduce 

that if ~ is spanned by a set dll,...,dl s of exact covector fields 
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and ~n-1 is nonsingular, then 

{TI'''''TqI£ > = ~n-1 

and (T1,...,Tql~)I is involutive. [] 

In the study of the state-output interactions in a control system 

of the form (5.1), we consider the distribution 

Q = (f'gl ..... gmlsp{dhl ..... dhz}) ± 

From Lemma (4.8) we deduce that this distribution is invariant under 

f,gl,...,g m and we also see that, by definition, it is contained in 

sp{dhl,...,dh£}L. If nonsingular, then, according to Lemma (7.6) is 

also involutive. 

Invoking Proposition (5.6), this distribution may be used in order 

to find locally around each x 6 N an open neighborhood U of x and a 

coordinate transformation yielding a decomposition of the form (5.7). 

Let s denote the dimension of Q. Since Q is the smallest codistribu- 

tion invariant under f,gl,...,g m which contains dhl, .... dh£ , then in 

this case the decomposition we find is maximal, in the sense that it 

is not possible to find another set of local coordinates 

£I'''''~'£~+ I ..... ~n with ~ strictly larger than s, with the pro- 

% 
perty that only the last n-s coordinates influence the output. We show 

now that this corresponds to the fact that points belonging to dif- 

ferent slices of the neighborhood U are distinguishable. 

(7.8) Theorem. Suppose the distribution Q (i.e. the annihilator of 

the smallest codistribution invariant under f,gl,...,g m and which con- 

tains dhl,...,dh£) is nonsingular. Let s denote the dimension of Q. 

Then, for each x E N it is possible to find a neighborhood U of x and 

a coordinate transformation ~ = ~(x) defined on U with the following 

properties 

(a) Any two initial states x a and x b of U such that 

~i(x a) = ~i(x b) , i = s + 1 .... ,n 

produce identical output functions under any input which keeps the 

state trajectories evolving on U 

(b) Any initial state x of U which cannot be distinguished from 

under piecewise constant input functions belongs to the slice 
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S_ = {x 6 U:~i(x) = ~i(x), s+1 < i < n}. 
X 

Proof. We need only to prove (b). For simplicity, we break up the 

proof in various steps. 

(i) consider a piecewise-constant input function 

ui(t) = u k for t 6 [t1+...+tk_1,t1+...+tk) 

Define the vector field 

m k 
@k = f + [ giui 

i=I 

k 
and let ~t denote the corresponding flow. Then, the state reached at 

time t k starting from x ° at time t = 0 under this input may be ex- 

pressed as 

x(tk ) = ~t kk o...o~ItI (x o) 

and the corresponding output y as 

Yi(tk) = hi(X(tk)) 

Note that this output may be regarded as the value of a mapping 

o )k 
FX : (-E,E ~ 
1 

(t I tk ) ~__+h i ~k . #ItI (x o) ,..., o tkO. .o 

If two initial states x a and b are such that they produce two 

identical outputs for any possible piecewise constant input, we must 

have 

a 
F x x b 
i (t1'''''tk) = Fi (t1'''''tk) 

for all possible 

we deduce that 

(tl,...,tk), with 0 ~ t i 

a 

~F x 
1 

(~t 1...~t k)t1=...=tk=O 

< ~ for I < i < k. From this 

~FX b 

(~t1.~.~tk)t1=...=tk=O 

An easy calculation shows that 
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O 
~F x 

(~tl...~tk)t1=...=tk=Ol = (Let "''L0khi(X))x° 

and, therefore, we must have 

(L 6 . (x)) a = (L81 (X))xb I "'L0khi x "''L6khi 

(ii) Now, remember that @j , j = I ..... k, depends on (u4 ..... u~) and 

that the above equality must hold for all possible choices of 

(u~ ..... u~) E ~m By appropriately selecting these (u~ ..... u~) one 

easily arrives at an equality of the form 

(7.9) (Lvl...Lvkhi)xa = (Lvl...Lvkhi)xb 

where vl,...,v k are vector fields belonging to the set {f,gl,...,gm }. 

For, set Y2 = L@2. ..Lskh. From the equality (L@IY2)xa = (L81Y2)xb 
we obtain 

m 1 m 

(Lf~2) a + ~ (Lgi~2) aUi = (Lf~2)xb + ~ (LgiY2)xbU~ 
x i=I x i=I 

I I This, due to the arbitrariness of the ul,...,u m , implies that 

(LvY2)Xa = (LvY2)Xb 

where v is any vector in the set {f'gl' .... gm }. This procedure can be 

iterated, by setting Y3 = L63"''L0kh" From the above equality one gets 

m 2 
m (LvLgi73) u2 (LvLfY3) b + ~ (LvLgz73) u (LvLfY3) a + ~ a i = 

x i=I x x i=I . x b I 

and, therefore, 

(Lv I Lv2Y 3 ) x a = (LvILv2Y3) xb 

for all Vl,V 2 belonging to the set {f,gl,...,gm }. Finally, one arrives 

at (7.9). 

(iii) Let U be a neighborhood of x on which a coordinate transformation 

~(x) is defined which makes the condition 

(7.10) Q(x) = span~( )x ..... ( )x 
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satisfied for all x E U. From Remark (7.5), we know that there exists 

an open subset U of U, dense in U , with the property that, around 

each x' 6 U it is possible to find a set of n-s real-valued functions 

ll,...,In_ s which have the form 

(7.11) I i = L v ...Lvlh j 
r 

with v I ..... v r vector fields in {f,gl,...,gm } and 1 ~ j ~ ~, such that 

Q (x') = span{dl1(x') ,... ,dln_s (x')} 

Since Qi(x') has dimension n-s, it follows that the tangent covectors 

dl1(x') ..... dln_s(X') are linearly independent. 

In the local coordinates which satisfy (7.10), ll,...,ln_ s are 

functions only of ~s+l,...,$n (see (5.7)). Therefore, we may deduce 

that the mapping 

A : (~s+1 ..... ~n )I ~ (11($s+I .... '~n ) ..... ln-s(£s+1 ..... ~n )) 

has a jacobian matrix which is square and nonsingular at 

(~s+1 (x') ..... ~n(X'))" 

The mapping A is thus locally injective. We may use this pro- 

perty to deduce that, for some suitable neighborhood U' of x', any 

other point x" of U' such that 

li(x') = li(x" ) 

for I < i < n-s, must be such that 

X ! ~s+i(X") = ~s+i ( ) 

for I < i < n-s, i.e. must belong to the slice of U passing through 

x'. This, in view of the results proved in (ii) completes the proof 

in the case where x 6 U . 

# 

(iv) Suppose x ~ U . Let x(x,T,u) denote the state reached at time t=T 

under the action of the piecewise constant input function u. If T is 

sufficiently small, x(x,T,u) is still in U. Suppose x(x,T,u) 6 U .Then, 

using the conclusions of (iii), we deduce that in some neighborhood U' 

of x' = x(x,T,u), the states indistinguishable from x' lie on the 

slice of U passing through x'. 

Now, recall that the mapping 
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: x O ~ x(x°,T,u) 

is a local diffeomorphism. Thus, there exists a neighborhood U of 

whose (diffeomorphic) image under # is a neighborhood U" C U' of x'. 

Let ~ denote a point of U indistinguishable from x under piece- 

wise constant inputs. Then, clearly, also x" = x(~,T,u) is indistin- 

guishable from x(x,T,u) = x'. From the previous discussion we know that 

x" and x' belong to the same slice of U. But this implies also that 

and ~ belong to the same slice of U. Thus the proof is completed, pro- 

vided that 

(7.12) x(x,T,u) • U 

(v) All we have to show now is that (7.12) can be satisfied. For, 

suppose R(x), the set of states reachable from x under piecewise con- 

stant control along trajectories entirely contained in U, is such that 

(7.13) R(x) N U* = 

If this is true, we know from Theorem (6.15) that it is possible to 

find an r-dimensional embedded submanifold V of U entirely contained 

in R(x) and therefore such that V ~ U ~ = @. For any choice of func- 

tions ll,...,In_ s of the form (7.11), at any point x 6 V the covectors 

dl1(x),...,dln_s(X) are linearly dependent. Thus, without loss of ge- 

nerality, we may assume that there exist d < n-s functions y1,...,yd 

still of the form (7.11) such that, for some open subset V' of V, 

- span{dh1(x) ..... dh£(x)} C span{d~1(x ) .... ,dYd(X)} for all x • V' 

- dY1(x) .... ,dYd(X) are linearly independent covectors at all x E V', 

- dL v yj(x) • span{dYl(X),...,dYd(X)} for all x • V' and v6{f,g I .... ,gm } 

Now, we define a codistribution on N as follows 

~(x) = Qk(x) for x ~ V' 

(x) = span{dY1 (x) ..... dYd(X) } for x 6 V' 

Using the fact that f'g1'''''gm are tangent to V', it is not difficult 

to verify that this codistribution is invariant under f,gl,...,g m , 

contains sp{dhl, .... dh~} and is smaller than (f'gl ..... gmlsp{dhl .... 'dhz})' 

This is a contradiction and therefore (7.13) must be false. [] 



CHAPTER II 

GLOBAL DECOMPOSITIONS OF CONTROL SYSTEMS 

I. Sussmann's Theorem and Global Decompositions 

In the previous chapter, we have shown that a nonsingular and in- 

volutive distribution induces a local partition of the manifold N into 

lower dimensional submanifolds and we have used this result to obtain 

local decompostions of control systems. The decompositions thus ob- 

tained are very useful to understand the behavior of control systems 

from the point of view of input-state and, respectively, state-output 

interaction. However, it must be stressed that the existence of de- 

compositions of this type is strictly related to the assumption that 

the dimension of the distribution is constant at least over a neigh- 

borhood of the point around which we want to investigate the beha- 

viour of our control system. 

In this section we shall see that the assumption that A is non- 

singular can be removed and that global partitions of N can be ob- 

tained. To begin with, we need the following definitions. A submani- 

fold S of N is said to be an integral submanifold of the distribution 

A if, for every p 6 S, the tangent space TpS to S at p coincides with 

the subspace A(p) of T N. A maximal integral submanifold of A is a 
P 

connected integral submanifold S of A with the property that every 

other connected integral submanifold of A which contains S coincides 

with S. 

We see immediately from this definition that any two maximal in- 

tegral submanifolds of A passing through a point p 6 N must coincide. 

This motivates the following notion. A distribution A on N has the 

maximal integral manifolds property if through every point p 6 N 

passes a maximal integral submanifold of A or, in other words, if 

there exists a partition of N into maximal integral submanifolds of 

A. 

It is easily seen that this is a global version of the notion of 

complete integrability for a distribution. As a matter of fact, a 

nonsingular and completely integrable distribution is such that for 

each p E N there exists a neighborhood U of p with the property that 

A restricted to U has the maximal integral manifolds property. 

A simple consequence of the previous definitions is the fol- 

lowing one. 



56 

(1.1) Lemma. A distribution ~ which has the maximal integral manifolds 

property is involutive. 

Proof. If T is a vector field which belongs to a distribution A with 

the maximal integral manifolds property, then T must be tangent to 

every maximal integral submanifold S of 4. As a consequence, the Lie 

bracket[Ti,T 2] of two vector fields r I and T 2 both belonging to ~ must 

be tangent to every maximal integral submanifold S of 4. Thus [ Ti,Y 2] 

belongs to A. [] 

Thus, involutivity is a necessary condition for A to have the 

maximal integral manifolds property but, unlike the notion of complete 

integrability, this condition is no longer sufficient. 

(1.2) Example. Let N = ~2 and let A be a distribution defined by 

A(x) = span{ (k)x,l(x I) (~x2)x } 

where l(x I) is a C ~ function such that l(x I) = 0 for x I < 0 and 

l(x I) > 0 for x1> 0. This distribution is involutive and 

dim ~(x) = I 

dim A(x) = 2 

if x is such that x I ~ 0 

if x is such that x I > 0 

Clearly, the open subset of N 

{ (x I,x2) 6 I~ 2 : x I > 0} 

is an integral submanifold of A (actually a maximal integral sub- 

manifold) and so is any subset of the form (a,b)×{c} with a <b < 0. 

However, it is not possible to find integral submanifolds of A pas- 

sing through a point (0,c). D 

Another important point to be stressed, which emphasizes the 

difference between the general problem here considered and its 

local version described in section 1.3, is that the elements of a 

global partition of N induced by a distribution which has the in- 

tegral manifolds property are immersed submanifolds. On the con- 

trary, local partitions induced by a nonsingular and completely 

integrable distribution are always made of slices of a coordinate 

neighborhood, i.e. of imbedded submanifolds. 

(1.3) Example. Consider a torus T 2 = SIXS 2. We define a vector 

field on the torus in the following way. 
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Let T a vector field on ~2 defined by setting 

+ x I (~) T(x1'x2) = -x2( )x 2 x 

At each point (Xl,X2) E $I this mapping defines a tangent vector in 

T(xl,x2)S I , and therefore a vector field on S I whose flow is given 

by 

) T ,  0 O ,  0 0 0 0 
ttXl,X2) = (x I cost-x2 sint,x I sint-x2 cost) 

In order to simplify the notation we may represent a point (Xl,X 2) 

of S I with the complex number z = x I + jx 2 ,Izl = I, and have ~(z) = 

= ejtz. Similarly, by setting 

8 (x 1,x 2) = -x2~(~-~i) x +Xle(~2) x 

we define another vector field on S I , whose flow is now given by 
e ~t(z) = e3atz. 

From T and @ we may define a vector field f on T 2 by setting 

f(zl,z 2) = (T(Zl),@(z2)) 

and we readily see that the flow of f is given by 

#f(z 1,z 2) = (eJtzl,eJ~tz2) 

If e is a rational number, then there exists a T such that 

#t f = %t+kTf for all t 6 ~ and all k 6 Z. Otherwise, if ~ is irrational, 
f 

for each fixed p = (zl,z2) E T 2 the mapping Fp : t ~+ ~t(Zl,Z2) is an 

injective immersion of ~ into T 2 , and Fp~) is an immersed submani- 

fold of T 2 . 

From the vector field f we can define the one-dimensional distri- 

bution ~ = sp{f} and see that, if ~ is irrational, the maximal in- 

tegral submanifold of A passing through a point p 6 T 2 is exactly 

Fp~) and A has the maximal integral manifold property. 

Fp~R) is an immersed but not an imbedded submanifold of T 2. For, 

it is easily seen that given any point p C T 2 and any open (in the to- 

pology of T 2) neighborhood U of p, the intersection Fp~) D U is dense 

in U and this excludes the possibility of finding a coordinate cube 

(U,~) around p with the property that Fp~) N U is a slice of U. [] 

The following theorem establishes the desired necessary and suf- 
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ficient condition. 

(1.4) Theorem (Sussmann). A distribution A has the maximal integral 

manifolds property if and only if, for every vector field T E A and 
T 

for every pair (t,p) E ~ ×N such that the flow @t (p) of T is de- 

fined, the differential (@~)~ at p maps the subspace A(p) into the 

A(~ (p)). [] subspace 

We are not going to give the proof of this Theorem, that can be 

found in the literature. Nevertheless, some remarks are in order. 

(1.5) Remark. An intuitive understanding of the constructions that 

are behind the statement of Sussmann's theorem may be obtained in 

this way. 

Let TI,...,T k be a collection of vector fields of A and let 

% 1 T k 
@tl,...,¢tk denote the corresponding flows. It is clear that if p is 

a point of N, and S is an integral manifold of A passing through p, 
T. 

then @ i for which ti(p) should be a point of S for all values of t i 
T. 

~tl(p)_ is defined. Thus, S should include all points of N that can 
l 

be expressed in the form 

(I  .6) r k Tk- I m 1 
o. (p) 

@tk°~_ 1 "'°@t I 

In particular, if m and 8 are vector fields of A, the smooth 

curve 

O : (-e,S) ' N 

tl + ~T ~0 .T 
~t1°~t~-tl (P) 

passing through p at t = 0, should be contained in S and its tangent 

vector at p should be contained in A(p). Computing this tangent 

vector we obtain 

(@Ttl)~0(@~tl (p)) 6 A(p) 

i.e. setting q = @T (p) 
-t I 

@m 
( tl).0(q ) e A(~I (q)) 

and this motivates the necessity of Sussmann's condition. O 
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According to the statement of Theorem (1.4), in order to "test" 

whether or not a given distribution A is integrable, one should check 

that (~)~ maps A(p) into A(~(p)) for all vector fields T in A. 

Actually one could limit oneself to make this test only on some sui- 

table subset of vector fields in A, because the statement of Theorem 

(1.4) can be given the following weaker version, also due to Sussmann. 

(1.7) Theorem. A distribution A has the maximal integral manifolds 

property if and only if there exists a set of vector fields T, which 

spans A, with the property that for every T 6 I and every pair 

(t,p) 6 ~ x N such that the flow ~(p) of Y is defined, the differ- 
T (p)) 

ential (¢~), at p maps the subspace A(p) into the subspace A(~ t 

(1.8) Remark. At this point it is clear the proof of the "if" part 

of Theorem (1.4) comes directly from the "if" part of Theorem (1.7), 

because the set of all vector fields in A is indeed a set of vector 

fields which spans A. Conversely, the "only if" part Theorem (1.7) 

comes from the "only if" part of Theorem (1.4). [] 

We have seen that involutivity is a necessary but not sufficient 

condition for a distribution A to have the maximal integral manifolds 

property. However, the involutivity is something easier to test - in 

principle - because it involves only the computation of the Lie 

bracket of vector fields in A whereas the test of the condition stated 

T associated in the Theorem (1.7) requires the knowledge of the flows Ct 

with all the vector fields T of the subset [ which spans A. Therefore, 

one might wish to identify some special classes of distributions for 

which the involutivity becomes a sufficient condition for them to have 

the maximal integral manifolds property. Actually, this is possible 

with a relatively little effort. 

A set [ of vector fields is locally finitely generated if, for 

every p 6 N there exist a neighborhood U of p and a finite set 

[Y1,...,Tk} of vector fields of [ with the property that every other 

vector field belonging to T can be represented on U in the form 

k 
(1.9) T = [ ciT i 

i=I 

where each c i is a real-valued smooth function defined on U. 

The class of the distributions Which are spanned by locally fi- 

nitely generated sets of vector fields is actually one of the clas- 

ses we were looking for, as it will be shown hereafter. 

We prove first a slightly different result, which will be also 

used independently. 
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(1.10) Lemma.  Let I be a locally finitely generated set of vector 

fields which spans ~ and @ another vector field such that [8,T] E T 

for all Y E T. Then, for every pair (t,p) 6 ~ × N such that the flow 

~t(p) is defined, the differential (~), at p maps the subspace &(p) 

into the subspace &(#~(p)). 

Proof. The reader will have no difficulty in finding that the same 

arguments used for the statement (ii) in the proof of Theorem I. (3.1) 

can be used. [] 

Note that in the above statement the vector field 0 may possibly 

not belong to T. If the set T is involutive, i.e. if the Lie bracket 

[TI,T 2] of any two vector fields T 1 6 T, T2 6 T is again a vector 

field in T, from the previous Lemma and from Sussmann's Theorem we 

derive immediately the following result. 

(1.11) Theorem. A distribution A spanned by an involutive and locally 

finitely generated set of vector fields T has the maximal integral 

manifolds property. [] 

The existence of an involutive and locally finitely generated set 

of vector fields appears to be something easier to prove, at least in 

principle. In particular, there are some classes of distributions in 

which the existence on a locally finitely generated set of vector 

fields is automatically guaranteed. This yields the following corol- 

laries of Theorem (1.11). 

(1.12) Corollary. A nonsingular distribution has the maximal integral 

manifolds property if and only if it is involutive. 

Proof. In this case, the set of all vector fields which belong to the 

distribution is involutive and, as a consequence of Lemma I. (2.7), 

locally finitely generated. [] 

(1.13) Corollary. An analytic distribution on a real analytic manifold 

has the maximal integral manifolds property if and only if it is in- 

volutive. 

Proof. It depends on the fact that any set of analytic vector fields 

defined on a real analytic manifold is locally finitely generated. [] 

We conclude this section with another interesting consequence of 

the previous results, which will be used later on. 

(1.14) Lemma. Let & be a distribution with the maximal integral mani- 

folds property and let S be a maximal integral submanifold of 4. Then, 

given any two points p and q in S, there exist vector fields TI,...,T k 
T I T 

in & and real numbers tl,. ,t k such that q = ~tl ..... ~ k(p).uk 
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(1.15) Thcorem. Let A be an involutive distribution invariant under a 

complete vector field 8. Suppose the set of all vector fields in A is 

locally finitely generated. Let Pl and P2 be two points belonging to 
8 

the same maximal integral submanifold of A. Then, for all T, }T(Pl ) 
8 

and CT(P2 ) belong to the same maximal integral submanifold of 4. 

Proof. Observe, first of all, that A has the maximal integral sub- 

manifold property (see Theorem (1.11)). 

Let T be a vector field in A. Then, for e sufficienty small the 

mapping 

o : (-s,c) ~N 

8 T 
t P , ~TO~tO#~T(P) 

defines a smooth curve on N which passes through p at t = 0. Computing 

the tangent vector to this curve at t we get 

~* (~t) t 
T @ 

= (~),T(#tO~_T(p)) = 

= (~),T (~@T(O (t)) ) 

But since T E A, we know from Lemma (1.10) that for all q 

(~),T(#OT(q))~ _ C A(q) and therefore we get 

~,(~t)t e A(o(t)) 

for all t E (-s,e). This shows that the smooth curve a lies on an in- 
T 

tegral submanifold of A. Now, let Pl = ~T (p) and P2 = ~t(Pl )" Then 

P2 and Pl are two points belonging to a maximal integral submanifold 
8 8 

of 4, and the previous result shows that ~T(Pl ) and ~T(P2 ) again are 

two points belonging to a maximal integral submanifold of 4. Thus the 

Theorem is proved for points p1,p 2 such that P2 = ~Tt(Pl). If this is 

not the case, using Lemma (1.14) we can always find vector fields 

T 1 T k 
[1,...,Tk of A such that P2 = #t1°'''°#tk(Pl) and use the above re- 

sult in order to prove the Theorem. [] 

2. The Control Lie Algebra 

The notions developed in the previous section are useful in deal- 

ing with the study of input-state interaction properties from a global 
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point of view. As in chapter I, we consider here control systems de- 

scribed by equations of the form 

(2.1) ~ = f(x) + 
m 

[ gi (x)u i 
i=I 

Recall that the local analysis of these properties was based upon 

the consideration of the smallest distribution, denoted R, invariant 

under the vector fields f,gl,...,g m and which contains f'gl .... 'gm" 

It was also shown that if this distribution is nonsingular, then it 

is involutive (Lemma I. (6.6)). This property makes it possible to use 

immediately one of the results discussed in the previous section and 

find a global decomposition of the state space N. 

(2.2) Lemma. Suppose R is nonsingular, then R has the maximal integral 

manifolds property. 

Proof. Just use Corollary (1.12). [] 

The decomposition of N into maximal integral submanifolds of R 

has the following interpretation from the point of view of the study 

of interaction between inputs and states. It is known that each of the 

vector fields f,gl,...,g m is in R, and therefore tangent to each max- 

imal integral submanifold of R. Let S o be the maximal integral sub- 
x 

manifold of R passing through x O. From what we have said before we 
m 

know that any vector field of the form T = ~ giui , where ul,...,u m 
i=I 

are real numbers, will be tangent to S o and, therefore, that the in- 
x 

tegral curve of T passing through x ° at time t = 0 will belong to S 
o 

x 
o 

We conclude that any state trajectory emanating from the point x , 

under the action of a piecewise constant control,will stay in S 
o 

x 

Putting together this observation with the part (b) of the sta- 

tement of Theorem £.(6.15), one obtains the following result. 

(2.3) Theorem. Suppose R in nonsingular. Then there exists a partition 

of N into maximal integral submanifolds of R, all with the same di- 

mension. Let S o denote the maximal integral submanifold of R passing 
x 

through x °. The set R(x O) of states reachable from x ° under piecewise 

constant input functions 

(a) is a subset of S 
o 

x 
(b) contains an open set of S o" [] 

X 

The result might be interpreted as a global version of Theorem 

I. (6.15). However, there are more general versions, which do not re- 
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quire the assumption that R is nonsingular. Of course, since one is 

interested in having global decompositions, it is necessary to work 

with distributions having the maximal integral manifolds property. 

From the discussions of the previous section, we see that a rea- 

sonable situation is the one in which the distributions are spanned 

by a set of vector fields which is involutive and locally finitely 

generated. This motivates the interest in the following considera- 

tions. 

Let {Ti: I <i <q} be a finite set of vector fields and it,12 two 

subalgebras of V(N) which both contain the vector fields T 1,...,~q. 

Clearly, the intersection i I Ni 2 is again a subalgebra of V(N) and 

contains T 1,...,Tq. Thus we conclude that there exists a unique sub- 

algebra i of V(N) which contains TI, .... Tq and has the property of 

being contained in all the subalgebras of V(N) which contain the 

vector fields TI,...,~ q. We refer to this as to the 8maZles~ sub- 

algebra of V(N) which contains the vector fields TI,...,T q. 

(2.4) Remark. One may give a description of the subalgebra i also in 

the following terms. Consider the set 

io= {T 6 V(N) :T =[ Tik'[Tik-1' .... [ Yi2'Til ]]] ; I ~ i k ~ q, I < k < ~} 

and let LC(io) denote the set of all finite ~-linear combinations of 

elements of i o. Then, it is possible to see that i = LC(Lo). For, by 

construction, every element of i o is an element of i because i,being 

a subalgebra of V(N) which contains TI,...,T q , must contain every 

vector field of the form [ T k ,. [ T k_1' ,...,[ ~i2,Til]]]. Therefore 

LC(i o) for I < i < q. To prove that L=LC(Lo) LC(Lo) C i and also T i _ _ 

we only need to show that LC(Lo) is a subalgebra of V(N). This fol- 

lows from the fact that the Lie bracket of any two vector fields in 

i O is an ~-linear combination of elements of L O. [] 

With the subalgebra [ we may associate a distribution A i in a 

natural way, by setting 

&L = sp{T : ~ E L} 

Clearly, A i need not to be nonsingular. Thus, in order to be able to 

operate with ~i ' we have to set explicitly some suitable assumptions. 

In view of the results discussed at the end of the previous section we 

shall assume that the subalgebra L is spanned by a locally finitely 

generated set of vector fields. 
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An immediate consequence of this assumption is the following one. 

(2.5) Lemma. If the subalgebra t is locally finitely generated, the 

distribution 4[ has the maximal integral manifolds property. 

Proof. The set i is involutive by construction (because is a sub- 

algebra of V(N)). Then, using Theorem (1.11) we see that A i has the 

maximal integral manifolds proDerty. [] 

When dealing with control systems of the form (2.1), we take 

into consideration the smallest subalgebra of V(N) which contains the 

vector fields f,gl,...,g m. This subalgebra will be denoted by C and 

called the Control Lie Algebra. With C we associate the distribution 

A c = sp{T : T e C} 

(2.6) Remark. It is not difficult to prove that the codistribution A C 

is invariant under the vector fields f,gl,...,g m. For, let T be any 
i 

vector field in C and ~ a covector field in A C. Then (~,T > = 0 and 

<~,[f,T] > = 0 because [f,Tl is again a vector field in C. Therefore, 

from the equality 

(Lf~,T) = Lf(~,T ) -<~,[f,T] > = 0 

we deduce that Lf~ annihilates all vector fields in C. Since A c is 

spanned by vector fields in C, it follows that Lf~ is a covector 

field in ~C ' i.e. that ~ is invariant under f. In the same way it 

is proved that A C is invariant under gl .... 'gm" 

If the codistribution ~ is smooth (e.g. when the distribution 

A c is nonsingular), then using Lemma I.(4.8) one concludes that A C 

itself is invariant under f, gl,...,g m. 

(2.7) Remark. The distribution A C , and the distributions P and R in- 

troduced in the previous chapter are related in the following way 

(a) A C C p + sp{f} C R 

(b) if x is a regular point of A C , then Ac(X)=(P+sp{f}) (x) = R(x). 

We leave to the reader the proof of this statement. [] 

The role of the Control Lie Algebra C in the study of interac- 

tions between input and state depends on the following consideration. 

Suppose A C has the maximal integral manifolds property and let S o be 
x 

the maximal integral submanifold of A c passing through x °. Since the 

vector fields f,gl,...,g m , as well as any vector field T of the form 
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m 
= f + ~ qiui with u I ..... u m real numbers, are in A C (and therefore 

i=I 

t a n g e n t  t o  S o ) ,  t h e n  a n y  s t a t e  t r a j e c t o r y  o f  t h e  c o n t r o l  s y s t e m  ( 2 . 1 )  
x 

passing through x ° at t = 0, due to the action of a piecewise constant 

control, will stay in S 
o 

x 
As a consequence of this we see that, when studying the behavior 

of a control system intialized at x ° 6 N, we may regard as a natural 

state space the submanifold S o of N instead of the whole N. Since for 
x 

all x e S o the tangent vectors f(x),~(x) ..... gm(X) are elementsof the 
x 

tangent space to S at x, by taking the restrictions to S of the 
o o 

x x 
original vector fields f,gl,...,g m~'~ one may define a s'et of vector fields 

f,gl,...,g m on S o and a control system evolving on S 
o x x 

1 m 
(2.8) x = f(x) + [ gi(x)uq 

i=I 

which behaves exactly as the original one. 

By construction, the smallest subalgebra C of V(S ° ) which con- 
x 

tains f,gl,...,g m spans, at each x E S o ' the whole tangent space 
x 

T~S o" This may easily be seen using for C and C the description il- 
x 

lustrated in the Remark (2.4). 

Therefore, one may conclude that for the control system (2.8) 

(which evolves on S ° ), the dimension of A~ is equal to that of S o at 
x x 

each point or, also, that the smallest distribution R invariant under 

f'gl ..... gm which contains f'gl ..... gm is nonsingular (see Remark 

(2.7)), with a dimension equal to that of S 
o" 

x 
The control system (2.8) is such that the assumptions of Theorem 

(2.3) are satisfied, and this makes it possible to state the following 

result. 

(2.9) Theorem. Suppose the distribution A C has the maximal integral 

manifolds property. Let S denote the maximal integral submanifold 
o 

x 
of A C p a s s i n g  t h r o u g h  x ° .  T he  s e t  R ( x  ° )  o f  s t a t e s  r e a c h a b l e  f r o m  x ° 

under piecewise constant input functions 

(a) is a subset of S 
o 

x 
(b) contains an open set of S 

o" 
x 

( 2 . 1 0 )  R e m a r k .  N o t e  t h a t ,  i f  A c h a s  t h e  m a x i m a l  i n t e g r a l  m a n i f o l d s  p r o -  
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perty but is singular, then the dimensions of different maximal in- 

tegral submanifolds of A c may be different. Thus, it may happen that 
I 2 

at two different initial states x and x one obtains two control 

systems of the form (2.8) which evolves on two manifolds Sxl and S 
o 

x 
of different dimensions. We will see examples of this in section 4. 0 

(2.11) Remark. Note that the assumption "the distribution ~C has the 

maximal integral manifolds property"is implied by the assumption "the 

distribution ~C is nonsingular". In this case, in fact, A C = R (see 

Remark (2.7)) and R has the maximal integral manifolds property 

(Lemma (2.2)). [}- 

We conclude this section by the illustration of some terminolo- 

gy which is frequently used. The control system (2.1) is said to sa- 

tisfy the controllability rank aondition at x ° if 

(2.12) dim Ac(X°) = n 

Clearly, if this is the case, and if A C has the maximal integral 

manifolds property, then the maximal integral submanifold of A C 

passing through x ° has dimension n and, according to Theorem (2.9), 

the set of states reachable from x ° fill up at least an open set of 

the state space N. 

The following Corollary of Theorem (2.9) describes the situation 

which holds when one is free to choose arbitrarily the initial state 

x O. A control system of the form (2.1) is said to be weakly control- 

lable on N if for every initial state x ° 6 N the set of states reacha- 

ble under piecewise constant input functions contains at least an open 

set of N. 

(2.13) Corollary. A sufficient condition for a control system of'the 

form (2.1) to be weakly controllable on N is that 

dim Ac(X) = n 

for all x 6 N. If the distribution A C has the maximal integral 

manifolds property then this condition is also necessary. 

Proof. If this condition is satisfied, A C is nonsingular, involutive 

and therefore, from the previous discussions, we conclude that the 

system is weakly controllable. Conversely, if the distribution A c has 

the maximal integral manifolds property and dim ~c(X °) < n at some 

x ° 6 N then the set of states reachable from x ° belongs to a submani- 

fold of N whose dimension is strictly less than n (Theorem (2.9)).So 
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this set cannot contain an open subset of N. [] 

3. The Observation Space 

In this section we study output-state interaction properties from 

a global point of view, for a system described by equations of the 

form (2.1), together with an output map 

(3.1) y = h(x) 

The presentation will be closely analogue to the one given in the 

previous section. First of all, recall that the local analysis carried 

out in section 1.7 was based upon the consideration of the smallest 

codistribution invariant under the vector fields f,gl,...,g m and con- 

taining the covector fields dhl,...,dh ~. If the annihilator Q of this 

cod£stribution is nonsingular, then it is also involutive (Lemma 

I.(7.6)) and may be used to perform a global decomposition of the 

state space. Parallel to Lemma (2.2) we have the following result. 

(3.2) Lemma. Suppose Q is nonsingular. Then Q has the maximal integral 

manifolds property. [] 

The role of this decomposition in explaining the output-state in- 

teraction may be explained as follows. Observe that Q, being nonsingu- 

lar and involutive, satisfies the assumptions of Theorem (1.15) (be- 

cause the set of all vector fields in a nonsingular distribution is 

locally finitely generated). Let S be any maximal integral submani- 

fold of Q. Since Q is invariant under f,gl,...,g m and also under any 

m 
vector field of the form T = f + ~ giui , where ul,...,u m are real 

i=I 

numbers, using Theorem (1.15) we deduce that given any two points x a 

m 
and x b in S and any vector field of the form T = f + [ giui , the 

i=I 

points ~t(x ) and ~ (x b) for all t belong to the same maximal integral 

submanifold of Q. In other words, we see that from any two initial 

states on some maximal integral submanifold of Q, under the action the 

same piecewise constant control one obtains two trajectories which, 

at any time, pass through the same maximal integral submanifold of Q. 

Moreover,it is easily seen that the functions hl,...,h £ are con- 

stant on each maximal integral submanifold of Q. For, let S be any of 

these submanifolds and let h. denote the restriction of h. to S. At 
l 1 

each point p of S the derivative of hi along any vector v of TpS is 
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zero, because Q C sp(dhi)± , and therefore the function A hi is a con- 

stant. 

As a conclusion, we immediately see that if x a and x b are two 

initial states belonging to the same integral manifold of Q then under 

the action of the same piecewise constant control one obtains two 

trajectories which, at any time, produce identical values on each 

component of the output, e.g. are indistinguishable. 

These considerations enables us to state the following global 

version of Theorem I. (7.8). 

(3.3) Theorem. Suppose Q is nonsingular. Then there exists a parti- 

tion of N into maximal integral submanifolds of Q, all with the same 

dimension. Let S denote the maximal integral submanifold of Q pas- 

sing through x O. Then 

(a) no other point of S can be distinguished from x ° under piece- 

wise constant input functions 

(b) there exists an open neighborhood U of x ° in N with the property 

that any point x 6 U which cannot be distinguished from x O under 

piecewise constant input functions necessarily belongs to U AS. [] 

Proof. The statement (a) has already been proved. The statement (b) 

requires some remark. Since Q is nonsingular, we know that around any 

point x O we can find a neighborhood U and a partition of U into slices 

each of which is clearly an integral submanifold of Q. But also the 

intersection of S with U, which is a nonempty open subset of S is an 

integral submanifold of Q. Therefore, since S is maximal, we deduce 

that the slice of U passing through x ° is contained into U A S. From 

the statement (b) of Theorem I.(7.7) we deduce that any other state 

x of U which cannot be distinguished from x ° under piecewise constant 

inputs belongs to the slice of U passing through x °, and therefore to 

U ~ S. [] 

If the distribution Q is singular, one may approach the problem 

on the basis of the following considerations. Let {l i : I < i < £} be a 

finite set of real-valued functions and {T i : I < i < q} be a finite set 

of vector fields. Let S I and S 2 be two subspaces of C~(N) which both 

contain the functions 11,...,I Z and have the property that, for all 

6 S i and for all I ~ j ~ q, LT ~ ~ S i , i = 1,2. Clearly the in- 
] 

tersection S I N S 2 is again a subspaee of C~(N) which contains 

11,...,~ i and is such that, for all I e S I A S 2 and for all 1~j~q, 

L T I E $I A $2. Thus we conclude that there exists a unique subspace 
3 

S of C~(N) which contains ~I .... ,~£ and is such that, for all I 6 S 
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and for all I ~ j ~ q, L I e S. This is the smallest subspace of C~(N) 
3 

which contains ll,...,l Z and is closed under differentiation along 

TI,.-.,T q - 

(3.4) Remark. The subspace S may be described as follows. Consider the 

set 

So= {X 6 C~(N):I=lj or I =Lr ...LT. lj; I < j < £, I ~ik~ q, I ~k < m} 
i k 11 

and let LC(S o) denote the set of all ~-linear combinations of elements 

of S O . Then, LC(So) = S. As a matter of fact, it is easily checked 

that every element of LC(S o) is an element of S, so LC(S o) C S, that 

Xj q LC(S o) for I ~ j ~ £ and that LC(S O) is closed under differentia- 

tion along T I .... ,yq. [] 

With the subspace S we may associate a codistribution ~S ' in a 

natural way, by setting 

~S = sp{dl : I e S} 

The codistribution ~S is smooth by construction, but - as we 

know - the distribution ~S may fail to be so. Since we are interest- 

ed in smooth distributions because we use them to partition the state 

space into maximal integral submanifolds, we should rather be looking 

at the distribution smt(~) (see section 1.2). 

The following result is important when looking at smt(~) for 

the purpose of finding global decompositions of N. 

(3.5) Lemma. Suppose the set of all vector fields in smt(~) is local- 

ly finitely generated. Then smt(~) has the maximal integral manifolds 

property. 

Proof. In view of Theorem (1.11), we have only to show that smt(~) is 

involutive. Let T I and T 2 he vector fields in smt(~) and I any func- 

tion in S. Since <dl,T I ) = 0 and <dl,T 2 > = 0 we have 

(dl,[T1,~ 2] > = LTI<dI,T 2 >-LT2<di,~ I > = 0 

The vector field [YI,T2] is thus in ~. But [TI,T2], being smooth, is 

also in smt(~). [] 

In order to study observability we consider the smallest sub- 

space of C~(N) which contains the functions hl,...,h Z and is closed 

under differentiation along the vector fields f,gl,...,g m. This sub- 
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space will be denoted by 0 and called the observation space. Moreover, 

with @ we associate the codistribution 

D0 = sp{dl : i • 0} 

± 
(3.6) Remark. It is possible to prove that the distribution ~0 is in- 

variant under the vector fields f, gl,...,g m. For, let I be any func- 
± 

tion in 0 and r a vector field in ~0" Then (dl,~) = 0 and {dLfl,Y)=0 

because Lfl is again a function in 0. Therefore, from the equality 

<dl,[f,T] )= Lf<dl,~ )-<dLfl,T ) =0 

we deduce that [ f,T] annihilates all functions in 0. Since ~0 is span- 

ned by differentials of functions in 0, it follows that [f,Tl is a 

~. In the same way one proves invariance under vector field in 

gl,...,gm. 
If the distribution ~ is smooth (e.g. when the codistribution ~0 

is nonsingular) then using Lemma I. (4.8) one concludes that ~0 itself 

is invariant under f,gl,...,g m. 

(3.7) Remamk. The distribution ~ and the distribution Q introduced 

in the previous chapter are related in the following way 
± 

(a) ~0 D Q 
± 

(b) if x is a regular point of ~0 ' then ~0(x) = Q(x). 

We leave to the reader the proof of this statement. [] 

From the previous Remark and from Remark I. (4.6) it is deduced 

distribution smt(~) is invariant under the vector fields that the 

f,gl,...,g m and so under any vector field T of the form 

m 
= f + ~ giui , where Ul,...,u m are real numbers. Now suppose that 

i=I 

vector fields in smt(~) is locally finitely generated, the set of all 
! 

so that smt(~) has the maximal integral manifolds property. Using 

Theorem (1.15), as we did before in the case of nonsingular Q, we may 

conclude that from any two states on the same integral submanifold of 
± 

smt(~0) , under the action of the same piecewise constant control one 

obtains two trajectories that at any time lie on the same maximal in- 

tegral submanifold of smt(~). Observe now that smt(~) is also contain- 

ed in sp{dhi }±, I ~ i ~ £, ~because every tangent vector ~ in smt(Q~) (x)- 
± 

is also in ~(x) and every tangent vector v in ~0(x) is such that 

(dhi(x),v) = 0. Therefore one may deduce that the functions h i are 

constant on each maximal integral submanifold of smt(~). u 
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This, together with the previous observations, shows that any two 

initial states x a and x b on the same maximal integral submanifold of 

smt(R~) are indistinguishable under piecewise constant inputs. This 

extends the statement (a) of Theorem (3.3). As for the statement (b), 

some regularity is required, as it seen hereafter. 

(3.8) Theorsm. Suppose the set of all vector fields contained in 

smt(~) is locally finitely generated. Let S denote the maximalin- 

submanifold of smt(O~) passing through x °. Then tegral 

(a) any other point of S cannot be distinguished from x O under piece- 

wise constant inputs 

(b) If x ° is a regular point of ~0 ' then there'exists an open neigh- 

borhood U of x ° in N with the property that any point x 6 U which 

cannot be distinguished from x O under piecewise constant inputs 

necessarily belongs to U N S. 

Proof. The statement (a) has already been proved. The statement (b) 

is proved essentially in the same way as in the statement (b) of The- 

orem (3.3). [] 

The following example illustrates the need for the "regularity" 

assumption in the statement (b) of the previous theorem. 

(3.9) Example. Consider the following system with N = ~ and 

y = h(x) 

where h(x) is defined as 

h(x) = exp(- ~)sin(~) for x ~ 0 
x 

h(0) = 0 

For this system, two states x a and x b are indistinguishable if 

and only if h(x a) = h(xb). In particular, the set of states which are 

indistinguishable from the state x = 0 coincides with the set of the 

roots of the equation h(x) = 0. Each point in this set is isolated 

but the point x = 0. Thus, no matter how small we choose an open neigh- 

borhood U of x = 0, U contains points indistinguishable from x = 0. 

It is also seen that the codistribution D0 = sp{dh} has dimension 
dh 

I everywhere but at the points x in which ~-~ = 0, where its dimension 
! 

is 0. Thus, any smooth vector field belonging to ~ must vanish ident- u 



72 

! 

ically on ~ and smt(Q~) = {0}. The maximal integral submanifold of 

smt(~) passing through x is the point x itself. 

At the point x = 0, which is not a regular point of ~0 ' we have 

that U N S = {0} for all U, whereas we know there are other poinEs of 

U indistinguishable from x = 0. [] 

We conclude this section with some global considerations. The 

control system (2.1)-(3.1) is said to satisfy the observability rank 

condition at x ° if 

(3.10) dim ~0(x °) = n 

Clearly, if this is the case then x ° is a regular point of ~0 and 

from the previous discussion it is seen that any point x in a suitable 

neighborhood U of x ° can be distinguished under piecewise constant 

inputs. A control system of the form (2.1)-(3.1) is said to be locally 

observable on N if for every state x ° there is neighborhood U of x ° 

in which every point can be distinguished from x ° under piecewise con- 

stant inputs. 

(3.11) Corollary. A sufficient condition for a control system of the 

form (2.1)-(3.1) to be locally observable on N is that 

dim ~0(x) = n 

for all x E N. 

4. Linear Systems, Bilinear Systems and Some Examples 

In this section we describe some elementary examples, in order 

to make the reader more familiar with the ideas introduced so far. 

As a first application, we shall compute the Lie algebra C and 

the distribution ~C for a linear system 

= Ax + Bu 

y = CX 

We may easily interpret this system as a system of the form (2.1)-(3.1). 

The manifold N on which the system evolves is the whole of ~n and,in 

the standard (single) coordinate chart of ~n, the vector fields f(x) 

and g1(x) ..... gm(X) have the expressions 



(4.1) f(x) = Ax 

(4.2) gi(x) = b i 
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1<i<m 
p 

where b i is the i-th column of the matrix B. The functions h I (x),..., 

h£(x) are expressed as 

h. (x) = c.x 1 < i < 
l 1 -- -- 

where c i is the i-th row of the matrix C. 

We want to prove first that the Lie algebra C is the subspace of 

V(N) consisting of all vector fields which are'l~-linear combinations 

of the vector fields in the set 

(4.3) {Ax} t) {Akb. : I < i < m, 0 < k < n-l} 
1 . . . .  

For, observe that this set contains the vector fields Ax and b 1,...,b m 

(i.e. the vector fields f and gl,...,gm ) and also that this set is 

contained in C, because any of its elements is a repeated Lie bracket 

of f and gl,...,g m. As a matter of fact, 

Akbi = [[ [gi' f] .... ] ' f] 

k-times 

Moreover, it is easy to see that the set 

(4.4) LC({Ax} U {Akb. : I < i < m, 0 < k < n-l}) 
1 . . . .  

of all l~-linear combinations of vector fields in the set (4.3) is al- 

ready a Lie subalgebra, i.e. is closed under Lie bracketing. 

For, one easily sees that if T I (x) and ~2(x) are vector fields 

of the fDrm 

T I (x) = Akbi 

(x) -- Ahbj T 2 

then [~I'T2] (x) = 0. On the other hand, if 

~I (x) = Akbi 

Y2 (x) = Ax 
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then 

[ T I,T 2] = Ak+Ib 
1 

If k < n-l, this vector field is in the set (4.3) and, if k = n-l,this 

vector field is an A-linear combination of vector fields in the set 

(4.3) (by Cayley-Hamilton theorem) . 

If ~I and ~2 are ]R-linear combinations of vector fields of (4.3), 

then their Lie bracket is still an ~-linear combination of vector 

fields of (4.3), and this proves that the set (4.4) is a Lie sub- 

algebra. 

The set (4.4) is a Lie algebra which contains f'g1'" "''gm and is 

contained in C, the smallest Lie subalgebra which contains f'g1'''''gm" 

Then, the set (4.4) coincides with C. 

Evaluating the distribution A C we get, at a point x 6 I~ n, 

(4.5) Ac(x) =span{Ax} +span{Akb : I < i < m, 0 < k < n-l} 
l . . . .  

n-1 
= span{Ax}+ ~. Im(AkB) 

k=0 

We are also interested in the distributionP, the smallest di- 

stribution which contains gl,...,g m and is invariant under f,gl,...,g m. 

By means of arguments similar to the ones used before or, else, by 

means of the recursive algorithm presented at the beginning of section 

1.6, it is not difficult to discover that, at any point x 6 ~n, 

(4.6) P(x) = span{Akbi : I . . . .  < i < m, 0 < k < n-l} 

Thus, we see that 

&C = sp{f} + P 

The distribution A C is spanned by a set of vector fields which is 

locally finitely generated (because any vector field in C is anaZytic 

on An), and therefore - by Lemma (2.5) - the distribution &C has the 

maximal integral manifolds property. The distribution P is non- 

singular and involutive and thus - by Corollary (1.12) - it also has 

the maximal integral manifolds property. 

The maximal integral submanifolds of P, all of the same dimension, 

have the form x+V, where 
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V = Im(B)+Im(AB)+...+Im(An-IB) 

(see Example I.(3.4) and Remark I.(4.2)). The maximal integral submani- 

folds of ~C may have different dimensions, because ~C may have sin- 

gularities. 

If, at some point x 6 ~n, f(x) E P(x), then the maximal integral 

submanifold of ~C passing through x coincides with the one of the 

distribution P, i.e. is a subset of the form x+V. Otherwise, if such 

a condition is not verified, the maximal integral submanifold of ~C is 

a submanifold whose dimension exceeds by I that of P and this submani- 

fold,in turn, is partitioned into subsets of the form x'+V 

(4.7) Example. The following simple example illustrates the case of 

a singular ~C" Let the system described by 

= 

°° 1 
0 -I 0 x + 

0 0 I 

Then we easily see that 

v = {x 6 ~3 x 2 = x 3 = 0} 

and that 

p = sp{~} 

The tangent vector f(x) belongs to P only at those x in which 

x 2 = x 3 = 0, i.e. only on V. Thus, the maximal integral submanifolds 

of A C will have dimension 2 everywhere but on V. A direct computation 

shows that these submanifolds may be described in the following way: 

(i) if x O is such that x~ = 0 (resp. x~ = 0) then the maximal sub- 

manifold passing through x ° is the half open plane 

{x E ~n : x2 = 0 and sgn(x 3) = sgn(x~)} 

(resp. {x elR n : x 3 = 0 and sgn(x2) = sgn(x2)} 

(ii) o 
if x ° is such that both x 2 ~ 0 and x 3 ~ 0, then the maximal sub- 

manifold p a s s i n g  t h r o u g h  x ° i s  t h e  s u r f a c e  

o o 
{x e ]R n : x2x 3 = x2x3}. [] 
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We turn now on the computation of the subspace 0 and the codi- 

stribution ~0" It is easy to prove that 0 is the subspace of C ~(N) 

consisting of all IR-linear combinations of functions of the form 

ciAkx or ciAkbj , namely that 

0 = LC{I • C~(N):X(x) = ciAkx or ~(x) = ciAkb j (4.8) 

I < i < £, I < j < m, 0 < k < n-l] 

For, note that functions of the form CiA'~x~ or ciAkb j are such that 

c'Akxl = Lf...Lfh i(x) 

k - t i m e s  

ciAkb j = LgjLf... Lfh i(~) 

k - t i m e s  

and this implies that the right-hand-side of (4.8) is contained in 0. 

Moreover, the functions h1,...,h £ are elements of the right-hand-side 

of (4.8).Then,theproof of (4.8) is completed as soon as we show that 

its right-hand-side is closed under differentiation along f'g1' .... gm" 

If ~(x) = ciAkx, then LfX = ciAk+Ix and Lgj~(x) = ciAkb j. If 

X(x) = ciAkb j , then LfX(x) = Lgj%(x) = 0. Thus, using again Cayley- 

Hamilton Theorem, it easily seen that the right-hand-side of (4.8) is 

closed under differentiation along f'gl .... 'g m" 

At each point x, the codistribution ~0 is given by 

~0(x) = span{ciAk : I ~ i ~ £, 0 ~ k ~ n-l} and therefore 

n~(x) n-1 
n ker(CA k) 

k=0 

The codistribution ~0 is nonsingular, and so is the distribution 

e 0. Moreover, ~0 = smt(~0)'Fr°m Remark (3.7) we see that S 0 = Q and 

so this distribution has the maximal integral manifolds property (Lemma 

(3.2)). The maximal integral submanifolds of Q have now the form x+W 

where 

W = ker(C) N ker(CA)...N ker(CA n-l) 

As a second application we consider a bilinear system, i.e. a 

system described by equations of the form 
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m 

= Ax + [ (Nix)u i 
i=1 

y=Cx 

Here also the manifold on which the system evolves is the whole of A n, 

we set f and hl,...,h £ as before, and 

gi(x) = Nix I ~ i ~ m 

In order to compute the subalgebra C we note first that any vector 

field T in the set {f'gl ..... gm } has the form T(x) = Tx, where T is an 

nxn matrix. If we want to take the Lie bracket of two vector fields 

TI,T 2 of the form 

we have 

T 1(x) = TIx , T 2 (x) = T2x 

[ TI,Y 2] (x) = (T2TI-TITz)X = |TI,T2]x 

where [TI,T 2] = (T2TI-TIT2) is the commutator of T I and T 2. 

On the basis of this observation, it is easy to set up a re- 

cursive procedure yielding the smallest Lie subalgebra which contains 

a set of vector fields of the form T1(x) = T1x,...,Tr(X) = TrX. 

(4,..9) Lemma. Consider the nondecreasing sequence of subspaces of ~n×n, 

the ~-vector space of: all nxn matrices of real numbers, defined by 

setting 

M o = span{T1,...,Tr} 

Mk, = Mk_ I +span{[T.i,T] ..... [Tr,T] :T E ~k_1} 

Then, there exists an integen k such that 

Mk = ~k* 

for all k > k . The set of vector fields 

L = {~ e v~n):T(x) =.Tx, T e Mk. } 

is the smallest Lie subalgebra of vector fields which contains 
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~1(x) = T1x ..... Tr(X) = TrX. 

Proof. The proof is rather simple and consists in the following steps. 

A dimensionality argument proves the existence of the integer k ~ such 

that M k = Mk~ for all k > k . Then, one checks that the subspace Mk, 

contains TI,...,T r and any repeated commutator of the form 

[Til,...,[Tih_1,Tih]] and is such that [P,Q] e Mk~ for all P e Mk~ and 

Q E Mk~ . From these properties, it is straightforward to deduce that 

i is the desired Lie algebra. [] 

Based on this result, it is easy to construct the Lie algebra C 

by simply initializing the algorithm described in the above Lemma with 

the matrices A,NI,...,N m- 

In this case, unlike the previous one, we cannot anymore give a 

simple expression of &c(X) and/or its maximal integral submanifolds. 

In some special situations, however, like the one illustrated in the 

following example, a rather satisfactory analysis is possible. 

(4.10) Example. Consider the system 

= Ax + Nxu 

where x E ~3 and 

A = 

0 1 0 

-I 0 0 

0 0 0 

N = 

0 0 I 

0 0 0 

-1 0 0 

An easy computation shows that 

0 0 

[A,N] = 0 0 

0 -1 

[N,[A,N]] = A 

[A,[A,N]] = -N 

Therefore, we have 

C = {T e V(I~3):T(x) = Tx, T • span{A,N,[A,N] }} 



79 

To compute the dimension of A C we evaluate the rank of the matrix 

(Ax,Nx, [ A,N] x) = 

x 2 x 3 0 

-x I 0 x 3 

0 -x I -x 2 

and we find the following result 

dim Ac(X) = 0 if x = 0 

dim Ac(x) = 2 if x ~ 0 

A direct computation shows that the maximal integral submanifold 

of A C passing through x ° is the set 

2 2 2 = (x~)2+(x~)2+(x~)2 } {x E IR3 :x1+x2+x3 

i.e. the sphere centered at the origin passing through x °. 

Therefore, we can say that the state of the system is not free 

to evolve on the whole of A n, but rather on the sphere centered at 

the origin which passes through the initial state. 

Around any point x ~ 0 the distribution A C is nonsingular, so we 

can obtain locally a decomposition of the form I.(6.12), by means of 

a suitable coordinates transformation. 

To this end, we may make use of the construction introduced in 

the proof of Theorem I.(3.3) and find a set of three vector fields 

with the property that T I and T 2 belong to A C and TI(xO), TI,T2tT3 

T2 (xO), T3(X °) are linearly independent. If we consider an initial 

point on the line 

{x 6 ~3:x I = x 2 = 0} 

we may take the vector fields 

Accordingly, we get 

~I (x) = (Nx) 

T2(x) = ([A,N]x) 

T 3 (x) = (0 0 I ) ' 



1 (x) = 
#t 

2(X) = 
~t 

~3t(x) = 

8O 

(COS t)x I + (sin t)x 3 

x 2 

-(sin t)x I + (cos t)x 3 

x 1 

(cos t)x 2 + (sin t)x 3 1 

] -(sin t) x 2 + (cos t)x 3 

x I 

x 2 

t+ x 3 

The local coordinate chart around the point x ° is given by the 

inverse of the function 

F : (Zl,Z2,Z 3) I ~ ~I ~2 ~3 (x O) 
Z1° z2° z 3 

O = 0 and x~ = a we have For x~ = x 2 

(sin Zl) (cos z2) (z3+a) 

F(Zl,Z2,Z 3) = (sin z2) (z3+a) 

(cos zl) (cos z2) (z3+a) 

The local representations of the vector fields f and g in the 

new coordinate chart are given by 

~(z) = (F~)-If(F(z)) = (F~)-IAF(z) 

~(z) = (F~)-Ig(F(z)) = (F~)-INF(z) 

A simple but tedious computation yields 
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cos zltg z 2 

~(z)= -sin z I 

0 

; ~(z)= 

We conclude that around x ° the system, in the z coordinates, is 

described by the equations 

Zl = COS zltq z 2 + u 

z2 = -sin z I 

z3 = 0 [] 

The study of the observability of a bilinear system is much 

simpler. By means of arguments similar to those used in the case of 

linear systems it is easy to prove that 0 is given by 

0 = LC{I e C~(N):I(X) = ciNjl...NjkX ; 

1 . . . . . .  < i < £, I < k < n-l; 0 < jl,...,jk < m} 

(with N o = A). Therefore 

n-1 m I 
~(x) = n ker (CNj I ) 

k=0 Jl ..... Jk =0 " " "Njk 

± 
The distribution ~0 = Q is nonsingular and its maximal integral 

submanifolds have the form x+W, where now 

n-1 m 
W = A N ker(CN~j ...Njk) 

k=0 J1'" "''Jk =0 I 

It may be worth observing that the subspace W thus defined is 

invariant under A,NI,...,N m , is contained in ker(C) and is the largest 

subspace of ~ n having these properties. From linear algebra we know 

that by making a suitable change of coordinates in ~n (see e.g. sec- 

tion I.I) the matrices A,NI,...,N m become block triangular and, the- 

refore, the dynamics of the system becomes described by equations of 

the form 
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m 

Xl = A11xl +A12x2 +i=I ~ (Ni'11xl + Ni,12x2)ui 

m 
x2 = A22x2 + ~ Ni,22x2ui 

i=I 

Moreover, the output y depends only on the x 2 coordinates, 

y = C2x 2 

The above equations are exactly of the form I. (5.7), this time ob- 

tained by means of standard linear algebra arguments. 



CHAPTER III 

INPUT-OUTPUT MAPS AND REALIZATION THEORY 

I. Fliess Functional Expansions 

The purpose of this section and of the following section is to 

describe representations of the input-output behavior of a nonlinear 

system. We consider, as usual, systems described by differential equa- 

tions of the form 

m 
(1.1a) x = f(x) + ~ gi(x)ui 

i=1 

(1.15) yj = hj(x) j = I ..... £ 

Throughout the chapter, we systematically assume that the mani- 

fold N on which the state evolves is an open set of ~ n and that the 

vector fields f,gl,...,g m are analytic vector fields defined on N. 

Likewise, the output functions hl,...,h Z are analytic functions de- 

fined on N. 

For the sake of notational convenience most of the times we re- 

present the output of the system as a vector-valued function 

y -- h(x) = (h I (x) ...hi(x)) ' 

We require first some combinational notations. Consider the set 

of m+1 indexes I = {0,1 ..... m} (we represent here, as usual, indexes 

with integer numbers, but we could as well represent the m+1 indexes 

with elements of any set z with card(Z) = m+1). Let I k be the set of 

all sequences (ik...il) of k elements ik,...,i I of I. An element of 

this set I k will be called a multiindex of lenght k. For consistency 

we define also a set 10 whose unique element is the empty sequence 

(i.e. a multiindex of lenght 0), denoted @. Finally, let 

I = U I k 
k>O 

It is easily seen that the set I 

free monoid, with composition rule 

can be given a structure of 

(ik...il) (jh...jl) J ~(ik...ilJh...j I) 
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with neutral element ~. 

A formal power s~ries in m+1 noncommutative 

coefficients in ~ is a mapping 

c : I i , 

indeterminates and 

In what follows we represent the value of c at some element ik...i 0 

of I with the symbol c(ik...i0). 

The second relevant object we have to introduce is called an 

iterated integral of a given set of functions and is defined in the 

following way. Let T be a fixed value of the time and suppose ul,...,u m 

are real-valued piecewise continuous functions defined on [ 0,T] . For 

each multindex (ik...i0) the corresponding iterated integral is a 

real-valued function of t 

t 

Eik-'-ili0(t) = I d~ik'''d~ild~i 0 
0 

defined for 0 ~ t ~ T by recurrence on the lenght, setting: 

and 

t0 (t) = t 

t 

~i(t) = lui(~)d~ 
0 

for 1 < i < m 

t t T 

! d~i---d~i0 = ~d~i (~)Id~ik_1--'d~i0 
k ! k u 0 

The iterated integral corresponding to the multindex ~ is the 

real number I. 

(1.2) Example. Just for convenience, let us compute the first few 

iterated integrals, in a case where m = I. 

t t t 

Id~o = t ; ]d~l = lu1(T)d~ 

0 0 0 

t t t 

Id~0d~0 - t2~ ; Id~0d~1 = I I~(@)d0dT 

0 0 0 0 
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t t t t 

0 0 0 0 0 

Given a formal power series in m+1 non-commutative indeterminates, 

it is possible to associate with this series a functional of ~,...,u 
1 ILt 

by taking the sum over I of all the products of the form 

t 

c(ik-.-i0)Id~ik--.d~i0 
0 

The convergence of a sum of this kind is guaranteed by some growth 

condition on the "coefficients" c(ik...i0) , as stated below. 

(1.3) Lemma. Suppose there exist real numbers K > 0, M > 0 such that 

(1.4) Ic(ik...i0) I < K(k+I)!M k+l 

for all k ~ 0 and all multiindexes ik...i 0. 

Then, there exists a real number T > 0 such that, for each 

0 ~ t ~ T and each set of piecewise continuous functions Ul,...,u m de- 

fined on [0,T] and subject to the constraint 

(1.5) max lui(T) I <I, 
0<T<T 

the series 

t 

m id~ik..d~i 0 "  (1.6) y(t) = c(~) + ~ c(ik...i 0) 
k=0 i D ' ' ' ' ' i k = O  0 

is absolutely and uniformly convergent. 

Proof. It is easy to see, from the definition of iterated integral, 

that, if the functions u I ..... u m satisfy the constraint (1.5) then 

t 
f tk+1 
d~ik''-d~i0 ! ~ 

0 

If the growth condition is satisfied, then 

t 

m I "d~i 0 I ~ c(ik---i 0) d~ik-- I _< K[M(m+1)t]k+1 
. . .,i k = 0 0 

As a consequence, if T is sufficiently small, the series (I .6) con- 
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verges absolutely and uniformly on [0,T] . [] 

The expression (1.6) clearly defines a functional of Ul,...,u m- 

This functional is causal, in the sense that y(t) depends only on the 

restrictions of Ul,...,u m to the time interval [0,t]. 

A representation of the form (1.6) is unique. 

(1.7) Lemma. Let c a and c b be two formal power series in m+1 noncom- 

mutative indeterminates and let the associated functionals of the 

form (1.6) be defined on the same interval I 0,T] . Then the two func- 

tionals coincides if and only if c a = c b. D 

Proof. Let ca,c b be two formal power series and ya(t),yb(t) the as- 

sociated functionals of the form (1.6). Note that 

y(t) = ya(t)_yb(t) 

is still a functional of the form (1.6) associated with a formal power 

series c whose coefficients are defined as differences between the 

corresponding coefficients of c a and c b. To prove the lemma, all we 

need is to show that if y(t) = 0 for all t e [0,T] and for all input 

functions, all the coefficients of the series c vanish. 

If, in particular, u1=...=Um=0 on [0,T], then y(t) = 0 for all 

t 6 [ 0,T] implies 

t 2 
c(g) + c(0)t + c(00)~T+ .... 0 

for all t E [0,TI, i.e. 

c(~) = 0 

c(0...0) = 0 I < k < 

k-times 

Taking the derivative of (1.6) with respect to time and evaluat- 

ing it at t = 0, one obtains 

dd--•t 
m 

( )t=0 = ~' c(i)ui(0) 
i=I 

Therefore, (~t) t=0 = 0 for all u I (0),...,Um(0) implies 

c(i) = 0 I < i < m 

Continuing this way, one may compute the second derivative of y(t) at 
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t = 0 and get 

2t__~2 m m 
= [ C(ilio)u i (0) (0) + 

( )t=O i0,ii= I I Uio i=I 
(c (0i) +c (i0)u i (0) 

If this is zero for all u1(0),...,Um(0) , then 

C(lli 0) = 0 I ! il,i 0 ! m 

c(0i) = -c(i0) I < i < m 

In the third derivative, the contribution of terms 

t t 

(c(0i)Id~0d(i + c(i0)Id~id~ 0) 
i=I 

0 0 

is 

1 1 dui 
i=I[~ c(0i) + ~ c(i0)] (-d~)t=0 

du. 
l , then c(0i) = -2c(i0) If this is zero for all (-~-)t=0 

ther with the previous equality c(0i) = -c(i0) implies 

which, toge- 

c(0i) = 0 I < i < m 

Continuing in the same way, one may complete the proof. [] 

We are now going to show that the output y(t) of the nonlinear 

system (1.1) can be represented as a functional of the inputs Ul, .... u m 

in the form (1.6). To this end we need some preliminary results. 

(1.8) Lemma. Let g0,gl,...,g m be a set of analytic vector fields and 

I a real-valued analytic function defined on N. Given a point x O 6 N, 

consider the formal power series defined by 

c (H) = ~ (x °) 

(I .9) 

• . .L l(x °) c(ik...ili 0) = L L 
gi 0 gi I gi k 

Then, there exist real numbers K > 0 and M > 0 such that the growth 

condition (1.4) is satisfied. 

Proof. The reader is referred to the literature. [] 
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In view of this result and of Lemma (1.3), one may associate with 

g0,gl,...,g m and I the functional 

t 

m .. id~ik...d~ild~i0 (1.10) v(t) = l(x °) + [ L Lgil .Lg l(x °) 
k=0 io , . . . , i k=O gi 0 0 

(1.11) Lemma. Let g0,gl,...,g m be as in the previous Lemma and let 

11,...,I Z be real-valued analytic functions defined on N. Moreover, 

let y be a real-valued analytic function defined on ~Z. 

Let v1(t),...,vi(t) denote the functionals defined by'setting, in 

(1.10), I = 11,...,i = I£. The composition Y(v1(t),...,vi(t)) is again 

a functional of the form (1.10), corresponding to the setting 

I = y(ll,...,l~)- 

Proof. We will only give a trace to the reader for the proof. Let 

c1,c 2 denote the formal power series defined by setting, in (1.9), 

I = 11 and respectively I = 12 , and let v1(t),v2(t) denote the as- 

sociated functionals (1.10). Then, it is immediately seen that with 

the formal power series defined by setting I = ~i11 + ~212 , where ~I 

and e2 are real numbers, there is associated the functional 

~Iv1(t) + ~2v(t). 

With a little work, it is also seen that with the formal power 

series defined by setting I = 1112 , there is associated the func- 

tional v1(t)v2(t). We show only the very first computations needed 

for that. For, consider the product 

t t t 

= ; 1 IId~ 1+Lg0Lg01 lld~0d~0+" "" ) v I (t)v2(t) (11+Lg0l I d~0+Lg I 

0 0 0 

t i t  t   2+Lgo 21 d o+ glX2 d 1* go go 21 
0 0 0 

where, for simplicity, we have omitted specifying that the values of 

all the functions of x are to be taken at x = x °. Multiplying term- 

by-term we have 

t t 

v1(t)v2(t)=1112+(lILg012+12Lg011);d%+(liLg112+12Lg111);d~1 + 
0 0 

t 
t 

(II+L L I.+I~L L 14) Jld~0d~0 + 
go go z ~ go go ! 

0 

t t 

( 'go l I   .go 21 (Iod o) 
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it it Lg011 The factors that multiply d~0 and d~1 are clearly ~2 and re- 

0 0 

spectively Lg11112. For the other three, we have 

Lg0Lg0lll 2 = lILg0Lg012+12Lg0Lg011+2(Lg011) (Lg012) 

but also 

t t t 

0 0 0 

so that the three terms in question give exactly 

t 

Lg0Lg01112 Id~0d~0 
0 

It is not difficult to set up a recursive formalism which makes it 

possible to completely verify the claim. 

If now ~ is any real-valued analytic function defined on ~£, we 

may take its Taylor series expansion at the origin and use recursively 

the previous results in order to show that the composition 

Y(v1(t),...,vz(t)) may be represented as a series like the (1.10) 

with I replaced by the Taylor series expansion of ¥(ll,...,IZ). [] 

At this point, it is easy to obtain the desired representation 

of y(t) as a functional of the form (1.10). 

(1.12) Theo~Gm. Suppose the inputs Ul,...,u m of the control system 

(1.1) satisfy the constraint (1.5). If T is sufficiently small, then 

for all 0 ~ t ~ T the j-th output yj (t) of the system (1.1) may be 

expanded in following way 

t 

m I (1.13) yj (t)=hj(x °) + ~ ~ L ...Lg hj(x °) d~ik. 
k=0 i0'''''ik=0 gi0 0 " "d~i0 

where g0 = f" 

Proof. We first show that the j-th component of the solution of the 

differential equation (1.1a) may be expressed as 

t 
m ...L x~ (x °) Id~. • 

(1.14) xj (t)=xj (x°)+ ~ ~ L Y~ J 0 ik ..d~i0 
k=0 i0,...,ik=0 gi 0 

where the function xj(x) stands for 
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xj : (x I ..... Xn) t ' xj 

Note that, by definition of iterated integral 

t t 

d " = J0 [d~ik-1" d-~ !d~0d~ik_1 "-'d~i 0 "'d~i 0 

and 

t t 

~t Id~id~ik_1"''d~io = ui(t)Id~ik_1'''d~io 
0 0 

for 1 < i < m. Then, taking the derivative of the right-hand-side of 

(I .14) with respect to the time and rearranging the terms we have 

t 

~j (t)=Lfxj (x°)+ ~ ~ L ...Lg Lfxj(x °)Id~ik...d~i0 + 
k=0 i0,...,ik=0 gi 0 i k 0 

t 
m ~ m I [, L ...L L x. (x O) d~ik 

+i~1[LgiXj (x°)+k=~0 10 .... ik=0 gi0 0 gi k gi ] "''d~i0]ui(t) 

Now, let fj _ and gij denote the j-th components of f and gi ' 

I < j < n, I < i < m and observe that 

Lfxj = fj (x I ..... x n) 

Therefore, on the basis of the Lemma (1.11), we may write 

Lfxj (xO) + ~ m it L ...Lg Lfxj (x O) d~ik...d~i0 
k=0 i 0 .... ,ik=0 gi 0 i k 0 

t 

cx°  + L Lgikf j i aq0 = 
k=0 i 0 , . . . .  i k=O g i  0 ~ k 

fj (x I (t) ..... x n(t)) 

A similar substitution can be performed on the other terms thus yield- 

ing 

m 

xj (t) = fj(x I (t) ..... Xn(t))+ 
i=I 

gij (Xl (t) ..... X n (t)) U i (t) 
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Moreover, the xj(t) satisfy the condition 

xj(0) = x~ 

and therefore are the components of the solution x(t) of the differ- 

ential equation (1.1a). 

A further application of Lemma (1.11) shows that the output (1.1b) 

can be expressed in the form (1.13). [] 

The development (1.13) will be from now on referred to as the 

fundamental formula or Flies8 functional expansion of yj(t). Ob- 

viously, one may deal directly with the case of a vector-valued output 

with the same formalism, by just replacing the scalar-valued function 

hi(x) with the vector-valued function h(x). We stress that, from Lemma 

(1.3), it is known that the series (1.13) converges absolutely and 

uniformly on [0,T]. 

(1.15) Remark. The reader will immediately observe that the functions 

hj(x) and Lg i ...L hj(x), with I ~ j ~ ~ and (ik...i0) • (I*\I0) , 

0 gik 

whose values at x ° characterize the functional (1.13), span the ob- 

servation space 0 defined in section II.3. [] 

(1.16) Ezamples. In the case of a linear system, the formal power 

series which characterizes the functional (1.13) takes the form 

c(ik...i 0) = 

c(~) = c x ° 
3 

cjAk+Ix O 

cjAkbio 
0 

if i 0 = ... = i k = 0 

if i 0 ~ i I = ... = i k 

elsewhere 

= 0 

In the case of a bilinear system, the formal power series which 

characterizes the functional (1.13) takes the form 

c(9) = c x ° 
3 

o 
e(i k. ..i 0) = cjNik "Ni0x 

where N O = A. [] 
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2. Volterra Series Expansions 

The input-output behavior of a nonlinear system of the form (1.1) 

may also be represented by means of a series of generalized convoZu- 

tion integrals. A generalized convolution integral of order k is de- 

fined as follows. Let (ik...i I) be a multiindex of lenght k, with 

ik,...,i I elements of the set {I, .... m}. With this multiindex there 

is associated a real-valued continuous function w. , defined on 

the subset of ~k+1 Zk'''il 

S k = {(t,T k ..... TI) el~k+l: T > t > Tk... >T I > 0} 

where T is a fixed number. If u I ,... ,u m are real-valued piecewise con- 

tinuous functions defined on [ 0,T], the generalized convolution in- 

tegral of order k of ul,...,u m with kernel Wik ...il is defined as 

t Tk T2 

I I -.-I Wik...il(t, Tk ..... ~l)Uik(Tk)...ui (TI)dTI...dT k 
0 0 0 

for 0 < t < T. 

For consistency, if k = 0, rather than a generalized convolution 

integral, one considers simply a continuous real-valued function w 0 

defined on the set 

SO = {t el~ : T >_ t ! 0} 

The sum of a series of generalized convolution integrals may de- 

scribe a functional of ul, .... u m , under the conditions stated below. 

(2.1) Lemma. Suppose there exist real numbers K > 0, M > 0 such that 

(2.2) lWik ...iI (t,T k ..... T I) I < K(k) !M k 

for all k > 0, for all multiindexes (ik...il) , and all (t,~k,...,~l) 6~. 

Then, there exists areal number T > 0 such that, for each 

0 ~ t ~ T and each set of piecewise continuous functions ul,...,u m 

defined on [0,T] and subject to the constraint 

(2.3) max lui(T) I < I, 
0<~ <T 

the series 
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(2.4) 

t ~k T2 

~, ... W. (t,T k ..... TI)U~(Tk)... 
y(t) =w0(t)+k~=1 ii .... ik=1 0 ~k'"il 

Uil (T I )dT I •..d~ k 

is absolutely and uniformly convergent. 

Proof. It is similar to that of Lemma (1.3). [] 

The expression (2.4) clearly defines a functional of u I ..... Um, 

which is causal, and is called a Volterra serges expansion. 

As in the previous section, we are interested in the possibility 

of using an expansion of the form (2.4) for the output of the non- 

linear system (1.1). The existence of such an expansion and the ex- 

pressions of the kernels may be described in the following way. 

(2.5) Lemma. Let f,gl,...,g m be a set of analytic vector fields and 

f denote the I a real-valued analytic function defined on N. Let ~t 

flow of f. For each pair (t,x) E~ ×N for which the flow ¢~(x) is 

defined, let Qt(x) denote the function 

(2.6) Qt(x) = lo~f(x) 

It re(x) the vector fields and P (x),...,Pt 

c2.7) Pt(x) -- (~_ft), giocft(x) 

I < i < m. Moreover, let 

(2.8') w0(t) = Qt(x °) 

= ...L ik Qt (x)) x=xO (2.8") Wik...il (t,T k .... ,T I) (L i1(x ) (x) 

PT I PT k 

Then, there exist real numbers K > 0 and M > 0 such that the 

condition (2.2) is satisfied. [] 

From this result it is easy to obtain the desired representation 

of y(t) in the form of a Volterra series expansion. 

(2.9) Th6orem. Suppose the inputs u I ..... u m of the control system (1.1) 

satisfy the constraint (2.3). If T is sufficiently small, then for all 

0 ~ t ~ T the output yj(t) of the system (1.1) may be expanded in the 
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form of a Volterra series, with kernels (2.8), where Qt(x) and P~(x) 

are as in (2.6)-(2.7) and ~ = hj. [] 

This result may be proved either directly, by showing that the 

Volterra series in question satisfies the equations (1.1), or indirec- 

tly, after establishing a correspondence between the functional ex- 

pansion described at the beginning of the previous section and the 

Volterra series expansion. We take the second way. 

For, observe that for all (ik...i I) the kernel w~...i1(t~Tk,...,~ I) 

is analytic in a neighborhood of the origin, and consider the Taylor 

series expansion of this kernel as a function of the variables 

t-Tk,Tk-~k_1,...,T2-z1,~1. This expansion has clearly the form 

n k n I n 0 
n0...n k (t-T k) ...(T2--T 1 ) T 1 

• = Z C ,  W l k - - - i l ( t ' t k ' ' ' ' ' ~ l )  n0 .nk=0 X k ' ' ' i l  .n l ,n 0, • . nk! . . . .  

where 

Jl n +...+n k 
0 

n0-..n k = Wlk'''i I 

ci k. . .i I n k n I n 0 
9(t-T k) . ..8(T2--T I) 8T I 

t-xk=...=T2-~1=~1=0 

If we substitute this expression in the convolution integral asso- 

ciated with w. , we obtain an integral of the form 
z k . • . i I 

n k n I n 0 
~ n 0 • . . n  k ( ' r2 -T 1 ) "r 1 
Z C ,  . . 

n 0 .nk=0 Xk 11 nk! n1! ul I , n 0, 
" "  0 0 0 

The integral which appears in this expression is actually an 

iterated integral of ul,...,u m , and precisely the integral 

t 
n k n O 

(2.10) I(d~0) d~ik... (d~0)nld~il (d~ 0) 

0 

(where (dg0)n stands for n-times d~ 0) . 

Thus, the expansion (2.4) may be replaced with the expansion 

y ( t )  = ~ e 0 ( d ~ O ) n  
n = O  

0 (2.11) = t 
n0""nk I (d~0)~d~" nl n 

+k-Z-1 i l . . . !k=l  n0!..nk=0 lk' ' '11 0 c . . . .  (d(0) d~il (d(0) 0 
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which is clearly an expansion of the form (1,6). Of course, one could 

rearrange the terms and establish a correspondance between the coef- 

n n0"''nk 
ficients c0,c i . (i.e. the values of the derivatives of w 0 and 

k" "il 

Wik...i I at t-Tk=...=T2-TI=TI=0) and the coefficients c(~),c(~...i 0) 

of the expansion (1.6), but this is not needed at this point. 

On the basis of these considerations it is very easy to find 

Taylor series expansions of the kernels which characterize the Volterra 

series expansion of yj(t). We see from (2.11) that the coefficient 

n0...n k 
eik...i I of the Taylor series expansion of Wik...i I coincides with 

the coefficient of the iterated integral (2.10) in an expansion (1.6), 

but we know also from (1.13), that the coefficient of the iterated 

integral (2.10) has the form 

n O n I nk_ I n k 
Lf LgiILf ...Lf LgikL f hj(x °) 

This makes it possible to write down immediately the expressions of 

the Taylor series expansions of all the kernels which characterize 

the Volterra series expansion of y4 (t). 
J 

(2.1 2a) 

(2.12b) 

(2.12c) 

Oo 

W 0(t) ~ Lfhj X O" tn 
= ( ~HY' 
n=0 

n I n O 
n o n. (t-T I ) T I 

nl=0 n0=0 nl '- n0! 

n 2 n I n o 
~ ~ n n4 n~ (t-T 2) (T2-T I) T 1 

(t,.~.,,-c~)= [ nl[O }~ L~OL L'L  L ~ . ( x  °) wi2i I L , n2=0 = n0=0 z gil z gi2 z 3 n2!n1!n0! 

and so on. 

The last step needed in order to prove Theorem (2.9) is to show 

that the Taylor series expansions of the kernels (2.8), with Qt(x) 

and Pt(x) defined as in (2.6), (2.7) for I = h i (t) coincide with the 

expansions (2.1 2) . 

This is only a routine computation, which may be carried out with 

a little effort by keeping in mind the well-knownCampbell-Baker-Haus- 

i (x) Ac- dorff formula, which provides a Taylor series expansion of Pt " 

cording to this formula it is possible to expand Pt(x) in the follow- 

ing way 

~n , , t n 
Pt(x) = (#ft), gio(~t(x)) = ~ aafgi~x'~. 

n=0 
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where, as usual, ad~g ~ [ f,ad~-Ig] and ad~g = g. 

(2.13) ExampZe. In the case of bilinear systems, the flow ~[ may be 

clearly given the following closed form expression 

f(x) = (exp At)x 
Ct 

From this it is easy to find the expressions of the kernels of the 

Volterra series expansion of Yi(t). In this case 

Qt(x) = cj (exp At)x 

P~(x) = (exp(-At))Ni(ex p At)x 

w0(t) = cj (exp At)x ° 

wi(t,T I) = Cj (exp A(t-T1))Ni(ex p ATI)X ° 

and, therefore, 

and so on. 

wz2il (t,T2,TI) =Cj (exp A(t-T2))Ni2(exp A(T2-TI))Nilexp(ATI)X ° 

3. Output Invariance 

In this section we want to find the conditions under which the 

output is not affected by the input. These conditions will be used 

later on in the next chapter when dealing with the disturbance de- 

coupling or with the noninteracting control. 

Consider again a system of the form 

m 
= f{x) + [ 

i=I 

yj = hi(x) 

gi(x)ui 

(j = 1 ..... ~)  

and let 

yj(t;x°;u I ..... u m) 

denote the value at time t of the j-th output, corresponding to an 
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initial state x ° and to a set of input functions ul,...,u m. We say 

that the output yj is unaf~ec%ed by (or ~nua~an~ under) the input ui, 

if for every initial state x°'6 N,for every set of input functions 

ul,...,ui_1,ui+1,...,h m , and for all t 

(3.1) yj (t;x°;ul ui_q,v a ,u m) = •..., ,ui+ I • ... 

Yj (t;x°;ul . ,Ui_1,V b , .. ,Ui+l,...,u m) 

for every pair of functions v a and v b. 

There is a simple test that identifies the systems having the 

output yj unaffected by the input u i- 

(3.2) Theorem. The output yj is unaffected by the input u i if and 

0nly if, for all r ~ I and for any choice of vector fields TI,...,T r 

in the set {f'g1' .... gm } 

Lgihj(x) = 0 

• --LTrh j (3.3) LgiLTI (x) = 0 

for all x E N. 

Proof. Suppose the above condition is satisfied. Then, one easily 

sees that the function 

.-.LTrhj(x) (3.4) L I = 0 

is identically zero 

TI,...,T r coincides 

Fliess expansion of 

whenever at least one of the vector fields 

with gi" If we now look, for instance, at the 

yj(t), we observe that under these circumstances 

C(ik...i0) = 0 

whenever one of the indexes i0,...,i k is equal to i, and this, in 

turn, implies that any iterated integral which involves the input 

function u i is multiplied by a zero factor. Thus, the condition (3.1) 

is satisfied and the output yj is decoupled from the input u i- 

Conversely, suppose the condition (3.1) is satisfied, for every 

x ° 6 N, for every set of inputs ul,...,ui_1,ui+1,...,u m and every 

pair of functions v a and v b. Take in particular va(t) = 0 for all t. 

Then in the Fliess expansion of yj(t;x°;ul,...,ui_1,va,ui+1 , .... u m) 
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an iterated integral of the form 

t 

I d~ik'''d~i0 
0 

will be zero whenever one of the indexes i0,...,i k is equal to i. All 

other iterated integrals of this expansion (i.e. the ones in which 

none of the indexes i0,...,i k is equal to i) will be equal to the cor- 

responding iterated integrals in the expansion of yj(t;x°;ul,...,ui_1, 
b 

v ,ui+1,...,u m) because the inputs Ul,...,Ui_l,Ui+l,...,u m are the 

same. Therefore, we deduce that the difference between the right-hand- 

side and left-hand-side of (3.1) is a series of the form 

t 

k=0 ~ T c(ik'''i0 )I d~ik'''d~i0 
i0'''''ik=0 0 

in which the only nonzero coefficients are those with at least one of 

the indexes i0,.°.,i k equal to i. The sum of this series is zero 
b 

for every input Ul,...,ui_1,v ,ui+1,...,u m. Therefore, according to 

Lemma (1.7), all its coefficients must vanish, for all x ° 6 N. We con- 

clude that (3.4) and, accordingly, (3.3) are satisfied for all x6N. [] 

The condition (3.3) can be given other formulations, in geometric 

terms. Remember that, in section I, we have already observed that the 

coefficients of the Fliess expansion of y(t) coincide with the values 

at x° of functions that span the observation space 0. The different- 

ials of these functions span, by definition, the codistribution 

~0 = sp(dX:X 6 0} 

If we fix our attention only on the j-th output, we may in particular 

define an observation space 0j as the smallest subspace of Ca(N) which 

contains the function h and is closed under differentiation along 
3 

f,gl,...,g m. Therefore, the set of differentials dhj,dLg. ...Lg hj(x) 

with ik,...,i 0 6I and j fixed spans the codistribution 10 ik 

~0A = sp{dX:X e 0j} 
3 

Now, observe that the condition (3.3) can be written as 

(dhj,g i ) (x ~ = 0 
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(dL ...Lg hj,g i )(x) = 0 
gi k . i 0 

for all k ~ 0 and for all ik,...,i 0 6 I. From the above discussion we 

conclude that the condition stated in Theorem (3.2) is equivalent to 

the condition 

(3.5) 
£ 

gi 6 n0 
3 

Other formulations are possible. For, remember that we have shown 

in section II.3 that the distribution ~0 is invariant under the vector 
± 

fields f,gl,...,g m. For the same reasons, also the distribution ~0. is 

invariant under f,gl,...,g m. 3 

Now, let (f,gl,...,gmlsp{gi}) denote, as usual, the smallest di- 

stribution invariant under f,gl,...,g m which contains sp{gi}. If (3.5) 

is true, then, since ~0. is invariant under f,gl,...,g m , we must have 
3 

l 
(3.6) (f'gl ..... gm}sp{gi } ) C ~0. 

3 

Moreover, since 

~ C sp{dhj} i 
3 

we see also that if (3.6) is true, we must have 

(3.7) (f'gl ..... gmlSp{gi } ) C (sp{dhj}) l 

Thus, we have seen that (3.5) implies (3.6) and this, in turn, 

implies (3.7). We will show now that (3.7) implies (3.5) thus proving 

that the three conditions are in fact equivalent. 

For, observe that any vector field of the form [T,g i] with 

T 6 {f,gl,...,gm} is by definition in the left-hand-side of (3.7). 

Therefore, if (3.7) is true, 

0 = <dhj,[ Y,gi]) = L~Lgihj-LgiLTh j 

But, again from (3.7), gi 6 (sp{dhj}) l so we can concluHe 

LgiLTh j = 0 
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i.e. 

gi • (sp{dLThj })± 

By iterating this argument it is easily seen that if Tk,...,T I is 

any set of k vector fields belonging to the set {f,gl,...,gm }, then 

(3.8) gi • (sp{dLTk'''LTIhj})± 

From the Remark II.(3.4), we know that 0 consists of m-linear 
3 

• - ~ l h j  ' combinations of functions of the form hj or L k .L with 

E { ,gm } _ Thus, from (3.8) we deduce Ti f'g1'''" , I < i ~ k, I ~ k < ~. 

that gi annihilates the differential of any function in 0j , i.e. that 

(3.5) is satisfied. 

Summing up we may state following result 

(3.9) Theorem. The output yj is unaffected by the input u i if and only 

if any one of the following (equivalent) conditions is satisfied 

i) 

ii 

iii) 

gi 6 ~0 
3 

(f'gl ..... gm]Sp{gi } > C (sp{dhj}) ±. 

± 
(f'gl ..... gmlSp{gi } > C n0. 

J 

(3.10) Remark. It is clear that the statement of Theorem (3.2) can be 

slightly modified (and weakened) by asking that 

L h(x) = 0 
gi 3 

L L ...L h.(x) = 0 
gi T1 ~r 3 

for all r ~ I and any choice of vector fields ~I' .... T r in the set 

{f'g1' .... gi-1'gi+1'''''gm}" 
Accordingly, the statement of Theorem (3.9) could be modified by 

taking into consideration, instead of < f,gl,...,gmlsp{gi} ) , the smal- 

lest distribution containing gi and invariant under the vector fields 

f,gl,...,gi_1,gi+1,.-.,gm . Consistently, instead of 0j , one should 

consider the smallest subspace of C~(N) containing h and closed under 
J 

differentiation along the vector fields f,gl,...,gi_1,gi+1,...,g m. 

± 
(3.11) Remark. Suppose (f'gl ..... gmlsp{gi}) and ~0j are nonsingular. 
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Then both distributions are also involutive (see Lemmas I.(6.6),I.(7.6) 

and Remark II.(3.7)).If the condition (iii) of Theorem (3.9) is sa- 

tisfied, then around each point x • N it is possible to find a coord- 

inate neighborhood U on which the nonlinear system is locally repre- 

sented by equations of the form 

m 

xl =f1(xl,x2 ) + ~ gkl(Xl,X2)Uk +gi(xl,x2)ui 
k=1 
k~i 

m 

x2 = f2(x2 ) + ~ gk2(X2)Uk 
k=1 
k~i 

Yj = hj(x 2) 

from which one sees that the input u i has no influence on the output 

yj. D 

Suppose there is a distribution A which is invariant under the 

vector fields f'g1'''''gm ' contains the vector field gi and is con- 
± 

rained in the distribution (sp{dhj}) . Then 
± 

(f'gl ..... gmlSp{gi } > C A C (sp{dhj}) 

We conclude from the above inequality that the condition (ii) of 

Theorem (3.9) is satisfied. Conversely, if condition (i) of Theorem 

which is invariant (3.9) is satisfied, we have a distribution, ~0. ' 

under the vector fields f,gl,...,g m , contains3g i and is contained in 

(sp{dhj}) ±. Therefore we may give another different and useful formu- 

lation to the invariance condition. 

(3.12) Theorem. The output yj is unaffected by the input u i if and 

only if there exists a distribution ~ with the following properties 

(i) A is invariant under f,gl,...,g m 

(ii) gi • A C (sp{dhj}) ± [] 

(3.13) Remark. Again the condition (i) may be weakened by simply asking 

that 

(i') ~ is invariant under f'gl' .... gi-1'gi+1'''''gm 

Note that this implies that if there exists a distribution A with the 

properties (i') and (ii) there exists another distribution ~ with the 

properties (i) and (ii). [] 

We leave to the reader the task of extending the previous result 

to the situation in which it is required that a specified set of out- 
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puts YJI'''''YJr has to be unaffected by a given set of inputs 

u ,...,u. . The conditions stated in Theorem (3.2) remain formally 
z I z s 

the same, while the ones stated in Theorems(3.9) and (3.12) require 

appropriate modifications. 

In concluding this section it may be worth observing that in 

case the system in question reduces to a linear system of the form 

m 

~=Ax÷[bu 
i= I i Z 

yj = cjx j = I ..... Z 

then the condition (3.3) becomes 

cjAkbi = 0 for all k _> 0 

The conditions (i), (ii), (iii) of Theorem (3.9) become respectively 

n-1 
• N ker (cjA k) 

bi k=0 

n-1 n-1 
Im(Akbi ) C N ker(ejA k) 

k=0 k=0 

n-1 
im(Akbi ) C ker(cj) 

k=0 

These clearly imply and are implied by the existence of a subspace V 

invariant under A and such that 

b i C V C ker(cj) . 

4. Left-Invertibility 

In this section we consider the problem of finding conditions 

which ensures that, in a given system, different input functions pro- 

duce different output functions. If this is the case then the input- 

output map is invertible from the left and it is possible to recon- 

struct uniquely the input acting on the system from the knowledge of 

the corresponding output. Since, as we know, the input-output map of 

a nonlinear system depends on the initial state x °, one has to in- 

corporate the dependence on the initial state into a precise defini- 
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tion of invertibility. 

A system is left-invertible at x ° if whenever u a and u b are two 

different input functions 

y(t;x°;u a) ~ y(t;x°;u b) 

for at least a value of t > 0. 
k 

We restrict our attention to systems with a scalar-valued input 

(but possibly vector-valued output) because this case can be dealt 

with relative ease. Thus our system will be described by the equations 

(4.1) 

= f(x) + g(x)u 

yj = hj(x) I < j < £ 

A simple sufficient condition for invertibility at x ° is the fol- 

lowing one. 

(4.2) Lemma. The system (4.1) is left-invertible at x O if for some in- 

teger k o _> 0 and some I _< j _< Z 

k 
(4.3) L Lf°h. (x °) ~ 0 

g 3 

(4.4) L L';h. (x) = 0 
g ~ 3 

for all x 6 N and for all 0 < k < k 
-- o 

Proof. S u p p o s e  t h a t  u a a n d  u b a r e  t w o  d i f f e r e n t  a n a l y t i c  i n p u t  f u n c -  

t i o n s .  Then, there exists an integer r such that 

(4.5) 
dru a dru b 

(d--~ -) t=o ~ (d-~ - )  t :o  

NOW, let r ° denote the smallest integer such that (4.4) is satisfied. 

We will show that the (k ° + r ° + 1)-th derivatives of Yi(t;x°;ua) and 

of Yi(t;x°;ub) with respect to the time t are different at t = 0, so 

that we may conclude that the two output functions, which are analytic, 

are different. 

For, remember that the coefficients of the Fliess expansion of 

yj(t;x°;u a) have the expression 
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h(x °) 
3 

L L ...Lg hj(x °) 

gJ0 gJl Jk 

where, in this case, 0 ~j0 ..... Jk ~ I and g0 = f' gl = g" From (4.4) 

we have that the only possibly nonzero coefficients in the series are 

those in which: 

- either J0 = "'" = Jk = 0 

- or k > k ° and J k-k +I 
o 

= ... = jk = 0 

These coefficients multiply iterated integrals which either do 

not contain the input function, or have the form 

t 

Id~ 0...d~0d~jk_k ...d~j0 
0 o 

~r-~ 

ko-times 

Let's now take the k-th derivatives of the function yj(t;x°;u) 

with respect to t and evaluate them at t = 0. It is clear from the 

structure of the iterated integrals that only those terms of Fliess 

series whose index has a lenght smaller than or equal k will contri- 

bute, because all terms whose index has a lenght greater than k vanish 

at t = 0. Thus we have 

ko+ro+ 1 
d yj = 

k +r +1 
dt o o t=O 

ko i k I ro1!t ] 
= ~ [ L ...Lg Lf°hj(x °) d~jk'"d~j0 0 
k=0 J0 ..... Jk =0 gJ0 Jk Idt rO+1 t= 

At this point, we observe that 

Idrol !t I Id t 1 
dt r°+------~ d~1 t=0 [ d t o t=0 

and that all other (ro+1)-th derivatives of the iterated in- 
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tegrals depend only on u(0),u(0), up to the (ro-1)-th derivative of 

u(t) at t = 0. 

Therefore, since 
dku a dku b 
(d--~ -) t=0 = (dt ~ )  t=0 

for all 0 < k < r -I, we conclude 
-- -- O 

k +r +I 

dtko+ro+ I 
it=0 

k +r +I 
d ° o . o b, I 

J dtko+ro+l t= 0 

k r Idrou b] ] 

= LgLf°hj (x°)II~] - m ~ 0 

[fat ° jt--0 [dt ° it=0 J 
This completes the proof. [] 

The condition of Theorem (4.3) may fail to be necessary for left 
o 

invertibility at a given x , but it happens to be necessary and suf- 

ficient for a stronger notion of invertibility. For, suppose there 

exists an integer k ° such that the conditions (4.3) and (4.4) are sa- 

tisfied for some x °. Then, there exists a neighborhood U of x ° such 

that 

k 
LgLf°hj (~) ~ 0 

for all x 6 U and this together with (4.4) implies - according to our 

previous theorem - that the system is left invertible at all points 

of U. Conversely, suppose we cannot find an integer k ° such that 

(4.3) is satisfied for some x °. This implies that 

LgLkhj (x) = 0 

for all k > 0 and for all I < j < £. This in turn implies that all 

the coefficients of Fliess expansion of y(t) vanish but the ones in 

which only differentiations along the vector field f occurr. Under 

these ciTcumstances we have 

= k 

y(t) =k~0Lkh(x)~.l " =  

and there is no x for which the system is left-invertible. 

Thus, we ~may state the following result 
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(4.6) Theorem. There exists an open subset U of N with the property 

that the system is left invertible at all points x of U if and only 

if there exists an integer k > 0 such that 

LgL~hj(x °) ~ 0 

for some x ° 6 N and some I < j < Z. [] 

Of course, the system being analytic, if the condition (4.3) is 

satisfied at some x °, then it is satisfied on an open subset U of N 

which contains x O and is dense in N. Therefore the existence of an 

integer k such that the condition (4.3) is satisfied for some x ° EN 

and some I ~ j ~ Z is actually necessary and sufficient for the ex- 

istence of an open subset U dense in N with the property that the 

system is invertible at all x E U. 

5. Realization Theory 

The problem of "realizing" a given input-output behavior is 

generally known as the problem of finding a dynamical system with 

inputs and outputs able to reproduce, when initialized in a suitable 

state, the given input-output behavior. The dynamical system is thus 

said to "realize", from the chosen initial state, the prescribed 

input-output map. 

Usually, the search for dynamical systems which realize the 

input-output map is restricted to special classes in the universe of 

all dynamical systems,depending on the structure and/or properties 

of the given input-output map. For example, when this map may be re- 

presented as a convolution integral of the form 

t 

y(t) = Iw(t--T)U(T)dT 

0 

where w is a prescribed function of t defined for t > 0, then one 

usually looks for a linear dynamical system 

= Ax + Bu 

y=Cx 

able to reproduce, when initialized in x ° = 0, the given behavior. 

For this to be true, the matrices A,B,C must be such that 

C exp(At)B = w(t) 
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We will now describe the fundamentals of the realization theory 

for the (rather general) class of input-output maps which can be re- 

presented like functionals of the form (1.6): In view of the results 

of the previous sections, the search for "realizations" of this kind 

of maps will be restricted to the class of dynamical system of the 

form (1.1). 

From a formal point of view, the problem is stated in the fol- 

lowing way. Given a formal power series in m+1 noncommutative in- 

determinates with coefficients in ~£, find an integer n, an element 

o lqn x of , m+1 analytic vector fields g0,g I .... 'gm and an analytic 

£-vector valued function h defined on a neighborhood U of x ° such that 

h(x O) = c(~) 

L L ...L h(x °) = c(ik...ili 0) 
g i  0 g i  1 g i  k 

If these conditions are satisfied, then it is clear that the 

dynamical system 

m 

x = g0(x) + ~ gi(x)ui 
i=I 

y = h (x) 

initialized in x O 6~ produces an input-output behavior 

t 

m I y(t) = c(~) + ~ ~ c(Jk...j0) d~k...d~0 
k=0 j0...Jk=0 0 

of the form 

In view of this, the set {g0,g I ..... gm,h,x°} will be called a 

realization of the formal power series c. 

In order to present the basic results of the realization theory, 

we need first to develop some notations and describe some simple al- 

gebraic concepts related to the formal power series. In view of the 

need of dealing with sets of series and defining certain operations on 

these sets it is useful to represent each series as a formal infinite 

sum of " " . Let , ,...,z m monomlals" z 0 z I denote a set of m+1 abstract non 

commutative indeterminates and let Z = {z0,zl,...,Zm}. With each multi- 

index (ik...i 0) we associate the monomial (Zik.,.zi0) and we represent 

the series in the form 

(5.1) 
m 

c = c(~) + [ X 
k=0 i0...ik=0 

C (i k. i~) Z .... Z 
"" v i k i 0 
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The set of all power series in m+1 noncommutative indeterminates 

(or, in other words, in the noncommutative indeterminates z 0, .... z m) 

and coefficients in ~Z is denoted with the symbol RZ({ Z )}. A special 

subset of ~<(Z }} is the set of all those series in which the number 

of nonzero coefficients (i.e. the number of nonzero terms in the sum 

(5.1)) is finite. A series of this type is a polynomial in m+1 non- 

commutative indeterminates and the set of all such polynomials is 

denoted with the symbol ~Z<Z ) . In particular ~(Z }is the set of all 

polynomials in the m+1 noncommutative indeterminates z0,...,z m and 

coefficients in R. 

An element of ~(Z ) may be represented in the form 

d m 

(5.2) p = p(@) + ~ [ P(ik...i0)zik...zi0 
k=0 i0...ik=0 

where d is an integer which depends on p and p(@),P(ik...i 0) are real 

numbers. 

The sets ~(Z > and RZ<(Z>) may be given different algebraic struc- 

tures. They can clearly be regarded as ~-vector spaces, by letting 

R-linear combinations of polynomials and/or series be defined coef- 

ficient-wise. The set ~< Z > may also be given a ring structure, by 

letting the operation of sum of polynomials be defined coefficient- 

wise (with the neutral element given by the polynomial whose coeffi- 

cients are all zero) and the operation of product of polynomials de- 

fined through the customary product of the corresponding representa- 

tions (5.2) (in which case the neutral element is the polynomial whose 

coefficients are all zeros but p(@) which is equal to I). Later-on, in 

the proof of Theorem (5.8), we shall also endow ~(Z ) and ~i<(Z )) with 

structures of modules over the ring ~<Z } but, for the moment, those 

additional structures are not required. 

What is important at this point is to know that the set ~< Z ) can 

also be given a structure of a Lie algebra, by taking the above-men- 

tioned R-vector space structure and defining a Lie bracket of two poly- 

nomials p1,p 2 by setting ~pl,P2| = p2Pl - plP2. The smallest sub- 

algebra of ~<Z ) which contains the monomials z 0, .... ,;z m will be de- 

noted by i(Z) . Clearly, i(Z) may be viewed as a subspace of the ~- 

vector space ~(Z ) , which contains z0,...,z m and is closed under Lie 

bracketing with z0,...,z m. Actually, it is not difficult to see that 

L(Z) is the smallest subspace of ~(Z > which has these properties. 

Now we return to the problem of realizing an input-output map 

represented by a functional ~f the form (1.6). As expected, the ex- 
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istence of realizations will be characterized as a property of the 

formal power series which specifies the functional. We associate with 

the formal power series c two integers, which will be called, fol- 

lowing Fliess, the Hanke~ rank and the Lie rank of c. This is done 

in the following manner. We use the given formal power series c to 

define a mapping 

F c : ~(Z ) ~ ~Z<<Z )) 

in the following way: 

a) the image under F c of any polynomial in the set Z = 

= {zj ...zj 6 ~(Z ): (jk...jo) ~ I } (by definition, the polyno- 
k 0 I* mial associated with the multiindex ~ 6 will be the polynomial 

in which all coef/_%cients are zero but p(@) which is equal to I, 

i.e. the unit of ~(Z )) is a formal power series defined by setting 

[Fc(Z3k .... Zjo)] (ir-.-i 0) = c(i r...i 0 Jk...jo ) 

for all Jk'''JO 6 I . 

b) the map F c is an E-vector space morphism of ~( z ) into ~Z({ Z )) . 

Note that any polynomial in ~(Z ) may be expressed as an k-linear 

combination Qf elements of Z and, therefore, the prescriptions (a) 

and (b) completely specify the mapping F c- 

Looking at F c as a morphism of ~-vector spaces, we define the 

Hankel rank PH(C) of c as the rank of F c , i.e. the dimension of the 

subspace 

F c~(Z )) C ~R£(( Z )) 

Moreover, we define the Lie rank PL(C) of c as the dimension of 

the subspace 

Fc(L(Z)) Cm~<{Z )) 

i.~. the rank of the mapping FclL(Z) . 

(5.3) Remark. It is easy to get a matrix representation of the mapping 

F c. For, suppose we represent an element p of ~(Z ) with an infinite 

column vector of real numbers whose entries are indexed by the elements 

o£ I and the entry indexed by jk...jo is exactly p(jk...jo ) . Of course, 

p beiag a polynomial, only finitely many elements of this vector are 
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nonzero. In the same way, we may represent an element c of ~Z<< Z )) 

with an infinite column vector whose entries are Z-vectors of real 

numbers, indexed by the elements of I and such that the entry in- 

dexed by ir...i 0 is C(ir...i0). Then, any ~-vector space morphism de- 

fined on ~( Z ) with values in ~Z<(Z )) will be represented by an in- 

finite matrix, whose columns are indexed by elements of I and in 

which each block of Z rows is again indexed by elements of I . In 

particular, the mapping F c will be represented by a matrix, denoted 

H c , in which the block of Z rows of index (ir...i 0) on the column of 

index (jk...j0) is exactly the coefficient 

C(ir...i0Jk...J 0) 

of c. We leave to the reader the elementary check of this statement. 

The matrix H c is called the Hankel matrix of the series c. It 

is clear from the above definitions that the rank of the matrix H 
c 

coincides with the Hankel rank of F . [] 
c 

(5.4) Example. If the set I consists of only one element, then it is 

easily seen that I can be identified with the set Z + of the non- 

negative integers numbers. A formal power series in one indeterminate 

with coefficients in ~, i.e. a mapping 

Z + c : ~I~ 

may be represented, like in (5.1), as an infinite sum 

os 

C ---- ~ ckzk 
k=0 

and the Hankel matrix associated with the mapping F c coincides with 

the classical Hankel matrix associated with the sequence c0,cl... 

S ~- 
c 

c O c I c 2 

c I c 2 c 3 

c 2 c 3 c 4 O O I 

I Q D 
[] 

The importance of the Hankel and Lie ranks of the mapping F c 
depends on the following basic results. 

(5.5) Lemma. Let f,gl,...,gm,h and a point x ° E A n be given. Let ~C 



111 

be the distribution associated with the control Lie algebra C and ~0 

the codistribution associated with the observation space 0. Let K(x °) 

denote the subset of vectors of ~C (x°) which annihilate ~0(x °) i.e. 

I~ n defined by the subspace of T o 
x 

K(x °) = ~c(X °) n ~i(x°) ={v E ~c(X°): <dl(x°),v }= 0 Vl • 0} 

Finally, let c be the formal power series defined by 

(5.6a) c(~) = h(x °) 

(5.6b) 

with g0 

c(ik...i 0) = L ...Lg h(x °) 
gi 0 i k 

= f. Then the Lie rank of c has the value 

PL(C) = dim Ac(X°)-dim K(x °) 
ac(X °) 

= dim 
i(x°) ac(x °) n ~0 

Proof. Define a morphism of Lie algebras 

: L(Z) -~ V~R n) 

by setting 

~(zi) = gi 0 < i < m 

series F c(p) 

F c(p) = L (p) 

Then, it is easy to check that if p is a polynomial in L(Z) the 

(p)Lgi0...Lg h(x°). Thus, the {ik...i0)-th coefficient of Fc(p) is L ik 

has the expression 

m 

h(x°) +k~ [ L (p)Lgi0 
0 i o , . . . , i k = O  ~ 

...L h(x°)z .... z. 
gi k ik 10 

If we let v denote the value of the vector field ~(p) at x °, the above 

can be rewritten as 

m 

FC(p) =(dh(x°),v )+ (dL ...L h(x °) 
k=0 i0,...,ik=0 gi 0 gi k 

,v)z . . . .  z .  

z k 10 

When p ranges over i(Z), the tangent vector v takes any value in 

Ac(x°). Moreover, the covectors dh(x °) . . dL ...Lg h(x°),... 

, . , gi0 i k 
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span ~0(x°). This implies that the number of A-linearly independent 

power series in Fc(A(Z)) is exactly equal to 

o 
dim A C(x °)-dim A C(x °) N ~0(x ) 

and this, in view of the definition of Lie rank of F c , proves the 

claim. [] 

We immediately see from this that if an input-output functional 

of the form (1.6) is realized by a dynamical system of dimension n, 

then necessarily the Lie rank of the formal power series which specify 

the functional is bounded by n. In other words, the finiteness of the 

Lie rank OL(C) is a necessary condition for the existence of finite- 

dimensional realizations. We shall see later on that this condition is 

also sufficient. For the moment, we wish to investigate the role of 

the finiteness of the other rank associated with F c i.e. the Hankel 

rank. It comes from the definition that 

PL(C) < PH(C) 

so the Hankel rank may be infinite when the Lie rank is finite. How- 

ever, there are special cases in which PH(C) is finite. 

(5.7) Lemma. Suppose f'g1' .... gm,h are linear in x, i.e. that 

f(x) = ~x, gl (x) = NIX ..... gm(X) = NmX , h(x) = Cx 

for suitable matrices A,NI,...,Nm, C. Let x O be a point of An. Let V 

denote the smallest subspace of A n which contains x ° and is invariant 

under A,NI,...,N m. Let W denote the largest subspace of A n which is 

contained in ker(C) and is invariant under A,NI,...,N m. The Hankel 

rank of the formal power series (5.7) has the value 

V p_(c) = dim V-dim W N V = dim 
O----V W 

Proof. We have already seen, in section II.4, that the subspace W may 

be expressed in the following way 

m 

W = (ker C) N | n N ker(CNir. ..Ni0 ~ 
r=0 i 0...ir=0 

with N O = A. With the same kind of arguments one proves that the sub- 

space V may be expressed as 
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V span{xO] + ~ m 
= , [ span{Njk---N j x O} 

k=0 j0...Jk=0 0 

In the present case the Hankel matrix of F c is such that the block of 

£ rows of index (ir...i 0) on the column of index (jk...j0), i.e. the 

coefficient C(ir...i0Jk...j0) of c has the expression 

o 
CN .... N N .... N. x 

ir 10 ]k 30 

By factoring out this expression in the form 

(CNir'''Ni0) (Njk'''Nj0x°) 

it is seen that the Hankel matrix can be factored out as the product 

of two matrices, of which the one on the left-hand-side has a kernel 

equal to the subspace W, while the one on the right-hand-side has an 

image equal to the subspace V. From this the claimed result follows 

immediately. [] 

Thus, it is seen from this Lemma that if an input output func- 

tional of the form (1.3) is realized by a dynamical system of dimension 

n described by equations of the form 

m 
= Ax + ~ N xu 

i=I x m 

y = Cx 

i.e. by a bilinear dynamical system of dimension n, then the Hankel 

rank of the formal power series which specifies the functional is 

bounded by n. The finiteness of the Hankel rank PH(C) is a necessary 

condition for the existence of bilinear realizations. 

We turn now to the problem of showing the sufficiency of the above 

two conditions. We treat first the case of bilinear realizations, which 

is simpler. In analogy with the definition given at the beginning of 

the section, we say that the set {N O N I .,Nm,C x O} where x O 6 ~n ; r o "  r # # 

N E ~n×n for 0 < i < m and C C ~£×n is a bilinear realization of the 

formal power series c if the set {g0,gl,...,gm,h,x°} defined by 

g0(x) = N0x, g1(x) = NI(X) ..... gm(X) = NmX 

h (x) = Cx 
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is a realization of c. 

(5.8) Theorem. Let c be a formal power series in m+1 noncommutative 

indeterminates and coefficients in ~£. There exists a bilinear realiza- 

tion of c if and only if the Hankel rank of c is finite. 

Proof. We need only to prove the "if" part. For, consider again the 

mapping F c. The sets R< Z ) and ~Z(<Z )} will now be endowed with 

structures of modules. The ring ~( Z ) is regarded as a module over 

itself. ~i(( Z )} is given an ~(Z }-module structure by letting the 

operation of sum of power series be defined coefficient-wise and the 

product p.s of a polynomial p ~ ~(Z ) by a series s E ~Z{<Z )} be 

defined in the following way 

a) 1.s = s 

b) for all 0 < i < m the series z.'s is given by 

(zi's) (i r...i 0) = s(i r...i0i) 

c) for all p1,p 2 6 ~<Z } and e1,~2 6 

(elp1+e2P2).s = el (P1"S)+e2(P2 "s) 

Note that from (a) and (b) we have that for all __ik-.-J 0 @ I 

.. • -s) (ir...i 0) = s(i r...i0jk...j 0) (Zjk "z30 

Note also that since the ring ~< Z } is not commutative, the order in 

which the products are performed is essential. 

We leave to the reader the simple proof that the map F c previously 

defined becomes an ~( Z }-module morphism when ~£((Z) } is endowed with 

this kind of I~(Z >-module structure. As a matter of fact, it is trivial 

to check that F c(p) = p.c. 

Now, consider the canonical factorization of F c 

F 

~<Z } 
Ker F 

c 

in which, as usual, Pc denotes the canonical projection p ~--+(p+ker F c) 

and Qc the injection (p+ker F c)~ F c(p). Pc and Qc are l~-vector space 

morphisms, but there is also a canonical I~( Z }-module structure on 
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]9( Z )/ ker F c which makes Pc and Qc ]R( Z )-module morphisms. 

Since, by definition, ~R< Z )/ ker F c is isomorphic to the image 

of F c , we have that the dimension of 1R( Z ) / ker F c as an lR-vector 

space is equal to the Hankel rank PH(C) of the formal power series c. 

Let, for simplicity, denote 

m(Z > 
X = 

ker F 
c 

But X is also an ]R( Z )-module, so to each of the indeterminates 

z0,...,z m we may associate mappings 

Mi:X~X 

X ~--+ Zi'X 

The mappings M i are clearly JR-vector space morphisms. We also 

define an ]R-vector space morphism 

H : X~]R £ 

by taking 

HX = [Qc(X)I (@) 

With the notation on the right-hand-side we mean the coefficient with 

empty index in the series Qc(X). 

Finally, let x ° be the element of X 

o 
x = P (I) 

C 

where I is the unit p o l y n o m i a l  i n  ]~( Z > .  

We claim that 

(5.9a) c(~) = Hx O 

o 
(5.9b) c ( i  k . . . i  0) = H M i k . . . M i 0 x  

F o r ,  i t  i s  s e e n  i m m e d i a t e l y  t h a t  

o 
(5.10a) c = Fc(1) = QcPc(1) = Qc x 
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Moreover, suppose that 

o 
(5.10b) F c(zik...zi0) = QcMik...Mi0x 

then we have 

Fc(Z z .... z. ) = zi.F c ... zi(QcMik x O) 1 i k l 0 (zi k zi 0) = "''Mi 0 

x O) ...M. x O 
Qc(Zi-Mik...Mi0 = QcMiMik 10 

for 0 ~ i ~ m. Thus (5.10b) is true for all (ik...i 0) • I . 

Now, keeping in mind the definition of F c , one has 

[Fc(Zik...zi0)] (~) = c(zik...zi0) 

and therefore, in view of the definition of the mapping H, (5.9) are 

proved. 

Take now a basis in the DH(C)-dimensional vector space X. The 

mappings M0,...,M m and H will be represented by matrices N0,NI,...,N m 

and C; x ° will be represented by a vector ~o. These quantities are such 

that 

-o 
c(i k...i 0) = CNik...Ni0x 

all (ik...i0) E I . This shows that the set {C,N0,...,Nm,X°} is a for 

bilinear realization for our series. [] 

The result which follows presents a necessary and sufficient con- 

dition for the existence of realizations of an input-output functional 

of the form (1.6), provided that the coefficients of the power series 

which characterize the functional are suitably bounded. 

(5.11) Theorem. Let c be a formal power series whose coefficients sa- 

tisfy the condition 

(k+1) 
(5.12) 11c(i k...i0)11 1 <_ C(k+1) !r 

for all (ik...i 0) E I , for some pair of real numbers C > 0 and r > 0. 

Then there exists a realization of c if and only if the Lie rank of c 

is finite. 

Proof. Some m o r e  m a c h i n e r y  i s  r e q u i r e d .  F o r  e a c h  p o l y n o m i a l  p 6 ~ ( Z  > 

we define a mapping S :~£((Z >> ~ ~£(< Z >> in the following way 
P 
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a) if p e z % = {Zjk...zj0 e ~< Z ) : (Jk'''J0) • I~} then Sp(C) is a 

formal power series defined by setting 

[Sz .... z. (c)] (ir...i 0) 
3 k 3 0 

= c(Jk...J0i r. ..i 0) 

b) if ~i,e2 E }{ and p1,P2 E ~(Z > then 

Sp(C) = aiSpl (c) + a2Sp2(C) 

Moreover, suppose that, given a formal power series s I 6 2(< Z )) 

and a formal power series s 2 6 }{( ( Z ) ), the sum of the numerical series 

m 

(5.13) sl (@)s2(~) + ~ ~ sl (ik...i0)s2(ik...i 0) 
k=0 i0,...,ik=0 

exists. If this is the case, the sum of this series will be denoted 

by (Sl,S 2 ) . 

We now turn our attention to the problem of finding a realization 

of c. In order to simplify the notation, we assume £ = I (i.e. we con- 

sider the case of a single-output system). By definition, there exist 

n polynomials in L(Z), denoted pl,...,pn, with the property that the 

formal power series F c(pl )'''''Fc(pn ) are }{-linearly independent. 

With the polynomials PI'"" ''Pn we associate a formal power series 

n ~ ~ 
cs14) w = exp  xiP i) = 1 xiPi Ik 

i=1 1 " i=I 

where Xl,...,x n are real variables. 

The series c which is to be realized and the series w thus de- 

fined are used in order to construct a set of analytic functions of 

Xl,.i.,Xn, defined in a neighborhood of 0 and indexed by the elements 

of I , in the following way 

h(x) = {c,w > 

h. (x) = ( S (c),w) 
ik...i 0 ..... zx k zl 0 

The growth condition (5.12) guarantees the convergence of the 

series on the right-hand-side for all x in a neighborhood of x = 0. 

It will be shown now that there exist m + I vector fields, 

g0(x),...,gm(X), defined in a neighborhood of 0, with the property 

that 
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(5.15) Lgihik...i0(x) = hik...i0i(x) 

for all (ik...i 0) 6 I . This will be actually enough to prove the 

Theorem because, at x = 0, the functions hik...i0(x) by construction 

are such that 

h(0) = c(g) 

hik...i0(0) = c(ik...i0) 

and this shows that the set {h,g0,...,g m} together with the initial 

state x = 0 is a realization of c. 

To find the vector fields g0,...,g m one proceeds as follows.Since 

the n series Fc(Pl),...,Fc(Pn) are ~-linear independent, it is easily 

seen that there exist n monomials ml,..~,m n in the set Z ~ with the 

property that the (nxn) matrix of real numbers 

(5.16) 

[Fc(Pl)] (m I) .-.[Fc(Pn)] (m I) 

[Fc(Pl ) ] (ran) "" "[Fc(pn )] (mn) 

has rank n. It is easy to see that 

For, if Pi 

[Fc(Pi )] (mj) = (~i (Smj 

6 Z , then by definition 

(c),w > )x=0 

[Fc(Pi)] (mj) = c(mjp i) = [Smj (c)] (pi) = (~i (Smj (c),w))x=0 

From this, using linearity, one concludes that the above expression is 

true also in the (general) case where Pi is an ~-linear combination 

of elements of Z . 

Using this property, we conclude that the j-th row of the matrix 

(5.16) coincides with the value at 0 of the differential of one of 

the functions hik...i 0 , the one whose multiindex corresponds to the 

monomial m.. 
3 

Consider now the system of linear equations 
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{Sm1(C),W > 

V~ <Sm n(c)'w ) 

in the unknown n-vector gk(x)_. 

gk (x) = 

( ,w > Sml Zk (c) 

(Smnzk(c),w) 

The coefficient matrix is nonsingular 

for all x in a neighborhood of 0 (because at x = 0 it coincides - as 

we have seen - with the matrix (5.16)). Thus, in a neighborhood of 0 

it is possible to find a vector field gk(x) such that 

(S (c),w) = (Smizk(c),w) Lg k m i 

and this proves that (5.15) can be satisfied, at least for these 

hik...i 0 whose multiindexes correspond to the monomials ml,...,m n. 

The proof that (5.15) holds for all the other functions hi~...i0(x) 

depends on the fact that every formal power series in Fc(i(Z)) is an 

R-linear combination of Fc(Pl),...,Fc(Pn), and is left for the reader.[] 

It is seen from the above Theorem that if a formal power series 

c has a finite Lie rank, and its coefficients satisfy the growth con- 

dition (5.12), then it is possible to find a dynamical system of dimen- 

sion 6L(C) which realizes the series. 

This fact, together with the result stated before in Lemma (5.5) 

induces to some further remarks. A realization {f,gl,...,gm,X °} of a 

formal power series c is minimal if its dimension, i.e. the dimension 

of the underlying manifold on which f,gl,...,g m are defined, is less 

then or equal to the dimension of any other realization of c. Thus, 

from Lemma (5.5) we immediately deduce the following corollaries. 

(5.17) CoroZlary. A realization {f,gl,...,gm,X °} of a formal power 

series c is minimal if and only if its dimension is equal to the Lie 

rank ~L(C). 

(5.18) Corollary. A realization {f'g1' .... gm,X °} of a formal power 

series c is minimal if and only if 

dim ~c(X O) = dim ~0(x °) = n 

or, which is the same, the realization satisfies the controllability 
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rank condition and the observability rank condition at x °. 

6. U nniqueness of Minimal Realizations 

In this section we prove an interesting uniqueness result, by 

showing that any two minimal realizations of a formal power series 

are locally "diffeomorphic" 

(6.1) Theorem. Let c be a formal power series and let n denotes its 
a a • a a~ b b b 

Lie rank. Let {g~'g1'''''v gm,n ,x ~ and {g0,gl, ...,gm,hb,x b} be two 

minimal, i.e. n-dimensional realizations of c. Let g~ , 0 < i m, 

and h a be defined on a neighborhood U a of x a in ~n and ± g~,--0- < i <m, 

and h b be defined on a neighborhood U b of x b in ~n Then, there exist 

open subsets V a C U a and V b C U b and a diffeomorphism F:V a ~ ~ such 

that 

a -1(x) 0 ! i ! m (6.2) gb(x) = F,gioF 

(6.3) hb(x) = haoF -I (x) 

for all x 6 V b. 

Proof. We break up the proof in several steps. 

(i) Recall that a minimal realization {f'gl .... ,gm,X O} of c satisfies 

the observability rank condition at x ° (Corollary (5.18)). From the 

definitions of 0 and ~0 ' one deduces that there exist n real-valued 

functions 11,...,I n , defined in a neighborhood U of x O, having the 

form 

li(x) = L v ...Lvlh j (x) 
r 

with Vl,...,v r vector fields in the set {f,gl,...,gm }, r (possibly) 

depending on i and I ~ j ~ ~ such that the covectors dll(X°),...,dln(X °) 

are linearly independent (i.e. span the cotangent space T* U). From o 
x 

this property, using the inverse function theorem, it is deduced that 

there exists a neighborhood U H C U of x O such that the mapping 

H : x ~-~(ll(X) ..... In(X)) 

is a diffeomorphism of U H onto its image H(UH). 

From any two minimal realizations, labeled "a" and "b", we will 
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construct two of such mappings, denoted H a and respectively H b. 

(ii) Let 01 ..... O n be a set of vector fields, defined in a neighbor- 

hood U of x °, having the form 

m 
0i = f + [ -i 

j=1 gjuj 

i and G denote with u 3 E IR for I < j < m. Let Ct denote the flow of 81 

the mapping 

G : (t I ..... tn ) F--+¢~n ..... ¢~I (xO) 

defined on a neighborhood (-e,c) n of 0. 

From any two minimal realizations,labeled "a" and "b" we will 

construct two of such mappings, denoted G a and G b (the same set of 

u~'s being used in both G a and Gb). 
3 a a 

Recall that a minimal realization {fa,g~,...,gm,X } satisfies the 

controllability rank condition at x a (Corollary (5.18)). From the pro- 

perties of 6 C and R (see Remark II.(2.7), one deduces that the distri- 

bution R is nonsingular and n-dimensional around x a. Then, using the 

same arguments as the ones used in the proof of Theorem I. (6.15), it 

is possible to see that there exist a choice of u~'s and an open sub- 
3 

set W of (0,E) n such that the restriction of G a to W is a diffeomor- 

phism of W onto its image Ga(w). 

a a a .a a~ 
(iii) It is not difficult to prove that if {f ,gl,...,gm,n ,x ~ and 

b h b x b } {fb, g~,...,gm, , are two realizations of the same formal power 

series c, then, for all 0 < t. < e, I < i < n, with sufficiently small 

6, 

(6.4) HaoGa(tl,...,tn ) = HboGb(t1,...,t n) 

AS a matter of fact, if c is small then G(tl,...,t n) is a point of 

U H , reached from x ° under the piecewise constant control defined by 

uj (t) = u i for t ~ [ti% .+t. 1 t1+ " "+ti) 
3 " "  l - -  ' " 

Moreover, the values of the components of H (i.e. the values of func- 

tions 11,...,I n) at a point were shown to coincide with the values 

of certain derivatives, at time t = 0, of some components of an 

output function y(t) obtained under suitable piecewise constant con- 

trols (see proof of Theorem I. (7.8)). So, one may interpret the com- 
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ponents of HoG(tl,...,t n) as the values at time t = t1+...+t n of 

certain derivatives of an output function y(t) obtained under suitable 

piecewise constant controls. 

Two minimal realizations of the same power series c characterize 

two systems which by definition display the same input-output beha- 

vior. These two systems, initialized respectively in x a and x b, under 

any piecewise constant control produce two identical output functions. 

Thus, the two sides of (6.4) must coincide. 

(iv) Recall that, if the realization "a" is minimal, if (t I, .... tn)6W 

and ~ is sufficiently small, the mapping HaoG a is a composition of 

diffeomorphisms. If also the realization "b" is minimal, H b is indeed 

a diffeomorphism, but also G b must be a diffeomorphism of W onto its 

image, because of the equality (6.4) and of the fact that the left- 

hand-side is itself a diffeomorphism° The following diagram 

W 

a V b C ~H and W = HaoGa(W) = where V a = Ga(w), V b = Gb(w), V a C U H , 

= HboGb(w), is a commutative diagram of diffeomorphisms. Thus, we may 

define a diffeomorphism 

F : V a ~ V b 

as 

(6.5a) F = (H b)-1 oH a 

whose inverse may also be expressed as 

(6.5b) F -I = Gao(G b) -I 

(v) By means of the same arguments as the ones already used in (iii) 

one may easily prove a more general version of (6.4). More precisely, 

setting 

m givia 0b fb ~ b 
8a = fa + ~ = +i i=I I givi 

one may deduce that, for sufficiently small t 
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e b b 
Hao~aoGa(t1,...,t n) = Hbo~t oG (t 1,...,t n) 

Differentiating this one with respect to t and setting t = 0 one ob- 

tains 

(Ha),~aoGa(tl ..... t n) = (H b),eboGb(t I, .... t n) 

Because of the arbitrariness of Vl,...,v m one has then 

a a a b b b 
(H),gioG (tl, .... t n) = (H),gi G (t I ..... t n) 

for all 0 < i < m. But these ones, in view of the definitions (6.5), 

may be rewritten as 

b F a F-I gi(x) = ~gi o (X) 0 < i _< m 

for all x 6 ~, thus proving (6.2) 

(vi) Again, using the same arguments already used in (iii) one may 

easily see that 

i.e. that 

haoG a(t 1,...,t n) = hboG b(t 1,...,t n) 

hb(x) = ha.F -l(x) 

for all x e V b, thus proving also (6.3). [] 



CHAPTER IV 

DISTURBANCE DECOUPLING AND NON INTERACTING CONTROL 

I. Nonlinear Feedback and Controlled Invariant Distributions 

In this and in the following chapters, we assume that in the con- 

trol system 

(1 .I) 
m 

= f(x) + [ gi(x)ui 
i=I 

it is possible to assign the values of the inputs u I, .... u m at each 

time t as functions of the value at t of the state x and, possibly, of 

some other real-valued functions Vl,...,v m. This control mode is cal- 

led a static state-feedback control. In order to preserve the struc- 

ture of (1.1), we let u i depend on x and Vl,...,v m in the following 

form 

(1.2) 
m 

u i = Gi(X) +j=~l~iJ (X)Vj 

where ai(x) and 6ij(x) , I ~ i,j ~ m, are real-valued smooth func- 

tions defined on the same open subset N of ~n on which (1.1) is de- 

fined• 

In doing this we modify the original dynamics (1.1) and obtain 

the control system 

m 

(I 3) ~ ~(x) + [ ~ • = gi (x) v i 
i=I 

in which 

% m 
(1.4a) f(x) = f(x) + [ gi(x}~i(x) 

i=I 

m 
(1.4b) gi(x) -j[ig j (x) 6ji(x) 

For reasons of notational simplicity, most of the times we con- 

sider ~i(x) as the i-th entry of an m-dimensional vector ~(x), 

~ij (x) as the (i,j)-th entry of an mxm-dimensional~ matrix ~(x) and we 

consider the vector fields g~(x) and g (x) as j-th columns of 
3 ] 

nxm-dimensional matrices g(x) and g(x). 
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In this way we may replace (I .4) with the shorter expressions 

~u 

(1.5a) f(x) = f(x) + g(x)~(x) 

(1.55) ~(x) = g(x) B(x) 

we also systematically assume that the m×m matrix 8(x) is in- 

vertible for all x. This makes it possible to invert the transforma- 

tion (1.5), and to obtain 

I 
(1.6a) f(x) = f(x)-~(x)~- (x)a(x) 

8-I (1.6b) g(x) = g(x) (x) 

(1.8) Remark. Strictly speaking, only (1.5a) may be regarded as a 

"feedback", while (1.5b) should be regarded as a change of coordinates 

in the space of input values, depending on x. [] 

The purpose for which feedback is introduced is to obtain a dy- 

namics with some nice properties that the original dynamics does not 

have. As we shall see later on, a typical situation is the one in 

which a modification is required in order to obtain the invariance of 

a given distribution A under the vector fields which characterize the 

new dynamics. This kind of problem is usually dealt with in the fol- 

lowing way. 

A distribution A is said to be controlled inuariant on N if there 

exists a feedback pair (~,B) defined on N with the property that A is 

invariant under the vector fields f,gl,...,g m (see (1.4)), i.e. if 

(1.9a) [ f,A] (x) c A(x) 

(1.9b) [gi,A] (x) C A(x) for I ~ i ~ m 

for all x E N. 

A distribution A is said to be ZocalZy controZZed invari~nt if 

for each x 6 N there exists a neighborhood U of x with the property 

that A is controlled invariant on U. In view of the previous defini- 

tion, this requires the existence of a feedback pair (~,8) defined on 

U such that (1.9) is true for all x 6 U. 

The notion of local controlled invariance lends itself to a simple 

geometric test. If we set 
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G = sp{g I ..... gm } 

we may express the test in question in the following terms. 

(1.10) Lemma. Let A be an involutive distribution. Suppose A, G and 

A+G are nonsingular on N. Then A is locally controlled invariant if 

and only if 

(1.11a) [f,A] C A + G 

(1.11b) [ gi,A] C A + G for I < i < m 

Proof. Necessity. Suppose A is locally controlled invariant. Let x 6 N, 

U a neighborhood of x and (e,8) a feedback pair defined on U which 

makes (1.9) satisfied on U. Let T be any vector field of A. Then we 

have 

m m 
[ f,T] =[ f+ge,T] =[ f,T] + [ [ gj,T]~j + ~ (LT~ j)gj 

j=1 j=1 

m m m 

l i+J % iEgj ji %Ltg  +J+ji 
for I < i < m. 

Since 8 is invertible, one may solve the last m equalities for 

[ gj, T] , obtaining 

m 

[gj,Tl e [ [gi,A] + G 
i=I 

for I < j < m. Therefore, from 

since 

1.9b) we deduce (1.11b). Moreover, 

m 
[f,T] e [f,A] + ~ [gi,A] + G 

i=I 

again from (1.9) and (1.11b) we deduce (1.11a). [] 

In order to prove the sufficiency, we first need the following in- 

terestlng result, which is a consequence of Frobenius Theorem. 

(1.12) Theorem. Let U and V be open sets in ~m and ~n respectively. Let 

Xl,...,x m denote coordinates of a point x in ~ m and yl,...,y n coordina- 

tes of a point y in ~n. Let FI,...,F TM be smooth functions 

P i : U -~ ~n×n 
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Consider the set of partial differential equations 

By(x) = Fi(x)y(x) I < i < m (I .13) -Sx - - 
l 

where y denotes a function 

y : U~V 

Given a point (x°,y °) 6 U x v there exist a neighborhood U o 

and a unique smooth function 

of x in U 

y : Uo~V 

which satisfies the equations (1.13) and is such that y(x °) 

and only if the functions FI,...,F n satisfy the conditions 

(1.14) ~£i 3£k Fi£k FkFi + - = 0 I < i,k < m 
Bx k Bx i -- _ 

= yO if 

for all x 6 U. 

Proof. Necessity. Suppose that for all (x°,y °) there is a function y 

which satisfies (1.13). Then from the property 

~2y = ~2y 

~xi3x k ~XkDX i 

one has 

(Fk (x)y (x))= ~x i ~k (Fi(x) y(x)) 

o 
Expanding the derivatives on both sides and evaluating them at x = x 

one obtains 

"sFk" + Fk(x°)Fi(x°)]Y° =[ (~)x [ t~i;xO o +Fi(xO)Fk(xO)]yO 

which, due to arbitrariness of x°,y O, yields the condition (1.14). 

Sufficiency. The proof of this part consists of the following 

steps. 

(i) It is shown that the fulfillment of (1.14) enables us to define 

on UxV a certain involutive distribution &, of dimension m. 

(ii) Using Frobenius Theorem, one can find a neighborhood U'× V' of 
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(x°,y °) and a local coordinates tranformation 

F : (x,y) ~-~ 

defined on U'X V' , with the property that 

A(x,y) = span{ (~-~i)(x,y) ..... (7~m) (x,y) } 

for all (x,y) 6 U'× V' 

(iii) From the transformation F one constructs a solution of (1.13). 

As for the step (i), the distribution A is defined, at each 

(x,y) ~ U xV, by 

n n 
8+ i (x)Yk(~h), 1 < i < m} A(x,y) = span{ ( ) + ~ ~ Fhk _ _ 

i h=0 k=0 

In other words, A (x,y) is spanned by m tangent vectors whose 

coordinates with respect to the canonical basis {(~i ) ..... (~m), 

(~I) ..... (~yn) } of the tangent space to UXV at (x,y) have the form 

1 

0 

0 
[,1 (x)y 

0 

I 

0 
F 2 (x) y 

0 

0 

I 
Fm(x)y 

These m vectors are linearly independent at all (x,y) and so the 

distribution A is nonsingular and of dimension m. Moreover, it is an 

easy computation to check that if the "integrability" condition (1.14) 

is satisfied, then A is involutive. 

The possibility of constructing the coordinate transformation 

described in (ii) is a straightforward consequence of Frobenius theorem. 

The function F thus defined is such that if v is a vector in A, the last 

n components of F~v are vanishing. Since, moreover, the tangent vectors 

(~) ..... (~) span a subspace which is complementary to A(x,y) at 

all (x,y) and F is nonsingular, one may easily conclude that the func- 

tion 

= F(x,y) 

is such that the jacobian matrix 
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(1.15) 

$~m+I ~m+l 

8YI "'" $Yn 

, , .  

~m+n ~m+n 

~Yl "'" ~Yn 

is nonsingular at all (x,y) 6 U'× V'. 

Without loss of generality we may assume that 

~i(x°,y O) = 0 

for all m+1 < i < m+n. As a consequence, the integral submanifold of 

A passing through (x°,y °) is defined by the set of equations 

(x,y) = 0 I < i < n 
%m+i -- -- 

Since the matrix (1.15) is nonsingular, thanks to the implicit 

function theorem the above equations may be solved for y, yielding a 

set of functions 

(1.16) Yi = Hi(x) I < i < n 

defined in a neighborhood U ° c U' of x °. Moreover 

qi(x o) = yO I < i < n 

The functions (1.16) satisfy the differential equations (1.13) 

and therefore, are the required solutions. As a matter of fact, the 

functions 

~i (x'y) = Yi - qi (x) I _< i < n 

are constant on the integral submanifold of ~ passing through (x°,y °) 

and, therefore, if v is a vector in A, 

d~iv = 0 I < i <_ n 

at all pairs (x,q(x)). These equations, taking for v each one of the 

m vectors used to define A, yield exactly 
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I < i < n, I < j < m. [3 ~x. = ( Fj (x) i"I (x)) i . . . .  
3 

P~oof. (of Lemma 1.10). Sufficiency. Recall that, by assumption, A,G 

and A+G are nonsingular; let d denote the dimension of A and let 

p = dim G - dim A N G 

Given any x ° C N it is possible to find a neighborhood U of x ° and an 

m×m nonsingular matrix B, whose (i,j)-th element b.. is a smooth real- 
z3 

valued function defined on U, such that, for 

m 

gi =j=~igjbji I _< i < m 

the following is true 

sp{gp+l . . . . .  gm } C A 

(I .17) (A+G) = A (9 sp {g  1 . . . . .  gp} 

The tangent vectors g1(x),...,gp(X) are clearly linearly inde- 

pendent at all x 6 U. 

Now, observe that if the assumption (1.11b) is satisfied, then 

also 

(1.18) [gi,A] C A + G 

and let TI,...,~ d be a set of vector fields which locally span A 

around x °. From (1.17) and (1.18) we deduce the existence of a unique 
k o 

set of smooth real-valued functions cji , defined locally around x , 

and a vector field 6k E A defined locally around x ° such that 
i 

P 
(I .11b' ) [ gi' Tk] =]~I'= ejkigj- + 6ki 

for all I < i < m and I < k < d. Using the same arguments and setting 

g0 = f 

from ( 1 .11a )  and ( 1 .18 )  we deduce the existence of a unique set of 

k k E A, defined real-valued smooth functions cj0 and a vector field 6 0 

locally around x O, such that 
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(1,11a') 
P 

[ go' ~k] j 0 

Now, suppose there exists a nonsingular m×m matrix B, whose 

(i,j)-th element bij is a smooth real-valued function defined locally 

around x, such that 

(I .19) 

for I < k < d, I < h < p, I < i < m. Then, it is easy to see that 

m 
(1.20) [ [ ghbhi,Tk] 6 A 

h=1 

for I < i < m, I < k < d. For, 

m m m 

[h=1 ~ ghbhi'Tk] = -h=1 ~ (LTkbhi)gh +j~1 bji[~j'Tk] 

P m . P k - ~k = ~k 
" " + ~ b . .  + =- ~ (LTkbhi)gh ~Ichjgh i l h=1 j=1 ] l h 

where ~ is a vector field in A. Since TI,...,T k locally span A, (1.20) 
l 

i m p l i e s  t h a t  

m A 
[ [ ghbhi,A] c A 

h=l 

Therefore, the matrix 

B = BB 

is such that (1.9b) is satisfied. 

Using similar arguments, one can see that if there exists an m×1 

vector ~, whose i-th element ai is a smooth real-valued function de- 

fined locally around x °, such that 

(1.21) k = 0 
-Lrka h" +j ICkjaj + Ch0 

for I < k < d, I < h < p, then 

(I .22) 
m 

[ go +h~ighah'~k ] ~ A 
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for I < k < d. For, 

m P m P k P 

[g0 + h ~ l g h a h " r k  I = - [' . . . . .  : = h=1(L kah)gh+j!la j h~iChj~h+h~ic~0gh+6k ~k 

where ~k is a vector field in A. From this one deduces that the vector 

a = Bfi 

is such that (1.9a) is satisfied. 

Thus, we have seen that the possibility of finding B and a which 

satisfy (1.19) and (1.21) enables us to construct a pair of feedback 

functions that makes (1.9) satisfied. In order to complete the proof, 

we have to show that (1.19) and (1.21) can be solved for B and a. 

Since A is nonsingular and involutive, we may assume, without loss 

of generality, that our choice of local coordinates is such that 

a 
Tk = - ~ k  1 <_ k < d.  

The equations (1.19) and (1.21) may be rewritten as a set of part- 

ial differential equations of the form (1.13) by simply setting 

F k = 

k k k 
Cll .-. Clm c10 

. . .  • 

k k c k 
Cpl "'" Cpm pO 

0 ... 0 0 

0 ... 0 0 

1 < k < d 

AS a matter of fact, for each fixed i, the equations (1.19) correspond 

to an equation for the i-th column of B, of the form 

~x k = I _<kid 

(where bi stands for the i-th column of B) and the equations (1 .21) 

correspond to 

(I .24) a~ k I I I < k < d 

Both these equations have exactly the form 
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(1.25) ~Y = Fky I < k < d 
8x k -- _ 

the unknown vector y being m+1 dimensional. Since now the functions F k 

depend also on the coordinates Xd+1,...,x n (with respect to which no 

derivative of y is considered), in order to achieve uniqueness, the 
o o 

value of y must be specified, for a given xl,...,x d, at each Xd+1,...,xn. 

For consistency, the last component of the initial value of the solu- 

tion sought for the equations (1.23) must be set equal to zero, whereas 

the last component of the initial value of the solution sought for the 

equation (1.24) must be set equal to I. In addition, the first m com- 

ponents of the initial values of the solutions sought for each of the 

equations (1.23) must be columns of a nonsingular mxm matrix, in order 

to let B be nonsingular. 

The solvability of an equation of the form (1.25) depends, as we 

have seen, on the fulfillment of the integrability conditions (1.14). 

This, in turn, is implied by (1.11). Consider the Jacobi identity 

- [ [ g i , T k ] , T h ] + [ [ g i , T h ] , T  k] = [  g i , [ T h ,  Tk]]  

for any 0 <__ i <_ m. Using for [gi,Tk] and [gi,Th] the expressions given 

by (1.11a') or (1.11b') and taking T k = ~x-~ ' Th = ~ one easily ob- 

tains 

P k - 5k 3 ] P h - + 6h ~ ] 
[j~ICjigj + i,~ h - [ X C4ig4 i,~ k = 0 

j=1 ~ 

This yields 

P ~cki P P h - ~k 3 . 
- ~. ~x h gj + ~ c k +6 h) +| 
j=1 j=1 Ji (£~I c£jgi i' ~hl 

P ~c~'i P h P k - 6h 3_~_] 

j=1 j=1 3x i'gx k 

Now, recall that 9 and .~ are both vector fields of A, which is 
0x h ~x k 

k ~ ] [~h,~ ] are in A. Since & involutive. Therefore, also [~i " ~-Xh and i ~x k 

and sP{~1 ..... gp> are direct summands and gl ..... ~p are linearly in- 

dependent, the previous equality implies 

c k . ~ c h . P P 
31 + 31 h k k h 

3x h ~ +~icj~c~i= -~Ic9~c~i= = 0 
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for I ~ j ~ p, 0 < i < m, I < h,k < d, which is easily seen to be 

identical to the condition (1.14). O 

We see from this Lemma that, under reasonable assumptions (na- 

mely, the nonsingularity of A, G and ~+G) an involutive distribution 

is locally controlled invariant if and only if the conditions (1.11) 

are satisfied. These conditions are of special interest because they 

don't invoke the existence of feedback functions e and B, as the de- 

finition does, but are expressed only in terms of the vector fields 

f,gl,...,g m which characterize the given control system and of the 

distribution itself. The fulfillment of conditions (1.11) implies the 

existence of a pair of feedback functions which make A invariant under 

the new dynamics but the actual construction of such a feedback pair 

generally involves the solution of a set of partial differential equa- 

tions, as we have seen in the proof of Lemma (1.10). There are cases, 

however, in which the solution of partial differential equations may 

be avoided and these, luckyly enough, include some situations of great 

importance in control theory. These will be examined later on in this 

chapter. 

2. The Disturbance Decouplin 9 Problem 

The notion of locally controlled invariance will now be used in 

order to solve the following control problem. Consider a control system 

m 

(2.1a) x = f(x) + ~ gi(x)u i + p(x)w 
i=I 

(2.1b) y = h(x) 

where the additional input w represents an undesired perturbation,which 

influences the behavior of the system through the vector field p. The 

system is to be modified, via static state-feedback control on the in- 

puts Ul,...,Um, in such a way that the disturbance w has no influence 

on the output y. 

In view of some earlier results (Theorem III.(3.12) and Remark 

III.(3.13)) this problem consists in finding a feedback pair (~,8) and 

a distribution A which is invariant under f = f+ge and gi = (g~)i ' 

I ~ i ~ m, contains the vector field p and is contained in (sp{dhj}) ± 

for all I < j < £. 

According to the terminology introduced in the previous section, 

a distribution ~ which is invariant under f = f+g~ and ~ 
gi = (g6)i ' 
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I < i < m, for some feedback (e,8) is controlled invariant. If we set 

H = N (sp{dhj}) ~ = (sp{dh I ..... dh£}) 1 
J=1 

we may express the problem in question in the following terms. 

Disturbance decoupling problem. Find a distribution A which 

(i) is controlled invariant 

(ii) is such that p E A C H. [] 

As we have seen in the previous section, the notion of local con- 

trolled invariance is sometimes easier to deal with than (global) con- 

trolled invariance. This motivates the consideration of the following 

problem. 

Local disturbance decoupling problem. Find a distribution ~ which 

(i) is locally controlled invariant 

(ii) is such that p 6 A C H. 

(2.2) Remark. Note that the distribution ~ is not required to be non- 

singular, neither involutive. However, nonsingularity and involutivity 

may be needed in order to construct the pair of feedback functions 

(~,~) which make it possible to implement the disturbance-decoupling 

control mode. This typically happens when one has found a distribution 

which satisfies (ii) and, instead of (i), satisfies the condition 

(i') [ f,~] C ~ + G 

[ gi,A] C A + G I < i < m 

In this case, we know from Lemma (1.10) that nonsingularity of A,G 

and A+G helps in finding at least locally a pair of feedback functions 

(~,B) with the desired properties. 

If A is nonsingular and involutive, invariant under f and gi ' 

I ~ i ~ m, and satisfies (ii), then it is known from the analysis de- 

veloped in chapter I that there exist local coordinate transformations 

which put the closed-loop system into the form 

(2.3) 

Xl = f1(x1'x2) + (Xl + (xl x2)w i=igil 'x2)ui Pl ' 

m 

x2 = f2(x2 ) + • gi2(x2)ui 
i=I 

y = h(x2) 
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Here, once again, one sees that the disturbance w has no influence on 

the output y. [] 

A systematic way to deal with the Disturbance Decoupling Problem 

is to examine first whether or not the family of all controlled inva- 

riant distributions contained in H has a "maximal" element (an element 

which contains all other members of the family). For, if this is true, 

then the problem is solved if and only if this maximal element contains 

the vector field p. 

If, rather than controlled invariant distributions, we look at 

locally controlled invariant distributions, then the existence of such 

a maximal element may be shown under rather mild assumptions. To this 

end, we introduce a notation and an algorithm. Let X(f,g;K) denote the 

collection of all smooth distributions which are contained in a given 

distribution K and satisfy the conditions (1.11). In view of Lemma 

(1.10), the maximal element of ~(f,g;K) is the natural candidate for 

the maximal locally controlled invariant distribution in K. As a mat- 

ter of fact, the maximal element of X(f,g;K) may be found by means of 

the following algorithm. 

(2.4) Lemma (Controlled Invariant Distribution Algorithm). Let 

(2.5) 

~0 = KI 

Dk = ~k-1 

m 
+ Lf(G L n~k_l ) + [ L (G i n ~k_1) 

i=1 g i  

Suppose there exists an integer k such that ~k~ = ~k~+1" Then ~k =~k* 

for all k > k . 

If ~k~ N G ± and ~ ~ are smooth, then ~i~ ! is the maximal element 

of X(f,g;K). 

Proof. The first part of the statement is a trivial consequence of 

the definitions. As for the other, note first that from the equality 

~k*+ 1 = ak  e we d e d u c e  

Lg i(G i n ~k *) c ~k* 

for I ~ i _< m and also for i = 0 if we set f = go ' 

did before. Let ~ be a one-form in G ~ n ~k~ , 

I In the expression 
~k* " 

as sometimes we 

<Lgi~,w } = Lgi(~,T ) - (~,[gi,T]) 

and Y a vector field in 
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we have 

<L ~,T ) = 0 
gi 

because Lgi~ @ ~k* and 

(~,T) = 0 

because T 6 ± ~k, + G. Thus 

(~,[gi,Y]) = 0 

Since G ± f] is smooth by assumption, [gi'T] annihilates every co- 

vector in Gi~k~ flk~ , i.e. 

+ G [ gi,¢] E ~k* 

for 0 ~ I ~ m. Thus, ilk* is a member of X(f,g;K). Let ~ be any other 

element of this collection. We will prove that A c £ ilk*" First of all, 

note that if ~ is a one-form in ~i N G i and T a vector field in ~ we 

have 

<L ~,~ ) = 0 
gi 

so that (recall that ~ is a smooth distribution) 

L (~L n ~ )  c ~l  
gi 

Suppose 

~A D ~k 

for some k > 0. Then 

m ~ ~ 
~k+1 C ~k + Lf (~£ ~ G±) + ~ n ( A G I) C 

i=I gi 

Thus, since ~D C , we deduce that 

/ 
• C ~k* 

± 
and ~k% is the maximal element of I(f,g;K). [] 
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For convenience, we introduce a terminology which is useful to 

remind both the convergence of the sequence (2.5) in a finite number 

of stages and the dependence of its final element on the distribution 

K. We set 

L 
(2.6) 3(K) = (~0+~1+...+~k+...) 

and we say that J(K) is ~in~teZy oompu~abZe if there exists an integer 

k such that, in the sequence (2.5), ~k. = ~k* + I" If this is the 

case, then obviously J(K) = ~± 
k ~" 

In the Lemma (2.4) we have seen that if J(K) is finitely 

computable and if J(K) i ~ G ~ and J(K) are smooth, then J(K) is the 

maximal element of X(f,g;K). In order to let this distribution be 

locally controlled invariant all we need are the assumptions of Lemma 

(1.10), as stated below. 

(2.7) Lemma. Suppose J(K) is finitely computable. Suppose K is an in- 

volutive distribution and G, J(K), J(K)+G are nonsingular. Then J(K) 

is involutive and is the largest locally controlled invariant dis- 

stribution contained in K. 

Proof. First, observe that the assumption of nonsingularity on G,J(K), 

J(K)+G indeed implies the smoothness of J(K) i N G ± and ](K). So, in 

view of Lemma (1.10) we need only to show that J(K) is involutive. 

For, let d denote the dimension of J(K). At any point x ° one may 

find a neighborhood U of x ° and vector fields TI,...,T d such that 

J(K) = sp{T I ..... T d} 

on U. Consider the distribution 

D = sP{Ti: I < i < d} +sp{[Ti,Tj] : I < i,j < d} 

and suppose, for the moment, that D is nonsingular on U. Then, every 

vector field T in D can be expressed as the sum of a vector field T' 

in J(K) and a vector field T" of the form 

d d 

T" = [ ~ cij[ Yi,Tjl 
i=I j=1 

where cij , I ~ i,j ~ d, are smooth real-valued functions defined on U. 

We want to show that 
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[gk,D] C D + G 

for all 0 < k < m. In view of the above decomposition of any vector 

field ~ in D, this amounts to show that 

[gk,[Ti,Tj]] C D + G 

The expression of the vector field on the left-hand-side via Jacobi 

identity yields 

[gk,[Ti,Tj]] = [~i,[gk,Tjl] -[Tj,[gk,Ti]] 

The vector field [gk,Tj] is in J(K) + G and therefore, because of the 

nonsingularity of J(K) and J(K) + G, it can be written as the sum of 

a vector field T in J(K) and a vector field g in G. Since, 

[Ti,g ] 6 J(K) + G for any g 6 G, we have 

[~i,[gk,Tjl] = [ Ti,~ +g ] 6 D + J(K) + G = D + G 

and we conclude that D is such that 

[gk,D] C D + G 

for all 0 < k < m. 

Now, recall that K is involutive by assumption, and therefore that 

D CK 

From this and from the previous inclusions we deduce that D is an 

element of X(f,g;K). Since D D J(K) by construction and J(K) is the 

maximal element of X(f,g;K), we see that 

D = J (K) 

Thus, any Lie bracket of vector fields of J(K), which is in D by 

construction, is still in J(K) and the latter is an involutive distri- 

bution. 

If we drop the assumption that D has constant dimension on U, we 

can still conclude that D coincides with 3(K) on the subset U C U con- 

sisting of all regular points of D. Then, using Lemma I.(2.11), we can 

as well prove that D = J(K) on the whole of U. [] 
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In the Local Disturbance Decoupling Problem one is interested in 

the largest locally controlled invariant distribution contained in H. 

Since this latter is involutive (see chapter I), in order to be able 

to use the previous Lemma, we need to assume that the distribution 

J(H) is finitely computable and that G, J(H), J(H) + G are nonsin- 

gular. If this is the case, then, as we said before, the Local Dis- 

turbance Decoupling Problem is solvable if and only if 

p E J (H) 

We conclude the section with a remark about the invariance of 

the a l g o r i t h m  ( 2 . 5 )  u n d e r  f e e d b a c k  t r a n s f o r m a t i o n .  

n., ,~, eu 
(2.81 Lemma. Let f,gl,...,g m be any set of vector fields deduced from 

f'gl .... gm by setting ~ = f + g~, gi = (g~)i ' I < i < m; then each 

codistribution ~k of the sequence (2.5) is such that 

m 
~k = ~k-1 +L~ (Gi ~ ~k-1 ) + ~ L~ (G ± N nk_1) 

i=I gi 

Proof. Recall that, given a covector field ~, a vector field • and a 

scalar function ¥, 

L(Ty)~ = (Ly~)y+<~,T >dy 

If ~ is a covector field in G ± n ~k-1 , then 

m m 

L%~ = Lfe + ~ (Lgl~)~i + ~ (~'gi dei 
f i=I " i=I 

m m 

L% ~ = ~. (Lgj~)Sji + ~ <~,gj )d~ji 
gi j=1 j =I 

But (~,gj > = 0 because ~ E G ~ and therefore 

m m 

L~(G If n ~k-1 ) +~i=I L~gi (G~ n ~k_1 ) C Lf(G ~ n ~k_1)+~i=iLgi (G± N '~k-1) 

Since S is invertible, one may also write f = ~-gs-le and 

gi = (~B-1)i and, using the same arguments, prove the reverse inclu- 

sion. The two sides of inclusion are thus equal and the Lemma is 

proved. [] 



141 

3. Some Useful Algorithms 

In this section we describe a practical implementation of the algo- 

rithm yielding the largest locally controlled invariant distribution 

contained in H. Moreover, we show that in some particular cases the 

construction of this distribution may be obtained with simpler methods. 

We begin with the easiest situation, first. For each output func- 

tion hi(x) we define an integer Pi , called the characteristic number 

of Yi " as the integer identified by the conditions 

(3.1a) LgjL~hi(x) = 0 

for all ~ < Pi ' all I ~ j ~ m, all x 6 N and 

Pi 
(3.1b) LgjLf hi(x) ~ 0 

for some j and x. 

Note that if for some output Yi the characteristic number is not 

defined (i.e. (3.1a) holds for all k, all j and all x), then the out- 

put yj is in no way affected by any of the inputs ul,...,u m. The ex- 

pansions described in chapter III show that' if this is the case 

t k (~(xO)) 
Yi(t) = ~ L~h i(x°)~T. = h i 

k=0 

Thus, it seems reasonable to assume that our control system is 

suc~ that the characteristic numbers are defined for each output. 

Once the characteristic numbers are known, we may define an Zxm 

matrix A(x) whose element aij(x) on the i-th row and j-th column is 

Pi Pi 
(3.2) aij (x) = LgjLf hi(x) = {dLf hi(x),gj (x)) 

and an i-vector b(x)i whose element bi(x ) on the i-th row is 

Pi +I Pi 
(3.3) bi(x) = Lf hi(x) = <dLf hi(x),f(x)) 

We point, out first of all an interesting property of the objects 

defined so far 

(3.4) Lemma. Let (~,~) be any pair of feedback functions and let 

= ~ + g~' gi (g~)i" Then 
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Lkh. (x) = Lkhi (x) 
f 1 

f o r  a l l  k <_ P i  a n d  a l l  x E N. M o r e o v e r ,  l e t  A ( x )  b e  t h e  `gxm m a t r i x  

w h o s e  ( i , j ) - t h  e l e m e n t  a i j  i s  

% P i  
a i j ( x )  = L,~ L_ h i ( x )  

gj 

a n d  b ( x )  t h e  , g - v e c t o r  w h o s e  i - t h  e l e m e n t  b .  i s  
1 

bi(x) = L~i+lhi(x) 

Then 

A(x) = A(x) 8(x) 

~(x) = A(x)e(x)+b(x) 

Proof. The first equality is easily proved by induction. It is true 

for k = 0 and, if true for some 0 < k < Pi ' yields 

m _k+l 
k+1. (x) = L L hi = Lk+lhf i + ~ L n~h (x)dj (x) = bf hi(x) L~ n i (x) ~ (x) 
f j&1 gj r i 

The other equalities are straightforward consequences of the first 

one. 

(3.5) Remark. Note that the invertibility of ~ implies the invariance 

of the integers pl,...,p`g as well as that of rank of A(x) under feed- 

back transformations. [] 

From this one can deduce the following interesting result. 

(3.6) Lemma° Every locally controlled invariant distribution contained 

in H is also contained in the distribution A defined by 
sup 

Z Pi )x (3.7) = N n (sp{dL h i} 
&sup i=I k=0 

Suppose A is a smooth distribution. A pair of feedback functions sup 
(~,B) is such that 

(3.8a) [f + g~,Asup] C Asu p 

(3.8b) [(gS)i,&sup] C &sup 1<i<m 
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if and only if the differentials of each entry of the column vector 

A(x)a(x) + b(x) and those of each entry of the matrix A(x)8(x) belong 

to the codistribution A ± 
sup" 

Proof. Let A be a locally controlled invariant distribution contained 

in H. Then, by definition, A C (sp{dhi}) ~ for all I < i _< £. 

Moreover, for some local feedback a, [~,A] C A. Suppose AC (sp{dL~i]) ~ I "  

for some k < Pi; then using Lemma (3.4) we have for any vector field 

~EA 

= = = dLf n i, T > 

i.e. A C (sp{dLk+lhi}) i. This proves that 

A c n P~nZ(sp{dL~hi)) £ 
i=I k=O 

and therefore the distribution (3.7) contains every locally controlled 

invariant distribution. 

Now, suppose there exists a pair of feedback functions that makes 

(3.8) satisfied. Let T be a vector field in Asu P. Then 

(3.9a) (dL~hi,T~ > = 0 

(3.9b) (dLkhi,[~,T]> = 0 

(3.9c) ( dLkhi , ~ [gj,T]) = 0 

for all I ~ i ~ £, 0 ~ k _< Pi ' I _< j _< m. From (3.9b) written for 

k = Pi ' we deduce, using Lemma (3.4), 

Pi Pi Pi +I 
0 = L~(dLf hi,T )-<dL~Lff hi,T ) = <dL~ hi,r> =(dbi,T > 

Similarly , for (3.9c) written for k = Pi we deduce that 

0 = (d~ij,T) 

Therefore, the differentials of b i and ~ij belong to the codi- 

stribution A £ , a n d  ~ .  b e l o n g  sup" Conversely, if the differentials of ~z lj 

to the codistribution A~ , we have that (3.9b) and (3.9c) hold for 
sup 

k = P i "  F o r  v a l u e s  k < P i  ( 3 . 9 b )  a n d  ( 3 . 9 c )  h o l d  f o r  a n y  f e e d b a c k  

(a,~) because of Lemma (3.4) and, therefore, we deduce that A is sup % 
invariant under ~ and gi' [] 
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From this result we see that there are cases in which the computa- 

tion of the largest controlled invariant distribution contained in H 

is not terribly difficult. An interesting special case is the one in 

which the matrix A(x) has a rank equal to the number of its rows (i.e. 

the number of the output channels); this is explained in the following 

results. 

(3.10) Lemma. Suppose that the matrix A(x) has rank £ at x °. Then the 

covectors 

dh I (x °) , ..., dLf h I ix °) , . . . ,dh i (x °) , ... ,dL Zh£ (x °) 

are linearly independent. As a consequence, the distribution A 
sup 

nonsingular in a neighborhood U of x ° and 

is 

(3.11) dim A~up(X) = Pl + "'" +PZ + ~ ~ n 

O 
Proof. Suppose that the differentials are linearly dependent at x • 

Then there exist real numbers C i k  , 1 ~ i ~ Z, 0 --< k --< P i  s u c h  t h a t  

(3.12) ~ ~ CikdL~hi(x°) = 0 
i=I k=0 

Now consider the function 

£ Pi 

CikLfh i ix) 
i=0 k=0 

According to the definition of pl,...,pm , this function is such that 

Z Pi ~ C aij (x) 
< dl,gj > ix) =i=I~ c.lpi<dLf hi,g j > (x) =i=I zPi 

But, on the other hand, i3.12) shows that dl(x O) = 0 and therefore 

the above equality implies the linear dependence of the rows of the 

matrix A(x°),i.e. a contradiction. Therefore we conclude that if (3.12) 

. ~ 0. holds, we must have CIp I .. = c p£ 

Now consider the function 

Pi -1 
k (x) ~(x) = I [ cikLfh i 

i=0 k=0 
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(with the understanding that the above sum is exendend over all non- 

negative k's) and observe that, if 0 ~ k ~ Pi-1, then (*) 

-(dL~hi'[r f'gj] ) = (dLk+lh ) 
f i'gj 

Now, by the definition of pl,...,pm and from this formula, we have 

i Pi -I Z 
(dy,[f,gj]> (x) = - ~ ~ . - k+1 

Cik%dLf ,gj ) =- [ c aij(x ) 
i=0 k=0 i=I i'Pi-1 

• - Czp Z But since in the (3.12) the coefficients ClPl, ., have already 

been proved being equal to 0, the function X(x) is such that dy(x°)=0 

and the above equality implies again the linear dependence of the rows 

of the matrix A(x°), i.e. a contradiction. Therefore Ci,Pi_I = 

= ... = Cz,p£_1 = 0 (for all Ci,Pi_1 defined, i.e. such that Pi ~ I). 

By repeating the procedure one completes the proof. 

(3.13) Remark. As a consequence of this Lemma, if the matrix A(x °) has 

rank £, the functions L~hi(x) , I ~ i ~ Z, 0 ~ k ! Pi are part of a 

coordinate system in a neighborhood U of x °. This fact will be ex- 

tensively used in the sequel. [] 

The assumption on the rank of A(x) identifies a special case in 

which the computation of the largest controlled invariant distribution 

contained in H is particularly simple. 

(3.14) Corollary. Suppose the matrix A(x) has rank £ at x °. Then in 

a neighborhood U of x ° the distribution A coincides with the 
sup 

largest locally controlled invariant distribution contained in H. 

Proof. If A(x) has rank Z at x~ in a neighborhood U' of x O the distri- 

bution A is nonsingular and therefore smooth. Moreover, in a neigh- 
sup 

borhood U c U' of x ° the equations 

(3.15a) A(x)~(x) + b(x) = y(x) 

(3.15b) A(x)~(x) = 6(x) 

where y (x) 

(*) 

and 6(x) are an arbitrary k-vector and respectively an 

k k ) 
- { dLfhi, [ f'gj ] > = < dLk+lh g j> --L f< dLfh i 'gj i' 

and the last term is zero because k < 01-1. 
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arbitrary £xm matrix, have smooth solutions. If the entries of ~ and 

6 are such that their differentials belong to &± , then the feedback 
sup 

(@,8) is such that (3.8) are satisfied on U. In particular this is 

true if the entries of a and ~ are constants. Note that the matrix 

must have rank £ in order to let 8 be nonsingular. 

(3.16) Remark. Recall that any pair of feedback functions ~ and 

which makes & invariant is a solution of (3.15), provided that y 
sup 

and 6 have entries with differentials in Al (see Lemma (3.6)). [] 
sup 

The procedures outlined so far are not always usable, because A(x) 

may fail to have rank £ or, more in general, A may not be a locally 
sup 

controlled invariant distribution. In this case one may still use the 

general algorithm (2.4). A practical implementation of this algorithm 

can be obtained in the following way. 

(3.17) Algorithm (Construction of the largest locally controlled in- 

variant distribution contained in H). 

Suppose that in a neighborhood of the point x ° the codistribution 

sp{dhl,...,dh ~} has constant dimension, say s O . Let 10(x) be an 

s0-vector whose entries 101,...,10s 0 are entries of h, with the pro- 

perty that d101,...,d10s 0 are linearly independent at all x in a neigh- 

borhood of x °. 

The algorithm consists of a finite number of iterations, each one 

defined as follows. 

Iteration (k). Consider the s k xm matrix Ak(X) whose (i,j)-th 

entry is (dlki(x),gj(x)) . Suppose that in a neighborhood U k of the 

point x ° the rank of Ak(X) is constant and equal to r k. Then it is 

possible to find r k rows of Ak(X) which, for all x in a neighborhood 

U' C U k of x ° k , are linearly independent. Let 

Pkl 

Pk = 

Pk2 

be a s k x s k permutation matrix, chosen in such a way that the r k rows 

of PkIAk(X) are linearly independent at all x E U~. Let Bk(X) be an 

Sk-vector whose i-th element is <dlki,f)(x). As a consequence of pre- 

vious positions, the equations 

(3.18a) PklAk(X)~(x) = -PklBk(X) 
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(a.18b) PkIAk (x) ~ (x) = K 

(where K is a matrix of real numbers, of rank r k) may be solved for 

and 8, an m-vector and an m×m invertible matrix whose entries are 

real-valued smooth functions defined in a neighborhood U" of x ° 
k 

Set 0 = f + ge and gi = , I ! i ! m. 

Consider the set of functions 

A k = {I = L~Ikj : I <_ j < s k , 0 <_ i < m} 

gi 

and the codistributions 

s k 

= sp{dlkj} ~kl j~1 

~k2 = sp{dl: I E Ak } 

Suppose the codistribution ~kl + ~k2 has constant dimension, 

say Sk+ 1 , in a neighborhood U~' C U"k of x °. This integer Sk+ ! is ne- 

cessarily larger than or equal to r k because the r k entries of Pkllk 

have linearly independent differentials at all x 6 U~ , otherwise 

Ak(X) would not have rank r k. Let lk+1,1,...,Ik+1,Sk+1 be entries of 

I k and/or elements of A k with the property that the differentials 

dlk+1,1'''''dlk+1,Sk+1 are linearly independent at all x in neighbor- 

hood U~' C U~' of x O. Thus 

Sk+ 1 

~kl + ~k2 = ~ sP{ dlk+1 } 
j=1 'J 

Define the Sk+1-vector Ik+ 1 whose i-th entry is the function 

Ik+1,i" 
This concludes the description of the algorithm. [] 

As a matter of fact, it is possible to show that the operations 

thus described are exactly the ones required in order to compute the 

codistribution ~k from codistribution ~k-1 and therefore that,under 

suitable assumptions, the algorithm ends at a certain stage, yielding 

the required distribution. Since the possibility of completing the 

operations defined at the k-th stage depends on assumptions on the 

rank of A k and on the dimension of ~kl + ~k2 ' we set for convenience 

all these assumptions in a suitable definition. We say that x ° is a 

regular point for the algorithm (3.17) if, for all k > 0, the matrix 



148 

A k has constant rank in a neighborhood of x ° and the codistribution 

~kl + ~k2 has constant dimension in a neighborhood of x. 

In this case rk, the rank of A k, and Sk+1, the dimension of 

~kl + Sk2 are well-defined quantities in a neighborhood of x °. Note, 

however, that around a regular point x I other than x °, r k and Sk+ I 

might be different. 

The following statement shows that the algorithm in question 

provides the largest locally controlled invariant distribution con- 

tained in H. 

(3.19) Proposition. Suppose x O is a regular point for the algorithm 

(3.17). Then, there exists an integer k with the property that 

Sk~+1 = Sk, and, therefore, the algorithm terminates at the (k~)-th 

iteration. Suppose also G is nonsingular. Then on a suitable neigh- 

borhood U of x O distribution 

Sk* 

A = n (sp{dlk,,i 
i=O 

coincides with the largest locally controlled invariant distribution 

contained in H. The pair of feedback functions that solve (3.18) for 

k = k * is such that 

[f + ge,A*] C 4" 

[ (g~)i,A ] C ~ I < i < m 

Proof. We shall prove by induction that the assumptions of Lemma 

(2.7) are satisfied and that 

s k 

~k = ~ sp{dlkj} 
j=1 

This is true for k = 0, by definition. 

Suppose it is true for some k. To compute Sk+1 we need to com- 

pute first Sk N G i. Note that ~k is nonsingular around x ° because 

the differentials dlkj , I < j _< s k , are linearly independent at 

all x 6 U~ . The intersection ~k N G ~ at x is defined as the set of 

all linear combinations of the form 

s k 

cidlkj(X) 
i=I 
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which annihilates gl (x),...,gin(x). Therefore, it is easily seen that 

the coefficients ci,...,csk of this combination must be solutions of 

the equation 

(Cl...csk)Ak(X) = 0 

Since A k(x) has constant rank r k in a neighborhood of x °, ~k n G k is 

n0nsingular around x °, has dimension sk-r k and is spanned by covector 

fields which may be expressed as 

(3.20) = (¥1(X)Pk2 + Y2(X)Pkl)dlk 

Y1(x) being an arbitrary (sk-rk)-row vector of smooth functions. With 

dl k we denote an Sk-COlumn whose i-th entry is the covector field 

d~ki. 
In computing ~k+1 , we make also use of the fact that, if (e,~) 

is any feedback pair, then (see Lemma (2.8)) 

m m 

Dk + [ L (~k A G ±) = ~k + ~ L~ (~k A G L) 
i=0 g i  i=O g i  

NOw, take the Lie derivative of ( 3 . 2 0 )  a l o n g  g i  ' w i t h  ~ and  8 

solutions of (3.18). As a result one obtains 

L~ = ((L%YI)Pk2 + (L~Y2)Pkl)dl k +yiPk2dL Ik +Y2PkldL~l k 
gi gi gi gi gi 

But the way the gi are defined is such that 

PkiL~Ik = Pk1(dlk,g0 )= 0 
go 

= Pk1(dlk,~i ) = constant PkIL~Ik 
gi 

for all I <_ i < m. Thus, in the above expression we may replace Y2 

with any arbitrary rk-row vector 72 of smooth functions. This makes 

it possible to express L~ in the form 

gi 

(3.21) L%~ = Y3dlk + Y4dL~l k 

gi gi 
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where Y3 is some sk-row vector and Y4 is an arbitrary sk-row vector of 

smooth functions. The first term of this sum is already an element of 

~k ' by assumption, while the second, due to the arbitrariness of Y4 ' 

spans the codistribution ~k2 (see above). Thus, we may conclude that 

m Sk+1 

~k+1 = ~k + [ L~ (~k n G i) =~k +~k2 =~kl +~k2 = 3~I sp{dlk+1,j} 
i=0 gi '= 

By assumption, the codistributions ~k ' k ~ 0, are nonsingular 

around x ° (their dimension is Sk). Thus, there exists an integer k 

such that 

~k* = ~k*+1 

This clearly implies the termination of the algorithm at thek -th step. 

We have also assumed that ~k n G ~ are nonsingular around x ° (their 

dimension is rk). So in particular ~k* +G is nonsingular. If G is 

also nonsingular all the assumptions of Lemma (2.7) are satisfied 

and ~. is the required distribution. 

In order to complete the proof, we have to show that the feedback 

pair which solves (3.18) for k = k is such as to make ~ . invariant 

under the new dynamics. To this end, consider again the expression 

(3.21) of the Lie derivative along gi of a covector field ~ of ~k DG£" 

If the algorithm terminates at k , then 

L~ (~k* N G i) C ~k* 

gi 

and, therefore, we see from (3.21) that every entry of dL Ik. (due 

gi 
to the arbitraryness of y4 ) is a covector field of ~k* . But, since 

the entries of dlk. span ~k* ' this implies 

L ~k. C ~k* 0 ~ i ~ m 

gi 

and thus ~k* is invariant under g0,gl,...,g m . ~k* being nonsingular 

and therefore smooth, we may conclude that ~k* is invariant under the 

new dynamics. [] 

This result is very important because it shows that, under suit- 

able regularity assumptions,it is possible to find the largest local- 

ly controlled invariant distribution contained in H, and also a (local- 

ly defined) feedback pair ~ and 8 which makes it invariant under the 
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new dynamics. The latter is particularly useful because we see that, 

as far as one is concerned with the maximal locally controlled in- 

variant distribution contained in H, the computation of a such a 

feedback pair does not require solving partial differential equa- 

tions (like in the general case, as seen from Lemma (1.10)) but may 

be carried out essentially solving x-dependent linear algebraic 

equations. 

We conclude the section with some additional considerations 

about the properties of the algorithm (3.17). It is observed that, 

if the algorithm may be carried out until its final stage (i.e. if 
o 

x zs a regular point for the algorithm), as a by-product one ob- 

tains, for all k ~ 0, not only the dimension s k of each codistribu- 

tion ~k of the sequence (2.5) but also the dimension sk-r k of the 

eodistribution ~k N G ~. 

Thus the rank r k of A k may be interpreted as 

~k 
(3.22) r k = dim 

~k N G ~ 

The integers r0,rl,...,rk~ are rather important also for rea- 

sons not directly related to the construction of the distribution 

6 . We will see in the next chapter, for instance, that the se- 

quence of integers defined by setting 

(3.23) 

61 = r 0 

62 = rl-rO 

6k~+I = rk~ - rk~_1 

may be, in a special case, directly evaluated starting from the 

coefficients of the functional expansion of the input-output behavior 

and plays an essential role in the problem of matching linear models. 

It is also possible to relate the integers r i , 0 ~ i ~ k , to 

the characteristic numbers Pi ' I ~ i ~ £, as stated below. 

(3.24) Proposition. Suppose that the outputs have been renumbered in 

such a way that the sequence of the characteristic numbers pl,...,p £ 

is increasing. Let x ° be a regular point for the Algorithm (3.17). 

If rank A(x °) = ~, then the integers 51,...,6k~+I defined by (3.23) 

are such that 6 i is equal to the number of outputs whose character- 
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istic number is (i-I) and, moreover, 61+...+6k~+i = 4. [] 

The proof of this proposition is left as an exercise to the reader. 

4. Noninteracting Control 

Consider again a control system of the form 

m 

= f(x) + ~ gi(x)ui 
i=I 

Yi = hi(x) I <_ i < 

and suppose ~ < m. 

It is required to modify the system, via static state-feedback 

control, in order to obtain a closed loop system 

m 

= ~(x) + [ gi(x)vi 
i=1 

Yi = hi (x) 1 _< i < 

in which, for some suitable partition of the inputs Vl,...,v m into 

disjoint sets, the i-th output is influenced only by the i-th set 

of inputs. 

This control problem may easily be dealt with on the basis of 

the results discussed in chapter III (Theorem III. (3.12)) and its 

solution has interesting connections with the analysis developed so 

far in this chapter. In the present case, in order to ensure the in- 

dependence of Yi from a set of inputs v ,...,v we have to find a 
Jl~ ~k 

distribution A i which is invariant under f and gj , I < j < m, is 

contained in (sp{dhi}) ±, and contains the vector fields gjl,...,gjk. 

Since this is required to hold for each individual output, one has 

to find £ distributions AI,...,A Z all invariant with respect to the 

same set of vector fields ~'~I' 
"" "'gm" 

A set of distributions AI,...,A £ with the property that 

(4.1a) [~,Ai] C A i 

I < j < m (4.1b) [gj,Ai] C A i _ _ 

for all I < i < i is called a set of compatible controlled invariant 

distributions.The feedback pair which makes (4.1) satisfied is called 
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a compatible feedback. Obviously, in the very same way one can in- 

troduce the notion of compatible local controlled invariance. 

Thus, the problem we face is the following one. 

(Loeal) single-outputs noninteracting control problem. Find a set of 

distributions &l .... ,&£ which: 

(i) are compatibly (locally) controlled invariant 

(iia) satisfy the conditions A i C (sp{dhi}) x 

(lib) for some partition 11UI 2 U ... UIz of the index set {1,...,m} 

and for some compatible feedback, satisfy the conditions 

(g~)j e &i 

for all j ~ I i. [] 

The existence of a solution to this problem is characterized as 

follows 

(4.2) Theorem. The Local Single-Outputs Noninteracting Control Problem 

is solvable if and only if the matrix A(x) has rank £ for all x. 

Proof. (Necessity). Suppose there exists a pair of feedback functions 

which solves the Single-Outputs Noninteracting Control Problem. Then, 

we know from the analysis of chapter III, section 3,that,in particular, 

for all k and all I < i < 

L~ Lkhi(x) = 0 

gj 

whenever j ~ I i. Without loss of generality we may assume the inputs 

Vl,...,v m being renumbered in such a way that 

I i = {mi_ I + I ..... m i} I ~ i ~ 

with m 0 = I and m = m. The above condition, written for k = Pi shows 

that the matrix A(x) has a block-diagonal structure: on the i-th row 

0nly the elements whose indexes belong to the set I i are nonzero. But 

we have also that 

~(x) = A(x)~(x) 

Thus, since the matrix ~ is nonsingular and each row of A(x) is non- 

zero by construction (we assumed that all Pi'S are defined), each 

row of A(x) is nonzero. A(x) being block-diagonal, this implies that 
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the £ rows of ~(x) are linearly independent and so are the Z rows of 

A(x). 

(Sufficiency). It is known from the analysis given in the previous 

section that if the i-th row of A(x) is nonzero for all x, the largest 

locally controlled invariant distribution contained in (sp{dhi}) l ks 

nonsingular and given by 

Qi 
Ai* = k=0n (sp{dL~hi}) I 

A pair of feedback functions (~,8) such that 

(4.3a) [f + g~,A~] C A~. 

,A~] C A* 1 < j < m (4.3b) [ (g~)j i -- -- 

is a solution of equations of the form 

(4.4a) Ai(x)~(x) + bi(x) = Yi(x) 

(4.4b) Ai(x) B(x ) = ~i(x) 

where Ai(x) and bi(x) denote the i-th rows of A(x) and b(x). The 

scalar Yi(X) and the 1×m,row vector 6i(x) are functions whose dif- 

ferentials belong to (Ai)±: in particular, real numbers. 

Considering the equations (4.4) all together, for all I ~ i ~ £, 

one sees immediately that, thanks to the assumption on the rank of 

A(x), there exists a pair of feedback functions (~,8) that makes 

(4.3) satisfied simultaneously for all A i , i.e. that AI,...,A £ are 

compatible locally controlled invariant distributions. In particular 

if the right-hand-side of (4.4b) is chosen to be the i-th row of a 

block diagonal matrix, one has that in the i-th row of A(x) 8(x),i.e. 

in the i-th row of A(x), the only elements whose indexes belong to 

the set I. are nonzero. This proves that a compatible B exists with 
l 

the property that 

Pi 
L~ L~ h i = 0 
gj f 

for all j ~ I i. But this, in view of Lemma (3.4) is equivalent to 
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Pi 
L~ Lf h i = 0 
gj 

i.e., because by definition L Lfh i = 0 for 0 < k < Pi ' 
gj 

gj 6 A i 

for all j ~ I i. 

This proves that the Local Single-Outputs Noninteracting Control 

Problem is solved• [] 

It may be interesting to look at the internal structure of the 

decoupled system obtained in the proof of this theorem. Suppose again 

that A(x) has rank Z on some neighborhood U and let ~ and ~ be so- 

lutions of the equations (4.4) on U. One knows from Lemma (3.10) (see 

also Remark (3.13)) that the functions L~hi(x), I ~ i ~ Z, 0 < k < Pi ' 

are part of a local coordinate system. Without loss of generality we 

may assume that they are coordinate functions exactly on the neigh- 

borhood U. We want to examine the special structure of the control 

system in the new coordinates, after the introduction of the decoupling 

feedback• 

To this end, we set the new coordinates in the following way. Let 

~i(x) = 

zi0 

Zil 

o 

Z. 

iP i 

h i (x) 

Lfh i (x) 

Pi 
Lf h i (x) 

for I ~ i ~ £. If Pl + "" ~ PZ + £ is strictly less than n, an extra 

set of coordinates, say ~£+I , is needed• 

The computation of the form taken by the differential equations 

describing the system in the new coordinates is rather easy. For 

I < i < Z and k < Pi 

(4.5) 

m • ~Zik (~ + 
Zik - ~x gjvj) = + [ L~ ZikV j j=1 L~ zik j=1 gj 

m 
: +  kh.v. 

j=1 gj f i 3 = Lf h i = Zi,k+ I 
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Whereas, for k = Pi (see Lemma (3.4)) 

m 

~ik = ¥i (x) +j~16iJ (x)vj 

where Yi(x) is the right-hand-side of (4.4a) and dij(x) is the j-th 

element of the right-hand-side of (4.4b). If this latter is chosen 

to be as the i-th row of a block-diagonal matrix,as in the proof of 

Theorem (4.2), then the above equation reduces to 

(4.6) zik = Yi + ~ 6ijVj 
j e i i 

Again from the proof of Theorem (4.2), it is seen that Yi and ~i4 J 
(*) 

depend only on zi0'''''Z&Pi • As a matter of fact, Yi and ~ij may 

be simply real numbers. 

Finally, by definition, for all 1 < i < £ 

(4.7) Yi = zi0 

As a result, we see that in the new coordinates the closed loop 

system may be described in the form 

(4.8) 
~i = fi(~i ) + [ gij(~i)Vj I < i < 

J CI i 
m 

~Z+I = f £ + 1 ( ( I  . . . . .  (.%+1) + ~ g~,+l j ( ( 1  . . . . .  5~,+l)Vj  j=l 

Yi = hi(~i ) 

wi th 

fi(~i ) = 

Zil 

Z. 
~Pi 

Yi(~i ) 

hi(~i ) = zi0 

(~) Let yi(z) = Yiox(z). Then 

~¥i ~x 
3zj-----~ = dY i 3Zjk 

because i ~ j. 

gij(~i ) = 

P. 
i ~z° is ~x 

Cis ~x ~Zjk 
s=O 

6 

ij(~i ) 
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These equations clearly stress the decoupled structure of the 

closed loop system. 

(4.9) Remark. The choice of Xi(~i) linear in ~i ' i.e. the choice 

Pi 
¥i(x) = ai0hi(x) + aiILfhi(x) + ... +aip Lf hi(x) 

i 

with ai0, ...,a. real numbers, is admissible, because dYi(x) in this 
IQ i Pi 

case belongs to sp{dh i,...,dLf hi}. It is also possible to choose 6ij 

constant, provided that, for some j • I i , ~ij is nonzero because this 

is required for the solution 8 of the (4.4b) be nonsingular. The two 

facts show that a suitable choice of decoupling feedback makes linear 

the first £ subsystems of (4.8). 

(4.10) Remark. Note that A i , the largest locally controlled invariant 

distribution contained in (sp{dhi}) ~, in the coordinates is expressed 

as 

= - -  : j ~ i, 0 < k~Pi } + sp{. ~ : 1 <k < d} 
sP{~zjk -- ~zz+I, k 

where d denotes the dimension of ~Z+I (see chapter I, section 3). [] 

At the beginning of this section, we have formulated the Nonin- 

teracting Control Problem looking at the existence of a set of com- 

patible controlled invariant distributions, each one contained in 

(sp{ dh i } )~ and containing the vector fields gj = (gL)j for all j ~ I i, 

0ne can also consider a complementary formulation in the following terms. 

Local single-outputs noninteracting control problem. Find a set of 

distributions ~I,...,~ which 

(i) are compatibly locally controlled invariant 

(iia) satisfy the conditions ~i C (sp{dhj}) ~ for all j ~ i 

(iib) for some partition 11 U 12 U... UIz of the index set {1,...,m} 

and for some compatible feedback, satisfy the conditions 

(g~)j • ~i 

for all j • I i. [] 

Also in this case, in fact, the output Yi of the closed-loop 

system will be affected only by the inputs whose index belongs to the 

set I i . 

Clearly the condition that the rank of A(x) is equal to £ re- 

mains necessary and sufficient for the existence of a solution to the 

problem. If desired, one could directly prove the sufficiency in terms 
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of the complementary formulation discussed above. As in Theorem (4.2), 

it is easy to prove that the assumption on A(x) makes it possible 

to express the largest locally controlled invariant distribution con- 

tained in N (sp{dhj}) ~ as 

~j 
N n (sp{dL~hj}) k 

Ki = j~i k=0 

The distributions K1,...,K £ are compatible and a compatible feedback 

is exactly the one that makes AI,...,A Z compatible. 

(4.11) Remark. Note that in the new coordinate system 

= ~ :1 ~ k < d} i sp{ : 0 ~ k ~ pi } +sp{Dzi+l, k _ 

(4.12) Remark. Summarizing some of the above results, one may observe 

that if A(x) has rank ~, there is a set of distributions D1,...,Dg+I, 

namely 

D i sp{ ~ = ~ : 0 < k < pi } I < i < Z 

= sp{-~-~7 ~ 
DZ+I --£+I,k 

: I < k < d} 

which are independent, i.e. such that 

Di A ( [ Dj) = 0 
j/i 

and span the tangent space, i.e. are such that 

Moreover, 

D I + D 2 + ... + D£+ I = TM 

h .  = ~ D .  
1 j¢i 3 

K i = D i + D~,+I  
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5. Controllability Distributions 

The approach to the noninteracting control discussed at the end 

of the previous section, was the one of looking at a set of compatible 

locally controlled invariant distributions ~i,...,~£ , such that 

rU 

(5.1) sp{gj: j e Ii } C A i C A (sp{dhj}) i 
9~i 

with gj obtained by means of a compatible feedback. It was shown that 

if A(x) has rank £ (~), the largest locally controlled invariant di- 

stributions contained in N (sp{dhj}) ±, denoted K~,...,K£. , are such 
j~i 

as to satisfy these requirements. This approach essentially looks at 

the "maximal" A i which satisfy (5.1); however, one could as well look 

at the "minimal" A i which satisfy these conditions. This kind of ap- 

proach yields the notion of a controllability distribution. 

A distribution A is said to be a controllability distribution on 

N if it is involutive and there exist a feedback pair (~,8) defined on 

N and a subset I of the index set {1,...,m} with the property that 
% 

A N G = sp{gi: i £ I}, and A is the smallest distribution which is in- 

variant under the vector fields ~, 1,...,g m and contains gi for all 

i 6I. 

A distribution A is said to be a local controllability distribu- 

tion if for each x 6 N there exists a neighborhood U of x with the pro- 

perty that A is a controllability distribution on U. 

It is clear that, by definition, a (local) controllability distri- 

bution is (locally) controlled invariant. Therefore, according to the 

result of Lemma (1.10), such a distribution must satisfy (1.11) (note 

that the necessity of (1.11) is not dependent on the assumptions made 

in Lemma (1.10) but only on the controlled invariance and the nonsin- 

gularity of B). Therefore it is interesting to look for the extra con- 

dition to be added to (1.11) in order to let a given controlled inva- 

riant distribution become a local controllability distribution. To this 

purpose, it is useful to introduce the following algorithm. 

(5.2) Lemma (Controllability Distribution Algorithm). Let A be a fixed 

distribution. Define a sequence of dishributions S i setting 

(5.3) 
SO = A NG 

m 

S k = A • ([ f,Sk_ I] + [ [ gj,Sk_ I] + G) 
9=I 

(~) This condition is indeed necessary in the Single-Outputs Noninteracting Control 
! Problem if B is nonsingular and all Oi s are defined. 
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This sequence is nondecreasing. If there exists an integer k ~ such that 

Sk, = Sk,+l , then S k = Sk, for all k > k~ 

Proof. We need only to prove that S k D Sk_1. This is clearly true for 

k = I. If true for some k, then 

([ f,S k ] 

m m 

+ [ [ Ski) D ([ f,Sk_1]+ [ { ]) j=l gj' j=1 gJ 'Sk-1 

and therefore 

Sk+l o S k 

(5.4) Remark. Note that we may as well represent S k as 

m 

S k = A A ([ f,Sk_1] + [ [gj,SkJ1 ] +G) + Sk_ I 
3=I 

or as 

S k = A • ([ f,Sk_11 + 

m 

[ gj,Sk- I] + Sk_ I 
j = l  

+ G) 

The last one comes from the first and from the modular distributive 

rule, which holds because Sk_ I C 4. [] 

As we did for the algorithm (2.5) we introduce now a terminology 

which will be used in order to remind both the convergence of the 

sequence (5.3) in a finite number of stages and the dependence of its 

final element on the distribution A. We set 

(5.6) S(A) = (S O + S1+...+Sk+...) 

and we say that S(A) is finitely computable if there exists an in- 

teger k *  s u c h  t h a t ,  i n  t h e  s e q u e n c e  ( 5 . 3 ) ,  S k ,  = S k , + l .  I f  t h i s  i s  

the case, then obviously S(A) = Sk, . 

An i n t e r e s t i n g  p r o p e r t y  o f  t h e  a l g o r i t h m  ( 5 . 3 )  i s  t h e  f o l l o w i n g  

one. 

( 5 . 7 )  L e m m a .  L e t  ~ , g l , . . . , g  m b e  a n y  s e t  o f  v e c t o r  f i e l d s  d e d u c e d  f r o m  
% . 

f,gl,...,g m by setting ~ = f+g@ and gi = (g~)i ' I ~ i ~ m; then 

each d i s t r i b u t i o n  S k o f  t h e  s e q u e n c e  ( 5 . 3 )  i s  s u c h  t h a t  

m 

S k = A A ([ f,Sk_1] + ~ [gj,Sk_ I] + G) 
j = l  
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Proof. Let T be a vector field of Sk_ I. Then, we have 

m 

[~,T] = [ f+ge,T] = [ f,T] + ~. ([ gj,~]ej - (LT~ j)gj) 
j=l  

[gi,T]= [(gB) i , T] = 

m 

([gj,~]6ji- (LT6ji)g j) 
j=l 

Therefore 

m m 

[~'Sk-1] +j=1 [ [gj'Sk-1] + G C [ f,Sk_1] +j=1 [ [ gj' Sk-1] + G 

But, since 8 is invertible, then f = ~-gB-le and.g i = (gS-1)i so that, 

by doing the same computations, it is found that the reverse inclusion 

holds. The two sides are thus equal and the lemma is proved. [] 

From this it is now possible to deduce the desired "intrinsic" 

characterization of a local controllability distribution. 

(5.8) Lemma. Let A be an involutive distribution. Suppose A, G, A + G 

are nonsingular and that S(A) is finitely computable. Then A is a 

local controllability distribution if and only if 

(5.9a) [ f,A] C A +G 

(5.9b) [ g i , A ]  c A + G 

(5.10) S(a)  =A 

I < i < m 

Proof. Necessity. Suppose A is a local controllability distribution. 

Then it is locally controlled invariant and (5.9) are satisfied. Mo- 

reover, locally around each x there exists a feedback (e,6) with the 

that A N G sp{gi property = , i ~ I}, where I is a subset of {1,...,m}, 

and A is the smallest distribution which is invariant under f,g1,...,g ~'' 

and contains gi for all i E I. Consider the sequence of distributions 

defined by setting 

(5.11a) A0 = A A G 

m 

(5.11b) A k = [ ? , A k _  11 + ~ [ ~ i , A k _ l ]  + A 0 
i=1 

It is easily seen, by induction, that 
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Ak CA 

for all k. This is true for k = 0 and, if true for some k = 0, the in- 

71' "" variance of A under ~, "'gm shows that Ak+ I C A. Therefore, one 

has 

m 
= ~ 

A k A ~ ([~,Ak_ I] + [ [gi' k-1 ] + G) 
i=I 

i.e., from Lemma (5.7) 

(5.12) A k = S k 

It is also seen that, by definition, A 0 = sp{gi: i 6 I} and that, by 

construction, Ak_ I c A k for all 1 ~ k. Thus, the sequence of distribu- 

tions generated by the algorithm (5.11) is exactly the same as the one 

~ ~ sp{gi: <~,~1,...,g m i • I}> ,the smallest distribution inva- yielding 

riant under ~,gl,...,g m ~ and containing sp{gi: i • I}. From (5.12) and 

from the assumption that S(A) is finitely computable we know that there 

is an integer k such that Ak% = Ak,+1. Therefore, in view of Lemma 

I. (6.3) , the largest distribution in the sequence (5.11) is exactly 

sp< i= .. gm[ i • I}) . From this, one concludes that the largest 

distribution in the sequence (5.11) must coincide with A, i.e. again 

from (5.12), that the condition (5.10) is satisfied. 

Sufficiency. We know from Lemma (1.10) that if A is involutive, if 

G,A and G+A are nonsingular and if the conditions (5.9) are satisfied, 

then locally around each x there exists a pair of feedback functions 

(e,S) with the property that A is invariant under ~,~1,...,g m. From 

this fact one may deduce that 

m 

S k 1 ] + G) + = A n ([~,Sk_ll + X [gi' - Sk-1 
i=I 

m 

= [ ~,Sk_ I] + ~ [gi,Sk_1] + A N G + Sk_ I = 
i=I 
m 

= [~'Sk-ll +i=I ~ [gi'Sk-l] + Sk-1 

In view of LeK~a (5.7) and Remark (5.4), this shows that 

(5 .13)  
m 

Sk = [~,Sk_1] + X [~i,Sk_1] + Sk_ I 
i=I 

Without loss of generality, we may assume that gl,...,g m are 
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such that A N G = sP{~i: i 6 I} for some index set I. In fact, A N G 

is nonzero because, otherwise S(A) would be zero, thus contradicting 

(5.10). Since A A G is nonsingular, one may find a new feedback func- 

and construct new vector fields gi = (~)i ' I < i < m, such tion -- -- 

~at, for some index set I, sp{gi: i 6 I} = A A G and gi = gi for 

i ~ I. This new set of vector fields still keeps A invariant because 

gi 6 A for i 6 I and A is involutive. 

So S 0 = G N A = sP{~i: i 6 I}, and the sequence of distributions 

S k coincides with the sequence of distributions yielding 

(~'~1 fg ~ ~ * ,...,gmlSp{gi: i 6 I}) . Since, by assumption, for some k ,Sk~ = 

= Sk,+1 we deduce from Lemma I. (6.3) that Sk~ is the smallest di- 

stribution which is invariant under ~ ~ "gl .... 'gm and contains 

sp{gi: i E I}. But (5.10) says that Sk, coincides with A and this 

completes the proof. [] 

In view of the use of the notion of local controllability distri- 

bution in problems of decoupling or noninteracting control, it is 

useful to be able to construct a "maximal" local controllability di- 

stribution contained in a given distribution K. To this end one may 

use the following result. 

{5.14) L~mma. Let A be an involutive distribution. Suppose G,A,G+A 

are nonsingular and 

[ f,A] C A + G 

[gi,A] C A + G I _< i <_ m 

Moreover, suppose S(A) is finitely computable and nonsingular. Then 

S(A) is the largest local controllability distribution contained in A. 

Proof. As in the proof of Lemma (5.8) (sufficiency) it is easily seen 

that the assumptions imply that locally around each x there exists a 

pair of feedback functions with the property that A ~ G= sp{gi:i 6i} 

and S(A) is the smallest distribution which is invariant under 

~'~I- ..... -~m and contains sp{gi: i 6 I}. Moreover, since 

q, 

sp{gi: i 6 I} C S(A) C A 

and A • G = sp{gi: i 6 I}, it is seen that 

S(A) N G = sp{gi: i 6 I} 
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Thus S(A) is a local controllability distribution. 

Let ~ be another local controllability distribution contained in 

A. Then, by definition, in a neighborhood U of each x there exists a 

feedback (~,~) with the property that ~ A G = sp{gi:i e I} for some 

subset I of {I ..... m}, and ~ is invariant under ~'gl ..... gm' where 

= f+g~ and gi = (g~)i for I ~ i ~ m. Consider the sequence of di- 

stributions 

~0 = sp{gi: i • I} 

m 

Ak = [f'Ak-1] +i:I ~ [gi'Ak-1] + Ak-1- 

Note that ~k C A C A. Thus 

m 

Ak C A n ([ f,Ak_1] + [ [gi,Ak_1] + ~k-1 + G) 
i=I 

Since ~0 = ~ A G C A i% G = S O , it is easy to show, by induction, by 

means of Lemma (5.7) and Remark (5.4) that ~k C Sk for all k ~ 0, i.e. 

Ak C S (A) 

Now recall (see Lemma I. (6.4)) that there exists a dense subset U with 

the property that at each x 6 U, ~(x) = ~k(X) for some integer k. Thus, 

we have that 

~(x) c S(A)(x) 

for all x in a dense subset. Since ~ is smooth and S(A) is nonsingular, 

this implies A C S(A). [] 

If the distribution K in which one seeks the maximal controlla- 

bility distribution does not satisfy the above conditions, one may 

proceed finding first the largest locally controlled invariant distri- 

bution contained in K. From Lemma (2.7) we know that this one is given 

by J(K), provided that this distribution is finitely computable, K is 

involutive and G,J(K),J(K)+G are nonsingular. If S(J(K)) is finitely 

computable and nonsingular, then S(J(K)) itself is the required di- 

stribution. In fact, we know from Lemma (5.14) that S(J(K)) is not 

only the largest local controllability distribution contained in J(K), 

but also the largest local controllability distribution contained in 

K, because any controllability distribution contained in K, being 

locally controlled invariant, must be also contained in J(K). 
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(5.15) Remark. From (5.13) it is also seen that the distribution S(A) 

is left invariant by any set of vector fields ~ ~ ,gl,...,g m which 

leaves A invariant. As a matter of fact, the condition 

Sk~ = Sk~+1 

implies [ f,Sk,] C Sk, and [~i,Sk,] C Sk, , 1 < i < m. 

6. More On Noninteractin~ Control 

In this section we shall see that the notion of controllability 

distribution makes it possible to analyze under a different per- 

spective the kind of problems dealt with in the section 4. Consider 

again the Local Single-Outputs Noninteracting Control Problem, that 

we know is solvable if and only if the matrix A(x) has rank i. In 

order to avoid unessential notational complications, we may assume 

~at the number of input channels is equal to that of the output 

channels, i.e. Z = m, so that each decoupled channel is single-input 

and single-output. In section 4 we have seen that a pair of feedback 

functions which solves the problem may be found as a solution of the 

equations (4.4) (where, in particular, Xi may be zero and 6i the i-th 

row of the identity matrix). We have also observed that this solution 

provides a feedback which makes the following simultaneously inva- 

riant: 

- A , the largest locally controlled invariant distribution contained 

in H, 

- A i , the ]argest locally controlled invariant distribution contained 

(sp[dhi}) ±, I ~ i ! ~, 

- K i , the largest locally controlled invariant distribution contained 

n (sp{dhj}) i, I < i < £. 
j~i -- -- 

We have also investigated the internal structure of the system 

~us obtained, and found a local state-space description of the form 

(4.8), i.e. 

~i = ~i(~i ) + ~i(~i)vi 

(6.1) ~#,+1 = f~,+l (~1 . . . .  ' (9,+1) 

Yi = hi(~i ) 

£ 

+ [ g Z + l , j ( ( 1  ..... (£+1)vj 
j=1 
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The approach to the noninteracting control problem via the solu- 

tion of (4.4) makes simultaneously invariant a set of distributions 

which generally are not independent. For instance, the set KI,...,K £ 

is indeed a set of compatibly locally controlled invariant distribu- 

tions which satisfy the conditions 

C K i C n (sp{dhj}) i 
(gS) i 

for some compatible feedback but, as we have seen before (Remark 

(4.12)), if 

d = n - ( p l + P 2 + . . . + p ~ + £ )  > 0 

then for any pair I < i < 

K i* n (k~i ~ K k) = Kj n (k~jKk) = K I n K2...A KZ ~ {0} 

The existence of such a nonzero intersection corresponds to the 

presence of the set of coordinates ~i+I = (zi+1,1'''''zz+1,d) which 

characterizes the (Z+1)-th subsystem of (6.1). 

Motovated by this consideration, we want to investigate in this 

section a slightly different version of the noninteracting control 

problem, defined as follows. 

Local, single-outputs, strong noninteracting control problem. Find a 

set of distributions ~I,...,A£ which: 

(i) are compatibly locally controlled invariant 

(ii) for some compatible feedback satisfy the conditions 

C &i C n (sp{dhj}) ± , I ~ i ~ (gS)i j~i 

(iii) are nonsingular, independent and span the tangent space 

(iv) are simultaneously integrable. [] 

In view of Theorem I.(3.12), one may replace the requirement (iv) 

with the requirement 

' = [ 4 is involutive. (iv) for each i = I,...,Z the distribution D i j~i 3 

Note that, for instance, the distributions K~,...,K~ were already 

nonsingular and spanned the tangent space, so that the real new con- 

straint added in (iii) is the one of the independence of the set of 

distributions in question. On the other hand, simultaneous integra- 

bility, introduced in (iv), is useful because it makes it possible 
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to find local coordinates in which the system, once decoupled, appears 

as the aggregate of £ independent single-input single-output sub- 

systems. We discover such a decomposition as an intermediate step in 

the proof of the following result. 

(6.2) Lemma. Let £ = m. The Local Single-Outputs Strong Noninteracting 

Control Problem has a solution if and only if there exists a set of 

distributions A I, ...,A Z which: 

(i) are locally controlled invariant 
£ 

C n (sp{dhj}) , I < i < (ii) satisfy the conditions A i j~i -- -- 

(iii) are nonsingular, independent and span the tangent space 

(iv) are simultaneously integrable 

(v) are such that 4 i A G is nonsingular and one-dimensional, for all 

I < i < £ 

(6.3) Remark. In other words, this Lemma shows that the simpler state- 

ment "A. n G is nonsingular and one-dimensional for all I < i < Z" 

essentially replaces the statement "41,...,4£ are compatible and, for 

some compatible feedback, (gS)i 6 A i for all I < i _< £". 

Proof. Necessity. All we have to show is that (v) is true. Recall that 

the matrix A(x) has necessarily rank Z for all x. Since 

A(x) = 

Pl 
dLf h I (x) 

PZ 
dLf h£ (x) 

(g1(x)...gm(X)) 

~d £ = m, we deduce that dim G(x) = £ for all x. 

On the other hand, from the condition (g6)i E Ai we have also 

(A i n G) C G = sp{(g~) I ..... (g~)z} C ~ (A i n G) 
i=I i=I 

i°e. 

G = [ (~i n G) 
i=I 

Since the distributions AI,...,A Z are independent the latter is a 

direct sum and this yields 

Z = [ dim(A i n G) 
i=I 
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i.e. the condition (v) because dim(A i N G) > 0. 

Sufficiency. Suppose there exists involutive distributions AI,...,A i 

which are nonsingular, independent, span the tangent space and are si- 

multaneously integrable. So, around every point, there exist local 

coordinates of the form 

= col(~ I ..... C~) 

with 

~i = c°l({il ..... ~in. ) 
l 

such that 

(6.4) A i = sp{~ : I < j < ni} , I <_ i _< £ 

From (v) one also deduces the existence of a (locally defined) Z×Z non- 

singular matrix ~ of smooth functions with the property that 

~i = (g~)i 

spans the one-dimensional distribution A i ~ G. 

Moreover, from the fact that the distributions A i are locally con- 

trolled invariant and from Lemma (1.10) (necessity) we have 

[f,Aj] cAj + sp{~ I ..... ~} 

[gi,Aj ] C Aj + sp{g I ..... gz} , I < i < i 

for all I < j < ~. From these we get, in particular 

[ f,A2+...+Az] C h2+...+Ag+sp{g I ..... ~Z} = 

= A2+...+A ~ + sp{g I} 

[gl,A2+...+A£] C A2+...+A £ + sp{gl} 

These two conditions have the form (1.11). Thus, since A2+...+A Z 

is involutive (see Theorem I.(3.12)) and constant dimensional, 

dim sp{gl} = I and sp{gl} N (A2+...+AZ) = 0, from Lemma (1.10) (suf- 

ficiency) we deduce the existence of a locally defined pair of scalar 

functions, ~I and $I such that 
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[f +~1~1,A2+...+A£] C A2+...+A £ 

[ g 1 6 1 , A 2 + . . . + A ~ ]  C A 2 + . . . + A  ~ 

One can proceed in the same way and find other pairs of functions ~2 

~d 82,... , up to ~£ and 8£ which makes conditions like 

(6.5a) [ f + ~iai , @ A.] C @ A 
j#i ] j~i ] 

(6.5b) [giBi , ~iAj] C e 6. 
j j~i ] 

satisfied for I < i < Z. 

From ~, al .... ,e£ , 61,...,6 Z we construct an overall feedback 

pair ~ and 6 setting 

(6.6) o~ = 

F o~ 1 

c~ 2 

°~9. ' 

61 

0 

0 . . . 0  

6 2 . . . 0  

0 0 • • .6,% 

This feedback is clearly such that 

A 

= f + g~ = f + glel+...+gz~z 

gi = gi6i I < i _< £ 

We show now that this is a compatible feedback for AI,...,A Z. 

The check of this property is particularly easy in the local coordinate 

chosen to satisfy (6.4). Since gi E A i , we deduce that the i-th group 

of components of ~ coincides with the i-th of components of f+giei . 

Moreover, from (6.5a), using the same kind of arguments employed in the 

proof of Lemma I. (4.3), it is easily seen that the i-th group of com- 

ponents of f+gi~i depends only on the local coordinates ~i" For similar 

reasons it is also seen that in gi~i the only nonzero group of compo- 

nents is the i-th one, which depends only on the local coordinates ~i" 

Thus, in the local coordinates ~ = col(~ I .... ,~£), the vector fields 

and gi ' I ~ i ~ £, are represented in the form 
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~(~) = 

~2(¢2 ) 

~(~) 

:u 

gI(~i) 
0 

..... ~£(~) = 

g~(~) 

This clearly shows that the feedback (6.6) is a compatible feedback 

and completes the proof. 

(6.7) Remark. In the coordinates ~ = coI(~I,...,~£), the i-th output 

depends only on ~i (because of (ii)). Therefore, the decoupled system 

is described as a set of independent single-input single-output sub- 

systems of the form 

(6 .s) 
~i = fi(~i ) + gi(~i)vi 

Yi = hi(~i) 

(6.9) Remark. The distributions KI,...,K ~ satisfy all the requirements 

(i) to (v) if and only if p1+...+p~ + Z = n, i.e. if and only if A 

has dimension 0. If this is not the case, then, in order to be able to 

solve the Local Single-Outputs Strong Noninteracting Control Problem, 

one has to try with smaller controlled invariant distributions. [] 

If the set KI,...,K £ is not suited, a reasonable alternative for 

the solution of this control problem is the set S(KI),...,S(K£). As a 

matter of fact, it is possible to prove that, if the matrix A(x) has 

rank £ (a condition which is indeed necessary for the solvability of 

the problem), the only extra condition needed to let this set of di- 

stributions solve the problem in question is simply the condition (iii) 

of Lemma (6.2). 

(6.10) Theorem. Let £ = m. Suppose the Local Single-Outputs Noninter- 

acting Control Problem is solvable. Suppose also that, for each 

I ~ i ~ £, S(K i) is finitely computable and nonsingular. If the set 

S(K~) ..... S(K~) is independent and spans the tangent space then the 

Local Single-Outputs Strong Noninteracting Control Problem is also 

solvable. 

Proof. If the matrix A(x) has rank £ for all x, then G also has rank 

£ for all x (see proof of Lemma (6.3)), K. is nonsingular (see Remark 
l ~ A G (4.11)) and K~ N G also is nonsingular. For, the intersection K i 
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at x is given by the set of all linear combinations of the form 

gi (x) c. 
i=1 Z 

Pj 
which annihilate dhj (x) .... ,dLf hj (x), for all j ~ i. The coefficients 

ci, .... c£ of this combination must be solution of the equation 

a l l  (x) . . . a l z ( X  ) 
. .  o . 

a i - l ,  1 ( x ) . . . a i _  1 , l  (x)  

a i + l  , 1 (x) . . . a i +  1 , Z (x) 

az1 (x) . . .a9.9. (x) 

c I 

c£ 

The matrix on the left-hand-side of this equation has rank £-1 and 

therefore, at each x, the set of vectors in G which are also in K0 is 
l 

e x a c t l y  o n e - d i m e n s i o n a l .  

From these p r o p e r t i e s ,  u s i n g  Lemma ( 5 . 1 4 ) ,  we d e d u c e  t h a t  i f  

S(K i) is finitely computable and nonsingular, then it is the largest 

local controllability distribution contained in K.. 
~ 1 

Moreover, it is known that KI,...,K £ are compatible, i.e. in- 

variant under the same set of vector fields ~ ~I " ' g i "  T h e r e f o r e ,  ,g , . . 

from Remark (5.15), it is deduced that also S(K$),. ..,S(K£)~ are in- 

variant under ~'gl ..... g£. Without loss of generality, one may as- 

sume that 

gi • Ki I _< i < Z 

so that 

(6.11) Ki N G = sp{ i } 

because K. n G is one-dimensional. 
l 

By d e f i n i t i o n  

G n Ki C S(K i) c K i 

so that 

G n S..(K i) = G N K i 
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and 

(6.12) G n S(Ki) = sp{gi} 

Consider now the distribution 

D i = • S (Kj) 
j~i 

It is easy to see that this distribution is also invariant under 

~'~I ..... ~i and that 

% 

D i O sp{gj : j ~ i} 

Therefore, 

% 

Di D ( ~ ' g l  ..... gzlsp{gj : j / i }  ) 

We will show now that also the reverse inclusion holds, so that 

D i is actually the smallest distribution invariant under ~, 1,...,g £ 

which contains sp{gj: j ~ i}. As a matter of fact, consider the se- 

quence of distributions 

'b 

Si0 = sp{g i} 

Z 

Sik = [?,S i k_l ]+ [ lgj,Si,k- I] + Si,k_ I 
' j=1 

From (5.13), and (6.11 , we deduce that for some k 

Sl,k*+1 = Sik* = S(K i) 

and therefore, from Lemma I. (6.3), that 

* ~ > 

S(Ki) = (~'gl .... ,g£}sp{g i } 

This shows that 

• C < ~',c~1 , . ,% sp{gj D l -- g£1 : j ~ i}> 

Using Lemma I. (6.6) we have that D. is involutive and this, in 

view of Theorem I.(3.12), shows that the set S(K1),...,S(K£) is simulta- 

neously integrable, i.e. that the condition (iv) of Lemma (6.2) is sa- 
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tlsfied. Conditions (i) and (li) are satisfied by definition and con- 

dition (iii) by assumption. Moreover, the fulfillment of (v) derives 

from (6.12). This completes the proof. [] 

(6.13) Remark. The interest in the set S(KI),...,S(K£) is also motiva- 

ted by the fact that there exists a well defined algorithm which pro- 

duces each S(Ki). 

(6.14) Remark. Unfortunately, the condition expressed by the above 

Theorem is not generally necessary for the solution of this noninterac- 

ring control problem. 

(6.15) Remark. From the proof of Theorem (6.10) it is seen that, when 

rank A(x) = £ and S(KI),...,S(K i) are independent and span the tangent 

space, then any feedback solving the Local Single-Outputs Noninterac- 

ring Control Problem also solves the strong version of this problem. [] 

We conclude the section with an example which illustrates the dif- 

ference between the approach taken in section 4 and the one discussed 

here. 

(6.16) Example. Suppose 

f(x) 

I x2 + XlX 3 ] 

2 
= XlX2 + x2x3 ' gl (x) = 

2 
x I - x 3 

XlX 3 

x~x 3 

1 

I XlX3 

2 
, g2(x) x2x 3 

x 2 

h I (x) = x I 

h 2 (x) = x 3 

and consider first the Local Single-Outputs Noninteracting Control 

Problem. 

Since 

dh I = (I 0 0) 

dh 2 = (0 0 I) 

we have 
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Lglh I = < dhl,g I } = XlX 3 

Lg2h I = XlX 3 

Lglh 2 = I 

Lg2h 2 = x 2 

Then Pl = 0, P2 = 0 and 

A(x) = I XlX3 XlX3 

[ I x 2 

Since 

det A(x) = XlX3(X 2 - I) 

is nonzero at all x in the dense subset of ~3 

U = {x 6 ~3: Xl ~ 0, x 2 ~ 0, x 2 ~ I} 

the problem in question can be solved on U. 

A feedback solving the problem is found via the equations (4.4). 

Taking Yi = 0 and 6i = i-th row of the 2x2 identity matrix, these be- 

c ome 

A(x)~(x) = -b(x) 

A(x) 6(x) = I 

where 

ILfhlx I Ix +XlX31 b(x) = = 

Lfh 2 (x) x~ - x 3 

This yields 

2 2 3 
-I [ x2 + XlX2X3 +XlX3 -XlX3 

~(x) : x1~3(x2_1) t 3 2 
-x 2 -x Ix 3 +x Ix 3 -x Ix 3 
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I 6(x) = 

x I x 3 (x2-I) 

x 2 -x I x 3 

-I XlX 3 

One may wish to examine the form taken by ~'~I 'g2 in the new 

local c o o r d i n a t e s  ~1 . . . .  ,5%+ 1 . I n  t h i s  c a s e  we h a v e  

51 = h I (x) = x I 

52 = h 2 (x) = x 3 

and 5 3 may be chosen as x 2. The equations (4.8) became 

~1 =Vl 

~2 = v2 
2 

~3 = f(~) + ~ gi(~)vi 
i=I 

Yl = 51 

Y2 = ~2 

Let us see now how KI,K2,S(KI),S(K 2) look, like. 

C o m p u t a t i o n  o f  S ( K 1 ) .  We n e e d  f i r s t  K 1,  t h e  l a r g e s t  l o c a l l y  c o n -  

trolled invariant distribution contained in (sp{dh2}) £. By Corollary 

(3.14), since A(x) has rank 2 (on U), 

• = )L ~ ~} 
K I (sp{dh 2} =sp{ , ~x 2 

and we may p r o c e e d  t o  c o m p u t e  S(K 1) v i a  t h e  a l g o r i t h m  ( 5 . 2 ) .  I n  t h i s  

case, in order to find S O = K I n G we have to solve a set of equations 

of the form 

for cl,c 2 . 

stribution, 

XlX 3 XlX 3 

2 2 
x2x 3 x2x 3 

I x 2 

From this it is seen that K I 

spanned by the vector field 

cI I = 

c 2 

n G is a one-dimensional di- 
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Now, note that 

x I 

2 
T = x 2 

0 

So that 

Since 

then 

[g1,T] 6 G, [g2,T] • G 

[f,S0]+ [g1,S0]+ [g2,S0]+G = [ f,S0]+ G = sp{[f,T],gl,g 2} 

[ f, T] = 

x 2 (I -x 2 ) 

x2x I (x2-I) 

-2x~ 

sp{[ f,~] 'gl 'g2 } = Tx~3 

From this, it is seen that on U 

s ( x l )  = KI = sP{~--7 ' ~ 2  

Computation of S(K2). In this case K 2 , the largest locally con- 

trolled invariant distribution contained in (sp{dhl}) ~, i s  given by 

)L _~} 
K 2 = (sp{dh I} = sp{-~ 2 , ~x 3 

The algorithm (5.2) now yields 

SO = K2 N G = sp{ } 
3 

Moreover, 

~x 3 --~ ] E G, [g3'~3 ] • G [f, ] • G, [g1,~x 3 
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so that 

$I = K 2 n ([ f,S0]+ [g1,s0]+ [g2,s0 ] 

From this, it is seen that on U 

S(K 2) = K 2 n G = sp{ } 

The distributions thus found are such that 

KIn K2 = sP{~x 2 } 

whereas 

S(KI) N S(K2) = 0. 

+ G) = K 2 AG = S 



CHAPTER V 

EXACT LINEARIZATION METHODS 

I. ~inearization of the Input-Output Response 

Throughout this chapter we consider again a control system de- 

scribed by equations of the form 

(I .la) 
m 

= f(x) + [ gi(x)ui 
i=I 

(1 .lb) y = h(x) 

and we want to examine to what extent the behavior of such a system 

could be made "linear" under the effect of an appropriate feedback 

control law. In the first five sections we concentrate our analysis on 

the input-output response, whereas in the last two ones the input-state 

and the state-output behavior will be considered. We shall refer to all 

of these subjects as to "exact" linearization problems, as opposite to 

"approximate" linearization, which generally indicates the approxima- 

tion of the behavior of a nonlinear system by means of its first-order 

truncated power series expansion. 

The first problem we deal with is the one of finding a static 

state-feedback, i.e. a feedback of the form 

m 

(1.2) u i = ~i(X) + ~ ~ij(X)Vj 
j=1 

under which the input-output behavior of the system (1.1) becomes the 

same as the one of a linear system. To this end, we shall first deduce 

a set of conditions which express in simple terms the property, for a 

nonlinear system of the form (1.1), of displaying an essentially linear 

input-output response. 

Consider the Volterra series expansion of the input-output re- 

sponse of (1.1) (see III.(2.4), where the individual kernels have,e.g., 

the expressions III.(2.8)). Suppose the first order kernels wi(t, T1,x) , 

I ~ i ~ m, depend only on the difference (t-T I) and do not depend on 

x, in a neighborhood U of the initial point x °. If this is the case 

we see from III.(2.8") that, because of the independence of wi(t, T1,x) 

of x, all kernels of order higher than one are vanishing on U. Thus 

the whole expansion III.(2.4) reduces to an expansion of the form 
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(I .3) 

wi th 

mft 
y(t) = Q(t,x O) + [ ki(t-T)ui(T)d~ 

i=I 
0 

ki(t-T ) = wi(t,T,x) 

The response (1.3) is very much close to the one of a linear 

system. Indeed, it is exactly the one of a linear system if one 

neglects the effect of the zero-input term Q(t,x°). Anyhow the 

input-dependent part of the response (1.3) is linear in the input. 

Since in most practical situations one is essentially interested in 

getting linearity only between input and output, the achievement of 

a response of the form (1.3) will be considered as satisfactory. 

o • 
(1.4) Remark. Suppose, for instance, that the initial state x is an 

equilibrium state. In this case, it is readily seen from III.(2.6) 

that Q(t,x O) = h(x °) and, therefore, by subtracting from y(t) the 

constant term h(x°), one obtains in (1.3) exactly the zero-state be- 

havior of a linear system. [] 

Note that, if a Volterra series expansion takes the particular 

form (1.3), then necessarily the first order kernels wi(t, T1,x) are 

independent of x and depend only on the difference t-T I , so that 

this particular property of the first order kernels becomes a neces- 

sary and sufficient condition for (1.3) to hold. 

If, instead of the expression III.(2.8), one considers the 

Taylor series expansion III.(2.12b) of wi(t,Y1,x) , it is found that 

a necessary and sufficient condition for this kernel to be independent 

of x and dependent only on t-T I , or - in other words - for (1.3) to 

h01d is that 

(1.5) LgiL~h j (x) = independent of x 

for all k > 0 and all I < j < £, I < i < m. We may summarize this by 

saying that the input-dependent part of the response of a nonlinear 

system of the form (1.1) is linear in the input if and only if the 

conditions (1.5) are satisfied. 

In general, the conditions (1.5) will not be satisfied for a 

specific nonlinear system. If this is the case, we may wish to have 

them satisfied via feedback, thus setting a rather interesting syn- 

thesis problem. As usual, we could look at a global problem, in which 

a globally defined feedback is sought which solves the problem for 
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all x E N or, more simply, a local problem in which a point x O is 

given and one wishes to find a feedback defined in a neighborhood U 

of x °. The latter, which is easier, will be dealt with in the sequel. 

For the sake of completeness we state this as follows. 

Inp~t-Outpu~ Lineariz~tion Problem. Given (f,g,h) and an initial state 
o 

x , find (if possible) a neighborhood U of x ° and a pair feedback 

functions e and B, with invertible B, defined on U, such that for all 

k > 0 and for all I < j < £, I < i < m (~) 

(I .6) L~ Lkh.(x) = independent of x on U [] 

gi ~ ] 

The possibility of solving this problem may be expressed as a 

property of the functions LgjL~hi(x) which characterize the Taylor 

series expansions of the kernels wj(t,O,x) around t = 0. For conve- 

nience, we arrange these data into £×m matrices and let Tk(X) denote 

the u matrix whose entry tij(x) on the i-th row and j-th column is 

LgjL~hi(x). As a matter of fact, the possibility of solving the pro- 

blem in question may be expressed in different forms, each one being 

related to a different way in which the data Tk(X), k ~ 0, are ar- 

ranged. 

One way of arranging these data is to consider a formal power 

series T(s,x) in the indeterminate s, defined as 

(I .7) 
-k-1 

T(s,x) =k~0Tk= (x)s 

We will see below that the problem in question may be solved if and 

only if T(s,x) satisfies a suitable separation condition. 

Another equivalent condition for the existence of solutions is 

based on the construction of a sequence of Toeplitz matrices, denoted 

Mk(X), k ~ 0, and defined as 

(1.8) Mk(X) = 

T O (x) T I (x) ... T k(x) 

0 T0(x) ... Tk_1(x) 

o ° .  ° 

0 0 ... T o (x) 

(~) Recall that f= f+g~ and gi = (g6)i (see IV.(l.4) and IV.(l.5)). 
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In this case, one is interested in the special situation in which 

linear dependence between rows may be tested by taking linear combi- 

nations with constant coefficients only. 

In view of the relevance of this particular property throughout 

all the subsequent analysis, we discuss the point with a little more 

detail. Let M(x) be an Z×m matrix whose entries are smooth real-valued 

functions. We say that x ° is a reguZar point of M if there exists a 

neighborhood U of x ° with the property that 

(I .9) rank M(x] = rank M(x O) 

for all x 6 U. If this is the case, the integer rank M(x °) is denoted 

r~(M) ; clearly r~(M) depends on the point x O, because on a neighbor- 

hood V of another point x I, rank M(x I) may be different. 

With the matrix M we will associate another notion of "rank", in 

the following way. Let x ° be a regular point of M, U an open set on 

which (1.9) holds, and M a matrix whose entries are the restrictions 

to U of the corresponding entries of M. We consider the vector space 

defined by taking linear combinations of rows of M over the field ~, 

the set of real numbers, and denote rE(M) its dimension (note that 

again ~R(M) may depend on x°). Clearly, the two integers ~(M) and 

r~(M) are such that 

(1.10) r.p(M) _> rK(M) 

The equality of these two integers may easily be tested in the 

following way. Note that both remain unchanged if M is multiplied on 

the left by a nonsingular matrix of real numbers. Let us call a 

row-reduction of M the process of multiplying M on the left by a 

nonsingular matrix V of real numbers with the purpose of annihilating 

the maximal number of rows in VM (here also the row-reduction process 

may depend on the point x°). Then, it is trivially seen that the 

two-sides of (1.10) are equal if and only if any process of row- 

reduction of M leaves a number of nonzero rows in VM which is equal 

to r z (M). 

We may now return to the original synthesis problem and prove 

the main result. 

(1.11) Theorem. There exists a solution at x ° to the Input-Output 

Linearization Problem if and only if either one of the following equi- 

valent conditions is satisfied: 
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(a) there exist a formal power series 

0o 

K(s) = ~ Kk s-k-1 
k=0 

whose coefficients are £xm matrices of real numbers, and a formal 

power series 

co 

R(s,x) = R_I (x) + ~ Rk(X) S -k-1 
k=0 

whose coefficients are mxm matrices of smooth functions defined on a 

neighborhood U of x °, with invertible R_1(x) , which factorize the 

formal power series T(s,x) as follows: 

(1 .12) T(s,x) = K(s)'R(s,x) 

(b) for all i > 0, the point x ° is a regular point of the Toeplitz 

m a t r i x  M. and 
1 

(I .13) rlR(Mi) = r~(Mi). [] 

The proof of this Theorem consists in the following steps. First 

we introduce a recursive algorithm, known as the Structure Algorithm, 

which operates on the sequence of matrices Tk(X), k ~ 0. Then, we 

prove the sufficiency of (b), essentially by showing that this as- 

sumption makes it possible to continue the Structure Algorithm at 

each stage and that from the data thus extracted one may construct a 

feedback solving the problem. Then, we complete the proof that (a) is 

necessary and that (a) implies (b). 

(1.14) Remark. For the sake of notational compactness, from this point 

on we make systematic use of the following notation. Let X be an s×1 

vector of smooth functions and {gl,...,gm } a set of vector fields. 

We let Lgy denote the sXm matrix whose i-th column is the vector 

L ~, i.e. 
gi 

Lgy [ X --- Y]- [] = Lg 1 Lg m 

(1.15) Algorithm (Structure Algorithm ). 

Step I. Let x ° be a regular point of T O and suppose ~R(T0) =r~(T0). 

Then, there exists a nonsingular matrix of real numbers, denoted by 
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Vl = I PI I 

K I 

where PI performs row permutations, such that 

VITo(X) = I S10(x) I 

where St(x) is an roXm matrix and rank St(x°) = r O. Set 

61 = r 0 

YI (x) = P1h(x) 

{I (x) = K11 h(x) 

and note that 

LgY1(x) = SI(X ) 

Lg~1(x) = 0 

If To(X) = O, then PI must be considered as a matrix with no rows and 
I is the identity matrix. K I 

Step i. Consider the matrix 

LgY1 (x) 

LgYi_1 (x) 

LgLfYi_1(x) 

i Si_1(x ) 
LgLfYi_1 (x) 

and let x ° be a regular point of this matrix. Suppose 

(1.16) 

LgLfYi- I LgLfYi-1 
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Then, there exists a nonsingular matrix of real numbers, denoted by 

V. 
1 

I61 ... 0 0 

oo, • 

0 0 
• "- I6i_I 

0 ... 0 Pi 

i K i K~ 
K1 "'" i-I z 

where Pi performs row permutations, such that 

V, 
l 

Lg¥1 (x) 

= 

LgYi_ i (x) 

LgLfYi_ I (x) 

Ii Si (x) 

0 

where Si(x) is an ri_ I xm matrix and rank Si(x °) = ri_ I. Set 

6 i = ri_ I -ri_ 2 

Yi(x) = PiLfYi_l(X) 

~i(x ) i i i - = KiY I (x)+...+Ki_IYi_ 1(x)+KiLfYi_ I (x) 

and note that 

LgY1 (x) 

h Lg Yi (x) 

= S i (x) 

LgYi (x) = 0 

If the condition (I .16) is satisfied but the last £-ri_ 2 rows of 

the matrix depend on the first ri_ 2 , then the step degenerates, Pi 
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K i is the identity matrix, must be considered as a matrix with no rows, i 

6 i = 0 and Si(x) = Si_1(x). [] 

As we said before, this algorithm may be continued at each stage 

if and only if the assumption (b) is satisfied, because of the fol- 

lowing fact. 

(1.17) Lemma. Let x O be a regular point of T 0 and suppose r~(T0)=~(T0). 

Then x ° is a regular point of 

I 
- Si_1 

_ LgLfYi-1 

o 
and the condition (I.16 holds for all 2 < i < k if and only if x is 

a regular point of T i and the condition (1.13) holds for all I < i < k-1. 

Proof. We sketch the proof for the case k = 2. Recall that 

M I = 

TO T1 I=[ Lgh LgLfh 

0 T O 0 Lgh 

Moreover, let Vl, Y1 and ~I be defined as in the first step of the 

algorithm. Multiply M I on the left by 

V I 0 
V = 

J 0 V I 

As a result, one obtains 

VM I = 

VILgh 

0 

S 1 

0 

0 

0 

LgV I Lfh 

ViLgh 

LgLfX I 

LgL fX I 
S I 

0 

LgP I h 

0 

0 

0 

LgLfP1h 

LgLfK~h 

LgP1h 

0 
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Note that ~(SI) = ~($I) . Thus, because of the special structure of 

VM~ , x ° is a regular point of M I and the condition r~(M I ) = ~K(MI) 

is satisfied if and only if x O is a regular point of 

i 
LgL fX I 

S I 

and 

-I I LgLf¥1 

rR =5< 
S I 

LgLf¥ I 

S I 

i.e. the condition (1.16) holds for i = 2. For higher values of k one 

may proceed by induction. [] 

From this, we see that the Structure Algorithm may be continued 

up to the k-th step if and only if the condition (1.13) holds for 

all i up to k-1. The Structure Algorithm may be indefinitely con- 

tinued if and only if the assumption (b) is satisfied. 

Proof of Theorem (1.11). Sufficiency of (b): construction of the line- 

arizing feedback. If the Structure Algorithm may be continued inde- 

finitely, two possibilities may occur. Either there is a step q such 

that the matrix 

Ii LgY1(x) 

LgXq[1(x) 

LgLfyq_1(x) 

has rank £ at x °. Then the algorithm terminates. Formally, one can 

still set P = identity, V = identity q q 

and 

Yq = PqLfXq_1(x) 

i - Sq_ I (x) I = Sq(X) _ LgYq (x) 
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and consider K~,...,K q ~ as matrices with no rows. Or,else, from a 
i q 

certain step on all further steps are degenerate• In this case, let 

q denote the index of the last nondegenerate step. Then, for all 

> q, P- will be a matrix with no rows, K~ the identity and ~- = 0 J J 3 3 
From the functions Y1" .... yq generated by the Structure Algo- 

rithm, one may construct a linearizing feedback in the following way. 

Set 

I Yq (x) 

and recall that S q 
Then the equations 

= ×m matrix, of rank rq_ I . LgF is an rq_ 1 at x O 

(I .18a) [LgF(X)]~(x) = -LfF(x) 

(1.18b) [LgF(X)]B(x) = [I 0] rq-1 

on a suitable neighborhood U of x ° are solved by a pair of smooth 

functions ~ and B. 

Sufficiency of (b): proof that the above feedback solves the problem. 

We show first that 

(1.19a) PIL~L~h(x) = independent of x 

p Ki-1 I k • KIL L^h(x) = independent of x (I 19b) i i-I "'" g 

for all 2 < i < q and that 

K I k (1.19c) KqKq-lq q-l"" " IL~L~ h(x) = independent of x 

To this end, note that (1.18) imply 

(1.20a) L~y i = 0 

(1.20b) L~y i = independent of x 
g 

for all I ~ i _< q. Moreover, since Lg~i = 0 for all i _> I, also 
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(I .20c) L~y i = Lfy i 
I 

(1.20d) L~¥ i = 0 
g 

for all I < i. Using (I .20) repeatedly, it is easy to see that, if 

k > i 

(1 .21) K~ 1 k K i 2 k- 
...KIL%h = i...K2L~7I 

f 

= K i 3 k-1- 
i'''K3L~ Y2 = "'" 

= KiL k-i+2 - 
i ~ ¥i-I 

= -i÷1 

If k < i 

11 221 Ki = 
i'" i''" k+l ~Yk 

These expressions hold for every i > I (recall that, if i > q, K~ is 
-- 1 

an identity matrix). 

Thus, if i < q and k > i-1 we get from (1.21) 

Pi Ki-li-1 ~ - k-i+1 ...K~L~L h = L P.L k-i+2 
Yi 

which is either independent of x (if k = i-1) or zero, while for 

i < q and k < i-1 we get from (I .22) 

p Ki-1 I ~ k+2 - _3~i_k+1 . i i-I"''KIL~L h = Pi'''Kk+2L~(Yk+Ig .= ~j Yj; 

The right-hand-side of this expression is again independent of x and 

this complete the proof of (1.19b). 

Moreover, if k > q, (1.21) yields 

q 

_ _k+1 - - _311 Kk+1¥j) = ~%~k+IL~ Y k g  ~ = L~ (~k+1 '= 3 

and this, together with (1.22) written for i = q, which holds for 

k < q, shows that also (1.19c) is true. Finally, (1.19a) is also true, 
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because the latter is either independent of x 

(if k = 0) or zero. 

In order to complete the proof of the sufficiency of (b), we need 

0nly to prove that the matrix 

(I .23) H = 

PI 

1 
P2K1 

Kql Pq q- • 

KqKq- I I 
q q-1 "" "KI 

is square and nonsingular. This, together with the (1.19) already 

proved, shows in fact that 

L~L~h(x) = independent of x 

for all k ~ 0. But the nonsingularity of (1.23) is a straightforward 

consequ6nce of the fact that this matrix may be deduced from the 

matrix Vq...V2V I by means of elementary row operations. 

Necessity of (a). Let 

(x) = B -I (x) 

(x) = -8 -I (X)~(x) 

and let ~ 
T k(x) = L~L~h(x) 

~u 
If the feedback pair e and (3 is such as to make Tk(X) independent 

of x for all k (i.e. to solve the problem), then 

(I .24) 
k ~ ~ A ~ - % k-1 

L h = L h + Tk_1(~ + Tk_2Lfe+...+ToL f 

This expression may be easily proved by induction. In fact, one has 

k+1 ~ ~ - ~ k-1 
nf h = n(~+~&)n h + Lf(Tk_I~+...+ToL f ~) = 

= L~ 



190 

orr 

(I .25) 

From (1.24) one then deduces 

L Lkh = (L Lkh)~ + % - % - ~ k-1- g x ~ '1~ Tk-lLga + Tk-2LgLfC~+"" "+ToLgLf a 

- % - .+~0LgL~-1~(x) Tk(X) = ~k~(X) + Tk_ILg~(X) + Tk_2LgLfe(x)+.. 

Now, consider the formal power series 

~. ~ -k-1 
K(s) = TkS 

k=0 

k=0 

and note that the latter is invertible (i.e. the coefficient of the 

0-th power of s is an invertible matrix). At this point, the expres- 

sion (1.25) tells us exactly that the Cauchy product of the two series 

thus defined is equal to the series (1.7), thus proving the necessity 

of (a) 

(a) ~ (b). If (1.7) is true, we may write 

M k (x) = 

K 0 K I .-. K k 

0 K 0 . .. Kk_ I 

0 0 ... K 0 

R_I (x) R0(x) R I (x) . . .Rk_ I (x) 

0 R_I (x) R 0(x) ...Rk_ 2(x) 

0 0 0 ...R_I (x) 

The factor on the left of this matrix is a matrix of real numbers, 

whereas the factor on the right is nonsingular at x °, as a consequence 

of the nonsingularity of R_1(x). Thus x ° is a regular point of M k and 

the condition (1.13) holds. [] 

(1.26) Rsmark. We stress again the importance of the Structure Algo- 

rithm as a test for the fulfillment of the conditions (a) (or (b)) as 

well as a procedure for the construction of a linearizing feedback. 

(1.27) Remark. An obvious sufficient condition for the existence of a 

solution to the Input-Output Linearization Problem is that the rank of 

the matrix A(x) is equal to ~, i.e. that there exists a solution to 

the Local Single-Outputs Noninteracting Control Problem. If this con- 



191 

dition holds, the Structure Algorithms terminates at a finite stage q, 

yielding S (x) = A(x). 
q 

2. The Internal Structure of the Linearized System 

In this section we analyze some interesting features of the line- 

arization procedure discussed so far. First of all, we examine some 

simple properties relating the Structure Algorithm with the Algorithm 

IV.(2.5), the one yielding the largest locally controlled invariant 

distribution contained in H. 

We begin with a simple remark, which will be ;ecalled several 

times later on, and then we give two lemmas which establish the re- 

quired relation between the Algorithm (1.15) and Algorithm IV.(2.5) 

(2.1) Remark. The submatrix 

Pi 

K i 
i 

of the matrix V i introduced at the i-th stage of the algorithm (1.15) 

is nonsingular by definition. This makes it possible to express 

Lf~i_ I as a linear combination of XI .... 'Yi and ~i" For, let Q[ and 

Qi be the two matrices of real numbers defined by 

[Pll (Q[ Qi ) = QiPi + ,, i " ' QiKi = I 

K 

Then, one has 

Lf~i-1 QiYi + Qi(~i i . -K i = , ,, -KiY I - . . i_IXi_1 ) 

! If the i-th stage is trivial, Qi is a matrix with no columns and 

. = Q'~ Qi I. If the algorithm terminates at the q-th stage, then is a 
g =  matrix with no columns and Qq I. [] 

In what follows, in order to simplify the notation, whenever we 

have an sxl vector y of real-valued functions and we want to consider 

the codistribution sp{d¥1 , .... dXs}, we denote the latter by sp{dy}. 

(2.2) Lemma. Suppose the Input-Output Linearization Problem is sol- 
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vable at x O. Suppose G is nonsingular around x O, and the codistribu- 

tions ~k generated via the Algorithm IV.(2.5), initialized with 

~0 = sp{dh}, are nonsingular around x °. Then, for all k ~ 0 

(2.3) 
k+1 k+1 

~k = ( ~ sp{dYi} + ~ sp{d~i}) 
i=1 i=1 

(2.4) 
k+1 
( ~ sp{dYi } n 
i=I 

k+1 
X sp{dYi}) = 0 

i=I 

(2.5) 
k+l 

a k nG ~ = X sp{d~ i} 
i=I 

and ~k n G ~ is nonsingular around x O. 

Proof. The proof proceeds by induction. For k = 0, (2.3) reduces to 

~0 = sp{d¥1} + sp{d~1} 

which is clearly true because 

Y1 = Vlh 

iI 

and V lis a nonsingular matrix. Moreover, by definition LgY1 = 0, i.e. 

sp{d~1 } C G ~ 

which implies 

~0 n G L = (sp{d¥1 } + sp{d~1]) N G i = sp{dY1 } n G~+sp{d~1 } 

But 

sp{dY1 } n G ~ = 0 

because, if this were not true at x °, then there would exist a I×6 

vector of real numbers I such that 

ILgY1 (x °) = IS 1(x °) = 0 

thus contradicting the linear independence of the 61 rows of S I (x) at 
o x . Therefore, we conclude, that 

I row 
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~0 N G i = sp{d~1 } 

i.e. (2.5) for k = 0. Moreover, this argument also shows that 

sp{dY1 } n sp{d{1 } = 0 

i.e. (2.4) for k = 0. 

The codistribution sp{dY1} has constant dimension 6 1 (because, 

otherwise, the matrix St(x) would not have rank 6 1 at each x in a 

neighborhood of x°). n 0 has constant dimension by assumption and the- 

refore also sp{d~1] , i.e. ~0 n G ~, has constant dimension. 

Suppose now (2.3),(2.4),(2.5) are true for some k and ~k N G ~ 

has constant dimension around x O. From (2.5) we see that 

m k+1 
i=~ILgi(~k n G ~) C ~ sp{d~j} C ~k 

3=I 

(because Lgi7 j = 0) and, therefore, that 

(2.6) 2k+1 = 2k + Lf(~k O G ±) 

This, in turn, yields 

k+1 k+1 k+1 
ak+ I = ~ sp{dYi} + [. sp{d~i} + Lf( ~ sp{d~ i} 

i=I i=1 i=I 

k+1 k+1 k+1 
= [ sp{d¥ i} + [ sp{d~ i} + [ sp{dLfy i} 
i=I i=I i=I 

k+1 k+1 
= ~ sp{dy i} + ~ sp{d~ i} + sp{dYk+ 2} + sp{d~k+ 2} 
i=I i=I 

(the last equality being a consequence of the Remark (2.1)), and this 

proves (2.3) for k+1. 

Moreover, it is easily seen that 

k+2 L 
sp{d~i} C G 

i=1 

(because Lg~ i = 0) and that 

k+2 
[ sp{d7 i} r? G i= 0 

i=I 
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(because otherwise the linear independence of the rows of Sk+ 2 would 

be contradicted). The two conditions together prove (2.4) for k+1 and 

also that 

k+2 k+2 G£ k+2 
~k+l 0 Gi= ( ~ sp{dYi } + ~ sp{d~i}) N = [ sp{d~i } 

i=I i=1 i=I 

i.e. (2.5) for k+1. k+2 
The codistribution ~ sp{d~i} has constant dimension 61+...+6k+ 2 

i=I 

(because otherwise the linear independence of the rows of Sk+ 2 would 

be contradicted) and this, together with the assumption that 2k+I has 

constant dimension, proves that ~k+1 N G i has constant dimension 

around x O. [] 

(2.7) Remark. Note, from the proof of Lemma (2.2), that an obvious 

necessary condition for the existence of a solution to the Input- 

Output Linearization Problem is that the sequence of codistributions 

~k generated by means of the Algorithm IV.(2.5) coincides with the 

one generated by means of the (simpler) algorithm (2.6). 

(2.8) Lemma. For all k > 0 

k + l  k+l 
(2.9) dim ~ = dim( ~ sp{dYi} ) = ~ 6. 

i=1 i=I l 

Proof. The first equality follows directly from (2.3),(2.4) and (2.5). 

The second one is a consequence of the fact that the r k = 61+...+6k+i 

rows of Sk+1(x) are linearly independent at each x in a neighborhood 

of x O. [] 

From these Lemmas one may deduce a series of interesting con- 

clusions. First of all, the comparison of (2°9) with IV.(3.22) shows 

~ s defined by means of IV. (3.23) with the the coincidence of the 61 

6~ s defined by means of the Structure Algorithm. Since the latter 

operates on data associated with the input-output behavior (the 

matrices Tk(X)) , it follows that at least in the case of systems in 

which the Input-Output Linearization Problem has solutions, the in- 

tegers IV.(3.23) have an interpretation in terms of input-output data. 

AS a matter of fact, there is an explicit formula relating the 6' k s 

to the matrices Tk(X)'S. Following a procedure similar to the one 

suggested in the proof of Lemma (1.17), one may arrive at the con- 

clusion that 

~(Mk) = (k+I)61 +k62+" "'+~k+1 
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or, in other words, that 

8 1 = rK(M0) 

k+1 

~i = ~(Mk) - ~(Mk-1) k ~ I 
i=I 

Since by definition 6 i = 0 for i > q (the last nondegenerate 

stage of the Structure Algorithm) and 8 ~ 0, one deduces from (2.9) 
q , 

that ~q-1 _ ~ ~q-2 and, therefore, that the integer k (which characte- 

rizes the last meaningful stage of the Algorithm IV. (2.5)) is related 

to q by the inequality 

(2.10) k > q-1 

A sufficient condition for (2.10) to become an equality is the 

following one. 

(2.11) Lemma. If the number of rows of S is equal to £, then k = q-1. 
q 

Proof. Suppose the number of rows of S is equal to £. Then the algo- 
q 

rithm (1.15) terminates at the q-th stage. From Lemma (2.2) we deduce 

that 

~q = ~q-1 

% 
i.e. that k = q-1. [] 

The case in which the assumption of this Lemma holds (namely, 

the case in which the algorithm (Io15) terminates at a finite stage) 

deserves a special attention, because of some interesting properties 

that will be pointed out hereafter. 

(2.12) L~mma. If the number of rows of S is equal to ~, then, in a 
q 

neighborhood of x °, the distribution 

q-1 - I 
q }J- A n sp{dxi }- = N sp{ dxi 

i=I i=I 

coincides with the largest locally controlled invariant distribution 

contained in H and any pair of feedback functions ~ and ~ which solves 

the equations (1.18) is such as to make A invariant. 

Proof. The first part of the statement is a consequence of (2.3) and 

Lemma (2.11). The second part may be proved exactly as done in the 

last part of the proof of Proposition IV. (3.19). [] 
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(2.13) Lemma. If the number of rows of S is equal to Z, then the dif- q 
ferentials of the entries of the vectors Yi ' I ~ i ! q, and Yi ' 

I < i < q-l, are linearly independent at x °. 

Proof. Let n i = £-ri_ I denote the number of entries of Yi" We prove 

that if 

(2.14) 
P P 

dim( ~ sp{d~i(x°) }) < ~ n i 
i=I i=I 

for some p, then all -' Yi s with i ~ p+1 are nontrivial. 

We know from Lemma (2.2) that the codistribution 

P 
~p-1 F] G i = [ sp{d{i } 

i=I 

has constant dimension around x ° Thus if (2 14) holds then there - y • t 

exist k < p row vectors 11,...,1 k of smooth real-valued functions 

(whose dimensions are respectively I Xnl,...,1×n k) defined in a neigh- 

borhood of x °, with I k # 0, such that 

(2.15) lk(X)d~k(X) = 11 (x)d{1 (x)+...+lk_ I (x)d~k_ I (x) 

O 
for all x around x . 

Differentiating (2.15) along f yields 

k-1 

(Lflk)d~ k + lk(dLf~ k) = ~ ((Lfli)d~ i + h i(dLf~i)) 
i=I 

and also (see Remark (2.1)) 

, + ,, - ,, k+1- ,, k+1 
(Lflk)d{ k + lk(Qk+IdYk+1 Qk+IdYk+l-Qk+IK1 ~Y1-'''-Qk+IKk dYk) = 

k-1 
! i - , " " = [ ((Lf~ild~i+~ iCQi+Id~i+1÷Q[÷Id~i÷1-Q~÷IK~÷Id¥C.. -Q'~÷1~i÷IdYill 

i=I 

This may be rewritten as 

(2.16) 
k 

k(Qk+ldYk+l +Qk+ldYk+l ) = [ (PidYi + PidYi ) 
i=1 

for suitable ~[s and ~ls. 

We will see now that ~k+1 is nontrivial and that there exist k+1 

row vectors I~,...,I~+ I , of smooth real-valued functions defined in 

a neighborhood of x °, with I~+ I ~ 0, such that 
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(2.17) I~+ 1 (x)d~k+1 (x) = I~ (x)d{1 (x)+...+l~(x)d~k(X) 

To this end note that, bearing in mind (2.4) and (2.9),(2.16) yields 

' = 0 IkQk+ I 

pi = 0 I < i < k _ _ 

I n" k~k+l dYk+1 = PldYl+...+~kdYk 

If Yk+1 were trivial, then Qk+1 = I and I k 0, i.e a contradiction. 

Thus ~k+1 is nontrivial and, also, I n" k~k+ I ~ 0 because otherwise the 

equality 

Ik (Qk+1 Qk+1 ) = 0 

would contradict the nonsingularity of (Qk+1 Q{+I ) . This shows that 

(2.17) holds, with I~+ I = IkQk+ I and l! = Pi for I < i < k 
l -- -- ° 

We can iterate this argument and conclude that all ¥~s with 

i > k+1 are nontrivial. If the algorithm terminates at some step q, 

then (2.14) is contradicted and the differentials of the entries of 

~i,...,~q_i are linearly independent at x O. [] 

The above results enable us to investigate the effect of the 

linearizing feedback on the state-space description of the system. 

From the last Lemma it is seen that the entries of ¥i(x) and ~i(x) 

are part of a local coordinate system. Thus, one may set 

~i = Yi(x) I < i < q 

~i = ~i (x) I _< i < q-1 

and find a suitable vector-valued function q with the property that 

the mapping 

x I > (¢1 . . . . .  £q'~1 . . . . .  ~q-1 ' q )  

is a local coordinate transformation. 

The description of the system 

i = ~(x) + ~(x)v 

y = h(x) 
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in the new coordinates may be easily obtained in the following way. 

Consider the right-hand-side of (1.18b) and let EI,.•.,E q be ~i×m 

matrices which partition [I£ 0] as 

(2.18) [I~ 0] = Ii EIo 
Eq 

Then, if ~(x) and ~(x) are solutions of (1.18), one has 

L%y i = 0 
I 

L~y i = E i 
g 

for I ~ i ~ q. These yield for ~I,...,~ q the equations 

(2.19a) ~i = ~i = L~Yi + L%7iv = Eiv 
g 

Moreover (see Remark (2.1)), 

L~i = Lf~i = Qi+1Yi+1' +Qi+1(~i+1" -~I'i+I¥I "''-~i~i+Iyi )" 

L~y i = 0 
g 

for I < i < q-2. For i = q-1 

L~yq_1 = ¥q 

L~yq_ I = 0 

From these one gets 

(2.19b) ~i = Qi+1~i+1÷°-i+1~i+1- Ql÷IK~+1~1-...-O'i÷iKi+li ~i 

for I < i < q-2 and 

(2.19c) 
~q-1 = ~q" 

The output y is related to ~I and ~I in the following way 
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(2.19d) Y = QI~1 + Q~'~I 

combining the (2.19) 's, one finds in the new coordinates a state 

space description of the form 

~. = Fz + Gv 

fi = f(z,q) + g(z,n)v 

y =Hz 

with 

and 

F = 

Z = CoI(C I ..... Cq'~l ..... ~q-1 ) 

0 0 0 . . .  0 0 0 0 0 . . .  0 

. ~ .  ° o . .  • 

0 0 0 ... 0 0 0 0 0 ... 0 

"K21 " ° " Q ~  " " " ~Q 2 
Q~_ 0 0 0 0 0 0 

. 3 _ , , K  3 Q ~ . . .  
-Q3K1 -(23 2 Q~ . .. 0 0 0 0 0 

. , .  . • , o .  . 

-Q~_~?-~ -Q~_~-~ ,, ~ - ~  , ,, - Q ~ _ ~  . . .  Q~_~ o o o o . . .  %_~ 

o o o . . . o  ~ o  o o . . ° o  

E I 

E 
q 

G = 
0 

0 

: ~ Q ;  o . . .  o o" o . . .  o] 
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The particular choice of feedback makes A invariant (see Lemma 

(2.11)) and this is the reason for the presence of an unobservable 

(and nonlinear) subsystem. The other subsystem, which is the only one 

contributing to the input-output response, is fully linear. 

We conclude the section with two remarks, which are consequences 

of the above result. 

(2.20) Remark. From the above equations, we see that if the Algorithm 

(1.15) terminates at the q-th stage (i.e. if the number of rows of Sq 

is equal to the number ~ of outputs), the response of the closed loop 

system becomes 

t 

y(t) = HeFtz ° + I HeF(t-T)Gu(T)d~ 

0 

The input-dependent part is linear in the input, as expected, 

but also the zero-input term is linear in the initial state z O. 

(2.21) Remark. The structure of the matrix F which characterizes the 

linear part of the closed-loop system shows that all its eigenvalues 

are vanishing. Thus, one might wish to add an additional feedback in 

order to achieve not only a linear input-output behavior, but a 

linear and stable input-output behavior, if possible. As a matter of 

fact, the pair of matrices (F,G) turns out to be a reachable pair and 

so a matrix K may always be found which assigns the spectrum to F+GK. 

In order to obtain a linear input-output behavior with prescribed 

spectral properties, instead of the feedback a(x) and B(x) proposed 

so far, one has to consider the feedback 

a' (x) : a(x) + $(x)Kz(x) 

S'(x) = S(x) 

The reachability of the pair (F,G) may be checked by direct com- 

putation of the rank of (G FG F2G ...). At each stage, it is sug- 

' O'~] in order gested to take advantage of the nonsingularity of [Qi -l 

to prove that new linearly independent columns are added. [] 

3. Some Algebraic Properties 

In this section we analyze the structure of the formal power 

series (1.7) with some detail, and show that the integers 61,...,6 q 

are related to the behavior of T(s,x) for s ~ ~. 
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In the proof of Theorem (1.11), we have shown that the existence 

of a solution of the Input-Output Linearization Problem at x ° makes 

it possible to separate T(s,x) as a product of two formal power series 

as in (1.12). In particular, it was shown that, if ~ and ~ are a line- 

arizing feedback, then 

K(s) = ~ (L L~h)s -k-1 
k=0 

(L~L~h being independent of x for all k >_ 0 ) and 

R(s,x) = ~-1(x) -k=~0 (LgLk~-1~(x))s-k-1 

Clearly, (1.12) holds in the neighborhood U of x O where the feedback 

and 6 is defined. 
k 

An explicit expression for L~L~h, that is for K(s), is not dif- 
g x 

ficult to obtain. For, consider again the matrix H defined in (I .23) 

and let ~ and 6 be any solution of (I .18). Simple computations,based 

on appropriate use of the properties (I .20), yield 

¥I 

P2YI 
2- 

Hh = P3K2YI 

q 1 

L Hh = 

0 

¥2 

(¥2-KIY1) 
p - 2 

K q 3 - 2 
q "'" K3(Y2-KIY I) 

L~Hh = 

0 

0 

Y3 

Kq 4 - 3 3 
q "'" K 4 (Y3-KIYI-K2Y 2) 
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and so on, until 

Lq-IHh = 

f 

0 

Yq 

• . . q_IYq_1 

and 

~ +iHh = 0 

0 
- _K~+i+1 q+i+1 
Yq+i+1 YI-'''-Kq Yq 

which holds for all i > O. 

D i f f e r e n t i a t i o n  o f  t h e s e  a l o n g  g l , . . . , g  m e n a b l e s  us  t o  o b t a i n  t h e  

e x p r e s s i o n  o f  H(L~L~h) f o r  a l l  k ~ 0.  Use o f  t h e .  p a r t i t i o n  ( 2 . 1 8 )  makes  

it possible to get 

E 1 

0 

HL~h = 0 
g 

HL L h 

0 

E 2 

2 
= -P3KIEI 

_Kq 3 2 
q "'K3KIEI 

and so on, until 
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q-1 
0 

E q 

-K~EI-... -Kq_ iEq_ I 

and, for all i > 0, 

q+i 
0 

0 

-K? +i+ 1E I -"" "-Kq+i+ I E 
q q 

Since El, .... Eq are rows of the matrix [ Iq 0], one easily under- 

stands that the formal power series 

(3.1)  
co 

W(s) = H ~ (L Lkh)s -k-1 
k=0 f 

displays the following pattern of elements 

(3.2) W(s)= 

- -I 

I61s 

w31(s) 

w41(s) 

Wq, I (s) 

Wq+1,1 (s) 

0 ... 0 0 

-2 0 0 16 s ... 
2 

0 ... 0 0 

W42(S) ... 0 0 

o,° 

s--q Wq,2(s) . .. I8 0 
q 

Wq+1,2(S) ... Wq+1,q_1(s) Wq+1,q(S) 0 

We recall that the partition for the rows corresponds to a 

partition of the output vector into q+1 blocks of dimensions 
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~1,...,dq,(%-rq-1) , while the one for the colununs corresponds to a parti- 

tion of the input vector into q+1 blocks of dimensions ~1, ...,6q,(m-rq-1). 

(3.3) Remark. Note that, if the Algorithm (1.15) terminates at the 

q-th stage (i.e. if the number of rows of S is equal to the number 
q 

of outputs), the (q+1)-th block-row of the matrix W(s) does not exist, 

and the matrix itself is right-invertible. [] 

From the previous expression for HL~L~h,~ one also sees that in 

the j-th block column of (3.1), I < j < q, the largest power of s 

appearing in any off-diagonal element is -(j+1). As a consequence,one 

may conclude that Wij(s)sJ is a strictly proper formal power series. 

This property will be immediately used in the following way. Set 

(3.4) PI (s) = 

I 0 ... 0 

0 I ... 0 

-W31 (s)s 0 ... 0 

-W41 (s)s 0 ... 0 

-Wq+1,1 (s)s 0 ... I 

and note that 

I I~ s -I 0 I 
P1(s)W(s ) = I 

0 W22(s) 

W22(s) being the lower-right-hand (~-61)×(m-61) submatrix of W(s). 

The power series P1(s) is proper (because of the aforementioned 

property of -W31 (s)s,...,-Wq+1,1 (s)s) and its inverse too. A proper 

formal power series whose inverse is also proper is called a bipro- 

per power series. Thus, we have that the power series (3.4) is bi- 

proper. 

Continuing this process, one can find bip~oper formal power 

series P2(s),...,Pq(S) which reduce W(s) to a purely diagonal form, 

and prove the following interesting result. 
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(3.5) Theorem. Suppose the system (1.1) is such that the Input-Output 

Linearization Problem has a solution at x °. Then there exist a bi- 

proper formal power series 

-k-1 
R(s) = R_1(x) +kk0Rk(X)S 

whose coefficients are mxm matrices of smooth functions defined on 

a neighborhood U of x °, and a biproper formal power series 

L(s) = L_I +k~0Lks-k-1 

whose coefficients are £×Z matrices of real numbers such that 

(3.6) T(s,x) = L(s)A(s)R(s,x) 

where 

13.7) A(s) = diag I l '  2 7"'1 .,I q 

Proof. The formal power series 

P(s) = Pq(S)...PI(S)H 

is biproper, because each P. (s) is and H is invertible. On the other 
l 

hand, 

and thus 

Pq(S)...Pl (s)W(s) = A(s) 

(3.6) follows from 

L(s) = p-1 s). [] 

A factorization of the form (3.6) reveals the behavior of T(s,x) 

as s ~ ~. As a matter of fact, the limits of L(s) and R(s,x) for s ~ 

are nonsingular; in i-th set of diagonal elements of A(s) , each func- 

tion has a zero of muZtiplicity i at the infinity. For this reason, 

the string {61,62,...} is known as the structure at the infinity of 

the formal power series T(s,x), or of the system (1.1). Note that 

the string {61,62,... } is uniquely associated with T(s,x) and does 

not depend on the particular procedure chosen to obtain a factoriza- 
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tion of the form (3.6). 

(3.8) Remark. We have seen before that the integers 61,~2,... are 

related to the dimensions of the codistributions ~0,~i,... generated 

by means of the Controlled Invariant Distribution Algorithm (see 

Lemma (2.8)). In other words, we have 

(3.9a) 61 = dim 
n 0 

]_ 
n o AG 

n .  hi_ 1 
(3.9b) 6i+ I = dim l dim i > I 

n G i ~i ni_l n G ~ 

Since ~0,nl,... and G are invariant under feedback transformations 

(see Lemma IV. (2.8)), it turns out that the structure at the infinity 

of a system is invariant under feedback transformations. 

4. Linear model matching 

In the first section of this Chapter we have seen that, under 

suitable conditions, it is possible to synthesize a feedback under 

which the input-dependent part of the response of a given nonlinear 

system becomes the same as that of a linear system. Our aim was the 

one of achieving a response of the form (1.3), without any particular 

prescription on the first order kernels ki(t) , I ~ i _< m. As a matter 

of fact, the transfer function K(s) obtained for the linearized part 

of the response, whose form was analized in the previous section, 

happens to depend on the particular choice of feedback, i.e. on the 

particular matrices Pi,K %,...,Ki_ Ii selected at each stage of the 

Structure Algorithm. 

The purpose of the present section is to discuss a more demanding 

problem, the one in which a prescribed linear input-output behavior 

rather than some linear input-output behavior is sought. We tackle 

this new synthesis problem in a more general setting than before, 

letting the state-feedback to be dynamic rather than static. This 

means that we let u. to be related to the state x and, possibly, to 
l 

other input variables Vl,...,v ~ by means of equations of the form 

(4.1a) % = a(~,x) + [ bj (~,x)vj 
j=1 

P 
(4.1b) u i = ci(~,x) + ~ d (~,x)vj 

i=I z3 
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These equations characterize a new dynamical system, whose state 

evolves on an open subset of ~. As usual, we assume that all func- 

tions which characterize these equations are smooth functions, de- 

fined now on a subset of ~9 x~ n. Most of the times, we shall con- 

sider bj(~,x) as the j-th column of a ~ × ~ matrix b(~,x),ci(~,x) as 

the i-th row of an m×1 vector c(~,x) and dii (~,x) the (i,j)-th entry 

of a matrix d(C,x). Note that the number p of new inputs may be dif- 

ferent from m. 

The composition of (4.1) with (1.1) defines a new dynamical 

system, with input v = col(v1,...,v ), output y = col(y I ..... y£) 

described by equations of the form 

(4.2a} =f(~,x) + ~ gi(~,x)v i 
i=I 

in 

4.2b) Yi = hi (~'x) 

which 

f(~,x) = 

I a(~,x) m 
f(x) + [ gi(x)ci(~,x) 

i=I 

gi (~,x) = 

bi(~,x) 

m 
j~igj(x)dji (~'x) 

hi(~,x) = hi(x) 

The integer ~, which characterizes the dimension of the dynamic- 

al system (4.1),and the quadruplet (a,b,c,d) are to be chosen in such 

a way as to obtain, for the closed loop system (4.2), an input-output 

response of the form (see (1.3)) 

t 
C 

(4.3) y(t) = Q[t,(~°,x°)) + j WM(t-T)V(T)dT 

0 

WM(t) being a ~ixed %×p matrix of functions of t, the impulse-re- 

sponse matrix of a prespecified linear model. As before, we seek 

local solutions defined in a neighborhood of the initial state. In 

view of our earlier discussions, this yields the following formal 
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statement. 

Linear Model Matching Problem. Given (f,g,h), an initial state x °, and 

a linear model (A,B,C), find (if possible) an integer w, an initial 

state ~o E ~, a quadruplet of smooth functions (a,b,c,d) defin&d in a 

neighborhood U of (~°,x°) such that for all k > 0 

(4.4) L~L~h(~,x) = cAkB. [] 

If the system (1.1) is such that a solution to the Input-Output 

Linearization Problem exists, then it is quite simple to find the 

extra conditions needed for the existence of a solution to the Linear 

Model Matching Problem and to construct such a solution. The main tool 

is again the Structure Algorithm described in the first section. 

The data of a Linear Model Matching Problem are, besides the 

initial point x O, the triplet (f,g,h) which characterizes the system 

to be controlled and the triplet (A,B,C) which characterizes the model 

to be reproduced. These data will be used in order to define an ex- 

tended system, described by the following set differential equations 

= f(x) + g(x)u 

(4.5) z = Az + Bv 

w = h(x) - Cz 

The output w of this system is actually the difference between the 

output of the system (1.1) and that of the model. For convenience, 

we represent (4.5) in the form 

~E = fE(xE ) + gE(xE)uE 

w = hE(x E) 

letting x E= col(x,z), u E =col(u,v) and 

(4.6a) fE(x'z) = I Azf(X) 
E g (x, z) = I g(x) 0 I 

0 B 

(4.6b) hE(x,z) = h(x) - Cz 
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The conditions for the existence of a solution to the Linear Model 

Matching Problem may easily be expressed in terms of properties of the 

system thus defined, as we will see hereafter. 

Suppose the system (1.1) is such that the Input-Output Lineariza- 

tion Problem has a solution at x °. Then, the triplet (f,g,h) is such as 

to fulfill the condition (a) of Theorem (1.11). It is easily seen that, 

for any z °, also the triplet (fE,gE,hE) is such as to fulfill a similar 

condition at (x°,z°). For, let 

k 
T~(x,z) = L ELkEhE (x, z) = [LgLfh(x) 

g f 

Then 

cAkB] 

oo co 

E(x,z)s-k-1 = [T(s,x) [ cAkBs -k-l] = T k 
k=0 k=0 

= [K(s) 

I 

where 

co 

WM(S) = ~. cAkBs -k-1 
k=O 

denotes the transfer function of the model. 

As a consequence of this, the Algorithm (1.15) may also be per- 

formed on the triplet (fE,gE,hE), around the point (x°,z°), and one may 

define on the formal power series TE(s,x) a structure at the infinity, 
E E 

characterized by a string of integers {~1'~2'''" }. 

The coincidence between the structure at infinity of the formal 

power series T(s,x) and that of the formal power series TE(s,x) is 

exactly the condition that characterizes the possibility of solving 

a Linear Model Matching Problem. In order to be able to prove this 

result and give an explicit construction of the required feedback, we 

need a little more notation. 
i .. K i Let Pi,KI,. ' i be the set of matrices determined at the i-th 

stage of the Structure Algorithm, when operating on the triplet (f,g,h). 

Let the triplet (A,B,C) characterize the model to be followed. We set 

(4.7a) C I = PI C 
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(4.7b) CI = K~C 

and, for i > 2 

(4.7c) 

(4.7d) 

C i = PiCi_1A 

Ci K~CI+ +Ki-1 i- = " "" Ci-I+KiCi-IA 

With the functions X1(x),...,yq(X) determined at each nondegene- 

rate stage of the Algorithm we associate, as before, a matrix 

r(x) = -71(x) 

7q(X) 

and with the matrices CI,...,C q defined above we associate the matrix 

(4.8) D = 

-C I 

The constructions defined above are helpful in finding a solution 

tothe problem in question. 

(4.9) Theorem. Suppose the system (1.1) is such that the Input-Output 

Linearization Problem is solvable at x O. The Linear Model Matching 

Problem is solvable at x ° if and only if either one of the following 

equivalent conditions is satisfied 

(a) C B = 0 for all i > I 

(b) the system (1.1) and the extended system (4.5) are characterized 

by the same structure at the infinity. 

A dynamical state-feedback which solves the problem is the one 

described by the following equations 

(4.10a) ~ = A~ + Bv 

(4.10b) u = ~(X)-S(x)DA~-8(x)DBv 
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in which ~(x) and B (x) are solutions of 

(4.11a) LgF(X)~(x) = -LfF(x) 

(4.11b) LgE(X)~(x) = I r 
q-1 

with D defined as in (4.8). The initial state C ° of (4.10) may be set 

arbitrarily. 

Proof. (a) ~ (b). Consider the sequence of functions thus defined 

y~(x) = PIhE(x) 

-E I E 
Y1 (x) = K1h (x) 

and, for i > 2, 

~E (x) 
y~(x) = PiLfE i-I 

~E(x) i E(x)+. i E (x) i -E 
=KiY I . .+Ki_iYi_ I +KiLfEYi_1 (x) 

Note, also, that for all i > I 

E(x) = Yi(x) + Ciz 

~(x) = ~i(x) + 6i z 

Suppose that, for all I < k < i, 

Ck B = 0 

Then, for all I < k < i, 

-E 
L EYk(X) = 0 
g 

and the matrix 

E 
L EY1(x) 
g 

E(x) 
L EYk 
g 

Ii LgYI (x) 

LgYk (x) cIB 1 CkB 
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has a rank equal to the number 61+...+6 k of its rows, at (x°,z O) (note 

that z O is irrelevant)• As a consequence, one may conclude that the 

first i steps of the Structure Algorithm on the triplet(fE,gE,h E) may 

be performed exactly in the same way as on the triplet(f,g,h). At each 

of these steps, the same set of matrices Pk,K~ ..... K~ makes it pos- 

sible to perform the required operations. In particular, since the 

integers which characterize the structure at the infinity do not de- 

pend on the choice of matrices in the Structure Algorithm, we see that 

the first i entries in the structure at the infinity of (f,g,h) and 

(fE,gE,hE) coincide. Now, let Vi+ I be the matrix determined at the 

(i+1)-th stage of the Algorithm (1.15) and observe that 

Vi+1 

E E 
L EY1(x ) 
g • 

"E(xE ) 
L Ey i 
g 

L _L _~ (x E) 
g~ f~ I 

= Vi+ I 

LgY1(x) CIB 

Lg~i(x) CiB 

ngLf~ i (x) CiAB 

Lgy I (x) 

= LgYi+ I 

0 

CIB 

Ci+IB 

Ci+IB 

From this we see that the (i+1)-th entries in the structure at the 

i n f i n i t y  o f  ( f , g , h )  and  ( f E , g E , h E )  c o i n c i d e  i f  and  o n l y  i f  

Ci+1B = 0 

Sufficiency of (b). At the last nondegenerate step of the algorithm 

one ends up with a matrix 

F E (x E) = 

E 
YI (xE) 

E Yq ( xE ) 

~1 (x) ClZ 

• • 

yq (x) CqZ 

= (r(x) Dz) 

of rank rq_i=61+...+6 q at (x°,z°). Consider now the two equations 

(4.12a) L E FE(x E) E(x E) = _LfEFE(x E) 
g 

(4.12b) L EFE(xE)BE(x E) = (I r 0) 
g q-1 

which correspond to the equations (1.18). If ~(x) and ~(x) are solu- 

tions of (4.11), solutions ~E(xE) and ~E(xE) of (4.12) may be found as 
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~(x)-~(x)DAz 

8E(x,z) = 

~(x) 

0 

-8(x)DB 

Note that B is m×rq_ I and that ~E is (m+~)×(rq_1+~). 

Now, suppose the functions E and B E thus defined are used in a 

static state-feedback loop on the extended system (4.5). As a conse- 

quence of all previous discussions, we get 

L k h E E (4.13) L EsE (x E) = independent of x 
g fE+gEE 

for all k > 0 around (x°,z°), for any z°. In particular (see e.g. the 

structure of (3.2)), the last ~ columns of these matrices vanish 

for all k > 0. 

The extended system (4.5) subject to the feedback thus defined 

is described by equations of the form 

= f (x) +g (x) ~ (x) -g (x) $ (x) DAz+g (x) 8 (x) u-g (x) 13 (x) DBv 

(4.14) z = Az + B~ 

w = h(x) - Cz 

where u and v represent new inputs. The response of this system con- 

sists of a "zero-input" term w0(t, (x°,z°)) and of a linear term in 

alone, because, as we observed, the last ~ columns of (4.13) are 

vanishing. This means that, if u = 0, the response of such a system 

consists of w0(t, (x°,z°)) alone.Equations (4.14) with u = 0 may be 

interpreted as the composition of the original system (1.1) with the 

dynamic feedback 

-- Az + B~ 

u = ~(x)-B(x)D(Az+Bv) 
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together with the a new output map 

w = y - Cz 

For all initial states around (x°,z °) and all inputs 

w(t) = w0(t, (x°,z°)) 

and, therefore, 

t 

y(t) = w0(t , (x°,z°))+ceAtz ° + I ceA(t-T)Bv(T)dT 

0 

This shows that the response of the system (1.1) under the feed- 

back (4.10) has the desired form (4.3). 

Necessity of (a). This part of the proof consists in a repeated 

of the expressions which define Yi(x) and ~i(x), in order to show use 

that 

(4.15) L~Lkh(~,x) = cAkB 

for all k > 0, imply 

C B = 0 
1 

for all i > 0. One proves first that (4.15) implies 

(4.16a) [LgLf~i(x)]d(~,x) = ~iAB 

and that this, in turn, implies 

(4.16b) [LgYi(x)]d(~,x) = CiB 

for all i > 0. Then, (4.16) imply the desired result, because 

i 
• +KiLfYi_ I] ) d = 0 = (Lg~i)d = (Lg[Kiy1+..+Kl_iYi_1 i - 

i ) d+. i d+K i - ) d = 
= K I (Lgy I - .+Ki_ I (LgYi_ I ) (LgLfYi_ I 

= (K CI+...+Ki_ICi_I+KiCiA) B = Ci B 

This completes the proof. [] 
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(4.17) Remark. From the above statement, we see that a dynamic state- 

feedback which solves a Linear Model Matching Problem may easily be 

found in terms of data related to the solution of an Input-Output 

Linearization Problem. As a matter of fact, the availability of 
i K i Pi'KI ''''' i' 1 ~ i ~ q makes it possible to construct the matrices 

Ci,C i , I ~ i ~ q and, then, to check the existence condition (a). If 

this is satisfied, one takes any solution ~(x) and ~(x) of (4.11) 

(i.e. any feedback solving the Linearization Problem) and constructs 

a solution of the Model Matching in the form (4.10). 

(4.18) Remark. In the previous procedure, no special attention was 

paid to the properties of the zero-input term Q(t, (~°,x°)), which 

represents the effect of the initial states on the response of the 

closed loop system (4.2). If an asymptotically decreasing zero-input 

response is required, one should modify the outlined construction and 

use, instead of a solution ~(x) and 8(x) of (4.11), a feedback which 

makes linear and asymptotically stable the input-output behavior of 

the extended system (4.5). This may be accomplished on the basis of 

the ideas discussed in the Remark (2.21). [] 

5. More on Linear Model Matching, Output Reproducibility and Noninterac- 

tion 

In this section we will see that it is possible to solve a Linear 

Model Matching Problem even though the Input-Output Linearization Pro- 

blem is not solvable. In particular, we will see that the condition 

(b) of Theorem (4.9) still implies the solvability of the Linear Model 

Matching problem, even in case the assumption of solvability of the 

Input-Output Linearization Problem does not hold. 

To this end, note first of all that the so-called structure at 

the infinity can be associated with any system of the form (1.1) and 

not only with input-output-linearizable systems. This is because the 

string of integers {61,62,...}, that we introduced by means of the 

Structure Algorithm, can also be independently defined in terms of 

dimensions of the codistributions generated by means of the Controlled 

Invariant Distribution Algorithm (see e.g. (3.9)). For this to be pos- 

sible, it is only required that G, ~k and ~k N G £ have constant di- 

mension, for all k > 0, around the point x °, i.e. that x ° is a regular 

point for this algorithm (see chapter IV, section 3). 

If this is the case, one may associate with the triplet (f,g,h) 

the sequence of integers 
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~k 
(5.1) r k = dim G ~ k h 0 

~k n 

Given also a linear model (A,B,C), we may associate with the extended 

triplet (fE,gE,hE) (see (4.5)), a similar sequence of integers 

E 
E ~k 

(5.2) r k = dim E r] G EL k >_ 0 

£k 

where now the superscript "E" denotes objects pertinent to the extended 

system, namely 

G E E E E E ] 
= sp{g1'''''gm'gm+1 ..... gm+p 

QO =E (sp{dh~ ..... dh~]) 

E E LfE(~ K A GEL)" 9k = ~k-1 + -I + 

m+~ 
[ L E(ak_1 A G El) 

i=I gi 

The structure at the infinity {61,62,...} of a system of the form 

(1.1) is uniquely related to the sequence {rl,r2,...} and, therefore, 

the equality between the structure at the infinity of the system (1.1) 

and that of the extended system (4.5) (i.e. the condition (b) of 

Theorem (4.9)) is equivalent to the equality 

E 
r k = r k 

for all k > 0. 

We prove now that this is still sufficient for the solvability 

of the problem in question. 

(5.3) Theorem. Suppose x O is a regular point of the Algorithm IV.(3.17) 

for the triplet (f,g,h) and (x°,z °) is a regular point of the Algorithm 

IV. (3.17) for the triplet (fE,gE,hE). Then the Linear Model Matching 

Problem is solvable at x ° if 

(5.4) r k = r k 

for all k > 0. 

Proof. We first establish some notations. Let u denote the dimension 

of the linear model (A,B,C). Throughout this proof we will be inter- 
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ested in some distributions and/or codistributions defined around 

the point (x°,z °) of ~n ×~u in the following way. We set 

E E} 
Gu = sp{gl ..... gm 

Gv s { E E } 
= p gm+1,---,gm+u 

and we note that 

(5.5) GE = Gu • Gv 

Moreover, we define a sequence of codistributions ~k ' k _> 0, as 

* lgn x T *jR ~ ~k(X,Z) = ~k(X) X{O] C T x z 

It is easy to verify that the sequence of codistributions thus 

defined is such that 

(5.6) 
m+ U - i  

~k+l = ~k + ~ T. ~.(~k n Gu) 
i=0 gi 

(with g~ = rE) and also that 

~k ~k 
(5.7) r k = dim ~ = dim _~ 

~k n G £ ~k ~ Gu 

Finally, we define another codistribution F as 

r(x,z) = {o} ×T~ ~ 
Z 

We proceed now with the proof, which is divided into three steps. 

(i) It will be shown that the assumption (5.4) implies 

-~ E n ~£ (5.8) Gv D ~k u 

for all k > 0. To this end, note first that the assumption (5.4), 

because of (5.7), may be rewritten as 

E GEL 
~k + S~ ~k + 

(5.9) dim( T ) = dim(--) 
G E~ £ =  

U 

Suppose now that 
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E 
(5 .10)  ~k + F = ~k + £ 

for some k. Then, we may deduce the following implications 

E -k E + -i 
~k + F = ~2 k + F ~ ~k +Gu = e k  Gu 

E - L  
~k + Gu 

dim - -  = dim 
-i 
G 
U 

-L 
(because r C Gu) 

E ~k + GEL 
(by (5.9)) 

GEL 

E n G~ dim E nGEX dim ~k u = ~k 

E ~ ~i = E n GEi (because G EL C ~) 
~k u ~k u " 

The condition (5 .10)  also implies (because F C G~) 

(5.11) au E 
-L n +r= n +r) =SL n (~ +r) = n ~k+F Gu u 

Thus, we have 

_ m+~ ~L n ~k) + F 
~k+1 + r = ~k + ~' L E ( u 

i=0 gi 

m+u 
= ~k + X L E(Cu ~ n ~k + r) + r 

i=0 gi 

m+p (-L N E 
= ~k + ~ L E Gu ~k + F) + F 

i=0 gi 

m+p 

= ~ k  +~. ~ E  
i=0 gi 

E (G EL n ~k + £) + £ 

~k m+~ (G EL n ~k) + F = + I L E 
i=0 gi 

E m+p 
= ~k + [ L E 

i=0 gi 
k 

E + F {G EL N ~2 ) + r = ~k+1 

by (5.6) 

by (5 .11)  

(see above) 

by (5.10) 

This shows that (5.10) holds also for k+1. Since (5.10) is true 

for k = 0, the previous argument shows that it is true for all k > 0. 

As a consequence, we have also 
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E n -~ E n G EL 
~k Gu = ~k 

for all k > 0 and this, since G El C ~k implies (5.8) Note that (5.8) 
-- V • " 

may be rewritten as 

EL 
(5.8') GV C Rk + Gu 

(ii) Since (x°,z O) is a regular point of the Algorithm IV.(3.17) for 

the triplet (fE,gE,hE), there exists an integer k* such that, in a 
E E * 

neighborhood of --(x°,z O) ~k = ~k* for all k ~ k . Moreover (see Lemma 

IV.(2.4)) the distribution 

AE, EL = ~ , 

k 

is such that 

[ f E , A E * ]  C A E* + G E 

[ gE,  AE*] C A E* + G E 1 < i <_ m+u 

From these, using (5.8'), we deduce that 

(5.12a) [ fE,AE*] C b E* + 
u 

(5.12b) [ E ,E*I C b E* + G I < i < m 
gi 'a ] u -- -- 

E n -£ E GEL Since ~k* Gu = ~k* N is nonsingular around (x°,z °) so is 

bE* + Gu" Also b E* and Gu are nonsingular and therefore one may use 

Lemma IV.(I.10) and deduce the existence of an m×1 vector a(x,z) of 

smooth functions, defined locally around (x°,z°), such that 

(5.13a) E , A E*] C A E* [ fE + gi~i 
i=I 

Moreover, from the condition (5.8') one may deduce the existence 

of an mxH matrix ¥(x,z) of smooth functions, defined locally around 

(x O z O) such that 

m 
E E AE* 

(5.13b) gm+i + ~ E I < i < P 
j=1 gjYji -- -- 

Finally, note that, because of the involutivity of A E*, the above 
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condition implies 

(5.13c) 
m 

[ E + [ E i,A E*] C A E* gm+i gjxj 1 < i < 
j=1 

and recall that 

(5. I 3d) ~ E ,  c (sp{dh~ . . . . .  dh~}) L 

(iii) Consider the dynamical system 

m p m 
.E fE E E E 
x + ~. giai + ~ + I g = (gm+i ¥j i ) vi 

i=1 i=I j=l 

w -- h E (x E) 

This system is such that the conditions (5.13) hold. Thus,thanks 

to Theorem III.(3.12), we deduce that the inputs Vl,...,v p have no 

influence on the output w, i.e. that for all initial states (in the 

neighborhood where a(x,z) and X(x,z) are defined) the response of this 

consists of a zero-input term w0(t, (x°,z°)) alone. Thus, system by 

means of the same arguments as the ones used at the end of the proof 

of Theorem (4.9), we conclude that the composition of the original 

system (1.1) with the dynamic feedback 

= Az + BY 

u = a(x,z) + y(x,z)v 

has a response of the form 

t 

y(t) = w0(t, (x°,z°)) + ceAtz O + I ceA(t-T)Bv(T)d~ 

0 

This concludes the proof. 

(5..16) Remark. The reader may easily check that the value of z ° is 

irrelevant in the previous discussions. 

(5.17) Remark. We stress that the proof of the previous Theorem is 

constructive. The fulfillment of the conditions (5.4) makes it pos- 

sible to find, locally around (x°,z°), a vector a(x,z) such that 

(5.13a) holds and a matrix X(x,z) such that (5.13b) holds. A dynamical 

state-feedback which solves the problem in question is the one de- 
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scribed by the equations 

(5.18a) ~ = A~ + Bv 

(5.18b) u = ~(x,~) + ¥(x,~)v [] 

As an application of this Theorem, we deduce now an interesting 

result which is rather useful in connection with problems of output 

reproducibility and noninteraction (via dynamic feedback). 

(5.19) Corollary. Suppose rk~ = £. Then there exists an integer 6 > 0 

such that the Linear Model Matching Problem is solvable for a linear 

model (A,B,C) with transfer function 

(5.20) W M(s)=C(sI-A)-IB = 

I 
0 ... 0 0 ... 0 

1 
0 ~ ... 0 0 ... 0 

... 0 ... 0 

I 
0 0 ... --~ 0 ... 0 

s o 

Proof. It is left as an exercice to the reader. 

(5.21) Remark. Note that the transfer function (5.20) is right-invert- 

ible. Thus, given any smooth i-vector-valued function y, defined on ~, 

and such that 

= (dt)0 • = .. = (dtS_l) 0 = 0 

there exists a smooth w-vector-valued function ~, defined on ~,such that 

t ( 

y(t) = ] WM(t-T)5(T)dw. [] 

0 

Now, suppose rk8 = i and suppose we have solved the problem of 

matching a linear model with transfer function (5.20). This means 

that we have found an appropriate dynamic state-feedback compensator 

(e.g. the one described in the proof of Theorem (5.3), which has the 

form (5.18)) under which the input-output behavior of the system (1.1) 

be come s 
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(5.22) 

Let y 

that 

t 

y(t) = Q(t, ({°,x°)) + I WM(t-~)v(T)dT 

0 

be any smooth £-vector-valued function, defined on ~, such 

(5.23) 
(dkye(t) = (dkQ(t, (~°,x°)))0 

dt k )0 dt k 

for 0 < k < 6-I. 

From the Remark (5.21) we easily deduce that there exists an input 

v under which the right-hand-side of (5.22) becomes exactly y . Thus, 

the composition of (I .I) with the dynamic state-feedback compensator 

which solves the problem of matching the transfer function (5.20) is 

a system that, in the initial state (~°,x°), can reproduce any output 

function which satisfies the conditions (5.23). 

Moreover, we note that in a linear system with transfer function 

(5.20) each output component is influenced only by the corresponding 

component of the input. Thus, we also see that if the condition rk~ = £ 

holds, we can achieve non-interaction via dynamic state-feedback. 

6. State-space linearization 

In the first section of this chapter, we examined the problem of 

achieving, via feedback, a linear input-output response. The sub- 

sequent analysis developed in the second section showed that, from 

the point of view of a state-space description, in suitable local 

coordinates, the system thus linearized assumes (at least in the 

special case where rq_ I = £) the form 

= Fz + Gv 

= f(z,~) + g(z,~)v 

y = Hz 

In other words , the input-output-wise linear system one obtains 

by means of the techniques in question may be interpreted, at a 

state-space level, as the interconnection of a (possibly) nonlinear 

unobservable subsystem with a system that, in suitable local coordina- 

tes, is state-space-wise linear. Moreover, the latter subsystem was 

also shown being both reachable and observable (Remark (2.21)). 
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In other words again, we may say that the techniques developed at 

the beginning of this chapter modify the behavior of the original 

system in a way such as to make a part of it (i.e. the observable one) 

locally diffeomorphic to a reachable linear system. 

Motivated by these considerations, we want to examine now the 

problem of modifying, via feedback, a given nonlinear system in a way 

such that not simply a part, but the whole of it, is locally diffeo- 

morphic to a reachable linear system. In formal terms, the problem 

thus introduced may be characterized as follows. 

State-Space Linearization Problem, Given a collection of vector fields 

f'g1' .... gm and an initial state x O, find (if possible) a neighborhood 
o 

U of x , a pair of feedback functions ~ and 8 (with Invertible 8) 

defined on U, a coordinates transformation z = F(x) defined on U,a 

matrix A 6 ~n×n and a set of vectors b I @ ~n,...,b m E ~n such that 

(6.1) F,(f+g~)oF-1(z) = Az 

(6.2) F,(gS)ioF-1(z) = b i I ~ i ~ m 

for all z 6 F(U), and 

n-1 m 
(6.3) [ ~ Im(Akbi ) : ~n 

k=0i=l 

(6.4) Remark. Let x(t) denote a state trajectory of the system 

m 

= (f+g~) (x) + [ (gSi) (x)u i 
i=1 

and suppose x(t) 6 U for all t 6 [0,T] for some T > 0. If (6.1) and 

(6.2) hold, then for all t 6 [0,T] 

z(t) = F(x(t)) 

is a state trajectory of the linear system 

m 
~ = Az + ~. b.u. 

i=I i ± 

Moreover, if (6.3) also holds, the latter is a reachable linear 

system. [] 

We shall describe first the solution of this problem in the 

special case of a system with a single input, which is rather easy. 

Then, we make some remarks about the usefulness of this linearization 
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technique in problems of asymptotic stabilization. Finally, we con- 

clude the section with the analysis of the (general) multi-input 

systems. 

For the sake of simplicity, we state some intermediate results 

which may have their own independent interest• 

(6.5) Lemma. Suppose m = I and let g = g1" The State-Space Lineariza- 

tion Problem is solvable if and only if there exists a neighborhood 

V of x O and a function ~ : V ~ such that 

(6.6) Lg~(X) = LgLf~(x) = 

for all x E V, and 

... = L L n-2 g f ~(x) = 0 

L L n-1 (6.7) g f ~(x °) ~ 0 

Proof. Necessity. Let (A,b) a reachable pair. Then, it is well known 

from the theory of linear system that there exist a nonsingular n×n 

matrix T and a 1×n row vector k such that 

0 I 0 ... 0 

0 0 1 ..• 0 

(6.8) T(A+bk)T -I = 

0 0 0 ... 1 

0 0 0 ... 0 

Suppose (6.1) and (6.2) hold, and set 

Tb= 

= ~(x) = TF(x) 

a(x) = e(x) + $(x)kF(x) 

(x) = ~ (x) 

Then, it is easily seen that 

F=~(q~)oE ' -1 (~ )  = 
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# , ( f + g ~ ) o F - l ( z )  = 

0 1 0 . . .  0 

0 0 I . . .  0 

• . . , o  . 

0 0 0 . . .  1 

0 0 0 . . .  0 

From this, we deduce that there is no loss of generality in as- 

suming that the pair A,b which makes (6.1) and (6.2) satisfied has 

directly the form specified in the right-hand-sides of (6.8). 

Now, set 

z = F(X) = col(z1(x) ..... Zn(X)) 

If (6.1) holds (with A and b in the form of the right-hand-sides 

of (6.8)), we have for all x 6 U, 

F , ( f ( x ) + g ( x ) a ( x ) )  = A F ( x )  

that is 

~z 1 
~x ( f ( x ) + g ( x ) a ( x ) )  = z 2 ( x )  

SZn_ I 
8--~(f(x)+g(x)a(x)) = Zn(X) 

~Z 
n 

x - ~ - - ~ - - ( f ( x ) + g ( x ) a ( x ) )  = 0 

If also (6.2) holds we have 

F%g(x) B(x) = b 

that is 
~z I 
~x g(x)S(x) = 0 

, .. 

~Zn_ I 
- x-~-~-- q(x)6(x) = 0 

~z 
~X n g(x)(3 (X ] = I 
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Since ~(x) is nonzero for all x E U, the second set of conditions 

imply 

~z. 
(6.9) ~xl g(x) = LgZi(x) = 0 I _< i _< n-1 

8Zn I 
(6.10) ~x g(x) = LgZn(X) = 

for all x E U. These, in turn, together with the first set of condi- 

tions imply 

(6.11) Lfzi(x) = zi+ I (x) 

~(X) 
(6.12) LfZn (x) = ~(x) 

I <i<n-1 

for all x E U. 

If one sets 

(6.13a) ~(x) = z I (x) 

the conditions (6.11) yield 

(6.13b) zi+ I (x) = Lf~(x) 

Thus, from (6.9) one obtains 

0 < i < n-1 

Lg~(X) = LgLf~(x) = n-2 ... = LgLf ~(x) = 0 

for all x 6 U and, from (6.10), 

Ln-1 
Lg f ~(x) ~ 0 

for all x 6 U. This completes the proof of the necessity. 

Sufficiency. Suppose (6.6) and (6.7) are true and let U C V be a 
n-1 

neighborhood of x ° such that LgLf ~(x) ~ 0 for all x 6 U. Use (6.13) 

in order to define a set of functions zl,...,z n on U. The functions 

thus defined are clearly such that (6.9) and (6.11) hold. Moreover, 

since LgZn(X) is nonzero on U, one can define a nonzero function ~(x) 

and a function e(x) by means of (6.10) and (6.12). This pair of func- 

tions ~ and ~ and the mapping 
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F ; x I ~ col(z1(x) ..... Zn(X)) 

are clearly such that 

F,(f(x) + g(x)a(x)) = AF(z) 

F,(f(x) 8(x)) = b 

with A and b in the form of the right-hand-sides of (6.8). Thus, in 

order to complete the proof, we only have to show that F qualifies as 

a local coordinates transformation around x O, i.e. that its differ- 

ential F, is nonsingular at x °. 

For, observe that the vector fields ~ = f+g~ and ~ = g~ are such 

that 

F,~(X) = AF(x) 

rU 
F,g(x) = b 

or, in other words, that f is F-related to the vector field f' de- 

fined by 

f'(z) = Az 

and that ~ is F-related to the vector field g' defined by 

g'(z) = b 

As a consequence, we have that the Lie bracket [~,~] is F-related 

to the Lie bracket [ f',g'] . Using this fact repeatedly, one may check 

that 

i~ i 
F,(ad~g) (x) = (adf,g')o F(x) 

for all 0 < i < n-1. The special form of f' and g' is such that 

(ad~,g' = (-1)iAib 

All together, these yield 

F,(g ad ~ _n-1~, •.. aa~ g} = 

= (b -Ab ... (-1)n-IA n-1 b) 
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The matrix on the right-hand-side is nonsingular, because (A,b) 

is a reachable pair, and so is F#. This completes the proof of the 

sufficiency. [] 

(6.14) Lemma. Let ~ be a real-valued function defined on an open set 

V. Then the conditions (6.6) and (6.7) hold if and only if 

(6.6') Lg~(X) = L[ f,g] ~(x) = ... = L n-2 ~(x) = 0 
(adf g) 

for all x E V, and 

(6.7') L ~(x °) ~ 0 
(adf -I g) 

Proof. We show, by induction, that the set of conditions 

(6.15a) 
0 

LgLf~ = .. . = LgL ~ = 0 

is equivalent to the set of conditions 

(6.15b) L 
(ad~g) 

and both imply 

~ = ... = L k ~ = 0 
(adfg) 

(6.16) L(adfg)LJ~ = (-1)iLgLf+J# 

for all i,j such that i+j = k+1. 

This is clearly true for k = 0. In this case (6.15a) and (6.15b) 

reduces to Lg~ = 0 and 

L[ f,g] m = LfLgm-LgLf~ = -LgLf~ 

Suppose (6.15a) and (6.15b) true for some k and (6.16) true for 

all i,j such that i+j = k+1. The latter yields, in particular, 

k+l k+l 
L ik+1 ~ = (-I) LgLf 

(aaf g) 

So that L L k+1 g f ~ = 0 if and only if L. Ik+I , 

of these conditions holds. Then [aef gj 

= 0. Assume either one 
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L (aaf~k+2 g)'@ = LfL.~aaf.k+l g) ~ - L (adk+lf g)Lf~ = 

= (-1)LfL k + (_1)2L 2 Lf~ (adkg) Lf~ 
(adfg) 

.k+1 k+1 2 L g)L2 
= (-I) LfLgLf ~ + (-I) (adk 

= (-I) 2L (adkg) L2~ 

2 2 + (_i) 3L 3 
= (-I) LfL, ~k-1 ,Lf~ k Lf~ 

~aaf g) (ad_-Ig) 

k+IL L L k+1 3L 3 
= (-I) f g f ~ + (-I) (adk+1 Lf~ 

f g; 

3 
= (-1)3L(adk_Ig)Lf~ =-.. 

We see in this way that for all 0 < j < k+2 

L(ad'°+2g)~f = (-1)JL(=~f~k+2-j • = J g f 
g)LJ~ (-I" k+2L L k+2 

and therefore that (6.16) is true for all i,j such that i+j = k+2. 

From (6.15) and (6.16) the statement follows immediately. [] 

(6.17) Remark. We have proved, by the way, that either one of the two 

equivalent sets of conditions (6.15) imply 

L L~ = (-1)JL 
(ad~g) r (ad~+Jg)~ 

for all i,j such that i+j < k+1. This fact will be used in the sequel.D 

(6.18) T~eorern. Suppose m = I and let g = g1" The State-Space Lineariza- 

tion Problem is solvable if and only if: 

.n-1 , o, 
(i) dim(span{g(x°),adfg(x °) ..... aaf gtx )}) = n 

(ii) the distribution 

(6.19) n-2 
A = sp{g, adfg,...,adf g} 

is involutive in a neighborhood U of x °. 
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(6.20) Bemark. Note that the condition (i) implies that the tangent 
n-1 

vectors g(x),adfg(x),...,adf g(x) are linearly independent for all x 

in a suitable neighborhood of x °. Therefore the distribution (6.19) is 

nonsingular around x ° and has dimension (n-l). 

Proof. We know from the previous Lemmas that the problem is solvable 

if and only if there exists a real-valued function ~ defined in a 

neighborhood V of x ° such that the conditions (6.6') and (6.7') hold. 

These may be rewritten as 

(6.6") i ) (x) 0 ( d9, adfg = 

for all 0 < i < n-2 and all x E V, and 

(6.7") 
n-1 

(d~,adf g } (x °) / 0 

If both these conditions hold, then necessarily the tangent 
o ~n-1 . o, 

vectors g(x ),adfg(x °) .... ,aaf g[x ) are linearly independent. For, 

we see from Remark (6.17) that (6.6") implies 

i > = L g) L J9 = 
<dL~, adfg (adf 

= (-1)JL(adf+Jg)9 = (-1)J(dg,adf+Jg } 

for all i+j < n-1. Therefore, using again (6.6") and (6.7") we have 

ad g>(x) = 0 

for all i,j such that i+j < n-2 and all x E V and 

< j i ) (x °) ~ 0 dLf~,adfg 

for all i,j such that i+j = n-1. 

The above conditions, all together, show that the matrix 

(6.21) 

d~(x °) 

dLfg(x ° ) 

dL~-l~(x ° ) 

(g(x O) adfg(x°)...ad~-Ig(x°)) = 
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d~, g ) (x °) 

dLf~,g ) (x °) 

(d~,adfg) (x O) 

<dLf~,adfg ) (x °) 

... (d~,adf-lg) (x O) 

... (dLf~,ad~-Ig) (x °) 

dL~-1 g )(x o) <dLn-1 n-1 )(x o) , f ~,adfg ) (x °) ... (dL~-19,adf g 

has rank n and, therefore, that the vectors g(x°),adfg(x°),...,a~f-lg(x O) 

are linearly independent. 

This proves the necessity of (i). If (i) holds then the distribu- 

tion (6.19) has dimension n-1 around x ° and (6.6") tell us that the 

exact covector field d~ spans A i around x O. So, because of Frobenius 

theorem (see Remark I.(3.7)) we conclude that A is completely in- 

tegrable and thus involutive, i.e. the necessity of (ii). 

Conversely, suppose (i) holds. Then the distribution (6.19) is 

nonsingular around x °. If also (ii) holds, A is completely integrable 

around x ° and there exists a real-valued function ~, defined in a 

neighborhood V of x °, such that d~ spans A ± on V, i.e. such that 

(6.6") are satisfied. Moreover, the covector field d~ is such that 

(6.7") also is satisfied, because otherwise d~ would be annihilated 

by a set of n linearly independent vectors. This, in view of the pre- 

vious Lemmas, completes the proof of the sufficiency. [] 

For the sake of convenience, we summarize now the procedure 
leading to the construction of the feedback e and 8 which solves the 

State-Space Linearization Problem in the case of a single input 

channel. 

Suppose (i) and (ii) hold. Then, using Frobenius Theorem one 

constructs a function ~, defined in a neighborhood V of x O, such that 

(6.6") and (6.7") hold. Then, one sets 

(6.22a) 

and 

I 
6 (x) 

L L n-1 (x) 
g f 

n 
-Lf~(x) 

(6.22b) e(x) = 
LgL~-1~(x) 

for all x E V. This pair of feedback functions, together with the 

local coordinates transformation defined by 
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z (X)l = Lfi-1~(x) 

for I ~ i ~ n, is such as to satisfy (6.1) and (6.2) with A and b I =b 

in the form of the right-hand-sides of (6.8). 

(6.23) Remark. There is a surprising affinity between some results de- 

scribed in this section and the ones described in the sections IV.3 

and IV.4. For instance one may rephrase Lemma (6.5) by saying that 

the State-Space Linearization Problem is solvable if and only if one 

may define, for the system 

= f(x) + g(x)u 

a (dummy) output function 

y = ~(x) 

whose characteristic number is exactly n-1. Of course, this will be 

possible if and only if the conditions (i) and (ii) are satisfied. 

Once such a dummy output function has been found, then the solu- 

tion of a State-Space Linearization Problem proceeds like a solution 

of a (degenerate, because both ~ and m are equal to I) noninteracting 

control problem. As a matter of fact, we have from Lemma IV.(3.10) 

d~,dLf~,...,dL~-1~ are linearly independent at that the differentials 
o 

x and thus that the mapping 

n-1 
F : x I )col(~(x),Lf~(x) ..... Lf ~(x)) 

qualifies as a local coordinates transformation. Then, from Corollary 

IV. (3.14) we learn that 

n-1 i i 
A = 0 (sp{dLfg}) = 0 

i=O 

is the largest locally controlled invariant distribution contained in 

(sp{d~}) ± . 

The feedback (6.22) coincides with a solution of IV. (3.15) (with 

7(x) = 0 and d(x) = I). Under this feedback the system becomes linear 

in the new coordinates, as it is seen from the constructions given in 

the section IV.4 (see Remark IV.(4.9)). [] 

We note that the formal statement of the State-Space Lineariza- 

tion Problem, given at the beginning of the section, does not in- 
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corporate any requirement about the image F(U) of the coordinates 

transformation that makes it possible (6.1) and (6.2) to hold.However, 

one may wish to impose the additional requirement that the image F(U) 

contains the origin of ~n. In this case, the condition of Theorem 

(6.18) must be strenghtened a little bit. 

Suppose the coordinates transformation z = F(x) solving the 

State-Space Linearization Problem is such that 

(6.24) z ° = F(x °) = 0 

Then, from (6.1) we deduce that necessarily 

(6.25) f(x °) + g(x°)~(x O) = 0 

If f(x °) = 0, then the construction already proposed for the 

solution of the problem may be adapted to make (6.24) and (6.25) 

satisfied. As a matter of fact, one may always choose a function 

satisfying (6.6") and (6.7") in such a way that ~(x °) = 0 (see, e.g., 

the construction proposed along the proof of Theorem I.(3.3)). If this 

is the case, then 

z1(x °) = ~(x °) = 0 

and also, for 2 < i < n, 

i-I $-2 (xO),f(xO)) zi(x O) = Lf ~(x O) = (dL = 0 

because we have assumed f(x °) = 0. Thus the proposed coordinates trans- 

formation satisfies (6.24). Moreover, 

n f ~(x o),f(x o) ) Lf~(x °) (dL -I 
(x °) . . . . .  0 

L L n-1~(x °) L L n-1 
g f g f ~(x°) 

and also (6.25) holds. 

One may thus assert that if f(x °) = 0, i.e. if the initial state 
o 

x is an equilibrium state for the autonomous system 

= f(x) 

and if the State-Space Linearization Problem is solvable, one may al- 

ways find a solution such that ~(x °) = 0 and F(x °) = 0. 
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If f(x °) ~ 0, the condition (6.25) may be rewritten as 

(6.26) f(x °) = cg(x °) 

where c is a nonzero real number. Again, if the State-Space Lineariza- 

tion Problem is solvable one may find a function ~ such that z1(x °) = 

= ~(x O) = 0. But also, for 2 ~ i ~ n, (6.26) ensures that 

f-2 zi(x°) = <dL~-2~,f(x °) ) = CLgL ~(x o) = 0 

and thus (6.24) still holds. Moreover, the proposed ~ is such that 

(dL~-1~(x°),f(x °) ) 
~(x °) . . . .  c 

LgL~-I?(x °) 

as expected. 

In this case, the initial state x ° is not an equilibrium state 

for the original system, but an a may be found such that x O is an 

equilibrium state for the system 

= f(x) + g(x)a(x) 

In summary, we have the following result. 

(6.27) Corollary. Suppose m = I and let g = g1" Suppose the State- 

Space Linearization Problem is solvable. Then, a solution with 

F(x °) = 0 exists if and only if 

f(x °) 6 sp{g(x°)} [] 

(6.28) Remark. When F(x °) = 0, one may use the solution of the State- 

Space Linearization Problem for local stabilization purposes. Indeed, 

since (A,b) is a reachable pair, one may arbitrarily assign the eigen- 

values to the matrix (A + bk), via suitable choice of the 1×n row 

vector k. If this is the case, the feedback control law 

u = a(x) + S(x)kF(x) + S(x)v 

makes the system locally diffeomorphic, On U, to the asymptotically 

stable system 

~ = (A + bk) z + bv [] 
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We now describe the extension of the previous discussion to the 

case of many inputs. This requires the introduction of some further 

notations, but the substance of the procedure is essentially the same 

as the one examined so far. 

Given a set of vector fields f,gl,...,g m we define a sequence of 

distributions as follows 

G O = sp{g I ..... gm } 

G i = Gi_ I + [ f,Gi_ I] 

The following Lemma describes the possibility of computing all 

Gls in a simple way. 
l 

(6.29) Lemma. Suppose all Gis are nonsingular. Then 

(6.30) G i = sp{ad~gj : 0 < k _< i, I _< j _< m} 

k 
Proof. Suppose G i = sp{adfg. : 0 < k < i, I < j < m}. Suppose that at 

o k 1 ] k C  --  -- 
x some vectors aaf gJ1'''''adf gJr are linearly independent and 

span G i(x °). Then on a neighborhood U of x ° any vector field T in G. 
r k i 

may be written as • =~=I [ c adfagj , with c a e C~(U). Then [ f,T] = 

r k +I k k +I 

=~=I [ (c~adf~ gJa+(Lfc )adf~gj ) . Therefore, on U, Gi+ I = sp{adf ~ gj , 

k 
a k 

adf g_j~: I <_ ~ <_ r}. Since, by construction, all adfgj , 0 _< k _< i+I 

and I < j _< m are in Gi+ 4, , this proves that Gi+1=sp{adkgj~ :0 <k < i+I f 

I < j < m}. D 

Since G i C Gi+1 by definition, if the G~s are nonsingular we have 

that 

Gi+ I (x) 
dim ~ - -  - 

l 

- independent of x 

Thus we may define a sequence of integers v0,Vl,.., by setting 

(6.31a) 

(6.31b) 

~0 = dim G O 

S. 

V i = dim ~ i > I 
Gi_ I 
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The integers thus defined have the following property 

(6.32) Lemma. The following condition holds 

ui --> ~i+I 

for all i > 0. Let v., denote the last nonzero element in the sequence 
l 

{~i : i ~ 0}. If 

dim G • = n 
l 

then 

v 0 + v1+...+vi~ = n 

Proof. Consider G i and Gi_ I. By definition 

dim Gi(x) = dim Gi_1(x) + ~i 

From (6.30), we deduce that, given a point x °, there will be v. vectors 
1 

adfgjl i  ( x O ) , . . . , a d ~ g j ~ .  (x °) l i n e a r l y  i n d e p e n d e n t  and wi th  the  p r o p e r t y  
1 

that all vector fields in G. may be written as linear combinations,with 
1 

i 
smooth coefficients, of vectors of Gi_ I and of sp{ad=g. :1<s<u }. Thus 

~ 3s i 

i+I 
Gi+1 = Gi+sp{adf gJs : I < s < ~i } 

and 

vi+ I _< v i . [] 

From the sequence {w. : 0 < i < i } we define another sequence of 

i n t e g e r s  m O,m 1, . . . , m i ,  , s e t t i n g  

m 0 = vi • 

(6.33) 

mo+m I = ~i~_I 

mo+m1+m2 = vi~ 2 

mo+m1+'''+mi * = ~0 
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(6.34) Lemma. The following conditions hold 

m0 > 0 

m. > 0 I < i < i 

Moreover, if dim G., = n, then 
1 

(6.35) dim G.* 
i -i = im0+...+2mi_2+mi_1 

for I < i < i . [] 

There is a need for a third sequence of integers {<i:I~i~90} re- 

lated to the previous ones by the following relations 

~. = i +I if 1 < i < v_, 
1 

<'z = i if m I > 0 and w.,+11 -- < i --< 9i*-I 

(6.36) K. = i -I 
1 if m 2 > 0 and ui, 1+I ~ i ! ~i*-2 

<i = I if mi, > 0 and vi+I ! i ! ~0 

With the help of these notations it is rather simple to state the 

necessary and sufficient conditions for the existence of a solution to 

the State-Space Linearization Problem in the general case where m > I. 

(6.37) Theorem. The State-Space Linearization Problem is solvable if 

and only if 

(i) x O is a regular point of the distribution Gi, for all i ~ 0 

(ii) dim G.~(x °) = n 
l 

(iii) the distribution G i is involutive, for all i such that mi,_i_1~0. 

Proof. We restrict ourselves to the proof of the sufficiency, which is 

constructive. Without loss of generality, we may assume that 

~0 = m 

For, if this is not the case, since G O by assumption is nonsingular 

around x °, we may always find a nonsingular m×m matrix ~(x), defined 

in a neighborhood U of x °, such that 
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and 

Go(X) = span{g1(x) ..... gv (x)} 
0 

for all x 6 U, where 

g~o+1 (X) = ... = gin(x) = 0 

gi(x) = (g(X) 6(X)) i 

for I < i < m. If a feedback (~,B) solves the State-Space Linearization 

Problem for the set f,gl,...,gv0, then it is easily seen that a feed- 

back of the form 

~, =~(~ ~ o) 
o ) 6 ' = 6 (  

solves the problem for the original set f,gl,...,g m. 

For the sake of simplicity, we break up the construction in two 

stages. 

(i) Recursive construction of a coordinates transformation around the 

point x O . 

Step (I): By assumption 

dim G. ~ = n 
1 

| 

and dim G~_I_ = m 0 > 0. Moreover, Gi,_1 is assumed to be involutive. 

Then, by Frobenius theorem, we know that there exist a neighborhood 

U I of x ° and m 0 functions h01,...,h0m defined on U I, whose differ- 
0 

entials span Gi~_1(x) at all x • U I. In particular, 

) (x) = 0 (6.38) (dh0i, adfgj 

for all I <__ j . . . . .  < m , I < i < m 0, 0 < e < i -I and all x • U I. Moreover, 

the differentials dh01 (x), .... dh0m0(X) are linearly independent at all 

xEU I . 

We claim that the m0×m matrix 

M0 m (0) (x) } {< i = { ij = dh0i,adfg j (x)} 

has rank m 0 at all x E UI. For, suppose it is false at some x 6 UI . 



239 

Then, there exist real numbers Cl,...,Cm0 such that 

m 0 
i 

< ~ eidh0i,adfgj )(x) = 0 
i=I 

for all 1 < j < m. This, together with (6.38), implies 

m 0 

>(~) = o (6.39) < Z cidh0i,adfg j 
i=I 

for all I < j < m, 0 < e < i , and this in turn implies 

m 0 

( y~ cidh0i(x),v} = 0 
i=I 

m 0 

for all v 6 Gi~(x). Since dim Gi~ = n, then Z cidh0i(2) must be a zero 
i=I 

covector, but since dh01 (x),...,dh0m0(X) are independent, then 

= 0. c I = ... = Cm0 

Step (2): Consider the distribution Gi, 2 , which is such that 

dim G~,_2 = 2m 0 +m I 

We claim that dLfh01,...,dLfh0m 0 are such that 

( dLfh0i, ad;gj )(x) = 0 

for all I . . . . . .  < j < m, I < i < m 0, 0 < ~ < i -2 and all x 6 U I. 

This comes from the property 

-(dLfh0i,ad; gj)=(an0i,aa f gj ) - Lf(dh0i adfgj 

in which both the terms are zero on U I because ~ ~ i -2. 

We claim also that the 2m 0 differentials 

(6.40) {dh01(x),...,dh0m0(X),dLfh01(x),...,dLfh0m0(X)} 

are linearly independent all x E U I. For, suppose this is false; then, 

for suitable reals Cli,C2i, we had 

m 0 m 0 

(6.41) Z e I (x) + Z (x) -- o i=I idh0i i=Ic2idLfh0i 
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at some x E U. This would imply 

m 0 , 

(i=I ~ (clidh0i +c2idLfh0i)'ad~ -Igj )(~) = 0 

for all I < j < m. This in turn implies (because of (6.38)) 

m 0 , m 0 , 

i )(x) = 0 < [ c2idLfh0i,ad ~ -Igj >(~) = _< [ c2idh0i, ad f gj 
i=I i=I 

i.e. a contradiction, like in (6.39). Therefore c21 = ... = C2m = 0 
A 

in (6.41), and also Cil = ... = Clm 0 = 0 because dh01 (x),...,dh;m0(X) 

are linearly independent. 

If m I = 0, the 2m 0 covectors (6.40) span Gt,_2. If m I > 0, using 

again Frobenius theorem (because Gi,_2 is involutive), we may find m I 

more functions h11(x),...,hlm (x), defined in a neighborhood U 2 C U I 

of x °, such that the 2m0+m I dlfferentials 

(6.43) {dh01 (x) ..... dh0m0 (x) ,dL~01 (x) .... ;dL~0m0 (x) ,d~ I (x) ..... ~hm I 

are linearly independent and 

>(x) = o ( dhl i' adfgj 

for all I <_ j . . . . .  < m, I < i < m I, 0 < ~ < i -2 and all x E U 2. 

We claim that the (m0+m I ) xm matrix 

(x) } 

I:i) 
where M 0 is as before and M I defined as 

MI = tmijr (I) (x)} = {(dhli,ad f -Igj >(x)} 

has rank m0+m I at all x ~ U 2. 

For suppose for some reals c01,...,C0m0,C11,...,Clml we had 

m 0 , m I • 

<i=I [ c0idh0i(x)'adf gj(x)>+(i=i [ clidhli(x)'adf -Igj(x) > = 0 

at some ~ E U2 . Then (recall Remark (6.17)) 
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m 0 m I , 

(6.44) < ~ c0idLfh0i(~) + ~ Clidhli(~),ad~ -Igj(~)) = 0 
i=I i=I 

m 0 m I 

The covector [ c0idLfh0i(x) + [ Clidhli(x) annihilates, as we have 
i=I i=I 

seen before, all ad~gj(x), e < i~-2, I ~ j ~ m, but (6.44) tells us 

"i~I (x) Thus, this covector annihilates that it also annihilates aaf gj . 

all vectors in Gi*_1. 

From the previous discussion, we conclude that this covector must 

belong to span{dh01(x),...,dh0m0(X)}, but this is a contradiction, 

because the covectors (6.43) are linearly independent• Therefore, the 

c0i's and c11.'s of (6.44) must be zero. 

Eventually, with this procedure we end up with a set of functions 

(6.45) 

i - i -I h 
h01,...,h0m0,Lfh01,...,Lfh0m0,...,Lf lh01,...,L f 0m 0 

i i -2 h 
h11,...,hlm1,...,Lf -2h11,...,L f lm I 

hi*-l,1,''',hi~-1,mi, i 

(of course, some of these lines may be missing if some m i is zero) 

with the fol lowing p rope r t i e s :  

- the total number of functions is 

i m 0 + (i -1)m1+...+2mi,_2 +mi,_l = n-m 

- the n-m differentials of these functions are independent at all 

x E U, a neighborhood of x °, 

- the vlxm matrix 

M 0 

Mi#_ I 

where M. is m.xm and 
l l 

(i) (x) = ( dhi£,ad f -igj) (x) m£j 

has rank v I at all x E U. 
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If mi~ > 0, one may still find mi, more functions hi~1,...,hi%m.~, 
l 

that, together with the functions (6.45) and with the additional func- 

l i hOmo 'Lfhi* I Lfhi* I , give rise tions Lf ho1,...,L f ,... - ,I''''' - ,m.~ A 
IO--] 

to a set of n linearly independent differentials at x . 

For convenience, let us relabel the functions hij and set 

~i = h0i if I _< i _< ~i ~ 

~i = hl,i-u.% if m I > 0 and v.~+ll -- < i --< 9i*-I 
1 

~i = hi~,i-~1 if mi, > 0 and ~I+I ~ i ~ v 0 = m 

The previous constructions tell us that the mapping 

F : x ~-+ col (61 (x) ..... ~m(X)) , where 

~i(x) 

~i(x) = Lf~ i(x) 

Lf I ~i(x) 

o 
qualifies as a local diffeomorphism around x . 

Moreover, by construction, 

(6.46) (dLf~i,g j >Cx) = 0 

for all 0 ~ ~ ~ Ki-2, 1 ! i,j ~ m, at all x around x °, and the m×m 

matrix 

(6.47) A(x) = {aij(x)} = {<dLf I ~i,gj >(x)] 

is nonsingular at x = x O. 

(ii) Construction of the linearizing feedback. From the conditions 

(6.46) and (6.47), we see that the control system 

(6.48a) 
m 

= f(x) + ~ gi(x)ui 
i=1 
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with (dummy) outputs 

6.48b) Yi = ~i (x) I ~ i ~ m 

is such that: 

- the characteristic number Pi associated with the i-th output channel 

is exac t ly  equal to K.-1, 
1 

- the single-outputs noninteracting control problem is solvable around 
o 

x . 

Choose a feedback ~ and 8 as a solution of the equations 

<1 
Lf ~l(X) 

A(x)a(x) = - 

K 

Lfm~m(X) 

A(x) B(x) = I 

(they correspond to the equations IV. (4.4a) with Yi = 0 and IV.(4.4b) 

with 6. the i-th row of an m×m identity matrix) Under this feedback, 
1 

the system (6.48) splits into m noninteracting single-input single- 

output channels. In particular, in the new coordinates defined at the 

previous stage, each subsystem is described by equations of the form 

(see IV. (4.8)) 

~i = 

0 1 0 ... 0 

0 0 1 ... 0 

... . 

0 0 0 ... 0 

0 0 0 ... 0 

0 

0 

I 

0 

0 

0 

• v i 

0 

I 

Yi = ( I 0 0 ... 0 

This completes the proof. O 

0)~ i 
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7. Observer with Linear Error Dynamics 

We consider in this section a problem which is in some sense dual 

of that considered in the previous one. We have seen that the solva- 

bility of the State-Space Linearization Problem enables us to design 

a feedback under which the system becames locally diffeomorphic to a 

linear system with prescribed eigenvalues. In the case of linear system, 

the dual notion of spectral assegnability via static state-fedback is 

the existence of state-obsevers with prescribed eigenvalues. Moreover, 

it is known that the dynamics of a state-observer and that of the 

observation error (i.e. the difference between the unknown state and 

the estimated state) are the same. In view of this, if we wish to 

dualize the results developed so far, we are led to the problem of 

the synthesis of (nonlinear) observers yielding an error dynamics 

that, possibly after some suitable coordinates transformation,becames 

linear and spectrally assignable. 

For the sake of simplicity, we restrict ourselves to the considera- 

tion of systems without inputs and with scalar output, i.e. systems 

described by equations of the form 

= f (x) 

y = h(x) 

with y 6 ~. 

Suppose there exists a coordinates transformation z = F(x) under 

which the vector field f and the output map h become respectively 

F~foF -I (z) = Az + K(cz) 

hoF -I (z) = cz 

where (A,c) is an observable pair and K is an n-vector valued function 

of a real variable. 

If this is the case, then an observer of the form 

= (A+kc) ~-ky+K (y) 

yields an observation error (in the z coordinates) 

e = ~ - z = ~ - F(x) 

governed by the differential equation 
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6 = (A + k c ) e  

which is linear and spectrally assignable (via the nxl column vector k). 

Motivated by these consideration, we examine the following pro- 

blem. 

Observer Linear~zation ProbLem. Given a vector field f, a real-valued 

function h and an initial state x ° find (if possible) a neighborhood 

U of x °, a coordinates transformation z = F(x) defined on U, a matrix 

A C ~nxn and a row vector c E ~Ixn, a mapping K:h(U) ~ n  such that 

(7.1) hoF-1(z) = cz 

(7.2) F~foF -I (z) - Az = K(cz) 

for all z 6 F(U), and 

n-1 
(7.3) N ker(cA i) = {0}. [] 

i=0 

The conditions for the solvability of this problem can be de- 

scribed as follows 

(7.4) Lemma. The Observer Linearization Problem is solvable only if 

(7.5) dim(span{dh(x°),dLfh(x °) ..... dL~-lh(x°)}) = n 

Proof. The condition (7.3) says that the pair (A,c) is observable. Then, 

it is known from the theory of linear systems that there exist a non- 

singular nxn matrix T and a n×1 column vector k such that 

(7.6) T (A+kc) T -I = 

0 0 . . .  0 0 

1 0 . . .  0 0 

0 0 ... I 0 

cT -I = (0 0 . . . 0 1) 

Suppose (7.1) and (7.2) hold, and set 

z = F(x) = TF(x) 

K(y) = T(K(y)-ky) 

where y E h(U). 
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Then, it is easily seen that 

ho~ -I(~) = (o o ... o 1)z 

0 0 ... 0 0 

1 0 ... 0 0 

~,fo~-1(~)_ 0 0 ... 0 0 z = K((0 0 ... 0 I)~) 

. o ... ° . 

0 0 ... 1 0 

From this we deduce that there is no loss of generality in as- 

suming that the pair (A,c) that makes (7.1) and (7.2) satisfied has 

directly the form specified in the right-hand-sides of (7.6). 

Now, set 

z = F(x) = col(z I (x) ..... Zn(X)) 

If (7.1) and (7.2) hold, we have, for all x E U 

(7.7) h(x) = Zn(X) 

(7.8) 

~z I 
3~ f(x) = k I (z n(x)) 

~z 2 
~x f(x) = z1(x)+k2(Zn(X)) 

~Z 

n 

~x f(x) = Zn_ 1(x)+kn(zn(x)) 

where kl,...,k n denote the n compoents of K. 

Observe that 
3z 

_ n f(x) = (x) + (x)) Lfh (x) 3x Zn-1 kn(Zn 

~Zn_ I ~k n ~z n 
L h(x) - 3x f(x) + ((~--~--)y=Zn)~- ~- f(x) 

~k ~z 
n n (Zn (x)) = Zn_2(x) + ((~-)y=Zn)~-X--f(x) + kn_ I 
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= Zn-2(x) + kn-1 (Zn(X)'Zn-1(x)) 

where 

~k 3k 
- _ n + n 

kn-1(Zn'Zn-1) ~z Zn-1 ~z- kn(Zn) + kn-1(Zn) 
n n 

i(x), for 2 < i < n-l, Proceeding in this way one obtains for each Lf 

an expression of the form 

L~h(x) = Zn-i(x) + kn-i+1 (Zn(X) ..... Zn_i+ I (x)) 

Differentianting with respect to x and arranging all these ex- 

pressions together, one obtains 

~h 
~x 

DLfh 

~x 

~L~-lh 
~x 

~h 

~Lfh 

Sz 
~z 

• ~= 

aL~-lh 
~z 

0 0 . . .  0 I 

O 0 ... 

0 Q I 

1 * ... * 

F,(X) 

This, because of the nonsingularity of the matrix on the right- 

hand-side, proves the claim. D 

If the condition (7.5) is satisfied, then it is possible to define, 

in a neighborhood U of x O, a unique vector field T which satisfies the 

conditions 

= L -n-2h(x) = 0 LTh(X) = L~[Lfh(x) = ... TLf 

LTLf-lh(x) = I 

for all x 6 U. 

As a matter of fact, one only needs to solve the set of equations 

dh (x) 

dLfh (x) 
(7.9) ... T(X) = 

n-2 
dLf h(x) 

dLf- lh (x) 
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The construction of this vector field T is useful in order to 

find necessary and sufficient conditions for the solution of our pro- 

blem. 

(7.10) Lemma. The Observer Linearization Problem is solvable if and 

only if 

(i) dim(span{dh(x°),dLfh(x °) ..... dL~-lh(x°)}) = n 

(ii) There exists amapping { of some open set V of ~n onto a neigh- 

borhood U of x ° that satisfies the equation 

n-1 ~n-1 
~-~ = (I: -adfi (-1) aaf ~)o¢(Z) (7.11) ~z " "" 

for all z 6 V, where T is the unique vector field solution of (7.9). 

Proof. Necessity. We already know that (i) is necessary. Suppose (7.1) 

and (7.2) are satisfied and set {(z) = F-1(z) for all z = F(U). 

Moreover, let e be the (unique) vector field ~-related to ~ , i.e. 
] 

let 

O(x) = ¢,(~1 )o¢-I(x) 

We claim that 

(7.12) adke (x) = (-1)k¢, ( 5Z~-k+-----~)°¢-I (x) 

for all 0 ~ k ~ n-1. To show this, we proceed by induction (because 

(7.12) is true by definition for k = 0), and we use the fact, deduced 

from (7.2),(see also (7.8)), that 

-I 
f(x) = (F,) (Az + K(cz))oF(x) = 

= ~*(kl (Zn)~1 + (z1+k2(Zn))~z--~ +'''+(zn-1+kn(zn)~}~-z )n o¢-I (x) 

Suppose (7.12) is true for some k < n-1. Then 

lk+I aaf 0 = [f,(-1)k#,( )o¢-I] = 

k ~ + z1+k2)Tz2+. .+ o = (-I) ¢,[ki~ I ( . (z n_1+kn)~n ' ~__~___]~Zk+1 ~-I 

= (-I)k+1~, (~Z-~k+----~) 0¢ - I  
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Collecting all (7.12) together one obtains 

(e -adfe ... (-1)n-lad~-le)o¢ =Q,(~z I ~z 2~ ... ~z n~ ) = 

If we show that @ necessarily coincides with the unique solution 

of (7.9) the proof is completed, because the p.d.e. (7.11) will 

coincide with the one just found. 

To this end, observe that 

(-1)kL .k~h(x) ~h __k~1 ) ¢-1 aafu = ~-x ~*(~z o (x) = 

,~ho¢ , = t~z--~+IJ o~-I (x) 

but, since ho~(Z) = Zn, we have 

L =k~h(x) = 0 
~t~/f U 

for all 0 < k < n-2 and 

(-1)n-IL ~n-1~h(x) = I 
~f 

Using Lemma (6.14) we deduce that 

LeLkfh (x) = 0 

for all 0 < k < n-2 and (see also Remark (6.17) 

LoL~-Ih(x) = I 

Thus, the vector field e necessarily coincides with the unique 

solution of (7.9). 

Sufficiency. Suppose (i) holds and let T denote the solution of (7.9). 

Using Remark (6.17) one may immediately note (see (6.21)) that the 

matrix 

dh(x °) 

dLfh (x °) 

dLf-lh (x °) 

n-1 
• (T(X °) adfT(x °) ... adf ~(x O)) 
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has rank n. Therefore, the vector fields T( x ),adf~(x) .... ,ad;-IT(x) 
O 

are linearly independent at x . 

Let ~ denote a solution of the p.d.e. (7.11) and let z ° be a 

point such that %(z °) = x °. From the linear independence of the vector 

fields on the right-hand-side of (7.11) we deduce that % has rank n 

at z °, i.e. that # is a diffeomorphism of a neighborhood of z ° onto 

a neighborhood of x °, 

Set F : ~-I and 

( 7 . 1 3 )  FmfoF -1 (z) = fl ~I + f2 ~2 + "'" + fn 8z n 

By definition, the mapping # is such that 

so that 

(7.14) F,ad~ToF -1 (z) = (-1)k 
Zk+ I 

for all 0 < k < n-1. 

Using (7.13) and (7.14), one obtains, for all 0 < k < n-2 

(_i)k+1 ~ _ ~k+l 
~Zk+ 2 = #,aaf ToF -I (z) = F~[ f,ad k T] oF -I (z) = 

fn z~ n ' ~z---k+ I = ( - 1 ) k [ f  1 - ~ 1  + . . .  + ;) 8 ] = 

= ( - 1 )  
~I ~ ~fn k+l( _ _ _ _ + . . .  + (~_~+l)_~n) 

(aZk+l) 8z I 

that, because of the linear independence of ~ ..... ~ , implies 
°~n 

1 

z~TT+l =° 
for i ~ k+2 

3fk+2 
= 1 

3Zk+ 1 

From these, one deduces that fl depends only on z n and that fi' 

for 2 ~ i ~ n, is such that fi -zi-1 depends only on z n. In other 

terms, one has 
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F~foF -I (X) = 

k1(z n) 

z I + k2(z n) 

Zn_ I + kn(Z n) 

where kl,...,k n are suitable functions of znalone, and this shows that 

the condition (7.2) holds. 

Moreover, since 

L .k h = 0 
aafT 

for all 0 < k < n-l, and 

n-1 
L _n-1 h = (-1) 
aaf T 

we deduce that 

BhoF -I ~hoF -I 

~z I -'- 8Zn_ I 
- 0 

and that 

~hoF -I 
- I 

~z 
n 

This shows that also (7.1) holds. [] 

The integrability of the p.d.e. (7.11) may be expressed in terms 

a property of the vector fields T,adfT,...,ad~-IT. TO this end,one of 

may use the following consequence of Frobenlus Theorem. 

(7.15) Theorem. Let TI,...,T n be vector fields on ~n. Consider the 

set of partial differential equations 

~x 
(7.16) ~z i ~i(x(z)) 

where x denotes a mapping from an open set of ~n to an open set of ~n. 

Let (z°,x °) be a point in ~n ×~n and suppose TI(xO),...,Tn(X O) are 

linearly independent. There exist neighborhoods U of x ° and V of z ° 

and a diffeomorphism x:V ~ U solving the equation (7.16), and such 
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that x(z °) x ° = , if and only if 

(7.17) [Ti,T j] = 0 

for all 1 < i,j < n. 

Proof. We limit ourselves to give a scketch of the proof of the suf- 

ficiency. To this end, set 

A i = sp{Y i} 

Then, the collection of distributions A1,...,A n is independent,spans 

the tangent space and is simultaneously integrable because of (7.17) 

(see Theorem I. (3.12)).As a consequence, we may find a coordinate chart 

(U,~), such that z O = ~(x °) and 

} 
~i(x) = sp{ (~i)x 

for all x 6 U. The above may be rewritten as 

~Ti(x) = ci({) (7~i)~o~ (x) 

for all x E U , where c. is a smooth real-valued function, and 
l 

ci(z°) ~ 0. The condition (7.17) may be used again to show that c i 

depends only on ~i" Thus, there exist functions z i = ~i(~i ) such that 
o 

z i = ~i(z ) and 

~9i 
~--~. ci(~i) = I 

The composed function 

z = %(x) = (~1 ..... ~n )°~(x)  

is clearly such that ~(x °) = z ° and 

o~(x) ~*~i(x) = (~7) 
l 

-1 
Thus x = ~ (z) solves the p.d.e. (7.16). [] 

Merging Lemma (7.10) with Theorem (7.15) yields the desired re- 

sult. 
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(7.18) Theorem. The Observer Linearization Problem is solvable if and 

only if 

dim ( span {dh (x °) ,dLfh(x °) ..... dL~-lh(x O) }) = n 

the unique vector field T solution of (7.9) is such that 

(i) 

(ii) 

(7.19) [adfT,adJT] = 0 

for all 0 < i,j < n-1. 

(7.20) Remark. Using the Jacobi identity repeatedly, one can easily 

show that the condition (7.19) may be replaced by the condition 

k 
[ T,adfT] = 0 

for all k = 1,3,...,2n-I. [] 

In summary one may proceed as follows in order to obtain an ob- 

server with linear (and spectrally assignable) error dynamics. If 

condition (i) holds, one finds first the vector field • solving the 

equation (7.9). If also condition (ii) holds, one solves the p.d.e. 

(7.11) and finds a function ¢, defined in a neighborhood V of z °, 

such that ~(z °) = x °. Then one sets F = ¢-I. Eventually, one computes 

the mapping K as 

K(Zn) = 

k1(z n) 

k2(z n ) 

kn(Z n) 

= F,foF-I(z) - 

0 

z I 

Zn- I 

At this point, the observer 

= (A+kc) ~-ky+K (y) 

with (A,c) in the form of the right-hand-sides of (7.6) yields the 

desired result• 
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BACKGROUND MATERIAL IN DIFFERENTIAL GEOMETRY 

I. Some facts from advanced calculus 

Let A be an open subset of ~n and f: A ~ a function. The value 

of f at x = (Xl,...,x n) is denoted f(x) = f(xl,...,Xn). The function f 

is said to be a function of class C ~ (or, simply, C ~ or also, a smooth 

function) if its partial derivatives of any order with respect to 

Xl,...,x n exist and are continuous. A function f is said to be analytic 

(sometimes noted as C ~) if it is C ~ and for each point x ° E A there 
o 

exists a neighborhood U of x , such that the Taylor series expansion 

of f at x ° converges to f(x) for all x E U. 

Example. A typical example of a function which is C ~ but not analytic 

is the function f: ~ ~ defined by 

f(x) = 0 if x < 0 

I 
f(x) = exp(- ~) if x > 0 [] 

A mapping F: A ~ m  is a collection (fl,...~fm) of functions 

~s are C fi: A ~. The mapping F is C if all fl 

Let U C ~n and V C ~n be open sets. A mapping F: U ~ V is a dif- 

feomorphism if is bijective (i.e. one-to-one and onto) and both F and 

F -I are of class C ~. The jaaobian matrix of F at a point x is the 

matrix 

~fl ~fl 

~Xl "-- 

3F 
~x 

3f 3f 
n n 

~x I "'" ~x n 

8F x o 8F The value of ~-~ at a point x = is sometimes denoted (~-x) o 
x 

Theorem. (Inverse function theorem). Let A be an open set of ~n and 

C ~ F: A ~ n  a mapping If (~F) o • ~ xO is nonsingular at some x C A, then 

there exists an open neighborhood U of x ° in A such that V = F(U) is 

open in ~n and the restriction of F to U is a diffeomorphism onto V. 
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Theorem. (Rank theorem). Let A C ~n and B C ~m be open sets, F:A ~ B 

C ~ ~F has rank k for all x 6 A. For each point a mapping. Suppose (~-x) x 

x ° 6 A there exist a neighborhood A 0 of x ° in A and an open neighbor- 

hood B 0 of F(x 0) in B, two open sets U 6 ~n and V C ~m, and two dif- 

feomorphisms G: U ~ A o and H: B o ~ V such that HoFoG(U) C V and such 

that for all (xl,...,Xn) E U 

(HoFoG) (x I ..... x n) = (Xl, .... Xk,O ..... O) 

Remark. Let Pk denote the mapping Pk: ~n ~ ~m defined by 

Pk(Xl .... ,x n) = (Xl, .... Xk,O ..... O) 

Then, since H and G are invertible, one may restate the previous ex- 

pression as 

F = H-IoPkoG -I 

which holds at all points of A o- 

Theorem. (Implicit function theorem). Let A C ~m and B C ~n be open 

C~ t..o, ..or sets. Let F: AxB ~n be a mapping. Let (x,y)=(x I Xm,Yl, yn ) 

denote a point of A×B. Suppose that for some (x°,y O) 6 A×B 

F(x°,y °) = 0 

and that the matrix 

9F 
~y 

~fl 5fl 

~Yl " " " 

,oQ 

9f ~f 
n n 

~Yl "'" ~Yn 

is nonsingular at (x°,y°). Then, there exists open neighborhoods A o 

of x ° in A and B 0 of yO in B and a unique C ~ mapping G: A ° ~ B 0 such 

that 

F(x,G(x)) = 0 

for all x E A ° 

Remark. As an application of the implicit function theorem, consider 
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the following corollary. Let A be an open set in ~ m, let M be a kxn 

matrix whose entries are real-valued C ~ functions defined on A and b 

a k-vector whose entries are also real-valued C ~ functions defined on 

A. Suppose that for some x ° E A 

rank M(x O) = k 

C ~ Then, there exist an open neighborhood U of x ° and a mapping 

G : U ~ ~n such that 

M(x)G(x) = b(x) 

for all x E U. 

In other words, the equation 

M(x)y = b(x) 

has at least a solution which is a C function of x in a neighborhood 

of x °. If k = n this solution is unique. 

2. Some elementa~ notions of topology 

This section is a review of the most elementary topological con- 

cepts that w£11 be encountered later on. 

Let S be a set. A topological structure, or a topology, on S is 

a collection of subsets of S, called open sets, satisfying the axioms 

(i) the union of any number of open sets is open 

(ii) the intersection of any finite number of open sets is open 

(iii) the set S and the empty set @ are open 

A set S with a topology is called a topological space. 

A basis for a topology is a collection of open sets, called basic 

open sets, with the following properties 

(i) S is the union of basic open sets 

(ii) a nonempty intersection of two basic open sets is a union of 

basic open sets. 

A neighborhood of a point p of a topological space is any open 

set which contains p. 

Let S I and S 2 be topological spaces and F a mapping F: S I ~ S 2. 

The mapping F is continuous if the inverse image of every open set of 

S 2 is an open set of S I. The mapping F is open if the image of an open 
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set of S I is an open set of S 2. The mapping F is an homeomorphism ~f 

is a bijection and both continuous and open. 

If F is an homeomorphism, the inverse mapping F -I is also an 

homeomorphism. 

Two topological spaces S1,S 2 such that there is an homeomorphism 

F:S I ~ S 2 are said to be homeomorphic. 

A subset U of a topological space is said to be closed if its 

complement U in S is open. It is easy to see that the intersection of 

any number of closed sets is closed, the union of any finite number of 

closed sets is closed, and both S and ~ are closed. 

If S O is a subset of a topological space S, there is a unique 

open set, noted int(So) and called the interior of So,Which is con- 

tained in S O and contains any other open set contained in S o . As a 

matter of fact, int(So) is the union of all open sets contained in S o . 

Likewise, there is a unique closed set, noted cl(So) and called the 

closure of So, which contains S O and is contained in any other closed 

set which contains So. Actually, cl(S o) is the intersection of all 

closed sets which contain So. 

A subset of S is said to be dense in S if its closure coincides 

with S. 

If S I and S 2 are topological spaces, then the cartesian product 

SI×S 2 can be given a topology taking as a basis the collection of 

all subsets of the form UIxU 2 , with U I a basic open set of S I and U 2 

a basic open set of S 2. This topology on SI×S 2 is sometimes called 

the product topology. 

If S is a topological space and S 1 a subset of S, then S I can 

be given a topology taking as open sets the subsets of the form 

$I A U, with U any open set in S. This topology on S I is sometimes 

called the subset topology. 

Let F: S I ~ S 2 be a continuous mapping of topological spaces, 

and let F(S I) denote the image of F. Clearly, F(S I) with the subset 

topology is a topological space . Since F is continuous, the inverse 

image of any open set of F(S I) is an open set of S I. However, not all 

open sets of S I are taken onto open sets ofF(St). In other words,the 

mapping F': S I ~ F(S I) defined by F' (p) = F(p) is continuous but not 

necessarily open. The set F(S I) can be given another topology, taking 

as open sets in F(S I) the images of open sets in S I. It is easily 

seen that this new topology, sometimes called the induced topology, 

contains the subset topology (i.e. any set which is open in the subset 

topology is open also in the induced topology), and that the mapping 

F' is now open. If F is an injection, then S I and F(SI) endowed with 
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the induced topology are homeomorphic. 

A topological space S is said to satisfy the Hausdorff separation 

axiom (or, briefly, to be an Hausdorff space) if any two different 

points Pl and P2 have disjoint neighborhoods. 

3. Smooth manifolds 

Definition. A locally Euclidean space X of dimension n is a topo- 

logical space such that, for each p E X, there exists a homeomorphism 

mapping some open neighborhood of p onto an open set in ~n. [] 

Definition. A ManifoZd N of dimension n is a topological space 

which is locally Euclidean of dimension n, is Hausdorff and has a 

countable basis. [] 

It is not possible that an open subset U of ~n be homeomorphic 

to an open subset V of ~m, if n ~ m (Brouwer's theorem on invariance 

of domain). Therefore, the dimension of a locally Euclidean space is 

a well-defined object. 

A coordinate chart on a manifold N is a pair(U,~), where U is an 

open set of N and ~ a homeomorohism of U onto an open set of ~n.some- 

times ~ is represented as a set (~1;...,~n) , and ~i: U ~ is called 

the i-th coordinate function. If p E U, the n-tuple of real numbers 

(~l(p),...,~n(p)) is called the set of local coordinates of p in the 

coordinate chart (U,~). A coordinate chart (U,~) is called a cubic 

coordinate chart if ~(U) is an open cube about the origin in ~n. If 

p E U and ~(p) = 0, then the coordinate chart is said to be centered 

at p. 

Let (U,~) and (V,~) be two coordinate charts on a manifold N, 

with U N V ~ @. Let (~I .... ,~n ) be the set of coordinate functions 

associated with the mapping ~. The homeomorphism 

-I 
+o~ : ~(U n v )  ~ ~(u n v) 

taking, for each p E U A V, the set of local coordinates 

(~1(p) .... ,~n(p)) into the set of local coordinates (%1 (p) ..... %n(p)), 

is called a coordinates transformation on U N V. Clearly, ~o~ -1 gives 

the inverse mapping, which expresses (~l(p),...,~n(p)) in terms of 

(~I (p) ..... %n (p)) " 
Frequently, the set (~1(p), .... ~n(P))is represented as an 

n-vector x = col(xl,...,Xn) , and the set (¢1(p),...,%n(p)) as an 

n-vector y = col(yl,...,yn). Consistently, the coordinate transforma- 
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-I 
tion ~o~ can be represented in the form 

y = 

Yl 

• = 

Yn 

Yl (Xl ..... Xn) 

. 

Yn(Xl .... ,x n) 

= y (x) 

-I 
and the inverse transformation ~o~ in the form 

x = x(y) 

X 2 

Jill : 

: 
• 3 ~ 4 1  ", _ 

. i t - - -  -_ 

×I 

Y1 

TwO coordinate charts (U,9) and (V,%) are C -Compatible if, whe- 
-I 

never U n V ~ ~, the coordinate transformation ¢o~ is a diffeomor- 

phism, i.e. if y(x) and x(y) are both C ~ maps. 

A C ~ atlas on a manifold N is a collection A = {(Ui,~i)}iE I of 

pairwise C~-compatible coordinate charts, with the property that 

U U. = N. An atlas is complete if not properly contained in any other 
i6I i 

atlas• 

Definition. A smooth or C manifold is a manifold equipped with 

a complete C ~ atlas. [] 

Remark. If A is any C atlas on a manifold N, there exists a 

unique complete C ~ atlas A ~ containing A. The latter is defined as 

the set of all coordinate charts (U,~) which are compatible with every 

C~ w coordinate chart (Ui,~i) of A. This set contains A, is a atlas and 

is complete by construction. [] 

Some elementary examples of smooth manifolds are the ones de- 

scribed below. 
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Example. Any open set U of ~n is a smooth manifold, of dimension n. 

For, consider the atlas A consisting of the (single) coordinate chart 

(u, identity map on U) and let A ~ denote the unique complete atlas 

containing A. In particular, A n is a smooth manifold. 

Remark. One may define different complete C ~ atlases on the same 

manifold, as the following example shows. Let N = ~, and consider the 

coordinate charts ~,~) and ~,¢), with 

(x) = x 

3 
(x) = x 

Since -I (x) = x and ~-1(x) = x I/3 , 

~o~-I (x) = x 1/3 

and the two charts are not compatible. Therefore the unique complete 

atlas A which includes (R,~) and the unique complete atlas ~ which 

includes dR,~) are different. This means that the same manifold N may 

be considered as a substrate of two different objects (two smooth 

manifolds), one arising with the atlas A and the other with the atlas 

A~ . [] 

Example. Let U be an open set of ~m and let 11,...,Im_ n be real-valued 

C ~ functions defined on U. Let N denote the (closed) subset of U on 

which all functions 11,...,Im_ n vanish, i.e. let 

N = {x 6 U : I (x) = 0, I < i < m-n} 

Suppose the rank of the jacobian matrix 

211 211 

~x I "'" ~x m 

m-n m-n 

~x I "'" ~x m 

is m-n at all x E N. Then N is a smooth manifold of dimension n. 

The proof of this essentially depends on the Implicit Function 
o o o o ,x o) 

Theorem, and uses the following arguments. Let x =(xl, .... Xn,Xn+1,... 

be a point of N and assume, without loss of generality, that the matrix 
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al I aX I 

aXn+ 1 "'" ax m 

~l ax 
m-n m-n 

~Xn+ 1 " ' "  ~Xm 

is nonsingular at x 0. Then, there exist neighborhoods A 0 of (x~ ..... Xn O) 

• C ~ 0 . .,x 0) in IR m-n and a mapping G: A ~ B such in IR n and B ° of (Xn+ I . o o 

that 

hi{x I .... ,Xn,g1(x I .... ,x n) ..... gm_n(Xl ..... Xn)) = 0 

for all I < i < m-n. This makes it possible to describe points of N 

around x 0 as m-tuples (Xl,...,x m) such that Xn+ i =gi(xl,...,Xn) for 

I < i < m-n. In this way one can construct a coordinate chart around 

each point x ° of N and the coordinate charts thus defined form a C ~ 

atlas. 

A manifold of this type is sometimes called a smooth hypersurface 
in ~m. An important example of hypersurface is the sphere sm-l,defined 

by taking n = m-1 and 

x I = X l+x~ +... +X2-I 

The set of points of ~R m on which fl (x) = 0 consists of all the points 

on a sphere of radius I centered at the origin. Since 

ax I ax I 

never vanishes on this set, the required conditions are satisfied and 

the set is a smooth manifold, of dimension m-1. 

Example. An open subset N' of a smooth manifold N is itself a smooth 

manifold. The topology of N' is the subset topology. If (U,~) is a 

coordinate chart of a complete C ~ atlas of N, such that U ~ N' ~ ~, 

then the pair (U',~') defined as 

U' = U C~ N' 

~' = restriction of ~ to U' 
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is a coordinate chart of N'. In this way, one may define a complete 

C atlas of N'. The dimension of N' is the same as that of N. 

Example. Let M and N be smooth manifolds, of dimension m and n. Then 

the cartesian product M×N is a smooth manifold. The topology of M×N is 

the product topology. If (U,9) and (V,¢) are coordinate charts of M 

and N, the pair (UxV, (~,¢)) is a coordinate chart of MxN. The dimension 

of M×N is clearly m+n. 

An important example of this type of manifold is the torus 

T 2 = SIxS I, the cartesian product of two circles. [] 

Let h be a real-valued function defined on a manifold N. If (U,~) 

is a coordinate chart on N, the composed function 

= ~o -I : ~(U) -*:~ 

taking, for each p E U, the set of local coordinates (Xl,...,Xn) of p 

into the real number l(p), is called an expression of ~ in local 

coordinates. 

In practice, whenever no confusion arises, one often uses the 
-I 

same symbol I to denote 1o4 , and write l(Xl,...,x n) to denote the 

value of X at a point p of local coordinates (xl,...,Xn). 

If N and M are manifolds, of dimension n and m, F : N ~ M is a 

mapping, (U,~) a coordinate chart on N and (V,~) a coordinate chart 

on M, the composed mapping 

= ¢oFo~ -I 

is called an expression of F in local coordinates. Note that this 

definition make sense only if F(U) N V ~ @. If this is the case, then 

is well defined for all n-tuples (Xl,...,x n) whose image under 
-I 

Fo9 is a point in V. 
-I 

Here again, one often uses F to denote $~Fo~ , writes Yi = 

= fi(xl,...,Xn) to denote the value of the i-th coordinate of F(p), 

p being a point of local coordinates (x I .... ,Xn), and also 

y = 

Yl 

Ym 

f1(xl ..... x n ) 

fm (Xl ..... Xn) 

= F(x) 

Definition. Let N and M be smooth manifolds. A mapping F: N ~ M is a 

smooth mapping if for each p 6 N there exists coordinate charts (U,~) 
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of N and (V,~) of M, with p 6 U and F(p) 6 V, such that the expression 

of F in local coordinates is C . 

Remark. Note that the property of being smooth is independent of the 

choice of the coordinate charts on N and M. Different coordinate charts 

(U',~') and (V',~') are by definition C ~ compatible with the former and 

~, = ~ , o F o ~  , - 1  = 

= ¢ , o ¢ - 1 o ¢ o F o  - 1  -1 o ~ o ~ '  = 

= ( , ,  o , - 1 )  oFo (~ ,  o ~ - 1 ) - 1  

being a composition of C = functions is still C ~. [] 

Definition. Let N and M be smooth manifolds, both of dimension n. 

A mapping F : N ~ M is & diffeomorphsim if F is bijective and both F 

and F -I are smooth mappings. Two manifolds N and M are diffeomorphic 

if there exists a diffeomorphism F : N ~ M. [] 

The rank of a mapping F : N ~ M at a point p E N is the rank of 

the jacobian matrix 

~fl ~fl 

Sx I "-- Sx n 

~f ~f 
m m 

~x I "'" ~x n 

at x = ~(p). It must be stressed that, although apparently dependent 

on the choice of local coordinates, the notion of rank thus defined is 

actually coordinate-independent. The reader may easily verify that the 

ranks of the jacobian matrices of two different expressions of F in 

local coordinates are equal. 

Theorem. Let N and M be smooth manifolds both of dimension n. A map- 

ping F : N ~ M is a diffeomorphism if and only if F is bijective, F 

is smooth and rank(F) = n at all points of N. 

Remark. In some cases, the assumption that functions, mappings, etc. 

are C ~, may be replaced by the stronger assumption that functions, 

mappings,etc, are analytic.In this way one may define the notion of 

analytic manifold, analytic mappings of manifolds, and so on. We shall 
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make this assumption explicitly whenever needed. 

4. Submanifolds 

Definitions. Let F : N ~ M be a smooth mapping of manifolds. 

(i) F is an immersion if rank(F) = dim(N) for all p C N. 

(ii) F is a univalent immersion if F is an immersion and is injective. 

(iii) F is an embedding if F is a univalent immersion and the topology 

induced on F(N) by the one of N coincides with the topology of 

F(N) as a subset of M. [] 

Remark. The mapping F, being smooth, is in particular a continuous 

mapping of topological spaces. Therefore (see section 2) the topology 

induced on F(N) by the one of N may properly contain the topology of 

F(N) as a subset of M. This motivates the definition (iii). [] 

The difference between (i), (ii) and (iii) is clarified in the fol- 

lowing examples. 

Examples. Let N = ~ and M = ~2. Let t denote a point in N and (Xl,X 2) 

a point in M. The mapping F is defined by 

x1(t) = at-sin t 

x2(t) = cos t 

and, then, 

rank(F) = rank 
i a - cos t 

- sin t 

If a = I this mapping is not an immersion because rank(F) = 0 at 

t = 2k~ (for any integer k). 

If 0 < a < I the mapping is an immersion, because rank(F) = I for 

all t, but no~ a univalent immersion, because F(t I) = F(t 2) for all 

tl,t 2 such that t I = 2k~-T, t 2 = 2k~+T and sin T = aT. 

As a second example we consider the so-called "figure-eight".Let 

N be the open interval (0,2~) of the real line and M = ~2. Let t 

denote a point in N and (xl,x 2) a point in M. The mapping F is defined 

by 

x1(t) = sin 2t 

x2(t) = sin t 
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\ 
X 2 

a=!  

-< 
X 

2 

~ - - ~ ' ~ ~ X  1 
O<a<l 

This mapping is an immersion because 

rank(F) = rank 

dx 1 

dx 2 
q-6 

2 cos2t 

= 

cos t 

= I 

for all 0 < t < 27. It is also univalent because 

F(tl) = F(t 2) ~ t I = t 2 

However, the mapping is not an embedding. For, consider the image of F. 

The mapping F takes the open set 

(~-e,~+£) of N onto a subset U' of F(N) 

which is open by definition in the to- 

pology induced by the one of N, but is 

not an open set in the topology of F(N) 

as a subset of M. This is because U' 

cannot be seen as the intersection of 

F(N) with an open set of ~2. 

As a third example one may consider 

the mapping F : ~ ~3 given by 

xl (t) = COS 2~t 

x2(t) = sin 2~t 

x3(t) = t 

whose image is an "helix" winding on an infinite cylinder whose axis 
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is the x 3 axis. The reader may easily check that is an embedding. [] 

The following theorem shows that the every immersion locally is an 

embedding. 

Theorem. Let F : N ~ M be an immersion. For each p 6 N there exists a 

neighborhood U of p with the property that the restriction of F to U 

is an embedding. 

ExampZe. Consider again the "figure eight" discussed above. If U is 

any interval of the type (6,2~-6), then the critical situation we had 

before disappears and the image U' of (z-e,n+E) is now open also in 

the topology of F(N) as a subset of ~2. [] 

The notions of univalent immersion and of embedding are used in 

the following way. 

Definition. The image F(N) of a univalent immersion is called an ~m- 

mersed submanifold of M. The image F(N) of an embedding is called an 

embedded submanifold of M. 

Remark. Conversely, one may say that a subset M' of M is an immersed 

(respectively, embedded) submanifold of M if there is another manifold 

N and a univalent immersion (respectively, embedding) F: N ~ M such 

that F(N) = M'. [] 

The use of the word "submanifold" in the above definition clearly 

indicates the possibility of giving F(N) the structure of a smooth ma- 

nifold, and this may actually be done in the following way. Let M'=F(N) 

and F': N ~ M' denote the mapping defined by 

F' (p) = F(p) 

for all p 6 N. Clearly, F' is a bijection. If the topology of M' is 

the one induced by that of N (i.e. open sets of M' are the images 

under F' of open sets of N), F' is a homeomorphism. Consequently, any 

coordinate chart (U,~) of N induces a coordinate chart (V,~) of M', 

defined as 

-I 
V = F' (U) , % = ~o (F') 

C~-compatible charts of N induce C~-compatible charts of M' and so 

complete C~-atlases induce complete C~-atlases. This gives M' the 

structure of a smooth manifold. 

The smooth manifold M' thus defined is diffeomorphic to the 

smooth manifold N. A diffeomorphism between M' and N is indeed F' 

itself, which is bijective, smooth, and has rank equal to the dimension 

of N at each p 6 N. 
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Embedded submanifolds can also be characterized in a different 

way, based on the following considerations. 

Let M be a smooth manifold of dimension m and (U,~) a cubic 

coordinate chart. Let n be an integer, 0 < n < m, and p a point of U. 

The subset of U 

Sp = {q E U: xi(q) = xi(P), i = n+1, .... m} 

is called an n-dimensional slice of U passing through p. In other 

words a slice of U is the locus of all points of U for which some 

coordinates (e.g. the last m-n) are constant. 

Theorem. Let M be a smooth manifold of dimension m. A subset M' of M 

is an embedded submanifold of dimension n < m if and only if for each 

p E M' there exists a cubic coordinate chart (U,~) of M, with p 6 U, 

such that U ~ M' coincides with an n-dimensional slice of U passing 

through p. 

This theorem provides a more "intrinsic" characterization of the 

notion of an embedded submanifold (of a manifold M), directly related 

to the existence of special coordinate charts (of M). Note that, if 

(U,~) is a coordinate chart of M such that U N M' is an n-dimensional 

slice of U, the pair (U',~') defined as 

U' = U N M' 

~' (p) = (x I (P) ..... Xn(P)) 

is a coordinate chart of M'. This is illustrated in the following 

figure (where M = ~3 and n = 2). 

Remark. Note that an open 

subset M' of M is indeed an 

embedded submanifold of M, 

of the same dimension m. 

Thus, a submanifold M' of 

M may be a proper subset of 

M, although being a manifold 

of the same dimension. 

Remark. It can be proven that any smooth hypersurface in ~m is an 

embedded submanifold of ~m Moreover it has also been shown that if N 

is an n-dimensional smooth manifold, there exist an integer m > n and 

a mapping F : N ~ m  which is an embedding (Whitney's embedding theo- 
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rem). In other words, any manifold is diffeomorphic to an embedded 

submanifold of ~ m, for a suitably large m. 

Remark. Let V be an n-dimensional subspace of~ m. Any subset of~ TM of 

the form 

x°+V = {x e~m : x = x'+x°; x' e V}, 

where x ° is some fixed point of ~ m, is indeed a smooth hypersurface 

and so an embedded submanifold of ~m, of dimension n. This is some- 

times called a flat submanifold of ~ n. 

5. Tangent vectors 

Let N be a smooth manifold of dimension n. A real-valued func- 

tion I is said to be smooth in a neighborhood of p, if the domain of 

h includes an open set U of N containing p and the restriction of l 

to U is a smooth function. The set of all smooth functions in a neigh- 

borhood of p is denoted C~(p). Note that C~(p) forms a vector space 

over the field ~. For, if I, X are functions in C~(p) and a,b are real 

numbers, the function ah+bx defined as 

(al+bx) (q) = al(q)+bx(q) 

for all q in a neighborhood of p, is again a function in C~(p). Note 

also that two functions l,X E C~(p) may be multiplied to give another 

element of C~(p), written lX and defined as 

(hX) (q) = h(q)'x(q) 

for all q in a neighborhood of p. 

Definition. A tangent vector v at p is a map v: C~(p) ~ with the 

following properties: 

(i) (linearity) : v(al+bx) = av(1)+bv(y) for all l,X E C~(p) and 

a,b E 

(ii) (Leibnitz rule): v(Ix) = X(p)v(/)+l(p)v(~) for all I,X e C~(p). 

Definition. Let N be a smooth manifold. The tangent space to N at p, 

written TpN, is the set of all tangent vectors at p. 

Remark. A map which satisfies the properties (i) and (ii) is also 

called a derivation. 
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Remark.  The set TpN forms a vector space over the field ~ under the 

rules of scalar multiplication and addition defined in the following 

way. If vl,v 2 are tangent vectors and Cl,C 2 real numbers, clv1+c2v2 

is a new tangent vector which takes the function I E Ca(p) into the 

real number 

(ClV1+C2V2) (I) = clv I(I) + c2v 2(I) 

Remark.  We shall see later on that, if the manifold N is a smooth 

hypersurface in~ TM, the object previously defined may be naturally 

identified with the intuitive notion of "tangent hyperplane" at a 

point. [] 

Let (U,9) be a (fixed) coordinate chart around p. With this 

coordinate chart one may associate n tangent vectors at p, denoted 

defined in the following way 

(V~ai) (x) = (a(Xo -I p ~x i ) x=~ (p) 

for I ~ i ~ n. The right-hand-side is the value taken at x = (Xl,...,Xn)= 

= ~(p) of the partial derivative of the function Io~-l(xl .... ,x n) with 
--I • 

respect to x i (recall that the function Io~ is an expression of 1 

in local coordinates). 

Theorem. Let N be a smooth manifold of dimension n. Let p be any point 

of N. The tangent space TpN to N at p is an n-dimensional vector space 

over the field ~. If (U,~) is a coordinate chart around p, then the 

tangent vectors (~)pd~ ..... (~-~-)~ form a basis of TpN. [] 
I n p 

The basis {(~)p ..... (~)p} of TpN is sometimes called the 
I I  

natural basis induced by the coordinate chart (U,~). 

Let v be a tangent vector at p. From the above theorem it is seen 

that 

n 

v : [ v i(a--~) 
i=I i p 

where Vl,...,v n are real numbers. One may compute the v~s explicitly 

in the following way. Let ~i be the i-th coordinate function. Clearly 
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6 Ca(p), and then 

n n 3 (~io~ -I) 

v(gi) = ~ivj(~'~j ) j  • p(~i ) = [IVj ( j  3xj )x=~(p) = v. l 

-I 
because ~i~ (Xl,...,x n) = x i. Thus the real number v i coincides with 

the value of v at ~i ' the i-th coordinate function. 

A change of coordinates around p clearly induces a change of basis 

in TpN. The computations involved are the following ones. Let (U,~) 

3 }p} and (V,¢) be coordinate charts around p. Let {( )p, .... (~ denote 

the natural basis of T N induced by the coordinate chart (V,¢). Then 
P 

~) (I) = (3(ho¢-I~ = (3(1o~ -Io~o¢-I~ = 

(3¢i P ~i "Y=¢ (p) 3Yi Y=¢ (p) 

(3(ho _1)) (3(~j o¢-I) 

j=1 "~xj x=~(p) 3y i )y=%(p) 

n 3 3 (~ jo¢-1 )  

j=1 3Yi )Y=¢ (P) 

In other words 

) = n 3(~j0¢ -I) (_~4) 

j=1 3Yi Y=% (p) j p 

Note that the quantity 

3(~jo¢ -1) 
3Y i 

is the element on the j-th row and i-th column of the jacobian matrix 

of the coordinate transformation 

x = x{y) 

So the elements of the columns of the jacobian matrix of x = x(y) 

are the coefficients which express the vectors of the "new" basis as 

linear combinations of the vectors of the "old" basis. 
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If V is a tangent vector, and (Vl, .... Vn), (Wl, .... Wn) the n-tuples 

of real numbers which express v in the form 

v = 
n n 

! ) 
v i = p 

i=I ~i p i=I 

then 

v 1 

v n 

ax 1 

3Yl 

~x 
n 

3y I 

~x I 

• " " aYn 

ax n 

• " " aYn 

w I 

w n 

Definition. Let N and M be smooth manifolds. Let F : N ~ M be a smooth 

mapping. The differential of F at p E N is the map 

F~ : TpN -+ TF(p)M 

defined as follows. For v C TpN and I 6 C ~(F(p)), 

(F~(v))(~) = V(~oF) 

Remark. F, is a map of the tangent space of N at a point p into the 

tangent space of M at the point F(p). If v 6 TpN, the value F%(v) of 

F~ at v is a tangent vector in TF(p)M. So one has to express the way 

in which F,(v) maps the set C~(F(p)), of all functions which are smooth 

a neighborhood of F(p), into ~. This is actually what the definition 

specifies. Note that there is one of such maps for each point p of N. 

Theorem. The differential F~ is a linear map. [] 

Since F% is a linear map, given a basis for TpN and a basis for 

TF(p)M one may wish to find its matrix representation. Let (U,~) be a 

coordinate chart around p, (V,%) a coordinate chart around q = F(p), 

°~la ~!)p} ~1,q, _~m)q } 
{(~-q--)p ..... ( the natural basis of T N and { ( .... ( 

n P 
the natural basis of T M In order to find a matrix representation q 
of F~ , one has simply to see how F, maps (~-~--~)P~*i for each I ~ i ~ n. 

(F~(~i). p) (I) = (~.)i 
p(loF) = (~ (I°F°~-I)) 

x=~(P ) 
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(toq-lo¢oF= -1)) m 

ax i x=~(p) = ~ ( - -  j=l 

~(%joF°~ -I) 
(~o+-I)) ( ) 
~yj y=~ (q) ~x i x=~ (p) 

m ~ ~(~joFo~ -I) 

(( )q ~x i )x=? (p) j=1 ~ (i)) ( 

In other words 

F. (~--~i) P = 

-I Now, recall that %oFo~ 

Then, the quantity 

m a(+joFo~ -I) 

j=1 axi )x=~(p) a~j)q 

is an expression of F in local coordinates• 

a(%joFo~ -I) 

~x 
1 

is the element on the j-th row and i-th column of the jacobian matrix 

of the mapping expressing F in local coordinates. Using again 

F(X) = F(xl, .... x n) 

F I (X I ..... x n) 

Fm(X I , • .. ,x n) 

-I 
to denote ~oFo~ , one has simply 

F% (~i) P ~ aF. 
j=1 ° i 

If v 6 TpN and w = F~ (v) C TF(p)M are expressed as 

n m 

v = v i w = w 

i=I i p i=I i 

then 

w I 

• = 

W m 

aF I ~F I 

~Xl --- ~Xn 

~F m ~F m 

~x I " .. ~x n 

v I 

V n 
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Remark. The matrix representation of F~ is exactly the jacobian of its 

expression in local coordinates. From this, it is seen that the rank 

of a mapping coincides with the rank of the corresponding differential. 

Remark (Chain rule). It is easily seen that, if F and G are smooth 

mappings, then 

(GoF). = G,F. 

The following examples may clarify the notion of tangent space 

and the one of differential. 

Example. The tangent vectors on I~ n. Let ]R n be equipped with the "natur- 

al" complete atlas already considered in previous examples (i.e. the 

one including the chart ~n, identity map on ~n)). Then, if v is a 

tangent vector at a point x and I a smooth function 

n ~ n 3 t  

v(l) = i-~-I vi(~i)x(l) = i=I[ ( ~ X )  V.l 

SO, V(1) is just the value of the derivative of I along the direction 

of the vector 

col(v I ..... v n ) 

at the point x. 

Remark. Let F : N ~ M be a univalent immersion. Let n =dim(N) and 

m = dim(M). By definition, F~ has rank n at each point. Therefore the 

image F~(TpN) of F~ , at each point p, is a subspace of TF(p)M isomor- 

phic to TpN. The subspace F~(TpN) can actually be identified with the 

tangent space at F(p) to the submanifold M' = F(N). In order to un- 

derstand this point, let F' denote the function F': N ~ M' defined as 

F' (p) = F(p) 

for all p C N. F' is a diffeomorphism and so F~ is an isomorphism. 

Therefore the image FI(TpN) is exactly the tangent space at F' (p) to 

M'. Any tangent vector in TF(p)M' is the image F~(v) of a (unique) 

vector v 6 TpN and can be identified with the (unique) vector F~(v) 

of F,(TpN). 

In other words, the tangent space at p to a submanifoZd M' of M 

can be identified with a subspac~ of the tangent space at p to M. 

The same considerations can be repeated in local coordinates. It 
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is known that an immersion is locally an embedding. Therefore, around 

every point p 6 M' it is possible to find a coordinate chart (U,~) of 

M, with the property that the pair (U',~') defined by 

U' = {q 6U:~i(q ) = ~i(p), i =n+1,...,m} 

~' = (~1,...,~n) 

is a coordinate chart of M'. According to this choice, the tangent 

space to M' at p is identified with the n-dimensional subspace of 

spanned by the tangent vectors { (~)p ..... (~)p}. [] TpM 
I 

ExampZe. The tangent vector to a smooth curve in ~n. We define first 

the notion of a smooth curve in ~n Let N = (tl,t 2) be an open interval 

on the real line. A smooth curve in ~n is the image of a univalent 

immersion a : N ~ ~n. Thus, a smooth curve is an immersed submanifold 

of ~n. In N and ~n one may choose natural local coordinates as usual 

and, letting t denote an element of N, express ~ by means of an n-tuple 

of scalar-valued functions o1,...,On of t. 

A smooth curve is a l-dimensional immersed submanifold of ~n. At 

a point a(to) , the tangent space to the curve is a l-dimensional vector 

space which, as we have seen, may be identified with a subspace of the 

tangent space to ~n at this point. A basis of the tangent space to the 
d 

curve at O(to) is given by the image under o, of (~)t , a tangent 
o 

vector at t o to N. This image is computed as follows 

n do. 

o,(~t) t = ~ (~) (DTi)O(to) 
o i=1 t O ' 

Thinking of t @ N as time and o(t) as a point moving in ~n, we may in- 

terpret the vector 

do I do n ) 

col ((-~-) to ..... (-a~) to 

as the velocity along the curve, evaluated at the point o(t°). So, we 

have that the velocity vector at a point of the curve spans the tangent 

space to the curve at this point. From this point of view, we see that 

the notion of tangent space to a l-dimensional manifold may be identi- 

fied with the geometric notion of tangent line to a curve in a Euclidean 

space. 

Example. Let h be a smooth function h :~2 ~ and F :~2 ~3 a mapping 

defined by 
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F(xl,x2) = (xl,x2,h(xl,x2)) 

This mapping is an embedding and therefore F~2), a surface in ~2, is 

an embedded submanifold of ~3. At each point F(x) of this surface, the 

tangent space,ldentified as a subspace of the tangent space to ~3 at 

this point, may be computed as 

span{F, (~xl) x , F, (~x2) x} 

Now, 

3 3F 1 3 (3h , 

F,(TX 1)x =1~i.= (-~i) (~-~i)F(x) = (Txl)F(x) + ~i ) (-~3)F(x) 

) = 3 + ~h (~x3) 

o o o 
This tangent space to F(~ 2) at some point (x~,x2,h(Xl,X2)) is the set 

of tangent vectors whose expressions in local coordinates are of the 

form 

V = B 

3h 8h 

~h ~h 
~,~ being real numbers and ~ ,~ being evaluated at x I = x~ and 

o 
x 2 = x 2. From this point of view, we see that the notion of tangent 

space to a 2-dimensional manifold may be identified with the geometric 

notion of tangent plane to a surface in a Euclidean space. [] 

One may define objects dual to the ones considered so far. 

Definition. Let N be a smooth manifold. The cotangent space to N at p, 

written T'N, is the dual space of T N Elements of the cotagent 
P P • 

space are called tangent covectors. 

Remark. Recall that a dual space V of a vector space V is the space 

of all linear functions from V to ~. If v E V , then v : V ~ and 

the value of v at v 6 V is written as (v*,v). V forms avector space 

over the field ~, with rules of scalar multiplication and addition 

which define clv1+c2v 2 in the following terms 
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(clv1+c2v2,v)= c I (v I ,v )+ c 2 (v 2 ,v ) 

If el,...,e n 

satisfies 

is a basis of V , the unique basis e~,...,e n ]  of V 

.,e > = ~ . .  
z 3 z3 

which 

is called a dual basis, 

If V and W are vector spaces, F : V ~ W a linear mapping and wEW, 

v E V, the mapping F : W ~ V defined by 

<F*(w*) ,v  > = <w ,F (v )  > 

is called the dual mapping (of F). [] 

Let I be a smooth function I : N ~. There is a natural way of 

identifying the differential I, of I at p with an element of TpN. For, 

observe that I~ is a linear mapping 

I, : TpN ~ Tl(p)~ 

and that Tl(p)~ is isomorphic to ~. The natural isomorphism between 

and Tl(p)~ is the one in which the element c of ~ corresponds to the 

tangent vector c(~t ) t" If c (~t) t is the value at v of the differential 

I~ at p, then c must depend linearly on v, i.e. there must exist a co- 

vector, denoted (dl)p , such that 

= (~E)t l.(V) < (dl)p,V) d 

Given a basis of TpN, the covector (dl) (like any other covector), 

( ~ P ~ } be the may be represented in matrix form. Let { ~)p,..., ( )p 

natural basis of T N induced by the coordinate chart (U,~). The image 
P 

under l~ of a vector 

is the vector 

n 

v = ~ vi( ) 
i=I ~ p 

~, (v) 
n 

=(2 
i=I 

~ (~t) ~. vi) t 
1 

and this shows that 



277 

21 81 
{ (dl)p,V)= ( 8x I "'" ~n ) 

vl) 
v n 

Remark. Note also that the value at I of a tangent vector v is equal to 

the value at v of the tangent covector (dl)p , i.e. 

v(1) = ( (dl)p,V } [] 

The dual basis of {(~-~1)p .... ,( )p} is computed as follows. 

From the equality v(1) = ((dl)p,V) we deduce that 

8(~io~ -I) 8x. 

< (d~i)p' ( ) > = ( ) (~) . 8x. i3 3 p p i 8x 3 

so that the desired dual basis is exactly provided by the set of tan- 

gent covectors, {(d~1 )p, .... (d~n)p}. 

If v is any tangent eovector, expressed as 

, n , 

v = ~ vi(d~i) p , 
i=I 

, 

the real numbers v.],...,v n are such that 

v i = <v , ( )p 

Note also that, if v is any tangent vector expressed as 

n 

v = [ v i(~-~i )p 
i=1 

the real numbers Vl,...,v n are such that 

v i = < (d~i)p,V) . 

6. Vector fields 

Definition. Let N be a smooth manifold, of dimension n. A vector field 

f on N is a mapping assigning to each point p E N a tangent vector f(p) 

in TpN. A vector field f is smooth if for each p E N there exists a 
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coordinate chart (U,~) about p and n real-valued smooth functions 

fl,...,fn defined on U, such that, for all q ~ U, 

n 

f(q) = ~ fi(q) (~)q 
i = 1  

Remark. Because of C~-compatibility of coordinate charts, given any 

coordinate chart (V,~) about p other than (U,9), one may find a neigh- 

borhood V' C V of p and n real-valued smooth functions f~'" "''f'n de- 

fined on V' , such that, for all q E V' 

n 
,2) 

f(q) = [ f~ (q) 'D--~i q 
i=I l 

Thus, the notion of smooth vector field is independent of the coord- 

inates used. 

Remark. If (U,@) is a coordinate chart of N, on the submanifo~d U of 

N one may define a special set of smooth vector fields, denoted 

.... ~n' in the following way 
~I' 

(~i): P ~-+(~.)p 

It must be stressed, however,that such a set of vector fields 

is an object defined only on U. [] 

For any fixed coordinate chart (U,~), the set of tangent vectors 

{ (~-~)q ..... (~-~)q} is a basis of TqN at each q 6 U, and therefore 

there is a unique set of smooth functions {f1' .... fn } that makes it 

possible to express the value of a vector field f at q in the form 

n 

f(q) = [ fi (q) ~-~-~ ) 
i=I (~i q 

Expressing each f. in local coordinates, as 
1 

provides an expression in local coordinates of the vector field f 

itself. So, if p is a point of coordinates (Xl,...,x n) in the chart 

(U,~),f(p) is a tangent vector of coefficients (fl (Xl, .... Xn),... 

.... fn(Xl ..... Xl)) in the natural basis {(~) ,.. , (~) } of T N 
I P " a~n p P 
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induced by (U,~). Most of ~he times, whenever possible, the symbol f. 
-I l 

replaces f o~ and the expression of f in local coordinates is given 
1 

a form of an n-vector f = col(fl, .... fn ). 

Remark. Let f be a smooth vector field, (U,9) and (V,%) two coordinate 

charts about p and f(x) = f(xl,...,Xn), f' (y) = f' (yl,...,yn) the cor- 

responding expressions of f in local coordinates. Then 

f' (y) = (~xf(X))x=x(y) [] 

The notion of vector field makes it possible to introduce the 

concept of a differential equation on a manifold N. For, let f be a 

smooth vector field. A smooth curve a: (tl,t2) ~ N is an ~ntegral curve 

of f if 

d 
o~(~-{) t = f(o(t)) 

for all t 6 (tl,t2). The left-hand-side is a tangent vector to the sub- 

manifold o((tl,t2)) at the point o(t); the right-hand-side is a tangent 

vector to N at ~(t). As usual, we identify the tangent space to a sub- 

manifold of N at a point with a subspace of the tangent space to N at 

this point. 

In local coordinates, o(t) is expressed as an n-tuple 

(~1(t), .... ~n(t)), and f(~(t)) as 

n 

f(o(t)) = ~ fi(o1(t) ..... On(t)) (~i)o(t) 
i = ]  

Moreover 

d° i 

o~(~t)t = ~ ~(~i)~(t) 
i=I 

Therefore, the expression of o in local coordinates is such that 

do 
1 

dt - fi(ol (t} ..... On(t)) 

for all 1 < i < n. This shows that the notion of integral curve of a 

vector field corresponds to the notion of solution of a set of n 

ordinary differential equations of the first order. 

For this reason, one often uses the notation 
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d 
to indicate the image of (~)t under the differential ~, at t. 

The following theorem contains all relevant informations about 

the properties of integral curves of vector fields. 

Theorem. Let f be a smooth vector field on a manifold N. For each 

p 6 N, there exist an open interval - depending on p and written Ip - 

of ~ such that 0 E I and a smooth mapping 
P 

%:W~N 

defined on the subset W of ~×N 

W = {(t,p) • ~xN: t • Ip} 

with the following properties: 

(i) ~(0,p) = p, 

(ii) for each p the mapping Op:Ip ~ N defined by 

Op(t) = #(t,p) 

is an integral curve of f, 

(iii) if ~ : (tl,t 2) ~ N is another integral curve of f satisfying the 

condition ~(0) = p, then (tl,t2) C Ip and the restriction of Op 

to (tl,t 2) coincides with ~, 

(iv) ~(S,~(t,p)) = ¢(s+t,p) whenever both sides are defined, 

(v) whenever #(t,p) is defined, there exists an open neighborhood U 

of p such that the mapping ~t: U ~ N defined by 

Ct(q) = #(t,q) 

is a diffeomorphism onto its image, and 

~1 = ~-t 

Remark. Properties (i) and (ii) say that ~p is an integral curve of f 

passing through p at t = 0. Property (iii) says that this curve is 

unique and that the domain I on which ~ defined is maximal. Property 
P P 

(iv) and (v) say that the family of mappings {¢t } is a one-parameter 

(namely, the parameter t) group of local diffeomorphisms, under the 

operation of composition. [] 
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Example. Let N = ~ and use x to denote a point in N. Consider the vector 

field 

f(x) = (x 2 + I)(~x)x 

An integral curve ~ of f must be such that 

do (~x) x (02(t)+i) (~x) x (t) = (~-~) = 

so 

d~ - o 2 + I 
dt 

A solution of this equation has the form 

0(t) = tg(t+tg-1 (x°)) 

with x ° being indeed the value of ~ at t = 0. Clearly, for each x ° the 

solution is defined for 

_ ~ < t+tg -I (x °) < ~_ 
2 2 

Thus W is the set 

W = {(t,x O) : t e (-~-tg-1(x°), ~ tg-1(x°))} 

which has the form indicated below. [] 

The mapping ~ is called the f low of 

f. Often, for practical purposes, the 

notation ~t replaces ~, with the under- 

standing that t is a variable. To stress 

the dependence on f, sometimes Ct is 
f 

written as ~t" 

Definition. A vector field f is complete 

if, for all p ~ N, the interval I 
P 

coincides with ~, i.e. - in other 

words -if the flow # of f is defined on 

the whole cartesian product ~XN. [] 

The integral curves of a complete 

vector field are thus defined, whatever 

the initial point p is, for all t C ~. 

I N 
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Definition. Let f be a smooth vector field on N and I a smooth real- 

valued function on N. The Lie derivative of I along f is a function 

N ~, written Lfl and defined by 

(Lfl) (p) = (f(p)) (I) 

(i.e. (Lfl) (p) is the value at I of the tangent vector f(p) at p). [] 

The function Lfl is a smooth function. In local coordinates, Lfl 

is represented by 

note 

(Lfl) (x I .... ,Xn) = ~x I ... ~x n 

fl 
) - 

fn 

If fl,f2 are vector fields and I a real-valued function, we de- 

I = (Lf21) LflLf 2 Lf 1 

The set of all smooth vector fields on a manifold N is denoted by 

the symbol V(N). This set is a Vector space over ~ since if f, g are 

vector fields and a,b are real numbers, their linear combination af+bg 

is a vector field defined by 

(af+bg) (p) = af(p)+bg(p) 

If a,b are smooth real-valued functions on N, one may still define a 

linear combination af+bg by 

(af+bg) (p) = a(p)f(p)+b(p)f(p) 

and this gives V(N) the structure of a module over the ring, denoted 

C~(N), of all smooth real-valued functions defined on N. The set V(N) 

can be qiven,however,a more interesting algebraic structure in this way. 

Definition. A vector space V over ~ is a Lie algebra if in addition to 

its vector space structure it is possible to define a binary operation 

VxV ~ V, called a product and written [ .,.], which has the following 

properties 

(i) it is skew commutative, i.e. 

Iv,w! = -[w,v] 
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(ii) it is bilinear over ~, i.e. 

[alVl+e2v2,w] = a1[v 1,w]+~2 |v2,w] 

(where a1,~ 2 are real numbers) 

(iii) it satisfies the so called Jacob~ identity, i.e. 

[v,[w,z]]+ [w,[z,v]]+ [z,[v,w]] = 0. [] 

The set V(N) forms a Lie algebra with the vector space structure 

already discussed and a product [ .,.] defined in the following way. 

If f and g are vector fields, [f,g] is a new vector field whose value 

at p, a tangent vector in TpN, maps C~(p) into ~ according to the rule 

([ f,g~ (p)) (I) = (LfLgl) (p)-(LgLfl) (p) 

In other words, [ f,g] (p) takes I into the real number (LfLgl) (p)- 

+(LgLfl) (p). Note that one may write more simply 

L[ f,g] I = LfLgl-LgLfl 

Theorem. V(M) with the product [ f,g] thus defined is a Lie algebra. [] 

The product [ f,g] is called the Lie bracket of the two vector 

fields f and g. 

Remark. If f,g are smooth vector fields and I,X smooth real-valued 

functions, then 

[ lf,xg] = l.y-[ f,g] + l'Lfx'g - X'Lgl'f 

Note that /,x,Lfy,Lgl are elements of C~(N), and g,f,[ f,g] elements of 

V(N). [] 

The reader may easily find that the expression of [ f,g] in local 

coordinates is given by the n-vector 

~gl 8gl 

~Xl "'" ~n 

~gn ~gn 
~x I "'" ~x n ill 

£fl ~)fl 

• i • 

~f ~f 
n n 

gl 1 • _ ~f =~f ~g 

gn 
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If, in particular, N = ~n and 

f(x) = Ax , g(x) = Bx 

then 

[ f,g] (x) = (BA-AB)x 

The matrix [A,B] = (BA-AB) is called the commutator of A,B. 

The importance of the notion of Lie bracket of vector fields is 

very much related to its applications in the study of nonlinear con- 

trol systems. For the moment, we give hereafter two interesting pro- 

perties. 

Theorem. Let N' be an embedded submanifold of N. Let U' be an open 

set of N' and f,g two smooth vector fields of N such that for all 

p 6 U' 

Then also 

N' and g(p) E T ' f(p) 6 Tp pN . 

[ f,g] (p) 6 TpN' 

for all p E U'. [] 

In other words, the Lie bracket of two vector fields "tangent" 

to a fixed submanifold is still tangent to that submanifold. 

f denote the Theorem. Let f,g be two smooth vector fields on N. Let ~t 

flow of f. For each p E N. 

lira ~[I (#ft)~g(~f(p))_g(p)] = [ f,g] (p) 
t~O 

Remark. The first term of the expression under bracket is a tangent 

vector at p, obtained in the following way. With p, the mapping ~ 

(always defined for sufficiently small t) associates a point q=¢k(p). 

The vector field g is evaluated at q, and the value g(q) ~ T N is 
q 

taken back to T_N via the differential (¢f~)~ (which maps the tangent 

space at q onto the tangent space at p=~_t(q))° Thus, the mapping 

~ft) f p ~-+ ( _ ,g(~(p)) defines a vector field, on the domain of ~t" 

Remark. Let f be a smooth vector field on N, g a smooth vector field 

on M and F : N ~ M a smooth function. The vector fields f,g are said to 
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be F-related if 

Fef = goF 

the vector field (#ft)~g(¢{(p))_ 5 considered in the above Note that 

Remark is ~ft-related_ to g. 

Remark. If f is F-related to f and g is F-related to g, then |f,g] is 

F-related to [ f,g]. 

D~f~nition. Let f,g be two smooth vector fields on N. The Lie derivative 

of g along f is a vector field on N, written Lfg and defined by 

(Lfg) (p) = lim l[ - (#~(p)) ) t (~ft)~g -g(P | " [] 
t~0 

Thus, by definition, the Lie derivative Lfg of g along f coinci- 

des with the Lie bracket [ f,g] . There is also a third notation often 

used, which expreses the Lie derivative of q along f as 

Lfg = adfg 

Both notations may be used recurrently, taking 

0 k k-1 
Lfg = g and Lfg = Lf(Lf g) 

or 

ad~g k adf (ad~-1 g) = g and adfg = 

Remark. The Lie derivative of g along f may be interpreted as the 

value at t = 0 of the derivative with respect to t of a function de- 

fined as 

W(t) = (~ft)_ .g(¢~(p)) 

Moreover, it is easily seen that for any k > 0 

,d~ (t), k k 
- - -  = Lfg(p) = adf g(p) dt k ~ t=0 

If W(t) is analytic in a neighborhood of t = 0, then W(t) can be ex- 

panded in the form 

t k 

k=O 
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known as Campell-Baker-Hausdorff formula. D 

One may define an object which dualizes the notion of a vector 

field. 

Definition. Let N be a smooth manifold of dimension n. A covector field 

(also called one-form) m on N is a mapping assigning to each point 
% 

p 6 N a tangent covector e(p) in T N. A covector field f is ~mooth if 
P 

for each p E N there exists a coordinate chart (U,~) about p and n 

real-valued smooth functions el,...,en defined on U, such that, for 

all q E U 

n 

(q) = [ ~i (q) (d~i) [] 
i=1 q 

The notion of smooth covector field is clearly independent of the 

coordinate used. The expression of a covector field in local coord- 

inates is often given the form of a row vector e = row(~1,...,e n) in 
! 

which the ~i s are real-valued functions of x1,°..,x n. 

If m is a covector field and f is a vector field, {~,f ) denotes 

the smooth real-valued function defined by 

{~,f } (p) = (~(p),f(p)) 

With any smooth function h:N ~ ~ one may associate a covector 

field by taking at each p the cotangent vector (dl) . The covector 
P 

field thus defined is usually still represented by the symbol dl. 

However, the converse is not always true. 

Definition. A covector field m is exact if there exists a smooth real 

valued function k:N ~ such tha% 

= dl [] 

The set of all smooth covector fields on a manifold N is denoted 

by the symbol V (N). 

One may also define the notion of Lie derivative of a covector 

field ~ along a vector field f. In order to do this, one has to in- 

troduce first the notion of a covector field ¢~-related to a given 

covector_ field ~. Let p be a point of the domain of ~ .f Recall that 

(~)~ : T N ~ T f N is a linear mapping and let (~)~:T~f N ~ T~N 
P ~t(p) ~t(P) P 

denote the dual mapping. With e and %~ we associate a new covector 
f 

field, whose value at a point p in the domain of Ct is defined by 
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(~ft)*~(#tf(p)) 

£ 
The covector field thus defined is said to be ~-related to ~. 

Theorem. Let f be a smooth vector field and ~ a smooth covector field 

on N. For each p E N the limit 

1 f * {~(p))_m ] 
lim ~[ ({t) ~(  (p) 
t ~ 0 

exists. 

Definition. The Lie derivative of ~ along f is a covector field on N, 

written Lfe, whose value at p is set equal to the value of the limit 

lim 1[ (~f)* ( f 
t ~t (p)) -m (p) ] t~0 

[] 

The expression of Lf~ in local coordinates is given by the (row) 

n-vector 

(fl...fn) 
~)o~ 1 ~05 n 
7 

B~I ~n 

~Xn "'" ~n 

(~l...~n) 

+ 

~fl ~fl 

x~1 "'" ~Xn 

~f ~f 
n n 

~x I •.. 

T ~f 
q-----~x f) +m 

where the superscript "T" denotes "transpose". 

Remark. The three types of Lie derivatives Lfl,Lfg,Lf~ defined above 

are related by the following Leibnitz-type relation 

Lf(~,g )= (Lf~,g)+ (~,Lfg) 

Remark. If ~ is an exact covector field, i.e. if e = dl for some I, 

and 

(dl,f > = Lfl 

Lfdl = d(Lfl) 

Remark. If e is a covector field, f a vector field, I and y real-valued 

functions, then 
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Llfy~ = l.y.Lf~o + l.Lfy.~o +y {o~,f } dl 

Note that l,y,Lfy,<~,f > 

of V (N). 

o~ 

are elements of C (N) and ~,Lf~,dl elements 



BIBLIOGRAPHICAL NOTES 

Chapter I 

The definition of distribution used here is taken from Sussmann 
(1973); in most of the references in Differential Geometry quoted in 
the Appendix, the term "distribution" without any further specifica- 
tion is used to denote what we mean here for "nonsingular distribu- 
tion". Different proofs of Frobenius' Theorem are available. The one 
used here is mutuated from Lobry (1970) and Sussmann (1973). Theorems 
on simultaneous integrability of distributions are due to Jakubczyk- 
Respondek (1980) and Respondek (1982). 

The importance in control theory of the notion of invariance of 
a distribution under a vector field was pointed out independently by 
Hirschorn (1981) and Isidori et al. (1981a). A more general notion of 
invariance, under a group of local diffeomorphisms, was given by 
Sussmann (1973). The local decompositions described in section 5 are 
consequences of ideas of Krener (1977). 

Theorem (6.15) and (6.20) were first proved by Sussmann-Jurdjevic 
(1972). The proof described here is due to Krener (1974). An earlier 
version of Theorem (6.15), dealing with "reachability" along trajec- 
tories traversed in either time direction, was given by Chow (1939). 
Controllability of systems evolving on Lie groups was studied by 
Brockett (1972a). Theorem (7.8), although in a slightly different 
version, is due to Hermann-Krener (1977). 

Chapter II 

The proof of Theorems (1.4) and (I.7) may be found in Sussmann 
(1973). An independent proof of Theorem (1.11) was given earlier by 
Hermann (1962) and an independent proof of Corollary (1.13) by Nagano 
(1966). 

The relevance of the so-called "control Lie algebra" in the ana- 
lysis of global reachability derives from the work of Chow (1939) and 
was subsequently elucidated by Lobry (1970), Haynes-Hermes (1970), 
Elliott (1971) and Sussmann-Jurdjevic (1972), among the others. The 
properties of the "observation space" were studied by Hermann-Krener 
(1977), and, in the case of discrete-time systems, by Sontag (1979). 

Reachability, observability and decompositions of bilinear systems 
were studied by Brockett (1972b), Goka et al. (1973) and d'Alessandro 
et al. (1974). 

Chapter III 

The functional expansions illustrated in the first section were 
introduced by Fliess since 1973. A comprehensive exposition of the 
subject, together with several additional results, may be found in 
Fliess (1981). The expressions of the Kernels of the Volterra series 
expansion were discovered by Lesjak-Krener (1978); the expansions 
(2.12) are due to Fliess et al. (1983). The structure of the Volterra 
kernels was earlier analyzed by Brockett (1976), who proved that any 
individual kernel can always be interpreted as a kernel of a suitable 
bilinear system, and related results may also be found in Gilbert 
(1977). The expressions of the kernels of a bilinear system were 
first calculated by Bruni et al. (1971). Multivariable Laplace trans- 
forms of Volterra kernels and their properties are extensively studied 
by Rugh (1981). 
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Functional expansions for nonlinear discrete-time systems have 
been studied by Sontag (1979) and Normand Cyrot (1983). 

The way the invariance analysis is dealt with reflects jointly 
ideas developed by Isidori et al. (1981a) and Claude (1982); the former 
contains, in particular, a different proof of Theorem (3.9). Left in- 
vertibility of nonlinear systems was mostly studied by Hirschorn 
(1979a) (1979b); our presentation follows an idea of Nijmeijer (1982b). 

Definitions and properties of generalized Hankel matrices were 
developed by Fliess (1974). Theorem (5.8) was proved independently 
by Isidori (1973) and Fliess. The notion of Lie rank and Theorem 
(5.11) are due to Fliess (1983). Equivalence of minimal realizations 
was extensively studied by Sussmann (1977); the version given here of 
the uniqueness Theorem essentially develops an idea of Hermann-Krener 
(1977); related results may also be found in Fliess (1983). 

An independent approach to realization theory was followed by 
Jakubczyk (1980). Realization of finite Volterra series was studied 
by Crouch (1981). Constructive realization methods from the Laplace 
transform of a Volterra kernel may be found in the work of Rugh (1983). 
Realization theory of discrete-time response maps was extensively 
studied by Sontag (1979). 

Chapter IV 

Controlled invariant distribution is the nonlinear version of 
the notion of controlled invariant subspace, introduced independently 
by Basile-Marro (1969) and Wonham-Morse (1970). For a comprehensive 
presentation of the theory of multivaribale linear control systems, 
the reader is referred to the classical treatise of Wonham (1979). 
Controlled invariant distributions were introduced independently by 
Hirschorn (1981) and, in the more general form described here, by 
Isidori et al. (1981a). The proof of Lemma (1.10) may be found in 
Hirschorn (1981), Isidori et al. (1981b) and ~ijmeijer (1981). 

Lemma (3.6) is due to Claude (1982); the special case where the 
matrix A(x) has rank £ was dealt with in Isidori et al. (1981a). The 
algorithm (3.17) has been suggested by Krener (1985). 

Early results on nonlinear decoupling and noninteracting con- 
trol were given by Singh-Rugh (1972) and Freund (1975). The possibi- 
lity of solving decoupling problems in a differential-geometric 
setting was described by Hirschorn (1981) and Isidori et al. (1981a). 
The notion of controllability distribution, the nonlinear version of 
the one of controllability subspace, was introduced by Isidori-Krener 
(1982) and Nijmeijer (1982a). The solution of noninteracting control 
problems via controllability distributions is described in Nijmeijer 
(1983). 

Controlled invariance for general nonlinear control systems (i.e. 
systems where the control does not enter linearly) is studied in 
Nijmeijer-Van der Schaft (1983). Controlled invariance for discrete- 
time nonlinear system is studied in Grizzle (1985) and Monaco-Normand 
Cyrot (1985). 

Chapter V 

The input-output linearization problem was treated by Isidori- 
Ruberti (1984). A slightly different version of this problem was 
earlier studied by Claude-Fliess-Isidori (1983) and, in the case of 
discrete-time systems, by Monaco-Normand Cyrot (1983). The so-called 
"structure algorithm" was introduced by Silverman (1969) and its 
importance in connection with the computation of the "zero structure 
at infinity" was outlined by Van Dooren et al. (1979). The possibility 
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of computing a "zero structure at infinity" on the coefficients of the 
formal power series associated with the external behavior of a non- 
linear system was pointed out by Isidori (1983); a geometric approach 
to the definition of a "zero structure at infinity" is followed by 
Nijmeijer-Schumacher (1985). The problem of matching a linear model 
via dynamic state feedback was studied by Isidori (1985) and Di Be- 
nedetto-Isidori (1985). The proof of Theorem (5.9) is the nonlinear 
version of a proof of Malabre (1984). 

The state-space linearization problem was proposed and solved 
for single-input systems by Brockett (1978). Complete solution for 
multi-input systems was found by Jakubczyk-Respondek (1980). Independ- 
ent work of Su (1982) and Hunt et al. (1983a) lead to a slightly 
weaker formulation, together with a constructive algorithm for the 
solution; The possibility of using noninteracting control techniques 
for the solution of such a problem was pointed out in Isidori et al. 
(1981a); the construction suggested here essentially recaptures an 
idea of Marino (1982). Additional results on this subject may be 
found in Sommer (1980), Hunt et al. (1983b), Boothby et al. (1985), 
and Cheng et al. (1985). 

The observer linearization problem was studied independently by 
Bestle-Zeitz (1983) and Krener-Isidori (1983), for single-output 
systems, and by Krener-Respondek (1985) for multi-output systems. 

Appendix 

For a comprehensive introduction to the subjects dealt with in 
this appendix, the reader is referred to Boothby (1975), Warner 
(1970), Singer-Thorpe (1967). 
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