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PREFACE

This volume was planned as a textbook for a graduate course on
nonlinear multivariable feedback systems. Most of it was prepared
while the author was teaching a similar course at the Department of
Systems Sciences and Mathematics of the Washington University in
St. Louis, in the 1983 fall semester., The purpose of -the volume is to
present a self-contained description of the fundamentals of the theory
of nonlinear feedback control systems, with special emphasis on the
differential-geometric approach.

In the last decade, differential geometry has proven to be as
successful to the study of nonlinear systems as Laplace transform and
complex functions theory were in the '50s to the study of single-input
single-output linear systems and linear algebra in the '60s to the
study of multivariable linear systems., Typical "synthesis" problems
like disturbance isolation, noninteraction, shaping of the input-output
response via feedback, can be dealt with relative ease, with tools that
are well within the reach of a (mathematically oriented) control
engineer. The purpose of this volume is to make the reader aquainted
with major methods and results, and to make him able to explore the
constantly growing literature.

The bock is organized as follows. Chapter I introduces invariant
distributions, a fundamental tool in the analysis of the internal struc-
ture of nonlinear systems. With the aid of this concept, it is shown
that a nonlinear system locally exhibits Xalman-like decompositions
into "reachable/unreachable" parts and/or "observable/unobservable"
parts. Chapter II explains to what extent there may exist global de-
compositions, corresponding to a partition of the whole state space
into "lower dimensional"” reachability and/or indistinguishability sub-
sets. Chapter III describes various "formats" in which the input-output
map of a nonlinear system may be represented, and provides a short de-
scription of the fundamentals of realization theory. Chapters IV and V
deal with the synthesis of feedback control laws. In the first of these,
disturbance decoupling and noninteracting control are dealt with,along
the so-called "geometric approach", that proved to be guite successful
for the solution of similar synthesis problems in linear multivariable
systems, In Chapter V it is shown that nonlinear state-feedback may be

used in order to make a given system to behave, internally and/or ex-



v

ternally, like a linear one. In particular, feedback may be used in
order to shape the input-output behavior in some prescribed way.

The reader is supposed to be familiar with the basic concepts
of linear systems theory. Moreover, some knowledge of the fundamentals
of differential geometry is required. There are several excellent text-
books available to this end, and some of them are quoted among the refer-
ences. However, in order to make the volume as much as possible self-
contained, and particularly to unify the notations, the most important
notions and results of frequent usage are collected - without proof -
in the Appendix.

The author of this book is particularly grateful to Professor
A. Ruberti, for his constant encouragement, to Professors J. Zaborszky
and T.J. Tarn for their interest and generous support, to Professor
A.J. Krener who, especially in the course a joint research venture,
was a source of inspiration for many of the ideas developed in this
volume. The author would also like to thank Professor M. Thoma for his
encouragement during the preparation of this work and Professors C.
Byrnes, M. Fliess, P. Kokotovic and S. Monaco for many stimulating

discussions.

Rome, March 1985
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CHAPTER I
LOCAL DECOMPOSITIONS OF CONTROL SYSTEMS

1. Introduction

In this section we review some basic results from the theory of
linear systems, with the purpose of describing some fundamental pro-
perties which find close analogues in the theory of nonlinear systems.

Usually, a linear control system is described by equations of the
form

X = Ax + Bu
y = Cx
in which the state x belongs to X, an n-dimensional vector space and
the input u and the output y belong respectively to an m-dimensional
vector space U and 2-dimensional vector space Y. The mappings
A: XX, B:U>X, C:X Y are linear mappings.
Suppose that there exists a d-dimensional subspace V of X with

the following property:

(i} V is invariant under the mapping A, i.e. is such that Ax € V for
all x € v;

then, it is known from linear algebra that there exists a basis for X
(namely, any basis (v1,...,vn) with the property that (v1,...,vd) is
also a basis for V) in which A is represented by means of a block-

triangular matrix

whose elements on the lower (n-d) rows and left d columns are vanishing.

Moreover, if this subspace V is such that:

(ii) V contains the image of the mapping B, i.e. is such that Bu € V
for all u € U;

then, choosing again the same basis as before for X, regardless of the

choice of basis in U, the mapping B is represented by a matrix

By

0



whose last n-d rows are vanishing.
Thus, if there exists a subspace V which satisfies (i) and (ii),
then there exists a choice of coordinates for X in which the control

system is described by a set of differential eguations of the form

I

%y A“x1 + A12x2 + B1u

Xy = ByoXy

By Xy and X, we denote the d-vector and, respectively, the n-d vector
formed by taking the first d and, respectively, the last n-d coordina-
tes of a point x of X in the selected basis.

The representation thus obtained is particularly interesting when
studying the behavior of the system under the action of the control
u. At time T, the coordinates of x(T) are

T

]

x1(T) exp(A11T)x1(0) +Jexp(A11(T-T))A12exp(A221)de2(0) +
0
T

+Jexp(A11(T-T))B1u(T)dT
0

X, (T) = exp(A,,T)x,(0)

From this we see that the set of coordinates denoted with Xy does
not depend on the input u but only on the time T. The set of points
that can be reached at time T, starting from x(0), under the action of
the input lies inside the set of points of X whose X, coordinate is
equal to exp(AzzT)xz(O). In other words, if we let x°(T) denote the
point of X reached at time T when u{t) = 0 for all t € [0,T], we ob-

serve that the state x(T) may be expressed as
x(T) = xo(T) + v

where v is a vector in V. Therefore, the set of points that can be

reached at time T, starting from x(0), lies inside the set

— [0
Sp = % (T) + vV

Let us now make the additional assumption that the subspace V,

which is the starting point of our considerations, is such that:

(iii) V is the smallest subspace which satisfies (i) and (ii) (i.e.

is contained in any other subspace of X which satisfies both (i)



and (ii)).
It is known from the linear theory that this happens if and only
if
v= 3 Im(a's
i=0
and, moreover, that in this case the pair (Ad1,81) is a reachable pair,

i.e. satisfies the condition

a-1 _
rank(B1 A11B1 --- AQy B1) =d

or, in other words, for each x, € Rd there exists an input u, defined

on [0,T], such that

1

T
Xy = f exp(A11(T-T))BJu(T)dT
0

Then, if V is such that the condition (iii) is also satisfied,
starting from x(0) we can reach at time T any state of the form
x°(T) + v with v € V or, in other words, any state belonging to the
set S.. This set is therefore exactly the set of the states reachable
at time T starting from x(0).

This result suggests the following considerations. Given a linear
control system, let V be the smallest subspace of X satisfying (i) and
(ii). Associated with V there is a partition of X into subsets of the
form

x +V

with the property that each one of these subsets coincides with the
set of points reachable at some time T starting from a suitable point
of X. Moreover, these subsets have the structure of a d-dimensional
Flat submanifold of X.

An analysis similar to the one developed so far can be carried
out by examining the interaction between state and output. In this

case we consider a d-dimensional subspace W of X such that

(i) W is invariant under the mapping A

(ii) W is contained into the kernel of the mapping C (i.e. is such
that Cx = 0 for all x € W)

(iii) W is the largest subspace which satisfies (i) and (ii) (i.e.
contains any other subspace of X which satisfies both (i) and
(ii)).

Then, there is a choice of coordinates for X in which the control

system is described by equations of the form



Xq = Bqqxq t Agpxy + Byu
x2 = A22x2 + B2u
¥ = C%y

From this we see that the set of coerdinates denoted with Xy has
no influence on the output y. Thus any two initial states whose last
n-d coordinates coincide produce two identical outputs under any input,
i.e. are indistinguishable. Actually, any two states whose last
n-d coordinates coincide are such that their difference is an element
of W and, then, we may conclude that any two states belonging to a set
of the form x+W are indistinguishable.

Moreover, we know that the condition (iii) is satisfied if and
only if

n-1

W = 0 ker(cal)

i=0

and, if this is the case, the pair (CZ,A22) is observable, i.e. sa-

tisfies the condition
rank (C} Al.C! ar )9 ey - g
2 2272 *°° 22 2
or, in other words,
szexp(Azzt)x2 =0 = Xy = 0

Then, if two initial states are such that their difference does
not belong to W, they may be distinguished from each other by the out-
put produced under zero input.

Again we may synthesize the above discussion with the following
considerations. Given a linear control system, let W be the largest
subspace of X satisfying (i) and (ii). Associated with W there is a

partition of X into subsets of the form
X + W

with the property that each one of these suhsets coincides with the
set of points that are indistinguishable from a fixed point @f X. Mo-
reover, these subsets have the structure of a d-dimensional flat sub-
mantfold of X.

In the following sections of this chapter and in the following

chapter we shall deduce similar decompositions for nonlinear control



systems.

2. Distributions on a Manifold

The easiest way to introduce the notion of distribution A on a
manifold N is to consider a mapping assigning to each point p of N a
subspace A(p) of the tangent space TpN to N at p. This is not a rigo-
rous definition, in the sense that we have only defined the domain N
of A without giving a precise characterization of its codomain. Defer-
ring for a moment the need for a more rigorous definition, we proceed
by adding some conditions of regularity. This is imposed by assuming
that for each point p of N there exist a neighborhood U of p and a set
of smooth vector fields defined on U, denoted {Ti:i € I}, with the

property that,

A(gq) = span{ri(q):i € 1}

for all g € U. Such an object will be called a smooth distribution on
N. Unless otherwise noted, in the following sections we will use the
term "distribution" to mean a smooth distribution.

Pointwise, a distribution is a linear object. Based on this pro-
perty, it is possible to extend a number of elementary concepts re-
lated to the notion of subspace. Thus, if {Ti:i € 1} is a set of vector
fields defined on N, their span, written Sp{Ti:i € I}, is the distribu-

*
tion defined by the rule( )

sp{ri:i €1}: p bt span{Ti(p):i €1}

If A1 and A2 are two distributions, their sum A1 + AZ is defined by
taking

- (g
A1—+A2 : P A1(p) +A2(p)
and their Zntersection A1 ™ A2 by taking

A, N b, :p B a,(p) N A,(p)

(*) In order to avoid confusions, we wse the symbol span{+} to denote any R-linear
combination of elements of some R-vector space (in particular, tangent vectors
at a potnt). The symbol sp{+} is used to denote a distribution (or a codistribu-
tion, .see later).



A distribution A1 18 contained in the distribution A2 and is written
Ay C A2 if A1(p) c Az(p) for all p € N. A vector field 1 belongs to a
distribution A and is written T € A if T(p) € A(p) for all p € N.

The dimension of a distribution A at p € N is the dimension of
the subspace A(p) of TpN.

Note that the span of a given set of smooth vector fields is a
smooth distribution. Likewise, the sum of two smooth distributions is
smooth. However, the intersection of two such distributions may fail

to be smooth. This may be seen in the following example.

(2.1) Example. Let M = R?, and

3 ]
Ay = splsr + =}
1 8x1 ax2
_ ] 3
A2 = sp{(1+x1)-m + gx—z}

Then we have

(Ay O A, (%) {0} if x4, #0

1

(A; N AL (x) Ag(x) = b,y(x) if xy =0

1

This distribution is not smooth because it is not possible to find a
smooth vector field on R2 which is zero everywheare but on the line

Xy = 0. O

Since sometimes it is useful to take the intersection of smooth
distributions A1 and A2 , one may overcome the problem that A1 M A2 is
possibly non-smooth with the aid of the following concepts. Suppose A
is a mapping which assigns to each point p € N a subspace A(p) of TpN
and let M(A) be the set of all smooth vector fields defined on N which

at p take values in A(p), i.e.
M(ay = {t € viN):T(p) € A(p) for all p € N}

Then, it is not difficult to see that the span of M(4A), in the

sense defined before, is a smooth distribution contained in A.

(2.2) Remark. Recall that the set V(N) of all smooth vector fields de-
fined on N may be given the structure of a vector space over R and,
also, the structure of a module over Cw(N), the ring of all smooth
real-valued functions defined on N. The set M(A) defined before (which

is non-empty because the zero element of V(N) belongs to M(A) for any



A) is a subspace of the vector space V{(N) and a submodule of the module
V(N). From this is it easily seen that the span of M(A) is contained
in A. O

Note that if A' is any smooth distribution contained in A, then
A' is contained in the span of M{A), so the span of M(A) is actually
the largest smooth distribution contained in A. To identify this distri-

bution we shall henceforth use the notation
smt (A) 2 sp M(A)

i.e. we look at the span of M(A) as the "smoothing" of A. Note also
that if A is smooth, then smt(A) = A.

Thus, if 4y N by
tribution smt(4; N 4,).

is non-smooth, we shall rather consider the dis-

(2.3) Remark. Note that M(A) may not be the unique subspace of V(N),
or submodule of V(N), whose span coincides with smt(A). But if M' is
any other subspace of V(N), or submodule of V(N), with the property
that sp M' = smt(A), then M' C M(A).

(2.4) Example. Let N = R, and

Then M(A) is the set of all vector fields of the form c(x)ﬁ% where
c(x) is a smooth function defined on R which vanishes at x = 0.Clearly
A is smooth and coincides with smt(A). There are many submodules of

V(R) which span A, for instance

c(x)x-§; and ¢ € CT(R)}

=
]

1 {1 € VIR) : T (x)

=
i

1

{1 €EVR):1(x) c(x)x2-§§ and ¢ € ¢ (®R)}

Both are submodules of M(A), M2 is a submodule of M1 but M1 is not a
submodule of M; because is not possible to express every function

c(x)x as &(x)x2 with é € ¢cC@). O

(2.5) Remark. The previous considerations enable us to give a rigorous
definition of a smooth distribution in the following way. A smooth
distribution is a submodule M of V(N) with the following property: if
6 is a smooth vector field such that for all p € N

8(p) € span{t(p):1 € M}



then 6 belongs to M. O

Other important concepts associated with the notion of distribu-
tion are the ones related to the "behavior" of a given A as a "func-
tion" of p. We have already seen how it is possible to characterize
the quality of being smooth, but there are other properties to be con-
sidered.

A distribution A is nonsingular if there exists an integer d such

that
(2.6) dim A(p) = d

for all p € N. A singular distribution, i.e. a distribution for which
the above condition is not satisfied, is sometimes called a distribu-
tion of variable dimension. If a distribution A is such that the con-
dition (2.6) is satisfied for all p belonging to an open subset U of
N, then we say that A is nonsingular on U. A point p is a regular point
of a distribution A if there exists a neighborhood U of p with the pro-
perty that A is nonsingular on U.

There are some interesting properties related to these notions,

whose proof is left to the reader.

(2.7} Lemma. Let A be a smooth distribution and p a regular point of
A. Suppose dim A(p) = d. Then there exist an open neighborhood U of
p and a set {T1,...,Td} of smooth vector fields defined on U with the
property that every smooth vector field 1 belonging to A admits on U a

representation of the form
4
(2.8) T = 3§ o1,

where each cy; is a real-valued smooth function defined on U. O

A set of 4 vector fields which makes (2.8) satisfied will be cal-

led a set of loecal generators for A& at p.

(2.9) Lemma. The set of all regular peoints of a distribution A is an

open and dense submanifold of N.

(2.10) Lemma. Let Ay
perty that A, is nonsingular and A1(p) C b,(p) at each point p of a

and AZ be two smooth distributions with the pro-

dense submanifold of N. Then A1 c A2.

(2.11) Lemma. Let A1 and A2 be two smooth distributions with the pro-
perty that A1 is nonsingular, A1 c A2 and A1(p) = Az(p) at each point
p of a dense submanifold of N. Then Dy =2y 0



We have seen before that the intersection of two smooth distribu-
tions may fail to be smooth. However, around a regular point this

cannot happen, as we see from the following result.

{2.12) Lemma. Let p be a regular point of L, , &, and 4, N AZ. Then
there exists a neighborhood U of p with the property that A1 n A2

restricted to U is smooth. O

A distribution is Znvolutive if the Lie bracket [T1,T2] of any
pair of vector fields T4 and Ty belonging to A is a vector field which

belongs to A, i.e. if

€ A,

T, € A= [11,12] € A

B
(2.13) Remark. It is easy to see that a nonsingular distribution of
dimension d is involutive if and only if, at each point p, any set of
local generators Tyr---rTy defined on a neighborhood U of p is such

that
d
%
[1:,1.] = ) e;.1
i’ g=q 13 L
where each cij is a real-valued smooth function defined on U. O

If f is a vector field and A a distribution on N we denote by
[ £,4] the distribution

(2.14) [£,A] = sp{[£f,T] € V(N):T € A}

Note that [ f,A] is a smooth distribution, even if A is not. Using this
notation, one can say that a distribution is involutive if and only if
[f,4] C A for all f € A.

Sometimes, it is useful to work with objects that are dual to the
ones defined above. In the same spirit of the definition given at the
beginning of this section, we say that a codistrtbution @ on N is a
mapping assigning to each point p of N a subspace {(p) of the cotangent
space T;(N). A smooth codistribution is a codistribution Q on N with
the property that for each point p of N there exist a neighborhocod U
of p and a set of smooth covector fields (smooth one-forms) defined on

U, denoted {w;:i € I}, such that
Q(q) = span{wi(q):i € 1}

for all g € U.

In the same manner as we did for distributions we may define the
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dimension of a codistribution at p, and construct codistributions by
taking the span of a given set of covector fields, or else by adding
or intersecting two given codistributions, etc. always looking at a
pointwise characterization of the objects we are dealing with.
Sometimes, one can construct codistributions starting from given
distributions and conversely. The natural way to do this is the fol-
lowing: given a distribution A on N, the annihilator of A, denoted AL,

is the codistribution on N defined by the rule
* * *
A‘L tp P A{v fprN : {v ,v2=0 for all v € A(p}}

1
Conversely, the annthilator of 2, denoted @, is the distribution
defined by the rule

*
ot :p P {v € TpN: (v*,v Y= 0 for all v € q(p)}

Distributions and codistributions thus related possess a number
of interesting properties. In particular, the sum of the dimensions of
A and of AL is eqgual to the dimension of N. The inclusion A1 c A2 is
satisfied if and only if the inclusion A# > A; is satisfied. The an-
nihilator (A1 n Az)'L of an intersection of distributions is equal to
1+A2.

Like in the case of the distributions, some care is reguired when

the sum A

dealing with the quality of being smooth for codistributions construc-
ted in some of the ways we described before. Thus it is easily seen
that the span of a given set of smooth covector fields, as well as sum
of two smooth codistributions is again smooth. But the intersection of
two such codistributions may not need to be smooth.

Moreover, the annihilator of a smooth distribution may fail to be

smooth, as it is shown in the following example.

(2.15) Example. Let N = R

- J
A = spix 5§}

Then

At (x) = {0} if x £ 0

AJ'(X)

I

*
TN if x =0
X

and we see that A'L is not smooth because it is not possible to find a

smooth covector field on R which is zero everywhere but on the point



1

Or, else, the annihilator of a smooth codistribution may not be

smooth, as in the following example.

(2.16) Example. Consider again the two distributions A1 and A2 describ-
ed in the Example (2.1). One may easily check that

L— -

Ay = sp{dx1 dx2}

At = spldx, - (1 +x,)dx,}
2 plaxy 178X,

The intersection A1 n A2 is not smooth but its annihilator A# +A§ is

smooth, because both A# and A; are smooth. O
One may easily extend Lemmas (2.7) to (2.12). In particular, if
p is a regular point of a codistribution § and dim Q(p) = 4, then it
is possible to find an open neighborhood U of p and a set {m1,...,md}
of smooth covector fields defined on U, such that every smooth covector

field w belonging to £ can be expressed on U as
d
w = iz1ciwi

where each cy is a real-valued smooth function defined on U. The set
{w1,...,wd} is called a set of local generators for { at p.

We have seen before that the annihilator of a smooth distribution
A may fail to be smooth. However, around a regular point of A this

cannot happen, as we see from the following result.

(2.17) Lemma. Let p be a regular point of A, Then p is a regular point
of AL and there exists a neighborhood U of p with the property that At

restricted to U is smooth. O

We conclude this section with some notations that are freguently
used. If f is a vector field and § a codistribution on N we denote by
LEQ the smooth codistribution

(2.18) LR = spllow € V(W) :w € Q)

If h is a real-valued smooth function defined on N, one may as-

sociate with h a distribution, written ker(h,), defined by

ker(hy): p P {v € TN : hyv = 0}

One may also associate with h a codistribution, taking the span of the
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covector field dh. It is easy to verify that the two objects thus de-

fined are one the annihilator of the other, i.e. that

(sp(annt = xer(ny).

3. Frobenius Theorem

In this section we shall establish a correspondence between the
notion of distribution on a manifold N and the existence of partitions
of N into lower dimensional submanifolds. As we have seen at the be-
ginning of this chapter, partitions of the state space into lower di-
mensional submanifolds are often encountered when dealing with reach-
ability and/or observability of control systems.

We begin our analysis with the following definition. A neonsingular
d-dimensional distribution A on N is completely integrable if at each
P € N there exists a cubic coordinate chart (V,%) with coordinate func-
tions £1,...,En , such that

(3.1) B(@) = span{igrlgreens () )

for all q € V.

There are two important consequences related to the notion of
completely integrable distribution. First of all, observe that if there
exists a cubic coordinate chart (V,£), with coordinate functions
51,...,£n , such that (3.1) is satisfied, then any slZce of V passing
through any point p of V and defined by

(3.2) = {qg € vig;(q) = g;(p); 1 = a+,...,n}

SP
(which is a d-dimensional imbedded submanifold of N}, has a tangent
space which, at any point g, coincides with the subspace A(q) of TqN.

Since the set of all such slices is a partition of V, we may see
that a completely integrable distribution A induces, locally around
each point p € N, a partition into lower dimensional submanifolds, and
each of these submanifolds is such that its tangent space, at each
point, agrees with the distribution A at that point.

The second consequence is that a completely integrable distribu-
tion is <nvoilutive. In order to see this we use the definition of in-
volutivity and compute the Lie bracket of any pair of vector fields
belonging to A. For, recall that in the £ coordinates, any vector

field 1 defined on N is represented by a vector of the form
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TE) = (T () ... (8))"

The components of this vector are related to the value of the vector

field © at a point g by the expression

T(q) = (E(q))(aE A (£(q)) —E—

1f 1 is a vector field of A and (3.1) is satisfied, the last n-d
components Td+1(g),...,Tn(£) must vanish. Moreover, if 6 is any other
vector field of A&, also the last n-d components of its local repre-

sentation
B(E) = (84(E)...8_(£))

must vanish. From this one deduces immediately that also the last n-~d

components of the vector

are vanishing. Since this vector represents locally the vector field
[1,8] one may conclude that [T1,8] belongs to A, i.e. that A is invo-
Iutive.

We have seen that involutivity is a necessary condition for the
complete integrability of a distribution. However, it can be proved

that this condition is also sufficient, as it is stated below

(3.3) Theorem (Frobenius). A nonsingular distribution is completely

integrable if and only if it is involutive

Proof. Let d denote the dimension of A. Since A is nonsingular, given
any point p € N it is possible to find d vector fields TgrertTg € A
with the property that T1(q),...,Td(q) are linearly independent for
all g in a suitable neighborhood U of p. In other words, these vector

fields are such that
8(q) = span{t (q),...,T4(q)}

for all g € U.

Moreover, let Tgaqre--+T be any other set of vector fields with

n

the property that span{Ti(p): i=1,...,n} = TpN. With each vector

Tas
field Ty i=1,...,n, we associate its flow ¢tl and we consider the

mapping
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F : CS(O) —> N

T2 Tn
:(E1;---;€ ) d)g E . .oq)E (p)
1 2 n
where C_(0) = {€ ER™:|g,| < e, 1 < i <nl.
If € is sufficiently small, this mapping:
(1) is defined for all £ € Ce(O) and is a diffeomorphism onto its

image
(ii) 4is such that for all g € C€(O)

Ful )E € A(F(E)) i=1,...,d (¥

2
3T,

We show now that (i) and (ii) are true and, later, that both imply
the thesis.

Proof of {(i). We know that for each p € N and sufficiently small |t]
the flow ¢;(p) of a vector field 1 is defined and this makes the func-
tion F defined for all (&;,...,& ) with sufficiently small |£il.More-
over, since a flow is smooth, so is F, Je prove that F is a local dif-
feomorphism by showing that the rank of F at 0 is equal to n.
To this purpose, we first compute the image under F, of the

tangent vector (5%7)5 at a point £ € CE(O). Suppose F is expressed in
local coordinates. Then, it is known that the coordinates of F*(B§ )g

in the basis {(33—) ) } of the tangent space to N at the i
1

qlo--l(a
point g = F(£) coincide W1th the elements of the i-th column of the

jacobian matrix

3F
9k
By taking the partial derivative of F with respect to Ei we ob-
tain
T T, T
3F 1 i n
5 = (%, )y ... ) (¢ 6 ... 0.7 (p)) =
BEi €1 * €1_1 * BE E1 gn
T T T
1 i-1 n
= ) PR ((I) ) T o ¢ 6 eae 0@ (p) =
£ E1 1 * gn
R Ti-1 Ti-1 1
= (¢ ) ee. (@ Yu Ts o O o cea0o ¢__(F(E))
g ¥ Ei-'* 1 Ei-1 &4

(*) Note that (GE £ is a tangent vector at the point § of CE(O)'
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In particular, at & = 0, since F(0) P,

Fylge=)o = 74 (@)
1

The tangent vectors 11(p),...,Tn(p) are by assumption linearly inde-
pendent and this proves that F, has rank n at p.

Proof of (ii). From the previous computations, we deduce also that, at
any £ € C_(0),

T

T
1
O seeq ¢_£1 (q)

1 T
= 0wl (0

i-1

F,( )

I
3L,
where q = F(£).

If we are able to prove that for all g in a neighborhood of p, for ]t]
emall, and for any two vector fields t and 8 belonging to 4,

(0), 1.0° (@) € ala)

i.e. that (¢2)* rowﬁt is a (locally defined) vector field of A, then
we easily see that (ii) is true.

To prove the above, one proceeds as follows. Let 8 be a vector
field of A and set

] ]
Vi(t) = (¢_t)* Tio¢t(q)
for i = 1,...,d.
Then, from a well known property of the Lie bracket we have

dVi

¢} [
a3t = (¢_t)*[e,ri]°®t(q)

Since both T and 8 belong to A and A is involutive, there exist func-

tions Aij defined locally around p such that

I e~
>
A

[ﬂ:Ti] = ’ ij 3

and, therefore,

¢ 6 6 ¢ 6
el (¢_t>*lj£1xijmt(q))hjn@t(q) = j;)‘ijmt(q))vj(t)
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The functions Vi(t) are seen as scolutions of a linear differential

equation and, therefore,it is possible to set
[V () e Vg (B)] = [V,(0)...Vg(0)]X(E)

where X(t) is a dxd fundamental matrix of solutions. By multiplying on
the left both sides of this equality by (@2)* we get

[T4000(q) ... 14005 (q)] =[(@i)*T1(q)...(@i)*Td(q)]X(t)

and also, by replacing q with ﬁ’?_t(q)

[14(@) . tg(@l = LD 1008 (@ ... e g0 @lx(e)

Since X(t) is nonsingular for all t we have that, for i=1,...,4d,

(0) 473027, (@) € spanity (@, ..., 7, (a)}

(00) 475087 (@) € (g

This result, bearing in mind the possibility of expressing any

vector T of A in the form

completes the procf of {ii).

From (i) and (ii} the thesis follows easily. Actually, (i) makes

it possible to consider on the neighborhood V = F(CECO)) of p the

1

coordinate chart (V,F ). By definition, the tangent vector (3%—) at
i

q
a point g € V coincides with the image under F, of the tangent vector

at the point & ='F—1(q) € CE(O). From (ii) we see that the

3
(351)€
tangent vectors

2 )

a3
(‘8"6_1)q 1o g (ngq

are elements of A{g). Since these vectors are linearly independent,

they span A{g) and (3.1) is satisfied. O
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There are several interesting system-theoretic consequences of
Frobenius' Theorem. The most important one is found in the correspond-
ence, established by this Theorem, between involutive distributions
and local partitions of a manifold into lower dimensional submanifolds.
As we have seen, given a nonsingular and completely integrable, i.e.
involutive, d-dimensional distribution A on a manifold N, around each
p €N it is possible to find a coordinate neighborhood V on which A
induces a partition into submanifolds of dimension d, which are slices
(and,therefore, imbedded submanifolds) of V. Conversely, given any
coordinate neighborhood Vv, a partition of V into d-dimensional slices
defines on V a nonsingular completely integral distribution of dimen-
sion d.

We examine some examples in order to further clarify these con-

cepts

(3.4) Example. Let N = R" and let x = (X1”"'xn) be a point onIRn.
Suppose V is a subspace of R”, of dimension d, spanned by the vectors

v, = (Vi1""’vin) 1 <i<d
We may associate with V a distribution, denoted AV , in the following

way. At each x € R", Av(x) is. the subspace of Tx']Rn spanned by the

tangent. vectors

T 3
Evi.(-g-}z—)x 1iif_d
j=1 HJ ]
It is easily seen that this distribution is nonsingular and in-
volutive, thus completely integrable.
Now, suppese we perform a (linear) change of coordinates in

R", £ = £(x) such that

In the £ coordinates, the subspace V will be spamned by vectors of the
form (1,0,...,0), (0,1,...,0), etc., while the subspace Ay(x) by the

tangent vectors (§§;)x""’(§%g)x‘ Thus, we see that the condition

(3.1) is satisfied globally on R" in the £ coordinates.

The slices:

S={x€ER: & (x) =c. , i=a4a+1,...,n}

characterize a global partition of R” and each of these is such that
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its tangent space, at each point x, is exactly Av(x). It is worth
noting that each of these slices corresponds to a set of the form

x +V

Thus, the partitions of the state space X discussed in section 1 may
be thought of as global partitions induced by a distribution associated
with a given subspace of X.

(3.5) Example. Let N = Rz and let x = (x1,x2) be a point on Rz. Con-

sider the one-dimensional nonsingular distribution
_ 3 3
8 = spllexp x2)8x1 * axz}

If we want to find a change of coordinates that makes (3.1) satisfied,
we may proceed as follows. Recall that, given a coordinate chart with

coordinate functions 51,£2 , a tangent vector v at x may be represented

as
_ 3 3
V=il T Valar)x
1 2
where the coefficients vy and v, are such that vy = Lv€1 and vy, = LVEZ.

Since the tangent vector

1 2

spans A(x) at each x G:RZ, if we want that (3.1) is satisfied we have

to have
_ 3 3 _ 3
T(x) = (LT€1)(5E?)X +(LT€2)(§E;)X = (SE?)X

for all x € U, or

351 8€1

1= Lpdg) = lexp xp)a ey,
8&2 352

0 = (LpEy) = (exp x> + 573~
1 2

A solution of this set of partial differential equationsis given
by
E1 = ‘E»](X) = X2

€2=

™
(%)
»
|

=%y - exp(xz)
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The mapping £ = £(x) is a diffeomorphism £ : R? -*R? and solves

the problem of finding the change of coordinates that makes (3.1) sa-
tisfied. Note that R® is globally partitioned into one-dimensicnal
slices, each one being the locus where the function Ez(x} is constant,

i.e. the locus of points (x1,x2) such that
x, = exp(x,) + constant a

The procedure described in the Example (3.5) may easily be ex-—
tended. For, let A be a nonsingular involutive distribution of dimen=-
sion d. Let (U,9) be a coordinate chart with coordinate functions
Pgro--19py- Given any point p € U it is possible to find d vector fields
Tgreees Ty € 4 with the property that 7,(q),...,T4(q) are linearly in-
dependent for all q in a suitable neighborhood U' CU of p. In other

words, these vectors are such that
Alg) = span{T1(q),...,Td(q)}

for all g € U'.
In the coordinates m1,...,wn , each of these vector fields is

locally expressed in the form
2 d
T; = 'z (Lri¢j)(55;)
If (V,&) is another coordinate chart around p with coordinate

functions 51,...,£n the correspeonding expressions for Ty has the form

E
T, = (L, &)(
R =2 B ‘5
For (3.1) to be satisfied, i.e. for
SP{T.‘,...,T } = sp{M‘| ...,agd}

on V, we must have

onV, for i =1,...,dand j =d+1,...,n and, moreover
LT1E1 veo L_ &

rank . = d

L&, ... L
Tg ! a
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on V. These conditions characterize a set of partial differential equa-
tions on V, which has to be satisfied by the new coordinate functions
51,---,§n-
Setting, as usual
T () = (L. .)ee | (x)
ij T,%57°°°
i
where x = (x1,...,xn) GZRn, it is possible to express the functions
LT Ej involved in the previous conditions as follows
i
-1
9(&.,
€J ¢ )

n
L. &, (x) = k£1rik(x) 7%

i 7

Therefore, using just £j(x) to denote the composite function Ejow-1(x),

one has

Setting
T11(x)...1d1(x)
T(x) = . cee .

T1n(x)...rdn(x)

the previous equations for LT gj become
i

K(x)
(3.6) 8 qix) =

0 (n-d)xa

in which K(x) is some dxd matrix of real valued functions, nonsingular
for all x € ¢(V).

Thus, we may conclude that finding a coordinate transformation
£ = £(x) that makes (3.1) satisfied corresponds to solving a partial
differential equation of the form (3.6).

Note that the matrix T(x) is a matrix of rank d at x = ¢(p) be-
cause the tangent vectors T1(p),...,Td(p) are linearly independent.
Therefore the matrix g% can be nonsingular at x = ¢{(p) and this, ac-
cording to the rank Theorem, guarantees that § = £(x) is a local dif-

feomorphism.

(3.7) Remark. There are alternative ways to describe the equation (3.6).
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For instance, one may easily check that solving these equations cor-

A
177" ""n-4
V of p with values in R with the following properties

responds to find n-d functions A defined on a neighborhood

(i) the tangent covectors dl1(p),...,dk (p) are linearly independ-

n-d
ent

(ii) (dAi(q),Tj(q) ) =0 forallq€v, i=1,...,n-d and j=1,...,4d.

In fact, if (V,£) is a coordinate chart that makes (3.6) satis-
fied, then the functions

will satisfy (i) and (ii). Conversely, 1if A1,...,A is a set of func-

tions that satisfies (i) and (ii), then it is alwa;sdpossible to find
d functions 51""’€d defined on V and with values in R which, to-
gether with the functions £d+1 = A1,...,£n = An—d , define a coordinate
chart (Vv,&) with £ solving the equations (3.6).

From (ii) we deduce also that there is a set of covector fields
{dA1,...,dAn_d} with the property that at each g € Vv, (dAi(q),v Yy =0
for all v € A{g). Thus

ar, (@) € 8" (@) i=1,....n-a

Moreover, the tangent covectors diq(q),...,dA (q) are linearly in-

dependent for all g in a neighborhood of p andn gL(q) has exactly di-
mension n—-d. Therefore, we may conclude that the set of covector fields
{dA1,...,dAn_d} spans At locally around p.

In short, we may state this result by saying that a nonsingular
distribution of dimension 4 is integrable if and only if its annihi-

lator is locally spanned by n-d exgect one-forms.

(3.8) Remark. We note that the involutivity of & corresponds to the
property that any two columns ri(x) and Tj(x) of the matrix T(x) are
such that

IT.

aT,
(TE%Tj(x)_ TS%Ti(XDG Im{T(x))

for all x € (V).

(3.9) Remark. We know that, given a set of functions {Ai:i € 1}, de-

fined on N and with values in R, we can define a codistribution

Q= sp{dki:i € I}. It is easily seen that if @ is nonsingular then ot
is completely integrable. For, let d denote the dimension of 1, take

a point p € N and a set of functions Xq,...,Ag with the property that
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Q(p) = span{dk1(p),...,dkd(p))

If U is a neighborhood of p with the property that di,(q),...,dx4(q)
are linearly independent at all g € U, it is seen that ¢ is spanned on
U by the exact forms dk1,...,dkd. As a consequence of our earlier
discussions, @~ is completely integrable. 0

The notion of complete integrability can be extended to a given
collection of distributions. There are two cases of special importance
in the applications.

Let A1,A2,...,Ar be a collection of nested distributions, i.e. a
set of distributions with the property

C A

A
r

1 C AZ C
A collection of nested nonsingular distributions on N is completely
integrable if at each point p € N there exists a coordinate chart (V,§)

with coordinate functions 51,...,€n such that

_ ) 3
Ai(q) = span{ (E)q,.. .y (W)q}
i
for all g € v, where d; denotes the dimension of A,.

The following results extends Frobenius Theorem

(3.10) Theorem. A collection &y C A, c...C A, of nested nonsingular
distributions is completely integrable if and only if each distribu-

tion of the collection is involutive.

Proof. The same construction described in the proof of Theorem (3.3)

can be used. [

A collection A1""'Ar of distributions on N is said to be <n-

dependent if

(i) Ai is nonsingular, for all i =1,...,r

(ii) A, N ( 2 A.) =0, for all i =1,...,r
i 5.7
j#i
A collection of distributions A1,...,Ar is said to span the tan-

gent space if for all q € N

A1(q) +A2(q) +... +Ar(q) = an

aAn independent collection of distributions A1""’Ar which spans
the tangent space is said to be simultaneously integrable if at each

point p € N there exists a coordinate chart (V,£), with coordinate
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functions 51""’€n such that

(3.11) 8, {q) = span{(sgé———)

9
R S
q' ’
Si+1

g, 'q
for all q € V, where sq = 0 and

8; = dlm(A1 + ... +Ai_1)
for i = 2,...,r+1,
The following result is an additional extension of Frobenius

Theorem

(3.12) Theorem. An independent collection of distributions A1,...,Ar
which spans the tangent space is simultaneously integrable if and only

if, for all 1 < i < r, the distribution

r
(3.13) D, = } A
#

is involutive.

Proof. Sufficiency. Let n, = dim(Ai). Using Theorem(3.3), at each point
p one may find a neighborhood V of p and, for each 1 < i < r, a set of
coordinate functions E; + 1 < j < n, defined on V with the property
that

= 3 . : -
D; = spl—5 : 123 <n-n}
clar

An easy computation shows that the covector fields

1
n-n,+1

1

ceedE ..., dET

ag n-n_+1*°"°
r

- raE
are linearly independent at p. Thus, the set of functions
{g;:n-ni+1 <j<n; 1<ic<r} defines on V a set of coordinate func-
tions.

Since D; is tangent to the slice of V where all the coordinate

i :

n—ni+1"
tangent to the“slice of V where all the coordinate functions

Ek ,...,Ek , for all k # i, are held constant. This yields (3.11).
n—nk+1 n

functions £ ..,E; are held constant, one deduces that Ai is

The necessity is a straightforward consequence of the definition.
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4., Invariant Distributions

The notion of distribution invariant under a vector field plays,
in the theory of nonlinear control systems, a role similar to the one
played in the theory of linear systems by the notion of subspace in-
variant under a linear mapping.

A distribution A on N is Znvariant under a vector field f if the
Lie bracket [f,1] of f with every vector field 1 € A is a vector field

which belongs to A, i.e. if
(4.1) [£,8] C© &

(4.2) Remark. There is a natural way to see that the previous defini-
tion generalizes the notion of invariant subspace. Let N = Rn, A a
linear mapping A : R" = R™ and V a subspace of R" invariant under A,

i.e. such that AV < V. Suppose V is spanned by the vectors

v, = (Vi1"“'vin) 1 <1 <ad
and consider, as in the Example (3.4), the flat distribution AV spanned

by the vector fields
n
T, o= ) Viiwe— 1<i<d

With the mapping A we associate a vector field fA represented, in the

canonical basis (52—)X,...,(§§—) of Tan by the vector
1 n

X

fA(x) = AX

(note that the right-hand-side of this expression represent
of coordinates of an element of the tangent space at x to R" and not
a vector of coordinates of a point in rY).

It is easily seen that the distribution AV is invariant under the
vector field fA in the sense of our previous definition. For, observe
that any vector field T in A, can be represented in the form (2.8) where
Cyse.nasCq is any set of real-valued functions defined locally around x.

Computing the Lie bracket of fA and 1 we have

d d d
[£,,7] A lfety] = § el + § (mp )ty
i=1 i=1 i=1 A
Moreover, 8Ti BfA(x)
[fA,Ti](X) = 5Rfa(¥) - —5—T; (x) =-AT, (x)
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Note that Ti(x), regarded as a point of Rn, is an element of V, so also
At (x) € V. Then, for each x, [fA,ti](x) € Ay, (x) and

[£,,7] (x) € 8,(x)

that proves the assertion. O

The notion of invariance under a vector field is particularly
useful when referred to completely integrable distributions, because
it provides a way of simplifying the local representation of the given
vector field.

(4.3) Lemma. Let A be a nonsingular involutive distribution of dimen-
sion d and assume that A is invariant under the vector field f. Then,
at each point p € N there exists a coordinate chart (U,£) with coord-
inate functions 51,...,£n , in which the vector field f is represented

by a vector of the form

£q(EqrnnerBgqrbapqreeerby)

N O PR saeasf)
(4.4) £(g) = a*~1 d’ =>d+1 n

£apq (Egpqre--rbp)

fn(gd_*_']l' "Ign)

Proof. The distribution A, being nonsingular and involutive, is in-
tegrable and, therefore, at each point p &€ N there exists a coordinate
chart (U,€£) that makes (3.1) satisfied for all g € U. Now, let
f1(£),...,fn(g) dencte the coordinates of f(g) in the canonical basis
of TqN associated with (U,£), and recall that

n
3
f£(q) = ] £.(&(@)) ()
i=1 * TR
The invariance condition (4.1) implies, in particular, that
ot

) ] 3
[£, =] (q) € span{(s5=) s.cu:(x7) 1}
3€j L, q 984

for all g € U and j = 1,...,d. Therefore we must have that

5 n 5 2 noof; 2
[£, =1 = [ £, —. ] == 3 (===)5 € splosr—r.ee.rmr—
se, "ok, s e e 3E,)3E, 58"t TE,

i=1
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af,
From this we see that the coefficients 5€i are such that
b]

3L
for all i = d+1,...,n and j = 1,...,d and all £ € £(U). The components
fd+1”"’fn are thus independent of the coordinates £1,...,£d , and
the (4.4) are proved. O

The following properties of invariant distributions will be also

used later on.

{(4.5) Lemma. Let A be a distribution invariant under the vector fields

f1 and f2. Then A is also invariant under the vector field [f1,f2].

Proof. Suppose T is a vector field in A. Then, from the Jacobi identity

we get
[[f1lf2] IT] = [f1l[f2IT]]"[ f2,[f1,’[‘]]

By assumption [fz,T] € A and so is [f1,[f2,T]]. For the very same
reasons [fz,[f1,T]] € A and thus from the above eguality we conclude
that [[£,£,],7] € 4. O

(4.6) Remark. Note that the notion of invariance under a given vector
field f is still meaningful in the case of a distribution A which is
not smooth. In this case, it is simply required that the Lie bracket
[£,1] of £ with every smooth vector field in A be a vector field in A.
Since [f,1)] is a smooth vector field, it follows that if A is a
(possibly) non-smooth distribution invariant under the vector field £,

then also smt(A) is invariant under f£. O

When dealing with codistributions, one can as well introduce the
notion of invariance under a vector field in the following way.

A cecdistribution Q on M is Znvarignt under a vector field f if
the Lie derivative along f of any covector field w € Q is a covector

field which belongs to I, i.e. if

(4.7) LR cQ

It is easily seen that this is the dual version of the notion of
invariance of a distribution.

(4.8) Lemma. If a smooth distribution A is invariant under the vector

field f, then the codistribution Q = A‘L is invariant under f. If a
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smooth codistribution Q is invariant under the vector field £, then

the distribution A = @ is invariant under f.

Proof. We shall make use of the identity
(wa,T )= Lf(w,T y=Aw,lf, 7]}

Suppose A is invariant under £ and let T be any vector field of A. Then
[£,7] € A. Let w be any covector field in Q. Then, by definition

{w,T?(p) =0
for all p € N, and also

{w,[£,t]}(p) =0
This yields

(wa,T >(p) =0

Since A is a smooth distribution, given any vector v in A(p) we
may find a vector field T in A with the property that 1(p) = v and,
then, the previous result shows that

(wa(p),v ) =0

for all v € A(p), i.e. that Lfm(p) € Q(p). From this it is concluded
that wa is a covector field in Q.
The second part of the statement is proved in the same way. O

(4.9) Remark. Note that in the previous Lemma, first part, we don't
need to assume that the annihilator A" of A is smooth, nor, in the
second part, that the annihilator QL of  is smooth. However, if both

A and At are smooth, we conclude from the Lemma that the invariance of
A under f implies and is implied by the invariance of AL under the same
vector field. In view of Lemma {(2.17) this is true, in particular, when-

ever A is nonsingular. O

By making use of these notions one may give a dual fornmulation of
Lemma (4.3). Instead of a nonsingular and involutive distribution 4,
we have to consider (see Remark (3.7)) a nonsingular codistribution £
of dimension n-d with the propertv that for each p € N there exist a
neighborhood U of p and n-d functions gd+1"“'€n defined on U with

values in IR such that
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Q(g) = span{d€d+1(q),...,dgn(q)}

for all g € U.

If Q@ satisfies these assumptions and if f is also invariant under
£, then it is possible to find d more real-valued functions 51""'€d
defined on U with the property that, choosing as local coordinates on
U the functions Ei + 1 <1 <n, for each g € U the vector field f is

represented by a vector f(£) of the form (4.4).

5. Local Decompositions of Control Systems

Throughout these notes we deal with nonlinear control systems

described by equations of the form

I ~23

(5.1a) x = f(x) + gi(x)ui

i=1

(5.1b) vy = hi(x) (i=1,...,%)

The state x of this system belongs to an open subset N ofIRn,
while the m components Qyrenerly of the input and, respectively, the
£ components Yqreear¥y of the output are real-valued functions of time.
We shall make later on some further assumptions on the class of admis-
sible input functions to be considered. The vector fields f,g1,...,gm
are smooth vector fields defined on N and assumed to be complete. The

output maps h1,...,h£ are real-valued smooth functions defined on N.

(5.2) Remark. One may define systems with the same structure as (5.1),
with the state evolving on some abstract manifold N (not necessarily
diffeomorphic to an open subset of R"). In this case, instead of (5.1},
which is an ordinary differential equation defined on an open subset
of Rn,one should consider a description based upon an ordinary dif-

ferential equation defined on the abstract manifold N. The vector

fields f,q1,...,gm will be defined on N and so the output functions
h1,...,hz. If we let p denote a point in N then, instead of (5.1), we
may use a description of the form

m
(5.3a) p=fp) + } g,(pluy

i=1
(5.3b) vy < hi(p) i =1,...,2)

with the understanding that p stands for the tangent vector at the
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point p to the smooth curve which characterizes the solution of (5.3a)
for some fixed initial condition.

If this is the case, then (5.1) may be regarded as a local re-
presentation of (5.3) in some coordinate chart (U,4} with the under-
standing that x = ¢(p). O

The theory developed so far enables us to obtain for this class
of systems decompositions similar to those described at the beginning
of the Chapter. The relevant results may be formalized in the fol-

lowing way.

(5.4) Proposition. Let A be a nonsingular involutive distribution of
dimension @ and assume that A is invariant under the vector fields
f,g1,...,gm. Moreover, suppose that the distribution sp{g1....,gm} is
contained in A. Then, for each point x € N it is possible to find an
open subset U of x and a local coordinates transformation § = §(x)
defined on U, such that, in the new coordinates, the control system
(5.1a) 1is represented by equations of the form

m

i=1

(5.5b) Ey = £5(8,)

where (51,62) is a partition of £ and dim(€1) = d.

Proof. From Lemma (4.3) it is known that there exists, around each

X € N, a coordinate chart (U,£) with coordinate functions E1"“’£n
with the property that the vector fields f,g1,...,gm are represented
in form (4.4). Moreover, since by assumption 95 € A for all i=1,...,m,
then the vector fields gqr-eer9y in the same coordinate chart are re-
presented by vectors whose last (n-d)-components are vanishing. This
coordinate chart (U,£) may obviously be considered as a local change

of coordinates around x and therefore the Proposition is proved. O

(5.6) Proposition. Let A be a nonsingular involutive distribution of
dimension d and assume that A is invariant under the vector fields
f,g1,...,gm. Moreover, assume that the codistribution sp{dh1,...,dh£}
is contained in the codistribution AL. Then, for each x € N it is pos-
sible to find an open subset U of x and a local coordinates trans-
formation § = £(x) defined on U, such that, in the new coordinates,

the control system {5.1) is represented by equations of the form

m
(5.7a) €1 = f1(€1:€2) + i£1gi1 (51152)111
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. m

(5.7b) £y = £5(85) + ] gi5(E)uy
=y

(5.7¢c) y; = hy (&)

where (51,52)is a partition of £ and dim(€1) = d.

Proof. As before, we know that there exists, around each x € N, a
coordinate chart (U,£), with coordinate functions &,,...,€ , with

the property that the vector fields f,g1,...,gm are represented in the
form (4.4). Moreover, we have assumed that

A C [sp{dh1, ...,dhl}]"

For each point x of the selected coordinate chart we have in part-

icular, for j =1,...,d,
d % L % L
(=), € &4(x) C[ § span{dh, (x)}]7 = N [span{dh, (x)}]
08.'x%x L i L i
J i=1 i=1
As a conseguence, for j =1,...,dand i = 1,...,% and for all
x €U

d _
(dhi(x), (Yj')x > =0

or, in other words, we see that the local representation of hi in the

selected coordinate chart is such that

Bhi

—t =0
9t .

EJ
for all j =1,...,dand 1 =1,...,%4 and for all £ € £(U). We conclude
that hi depends only on the local coordinates €d+1""'£n on U and

this completes the proof. O

The two local decompositions thus obtained are very useful in
understanding the input-state and state-output behavior of the control
system (5.1).

Suppose that the inputs u,; are piecewise constant functions of
time, i.e. that there exist real numbers TO =0 < Ty < Ty < oue such
that

_ =k
ui(t) = uy for Tk <t < Tk+1

Then, on the time interval [Tk,Tk+1), the state of the system evolves
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along the integral curve of the vector field

£+ g1G§ +...'+gmﬁ§
passing through the point x(Tk). In particular, if the initial state
xo at time t = 0 is contained in some neighborhood U of N, then for
small t the state x(t) evolves in U,

Suppose now that the assumptions of the Proposition (5.4) are
satisfied and that x° belongs to the domain U of the coordinate trans-
formation £(x). If the input u is such that the x(t) evolves in U, we
may use the equations (5.5) to describe the behavior of the system.
From these we see that the local coordinates (51(t),£2(t)) of x(t) are
such that gz(t) is not affected by the input. In particular, let x°(7)
denote the point of U reached at time T when u(t) = 0 for all t€[0,T],

i.e. the point
x°(1) = of (x°)

¢§ being the flow of the vector field f, and let <5?(T),53(T)) denote
the local coordinates of x°(T). We see that the set of points that
can be reached at time T, starting from xo, lies inside the set of
points whose local coordinates 52 are equal to ES(T). This set is
actually a slice of U passing through the point x°(T).

Thus, we see that locally the system displays a behavior strictly
analogous to the one described in section 1. Locally, the state space
may be partitioned into submanifolds (the slices of U), all of dimen-
sion d, and the points reachable at time T, along trajectories that
stay in U for all t € [0,T], lie inside the slice passing through the
point xo(T) reached under zero input.

The Proposition (5.6) is useful in studying state-output interac-
tions. Suppose we take two initial states x2 and xb belonging to U
with local coordinates (£3,£3) and (gﬁ’,gg) such that

i,e. two initial states belonging to the same slice of U, Let xi(t)
and xﬁ(t) denote the values of the states reached at time t, starting
from x2 and xb, under the action of the same input u. From the equa-
tion (5.7b) we see immediately that, if the input u is such that xz(t)
b
2 (e

are the same, no matter which input u we consider. Actually these

and xg(t) both evolve in U, the 52 coordinates of xi(t) and of x
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coordinates 5§(t) and Eg(t) are solutions of the same differential
equation (the equation (5.7b)) with the same initial condition, If we
take into account also the (5.7c) we have the equality

a B b
hi(iz(t)) = h, (€5, (%))

2 and xb are in-

which holds for every input u. We may conclude that x
distinguishable.

Again, we find that locally the state space may be partitioned
into submanifolds (the slices of U), all of dimension d, and pair of
points of each slice both produce the same output (i.e. are indistin-
guishable) under any input u which keeps the state trajectory evolving
on U.

In the next sections we shall reach stronger conclusions, showing
that if we add to the hypotheses contained in the Propositions (5.4)
and (5.6) the further assumption that the distribution A is "minimal"
(in the case of Proposition (5.4)) or "maximal" (in the case of Pro-
position (5.6)), then from the decompositions (5.5) and (5.7) one may
obtain more informations about the set of states reachable from x° and,
respectively, indistinguishable from x°.

We conclude this section with a remark about a dual version of

Proposition (5.6).

(5.8) Remark. Suppose that @ is a nonsingular codistribution of di-
mension n-d with the property that for each x € M there exist a neigh-
borhood U of x and n-d real-valued functions £d+1""'€n defined on U
such that

Q{x) = span{d£d+1(x),...,dEn(x)}
for all x € U. Let 61,...,£d be other functions defining, together
with Ed+1,...,5n , @ coordinate transformation on U. In these coord-
inates, the one-form dhi will be represented by a row vector
dhi(E) = (Yi1(€)...yin(€))
whose components are related to the value of dhi at x by the expression

dh; (%) = Y51 (£(x))(Eq)  +.ou +v, (E(X))(QE ),

If we assume that the covector fields dh1,...,dh2 belong to §, then,

since 2 is spanned by d£d+1,...,d£n on U, we must have
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for all 1 < i < &, 1 <3 < d and all & in £(U). But since

ah.
Yi-(E) =
one concludes that h1,...,h
in (5.7¢c). O

o are independent of 51,...,£d on U, like

6. Local Reachability

In the previous section we have seen that if there is a non-

singular distribution & of dimension d with the properties that:

(1) A is involutive
(ii) A contains the distribution sp{g1,...,gm}

(iii} A is invariant under the vector fields f,g1,...,gm

then at each point x € N it is possible to find a coordinate trans-
formation defined on a neighborhood U of x and a partition of U into
slices of dimension d, such that the points reachable at some time T,

°e U, along trajectories that stay

starting from some initial state x
in U for all t € [0,T], lie inside a slice of U. Now we want to in-
vestigate the actual "thickness" of the subset of points of a slice
reached at time T.

The obvious suggestion that comes from the decomposition (5.5)
is to look at the "minimal" distribution, if any, that satisfies (ii),
(iii) and, then, to examine what can be said about the properties of
points which belong to the same slice in the corresponding local de-
composition of N. It turns out that this program can be carried out in
a rather satisfactory way.

We need first some additional results on invariant distributions.
If D is a family of distributions on N, we define the smallest or
minimal element as the member of D (when it exists) which is contained

in every other element of 0.

(6.1) Lemma. Let A be a given smooth distribution and T1,...,Tq a
given set of vector fields. The family of all distributions which are
invariant under T1,...,Tq and contain A has a minimal element, which

is a smooth distribution.
Proof. The family in question is nonempty because the distribution

sp{V(N)} clearly belongs to it. Let 4, and A, be two elements of this

family, then it is easily seen that their intersection A1 n A, con-
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tains A and, being invariant under T1,...,Tq , is an el?ment of the
same family. This argument shows that the intersection A of all elements
in the family contains A, is invariant under T1,...,Tq and is con-
tained in any other element of the family. Thus is its minimal element,
& mist be smooth because otherwise smt(&) would be a smooth distribu-
tion containing A (because A is smooth by assumption), invariant

under TyreesrT (see Remark (4.6)) and possibly contained in A. O

g
In what follows, the smallest distribution which contains A and

is invariant under the vector fields T1,...,Tq will be denoted by the
symbol

<T1,...,quA1

While the existence of a minimal element in the family of distri-
butions which satisfy (ii) and (iii) is always guaranteed, the non-
singularity and the involutivity require some additional assumptions.
We deal with the problem in the following way. Given a distribution A
and a set T1,...,Tq of vector fields we define the nondecreasing se-

guence of distributions
(6.2a) AO = A

q
(6.2b) b = By g +_£ [T5,8, 4]

i=1

There is a simple consequence of this definition

(6.3) Lemma. The distributions A,,A enerated with the algorithm
0 g

(6.2) are such that

'EARE

8 Clrypenayt [a )

q

%
for all k. If there exists an integer k such that A, = 4,4, , then
Aex = (T.I,...,quA )

Proof. If A' is any distribution which contains A and is invariant
under Ty then it is easy to see that A' DAk implies A' DAk+1‘ For,

we have

q q
A = A, + Z [ti,Ak] =4 +iZ1sp{[Ti,T]:T € AL}

+ § spllty,tlzt €A%} C A
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Since A DAO , by induction we see that A' DAk for all k.

TE Bgx = Dyayq
tion) and A, is invariant under TgreeerTyg (because [T;,8,,] CAyy g =

*
for some k we easily see that A, 2 A (by defini-

= 8py for all 1 < i < g). Thus A, must coincide with (T1,...,Tq|A).D

The property Ak* = A expresses a sort of finiteness quality

*4
of the sequence AO,A1,...T a;d such a property is clearly useful from
a computational point of view. The simplest practical situation in
which the chain of distributions (6.2) satisfies the assumption of
Lemma (6.3) arises when all the distributions of the chain are non-

singular. In this case, in fact, since by construction
dim Ak < dim Ak+1 <n

*
it is easily seen that there exists an integer k < n such that
Bx = Byksq-

If the distributions A_,A

or8qs-.. are singular, one has the fol-

lowing weaker result.

*

(6.4) Lemma. There exist an open and dense subset N of N with the
*
property that at each point p € N

(11,...,Tq|A ) (p) = A _q1(p)

Proof. Suppose U is an open set with the property that, for some k*,
8 4 (P) = Byxyq(p) for all p € U. Then, it is possible to show that
(11,...,1 A ) (p) = A, 4(p) for all p € U. For, we already know from
Lemma (6.3) that (T1,...,T 6 Y DAL, . Suppose the inclusion is

proper at some p € U and deflne a new distribution A by setting

A(p) = b,4(p) ifp€uU

E(p) (T1,...,quA ) (p) ifp U
This distribution contains A and is invariant under TyreessT

For, if T is a vector field in A, then [T ,T1) € (T1,...,T [a )
(because A C (T1,...,T |A }) and, moreover, [T jrl(p) €4 *(p) for
all p € U {(because, in a neighborhood of p, T E Ak* and [T Ak]CAk)
Since A is properly contained in <T1,...,Tq|A }, this would con-
tradict the minimality of (T1,...,Tq|A).

Now, let Nk be the set of regular points of Ak. This set is an
open and dense submanifold of N (see Lemma (2.9) and so is the set

* *
N=N,NN, ML N N, _4. In a neighborhood of every point p € N the
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digtributions A,,...,A are nonsingular.This,together with the pre-
0 n

-1
vious discussion and a dimensionality arqument, shows that

*
il ={1 .,rqIA ) on N and completes the proof. O

n-1 17
{(6.5) Remark. If the distribution A is spanned by some of the vector
fields of the set {11,...,T }, then, 1t is possible to show that there
exists an open and dense submanlfold N of N with the following pro-
perty. For each p € N there exist a neighborhood U of p and d vector
fields (with 4 = din1(11,..., TqIA Y (p)) O4r-.2404 of the form

g, = [vr,[vr_1,...,[v1:V01]]

where r < n-1 is an integer which may depend on i and VpreserVy are

vector fields in the set {T1,...,Tq}, such that
(T1,...,Tq|A Y () = span{61(q),...,8d(q)}

for all q € U,
*
This fact may be proved by induction using as N the subset of
N defined in the proof of Lemma (6.4). Let do denote the dimension of

AO (which may depend on p but is constant locally around p). Since,

by assumption, AO is the span of some vector fields in the set

{11,...,Tq}, there exist exactly dO vector fields in this set that
span AO locally around p. Let dk denote the dimension of Ak(constant
around p) and suppose Ak is spanned locally around p by dk vector

fields 81,...,6 of the form

d

8, = [v_,[lv

i T r—1”"’[v1’VO]]]

where VO,...

fields in the set {T1,...,Tq}. Then, a similar result holds for

For, let 1 be any vector field in A . From Lemma (2.7) it is

PV (with r < k and possibly depending on i) are vector

Ber
known that there exists real-valued smooth functions Cqrese1Cyq de-
k

fined locally around p such that T may be expressed, locally around

p, as 1T = c191 t...tcy 9

g If 5 is any vector in the set {r1,...,1 }
k Yk

g
we have

[T.,C48,+...4c, B, 1 =cql 1,80+ .4cy [ 12,0, 1+(L_c )B,+...+(L_c,)6
jro101 dk 4, | s dk 3774, Tj 1771 '% 4 G

As a consequence
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A = A

K41 + [11,Ak]+ .ot

sP{ei'[TVei]"“’[Tq'ei]: i= 11---:dk}

Since Ak+1 is nonsingular around p, then it is possible to find ex-

actly d vector fields of the form

k+1

6; = [vr,[vr_1,...,[v1,v0]]]

where VareeerV (with r < k+1 and possibly depending on i) are vector

r
fields in the set {T1,...,Tq}, which span 4, ., locally around p. a
The previous remark is useful in getting involutivity for the

distribution <T1,...,Tq|A ).

(6.6) Lemma. Suppose A is spanned by some of the vector fields
Tyreeer Ty and that (T1,...,Tq|A )} is nonsingular. Then (11,...,Tq|A7

is involutive.

Proof. We use first the conclusion of Remark (6.5) to prove that if

7y and T, are two vector fields in A then their Lie bracket

n-1 '

*
[11,T2] is such that [11,12](p) € 8._4(p) for all p € N . Using again
Lemma (2.7) and the previous result we deduce, in fact, that in a
neighborhood U of p

d

d
_ 1 1 L5 o5 =
Frqrt,] _[i£1ciei ,j£1cj9j] Gsp{ei,ej,[ei,ej].l,] =1,...,d}

where ei,ej are vector fields of the form described before.
In order to prove the claim, we have only to show that[Si,ej](p)

is a tangent vector in A (p). For this purpose, we recall that on

N* the distribution An_1ni; invariant under the vector fields
T1,...,Tq (see Lemma (6.4)}) and that any distribution invariant under
vector fields T4 and T, is also invariant undexr their Lie bracket
111,12] (see Lemma (4.5)). Since each 8, is a repeated Lie bracket of

the vector fields TqreeerTgr [o;,8, 41 (@) C 8, 4(p) for all 1<i<d and,

n-
thus, in particular [ei,ej](p) is a tangent vector which belongs to
b,-1(P)-

Thus the Lie bracket of two vector fields TyeT, in 81 is such that
[11,12](p) € A _4(p). Moreover, it has already been observed that
n-1 in a neighborhood of p and, therefore, we con-

<T1,...,TqIA Y = A
%
clude that at any point p of N the Lie bracket of any two vector

fields 74,7, in (11,...,rq|A > is such that [T14,71,] (p) €<11,..-.TqIA>(P)-

Consider now the distribution
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A = (T1,...,Tq|A ) +sp{[ei,6j]:61,8j € (T1,...,quA )}

which, by construction, is such that

From the prev1ous result it is seen that A(p) —(T1,...,T [a ) (p)
at each point p of N + which is a dense set in N. By assumption,
(t4s...,7,|8 ) is nonsingular. So, by Lemma (2.11) we deduce that
A= (T1,...,Tq|A >, and, therefore, that [0, i85 ] € (T1,...,T [A )
for all pair ei,ej € (11,...,T |A ). This concludes the proof ]

(6.7) Remark. From Lemmas (6.4),(6.6) and (2,11) it may also be
deduced that if A is spanned by some of the vector fields TgreeesT

qd
and An—1 is nonsingular, then

(T1,...,Tq|A Yo=a oy

and (T1,...,TqIA } is involutive. O

We now come back to the original problem of the study the
smallest distribution which contains sp{g1,...,gm} and is invariant
under the vector fields f,g1,...,gm. From the previous Lemma it is
seen that if (f,g1,...,gm[ sp{g1,...,gm}) is nonsingular, then it is
also involutive and, therefore, the decomposition (5.5) may be per-
formed. We will see later that the minimality of (f,g1,”,,%Jsp{g1“,.,ng
makes it possible to deduce an interesting topological property of
the set of points reached at some fixed time T starting from a given
point x°. However, before doing this, it is convenient to analyze
some other characteristics of the decomposition (5.5).

Consider the distribution (f,g1,...,gmlsp{f,g1,...,gm}), i.e.
the smallest distribution invariant under f,g1,...,gm and which con-
tains sp{f,g1,...,gm} {note that now not only the vector fields
ECRRRYY- . but also the vector field f is assumed to belong to this
distribution).

If this distribution is nonsingular, and therefore involutive by
Lemma (6.6), it may indeed be used in defining a local decomposition
of the control system (5.1) similar to the decomposition (5.5). We
are going to see in which way this new decomposition is related to
the decomposition (5.5) and why it may be of interest.

In order to simplify the notation, we set

(6.8a) P = (f,g1,...,gm|sp{g1,...,gm})



39

(6.8b) R = (f,g1,...,gmlsp{f,g1,...,gm}>

The relation between P and R is described in the following state-
ment

(6.9) Lemma. The distributions P and R are such that
(a) P + spi{f} CR

(b) if x is a regular point of P + sp{f}, then

(P + sp{f}}) (x) = R(x)

Proof. By definition, P C R and £ € R, so {a) is true.

It is known from the proof of Lemma (6.6) that, around each point
x of an open dense submanifold N*of N, R is spanned by vector fields
of the form

8; = v ,..ilvy,vgll
where r < n-1 is an integer which may depend on i, and Veree VsV
are vector fields in the set {f,g1,...,gm}.

It is easy to see that all such vector fields belong to P+sp{f}.
For,if 6, is just one of the vector fields in the set {f,g1,...,gm} it
either belongs to P (which contains g4,...,g;) or to sp{f}. If 8, has
the general form shown above we may, without loss of generality, assume
that \£ is in the set {g1,...,gm}. For, if vy = f and vy = £, then
8; = 0. Otherwise, if vy = f and v, = 95 then -6, = [vr,...,[f,gj]]
has the desired form. Any vector of the form

91 = [Vr:---:[V1,gj]]

with v_,...,v; in the set {f,g1,...,gm} is in P because P contains 95

and is invariant under f,g1,...,gm and so the claim is proved.
From this fact we deduce that on an open and dense submanifold
*
N of N,

RCp + splf}
and therefore, since R 2 P + sp{f} on N, that on N
R =P + sp{f}

Suppose that P + span f has constant dimension on some neighbor-
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hood U, Then, from Lemma (2.11}) we conclude that the two distributions

R and P + sp{f} coincide on u. O

(6.10) Corollary. If P and P + sp{f} are nonsingular, then
dim(R) - dim(p) < 1. O

If P and P + sp{f} are both nonsingular, so is R and, by Lemma
(6.6), both P and R are involutive. Suppose that P is properly con-
tained in R, Then, using Theorem (3.10),one can find, locally around
each x € N, a neighborhood U of x and a coordinate transformation
£ = §(x) defined on U such that

(6.11a) P(x)

[

J ]
spi (8_51)){’ ey (SE;_—,])X}

il

(6.11b) R(x) Sp{(ggq)x,...,(azé—q)x ;52 )
r- r

for all x € U, where r = dim(R).
In the £ coordinates the control system (5.1a) is represented by
equations of the form
m

é»l = f1(£1l"‘16n) + i£1gi»](g1r‘--rgn)ui

m
Sraq T Epoq Bqreeer B L ogy poq Bqreennfp)y

(6.12) E. = £.(E  eur))

r

urye
]
o

r+1

The last components of the vector field £ are vanishing because,
by construction,f € R. In the particular case where R = P also
the r-th component of f vanishes and the corresponding equation for &,
is
£, =0
From the equation (6.12) we see that any trajectory x(t) evolving

on the neighborhood U actually belongs to an r-dimensional slice of U
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passing through the initial point. This slice is in turn partitioned
into (r-1)-dimensional slices, each one including the set of points

reached at a prescribed time T.

(6.13) Remark. A further change of local coordinates makes it pos=-
sible to better understand the role of the time in the behavior of
the control system (6.12). We may assume, without loss of generality,
that the initial point x° is such that g(xo) = 0. Therefore we have

Ei(t) = 0 for all i = r+1,...,n and

‘Sr = fr(grlol--'lo)
Moreover, if we make the assumption that £ & P, then the function fr
is nonzero everywhere on the neighborhood U. Now, let Er(t) denote

the solution of this differential equation which passes through 0 at

t = 0, Clearly, the mapping

Mo e E ()

is a diffeomorphism from an open interval (-¢,e) of the time axis
onto the open interval of the Er axis (Er(—e),ér(e)). If its inverse
u_1 is used as a local coordinate transformation on the Er axis one
easily sees that the new coordinate

3

J=uTE) =t

satisfies the differential eguation

In these new coordinates, points on the r-dimensional slice of U
passing through the initial state are parametrized by (61,...,€r_1,t).
In particular, the points reached at time T belong to the (r-1)-dimen-

sional slice
s = {x €U: Er(x) =T, §r+1 (x) =0!—--I€n(x) =0}. 0

(6.14) Remark. If £ is a vector field of P then the local representa-
tion (6.12) is such that fr vanishes on U. Therefore, starting from a
point x° such that £(x°) = 0 we shall have ﬁi(t) = 0 for all i=r,....,n
and the state x(t) shall evolve on a (r-1)-dimensional slice of U pas-

sing through x°. 0O
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By definition the distribution R is the smallest distribution
which contains f,g1,...,gm and is invariant under f,g1,...,gm. Thus,
we may say that in the associated decomposition (6.12) the dimension
r is "minimal", in the sense that it is not possible to find another

n

n N
set of local coordinates £,,...,f, »...,E , with ¥ strictly less than
x

r, with the property that the last n-% coordinates remain constant
with the time., We shall now show that, from the point of view of the
interaction between input and state, the decomposition (6.12) has even
stronger properties. Actually, we are going to prove that the states
reachable from the initial state x° £ill up at least an open subset of

the r-dimensional slice of in which they are contained.

(6.15) Theorem. Suppose the distribution R (i.e. the smallest distribu-
tion invariant under f,g1,...,gm which contains f,g1,...,gm) is non-
singular. Let r denote the dimension of R. Then, for each x©0 € N it is
possible to find a neighborhood U of %% and a coordinate transforma-
tion § = g(x) defined on U with the following properties

(a) the set R(x®) of states reachable starting from x° along trajec-
tories entirely contained in U and under the action of piecewise

constant input functions is a subset of the slice

_ . _ o _ o
sfj—{erirH(x)—Qﬁ1m Yoeewn 8 (x) =8 (x7)})

(b) the set R(xo) contains an open subset of S .
P (o]
X

Proof. The proof of the statement (a) follows from the previous discus-
sion. We proceed directly to the proof of (b), assuming throughout the
proof to operate on the neighborhood U on which the coordinate trans-
formation £(x) is defined. For convenience, we break up the proof in

several steps.,

(i) Let 91,...,6k be a set of vector fields, with k < r, and let

@l....,¢t denote the corresponding flows. Consider the mapping

F : (—a,a)k -+ N

E eniot] (x%)

(tgsennrty) — ok
k 1

where x° is a point of N and suppose that its differential has
rank k at some s;,...,s, , with 0 < s; <€ for 1 < i < k. For

€ sufficiently small the mapping
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(6.16) F i (sq,e)x...x(s,e) >N

(t1l---ltk) — F(t»ll---rtk)

is an embedding.
Let M denote the image of the mapping (6.16) (which depends on
the point x°). Consider the slice of U
S ,=1x€Uu:g(x) =), r+1<1i3n)

o]
X

If the vector fields 81,...,6k have the form
. ul
i

with u] €R for 1 < i <mand 1 < j <k, then for ¢ small M is an

embedded submanifold of S§ o- This implies, in particular,that for each
X

x €M

(6.17) TM C R(x)

where R, as before, is the smallest distribution invariant under
f,g1,...,gm which contains f,g1,...,gm (recall that R(x) is the tangent

space to § o at x).
b4

(ii) Suppose that the vector fields f,g1,...,gm are such that
(6.18a) f(x) € T M
(6.18b) g; (x) €T M 1 <i<m

for all x € M. We shall show that this contradicts the assumption k <r.
For, consider the distribution A defined by setting

Z(x) = TXM for all x €M

A (x) R(x) for all x € (N\M)
This distribution is contained in R (because of (6.17)) and contains
the vector fields f,g1,...,gm (because these vector fields are in R
and, moreover, it is assumed that (6.18) are true).

Let T be any vector field of A. Then T € R and since R is inva-

riant under £,94,...,9, , then for all x € (N\M)
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(6.19a) [£,7] (x) € A(x)
(6.19b) [g;,7l (x) € B(x) 1<i<m

Moreover since T,f,g1,..,,gm are vector fields which are tangent
to M at each x € M, we have also that (6.19) hold for all x € M, and
therefore for all x € N.

Having shown A is invariant under £/94s++-¢9, and contains
f,g1,...,gm , we deduce that A must coincide with R. But this is a

contradiction since for all x € M

i
-

dim A (x)

dim R(x) > k

I
H

(iii) If (6.18) are not true, then it is possible to find m real

numbers uﬁ+1,...,u;+1 and a point x € M such that the vector field

m
_ k+1
Oppq = £ i£1giui

satisfies the condition 9k+1(§) & T_ M.

X
Let x = F(s},...,sy) be this point and ¢t+1 denote the flow of

9k+1. Then the mapping
F': (-e,e)%Y oy
k+1
(t1""’tk'tk+1) — Qt oF(t1,---'tk)
k+1
at the point (si,...,si,O) has rank k+1.
For, note that
1y (3 _9_
(F )*(Bti)(s{,...,sﬁ,O) (F)*(ati)(si,...,sé)
for i = 1,...,k and that
(F') 4 () =6, (%)
* 3tk+1 (si,...,si,O) k+1

The first k tangent vectors at x are linearly independent, be-
cause F has rank k at all points of (51,E)X...X(Sk,€). The (k+1)-th
one is independent from the first k by construction and therefore F'

has rank k+1 at (s1,...,sk,0).
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Since si > s; , we may conclude that the mapping F' has rank k+1
at a point (si,...,s£+1), with 0 i_si < e for 1 < i < kt+1,

Note that given any real number T > 0 it is always possible to
choose the point X in such a way that

] L.
(s]=sqlt...t(sy =5, ) < T
For, otherwise, we had that any vector field of the form

m
8 =1+ ] 95U
i=1

would be tangent to the image under F of the open set
{(t1""’tk) e(91,€)X...X(Sk,€):(t1-51)+...+(tk-5k) < T}

and this, as in (ii),would be a contradiction.
(iv) We can now construct a sequence of mappings of the form (6.16).

m
Let 61 =f+ 7 giul be a vector field which is not zero at x°

(such a vector field can always be found because, otherwise, we would

have R(x°)

{0}) and let M, denote the image of the mapping

FH : (0,e) » N

ty — o) (x°)
£
Let x = §1(51) be a point of M, in which a vector field of the
m
form 6, = £ + giui is such that 8,(x) € T_M,. Then we may define
i=1 X

the mapping

Ez : (s},e)x(o,e) - N

2 1 o
(t1,t2)l——*® oét (x7)

ty Yy

Iterating this procedure, at stage k we start with a mapping

= k-1

F : (sg ,a)x...X(st:;,e)X(O,e) - N

k 1 o
(t1,...,tk_1,tk)F—*'¢tka...o®t )

1
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and we find a point X = ?k(sﬁ,...,st) of its image Mk and a vector

m
. _ k+1 - . .
field 6, ., = £ + iZ1giui such that 8, ,(x) & T§Mk‘ This makes it
possible to define the next mapping §k+1' Note that s? >s]i(_1 for
ks o

The procedure clearly stops at the stage r, when a mapping Er is
defined

i=1,...,k-1 and s

F_o: (] e)xoux(sEl],e)x(0,e) > N

s &F 1 o
rtr) q)t °"°°¢t (X )

(ty,.e.srt
1 . 1

r-1
(v) Observe that a point x = Er (t1,...,tr) in the image M, of the
© at time t=0,

under the action of the piecewise constant control defined by

embedding fr can be reached, starting from the state x

k
u; (t) = uy for t € [t1+...+tk_1,t1+t2+...+tk)
Thus, we know from our previous discussions that Mr must be contained
in the slice of U

Sxo = {x € U: Ei(x) = Ei(xo), r+1 < i < n}

The images under Fr of the open sets of

_ r-1
U, = (s1

. ) xx (T2 e)x (0 e)

are open in the topology of M. as asubsetofU(becausel_:‘r is an embed-
ding) and therefore they are also open in the topology of M as a sub-
set of § (because S ° is an embedded submanifold of U). Therefore we

X X
have that Mr is an emebedded submanifold of S o and a dimensionality
X
argument tell us that M. is actually an open submanifold of § o * a
X

(6.20) Theorem. Suppose the distributions P (i.e. the smallest distri-
bution invariant under f,g4,...,g, Which contains g;,...,9,)and P+sp{f}
are nonsingular. Let p denote the dimension of P, Then, for each x° em
it is possible to find a neighborhood U of x° and a coordinate trans-

formation § = £(x) defined on U with the following properties:

(a) the set R(xO,T) of states reachable at time t = T starting from x°

at t = 0, along trajectories entirely contained in U and under the
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action of piecewise constant input functions, is a subset of the

slice

_ _ £,,0,. _ Q _ o
sXo T—{x:ELh£p+1—£p+1(¢T(x Do (RI=E, 5 (x7) s eneh g ()= (x7) }

(b} the set R(xO,T) contains an open subset of S o -
x ,7T

Proof. We know from Lemma (6.9) that R is nonsingular, Therefore one
can repeat the construction used to prove the part (b) of Theorem
(6.15). Moreover, from Corollary (6.10) it follows that r, the di-
mension of R, is equal either to p+1 or to p.

Suppose the first situation happens. Given any real number
T € (0,e), consider the set

+...+t_ = T}

T
Ur - {(t1""'tr) € Ur 't1 r

where U_ is as defined at the step (v) in the proof of Theorem (6.15).
From the last remark at the step (iii) we know that there exists al-~

ways a suitable choice of s§_1,...,s§:}

after which this set is not
empty.

Clearly the image Fr(UE) consists of points reachable at time T
and therefore is contained in R(xo,T). Moreover, using the same
arguments as in (v) , we deduce that the set ?r{UE) is an open subset

of 8 .
xo,T
If p=1r, i.e. if P = R, the proof can be carried out by simply

adding an extra state variable satisfying the equation

gn+1 =1

and showing that this reduces the problem to the previous one. The
details are left to the reader. O

7. Local Observability

We have seen in section 5 that if there is a nonsingular distri-

bution A of dimension d with the properties that

(i) A is involutive
{(i1) A is contained in the distribution sp{dh1,...,th}L

{iii) A is invariant under the vector fields f,g1,...,gm

then, at each point x € N it is possible to find a coordinate trans-
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formation defined in a neighborhood U of X and a partition of U into
slices of dimension d, such that points on each slice produce the
same output under any input u which keeps the state trajectory evolv-
ing on U. We want now to find conditions under which points belong-
ing to different slices of U produce different outputs, i.e. are
distinguishable.

In this case we see from the decomposition (5.7) that the right
object to look for is now the "largest" distribution which satisfies
(ii), (iii). Since the existence of a nonsingular distribution A
which satisfies (i), (ii), (iii) implies and is implied by the ex-
istence of a codistribution Q (namely Al) with the properties that

(i) f is spanned, locally around each point p € N, by n-d exact
covector fields
(ii") 2 contains the codistribution sp{dh1,...,dh2}

(iii') Q is invariant under the vector fields £r99reeer9y

we may as well look for the "smallest" codistribution which satisfies
(ii'), {(iidi'").

Like in the previous section, we need some background material.
However, most of the results stated below require proofs which is are
similar to those of the corresponding results stated before and, for

this reason, will be omitted.

{(7.1) Lemma. Let 2 be a given smooth codistribution and T1,...,Tq a
given set of vector fields. The family of all codistributions which
are invariant under T1,...,Tq and contain @ has a minimal element,

which is a smooth codistribution. O

We shall use the symbol (T1,...,quQ ) to denote the smallest
codistribution which contains @ and is invariant under T1,...,Tq.
Given a codistribution  and a set of vector fields Tgreeart

one can consider the following dual version of the algorithm (6.2)
(7.2a) Qn =
(7.2b) Qe =y _q +

and have the following result.

(7.3) Lemma. The codistributions 90,91,... generated with the algo-
rithm (7.2} are such that

Q < (T1,...,Tq[9 )
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*
for all k. If there exists an integer k such that Qk* =Qk*+1 , then

9: = (Tqreea,T R0 O

q

The dual version of Lemma (6.4) is the following one

*
(7.4) Lemma. There exists an open and dense subset N of N with the
*
property that at each point p € N

(T1,...,T IQ) =Qn_1(P)

q
(7.5) Remark. If the codistribution Q is spanned by a set dk1,...,dks
of exact covector fields, then there exists an open and dense sub-

* *
manifold N of N with the following property. For each p € N there
exists a neighborhood U of p and 4 exact covector fields (with

d = dim(T1,...,quQ > (P)) wqs...,wq which have the form

w, = d(L_ +..L_ A.)
i Vr V1 J

where r < n-1 is an integer which may depend on i, Vire..sV, are
vector fields in the set {T1,...,Tq} and Aj is a function in the set

{A1,...,AS}, such that
(11,...,Tq}9 Y q) = splog(a), ... wg(@)}

for all g € U.
This may easily be proved by induction as for the corresponding

statement in Remark (6.5). O

(7.6) Lemma. Suppose Q is spanned by a set dA1,...,dAs of exact co-
vector fields and that (T1,...,Tq|Q ) is nonsingular.

Then (T1,...,quﬂ YL is involutive.

Proof. From the previous Remark, it is seen that in a neighborhood of
each point p in an open and dense submanifold N*, the codistribution
(11,...,quA } is spanned by exact covector fields.

Therefore, the Lie bracket of any two vector fields Tir Ty in
(tyreaetgl@ )t is such that [7,, 7,1 () € Cqyinr 901 (0) (see
Remark (3.9)).

From this result, using again Lemma (2.11) as in the proof of

Lemma {6.6), one deduces that (11,...,Tq[9 yL is involutive. O

(7.7) Remark. From Lemmas (7.4),(7.6) and (2.11) one may also deduce
that if Q is spanned by a set dl1,...,dks of exact covector fields
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and Qn—1 is nonsingular, then
(T1,...,quQ Y = Q

and (T,,...,1 |a yL is involutive. O

g9
In the study of the state-output interactions in a control system

of the form (5.1), we consider the distribution
1
Q= (f:g1r---:9misp{dh1;- ..,dhg})

From Lemma (4.8) we deduce that this distribution is invariant under
f,g,‘,...,gm and we also see that, by definition, it is contained in
sp{dh1,...,dh2}L. If nonsingular, then, according to Lemma (7.6) is
also involutive,
Invoking Proposition (5.6), this distribution may be used in order

to find locally around each x € N an open neighborhood U of X and a
coordinate transformation yielding a decomposition of the form (5.7).
Let s denote the dimension of Q. Since QL is the smallest codistribu-

tion invariant under f,g1,...,gm which contains dh1,...,dh then in

9‘ 4
this case the decomposition we find is maximal, in the sense that it
is not possible to find another set of local coordinates

") Y "] N N
€1,...,€N,Em 1 ,...,En with s strictly larger than s, with the pro-

s s+
perty that only the last n-s coordinates influence the output. We show

now that this corresponds to the fact that points belonging to dif-
ferent slices of the neighborhood U are distinguishable.

(7.8) Theorem. Suppose the distribution Q (i.e. the annihilator of

the smallest codistribution invariant under f,g1,...,gm and which con-
tains dh1,...,dh£) is nonsingular. Let s denote the dimension of Q.
Then, for each X € N it is possible to find a neighborhood U of x and
a coordinate transformation § = £(x) defined on U with the following
properties

b

(a) Any two initial states x® and x° of U such that

g, (x) = gi(xb) ,i=s+1,...,n

produce identical output functions under any input which keeps the

state trajectories evolving on U

(b) Any initial state x of U which cannot be distinguished from x

under piecewise constant input functions belongs to the slice
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s_ = (x € U:ig; (0 = (), s+1 < i <)

Proof. We need only to prove (b). For simplicity, we break up the

preof in various steps.

{i) consider a piecewise-constant input function

k
u; (€)= uy for t € [eg+o.4ty .ty t. . dty)

Define the vector field

? k
8, = £ + g.u,
k joq ii
and let @t denote the corresponding flow. Then, the state reached at
time t, starting from x° at time t = 0 under this input may be ex-
pressed as

x(6) = o5 ov..od] (x©)

k 1

and the corresponding output y as
yi(tk) = hi(x(tk))

Note that this output may be regarded as the value of a mapping

xo k
Fi : (-e,e) /™R

k
——
'tk) hio¢tko...o¢

(t1,...

If two initial states x° and xb are such that they produce two
identical outputs for any possible piecewise constant input, we must

have

a b

x _ X
Fi (tgreeenty) = F) (Eqr0000ty)

for all possible (t1""'tk)’ with 0 < t; < ¢ for 1 < i < k. From this

we deduce that
x° xb
AF, AF
S S = (2 )
3t1...8tk t1=...=tk=0 3t1...8tk t1=...=tk=0

(

An easy calculation shows that
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(L, ...L. h.(x))
gee oty = sty s %4 b & x°

and, therefore, we must have

(L, «..L, h,(x)) = (L «..L, h (x))
61 Gk i % 61 Gk i Xb
(ii) Now, remember that ej ., jJ=1,...,k, depends on (u%,...,u%) and
that the above equality must hold for all possible choices of
(u1,...,u y € R® . By appropriately selecting these (u1,...,uj) one

easily arrives at an equality of the form

(7.9) (L ...L_h,) = (L_ ...L_ h)
V4 v 17,2 vy Vi i xb
where v,,...,v, are vector fields belonging to the set 16 F7- PIPINNPR- S
For, set y, = L82 ..Lekh. From the equality (Le1y2)xa==(Le1Y2)xb
we obtain
m m
(LY Z (L_ ¥y ul = (Loy,) + 3 (L. v,) ul
£Y2) N 2) A £¥2) p T L thg V2! pHy
i= X i=1 i X

This, due to the arbitrariness of the ul,...,u; , implies that

(Lyva)y, = (Lyvp)y
a b

where v is any vector in the set {f,g1,...,gm}. This procedure can be

9 h. From the above equality one gets

iterated, by setting Y3 = Ly -..L
3 k

o 2

= (L LgYs) b-+i§ (L. L Y3)Xbui

(Lyle¥s) o* Z (L,L WLy,

vigg Y3} a
and, therefore,
(L. L. va,) = (L_ L_ Y,)
viTv, 3 <2 VYo 3 xb

for all V41V, belonging to the set {f,g1,...,gm}. Finally, one arrives
at (7.9).

(iii) Let U be a neighborhood of % on which a coordinate transformation

£(x) is defined which makes the condition

(7.10) 0(x) = span{(5%—)x ,...,(52—)X}
1 S
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satisfied for all x € U. From Remark (7.5), we know that there exists
*
an open subset U of U, dense in U , with the property that, around
*
each x' € U it is possible to find a set of n-s real-valued functions
A1""’An—s which have the form

(7.11) Xi = LV ...Lv hj
r 1

with v4,...,v_ vector fields in {f,g1,...,gm} and 1 < j < &, such that
QL(X') = gpan{dx, (x") ax (x')}
1 frrtrT " n-s

Since QL(x') has dimension n-s,it follows that the tangent covectors
dA1(x’),...,dAn_S(x') are linearly independent.
In the local coordinates which satisfy (7.10)}, X1""'An—s are

functions only of £ <18, (see (5.7)). Therefore, we may deduce

s+1’*°
that the mapping

A (€S+1I"-Ign)'_> (>\1(£S+1:---lgn)r---l)\n_s(gs+1l-oo'€n))

has a jacobian matrix which is sguare and nonsingular at
(£s+1(x'),...,En(x')).

The mapping A is thus locally injective. We may use this pro-
perty to deduce that, for some suitable neighborhood U' of x', any
other point x" of U' such that

for 1 < i < n-s, must be such that

L{x")

s+i

£ (x") = §

s+i

for 1 < i < n-s, i.e. must belong to the slice of U passing through
x'. This, in view of the results proved in (ii) completes the proof

- *
in the case where x € U .

(iv) Suppose x & U*. Let x(x,T,u) denote the state reached at time t=T
under the action of the piecewise constant input function u. If T is
sufficiently small, x(x,T,u) is still in U. Suppose x(X,T,u) € U*.Then,
using the conclusions of (iii), we deduce that in some neighborhood U’
of ¥' = x(x,T,u), the states indistinguishable from x' lie on the
slice of U passing through x'.

Now, recall that the mapping
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o : x° —> x(xO,T,u)

is a local diffeomorphism. Thus, there exists a neighborhoocd U of X
whose (diffeomorphic) image under ¢ is a neighborhood U" C U' of x'.

Let x denote a point of U indistinguishable from %X under piece-
wise constant inputs. Then, clearly, also x" = x(:,T,u) is indistin-
guishable from x(x,T,u) = x'. From the previous discussion we know that
x" and x' belong to the same slice of U. But this implies also that X
and x belong to the same slice of U. Thus the proof is completed, pro-
vided that

(7.12) x(x,T,u) €U

(v) All we have to show now is that (7.12) can be satisfied. For,
suppose R(X), the set of states reachable from x under piecewise con-
stant control along trajectories entirely contained in U, is such that

(7.13) Rz nu* =g

If this is true, we know from Theorem (6.15) that it is possible to

find an r-dimensional embedded submanifold V of U entirely contained
- *

in R(x) and therefore such that Vv N U = g. For any choice of func-

tions A1,...,A of the form (7.11), at any point x € V the covectors

n-s
dA1(x),...,dxn_s(x) are linearly dependent. Thus, without loss of ge-
nerality, we may assume that there exist d < n-s functions YqreeorYg

still of the form (7.11) such that, for some open subset V' of V,

- span{dh1(x},,..,dh£(x)} C span{dy (x),...,dy4(x)} for all x € V'
- dy (®),...,dy4q(x) are linearly independent covectors at all x € V',
- 4L, Yj(x) € span{dy1(x),...,dyd(x)} for all x € V' and ve{f,g1,n.,%¥

Now, we define a codistribution en N as follows

Q(x) (x) for x & V!

1]
O

Q(x) span{dy1(x),...,dyd(x)} for x € V'

Using the fact that f,g;,...,g, are tangent to V', it is not difficult
to verify that this codistribution is invariant under f,g1,...,gm ’
contains sp{dh1,...,dh£} and is smaller than (f'91""'9mISPkﬂH""'dhz})'

This is a contradiction and therefore (7.13) must be false. U



CHAPTER II
GLOBAL DECOMPOSITIONS OF CONTROL SYSTEMS

1. Sussmann's Theorem and Global Decompositions

In the previous chapter, we have shown that a nonsingular and in-
volutive distribution induces a local partition of the manifold N into
lower dimensional submanifolds and we have used this result to obtain
local decompostions of control systems. The decompositions thus ob-
tained are very useful to understand the behavior of control systems
from the point of view of input-state and, respectively, state-output
interaction. However, it must be stressed that the existence of de-
compositions of this type is strictly related to the assumption that
the dimension of the distribution is constant at least over a neigh-
borhood of the point around which we want to investigate the beha-
viour of our control system.

In this section we shall see that the assumption that A is non-
singular can be removed and that global partitionsof N can be ob-
tained. To begin with, we need the following definitions. A submani-
fold S of N is said to be an <ntegral submanifold of the distribution
A if, for every p € S, the tangent space TPS to § at p coincides with
the subspace A(p) of T _N. A mazimal integral submanifold of A is a
connected integral submanifold S of A with the property that every
other connected integral submanifold of A which contains S coincides
with 8.

We see immediately from this definition that any two maximal in-
tegral submanifolds of A passing through a point p € N must coincide.
This motivates the following notion. A distribution A on N has the
mazimal integral manifolds property if through every point p € N
passes a maximal integral submanifold of A or, in other words, if
there exists a partition of N into maximal integral submanifolds of
A.

It is easily seen that this is a global version of the notion of
complete integrability for a distribution. As a matter of fact, a
nonsingular and completely integrable distribution is such that for
each p € N there exists a neighborhood U of p with the property that
A restricted to U has the maximal integral manifolds property.

A simple consequence of the previous definitions is the fol-

lowing one.
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(1.1) Lemma. A distribution A which has the maximal integral manifolds

property is involutive.

Proof. If 1T is a vector field which belongs to a distribution A with
the maximal integral manifolds property, then 1 must be tangent to
every maximal integral submanifold S of A. As a consequence, the Lie
bracket{1,,7,] of two vector fields T, and T, both belonging to A must
be tangent to every maximal integral submanifold § of A. Thus [T1,T2]
belongs to A. O

Thus, involutivity is a necessary condition for A to have the
maximal integral manifolds property but, unlike the notion of complete
integrability, this condition is no longer sufficient.

(1.2) Example. Let N = R2 and let A be a distribution defined by

X

8(x) = span{(52) ,h(xy) (z20) )
1 2

where A(x1) is a C* function such that A(x1) = 0 for Xy < 0 and

A(x1) > 0 for Xy 0. This distribution is involutive and

]
-

dim A(x) if x is such that x4 0

dim A(x) = 2 if x is such that x> 0

Clearly, the open subset of N

{(X1,X2) € ]Rz

:xq > 0}

is an integral submanifold of A (actually a maximal integral sub-
manifold) and so is any subset of the form (a,b)x{c} with a<b <0.
However, it is not possible to find integral submanifolds of A pas-

sing through a point (0,c). O

Another important point to be stressed, which emphasizes the
difference between the general problem here considered and its
local version described in section 1.3, is that the elements of a
global partition of N induced by a distribution which has the in-
tegral manifolds property are immersed submanifolds. On the con-
trary, local partitions induced by a nonsingular and completely
integrable distribution are always made of slices of a coordinate

neighborhood, i.e. of iZmbedded submanifolds.

(1.3) Example. Consider a torus T, = §4%S,. We define a vector

field on the torus in the following way.
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Let T a vector field on R? defined by setting

_ 3 3
Tlxqexg) = X ey Y ¥ g x

At each point (x1,x2) S 5, this mapping defines a tangent vector in

T S, , and therefore a vector field on S, whose flow is given
(X1,x2) 1 1
by
T,.0 _0, _ fo) _LO o . _.0
®t(x1,x2) = (x1cost x5 sint,xy sint xzcost)

In order to simplify the notation we may represent a point (x1,x2)
of §4 with the complex number z = Xq + 3%, .|z| = 1, and have ¢€(z) =
= eltz, Similarly, by setting

_ 3 3
Blxgrxy) = w30 (g 3o e«
we define another vector field on S1 ; whose flow is now given by

@i(z) = eJot
From T and 8 we may define a vector field £ on T, by setting

2.

f(z1 122) = (T(Z1),0(22))

and we readily see that the flow of f is given by

f it jat
@t(z1,22) = (eJ z1,eja 22)

If o is a rational number, then there exists a T such that
q>f - ®f
t t+kT £
for each fixed p = (z1,z2) € T2 the mapping Fp HE ¢t(z1,zz) is an
injective immersion of R into T2 , and FPGR) is an immersed submani-
fold of T2.

From the vector field f we can define the one-dimensional distri-

for all £t € R and all k € Z. Otherwise, if o is irrational,

bution A = sp{f}! and see that, if a is irrational, the maximal in-
tegral submanifold of A passing through a point p € T, is exactly
FpGR) and A has the maximal integral manifold property.

FpGR) is an immersed but not an imbedded submanifold of T2. For,
it is easily seen that given any point p € T, and any open (in the to-
pology of T2) neighborhood U of p, the intersection FPGR) N U is dense
in U and this excludes the possibility of finding a coordinate cube
(U,9) around p with the property that FpGR) N U is a slice of U. O

The following theorem establishes the desired necessary and suf-
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ficient condition.

(1.4) Theorem (Sussmann). A distribution A has the maximal integral
manifolds property if and only if, for every vector field T € A and
for every pair (t,p) € R*N such that the flow QZ (p) of 1 is de-

fined, the differential (@Z )4, at p maps the subspace A(p) into the

subspace A(éz (p)). O

We are not going to give the proof of this Theorem, that can be

found in the literature. Nevertheless, some remarks are in order.

(1.5) Remark. An intuitive understanding of the constructions that
are behind the statement of Sussmann's theorem may be obtained in
this way.
Let TgreeerTy be a collection of vector fields of A and let
T T
¢t1""'¢tk denote the corresponding flows. It is clear that if p is
1 k

a point of N, and S is an integral manifold of A passing through p,

T,
then ¢t%(p) should be a point of § for all values of t, for which
T. 1
@tl(p) is defined. Thus, S should include all points of N that can
i
be expressed in the form

T T
(1.6) 0 X0
k  tk-1

In particular, if t and 6 are vector fields of 4, the smooth

T
oe-.0®, (pP)
£

curve

— "
t ¢t1c¢to¢_t1(p)

passing through p at t = 0, should be contained in S and its tangent
vector at p should be contained in A(p)}. Computing this tangent

vector we obtain
T T
(& t )*e(é_t {p)) € A(p)
1 1
i.e. setting q = @It (p)
1

(@{1)*9(@ = Aw; @)

and this motivates the necessity of Sussmann’'s condition. O
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According to the statement of Theorem (1.4), in order to "test"
whether or not a given distribution A is integrable, one should check
that (¢£)* maps A(p) into A(¢;(p)) for all vector fields T in A.
Actually one could limit oneself to make this test only on some sui-
table subset of vector fields in A, because the statement of Theorem

(1.4) can be given the following weaker version, also due to Sussmann.

(1.7) Theorem. A distribution A has the maximal integral manifolds
property if and only if there exists a set of vector fields T, which
spans A, with the property that for every 1 € T and every pair

(t,p} €ER xN such that the flow @E(p) of t is defined, the differ-
ential (¢£)* at p maps the subspace A(p) into the subspace A(@E(p)).

{1.8) Remark. At this point it is clear the proof of the "if" part
of Theorem (1.4) comes directly from the "if" part of Theorem (1.7},
because the set of all vector fields in A is indeed a set of vector
fields which spans A. Conversely, the "only if" part Theorem (1.7)
comes from the "only if" part of Theorem (1.4). [

We have seen that involutivity is a necessary but not sufficient
condition for a distribution A to have the maximal integral manifolds
property. However, the involutivity is something easier to test - in
principle ~ because it involves only the computation of the Lie
bracket of vector fields in A whereas the test of the condition stated
in the Theorem (1.7} requires the knowledge of the flows @2 associated
with all the vector fields 1 of the subset T which spans A. Therefore,
one might wish to identify some special celasses of distributions for
which the involutivity becomes a sufficient condition for them to have
the maximal integral manifolds property. Actually, this is possible
with a relatively little effort.

A set T of vector fields is locally finitely generated if, for
every p € N there exist a neighborhood U of p and a finite set
{11,...,Tk} of vector fields of T with the property that every other
vector field belonging to T can be represented on U in the form

k
(109) T = .2 Ci'[i
i=1

where each c; is a real-valued smooth function defined on U.

The class of the distributions which are spanned by locally fi-
nitely generated sets of vector fields is actually one of the clas-
ses we were looking for, as it will be shown hereafter.

We prove first a slightly different result, which will be also

used independently.
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(1.10) Lemma. Let T be a locally finitely generated set of vector
fields which spans A and 6 another vector field such that [8,1] €T
for all t € 7. Then, for every pair (t,p) € RxN such that the flow
@i(p) ig defined, the differential (@i)* at p maps the subspace A(p)
into the subspace A(@g(p)).

Proof. The reader will have no difficulty in finding that the same
arguments used for the statement (ii) in the proof of Theorem I.(3.1)

can be used. 0

Note that in the above statement the vector field © may possibly
not belong to T. If the set T is Znvolutive, i.e. if the Lie bracket
[11,12] of any two vector fields Ty eT, T, € T is again a vector
field in T, from the previous Lemma and from Sussmann's Theorem we

derive immediately the following result.

(1.11) Theorem. A distribution A spanned by an involutive and locally
finitely generated set of vector fields T has the maximal integral

manifolds property. O

The existence of an involutive and locally finitely generated set
of vector fields appears to be something easier to prove, at least in
principle. In particular, there are some classes of distributions in
which the existence on a locally finitely generated set of vector
fields is automatically guaranteed. This yields the following corol-

laries of Theorem (1.11).

(1.12) Corollary. A nonsingular distribution has the maximal integral

manifolds property if and only if it is involutive.

Proof. In this case, the set of all vector fields which belong to the
distribution is involutive and, as a consequence of Lemma I.(2.7),

locally finitely generated. O

(1.13) Corollary. An analytic distribution on a real analytic manifold
has the maximal integral manifolds property if and only if it is in-

volutive.

Proof. It depends on the fact that any set of analytic vector fields
defined on a real analytic manifold is locally finitely generated. 0O

We conclude this section with another interesting consequence of

the previous results, which will be used later on.

(1.14) Lemma. Let A be a distribution with the maximal integral mani-
folds property and let S be a maximal integral submanifold of A. Then,
given any two points p and g in S, there exist vector fields TreserTy

; T
in A and real numbers t,,...,t, such that g = ®T1o...o® k(p).
1 k t1 tk
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(1.15) Theorem. Let A be an involutive distribution invariant under a
complete vector field 6. Suppose the setof all vector fields in A is
locally finitely generated. Let Py and p, be two points belonglng to
the same maximal integral submanifold of A. Then, for all T, ¢ (p1)
and @ (pz) belong to the same maximal integral submanifold of A.

Proof. Observe, first of all, that A has the maximal integral sub-
manifold property (see Theorem (1.11)).
Let T be a vector field in A. Then, for e sufficienty small the

mapping
o : {-¢,€} —™N
8 .t .6
t @To¢to¢_T(p)

defines a smooth curve on N which passes through p at t = 0. Computing

the tangent vector to this curve at t we get

Q
*
—
s
]

(20) 41 (0700% (p)) =

(291, (22 (5 ()

But since 1 € A, we know from Lemma (1.10) that for all g

(¢g)*T(¢gT(q)) € A{q) and therefore we get

d
Ox(gg)y € Al0(E))
for all t € (-e,c). This shows that the smooth curve ¢ lies on an in-
tegral submanifold of A. Now, let Py = ¢6 (p) and p, = QT(p1). Then
b, and P4 are two points belonging to a max1mal 1ntegral submanifold
of A, and the previous result shows that ¢ (p1) and ® (pz) again are
two points belonging to a maximal integral submanifold of A. Thus the
Theorem is proved for points PP, such that P, = ¢E(p1). If this is
not the case, using Lemma (1.14) we can always find vector fields

T Tk

TysoeerTy of A such that p, = ¢ 10...o®tk(p1) and use the above re-

sult in order to prove the Theorem. O

2. The Control Lie Algebra

The notions developed in the previous section are useful in deal-

ing with the study of input-state interaction properties from a global
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point of view. As in chapter 1, we consider here control systems de-

scribed by eguations of the form

m
(2.1) X = £(x) + )
i:

(S0

Recall that the local analysis of these properties was based upon
the consideration of the smallest distribution, denoted R, invariant
under the vector fields f,g1,...,gm and which contains f,g1,...,gm.
It was also shown that if this distribution is rionsingular, then it
is involutive (Lemma I.(6.6)). This property makes it possible to use
immediately one of the results discussed 1in the previous section and
find a global decomposition of the state space N.

(2.2) Lemma. Suppose R is nonsingular, then R has the maximal integral
manifolds property.

Proof. Just use Corollary (1.12)., O

The decomposition of N into maximal integral submanifolds of R
has the following interpretation from the point of view of the study
of interaction between inputs and states. It is known that each of the
vector fields f,g1,...,gm is in R, and therefore tangent to each max-

imal integral submanifold of R. Let § ° be the maximal integral sub-
X
manifold of R passing through x°. From whatmwe have said before we

know that any vector field of the form 1 = ) g;v; » where u,,...,u

, m
i=1
are real numbers, will be tangent to S ° and, therefore, that the in-
X
tegral curve of T passing through x° at time t = 0 will belong to S o
x

We conclude that any state trajectory emanating from the point xo,

under the action of a piecewise constant control,will stay in S o°
X
Putting together this observation with the part (b) of the sta-

tement of Theorem I.(6.15), one obtains the following result.

(2.3) Theorem. Suppose R in nonsingular. Then there exists a partition
of N into maximal integral submanifolds of R, all with the same di-

mension. Let S ° denote the maximal integral submanifold of R passing

X
through x°. The set R(x®) of states reachable from x° under piecewise
constant input functions
(a) is a subset of S o
X

(b) contains an open set of § o 0
X

The result might be interpreted as a global version of Theorem

I.(6.15). However, there are more general versions, which do not re-
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quire the assumption that R is nonsingular. Of course, since one is
interested in having global decompositions,it is necessary to work
with distributions having the maximal integral manifolds property.
From the discussions of the previous section, we see that a rea-
sonable situation is the one in which the distributions are spanned
by a set of vector fields which is involutive and locally finitely
generated. This motivates the interest in the following considera-
tions.

Let {t;: 1 <1i<g} be a finite set of vector fields and LysL, two
subalgebras of V{(N) which both contain the vector fields T1,...,Tq.
Clearly, the intersection L1 ﬂLZ is again a subalgebra of V(N} and
contains TqreeesTye Thus we conclude that there exists a unigque sub-
algebra L of V(N) which contains T1,...,Tq and has the property of
being contained in all the subalgebras of V(N) which contain the
vector fields T1,...,T . We refer to this as to the smallest sub-
algebra of V(N) which contains the vector fields T1,...,Tq.
(2.4) Remark. One may give a description of the subalgebra L also in

the following terms. Consider the set

L={t€vM:t=[1, Jvy s.../ 07, ,7. NN]: 1 <i <qg, 1<k <=}
° S 17 14 - k-

and let LC(LO) denote the set of all finite R~linear combinations of
elements of LO. Then, it is possible to see that L = LC(LO). For, by
construction, every element of Lo is an element of L because L,being
a subalgebra of V(N) which contains T1,...,Tq , must contain every

vector field of the form [1. ,[T. seseel T, +T; 11]1. Therefore
ko Ykt T2 M
(L)) © L and also 1; € LC(L,) for 1 < i < q. To prove that L=LC(L,)

we only need to show that LC(LO) is a subalgebra of V(N). This fol-
lows from the fact that the Lie bracket of any two vector fields in

Lo is an R-linear combination of elements of Lo. O

With the subalgebra L we may associate a distribution AL in a

natural way, by setting

4, =splt:t €L}

Clearly, AL need not to be nonsingular. Thus, in order to be able to
operate with AL , we have to set explicitly some suitable assumptions.
In view of the results discussed at the end of the previous section we
shall assume that the subalgebra L is spanned by a locally finitely

generated set of vector fields.
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An immediate consequence of this assumption is the following one.

(2.5) Lemma. If the subalgebra L is locally finitely generated, the
distribution & has the maximal integral manifolds property.

Proof. The set L is involutive by construction (because is a sub-
algebra of v(N)). Then, using Theorem (1.11) we see that AL has the

maximal integral manifolds property. O

When dealing with control systems of the form (2.1), we take
into consideration the smallest subalgebra of V(N) which contains the
vector fields f,g1,...,gm. This subalgebra will be denoted by C and

called the Control Lie Algebra. With C we associate the distribution
bp = splt:tT €C}

(2.6) Remark. It is not difficult to prove that the codistribution Aé
is invariant under the vector fields f,g1,...,gm. For, let T be any
vector field in C and w a covector field in Aé. Then (w,t? = 0 and
{w,[£,7] ? = 0 because [f,t] is again a vector field in C. Therefore,

from the equality
(wa,T } = Lf(w,T Y ~Aw,l£,1} Y =0

we deduce that Lgw annihilates all vector fields in C. Since AC is
spanned by vector fields in C, it follows that Lew is a covector
field in At , i1.e. that Aé is invariant under f. In the same way it
is proved that At is invariant under qreseeGpye

If the codistribution Aé is smooth (e.g. when the distribution
Ae is nonsingular), then using Lemma I.(4.8) one concludes that A,

itself is invariant under f,g1,...,gm.

(2.7) Remark. The distribution 4, , and the distributions P and R in-

troduced in the previous chapter are related in the following way

(a) A, C P + spif} C R
(b) if x is a regular point of A, , then AC(X)=(P+sp{f})(x) = R(x).

We leave to the reader the proof of this statement. [l

The role of the Control Lie Algebra C in the study of interac-
tions between input and state depends on the following consideration.

Suppose AC has the maximal integral manifolds property and let S o be
®
the maximal integral submanifold of AC passing through %°. Since the

vector fields f,g1,...,gm , as well as any vector field T of the form
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m
T=f + f g.u, with Ug,eeas real numbers, are in AC (and therefore
i=.1ll m

tangent to S 0), then any state trajectory of the control system (2.1)

passing through x° at t = 0, due to the action of a piecewise constant

control, will stay in S o
X
As a consequence of this we see that, when studying the behavior
of a control system intialized at x° € N, we may regard as a natural

state space the submanifold S of N instead of the whole N, Since for

o
X
all ¥ € s o the tangent vectors f(i),gﬁi),...,gm(i) are elementsof the
X
tangent space to S ° at %X, by taking the restrictions to 8§ ° of the
b4 X

original vector fields f,g1,...,gm one may define a set of vector fields

f,§1,...,§m on S _ and a control system evolving on S
X x

o

(2.8) X = £(R) +

§i(§)u1
i

Il ~18

1

which behaves exactly as the original one.

By construction, the smallest subalgebra C of V(s 0) which con-
X
tains f,§1,...,gm spans, at each x € § o + the whole tangent space
X .
T3S o* This may easily be seen using for C and C the description il-

lustrated in the Remark (2.,4).

Therefore, one may conclude that for the control system (2.8)

(which evolves on s o), the dimension of AE is equal to that of S ° at
X N X
each point or, also, that the smallest distribution R invariant under

f,§1,...,§m which contains f,§1,...,§m is nonsingular (see Remark

(2.7)), with a dimension equal to that of S 0"
X
The control system (2.8) is such that the assumptions of Theorem

(2.3) are satisfied, and this makes it possible to state the following

result.

(2.9) Theorem. Suppose the distribution AC has the maximal integral
manifolds property. Let § ° denote the maximal integral submanifold

of A, passing through x°. The set R(x°) of states reachable from x°

under piecewise constant input functions

(a) is a subset of § o
X

{b} contains an open set of § _.

o
X

(2.10) Remark. Note that, if AC has the maximal integral manifolds pro-
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perty but is singular, then the dimensions of different maximal in-
tegral submanifolds of AC may be different., Thus, it may happen that

1 2

at two different initial states x and x° one obtains two control

systems of the form (2.8) which evolves on two manifolds S 1 and 5
X x

of different dimensions. We will see examples of this in section 4. O
(2.11) Remark. Note that the assumption "the distribution A has the
maximal integral manifolds property"is implied by the assumption "the
distribution do is nonsingular". In this case, in fact, AC = R (see
Remark (2.7)) and R has the maximal integral manifolds property
(Lemma (2.2} [~

We conclude this section by the illustration of some terminolo-
gy which is frequently used, The control system (2.1) is said to sa-
tisfy the controllability rank condition at x° if
(2.12) dim 4,(x%) = n

Clearly, if this is the case, and if A, has the maximal integral
manifolds property, then the maximal integral submanifold of AC

passing through x°

has dimension n and, according to Theorem (2.9),
the set of states reachable from x® fill up at least an open set of
the state space N,

The following Corollary of Theorem (2.9) describes the situation
which helds when one is free to choose arbitrarily the initial state
x°. A control system of the form (2.1) is said to be weakly control-
lable on N if for every initial state x® € N the set of states reacha-
ble under piecewise constant input functions contains at least an open

set of N.

(2.13) Corollary. A sufficient condition for a control system of the
form (2.1) to be weakly controllable on N is that

dim AC(X) =n

for all x € N, If the distribution AC has the maximal integral
manifolds property then this condition is also necessary.

Proof. 1If this condition is satisfied, AC is nonsingular, involutive
and therefore, from the previous discussions, we conclude that the

system is weakly controllable. Conversely, if the distribution AC has
the maximal integral manifolds property and dim Ac(xo) < n at some
x° € N then the set of states reachable from x° belongs to a submani-

fold of N whose dimension is strictly less than n (Theorem (2.9)).So
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this set cannot contain an open subset of N. O

3. The Observation Space

In this section we study output-state interaction properties from
a global point of view, for a system described by equations of the

form (2.1), together with an output map
(3.1) y = h(x)

The presentation will be closely analogue to the one given in the
previous section. First of all, recall that the local analysis carried
out in section I.7 was based upon the consideration of the smallest
codistribution invariant under the vector fields f,g1,...,gm and con-
taining the covector fields dh1,...,dh2. If the annihilator Q of this
codistribution is nonsingular, then it is also involutive (Lemma
I.{(7.6)) and may be used to perform a global decomposition of the
state space. Parallel to Lemma (2.2) we have the following result.

(3.2) Lemma. Suppose Q is nonsingular. Then Q has the maximal integral
manifolds property. O

The role of this decomposition in explaining the output-state in-
teraction may be explained as follows. Observe that @, being nonsingqu-
lar and involutive, satisfies the assumptions of Theorem (1.15) (be-
cause the set of all wvector fields in a nonsingular distribution is
locally finitely generated). Let S be any maximal integral submani-

fold of Q. Since Q is invariant under f,g1,...,gm and also under any
m

vector field of the form t = £ + | g,u; , where u;,...,u are real
i=1

numbers, using Theorem (1.15) we deduce that given any two points %2

m
and xb in § and any vector field of the form T = £ + ) g;u; the
i=1

points @E(xa) and ¢z(xb) for all t belong to the same maximal integral
submanifold of Q. In other words, we see that from any two initial
states on some maximal integral submanifold of Q, under the action the
same piecewise constant control one obtains two trajectories which,
at any time, pass through the same maximal integral submanifold of Q.
Moreover,it is easily seen that the functions h1,...,h2 are con-
stant on each maximal integral submanifold of Q. For, let S be any of
these submanifolds and let Bi denote the restriction of hi to S. At

each point p of S the derivative of ﬁi along any vector v of Tps is
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zero, because Q C Sp(dhi)L, and therefore the function ﬁi is a con-

stant.

a b

As a conclusion, we immediately see that if x™ and x~ are two
initial states belonging to the same integral manifold of Q then under
the action of the same piecewise constant control one obtains two
trajectories which, at any time, produce identical values on each
component of the output, e.g. are indistinguishable.

These considerations enables us to state the following global

version of Theorem I.(7.8).

(3.3) Theorem. Suppose Q is nonsingular, Then there exists a parti-
tion of N into maximal integral submanifolds of Q, all with the same
dimension. Let S denote the maximal integral submanifold of Q pas-

sing through x°. Then

(a) no other point of S can be distinguished from x° under piece-
wise constant input functions

(b) there exists an open neighborhood U of x° in N with the property
that any point x € U which cannot be distinguished from x° under

piecewise constant input functions necessarily belongs to UNg. O

Proof. The statement (a) has already been proved. The statement (b)
requires some remark. Since Q is nonsingular, we know that around any
point x° we can find a neighborhood U and a partition of U into slices
each of which is clearly an integral submanifold of Q. But also the
intersection of S with U, which is a nonempty open subset of S is an
integral submanifold of Q. Therefore, since S is maximal, we deduce
that the slice of U passing through x® is contained into U N §. From
the statement (b) of Theorem I.(7.7) we deduce that any other state

X of U which cannot be distinguished from x° under piecewise constant
inputs belongs to the slice of U passing through xo, and therefore to
uns. O3

If the distribution Q is singular, one may approach the problem
on the basis of the following considerations. Let {Ai :1‘§i_§z} be a
finite set of real-valued functions and {Ti: 1<i<qg} be a finite set
of vector fields. Let S, and 52 be two subspaces of c”(N) which both
contain the functions X1,...AQ and have the property that, for all

A€ Si and for all 1 < j < q, L. A€ Si , 1 =1,2, Clearly the in-
j o

tersection 31 n S, is again a subspace of C (N) which contains

k1,...,XE and is such that, for all A € S1 n 32 and for all 1<j<q,

LT A€ S1 n 32. Thus we conclude that there exists a unigue subspace

S of ¢ (N) which contains Aqr...,A, and is such that, for all X € §

L
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and for all 1 < j < q, L. A € S. This is the smallest subspace of C (N)

J
which contains A, ,...,%, and is closed under differentiation along

T1,...,T .

q
(3.4} Remark. The subspace S may be described as follows. Consider the
set
SO={)\ €cC (N):)\=>\j or )\=LTi ...LTi )\j; 12324, 124, <q, 1<k <}
k 1

and let LC(SO) denote the set of all R-linear combinations of elements
of 30. Then, LC(SO) = 8. As a matter of fact, it is easily checked
that every element of LC(SO) is an element of S, so LC(SO) C §, that
Xj € LC(SO) for 1 < j < & and that LC(SO) is closed under differentia-
tion along TareserTge O

With the subspace § we may associate a codistribution QS , in a

natural way, by setting
fig = spldi : } € S}

The codistribution QS is smooth by construction, but - as we
know -~ the distribution Q; may fail to be so. Since we are interest-
ed in smooth distributions because we use them to partition the state
space into maximal integral submanifolds, we should rather be looking
at the distribution smt(ﬁg) (see section I.2). N

The following result is important when loocking at smt(QS) for

the purpose of finding global decompositions of N.

(3.5) Lemma. Suppose the set of all vector fields in smt(Qé) is local-
ly finitely generated. Then smt(Qﬁ) has the maximal integral manifolds

property.

Proof. In view of Theorem (1.11}), we have only to show that smt(Qg) is
involutive. Let T and Ty be vector fields in smtﬁﬂg) and A any func-
tion in S. Since ¢(di,7y ) = 0 and (dA,TZ ) = 0 we have

(dA,[T1,T2] ) = LT1(dA,T2 )-LTZ(dA,T1 ) =0

The vector field [T1,T2] is thus in Qé. But [11,12], being smooth, is
also in smt(ﬂ?). O

In order to study observability we consider the smallest sub-
space of Cw(N) which contains the functions h1,...,h2 and is closed

under differentiation along the vector fields f,g1,...,gm. This sub-
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space will be denoted by 0 and called the observation space. Moreover,

with 0 we associate the codistribution

2, = sp{dx : x € 0}
(3.6) Remark. It is possible to prove that the distribution Qé is in-
variant under the vector fields f,g1,...,g . For, let x be any func-
tion in 0 and T a vector field in QO. Then (dX,t) = 0 and (dLg,1)=0
because LfA is again a function in 0. Therefore, from the equality

(ax,[£,7] )= Lf(d)\,T ‘)—(de}\,r } =0

we deduce that [ f,t] annihilates all functions in 0. Since Q, is span-
ned by differentials of functions in (0, it follows that [£f,T] is a
vector field in Qt. In the same way one proves invariance under
Gqreeer9pye

If the distribution Qé is smooth (e.g. when the codistribution QO
is nonsingular) then using Lemma I. (4.8) one concludes that 90 itself

is invariant under f,g1,...,gm.

(3.7) Remark. The distribution Qé and the distribution Q introduced

in the previous chapter are related in the following way
L

(a) QO 2Q

(b) if x is a regular point of Qo , then Qg(x) = Q(x),

We leave to the reader the proof of this statement. O

From the previous Remark and from Remark I. (4.6) it is deduced
that the distribution smt(Qé) is invariant under the vector fields

f,g1,...,gm and so under any vector field T of the form

T=£f+ Z gy o where Uyse..pu are real numbers. Now suppose that
i=1

the set of al1 vector fields in smt(ﬂo) ig locally finitely generated,
so that smt(Q ) has the maximal integral manifolds property. Using
Theorem (1. 15), as we did before in the case of nonsingular Q, we may
conclude that from any two states on the same integral submanifold of
smt(Qé), under the action of the same piecewise constant control one
obtains two trajectories that at any time lie on the same maximal in-
tegral submanlfold of smt(Q ). Observe now that smt(Q‘) is also contaln—
ed in sp{dh } 1 <1<, because every tangent vector in smt(Q ) (x)
is also in O(X) and every tangent vector v in QL(x) is such that

<dh (x),v?) = 0, Therefore one may deduce that the functions h, are

constant on each maximal integral submanifold of smt(QO)
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This, together with the previous observations, shows that any two
initial states x2 and xb on the same maximal integral submanifold of
smt(Qé) are indistinguishable under piecewise constant inputs. This
extends the statement (a) of Thecrem {3.3). As for the statement (b),

some regularity is required, as it seen hereafter.

(3.8) Theorem. Suppose the set of all vector fields contained in

L
smt(Qo) is locally finitely generated. Let S denote the maximal .in-
tegral submanifold of smt(Qé) passing through x°. Then

(a) any other point of S cannot be distinguished from x° under piece-
wise constant inputs

(b) If x° is a regular point of Qo , then there®exists an open neigh-
borhood U of x° in N with the property that any point x € Uwhich
cannot be distinguished from %% under piecewise constant inputs

necessarily belongs to U N §,

Proof. The statement (a) has already been proved. The statement (b)
is proved essentially in the same way as in the statement (b) of The-
orem (3.3). O

The following example illustrates the need for the "regularity"
assumption in the statement (b) of the previous theorem.

(3.9) Example. Consider the following system with N = R and

H]
[
(=)

h(x)

L
1

where h(x) is defined as

h{x) exp{- ;%)sin(%) for x # 0
X

0

h(0)

For this system, two states x? and xb are indistinguishable if
and only if h(x?) = h(xb). In particular, the set of states which are
indistinguishable from the state x = 0 coincides with the set of the
roots of the equation h(x) = 0. Each point in this set is isolated
but the point x = 0. Thus, no matter how small we choose an open neigh-
borhood U of x = 0, U contains points indistinguishable from x = 0.

It is also seen that the codistribution QO = sp{dh} has dimension
1 everywhere but at the points x in which %% = 0, where its dimension

is 0. Thus, any smooth vector field belonging to Qé must vanish ident-
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ically on R and smt(Qé) = {0}. The maximal integral submanifold of
smt(Qé) passing through x is the point x itself.

At the point x = 0, which is not a regular point of QO , we have
that U N's = {0} for all U, whereas we know there are other points of

U indistinguishable from x = 0. O

We conclude this section with some global considerations. The
control system {2.1)-(3.1) is said to satisfy the observability rank
condition at x° if

(3.10) dim Qo(xo) =n

Clearly, if this isg the case then x° is a regular point of QO and
from the previous discussion it is seen that any point x in a suitable
neighborhood U of x® can be distinguished under piecewise constant
inputs. A control system of the form (2.1)-(3.1) is said to be locally
observable on N if for every state x° there is neighborhood U of x°
in which every point can be distinguished from x° under piecewise con-

stant inputs.

(3.11) Corollary. A sufficient condition for a control system of the
form (2.1)-(3.1) to be locally observable on N is that

dim Qo(x) =n

for all x € N.

4. Linear Systems, Bilinear Systems and Some Examples

In this section we describe some elementary examples, in order
to make the reader more familiar with the ideas introduced so far.
As a first application, we shall compute the Lie algebra C and

the distripution A, for a linear system

X = Ax + Bu

Cx

Y

We may easily interpret this system as a system off the form (2.1)-(3.1).
The manifold N on which the system evolves is the whole of R® and,in
the standard (single) coordinate chart of Rn, the vector fields f(x)

and g1(x),...,gm(x) have the expressions
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(4.1) f(x) = Ax
(4.2) g; () = by 1<ic<m

where bi is the i~-th column of the matrix B. The functions h1(x),...,

hﬁ(x) are expressed as

hi(x) = c;X% 1

A
=

A
=

where c; is the i-th row of the matrix C.
We want to prove first that the Lie algebra C is the subspace of
V(N) consisting of all vector fields which are R-linear combinations

of the vector fields in the set
(4.3) {ax} U &b, : 1 <1 <m 0 <k <1}

For, observe that this set contains the vector fields Ax and b1,...,bm
(i.e., the vector fields f and g1,...,gm) and also that this set is
contained in C, because any of its elements is a repeated Lie bracket

of £ and g4,...,g,. As a matter of fact,

A, = [[lg;,fl,...],£]
AR

k-tinmes
Moreover, it is easy to see that the set
(4.4) Lc({ax} U {a", : 1 <i<m 0<k<n1})
of all R-linear combinations of vector fields in the set (4.3) is al-
ready a Lie subalgebra, i.e. is closed under Lie bracketing.

For, one easily sees that if T1(X) and TZ(X) are vector fields

of the form

i
>
o

T4 (x)
T2(X) =Ab

then [T1,T2](X) = 0. On the other hand, if

k
T1(X) A bi

Tz(x) Ax



74

then

[T1,T2] = Ak+1bi
If k < n-1, this vector field is in the set (4.3) and, if k = n-1,this
vector field is an R-linear combination of vector fields in the set
(4.3) (by Cayley-Hamilton theorem).

If T4 and T, are R-linear combinations of vector fields of (4.3),
then their Lie bracket is still an R-linear combination of vector
fields of (4.3), and this proves that the set (4.4) is a Lie sub-
algebra.

The set (4.4} is a Lie algebra which contains f,g1,...,gm and is
contained in C, the smallest Lie subalgebra which contains f,g1,...,gm.
Then, the set (4.4) coincides with C.

Evaluating the distribution A, we get, at a point x er",

(4.5) Ap(x) =span{Ax}+span{Akbi :1<4i<m 0<k<n-1}

n-1
= span{Ax}+ )

k

Im(AkB)
0

We are also interested in the distribution P, the smallest di-
stribution which contains PRI Y and is invariant under f,g1,...,gm.
By means of arguments similar to the ones used before or, else, by
means of the recursive algorithm presented at the beginning of section

I.6, it is not difficult to discover that, at any point x € R",
(4.6) P(x) = span{A®b, : 1 < i<m 0 <k <n-1}
Thus, we see that

A, = sp{f} + P

c

The distribution Ao is spanned by a set of vector fields which is
locally finitely generated (because any vector field in C is analytze
on R"), and therefore - by Lemma (2.5) - the distribution Ly has the
maximal integral manifolds property. The distribution P is non-
singular and involutive and thus - by Corollary (1.12) - it also has
the maximal integral manifolds property.

The maximal integral submanifolds of P, all of the same dimensioen,

have the form x+V, where
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ey

V = Im(B)+Im(AB)+...+Im(a"
{see Example I.(3.4) and Remark I.(4.2)). The maximal integral submani-
folds of AC may have different dimensions, because Ap may have sin-
gularities,

If, at some point x €R", f(x) € P(x), then the maximal integral
submanifold of AC passing through x coincides with the one of the
distribution P, i.e. is a subset of the form x+V. Otherwise, if such
a condition is not verified, the maximal integral submanifold of AC is
a submanifold whose dimension exceeds by 1 that of P and this submani-

fold,in turn, is partitioned into subsets of the form x'+V

(4.7) Ethple. The following simple example illustrates the case of
a singular AC. Let the system described by

1 0 0 1
X = 0o -1 0 [x + 0 ju
0 0 1 0

Then we easily see that

3

v {x ERrR”: X, = Xy = 0}

and that

o]
|

= sp{gg;}

The tangent vector f(x) belongs to P only at those x in which
Xy = xq = 0, i.e. only on V. Thus, the maximal integral submanifolds
of A, will have dimension 2 everywhere but on V. A direct computation
shows that these submanifolds may be described in the following way:

(i) if x° is such that xg = 0 (resp. xg = 0) then the maximal sub-

manifold passing through x° is the half open plane

{x €Er" P Xy 0 and sgn(x,) sgn(xg)}

(resp. {x ER" :Xy = 0 and sgn(xz) sgn(xg)}
(i1) if x® is such that both xg # 0 and xg # 0, then the maximal sub-
manifold passing through x° is the surface

n . _ .00
{x ER" : XyXy = x2x3}. 0
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We turn now on the computation of the subspace 0 and the codi-
stribution QO' It is easy to prove that 0 is the subspace of c” ()
consisting of all R-linear combinations of functions of the form

ciAkx or ciAkbj , namely that

(4.8) 0 =1clr € T :Alx) = A x or A(x) = CiAkbj ;

1<i<2, 1<3<m 0<k <n-1}

For, note that functions of the form CiAkx or CiAkbj are such that

k
C,ATX = Lf...thi(x)
N

k-times

C.A b, = ngLf... thi(x)
-

k-times

and this implies that the right-hand-side of (4.8) is contained in 0.
Moreover, the functions h1,...,h£ are elements of the right-hand-~-side
of (4.8) .Then, the proof of (4.8) is completed as soon as we show that

its right-hand-side is closed under differentiation along £, A PRI
k+1

If A({x) = ciAkx, then fo = C4A x and Lg A{x) = ciAkbj. If
J
A(x) = ciAkbj ¢ then LA (x) = Lg A{x) = 0. Thus, using again Cayley-
Hamilton Theorem, it easily seen that the right-hand-side of (4.8) is
closed under differentiation along f,g1,...,gm.
At each point x, the codistribution QO is given by

Qo(x) = span{ciAk i 1 <1i<28, 0<k <n-1} and therefore

1 n-1
Qo(x) = N ker(CA )
k=0
The COdlStrlbutlon QO is nonsingular, and so is the dlstrlbutlon
Qo Moreover, QO = smt(Q ) .From Remark (3.7) we see that QO Q and
s0 this distribution has the maximal integral manifolds property (Lemma
(3.2)). The maximal integral submanifolds of Q have now the form x+W

where
= ker(C} N ker(CA)...N ker(CAn-1)

As a second application we consider a bZlinear system, i.e. a

system described by equations of the form
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e
]

m
Ax + ] (N;x)uy
i=1

y = Cx

Here also the manifold on which the system evolves is the whole of.Rn,

we set £ and h1,...,h2 as before, and
gi(x) = N;x 1<i<m

In order to compute the subalyebra € we note first that any vector
field T in the set {f,g1,...,gm} has the form 1(x) = Tx, where T is an
nxn matrix. If we want to take the Lie bracket of two vector fields

Tye Ty of the form

T1 (x) = T1X [ T2 (x) = sz
we have
[T1,T2](X) = (T,T4-TyTylx = [T1,T2]x
where [T1,T2] = (T2T1—T1T2) is the commutator of T, and T,.

On the basis of this observation, it is easy to set up a re-
cursive procedure yielding the smallest Lie subalgebra which contains
a set of vector fields of the form T1(x) = T1x,...,rr(x) = Trx.

(4..9) Lemma. Consider the nondecreasing sequence of subspaces of'mpxn,

the R-vector space of all nxn matrices of real numbers, defined by

setting

M, = span{T1,...,Tr}

Mg = Mp_, +span{l Ty, Tl ,...,[Tr,T]':T € My _q}

*
Then, there exists an integer k such that

E 3
for all k > k . The set of vector fields
L=t EVIRY:t(x) ==Tx, T € M 4}

is the smallest Lie subalgebra of vector fields which contains



78

T1(X) = T1x,...,’rr(x) = T .X.

Proof. The proof is rather simple and consists in the following steps.
*
A dimensionality argument proves the existence of the integer k such
*
that Mk = Mk* for all k > k . Then, one checks that the subspace Mk*
contains T1"“'Tr and any repeated commutator of the form

[Ti1""'[Tih 1’Ti 1] and is such that [P,Q]l € M, for all P € M, and

- h

Q€M ,.
Kk *

L is the desired Lie algebra. O

From these properties, it is straightforward to deduce that

Based on this result, it is easy to construct the Lie algebra C
by simply initializing the algorithm described in the above Lemma with
the matrices A,N1,...,Nm.

In this case, unlike the previous one, we cannot anymore give a
simple expression of Ac(x) and/or its maximal integral submanifolds.
In some special situations, however, like the one illustrated in the

following example, a rather satisfactory analysis is possible.
(4.10) Example. Consider the system
x = Ax + Nxu

where x € 1R3 and

0 1 0 0 4] 1
A= -1 0 0 N = 0 0 0
0 0 0 -1 0 0

An easy computation shows that

0 0 0
(A,N] =1 0 0 1

0 -1 0
[NI[AIN]] = A
[A,[a,N]l] = -N

Therefore, we have

c={tev®):it(x) =Tx, T € spani{a,N,[a,N] }}



79

To compute the dimension of AC we evaluate the rank of the matrix

%y x3 0
(ax,Nx,[a,N] x) = = 0 X4
a X4 TXg

and we find the following result

I
(=]

dim Ac(x) if x =0

i
o

dim Ac(x) if % #0

A direct computation shows that the maximal integral submanifold

of A, passing through x° is the set
{x E:R3:xf+x§+x§ =(x?)2+(xg)2+(xg)2}
i.e. the sphere centered at the origin passing through x°.

Therefore, we can say that the state of the system is not free
to evolve on the whole of Pp, but rather on the sphere centered at
the origin which passes through the initial state.

Around any point x ¥ 0 the distribution Ap is nonsingular, so we
can obtain locally a decomposition of the form I.(6.12), by means of
a suitable coordinates transformation.

To this end, we may make use of the construction introduced in
the proof of Theorem I.(3.3) and find a set of three vector fields
TyrTyrty with the property that T4 and 1, belong to AC and T1(x°),
TZ(XO), T3(XO) are linearly independent. I1f we consider an initial
point on the line

{x G]R3:x1 = x, = 0}

we may take the vector fields

T4 {x) = (Nx)
T, (%) = (la,N]lx)
"[3(}() =(0 0 N

Accordingly, we get
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{cos t)x1 + (sin t)x3
ol (x) =
gt® = )

-(sin t)x1 + {(cos t)x3
*1

(cos t)x2 + (sin t)x3
o2 (x) =
t
-(sin t)x2 + (cos t)x3

*1
3 -
@t(x) = Xy
t + Xq

The local coordinate chart around the point x® is given by the

inverse of the function

1 2 3
F : (z1,22,z3) U ®z1o©zzo¢z3(x

For x? = xg = 0 and xg = a we have

(sin 21)(cos 22)(z3+a)
F(z1,22,z3] = {sin zz)(z3+a)
(cos z1)(cos 22)(z3+a)

The local representations of the vector fields £ and g in the
new coordinate chart are given by
-1 -1
(Fg) £(F(2)})) (Fy) 'AF(z)

%(z)

li
I}

ff
fl

S(z) = 0 gFiz)) = (7 'NF(2)

A simple but tedious computation yields
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cos z,tg z, 1
%(z)= -gin Z4 ; a(z)= 4]
0 (4]

We conclude that around x° the system, in the 2z coordinates, is

described by the eguations

21 = cos z;tg z, + u
22 = -sin 2,
zy = 0 O

The study of the observability of a bilinear system is much
simpler. By means of arguments similar to those used in the case of

linear systems it is easy to prove that 0 is given by

0 = 1c{r €M) :A(x) = C.N. ...N, x

1 <1<, 12k <n=1; 02 3qp0eardy 2 m}

(with N, = A). Therefore

1 n-1 m
Qyx) = N n ker (CNy ...Ny )
k=0 Jyse.us3)=0 o1 k

The distribution Qt = Q is nonsingular and its maximal integral

submanifolds have the form x+W, where now

n-1 m
W= N n ker(CNj ...Nj )
k=0 J4seee0dy =0 1 k

It may be worth observing that the subspace W thus defined is
invariant under A,N1,...,Nm . is contained in ker(C) and is the largest
subspace of r" having these properties. From linear algebra we know
that by making a suitable change of coordinates in R" (see e.g. sec-
tion I.1) the matrices A,N1,...,Nm become block triangular and, the-
refore, the dynamics of the system becomes described by equations of

the form
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m
Agqxq tA %y +i£1(Ni,11x1 Ny 1%y

w
-—
]

K
f

m
2 T Bap¥o +iZ1Ni,22X2ui

Moreover, the output y depends only on the X, coordinates,

The above equations are exactly of the form I.(5.7), this time ob-

tained by means of standard linear algebra arguments.



CHAPTER III
INPUT-OUTPUT MAPS AND REALIZATION THEORY

1. Fliess Functional Expansions

The purpose of this section and of the following section is to
describe representations of the input-output behavior of a nonlinear
system. We consider, as usual, systems described by differential equa-
tions of the form

m
(1.1a) x = £(x) + ] g, (x)uy
i=1

(1.1b) V=

J=h](X) j=110-'11

Throughout the chapter, we systematically assume that the mani-
fold N on which the state evolves is an open set of R" and that the
vector fields f,g1,...,gm are analytie vector fields defined on N.
Likewise, the output functions h1,...,h£ are analytic functions de-
fined on N.

For the sake of notational convenience most of the times we re-

present the output of the system as a vector-valued function
- —_ 1
y = h(x) = (h1(x)...hl(x))

We require first some combinational notations. Consider the set
of m+1 indexes I = {0,1,...,m} (we represent here, as usual, indexes
with integer numbers, but we could as well represent the m+1 indexes
with elements of any set Z with card(Z) = mt+1). Let Ik be the set of
all sequences (ik...i1) of k elements ik""’i1 of I. An element of
this set Ik
we define also a set I

will be called a multiindex of lenght k. For consistency
0 whose unique element is the empty sequence
(i.e. a multiindex of lenght 0), denoted @. Finally, let

*
It is easily seen that the set I «can be given a structure of

free monoid, with composition rule

(ipenniy) Gpe.edq) Pl eigdpensig)
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with neutral element #.
A formal power series in mt+1 noncommutative indeterminates and

coefficients in R is a mapping
c: I — R

In w&at follows we represent the value of ¢ at some element ik...i0
of I with the symbol c(ik...io).

The second relevant object we have to introduce is called an
iterated integral of a given set of functions and is defined in the
following way. Let T be a fixed value of the time and suppose Uyreenrty
are real-valued piecewise continuous functions defined on [0,T]. For
each multindex (ik...io) the corresponding iterated integral is a

real~-valued function of t

t

E, (t) = J dii ...dii dgi
0

Lo -1qdy " 1 1

defined for 0 < t < T by recurrence on the lenght, setting:

Eolt) = ¢
t
Ei(t) = Jui(T)dT for 1 <i<m
0
and
t t T
ag., ...dg, = Jdi (T)Jdi. .. .dE
i k oo 4 Tk 4 ket 1o

The iterated integral corresponding to the multindex @ is the

real number 1.

(1.2) Example. Just for convenience, let us compute the first few

iterated integrals, in a case where m = 1.

Jdgo =t ; JdE1 = [u1(1)dr
0 0 0
t t t T

t2

[asgazy = 55 5 faggag, = [ [woracas
0 0 0 0
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t t t t T
fd€1d£0 = fu1(T)TdT; fd€1d£1 = (u1(T)Iu1(6)d8dr, etc, O
0 0 0 0 0

Given a formal power series in m+1 non-commutative indeterminates,
it is possible to associate with this series a functional of Uyreea il
*
by taking the sum over I of all the products of the form
t

c(ik...io)jdii ...dgi
2 k 0
The convergence of a sum of this kind is guaranteed by some growth

condition on the "coefficients" C(ik"’io)’ as stated below.

(1.3) Lemma. Suppose there exist real numbers K > 0, M > 0 such that

(1.4) le(dy..ig)| < K(k+) 1t

for all k > 0 and all multiindexes i,...i,.
Then, there exists a real number T > 0 such that, for each
0 <t < T and each set of piecewise continuous functions Ugronerly de-

fined on {0,T] and subject to the constraint

(1.5) max |ui(T)] <1,
' 0<T<T

the series
t
«® m
(1.6)  y(t) =c(@) + ] y clip...i )Idg. ...48E,
. . 0
k=0 ip,...,i,=0 b Tk *o
is absolutely and uniformly convergent.

Proof. It is easy to see, from the definition of iterated integral,

that, if the functions u,,...,u  satisfy the constraint (1.5) then

m
ft K+
4, ...dE, < i
1555y iy < TRFTIT

If the growth condition is satisfied, then
t

o . ) k+1
| 3 C(lk...lo)J dg, ...d%; | < k[M(m+1)t]
: s i i -
By e eerdg =0 b k 0

As a consequence, if T is sufficiently small, the series (1.6) con-
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verges absolutely and uniformly on [0,T}. O

The expression (1.6) clearly defines a functional of Ugreertp.
This functional is eaqusal, in the sense that y(t) depends only on the
restrictions of u,,...,u to the time interval [o0,t].

A representation of the form (1.6) is unigue.

b ; .
8 and ¢” be two formal power series in m+1 noncom~

(1.7) Lemma. Let c
mutative indeterminates and let the associated functionals of the
form (1.6) be defined on the same interval [0,T]. Then the two func-~
tionals coincides if and only if c® = cb. O

Proof. Let ca,cb be two formal power series and ya(t),yb(t) the as-

sociated functionals of the form (1.6). Note that
y(8) = y3 () -yP ()

is still a functional of the form (1.6) associated with a formal power
series ¢ whose coefficients are defined as differences between the
corresponding coefficients of c¢? and cb. To prove the lemma, all we
need is to show that if y(t) = 0 for all t € [0,T] and for all input
functions, all the coefficients of the series ¢ vanish.

If, in particular, uy=...=u =0 on [0,T], then y(t) = 0 for all
t €[0,T] implies

t2
C(g) + C(O)t + C(OO)—2T+.,_ = (

for all t € (0,T], i.e.

c(g) =0

c(0...0) =0 1<k <«
\_—&.,__J
k~times

Taking the derivative of (1.6) with respect to time and evaluat-

ing it at t = 0, one obtains

&y T
Gt =g = 'z c{i)u; (0)
i=1
Therefore, (%%)t=0 = 0 for all uy(0),...,u (0) implies

c(i) =0 1<i<m

Continuing this way, one may compute the second derivative of y(t) at
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t = 0 and get

d2 m m
(E%)FO = ) eligigug (0u; (0) + ) (c(0i)+e(i0)u, (0)
10,11=1 1 0 i=1

If this is zero for all u1(0),...,um(0), then

A

cliqig) =0 1< i40iy 2 m

c(0i) = -c(i0) 1<iz<m

In the third derivative, the contribution of terms

m
1 (c(Oi)JdEOdEi + c(iO)fdgidgo)

i=1
is

moq o 9y

2 [g c(0i) + 3 c(i0)] ('—d—t_)t=0

i=1

du,
If this is zero for all (i), _q » then ¢(0i) = -2¢(i0) which, toge-
ther with the previous equality c(0i) = -c(i0) implies
c(0i) = 0 1<i<m

Continuing in the same way, one may complete the proof. O

We are now going to show that the output y(t) of the nonlinear
system (1.1) can be represented as a functional of the inputsth,..”um

in the form (1.6). To this end we need some preliminary results,

(1.8) Lemma. Let 9gr9qr--+s9, be a set of analytic vector fields and
A a real-valued analytic function defined on N. Given a point x° € N,

consider the formal power series defined by

c(g) = A (x%)
(1.9)
. o _ o
C(lk...l110) =1L L ...Lg. A{x™)
0o M1 1k
Then, there exist real numbers K > 0 and M > 0 such that the growth

condition (1.4) is satisfied.

Proof. The reader is referred to the literature. O
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In view of this result and of Lemma (1.3), one may associate with

9grdqreeeedy and ) the functional

t
® m
(1.10) vi(t) = A (x°) + 7§ ) Ly, Lg «-Ig A(xo)JdEi -..dE, dEg
k=0 10,...,1k=0 i “iy i 0 k 1 0
(1.11) Lemma. Let 9gr9qr-+-+9y, be as in the previous Lemma and let

A1,...,A2 be real-valued analytic functions defined on N. Moreover,
let ¥ be a real-valued analytic function defined on Rx.

Let v1(t),...,v2(t) denote the functionals defined by setting, in
(1.10), A = A1,...,A = Al' The composition Y(v1(t),...,v£(t)) is again
a functional of the form (1.10), corresponding to the setting

A= Y(A1,...,A2).

Proof. We will only give a trace to the reader for the proof. Let
CyrC, denote the formal power series defined by setting, in (1.9),
A= A1 and respectively A = A2 , and let v1(t),v2(t) denote the as-
sociated functionals (1.10). Then, it is immediately seen that with
the formal power series defined by setting A = a1k1 + a2A2 , Where %y
and o, are real numbers, there is associated the functional

a1v1(t) + asvit).

With a little work, it is also seen that with the formal power
series defined by setting A = A1A2 , there is associated the func-
tional V1(t)V2(t). We show only the very first computations needed
for that. For, consider the product

t t

v1(t)v2(t) = (A1+L90A1jdEO+Lg1A1JdE1+Lg L
0

o gOA1JdEOdEO+...)
Q

t t
(AZ+LgOA2f dE T, }\2[ dE +L
o

t
LgOAZI dg,dgqt. . .)
0 0

9o
where, for simplicity, we have omitted specifying that the values of
all the functions of x are to be taken at x = x°. Multiplying term-

by-term we have
t t

V1(t)V2(t)=A1A2+()\1Lg A2+)\2Lg A1)Idgo+()\11:.g A2+A2Lg A1)Idg1 +
0 0 b 1 1 b
t
(A;+#L  L_ A,+A,L_ L A)Jdgdg +
1 9q 9o 272 95 9p 1 : 07°0
t t

Lg tg) g Ap) (Jodéo) (jodson. ..
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t t
The factors that multiply f dEO and f dg, are clearly Lg A1A2 and re-
0

spectively Lg A1A2. For the other three, we have
1

L L 2,A, = A4L_ L_ A +A,L_ L _ A, +2(L_ XA L. A
90 99 172 1 99 9¢ 22 99 g 1 ( 9 1)( = 2)
but also
t t t
(Idio)(JdEO) = Zfdiodéo
0 0 g

so that the three terms in guestion give exactly

t
LgoLgoA1A2 ldgodgo

It is not difficult to set up a recursive formalism which makes it
possible to completely verify the claim,

If now Yy is any real-valued analytic function defined on Rﬁ, we
may take its Taylor series expansion at the origin and use recursively
the previous results in order to show that the composition
Y(v1(t),...,v£(t)) may be represented as a series like the (1.10)
with A replaced by the Taylor series expansion of Y(A1,...,XQ). (]

At this point, it is easy to obtain the desired representation

of y(t) as a functional of the form (1.10).

(1.12) Theorem. Suppose the inputs Ugre-ory of the control system
(1.1) satisfy the constraint (1.5). If T is sufficiently small, then
for all 0 < t < T the j-th output yj(t) of the system (1.1) may be
expanded in following way

o o
(1.13) yj(t)=hj (x°) + ) Ly o+l hj(x )[dii .. odgy

& . . _p 9. :
k=0 10"“'lk_0 i, i 2 k 0

where dg = £.

Proof. We first show that the j-th component of the solution of the
differential eguation {1,1a) may be expressed as
t

_ o p n (o} [
(1.14)  xy(£)=x;(x)+ ¥ Y O %, (X )Odgi . 1

L P 9%, i x 1o

where the function xj(x) stands for
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Xj : (X,‘,-.-,Xn)l_—)xj

Note that, by definition of iterated integral

t t
3
- j4& _d&. ...4d8, = Jdg. eondE
dt 0771, 4 i, 9 ig
0 0
and
t t
3
= |d€&.dg, «..dg, = u.(t)fdi. «..ag
at 3 1774 4 ip i ! i, i,

for 1 < i < m. Then, taking the derivative of the right-hand-side of
(1.14) with respect to the time and rearranging the terms we have
t
@ m

. " o o
%5 (£)=Lexy (x )+Z _ ) Ly -eeLg Lex, (x )Jdgi <..df, F
i k ¢
k 0
t
If[ © of If (x° ag, |1

+ L x.(x")+ L oL Lox.(x )Jdg. «..dE. Ju,(t)
i=1 93 7 k=0 ig, .0 iy =0 Fig 9, 91 y Tk ot
Now, let fj and gij denote the j-th components of £ and gy v

1 <3 <n, 1 <i<mand observe that

fo. = fj(x1,...,x )

J ol

Therefore, on the basis of the Lemma (1.11), we may write

o OZO m o (E

Lexs {x) + ) L ...L Lx.(x)JdE. L..dg, =
£ . . . .

d k=0 10,...,1k=0 glo glk £73 b e o

t

(o] o m (o]

fj(x ) + 20 ) 2 Lg' ...Lg' fj(x )Jdgi N
k= 10"“'lk=0 i, i 5 k 0

fj(x1(t),...,xn(t))

A similar substitution can be performed on the other terms thus yield-

ing

m
x5 (8) = fj(x1(t),...,xn(t))+i£1 935 (Xq (8)rvanrx (£))0, (E)



9

Moreover, the xj(t) satisfy the condition

_ .0
xj(O) = xj

and therefore are the components of the solution x(t} of the differ-
ential equation (1.1a).

A further application of Lemma (1.11) shows that the output (1.1b)
can be expressed in the form (1.13). O

The development (1.13) will be from now on referred to as the
fundamental formula or Fliess functional expansion of yj(t). Ob-
viously, one may deal directly with the case of a vector-valued output
with the same formalism, by just replacing the scalar-valued function
hj(x) with the vector-valued function h(x). We stress that, from Lemma

(1.3), it is known that the series (1.13) converges absolutely and
uniformly on [0,T).

(1.15) Remark. The reader will immediately observe that the functions
*
hj(x) and Lg R A hj(x), with 1 < j < & and (i .io) € (I \IO),
0 ‘x

i
whose values at x° characterize the functional (1.13), span the ob-

K**

servation space 0 defined in section II.3. O

(1.16) Examples. In the case of a linear system, the formal power

series which characterizes the functional (1.13) takes the form

c(g) = c.x°
]
k+1_ o . . i
ch X if ig = «o. =1 = 0
c(i in) = c Akb if i, # i, = =i =0
k*"""0 j i0 0 1 et k
0 elsewhere

In the case of a bilinear system, the formal power series which
characterizes the functional {1.13) takes the form

c(g) = cjxo

. . _ o
C(lk...lo) = ch. ...Ni bd

1y 0

where N0 =a,.0
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2, Volterra Series Expansions

The input-output behavior of a nonlinear system of the form (1.1)
may also be represented by means of a series of generalized convolu-
tion integrals. A generalized convolution integral of order k is de-
fined as follows. Let (ik...i1) be a multiindex of lenght k, with

ik,...,i1 elements of the set {1,...,m}. With this multiindex there
is associated a real-valued continuous function L i defined on
k+1 k*"" ™1

the subset of R

k+1 > 0}

S = Lt,1 ,..,1,) ER T>t> T 0027, >

k 1
where T is a fixed number. If Upreensu are real-valued piecewise con-
tinuous functions defined on [0,T], the generalized convolution in-

tegral of order k of u,,...,u with kernel w, . is defined as
1 m ipesedy

(Tk) ...ui1 (T1)dT1 condTy

for 0 < t < T.
For consistency, if k = 0, rather than a generalized convolution
integral, one considers simply a continuous real-valued function vy

defined on the set

Sp = {tE€R:T >t > 0}
The sum of a series of generalized conveolution integrals may de-

scribe a functional of Vyreoasy under the conditions stated below.

(2.1} Lemma. Suppose there exist real numbers K > 0, M > 0 such that

(2.2) v (i tyseenrtyd| < KOO 1M

ik...i1

for all k > 0, for all multiindexes (ik...i1), and all (t,Tk,“.,T1)€Sk.
Then, there exists areal number T > 0 such that, for each

0 < t < T and each set of piecewise continuous functions Ugre.-su

m
defined on {0,7] and subject to the constraint

{2.3) max {u.(t)] < 1,
O<t<T *

the series



0

(2.4)  y(t) =wg(t)+ }

ui1(11)dr1...drk

k=1 11,..I§,ik=1 '(f[w

. (t,rk,...,T1)uik(Tk)...

ieeeiy

is absolutely and uniformly convergent.

Proof. It is similar to that of Lemma (1.3). O

ee s U,

The expression (2.4) clearly defines a functional of Uy, n

which is causal, and is called a Volterra series expansion.

As in the previous section, we are interested in the possibility

of using an expansion of
linear system (1.1). The

pressions of the kernels

(2.5) Lemma. Let f,g1,.
A a real-valued analytic

flow of f. For each pair

the form (2.4) for the output of the non-
existence of such an exXpansion and the ex-

may be described in the following way.

< er9pn be a set of analytic vector fields and

function defined on N. Let @i denote the

(t,x) €ER xN for which the flow ¢£(x) is

defined, let Qt(x) denote the function

(2.6) 0, (x) = Aeof(x)

and Pl(x),...,?ﬂ(x) the vector fields

i _ £ £

(2.7) Pt(x) = (@_t)* giu¢t(x)
1 < i < m. Moreover, let

] - o
(2.8") wolt) = 0, (x7)
(2.8") wik___i1(t,1k,...,T1)=(L i ...L i Q.(x)),_.0

P_ (x) P " (x)
T Ty
Then, there exist real numbers K > 0 and M > 0 such that the

condition (2.2) is satisfied. O

From this result it is easy to obtain the desired representation

of y(t) in the form of a Volterra series expansion.

(2.9) Theorem. Suppose the inputs Ugseeerly of the control system (1.1)
satisfy the constraint (2.3). If T is sufficiently small, then for all

0 < t < T the output yj(t) of the system (1.1) may be expanded in the
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form of a Volterra series, with kernels (2.8), where Qt(x) and Pi(x)
are as in (2.6)-(2.7) and X = hj. a

This result may be proved either directly, by showing that the
Volterra series in question satisfies the equations (1.1), or indirec-
tly, after establishing a correspondence between the functional ex-
pansion described at the beginning of the previous section and the
Volterra series expansion. We take the second way.

For, observe that for all (ik...i1) the kernel w, .(t,ﬁd...,H)

ceely
is analytic in a neighborhood of the origin, and consider the Taylor

series expansion of this kernel as a function of the variables

t—Tk,Tk-Tk_1,...,TZ-T1,T1. This expansion has clearly the form

n n n
o n....n, {(t=-1,.) k..-(T -T,) 1T 0
0 k k 2 1 1
W, e, T e T )= ) . .
1g---1q k 1 n n, =0 Tk++'tq n, ! n,!n,!
0"+ My kireenging!
where
—an0+,,.+nk .
Ng...np _ fee-eiy
ik...i1 n n no

k 1
B(t-Tk) ...B(r2—11) 811

t-1k=...=12—11=11=0

If we substitute thig expression in the convolution integral asso-

ciated with W, . ¢ we obtain an integral of the form
ko iq
n n n
® no...nk t Tk T (t—Tk) k (TZ-T“ 1 T10
Z c, - e —_—u. (1)...—~————u, (14)=dr ...dT
i, ...1 n, 1 i, “k n,! i, 1'n. k 1
nO"'nk=0 k 1 20 0 k k 1 1 0

The integral which appears in this expression is actually an
iterated integral of UyreeerUp oy and precisely the integral
t
g
(2.10) [(dgo) dgi ...(dgo)
k
0

n n

lag, tagy °
1

(where (d&o)n stands for n-times dio).
Thus, the expansion (2.4) may be replaced with the expansion

«

t
y(€) s J (ag,"
n=0
e T WE N " .
Lo ] ’ @ty ...y gy @) °
1

c,0 J (dE..)
k=1 iq...4=1 nglon=0 %t Jo 0
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vhich is clearly an expansion of the form (1.6). Of course, one could

rearrange the terms and establish a correspondance between the coef-

...n
ficients co,c "o ik (i.e. the values of the derivatives of W and
e 1
W, . at t—Tk=. 2 T1 =0) and the coefficients c(g), C(HV..IM

i e..d
ofkthe ;xpansion {(1.6), but this is not needed at this point.

On the basis of these considerations it is very easy to find
Taylor series expansions of the kernels which characterize the Volterra
series expansion of Yy (t). We see from (2.11) that the coefficient
022:::2T of the Taylor series expansion of w, k"'i1 coincides with
the coefficient of the iterated integral (2.10) in an expansion (1.6),

but we know also from (1.13), that the coefficient of the iterated
integral (2.10) has the form

L RS LIS Sl ) Lnkh.(xo)

£ i R 95 £

1 k
This makes it possible to write down immediately the expressions of
the Taylor series expansions of all the kernels which characterize

the Volterra series expansion of y. (t).

3
1'1
(2.12a) w,(t) = Z L h (x° )——
n n
o 0 n (t—1 1 T 0
(2.12b)  w(t,7y)= | ] Lfo f1h (x )———1 n1.
n1=0 9 =0 g 1 0°
k) M B
® o n n (t-1,) “(t,-1,) 7
(2.12¢) w; ; (t'TZ'T =7 ) Z L f1L szh.(xo) i n -i ,1 1
214 n,=0 n,=0 n —O 11 gi2 J 27700

and so on,

The last step needed in order to prove Theorem (2.9) is to show
that the Taylor series expansions of the kernels (2.8), with Qt(x)
and Pt(x) defined as in (2.6),(2.7) for 1 = hj(t) coincide with the
expansions (2.12).

This is only a routine computation, which may be carried out with
a little effort by keeping in mind the well-known Campbell- Baker-Haus—
dorff formula, which provides a Taylor series expan51on of P (x). Ac-
cording to this formula it is possible to expand P {x) in the follow-

ing way

8

i f t
Pr(x) = (010, gye(0(x)) = | adfg, (x) 7

n=0
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n-1
£ g
(2.13) Example. In the case of bilinear systems, the flow @E may be

where, as usual, ad?g Alf,aa ] and ad%g = g.

clearly given the following closed form expression
£ -
@t(x) = (exp At)x

From this it is easy to find the expressions of the kernels of the

Volterra series expansion of yi(t). In this case

Qt(x) = cj(exp At)x
Pi(x) = (exp(-At))N, (exp At)x
and, therefore,
= o
wo(t) = cj{exp At)x

wi(t,r1) = cj(exp A(t—T1))Ni(exp AT1)XO
o
W, .1(t,r2.r1) =cj(exp A(t—TQ)Niz(exp A(TZ—T1))Ni1exp(AT1)x

121

and so on.

3. Output Invariance

In this section we want to find the conditions under which the
output is not affected by the input. These conditions will be used
later on in the next chapter when dealing with the disturbance de-
coupling or with the noninteracting control.

Consider again a system of the form
. m
x = £(x) +'z g; (x)uy
i=1
Yy = hj(x) (1 =1,...,2)
and let
yj(t;xo;u1,...,um)

denote the value at time t of the j-th output, corresponding to an
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initial state x° and to a set of input functions Ugseansu . We say
that the output yj is unaffected by (or imvariant under) the input u
if for every initial state x° € N, for every set of input functions

“1""'“1-1'“i+1""'“m , and for all t
(3.1) yj(t;xo;u1,...,ui_1,va,ui+1,...,um) =

(o}
yj(t;x PUgrecerls 4,V ,ui+1,...,um)
for every pair of functions v?® and vb.

There is a simple test that identifies the systems having the
output yj unaffected by the input u; .
(3.2) Theorem. The output Y5 is unaffected by the input ug if and
only if, for all r > 1 and for any choice of vector fields Tqre-er Ty
in the set {f,g1,...,gm}

(3.3) Lg Lo ...L; hj(x) =0

for all x € N.

Proof. Suppose the above condition is satisfied. Then, one easily

sees that the function

(3.4) LT1...LT hj(x) =0

r
is identically zero whenever at least one of the vector fields
TyreeerTy coincides with g- If we now look, for instance, at the
Fliess expansion of yj(t), we observe that under these circumstances

c(ik...io) =0

whenever one of the indexes iO"“'ik is equal to i, and this, in

turn, implies that any iterated integral which involves the input

function uy is multiplied by a zero factor., Thus, the condition (3.1}

is satisfied and the output yj is decoupled from the input u, .
Conversely, suppose the condition (3.1) is satisfied, for every

L € N, for every set of inputs Ugreoary e85 qscess and every

0 for all t.

. . : o a
Then in the Fliess expansion of yj(t;x PUgreearUy_qeV ,ui+1,...,um)

(=1

air of functions v® and vb. Take in particular va(t)
P
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an iterated integral of the form

t

dg, ...d&,
1y to

O

will be zero whenever one of the indexes io,...,ik is equal to i, All
other iterated integrals of this expansion (i.e. the ones in which

none of the indexes io,...,ik is equal to i) will be equal to the cor-
responding iterated integrals in the expansion of yj(t;xo;u1,...,ui_v

b .
V7 sUjiqr--.su) because the inputs Wyreeorly_qu --ru  are the

i+ e
same. Therefore, we deduce that the difference between the right-hand-

side and left-hand-side of (3.1) is a series of the form

o m t
) ) cli, .. iy ) f ag. ...dg,
. . 0
K=0 ig,.s. iy =0 k )k 1o

in which the only nonzero coefficients are those with at least one of
the indexes io""’ik equal to i, The sum of this series is zero
for every input UqreoorUy 4oV Uy qreverU. Therefore, agcording to

Lemma (1.7), all its coefficients must vanish, for all x~ € N. We con-

clude that (3.4) and, accordingly, (3.3) are satisfied for all x€N. O

The condition (3.3) can be given other formulations, in geometric
terms. Remember that, in section 1, we have already observed that the
coefficients of the Fliess expansion of y{t) coincide with the values
at x°% of functions that span the observation space 0. The different-

ials of these functions span, by definition, the codistribution
Qy = sp{di:x € 0}

If we fix our attention only on the j=th output, we may in particular
define an observation space Oj as the smallest subspace of c” (N) which
contains the function hj and is closed under differentiation along

f,g1,...,gm. Therefore, the set of differentials dhj,dL T hj(x)

g 93

with i ,...,1i, €I and j fixed spans the codistribution *0 1x

0
Qaj = sp{dr:x € Oj}

Now, observe that the condition (3.3) can be written as

(dhj,gi Y(xJ =0
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{daL ...L hj,gi)(x) =0

for all k > 0 and for all ik,...,i0 € I. From the above discussion we
conclude that the condition stated in Theorem (3.2) is equivalent to
the condition

(3.5) g, € a5
J

Other formulations are possible. For, remember that we have shown
in section IXI.3 that the distribution QE is invariant under the vector
fields f,g1,...,gm. For the same reasons, also the distribution 96. is
invariant under f,g1,...,gm. J

Now, let (f,g1,...,gmlsp{gi}) denote, as usual, the smallest di-
stribution invariant under f,g1,..‘,gm which contains sp{gi}. If (3.5)

. . 1, : .
is true, then, since Qo is invariant under f,g1,...,gm , we must have
b

(3.6) C£,94...,9,lsplg;}) C af
]

Moreover, since

Q% C sp{dh.}L
3 J

we see also that if (3.6) is true, we must have
L
(3.7 C£,94s+0009,lsplg;) ) C (sp{dhj})

Thus, we have seen that (3.5) implies (3.6) and this, in turn,
implies (3.7). We will show now that (3.7) implies (3.5} thus proving
that the three conditions are in fact equivalent,

For, observe that any vector field of the form [T,gi] with
T € {f,g1,...,gm} is by definition in the left-hand-side of (3.7).

Therefore, if (3.7) is true,

0 = {dh, D=11L_h.-L_ L h,
5r0Tras = Dby hyoLg Lohy

But, again from (3.7), g5 € (sp{dhj})L s0 we can conclude
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g; € (sp{dLThj})L

By iterating this argument it is easily seen that if Tpere==rTy is

any set of k wvector fields belonging to the set {f,g1,...,gm}, then

1
(3.8) q; € (Sp{dLTk"’Lr1hj})

From the Remark II.(3.4), we know that Oj consists of R-linear

k"'LT1hj , with
T, € {fi9qrevergyds 1 24 <k, 1 <k <, Thus, from (3.8) we deduce

combinations of functions of the form hj or LT

that g; annihilates the differential of any function in Oj , i.e. that
{3.5) is satisfied.

Summing up we may state following result

(3.9) Theorem. The output yj is unaffected by the input uy if and only

if any one of the following (equivalent) conditions is satisfied

1) 93 € 9.
3
ii) (£,9.7...,9 |spig.} ) C (splan.}h)*-
1 m i 3
L
111) <f,g1,...,gm]5p{gi}> C QO.
j

(3.10) Remark. It is clear that the statement of Theorem (3.2) can be
slightly modified (and weakened) by asking that

L_h.(x) =0
9,3

L L_ ...L h.{x) =20
95 M Ty 3

for all r > 1 and any choice of vector fields Tyre-erTy, in the set
{f,g1,...,gi_1rgi+14-~-:gm}-

Accordingly, the statement of Theorem (3.9) could be modified by
taking into consideration, instead of (f,g1,...,gm|sp{gi}) , the smal-
lest distribution containing 93 and invariant under the vector fields
f,g1,...,gi_1,gi+1,-.-,gm . Consistgntly, instead of Oj , one should
consider the smallest subspace of C (N) containing hj and closed under

differentiation along the vector fields f,g1,...,gi_1,gi+1,...,gm.

{3.11) Remark. Suppose (f,g1,...,gm[sp{gi}) and Qb, are nonsingular.
J
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Then both distributions are also involutive (see Lemmas I.(6.6),I.(7.6)
and Remark II.(3.7)).If the condition (iii) of Theorem (3.9) is sa-
tisfied, then around each point x € N it is possible to find a coord-
inate neighborhood U on which the nonlinear system is locally repre-

sented by equations of the form

m
SIRESRETESY +k£1 ieq (RqeX) Wy T g, (xqoxy)uy

k#i

m
%y = Tplxp) * 1 gyp (xg)uy
k#i

vy = hj(x2)
from which one sces that the input u; has no influence on the output
Yy |

Suppose there is a distribution A which is invariant under the
vector fields f'g1""'gm , contains the vector field 95 and is con-
tained in the distribution (sp{dhj})L. Then

(£,9;s...19,lsplg ) C A C (sp{dhj})l'-

We conclude from the above inequality that the condition (ii) of
Theorem (3.9) is satisfied. Conversely, if condition (i) of Theorem
(3.9) is satisfied, we have a distribution, Qé , which is invariant
under the vector fields f,g1,...,gm B containsjgi and is contained in
(sp{dhj})L. Therefore we may give another different and useful formu-

lation to the invariance condition,

(3.12) Theorem. The output yj is unaffected by the input u, if and
only if there exists a distribution A with the following properties

(i) A is invariant under f,g1,...,gm

(i) g; €8 C (sp{dhj})L 0

(3.13) Remark. Again the condition (i) may be weakened by simply asking
that

(i') A is invariant under f’91""’gi—1'gi+1"“'gm

Note that this implies that if there exists a distribution A with the
properties (i') and (ii) there exists another distribution A& with the

properties (i) and (ii). O

We leave to the reader the task of extending the previous result

to the situation in which it is required that a specified set of out-
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puts yj ,...,yj has to be unaffected by a given set of inputs
1 e
Ui y...suy . The conditions stated in Theorem (3.2) remain formally
1 ]
the same, while the ones stated in Theorems(3.9) and (3.12) require

appropriate modifications.
In concluding this section it may be worth observing that in

case the system in guestion reduces to a linear system of the form

. m

X = Ax + ) b.u,
. ii
i=1

Y. = cjx 3= 1,004

ch b, =0 for all k > 0

The conditions (i), (ii), (iii) of Theorem (3.9) become respectively

n-1 k
bi € N ker(c.A™)
k=0 J

n-1 n-1

J m@*p) ¢ n

ker(c.Ak)
k=0 k=0 J

n-1 K
z Im(A bi) C ker(c.)
k=0 J

These clearly imply and are implied by the existence of a subspace V

invariant under A and such that

b. C v C ker(c.).
i J

4. Left-Invertibility

In this section we consider the problem of finding conditions
which ensures that, in a given system, different input functions pro-
duce different output functions. If this is the case then the input-
output map is invertible from the left and it is possible to recon-
struct uniquely the input acting on the system from the knowledge of
the corresponding output. Since, as we know, the input-output map of
a nonlinear system depends on the initial state xo, one has to in-

corporate the dependence on the initial state into a precise defini-



103

tion of invertibility.
A system is left-invertible at x° if whenever u?® and ub are two
different input functions

y(t;x%;u?) # y(t;xo;ub)

for at least a value of t > 0.

We restrict our attention to systems with a scalar-valued input
(but possibly vector-valued output) because this case can be dealt
with relative ease. Thus our system will be described by the equations

% = £(x) + g(x)u
(4.1)

. = h. 1 <3 < g
Y J(X) <3<

© is the fol-

A simple sufficient condition for invertibility at x
lowing one.

(o]

(4.2) Lemma. The system (4.1) is left-invertible at x~ if for some in-

teger ko > 0 and some 1 < j < %

k
(o) o
{4.3) LgLf hj(x ) #£0

(4.4) Lgth (x) =0

for all x € N and for all 0 < k < ko

Proof. Suppose that u? and ub are two different analytic input func-

tions. Then, there exists an integer r such that

afu?

(4.5) (dtr t=0 %

att t=0
Now, let r, denote the smallest integer such that (4.4) is satisfied.
We will show that the (k + r, + 1)-th derivatives of Y, (t;x°;u?) and
of ¥; (t; x° ;u ) with respect to the time t are different at t = 0, so
that we may conclude that the two output functions, which are analytic,
are different.

For, remember that the coefficients of the Fliess expansion of

yj(t;xo;ua) have the expression
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hy (x°)

L L ...L h-(xo)
. . .3
g]o g]-l g]k

where, in this case, O_ijo,...,jk < 1 and 9 = £, 94 = g. From (4.4}
we have that the only possibly nonzero coefficients in the series are

those in which:

- either j0 = ... = jk =

- or k > ko and ]k_ko+1 = .. =

These coefficients multiply iterated integrals which either do
not contain the input function, or have the form

t

Idgo...dgodaj .. odE,
0 o)

—_—

ko-tlmes

Let's now take the k-th derivatives of the function yj(t;xo;u)
with respect to t and evaluate them at t = 0. It ig clear from the
structure of the iterated integrals that only those terms of Fliess
series whose index has a lenght smaller than or equal k will contri-
bute, because all terms whose index has a lenght greater than k wvanish
at t = 0. Thus we have

dko+ro+1
75 _
k +r +1 -
at © © £=0
ko 1 k . d{gﬂ t
=7 I Ly ---Lg Lfohj(x) 0 Jdgj - dEy
k=0 Jg,...r3, =0 73 Iy o p k olt=0
At this point, we observe that
r +1 t r
a° ac _la Cu(w)
ro+1 1 . r
at 0 £=0 at @ je=0

and that all other (r0+1)—th derivatives of the iterated in-
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tegrals depend only on u{0},G(0), up to the (r0-1)-th derivative of
u(t) at t = 0.
Therefore, since

dkub

Yiig = (=)o
dtk t=0 dtk t=0

for all 0 < k i_ro-—1, we conclude

kX +r +1 k +r +1
o "o

d Yj(t;xo;ua)l ( a® °
=0 at

k +ro+1
at © =

k o a o b
- o o d "u _fd Tu
= LgLf hj(x ) T = #0
t=0 % Jt=0

yj(t;xo;ub)J
k +r +1
[e] o £=0

dt dt

This completes the proof. O

The condition of Theorem (4.3) may fail to be necessary for left
invertibility at a given xo, but it happens to be necessary and suf-
ficient for a stronger notion of invertibility. For, suppose there
exists an integer k_ such that the conditions (4.3) and (4.4) are sa-
tisfied for some x°. Then, there exists a neighborhood U of x° such
that

k
L L

o, =
g ¢ hj(x) #0

for all x € U and this together with (4.4) implies - according to our
previous theorem - that the system is left invertible at all points
x of U. Conversely, suppose we cannot find an integer k0 such that

(4.3) is satisfied for some x°. This implies that

k
L L:h.{(x) =0
SR
for all k¥ > 0 and for all 1 < j < #. This in turn implies that all

the coefficients of Fliess expansion of y(t) vanish but the ones in
which only differentiations along the vector field f occurr. Under

these circumstances we have

k
k t
th(X)ET

i~ 8

y(it) =
k=0

and there is no x for which the system is left-invertible.

Thus, we may state the following result
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(4.6) Theorem. There exists an open subset U of N with the property
that the system is left invertible at all points x of U if and only

if there exists an integer k > 0 such that

LgL?hj(xo) # 0
for some x° € N and some 1 < j < 2. O

0f course, the system being analytic, if the condition (4.3) is
satisfied at some x°, then it is satisfied on an open subset U of N
which contains x° and is dense in N. Therefore the existence of an
integer k such that the condition (4.3) is satisfied for some x° EN
and some 1 < j < & is actually necessary and sufficient for the ex-
istence of an open subset U dense in N with the property that the

system is invertible at all x € U.

5. Realization Theory

The problem of "realizing"” a given input-output behavior is
generally known as the problem of finding a dynamical system with
inputs and outputs able to reproduce, when initialized in a suitable
state, the given input-output behavior. The dynamical system is thus
said to "realize", from the chosen initial state, the prescribed

input-output map.

Usually, the search for dynamical systems which realize the
input-output map is restricted to special classes in the universe of
all dynamical systems,depending on the structure and/or properties
of the given input-output map. For example, when this map may be re-
presented as a convolution integral of the form

t
y(t) = (w(t—r)u(r)dt
0

where w is a prescribed function of t defined for t > 0, then one

usually looks for a linear dynamical system

x = Ax + Bu
y = Cx
able to reproduce, when initialized in x° = 0, the given behavior.

For this to be true, the matrices A,B,C must be such that

C exp(At)B = w(t)
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We will now describe the fundamentals of the realization theory
for the (rather general) class of input-output maps which can be re-
presented like functionals of the form (1.6). In view of the results
of the previous sections, the search for "realizations" of this kind
of maps will be restricted to the class of dynamical system of the
form (1.1).

From a formal point of view, the problem is stated in the fol-
lowing way. Given a formal power series in m+1 noncommutative in-
determinates with coefficients in:Rg, find an integer n, an element
x° of Rn, m+1 analytic vector fields 9gr9qr=rr9y and an analytic
f-vector valued function h defined on a neighborhood U of x° such that

h(x°) = c(g)

L L ...L_ hx°) =c(i
g; 9 9
19 "4 T

Ko e eiqig)

1f these conditions are satisfied, then it is clear that the

dynamical system

.
1

m
gq (%) +i£1gi(X)ui

y = hi{x)
initialized in x° € ¥ produces an input-output behavior of the form
ylt) =c(@) +§  } c(Jk...jO)JdEk...dEO
k=0 30...]k=0 0

In view of this, the set {go,g1,...,gm,h,x°} will be called a
realization of the formal power series cC.

In order to present the basic results of the realization theory,
we need first to develop some notations and describe some simple al-
gebraic concepts related to the formal power series. In view of the
need of dealing with sets of series and defining certain operations on
these sets it is useful to represent each series as a formal infinite
sum of "monomials". Let ZorZqreer2y denote a set of mt+1 abstract non
commutative indeterminates and let 2 = {zo,z1,...,zm}. With each multi-
index (ik...io) we associate the monomial (zik...zi )} and we represent

the series in the form 0

o m
(5.1 c=c(g) + ] ) clig...ifg)z,; ...z,
k=0 i,.0.=0 &0 T
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The set of all power series in m+1 noncommutative indeterminates
(or, in other words, in the noncommutative indeterminates ZO,...,zm)
and coefficients in r® is denoted with the symbol:Rz((Z }). A special
subset of R (2 )} is the set of all those series in which the number
of nonzeroc coefficients (i.e. the number of nonzero terms in the sum
(5.1)) is finite. A series of this type is a polynomial in m+1 non-
commutative indeterminates and the set of all such polynomials is
denoted with the symbolimﬂ<z ). In particular R{Z }is the set of all
polynomials in the m+1 noncommutative indeterminates ZgreserZy and
coefficients in R.

An element of R{(2 )} may be represented in the form

d m
(5.2) p=rp(@ +7J 1 Pli,..0if)z, ...z,
K20 ig.L.i=0 %O

where d is an integer which depends on p and p(ﬂ),p(ik...io) are real
numbers.

The sets R(Z ) and R™(z)) may be given different algebraic struc-
tures. They can clearly be regarded as R-vector spaces, by letting
R-linear combinations of polynomials and/or series be defined coef-
ficient-wise. The set R{Z ) may also be given a ring structure, by
letting the operation of sum of polynomials be defined coefficient-
wise (with the neutral element given by the polynomial whose coeffi-
cients are all zerco) and the operation of product of polynomials de-
fined through the customary product of the corresponding representa-
tions (5.2) (in which case the neutral element is the polynomial whose
coefficients are all zeros but p(@) which is egual to 1). Later -on, in
the proof of Theorem (5.8), we shall also endow R(Z ) and RM(z )) with
structures of modules over the ring R(Z }? but, for the moment, those
additional structures are not required.

What is important at this point is to know that the set R(Z ) can
also be given a structure of a Lie algebra, by taking the above-men-
tioned IR-vector space structure and defining a Lie bracket of two poly-
nomials P4+Py by setting [p1,p2] = DPyPq ~ PqPp- The smallest sub-
algebra of R(Z ) which contains the monomials Zgs...riZy Will be de-
noted by L(Z). Clearly, L(Z) may be viewed as a subspace of the R-
vector space R{Z ), which contains ZaresorZy and is closed under Lie
bracketing with ZO""'zm‘ Actually, it is not difficult to see that
L(2} is the smallest subspace of R{Z } which has these properties.

Now we return to the problkem of realizing an input-output map
represented by a functional of the form (1.6). As expected, the ex-
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istence of realizations will be characterized as a property of the
formal power series which specifies the functional. We associate with
the formal power series c two integers, which will be called, fol-
lowing Fliess, the Hankel rank and the Lie rank of c. This is done
in the following manner. We use the given formal power series c to

define a mapping

F Rz ) - R%(z »

in the following way:

a) the image under Fo of any polynomi?l in the set Z*=
= {zj RS ER(Z ):(jk...jo) €1} (by definition, the polyno-
mial gssocigted with the multiindex @ € I* will be the polyncmial
in which all coefficients are zero but p(f) which is equal to 1,
i.e. the unit of R{(Z })) is a formal power series defined by setting

[Fc(zjk...z.o)](ir...io) =c(i ...ig Jy--.3p)

]
. 3 *
for all Jx---3p €I1.

b) the map F_ is an R-vector space morphism of R(z ) into RM¢z M),

Note that any polynomial in R(Z ? may be expressed as an R-linear
combination of elements of Z* and, therefore, the prescriptions (a)
and (b) completely specify the mapping Fg-

Looking at F, as a morphism of R-vector spaces, we define the
Hankel rank pglc) of ¢ as the rank of F, , i.e. the dimension of the

subspace
F_R(Z e wr¥(z )

Moreover, we define the Lie rank pL(c) of ¢ as the dimension of

the subspace
FoL(2)) CRM(2 )

i,e. the rank of the mapping FC L(z) *

(5.3) Remark. It is easy to get a matrix representation of the mapping
Fc' For, suppose we represent an element p of R(Z ) with an infinite
column vector of real numbers whose entries are indexed by the elements
o£.I* and the entry indexed by jk"'jo is exactly p(jk...jo). of course,

p being a polynomial, only finitely many elements of this vector are



110

nonzero. In the same way, we may represent an element ¢ of r¥<z »

with an infinite column vector whose entries are f-vectors of real
*

numbers, indexed by the elements of I and such that the entry in-

dexed by i ...iO is c(ir...io). Then, any R-vector space morphism de-~

fined onZR{Z ) with values in RX{z ) will be represented by an in-
finite matrix, whose columns are indexed by elements of I* and in
which each block of & rows is again indexed by elements of I*. In
particular, the mapping F_ will be represented by a matrix, denoted
H_ , in which the block of % rows of index (ir...io) on the column of

index (jk...jo) is exactly the coefficient
c(ir...iojk...jo)

of c. We leave to the reader the elementary check of this statement.
The matrix H, is called the Hankel matrix of the series c. It
is clear from the above definitions that the rank of the matrix HC

coincides with the Hankel rank of FC. O

(5.4) Example. If the set I consists of only one element, then it is
*

easily seen that I can be identified with the set zt of the non-

negative integers numbers. A formal power series in one indeterminate

with coefficients in R, i.e. a mapping

may be represented, like in (5.1), as an infinite sum

b k
c=}] c.z
k=0 K

and the Hankel matrix associated with the mapping Fc coincides with

the classical Hankel matrix associated with the sequence CprCpee-

Co C1 C2 . v

0 = C1 C2 C3 o
C

C2 C3 C4 R

O

The importance of the Hankel and Lie ranks of the mapping Fg

depends on the following basic results.

{5.5) Lemma. Let f,g1,...,gm,h and a point x° € R" be given. Let AC
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be the distribution associated with the control Lie algebra C and Qo
the codistribution associated with the observation space 0. Let K(xo)
denote the subset of vectors of Ac(xo) which annihilate Qo(xo) i.e.

the subspace of T 6Rn defined by
X

K(x%) = 4,(x%) N s%<x°) ={lv € 8,(x%: (ax(x%),v)=0 wr € 0}

Finally, let c be the formal power series defined by
{5.6a) c(g) = n(x%)

. . _ o
(5.6b) c(1k...10) = Lgio...Lgikh(x )

with 9 = f. Then the Lie rank of c has the value

Ac(xo)

p. (c) = dim A, (x°)~dim K(x°) = dim
t ¢ 8o (%) N 25 (x°)

Proof. Define a morphism of Lie algebras
n
w s L(z) > VR
by setting
niz;) = g5 0<izm

Then, it is easy to check that if p is a polynomial in L(Z) the

...L h(x°). Thus, the

(1k..,10)—th coefficient of Fc(p) is Lu(p)Lgi glk
0

series Fc(p) has the expression

L m
h(x®) + J

..L h(x%)z, ...z,
k(p) k=0 i i

) L L.
ey =0 u(p) gio q. k i

Fc(p) =L
Ty

Ol' 0

If we let v denote the value of the vector field u(p) at x°, the above

can be rewritten as
o o ¥ o
F (p) ={ah(x),v )+k£0 . ) . =0(dLgi ...Lgi h(x ),v>zik...ziO
0’7k 0 k
When p ranges over L[(Z), the tangent vector v takes any value in
Ac(xo). Moreover, the covectors dh(xo),...,dLg ...Lg h(x°),...
i i
0 k
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span Qo(xo). This implies that the number of R-linearly independent
power series in Fc(L(Z)) is exactly egual to

aim 4, (x%)-dim Ba(x%) N QJ(;(XO)

and this, in view of the definition of Lie rank of Fc . proves the

claim. O

We immediately see from this that if an input-output functional
of the form (1.6) is realized by a dynamical system of dimension n,
then necessarily the Lie rank of the formal power series which specify
the functional is bounded by n. In other words, the finiteness of the
Lie rank pL(c) is a necessary condition for the existence of finite-
dimensional realizations. We shall see later on that this condition is
also sufficient. For the moment, we wish to investigate the role of
the finiteness of the other rank associated with F. i.e. the Hankel
rank. It comes from the definition that

pr(e) < pyle)
so the Hankel rank may be infinite when the Lie rank is finite., How-

ever, there are special cases in which QH(C) is finite.

(5.7) Lemma. Suppose f,g1,...,gm,h are linear in x, i.e. that
f(x) = Ax, g1(X) = N1x,...,gm(x) =N.x , h(x) = Cx

for suitable matrices A,N1,...,Nm,C. Let Xo be a point of R". Let Vv
denote the smallest subspace of R™ which contains x° and is invariant
under A,N1,...,Nm. Let W denote the largest subspace of R™ which is
contained in ker(C} and is invariant under A,N1,...,Nm. The Hankel

rank of the formal power series (5.7) has thé value

- Qim v-di _ aim Y
pH(c) = dim Vv=-dim W O V = dim WOV

Proof. We have already seen, in section II.4, that the subspace W may

be expressed in the following way

© m
W= (ker C}) NI N n ker (CN, ...N; 1
r=0 1 ...i =0 r 0
0 r
with N, = A. With the same kind of arguments one proves that the sub-

0
space V may be expressed as
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o T m o
vV = span{x }+ } 1 span{Nj -e Ny x }
k=0 30...3k=0 k 0
In the present case the Hankel matrix of Fo is such that the block of
% rows of index (ir...io) on the column of index (jk...jo), i.e. the
coefficient c(ir...iojk...jo) of ¢ has the expression
CN; ...N; N, ...N. x°

r o Jk Jo

By factoring out this expression in the form

Q
(CM, ...N, J(NL .. .N. x7)

r o Jk Jo
it is seen that the Hankel matrix can be factored out as the product
of two matrices, of which the one on the left-hand-side has a kernel
equal to the subspace W, while the one on the right-hand-side has an
image equal to the subspace V. From this the claimed result follows

immediately. O

Thus, it is seen from this Lemma that if an input output func-
tional of the form (1.3) is realized by a dynamical system of dimension

n described by equations of the form

. m

X = AX + ) N.xu,
, it
i=1

y = Cx

i.e. by a bilinear dynamical system of dimension n, then the Hankel
rank of the formal power series which specifies the functional is
bounded by n. The finiteness of the Hankel rank pH(c) is a necessary
condition for the existence of bilinear realizations.

We turn now to the problem of showing the sufficiency of the above
two conditions. We treat first the case of bilinear realizations, which
is simpler. In analogy with the definition given at the beginning of
the section, we say that the set {NO,N1,...,Nm,C,x°}, where x° € R",

N, e RM® for 0 £ i <mandC €:R2xn
formal power series c if the set {go,g1,...,gm,h,x°} defined by

is a bilinear realization of the

go(x) = N, %, gq(x) = N1(x),...,gm(x) = N X

h{(x) = Cx
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is a realization of c.

(5.8) Theorem. Let c be a formal power series in m+1 noncommutative
indeterminates and coefficients in IRE. There exists a bilinear realiza-

tion of ¢ if and only if the Hankel rank of c¢ is finite.

Proof. We need only to prove the "if" part. For, consider again the
mapping F_. The sets R(Z ) and R¥(z )) will now be endowed with
structures of modules. The ring R{Z ? is regarded as a module over
itself. R%(z)) is given an R{Z ) -module structure by letting the
operation of sum of powervseries be defined cocefficient-wise and the
product pss of a polynomial p €ER(Z ) by a series s e RM(z2 Y be

defined in the following way
a) 1»s = s

b) for all 0 < i < m the series z;°s is given by
(zi-s)(ir...io) = s(i...i,1)
c) for all p,,p, €R(Z ) and aqr0, ER

(@qpq*agPy)+s = aq(pyrs)tay(pyrs)

*

Note that from (a) and (b) we have that for all jk...j0 €I

(ij...ZjO'S)(ir...iO) = si..iglp...dp)
Note also that since the ring R{(Z )} is not commutative, the order in
which the products are performed is essential.

We leave to the reader the simple proof that the map Fo previously
defined becomes an R{Z ’-module morphism when R (Z )) is endowed with
this kind of R(Z ) -module structure. As a matter of fact, it is trivial
to check that Fc(p) = pecC.

Now, consider the canonical factorization of Fc

F
Rz ) S r¥ (7))
;Z>\\ ///g{
r(Z
Ker FC

in which, as usual, P, denotes the canonical projection p = (ptker F.)

and Q. the injection (ptker Fc)** Fc(p). P_ and Q. are R-vector space

c
morphisms, but there is also a canonical R{Z )} -module structure on
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R(Z)/ ker F_ which makes P, and Q_ R(Z ) -module morphisms.

since, by definition, R{Z )/ ker F_ is isomorphic to the image
of F, , we have that the dimension of R(2Z ? / ker F, as an R-vector
space is equal to the Hankel rank pH(c) of the formal power series c.

Let, for simplicity, denote

R(Z )

X = =/
ker Fc

But X is also an R{Z } -module, so to each of the indeterminates

Zyes oo Zp We may associate mappings
M., : XX
g .
X z;*X

The mappings Mi are clearly R-vector space morphisms. We also
define an R-vector space morphism

H: X *IRE

by taking
Hx = [0 (x)](#)

With the notation on the right-hand-side we mean the coefficient with
empty index in the series Qc(x).
Finally, let x° be the element of X

= (1)

where 1 is the unit polynomial in R(2 ).
We claim that

(5.9a) c(g) = ux®

. . _ o
(5.9b) C(lk...lo) = HMi ...Mi X

k 0

For, it is seen immediately that

{(5.10a) c o

Fc(1) = Q. P (1) = Qx
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Moreover, suppose that

o)
(5.10b) F . (z, ...z, ) =QM, ...M, x
c iy ig iy i,
then we have
F (2.2, ...z, ) = 2,.*F (2, ...2Z2, ) = 2.(Q M, ...M, xo)
SRS i, iTetiy i, 1™edy ig
o, _ o
Q. (2 Mik...Miox ) = QcMiMik...Miox

*
for 0 < i < m. Thus (5.10b) is true for all (ik...io) €1 .

Now, keeping in mind the definition of F, , one has

[Fc(zi e Z

io)](Q’) = C(Zik...Z. )
k

*o
and therefore, in view of the definition of the mapping H, (5.9) are
proved.

Take now a basis in the pH(c)-dimensional vector space X. The
mappings MO,...,Mm and H will be represented by matrices Ny eNgrooo Ny
and C; x° will be represented by a vector %°. These guantities are such

that

c(i, ...iy) = CN, ...N,
k 0 Tk 1o
* -
for all (ik...io) € I . This shows that the set {C,NO,...,Nm,xo} is a

bilinear realization for our series. U

The result which follows presents a necessary and sufficient con-
dition for the existence of realizations of an input-output functional
of the form (1.6), provided that the coefficients of the power series

which characterize the functional are suitably bounded.

(5.11) Theorem. Let ¢ be a formal power series whose coefficients sa-

tisfy the condition

. . (k+1)
{5.12) letip...ip)ly 2 clketyir

*
for all (ik...iO) € I , for some pair of real numbers C > 0 and r > 0.
Then there exists a realization of ¢ if and only if the Lie rank of ¢
is finite.
Proof. Some more machinery is reguired. For each polynomial p erz)
we define a mapping Sp (RY(z ) - RY(z)) in the following way
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a) if p € z* = { ...zj ERZ ) (jk...jo) € 1*} then Sp(c) is a

z
Ik 0
formal power series defined by setting

s, 2 (c)](ir...io) = cJp .o dpip.aip)

TR

Jx Jo

b) if ay,a, €R and p,.p, € R(Z ) then

s_{c) = a,8_ {(c) + a,5_ (c)
P 17p, 2"p,
Moreover, suppose that, given a formal power series s, e R((Z )
and a formal power series s, € R(Z ), the sum of the numerical series
© m
(5.13)  s,(P)s, (@) + z ‘ ¥ _ Sqlip.eeig)sy(dp..iig)
k=0 i5700.,1,=0
0 k
exists., If this is the case, the sum of this series will be denoted
by (54,8, ).

We now turn our attention to the problem of finding a realization
of ¢. In order to simplify the notation, we assume £ = 1 (i.e. we con-
sider the case of a single-output system). By definition, there exist
n polynomials in L(Z), denoted p;,...,p,, with the property that the
formal power series Fc(p1),...,Fc(pn) are R-linearly independent.

With the polynomials Pqr---1p, We associate a formal power series

n

(5.14) w=-exp( )] =x.p;) =1+
i=1 't k

18

| o~
»

-
'

1
w7 ¢

1 i=1

where KyresopX are real variables.
The series ¢ which is to be realized and the series w thus de-
fined are used in order to construct a set of analytic functions of

EqreoorX defined in a neighborhood of 0 and indexed by the elements

n.‘
*
of I , in the following way

h(x) = {c,w)

h, . (x) = (S8 (c),w)
i ...1 Z. eaeZ
k [4] lk i,

The growth condition (5.12) guarantees the convergence of the
series on the right-hand-side for all x in a neighborhood of x = 0.

It will be shown now that there exist m + 1 vector fields,
go(x),...,gm(x), defined in a neighborhood of 0, with the property
that
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(5.15) L_ h, . {X) = h, i i(X)

93 kYo ix 0

*
for all (ik...io) € I . This will be actually enough to prove the

Theorem because, at x = 0, the functions hi i (x) by construction
are such that k 0

h(0)

c(g)

hik"‘iO(O) = clip...iy)
and this shows that the set {h,go,...,gm} together with the initial
state x = 0 is a realization of c.

To find the vector fields ggr+--r9, ONE proceeds as follows.Since
the n series Fc(p1),...,Fc(pn) are R-linear independent,*it is easily
seen that there exist n monomials Myseearly in the set Z with the

property that the (nxn) matrix of real numbers

[FC(P1)] (m1)...[Fc(pn)] (m1)
(5.16) . -

[Fc(p1)](mn)...[Fc(pn)](mn)

has rank n. It is easy to see that

9
[Fo(py)] () = (o= (s, (e),w)) g

1 J

*
For, if P; € Z , then by definition

[Fglpy)] (my) = emypy) = (s, (@) (py) = (g—i (S, (220w ) g
From this, using linearity, one concludes that the above expression is
true also in the*(general) case where p, is an R-linear combination
of elements of Z .

Using this property, we conclude that the j-th row of the matrix
(5.16) coincides with the value at 0 of the differential of one of

the functions h, , the one whose multiindex corresponds to the

:Lk...l0
monomial ms.
Consider now the system of linear equations
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(=245 (c),w) ((s (c) ,w )
ox m, rn,[zk
. g {x) = .
2 (s (c),w) (s (c),w)
| 9x m, ! ) m_ 2y !

in the unknown n-vector gk(x). The coefficient matrix is nonsingular
for all x in a neighborhood of 0 {because at x = 0 it coincides - as
we have seen - with the matrix (5.16)). Thus, in a neighborhood of 0

it is possible to find a vector field gk(x) such that

Lgk(Smi(c),w ) = (Smizk(c),w )

and this proves that (5.15) can be satisfied, at least for these
hi i whose multiindexes correspond to the monomials MyresosM
R

The proof that (5.15) holds for all the other functions hik i

L
(x)

0
depends on the fact that every formal power series in FC(L(Z)) is an

R-linear combination of Fc(p1),...,Fc(pn), and is left for the reader.D

It is seen from the above Theorem that if a formal power series
¢ has a finite Lie rank, and its coefficients satisfy the growth con-
dition (5.12), then it is possible to find a dynamical system of dimen-
sion GL(c) which realizes the series,

This fact, together with the result stated before in Lemma (5.5)
induces to some further remarks. A realization {f,g1,...,gm,xo} of a
formal power series ¢ is minimal i1f its dimension, i.e. the dimension
of the underlying manifold on which f,g1,...,gm are defined, is less
then or equal to the dimension of any other realization of c. Thus,

from Lemma (5.5) we immediately deduce the following corollaries.

(5.17) Corollary. A realization {f,g1,...,gm,x°} of a formal power
series ¢ is minimal if and only if its dimension is egual to the Lie

rank SL(c).

(5.18) Corollary. A realization {f,gT,...,gm,xo} of a formal power
series ¢ is minimal if and only if

dim Ac(xo) = dim Qo(xo) =n

or, which is the same, the realization satisfies the controllability
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rank condition and the observability rank condition at x°.

6. Unigueness of Minimal Realizations

In this section we prove an interesting uniqueness result, by
showing that any two minimal realizations of a formal power series

are locally "diffeomorphic”.

(6.1) Theorem. Let c be a formal power series and let n denotes its
Lie rank. Let {gg,g?,...,g;,ha,xa} and {gg,g?,...,gﬁ,hb,xb} be two
minimal, i.e. n~-dimensional realizations of c. Let g? ; 0 <1 <m,

and h? be defined on a neighborhood u? of x2

and h> be defined on a neighborhood UP

in R? and gl.), 0<i<m,
b oo -

of x in‘Rn. Then, there exist

open subsets v® ¢ u? and Vb C Ub and a diffeomorphism F:v2 ~> Vb such
that
b a -1
(6.2) g; (x) = Fug;.F "(x) 0<i<m
(6.3) hP(x) = h.F 1 (x)

for all x € Vb.

Proof. We break up the proof in several steps.

(i) Recall that a minimal realization {f,g1,...,gm,xo} of ¢ satisfies
the observability rank condition at x° {Corcllary (5.18)). From the
definitions of ¢ and Qo , one deduces that there exist n real-valued

functions A1,...,A , defined in a neighborhood U of x°, having the

n
form

Xi(x) = Lv eooLy, hj(x)
r 1

with VirseesV, vector fields in the set {f,g1,...,gm}, r (possibly)
0

)

depending on i and 1 < j < % such that the covectors dk1(x0),...,dkn(x

are linearly independent (i.e. span the cotangent space T*OU). From
X

this property, using the inverse function theorem, it is deduced that

there exists a neighborhood UH C U of x° such that the mapping

H : x I"’"’()\1(x),...,>\n(>‘:))

is a diffeomorphism of U_ onto its image H(UH).

H
From any two minimal realizations, labeled "a" and "b", we will
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construct two of such mappings, denoted 2? and respectively Hb.

(ii) Let Oqr--
hood U of x°, having the form

-+0,, be a set of vector fields, defined in a neighbor-

0. = £ +
i .

J

| e~18

g.ul
1 3%

with ﬁ; €ER for 1 < j < m. Let ¢t denote the flow of eiand G denote

the mapping
°)

n 1
G : (t1,...,tn) F—+¢t cessad, (x

n t1

defined on a neighborhood (-e,s)n of 0.

From any two minimal realizations,labeled "a" and "b" we will
construct two of such mappings, denoted G2 ana Gb (the same set of
G;‘s being used in both G% and Gb).

Recall that a minimal realization {fa,g?,...,g;,xa} satisfies the
controllability rank condition at x® (Corollary (5.18)). From the pro-
perties of Ap and R (see Remark II.{2.7), one deduces that the distri-
bution R is nonsingular and n-dimensional around x2. Then, using the
same arguments as the ones used in the proof of Theorem I.(6.15), it
is possible to see that there exist a choice of G%'s and an open sub-
set W of (0,8)n such that the restriction of G® to W is a diffeomor-
phism of W onto its image G2(W).

(iii) It is not difficult to prove that if {fa,g?,...,g;,ha,xa} and

{fb,g?,...,gﬁ,hb,xb} are two realizations of the same formal power
series ¢, then, for all 0 < t; <&y 1 <1i < n, with sufficiently small

€y
b b
(6.4) H20GH (g, 0nusty) = HOoGO(Ey,vanst))

As a matter of fact, if € is small then G(t1,...,tn) is a point of

o

UH , reached from x  under the piecewise constant control defined by

_ =i
uj(t) = uj for t € [t1+...+ti_1,t1+...+ti)

Moreover, the values of the components of H {(i.e. the values of func-
tions A1,...,An) at a point were shown to coincide with the values

of certain derivatives, at time t = 0, of some components of an
output function y(t) obtained under suitable piecewise constant con-

trols (see proof of Theorem I.(7.8)). So, one may interpret the com-
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ponents of HuG(t1,...,tn) as the values at time t = t1+...+tn of
certain derivatives of an output function y(t) obtained under suitable
piecewise constant controls.

Two minimal realizations of the same power series c characterize
two systems which by definition display the same input-output beha-
vior. These two systems, initialized respectively in x2 and xb, under
any piecewise constant contreol produce two identical output functions.
Thus, the two sides of (6.4) must coincide.

(iv) Recall that, if the realization "a" is minimal, if (t1,...,tn)€w
and ¢ is sufficiently small, the mapping H2.6? is a composition of
diffeomorphisms., If also the realization "b" is minimal, Hb is indeed
a diffeomorphism, but also Gb must be a diffeomorphism of W onto its
image, because of the equality (6.4) and of the fact that the left-

hand=-side is itself a diffeomorphism. The following diagram
a
NG
W W
b
\;\\\\ ///1:’
G Vb

where V2 = ¢®w), v° = ¢Pw), v® C ug Nl Ug and W = 8%.6% (W) =
= Hbon(W), is a commutative diagram of diffeomorphisms. Thus, we may

define a diffeomorphism

as

(6.5a) F=(H

whose inverse may also be expressed as

1

(6.5b) Pl = G2, (")

(v) By means of the same arguments as the ones already used in (iii)
one may easily prove a more general version of (6.4). More precisely,

setting

one may deduce that, for sufficiently small t
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a b

a b .6 b
oGa(t1,...,tn) = H o8, oG (ty,euusty)

u?,0°

t

Differentiating this one with respect to t and setting t = 0 one ob-
tains

a a .a b b b
(H7) ,07 -G (t1,...,tn) = (H7) 40 oG (t1,...,tn)

Because of the arbitrariness of Vires-sV, One has then

a a .a b b b
{H )*givG (t1,...,tn) = (H )*giG (t1,...,tn)

for all 0 < i < m. But these ones, in view of the definitions (6.5),

may be rewritten as

1(x) 0

A
”
A
E]

gs(X) = F*g?°F-

for all x € Vb, thus proving (6.2)

(vi) Again, using the same arguments already used in (iii) one may

easily see that

b

b
oG (t1,...,tn)

haaGa(t1,...,tn) =h

i.e. that

-1

hP(x) = h2.F T (x)

for all x € Vb, thus proving also (6.3). O



CHAPTER IV
DISTURBANCE DECOUPLING AND NON INTERACTING CONTROL

1. Nonlinear Feedback and Controlled Invariant Distributions

In this and in the following chapters, we assume that in the con-

trol system
N m
(1.1) x = f{x) +i£1gi(x)ui

it is possible to assign the values of the inputs Ugreoasupy at each
time t as functions of the value at t of the state x and, possibly, of
some other real-valued functions ViresesVo. This control mode is cal-
led a static state-feedback control. In order to preserve the struc-
ture of (1.1), we let uy depend on x and ViresesVp in the following

form

(1.2) u, = o (x) +jg1ﬁij(x)vj
where o, (x) and 8 (x) .1 < i,j < m, are real-valued smooth func-
tions deflned on the same open subset N of R" on which (1.1) is de-~
fined.

In doing this we modify the original dynamics (1.1) and obtain

the control system

m

(1.3) % = ¥x) +i£1$i(x)vi
in which

", m
(1.4a) f(x) = £(x) +.Z1gi(x)ai(x)

l=

Y

(1.4b) g (x) = 5 g5 (x) By (x)

3=1
For reasons of notational simplicity, most of the times we con-
sider a.(x) as the i-th entry of an m-dimensional vector ‘a(x),
(x) as the (i,j)-th entry of an me—dlmens1onal matrix B(x) and we

con51der the vector fields g, (x) and g (x) as j-th columns of
n>xm-dimensional matrices g(x) and g(x).
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In this way we may replace (1.4) with the shorter expressions

(1.5a) qf'(x) £{x) + g(x)a(x)

(1.5b) (x) = g(x)B(x)

We also systematically assume that the mxm matrix B(x) is in-
vertible for all x. This makes it possible to invert the transforma-

tion (1.5), and to obtain

Y] N -1
(1.6a) fix) = £(x) —g(x)})B (x)a(x)

1(x)

4 -
(1.6b) g(x) g(x)B
(1.8) Remark. Strictly speaking, only (1.5a) may be regarded as a
"feedback", while (1.5b) should be regarded as a change of coordinates

in the space of input values, depending on x. O

The purpose for which feedback is introduced is to obtain a dy-
namics with some nice properties that the original dynamics does not
have. As we shall see later on, a typical situation is the one in
which a modification is required in order to obtain the invariance of

~a glven distribution A under the vector fields which characterize the
new dynamics. This kind of problem is usually dealt with in the fol-
lowing way.

A distribution A is said to be controlled Znvariant on N if there
exists a feedback pair (a,B) defined on N with the property that A is

v
invariant under the vector fields f,31,...,3m (see (1.4)), i.e. if
"]
(1.9a) [£,4] (x) C A(X)
{1.9b) lgi,A](x) CA(x) for 1 <i<m

for all x €N,
A distribution A is said to be locally controlled invariant if

for each x € N there exists a neighborhood U of x with the property
that A is controlled invariant on U. In view of the previous defini-
tion, this requires the existence of a feedback pair (a,B) defined on
U such that (1.9) is true for all x € U.

The notion of local controlled invariance lends itself to a simple

geometric test. If we set
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G = sp{g1,....gm}

we may express the test in question in the following terms.

(1.10) Lemma. Let A be an involutive distribution. Suppose A, G and
A+G are nonsingular on N. Then A is locally controlled invariant if

and only if
(1.11a) [£,A] C A+ G
(1.11b) [gi,A] CA+G for 1 <ic<m

Proof. Necessity. Suppose A is locally controlled invariant. Let x € N,
U a neighborhood of x and (a,B) a feedback pair defined on U which
makes (1.9} satisfied on U. Let T be any vector field of A. Then we

have

(£, 1] ={f+ga,t] ={£,1] + E {g. ,T]u + 2 (Looy) gy
j=1 ) =1

m m
_Z-_ 'nT]Bj- E T]l ]

3 3
for 1 < i < m.
Since B is invertible, one may solve the last m equalities for

[gj,T], obtaining

[g.TIGE[g,A1+G
i=1

for 1 < j < m. Therefore, from (1.9b) we deduce (1.11b). Moreover,

since
n, m
[£,7] €[£,48] + ) [g,.8] +G
i=1

again from (1.9) and (1.11b) we deduce (1.11a). O

In order to prove the sufficiency, we first need the following in-

teresting result, which is a consequence of Frobenius Theorem.

(1.12) Theorem. Let U and V be open sets in R™ and R" respectively. Let
XyreoorXy denote coordinates of a point x in R™ and Yqre+o1¥q coordina-

tes of a point y in R". Let P1,...,Fm be smooth functions

X
U >R
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Consider the set of partial differential equations

(1.13) ﬁ%}i_’..‘l = ri(x)y(x) 1<iz<m
1

where y denotes a function
y :t U=V

Given a point (xo,yo) € U xV there exist a neighborhood Uo of x in U

and a unique smooth function

y 3 Uo =V

which satisfies the equations (1.13) and is such that y(xo) = yo if

and only if the functions F1,...,Tn satisfy the conditions
5 or® i k_ ki
(1.14) S —A— +tTTTT-I'TT =0 1 <ik<m

I.J.
Bxk Bxi - -

for all x € U.
Proof. Necessity. Suppose that for all (xo,yo) there is a function y

which satisfies (1.13). Then from the property

32y = Bzy

axiaxk axkaxi

one has

. .
5f(—]_L(r (x)yix)) = g%g(?l(x)y(x))

Expanding the derivatives on both sides and evaluating them at x =x"
one obtains
k

9T
[(ax.
i x

k, o,.1i,_ 0 o _ BFi i, o0,.k, o o

o ¥ I (xT (% Yy —[(§§— o TT (XTI (x My
k x

which, due to arbitrariness of xo,yo, yields the condition (1.14).

Sufficiency. The proof of this part consists of the following

steps.

(i) It is shown that the fulfillment of (1.14) enables us to define

on UXV a certain involutive distribution A, of dimension m.

{ii) Using Frobenius Theorem, one can find a neighborhood U'x V' of
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(xo,yo) and a local coordinates tranformation

F: (X,y) &/ &

defined on U'x V', with the property that

A(x,y) = span{ (E) (X,y)’ .e .l(a—gm) (X,Y)}

for all (x,y) € U'x V'
(iii) From the transformation F one constructs a solution of (1.13).

As for the step (i), the distribution A is defined, at each
(x,y) € UxV, by
n

n .
Alx,y) = span{(ggf) +h20 kiorﬁk(x)yk(
i = =

9 .
—3—{};).151_{![1}

In other words, A(X,y) is spanned by m tangent vectors whose

coordlnates w1th respect to the canonical basis {(a ""(8x ),
(By ),...,(—§—)} of the tangent space to UxvV at {x,y) have the form
n
0 0
0 1 0
: ' : Feves E
0 0 1
1 2
I (x)y r“(x)y rm (x)y

These m vectors are linearly independent at all (x,y) and so the
distribution A is nonsingular and of dimension m. Moreover, it is an
easy computation to check that if the "integrability" condition (1.14)
is satisfied, then A is involutive.

The possibility of constructing the coordinate transformation
described in (ii) is a straightforward consequence of Frobenius theorem.
The functicon F thus defined is such that if visa vector in A, the last
n components of F,v are vanishing. Since, moreover, the tangent wvectors
(53—),...,(53;) span a subspace which is complementary to A(x,y) at

all (x,y) and F is nonsingular, one may easily conclude that the func-
tion

£ = F(x,y)

is such that the jacobian matrix
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3€m+1 agm+1
8y1 e ayn
(1.15) PR
3£m+n agm+n
3y1 v ayn

is nonsingular at all (x,y) € U'x V',

Without loss of generality we may assume that
£,(x%,¥y%) =0

for all m+t1 < i < mtn. As a consequence, the integral submanifold of
A passing through (xo,yo) is defined by the set of equations

£m+i(x,y) =0 1<4iz<n

Since the matrix (1.,15) is nonsingular, thanks to the implicit
function theorem the above equations may be solved for y, yielding a
set of functions

(1.16) ¥y = n;(x) 1<i<n

defined in a neighborhood u, C u' of x°. Moreover

n, (x9) = y§ 1<i<n
The functions (1.16) satisfy the differential equations (1.13)
and therefore, are the reguired solutions. As a matter of fact, the
functions

9; (X0y) = vy

i~ ni(x) 1<ic<n

are constant on the integral submanifold of A passing through (xo,yo)

and, therefore, if v is a vector in A,
d¢iv =0 1 <1i<n

at all pairs- (x,n(x)). These equations, taking for v each one of the

m vectors used to define A, yield exactly
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Nj 3 . .
7% =T N 1<i<n, 1<j<mO
Proof. (of Lemma 1.10). Sufficiency. Recall that, by assumption, A,G

and A+G are nonsingular; let d denote the dimension of A and let

p=dim G - dim A N G

© and an

Given any x° € N it is possible to find a neighborhood U of x
mxm nonsingular matrix B, whose (i,j)-th element bij is a smooth real-

valued function defined on U, such that, for
m

9; =j£1gjbji 1 <i<m

the following is true
sp{gp+1,...,gm} C A
(1.17) (A+G) = A ® sp{§1,....§p}

The tangent vectors §1(x),...,§p(x) are clearly linearly inde-
pendent at all x € U,
Now, observe that if the assumption (1.11b) is satisfied, then

also
(1.18) léi,Al CA+G

and let TireserTy be a set of vector fields which locally span A
around x°. From (1.17) and (1.18) we deduce the existence of a unigue
set of smooth real=valued functions cgi , defined locally arcund xo,
and a vector field 6? € A defined locally around x° such that

P
' - _ k - k
(1.11b") [gi,Tk] ~j£1cjigj + 6i

for all 1 <1 <m and 1 < k < d. Using the same arguments and setting

9o = £

from (1.11a) and (1.18) we deduce the existence of a unique set of

real-valued smooth functions ck and a vector field 5% € A, defined

30
locally around xo, such that
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{(1.11a") [go,'tk] = €995 * 8

Now, suppose there exists a nonsingular mxm matrix ﬁ, whose
{i,j)-th element Bij is a smooth real-valued function defined locally
around x, such that

nm
(1.19) -L_ b, . + Z

for 1 <k <4, 1 <h <p, 1 <i<m Then, it is easy to see that

{(1.20) )

for 1 < i <m, 1 < k < d. For,

mA - -
[h£1 Wonif Tkl = —hZ1(LT b i)ay ) in[gj,Tk]
P m P
_ - ~ - k - <k _ 3k
= h£1(Lkahi)gh +J£1bji hZ1°hjgh'+Gi = &

where Ei is a vector field in A. Since Tqrenmer Ty locally span A, (1.20)

implies that
zf,-
[ g, b, .,A] CA
he1 h™hi

Therefore, the matrix

is such that (1.9b) is satisfied.

Using similar arguments, one can see that if there exists an mx?}
vector &, whose i-th element éi is a smooth real-valued function de-
fined locally around xo, such that

- m g -
(1.21) -L_ & + Z €hj35 * Cpo = O

for 1 <k <d, 1 <h < p, then

m
(1.22) [50 + 21§hah,1k] € A
h=
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for 1 < k < d. For,

5 + 1
g, +
0 Tt

- ? A= ‘;‘— ‘E’k Iz)k——k Tk
g.a ., ,t l==-) (L_alg. + ) a. cL.g,.+ ) Cr.g +8° = §
7% T L R FI R R 8y L %% L Sho Th

where Sk is a vector field in A. From this one deduces that the vector

is such that (1.9a) is satisfied.

Thus, we have seen that the possibility of finding ﬁ and a which
satisfy (1.19) and (1.21) enables us to construct a pair of feedback
functions that makes (1.9) satisfied. In order to complete the proof,
we have to show that (1.19) and (1.21) can be solved for B and a.

Since A is nonsingular and involutive, we may assume, without loss

of generality, that our choice of local coordinates is such that

d

The equations {1.19) and (1.21) may be rewritten as a set of part-

ial differential equations of the form (1.13) by simply setting

Ck Ck Ck
11 "7 Tm 10
k | kx k k
= €p1 *** Spm 50 1 <k <d
0 ... 0 0
U 0 0

As a matter of fact, for each fixed i, the equations (1.19) correspond

to an equation for the i-th column of ﬁ, of the form

(1.23) igi—rk by 1<k <d
- axk 0 - 0 - -

(where 51 stands for the i-th column of B) and the equations (1.21)

correspond to

(1.24) ———(

Both these equations have exactly the form



(1.25)

the unknown vector y being m+1 dimensional.

depend also on the
derivative of y is
value of y must be

k

ENY
ox Ty

k

coordinates L FTOTRRRYES

considered),
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1<k <ad

Since now the functions Fk
(with respect to which no

in order to achieve uniqueness, the

specified, for a given x?,...,xg, at each Kqpqr o ¥y

For consistency, the last component of the initial value of the solu-

tion sought for the equations (1.23) must be set equal to zero, whereas
the last component of the initial value of the solution sought for the
(1.24) must be set equal to 1.

ponents of the initial values of the solutions sought for each of the

equation In addition, the first m com-

equations (1.23) must be columns of a nonsingular mxm matrix, in order
to let B be nonsingular.

The solvability of an equation of the form (1.25) depends, as we
have seen, on the fulfillment of the integrability conditions (1.14).
Consider the Jacobi identity

This, in turn, is implied by {1.11).

-[[§i,Tk],Th]+[[§i,Th] v ) =185, 01, l]

for any 0 < i < m. Using for [éi,rk] and [él,rh] the expressions given

by (1.11a') or (1.11b') and taking T = 33— r Ty = %m, one easily ob-

ax
tains k h
1%
k -~ .k h sh 91 _
[j£1cjigj + &, 'BX Z1C] i'—3_§;] =0
This yields
k
P ach, p p
- It 5.+ c%, g +sb +lék —3—]
j£1 axh gj j£1 31(221 239g ]) l'axh
P ach, P P
- h k - k h o
+) =32 g3 =T el () chLg, +6)-[67, o] =0
I TR e A RS A R

Now, recall that 5%— and E%_ are both vector fields of A, which is

k
k
also [éi,

involutive. Therefore, ?r_%—] are in A. Since A
k

and sp{§1,...,§p} are direct summands and §1,...,§p are linearly in-

dependent, the previous equality implies
k h
ac. . o P 1%
-3 L 4 §_l£ + ) chgct. -3 c%lcz. =0
Xh Xk 2=1 J 1 B 1
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for 1 <« j <p, 0<i<m 1< h,k <d, which is easily seen to be
identical to the conditien (1.14}. O

We see from this Lemma that, under reasonable assumptions (na-
mely, the nonsingularity of A, G and A+G) an involutive distribution
is locally controlled invariant if and only if the conditions (1.11)
are satisfied. These conditions are of special interest because they
don't invoke the existence of feedback functions a and B, as the de-
finition does, but are expressed only in terms of the vector fields
f,g1,...,gm which characterize the given control system and of the
distribution itself. The fulfillment of conditions (1.11) implies the
existence of a pair of feedback functions which make A invariant under
the new dynamics but the actual construction of such a feedback pair
generally involves the solution of a set of partial differential equa-
tions, as we have seen in the proof of Lemma (1.10). There are cases,
however, in which the solution of partial differential equations may
be avoided and these, luckyly enough, include some situations of great
importance in control theory. These will be examined later on in this

chapter,

2. The Disturbance Decoupling Problem

The notion of locally controlled invariance will now be used in

order to solve the following control problem. Consider a control system

m
f(x) + ) gi(x)ui + p(x)w
i=1

(2.1a) X

(2.1b) y

h(x)

where the additional input w represents an undesired perturbation,which
influences the behavior of the system through the vector field p. The
system is to be modified, via static state-feedback control on the in-

puts uy,...,u in such a way that the disturbance w has no influence

i’
on the output y.
In view of some earlier results (Theorem III.(3.12) and Remark
I11.{(3.13)) this problem consists in finding a feedback pair (a,B8) and
a distribution A which is invariant under % = f+ga and Ei = (gB)i R
1 < i < m, contains the vector field p and is contained in (sp{dhj})L
for all 1 < j < R,
According to the termineclogy introducid in the previous section,

a distribution A which is invariant under £ = f+go and Ei = (gB)i '
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1<i<m for some feedback (a,B) is controlled invariant. 1f we set

m
I
i D

<sp{ahj})*= (spldh,,....an 1t

31=1

we may express the problem in question in the following terms.
Disturbance decoupling problem. Find a distribution A which

(i) is controlled invariant
(ii) is such that p € A CH. O

As we have seen in the previous section, the notion of loeal con-
trolled invariance is sometimes easier to deal with than (global) con~
trolled invariance. This motivates the consideration of the following

problem.
Local disturbance decoupling problem. Find a distribution A which

(i) is locally controlled invariant
(ii) 4is such that p € A C H.

(2.2) Remark. Note that the distribution A is not required to be non-
singular, neither involutive. However, nonsingularity and involutivity
may be needed in order to construct the pair of feedback functions
(a,B) which make it possible to implement the disturbance~-decoupling
control mode. This typically happens when one has found a distribution

A which satisfies (ii) and, instead of (i), satisfies the condition
i") [£,4] CA + G
[gy/01 €A+ G 1<is<m

In this case, we know from Lemma (1.10) that nonsingularity of A,G
and A+G helps in finding at least locally a pair of feedback functions
(x,B) with the desired properties,

If A is nonsingular and involutive, invariant under } and Ei '
1<1i < m and satisfies (ii), then it is known from the analysis de-
veloped in chapter I that there exist 1local coordinate transformations

which put the closed-loop system into the form

v mr\,
Xy = f1(x1,x2) +i£1gi1(x1,x2)ui + p1(x1,x2)w

. _ FUPN
(2.3) %, = £,(x,) +i£1gi2(x2)ui

=
1]

hix,)
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Here, once again, one sees that the disturbance w has no influence on

the output y. O

A systematic way to deal with the Disturbance Decoupling Problem
is to examine first whether or not the family of all controlled inva-
riant distributions contained in H has a "maximal" element (an element
which contains all other members of the family). For, if this is true,
then the problem is solved if and only if this maximal element contains
the vector field p.

If, rather than controlled invariant distributions, we look at
locally controlled invariant distributions, then the existence of such
a maximal element may be shown under rather mild assumptions. To this
end, we introduce a notation and an algorithm. Let X (£f,g;K) denote the
collection of all smooth distributions which are contained in a given
distribution K and satisfy the conditions (1.11). In view of Lemma
(1.10), the maximal element of I (f,g:;K) is the natural candidate for
the maximal locally controlled invariant distribution in K. As a mat-
ter of fact, the maximal element of I(f,g;K) may be found by means of

the following algorithm.

(2.4) Lemma (Controlled Invariant Distribution Algorithm). Let
Ry = K‘L

(2.5)
Q

& + L.(G"Ng )+r§nL (¢-na
£ k-1 LLa7g,

_q)
i=1 “i k-1

k T k-1
*
Suppose there exists an integer k such that @ = Q . Then @, =0, %
* k * k*+1 k k
for all k > k .
1
If Qk* N G and Qt* are smooth, then Qi* is the maximal element

of I{f,qg;K}.
Proof. The first part of the statement is a trivial consequence of

the definitions. As for the other, note first that from the equality

Qk*+ 1 = Qk* we deduce

L
L G- NQ C Q x
gi( k*) ¥
for 1 < i < m and also for i = 0 if we set f = go , as sometimes we
did before. Let w be a one-form in G~ N Qk* , and T a vector field in

1 .
Qk* . In the expression

(Lgiw,r Y = Lgi(w,r ) - (w,[gi,T])
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we have

il
o

(L w,t?

€
because Lgiw {4 4 and

{w,7) =0
b € qr
ecause T Slex T G Thus
Cw,lg;ytl? =0

Since GL n Qk* is smooth by assumption, [qi,T] annihilates every co-

vector in G N Qk* , i.e.

L

K* + G

Lg;rtl €0

for 0 < 1 < m. Thus, Qt* is a member of L (f,qg;K). Let 5 be any other
element of this collection. We will prove that A C Qt*. First of all,
note that if w is a one-form in EL n GL and T a vector field in A we

have
{(L_ w,T) =0
93
so that (recall that A is a smooth distribution)

L L

- 1 -
L AT NG C A
g ( )

i

Suppose

for some k > 0. Then

m
=1 L =L 4 PR
C + N + al
Q] 1 Q] Lf(A GT) iz1L i(A G ) CA

1 -
Thus, since Qq =K C AL, we deduce that

L

B < oy,

1
and Qk* is the maximal element of I (f,g;K). O
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For convenience, we introduce a terminology which is useful to
remind both the convergence of the sequence (2.5) in a finite number
of stages and the dependence of its final element on the distribution
K. We set

1
(2.6) J(EK) = (QO+Q1+...+Qk+...)

and we say that J(K) is finitely computable if there exists an integer
k* such that, in the sequence (2.5), Qk* = Qk* r1- If this is the
case, then obviously J(K) = Qt*.

In the Lemma (2.4) we have seen that if J(K) is finitely
computable and if J(K)'L n GL and J(K) are smooth, then J(K) is the
maximal element of I (f,g;K). In order to let this distribution be
locally controlled invariant all we need are the assumptions of Lemma
(1.10), as stated below.

(2.7) Lemma. Suppose J(K) is finitely computable. Suppose K is an in-
volutive distribution and G, J(K), J(K)+G are nonsingular. Then J(K)
is involutive and is the largest locally controlled invariant dis-

stribution contained in K.

Proof. First, observe that the assumption of nonsingularity on G,J(K),

J(K)+G indeed implies the smoothness of J(k)T N ¢t and J(X). so, in

view of Lemma {1.10) we need only to show that J(K) is involutive.
For, let d denote the dimension of J(K). At any point %x° one may

find a neighborhood U of %x° and vector fields TqreeerTy such that
J(R) = Sp{T1,...,Td}
on U. Consider the distribution
D=splty: 1 <i¢ d}-+sp{[Ti,Tj]: 1 <1i,j < a}

and suppose, for the moment, that D is nonsingular on U. Then, every
vector field 1 in D can be expressed as the sum of a vector field t'
in J(X) and a vector field 1" of the form
10
™ =) eyl T, 1.
i=1 j=1 *3
where Ciq v 1 <1i,j £ d, are smooth real-valued functions defined on U.

We want to show that
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lg,D] CD+g

for all 0 < k < m. In view of the above decomposition of any vector

field 1 in D, this amounts to show that
[gk,[Ti,Tj]] CD+G

The expression of the vector field on the left-hand-side via Jacobi

identity vields
[gkrITirTj]] = [Tiv[gk:'fj}] —{Tj'[gkr‘ri]]

The vector field [gk,Tj] is in J(K) + G and therefore, because of the
nonsingularity of J(K) and J(K) + G, it can be written as the sum of
a vector field T in J(K) and a vector field g in G. Since,

[15,9] € J(K) + G for any g € G, we have
[Ti,[gk,rj]] =[1;,1+gl €D + J(K) + G =D +G
and we conclude that D is such that
[gk,D] CD+ G

for all 0 < k < m.
Now, recall that K is involutive by assumption, and therefore that

D CK

From this and from the previous inclusions we deduce that D is an
element of I (f,g;K). Since D D J(K) by construction and J(K) is the

maximal element of I(f,g;K), we see that
D = J(K)

Thus, any Lie bracket of vector fields of J{K), which is in D by
construction, is still in J(K) and the latter is an involutive distri-
bution.

If we drop the assumption that D has constant dimension on U, we
can still conclude that D coincides with J(K) on the subset U C U con-
sisting of all regular points of D. Then, using Lemma I.{(2.11), we can
as well prove that D = J(K) on the whole of U. O
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In the Local Disturbance Decoupling Problem one is interested in
the largest locally controlled invariant distribution contained in H.
Since this latter is involutive (see chapter 1), in order to be able
to use the previous Lemma, we need to assume that the distribution
J(H) is finitely computable and that G, J(H), J(H) + G are nonsin-
gular. If this is the case, then, as we said before, the Local Dis-

turbance Decoupling Problem is solvable if and only if
p € J(H)

We conclude the section with a remark about the invariance of
the algorithm (2.5) under feedback transformation.

4"
(2.8) Lemma. Let f,31,...,am be any set of vector fields deduced from

f,g1,...,gm by setting % = f + ga, Ei =

codistribution Qk of the sequence (2.5) is such that

(gﬁ)i + 1 <1 < m; then each

m
L, (6" Na
;

93

L
k=1 +L%(G ne,_y) +i£

9] £

K k-1

Proof. Recall that, given a covector field w, a vector field T and a

scalar function v,
L(Ty)m = (LTm)Y-+(w,T > dy
If w is a covector field in G" N Qe_q + then

m m
Low = Lgw +‘Z (Lg w)oy +'E (w,gi )dui

b i=1 i i=1
1 1

L, w =) (L_ w)p,. + {w,g. Yas.,

g, =1 95 3t g= 773
But (m,gj ) = 0 because w € G~ and therefore
m m
i L L i
Lo (6™ N _y) +_Z L, (67 Ng _4) CLG N Qp_)+) Ly (G7 0@y )
£ i=1 93 i=1 i

Since § is invertible, one may also write f = ¥‘—88_1u and

-
g; = (gB 1)i and, using the same arguments, prowve the reverse inclu-
sion. The two sides of inclusion are thus equal and the Lemma is

proved. U
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3. Some Useful Algorithms

In this section we describe a practical implementation of the algo-
rithm yielding the largest locally controlled invariant distribution
contained in H. Morecver, we show that in some particular cases the
construction of this distribution may be obtained with simpler methods.

We begin with the easiest situation, first. For each output func-
tion hi(x) we define an integer oy v called the characteristic number

of Yi r @s the integer identified by the conditions

k _—
(3.1a) ngthi(x) =0

for all k < Py v all 1 < j <m, all x € N and

0.
lhi(x) #0

{3.1b) L, Lg

95

for some j and x.

Note that if for some output Yj the characteristic number is not
defined (i.e. (3.1a) holds for all k, all j and all x), then the out-
put yj is in no way affected by any of the inputs Ugresarlp. The ex-
pansions described in chapter III show that if this is the case

k
k o, t7 _ £, 0
th.(x Iy = hi(¢t(x ))

yl(t) = i

~
fr~18
<o

Thus, it seems reasonable to assume that our control system is
suchr that the characteristic numbers are defined for each output.
Once the characteristic numbers are known, we may define an #*m

matrix A{x} whose element aij(x) on the i-th row and j-th column is

(3.2) a,.(x) = Lg.Lf

i
J ]
and. an {-vector b(xji whose element.bi(x) on the i-th row is

pi+1

Py

(3.3) b (x) = L

We point: out first of all an interesting property of the objects

defined so far

(3.4) Lemma. Let (o,B) be any pair of feedback functions and let
% = £ + go, Ei = (gB)i. Then
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k Lk
L%hi(x) = thi(x)

v
for all k < p. and all x € N. Moreover, let A(x) be the &Lxm matrix
- 7i

whose {i,3j)}-th element aij is

D
aij(x) = L h (x)

?

n,
and b(x) the g&-vector whose i-th element bi is

a pi+1

bi(x) = L% hi(x)
Then

N,

A(x) = A(x)B(x)

B(x) = A(x)a(x)+b(x)

Proof. The first equality is easily proved by induction, It is true
for k = 0 and, if true for some 0 < k < Py o+ yields

L 0 = L, o = 15 TR )+ i Ly Lf En, Govay ) = Ly (0

n :
£ . % % 1 f Jj=1 j

The other equalities are straightforward conseqguences of the first

one.

(3.5) Remark. Note that the invertibility of B implies the invariance

of the integers Pqreserpy as well as that of rank of A(x) under feed-

back transformations. O
From this one can deduce the following interesting result.

(3.68) Lemma. Every locally controlled invariant distribution contained

in H is also contained in the distribution Asup defined by

Py
o (Sp{dL h, })
1 k=0

II Dr

(3.7) Asup =

Suppose Asup is a smooth distribution. A pair of feedback functions
(a,B8) is such that

(3.8a) [£ + ga,Asup] C Asup

(3.8b) [(gS)i.Asup] C dgup 1<i=<m
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if and only if the differentials of each entry of the column vector
A(x)a(x) + b(x) and those of each entry of the matrix A(x)B(x) belong

L
to the codistribution A .
sup

Proof. Let A be a locally controlled invariant distribution contained
in H. Then, by definition, 4 C (sp{dh; Nt for all 1 < i <R,

Moreover, for some local feedback o, [% Al C A. Suppose AC(spkﬂéh D
for some k < pyi then using Lemma (3.4) we have for any vector field
TE€A

= cak L2 oD —L(dLh EREY ) ng ,T ) = <de+1

¥ ¥

hi})L. This proves that

hy,v)

i.e, AC (sp{de+1

A C 2 (sp{dL hy })“
i=1 k=0
and therefore the distribution (3.7) contains every locally controlled
invariant distribution.
Now, suppose there exists a pair of feedback functions that makes
(3.8) satisfied. Let T be a vector field in A . Then

(3.93) ((l |kl ) =0
£ ’
. f ir 14
. Lf jl gjl

for all 1 < i <, 0 <k < Py 1 <3 < m. From (3.9b) written for
k = py + we deduce, using Lemma (3.4),

0. 0. p,+1
_ i _ i _ 1 _ Y
O—L(de h,,t ) =-{(dL L¢ hi,r) —<dL,f hi,‘r>—(dbi,r>

I * ¥

Similarly , for (3.9¢) written for k = 0; we deduce that

= {43, ..1t)
13

Therefore, the differentials of b and glj belong to the codi-
stribution Asup Conversely, if the d1fferent1als of b and gij belong
to the codistribution A , we have that (3.9b) and (3.9c) hold for
k = p;. For values k < pi {3.9b) and (3.9c) hold for any feedback
{e,8) because of Lemma (3.4) and, therefore, we deduce that Asup is
invariant under ¥ and Si. W]
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From this result we see that there are cases in which the computa-
tion of the largest controlled invariant distribution contained in H
is not terribly difficult. An interesting special case is the one in
which the matrix A({x) has a rank equal to the number of its rows (i.e,
the number of the output channels); this is explained in the following

results.

(3.10) Lemma. Suppose that the matrix A(x) has rank 2 at x°. Then the

covectors

Pq

e
Q
Ry x%) L ,dh, (2, L dn My (52)

dh1(xo),...,dL

are linearly independent. As a consequence, the distribution Asup is
o

nonsingular in a neighborhood U of x~ and

) L
(3.11) dim Asup(x) =D1+...+p2+2’<n

Proof. Suppose that the differentials are linearly dependent at x".

Then there exist real numbers Cik * 1 < i <% 0<k< e such that

L Py
(3.12) Ty

) dLEh-(XO) = 0
i=1 k=0 1

Cik

Now consider the function

2 Py K
A (%) =i£0 kzo ¢, Lgh, (x)

According to the definition of Pyreseslo ¢ this function is such that

(x)

£
0.
l -—
cip.<de hi,gj > (%) —i£1cipiaij

1 i

it~

(dA,qg. ) (x) =
3 i

But, on the other hand, (3.12) shows that dk(xo) = 0 and therefore

the above equality implies the linear dependence of the rows of the

matrix A{x"),i.e. a contradiction. Therefore we conclude that if (3.12)

holds, we must have c1p1 = ... = Clpl = 0.

Now consider the function

2 91‘1

B k
vy {x) —izo kzo cikahi(x)
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(with the understanding that the above sum is exendend over all non-

*
negative k's) and observe that, if 0 < k < p,-1, then'")

k _ k+1
-(dehi,[f,gj] Y = (de hi,gj )

Now, by the definition of Pqre-eePp and from this formula, we have

N k+1 %
(dY,[f,gj])(x) = -'ZO kEO c ALy ' 9 Y =- 73 c, _q354 (%)
i= = = 1

2

But since in the (3.12) the coefficients c1p ""'Clp have already

1
been proved being equal to 0, the function y(x) is such that dy(x°)=0
and the above equality implies again the linear dependence of the rows

of the matrix A(xo), i.e. a contradiction. Therefore ey 0,1
|

01,92-1 = 0 (for all ci,pi—1 defined, i.e. such that Py > 1).

By repeating the procedure one completes the proof.

(3.13) Remark. As a consequence of this Lemma, if the matrix A(x°) has
rank £, the functions L?hi(x), 1<1i<4%, 0<k¢< p; are part of a
coordinate system in a neighborhood U of x°. This fact will be ex-

tensively used in the sequel. [

The assumption on the rank of A(x) identifies a special case in
which the computation of the largest controlled invariant distribution
contained in H is particularly simple.

(3.14) Corollary. Suppose the matrix A(x) has rank 2 at x®. Then in

a neighborhood U of x° the distribution Asup coincides with the

largest locally controlled invariant distribution contained in H.

Proof. If A(Xx) has rank £ at xq in a neighborhood U' of x° the distri-
bution Asup is nonsingular and therefore smcoth. Moreover, in a neigh-
borhood U C U' of x° the equations

{3.15a) A(x)a(x) + b(x) = y(x)

{3.15b) A{x)B(x) = §(x)

where y(x) and §(x) are an arbitrary f-vector and respectively an

(*)
k+1

k k
- = - )
(dehi,[f,gj]) (de hi,gj) Lf(dLHH,gj

and the last term is zero because k f_pi—l.
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arbitrary 2xm matrix, have smooth solutions. If the entries of y and
§ are such that their differentials belong to A:up ; then the feedback
(¢,B) 1s such that (3.8) are satisfied on U. In particular this is
true if the entries of o and B are constants. Note that the matrix §
must have rank 2 in order to let 8 be nonsingular.

(3.16) Remark. Recall that any pair of feedback functions o and B8
which makes A invariant is a solution of (3.15), provided that ¥y

sup
and § have entries with differentials in A (see Lemma (3.6)). O

1
sup
The procedures outlined so far are not always usable, because A(x)

may fail to have rank £ or, more in general, A may not be a locally

sup
controlled invariant distribution. In this case one may still use the
general algorithm (2.4). A practical implementation of this algorithm

can be obtained in the following way.

(3.17) Algorithm (Construction of the largest locally controlled in-
variant distribution contained in H).

Suppose that in a neighborhood of the point x° the codistribution
sp{dh1,...,dh2} has constant dimension, say s;. Let A,(x) be an
so—vector whose entries K01""'A0s0 are entries of h, with the pro-

perty that da . dA are linearly independent at all x in a neigh-

01’ "
borhood of x°.

The algorithm consists of a finite number of iterations, each one

OS0

defined as follows.

Iteration (k). Consider the S Xm matrix Ak(x) whose (i,j)-th
entry is (dAki(x),gj(x)> . Suppose that in a neighborhood U, of the
point x° the rank of Ak(x) is constant and equal to Ty - Then it is
possible to find r, rows of 2 (x} which, for all x in a neighborhood
Uﬁ C U, of x°, are linearly independent. Let

Pr1

Pxa
be a 8 * s, permutation matrix, chosen in such a way that the r;, rows
of Pk1Ak(x) are linearly independent at all x € U'. Let Bk(x) be an

sk—vector whose i~th element is {(dx,.,f)(X). As a consequence of pre-

ki
vious positions, the equations

(3.18a) Pk1Ak(x)a(x) = —Pk1Bk(x)
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(3.18b) Pk1Ak(x)B(x) = K

(where K is a matrix of real numbers, of rank rk) may be solved for o

and 8, an m-vector and an mxm invertible matrix whose entries are

real-valued smooth functions defined in a neighborhood Uﬁ of x°.
Set 30 = f + go and Ei = (gB)i 121 < m.

Consider the set of functions

and the codistributions
Sk
Q1 =j£1 sp{dxkj}

2, = spldrs A € o}

k2
Suppose the codistribution Qk1 + ka has constant dimension,
say Spiq in a neighborhood Ui'c Uﬁ of x°. This integer 5141 is ne-
cessarily larger than or equal to r, because the r, entries of Pk1kk
have linearly independent differentials at all x € Uﬁ , otherwise

Ak(x) would not have rank r, . Let Ak+1,1""’xk+1,sk+1 be entries of

Ak and/or elements of Ak with the property that the differentials

Qhy g qre e dd

hood UE‘C U;'of x°. Thus

k+1,sk+1 are linearly independent at all x in neighbor-

Sp+9

Q4 + Q. = ) spldr

}
k1 k2 3521

k+1,3

Define the Sy pq-vVector kk+1 whose i-th entry is the function
Ak+1,i'

This concludes the description of the algorithm. O

As a matter of fact, it is possible to show that the operations
thus described are exactly the ones required in order to compute the
codistribution &, from codistribution Q£_1 and therefore that,under
suitable assumptions, the algorithm ends at a certain stage, yielding
the required distribution. Since the possibility of completing the
operations defined at the k-th stage depends on assumptions on the
rank of A and on the dimension of Qk1 + ka , we set for convenience
all these assumptions in a suitable definition. We say that x° is a
regular point for the algorithm (3.17) if, for all k > 0, the matrix
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Ak has constant rank in a neighborhood of x° and the codistribution
Qk1 + ka has constant dimension in a neighborhood of x,
the dimension of

In this case r , the rank of 2 and s

k'’ k+17
Qq + 9, are well-defined quantities in a neighborhood of x°. Note,
however, that around a regular point x1 other than x°, Ty and s
might be different.

The following statement shows that the algorithm in gquestion

k+1

provides the largest locally controlled invariant distribution con-

tained in H.

(3.19) Proposition. Suppose x° is a regular point for the algorithm
(3.17). Then, there exists an integer k* with the property that
Sp¥yq T Sk* and, therefore, the algorithm terminates at the (k*)—th
iteration. Suppose also G is nonsingular. Then on a suitable neigh-
borhood U of x° distribution

Sy *
k
A*= M
i=

1
O(Sp{dkk*,i})

coincides with the largest locally controlled invariant distribution
contained in H. The pair of feedback functions that solve (3.18) for
k = k¥ is such that

* *
[£f +ga,a] Ca

[(gB)i,A* ] C a¥ 1<iz<m

Proof. We shall prove by induction that the assumptions of Lemma
(2.7) are satisfied and that

Q = j£1 sp{dkkj}

This is true for k = 0, by definition.

Suppose it is true for some k. To compute Q we need to com-

k+1
pute first Qk n GL. Note that Qk is nonsingular around x~ because

the differentials dxkj 1 <] < Sy s

all x € UE'. The intersection ﬂk n GL at x is defined as the set of

are linearly independent at

all linear combinations of the form

c.dA, .
121 kg )
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which annihilates g4 (%),.. .,gm(x) . Therefore, it is easily seen that
the coefficients Cyree-2Cyq of this combination must be solutions of

the equation k

(c1.. .csk)Ak(x) = 0

Since Ak(x) has constant rank r in a neighborhood of x°, Q n GL is
nonsingular around x°, has dimension Sy "Iy and is spanned by covector

fields which may be expressed as
(3.20) w = (Y1(X)Pk2 + v, (x)Pk1)d)\k

y1(x) being an arbitrary (sk-rk)—row vector of smooth functions. With

d)‘k we denote an s, -column whose i-th entry is the covector field

ar ;.
In computing &, . , we make also use of the fact that, if (a,f)

is any feedback pair, then (see Lemma (2.8))

o L m L
o + ) Ly (@ NG =@y +} L, (@ NG
i=0 “i i=0 95

Now, take the Lie derivative of (3.20) along g, , with a and g

solutions of (3.18). As a result one obtains

Lw = ((L, Y1) Py, + (DY) Py g)ddy +y1pk2c11,gi>\k +Y2Pk1dLg)\k

gi i i i i

But the way the %’i are defined is such that

Y
Pk1L,\J)\k = Pk1<d)\k,g0)= 0
90
4
Prqloa)y = Pm(d}\k,gi): constant
i

for all 1 < i < m. Thus, in the above expression we may replace Yo
with any arbitrary r -row vector ?2 of smooth functions, This makes
it possible to express L,w in the form

93
(3.21) L.w = Y3d}‘k + Y4dLm)‘k

N
gi i
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" TOW vector and Yq is an arbitrary ) —row vector of

smooth functions. The first term of this sum is already an element of

where T3 is some s

Qk , by assumption, while the second, due to the arbitrariness of Yg 0
spans the codistribution ka (see above). Thus, we may conclude that

Sk+1

+Q =0, +9, ., = J spl{di

k2 = k1 " “k2 . }
J=1

k+1,3

By assumption, the codistributions Qk . k > 0, are nonsingular
around x° (their dimension is sk). Thus, there exists an integer k
such that

Qs = 0

k k*+1

*
This clearly implies the termination of the algorithm at thek -th step.
We have also assumed that 2 N GL are nonsingular around x° (their
dimension is rk). So in particular Q;*-+G is nonsingular. If G is
also nonsingular all the assumptions of Lemma (2.7) are satisfied
and 9,+ is the required distribution.

In order to complete the proof, we have to show that the feedback
pair which solves (3.18) for k = k* is such as to make Q;* invariant
under the new dynamics. To this end, consider again the expression
(3.21) of the Lie derivative along si of a covector field w of Qk ﬂGL.
If the algorithm terminates at k*, then

L
L, (s NG) CQ

i

k*

and, therefore, we see from (3,21) that every entry of dLmAk* (due
i
to the arbitraryness of 74) is a covector field of Qk* . But, since

the entries of dAk* span Qk* , this implies

Lka* C Qk* 0<i<m
93
. ) . N N . .
and thus Qk* is invariant under 9gr9qr--19y - Qk* being nonsingular
and therefore smooth, we may conclude that Qk* is invariant under the

new dynamics. O

This result is very important because it shows that, under suit-
able regularity assumptions,it is possible to find the largest local-
ly controlled invariant distribution contained in H, and also a (local-

ly defined) feedback pair o and B which makes it invariant under the
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new dynamics. The latter is particularly useful because we see that,
as far as one is concerned with the maximal locally controlled in-
variant distribution contained in H, the computation of a such a
feedback pair does not require solving partial differential equa-
tions (like in the general case, as seen from Lemma (1.10)) but may
be carried out essentially solving x~dependent linear algebraic
equations.

We conclude the section with some additional considerations
about the properties of the algorithm (3.17). It is observed that,
if the algorithm may be carried out until its final stage (i.e. if
x°is a regular point for the algorithm), as a by-product one ob-
tains, for all k > 0, not only the dimension ) of each codistribu-
tion 2, of the seqguence (2,.5) but also the dimension Sy =T} of the
codistribution Qk N GL.

Thus the rank r, of A, may be interpreted as

Sy

(3.22) = dim
N gt

T, =
k
0y
The integers LarTqreearI)* are rather important also for rea-
sons not directly related to the construction of the distribution
*
A . We will see in the next chapter, for instance, that the se-

quence of integers defined by setting
61 =rx

2 T T
(3.23)

6k*+1 = rk*-—rk*_1
may be, in a special case, directly evaluated starting from the
coefficients of the functional expansion of the input-output behavior
and plays an essential role in the problem of matching linear models.

It is also possible to relate the integers r; » 021 k*, to
the characteristic numbers Py v 1 i < &, as stated below.

(3.24) Proposition. Suppose that the outputs have been renumbered in
such a way that the sequence of the characteristic numbers Ppr---1Py
is increasing. Let x° be a regular point for the Algorithm (3.17).
If rank A(x°) 4q Gefined by (3.23)
are such that §; is equal to the number of outputs whose character-

= %, then the integers 61,...,6k*
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istic number is (i-1) and, moreover, 61+...+6k*+1 =4¢.0

The proof of this proposition is left as an exercise to the reader.

4. Noninteracting Control

Consider again a control system of the form

m
X = £(x) + ] g,(x)uy
i=1

| A
[
A
P

y; = b, (%) 1

and suppose {4 < m.
It is required to modify the system, via static state-feedback

control, in order to obtain a closed loop system
m
- 4
x = ¥x) + ] g, (x)vy
i=1
y; = hy(x) 1 <41 <2

in which, for some suitable partition of the inputs VgreoerVpy into
% disjoint sets, the i-th output is influenced only by the i-th set
of inputs.

This control problem may easily be dealt with on the basis of
the results discussed in chapter III (Theorem III.(3.12)) and its
solution has interesting connections with the analysis developed so
far in this chapter. In the present case, in order to ensure the in-

dependence of ¥y from a set of inputs vj reessV, We have to find a
1

Jx
)
distribution Ai which is invariant under f and Bj 1 23 <m, is
contained in (sp{dhi})L, and contains the vector fields Bj ,...,Ej .
1 k

Since this is required to hold for each individual output, one has

to find £ distributions A1,...,A all invariant with respect to the

2
same set of vector fields %,51,...,§m.

A set of distributions A1""'A£ with the property that
(4.1a) [¥,8;1 €,
o .
(4.1b) [gj,Ai] ca, 1<3<m

for all 1 < i < & is called a set of compatible controlled invariant

distributions.The feedback pair which makes (4.1) satisfied is called
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a compatible feedback. Obviously, in the very same way one can in-
troduce the notion of compatible local controlled invariance.

Thus, the problem we face is the following one.

(Loeal) single-outputs noninteracting control problem. Find a set of

distributions A1,...,A2 which:

(1) are compatibly (locally) controlled invariant

(iia) satisfy the conditions A, C (sp{dhi})L

(iib) for some partition I, VI, U...UI, of the index set {1,...,m}
and for some compatible feedback, satisfy the conditions

(gﬁ)j €4y

for all j & I;. a

The existence of a solution to this problem is characterized as

follows

(4.2) Theorem. The Local Single-Outputs Noninteracting Control Problem
is solvable if and only if the matrix A(x) has rank £ for all x.

Proof. (Necessity). Suppose there exists a pair of feedback functions
which solves the Single-Outputs Noninteracting Control Problem. Then,
we know from the analysis of chapter III, section 3,that,in particular,
for all k and all 1 < i < &

L, L h,(x) =0

g ¢

whenever j € Ii' Without loss of generality we may assume the inputs
VireeorVp being renumbered in such a way that

I, = {mi_1 + 1,...,mi} 1<i< 8

with my = 1 and m, = m. The above condition, written for k = Py shows
Y .

that the matrix A(x) has a block-diagonal structure: on the i-th row

only the elements whose indexes belong to the set I, are nonzero. But

we have also that
n
A(x) = A(X)B(x)
Thus, since the matrix 8 is nonsingular and each row of A(x) is non-

Zero by construction (we assumed that all oy 's are defined), each
row of A(x) is nonzero. A(x) being block- dlagonal this implies that
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v
the % rows of A(x) are linearly independent and so are the % rows of
A(x)..

(Sufficiency). It is known from the analysis given in the previous
section that if the i-th row of A(x) is nonzero for all x, the largest
locally controlled invariant distribution contained in (sp{r.flhi})'L is
nonsingular and given by
o,
ST
< =

k L
. (sp{dehi})

0

A pair of feedback functions (a,B) such that
1.3 [ Y1 cal
(4.3a) £+ ga,b; a5

* *
(4.3b) [(gs)j.Ai] Cay 1

A
.
| A
8

is a solution of equations of the form
(4.4a) Ai(x)a(x) + bi(x) = yi(x)
(4.4b) Ai(x)B(x) = éi(x)

where Ai(x) and bi(x) denote the i-th rows of A(x) and b(x). The
scalar Yi(x) and the 1xm*riw vector Gi(x) are functions whose dif-
ferentials belong to (Ai) : in particular, real numbers.
Considering the equations (4.4) all together, for all 1 < i < ¢,
one sees immediately that, thanks to the assumption on the rank of
A(x), there exists a pair of feedback functions (a,8) that makes

* * *
(4.3) satisfied simultaneocusly for all Ai , 1.e. that A1,...,A are

compatible locally controlled invariant distributions. In partiiular
if the right-hand-side of (4.4b) is chosen to be the i-th row of a
block diagonal matrix, one has that in the i-th row of A(x)B(x).,i.e.
in the i-th row of K(x), the only elements whose indexes belong to
the set I; are nonzero. This proves that a compatible B exists with
the property that
L, Liihi =0

95 £

for all j & I,. But this, in view of Lemma (3.4) is equivalent to
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L, Lf hi =0

kS

i.e,, because by definition L,, L}Ehi =0 for 0 < k < Py +
93
o
. €A

93

for all j & Ii'
This proves that the Local Single-Outputs Noninteracting Control

Problem is solved. O

It may be interesting to look at the internal structure of the
decoupled‘ system obtained in the proof of this theorem., Suppose again
that A(x) has rank % on some neighborhood U and let o and B be so-
lutions of the equations (4.4) on U. One knows from Lemma (3.10) (see
also Remark (3.13)) that the functions L}Ehi(x), 1 <14 < &, Of_kipi B
are part of a local coordinate system. Without loss of generality we
may assume that they are coordinate functions exactly on the neigh-
borhood U. We want to examine the special structure of the control
system in the new coordinates, after the introduction of the decoupling
feedback,

To this end, we set the new coordinates in the following way.Let

( Zi 0 hi(X)
Z31 Lghy (x)
;%) = : = .
Pi
Zip. Lethy (x)

1

for 1 < i < %. If pg ¥t p2+l is strictly less than n, an extra
set of coordinates, say €£+1 , is needed.

The computation of the form taken by the differential equations
describing the system in the new coordinates is rather easy. For

1_<_ii2andk<pi

. Bzik }( m m
Zlk = ——ax ( + 51 QJVJ) = L%’Zlk +]£1 L3 . Ziij
(4.5) m ]
- k k Lk+1h. = 2

L, Lth, + J L L h.,v. =
'j\:ifl j=1'5jfl]



156

Whereas, for k = Py (see Lemma (3.4))
m
Zip = yi(x) +'z éij(x)vj
3=1
where Yi(x) is the right-hand-side of (4.4a) and Gij(x) is the j-th
element of the right~hand-side of (4.4b). If this latter is chosen
to be as the i-th row of a block-diagonal matrix,as in the proof of

Theorem (4.2), then the above eguation reduces to

(4.6) 2, = Yi +. Z

Again from the proof of Theorem (4.2), it is seen that Yy and 6ij

(%)
depend only on ziO""’Zipi .

be simply real numbers.

As a matter of fact, Y5 and 5ij may
Finally, by definition, for all 1 < i < &

As a result, we see that in the new coordinates the closed loop

system may be described in the form

DI §ij(£i)vj 1 <1< 2%
(4.8) el o
Eor1 = Topq(Eqreeery ) +j§1gwlj(51,....E,L+1)vj

vy = h(g))
with
zi1 0
E g = . 9,4 (Eg) = :
* z, 37t 0
ip;
¥4 (E]) 6ij(£i)
hi(€3) = z4,
(*) Let Yi(z) = Yicx(z). Then
p,
vy ax et %% gy
9z, in 2z a Z is 9% 9z.. ~ °
ik ik s=0 jk

because 1 # j.
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These equations clearly stress the decoupled structure of the

closed loop system.

(4.9) Remark. The choice of yi(gi) linear in Ei , i.e. the choice

v (x) = a;ohy (x) + a; Lch, () +...-+aipiLf h; (x)

with aiO”"’aip real numbers, is admissible, because in(x) in this
i

P,
case belongs to sp{dhi,.‘.,dL lhi}. It is also possible to choose §;

£ 3
constant, provided that, for some j € I, . Gij is nonzero because this
is required for the solution B of the (4.4b} be nonsingular. The two
facts show that a suitable choice of decoupling feedback makes linear

the first £ subsystems of (4.8).

*
(4.10) Remark. Note that Ai , the largest locally controlled invariant
distribution contained in (sp{dhi})L, in the coordinates is expressed
as
*

_ 3 ..
A, = sp{r : 3 # i, Oikipi}+sp{

i 1<k <ad}l

jk 9241,k

where d denotes the dimension of E£+1 (see chapter I, section 3). 0O

At the beginning of this section, we have formulated the Nonin-
teracting Control Problem looking at the existence of a set of com-
patible controlled invariant distributions, each one contained in
(sp{dhi})L and containing the vector fields aj = (gB)j for all j & 1.
One can also consider a complementary formulation in the following terms.
Local single-outputs nontnteracting control problem. Find a set of
distributions A1,...,A2 which
(i) are compatibly locally controlled invariant
(iia) satisfy the conditions ay - (sp{dhj})L for all j # i
(iib) for some partition I; U I, U...UI, of the index set {1,...,m}

and for some compatible feedback, satisfy the conditions

(gB)j S

for all j € 1,. 0

Also in this case, in fact, the output ¥y of the closed-loop
system will be affected only by the inputs whose index belongs to the
set Ii'

Clearly the condition that the rank of A(x) is equal to & re-
mains necessary and sufficient for the existence of a solution to the
problem. If desired, one could directly prove the sufficiency in terms
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of the complementary formulation discussed above. As in Theorem (4.2),
it is easy to prove that the assumption on A(x) makes it possible
to express the largest locally controlled invariant distribution con-

tained in N (sp{dhj})L as
J#AL

p .
* J
kK'= n n (sp{dL?h.})L
j#i k=0 J
*

*
The distributions K ,...,Kz are compatible and a compatible feedback
*

2
(4.11) Remark. Note that in the new coordinate system

is exactly the one that makes A1,...,A compatible.

*
K, = sp{ggf— : 0 <k <oyt + spi
i

i . 5 :1 <k <4}

Zo41,x
(4.12) Remark. Summarizing some of the above results, one may observe

that if A(x) has rank £, there is a set of distributions D1"’°’D£+1'
namely

o
=
i
(4]
o]
—
Q2
N
.
o
A
-
A
©
——
—
[ES
[
A
=

0
ke
—~
@
N
—
A
x
A
Q
et

which are independent, i.e. such that

=]
o)
£~
jw)
I
o

and span the tangent space, i.e. are such that

D1 + D2 + (.. F DR+1 = T™M
Moreover,
*
Ai = & Dj
J#L

*
Kj = D3 + Doy
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5. Controllability Distributions

The approach to the noninteracting control discussed at the end
of the previous gection, was the one of looking at a set of compatible

locally controlled invariant distributions A1""'AZ , such that

(5.1) spl§.: § €1.} CA, C n (splan. hHt
3j i i s j
j#i
with Bj obtained by means of a compatible feedback. It was shown that
*
if A(x) has rank 2 ( ), the largest locally controlled invariant di-

* *
stributions contained in N (sp{dhj})L, denoted K1,...,K2 , are such
j#i

as to satisfy these requirements. This approach essentially looks at

the "maximal" Ai which satisfy (5.1); however, one could as well lock
at the "minimal” A, which satisfy these conditions. This kind of ap-
proach yields the notion of a controllability distribution.

A distribution A is said to be a controllability distribution on
N if it is involutive and there exist a feedback pair (a,f) defined on
N and a subset I of the index set {1,...,m} with the property that
ANG = sp{gi: i € 1}, and A is the smallest distribution which is in-
variant under the vector fields %,81,...,Bm and contains Ei for all
i €1,

A distribution A is said to be a local controllability distribu-—
tion if for each x € N there exists a neighborhood U of x with the pro-
perty that A is a controllability distribution on U.

It is clear that, by definition, a (local) controllability distri-
bution is (locally) controlled invariant. Therefore, according to the
result of Lemma (1.10), such a distribution must satisfy (1.11} {(note
that the necessity of (1.11) is not dependent on the assumptions made
in Lemma (1.10) but only on the controlled invariance and the nonsin-
gularity of B). Therefore it is interesting to look for the extra con-
dition to be added to (1.11) in order to let a given controlled inva-
riant distribution become a local controllability distribution. To this

purpose, it is useful to introduce the following algorithm,

(5.2) Lemma (Controllability Distribution Algorithm). Let 4 be a fixed
distribution. Define a sequence of distributions Si setting
S0 =ANG
(5.3) n
N
§, =& ([f,sk_1l+j£1[gj,sk_1]+G)

(*) This condition is indeed necessary in the Single—Outputs Noninteracting Control
Problem if B is nonsingular and all pis are defined.
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This sequence is nondecreasing. If there exists aninteger k* such that
= _ *

Sk* = Sk*+1 , then Sk = Sk* for all k > k.

Proof. We need only to prove that Sk > Sp-1- This is clearly true for

k = 1. If true for some k, then

m m
([£,8,] +j£1[gj,sk]) > ([f,Sk_1]+j£1[gj,Sk_1])

and therefore

(5.4) Remark. Note that we may as well represent Sy as

%3]
I

m
k=0 N(E5 4 +j£1[9j'5k«1]'*G) + 8, _4

or as

[%2]
Il

m
AN (L8 4] + j£1[gj,Sk_1] + 8.4+ G

The last one comes from the first and from the modular distributive

rule, which holds because S5, 4 ca, O

As we did for the algorithm (2.5) we introduce now a termineclogy
which will be used in order to remind both the convergence of the
sequence (5.3) in a finite number of stages and the dependence of its

final element on the distribution A. We set

(5.6) S(A) = (8) + Syt .. .48, +...)
and we say that S(A) is finitely computable if there exists an in-
teger x* such that, in the sequence (5.3}, Sy % = Sp*yq- If this is
the case, then obviously S(A) = Sk* .

An interesting property of the algorithm (5.3) is the following

one.

(5.7) Lemma. Let %,31,...,3m be any set of vector fields deduced from
f,g1,...,gm by setting % = f+ga and Si = (gB)i y 1 < i < m; then
each distribution S, of the sequence (5.3} is such that

v

=anNn([%s [§.,8, .1 + @)

I+ 1 3 k-1

Sx k-1 .
j

=15
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Proof. Let T be a vector field of Sp_1- Then, we have

m
[¥,1] = [ f+ga, 1] = [ £,1] +.Z

34y (I 95 7} ay - (LTuj)gj)

[gilT]= [(gB)i I T] = ([gle]le = (L 6')9)

T 31 ")

Il e~3

=1

Therefore

m n

v

[¥,s,_, +j£1[gj,sk_1] +6Clf,8,_,] +j£1[gj,5k_1] + 6
. R . " -1 _ v

But, since B is invertible, then £ = f£-gB ‘o and.gi = (gB )i so that,

by doing the same computations, it is found that the reverse inclusion

holds. The two sides are thus equal and the lemma is proved. O

From this it is now possible to deduce the desired "intrinsic"

characterization of a local controllability distribution.

(5.8) Lemma. Let A be an involutive distribution. Suppose A, G, A + G
are nonsingular and that S(A) is finitely computable. Then A is a

local controllability distribution if and only if

(5.9a) [£,4] €A +G
{(5.9b) [gi,A] CA+G 1<ic<m
(5.10) S{a) =aA

Proof. Necessity. Suppose A is a local controllability distribution.
Then it is locally controlled invariant and (5.9) are satisfied. Mo-
reover, locally around each x there exists a feedback (u,B8) with the

property that A N G = sp{gi , i € 1}, where I is a subset of {1,...ml,
and A is the smallest distribution which is invariant under'%,a1,”.,%n
and contains gi for all i € I. Consider the sequence of distributions

defined by setting
(5.11a) Ay =8 0G
¥ Ty
(5.11b) b = [£,8, 4] +i£1[gi,Ak_1] + Ay

It is easily seen, by induction, that



for all k. This is true for k = 0 and, if true for some k = 0, the in-
variance of A under %’51""';m shows that Ak+1 C A. Therefore, one
has

¥ Ty
Ay =8 N (LE,8_4] +i£1[91'Ak-1] + G)
i.e., from Lemma (5.7)
(5.12) A =S

It is also seen that, by definition, 4, = sp{gi: i € 1} and that, by
construction, Ak-1 C Ak for all 1 < k. Thus, the sequence of distribu-
tions generated by the algorithm (5.11) is exactly the same as the one
yielding (%,g1,...,g |sp{g i € I} ,the smallest distribution inva~-
riant under % L ITRRE ,g and containing sp{g : 1 € 1}. From (5.12) and
from the assumption that S(A) is finitely computable we know that there

*
is an integer k such that Ak* = A Therefore, in view of Lemma

k¥+1-
I.(6.3) , the largest distribution in the seguence (5.11) is exactly
(%,51,...,am[sp{gi: i € I} . From this, one concludes that the largest
distribution in the sequence (5.11) must coincide with A, i.e. again

from (5.12), that the condition (5,10) is satisfied.

Sufficiency. We know from Lemma (1.10) that if A is involutive, if
G,A and G+4 are nonsingular and if the conditions (5.9) are satisfied,
then locally around each x there exists a pair of feedback functions
(a,B) with the property that A is invariant under %,31,...,§m. From
this fact one may deduce that

m
A0 s 4] + ) 1d;.8, 4] +6 +s85 ;=
21

i

m
N

= [E5 ) t1ldesql v 0 NGs -

m
v

(5, 4] +i£1[gi’sk—1] * Sp-1

In view of Lemma (5.7) and Remark (5.4), this shows that

¥ e
(5.13) s, =1[£f,8, 4l +i£1[gi,sk_1] + 5,4

Without loss of generality, we may assume that 51""'am are



163

such that A NG = sp{gi: i € I} for some index set I. In fact, A N G
is nenzero because, otherwise S(A) would be zero, thus contradicting
(5.10). Since A N G is nonsingular, one may find a new feedback func-
tion B and construct new vector fields g, = (ag)i ;1 <4i<m such
that, for some index set I, SP{§i= i €1} =A NG and §i = Ei for
i # I. This new set of vector fields still keeps A invariant because
c}i €A for i € I and A is involutive,

So 5, =GNA = sp{&i: i € 1}, and the sequence of distributions

0

§, coincides with the sequence of distributions yielding

k
(%,31,...,$m[sp{gi: i € I} . since, by assumption, for some k*,Sk* =
= 5p*,q we deduce from Lemma I.(6.3) that 5.# is the smallest di-
stribution which is invariant under ?,51,...,am and contains
spld;: i € I}. But (5.10) says that S s coincides with A and this
completes the proof. O

In view of the use of the notion of local controllability distri-
bution in problems of decoupling or noninteracting control, it is
useful to be able to construct a "maximal" local controllability di-
stribution contained in a given distribution K. To this end one may

use the following result.

(5.14) Lemma. Let A be an involutive distribution. Suppose G,4,G+A

are nonsingular and
[£,0] CA + G
[gi,A] CA+ G 1 <i<m

Moreover, suppose S(A) is finitely computable and nonsingular. Then

S${A) is the largest local controllability distribution contained in A.

Proof. As in the proof of Lemma (5.8) (sufficiency) it is easily seen
that the assumptions imply that locally around each x there exists a
pair of feedback functions with the property that A N G=sp{’z§i:i€I}
and S$(A) is the smallest distribution which is invariant under

¥’81""’Em and contains sp{gi:i € 1}, Moreover, since
7‘, s
sp{gi: i € 1} C S{a) C A
and A N G = sp{gi:i € 1}, it is seen that

S(AYy NG = sp{gi: i €1}
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Thus S(A) is a local controllability distribution.

Let A be another local controllability distribution contained in
A. Then, by definition, in a neighborhood U of each x there exists a
feedback (a,f) with the property that A N G = splg;:i € I} for some
subset I of {1,...,m}, and A is invariant under E,§1,...,§m, where
f = f+go and g; = (gB); for 1 < i < m. Consider the sequence of di-

stributions
= sp{éi: i €1}
e m —_— — -—
b = L, ) +i£1[ irhe_qb B,

Note that A, C A C A. Thus

k
- E— m - - -—

b, o N (£,8, ] +i£1[gi,Ak_1] + Ay *G)

Since &O =ANGgCANG= SO ; it is easy to show, by induction, by
means of Lemma (5.7) and Remark (5.4) that Zk C S, for all k > 0, i.e,

A, C

Ak S(a)
Now recall (see Lemma I.(6.4)) that there exists a dense subset U with
the property that at each x € U, A(x) = Kk(x) for some integer k. Thus,
we have that

A(x) € S(A) (%)

for all x in a dense subset. Since A is smooth and $(A) is nonsingular,

this implies A C S$(a). O

If the distribution K in which one seeks the maximal controlla-
bility distribution does not satisfy the above conditions, one may
proceed finding first the largest locally controlled invariant distri-
bution contained in K. From Lemma (2.7) we know that this one is given
by J(K), provided that this distribution is finitely computable, K is
involutive and G,J(K),J(K)+G are nonsingular. If S(J(K)) is finitely
computable and nonsingular, then S(J(K)) itself is the required di-
stribution. In fact, we know from Lemma (5.14) that S{(J(K)) is not
only the largest local controllability distribution contained in J(X),
but also the largest local controllability distribution contained in
K, because any controllability distribution contained in K, being

locally controlled invariant, must be also contained in J(K).
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(5.15) Remark. From (5.13) it is also seen that the distribution S{A)
N "

is left invariant by any set of vector fields ’%,g1,...,gm which

leaves A invariant. As a matter of fact, the condition

Sp* = Sp¥yq

C o & v :
implies [ £,8; %] C 5.4 and [g,,s.+] C s %, 1 < i <m.

6. More on Noninteracting Control

In this section we shall see that the notion of controllability
distribution makes it possible to analyze undexr a different per-
spective the kind of problems dealt with in the section 4. Consider
again the Local Single-Outputs Noninteracting Control Problem, that
we know is solvable if and only if the matrix A(x) has rank £. In
order to avoid unessential notational complications, we may assume
that the number of input channels is equal to that of the output
channels, i.e. % = m, so that each decoupled channel is single-input
and single-output. In section 4 we have seen that a pair of feedback
functions which solves the problem may be found as a solution of the
equations (4.4) (where, in particular, Y; may be zero and Gi the i-th
row of the identity matrix). We have also observed that this solution
provides a feedback which makes the following simultaneously inva-
riant:

- A*, the largest locally controlled invariant distribution contained
in H,

-A; , the iargest locally controlled invariant distribution contained
(ip{dhi}) 1 <1 <8,

- Ky the largest locally controlled invariant distribution contained

N (splan bt 1 <4< 2.
j#i

We have also investigated the internal structure of the system
thus obtained, and found a local state-space description of the form
(4.8), i.e.

ii = fi(ii) + gi(ii)vi

—_— R -
(6.1) £y uq =Fiiq(Eqreverigyy) +j£192+1’j (Eqreenrfyiq)vy

y; = h; ()
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The approach to the noninteracting control problem via the solu-
tion of (4.4) makes simultaneously invariant a set of distributions
*

2
is indeed a set of compatibly locally controlled invariant distribu-

*
which generally are not independent. For instance, the set KqreoauK
tions which satisfy the conditions

* L
{(gR). C K, C N (sp{dh l})
i i < g j
i#j
for some compatible feedback but, as we have seen before (Remark
(4.12)), if

d=n - (p1+p2+...+pz+2) > 0
then for any pair 1 < i < ¢

¥ * * *
Ky N (] K) = Ky 0 A I K) =K

* ﬂ‘K*...ﬂ K; # {0}
k#i k#3

1 2

The existence of such a nonzero intersection corresponds to the
presence of the set of coordinates El+4 =(zg+1,1""'zz+1,d) which
characterizes the (2+1)-th subsystem of (6.1).

Motovated by this consideration, we want to investigate in this
section a slightly different version of the noninteracting control
problem, defined as follows.

Loecal, single-outputs, strong noninteracting control problem. Find a

set of distributions A1,...,A which:

L
(1) are compatibly locally controlled invariant

(ii) for some compatible feedback satisfy the conditions

(gB); €A, € N (sp{dh.})‘~ , 1T <i < g
i i ‘s j - =
j#i
(iii) are nonsingular, independent and span the tangent space

(iv) are simultaneously integrable. O

In view of Theorem I.(3.12), one may replace the requirement (iv)
with the reguirement

(iv') for each i = 1,...,% the distribution D, = § A. is involutive.
J#i
Note that, for instance, the distributions Kﬁ,...,Kz

nonsingular and spanned the tangent space, so that the real new con-

were already

straint added in (iii) is the one of the independence of the set of
distributions in question, On the other hand, simultaneous integra-

bility, introduced in (iv), is useful because it makes it possible
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to find local coordinates in which the system, once decoupled, appears
as the aggregate of £ independent single-input single-output sub-
systems. We discover such a decomposition as an intermediate step in

the proof of the following result.

(6.2) Lemma. Let % = m. The Local Single-Outputs Strong Noninteracting
Control Problem has a solution if and only if there exists a set of

distributions A1 P 'AJL which:

(i) . are locally controlled invariant
L .
(ii) satisfy the conditions A, C n (sp{dhj}) ;1 <1< 8
Jj#L

(iii) are nonsingular, independent and span the tangent space

(iv) are simultaneously integrable

(v} are such that Ai N G is nonsingular and one-dimensional, for all
1 <1<’

(6.3) Remark. In other words, this Lemma shows that the simpler state-

ment "Ai N G is nonsingular and one-dimensional for all 1 < i < 4"

essentially replaces the statement "A1""’A2 are compatible and, for

some compatible feedback, (gB)i € A; for all 1 < i <",

Proof. Necessity. All we have to show is that (v} is true. Recall that
the matrix A(x) has necessarily rank ¢ for all x. Since

Pq
dLg hy (x)

A(x) = . (91 (X)-..gm(x))
p
2
de hz(x)
and & = m, we deduce that dim G(x) = & for all x.

On the other hand, from the condition (gs)i € Ai we have also

%
(8; NG) € G =spl(gB)qse..rl(gh)y} Ci£1(Ai 0 G)

Il >~
—

i
9
G =) (&, NG)

Since the distributions A1,...,A£ are independent the latter is a

direct sum and this yields
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i.e. the condition (v) because dim(Ai ng) > 0.

Sufficiency. Suppose there exists involutive distributions A1,...,Ag
which are nonsingular, independent, span the tangent space and are si-
multaneously integrable. So, around every point, there exist local

coordinates of the form

£ = col(g»lrv-—lgz)

with
£y = colleyqranrtypy )
1
such that
N ) , .
(6.4) Ay = sp{agij 1T<3<n;}, 12122

From (v) one also deduces the existence of a (locally defined) £x{ non-

singular matrix é of smooth functions with the property that
g; = (gB)y

gspans the one-dimensional distribution Ai N G.
Moreover, from the fact that the distributions Ai are locally con-

trolled invariant and from Lemma (1.10) (necessity) we have
.1 Ca. g g
[f,A]] AJ + sp{g1,...,gl}
- c - - .
[gi,Aj] Aj-+sp{g1,...,gg} , 1<1i <18
for all 1 < j < %. From these we get, in particular

[£,4 +...+A£1 - A2+...+Al+sp{g1,...,g£} =

2

= Ayt + sp{§1}

[Gyrdpte..tby] Ca b 48, + splg,}

2
These two conditions have the form (1.11). Thus, since A2+...+A£

is involutive (see Theorem I.{(3.12)) and constant dimensional,

dim sp{§1} =1 and sp{§1} N (Ay+...+A)) = 0, from Lemma (1.10) (suf-

ficiency) we deduce the existence of a locally defined pair of scalar

functions, a4 and 81 such that
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+ootA

[f+g1a1,A2+...+A2] C A, .

g C
[g4Byrlyte. th, ] C A b thy
One can proceed in the same way and find other pairs of functions %y
and 82,..., up to oy and 82 which makes conditions like

(6.5a) [f +g.a;, , @& A.] C @& b.
1 g v g
* j#L ) j#Ai

{6.5b) [g.8

iBy v & A.] C e}i\j

i#i ) A
satisfied for 1 < i < 2.

From é, Qqreesely 81,...,82' we construct an overall feedback
pair ¢ and B setting

1
oy 81 0 .0
R Oy N 0 82...0
(6.6) o =B B=28
o, ) 0 ...B,

This feedback is clearly such that

he

= f + ga = f + g1oa1+...+g2cx2
N -~ .
9; = giBi 1 i<k

We show now that this is a compatible feedback for A1,...,AQ.

The check of this property is particularly easy in the local coordinate
chosen to satisfy (6.4). Since &_}i € b; 4 we deduce that the i-th group
of components of % coincides with the i-th of components of f+§iai.
Moreover, from (6.5a), using the same kind of arguments employed in the
proof of Lemma I.(4.3), it is easily seen that the i-th group of com-
ponents of f+§iai depends only on the local coordinates Ei. For similar
reasons it is also seen that in éiBi the only nonzero group of compo-
nents is the i-th one, which depends only on the local coordinates F,i.
Thus, in the local coordinates £ = col(£1, - "‘59,)' the vector fields

}and Si » 1 < i< 2, are represented in the form



ey | g4 (24) [ o
(£, 0 0
. " _ . N _ .
ey = | - IS N M :
N
| ey J 0 g, (&)

This clearly shows that the feedback (6.6) is a compatible feedback
and completes the proof.

(6.7) Remark. In the coordinates § = col(£1,...,€1), the i-th output
depends only on gi (because of (ii)). Therefore, the decoupled system
is described as a set of independent single-input single-output sub-
systems of the form

oy
I

£,(6,) + gy (E))vy
(6.8)

Yy hi(Ei)

(6.9) Remark. The distributions Kj,...,KZ satisfy all the requiremints
(i) to (v) if and only if Pqt. . toy + ¢ =n, i.e. if and only if A

has dimension 0. If this is not the case, then, in order to be able to
solve the Local Single-Outputs Strong Noninteracting Control Problenm,

one has to try with smaller controlled invariant distributions. O

*
9 is not suited, a reasonable alternative for

If the set K:,...,K p t
the solution of this control problem is the set S(K1),...,S(K2). As a
matter of fact, it is possible to prove that, if the matrix A(x) has
rank & (a condition which is indeed necessary for the solvability of
the problem), the only extra condition needed to let this set of di-
stributions solve the problem in guestion is simply the condition (iii)
of Lemma (6.2).

(6.10) Theorem. Let & = m. Suppose the Local Single-Qutputs Noninter-
acting Control Problem is solvable. Suppose also that, for each
121 <4, S(KI) is finitely computable and nonsingular. If the set
S(K;),...,S(K;) is independent and spans the tangent space then the
Local Single-Outputs Strorg Noninteracting Control Problem is also
solvable.

Proof. If the matrix A(x) has rank & for all x, then G also has rank
*
2 for all x (see proof of Lemma (6.3)), K, is nonsingular (see Remark

* *
(4.11)) and K; N G also is nonsingular. For, the intersection K, NG
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at x is given by the set of all linear combinations of the form
]
g, (x)c,
=1t

[P
which annihilate dhj(x),...,deth(x), for all j # i. The coefficients

CireeesCy of this combination must be solution of the equation
a4 (x) ay, (x)
. ves e <4 0
al_1,1(x)...ai_1,2(x) . -
' ai+1’1(x)...a1+1 z( X) . .
) y ¢
ag4(x) ...all(x)

The matrix on the left-hand-side of this equation has rank £-1 and
therefore, at each x, the set of vectors in G which are also in Kz is
exactly one-dimensional.

From these properties, using Lemma (5.14), we deduce that if
S(K } is finitely computable and nonsingular, then it is the largest
local controllability dlstrlbutlon contalned in K
1"“'K£
variant under the same set of vector fields %,81,...,81. Therefore,
from Remark (5.15), it 1s deduced that also S(K ),...,S(K*) are in-

Moreover, it is known that K are compatible, i.e. in-

variant under % g1,...,g£ Without loss of generallty, one may as-

sume that
%
ai = K, 1 <1<
so that
6.11 *Nng = spld,)
(6.11) K, NG = splg,

%
because Ki N G is one-dimensional,

By definition
(R C S(K ) C K
so that

N * N *
G NSK) =G NEK,
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and
* ")
(6.12) G N S(K.) = spig.}
i i
Consider now the distribution
*
Di = ® S(K.)
J#i
It is easy to see that this distribution is also invariant under
¥.31....,$£ and that
N
2 ot i
D; sp{gJ : 3 £ i}
Therefore,
o " N . .
Dy 2 <%.g1,.--,g£159{9j= i A i

We will show now that also the reverse inclusion holds, so that

a

Di is actually the smallest distribution invariant under ?,81,...,g£
which contains sp{aj: j # i}. As a matter of fact, consider the se-

guence of distributions

I

n
Sy = (Husy 41+ [gye8; k-1] * S5 x1

=1

From (5.13), and (6.11), we deduce that for some k*
*
8i,k*41 T By = SUKy)
and therefore, from Lemma I.(6.3), that
Sk = (G, ..., lsp(§, P
i 3 i
This shows that
D; © <?,81,...,§lep{§j: j#ib
Using Lemma I.(6.6) we have that Di is involutive and this, in

* *
view of Theorem I.(3.12), shows that the set S(Kq),...,S(KQ) is simulta-

neously integrable, i.e. that the condition (iv) of Lemma (6.2) is sa-
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tisfied. Conditions (i} and {ii) are satisfied by definition and con-
dition (iii) by assumption. Moreover, the fulfillment of (v) derives

from (6.12). This completes the proof. O

* *
(6.,13) Remark. The interest in the set S(K1),...,S(K2) is also motiva-
ted by the fact that there exists a well defined algorithm which pro-
¥*
duces each S(Ki).
(6.14) Remark. Unfortunately, the condition expressed by the above
Theorem is not generally necessary for the solution of this noninterac-
ting control problem.
(6.15) Remark. From the proof of Theorem (6.10) it is seen that, when
* *

rank A(x) = £ and S(K1),...,S(K2) are independent and span the tangent
space, then any feedback solving the Local Single-Qutputs Neoninterac-
ting Control Problem also solves the strong version of this problem. O

We conclude the section with an example which illustrates the dif-
ference between the approach taken in section 4 and the one discussed

here.

(6.16) Example. Suppose

X2 + X1X3 X1X3 X1X3
f(x) =} x,x, + x%x (x) = x2x ( x°x
1%2 2¥%3 |79 2%3 |r g 2%3
2 . 1
T X3 )
h1(x) = X,
hz(x) = Xq

and consider first the Local Single-Outputs Noninteracting Control

Problem.
Since
dh1 = (1 0 0)
dh2 = (0 0 1)

we have



ngh1 = XX,

L h, =1
912

ngh2 = X,

Since

det A(x) = x1x3(x2 - 1)

is nonzero at all x in the dense subset of']R3

U = {x€m3

T xy # 0, Xy # 0, X, # 1}
the problem in question can be solved on U.
A feedback solving the problem is found via the equations (4.4).

Taking Yy = 0 and Gi = i-th row of the 2x2 identity matrix, these be-

come
A(x)a(x) = =b(x)
A(x)B(x) = I
where
th1(x) X, + X Xy
h 2
Lghy (x) Xy = Xy

This yields

alx) = x1x3(x2—1)
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) TXq¥X3

1

e

-1 XyXg

One may wish to examine the form taken by %,81,32 in the new

local coordinates 51,...,££+1. In this case we have

g4 = h1(x) X4

]

EZ = hz(x) Xq

and 53 may be chosen as Xy The equations (4.8) became

I

= vy

i 2

£y = £(8) +iZ1gi‘5"’i
Y1 = &

Y, = &y

Let us see now how K1,K2,S(K )y S(K ) look like.

Computation of S(K1). We need flrst K1, the largest locally con-
trolled invariant distribution contained in (sp{dh ht. By Corollary
(3.14), since A(x) has rank 2 (on U),

*

Ky = (sp{dhz}) —sp{ax1
and we may proceed to compute S(K ) via the algorithm (5.2). In this
case, in orxder to find S0 = K1 N G we have to solve a set of equations
of the form

1%3 X1%3
X2X X2X C1 = *
2%3 2%3 =
[o]
1 %, 2 0

* Iy .
for CqeCye From this it is seen that K1 N G is a one~dimensional di-

stribution, spanned by the vector field
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Now, note that

[g1,T] € G, [gz,T] € G

So that
[£,5,]1+ [g1,SO]+ [gz,SO]+-G = L£,55l+ 6 = sp{[f,r],g1,gz}
Since
x2(1—x2)
[£f,1] = X, %4 (x5=1)

2

—2x1
then

3

sp{[f.T],g1.gz} = TR

From this, it is seen that on U

N ( 3
S(K1) =Ky =sp 8x1 ! sz

* *
Computation of S(Kz). In this case K, : the largest locally con-
trolled invariant distribution contained in (sp{dh1})L, is given by

] 3
L
sz 8x3

*
K, = (sp{dh1})L = sp

The algorithm (5.2) now yields

* 2
= (@] = -
S, K, G sp{ax3}

Moreover,

9 ) 3
[f,a—x?’] € G, [91,§§] € G, [93,W3] € G
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so that
=Ky N ([£,8 1+ ( 1+ [
From this, it is seen that on U
* * 3
= N = <
S(K,) K, G sp{3x3}

The distributions thus found are such that

whereas

* *
S(K]) N S(Ky) = 0.



CHAPTER V
EXACT LINEARIZATION METHODS

1. Linearization of the Input-Output Responsge

Throughout this chapter we consider again a control system de-
scribed by equations of the form
m

Fix) + )
i=1

(1.1a) X

g9; (x)uy

(1.1b) Y

I

h (x)

and we want to examine to what extent the behavior of such a system
could be made "linear" under the effect of an appropriate feedback
control law. In the first five sections we concentrate our analysis on
the input-output response, whereas in the last two ones the input-state
and the state-output behavior will be considered. We shall refer to all
of these subjects as to "exact"” linearization problems, as opposite to
"approximate" linearization, which generally indicates the approxima-
tion of the behavior of a nonlinear system by means of its first-order
truncated power series expansion,

The first problem we deal with is the one of finding a static

state-feedback, i.e. a feedback of the form

m
(1.2) u, = ai(x) + 7

AxX)v.
i j= 3j

1Bi 3

under which the input-output behavior of the system (1.1) becomes the
same as the one of a linear system. To this end, we shall first deduce
a set of conditions which express in simple terms the property, for a
nonlinear system of the form (1.1), of displaying an essentially linear
input~output response.

Consider the Volterra series expansion of the input-output re-
sponse of (1.1) (see III.(2.4), where the individual kernels have,e.qg.,
the expressions III.(2.8)). Suppose the first order kernels wi(t,r1,xL
1 < i < m, depend only on the difference (t—T1) and do not depend on
X, in a neighborhood U of the initial peoint xC. If this is the case
we see from III.(2.8") that, because of the independence of wi(t,T1,x)
of x, all kernels of order higher than one are vanishing on U. Thus

the whole expansion III.(2.4) reduces to an expansion of the form
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m t
{1.3) y(t) = olt,x%) + ) f ki(t—T)ui(T)dT
1=1
0

with

ki(t-T) = w, (t,1,x)

The response (1.3) is very much close to the one of a linear
system. Indeed, it is exactly the one of a linear system if one
neglects the effect of the zero-input term Q(t,xo). Anyhow the
input~dependent part of the response (1.3) is linear in the input.
Since in most practical situations one is essentially interested in
getting linearity only between input and output, the achievement of

a response of the form (1.3) will be considered as satisfactory.,

{1.4) Remark. Suppose, for instance, that the initial state x° is an
equilibrium state. In this case, it is readily seen from III.(2.6)
that Q(t,x°) = h(x°) and, therefore, by subtracting from y(t) the
constant term h(xo), one obtains in (1.3) exactly the zero-state be-

havior of a linear system. O

Note that, if a Volterra series expansion takes the particular
form (1.3), then necessarily the first order kernels wi(t,T1,x) are
independent of x and depend only on the difference t—T1 , so that
this particular property of the first order kernels becomes a neces-
sary and sufficient condition for (1.3) to hold.

If, instead of the expression III.(2.8), one considers the
Taylor series expansion III.(2.12b) of wi(t'T1’X)’ it is found that
a necessary and sufficient condition for this kernel to be independent
of x and dependent only on t-74 + Oor - in other words - for (1.3) to
hold is that

(1.5) L Lkh.(x) = independent of x

g9; £J
for all k > 0 and all 1 < j < %, 1 < i < m. We may summarize this by
saying that the input-dependent part of the response of a nonlinear
system of the form (1.1) is linear in the input if and only if the
conditions (1.5) are satisfied.

In general, the conditions (1.5) will not be satisfied for a
specific nonlinear system, If this is the case, we may wish to have
them satisfied via feedback, thus setting a rather interesting syn-
thesis problem. As usual, we could look at a global problem, in which

a globally defined feedback is sought which solves the problem for
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all x € N or, more simply, a local problem in which a peint x° is
given and one wishes to find a feedback defined in a neighborhood U
of xo. The latter, which is easier, will be dealt with in the sequel.
For the sake of completeness we state this as follows.

Input—-Output Linearization Problem. Given (f,g,h) and an initial state
xo, find (if possible) a neighborhood U of %x° and a pair feedback
functions o and B, with invertible B, defined on U, such that for all

*
k >0 and for all 1 < j < £, 1 < i <m )

(1.6) L, L;hj(x) = independent of x on U, [
g,
1

The possibility of solving this problem may be expressed as a

property of the functions Lg L?hi(x) which characterize the Taylor

series expansions of the kernels wj(t,O,x) around t = 0. For conve-
nience, we arrange these data into ¢xm matrices and let Tk(x) dencte
the matrix whose entry tij(x) on the i-th row and j—-th column is

Lg L?hi(x). As a matter of fact, the possibility of solving the pro-
j

blem in question may be expressed in different forms, each one being
related to a different way in which the data Tk(x), k > 0, are ar-
ranged.

One way of arranging these data is to consider a formal power

series T(s,x) in the indeterminate g, defined as

(1.7) T(s,x) = ) Tk(x)s_k—1
k=0

We will see below that the problem in guestion may be solved if and
only if T(s,x) satisfies a suitable separation condition.

Another equivalent condition for the existence of solutions is
based on the construction of a sequence of Toeplitz matrices, denoted

Mk(X)’ k > 0, and defined as

TO(x) T1(x) cee Tk(x)

0 To(x) oo Ty _4(x)
(1.8) M (x) = 0 k1

o
o
.

. Ty (%)

v
(*) Recall that f=f+gn and g; = (g8); (see IV.(1.4) and IV.(L.5)).
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In this case, one is interested in the special situation in which
linear dependence between rows may be tested by taking linear combi-
nations with constant coefficients only.

In view of the relevance of this particular property throughout
all the subsequent analysis, we discuss the point with a little more
detail. Let M(x) be an %*m matrix whose entries are smooth real-valued
functions. We say that x° is a regular point of M if there exists a
neighborhood U of x° with the property that

(1.9) rank M(x) = rank M(x°)

for all x € U, If this is the case, the integer rank M(xo) is denoted

FK(M); clearly (M) depends on the point x°, because on a neighbor-

r
hood V of anothéﬁ point x1, rank M(x1) may be different.

With the matrix M we will associate another notion of "rank", in
the following way. Let x° be a regular point of M, U an open set on
which (1.9) holds, and M a matrix whose entries are the restrictions
to U of the corresponding entries of M. We consider the vector space
defined by taking linear combinations of rows of M over the field R,
the set of real numbers, and denote gR(M) its dimension (note that
again ;R(M) may depend on x%). Clearly, the two integers ;R(M) and
FK(M) are such that

(1.10) (M) > xp (M)

The equality of these two integers may easily be tested in the
following way. Note that both remain unchanged if M is multiplied on
the left by a nonsingular matrix of real numbers. Let us call a
row-reduction of M the process of multiplying M on the left by a
nonsingular matrix Vv of real numbers with the purpose of annihilating
the maximal number of rows in VM (here also the row-reduction process
may depend on the point x°). Then, it is trivially seen that the
two-sides of (1.10) are equal if and only if any process of row-
reduction of M leaves a number ¢f nonzero rows in VM which is equal
to ;K(M).

We may now return to the original synthesis problem and prove
the main result.

(1.11) Theorem. There exists a solution at =°

to the Input-Output
Linearization Problem if and only if either one of the following equi-

valent conditions is satisfied:
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{a) there exist a formal power series
(==

K(is) =§ K

whose coefficients are 4xm matrices of real numbers, and a formal
power series

Ris,x) = Ry (x) + ] R (x)s <7

k=0
whose coefficients are mxm matrices of smooth functions defined on a
neighborhood U of xo, with invertible R_1(x), which factorize the

formal power series T(s,x) as follows:
(1.12) T(s,x) = K(s)-R(s,x)

({b) for all i > 0, the point x° is a regular point of the Toeplitz

matrix Mi and
(1.13) %R(Mi) = ;K(Mi). u

The proof of this Theorem consists in the following steps. First
we introduce a recursive algorithm, known as the Structure Algorithm,
which operates on the sequence of matrices Tk(x), k > 0. Then, we
prove the sufficiency of (b), essentially by showing that this as-
sumption makes it possible to continue the Structure Algorithm at
each stage and that from the data thus extracted one may construct a
feedback solving the problem. Then, we complete the proof that (a) is
necessary and that (a) implies (b).

(1.14) Remark. For the sake of notational compactness, from this point
on we make systematic use of the following notation. Let y be an sx1
vector of smooth functions and {g1,...,gm} a set of vector fields.
We let Lgy denote the sxm matrix whose i-th column is the vector
L , 1.e.

g.Y

1

Ly=I[L ... L_~vl. d
g” ;" I’
(1.15) Algorithm (Structure Algorithm }.
o . _
Step 1. Let x  be a regular point of Ty and suppose ?R(TO)‘_FK(TO)‘

Then, there exists a nonsingular matrix of real numbers, denoted by
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P4
1
K4

where Py performs row permutations, such that

-S4 (x)
V1T0(x) =
0
where S1(x) is an roXxm matrix and rank S1(xo) = rqy. Set
81 = Ig
Yq(x) = Pih(x)
7.(x) = K'n
vq{x) = Kjh(x)
and note that
Lgy1(x) = 5, (x)
Lgy1(x) =0
if To(x) = 0, then Py must be considered as a matrix with no rows and

K] is the identity matrix.

Step 1i. Consider the matrix

-LgY»] (x) _
. S;_1(x)
LgYi—1(X) _LgLin~1(x)
_LgLin_1(x) i

and let x° be a regular point of this matrix. Suppose

S,

(1.16) o = Iy _

| LgheYi-1 - LghEYiog

Si-1
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Then, there exists a nonsingular matrix of real numbers, denoted by

I ... O 0o ]
64
B .
1
0 ... 1 0
Si-1
0 ...0 P,
i 1 i
Ky .. Ki K} |

where Pi performs row permutations, such that

LgY1 (%) _
Si(x)
v, ° =
i
LgYi-1(X) _ 0
—Lg in_1(X) ]
where S, (x) is an r. *m matrix and rank S.(xo) =r, ,. Set
i i=-1 i i-1
85 = Tiq 7Ty

Y () = PyLeyy g (x)
- o i i=
Y0 = Ky GOF e K gy g (BRI Ty g ()

and note that
LgY1(X)

If the condition (1.16) is satisfied but the last f-r; -, rows of

the matrix depend on the first Ty o then the step degenerates, P,
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must be considered as a matrix with no rows, Ki is the identity matrix,
§; = 0 and 5, (x) = Si_1(x). a

As we said before, this algorithm may be continued at each stage
if and only if the assumption (b) is satisfied, because of the fol-

lowing fact.

o ; =
(1.17) Lemma. Let X~ be a regular point of T0 and suppose FR(TO)_$K(T0)’

Then x° is a regular point of
i-1
_LgLin—1

and the condition (1.16) holds for all 2 < i < k if and only if x° is
a regular point of T, and the condition (1.13) holds for all 1 <i<k-1.

Proof. We sketch the proof for the case k = 2. Recall that

Moreover, let Vir Yq and ?1 be defined as in the first step of the
algorithm. Multiply M1 on the left by

[ v, 0
vV =
0 V1
As a result, one obtains
L P.,h L L_P.,h
V,L h L V,L,h 91 g1
g g 17t 0 L LK h
VM1 = = g £1 =
0 L P.,h
0 V1Lgh g 1
0 (0]
S1 LgLfY1
- 0 LgLfy1
51
0
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Note that ;R(S1) = FK(S1). Thus, because of the special structure of
o ., . oy _
VM, , X is a regular point of M1 and the condition ;R(M1) = ;K(M1)

is satisfied if and only if x° is a regular point of

LgLfY1
84
and
LgLfY1 LgLfY1
R K
S1 51

i.e. the condition (1.16) holds for i = 2. For higher values of k one
may proceed by induction. O

From this, we see that the Structure Algorithm may be continued
up to the k-th step if and only if the condition (1.13) holds for
all i up to k-1. The Structure Algorithm may be indefinitely con-
tinued if and only if the assumption (b) is satisfied.
Proof of Theorem (1.11). Sufficiency of (b): construction of the line-
arizing feedback. If the Structure Algorithm may be continued inde-
finitely, two possibilities may occur. Either there is a step g such
that the matrix

—LgY1(X)

Lng_1(X)

_LgLfyq_1(x)

has rank £ at x°. Then the algorithm terminates. Formally, one can
still set Pq = identity, Vq = identity

Y. =P Lfyq_1(x)

aq q
and
r>Sq_1(x)
= Sq(x)
L v (x)
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and consider K?,...,Kg as matrices with no rows. Or,else, from a

certain step on all further steps are degenerate. In this case, let

g denote the index of the last nondegenera@e step. Then, for all

i> q, Pj will be a matrix with no rows, Kg the identity and 5j = 0,
From the functions y1,..-,yq generated by the Structure Algo-

rithm, one may construct a linearizing feedback in the following way.

Set

= Y1 (x)

T(x)= .

and recall that Sq =L T is an rq_1 xm matrix, of rank r at x .

g g-1

Then the equations

(1.18a) [LgP(x)]a(x) “Lel (%)

(z o0l
rq_1

(1.18b) [LgF(X)]B(x)

on a suitable neighborhood U of x° are solved by a pair of smooth
functions « and B.

Sufficiency of (b): proof that the above feedback solves the problem.
We show first that

(1.19a) P1LmLkh(x) = independent of x
g ¥
(1.19b) p k1] KL 1Xh(x) = independent of x
. e ! p
for all 2 < i < g and that
q,,a-1 1 k o
(1.19¢c) KqKq_1...K1LaL%h(x) = independent of x

To this end, note that (1.18) imply

(1.20a) L%Yi =0
(1.20b) Lin = independent of x
g

for all 1 < i < g. Moreover, since L ;i = 0 for all i > 1, also

g
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(1.20¢) Ly, =L
(1.204) I,Y. = 0

for all 1 < i. Using (1.20) repeatedly, it is easy to see that, if

k > i

(1.21) K:...K

1
=
(o

If k < 1

i 1.k i k+1 =
(1.22) Ki...K, % = Ky i1 %Yk
These expressions hold for every i > 1 (recall that, if i > g, Ki is
an identity matrix).
Thus, if i < g and k > i-1 we get from (1.21)
1 1 k i+2 - k—1+1

i- - -
P.Kj_q ---K4L L%h = mel ¥ Yioq = Lm ¥ 0

which is either independent of x (if k = i-1) or zero, while for

=

i < gand k < i-1 we get from (1.22)

i-1 1
PR, 4Ky

5 ¥4

E +1
2 3

k k
L, L, h = P.... (v
k+2 v TR+
g } g j

The right-hand-side of this expression is again independent of x and
this complete the proof of (1.19b).
Moreover, if k > g, (1.21) yields

A

q 1 k k k -
K2...K,L L Ky h=1LLY, =
q*® 1 % Kyl % 9 ¥ k

q
_ }‘ Kk+1Y )
j=1

KIS s
5 Ky+1 mYk Ty Yk+1

L . .
J J

and this, together with (1.22) written for i = g, which holds for
k < g, shows that also (1.19c) is true. Finally, (1.19a) is also true,
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k
because P L, L h =L L
Y ¥ gt

(if k = 0) oxr zero.

Y4 and the latter is either independent of x

In order to complete the proof of the sufficiency of (b), we need

only to prove that the matrix

(1.23) H =

is square and nonsingular. This, together with the (1.19) already

proved, shows in fact that

LNLkh(x) = independent of x
g ¥
for all k > 0. But the nonsingularity of (1.23) is a straightforward
consequence of the fact that this matrix may be deduced from the
matrix Vq"'V2V1 by means of elementary row operations.

Necessity of (a). Let

B(x) = 87 (x)
Gtx) = =871 (x)a(x)
and let %k(x) -1, L h(x)
¥
g

If the feedback pair o and B is such as to make %k(x) independent

of x for all k (i.e. to solve the problem), then

h =1L +7T .a&a+ T ._L.at...+F 157

k k u k-1
(1.24) Le » k=1 k—-2Ug < HTHLg

This expression may be easily proved by induction. In fact, one has

L]§+1h =1 5+ L (T 1o¢+...+$ L
¥+ga) %

=X 4L Lkhoc + % L G+...+T L

% % k-17£
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From (1.24) one then deduces

k ~ k=1~
; @

k.o _
Lgth = (L L%h)B + T 1Lga k ZLgLfa+_.,+T0LgL

or,

(1.25)  Tx) = KB ¢ K nseo + B pon@eor. ¥l ae

k-1 k-2

Now, consider the formal power series

K(s) = J ¥

Ris,x) = B(x) + ] (L LSG(x))s™™"
k=0 9

and note that the latter is invertible (i.e. the coefficient of the
0-th power of s is an invertible matrix). At this point, the expres-
sion (1.25) tells us exactly that the Cauchy product of the two series
thus defined is equal to the series (1.7), thus proving the necessity
of (a)

(a) = (b). If (1.7) is true, we may write

Ky Ky -on K R_;(x) Ry(x) Ry(x)...R_4(x) |
0 Ky oo Ky g 0 R_, (%) Ry(x) ... Ry _,(x)
M (x) =
L o 0 ... K, 0 0 0 -+ R_;(x)

The factor on the left of this matrix is a matrix of real numbers,
whereas the factor on the right is nonsingular at x%, as a consequence
of the nonsingularity of R_1(x). Thus x° is a regular point of M, and
the condition (1.13) holds. [J

(1.26) Remark. We stress again the importance of the Structure Algo-
rithm as a test for the fulfillment of the conditions (a) (or (b)) as

well as a procedure for the construction of a linearizing feedback.

(1.27) Remark. An obvious sufficient condition for the existence of a
solution to the Input-Output Linearization Problem is that the rank of
the matrix A(x) is egual to %, i.e. that there exists a solution to

the Local Single-Qutputs Noninteracting Control Problem. If this con-
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dition holds, the Structure Algorithms terminates at a finite stage q,
yielding Sq(x) = A(x).

2. The Internal Structure of the Linearized System

In this section we analyze some interesting features of the line-
arization procedure discussed so far. First of all, we examine some
simple properties relating the Structure Algorithm with the Algorithm
IV.(2.5), the one yielding the largest locally controlled invariant
distribution contained in H.

We begin with a simple remark, which will be recalled several
times later on, and then we give two lemmas which establish the re-
quired relation between the Algorithm (1.15) and Algorithm IV.(2.5)

{2.1) Remark. The submatrix

of the matrix Vi introduced at the i-th stage of the algorithm (1.15)
is nonsingular by definition. This makes it possible to express

- . . s > v
Lin—1 as a linear combination of Yqreeer¥y and Yi- For, let Qi and

Q; be the two matrices of real numbers defined by

p

i .
" p— ] "1_
Qi o}) | = QjP; t QK] =1
2
X,
1
Then, one has
Loy = Qly; + 0t (3. -kiy ~. . -ki_ v )
£fli-1 ifi i’y 1717 i-174i-1

If the i-th stage is trivial, Qi is a matrix with no columns and
Q) = I. If the algorithm terminates at the g-th stage, then Qa is a
matrix with no columns and Qé =1.0

In what follows, in order to simplify the notation, whenever we
have an sx1 vector y of real-valued functions and we want to consider

the codistribution sp{dy1,...,dys}, we denote the latter by sp{dv}.

(2.2) Lemma. Suppose the Input-Output Linearization Problem is sol-
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vable at x°. Suppose G is nonsingular around xo, and the codistribu-
tions Qk generated via the Algorithm IV.(2.5), initialized with
fig = sp{dh}, are nonsingular around x°. Then, for all k > 0

k+1 k+1 _
(2.3) g = (_2 spldy,} +_E spldy,})
i=1 i=1
k+1 k+1 _
(2.4) ) spldy;} N ( ) spldy;}) = 0
i=1 i=1
L k1 _
(2.5) 2 NG =i£1sp{dyi}

and ﬂk n GL is nonsingular around %°.

Proof. The proof proceeds by induction. For k = 0, (2.3) reduces to
8y = sp{dY1} + sp{dY1}

which is clearly true because

Y1
Y1
and V1is a nonsingular matrix. Moreover, by definition Lg§1 = 0,1i.e.
L

sp{d§1} (@Yo
which implies
L - 1 1 -
Q. NG =(sp{dy1} +sp{dy1})n G ==sp{dy1} Nna +sp{dy1}

0

But
spldy,} O Gt =0

because, if this were not true at xo, then there would exist a 1X61 row

vector of real numbers A such that
o, _ o, _
ALgY1(x } = AS1(X ) =0

thus contradicting the linear independence of the 61 rows of S1(x) at

x°. Therefore, we conclude, that
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Q. ngh

0 = sp{d§1}

i.e. (2.5) for k 0. Moreover, this argument also shows that

spldy,} N sp{d§1} =0

(2.4) for k 0.
The codistribution sp{dy1} has constant dimension 61

i.e. =
(because,
otherwise, the matrix S1(x) would not have rank 61 at each x in a
neighborhood of x°). 90 has constant dimension by assumption and the-
refore also sp{dy1}, i.e. Q N G-, has constant dimension.

Suppose now (2.3), (2. 4),(2 5) are true for some k and Q n g

has constant dimension around x°© From (2.5) we see that
m k+1
Y L (Q nc)CESp{dy}co
i=1 =1

{because Lg §j 8) and, therefore, that

i

L
(2.6) Qpq = Gy + L@ NG
This, in turn, yields
k+1 k+1 k+1
Yyq = =7 sp{dy }o+y sp{dy P+ Lg( ¥ sp{dY }
i=1 i=1 i=1
k+1 k+1 k+1
=) sp{dy P+ Y sp{dy Yo+ ) sp{dL }
i=1 i=1 i=1
k+1 k+1
=i§1Sp{dY } +lz sp{dy } o+ sp{dyk+2} + sp{dyk+2}

(the last equality being a consequence of the Remark (2.1)), and this
proves (2.3) for k+1.

Moreover, it is easily seen that
k+2 - L
y spldy;} cg
i=1
(because qui = 0) and that
k+2

L

spldy;} ng = 0

i=1
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(because otherwise the linear independence of the rows of 5149 would
be contradicted). The two conditions together prove (2.4) for k+1 and
also that

k+2 k+2 k+2

NG =( ] splay,} + ] spld¥,}) N 6" = | spldy,}
i=1 i=1 i=1

Oy 41
i.e. (2.5) for k+1. k+2

The codistribution spldy;} has constant dimension §+...+§ .,
i=1

(because otherwise the linear independence of the rows of S would

k+2
be contradicted) and this, together with the assumption that Qk+1 has

constant dimension, proves that Q +1 N GL has constant dimension

around x°. O .
(2.7) Remark. Note, from the proof of Lemma (2.2), that an obvious
necessary condition for the existence of a solution to the Input-
Output Linearization Problem is that the sequence of codistributions
Qk generated by means of the Algorithm IV.(2.5) coincides with the
one generated by means of the (simpler) algorithm (2.6).

(2.8) Lemma, For all k > 0

2 k+1 k+1
(2.9) dim 5——ﬁk—r = dim( } spidy; }) = Y8
k i=1 1

1=

Proof. The first equality follows directly from (2.3),(2.4) and (2.5).

The second one is a consequence of the fact that the I = 61+...+6k+1

rows of Sk+1(x) are linearly independent at each x in a neighborhood
o

of x . O

From these Lemmas one may deduce a series of interesting con-
clusions. First of all, the comparison of (2.9) with IV.(3.22) shows
the coincidence of the 6{ s defined by means of IV, (3.23) with the
6i s defined by means of the Structure Algorithm. Since the latter
operates on data associated with the input-output behavior (the
matrices Tk(x)), it follows that at least in the case of systems in
which the Input-Output Linearization Problem has solutions, the in-
tegers IV.(3.23) have an interpretation in terms of input-output data.
As a matter of fact, there is an explicit formula relating the Gi s
to the matrices Tk(x)'s. Following a procedure similar to the one
suggested in the proof of Lemma (1.17), one may arrive at the con-
clusion that

J:K(Mk) = (k+1)d1 +k<52+...+6k+1
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or, in other words, that

6y = FK(MO)
k+1
i£1 8, = T M) — mpy ) k > 1
Since by definition éi = 0 for i > g (the last nondegenerate
stage of the Structure Algorithm) and 6q # 0, one deduces from (2.9)
*
that Qq_1 ? Qq_z and, therefore, that the integer k (which characte=~
rizes the last meaningful stage of the Algorithm IV.(2.5)) is related
to g by the inequality

*
(2.10) k > g-1

A sufficient condition for (2.10) to become an equality is the

following one.
%
(2.11) Lemma. If the number of rows of Sq is equal to &, then k = g-1.

Proof. Suppose the number of rows of Sq is equal to 2. Then the algo-
rithm (1.15) terminates at the g-th stage. From Lemma (2.2) we deduce
that

*
i.e. that k = q-1. O

The case in which the assumption of this Lemma holds (namely,
the case in which the algorithm (1.15) terminates at a finite stage)
deserves a special attention, because of some interesting properties

that will be pointed out hereafter.

{2.12) Zemma. If the number of rows of Sq is egual to &, then, in a
neighborhood of xo, the distribution

Lot - .l
sp{in} N .ﬂ1sp{dyi}—
i=

> d

I
[[)te]
-2

i
coincides with the largest locally controlled invariant distribution

contained in H and any pair of feedback functions o and B which solves

*
the eguations (1.18) is such as to make A invariant.

Proof. The first part of the statement is a consequence of (2.3) and
Lemma (2.11). The second part may be proved exactly as done in the

last part of the proof of Proposition IV.(3.19). O
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(2.13) Lemma. If the number of rows of Sq is equal to %, then the dif-
ferentials of the entries of the vectors Yy o0 1<1i<gq, and ;i ’

1 < i < g-1, are linearly independent at x©.

Proof. Let n, = Q—ri_1 denote the number of entries of ?i. We prove
that if
P _ ° p
(2.14) aim( § spldy (x )} < ] n;
i=1 i=1
for some p, then all ?i s with i > p+1 are nontrivial.

We know from Lemma (2.2) that the codistribution

P -
Q NG =7 spidy,}

p=1 i=1
has constant dimension around x°. Thus, if (2.14) holds, then there
exist k < p row vectors A1,...,Ak of smooth real-valued functions
(whose dimensions are respectively 1XD1,...,1xnk) defined in a neigh-
borhood of x°, with ) # 0, such that

(2.15) M (x)dyy (x) = x1(x)d§1(x)+...+xk_1(x)d§k_1(x)
for all x around x°.
Differentiating (2.15) along f yields
- - k=1 - -
(Lfkk)dYk'*Ak(deYk) =i£1((LfAi)in + Ki(deYi))
and also (see Remark (2.1))

= " yt A" k+1 - AN k+1 =
T e s D L B T

k-1

-1

i=1

i+1 i+1

(LA YAy A5 (QF 14975 (1 ¥QY 41y 3497 Q 14Ky Ay =05 14Ky TdYy))

This may be rewritten as

(2.16) A (Qp yq9Yppq ¥ Q995 4q) 1(“iin *ouydyy)

|
[
fl t~1 R

for suitable uis and ﬁis.
We will see now that §k+1 is nontrivial and that there exist k+1
row vectors A%,...,Ai+1 ; of smooth real-valued functions defined in

a neighborhood of xo, with Ai+1 # 0, such that
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(2.17) A£+1(x)dyk+1(x) = ki(x)dy1(x)+...+ké(x}dyk(x)
To this end note that, bearing in mind (2.4) and (2.9),(2.16) yields

MeQpyq = 0

H, =0 1 < i< k
MeQrpq A¥yepq = Wqdygte oty dyg

If Y, ,q were trivial, then Q¢ . = I and X = 0, i.e. a contradiction.
Thus ?k+1 is nontrivial and, also, AkQ£+1 # 0 because otherwise the
equality

MelQyq Qyq) =0

would contradict the nonsingularity of (Q]'(+1 Qﬂ+1). This shows that
5 (] — " [ - .
(2.17) holds, with Ak+1 = Aka+1 and Ai = uy for 1 < i 5_k.
We can iterate this argument and conclude that all yis with
i > k+1 are nontrivial. If the algorithm terminates at some step q,
then (2.14) is contradicted and the differentials of the entries of

?1,...,§ are linearly independent at x°. O

g-1

The above results enable us to investigate the effect of the
linearizing feedback on the state-space description of the system.
From the last Lemma it is seen that the entries of yi(x) and ;i(x)

are part of a local coordinate system. Thus, one may set

oy
lI

¥; (%) 1<ic<g

£, = Yi(x) 1 <1

A

g-1

and find a suitable vector-valued function n with the property that
the mapping

x (g1,...,gq,§1,...,éq_1,n)

is a local coordinate transformation,

The description of the system

¥(x) + g(x)v

w
1l

y = h(x)
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in the new coordinates may be easily obtained in the following way.
Consider the right-hand-side of (1.18b) and let E1,...,Eq be ﬁiXm

matrices which partition [IQ 01 as

(2.18) 1

Then, if a(x) and B(x) are solutions of (1.18), one has

L)Y; = g
I

L’\:Yi = El
g

for 1 < i < gq. These yield for 51,...,€q the eguations
i

(2.19a) £, = %i = kai + L,y;Vv = Ejv
g

Moreover {see Remark (2.1}},

- _ - _ " - it i+
Ly¥y = Le¥y = Qi 41Yi4+1 ¥ Qi1 (Yipq ~K7 ¥ 7Ky Yy)
L,y; =0

)
for 1 < i < g-2. For i = g-1

L3
¥'a-1 T g

LY =0
o -
g a1

From these one gets
- = I i+

1 QU841 18541 T Ky & emQI Ky By

(2.19b) &
for 1 < i < g-2 and

2.19 £ = .
( c) Eq_1 iq

The output y is related to £1 and 21 in the following way
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Combining the (2.19)'s, one finds in the new coordinates a state

space description of the form

2 = Fz + Gv
N = £(z,n) + gl(z,n)v
y = Hz
with
Z=COl(E1’"'ngIE1I-'-I€q_1)
and
) 0 0 ... O 0o 0 0 0 ...0 ]
n 0 0 ... 0 0 0 0 0 ... 0
—Q"K2 Q! 0 0 0 0 Qh 0 0
e - oK} > e 5 . e
—Q"K> —quk3 ol 0 0 0 0 Ql...0
31 372 3 °°° 3"
—n q_1 A" q-1 —_n" q_1 ] "
04-1%1 0g-1%3 0g-1%3 -+ Qqq 0 0 0 0 ... 0% 4
0 0 0o .. 0 I 0 0 0 ... 0
By
E
G = d
0
° ]
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The particular choice of feedback makes A* invariant (see Lemma
(2.11)) and this is the reason for the presence of an unobservable
(and nonlinear) subsystem. The other subsystem, which is the only one
contributing to the input-output response, is fully linear.

We conclude the section with two remarks, which are consequences

of the above result.

(2.20) Remark. From the above equations, we see that if the Algorithm
(1.15) terminates at the g-th stage (i.e. if the number of rows of Sq
is equal to the number 2 of outputs), the response of the closed loop
system becomes
t
y(t) = et t2° + f gef " gu(n)ar
0

The input-dependent part is linear in the input, as expected,

but also the zero-input term is linear in the initial state z9.

{2.21) Remark. The structure of the matrix F which characterizes the
linear part of the closed-loop system shows that all its eigenvalues
are vanishing. Thus, one might wish to add an additional feedback in
order to achieve not only a linear input-cutput behavior, but a
linear and stable input-output behavior, if possible, As a matter of
fact, the pair of matrices (F,G) turns out to be a reachable pair and
so a matrix K may always be found which assigrns the spectrum to F+GK.
In order to obtain a linear input-output behavior with prescribed
spectral properties, instead of the feedback a(x) and B{x) proposed

so far, one has to consider the feedback

a(x) + B(x)Kz(x)

a' (x)

B (x) B (x)

The reachability of the pair (F,G) may be checked by direct com-
putation of the rank of (G FG F2G ...). At each stage, it is sug-
gested to take advantage of the nonsingularity of [Qi Q;] in order
to prove that new linearly independent columns are added. U

3. Some Algebraic Properties

In this section we analyze the structure of the formal power
series (1.7) with some detail, and show that the integers 51,...,6q

are related to the behavior of T(s,x) for s = «.
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In the proof of Theorem (1.11), we have shown that the existence
of a solution of the Input-Output Linearization Problem at x° makes
it possible to separate T(s,x) as a product of two formal power series
as in (1.12). In particular, it was shown that, if o and B are a line-
arizing feedback, then

-1

RK(s) = h)s

I|M8

ok
%

(L,L,h being independent of x for all k > 0 ) and

k
gt

-1 -k-1

R(s,%) = 87 (x) ~ | (0138 'a(x))s

k=0
Clearly, (1.12) holds in the neighborhood U of x° where the feedback
o and B is defined.

An explicit expression for LNLkh, that is for K(s), is not dif-
ficult to obtain. For, consider again the matrix H defined in (1.23)
and let o and B be any solution of (1.18). Simple computations,based
on appropriate use of the properties (1.20), yield

Y1

PyYyq

Hh

2_
P3Kovy

- Ko7y
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and so on, until

[0
13 gy = | 0
£
Tq
= x4 x4
Yq R 97 TR =1 g1
and
[0
13 eh = | o
£ 0
- _RQHitl, o g+i+]
Yq+i+1 K1 Yq7e- Kq Yq

which holds for all i > 0.
Differentiation of these along 81,...,8m enables us to obtain the
expression of H(L Lkh) for all k > 0. Use of the partition (2.18} makes

g ¥

it possible to get

HL h =| 0

Q

HL L h = —P3K

g 3,2
Kq...K3K1E

T

and so on, until
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and, for all i > 0O,

g+i
HL§L¥ h =
0
_gti+1
Kq Eq

Since E +E

gr--1Eg
stands that the formal power series

kh)s—k—1

¥

displays the following pattern of elements

g ] (L.L
k=0 ¢

(3.1) W(s) =

~...-K

gq+it+1

9

| I51s_1 0 e
0 1625-2 on
W31(s) 0 .
(3.2) w(s)=| Wy, (s) Wy, (s) .o
wq'1(s) quz(s) N
_Wq+1'1(8) Wq+1'2(s) cov Woiq,q-

are rows of the matrix [Iq

1 (S)

Eq J

0], one easily under-

0 0

0 0

0 0

0 0

Iﬁ s 9 0
q

Wq+1'q(s) 0 J

We recall that the partition for the rows corresponds to a

partition of the output vector into g+1 blocks of dimensions
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61".‘,5q,Urrq—1) , while the one for the columns corresponds toc a parti-

tion of the input vector into g+1 blocks of dimensions 61,..q6q,mr§;1L

(3.3) Remark. Note that, if the Algorithm (1.15) terminates at the
g-th stage (i.e. if the number of rows of Sq is equal to the number %
of outputs), the (g+1)-th block~row of the matrix W(s) does not exist,
and the matrix itself is right-invertible. O

From the previous expression for HLWLkh, one also sees that in

gt

the j-th block column of (3.1), 1 < j < q, the largest power of s
appearing in any off-diagonal element is -~(j+1). As a consequence,one
may conclude that Wij(s)sJ is a strictly proper formal power series.

This property will be immediately used in the following way. Set

oI 0 ... 0]
0 I ... O
—W31(s)s 0 ... O
(3.4) py(s) =
—W41(s)s 0 ... O
Wq+1’1(s)s 0 . I
- J
and note that
I ¢} 0
1
P1(s)w(s) =
0 wzz(s)

sz(s) being the lower-right-hand (2—61)X(m—61) submatrix of W(s).

The power series P1(s) is proper (because of the aforementioned
property of —W31(s)s,...,—wq+1’1(s)s) and its inverse too. A proper
formal power series whose inverse is also proper is called a bipro-
per power series. Thus, we have that the power series (3.4) is bi-
proper.

Continuing this process, one can find biproper formal power
series Pz(s),...,Pq(s) which reduce W(s) to a purely diagonal form,

and prove the following interesting result.
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(3.5) Theorem. Suppose the system (1.1) is such that the Input-Output
Linearization Problem has a solution at x°. Then there exist a bi-
proper formal power series

R(s) = R_;(x) + [ R (s "
k=0

whose coefficients are mxm matrices of smooth functions defined on
a neighborhood U of xo, and a biproper formal power series

L(s) =L_, + s k-1

k

L

0 k

lt~18

whose coefficients are %% matrices of real numbers such that

(3.6) T(s,x) = L(s)A(s)R(s,x)
where
(3.7) Als) = diag{I, 4,1, — 1. 1,03
' Itesrts, 20t
s g s

Proof. The formal power series
P(s) = Pq(s)...P1(s)H

is biproper, because each Pi(s) is and H is invertible, On the other
hand,

Pq(s)...P1(s)w(s) = A{(s)

and thus (3.6) follows from

L(s) = p '(s). O

A factorization of the form (3.6) reveals the behavior of T(s,x)
as s 2 «, As a matter of fact, the limits of L(s) and R{(s,x) for s 2>«
are nonsingular; in i-th set of diagonal elements of A(s), each func-
tion has a zero of multiplicity i at the infinity. For this reason,
the string {61,62,...} is known as the structure at the infinity of
the formal power series T(s,x), or of the system (1.1). Note that

the string {61,6 } is uniquely associated with T(s,x) and does

PIARE
not depend on the particular procedure chosen to obtain a factoriza-
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tion of the form {(3.6).

(3.8) Remark. We have seen before that the integers 61,62,... are
related to the dimensions of the codistributions QO,Q1,... generated
by means of the Controlled Invariant Distribution Algorithm (see

Lemma (2.8)). In other words, we have

g
(3.9a) 84 = dim ———
Q. Ng
0
Q. 4
(3.9b) S, = dim - dim i>1
i a, nc* 9,4 NG -

Since 90,91,... and G are invariant under feedback transformations
{see Lemma IV.(2.8)), it turns out that the structure at the infinity
of a system is invariant under feedback transformations.

4. Linear model matching

In the first section of this Chapter we have seen that, under
suitable conditions, it is possible to synthesize a feedback under
which the input-dependent part of the response of a given nonlinear
system becomes the same as that of a linear system. Our aim was the
one of achieving a response of the form (1.3), without any particular
prescription on the first order kernels ki(t), 1 <1 <m. As a matter
of fact, the transfer function K(s) obtained for the linearized part
of the response, whose form was analized in the previous section,
happens to depend on the particular choice of feedback, i.e. on the
particular matrices Pi,K%,...,Ki_1 selected at each stage of the
Structure Algorithm.

The purpose of the present section is to discuss a more demanding
problem, the one in which a prescribed linear input-output behavior
rather than some linear input-output behavior is sought. We tackle
this new synthesis problem in a more general setting than before,
letting the state-feedback to be dynamie rather than static, This
means that we let u, to be related to the state x and, possibly, to

other input variables v1,...,vu by means of eguations of the form

. u
{4.1a) £ =al(g,x) + ) b.(g,x)v.,
59 3 3

H
(4.1b) u; = c;(g,x) + }

i A j(E,x)vj

d,
1
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These equations characterize a new dynamical system, whose state £
evolves on an open subset of R". As usual, we assume that all func-
tions which characterize these equations are smooth functions, de-
fined now on a subset of R’ xR". Most of the times, we shall con-
sider bj(i,x) as the j-th column of a v xp matrix b(g,x),c; (£,x) as
the i-th row of an mx1 vector c(f,x) and dij(é,x) the (i,j)-th entry
of a matrix d(g£,x). Note that the number y of new inputs may be dif-
ferent from m.

The composition of (4.1) with (1.1} defines a new dynamical
system, with input v = col(v1,...,vu), output y = col(y1,...,y2)
described by equations of the form

. A b
(4.23) [}Ef;) =f(£rx) +§1gl(€rx)vl
l:
(4.2b) Y; = ﬁi(E,X)
in which
a(g,x)
E(g,x) = m
£ (x) +.Z gi(x)ci(é,x)
i=1
b, (§,x)
g; (€,x) = -
I g5(x)dy; (8,x)

3=1
h; (6,%) = hy (x)

The integer v, which characterizes the dimension of the dynamic-
al system (4.1),and the quadruplet (a,b,c,d) are to be chosen in such
a way as to obtain, for the closed loop system (4.2), an input-output
response of the form (see (1.3))

t
(4.3) yit) = o(t, (£9,x%)) + [ Wy (t-T)viT)dT
0
WM(t) being a fizxed 4%y matrix of functions of t, the impulse-re-
sponse matrix of a prespecified linear model. As before, we seek
local solutions defined in a neighborhood of the initial state. In

view of our earlier discussions, this yields the following formal
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statement.

Linear Model Matching Problem. Given (£f,g,h), an initial state xo, and
a linear model (aA,B,C), find (if possible) an integer v, an initial
state Eo EZRv, a guadruplet of smooth functions (a,b,c,d) defined in a
neighborhood U of (Eo,xo) such that for all k > 0

(4.4) LéLEB(E,x) = cafB. O

If the system (1.1) is such that a solution to the Input-Qutput
Linearization Problem exists, then it is quite simple to find the
extra conditions needed for the existence of a solution to the Linear
Model Matching Problem and to construct such a solution. The main tool
is again the Structure Algorithm described in the first section.

The data of a Linear Model Matching Problem are, besides the
initial point xo, the triplet (f,g,h) which characterizes the system
to be controlled and the triplet (A,B,C) which characterizes the model
to be reproduced. These data will be used in order to define an ex-

tended system, described by the following set differential equations

M.
il

£f(x) + g(x)u
(4.5) z = Az + Bv
w = h(x) - Cz

The output w of this system is actually the difference between the
output of the system (1.1) and that of the model. For convenience,
we represent (4.5) in the form

xE = fE(xE) + gE(xE)uE

w = hE(xE)

E

letting xo= col(x,z), u =col(u,v) and

£(x) g{x) 0
(4.6a) fE(x,z) = gE(x,z) =

Az 0 B
(4.6b) hE(x,z) = h(x) - Cz
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The conditions for the existence of a solution to the Linear Model
Matching Problem may easily be expressed in terms of properties ¢f the
system thus defined, as we will see hereafter.

Suppose the system (1.1) is such that the Input-Output Lineariza-
tion Problem has a solution at x . Then, the triplet (f£,g,h) is such as
to fulfill the condition (a) of Theorem (1.11). It is easily seen that,
for any z®, also the triplEt(fE,gE,hE) is such as to fulfill a similar
condition at (xO,zo). For, let

B _ k .E _ k k
Tk(x,z) =L LfEh (x,2) = [Lgth(x) cA'B]

E
g
Then
J moxoz)s 7 = IT(s,0) ) ca¥BsT*T =
k=0 k=0
= [K(s) WM(S)]'-R(s,x) 0
0 I
where
Wy(s) = ¥ cakps7k1
k=0

denotes the transfer function of the model.

As a consequence of this, the Algorithm (1.15) may also be per-
formed on the triplet(fE,gE,hE), around the point (xo,zo), and one may
define on the formal power series TE(s,x) a structure at the infinity,
characterized by a string of integers {5?,6E,... .

The coincidence between the structure at infinity of the formal
power series T(s,x) and that of the formal power series TE(s,x) is
exactly the condition that characterizes the possibility of solving
a Linear Model Matching Problem. In order to be able to prove this
result and give an explicit construction of the required feedback, we
need a little more notation.

Let Pi,Kﬁ,...,Ki be the set of matrices determined at the i-th
stage of the Structure Algorithm, when operating on the triplet (£,qg,h).
Let the triplet (A,B,C) characterize the model to be followed. We set

(4.7a) c, =P
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(4.7b) g, = K|c
and, for i > 2

(4.7c) Ci = Pi i-1A

(4.74d) C. = K%c1+...+Kl

i=
i i-1C1-17KiCi 42

i-1

With the functions Y1(x),...,yq(x) determined at each nondegene-
rate stage of the Algorithm we associate, as before, a matrix

-Y,l(x)

_Yq(x)

and with the matrices C1,...,Cq defined above we associate the matrix

(4.8) D = .

The constructions defined above are helpful in finding a solution
to- the problem in question.

(4.9) Theorem. Suppose the system (1.1) is such that the Input-Output

Linearization Problem is solvable at x°. The Linear Model Matching

Problem is solvable at x° if and only if either one of the following
equivalent conditions is satisfied

(a) C,B = 0 for all i > 1

(b) the system (1.1) and the extended system (4.5) are characterized

by the same structure at the infinity.

A dynamical state-feedback which solves the problem is the cne
described by the following equations

(4.10a)

e
1

AfL + Bv

(4.10b) u

i

a(x)-B(x)DAL-B (x)DBvV
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in which a(x) and B(x) are solutions of

(4.11a) Lgr(x)a(x) = -Lfr(x)

il
[

(4.11b) L T (x)B(x)
g a-1

with D defined as in (4.8). The initial state £° of (4.10) may be set

arbitrarily.

Proof. (a) ¢ (b). Consider the sequence of functions thus defined

Il

YE(X) P1hE(x)

¥ = ki (x)

and, for i > 2,

E _ -E
Yi(x) = PiLfEYi"'1(x)

E

“E,., _ i E i
Yy () =Ky () +e Ky 4Yy g

i ~E
(x)+KiLnyi_1(x)
Note, also, that for all i > 1

E -
Y (x} = v, (x) +Cyz

??(x) = J.(x) + C.z

Suppose that, for all 1 < k < i,

Then, for all 1 < k < i,

_..E _
L EYk(x) 0
g
and the matrix

L _vo (x) S Ly, (x) C.B
BT % gV1' ¥ 1
gl - »
L vE(x) Ly, (x) C.B
E'k ¥ g’k ‘¥ k

g _



212

has a rank equal to the number 61+...+6k of its rows, at (xo,zo) (note
that z° is irrelevant). As a consequence, one may conclude that the
first i steps of the Structure Algorithm on the triplet(fE,gE,hE) may
be performed exactly in the same way as on the triplet(f,g,h). At each
of these steps, the same set of matrices Pk,Kﬁ,...,Ki makes it pos-
sible to perform the required operations, In particular, since the
integers which characterize the structure at the infinity do not de-
pend on the choice of matrices in the Structure Algorithm, we see that
the first i entries in the structure at the infinity of (f,g,h) and
(fE,gE,hE) coincide. Now, let Vi+1 be the matrix determined at the
(i+1)-th stage of the Algorithm (1.15) and observe that

- E E — -— — — —
LgEY1(x ) Lgy1(x) C1B Lgy1(x) c,B
v L B b =V L v. (x) c.B | =Ly C...B
i+1 gL i+ “g'fi i gli+1 i+1
L L 78 (5) L L.y,(x) C,AB 0 ¢...B
oE £E'1 g f£'i i i+

From this we see that the (i+1)-th entries in the structure at the
infinity of (f,g,h) and (fE,gE,hE) coincide if and only if

CiyB =0

Sufficiency of (b). At the last nondegenerate step of the algorithm

one ends up with a matrix

Y?(XE) Y1 (x) C‘Iz
By = : = : : = (I'(x) Dz)
YE(XE) y (%) C. z
q
of rank rq_1=61+...+6q at (x°,2z°) . Consider now the two equations
(4.12a) LB e® (F) = - 1B B
g £
(4.12b) L PP GEREEGE) = @ o)
g q-1

which correspond to the eguations (1.18). If a(x) and B{x) are solu-
tions of (4.11), solutions aE(xE) and BE(XE) of (4.12) may be found as
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a(x)-B (x)DAz
E
o {x,z) =
0
B(x) =B(x)DB
BE(X.Z) =
0 Iu

Note that B is erq_1 and that BE is (m+u)X(rq_1+u).
Now, suppose the functions aE and BE thus defined are used in a
static state-feedback loop on the extended system (4.5). As a conse-

guence of all previous discussions, we get

(4.13) L EE LkE E EhE(xE) = independent of X
g 8 £ +g o

E

for all k > 0 around (xo,zo), for any zo. In particular (see e.g. the
structure of (3.2)), the last u columns of these matrices vanish
for all k > O.

The extended system (4.5) subject to the feedback thus defined

is described by eqguations of the form

=
1l

f(X)+g(x)a(x)-g(x)B(x)DAz+g(x)B(x)G—g(x)B(x)DB;
(4.14) 2 = Az + BV
w = h{x) - Cz

where u and v represent new inputs. The response of this system con-

sists of a "zero-input" term w (t,(xo,zo)) and of a linear term in

u alone, because, as we observgd, the last p columns of (4.13) are
vanishing. This means that, if u = 0, the response of such a system
consists of wO(t,(xO,zo)) alone .Equations (4.14) with u=0 may be
interpreted as the composition of the original system (1.1) with the

dynamic feedback

Z = Az + BV

o (x)-B (x)D(Az+BV)

o
It
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together with the a new output map
w=y - Cz
For all initial states around (xo,zo) and all inputs v
wit) = wylt, (x°,2°)

and, therefore,

t
y(t) = wo(t,(xo,zo))+CeAtzO + J CeA(t—T)BG(T)dT
0

This shows that the response of the system (1.1} under the feed-
back {4.10) has the desired form (4.3).

Necessity of (a). This part of the proof consists in a repeated
use of the expressions whichdefine Yi(x) and ?i(x), in order to show
that

k..
(4.15) LéLEh(E.x) CA™B

for all k > 0, imply

C.B =20
1

for all i > 0. One proves first that (4.15) implies

(4.16a) [LgLf§i(x)]d(g,x) = C;28

and that this, in turn, implies

(4.16b) [Lgyi(x)]d(ilx) = C;B

for all i > 0. Then, (4.16) imply the desired result, because

(Lg[K}y1+...+K§_1yi_1+K;Lfyl_1])d =

0 = (LgYi)d

i i i iy -
K1(Lgy1)d+...+Ki_1(LgYi_1)d+Ki(LgLin_1)d =

i i i _ =
(R3C +...+KT_4C; 4+K /C,A)B = C;B

This completes the proof, O
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(4.17) Remark. From the above statement, we see that a dynamic state-
feedback which solves a Linear Model Matching Problem may easily be
found in terms of data related toc the solution of an Input-Output
Linearization Problem. As a matter of fact, the availability of
Pi,K?,...,Ki, 1 < i < g makes it possible to construct the matrices
Cyo

this is satisfied, one takes any solution a(x) and B(x) of (4.11)

Ci , 1 <1 < g and, then, to check the existence condition (a). If

(i.e. any feedback solving the Linearization Problem) and constructs
a solution of the Model Matching in the form (4.10).

(4.18) Remark. In the previous procedure, no special attention was
paid to the properties of the zero-input term Q(t,(Eo,xo)), which
represents the effect of the initial states on the response of the
closed loop system (4.2). If an asymptotically decreasing zero-input
response is required, one should modify the outlined construction and
use, instead of a solution a(x) and B(x) of (4.11), a feedback which
makes linear and asymptotically stable the input-output behavior of
the extended system (4.5). This may be accomplished on the basis of

the ideas discussed in the Remark (2.21). 0O

5. More on Linear Model Matching, Output Reproducibility and Noninterac-

tion

In this section we will see that it is possible to solve a Linear
Model Matching Problem even though the Input-Output Linearization Pro-
blem is znot solvable. In particular, we will see that the condition
(b) of Theorem (4.9) still implies the solvability of the Linear Model
Matching problem, even in case the assumption of solvability of the
Input-Output Linearization Problem does not hold.

To this end, note first of all that the so-called structure at
the infinity can be associated with any system of the form (1.1) and
not only with input-output-linearizable systems. This is because the
string of integers {61,62,...}, that we introduced by means of the
Structure Algorithm, can also be independently defined in terms of
dimensions of the codistributions generated by means of the Controlled
Invariant Distribution Algorithm (see e.g. (3.9)). For this to be pos-
sible, it is only required that G, Qk and Qk N GL have constant di-
mension, for all k > 0, around the point %9, i.e. that x° is a regular
point for this algorithm (see chapter IV, section 3),

If this is the case, one may associate with the triplet (f,g,h)

the sequence of integers
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(5.1) r, = dim

Given also a linear model (A,B,C), we may associate with the extended
triplet (fE,gE,hE) (see (4.5})), a similar seguence of integers

E
E Oy
(5.2) £ - qim — & _ kK > 0
k QE N GEL —

k

where now the superscript "E" denotes objects pertinent to the extended

system, namely

E _ E E E E
G- = 5p{91""’9m’gm+1'""gm+u}
E _ E E
@, = (sp{dh1,...,dhz})
n+p
E E E EL . E EL
9 = _4 +LfE(Qk_1 G ) + 121 LgE(Qk_1 G )

The structure at the infinity {61,62,...} of a system of the form
(1.1) is uniquely related to the sequence {r1,r2,...} and, therefore,
the equality between the structure at the infinity of the system (1.1)
and that of the extended system (4.5) (i.e. the condition (b) of
Theorem (4.9)) is equivalent to the equality

for all k > 0.
We prove now that this is still sufficient for the solvability

of the problem in question.

(5.3) Theorem. Suppose x° is a regular point of the Algorithm IV,.(3,17)
for the triplet (f,g,h) and (xo,zo) is a regular point of the Algorithm

IV.(3.17) for the triplet (£5,g",hT). Then the Linear Model Matching
Problem is solvable at x° if

_ B
(5.4) T, = Iy

for all k > 0.

Proof. We first establish some notations. Let v denote the dimension

of the linear model (A,B,C). Throughout this proof we will be inter-
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ested in some distributions and/or codistributions defined around
the point (xo,zo) of R™ *xR" in the following way. We set

E E
splgyse--rgy}

]
I

9]
|

= s { RN }
AV P gm+1 gm+]
and we note that

{5.5) G =G_® G

Moreover, we define a sequence of codistributions @, , k > 0, as

ot _ * _on ¥V
Qk(x,z) = Qk(x)X{O} - Tx R xT_R

It is easy to verify that the sequence of codistributions thus
defined is such that

m+u

— = = =L
(5.6) Q1 = 9 +.Z L (@ N G,)
i=0 g5

(with g = £%) and also that

(5.7) r, = dim — X gim -
n

Finally, we define another codistribution I as
*
r(x,z) = {0} xT R
We proceed now with the proof, which is divided into three steps.

(i) It will be shown that the assumption (5.4) implies

=1 E =L
2 N
(5.8) G, Qk G,
for all k > 0. To this end, note first that the assumption (5.4},

because of (5.7), may be rewritten as

2, +ét af + Bt
(5.9) dlm(T) = dim( EL )
G‘Ll G

Suppose now that
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(5.10) 8 +7T = QE +T

= _ AE = -l _ B _ =L =L
gk+r —Qka-r = Qk+Gu—S%'+Gu (MmmmeI‘CGu)
o + Gy aF + Bt
= dim ———— = dim —————— (by (5.9))
=1 GEL
u
—-L A
= N = nG*—
dim Qk Gu dim Qk G
= QE n ét Qﬁ N GEL {because GEL C GL).

The condition (5.10) also implies (because T C éﬁ)

“Loq s = = =L E = E
—3 n = =
(5.11) G N +T Gt (@, +1) =8 N (af +T) =85 N of +7

k

Thus, we have

- ~ m+y -t
Q4 + T =8 +.z LG, NQ) +T by (5.6)
i=0 95
- mip -L
=q + Y L gG, M@y +T) +T
i=0 9;
_ mfu L &
=Q + ] LG, N +T) +T by (5.11)
i=0 g,
h
_ m+y L
= + !} L E(GE n QE +T) +T (see above)
i=0 g5
m+
= & EL E
= Q. +'Z L (G na) +r
i=0 g
1
m+u
_ _E EL E _E
= 0 +i£0 LgE(G NgH) +T=q  +7T by (5.10)
i

This shows that (5.10) holds also for k+1., Since (5.10) is true
for k = 0, the previous argument shows that it is true for all k > O.

As a consequence, we have also
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E =L E EL
) = N
9 NGy =g NG

for all k > 0 and this, since GE'L C @t , implies (5.8). Note that (5.8)
may be rewritten as

(5.8") G, ¢Q + G .

(ii) Since (xo,zo) is a regular point of the Algorithm IV.(3.17) for

%
the triplet (fE,gE,hE), there exists an integer k such that, in a

*
neighborhood of (xo,zo) Qg = Qi* for all k > k ., Moreover (see Lemma
IV.(2.4)) the distribution

AE* — QE#
k

is such that

[fE,AE*] cC AE* + GE
(g%, AB%] € aF* 4 &F 1 <1< my
From these, using (5.8'), we deduce that
(5.12a) [£5,0%%) € a®" + G
(5.12b) (g, 45%) c aB* + G, 1<i<m

px NGB
E* = E* = .
A + G- Also A and G, are nonsingular and therefore one may use

. =L . . .
Since QE* NGy =0 is nonsingular around (xo,zo) sO is

Lemma IV.(1.10) and deduce the existence of an mx1 vector a(x,z) of
smooth functions, defined locally around (xo,zo), such that
E,. D E E* E*
(5.13a) [£7 + ) g.,o. , A%] Ca
Moreover, from the condition (5.8') one may deduce the existence

of an mxpy matrix yv(x,z) of smooth functions, defined locally around
(x2,2°), such that

B

(5.13b) It i

+ ‘. 1 < i <
99751 <ic<u

| 13
-t
m
>
1

*

Finally, note that, because of the involutivity of AE*, the above
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condition implies

m
E E E# E* .
(5.13c) [gm+i +j£1 ngji,A ] €a 1<i<wu
and recall that
L
(5.13d) sF* < (splanf,...,anfH) " .

(iii) Consider the dynamical system

noo u
E _ B E E
= 21 91% +i£1(gm+i *

.
Il a8
(]

4 1731
w = ht (%)

This system is such that the conditions (5,13) hold. Thus, thanks
to Theorem III.(3.12), we deduce that the inputs V.I,...,vu have no
influence on the output w, i.e. that for all initial states (in the
neighborhood where o(x,z) and y(x,z) are defined) the response of this
system consists of a zero-input term wo(t,(xo,zo)) alone. Thus, by
means of the same arguments as the ones used at the end of the proof
of Theorem (4.9), we conclude that the composition-of the original

system (1.1) with the dynamic feedback

Az + Bv

N
i

alx,z) + y(x,2)v

o
I

has a response of the form
t

At o | J CeA(t—T)

y(£) = wylt, (x°,2°)) + ce Bv (1) dt

o

This concludes the proof.

(5.16) Remark. The reader may easily check that the value of z° is

irrelevant in the previous discussions.

(5.17) Remark. We stress that the proof of the previous Theorem is
constructive. The fulfillment of the conditions (5.4) makes it pos-
sible to find, locally around (xo,zo), a vector oa({x,2) such that
(5.13a) holds and a matrix y(x,z) such that (5,13b) holds. A dynamical

state~feedback which solves the problem in question is the one de-
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scribed by the equations

(rye

(5.18a) = Af + Bv

(5.18b) u=oalx,8) +yx,gv O
As an application of this Theorem, we deduce now an interesting
result which is rather useful in connection with problems of output

reproducibility and noninteraction (via dynamic feedback).

(5.19) Corollary. Suppose r s = 2. Then there exists an integer § > 0

k
such that the Linear Model Matching Problem is solvable for a linear

model (A,B,C) with transfer function

s®
0 ;% RN 0 0 ... 0
-1 s
(5.20) W, (s)=C(sI-A) B =

. ‘e o ... 0
1

0 0  ne — 0 ... O
s 8

Proof. It is left as an exercice to the reader.

(5.21) Remark. Note that the transfer function (5.20) is right-invert-
ible. Thus, given any smooth f-vector-valued function y, defined on R,
and such that

- =8=1
Ty = (& = = (&, -
v = (Gh,y = ... (dt6-1)0 0

there exists a smooth u-vector-valued function 5, defined on R,such that

t
ylt) = J Wy(t-T)v(t)dr. O
0

Now, suppose I x = % and suppose we have solved the problem of
matching a linear model with transfer function (5.20). This means
that we have found an appropriate dynamic state-feedback compensator
(e.g. the one described in the proof of Theorem (5.3), which has the
form (5.18)) under which the input-output behavior of the system (1.1)

becomes
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t
(5.22) y(t) = o(t, (5%,%%)) + J Wy (t-T)v(T)dr
0

*
Let vy be any smooth f%-vector-valued function, defined on R, such
that

a*y* (¢)

o (ot 22,50,
dtk 0

(5.23) (
atk

(

0

for 0 < k < &-1.

From the Remark (5.21) we easily deduce that there exists an input
v undexr which the right-hand-side of (5.22) becomes exactly y*. Thus,
the composition of (1.1) with the dynamic state-feedback compensator
which solves the problem of matching the transfer function (5.20) is
a system that, in the initial state (Eo,xo), can reproduce any output
function which satisfies the conditions (5.23).

Moreover, we note that in a linear system with transfer function
(5.20) each output component is influenced only by the corresponding
component of the input. Thus, we also see that if the condition Ty =3

holds, we can achieve non—-interaction via dynamic state-feedback.

6. State-space linearization

In the first section of this chapter, we examined the problem of
achieving, via feedback, a linear <nput-output response. The sub-
sequent analysis developed in the second section showed that, from
the point of view of a state-space description, in suitable local
coordinates, the system thus linearized assumes (at least in the

special case where rq_1 = £) the form

z = Fz + Gv

o= f(z,n) + glz,Mv
y = Hz
In other words , the input-output-wise linear system one obtains

by means of the techniques in question may be interpreted, at a
state-space level, as the interconnection of a (possibly) nonlinear
unobservable subsystem with a system that, in suitable local coordina-
tes, is state-space-wise linear. Moreover, the latter subsystem was

also shown being both reachable and observable (Remark (2.21)).



223

In other words again, we may say that the technigues developed at
the beginning of this chapter modify the behavior of the original
system in a way such as to make a part of it (i.e. the observable one)
locally diffeomorphic to a reachable linear system.

Motivated by these considerations, we want to examine now the
problem of modifying, via feedback, a given nonlinear system in a way
such that not simply a part, but the whole of it, is locally diffeo-
morphic to a reachable linear system. In formal terms, the problem
thus introduced may be characterized as follows.

State-Space Linearization Problem. Given a collection of vector fields
f,g1,...,gm and an initial state xo, find (if possible} a neighborhood
U of xo, a pair of feedback functions o and B (with invertible B)
defined on U, a coordinates transformation z = F(x) defined on U,a
matrix A € RV™ and a set of vectors b, Eimn,...,bm € R™ such that

(6.1) Fy (£+ga) oF | (2) = Az

(6.2) Fy(g8) oF ' (z) = b, 1<i<m

for all z € F(U), and

n-1 m K
(6.3) I 1 Im@a'd;) =R
k=0 i=1

n

(6.4) Remark. Let x(t) denote a state trajectory of the system

m
x = (f+ga) (x) +_Z1(981)(X)ui
i=

and suppose x(t) € U for all t € {0,T] for some T > 0. If (6.1) and
(6.2) hold, then for all t € [0,T]

z{t) = F(x(t))
is a state trajectory of the linear system
m
Z=Az + ) b,u.
L& i’i
i=1

Moreover, if (6.3) also holds, the latter is a reachable linear

system. O

We shall describe first the solution of this problem in the
special case of a system with a single input, which is rather easy.

Then, we make some remarks about the usefulness of this linearization
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technique in problems of asymptotic stabilization. Finally, we con-
clude the section with the analysis of the (general) multi-input
systems.

For the sake of simplicity, we state some intermediate results

which may have their own independent interest.

(6.5) Lemma. Suppose m = 1 and let g = 9q- The State-Space Lineariza-
tion Problem is solvable if and only if there exists a neighborhood
v of x° and a function ¢ : V 7R such that

2

(6.6) Lgo(x) = LoLgo(x) = ... = L erl- g(x) =0

g
for all x € v, and

n=1 o
(6.7) LgLg p(x7) #0
Proof. Necessity. Let (A,b) a reachable pair. Then, it is well known
from the theory of linear system that there exist a nonsingular nxn

matrix T and a 1xn row vector k such that

0 1 0...0 0

0 0 1 ...0 0
(6.8) T(A+bK)T V= | . . . ... . Tb =

¢ 0 0 ... 1 0

0 0 0 ...0 1

Suppose (6.1) and (6.2) hold, and set

2 = F(X) = TF(X)
al{x) = a(x) + B(x)kF(x)
B(x) = B(x)

Then, it is easily seen that



Fo(E+ga)oF 1(2) =| o o . .. . |2

J

From this, we deduce that there is no loss of generality in as-
suming that the pair A,b which makes (6.1) and (6.2) satisfied has
directly the form specified in the right-hand-sides of (6.8).

Now, set
z = F(x) = 001(21(x),...,zn(x))

If (6.1) holds (with A and b in the form of the right-hand-sides
of {6.8)), we have for all x € U,

Fy (£ (x)+g(x)a(x)) = AF(x)
that is

821

3§—(f(x)+g(X)a(x)) = z,(x)

Szn_1

X (f(x)+g(x)a(x)) = zn(x)

azn

gi—(f(x)+g(x)u(x)) =0
If also (6.2) holds we have

Fe,g(x)B(x) = b

that is

821

Fras g(x)B(x) =0

9z -1
3R 9(X)B(x) = 0

3z
§§E g{x)Bi{x) =1
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Since B(x) is nonzero for all x € U, the second set of conditions

imply
3z

(6.9) 5 9(x) = L,z (x) =0 1 <i < n-1
an 1

(6.10) 5% g(x) = ngn(x) = BT

for all x € U, These, in turn, together with the first set of condi-

tions imply

(6.11) Lz (x) = z; (%) T<1i<n1
_ _ o(x)
(6.12) Lez (%) = - 205y

for all x € U.

If one sets
(6.13a) p(x) = z4(x)
the conditions (6.11) yield
(6.13b) 2,4 (x) = Lio(x) 0 < i< n-1

Thus, from (6.9) one obtains

- - - n-2 —
ng(x) = Lgwa(x) = L., = LgLf p(x) =0

for all x € U and, from (6.10),
Lt o) £ 0
g £

for all x € U. This completes the proof of the necessity.

Sufficiency. Suppose (6.6) and (6.7) are true and let U C V be a
neighborhood of x° such that LgLﬁ—qw(x) # 0 for all x € U. Use {6.13)
in order to define a set of functions 21""'Zn on U, The functions
thus defined are clearly such that (§.9) and (6.11) hold. Moreover,
since ngn(x) is nonzero on U, one can define a nonzero function §(x)
and a function a(x) by means of (6.10) and (6.12). This pair of func-

tions a and f and the mapping



227

F: x = col(zq(x)s..esz (%))
are clearly such that

F(f(x) + g(x)a(x)) = AF(z2)

Fe(£(x)B(x)) =D

with A and b in the form of the right-hand-sides of (6.8). Thus, in
order to complete the proof, we only have to show that F gqualifies as
a local coordinates transformation around xo, i.e. that its diffexr-
ential F, is nonsingular at %°.

For, observe that the vector fields ¥ = f+go and 8 = gB are such
that

Fof(x) = AF(x)

]

b

]

F g ()

N
or, in other words, that f is P-related to the vector field f' de-
fined by

£'(z) = Az
and that 8 is F-related to the vector field g' defined by

g'(z) = b

As a consequence, we have that the Lie bracket [%,E] is F-related
to the Lie bracket [£f',g']l. Using this fact repeatedly, one may check
that

i

) (x) = (aat,g). F(x)
% £

for all 0 < i < n~1. The special form of f£' and g' is such that

F,(ad

(aal,g') = (-1)'a'p
All together, these yield
A n-1v
Fulg ad. g ... ad g) =
¥ ¥

= (b -ab ... (-2 1an"1
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The matrix on the right-hand-side is nonsingular, because (A,b)
is a reachable pair, and so is F,. This completes the proof of the

sufficiency. O

(6.14) Lemma. Let ¢ be a real-valued function defined on an open set

V. Then the conditions (6.6) and (6.7) hold if and only if

(6.6') Lg¢(x) = L[f,glm(x) = ... =1L - e(x) =0

for all x € v, and

(6.7") L 0 (x°) # 0

(ad} 'g)

Proof. We show, by induction, that the set of conditions

0 _ _ k
(6.15a) Lgwa = ... =L wa =0

is equivalent to the set of conditions

(6.15b) L o 9= oo = L Kk 9= 0
(adfg) (adfg)
and both imply
oo a4y i+j
(6.16) L i Lze = (-1} LgLf ?

(ad;g)

for all i,3j such that i+j = k+1.
This is clearly true for k = 0. In this case (6.15a) and (6.15b)

reduces to ng = 0 and

L[f,g]w = Lng@—Lgwa = —LgLf@
Suppose (6.15a) and (6.15b) true for some k and (6.16) true for

all i,j such that i+j = k+1. The latter yields, in particular,

kK
ke ¢ = (2T L o

e 9)
¢ = 0 if and only if L » = 0, Assume either one
k+1

(adf g)

L
(ad

k+1
so that LgLf

of these conditions holds, Then



L

k2 (0T Lelpaq 0T g De? S
(ad; “q) (ad;" g (ady" g)
2
= (-1)L_.L L. + (-1)°L Lig
£ (adég) £ (adgg) £
= ( 1)k+1LfL L];H + (-1)2L X Licp
9 (adZg)
= - il
(adfg)
2 3 3
= {(-1)°L_L LZ¢ + (-1)7L L2y
f (adlg 1 _.7f (ad}; Y
k+1 k+1 3 3
= (=-1) L.L L ¢ + (-1)7L LZo
fUg-E (ad}EH y £
=0k L, k=
(adf g)

We see in this way that for all 0 < j < k+2

k+2

L £ ¢

9 = (-1 L3

k+2
_ p = (-1) L L
ad];+2 jg) £ g

(ad§+zg) (

and therefore that (6.16) is true for all i,j such that i+j = k+2.
From (6.15) and (6.16) the statement follows immediately. O

(6.17) Remark. We have proved, by the way, that either one of the two
equivalent sets of conditions (6.15) imply

L e = (-1

. @ L
(ad%g) £ i+j

¢
(ady -g)

for all i,j such that i+j < k+1. This fact will be used in the sequel.O

(6.18) Theorem., Suppose m = 1 and let g = g9 The State-Space Lineariza-
tion Problem is solvable if and only if:

(1) dim(span{g(xo),adfg(xo),...,ad2_1g(x°)}) = n
(ii) the distribution
(6.19) A = sp{g,adfg,...,adg_zg}

o

is involutive in a neighborhood U of x~.
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(6.20) Remark. Note that the condition (i) implies that the tangent
vectors g(x),adfg(x),...,adg-Tg(x) are linearly independent for all x
in a suitable neighborhood of x°. Therefore the distribution (6.19) is

. o . .
nonsingular around x~ and has dimension (n-1).

Proof. We know from the previous Lemmas that the problem is solvable
if and only if there exists a real-valued function ¢ defined in a
neighborhood V of x° such that the conditions (6.6') and (6.7') hold.

These may be rewritten as

(6.6") (d@,adig Y (x) = 0
for all 0 < i < n-2 and all x € ¥V, and
(6.7") (ap,2a27 g ) (x%) # 0

If both these conditions hold, then necessarily the tangent
vectors g{xo),adfg(xo),...,ad2_1g(xo} are linearly independent. For,
we see from Remark (6.17) that (6.6") implies

b i - ijoo_
(deqJ, adfg> =L i Lge =
(adtg)

= (_123J — (_13yJ i+]
= (=1) L(adi+jg)w = (-1) (dw,adf g
£

for all i+j < n-1. Therefore, using again {6.6") and (6.7") we have
j i
(dL%w, adgg ¥ (x) = 0
for all i,j such that i+j < n-2 and all x € V and

(L3

f‘Plad]‘ég ) (XO) # 0

for all i,J such that i+3j = n~1.
The above conditions, all together, show that the matrix
do (x°)

aL e (x°) o »
(6.21) (g(x7) ad.g(x”)...ad} 'g(x)) =
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(dy, g (x°) (ag,adeg ) (x°) e <dm,ad§’1g » (x9)

<dew,q y (x°) <de(P;adf9 y (x9) .o (de(p,adIE-1g Y (x°)

(dLn—1 ) ( ° (g n-1 a Y (5c° (q n-1 dn—1 Y (5C
£ ¢,9 X7) Lf Prc fg (x7) ... Lf ¢sQ £ glrx")

has rank n and, therefore, that the vectors g(xo),adfg(xoL..”aigngP)
are linearly independent.

This proves the necessity of (i). If (i) holds then the distribu-
tion (6.19) has dimension n-1 around x° éﬁd (6.6") tell us that the
exact covector field dg¢ spans AL around xo. So, because of Frobenius
theorem (see Remark I.(3.7)) we conclude that A is completely in-
tegrable and thus involutive, i.e. the necessity of (ii).

Conversely, suppose (i) holds. Then the distribution (6.19) is
nonsingular around x®. If also (ii) holds, A is completely integrable
around x° and there exists a real-valued function ¢, defined in a
neighborhood V of xo, such that d¢ spans At on V, i.e. such that
(6.6") are satisfied. Moreover, the covector field d¢ is such that
(6.7") also is satisfied, because othexrwise dg¢ would be annihilated
by a set of n linearly independent vectors. This, in view of the pre-

vious Lemmas, completes the proof of the sufficiency. O

For the sake of convenience, we summarize now the procedure
leading to the construction of the feedback a and B which solves the
State-Space Linearization Problem in the case of a single input
channel.

Suppose (i) and (ii) hold. Then, using Frobenius Theorem one
constructs a function ¢, defined in a neighborhood V of xo, such that
(6.6") and (6.7") hold. Then, one sets

(6.22a) B(x) = -
Lng 1qJ(X)
and
Lo (x)
(6.22b) a(x) =

-1
LgL2 ¢ (x)

for all x € V. This pair of feedback functions, together with the

local coordinates transformation defined by
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LT

zi(x) = Lf

for 1 < i < n, is such as to satisiy (6.1) and (6.2) with A and b1 =b
in the form of the right-hand-sides of (6.8).

(6.23) Remark. There is a surprising affinity between some results de-
scribed in this section and the ones described in the sections IV.3
and IV.4. For instance one may rephrase Lemma (6.5) by saying that
the State-Space Linearization Problem is solvable if and only if one

may define, for the system
x = £(x) + g(x)u
a (dummy) output function
y = ¢(x)

whose characteristic number is exzactly n-1. Of course, this will be
possible if and only if the conditions (i} and (ii) are satisfied.
Once such a dummy output function has been found, then the solu-

tion of a State-Space Linearization Problem proceeds like a solution

of a (degenerate, because both £ and m are equal to 1) noninteracting
bcontrol problem. As a matter of fact, we have from Lemma IV.{(3.10)
that the differentials dg,dLgo,...,dL}
x° and thus that the mapping

p are linearly independent at

F i x F—col(p(x),Leolx),..., L0 g(x))

qualifies as a local coordinatestransformation. Then, from Corollary
IV.{(3.14) we learn that
% n-1

A = N

(sp{dLi.(p})'L =0
i=0

"is the largest locally controlled invariant distribution contained in
1
(spidel}) .
The feedback (6.22) coincides with a solution of IV.(3.15) (with
y{x) = 0 and 8§{(x) = 1). Under this feedback the system becomes linear
in the new coordinates, as it is seen from the constructions given in
the section IV.4 (see Remark IV.(4.9)). O

We note that the formal statement of the State-Space Lineariza-

tion Problem, given at the beginning of the gsection, does not in-
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corporate any requirement about the image F(U) of the coordinates
transformation that makes it possible (6.1) and (6.2) to hold.However,
one may wish to impose the additional requirement that the image F (U)
contains the origin of R™. In this case, the condition of Theorem
(6.18) must be strenghtened a little bit.

Suppose the coordinates transformation z = F{x) solving the
State-Space Linearization Problem is such that

o]

(6.24) z° = F(x%)

=0

Then, from (6.1) we deduce that necessarily

.

(6.25) £(x°) + gxDa(x®) =0

If f(xo) = 0, then the construction already proposed for the
solution of the problem may be adapted to make (6.24) and (6.25)
satisfied. As a matter of fact, one may always choose a function ¢
satisfying (6.6") and (6.7") in such a way that w(xo) = 0 (see, e.qg.,
the construction proposed along the proof of Theorem I.(3.3)). If this

is the case, then

2y (x%) = 9(x%) =0
and also, for 2 < i < n,
z, (x%) = L17T0(x%) = Carl e (x®), £ (%)) = 0
because we have assumed £(x°) = 0. Thus the proposed coordinates trans-

formation satisfies (6.24). Moreover,

. L0 (x°) CaL o (x%), £(x%))
v = - L 18 (x°) Tl (x°) =0
g ? gt ¢
and also (6.25) holds.
One may thus assert that if £(x°) = 0, i.e. if the initial state

x° is an equilibrium state for the autonomous system
x = £(x)

and if the State-Space Linearization Problem is solvable, one may al-

ways find a solution such that a(x®) = 0 and F(x°) = 0.
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If f(xo) # 0, the condition (6.25) may be rewritten as
(6.26) £(x°) = cg(x°)

where ¢ is a nonzero real number., Again, if the State-Space Lineariza-

tion Problem is solvable one may find a function ¢ such that z1(xo) =

= w(xo) = 0. But also, for 2 < i < n, (6.26) ensures that
zi(xo) = (dL;_Zw,f(xo)> = chLé_zw(xo) =0

and thus (6.24) still holds. Moreover, the proposed o is such that

o (and e (x), £ (%))
alx™) = - n-1_, o =Te
LgLf p(x)

as expected.
In this case, the initial state x° is not an equilibrium state
for the original system, but an a may be found such that x° is an

equilibrium state for the system
x = £(x) + g(x)o(x)

In summary, we have the following result.

(6.27) Corollary. Suppose m = 1 and let g = g4+ Suppose the State-

Space Linearization Problem is solvable. Then, a solution with

F(x°) = 0 exists if and only if
£(x°%) € splg(x°)} 0
(6.28) Remark. When F(xo) = 0, one may use the solution of the State-

Space Linearization Problem for local stabilization purposes. Indeed,
since (A,b) is a reachable pair, one may arbitrarily assign the eigen-
values to the matrix (A + bk), via suitable choice of the 1xn row
vector k. If this is the case, the feedback control law

u = a(x) + B(xX)kF(x) + B(x)v

makes the system locally diffeomorphic, on U, to the asymptotically
stable system

z = (A + bk)z + bv 0O
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We now describe the extension of the previous discussion to the
‘case of many inputs. This requires the introduction of some further
notations, but the substance of the procedure is essentially the same
as the one examined so far.

Given a set of vector fields f,g1,...,gm we define a sequence of
distributions as follows

1]

splgqse..rgyl

]

9]
1]

G,

i = Gyoq *LEGy

1
The following Lemma describes the possibility of computing all

Gis in a simple way.

(6.29) Lemma. Suppose all Gis are nonsingular. Then

(6.30) G; = spladfg; 10 <k < i, 1 <3 <m

Proof. Suppose G; i sp(ad?gj :0 <k €4, 1 <3 < m}. suppose that at

x° some vectors adf1gj re..sad 9, are linearly independent and
1 r
span Gi(xo). Then on a neighborhood U of x° any vector field Tt in Gi

=

may be written as 1 = | caadfagj , with ¢ € c”(U). Then [ £,1] =

a=1 o
r ka+1 ka ka+1
=) (c adg gja+(Lfca)adf g; ) . Therefore, on U, G, , = sp{adf 9. s

o=1 ja Ja

Q

k
adfagj : 1 <a < r}. Since, by construction, all ad?gj y 0 <k < i+
o
: . . _ k_ . .

and 1 < j < m are in Gi+1 , this proves that Gi+1—sp{adfgj.0_§k.i1+1,
1<3j<m}. O

Since G, Cc G, ,q by definition, if the Gis are nonsingular we have
that

Gi4q (¥
dim _EITET_ = independent of x

Thus we may define a sequence of integers VgrVyr--- by setting

(6.31a) Vg = dim G
Gy

(6.31b) vy, = dim o i>1

i-1
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The integers thus defined have the following property

(6.32) Lemma. The following condition holds

v, >
i 2 \

i+
for all i > 0. Let Vi denote the last nonzero element in the sequence
{\)i : 1> 0}, If

dim G,* = n
1
then

+ +o. 0tV =
v V1 Vl* n

a

Proof. Consider Gy and G; By definition

-1

dim Gi(X) = dim Gi_1(x) + vy

From (6.30), we deduce that, given a point xo, there will be viAvectors
ad%gj1(xo),...,ad§gj (xo) linearly independent and with the property

: Vi
that all vector fields in Gi may be written as linear combinations,with

smooth coefficients, of vectors of Gi—1 and of sp{ad%gj :1isivi}. Thus
S

_ i+1 .

= Gi+sp{adf 9; ¢ 1 <8 < v}

G 1
S

i+

and

< v, ., d
i

Vivr 2

*
From the sequence {vi :0 < i <1} we define another sequence of

integers mo,m1,...,mi* , setting

my = V¥
m0+m1 = Vik_q
(6.33) m0+m1+m2 = vi*_z

m,.+m +...+mi* = V
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(6.34) Lemma. The following conditions hold
m, > 0
m; > 0 1 <1i<i

Moreover, if dim Gi* = n, then

L
(6.35) dim Gy*_, = img+. . +2m o tm,

%
for 1 <i< i ., 0O

There is a need for a third sequence of integers {Ki:1iiivo} re—
lated to the previous ones by the following relations

*

k., =1 +1 if 1 < i < v, »
1 - — 1
. * > d .
Ky =1 if m, >0 an Viktl <1< vk
6.36 K, = ¥ 1 i > 0 d +1 < i <
(6.36) ; =4 if m, an Vitog LA vk,
Ky =1 if myx > 0 and v+l < i < v,

With the help of these notations it is rather simple to state the
necessary and sufficient conditions for the existence of a solution to
the State-Space Linearization Problem in the general case where m > 1.

(6.37) Theorem. The State-Space Linearization Problem is solvable if
and only if

(i) x° is a regular point of the distribution Gi’ for all i > 0
(1i) dim G #(x°) = n
(iii) the distribution G; is involutive, for all i such that mi*_i_1¢0.
Proof. We restrict ourselves to the proof of the sufficiency, which is
constructive. Without loss of generality, we may assume that

Vg = m
For, if this is not the case, since G0 by assumption is nonsingular
around xo, we may always find a nonsingular mxm matrix B(x), defined

in a neighborhood U of xo, such that
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Gy(x) = span{§1(x),...,§VO(x)}

and

gv0+1(x) = .. §m(x) a

for all x € U, where
g; (x) = (g(x)B(x))y

for 1 < i £ m. If a feedback (a,8) solves the State-Space Linearization
Problem for the set f'§1""'§v , then it is easily seen that a feed-
back of the form 0

0

1)

v - Ry © v _ =, B
a' = B( 0 ) B' = B( 0

solves the problem for the original set f,g1,...,gm.
For the sake of simplicity, we break up the construction in two

stages.

(i) Recursive construction of a ccordinates transformation around the
) fe]
point x7.

Step (1): By assumption
dim Gi* =n

L
and dim Gij*_ 4 =my > 0. Moreover, Gi*_q is assumed to be involutive.
Then, by Frobenius theorem, we know that there exist a neighborhood

U1 of x° and m, functions h01""’h defined on Ugs whose differ-

Om
entials span G;*_1(x) at all x € U1.OIn particular,

u —
(6.38) (dhOi, adfgj Y(x) =0

*
for all1 < j<m, 1 <i<m 0 <a <i=-1and all x € U1. Moreover,

0'
the differentials dh01(x)"“'dh0m (x) are linearly independent at all
X € Uy 0

We claim that the mOXm matrix

*
- (0) _ i
M, = {mij (x)} = {<dh0i,adfgj > (x)}

has rank m, at all x € U,. For, suppose it is false at some x € u,.
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Then, there exist real numbers CyreaarCp such that

m

0 ¥
{ 19.9(x) =
.2 cidhOi’adfgj (x) 0

i=1

for all 1 < j < m. This, together with (6.38), implies
( 0 Y. (%
(6.39) i£1cidh01,adfgj (x) =0
*
for all 1 < j <m 0 < a < i, and this in turn implies
( 5 X }
_Z c dhg, (x),v) = 0
i=1
Ty
for all v € G.(X).since dim G,* = n, then Z c.dh,. (x) must be a zero
i i joq 0i
covector, but since dhm(;{),...,dhOm (X) are independent, then
Cp = +»0 = cm = 0. 0
0
Step (2): Consider the distribution Gi*—2 , which is such that
dim G- = om, +
M Gi¥_p = “Mp ¥y
We claim that deh01,...,deh are such that

Om0

a —_
(dehOi,adfgj)(x) =0

*
for all 1 < j <m 1 <1< Mg 0 <a <1i-2andall x € Uy-

This comes from the property

o _ a+1 - o
-(dehOi,adf gj)—(dhOi,adf gj) Lf(dhOi,adfgj)

*
in which both the terms are zero on U; because a < i -2.

We claim also that the 2m0 differentials

(6.40) {dh01(x),...,dhOmo(x),deh01(x),...,deh0 (x)}

Ty

are linearly independent all x € U,. For, suppose this is false; then,

for suitable reals Cqq1Coqr we had
i" 721
m, _ mg _
(6.41) iz1c1idh01(x) +i£1c21dehOi(x) =0
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at some x € U. This would imply

mo %
i-1 = _
(i£1(c1idh01 +cyydLehy ), adg gj)(x) =0

for all 1 < j < m. This in turn implies (because of (6.38))

m

mo 0 *
i-1 = _ i - _
(i£102idehOi,adf gj)(x) = (i£1czidh0i,adf gj)(x) =9
i.e. a contradiction, like in (6.39). Therefore Cyq = ++e = Cop = ¢/
. _ _ _ - 0 -
in (6.41), and also Ciq4 = ==+ = c1m0 = 0 because dho1(x),...,dh0m0(x)

are linearly independent.
If my = 0, the 2m, 9*
again Frobenius theorem (because Gi*_, is involutive), we may find my

covectors (6.40) span Gt*_ If m, > 0, using

more functions h11(x),...,h (x), defined in a neighborhood U, c uy

im
of xo, such that the 2m0+m1 dlfferentials

(6.43) {dh01(x),...,dhomo(x),deh01(x),...;dehomO(x),dh11(x),...,dh1m1(x)}
are linearly independent and
a -
(dh1i.adfgj)(x) =0

*
for all 1 < j <m, 1 < i < my . 0 <a <i-2and all x & U2.

We claim that the (m0+m1)Xm matrix

Mo
M

1

where M, is as before and M1 defined as

¢

*
- (1) _ i -1
My = {mij (x)} = {(dh1i,adf gj)(x)}

has rank m +my at all x € U

0 2°
For suppose for some reals 001’""COmO'c11""'C1m1 we had
o = i* = iy - i*—1 =
<i£1001dh0i(x)’adf gj(x))-F<i£1c1idh1i(x).adf gj(x)) =0

at some x € U,. Then (recall Remark (6.17))

5"
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my m, * ]
(6.44) (] cqidLehg, () + X cqydny; (%) ,adp ~ g5(x) =0

i=1 i=1

™
The covector Z o dLehg; (X) + z ¢, dhy; (X) annihilates, as we have
seen before, all adfg (x), a*<1 —2, 1 < j<m but (6.44) tells us
that it also annlhllates adf g (x). Thus, this covector annihilates
all vectors in Gi*_q-
From the previous discussion, we conclude that this covector must
belong to span{dh01(§),...,dhom (x)}, but this is a contradiction,
because the covectors (6.43) are linearly independent. Therefore, the
cOi's and c1i's of (6.44) must be zero,
Eventually, with this procedure we end up with a set of functions

% %
0,..,,L; “ThyyreeoiLy ‘1h0m0

*
i —2 i -2
1m r-..,Lf h11,...,Lf h1m1

h01""'h0m0'tho1""'thOm

h11,...,h
(6.45)

h.*_1 1,...,h

i i*=-1, ml* 1

(of course, some of these lines may be missing if some m, is zero)

with the following properties:

- the total number of functions is
K
im

*
0 + (i ~1)m1+...+2mi*_2 +mi*—1 = n-m

- the n-m differentials of these functions are independent at all

x € U, a neighborhood of %°,

- the v1xm matrix

where Mi is m, Xm and

(l)(x) = {dh, 2,ad —igj)(x)

has rank vy at all x € U,
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If m, * > 0, one may still find m* more functions hi*1""'hi*mi*’
that, together with the functions (6.45) and with the additional func-
k L

. i i . :
tions Ly hyy.....Lg hOmO"'"thi*—1,1'""thi*-1,mi*_1 , give rise

to a set of n linearly independent differentials at x°.

For convenience, let us relabel the functions hij and set

Py = hoi if 1<1ix vy
9 = h1,i—vi* if my >0 and vi*+1 i< vk g
Py = hi*,i—v1 if my+ > 0 and vttt 2 d < Vg = m

The previous constructions tell us that the mapping

F:x F"col(£1(x),...,gm(x)), where

mi(x)
£;(x) = wai(X)

Ki—l
Lf wi(X)

qualifies as a local diffeomorphism around x°.

Moreover, by construction,
a —
(6.46) (de@i,gj>(x) =0

for all 0 < o < k;-2, 1 < i,j < m, at all x around x°, and the mxm
matrix

K,=1
- _ i
(6.47) Alx) = {aij(x)} = {(de ¢i,gj)(x]}

. . o
is nonsingular at x = x .

(ii) Construction of the linearizing feedback. From the conditions

(6.46) and (6.47), we see that the control system

m
(6.48a) X = £(x) +i£1gi (x)uy
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with (dummy) outputs
(6.48b) y; = 03 (%) 1<i<m

is such that:

- the characteristic number ey associated with the i-th output channel
is exactly equal to Ki—1,
- the single-outputs noninteracting control problem is solvable around

x°.

Choose a feedback o and B as a solution of the equations

“q
Lf @1(X)

.
.

Al{x)a(x)

Km
Lf % {(x)

A(x)B(x)

I
H

(they correspond to the equations IV.(4.4a) with Y; = 0 and IV.(4.4Db)
with di the i-th row of an mxm identity matrix). Under this feedback,
the system (6.48) splits into m noninteracting single-input single-
output channels. In particular, in the newcoordinates defined at the
previous stage, each subsystem is described by equations of the form
(see IV.(4.8})

F0 1 0 ... 0 0 0
[4] [4] 1 . [ 0 ]
El = . . e . - Bt vy
4] Q 0O ... ©O 1 0
e o o ... 0 0 1
y; = (1 0 0 ... O O)Ei

This completes the proof. O
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7. Observer with Linear Error Dynamics

We consider in this section a problem which is in some sense dual
of that considered in the previous one. We have seen that the solva-
bility of the State-Space Linearization Problem enables us to design
a feedback under which the system becames 1locally diffeomorphic to a
linear system with prescribed eigenvalues. In the case of linear system,
the dual notion of spectral assegnability via static state-fedback is
the existence of state-obsevers with prescribed eigenvalues. Moreover,
it is known that the dynamics of a state-observer and that of the
observation error (i.e. the difference between the unknown state and
the estimated state) are the same, In view of this, if we wish to
dualize the results developed so far, we are led to the problem of
the synthesis of (nonlinear) observers yielding an error dynamics
that, possibly after some suitable coordinates transformation,becames
linear and spectrally assignable.

For the sake of simplicity, we restrict ourselves to the considera-
tion of systems without inputs and with scalar output, i.e. systems

described by equations of the form

x = f£(x)

h(x)

¢
i

with yv € R,
Suppose there exists a coordinates transformation z = F(x) under
which the vector field f and the output map h beccme respectively
FofoF 1 (2) = Az + K(cz)
_1 =
hoF (2z) = cz
where (A,c) is an observable pair and K is an n-vector valued function
of a real variable.
If this is the case, then an observer of the form
£ = (a+kc)E-ky+K(y)
yields an observation error (in the z coordinates)

e =& -~z = § - F(x)

governed by the differential equation
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é = (A + kc)e

which is linear and spectrally assignable (via the nx1 column vector k).
Motivated by these consideration, we examine the following pro-
blem.

Observer Lineaqrization Problem. Given a vector field f, a real-valued

(o]

function h and an initial state x~ find (if possible) a neighborhood

U of xo, a coordinates transformation z = F(x) defined on U, a matrix

A € R and a row vector c EZR1Xn a mapping K:h (U) - R" such that

(7.1) hoF ' (z) = cz

-1

(7.2) Fo foF '(z) - Az = K(cz)

for all z € F(U), and

n-1 .
(7.3) N ker(ca™) = {0}, O
i=0

The conditions for the solvability of this problem can be de-

scribed as follows

(7.4) Lemma. The Observer Linearization Problem is solvable only if
(7.5) dim(span{dh (x°) ,dLzh(x%) ,...,dL} Th(x%)}) = n
Proof. The condition (7.3) says that the pair (A,c) is observable.Then,

it is known from the theory of linear systems that there exist a non-

singular nxn matrix T and a nx1 column vector k such that

(7.6) T (A+ke)T | = ' e V= 0 ... 0 1O

Suppose (7.1) and (7.2) hold, and set

z = P(x) = TF(x)
K{y) = T(K{y)-ky)

where y € h(U).
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Then, it is easily seen that

hoP 1(2) = (0 0 ... 0 1)z

F £ 1(2)-| 0 0...0 0 |2=R((00 ... 013

From this we deduce that there is no loss of generality in as-
suming that the pair (A,c) that makes (7.1) and (7.2) satisfied has
directly the form specified in the right-hand-sides of (7.6).

Now, set
z = F(x) = col(zy(x)s...r2, (%))

If (7.1) and (7.2) hold, we have, for all x € U

(7.7) h(x) = zn(x)
321
% f(x) = k1(zn(x))
322
5% £(x) = 21(x)+k2(zn(x))

(7.8)

f(x) Z (x)+kn(zn(x))

n-1

where k1,...,k denote the n compoents of XK.

Observe tﬁat
9z
Leh(x) = 520 £(x) = 2,4 (x) + k(2 (x))
2 an_1 akn an
DER () = =g £00) + () g D £00)
ak oz
=z, _,(x) + ((§§2)yzsz§§E £(x) + k(2 (x))



247
=z (%) + k(2 (%), 2 4 (%)

where

akn Bkn
2 + — kn(zn) + kn-1(zn)

K _ (z_,2__,) =—22 _
n-1""n’“n-1 an n-1 an

Proceeding in this way one obtains for each L;(x), for 2 <i<n-1,
an expression of the form
Lih(x) = z (x) + K
f n-i

1(Zn(X)lo--1Z 1(X))

n-i+ n-i+

Differentianting with respect to x and arranging all these ex-

pressions together, one obtains

3h A 9h ]

‘a_x ‘5; 0 0 L Y 0 1
oL h 3L h

£ £

pn o 0 g . 1 *

_ 3z _

: = . < = . . PR . . F*(x)
3L2"1h BL?_1h
—* —_ 1 * . * *

9X 0z

This, because of the nonsingularity of the matrix on the right-

hand-side, proves the claim. O

If the condition (7.5) is satisfied, then it is possible to define,
in a neighborhood U of %%, a unique vector field T which satisfies the
conditions

n~-2

Lrh(x) = LTth(x) = ... =L1L; h(x)

il
o

n-1 _
L Le h(x) = 1

for all x € U.

As a matter of fact, one only needs to solve the set of equations

dh (x) 0
deh(x) 0
(7.9) et T(x) = | .
dLg'zh(x) 0
ar™ ' (x) 1

£
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The construction of this vector field T is useful in order to
find necegsary and sufficient conditions for the solution of our pro-
blem.

(7.10) Lemma. The Observer Linearization Problem is solvable if and
only if

n

f_1h(xo) Y =n

(i)  dim(span{dh(x°),dL h(x%),...,dL

(ii) There exists amapping ¢ of some open set V of R® onto a neigh-
borhood U of x° that satisfies the equation

9%
3z

n-—

1710 2 (z)

(7.11) = (1 -ad.t ... (-1 Tag

£7
for all z € V, where 1 is the unique vector field solution of (7.9).

Proof. Necessity. We already know that (i) is necessary. Suppose (7.1)
and (7.2) are satisfied and set #(z) = F '(z) for all z = F(U).
Moreover, let 0 be the (unique) vector field %¢-related to 3%— , i.e.

let 1

0(x) = 0,050 007" (x)
1
We claim that
K K 3 -1
(7.12) ad%e (x) = (=1) Ko, (==2—) .07 (x)
£ * oz g

for all 0 < k < n-1. To show this, we proceed by induction (because
(7.12) ig true by definition for k = 0), and we use the fact, deduced
from (7.2) ,(see also (7.8)), that

f(x) = (F*)—1(Az + K(cz))oF(x) =

3 3 3 -1
Q*(k1(zn)§ET-+(z1+k2(zn))5E;-+...+(Zn_1+kn(zn)5§;)c@ (x)

Suppose (7.12) is true for some k < n-1., Then

k+1 k 3 -1
ad 8 =[f,(-1)" ¢, (=——)od® '] =
£ * 82k+
k d 3 3 3 -1
= (1) "0 kymo— + (2 kYot o+ (2K )mo—y ] o®
* 1321 172 522 n-1 "n an sz+1

k+1 3 -1
‘P* (T) P

k+1

= (-1)
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Collecting all (7.12) together one obtains

3

£y

0. (1) Tagl”

_ 3 3 3
6)o¢—¢*('§z—1 -3-—2——2-..-'8‘%)—

(6 =-ad

£

[=%4
N

If we show that 6 necessarily coincides with the unique solution
of (7.9) the proof is completed, because the p.d.e. (7.11) will
coincide with the one just found.

To this end, observe that

k 2h 3 -1
(-1)7L_ k hix) = a5 ¢, (0—) o0 (%) =
adfe 9xX azk+1
= (3R o7 ()
k+1
but, since h,%(z) = z,, we have
Ladkeh(x) =0
£
for all 0 <k < n-2 and
n-1 _
(-1) Lad¥'18h(X) =1

Using Lemma (6.14) we deduce that

k -
Leth(x) =0
for all 0 < k < n-2 and (see also Remark (6.17))

n-1 _
LgLe hix) =1

9
Thus, the vector field 6 necessarily coincides with the unigue

solution of (7.9).

Sufficiency. Suppose {i} holds and let T denote the solution of (7.9%).

Using Remark (6.17) one may immediately note (see (6.21)) that the

matrix

dh (x°)

deh(xo) o o) n—1 o)
o (T(x7) adfT(x ) BN adf (x7))

n-1 [}
de h(x")
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has rank n. Therefore, the vector fields t(x ),adfT( x),...,ad2_1T( xX)
are linearly independent at x°.

Let ¢ denote a solution of the p.d.e. (7.11) and let z° be a
point such that 3(z°) = x°. From the linear independence of the vector

fields on the right-hand-side of (7.11) we deduce that ¢ has rank n
at zo, i.e. that ¢ is a diffeomorphism of a neighborhood of 2° onto
a neighborhood of x°.

Set F = ¢~ and

¥ ...+ £

-1 _ = d - ] d
(7.13) F*foF (z) = £ T2 o + f2 —a-z—; n 'éz—n

1 3z,

By definition, the mapping ¢ is such that

9 -1 k_:k
Q*(E;T)oqj (x) = (-1) adfT (%)

sO that

3

k-1 K
(7.14) FyadSitoF ' (2) = (-1)
e 9244

for all 0 < k < n-1.
Using (7.13) and (7.14), one obtains, for all 0 < k < n-2

(‘1)k+132a = F*ad§+1ToF-1(z) = F*[f,adg T]oF_1(Z) =
k+2

Kp = ) < 3 3

= (1) f, ==—+...4fF y =—— 1 =
1 821 n §zn sz+1
aF 3f

k+1 1 ) n ]

= (=1) (( Yot oo+ ()5
321419792 8249792,

that, because of the linear independence of 5%—....,52_ , implies
1 n

=0 for i # k+2

From these, one deduces that f1 depends only on z, and that fi’
for 2 <1 < n, is such that Ei - 24 depends only on z - In other

terms, one has
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1 ky(z)

z, +k2(zn)

z

n—1-+kn(zn)

where k1,...,k are suitable functions of znalone, and this shows that

n
the condition (7.2) holds.

Moreover, since

L_.k h =0
adfT
for all 0 < k < n-1, and
L_.n-1_h = (-1
ad T
£
we deduce that
shof ' | _ dheF!
821 an_1
and that
ohoF ' _
3z -
n

This shows that also (7.1) holds. O

The integrability of the p.d.e. (7.11) may be expressed in terms
of a property of the vector fields r,adfr,...,ad2-1r. To this end,one

may use the following consequence of Frobenius Theorem.

(7.15) Theorem. Let TgreesrTy be vector fields on R". Consider the
set of partial differential equations

(7.16) o= 1y (x(2)
1

where x denotes a mapping from an open set of R" to an open set of Rn.

Let (z9,x°) be a point in R™ xR" and suppose T1(xo),...,rn(x°) are

linearly independent. There exist neighborhoods U of %° and V of 2°

and a diffeomorphism x:V = U solving the equation (7.16), and such
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that x(zo) = xo, if and only if

(7.17) [Ti,Tj] =0

for all 1 < i,j < n.

Proof. We limit ourselves to give a scketch of the proof of the suf-
ficiency. To this end, set

a; = splty}
Then, the collection of distributions A1,...,An is independent, spans
the tangent space and is simultaneously integrable because of (7.17)
(see Theorem 1.(3.12)).As a consequence, we may find a coorxdinate chart

(U,£), such that z° = E(xo) and
8, () = spliz) )
i BEi b4
for all x € U. The above may be rewritten as
E4T3 (%) = ¢ () (gp) b (%)
i

for all x € U , Where <y is a smooth real-valued function, and
ci(zo) # 0, The condition (7.17) may be used again to show that ¢y

depends only on gi. Thus, there exist functions z, = ¢i(£i) such that

o _ o
zi = ¢i(zi) and

Swl
—«—agi c;(e;) =1
The composed function
z = 8(x) = {ogrenaroy)ed(x)
. o o
is clearly such that ¢(x) = z  and
2,7, (X) = (5om) o (x)
*i EN ¢

Thus x = ®_1(z) solves the p.d.e. (7.16). 0

Merging Lemma (7.10) with Theorem (7.15) yields the desired re-
sult.
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(7.18) Theorem. The Observer Linearization Problem is solvable if and
only if
(1) din(span{dh(x®),dLch(x*),...,dL] hx*) D= n

(ii) the unique vector field T solution of (7.9) is such that
i I =
(7.19) [adfr,adfT] =0

for all 0 < i,j < n-1,

{7.20) Remark. dsing the Jacobi identity repeatedly, one can easily
show that the condition (7.19) may be replaced by the condition

k
[T,adfT] =0

for all k = 1,3,...,2n-1. 0O

In summary one may proceed as follows in order to obtain an ob-
server with linear (and spectrally assignable) error dynamics. If
condition (i) holds, one finds first the vector field T solving the
equation (7.9). If also condition (ii) holds, one solves the p.d.e.

(7.11) and finds a function ¢, defined in a neighborhood V of zo,

such that @(zo) = x°. Then one sets F = ®_1. Eventually, one computes

the mapping K as

k1(zn) 0

kZ(Zn) -1 z1
K(z,)) = = Fyf.F (2) -

kn(zn) Zn-1

At this point, the observer
£ = (a+kc)E-ky+K (y)

with (A,c) in the form of the right-hand-sides of (7.6) yields the

desired result.



APPENDIX
BACKGROUND MATERIAL IN DIFFERENTIAL GEOMETRY

1. Some facts from advanced calculus

Let A be an open subset of R™ and f: A ®* R a function. The value
of £ at x = (X1""'Xn) is denoted f(x) = f(x1,...,xn). The function f
is said to be a function of class C (or, simply, C* or also, a smooth
function) if its partial derivatives of any order with respect to
Kyreear Xy exist and are continuous. A function f is said to be analytic
(sometimes noted as Cw) if it is C° and for each point x° € A there
exists a neighborhood U of xo, such that the Taylor series expansion

of £ at x° converges to f(x) for all x € U.

Example. A typical example of a function which is ¢” but not analytic
is the function f: R * R defined by

£(x) = 0 if x <0
f(x) = exp(- %) if x>0 O
A mapping F: A - R™ is a collection (f1""’fm) of functions

fi: A 7R, The mapping F is ¢” if all fi s are C .
Let U CR™ and V C R® be open sets. A mapping F: U + V is a dif-
feomorphism if is bijective (i.e. one-to-one and onto) and both F and

F-1 are of class C . The jacobian matrix of F at a point x is the

matrix
af, 3f1
8x1 §xn
oF _
X = . N .
of of
1 - 1
Bx1 an
oF . Lo . . oF
The value of % at a point x = x° is sometimes denoted (§§ o *
X

Theorem. (Inverse function theorem). Let A be an open set of R" and
F: AR a ¢ mapping. If (g%)xo is nonsingular at some x° € A, then
there exists an open neighborhood U of x° in A such that V = F(U) is

open in R™ and the restriction of F to U is a diffeomorphism onto V.
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Theorem. (Rank theorem). Let A CR" and B CR"™ be open sets, F:A > B
ac” mapping. Suppose (%% % has rank k for all x € A. rFor each point
x° € A there exist a neighborhood A, of x°
hood Bo of F(xo) in B, two open sets U €R" and Vv CIRm, and two dif-
feomorphisms G: U = Al and H: B, >V such that HoF.G(U) C V and such

that for all (x1,...,xn) €U

in A and an open neighbor-

(HDFOG) (x1p.--lxn) = (X1I-0-lxk10'oc.,0)

Remark. Let P, denote the mapping Pk:ilRn - R™ defined by

k

Pk(x1,...,xn) = (x1,...,xk,0,...,0)

Then, since H and G are invertible, one may restate the previous ex-

pression as

which holds at all points of A,.

Theorem. (Implicit function theorem). Let A CR™ and B CR" be open
sets. Let F: AxB » R™ be a C mapping. Let (3, ¥)= (g o ee e Xp eV qr e ¥y)
denote a point of AXB., Suppose that for some (xo,yo) € AXB

F(xo,yo) =0

and that the matrix

o9F _ . N .
oy
of 9f
—2 .. —
3Y4 ayn

is nonsingular at (xo,yo). Then, there exists open neighborhoods AO

o]
of x

that

in A and Bo of yo in B and a unique c” mapping G: AO nd Bo such

F(x,G(x)) = 0

S
for all x Ao

Remark. As an application of the implicit function theorem, consider
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the following corollary. Let A be an open set in R, let M be a kxn
matrix whose entries are real-valued C functions defined on A and b

<X
a k-vector whose entries are also real-valued C functions defined on

A. Suppose that for some x° €na

rank M(xo) = k

Then, there exist an open neighborhood U of x° and a ¢~ mapping
G : U~ R" such that

M{x}G(x) = b(x)

for all x € U.
In other words, the eqguation

M(x)y = b(x)

has at least a solution which is a C  function of x in a neighborhood

of x°. If k = n this solution is unigue.

2. Some elementary notions of topology

This section is a review of the most elementary topological con-
cepts that will be encountered later on.
Let S8 be a set, A topological structure, Or a topology, on S is

a collection of subsets of S, called open sets, satisfying the axioms

(i) the union of any number of open sets is open
(ii) the intersection of any finite number of open sets is open

(iii) the set S and the empty set @ are open

A set S with a topology is called a topological space.
A basis for a topology is a collection of open sets, called basic

open sets, with the following properties

(1) S is the union of basic open sets
(ii) a nonempty intersection of two basic open sets is a union of

basic open sets.

A neighborhood of a point p of a topological space is any open
set which contains p.

Let S1 and 52
The mapping F is continuous if the inverse image of every open set of

be topological spaces and F a mapping F: 54 e Sye

52 is an open set of S The mapping F is open if the image of an open

1°
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set of S, is an open set of S,. The mapping F is an homeomorphism if

is a bijection and both continious and open.

If F is an homeomorphism, the inverse mapping F-‘1 is also an
homeomorphism.

Two topological spaces S1,S such that there is an homeomorphism
F:S1 - 82

A subset U of a topological space is said to be closed if its

2
are said to be homeomorphic.

complement U in S is open. It is easy to see that the intersection of
any number of closed sets is closed, the union of any finite number of
closed sets is closed, and both § and § are closed.

If S, is a subset of a topological space S, there is a unique
open set, noted int(so) and called the iZnterior of So,which is con-
tained in Ss and contains any other open set contained in S5,- As a
matter of fact, int(SO) is the union of all open sets containedijiso-
Likewise, there is a unique closed set, noted cl(so) and called the
closure of So’ which contains So and is contained in any other closed
set which contains So’ Actually, cl(SO) is the intersection of all
closed sets which contain So'

A subset of S is said to be demse in S if its closure coincides
with S.

If 5, and s, are topological spaces, then the cartesian product
S1X52 can be given a topology taking as a basis the collection of
all subsets of the form U1XU2 , with U1 a basic open set of S1and U2
a basic open set of S,. This topology on S1><s2 is sometimes called
the product tepology.

If S is a topological space and 5, a subset of S, then S, can
be given a topology taking as open sets the subsets of the form
54 N U, with U any open set in S. This topology on S1 is sometimes
called the subset topology.

Let F: S1 - 52
and let F(5,) denote the image of F. Clearly, F(S1) with the subset

be a continuous mapping of topeclogical spaces,

topology is a topological space . Since F is continuous, the inverse
image of any open set of F(S1) is an open set of S,. However, not all
open sets of s1 are taken onto open sets ofF(S1). In other words, the
mapping F': S4 *’F(S1) defined by F'(p} = F{p) is continucus but not
necessarily open. The set F(S1) can be given another topology, taking
as open sets in F(S1) the images of open sets in 5,. It is easily

seen that this new topology, sometimes called the induced topology,
contains the subset topology (i.e. any set which is open in the subset
topology is open also in the induced topology), and that the mapping

F' is now open. If F is an injection, then S, and F(S1) endowed with

1
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the induced topology are homeomorphic.
A topological space S is said to satisfy the Hausdorff separation
axiom (or, briefly, to be an Hausdorff space) if any two different

points 122 and P, have disjoint neighborhoods.

3. Smooth manifolds

Definition. A locally Euclidean space X of dimension n is a topo-
logical space such that, for each p € X, there exists a homeomorphism

¢ mapping some open neighborhood of p onto an open set in r". O

Definition. A Manifold N of dimension n is a topological space
which is locally Euclidean of dimension n, is Hausdorff and has a

countable basis. U

It is not possible that an open subset U of R” be homeomorphic
to an open subset V of.Rm, if n # m (Brouwer's theorem on invariance
of domain). Therefore, the dimension of a locally Euclidean space is
a well-defined object.

A coordinate chart on a manifold N is a pair (U,¢), where U is an
open set of N and ¢ a homeomorphism of U onto an open set of R" . Some-
times ¢ is represented as a set (¢1,...,¢n), and ¢;: U >R is called
the i~th coordinate function. If p € U, the n-tuple of real numbers
(¢1(P):-~~:¢n(9)) is called the set of local coordinates of p in the
coordinate chart (U,g¢). A coordinate chart (U,¢) is called a cubie
coordinate chart if ¢(U) is an open cube about the origin in rY. If
p € U and ¢(p) = 0, then the coordinate chart is said to be centered
at p.

Let (U,9) and (V,¢) be two coordinate charts on a manifold N,
with U NV # F. Let (¢1,...,¢n) be the set of coordinate functions

associated with the mapping ¢. The homeomorphism
boo T g(U N V) > g(U N V)

taking, for each p € U N VvV, the set of local coordinates
(¢1(p),...,¢n(p)) into the set of local coordinates (¢1(p),...,¢n(p)),
is called a ccordinates transformationon U N VvV, Clearly, g¢o¢ ' gives
the inverse mapping, which expresses (@1(9),...,¢n(p)) in terms of
(64 (P)seeesdby(p)).

Frequently, the set (¢1(p),...,@n(p))is represented as an
n-vector x = col(xy,...,x ), and the set (¢4(p),... ¢, (p)) as an

n-vector y = col(y1,...,yn). Consistently, the coordinate transforma-
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tion ¢°¢_1 can be represented in the form

Y1 Y (&poeoerxy)
y = B = : = y(x)
¥n yn(x1,...,xn)

and the inverse transformation ¢°¢_1 in the form

x = x(y)

Two coordinate charts (U,g) and (V,¢) are Cm-Compatine if, whe-
never U NV ¥ @, the coordinate transformation ¢o¢—1 is a diffeomor-
phism, i.e. if y(x) and x(y) are both c” maps.

A C” gtlas on a manifold N is a collection A = {(Ui,wi)} of

i€r
pairwise Cm—compatible coordinate charts, with the property that
U U, = N. An atlas is complete if not properly contained in any other
ier
atlas.

Definition. A smooth or c” manifold is a manifold equipped with

a complete C atlas. O

Remark. If A is any ¢ atlas on a manifold N, there exists a
unique complete c” atlas A* containing A. The latter is defined as
the set of all coordinate charts (U,y) which are compatible with every
coordinate chart (Ui,wi) of A. This set contains A, is a c” atlas, and

is complete by construction. [

Some elementary examples of smooth manifolds are the ones de-
scribed below.
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Example. Any open set U of R® is a smooth manifold, of dimension n.

For, consider the atlas A consisting of the (single) coordinate chart
. *

(U, identity map on U) and let A denote the unique complete atlas

containing A. In particular, R" is a smooth manifold.

Remark. One may define different complete c” atlases on the same
manifold, as the following example shows. Let N = R, and consider the
coordinate charts (R,¢) and (R,¢), with

p(x) = x
$(x) = x>
Since ¢-1(x) = x and ¢_1(x) = x1/3 ,

¢o¢—1(x) - x1/3

and the two charts are not compatible. Therefore the unique complete

atlas A: which includes (R,¢) and the unique complete atlas AZ which

includes (R,¢) are different. This means that the same manifold N may
be considered as a substrate of two different objects (two smooth

*
manifolds), one arising with the atlas A(p and the other with the atlas
*

A¢ . g

Example. Let U be an open set of B® and let A1""'Am—n be real-valued
C functions defined on U. Let N denote the (closed) subset of U on
which all functions A1""’Am-n vanish, i.e. let

N=1{x€U :Ai(x) =0, 1 <1i < mn}

Suppose the rank of the jacobian matrix

8A1 BA1

3x1 axm

A R
m-n m-n
Bx1 me

is m-n at all x € N. Then N is a smooth manifold of dimension n.

The proof of this essentially depends on the Implicit Function

. o
Theorem, and uses the following arguments, Let x°=(x?,...,xg,%iﬂ,...,%{

be a point of N and assume, without loss of generality, that the matrix



BA1 3A1

axn+1 *m

ax D

m-n m-n

6xn+1 me ‘
is nonsingular at . Then, there exist neighborhoods Ao of (x?,.“,xﬁ)
. n o o, | m-n oo .
in R and Bo of (xn+1,...,xm) in R and a ¢ mapping G: AO - Bo such
that

)‘i(XV.--/ang‘l (X-‘l---rxn)rno-:gm_n(x»ll---:xn)) =0

for all 1 < i < m-n. This makes it possible to describe points of N
around x° as m-tuples (x1,...,xm) such that xn+i'=gi(x1,...,xn) for
1 < i <mn. In this way one can construct a coordinate chart around
each point x° of N and the coordinate charts thus defined form a C
atlas.

A manifold of this type is sometimes called a smooth hypersurface
in R™. aAn important example of hypersurface is the sphere Sm_1,defined
by taking n = m-1 and

2.2 2
A1—x1+x2+...+xm 1

The set of points of R™ on which f1(x) = 0 consists of all the points
on a sphere of radius 1 centered at the origin. Since

(P
Bx1 Tt oAx
never vanishes on this set, the required conditions are satisfied and

the set is a smooth manifold, of dimension m-1.

Egzample. An open subset N' of a smooth manifold N is itself a smooth
manifold. The topology of N' is the subset topology. If (U,¢) is a
coordinate chart of a complete c” atlas of N, such that U N N' # @,
then the pair (U',¢"'} defined as

U' =UNN’

9" restriction of ¢ to U’
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is a coordinate chart of N'. In this way, one may define a complete

Coo atlas of N'. The dimension of N' is the same as that of N.

Example. Let M and N be smooth manifolds, of dimension m and n. Then
the cartesian product MxN is a smooth manifold. The topology of MxN is
the product topology. If (U,¢) and (V,¢) are coordinate charts of M
and N, the pair (UxV, (¢,¢)) is a coordinate chart of MxN. The dimension
of MxN is clearly m+n.

An important example of this type of manifold is the torus

2 = S1XS1, the cartesian product of two circles. O

Let A be a real-valued function defined on a manifold N. If (U,9)
is a coordinate chart on N, the composed function

A= )\otp-1 : ¢(U) R

taking, for each p € U, the set of local coordinates (x1,...,xn) of p
into the real number A(p), is called an expresston of A in local
coordinates. '

In practice, whenever no confusion arises, one often uses the

same symbol X to denote Ao¢_1

, and write A(X1,...,xn) to denote the
value of XA at a point p of local coordinates (x1,...,xn).

If N and M are manifolds, of dimension n and m, F : N > M is a
mapping, (U,¢) a coordinate chart on N and (V,¢) a coordinate chart

on M, the composed mapping
E‘ = (])oFo(‘D_1

is called an expression of F in local coordinates. Note that this
definition make sense only if F(U) NV # @g. If this is the case, then
F is well defined for all n-tuples (x1,...,xn) whose image under
Fog is a point in V.

Here again, one often uses F to denote ¢OF°¢—1, writes Y; =
= fi(x1,...,xn) to denote the value of the i-th coordinate of F(p),

p being a point of local coordinates (x1,...,xn), and also

Yq f1(x1,...,xn}
v = : = M = F(x)
Ym fm(x1,...,xn)

Definition. Let N and M be smooth manifolds. A mapping F: N > M is a
smooth mapping if for each p € N there exists coordinate charts (U,q)
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of N and (V,¢) of M, with p € U and F(p) € V, such that the expression

of P in local coordinates is Cm.

Remark. Note that the property of being smooth is independent of the
choice of the coordinate charts on N and M, Different coordinate charts
(U',¢') and (V',4') are by definition c” compatible with the former and

F' = ¢'oFow'_1 =

¢‘u¢_1u¢oFo(P_1ﬂlP°<P'

- - -1.-1
(§' o 1)oFo(w'ow 1)

being a composition of c” functions is still ¢ . O

Definition. Let N and M be smooth manifolds, both of dimension n.
A mapping F : N > M is a diffeomorphsim if F is bijective and both F
and F-1 are smooth mappings. Two manifolds N and M are diffeomorphic
if there exists a diffeomorphism F : N » M. O

The rank of a mapping F : N > M at a point p € N is the rank of

the jacobian matrix

'c)f1 Bf1
8x1 an
9f 9f
_m __m
L 3x1 e axn

at x = ¢(p). It must be stressed that, although apparently dependent
on the choice of local coordinates, the notion of rank thus defined is
actually coordinate-independent. The reader may easily verify that the
ranks of the jacobian matrices of two different expressions of F in

local coordinates are eqgual.

Theorem, Let N and M be smooth manifolds both of dimension n. A map-
ping F : N > M is a diffeomorphism if and only if F is bijective, F

is smooth and rank(F) = n at all points of N.

Remark. In some cases, the assumption that functions, mappings, etc.
are Cm, may be replaced by the stronger assumption that functions,
mappings,etc. are analytic.In this way one may define the notion of

analytic manifold, analytic mappings of manifolds, and so on. We shall
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make this assumption explicitly whenever needed.

4. Submanjifolds
De finitions. Let F : N > M be a smeooth mapping of manifolds.

(1) F is an <mmersion if rank(F) = dim(N) for all p € N.

(ii) P 1is a univalent immersion if F is an immersion and is injective.

(iii) F is an embedding if F is a univalent immersion and the topology
induced on F(N) by the one of N coincides with the topology of
F(N) as a subset of M, O

Remark. The mapping F, being smooth, is in particular a continuous
mapping of topological spaces. Therefore (see section 2) the topology
induced on F(N) by the one of N may properly contain the topology of
F(N) as a subset of M. This motivates the definition (iii). O

The difference between (i), ({(ii) and (iii) is clarified in the fol-
lowing examples.

Rz. Let t denote a point in N and (x1,x2)

Examples., Let N =R and M
a point in M, The mapping F is defined by

x1(t) = at-sin t
x2(t) = cos t

and, then,

a ~cos t

rank (F) = rank
- sin t
If a = 1 this mapping is not an immersion because rank(F) = 0 at
t = 2k7 (for any integer k).
If 0 < a < 1 the mapping is an immersion, because rank(F) = 1 for
all t, but not a univalent immersion, because F(t1) = F(t2) for all
t1,t2 such that t1 = 2km-T, t2 = 2k7+1 and sin 1 = arT.

As a second example we consider the so-called "figure-eight".Let
N be the open interval (0,27) of the real line and M =:R2. Let t
denote a point in N and (x1,x2) a point in M. The mapping F is defined
by
x1(t) = sin 2t

x2(t) = sin t
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This mapping is an immersion because

dx1 2 cos 2t
dt
rank (F) = rank
dx
2
gt cos t
for all 0 < t < 27w, It is also univalent because

F(ty) = Flty) =ty = t,

However, the mapping is not an embedding. For, consider the image of F.
The mapping F takes the open set
(r-g,m+e) of N onto a subset U' of F(N)
X2 which is open by definition in the to-
pology induced by the one of N, but is
not an open set in the topolegy of F(N)

as a subset of M. This is because U’

cannot be seen as the intersection of
1 F(N) with an open set of R%.
As a third example one may consider

the mapping F : R ”1R3 given by

x1(t) = cos 2Tt
xz(t) = gin 2ut
x3(t) =t

whose image is an "helix" winding on an infinite cylinder whose axis



266

is the X axis. The reader may easily check that is an embedding. O
The following theorem shows that the every immersion locally is an
embedding.

Theorem. Let F : N > M be an immersion. For each p € N there exists a
neighborhood U of p with the property that the restriction of F to U
is an embedding.

Example. Consider again the "figure eight" discussed above. If U is
any interval of the type (8,2n-8), then the critical situation we had
before disappears and the image U' of (w-g,T+e) is now open also in

the topology of F(N) as a subset of Rz. a

The notions of univalent immersion and of embedding are used in

the following way.

Definition. The image F(N) of a univalent immersion is called an im-
mersed submanifold of M. The image F(N) of an embedding is called an
embedded submanifold of M.

Remark. Conversely, one may say that a subset M' of M is an immersed
(respectively, embedded) submanifold of M if there is another manifold
N and a univalent immersion (respectively, embedding) F: N > M such
that FP(N) = M', O

The use of the word "submanifold" in the above definition clearly
indicates the possibility of giving F(N) the structure of a smooth ma-
nifold, and this may actually be done in the following way. Let M'=F(N)
and F': N > M' denote the mapping defined by

F'(p) = F(p)
for all p € N. Clearly, F' is a bijection. If the topology of M' is
the one induced by that of N (i.e. open sets of M' are the images
under F' of open sets of N}, FP' is a homeomorphism. Consequently, any
coordinate chart (U,¢) of N induces a coordinate chart (V,$) of M',
defined as

V=F'(U) + ¢ = ga(F') "

Cm—compatible charts of N induce Cw—compatible charts of M' and so
complete c”-atlases induce complete c”-atlases. This gives M' the
structure of a smooth manifold.

The smooth manifold M' thus defined is diffeomorphic to the
smooth manifold N. A diffeomorphism between M' and N is indeed P’
itself, which is bijective, smooth, and has rank equal to the dimension
of N at each p € N.
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Embedded submanifolds can also be characterized in a different
way, based on the following considerations.

Let M be a smooth manifold of dimension m and (U,¢) a cubic
coordinate chart. Let n be an integer, 0 < n < m, and p a point of U.
The subset of U

Sp = {q € u: x;(q) = x;(p), i = n+l,...,m}
is called an n-dimensional slice of U passing through p. In other
words a slice of U is the locus of all points of U for which some

coordinates (e.g. the last m-n) are constant.

Theorem. Let M be a smooth manifold of dimension m. A subset M' of M
is an embedded submanifold of dimension n < m if and only if for each
p € M' there exists a cubic coordinate chart (U,¢) of M, with p € U,
such that U N M' coincides with an n-dimensional slice of U passing

through p. O

This theorem provides a more "intrinsic" characterization of the
notion of an embedded submanifold (of a manifold M), directly related
to the existence of special coordinate charts (of M). Note that, if
(U,9) is a coordinate chart of M such that U O M' is an n-dimensional

slice of U, the pair (U',¢') defined as

u' =unnM
' (p) = (x1(p),...,xn(p))

is a coordinate chart of M', This is illustrated in the following

figure (where M =:R3 and n = 2).

Remark. Note that an open
subset M' of M is indeed an
embedded submanifold of M,
of the same dimension m.
Thus, a submanifold M' of

M may be a proper subset of
M, although being a manifold

of the same dimension.

Remark. It can be proven that any smooth hypersurface in R® is an
embedded submanifold of R™. Moreover it has also been shown that if N
is an n-dimensional smooth manifold, there exist an integer m > n and

a mapping F : N »R" which is an embedding (Whitney's embedding theo-
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rem)., In other words, any manifold is diffeomorphic to an embedded

submanifold of R", for a suitably large m.
Remark. Let V be an n-dimensional subspace of r". Any subset of " of

the form

°+V = {x ER™: x = x'+x°%; x' € V},

where x° is some fixed point of Rm, is indeed a smooth hypersurface

and so an embedded submanifold of Rm, of dimension n. This is some-

times called a flat submanifold of R".

5. Tangent vectors

Let N be a smooth manifold of dimension n. A real-valued func-
tion A is said to be smooth in a neighborhood of p, if the domain of
A includes an open set U of N containing p and the restriction of A
to U is a smooth function. The set of all smooth functions in a neigh-—
borhood of p is denoted Cm(p). Note that Cm(p) forms a vector space
over the field R. For, if X,y are functions in Cm(p) and a,b are real

numbers, the function ai+by defined as
(aA+by) (@) = al(g)+by(qg)
for all g in a neighborhood of p, is again a function in Cm(p). Note

also that two functions A,y € Cm(p) may be multiplied to give another

element of Cw(p), written Ay and defined as
(Av) (@) = raq) v

for all g in a neighborhood of p.

Definition. A tangent vector v at p is a map v: Cw(p) —* R with the

following properties:

(i) (linearity) : v(ai+by) = av(A)+bv(y) for all A,y € Cw(p) and
a,b €R
(ii) (Leibmitz rule): v()y) = y(p)v(A)+X(p)Vv(y) for all i,y € Cw(p).

Definition. Let N be a smooth manifold. The tangent space to N at p,

written TpN, is the set of all tangent vectors at p.

Remark. A map which satisfies the properties (i) and (ii) is also

called a derivation.
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Remark. The set T N forms a vector space over the field R under the
rules of scalar multiplication and addition defined in the following
way. If v1,v2 are tangent vectors and CqC, real numbers, c1v1+c2v2
is a new tangent vector which takes the function A € Cw{p) inte the

real number
(c1v1+02v2)(A) = c1v1(A) + czvz(x)

Remark. We shall see later on that, if the manifold N is a smooth
hypersurface in RW, the object previously defined may be naturally
identified with the intuitive notion of "tangent hyperplane" at a

point. O

Let (U,gy) be a (fixed) coordinate chart around p. With this

coordinate chart one may associate n tangent vectors at p, denoted

3
(8w1)p ! ""(%_n)p

defined in the following way

5 (Aag™]

L) —
(W)p(x) = Oxy ) x=0 (p)

1
for 1 < i < n. The right-hand-side is the value taken at x =(x1,.“,xn)=
= 9(p) Of the partial derivative of the function Aeo ' (xy,...,x ) with
respect to x, (recall that the function A°¢—1 is an expression of A

in local coordinates),

Theorem. Let N be a smooth manifold of dimension n. Let p be any point
of N. The tangent space TPN to N at p is an n-dimensional vector space
over the field R. If {U,y} is a coordinate chart around p, then the

] 3 )
tangent vectors (x— vees(m—)  form a basis of T_N. [

P p
natural basis induced by the coordinate chart (U,gq).

The basis {(5%—) ""'(E%—) } of T N is sometimes called the
1 n

Let v be a tangent vector at p. From the above theorem it is seen
that

where Vieres-sv, are real numbers. One may compute the vis explicitly

n
in the following way. Let ?s be the i-th coordinate function. Clearly
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. € ¢”(p), and then

-1
( ? 3 ? 3(¢io¢ )
v(g.) = Vile) (0.) =) v.(—F0—)__ = V.
SR Bwj p it 503 ij x=¢ (p) i
because wi°¢_1(x1,...,xn) = X;. Thus the real number vy coincides with

the value of v at 95 the i~th coordinate function.
A change of coordinates around p clearly induces a change of bastis
in TpN. The computations involved are the following ones. Let (U,9)

and (V,¢) be coordinate charts around p. Let {(5%_)p""'(5%_)p} denote
1 n

the natural basis of TpN induced by the coordinate chart (V,¢). Then

2y oy = (20N _ 2060 oo™
3P y;  y=e(p) Yy y=¢(p)
n 3 ¢-B
= ) 5 —
j21 9% x=¢{(p) dy; 'y=¢(p)
(2 >(Mj°¢—1)
= ) (}) Yo
j=1 094 P oY 3 y=¢(p)
In other words
-1
n 8(<p.o¢ )
5oty = L (=) (o) )
i P 321 Yy Y P ‘Pj P
Note that the quantity
~1
3(¢jo¢ )
Byi

is the element on the j~th row and i-th column of the jacobian matrix

of the coordinate transformation

x = x{y)

So the elements of the columns of the jacobian matrix of x = x(y)
are the coefficients which express the vectors of the "new" basis as

linear combinations of the vectors of the "old" basis.
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If v is a tangent vector, and (v1,...,vn),(w1,...,wn) the n-tuples
of real numbers which express v in the form

I v, s T, (g
v = v, (v = w, { )
i=1 1904 °P a2 19%P
then
Y 3x1 3x1 .
1 ¥y ayn 1

<
.
g

b

Definition, Let N and M be smooth manifolds., Let F: N > M be a smooth
mapping. The differential of F at p € N is the map

H - M
Fx TPN TF(P)

defined as follows. For v € TpN and A € Cm(F(p)),
(Fy (v)) (X)) = v(AoF)

Remark. F, is a map of the tangent space of N at a point p into the
tangent space of M at the point F(p). If v € TPN' the value F,(v) of

Fy at v is a tangent vector in TF( )M So one has to express the way

in which F,(v) maps the set c” (F(p)), of all functions which are smooth
a neighborhood of F(p), into R. This is actually what the definition
specifies. Note that there is one of such maps for eack point p of N.

Theorem. The differential F, is a linear map. O

Since F, is a linear map, given a basis for T_N and a basis for
TF(p)M one may wish to find its matrix representation. Let (U,¢9) be a
coordinate chart around p, (V,§) a coordinate chart around g = F(p),

) 3 d
{(3m1)p""'(3w } the natural basis of TpN and {(a¢ q’ .,(3¢m)q}
the natural basis of Tqbi . In order to find a matrix representation
of Fy , one has simply to see how F, maps (3%_)p for each 1 < i < n.

i

-1
(Fylgom) ) () = (goo) ey = (AAgfee )y
1 1 1
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-1
(20087 ouaFag T T 2Tl ClbyeFee )
9% x=o(p) ~ 424 dy5 y=¢(a) Oxy x=9(p)
-1
m 3 ()\ (a(¢joFo® )
= j£1((§zg)q }) ——-—ggz———)x=m(p)
In other words
-1
3 B If‘l (3(<|;.qu<11 )) ( 3 )
F*(a(pi)P B 3:1 BXi X=‘P(P) 3(];] q

Now, recall that ¢0Fo@—1 is an expression of F in local coordinates.
Then, the quantity
B(U,-j oFqu_1)
9xX.
i

is the element on the j~th row and i-th column of the jacobian matrix

of the mapping expressing F in local coordinates. Using again

F1(x1,...,xn)
F(x) = F(x1,...,xn) = E

Fm(x1,...,xn)

to denote ¢an¢—1, one has simply

3 ? Iy 5
Fele—) = (z==1 { }
3¢;°P 321 9Ky 5¢j q
If v € TpN and w = F,(v) € TF(p)M are expressed as
1 1wy 5
v= ) w = ()
121 Vi a¢ p 21179 °g
then 3F1 3F1
Wi 3%, = || V1
, SFm BFm Y
m 8x1 axn n
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Remagrk. The matrix representation of F, is exactly the jacobian of its
expression in local coordinates. From this, it is seen that the rank
of a mapping coincides with the rank of the corresponding differential.

Remark (Chain rule). It is easily seen that, if F and G are smooth

mappings, then
(GOF)* = G*F*

The following examples may clarify the notion of tangent space

and the one of differential.

Example. The tangent vectors on R". Let R" be equipped with the "natur-
al” complete atlas already considered in previous examples (i.e. the
one including the chart GRn, identity map on R")). Then, if v is a

tangent vector at a point x and X a smooth function

v(A) =

i o133

: )

v () (A) = (55, Vs

1=q 1% X i=

So, v(X) is just the value of the derivative of A along the direction
of the vector

col(v1,...,vn)

at the point x.

Remark. Let F:N > M be a univalent immersion. Let n=dim(N) and
m = dim(M). By definition, F, has rank n at each point, Therefore the

image F*(TPN) of F, , at each point p, is a subspace of T M isomor-

F(p)
phic to TpN. The subspace F*(TpN) can actually be Zdentified with the
tangent space at F(p) to the submanifold M' = F(N). In order to un-

derstand this point, let F' denote the function F': N = M' defined as
F'(p) = F(p)

for all p € N. F' is a diffeomorphism and so F; is an isomorphism.
Therefore the image F;(TPN) is exactly the tangent space at F'({p) to
M'., Any tangent vector in TF(p)M' is the image F,(v) of a (unique)
vector v € TpN and can be identified with the (unique) vector F,(v)
of F*(TPN).

In other words, the tangent space at p to a submanifold M' of M
can be identified with a subspace of the tangent space at p to M.

The same considerations can be repeated in local coordinates. It
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is known that an immersion is locally an embedding. Therefore, around
every point p € M' it is possible to find a coordinate chart (U,¢) of
M, with the property that the pair (U',p') defined by

Ut = {quHPi(q) =(Pi(p): i=n+1,...,m}
¢ = (@1,...,wn)

is a coordinate chart of M'. According to this choice, the tangent
space to M' at p is identified with the n-dimensional subspace of

) P
T M spanned by the tangent vector ) yeees{=—)_}. O
pt sP Y g s {(3(131)p '(a‘Pn)P

Example., The tangent vector to a smooth curve in R". We define first
the notion of a smooth curve in R, Let N = (t1,t2) be an open interval
on the real line. A smooth curve in R" is the image of a univalent
immersion o : N ~ R". Thus, a smooth curve is an immersed submanifold
of R". In N and R" one may choose natural local coordinates as usual
and, letting t denote an element of N, express ¢ by means of an n-tuple
of scalar-valued functions Oqr-vee0p of t.

A smooth curve is a 1-dimensional immersed submanifold of R™. At
a point o(to), the tangent space to the curve is a 1-dimensional vector
space which, as we have 'seen, may be identified with a subspace of the
tangent space to R™ at this point. A basis of the tangent space to the

curve at o(to) is given by the image under o, of (é%)t , a tangent
o)
vector at tO to N. This image is computed as follows

do,
R S

dt Bxi
(o]

d -

Oy ('d—t)to = )

'M:S
-

o(to)

Thinking of t € N as time and o(t) as a point moving in R, we may in-
terpret the vector

dc1

don
col ({——) v eeor (=)
dt "t rhdat to

)

as the velocity along the curve, evaluated at the point O(to). So, we
have that the velocity vector at a point of the curve spans the tangent
space to the curve at this point. From this point of view, we see that
the notion of tangent space to a 1-dimensional manifold may be identi-
fied with the geometric notion of tangent line to a curve in a Euclidean
space.

Example. Let h be a smooth function h ﬁRz >R and F :Rz *ﬁR3 a mapping

defined by
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Fxq,%5) = (x4, %5, 0{x,%5))

This mapping is an embedding and therefore FGR2), a surface in R?, is
an embedded submanifold of R>
tangent space,identified as a subspace of the tangent space to R3 at

. At each point F(x) of this surface, the

this point, may be computed as

span{F*(E%;}x ' F*(E%;)x}
Now,
3 OF
3 = LA = (2 sh y . 93
F*(EET)X _i£1(§§;)(3xi)F(x) (8x1)F(x)-+(8x1)(3x3)F(x)
3 3 3h 3
F+lay)x = g v B (g p s

This tangent space to FORZ) at some point (x?,xg,h(x?,xgj) is the set
of tangent vectors whose expressions in local coordinates are of the

form

3h dh
(F—)a+ ()8
3x1 3x2

dh ah = «© and
5 Ix1 ° %2 17 %
X, = X,. From this point of view, we see that the notion of tangent

o, being real numbers and being evaluated at x
space to a 2-dimensional manifold may be identified with the geometric
notion of tangent plane to a surface in a Euclidean space. O

One may define objects dual to the ones considered so far.

Definition. Let N be a smooth manifold. The cotangent space to N at p,
written T;N, is the dual space of TpN. Elements of the cotagent

space are called tangent covectors.

Remark. Recall that a dual space V* of a vector space V is the space
of all linear functions from V to R. If v* € V*, then v*: V >R and
the value of v* at v € V is written as (v*,v ). V* forms a vector space
over the field R, with rules of scalar multiplication and addition

* *
which define c1v1+c2V2 in the following terms
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* * * *
(c1v1+c2V2,v )= cy <v1 SV c, (v2 SV

% % *
If €qreaerey is a basis of V , the unique basis e1,...,en of V which

satisfies

U
o

(e:,e.)

ie called a dual basis.
If V and W are vector spaces, F : V > W a linear mapping and w €W,
* * *
v € V, the mapping F : W >V defined by

(P '), v = (w L F v )

is called the dual mapping (of F). O
Let X be a smooth function A : N > R. There is a natural way of
*
identifying the differential A, of X at p with an element of TPN' For,

observe that A, is a linear mapping

Ay s T N—=>T
**'p Ap)

and that T R is isomorphic to R, The natural isomorphism between R

A{p)
and TA( ﬂR is the one in which the element c¢ of R corresponds to the

tangent vector c(=- If c(dt)t is the value at v of the differential

dt)t
Ay at p, then ¢ must depend linearly on v, i.e. there must exist a co-

vector, denoted (dA)p , such that

_ d
e () = (a0 v ) (5,
Given a basis of TPN' the covector (d)\)p (like any other covector),

may be represented in matrix form. Let {(E%T)P'.'.'(E%;)P} be the

natural basis of TpN induced by the coordinate chart (U,¢). The image

under A, of a vector

2 P
= v, (=
v .£1 1(3¢i)p
is the vector
n
oA d
(V) = C) 5 vy (gEde

i=1 i

and this shows that
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V1

A A .

(@) _,vir=( ==— ... ypo.
p ax1 §xn .

v
n

Remark. Note also that the value at A of a tangent vector v is equal to

the value at v of the tangent covector (dA)p , 1l.e.

v(A) = <(d)\)p,v ) a

The dual basis of {(3%—)

p,...,(g%—)p} is computed as follows.
1 n

Prom the equality v(A) = ((dk)p,v > we deduce that
Blp o0 ) 0x
J _ 3 _ i° _ i _
((dwi)p' (g_wj)p ) = (B_Q';)p(wl) = _—3Xj = 'g-x—J' = si]

so that the desired dual basis is exactly provided by the set of tan-
gent covectors {(d¢1)p,...,(d¢n)p}.

%
If v is any tangent covector, expressed as

* nooy
v = v, (do. ’
121 i (3950

* ®
the real numbers Vires.,v, are such that

* _ * )
v, = {v '(Eaz)p)

Note also that, if v is any tangent vector expressed as

the real numbers Vir-s.sv, are such that

Vi =< (dwi)p:V ) .

6. Vector fields

Definition. Let N be a smooth manifold, of dimension n. A vector field
f on N is a mapping assigning to each point p € N a tangent vector £ (p)

in TpN. A vector field f is smooth if for each p € N there exists a
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coordinate chart (U,¢) about p and n real-valued smooth functions
f1"“’fn defined on U, such that, for all q € U,

° p
£lg) = £.(q)(z—)
i=1 37 90y
Remark. Because of Cm—compatibility of coordinate charts, given any

coordinate chart (V,¢) about p other than (U,¢), one may £find a neigh-
borhood V' C v of p and n real-valued smooth functions fi,...,fﬁ de-

fined on V', such that, for all g € V'.

n
f(g) = £1fi(q)(a¢_

Thus, the notion of smooth vector field is independent of the coord-

inates used.

Remark. If (U,¢) is a coordinate chart of N, on the submanifold U of
N one may define a special set of smooth vector fields, denoted
5%—7...,3%—, in the following way

1 n

9 )
(=——): pFH ()
3y d9,°p
1t must be stressed, however,that such a set of vector fields

is an object defined only on U. O

For any fixed coordinate chart (U,¢), the set of tangent vectors

I

2 2
Toqq’ """ Te

there is a unique set of smooth functions {f1""’fn} that makes it

{( )q} is a basis of TqN at each g € U, and therefore

possible to express the value of a vector field f at g in the form

o E
flg) = i£1fi(q)(§$z)q

Expressing each fi in local coordinates, as

s~ -1

fi = fiom

provides an expression in local coordinates of the vector field £
itself, So, if p is a point of coordinates (X1""’xn) in the chart
(U,9),f(p) is a tangent vector of coefficients (f1(x1,...,xn),...

...,%n(x1,...,x1)) in the natural basis {(ggq)p""'(g%;)p} Of TpN
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induced by (U,9). Most of the times, whenever possible, the symbol fi

1

replaces fiom‘ and the expression of £ in local coordinates is given

a form of an n-vector f = col(f1,...,fn).

Remark. Let f be a smooth vector field, (U,¢) and (V,¢) two coordinate
charts about p and f£(x) = f(x1....,xn), £'(y) =f'(y1,...,yn) the cor-
responding expressions of £ in local coordinates. Then

' = (¥
£' (y) (axf(X))x=x(y) a
The notion of vector field makes it possible to introduce the
concept of a differential equation on a manifold N. For, let f be a
smooth vector field., A smooth curve 0:(t1,t2) > N is an zntegral curve
of £ if

Oulap)y = £(0(8))

for all t € (t1,t2). The left-hand-side is a tangent vector to the sub-
manifold o((t1,t2)) at the point o(t); the right-hand-side is a tangent
vector to N at o(t). As usual, we identify the tangent space to a sub-
manifold of N at a point with a subspace of the tangent space to N at
this point.

In local coordinates, o(t) is expressed as an n-tuple

(01(t),...,on(t)), and f(o(t)) as

£lo(t)) = f.(01(t),...,0n(t))(§%—

e~

)
j=1 1 i o(e)
Moreover
G*(é%)t = ? i;é(éé—)o(t)
i=1 3

Therefore, the expression of ¢ in local coordinates is such that

do.
i

7‘? = fl(01 (t)l--‘lcn(t))

for all 1 < 1 < n. This shows that the notion of integral curve of a
vector field corresponds to the notion of solution of a get of n
ordinary differential eguations of the first order.

For this reason, one often uses the notation
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5 - a
§(t) = 0, (5P ¢

to indicate the image of ( under the differential o, at t.

JL)
dt’t

The following theorem contains all relevant informations about
the properties of integral curves of vector fields.

Theorem. Let f be a smooth vector field on a manifold N. For each
p € N, there exist an open interval - depending on p and written Ip -
of R such that 0 € Ip and a smooth mapping

$:W TN
defined on the subset W of RxN
w={(t,p) ERxN: t € Ip}

with the following properties:

(1) ¢(0,p) = p,
(ii) for each p the mapping UP:Ip — N defined by

op(t) = ¢(t,p)

is an integral curve of f,

(i1ii) 1if :(t1,t2) - N is another integral curve of f satisfying the
condition p(0) = p, then (t1,t2) C Ip and the restriction of ¢
to (t1,t2) coincides with yu,

P

(iv) ¢@(s,o(t,p)) = ®(s+t,p) whenever both sides are defined,
(v) whenever ¢(t,p) is defined, there exists an open neighborhood U
of p such that the mapping @t: U = N defined by

o (@) = 0k,

is a diffeomorphism onto its image, and

Remark., Properties (i) and (ii) say that dp is an integral curve of £
passing through p at t = 0. Property (iii) says that this curve is
unique and that the domain Ip on which op defined is maximal. Property
(iv) and (v) say that the family of mappings {¢t} is a one-parameter
(namely, the parameter t) group of local diffeomorphisms, under the
operation of composition. O
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Example. Let N = R and use x to denote a point in N, Consider the vector
field

2

£(x) = (x2+1)(ax N

An integral curve g of f must be such that

sie) = (G0 52, = (62 e+ (52

sO

do _ 2
g =9 1

A solution of this equation has the form
o(t) = tgltrtg ' (x°))

with x° being indeed the value of o at t = 0. Clearly, for each x° the
solution is defined for
s m

-1,.0
-5 < t+tg (x7) < 3

Thus W is the set
W= Lt it € (- TotgT (x), T-tgT (x")))

which has the form indicated below. O
The mapping ¢ is called the flow of
f. Often, for practical purposes, the
notation ®t replaces ¢, with the under-
standing that t is a variable. To stress
the dependence on £, sometimes @t is
written as @i.
Definition. A vector field f is complete
if, for all p € N, the interval Ip
ceoincides with R, i.e. = in other
words —if the flow ¢ of £ is defined on

the whole cartesian product RxN. O

The integral curves of a complete
vector field are thus defined, whatever

the initial point p is, for all t € R.
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Definition. Let £ be a smooth vector field on N and A a smooth real-
valued function on N. The Lie derivative of X along £ is a function
N 2> R, written Lfk and defined by

(LA (P) = (£(p)) ()

(i.e. (LfA)(p) is the value at A of the tangent vector f£(p) at p). O

The function LfA is a smooth function. In local coordinates, fo

is represented by

£
o 3 .
(LfA)(X1,...,xn) = (3;; R ) :
n
£
n

If f1,f2 are vector fields and A a real-valued function, we de-
note
(L. A)
1 5 1 £

The set of all smooth vector fields on a manifold N is denoted by
the symbol V{(N). This set is a vector space over R since if f, g are
vector fields and a,b are real numbers, their linear combination af+bg

is a vector field defined by
(af+bg) (p) = af(p)+bg(p)

If a,b are smooth real-valued functions on N, one may still define a

linear combination af+bg by
{af+bg) (p) = a(p)f(p)+b(p)f(p)

and this gives V(N) the structure of a module over the ring, denoted
Cm(N), of all smooth real-valued functions defined on N. The set V(N)

can be given,however,a more interesting algebraic structure in this way.

Definition. A vector space V over R is a Lie algebra if in addition to
its vector space structure it is possible to define a binary operation
VxV =+ vV, called a product and written [+,+], which has the following

properties

(i) it is skew commutative, i.e.

[VrW] = _[ WIV]
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(ii) 1t 1s bilinear over R, i.e.
[a1v1+a2v2,w] = a1[v1.w]+a2[V2,w]

(where ay,0, are real numbers)

(iii) it satisfies the so called Jacobi <dentity, i.e.
[v,[w,z]1+ [w,l2z,vl]+ [2,[v,w]l] = 0. 0O

The set V(N) forms a Lie algebra with the wvector space structure
already discussed and a product [+,+] defined in the following way.
If £ and g are vector fields, [ f,g]l is a new vector field whose value

at p, a tangent vector in TpN, maps Cw(p) into R according to the rule
([£,91 (P)) ) = (LeL ) ()= (LLe)) (p)

In other words, [f,q] (p) takes A into the real number (LngX)(p)—
+(LgLfk)(p). Note that one may write more simply

L[ £,9] A= Lng)\—LgLf)\

Theorem. V(M) with the product [f,g] thus defined is a Lie algebra. O

The product [ f,g] is called the Lie bracket of the two vector
fields f and g.

Remark. If £,g9 are smooth vector fields and A,y smooth real-valued

functions, then
[xg,vgl = Aoyl £,9] + A+Lgyeg - Y L A £

Note that A,Y,Lfy,LgA are elements of Cm(N), and g,f,[ £,9] elements of
vn). O

The reader may easily find that the expression of [ £f,g] in local

coordinates is given by the h-vector

dg 3g1 of 5f
ax ttt3x f1 1 1 g

1 n 52; M rra 1

e - c e n M L P F 4
3q 3 S E 5 T o3x ax 9
o gy n °f
8x1 an Th 5x1 . axn 95
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If, in particular, N = R"® and
f(x) = Ax , g(x) = BX
then
[£,9] (x) = (BA-AB)x

The matrix [A,B] = (BA-AB) is called the commutator of A,B.

The importance of the notion of Lie bracket of vector fields is
very much related to its applications in the study of nonlinear con-
trol systems. For the moment, we give hereafter two interesting pro-

perties.

Theorem. Let N' be an embedded submanifold of N. Let U' be an open
set of N' and f,g two smooth vector fields of N such that for all
p €U

f(p) € TpN' and g(p) € TpN'.

Then also

E ]
[£.,9] (p) TpN

for all p € U', O

In other words, the Lie bracket of two vector fields "tangent"

to a fixed submanifold is still tangent to that submanifold.

Theorem, Let f,g be two smooth vector fields on N. Let @i denote the
flow of f£f. For each p € N.

Lin Hef),geiE)-g@)] = [£g] (p)

Remark. The first term of the expression under bracket is a tangent
vector at p, obtained in the following way. With p, the mapping ¢£
(always defined for sufficiently small t) associates a point q=®£(p).
The vector field g is evaluated at g, and the value g(gq) € TqN is
taken back to TPN via the differential (@ft)* (which maps the tangent
space at g onto the tangent space at p=®ft(q)). Thus, the mapping
pr (@ft)*g(¢£(p)) defines a vector field, on the domain of @i.
Remark. Let f be a smooth vector field on N, g a smooth vector field

on M and F: N > M a smooth function. The vector fields f,g are said to
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be F-related if
F*f = goF

Note that the vector field (@f *g(Qi(p)) considered in the above

£ ¢
Remark is @_t—related to g¢.
Remark, If f is F-related to f and g is F-related to g, then [f,q] is

F-related to [ £,q].

Definition. Let f,g be two smooth vector fields on N. The Lie derivative

of g along £ is a vector field on N, written Leg and defined by

£

1
e

el el -g@1. O

(Lgg) (P) = lim

t 70

Thus, by definition, the Lie derivative Lfg of g along £ coinci-

des with the Lie bracket [ £,g]l. There is also a third notation often
used, which expreses the Lie derivative of g along f as

Both notations may be used recurrently, taking

0o _ k k-1
Leg =g and Lgg = Lf(Lf g)

or

1

0o _ k_ _ k-
ad_g = g and adfg = adf(adf q)

£
Remark. The Lie derivative of g along £ may be interpreted as the
value at t = 0 of the derivative with respect to t of a function de-
fined as

£ £
Wit) = (22,),9(2 (p))

Moreover, it is easily seen that for any k > 0

akw(t) _ ok _ Lk
_dtk Yiog = Lyg(p) = adgg(p)

If W(t) is analytic in a neighborhood of t = 0, then W(t) can be ex-
panded in the form
[>e]

k

k t
W(t) = ) ad.g(p)y—
wio CE k1
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known as Campell-Baker-Hausdorff formula, O

One may define an object which dualizes the notion of a vector
field.

Definition. Let N be a smooth manifold of dimension n. A covector field
(also called one-form) w on N is a mapping assigning to each point

p € N a tangent covector w(p) in T;N. A covector field £ is smooth if
for each p € N there exists a coordinate chart (U,¢) about p and n
real-valued smooth functions Wapowary defined on U, such that, for

all g €U

wlg) = Z w, (q) (dey ) a
l—

The notion of smooth covector field is clearly independent of the
coordinate used. The expression of a covector field in local coord-
inates is often given the form of a row vector w = row(w1,...,mn) in
which the wis are real-valued functions of XqreoorXy

If w is a covector field and £ is a vector field, (w,f ) denotes

the smooth real-valued function defined by
{w, £ (p) = (wip),£(p)

With any smooth function A:N = R one may associate a covector
field by taking at each p the cotangent vector (dl)p. The covector
field thus defined is usually still represented by the symbol di.

However, the converse is not always true.

Definition. A covector field w is ezact if there exists a smooth real

valued function A:N = 1R such that

w = dA a

The set of all smooth covector fields on a manifold N is denoted
by the symbol V' (N).

One may also define the notion of Lie derivative of a covector
field w along a vector field f. In order to do this, one has to in-
troduce first the notion of a covector field @f-related to a given

covector field w. Let p be a point of the domaln of @t Recall that

* *
(@t)* :T N T o N is a linear mapping and let (@t)*:T g NZTN
¢1(p) @t(p)
denote the dual mapping. With w and ¢f we associate a new covector

t
field, whose value at a point p in the domain of @i is defined by
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*
(¢5) w (e} (p))

The covector field thus defined is said to be ¢£—related to w.

Theorem. Let £ be a smooth vector field and w a smooth covector field

on N. For each p € N the limit
. 1 £, * £
lim E[(Qt) w (o, (p))-wip)]
t=>0
exists,

Definition. The [Ze derivative of w along f is a covector field on N,

written Lgt, whose value at p is set equal to the value of the limit

. 1 £, * f
i%?o E[(®t) w(®t(p))—w(P)] a

The expression of L.w in local coordinates is given by the (row)

n-vector
s ‘) 8w1 duw " o) 3f1 Bf1
1°*-'n 9% Tt 3x 1°°*%n Ix, °°° x
1 1 1 n
T
3w T, df
. .e N + . e . 45;—f) +w§§
3w1 Swn Bfn Bfn
N Exn 3x1 axn ]

where the superscript "T" denotes "transpose".

Remark, The three types of Lie derivatives LfA,Lfg,wa defined above
are related by the following Leibnitz-type relation

Lf(w,g } = (wa,g )+ <w,Lfg)
Remark. If w is an exact covector field, i.e. if w = d\ for some A,
(dr,f? = fo

and
LfdA = d(LfA)
Remark. If w is a covector field, f a vector field, A and y real-valued

functions, then
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LygYw = AsyeLew + deLoysw +y {w,£ 2dx
Note that A,Y:Lfy,(w,f ? are elements of Cm(N) and w,L_ w,d) elements

* £
ocf V (N).



BIBLIOGRAPHICAL NOTES

Chapter I

The definition of distribution used here is taken from Sussmann
(1973); in most of the references in Differential Geometry quoted in
the Appendix, the term "distribution" without any further specifica-
tion is used to denote what we mean here for "nonsingular distribu-
tion". Different proofs of Frobenius' Theorem are available. The one
used here is mutuated from Lobry (1970) and Sussmann (1973). Theorems
on simultaneous integrability of distributions are due to Jakubczyk-
Respondek (1980) and Respondek (1982).

The importance in control theory of the notion of invariance of
a distribution under a vector field was pointed out independently by
Hirschorn (1981) and Isidori et al. (1981a). A more general notion of
invariance, under a group of local diffeomorphisms, was given by
Sussmann (1973). The local decompositions described in section 5 are
consequences of ideas of Krener (1977).

Theorem (6.15) and (6.20) were first proved by Sussmann-Jurdjevic
(1972) . The proof described here is due to Krener (1974). An earlier
version of Theorem (6.15), dealing with "reachability" along trajec-
tories traversed in either time direction, was given by Chow (1939).
Controllability of systems evolving on Lie groups was studied by
Brockett (1972a). Theorem (7.8), although in a slightly different
version, is due to Hermann-Krener (1977).

Chapter IT

The proof of Theorems (1.4) and (1.7) may be found in Sussmann
(1973). An independent proof of Theorem (1.11) was given earlier by
Hermann (1962) and an independent proof of Corollary (1.13) by Nagano
(1966) .

The relevance of the so-called "control Lie algebra" in the ana-
lysis of global reachability derives from the work of Chow (1939) and
was subsequently elucidated by Lobry (1970), Haynes-Hermes (1970),
Elliott (1971) and Sussmann-Jurdjevic (1972}, among the others. The
properties of the "observation space" were studied by Hermann-Krener
(1977), and, in the case of discrete-time systems, by Sontag (1979).

Reachability, observability and decompositionsof bilinear systems
were studied by Brockett (1972b), Goka et al, (1973) and d'Alessandro
et al. (1974).

Chapter III

The functional expansions illustrated in the first section were
introduced by Fliess since 1973. A comprehensive exposition of the
subject, together with several additional results, may be found in
Fliess (1981). The expressions of the Kernels of the Volterra series
expansion were discovered by Lesjak-Krener (1978); the expansions
(2.12) are due to Fliess et al. (1983). The structure of the Volterra
kernels was earlier analyzed by Brockett {1976}, who proved that any
individual kernel can always be interpreted as a kernel cof a suitable
bilinear system, and related results may also be found in Gilbert
{(1977). The expressions of the kernels of a bilinear system were
first calculated by Bruni et al. (1971). Multivariable Laplace trans-
forms of Volterra kernels and their properties are extensively studied
by Rugh (1981),
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Functional expansions for nonlinear discrete-time systems have
been studied by Sontag (1979) and Normand Cyrot (1983).

The way the invariance analysis is dealt with reflects jointly
ideas developed by Isidori et al. (1981a) and Claude (1982); the former
contains, in particular, a different proof of Theorem (3.9}. Left in-
vertibility of nonlinear systems was mostly studied by Hirschorn
(197%9a) (1979b); our presentation follows an idea of Nijmeijer (1982b).

Definitions and properties of generalized Hankel matrices were
developed by Fliess (1974). Theorem (5.8) was proved independently
by Isidori (1973) and Fliess. The notion of Lie rank and Theorem
(5.11) are due to Fliess (1983), Equivalence of minimal realizations
was extensively studied by Sussmann (1977); the version given here of
the uniqueness Theorem essentially develops an idea of Hermann-Krener
(1977); related results may also be found in Fliess (1983).

An independent approach to realization theory was followed by
Jakubczyk (1980)., Realization of finite Volterra series was studied
by Crouch (1981). Constructive realization methods from the Laplace
transform of a Volterra kernel may be found in the work of Rugh (1983),
Realization theory of discrete-time response maps was extensively
studied by Sontag (1979).

Chapter IV

Controlled invariant distribution is the nonlinear version of
the notion of controlled invariant subspace, introduced independently
by Basile-Marro (1969) and Wonham-Morse (1970). For a comprehensive
presentation of the theory of multivaribale linear control systems,
the reader is referred to the classical treatise of Wonham (1979).
Controlled invariant distributions were introduced independently by
Hirschorn (1981) and, in the more general form described here, by
Isidori et al. (1981a). The proof of Lemma (1.10) may be found in
Hirschorn (1981), Isidori et al. (1981b) and Nijmeijer (1981),

Lemma (3.6) is due to Claude (1982); the special case where the
matrix A(x) has rank % was dealt with in Isidori et al, (1981a). The
algorithm (3.17) has been suggested by Krener (1985).

Early results on nonlinear decoupling and noninteracting con-
trol were given by Singh-Rugh (1972) and Freund (1975). The possibi-
lity of solving decoupling problems in a differential-geometric
setting was described by Hirschorn (1981) and Isidori et al. (1981a).
The notion of controllability distribution, the nonlinear version of
the one of controllability subspace, was introduced by Isidori-Krener
(1882) and Nijmeijer (1982a}. The solution of noninteracting control
problems via controllability distributions is described in Nijmeijer
(1983).

Controlled invariance for general nonlinear control systems (i.e.
systems where the control does not enter linearly) is studied in
Nijmeijer-van der Schaft (1983). Controlled invariance for discrete-
time nonlinear system is studied in Grizzle (1985) and Monaco-Normand
Cyrot (1985).

Chapter V

The input-output linearization problem was treated by Isidori-
Ruberti (1984). A slightly different version of this problem was
earlier studied by Claude-Fliess-Isidori (1983) and, in the case of
discrete-time systems, by Monaco-Normand Cyrot (1983). The so-called
"structure algorithm" was introduced by Silverman (1969) and its
importance in connection with the computation of the "zero structure
at infinity" was outlined by Van Dooren et al., (1979). The possibility
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of computing a "zero structure at infinity" on the coefficients of the
formal power series associated with the external behavior of a non-
linear system was pointed out by Isidori (1983); a geometric approach
to the definition of a "zero structure at infinity"” is followed by
Nijmeijer-Schumacher (1985). The problem of matching a linear model
via dynamic state feedback was studied by Isidori (1985) and Di Be-
nedetto-Isidori (1985). The proof of Theorem (5.9) is the nonlinear
version of a proof of Malabre (1984).

The state-space linearization problem was proposed and solved
for single-input systems by Brockett (1978). Complete solution for
multi-input systems was found by Jakubczyk-Respondek (1980). Independ-
ent work of Su (1982) and Hunt et al. (1983a) lead to a slightly
weaker formulation, together with a constructive algeorithm for the
solution; The possibility of using noninteracting control techniques
for the solution of such a problem was pointed out in Isidori et al.
(1981a); the construction suggested here essentially recaptures an
idea of Marino (1982). Additional results on this subject may be
found in Sommer (1980), Hunt et al. (1983b), Boothby et al. (1985),
and Cheng et al. (1985).

The observer linearization problem was studied independently by
Bestle-Zeitz (1983) and Krener-Isidori (1983), for single-output
systems, and by Krener-Respondek (1985) for multi-output systems.

Appendix

For a comprehensive introduction to the subjects dealt with in
this appendix, the reader is referred to Boothby (1975), Warner
(1970), Singer-Thorpe (1967).



REFERENCES

G. BASILE, G. MARRO

(1969) Controlled and conditioned invariant subspaces in linear systems
theory, J. Optimiz. Th. & Appl. 3, pp. 306-315,

D. BESTLE, M. ZEITZ

(1983) Canonical form observer design for non-linear time-variable
system, Int. J., Contr. 38, pp. 419-431,

W.A. BOOTHBY

(1975) "An Introduction to Differentiable Manifolds and Riemaniann
Geometry", Academic Press: New York.

F.R. BRICKELL, R.S. CLARK

(1970) "Differentiable Manifolds", Van Nostrand: New York.

R.W. BROCKETT

(1972a) system theory on group manifolds and coset spaces, SIAM J.
Contr. 10, pp. 265-284.

(1972b) On the algebraic structure of bilinear systems, in "Theory
and Applications of Variable Structure Systems”, R. Mohler and A.
Ruberti Eds., Academic Press: New York, pp. 153-168.

(1976) Volterra series and geometric control theory, Automatica 12,
pp. 167-176.

(1978) Feedback invariants for nonlinear systems, Preprints 6th IFAC
Congress, Helsinki, pp. 1115-1120.

C. BRUNI, G. DI PILLO, G. KOCH

(1971) On the mathematical models of bilinear systems, Ricerche di
Automatica 2, pp. 11-26.

P. BRUNOVSKY

(1970) A classification of linear controllable systems, Kybernetika
6, pp. 173-188.

D. CHENG, T.J. TARN, A. ISIDORI

(1985) Global external linearization of nonlinear systems via feedback,
IEEE Trans. Aut. Contr. AC-30, to appear.

W.L. CHOW

(1939) Uber systeme von linearen partiellen differentialgleichungen
ester ordnung, Math. Ann. 117, pp. 98-105.

D. CLAUDE

(1982) Decoupling of nonlinear systems, Syst. & Contr. Lett. 1,

pPpP. 242-248,

D. CLAUDE, M. FLIESS, A, ISIDORI

(1983) Immersion, directe et par bouclage, d'un systeme non lineaire
dans un lineaire, C.R. Acad. Sci. Paris 296, pp. 237-240.



293

P. CROUCH

(1981) Dynamical realizations of finite Volterra Series, SIAM J.
Contr. Optimiz. 19, pp. 177-202.

P. dA'ALESSANDRO, A. ISIDORI, A. RUBERTI

(1974) Realization and structure theory of bilinear dynamical systems,
SIAM J. Contr. 12, pp. 517-535,

M.D. DI BENEDETTO, A. ISIDORI

(1985) The matching of nonlinear models via dynamic state-feedback,

to be published.

D.L. ELLIOTT

(1970) A conseqguence of controllability, J. Diff. Egs. 10, pp. 364-370.

M. FLIESS
(1974) Matrices de Hankel, J. Math., pures et appl. 53, pp. 197-224.

(1981) Fonctionnelles causales non lineaires et indeterminées non
commutatives, Bull. Soc. math. France 109, pp. 3-40.

(1983) Realisation locale des systemes non lineaires, algebres de

Lie filtrees transitives et series generatrices non commutatives,
Invent, math. 71, pp. 521-537.

M. FLIESS, M. LAMNABHI, F. LAMNABHI-LAGARRIGUE

(1983) An algebraic approach tononlinear functional expansions, IEEE
Trans. Circ. Syst. CAS-30, pp. 554-570.

E. FREUND

(1975) The structure of decoupled nonlinear systems, Int. J. Contr.
21, pp. 651-659.

E.G. GILBERT

(1977) Functional expansion for the response of nonlinear differential
systems, IEEE Trans. Aut. Contr. AC-22, pp. 909-921.

T. GOKA, T.J. TARN, J. ZABORSZKY

(1973) On the controllability of a class of discrete bilinear systems,
Automatica 9, pp. 615-622.

J.W. GRIZZLE

(1985) Controlled invariance for discrete time nonlinear systems with
an application to the disturbance decoupling problem, to be published.
G.W., HAYNES, H. HERMES

{(1970) Nonlinear controllability via Lie theory, SIAM J. Contr. 8,

pp. 450-460.

R. HERMANN

(1962) The differential geometry of foliations, J. Math, and Mech. 11,
pp. 302-316.

R, HERMANN, A.J. KRENER

(1977) Nonlinear controllability and observability, IEEE Trans. Aut.
Contr. AC-22, pp. 728-740.



294

R.M. HIRSCHORN

(1979%9a}) Invertibility of nonlinear control systems, SIAM J. Contr,
& Optimiz. 17, pp. 289-297.

(1979b) Invertibility of multivariable nonlinear control systems,
IEEE Trans. Aut, Contr. AC-24, pp. 855-865.

(1981) (A,B)-invariant distributions and disturbance decoupling of
nonlinear systems, SIAM J. Contr. & Optimiz. 19, pp. 1-19.
L.R. HUNT, R. SU, G. MEYER

(1983a) Design for multi-input nonlinear systems, in "Differential
geometric control theory", R.W. Brockett, R.S. Millman and H. Sussmann
Eds., Birkhauser: Boston, pp. 268-298.

(1983b) Global transformations of nonlinear systems, IEEE Trans. Aut.
Contr. AC-28, pp. 24-31.
A. ISIDORI

(1973) Direct construction of minimal bilinear realizations from non-
linear input-output maps, IEEE Trans. Aut. Contr, AC-18, pp. 626-631,

(1983) Nonlinear feedback, structure at infinity and the input-output
linearization problem, in "Mathematical theorv of networks and
systems", P.A, Fuhrmann Ed., Springer Verlag: Berlin, pp. 473-493.

(1985) The matching of a prescribed linear input-output behavior in
a nonlinear system, IEEE Trans, Aut. Contr, AC-30, to appear.
A. ISIDORI, A.J. KRENER, C. GORI GIORGI, S. MONACO

(1981a) Nonlinear decoupling via feedback: a differential geometric
approach, IEEE Trans. Aut. Contr. AC-26, pp. 331-345,

(1981b) Locally (f,g)-invariant distributions, Syst. & Contr. Lett. 1,
pp. 12-15.

A. ISIDORI, A. RUBERTI

(1984) On the synthesis of linear input-output responses for nonlinear
systems, Syst. & Contr. Lett. 4, pp. 17-22.

B. JAKUBCZYK

(1980) Existence and uniqueness of realizations of nonlinear systems,
SIAM J. Contr. & Optimiz. 18, pp. 455-471.

B. JAKUBCZYK, W. RESPONDEK

(1980) On linearization of control systems, Bull, Acad. Polonaise
Sci. Ser. Sci. Math. 28, pp. 517-522.

R.E. KALMAN

(1972) Kronecker invariants and feedback, in "Ordinary differential
equations”, C. Weiss Ed., Academic Press: New York, pp. 459-471.

S.R. KOU, D.L. ELLIOTT, T.J. TARN

(1973) Observability of nonlinear systems, Inform. Contr. 22,

pp. 89-99.

A.J. KRENER

(1974) A generalization of Chow's Theorem and the bang-bang Theorem
to nonlinear control systems, SIAM J. Contr. 12, pp. 43-52.



295

(1977) A decomposition theory for differentiable systems, SIAM J.
Contr. & Optimiz. 15, pp. 289-297.

(1985) (adf,q), (adf,q) and locally (adf,g} invariant and contrcl-
lability distributions, SIAM J. Contr, & Optimiz., to appear.
A.J. KRENER, A., ISIDORI

(1982) (Adf,G) invariant and controllability distributions, in
"Feedback Control of Linear and Nonlinear Systems", D. Hinrichsen
and A. Isidori, Eds. Springer Verlag: Berlin, pp. 157-164.

(1983) Linearization by output injection and nonlinear observers,
Syst. & Contr. Lett. 3, pp. 47-52.

A.J. KRENER, W. RESPONDEK

(1985) Nonlinear observers with linearizable error dynamics, SIAM
J. Contr. & Optimiz., to appear.

C. LESJAK, A.J. KRENER

(1978) The existence and uniqueness of Volterra series for nonlinear
systems, IEEE Trans. Aut. Contr. AC-23, pp. 1090-1095.

C. LOBRY

(1979) Contrdlabilité des systémes non lineaires, SIAM J. Contr. 8,
Pp. 573-605.

M. MALABRE

(1984) Structure a l'infini des triplets invariants: application a
la pursuite parfaite de modele, in "Analysis and Optimization of
Systems", A Bensoussan and J.L. Lions Eds., Springer-Verlag: Berlin,
pp. 43-53.

R. MARINO

(1982) Feedback equivalence of nonlinear systems with applications to
power systems equations, D.Sc. Dissertation, Washington University,
St. Louis.

R. MARINO, W.M. BOOTHBY, D.L. ELLIOTT

(1985) Geometric properties of linearizable control systems, Math.
Syst. Theory, to appear.

S.H. MIKHAIL, M.H. WONHAM

(1978) Local decomposability and the disturbance decoupling problem
in nonlinear autonomous systems, Proc. 16th Allerton Conf.,
pp. 664-669.

S. MONACO, D. NORMAND-CYROT

(1983) The immersion under feedback of a multidimensional discrete-
time nonlinear system into a linear system, Int. J. Contr. 38,
pp. 245-281,

(1985) Invariant distributions for discrete-time nonlinear systems,
Syst. & Contr. Lett. 5, pp. 191-196.
T. NAGANO

(1966) Linear differential systems with singularities and applications
to transitive Lie algebras, J. Math. Soc. Japan 18, pp. 398-404.



296

H. NIJMEIJER

(1981) Controlled invariance for affine control systems, Int. J. Contr.
34, pp. 824-833,

(1982a) Controllability distributions for nonlinear systems. Syst.
& Contr. Lett. 2, pp. 122-129.

(1982b) Invertibility of affine nonlinear control systems: a geometric
approach, Syst. & Contr, Lett. 2, pp. 163-168.

(1983) Feedback decomposition of nonlinear control systems, IEEE Trans.
Aut. Contr. AC-28, pp. 861-862.

(1985) Right invertibility of nonlinear control systems: a geometric
approach, to be published.

H. NIJMEIJER, J.M. SCHUMACHER

(1985) Zeros at infinity for affine nonlinear control systems, IEEE
Trans. Aut. Contr. AC-30, to appear.

H. NIJMEIJER, A,J. VAN DER SCHAFT

(1982) Controlled invariance for nonlinear systems, IEEE Trans. Aut.
Contr. AC-27, pp. 904-914,
. D. NORMAND-CYROQT

(1983) Theorie et pratique des systémes nonlineaires en temps discret,
Thé&se d'Etat, Université de Paris Sud.

W. RESPONDEK

(1982) On decomposition of nonlinear control systems, Syst. & Contr,
Lett. 1, pp. 301-308.

W.J3. RUGH

(1981) "Nonlinear System Theory: the Volterra-Wiener Approach”", Johns
Hopkins Press: Baltimore.

(1983) A method for constructing minimal linear-analytic realizations
for polynomial systems, IEEE Trans. Aut. Contr. AC-28, pp. 1036-1043,
L.M. SILVERMAN

{(1969) Inversion of multivariable linear systems, IEEE Trans. Aut.
Contr. AC-14, pp. 270-276.

L.M, SINGER, J.A. THORPE

(1967) "Lecture Notes on Elementary Topology and Geometry", Scott,
Foresman: Glenview.

S.N. SINGH, W.J. RUGH

(1972) Decoupling in a class of nonlinear systems by state variable
feedback, Trans ASME J. Dyn. Syst. Meas. Contr, %4, pp. 323-329,

R. SOMMER

{1980) Control design for multivariable nonlinear time-varying systens,
Int. J. Contr. 31, pp. 883-891.

E. SONTAG

(1979) "Polynomial Response Maps", Springer Verlag: Berlin.



297

R. SU

(1982) On the linear equivalents of nonlinear systems, Syst. & Contr.
Lett. 2, pp. 48-52.

H. SUSSMANN

(1973) Orbits of families of vector fields and integrability of di-
stributions, Trans,., American Math. Soc. 180, pp. 171-188,

(1977) Existence and uniqueness of minimal realizations of nonlinear
systems, Math, Syst. Theory 10, pp. 263-284,

H. SUSSMANN, V. JURDJEVIC

(1972) Controllability of nonlinear systems, J. Diff. Egs. 12,pp. 95~
116.

P.M. VAN DOOREN, P. DEWILDE, J. WANDEWALLE

(1979) On the determination of the Smith-MacMillan form of a rational
matrix from its Laurent expansion, IEEE Trans. Circ. Syst. CT-26,

pp. 180-189.

F.,W. WARNER

(1970) "Foundations of differentiable manifolds and Lie groups",Scott,
Foresman: Glenview.

M.H. WONHAM

(1979) "Linear Multivariable Control: a Geometric Approach", Berlin:
Springer Verlag.

M.H. WONHAM, A.S. MORSE

(1970) Decoupling and pole assignment in linear multivariable systems:
a geometric approach, SIAM J. Contr, 8, pp. 1-18.



	front-matter
	1Local decompositions of control systems
	2Global decompositions of control systems
	3Input-output maps and realization theory
	4Disturbance decoupling and non interacting control
	5Exact linearization methods
	back-matter

