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cubature formulae that are exact for certain vector spaces of polynomials.
Our main quality criteria are the algebraic and trigonometric degrees. The
constructions using ideal theory and invariant theory are outlined. The known
lower bounds for the number of points are surveyed and characterizations of
minimal cubature formulae are given. We include references to all known
minimal cubature formulae. Finally, some methods to construct cubature
formulae illustrate the previously introduced concepts and theorems.
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1. What to expect

This is a paper for patient readers. The reader has to digest several pages
before being enlightened on the direction taken by this paper. Following a
short section with historical notes, Section 3 describes the problem this paper
concentrates upon, approximating multivariate integrals, and presents my
favourite quality criteria. Section 4 sketches several ways to construct such
approximations, one of which is this paper's real subject. After introducing
concrete integrals and a tool to deal with symmetries in Section 5, we are
ready for the real work.

In Section 6, interpolatory cubature formulae are characterized and the
connection with orthogonal polynomials and ideal theory is in the spotlight.
Sections 7 and 8 are devoted to the determination of lower bounds and the
characterization of minimal cubature formulae. Finally, Sections 9 and 10
concentrate on the art of constructing cubature formulae.

Readers familiar with the construction of quadrature formulae may find
it helpful to spell out the meaning in one dimension of the definitions and
theorems given for arbitrary dimensions.

2. On the origin of cubature formulae

2.1  The prehistory

According to the Oxford English Dictionary, cubature is the determination
of the cubic contents of a solid, that is, the computation of a volume. We
are interested in the construction of cubature formulae, that is, formulae
to estimate volumes. The problem of measuring areas and volumes has
always been present in everyday life. The ancient Babylonians and Egyp-
tians already had precise and correct rules for finding the areas of triangles,
trapezoids and circles (for the Babylonians TT equalled 3, for the Egyptians
235/81) and the volumes of parallelepipeds, pyramids and cylinders. They
thought of these figures in concrete terms, mainly as storage containers for
grain. They discovered these rules empirically.

The first abstract proofs of rules for finding some areas and volumes are
said to have been developed by Eudoxus of Cnidus in about 367 BC. About
a century later, his method was further developed by Archimedes. In the
middle of the 16th century Archimedes' work became available in Greek and
Latin and in the 17th century his method became known as the method of
exhaustion. It culminated in the 19th century in the isolation of the concept
of Riemann integration, defined by approximating Riemann sums.

In southern Germany, due to increased commerce, measuring the contents
of wine barrels became important in the 15th century, and therefore approx-
imations were introduced. In 1613, Johannes Kepler witnessed a salesman
using one gauging-rod to measure the contents of all Austrian wine barrels
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without further calculations. This was the motivation for what became his
book Nova Stereometria Doliorum Vinariorum1 (Kepler 1615). It turned
out that for the type of barrels used in Austria, the approximation used by
the salesman was quite good. At the end of the book Kepler wrote that
his book was longer than he had expected and people could just as well
continue to use the approximation. In his final sentence he philosophizes on
the eternal compromise between approximations and exact calculations:

Et cum pocula mille mensi erimus,
Conturbabimus ilia, ne sciamus.2

The start of the modern study of volume computation is usually linked with
Kepler.

The word 'cubature' appeared in the written English language around
the same time. The oldest known reference, according to the Oxford English
Dictionary, is a letter from Collins in 1679 containing the sentence: 'In order
to the quadrature of these figures and the cubature of their solids.' From
1877 we cite Williamson: 'The cube . .. is . .. the measure of all solids, as the
square is the measure of all areas. Hence the finding the volume of a solid
is called its cubature.'

The formulation of the problem of measuring in terms of integrals and
functions is much more recent. The first cubature formula in the form we
are now familiar with was constructed by Maxwell (1877). And that is when
our story starts. For us, a cubature formula is a weighted sum of function
evaluations used to approximate a multivariate integral. (The function is not
necessarily the integrand, nor is the same function used for each evaluation.)
The prehistory of our field of interest thus ends in 1877. In the following
section we briefly sketch different approaches and specify the approach we
follow in the rest of this paper.

2.2. In search of a pedigree

There are several criteria to specify and classify cubature formulae based on
their behaviour for specific classes of functions. A classical way to present
a survey is to sketch the pedigree of different approaches.

The oldest criterion is the algebraic degree of a cubature formula, used by
James Clerk Maxwell in 18773. This criterion is obviously inherited from
the work on quadrature formulae. We have no idea what a cubature formula
of algebraic degree d will give us when applied to a function that is not a
polynomial of degree smaller than or equal to d.

1 Solid Geometry of Wine Barrels
2 After measuring a thousand cups, we will be so confused that we lose our head.
3 When we write that something happened in a particular year, we in fact refer to the

year the results were published.
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The second oldest approach to approximate multivariate integrals does
not have this problem. One evaluates the integrand function in a number
of randomly selected points and uses the average function value. This is
the classical Monte Carlo method. The idea came to Stanislaw Ulam, Nick
Metropolis and John von Neumann while working on the Manhattan Project
in 1945. Prom the Strong Law of Large Numbers it follows that the expected
value this method delivers is the integral. If one restricts the integrands to
the class of square integrable functions, the Central Limit Theorem gives
rise to a probabilistic error bound known as the 'JV1/2 law': for a fixed level
of confidence, the error bound varies inversely as N1'2.

Because truly random samples are not available and the error estimate of
the Monte Carlo method is only probabilistic, researchers in the early 1950s
became interested in quasi-Monte Carlo methods. The method received
its name from R. D. Richtmyer (1952). In these methods one uses, as in
the classical Monte Carlo method, an equal-weights cubature formula but
chooses the points to be 'better than random'. One obtains rigorous error
bounds that behave better than the JV1/2 law. The first quasi-Monte Carlo
methods were based on low discrepancy sequences. Another type of quasi-
Monte Carlo method is the method of good lattice points introduced by
Nikolai M. Korobov (1959). The more general notion of a lattice rule was
introduced by Konstantin K. Frolov (1977) and rediscovered by Ian H. Sloan
and Philip Kachoyan (1987).

It should be noted that Frolov did not see his rules as quasi-Monte Carlo
methods. He constructed cubature formulae that are exact for a set of trigo-
nometric polynomials, that is, his criterion is the trigonometric degree. It is
strange that his paper is not cited in the Russian literature on cubature for-
mulae of trigonometric degree. We will see that there are many similarities
between the construction of cubature formulae of algebraic degree and the
construction of formulae of trigonometric degree. In addition, Frolov made
the link with lattice rules. Hence the pedigree approach breaks down here
and we will use another thread for this story.

We will focus on cubature formulae that are exact for a certain class of
functions: polynomials, both algebraic and trigonometric. Cubature formu-
lae of algebraic degree and lattice rules fit in this single framework.

Cubature formulae of algebraic degree play an important role for low di-
mensions and are essential building blocks for adaptive routines to compute
integrals. Practical experience with lattice rules is still limited. Most people
expect them to be important for high dimensions. However, there already
exist two-dimensional applications that benefit from their properties.
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3. Problem setting and criteri a

An integral 7 is a linear continuous functional

/ [ / ] : = /«;(x) /(x)dx (3.1)
Ju

where the region 1] C 1". We use x as a shorthand for the variables
xi, X2, , xn. We will always assume that w(x) > 0, for all x G fi, that is,
/ is a positive functional.

It is often desirable to approximate / by a weighted sum of (easier) func-
tionals such that

where Wj G K. We will only consider approximations that are exact for
a given vector space of functions and we start with a very general result
on the existence of such approximations, due to Sobolev (1962); see also
Mysovskikh (1981).

We will need the following lemma.

Lemma 3.1 The system of linear equations

= b with i e C x v , b e e ", x e C

has a solution if and only if £)j=i ^jYj = 0 f°r a^ solutions y of A*y = 0
(A* = AT; y is the complex conjugate of y).

Proof. Let L be the vector space generated by the columns a ,̂..., a^
of A, and L 1 C Cn the orthogonal complement of L. Thus y € L1- if and
only if y is orthogonal to all columns of A. Hence L1- is the subspace of all
solutions of A*y = 0.

Ax = b has a solution if and only if b £ L. But b E L if and only if b is
orthogonal to y and A*y = 0.

Let F be a vector space of functions denned on fi c R" and F\ C F
a subspace. Let / be a linear, continuous functional defined on F, that
is approximated by a linear combination of other functionals (3.2) with
constant coefficients. Let

Fo = { / G F1 : Lj[f]  = 0,j = l,...,N}c Fv

Theorem 3.1 A necessary and sufficient condition for the existence of an
approximation (3.2) that is exact for all / G i*\ is

/ G Fo =>  I[f]  = 0. (3.3)

Proof. It is trivial that the condition is necessary. It remains to be proven
that it is sufficient.
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Let /,, i = 1,... ,/j, be a basis of F\. Then the approximation (3.2) is
exact for all / e F\ if and only if it is exact for / j , i = 1,..., fi\

(3.4)

(3.4) is a system of linear equations for the weights Wj, j = 1,..., N.
Let (ai, . .. a^)T be the solution of the adjoint homogeneous system:

(3.5)
3=1

The lemma implies that (3.4) has a solution if and only if £)j=i a-jl[fj]  = 0
which is equivalent to

= 0. (3.6)

But (3.5) is equivalent to

= 0, i = l,...,N,

which means that / = S)j=i  ajfj  € FQ. Hence the necessary and sufficient
condition (3.6) for the solvability of (3.4) can be written as /[/ ] = 0. Prom
the solvability of (3.4) follows the sufficientness of (3.3).

We will only consider functional Lj that are point evaluations. Most
often Lj[f]  = /(y(J)) for a y ^ G Rn but occasionally one encounters ap-
proximations that use partial derivatives of /, that is,

L\f]  =

Unless stated otherwise, we shall concentrate on approximations that use
function values only. If n — 1, then Q is called a quadrature formula. If
n > 2, then Q is called a cubature formula. If partial derivatives are used,
Q is called a generalized cubature formula. So, for our purposes, a cubature
formula Q has the form

= X>,7(yw). (3-7)
3=1

The choice of the points y  ̂ and weights Wj is independent of the function
/ . They are chosen so that the formula gives a good approximation for some
class of functions.
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According to Rabinowitz and Richter (1969), a good quadrature or cub-
ature formula has all points y ^ inside the region ft and all weights Wj
positive. Positive weights imply that Q is also a positive functional. As
Maxwell (1877) noted when he obtained a cubature formula for the cube
with 27 points, some outside the cube, it might be difficult to apply a cub-
ature formula when points are outside the region $7:

This, of course, renders the method useless in determining the integral from the
measured values of the quantity u, as when we wish to determine the weight of
a brick from the specific gravities of samples taken from 27 selected places in the
brick, for we are directed by the method to take some of the samples from places
outside the brick.

In the remainder of the paper, we will only consider cubature formulae
that are exact for algebraic or trigonometric polynomials.

Let a = (ai,at2,...,otn) G Zn and |a| = Y^j=\ \aj\- An (algebraic)
monomial in the variables x\,X2, xn is a function of the form FIjLi  x<j3>
also denoted by xQ, for a G Nn. A trigonometric monomial is a function of
the form

n

TT e2majXj  ̂ where i2 = — 1,

also denoted by e
27riQX. An algebraic, respectively trigonometric, polynomial

in n variables is a finite linear combination of monomials, that is,
oo oo

p(x) = ^2 aa^a, respectively t(x) = ^ aae
2wiax.

ai,...,an=0 ati,...,an=—oo

For trigonometric polynomials, some authors add the restriction that aa

and a-a are complex conjugates. One can of course also use sine and cosine
functions to describe real trigonometric polynomials. This restriction is
unnecessary here.

The degree of a multivariate algebraic or trigonometric polynomial v is
defined as

, / \ _ / max{|a| : aa ̂  0}  if v  ̂ 0,
eE\v) — | _QO [{  v = 0.

The vector space of all algebraic polynomials in n variables of degree at
most d is denoted by V2- The vector space of all trigonometric polynomials
in n variables of degree at most d is denoted by TJJ. The dimensions of these
vector spaces are:

, ) and
d )

i=0
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We can now formulate the criterion we will most often use.

Definition 3.1 A cubature formula Q for an integral I has algebraic, re-
spectively trigonometric, degree d if it is exact for all polynomials of algeb-
raic, respectively trigonometric, degree at most d and it is not exact for at
least one polynomial of degree d + 1.

Cubature formulae of algebraic degree are available for a large variety of
regions and weight functions. For a survey, we refer to Stroud (1971) and
Cools and Rabinowitz (1993). Cubature formulae of trigonometric degree
are only published for Q. = [0, l ] n and u>(x) = 1, and in this paper we will
only consider this region. For a survey, we refer to Cools and Sloan (1996).

The overall degree of a multivariate polynomial v is defined as

= 1,  ,n}  : aQ ^ 0}  if v  ̂ 0,dee(v) = I m a x{ m a x{ l aj l : J = 1,  ,n}  : aQ ^ 0}  if v  ̂ 0,
^ ' \ -co if v = 0.

The vector space of all algebraic polynomials in n variables of overall degree
at most d is denoted by V%. The vector space of all trigonometric poly-
nomials in n variables of overall degree at most d is denoted by Td. The
dimension of these vector spaces are:

= (d+l)n and dimT^ = (2d+ 1)".

We can now define another criterion for cubature formulae.

Definition 3.2 A cubature formula Q for an integral I has algebraic, re-
spectively trigonometric, overall degree d if it is exact for all algebraic, re-
spectively trigonometric polynomials of overall degree at most d, and it is
not exact for at least one polynomial of overall degree d + 1.

A notable example of cubature formulae with overall algebraic degree d
is the family of Gauss-product rules, obtained from quadrature formulae of
degree d.

Most known cubature formulae for integrals of periodic functions on the
unit cube [0, l ) n are so-called lattice rules and for them a criterion used
much more often than the trigonometric degree is the Zaremba index. The
Zaremba index is related to the dominant terms in the error of the lattice
rule for a worst possible function in a particular class of functions.

Definition 3.3 A multiple integration lattice L in R" is a subset of Rn

which is discrete and closed under addition and subtraction and which con-
tains Z™ as a subset. A lattice rule is a cubature formula for approximating
integrals over [0, l) n where the N points are the points of a multiple integ-
ration lattice L that lie in [0, l ) n and the weights are all equal to 1/iV.
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> I I I H I I I

\* '
1 *

Trig, degree = 5 Overall trig, degree = 5 Zaremba index = 5

Fig. 1. Monomials for which a two-dimensional cubature formula is exact

Definition 3.4 A cubature formula Q for an integral / has Zaremba index
d if it is exact for all trigonometric monomials e2n i ax with

< d with
1 if ai = 0,

if on  ̂ 0,

and it is not exact for at least one monomial with d = 11?= l ri-

Why is the algebraic degree of a cubature formula a measure of its qual-
ity? The main argument is that a well-behaved function is expected to be
well approximated by a polynomial (for instance a Taylor series) and con-
sequently its integral is expected to be well approximated by a cubature
formula of a suffienciently high algebraic degree. Another argument, which
applies only to some regions, is that the rate of convergence of a compound
cubature formula as the mesh size shrinks is directly related to the algeb-
raic degree of the basic cubature formula. This follows from the asymptotic
error expansion for compound cubature formulae, which we will encounter
in Section 4.

Why is the trigonometric degree, as well as other criteria based on trigo-
nometric polynomials, a measure of the quality of a cubature formula? The
main argument is that a well-behaved function is expected to be well approx-
imated by a trigonometric polynomial (for instance its Fourier series) and
consequently its integral is expected to be well approximated by a cubature
formula of a sufficiently high trigonometric degree.

One uses other criteria, such as the overall algebraic or trigonometric
degree or the Zaremba index, if one has reasons to believe that the corres-
ponding set of monomials is more relevant. This is obviously connected to
one's favourite way to study the error of a cubature formula when applied
to a function for which it does not give the exact value of the integral.

We will use the symbol V^ to refer to one of the vector spaces Vj, V%, T%
or 1fad. The results we present in this paper are also valid for other vector
spaces, but one has to be cautious. A property that is needed to generalize
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several proofs is that the convex hull of the powers of a of the monomials
in V^ contains only these monomials. In Figure 1 we illustrate this for the
trigonometric degree, overall trigonometric degree and Zaremba index. It is
obvious that the Zaremba index no longer has a role to play in this paper.
The role of this criterion is important in the context of quasi-Monte Carlo
methods. For readers who want to know more about this, we recommend
Niederreiter (1992) and Sloan and Joe (1994).

4. Different ways to construct cubature formulae

In Section 2.2 we mentioned that there is more than one way to obtain a
cubature formula. Much depends on the quality criterion used. As stated
earlier, in this paper we restrict our attention to cubature formulae that
are designed to be exact for a vector space of algebraic or trigonometric
polynomials. Even then there are several ways to reach this goal and in this
section we will briefly outline some of these. The examples in this section will
only be two-dimensional but the ideas behind them are perfectly general.

4-1- Repeated quadrature

No doubt the field of quadrature is more threaded and explored than its
multivariate counterpart. It is hence not surprising that even today many
people use the product of two quadrature formulae to integrate over a square.
Let

N

g(x) dx ~ ^2 u)jg(x^) (4.1)r
be a quadrature formula of degree dx, then

! i Af JV

/ / f(x,y)dxdy ^^2Y,

If the quadrature formula (4.1) has algebraic degree d, then the cubature
formula (4.2) has overall algebraic degree d.

One can use different quadrature formulae for each of the one-dimensional
integrals. Even the one-dimensional integrals may have different limits or
weight functions. If the quadrature formula in x has degree dx with Nx

points and the formula in y has degree dy with Ny points, the resulting
cubature formula will be exact for a space of polynomial 'between' P7^ and
Vn

D with d := min{dx,dy} and D :=  max{dx,dy}, and has N = NxNy

points.

4-2. Change of variables

If one encounters a new problem, it is tempting to transform it into a problem
for which a solution is familiar. For instance, an integral over a circle or
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triangle can be transformed into an integral over a square:

/ / f(x,y)dydx = x f(x,xt)dtdx,
Jo Jo Jo Jo

I r\/l—x2 r\ /-27T

/ / f(x,y)dydx = rf(r  cos 0,r sin 0) d6 dr.
J-\ J-Vi-x2 Jo Jo

One can then use repeated quadrature, preferably using quadrature formulae
that take the Jacobian of the transformation into account. For the above
examples a possible choice is a combination of a Gauss-Legendre and an
appropriate Gauss-Jacobi quadrature formula. This results in a so-called
Conical Product rule for the triangle and a Spherical Product rule for the
circle (Stroud 1971).

Transformations can have surprising advantages and disadvantages. For
example, the above transformation of a triangle into a square, mentioned
by Stroud (1971), but now usually referred to as the Duffy transformation
(Duffy 1982), removes some types of singularity from the integrand (Lyness
1992, Lyness and Cools 1994), but the resulting cubature formula lacks
symmetry. In fact there are three distinct Conical Products rules for each
degree, depending on which vertex of the triangle is the preferred one.

4-3. Compound rules and copy rules

It can happen that the given integration region has an unusual shape for
which no cubature formula is available, but that it can be subdivided into
standard regions for which cubature formulae are available. The sum of
all cubature formulae on all subregions is a so-called compound rule. If a
cubature formula on a standard region does not give a result that is accurate
enough, because it is applied to a function for which it was not designed to
give the exact result, one can also subdivide and apply a properly scaled
version of the given cubature formula on each subregion. And so on until
one obtains the desired accuracy.

If the given region can be subdivided in congruent regions, a special kind
of compound rule, the copy rule, becomes interesting. If, for example, the
integration region is a square, one can divide this into m2 identical squares,
each of side 1/mth the original side, and apply a properly scaled version of
the given cubature formula to each. This approach looks expensive, espe-
cially if the dimension goes up, but is appealing because an error expansion
is readily available.

So far, we have considered cubature formulae that are exact for a certain
vector space. Almost all users will apply them to functions for which they
do not give the exact result. So, we have arrived at a point where we need
to say something about the error, that is, Q[f]  — / [ / ] .
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For regular f(x,y) £ Cp, p £ N, the almost self-evident extension of the
one-dimensional Euler-Maclaurin expansion may be expressed as

Q{m)[f}-

where Q  ̂ is the m2-copy of Q and the coefficients Bi depend on the cub-
ature formula Q, the integral / and the integrand /.

Once it is known that an error expansion such as (4.3) exists, Richardson
extrapolation (Richardson 1927) can be used to speed up convergence (by
eliminating terms of the error expansion). In order to apply extrapolation
one need not know all details: the value of the Bi need not be known.

The m-copy rules for cubes and simplices have received considerable at-
tention, because for some classes of non-regular functions, error expansions
are also available and Richardson extrapolation can be used to speed up
convergence. It is beyond the scope of this text to pursue this further. The
situation seems to be that for many algebraic or logarithmic singularities
that occur at a vertex or along a side, an appropriate expansion exists. For
a brief survey of what is available for a triangle we refer to Lyness and
Cools (1994). Readers who want to know more about this topic will find
it in Lyness and McHugh (1970), Lyness and Puri (1973), Lyness (1976),
de Doncker (1979), Lyness and Monegato (1980), Lyness and de Doncker-
Kapenga (1987), Lyness and de Doncker (1993), Verlinden and Haegemans
(1993).

4-4- Direct construction of cubature formulae

In the previous subsections we described indirect approaches to constructing
cubature formulae. These are not the main subject of the article. We are
especially interested in the direct approach.

Suppose one wants a cubature formula that is exact for all functions of a
vector space of functions. Because an integral and a cubature formula are
linear operators, it is sufficient and necessary that the cubature formula is
exact for all functions of a basis of the vector space. Hence, if one desires a
cubature formula that is exact for a vector space V^ and if the functions /j
form a basis for V^, then it is necessary and sufficient that

Q[fi]  = I[fi],  t = l,...,dimV3. (4.4)

If the fi are monomials, then the right-hand sides of (4.4), the so-called
moments, are known in closed form or can be evaluated. When the left-
hand sides of (4.4) are replaced by the weighted sum of function values (3.7)
and the number of points N is fixed, then one obtains a system of nonlinear
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equations in the unknown points y^' and weights wy.

> ( i ) 2. (4.5)

We are interested in cubature formulae with a 'low' number of points. In
Section 7.1 we will search for a lower bound for the number of points de-
pending on VJJ.

At this point we want to mention that one can distinguish between two
approaches to construct cubature formulae the direct way:

 one may proceed directly to solve the system of nonlinear equations, or
 one can search for polynomials that vanish at the points of the formula.

The foundation for successful application of the first approach is laid in Sec-
tion 5. The building blocks for the second approach are presented in Section
6. The second approach has been very successful in (one-dimensional) quad-
rature. Most published cubature formulae were, however, obtained using the
first approach.

5. On regions and symmetry

We will always try to be as general as possible but we wil l soon discover
that, for instance, lower bounds for the number of points depend on the
specific region Q and weight function u>(x). In this section we will define
some standard regions and describe their most important property, namely
symmetry.

5.1. Standard regions

In this paper we will encounter the following regions and weight functions
for the algebraic-degree case:

Cn: the n-dimensional cube

0, :=  {(xi,...,xn) : - 1 < Xi < l,i = 1 , . .. , n}

with weight function w(x.) := 1,

C^: the square

Q := {(xi,x 2) : - 1 < Xi < l,i = 1,2}

with weight function

w{x1,x2):=(l-x 2
1)

a(l-x2
2)

a, Q > - 1 ,
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Sn: the n-dimensional ball

f A ,
Si : = ( ( x i , . . . , xn ) : 2 2 x i ^ 1

{ 3=1
with weight function iu(x) := 1,

Un: the n-dimensional sphere, that is, the surface of the ball

f
Q — J fTl r  "I  \ <r2 — 1
Ji .— <. (X\, . . . , X n ; . 2_^ xi — 1

with weight function u;(x) := 1,
Tn: the n-dimensional simplex

f «
Si := < (xi, . .. ,xn) : 2 J XJ < 1 and Xj > 0, i = 1,... ,n

with weight function w(x) := 1,
2

E1^ : the entire n-dimensional space Si := En with weight function
n

w(x) :=  e~r with r2 := y^x2,
3=1

Er
n: the entire n-dimensional space Si := R" with weight function

:= e~r.

The trigonometric-degree case deals usually with the following region:

C*: the n-dimensional cube

Si := { ( x i , . . . ,xn) : 0 < Xi < l,i = 1,... ,n}

with weight function w(x) := 1.

We will use the above notation to refer to both the region and weight function
and to the integral over this region with this weight function.

5.2. Symmetry groups

The symmetry of an integral is described by its symmetry group. Let G
be any group of orthogonal transformations that have a fixed point at the
origin, and let |G| denote the order of the group.

Definition 5.1 A set Si C Rn is said to be invariant with respect to (w.r.t.)
a group G if Si is left unchanged by each transformation of the group, that
is, g(Sl) = Si, for all g € G. A function / is said to be invariant w.r.t. G
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if it is left unchanged by each transformation of the group, that is, /(x) =
f(g(xj) for all g £ G. An integral is invariant w.r.t. G if both its region and
weight function are invariant w.r.t. G.

Note that Sn, Un, E
T

n and Er
n are invariant w.r.t. each group of orthogonal

transformations.

Definition 5.2 The G-orbit of a point y € Rn is the set {g(y) : g <E G}.

A G-orbit of a given point is obviously an invariant set w.r.t. G. Observe
that the number <zi points in an orbit depends on the given point.

Example 5.1 Let n = 2, Q = {(x,y) : — 1 < x,y < 1}  and G the group
of linear transformations for which fl is G-invariant. The group can be
represented by the following set of matrices:

1 0 \ / 0 1 \ / -1 0 \ / 0 -1
J o —i y' v i o

I o w o n / -l o w o -l
o - i J ' V i o / ' v o i y ' V - i o

The orbit of an arbitrary point (a, b) is

{(a, b), (b, -a), (-a, -b), (-b, a), (a, -b), (b, a), (-a, b), (-6, -a) } .

Orbits can have less than 8 points:

 the orbit of (a, a), a / 0, is {(a, a), (—a, a), (a, —a), (—a, —a)}
 the orbit of (a,0), a ^ 0, is {(a,0), (-a,0), (0,a), (0, -a)}
 the orbit of (0,0) is {(0,0)} .

The most important symmetries for our purposes are central symmetry
and shift symmetry.

Definition 5.3 A set, integral or, respectively, cubature formula is called
centrally symmetric if it remains unchanged under reflection through the
origin, that is, it is invariant w.r.t. the group of transformations

Gcs : = { x i—> x , x i—> — x } .

Given a € l " , let {a}  G [0,1)" denote the vector each of whose compon-
ents is the fractional part of the corresponding component of a.

Definition 5.4 A set, integral or cubature formula is called shift symmet-
ric if it is invariant w.r.t. the group of transformations

Gss := { x ^ x , x ^ { x + (5, .
Shift symmetry is for the trigonometric-degree case what central sym-

metry is for the algebraic case. Cn is centrally symmetric and G* is shift
symmetric.
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The other important groups are the symmetry groups of regular polytopes
and their subgroups. The most common are:

An, n > 2 : symmetry group of a regular simplex
Bn, n > 2 : symmetry group of a cube
H™ ,n = 2 : dihedral group, that is, symmetry group of regular m-gon
/3, n = 3 : symmetry group of a regular icosahedron.

(The origin is the barycentre of the regular polytopes.)
In addition, the associated group A* is obtained from An by adding the

reflection through the origin as generator to the group.
Regions and cubature formulae are often called fully symmetric when they

are Sn-invariant, that is, when they are invariant w.r.t. the following group
of transformations:

,.- .,xn) i-> (sixPl,.. .,snxPn) :

€ {-l,+l},i  <E {l,...,n},{pi,...,pn} = { l , . . . ,n}} .

Example 5.1 dealt with this group. Observe that fully symmetric regions
are also centrally symmetric.

Regions and cubature formulae are often called symmetric when they are
invariant w.r.t. the following subgroup of

Gs  {(xi,..., zn) H-> (sixi,..., snxn) : si € {-1 , +1}, i e {1 , . . ., n}}.

Definition 5.5 A cubature formula is said to be invariant w.r.t. a group
G if the region Q, and the weight function to(x) are G-invariant and if the
set of points is a union of G-orbits. All points of one and the same orbit
have the same weight.

A G-invariant cubature formula can be written as

(5-1)
3=1

where the functional Qc(y^) is the average of the function values of / in
the points of the G-orbit of y(J'. QG{Y) is called a basic G cubature rule
operator.

5.3. Usefulness for cubature formula construction

The usefulness of symmetry groups in the context of constructing cubature
formulae is highlighted by the following result, due to Sobolev (1962). Let
F be a vector space of functions defined on fl C Rn that is G-invariant, so
that g(f) e F for all f e F and g G G.
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The G-invariant functions of F

F(G) := { / G F : g(f) = f for all g € G}.

form a subspace

Theorem 5.1 Let G be a finite group of linear transformations acting
on F. Then, every G-invariant linear functional on F is determined by its
restriction to F(G).

Proof. For every h £ G we have

<?(/)) = £%(/)) = E %(/)) =

hence j

Let / be a G-invariant linear functional on F, so that /[#(/)] = /[/ ] for
all / € F and g £ G. Hence we have

= 4 E W)i =7 ^ E
This proves the theorem, since we showed that for each / € F, a function
in F(G) exists such that the functional gives the same result for both.

The usual formulation of this theorem is an obvious corollary and is gen-
erally known as Sobolev's theorem.

Corollar y 5.1 (Sobolev's theorem) Let the cubature formula Q be G-
invariant. The cubature formula has degree d if it is exact for all invariant
polynomials of degree at most d and if it is not exact for at least one poly-
nomial of degree d + 1.

The exploitation of the symmetry of the region by imposing a structure
to the cubature formula has a simplifying effect. If one wants a G-invariant
cubature formula (5.1), the necessary and sufficient conditions (4.4) can be
replaced by the reduced system of nonlinear equations

i = l,...dimV3(G), (5.2)

where the fa form a basis for V^(G). The larger the symmetry group G,
the lower the dimension of the space of all G-invariant functions and, con-
sequently, the easier it will be to determine a cubature formula.

Example 5.2 If p(x) is an algebraic monomial, deg(p) is odd, and Q is
a centrally symmetric cubature formula, then /[/ ] = Q[f]  = 0. If t(x) is a
trigonometric monomial, deg(t) is odd and Q is a shift symmetric cubature
formula, then /[/ ] = Q[f]  = 0. So the symmetry of the cubature formula
suffices to integrate odd-degree monomials exactly. This is in agreement
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with Sobolev's theorem because all invariant polynomials for both groups
have even degree, and thus odd-degree monomials need not be taken into
account.

5-4- Invariant theory

We will now mention some results from invariant theory, a tool for working
with vector spaces of invariant polynomials. This will help us to set up the
system of nonlinear equations (5.2).

Definitio n 5.6 The G-invariant polynomials (f>\, ...,</>/ form an integrity
basis for the invariant polynomials of G if and only if every invariant poly-
nomial of G is a polynomial in (f>\ ,...,</>;. Each polynomial <\>i  is called a
basic invariant polynomial of G.

Because the degree of a polynomial is left unchanged by a linear trans-
formation of the variables, one can restrict the search of basic invariant
polynomials to homogeneous polynomials. If the number of basic invariant
polynomials I > n, then there exist polynomials equations, called syzygies,
relating </>i,..., <pi. Syzygies come into play when calculating the dimension
of a vector space >of invariant polynomials.

Some properties are summarized by the following theorems.

Theorem 5.2 There always exists a finite integrity basis for the invariant
polynomials of a finite group G.

Theorem 5.3 Let G be a finite group acting on the n-dimensional vector
space Kn. G is a finite reflection group if and only if the invariant polyno-
mials of G have an integrity basis consisting of n homogeneous polynomials
which are algebraically independent.

Example 5.3 For the symmetry group of a regular m-gon, H™, it is very
convenient to use basic invariant polynomials in the variables x and y, or in
polar coordinates r and 9:

o~2 . r x "r y ,

i=Q ^

In H™ one can distinguish two types of element: there are orientation-
reversing transformations (reflections) and orientation-preserving transform-
ations (rotations). The rotations of H.™ form a subgroup i?™ of order m.
R™ is not a reflection group and thus an integrity basis consists of more than
two polynomials. In addition to <T2 and am one can use as basic invariant
polynomial

o-'m :=rmsin(m0).
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The syzygy relating cr2, am and a'm is

For proofs of the theorems, basic invariant polynomials and other inform-
ation we refer to Fisher (1967) and Flatto (1978).

6. Characterization of cubature formulae

6.1. Interpolatory cubature formulae

Because we are interested in cubature formulae with a 'low' number of
points, we can restrict our attention to interpolatory cubature formulae.
Indeed, when a non-interpolatory cubature formula is given, by applying
Steinitz's Austauschsatz (Davis 1967) an interpolatory cubature formula that
uses a subset of the given points can be constructed.

Definitio n 6.1 If the weights of a cubature formula of degree dare uniquely
determined by the points, the cubature formula is called an interpolatory
cubature formula.

A cubature formula that is exact for all elements of V1} is determined by
a system of nonlinear equations (4.4) or (5.2):

Q[fi]  = I[fi],  i = l , . . . ,d imV3, (6.1)

where the /, form a basis for V^- If the points of a cubature formula are
given, then (6.1) is a system of dim V^ linear equations in the N unknown
weights. Hence an interpolatory cubature formula has iV < dimV^ and
there exist TV linearly independent polynomials U\,..., UN G V2 such that

det I : : | ^ 0.

l M y < " > )

These polynomials generate a maximal, not uniquely determined, vector
space of polynomials that do not vanish at all given points.

One can always find t := dim V^ — N polynomials Pi,.--,Pt such that the
polynomials

form a basis for V^. Then one can solve

 UN(yW) \
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and so obtain t = dim VJ| — N linearly independent polynomials

N
aiJuJ> i = h - - - , t (6.2)

that vanish at the given points of the cubature formula. We can replace the
polynomials pi in the basis of VJJ by the polynomials Ri.

With every cubature formula of degree d one can associate a basis of V^
that consists of dim V7  ̂ — N polynomials Ri that vanish at all the points of
the cubature formula and N polynomials Ui that do not vanish at all points.
A cubature formula is thus fully characterized by the polynomials R4. The
polynomials Ui give rise to a linear system that determines the weights.

These characterizing polynomials provide the links between cubature for-
mulae on one hand, and orthogonal polynomials and ideal theory on the
other hand.

6.2. Orthogonal polynomials

Because each Ri (6.2) vanishes at all points of the cubature formula,

Q[RiP] = 0, for all P e Vn.

Because the cubature formula has degree d,

I[RiP]  = Q[RiP] = 0 whenever ftP e VJ.

And that brings us to orthogonality.

Definitio n 6.2 A polynomial / G Vn is called d-orthogonal (w.r.t. a given
integral I), if I[fg]  = 0 whenever fg € Vj.

Definitio n 6.3 A polynomial / € Vn is called orthogonal (w.r.t. a given
integral / ) , if I[fg]  = 0 whenever deg(#) < deg(/).

The polynomials Ri that characterize a cubature formula of degree d are
d-orthogonal.

In contrast with the one-dimensional case, in the n-dimensional case more
than one orthogonal polynomial of a given degree d exists. Sequences of or-
thogonal polynomials can be constructed with d iml /p1 linearly independ-
ent polynomials of degree d and many such sequences exist.

The trigonometric case
For the integral with region C*,

I[f]=  f /Mdx,

any trigonometric monomial is orthogonal to every trigonometric monomial
of a lower degree. Hence, these are the obvious choice when io(x) = 1.
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We have only found other weight functions in theoretical results where
orthogonal polynomials are only used implicitly.

The algebraic case
It is a generalization of a result of Jackson (1936) that there exist dim V%~1

unique orthogonal polynomials of degree d of the form

P01'02 o"(«i,S2, . . . , * „ ) = x?x? . . . < "+ Q (6.3)

with YA=I
 ai  = d an(l Q £ ^d-i- The polynomials of the form (6.3) are

called basic orthogonal polynomials.
For so-called product regions, that is, when the region of integration is

a product of intervals and the weight function is a product of univariate
functions, so that

rb\ rbn
I\f]=  I wi(xi)... wn(xn)f(x)dxn... dxi,

Ja\ Jan

the basic invariant polynomials are products of monic univariate orthogonal
polynomials. For example, in C2, we have Pk'l(x,y) = Pk(x)Pi(y), where
Pi(x) is the monic Legendre polynomial of degree i in x. The regions Cn

and Er
n are product regions and their basic invariant polynomials are the

product of monic Legendre and Hermite polynomials, respectively.
As the explicit expressions for the basic orthogonal polynomials for Sn

and Tn are not well known, we list them here.

Sn: Let a € N" and /3 < a/2 (that is, 0 < fa < a*/2 for i = 1,... ,n).
Then,

See Appell and Kampe de Feriet (1926).
Tn: Let a € N" and j3 < a (that is, 0 < fa < at for i = 1,. . ., n). Then,

See Appell and Kampe de Feriet (1926) for n = 2 and Grundmann and
Moller (1978) for n G N.

E^: An explicit expression for the basic invariant polynomials has not yet
been shown.

The basic orthogonal polynomials reflect the symmetry of the integral. If
the integral is centrally symmetric then the basic orthogonal polynomials
of even (odd) degree consist of even (odd) degree monomials only. If the
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integral is fully symmetric then the basic orthogonal polynomial Pa (x) with
all a.i even (odd) consists only of monomials with even (odd) powers of x,,
for all z € { 1 , . . . , n } . Furthermore, Pp(a' (x) = Pa(p(x)) where p performs
a permutation on the components of its vector argument.

The structure of basic invariant polynomials motivates the following.

Definitio n 6.4 A set of polynomials S is called fundamental of degree d
whenever dim V^ - 1(= dim VJ| — dim V^_t) linearly independent polynomials
of the form x"1 . .. x"n + Qa, Qa € V5_i, M = d, belong to span 5.

6.3. Polynomial ideals

The polynomials Ui and Ri are not uniquely determined. The direct sum of
the vector spaces generated by these polynomials is

span{t/j}  © span{i }̂  = V£.

sp&n{Ri} is more than simply a vector space. Indeed, if one multiplies a
polynomial that vanishes at all points of the cubature formula by an arbit-
rary polynomial, the product also vanishes at all points. And that brings us
to ideals.

Definitio n 6.5 A polynomial ideal 21 is a subset of the ring of polynomials
in n variables V" such that if / i , fa G 21 and 31,52 € V", then /131+/2S2 6 2t-

The genesis of ideal theory is described in Edwards (1980). In this section
we describe the part of ideal theory needed in this paper.

Definitio n 6.6 If 21 is a polynomial ideal, then the set of polynomials
{/l i  > fs} C 21 form a basis for 21 if each / G 21 can be written in the form

s

f = Y,9jfj where 9j € V".
i=i

The ideal generated by {/1, , /s}  is

The polynomials B4 that characterize a cubature formula generate an
ideal, denoted by (R\,..., Rt).

Theorem 6.1 For any polynomial ideal there exists a finite basis.

Proof. See Hilbert (1890).

There are several types of bases for ideals. For our purposes, H-h&ses
and G-bases are important, //-bases are important as a theoretical tool.
Their power wil l be shown by the short proof of Theorem 6.7. G-bases
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are important because algorithms exist to construct them and to derive
properties of the ideal. It is thus very convenient for us that with some
restrictions a G-basis is also an i7-basis (Buchberger 1985, Moller and Mora
1986, Sturmfels 1996).

Definitio n 6.7 Let 21 be a polynomial ideal. The set {/i,... , fs} C 21 is
an H-basis for 21 if for all / £ 21 there exist polynomials gi,  ,gs such that

/ = 5Z9jfj and deg(^/ j) < deg(/), j = l,...,s.

Theorem 6.2 For any polynomial ideal an H-basis exists.

Proof. See Moller (1973).

Other names for an .ff-basis are canonical basis and Macaulay basis.
Before defining G-bases, also called Grobner-bases, we have to introduce

some notation. Let the set of monomials M = {x a : a 6 N™}  be ordered
by < such that, for any / , / i , / 2 £ M, 1 < / and f\ < fi imply f f\ <
ff2. Let / = YHL\ Cifi with fi £ M and c*  <E R0- Then the headterm of
/ = Hterm(/) := fm, and the maximal part of / = M(f) := cmfm. For
f,geVn\{0}\et

H(f,g) := lcm{Hterm(/), Hterm(5)} . (6.4)

Let F C Vn\{0} be a finite set. We write / —> F g if f,g € Vn and
there exist h £Vn, fi G F such that / = g + hfo, Kterm(g) < Hterm(/) or
g = 0. The map —> is called a reduction modulo F. By —>+ we denote

the reflexive transitive closure of —>.
F

Definitio n 6.8 A set F := {/i,... , f\} is a Grobner basis (G-basis) for
the ideal 21 generated by F if

/ G 2t implies /—>+0.

Theorem 6.3 Let F :=  {fi,...,fs} C "Pn\{0 }  and let 21 be the ideal
generated by F. Then the following conditions are equivalent.

 F is a Grobner basis of 2t.

 For all (i,j) with 1 < i < j < s,

Proof. See Moller and Mora (1986).

Theorem 6.3 provides an algorithmic way to verify if a given set is a
G-basis. Practical implementations incorporate several shortcuts. For ex-
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ample, according to Gebauer and Moller (1988), a pair (/*, fj) is superfluous
if H(fi, fj) divides properly H(fi, fj) and I < j .

Theorem 6.4 If < is compatible with the partial ordering by degrees,
that is, deg(/) < deg(g) implies Hterm(/) < Hterm(<7), then a G-basis with
respect to < is also an //-basis.

Proof. See Moller and Mora (1986).

Definition 6.9. (Nullstellengebilde) The zero set of an ideal 21 is

NG(a) := { y G Cn : / (y) = 0 for all / G 21}

If NG(2l) is a finite set of points, then the ideal is called zero-dimensional,
and obviously any basis for 21 consists of at least n polynomials.

An important function of a polynomial ideal is the Hilbert function (Hil-
bert 1890). It is useful to count the number of elements of NG(2t).

Definitio n 6.10 The Hilbert function H is defined as

\Vl), k<EN,
-k G No.

Theorem 6.5 If H(k; 21) = H(K; 21) for all k > K holds for a sufficiently
large K, then the polynomials in 21 have exactly H(K; 21) (complex) common
zeros if these are counted with multiplicities.

Proof. See Grobner (1949).

Definitio n 6.11 An ideal 21 is a real ideal if all polynomials vanishing at
NG(a) D M.n belong to 21, that is,

/ G 21 if and only if / (y) = 0, for all y G NG(2l) n Mn.

Note that the theorems given in this subsection are proven only for algeb-
raic polynomials in the literature. We do not see any problem in their ap-
plication to ideals of invariant algebraic polynomials or trigonometric poly-
nomials.

Within the ideal theoretical framework we can rephrase Theorem 3.1.

Theorem 6.6 Let / be an integral over an n-dimensional region. Let
{y ( 1 ), - . - ,y( i V ) }  C Cn and2 i := { / G Vn : / ( y «) = 0,z = 1, . .. ,N}. Then
the following statements are equivalent.

 / G a n V2 implies / [ / ] = 0.

 There exists a cubature formula Q (3.7) such that / [ / ] = Q[f],  for all
/ G Vj , with at most W(d;2l) (complex) weights different from zero.

Proof. This theorem is proven by Moller (1973) for the case Vn
d = PJ.
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The role of H-bases is illustrated by the following theorem by Moller
(1973).

Theorem 6.7 If {/i,... , / s}  is an if-basis of a polynomial ideal 21 and
if the set of common zeros of  f \ , . . . , fs is finite and nonempty, then the
following statements are equivalent.

 There is a cubature formula of degree d for the integral / which has as
points the common zeros of / i , . . . , fs. (These zeros may be multiple,
leading to the use of function derivatives in the cubature formula.)

 /, is d-orthogonal for /, i = 1, 2 , . . ., s.

Proof.

>': Let gft € Vn
d. Then I[gfi]  = £f=1 wjg(y®)fi(y®) = 0, since f{ € 21.

=': Let / € 21 U V2- Then, with #, as given in the definition of H-basis,

Schmid managed to give a characterization of cubature formulae with real
points and positive weights using real ideals.

Theorem 6.8 Let  ,Rt} C Vj+i  be a set of linearly independent
d-orthogonal polynomials that is fundamental of degree d + 1. Let 21 :=
(Ri,..., Rt) and V :=  spanji?:,..., Rt}. Let N + t = d imP î and U an
arbitrary but fixed vector space such that V^+i = V®U- Then the following
statements are equivalent.

 There exists an interpolatory cubature formula of degree d
N

with{y( 1),...,y(JV)} c NG(B).
21 and U are characterized by:

(i) 2int/ =
(ii) I[f 2 - R+]  > 0 for all / e U, where R+ G 21 is chosen such that

f-R+e Vn
d.

 21 is a real ideal and |NG(2l) n Rn\ = N. The points of the cubature
formula are the elements of NG(2t) D Rn.

Proof. See Schmid (1980a). D

This characterization was used to develop the T-method for constructing
cubature formulae; see Section 9.2.
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6.4- Tchakaloff's upper bound

To conclude this section we will prove an upper bound for the number of
points in an interpolatory cubature formula using the concepts from ideal
theory just introduced. We mentioned this result at the beginning of this
section.

Corollar y 6.1 If an interpolatory cubature formula of degree d for an
integral over an n-dimensional region has N points, then N < dimV^.

Proof. Suppose a given cubature formula of degree d has M points. Let
21 be the ideal of all polynomials that vanish at these points. According
to Theorem 6.6, there exists a cubature formula with JV < 7i(d;2l) < M
of these points, and from the definition of the Hilbert function, it follows
immediately that TV < H(d;2l) < dimV^. A basis of any complement of
21 fl V2 in V^ can be used to construct a set of linear equations to determine
the weights.

The above corollary is an elementary version of Tchakaloff's theorem.

Theorem 6.9 (Tchakaloff' s theorem) Let / be an integral over an n-
dimensional region Q with a weight function that is nonnegative in Q and
for which the integrals of all monomials exist. Then a cubature formula of
degree d with N < dimV^ points exists with all points inside Q and all
weights positive.

Proof. This theorem was proven by Tchakaloff (1957) for bounded regions
and by Mysovskikh (1975) for unbounded regions for VJJ = V%.

We will now prove, along the lines of Mysovskikh (1981), that this is the
smallest general upper bound. We will construct an n-dimensional region
for which a cubature formula of degree d with fewer points than dim V^ does
not exist.

Let \x := dim V^ and choose distinct points sSx\ . . ., a )̂ € Rn that do not
lie on a curve of order d. Let Cj be a cube with centre a^ and side p, such
that the /x cubes do not intersect. We will now show that, for sufficiently
small p, no cubature formula of degree d exists for f2 = C\ U ... U C  ̂and
to(x) = 1 with all points inside 0, and all weights positive.

Assume that such a cubature formula exists and let C\ be the subregion
containing no point of the cubature formula. Let p(x) 6 V^ satisfy

p(a )̂ = l, p(a«) = 0 for i = 2,...,fi,

and a a number such that

0 < a < -L . (6.5)
1\i
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Take p small enough such that p(x) > 1 — a, for x G C\, and |p(x)| < a, for
x G Uf=2Q. Then

p(x) dx p(x)

p(x)dx J2\f
i=2 \JCi

> (l-o)pn-{»-l)opn

d x

On the other hand,

From the exactness of the cubature formula it follows that

(1 — /icr)p" < afipn if and only if 1 <

which contradicts (6.5).

7. In search of minimal formulae

7.1. A general lower bound

We consider cubature formulae of the form

(7.1)

for the approximation of the integral (3.1). In this section we identify the
polynomials which are identical on the integration region O, and we restrict
our attention to cubature formulae with all points inside Q. This identifica-
tion leaves the polynomial space unchanged if and only if Q, contains inner
points.

Example 7.1 Consider the surface of the unit ball: ft = {x : Y^?=i X1 =

1}. Then the polynomials (J2?=ixi)Pi V € N, are all identified with the
constant polynomial 1. So,

n n
Theorem 3.1 can be used to derive a very general lower bound. Good lower

bounds are important because any method to construct cubature formulae
(implicitly or explicitly) depends on a bound or estimate of the number of
points. If a lower bound is known, then a method to construct cubature
formulae attaining this bound is usually known.
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Theorem 7.1 If the cubature formula (7.1) is exact for all polynomials of
V%k, then the number of points N > dim Vuf i .

Proof. Let F = V"|n, Fi = VJJ|n and

If / G Fo, then deg(/) < k and /(y^>) = 0, j = 1,..., iV. Because f2 is of
degree at most 2k, the cubature formula is exact and I[f 2]  = 0. Hence, on
$7, / = 0. So far, we have proved that

/ G Fo implies / = 0.

Let Q be a linear functional defined on V%\Q. Then

feFo=>f  = o  ̂ Q[f\ = 0.

From Theorem 3.1 it follows that weights Wj can be found such that

N
( ) ) ' for a l l / G V ^ .

So, the vector space spanned by the functionals Lj[f]  = / ( y ^ ) is equal
to the space of all linear functionals defined on V£|Q. Its dimension is also
dimV£|n. Hence TV > dimV£|n.

For regions with interior points and algebraic degree, Theorem 7.1 is given
by Radon (1948) for n = 2, and for general n by Stroud (1960). It should be
noted that the well-known proof of the Radon-Stroud lower bound does not
assume all points are inside the region. This restriction plays a role if one
includes regions such as the surface of the re-ball, without interior points.
For the surface of the n-ball, this result was given by Mysovskikh (1977).
Table 1 lists all known formulae that attain the lower bound, for the regions
we mentioned in Section 5.

For trigonometric degree, this theorem was probably first mentioned by
Mysovskikh (1988). Table 2 lists all known formulae that attain the lower
bound. Cools and Reztsov (1997) proved it for other spaces of trigonometric
polynomials.

For regions with interior points and product algebraic degree, this theorem
was presented by Gout and Guessab (1986). The bound is attained by Gauss
product formulae. For other spaces of algebraic polynomials it was presented
by Guessab (1986). The general formulation we gave is from Moller (1979)
with a proof due to Mysovskikh (1981).

Because &\mVd — (&xm.Vd)
n and dim7~d = (dimTd)n, this bound is

attained for the overall degree case by the product rules based on minimal
quadrature rules. Hence in the rest of this paper, not much attention is paid
to this case. As Tables 1 and 2 illustrate, the ordinary degree case is totally
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Table 1. Minimal formulae of algebraic degree

n

n
2

3

d

2
d
2k
4

6

8

4

N

n +1
d+l
k2+3k+2

2
6

10

15

10

regions

C Q T TT
^ni  '-'TH I m ^ n

c2
0-5

C2,S2,T2, E\

c2
T2

s2

c2
T2

c3

references

see Stroud (1971), Mysovskikh (1981)
see Stroud (1971)
Morrow and Patterson (1978)
see Stroud (1971),
Cools and Rabinowitz (1993)
Schmid (1983)
Rasputin (1983 a)
Rasputin (1986),
Wissman and Becker (1986)
Morrow and Patterson (1978)
Cools and Haegemans (1987c)
Weifi (1991)

Table 2. Minimal formulae of trigonometric degree for C*

n

n
2

d

2
2k

N

2n + l
2fc2 + 2k + 1

references

Noskov (19886)
Noskov (19886)

different: odd degree formulae do not appear in these tables (except for U2)
and the known even degree formulae are rare.

The following theorem teaches us something about the weights. It gener-
alizes a theorem from Mysovskikh (1981).

Theorem 7.2 If the cubature formula (7.1) is exact for all polynomials
of degree d > 0 and has only real points and weights, then it has at least
dimV]J positive weights, k = |_f J-

Proof. According to Theorem 7.1, N > dimV£ = K. Because d > 0, the
cubature formula is exact for / = 1, that is, J2f=iwj  = -̂ [1] > 0- Hence
there must be positive weights. If d = 1, then K = 1 and the theorem holds.

We now consider d > 2 and assume the theorem does not hold. Let the
number of positive weights v < K and order the points of the cubature

( i )formula such that these positive weights correspond to y
one can find a polynomial p £ V/J such that p (y^) = 0, j = 1, . . ., v.

Then
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The cubature formula is exact for p2, hence

i\p2\ = £ ^ ( y y ) ) -

Because I\p2]  > 0, p2(y^) > 0 and Wj < 0 we obtain a contradiction, hence
our assumption was wrong.

Corollar y 7.1 If a cubature formula attains the lower bound of Theorem
7.1, then all its weights are positive.

Theorem 7.1 gives the same lower bound for cubature formulae of degree
2k and 2k + 1.

7.2. The characterization of minimal formulae and the reproducing kernel

For even degrees, I am unaware of any greater lower bound than that given
in Theorem 7.1. The fact that not many formulae that attain this bound
exist for the ordinary algebraic or trigonometric degree case has to do with
the practical problems one encounters while attempting to construct these
formulae. In this section, the reproducing kernel approach to construct
cubature formulae is explained.

The concept of 'reproducing kernel' was first used for the construction
of cubature formulae of algebraic degree by Mysovskikh (1968). For the
trigonometric degree case it was first used by Mysovskikh (1990).

Choose the polynomials <j>\  (x), fa (x),... G Vn such that fa (x) is ortho-
gonal to fa(x), for all j < i, and I[fafa]  = 1. This means that {0i(x)}g : is
an orthonormal basis of V". For a given k EN we set K := dim V^ and

K(x,y) is a reproducing kernel in the space VJJ: if / G VjJ, then / coincides
with its expansion in fa, so that for a G C" fixed,

/(a) = £
The reproducing kernel K(x,y) plays an important role in connection

with Theorem 7.1, as the next theorem illustrates.

Theorem 7.3 A necessary and sufficient condition for the points y ^ ,
j = 1,... ,N = dim V£, to be the points of a cubature formula that is exact
for VJJfc is that

,y(s)) = Wr,, (7.2)

with br T̂  0 and 6rs the Kronecker symbol.
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Proof. To prove the necessity, assume a cubature formula (7.1) exists that
is exact on V k̂. Hence, it is exact for

and due to the orthonormality of the fa, we obtain

(yU)) = 6lm. (7.3)

Let W := diag(u>i,... ,WN), E the unit matrix, and let A be

\

:

Then (7.3) can be written as

AW A* = E,

where A* denotes the Hermitian conjugate of A. A is non-singular, for
otherwise there is an element of V£ that vanishes at all points of the cubature
formula, which is impossible.

W is also non-singular, so we obtain

or

A* A = W~x.

We deduce (7.2) with

(Remember Corollary 7.1!)
Sufficiency remains to be proven. Conditions (7.2) can be written as

A* A = B,

where B :=  diag(bi,..., 6/v) is non-singular. This is equivalent to

AB~lA* = E,

which in turn is equivalent to saying that the cubature formula with points
y(j)) j = l , . . ., JV, and weights u>j = 1/bj is exact for

and thus for all elements of V%k. (The final step of this proof motivated the
warning at the end of Section 3.)
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For the algebraic-degree case, the reproducing kernel approach has not
been very successful in constructing minimal cubature formulae. It can,
however, also be used to construct non-minimal formulae; see Moller (1973)
and Mysovskikh (1980). Moller (1973) also gave a modified reproducing
kernel method to construct centrally symmetric cubature formulae of odd
algebraic degree. This modification is based on the same idea we use in the
following section to derive a lower bound for such formulae. Cools and Sloan
(1996) used a similar modified method to construct minimal shift symmetric
cubature formulae of odd trigonometric degree. In this case an infinite
number of minimal cubature formulae for each odd degree was obtained in
the two-dimensional case.

The reproducing kernel approach has also led to interesting results on
the weights of cubature formulae (Cools and Haegemans 1988c, Cools 1989,
Beckers and Cools 1993). Such results have also led to the following theorem.

Theorem 7.4 A cubature formula of degree d = 2k with N = dimP̂
points does not exist for Un if n > 2 and k > 2.

Proof. See Taylor (1995).

For other characterizations of cubature formulae attaining the bound
of Theorem 7.1, see, for instance, Morrow and Patterson (1978), Schmid
(1978), and Schmid (1995).

7.3. The general lower bound for some invariant formulae

Although Theorem 7.1 has already shown many of its faces in the literature,
it has not yet unveiled all. We will now show what it can teach us about
centrally symmetric cubature formulae. In combination with Theorem 5.1,
Theorem 7.1 gives a lower bound for the number of G-orbits in a G-invariant
cubature formula. This can be translated into a lower bound for the number
of points by multiplying it with the highest possible cardinality of a G-orbit,
but one expects this will not usually give strict bounds. There is, however,
an interesting exception . ..

Consider centrally symmetric cubature formulae of algebraic degree 2k +1
with k even. According to Theorem 7.1, the number of orbits of this cubature
formula, K, satisfies

fc/2

(n ; 1t
z=0

A Gcs-orbit has one or two points and there can be only one orbit with one
point. Hence the above bound for K implies a bound for the number of
points:

N>2dimVl{Gcs)-l. (7.4)
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For example, for n = 2, we obtain

For C2, for instance, this bound is now known to be sharp for degrees 1,5
and 9. Consider shift symmetric cubature formulae of trigonometric degree
2k + 1. A Gss-orbit always has two points. Using the same arguments as in
the previous paragraph, we obtain the lower bound

for the number of points.
These results, which are derived under the restriction of central symmetry

and shift symmetry, will appear again in Section 8.3.
The following questions have probably already occurred in the reader's

mind while reading this section.

 Under what conditions is the lower bound of Theorem 7.1 sharp?
 What is the minimum number of points for a cubature formula for a
given region?

 Is the symmetry of the region somehow reflected in the structure of
minimal formulae?

These questions have kept researchers busy for approximately 50 years now,
and are still only partially answered. We return to them in the next section.

8. In search of better  bounds for  odd degree formulae

8.1. The need for a better bound

In Section 7.1 we obtained a lower bound for the number of points N of
a cubature formula that is exact on a vector space of functions V^. This
bound, presented in Theorem 7.1, depends only on V^, restricted to Q. In
this section we will see that this bound is in general too low for odd degrees
d. Higher lower bounds have to take into account more information on the
region $7 and weight function u;(x).

Suppose we have a cubature formula of algebraic degree d — 2k + 1 that
attains the lower bound of Theorem 7.1, and let 21 be the corresponding
ideal. Then

H(fc;a) = dimPJJ = N = W(d;»).

Hence the ideal contains dim/P^+1 — dim'PJJ linearly independent polyno-
mials of degree k + 1. These polynomials must be d-orthogonal and thus,
because of their degree, simply orthogonal. So we have in fact proved the
following theorem.
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Theorem 8.1 A necessary condition for the existence of a cubature for-
mula of algebraic degree 2k + 1 with N = dim V1  ̂ points is that the basic
orthogonal polynomials of degree k + 1 have iV common zeros.

The condition of Theorem 8.1 does not hold for standard regions such as
Cn, Tn, Sn, ET

n and Er
n. Radon (1948) discovered that no cubature formula

of degree 5 with 6 points exists for C2, T2, and S -̂

8.2. The quest for exceptional regions

Fritsch (1970) searched for an n-dimensional region for which a formula of
degree 3 with n + 1 points exists. He defined a region Sn{d) as follows. Let
Sn be the n-simplex with vertices vo,vi,...,vn and centroid c. Let Fk be
the face of Sn that does not contain the vertex vk and let ck be the centroid
of Fk. Let d > 0 and define the points uk(d) by

uk(d) = dck + (1 - d)c , k = 0 , 1 , . . ., n.

Let Snk{d) be the simplex with base Fk and vertex uk{d). Define

q ( A \ - l Sn U ( \ J n
k = 0 S n k ( d ) ) , d > l ,

I On ~ (Ufc=0 bnk{d)) , 0 < d < 1.

Fritsch constructed a cubature formula of degree 3 with n +2 points depend-
ing on n and d for the region Sn(d). He proved that there exists a dn > 1,
a zero of a known polynomial, such that his formula has a zero weight, and
thus uses only n + 1 points. For two dimensions he found two such regions,
as shown in Figure 2. He also proved that there exists one d  ̂ for which
a formula of the form he looked for does not exist. For two and three di-
mensions the region 5n(d*) is centrally symmetric (that is, the region and
weight function remain invariant after reflection through the centre) and we
wil l see later that the minimal number of points in a formula of degree 3 for
such a region requires 2n points.

Mysovskikh and Cernicina (1971) constructed a region Q, = f̂ i U f̂  with

Qi = {(x,y) : - r < x < r , 0 < y < e"| x |} ,

fi 2 = {{x, y) : -o- < x < a , -e < y < 0} ,

r = 3 , e ~ 0.048 , a ~ 1.266,

for which there exists a cubature formula of degree 5 with 6 points.
Recently, Schmid and Xu (1994) found a two-dimensional region for which

formulae with d i rndl points exist for each degree 2k + 1.

Theorem 8.2 Let W(u, v) := w(x)w(y) with w(t) :=  (1 - t)a(l +1)13 and
let

fl := {(it , v) : (x, y) £ [ -1,1]2, x <y , u = x + y , v = xy}.
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d2 = 5.15815028... d2 = 0.77547178...

Fig. 2. Regions S2{d2) for which a formula of degree 3 with 3 points exists

1

- 2 - f

Fig. 3. Region for which a formula of degree 2k + 1 attains the bound of
Theorem 7.1

Then there exists an infinite number of minimal cubature formulae of degree
2k and one (uniquely determined) minimal formula of degree Ik + 1 (both
with dirndl points) for the following two classes of integrals,

f(u,v)W(u,v)(u2-iv)Jdudv with a,/3 > - 1, 7 =

Proof. See Schmid and Xu (1994).

Figure 3 displays Q.. Berens, Schmid and Xu (1995) obtained a similar
result for arbitrary dimensions.

8.3. Improved bounds for centrally symmetric formulae

In Example 5.2 and at the end of Section 5 we encountered the pleasant
effect of central symmetry on cubature formulae of algebraic degree. Myso-
vskikh (1966) showed that for centrally symmetric n-dimensional regions,
the minimal number of points in a cubature formula of algebraic degree 3
is 2n. The construction of such formulae is summarized by Stroud (1971).
Moller (1973) generalized this improved lower bound for all odd degrees.
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Theorem 8.3 Let i?2fc denote the vector space of even polynomials of
"P f̂e+iln and i?2fc+i denote the vector space of odd polynomials of 772jt+i|f2i
k € No- If the algebraic degree of the cubature formula (7.1) for a centrally
symmetric integral is d — 2k + 1, then

N > 2 dim R  ̂— 1, if A; even and 0 is a point,
JV>2dimi?fc, otherwise.

A cubature formula that attains this bound is centrally symmetric and has
all weights positive.

Proof. See Moller (1973) for the case where Q. has interior points and Moller
(1979) for the general case.

A similar result holds for cubature formulae of trigonometric degree.

Theorem 8.4 Let R  ̂ c T% denote the vector space of polynomials whose
degree has the same parity as A;. If the trigonometric degree of the cubature
formula (7.1) for an integral over C*  is d = 2k + 1, then

Proof. See Mysovskikh (1988).

A nice result about the weights was obtained using the reproducing kernel.

Theorem 8.5 A cubature formula that attains the bound of Theorem 8.4
has all weights equal to 1/iV.

Proof. See Beckers and Cools (1993).

To illustrate my belief in the similarities between the algebraic degree case
and the trigonometric degree case, as well as the similarities between central-
symmetry and shift symmetry, I dare to pose the following conjecture.

Conjecture 8.1 Any cubature formula attaining the bound of Theorem
8.4 is shift symmetric.

How good are the lower bounds of Theorems 8.3 and 8.4? For two di-
mensions it is now known that these bounds are the best possible if further
information on the integral is not available.

For the regions C^5 and C^0'5, cubature formulae attaining the lower
bound of Theorem 8.3 exist for arbitrary odd degree (Cools and Schmid
1989). In Table 3, we list the known minimal formulae for standard regions.
For some regions, for instance 52 and E\ , it has been proved that the bound
of Theorem 8.3 cannot be attained for degrees 4k + 1, k > 1. For C2, it
is known that a cubature formula of degree 13 with 31 points cannot exist.
For these regions at least one additional point is required (Verlinden and
Cools 1992, Cools and Schmid 1993).
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Table 3. Minimal formulae of odd algebraic degree

references
Cn | Sn | Er

n | Er
n

[1,4]

3
5
7
9
11
3
5

4
7
12
17(18)
24
6
13

[1]
[1]
[1]*
[3]
[5]
[1]
[1]*

[1]
[1]
[1]
[2]

[1]

[1]
[4]

[1]

[1] = Stroud (1971), [2] = Piessens and Haegemans (1975), [3] = Moller (1976),
[4] = Haegemans and Piessens (1977), [5] = Cools and Haegemans (1988a),
*  = Many known formulae; see also Cools and Rabinowitz (1993).

Table 4. Minimal formulae of odd trigonometric degree for C*

n \ d N references

n

2

3

1

3

d

5

2
An

(d+i)2

2

38

Mysovskikh (1988)
Noskov (1988a)

Beckers and Cools (1993)
Cools and Sloan (1996)
Frolov (1977)

For C ,̂ cubature formulae attaining the lower bound of Theorem 8.4
exist for arbitrary odd degree (Cools and Sloan 1996). In Table 4, we list
the known minimal formulae for C*.

8.4- An improved general bound for odd degrees

We will now present a lower bound especially derived for odd algebraic
degrees, d = 2k + 1, without any assumptions on the symmetry of the
region. Let

Ok+l := { / e Vn
k+1 : = 0},
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Table 5. Minimal formulae of odd algebraic degree for Tn

n d I N references

Stroud (1971), Hillion (1977)
Stroud (1971)
Gatermann (1988), Becker (1987)
Stroud (1971)
Stroud (1971), Grundmann and Moller (1978),
de Doncker (1979)

2

n
4

3
5
7
3
3

4
7
12
n + 2
6

and define for arbitrary I £ {2,..., n}

fc+1

ifi  G Ok + 1

t = l

Theorem 8.6 If a cubature formula has algebraic degree 2k + 1, then

Proo/. See Moller (1976) (I = 2, SI with interior points), and Moller (1979).

For two dimensions, the bounds of Theorems 8.3 and 8.6 coincide for
centrally symmetric integrals:

H)(* + 2) ,
N> (8.1)

For more than two dimensions, Theorem 8.3 gives a higher lower bound than
Theorem 8.6 for centrally symmetric integrals. Theorem 8.6 was applied by
Moller to the triangle T2. He obtained (8.1) for 0 < k < 5. Rasputin
(1983&) generalized this to all k. Berens and Schrnid (1992) proved that
the same lower bound is obtained for some non-conStant Weight functions.
In addition, Moller (1976) obtained the following results for Tn: for k = 1,
72 = 2 and for k = 2, 72 = 2n — 2. In Table 5 the known minimal formulae
for this region are listed.

8.5. The quality of lower bounds

In this section we have presented the best known lower bounds for the num-
ber of points in cubature formulae of odd degree. We gave examples showing
that these bounds can be attained for some regions. If one looks at Tables
3, 4 and 5, the results for standard regions look meagre: minimal formulae,
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that is, formulae attaining a known lower bound, are known only for low
dimensions and low degrees. It is likely, but not certain, that these bounds
are too low for standard regions and for higher degrees or dimensions. This
uncertainty is one of the main problems in the construction of cubature for-
mulae and the construction methods based on characterizing polynomials
suffer from it, as we shall see in the following section.

9. Constructing cubature formulae using ideal theory

9.1. A bird's-eye view

Orthogonal polynomials were already being used by Appell (1890) and
Radon (1948) to construct cubature formulae of algebraic degree for two-
dimensional integrals. Radon tried without success to construct cubature
formulae of degree 5 with 6 points. He constructed formulae of degree 5 with
7 points using the common zeros of three orthogonal polynomials. His work
marked a starting point of a theory. During the 1960s, Stroud and Myso-
vskikh studied the relation between orthogonal polynomials and cubature
formulae for n-dimensional integrals. In the mid-1970s, many new, mainly
symmetric, cubature formulae were obtained using the common zeros of
three orthogonal polynomials in two and three variables; see, for instance,
Piessens and Haegemans (1975), Haegemans and Piessens (1976), Haege-
mans and Piessens (1977), Haegemans (1982). The theoretical results were
put in the framework of ideal theory by Moller (1973). Methods to construct
cubature formulae based on these and other theoretical achievements were
derived by Morrow and Patterson (1978), Schmid (19806) and Cools and
Haegemans (19876), amongst others.

We mentioned that one can also work with ideals of invariant polyno-
mials. Gatermann (1992) combined ideal theory with the theory of linear
representations of finite groups.

We will now present two successful methods to construct cubature for-
mulae of algebraic degree. In order not to over-complicate everything, we
restrict this to two dimensions.

9.2. The T-method

A starting point in Theorem 6.8 is that the ideal 21 is fundamental of degree
d+1. In general, 2t will be fundamental of degree I, Z+l,... where [d/2\ +1 <
I < d + 1. Let m be such that 21 is fundamental of degree m, but is not
fundamental of degree m — 1. One can try to determine a set of polynomials
of degree m that form a basis of an ideal satisfying the conditions of Theorem
6.8. This idea was first suggested by Morrow and Patterson (1978) and
Schmid (1978) for two-dimensional regions. It was further developed by
Schmid (1980a); see also Schmid (19806) and Schmid (1995).
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Consider the case where the ideal 21 associated with a cubature formula
of degree 2k — 1 is fundamental of degree k + 1. Let RQ, ..., Rk+i be linearly
independent polynomials of degree k + 1 in two variables, x and y. These
polynomials are orthogonal to all polynomials of degree fc — 2 if they vanish
at the points of a cubature formula of degree 2k — 1. Thus the R4S can be
written as

i=o i=o

where the Pa'b are the basic orthogonal polynomials (6.3). The /3,j and 7^
are parameters which have to be determined such that the R4S belong to
an ideal 21 satisfying the conditions of Theorem 6.8. When the integral is
centrally symmetric, the basic orthogonal polynomials have a special form
and the j3ij  vanish.

The construction is based on the following observations.

 Let Qi := yRi — xRi+\, i — 0 , . . ., k. Then Qi is a polynomial of degree
k and Qi has to be orthogonal.

 The polynomials xQi, yQi, i = 0 , . . ., k, are of degree k + 1 and they
belong to 21. Thus xQi, yQi G span{i?o,...,

Both conditions lead to necessary conditions: linear and quadratic equations
in the jijS. Starting from the explicit expressions for the basic orthogonal
polynomials, a computer algebra system can be programmed to derive these
equations. The linear equations can then be used to reduce the number
of unknowns in the system of quadratic equations. In the resulting system
the number of equations and unknowns is usually different. More recently,
Schmid (1995) worked this out in detail using matrix equations.

The inequality in Theorem 6.8 translates into inequalities for the 7 .̂
These inequalities together with the linear and quadratic equations give ne-
cessary and sufficient conditions for the jijS so that all conditions of Theorem
6.8 are satisfied. Schmid (1983) used this method to construct cubature for-
mulae of degree < 9 for C%- Cools and Schmid (1989) used it to construct
formulae of arbitrary odd degree for C^0'5 and C®'5-

We will now prove, using G-bases, that the above method works. A similar
proof for the n-dimensional case is given by Moller (1987).

Theorem 9.1 Let

Ri = Pk+1-i'i + Z^'yijPk-1-", j = o,.-.,k + i,
Qi = yRi-xRi+1, z = O , . . . , A :. { ' '

If  the polynomials Qi are (2k — l)-orthogonal and if all polynomials xQi, yQi
are elements of span{.Ro, , Rk+i}, then F := {RQ, ..., Rk+i,Qo,...,
is a G-basis.



CONSTRUCTING CUBATURE FORMULAE 41

Proof. We use the term ordering 1 < y < x < y2 < xy < x2 < ..., apply
Theorem 6.3 and distinguish three cases.

Case 1: {Ri,Rj), i, j = 0,. . ., k + 1.
H(Ri,Rj) = xk+l~lyi. This is a divisor of H(Ri,Rj) = zf c + 1-y for
i < j , if i < I. Hence the pair (R4, Rj) is superfluous if there exists a I
such that i < I < j . Therefore we only have to check pairs (Ri, R4+1).
But

,Ri

xk+l-i yi "« Xk-iyi+l

i+1) -

- xRi+i

= Qi,

and thus SP(Ri,Ri+i) + 0.

Case 2: (Qu Qj), i, j = 0,. . ., k.
If Hterm(Qj) = Hterm(Qj) then SP(Qi,Qj) 6 span{Qi}  and thus

+Q;)
t

If Hterm(Qi) 7̂  Hterm(Qj) then there exist u,v G {^,y}  for which

Because xQi, yQj 6 span{i?o,... Rk+i} this reduces to Case 1.

Case 3: (Ri,Qj), i = 0,.. ., k + 1, j = 0,. . ., k.
One can always find a «e {x, y} such that SP(Ri, Qj) = SP(Ri, uQj).
Since x, Qi, yQi are in span{i?o,..., Rk+i}, this reduces to Case 1.

Theorem 9.2 Let F be as denned in Theorem 9.1. If the common zeros
of the polynomials in F are real and simple, then there exists a cubature
formula of degree 2k — 1 with the elements of NG(F) as points. The number
of points N < M^h3).

Proof. The ordering used in the proof of Theorem 9.1 is compatible with
the partial ordering by degree. According to Theorem 6.4, F is thus an H-
basis. Theorem 6.7 then guarantees the existence of the cubature formula.

An upper bound for the number of points in the cubature formula is given
by the Hilbert function. Because F is fundamental of degree k + 1,

H(2k-1,F) = H(k,F)
=  dimp|-dim(p|nF)
= dimV2

k_1+ codim(FDVl).
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There wil l be at least one polynomial Qi, hence codim(F n V\) < k. Thus

The upper bound of Theorem 9.2 is very weak. A tighter result is known.

Theorem 9.3 If the ideal of all polynomials that vanish at the N points
of a cubature formula of degree 2k — 1 contains a fundamental set of degree
k + 1, then

Proof. See Cools (1989) or Schmid (1995).

This clearly shows that the success of this method strongly depends on
the quality of the lower bound (8.1) for the particular integral for which a
cubature formula is wanted.

If the lower bound (8.1) underestimates the real minimal number of points
by more than one, then the method is useless. At the moment it looks as if
this is the case for d > 15 for the regions C2, 52 E\ and E%. The known
exceptions are C®'5 and C^~0'5.

9.3. The S-method

The 5-method was suggested by Cools and Haegemans (19876) in an at-
tempt to find a method that is less dependent on the lower bound (8.1)
than the T-method. If the T-method is used to construct symmetric cub-
ature formulae for a two-dimensional symmetric integral, then 7^ = 0 if
i + j is odd, in the polynomials E4 (9.1). The polynomials E4 can be divided
into two sets: A := {R4 : i is even}  and B :=  {Ri : i is odd}. Instead of
demanding that (A U B) C 21, as in the T-method, we demand that A C 21
or B C 21. We assign C := A and q := 0 if we want to investigate the case
A C 21. We assign C := B and q := 1 if we want to investigate the case
B c 21. The 5-method is based on the following observations.

 Let Si :=  y2Ri — x2Ri+2, i = q,q + 2,... ,k — l. T h en Si is a polynomial
of degree k + 1 and Si must be orthogonal to all polynomials of degree
fc-2.

 Because Si has degree k + 1, 5, £ span(C).

Both conditions lead to necessary conditions for 7^: linear and quadratic
equations in the ~fijS. In Cools and Haegemans (19886), necessary and suf-
ficient conditions are given for this method, with proofs along the lines of
the proof of Theorem 9.1.

The 5-method has been used to construct cubature formulae of degree 13
with 36, 35 and 34 points for C2, 52, £7 > a nd of degree 17 with 57 points
for C2.
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9.4- Evaluation

Orthogonal polynomials and ideal theory are powerful tools for theoretical
investigations of cubature formulae. The most complex concepts of ideal
theory have only been used to develop construction methods and to prove
theorems about cubature formulae. The reader has probably noticed that
we do not need the most sophisticated part of ideal theory to construct
formulae: operations on vector spaces of polynomials suffice. This is one of
the beautiful aspects of ideal theory. The construction methods described
require the solution of systems of linear and quadratic equations. These
systems are in general smaller than the systems that determine the formulae.
One problem for these methods is that they stand or fall with the quality of
the lower bounds given in Sections 7 and 8.

10. Constructing cubature formulae using invariant theory

10.1. A bird's-eye view

In this section we will describe how one tries to construct cubature formulae
by solving the associated system of nonlinear equations (4.4). Sobolev's
theorem plays a very important role: it is essential to limi t the size of
the nonlinear system by imposing structure on the cubature formulae. It
suggests that we look for invariant cubature formulae, that is, solutions of
the equations

(10.1)

where the fa form a basis for the space of G-invariant polynomials V
The idea of demanding that a cubature formula has the same symmetries

as the given integral is as old as the construction of cubature formulae itself.
Indeed, when Maxwell (1877) constructed cubature formulae for the square
and the cube, he considered only cubature formulae that are invariant with
respect to the groups of symmetries of these regions, that is, Gps-

There is no reason why a cubature formula should have the same structure
as the integral. (What should a formula for a circle look like?) Cubature
formulae that are invariant with respect to a subgroup of the symmetry
group of the integral were already obtained by Radon (1948). His formula
for C2 is symmetric, that is, Gs-invariant, and his formula for S2 has the
origin and the vertices of a regular hexagon as points, that is, iff -invariant.

Russian researchers, aware of Sobolev's result, applied the tools of in-
variant theory to construct cubature formulae invariant with respect to the
symmetry groups of regular polytopes An, Bn and I3 and the extension
group A*n. Notable results are those of Lebedev (1976) for Un (see also
Lebedev and Skorokhodov (1992) and Lebedev (1995)) and Konjaev (1977)
for S3, E$ and Er

2.
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Table 6. Different types of H2- orbit

type generator number of
unknowns

number of points
in an orbit

unknowns

0
1
2
3

(0,0)
(a,0)
(a,a)
(a,b)

weight
a, weight
a, weight

a, b, weight

Western researchers also considered subgroups without using the general
theory. They realized that imposing too much structure on a formula prohib-
its attaining the minimal number of points. For instance, a fully symmetric
formula for C2 of degree 9 requires 20 points, a symmetric formula 18, but a
rotational invariant (R4) cubature formula requires 17, and this is minimal.
Humans seem to have a preference for certain symmetries. Symmetry with
respect to the axes (Gs) is studied regularly but symmetry with respect
to the diagonals has been used only recently. The symmetry groups are
nevertheless isomorphic. Rotational symmetries turned up unexpectedly in
Moller (1976) and were later used to construct some other minimal formulae
(Cools and Haegemans 1988a).

We will now present the consistency conditions approach to construct-
ing fully symmetric cubature formulae. For simplicity, we again restrict
ourselves to two dimensions.

10.2. Consistency conditions and fully symmetric regions

In this section, fully symmetric cubature formulae for two-dimensional in-
tegrals will be considered. The symmetry group is the dihedral group
H$ = B<i = GFS- I n Example 5.1 it was shown that not all orbits have
the same number of points. Each orbit in an invariant cubature formula
introduces a number of unknowns in the nonlinear equations (5.2) and gives
a number of points in the cubature formula (5.1). The role of the different
types of orbit is described in Table 6.

Let Ki be the number of orbits of type i in an invariant cubature formula.
One does not expect a solution of a system of nonlinear equations if there
are more equations than unknowns. The previous sentence is the foundation
upon which all work in this area is based. It sounds very reasonable but it
also incorporates the weakness of this approach.

Rabinowitz and Richter (1969) introduced the notion of consistency con-
ditions. A consistency condition is an inequality for the Ki that must be
satisfied in order to obtain a system of nonlinear equations where the num-
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ber of unknowns is greater than or equal to the number of equations in each
subsystem. Cubature formulae that do not satisfy the consistency conditions
are called 'fortuitous' and are thought to be rare.

We encountered basic invariant polynomials for H\ in Example 5.3:

<72 := x2 + y2 and CT4 := x4 - 6x2y2 + y4.

For this particular group it is more common to use <f>i  := x2 + y2 and
4>2  x2y2 as basic invariant polynomials.

Demanding that the number of unknowns exceeds the number of equations
gives a first consistency condition:

Ko + 1KX + 2K2 + 3K3 > dimV2
d{GFS). (10.2)

For d = 2k + l, dimV2
d(GFS) = 1 + k + LTJ

A cubature formula that is exact for <f>2  cannot use orbits of types 0 and
1 only, because such orbits have a zero contribution in a G^s-invariant
cubature formula. Thus, to integrate the polynomials

<h(<t>i<t>i)  f o r a11 i,j i + 4j < d - 4 ,

orbits of types 2 and 3 are needed. So we obtain the second consistency
condition:

2K2 + SK3 > dimV2
d_4(GFS). (10.3)

A cubature formula that is exact for (x — y)2(x + y)2 = <p2 — 4<p2 cannot use
orbits of types 0 and 2 only, for the same reasons as in the previous case.
Analogously, the third consistency condition is obtained:

2KX + 3K3 > dimVd_A(GFS). (10.4)

A cubature formula that is exact for x2y2(x — y)2(x-\-y)'2 — 4>\<j>2  ~^4>2 m u st
use orbits of type 3 because all other orbits have a zero contribution. Thus,
to integrate the polynomials

(<f>\<fa  - 40 l ) (0 i$) for all i,j : 0 < 2i + Aj < d - 8,

orbits of type 3 are needed. From this follows the fourth consistency condi-
tion:

8(GF 5) . (10.5)

The final consistency condition is that there can be only one orbit of type 0:

Ko < 1. (10.6)

The above consistency conditions were first derived by Mantel and Rabinow-
itz (1977).

If the structure of a cubature formula with N = Ko + AK\ + AK2 + 8K3
points satisfies the consistency conditions (10.2), (10.3), (10.4), (10.5) and
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(10.6), the system of nonlinear equations (10.1), as well as each subsystem,
has a number of unknowns that exceeds the number of equations and that
looks promising to those interested in a solution of such a system. However,
appearances can be deceptive.

The construction of a cubature formula with the lowest possible number
of points requires two steps.

(1) Solve the integer programming problem:

minimize N(Ki : i = 0,1,. . .),

where the integers K{ satisfy the consistency conditions.

(2) Solve the system of polynomial equations (10.1). If no solution of the
polynomial equations is found, then another (non-optimal) solution of
the consistency conditions must be tried.

Example 10.1 For a fully symmetric formula of degree 7, the consistency
conditions become

i/~ i o is 2K2-
2K2-
2Ki-

\~ 3ii3
\-3K3

\-3K3

3^3
Ko

>  6,
> 2,
> 2,
> o,
< 1.

Optimal solutions are [Ko, Ki,K2, K3]  = [0,1, 2,0], and [0, 2,1,0]. (Optimal
solutions are not necessarily unique!) This second structure corresponds to
a cubature formula of the form

Q[f]  =
+w2(f(x2,0) + f(-x2,0) + / (0, x2) + / (0, -x2))

+w3{f{x3, x3) + f{-x3,x3) + f(x3, -x3) + f(-x3, -

The system of nonlinear equations (5.2) for this case is

4w3(f)2(x3,x3)
4w3(f>i(x3,x3)(t>2(x3,x3) =8w3x% =I[4>\<I> 2]

xi,Q) + 4w2(f>i(x2,0) = I[(f>i]  -4w3(f>i(x3,x3),
xi, 0) + 4w2(t>\{x2,0) = I{4>\\  - 4w34>\{x3, x3),
xi,0) + 4w2(/)

3
1(x2,0) = I[4>\]-4w 34>\(x3,x3).

From the first two equations one determines w3 and x3. Then w\, x\, w2,
and x2 follow from the remaining four equations. Both systems have the
familiar form of systems that determine a Gauss quadrature problem.
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10.3. How to exploit symmetries

Invariant theory is very useful for constructing a system of nonlinear equa-
tions that determines a cubature formula with a particular structure. One
advantage of imposing a structure is that the number of nonlinear equa-
tions is reduced. For instance, a cubature formula of degree 7 for a two-
dimensional region is a solution of a system of dimPf = 36 equations. A
fully symmetric formula of the same degree is determined by 6 equations.

A second advantage is that one can often find a basis for the invariant
polynomials such that the equations are easy to solve. Typically, the system
of nonlinear equations is split into several smaller subsystems which can be
solved sequentially.

A third advantage is that, if the basis is chosen carefully, then each of
these subsystems of nonlinear equations can be solved easily, because they
have the same form as the systems that determine a quadrature formula.

The success of this approach depends on the selection of a proper basis
for the invariant polynomials, and that is definitely more of an art than a
science. This is clearly illustrated in Example 10.1. Other nice examples are
given by Cools and Haegemans (1987a) and Beckers and Haegemans (1991).

10.4- Some critical notes

Consistency conditions can be derived for every structure and dimension.
They can help to set up a system of nonlinear equations where in each
subsystem the number of unknowns is larger than or equal to the number
of equations. See, for example, Lyness and Jespersen (1975), Mantel and
Rabinowitz (1977), Keast and Lyness (1979), Cools (1992), and Maeztu and
Sainz de la Maza (1995).

In general, the system of nonlinear equations is still too large to be solved
completely with currently available tools. One usually has to use an iterative
zero finder and must provide very good starting values.

It must be emphasized that consistency conditions are neither sufficient
nor necessary conditions. Even if a system of equations has more unknowns
than equations, it might not have a real solution. Furthermore, fortuitous
cubature formulae are known, for instance the minimal formulae for C^'5

and C2-°-
5.

The success of this approach depends on the quality of the lower bound
for the number of points provided by the integer programming problem. For
higher degrees and dimensions, many solutions of the consistency conditions
exist for which no solutions of the nonlinear equations are known.

Most researchers have studied consistency conditions without worrying
about the associated cubature formula. It is often easier to derive these
conditions and, at the same time, obtain a system with a special structure
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that makes it easier to solve it, using the tools from invariant theory. See,
for example, Beckers and Haegemans (1991).

Although the foundations of consistency conditions are built on quicksand,
it must be said that most known cubature formulae of algebraic degree are
obtained this way. In fact, for higher dimensions and higher degrees, only
this approach has so far delivered cubature formulae.

11. A never-ending story

Let those patient readers who have borne with me thus far now join with
me in looking back. We started from a solid, general theoretical foundation.
Almost immediately we restricted our attention to the most common vector
spaces, hence limiting consideration to cubature formulae of algebraic and
trigonometric degree. We paid attention to lower bounds for the number of
points and saw that they can easily be attained in the overall algebraic or
trigonometric degree case. Following that, we searched for better bounds
that, at least in the two-dimensional case, are attained for the trigonometric
degree case. The rest of our time we spent on the most difficult and inter-
esting algebraic degree case and ended with two approaches to constructing
such formulae.

From the above, it is clear that solving systems of polynomial equations
is very near to our heart. We therefore welcome the survey of Li (1997) in
this volume.

Our list of references may seem long, yet it is incomplete. And there is
much more to say: see also Engels (1980) and Davis and Rabinowitz (1984),
and, if you can wait, Davis, Rabinowitz and Cools (199x). Let me whet your
appetite.

A cubature formula is meant to be used to approximate integrals. Users
want to have an indication of the accuracy of the approximation. A classical
way to obtain an error estimate is to compare several approximations of
different degrees of precision. Sequences of embedded cubature formulae
help to reduce the burden. Indeed, these have already been investigated.
As Cools (1992) incorporates a survey of some of the obtained results, I
resist the temptation to elaborate on this subject.
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1. Introduction

More than anything else, the increase of computing power seems to stimulate
the greed for tackling ever larger problems involving large-scale numerical
simulation. As a consequence, the need for understanding something like
the intrinsic complexity of a problem occupies a more and more pivotal po-
sition. Moreover, computability often only becomes feasible if an algorithm
can be found that is asymptotically optimal. This means that storage and
the number of floating point operations needed to resolve the problem with
desired accuracy remain proportional to the problem size when the resolu-
tion of the discretization is refined. A significant reduction of complexity
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is indeed often possible, when the underlying problem admits a continuous
model in terms of differential or integral equations. The physical phenom-
ena behind such a model usually exhibit characteristic features over a wide
range of scales. Accordingly, the most successful numerical schemes exploit
in one way or another the interaction of different scales of discretization.
A very prominent representative is the multigrid methodology; see, for in-
stance, Hackbusch (1985) and Bramble (1993). In a way it has caused a
breakthrough in numerical analysis since, in an important range of cases,
it does indeed provide asymptotically optimal schemes. For closely related
multilevel techniques and a unified treatment of several variants, such as
multiplicative or additive subspace correction methods, see Bramble, Pasciak
and Xu (1990), Oswald (1994), Xu (1992), and Yserentant (1993). Although
there remain many unresolved problems, multigrid or multilevel schemes in
the classical framework of finite difference and finite element discretizations
exhibit by now a comparatively clear profile. They are particularly powerful
for elliptic and parabolic problems.

1.1. Is there any vision?

Much more recently, the wavelet concept has (at least initially) raised high
expectations. Traditional primary applications of wavelets have been signal
analysis/processing, image processing/compression, etc. What are the reas-
ons for the recent explosion of activities centred upon wavelets in connection
with the numerical treatment of PDEs? Of course, anything that looks new
inspires curiosity: there is certainly a bandwagon effect. Also, mathematical
beauty plays a role. Perhaps it is just a fashionable new wave that will soon
come to rest. In any case, comparisons of wavelet methods with conven-
tional schemes should help in finding an answer. However, it is not that
simple. First of all, the picture of wavelet concepts appears to be still quite
fuzzy for several reasons. On one hand, at the present stage there simply
do not yet exist complete software packages for complex real life problems,
which would admit fair performance comparisons. On the other hand, the
development of concepts and ideas is still far from steady state.

To find a reasonable path through the jungle, it is therefore worth spend-
ing some time on what could actually be expected.

First of all, is there any need to look at alternatives to multigrid? Of
course, curiosity is a perfect reason. But looking again more closely at the
multigrid methodology, its performance is best understood with respect to
uniform mesh refinements and asymptotic optimality in the above sense
refers to such settings. However, a fully refined mesh may not be necessary
to resolve sufficiently the desired solution. To avoid this potential waste, ad-
aptive techniques have to be and are indeed employed. There are many pos-
sibilities ranging from a priori  local mesh refinements to fully self-adaptive
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schemes. In this regard, problems of a different type are encountered. On
one hand, we need a thorough analysis to control the local refinement steps.
The corresponding local information is usually implicit: it is derived by com-
paring different discretizations. At this point some heuristics usually enter.
On the other hand, the mesh refinements cause geometrical problems that
have nothing to do with the underlying problem. Overall, these matters
appear to be somewhat better understood for the additive version (Oswald
1994) (which by the way is closer to the wavelet concept), while otherwise
the multiplicative version is often more efficient. So there still appears to be
a strong need for a better understanding of adaptivity in this context, both
with regard to the underlying analytical concepts and to the corresponding
data structures.

On the other hand, by their very nature, wavelet representations have
a naturally built-in adaptivity through their ability to directly express and
separate components living on different scales. This, combined with the fact
that many operators and their inverses have (nearly) sparse representations
in wavelet coordinates, may eventually lead to competitive or even superior
schemes with regard to the following goal: keep the computational work
proportional to the number of significant terms in the wavelet expansion of
the searched object, which in some sense should reflect its intrinsic com-
plexity; see, for example, Beylkin and Keiser (1997) and Dahlke, Dahmen,
Hochmuth and Schneider (19976).

The potential of this point of view will be one of the main themes of sub-
sequent discussions. Wavelets are in some sense much more sophisticated
tools than conventional discretizations. It will be seen that this also facil-
itates a refined analysis. One central objective of this paper is to highlight
some of the underlying driving analytical mechanisms.

The price of a powerful tool is the effort required to construct and un-
derstand it. Its successful application hinges on the realization of a number
of requirements. Some space has to be reserved for a clear identification of
these requirements as well as for their realization. This is also particularly
important for understanding the severe obstructions that keep us at present
from readily materializing all the principally promising perspectives.

These obstructions are to a great extent related to constraints imposed by
domain geometries. There may be a good chance to reduce many problems
to a periodized one (by an additional separate treatment of boundary condi-
tions). In the periodic case ideal wavelets are available. Nevertheless, there
will still remain important problem classes for which this strategy does not
work. Therefore I will deviate from the usual way of motivating and devel-
oping wavelet concepts by means of Fourier analysis. Instead, some effort
will be spent on formulating a sufficiently general and flexible framework
of multiresolution decompositions that can host a variety of specializations.
Moreover, appropriate substitutes for the Fourier tools have to be developed.
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Wavelets are traditionally associated with orthonormal bases. A closer
look reveals that orthogonality is often convenient but not essential. In
presenting the material I wil l deviate sometimes from the original sources
by formulating things in the more flexible context of biorthogonality. While
this often supports locality and helps to bring out what really is essential, it
wil l also be seen sometimes to be simply better, and even offers interesting
new combinations of different concepts.

Of course, the acceptance of new concepts increases with their practical
success. Somehow the measure is set by the existing modern multigrid
techniques. The competition between different methodologies can be very
stimulating. It should not be the primary point of view though. I person-
ally believe that the additional insight gained from different, yet related,
concepts wil l be mutually beneficial. Perhaps at a later stage, a marriage
of complementary components and an enriched supply of tools will lead to
true improvements.

As mentioned before, the presentation of material will necessarily be very
selective. The selection criteria will not include optimal performance in
existing algorithms, but will instead attempt to bring out ideas and concepts
that bear some potential for future developments or, on the other hand,
explain inherent limitations. Last but not least, my ignorance is to blame.
I apologize to all those whose contributions do not get a proper share.

I shall next briefly discuss some simple examples in connection with ad-
mittedly trivial problems. Their purpose is only to help in identifying a
few characteristic features that will then serve as a guideline for subsequent
developments.

1.2. The Haar basis

The scaled shifts

of the box function

l , 0 < I < 1 , n nv

0; else, ( L 1 )

form an orthonormal basis of their linear span Sj relative to the standard
1

inner product (f,g) = (f,g)[0,i]  := J f(x)g(x) dx. Since

so that

(1-2)
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the Sj are nested and the closure of their union relative to ||  ||L2([O,I] ) :=
, -)1/2 is all of L2GO, 1]) (the space of square integrable functions on [0,1]).

Thus, denoting by Pjf the orthogonal projection of / onto Sj, one has the
representation

The components (Pj — Pj-\)f represent the 'detail' added to a given ap-
proximation when progressing to the next higher scale of discretization. In
the present situation it can be conveniently encoded by the functions

ipj,k  -^(</>j+i,2fc-0j+i,2fc+i), k = 0, ...,23 - 1 , (1.3)

where, as before, ipjtk  2^2ip(2:>  —k), and ip(x) := 4>{2x) — 4>(2x — 1). In
fact, one easily verifies that

k),il>(-l))  = h,i, k,l = 0,..., 2 > - l , ( 1 . 4)

so that

(ipj,k,1pn,l) =6j,n$k,l- (1-5)

Thus

#:={</>}  U{^ - , f c : k = 0 , . . ., 2 ^ - 1 , j = 0 ,1 ,2 , . . .}  (1.6)

constitutes an orthonormal basis for L2QO, 1]) and every / e L2([0,l] ) has
a unique expansion

/ = £ < / . V M H/llL([o,i] ) = E K/^)l2- (i-7)

The equivalence between continuous and discrete norms will frequently play
a pivotal role in subsequent discussions.

As a first instance, relation (1.7) suggests the following simple strategy for
approximating a given / by a piecewise constant with possibly few pieces.
Suppose that all the wavelet coefficients (/, tp), ip € \£, were known, and that
the set A c $ , such that #A < N, contains the N largest terms \{f,tp)\,
then the function P\f = Z)V>€A(/>^')^' would) o n account of (1.7), minimize
the error among all piecewise constants on dyadic partitions with at most
N pieces.

The selection of the N biggest terms is of course a nonlinear process. This
aspect has been thoroughly discussed, for instance by DeVore and Lucier
(1992) and DeVore, Jawerth and Popov (1992), and wil l be taken up in
more detail again later in connection with adaptive methods. Here we add
only a few comments, which are similar in spirit. Suppose that gj G Sj is
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some approximation of g. It therefore has a representation

9J =
fc=0

in terms of the single scale basis functions 4>j tk on the highest scale J. Note
that although gj may have a very simple structure, such as a constant
throughout a large part or even all of [0,1], all the 2J coefficients could be
significant in that they are needed to preserve accuracy. On the other hand,
gj has a wavelet or multiscale representation

J-1V-1

9J = {9,<l>o,o}<f>Ofl  + 5Z ] C di,k^j,k-
j=0  fc=0

If gj were a constant, all the djtk would vanish.
In general, one expects the djtk to be very small where gj does not vary

much. In fact, if / were differentiate on the support of V'j.fci then, since

Jj,k{x)te = O, k = 0,...,2?-l, j>0, (1.8)
o

one ob ta ins

\(f,fpj,k)\ = mf |(/-c,^-,fc)| < mf ||/-c||£2([2-i fci2-j(fc+i)] )

< 2^||//|lL2([2-^,2-J(fc+i)]) - (1-9)

Thus, discarding wavelet coefficients that stay below a given threshold
may compress the representation significantly, while the accuracy is, in view
of (1.7), still controllable. The key is (1.8), which is often referred to as
moment conditions. Obviously, the vanishing of moments of even higher
polynomial order would increase the compression effect.

Of course, to exploit these facts practically requires switching back and
forth between single- and multiscale representation. This issue will be ad-
dressed later in more generality.

1.3. The Hilbert transform

The compression of functions has a counterpart for operators. The fact that
differential operators admit sparse representations is not surprising. Instead,
consider the Hilbert transform

^ J ^ y (1.10)
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as an example of a typical singular integral operator. Here p.v. means
'principal value', that is, p.v. f f(x) dx = lime^0+ / f(x)dx. Its rep-

R K\(-6,e)
resentation relative to the Haar basis requires the entries H^j.^y  ̂ :=
(H'lPl,m,'lPj,k)- Suppose now that 2~l(m + 1) < 2~Jfc, and I > j , that is,
the supports of ipitm arid ipjtk are disjoint. Then, by (1.8) and Taylor's
expansion around y = 2~lm, one obtains

IT

2~J(k+l)

2

2 " '

/ / (^

~>k V 2"'m
:(m+l) . 2-J(fc+l)

J \ J (x-m,

1

y x — 2 lm

(y-2-lm)
J2 3'

ipi tTn(y)dy\ipjtk(x)dx

for some y m̂ in the support [2 lm, 2 l(m + 1)] of V^m- Repeating the same
argument, one can subtract a constant in x which yields

(y -
(2-ifc -

On account of Taylor's expansion around x = 2 Jfc, the factor in front of
4>j,k(x) can be written as — 2(y — 2~'m)(x — 2~^k)/{xj  ̂ — yi,m)3, where x k̂

is some point in the support [2~^k, 2~i(k + 1)] of the wavelet Vj.fc- Noting
that

a straightforward estimate provides

7T (1.11)

Thus the entries H k̂^ m̂  ̂ exhibit a decay with increasing distance of
the supports of the wavelets as well as with increasing distance of scales. In
essence this behaviour persists for a large class of integral operators and is
the key to sparsify the discretization of such operators.
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1.4- A two-point boundary value problem

Consider

-u" = / on [0,1], u(0) = u(l) = 0, (1.12)

as a simple model for an elliptic second-order boundary value problem. Al-
though there are, of course, much simpler ways of solving (1.12), we start
from the standard weak formulation

(u',v') = (f,v), veHl([0,l}). (1.13)

Here HQ([0, 1]) is the closure of all C°° functions with compact support in

(0,1) relative to the norm ||/||HI([O,I]) = dl/llL([o,i] ) + H/'HL([o,i]))1/2- T o

make our point, we use a standard Galerkin approach and solve (1.13) on
finite-dimensional spaces Sj C i?o([0,1]). The simplest conforming choice
of the trial spaces Sj are the spans of scaled tent functions

</> jtk(x) = y ' 2 ^  - k ) , k = 0,...,2j, (1.14)

where

{ 1 + x, - 1 < x < 0,

1-x, 0 < x < l , (1.15)
0, otherwise.

Choosing the <f>j tk as basis functions for Sj, the Galerkin conditions

(Uj,v) = {f,v), veSj, (1.16)

give rise to a linear system of equations

Aj u = f, (1.17)
where Aj is the stiffness matrix relative to the basis functions 4>J,k a nd u,
f are corresponding vectors with /& = (/, 4>j tk)- Clearly A j  is tridiagonal.
Hence (1.17) is very efficiently solvable. However, for higher-dimensional
analogues the matrix would no longer have such a narrow bandwidth and
one has to resort to iterative methods to preserve sparseness.

On the other hand, recalling the min-max characterization of the smallest
and largest eigenvalue of a symmetric positive definite matrix, it is easy to
see that the condition numbers of Aj grow like 22J, which renders classical
iterative methods prohibitively inefficient.

To remedy this, one has to precondition the linear systems. One way is to
exploit suitable multiscale decompositions of the trial spaces Sj. First note
that, since

4>{x) = i # 2x + 1) + 4>{2x) + ^<j>(2x - 1), (1.18)
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that is,

(1-19)

the Sj are nested and, of course, their union is dense in 1*2 ([0,1]).
In order to successively update solutions from coarser grids, we con-

sider the following hierarchical decomposition of the trial spaces (Yserentant
1986). Instead of using orthogonal projections as in Section 1.2, we consider
the Lagrange projectors

Ljf:=Yj2-^2f{2-^k)4>jtk, (1.20)

and note that the complements

Wj := (Lj+1 - Lj)Sj+1 (1.21)

are simply spanned by the tent functions on new grid points on the next
higher scale

k = 0,...,2?-l}. (1.22)

Note that neither the 4>j tk nor the ipjtk are orthogonal but it is not hard to
show that they satisfy the stability condition

5 3 ck<f>j,k
fc=O

1/2

for some constants ci,C2 independent of the sequence {cfc}|!_Q. Keeping this
in mind, we now consider stiffness matrices relative to the hierarchical bases
composed of the bases \Pj, and note that

W X ) > ( L 2 4 )

where ^^fe are the Haar wavelets from (1.3). Therefore one obtains from (1.5)

1 L$ 7-fc,—^n,\ = 2>+n+3

Hence Aj is, up to a 2 x 2 upper left block stemming from the coarse grid
space 5o, a diagonal matrix, which is trivially preconditioned by symmetric
diagonal scalings.

Now, one has to be somewhat careful when extrapolating from this ob-
servation. The fact that the hierarchical basis functions i^j^ are actually
orthogonal relative to the energy inner product is an artefact. In two dimen-
sions this is no longer the case but it turns out that the hierarchical stiffness
matrices can still be preconditioned by diagonal scaling to efficiently reduce
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the growth of the condition numbers to logarithmic behaviour. Moreover,
it has suggested similar strategies involving other multiscale bases which do
better. Corresponding preconditioning techniques are a central theme in
subsequent discussions.

1.5. Some basic ideas

Next, I would like to blend these examples into a general picture to provide
some orientation and unifying structure for the subsequent discussions of a
diversity of ideas.

To this end, suppose that

f = fe:AeV} (1.25)

is a countable basis of some Hilbert space H. Thus every v G H has a unique
convergent expansion in terms of elements of \£

(1.26)
Aev

The dependence of the coefficients {d\} on v can be expressed via the dual
basis. This is a collection of functionals

*  = { ^ :A G V} ,

such that

(VA,?M = <5A,A', A,A'eV, (1.27)

where , ) denotes the inner product on H. When H is infinite-dimensional,
the notion of basis has to be further specified, but we will defer this issue
for the moment. The collection of Haar functions tp!?k forms such a basis for
H = L2([0,1]). In this case the indices A = (j,k) encode the information
about scale and location. Of course, in the case of the Haar basis ^ = tyH,
one has \I> = *&. Equation (1.27) means that the coefficients d\ in the
expansion of v relative to \& are given by d\ = {v,tp\).

To simplify further exposition, I now introduce a compact notation for
bases and their transforms that will be consistently used throughout the
rest of the paper. Formally, let us view a given (countable) collection of
functions $ in H as a (column) vector (of possibly infinite length), so that
an expansion with coefficients c ,̂ 0 € 3> can be formally treated as an 'inner
product'

The sum is always understood to converge in the norm of the underlying
space, and the superscript T denotes 'transpose'. Likewise, for any v G H,
the quantities ($, v) and (v, <J>) mean the column-, respectively row-vector,
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of coefficients (<j>,v),  (v,<p), <f>  € $. Thus (1.26) can be written for short as
d7^. Boldface lower case or capital letters will always denote sequences or
matrices acting on sequences, respectively.

To push this a littl e further, for any two countable collections <fr, H of
functions, we consider the (possibly infinite) matrix

Specifically, the above biorthogonality relations (1.27) then become

(*,* ) = I, (1.28)

where I denotes the identity matrix (whose dimension should be clear from
the context).

The examples in Sections 1.3 and 1.4 can be viewed as special cases of the
following situation. Suppose that Hi and H2 are Hilbert spaces such that
either one of the continuous embeddings

HiCHCH2 or H2CHCHi

holds. In many cases of interest, H2 is the dual of Hi, that is, the space of
bounded linear functionals on Hi relative to the duality pairing induced by
the inner product , ) on the (intermediate) space H. Furthermore, suppose
that £ is a bounded linear bijection that maps Hi onto H2, that is,

\\£v\\H2 ~ \\v\\Hl, veHu (1.29)

where here and below a ~ b means a < b and b < a. The latter relations
express that b can be bounded by some constant times a uniformly in any
parameters on which a and b may depend. Hence the equation

Cu = f (1.30)

has a unique solution u G Hi for every / e i?2- In Section 1.3 we had
C = H, Hi = H2 = L2(R), while in Section 1.4 £ = —^, Hi = H&([0,1]),
H2 = H-l([0,1]), the dual of H^([0,1]).

The basic idea is to transform the (continuous) equation (1.30) into an
infinite discrete system of equations. This can be done with the aid of
suitable bases for the spaces under consideration.

Given such bases, seeking the solution u of (1.29) is equivalent to finding
the expansion sequence d of u = dT\I>. Inserting this into (1.30) yields
(£W)Td = /. Now suppose that @ = {9\ : A G V}  is total over H2, that
is, (v,Q) = 0 implies v = 0 for v G H2. Then (£\I/)Td = / becomes the
(infinite) system

<£M,,e)Td=</,G)T . (



66 W. DAHMEN

The objective now is to find collections * and G for which the system (1.31)
is efficiently solvable. This can be approached from several different angles.

(a) Diagonalization
The ideal case would be to know a complete system ^ of eigenfunctions so
that the choice 0 = \I> would diagonalize (1.31). Of course, in practice this
is usually not feasible. However, when \P and ^ are regular enough in the
sense that the collections

e := (/r1)**  c HU e-.= c^cH2, (1.32)
then biorthogonality (1.28) implies

<e,e> = i, (i.33)

that is, biorthogonality of the pair G, 0. Here C* denotes the dual or adjoint
of C defined by (£u,v) = (u,C*v). In this case the solution u = dT ^ is
given by

When * is a wavelet basis, it will be seen that under certain assumptions
on C (denned on M" or the torus), the elements of Q share several properties
with wavelets. The 9\ are then called vaguelettes. Truncation of (/, G)*
would readily yield an approximation to u. Note that this can be viewed as
a Petrov-Galerkin scheme.

(b) Preconditioning
One expects that vaguelettes are numerically accessible only in special cases
such as for constant coefficient differential elliptic operators on Rn or the
torus. However, these cases may be in some sense close to more realistic
cases, which opens possibilities for preconditioning.

Alternatively, one could relax the requirements on the bases $ and Q.
Again one could view the eigensystem as the ideal choice. A simple diagonal
scaling would then transform (C^, \J/)r into I. Thus one could ask for bases
\& such that for a suitable diagonal matrix D,

B : = D ( £ $ , $ )T D x I (1.35)

is spectrally equivalent to the identity, in the sense that B and its inverse
rp

B ' 1 are bounded in the Euclidean norm ||d||̂  ^ := d*d, where d*  := d
is the usual complex conjugate transpose.

Note that the principal sections of the infinite matrix B correspond to the
stiffness matrices arising from a Galerkin scheme applied to (1.30) based on
trial spaces spanned by subsets of \&. Relation (1.35) means that these
linear systems are uniformly well conditioned. Such a \I> would be in some
sense sufficiently close to the eigensystem of C. It will be seen that for
a wide class of operators wavelet bases have that property. The precise



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 67

choice of D depends on £ or, more precisely, on the pair of spaces Hi, H%
in (1.29). For instance, in Section 1.4 the diagonal entries of D would be
V for A := (j, k). In this context Sobolev spaces play a central role and
the question of preconditioning will be seen to be intimately connected with
the characterization of Sobolev spaces in terms of certain discrete norms
induced by wavelet expansions.

(c) Sparse representations
The similarity between wavelet bases and eigensystems extends beyond the
preconditioning effect. Indeed, for many operators the matrices B in (1.35),
as well as their inverses, are nearly sparse. This means that replacing entries
below a given threshold by zero yields a sparse matrix. When £ is a dif-
ferential operator and the wavelets have compact support this may not be
too surprising (although the mixing of different levels creates, in general, a
less sparse structure than shape functions with small support on the highest
discretization level). However, it even remains true for certain integral op-
erators as indicated by the estimate (1.11) for {W^H, ^H). Quantifying this
sparsification will depend on C and on certain properties of the wavelet basis
that will have to be clarified.

(d) Significant coefficients and adaptivity
Once you can track the wavelets in VP needed to represent the solution u
of (1.30) accurately, one can, in principle, restrict the computations to the
corresponding subspaces. Combining this with the sparse representation
of operators is perhaps one of the most promising perspectives of wavelet
concepts. A significant part of subsequent discussions will be initiated by
this issue.

1.6. The structure of the paper

Here is a short overview of the material and the way it is organized. Sec-
tion 2 outlines the scope of problems to be treated and indicates corres-
ponding basic obstructions to an efficient numerical solution. It is clear from
the preceding discussion that, for each problem, the properties of underlying
function spaces, in particular Sobolev spaces, have to be taken into account.
A few preliminaries of this sort will therefore be collected first.

The objective of this paper is by no means the construction of wavelets.
However, the performance of a wavelet scheme relies on very specific prop-
erties of the wavelet basis. I find it unsatisfactory to simply assume these
properties without indicating to what extent and at what cost these prop-
erties may actually be realized. Therefore the construction of the tools also
provides the necessary understanding for its limitations. Consequently some
space has to be reserved for discussing properties of multiscale bases. Guided
by the examples in Sections 1.2 and 1.4, Section 3 begins by describing a
general framework of multiresolution decompositions: this is to provide a
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uniform platform for all the subsequent specifications, in particular, those
which involve more complex domain geometries. The simple but useful con-
cepts of stable completions is emphasized as a construction device that can
still be used under circumstances where, for instance, classical arguments
based on Fourier techniques no longer apply.

Section 4 outlines some examples of multiscale decompositions and wave-
let bases, which will later be referred to frequently. So-called hierarchical
bases on bivariate triangulations (as a straightforward generalization of the
construction in Section 1.4) will serve later as a bridge to developments in
the finite element context. Wavelets defined on all of Euclidean space, their
periodized versions, and wavelets on cubes are by far best understood. A few
facts are recorded here which are important for further extensions needed
later on.

Multiresolution originates from the classical setting concerning the full
Euclidean space. The shift- and scale-invariance of its ingredients provide a
comfortable basis for constructions and admit in combination with Fourier
techniques best computational efficiency. While wavelets are usually as-
sociated with orthogonal bases, the concept of biorthogonal wavelets is em-
phasized, because it offers much more flexibility  and localization (in physical
space). I wil l try to indicate later that this actually pays dividends in several
applications.

Much of the comfort of shift- and dilation-invariance can still be retained
when dealing with wavelets on the interval (and hence on cubes). This
still looks very restrictive, but it will turn out later to be an important
ingredient for extending the application of wavelet schemes, for instance to
closed surfaces or other manifolds. I have collected these construction issues
in one section, so that those who are familiar with this material can easily
skip over this section.

Section 5 addresses the heart of the matter. Once one is willing to
dispense with orthogonality, one has to understand which type of decom-
positions are actually suitable. A classical theme in functional analysis is
to characterize function spaces through isomorphisms into sequence spaces.
The discussion in Section 1.5 has already stressed this point as a basic vehicle
for developing discretizations. Orthonormal bases naturally induce such iso-
morphisms. When deviating from orthogonality, the leeway is easily seen
to be set by the concept of Riesz bases, which in turn brings in the notion
of biorthogonal bases. Whereas biorthogonality is necessary, it is not quite
sufficient for establishing the desired norm equivalences. The objective of
Section 5 is to bring out what is needed in addition. In order to be able
to apply this to several cases, this is formulated for a general Hilbert space
setting (see Section 5.2). It should be stressed that the additional stability
criteria concern properties of the underlying multiresolution spaces not of
the particular bases. Therefore things are kept in a basis-free form. Again,



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 69

to guarantee flexible applicability, these criteria do not resort to Fourier
techniques but are based on a pair of inequalities, describing regularity and
approximation properties of the underlying multiresolution spaces (see Sec-
tion 5.1). The most important application for the present purpose is the
characterization of Sobolev spaces in Section 5.3 for all relevant versions of
underlying domains, including manifolds such as closed surfaces. These facts
will later play a crucial role in three different contexts, namely precondition-
ing (recall Section 1.5, (b)), thresholding strategies for matrix compression
(see Section 1.5, (c)) and the analysis of adaptive schemes (see Section 1.5,
(d)).

A first major application of the results in Section 5 is presented in Sec-
tion 6. It is shown that (1-35), namely the transformation of a continuous
problem into a discrete one, which is well-posed in the Euclidean metric,
is realized for a wide class of elliptic differential and integral operators, de-
scribed in Section 2.3. The entries of the diagonal matrix D depend on
the order of the operator C Preconditioning is seen here to be an immedi-
ate consequence of the validity of norm equivalences for Sobolev spaces. It
simply means that the shift in Sobolev scale caused by the operator C in
(1.30) can be undone by a proper weighting of wavelet coefficients. Diagonal
matrices act in some sense like differential or integral operators much like
classical Bessel potentials.

To bring out the essential mechanism, this is formulated for a possibly
abstract setting. One should look at the examples in Section 2.2 to see what
it means in concrete cases. On the other hand, it is important to note that
the full strength of wavelet bases is actually not always needed. When the
order of the operator C is positive, the weaker concept of frame suffices. This
establishes a strong link to recent, essentially independent, developments
of multilevel preconditioning techniques in a finite element context. Both
lines of development have largely ignored each other. Although the present
discussion is primarily seen from the viewpoint of wavelet analysis, I will
briefly discuss both schools and their interrelation.

While the concepts in Section 6 can also be realized in a finite element
setting, Section 7 confines the discussion to what will be called the ideal
setting, meaning problems formulated on Rn or the torus. As detailed in Sec-
tion 4.2, an extensive machinery of wavelet tools is available and much more
refined properties can be exploited. Last but not least, through marriage
with Fourier techniques such as FFT, this could be a tremendous support of
computational efficiency. Some of the insight into local phenomena gained
in this way can also be expected to help under more general circumstances.
Of course, all these properties are preserved under periodization, so that
wavelets still unfold their full potential for periodic problems.

One further reason for reserving some room for this admittedly restricted
setting is to think of a two-step approach. Exploiting all the benefits of the
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ideal setting, one aims at developing highly efficient techniques that are to
cope with the bulk of computation determined by, say, the spatial dimension
of the domain. This should then justify efforts to treat geometric constraints
entering through boundary conditions separately, hopefully at the expense
of lower-order complexity.

The common ground for all the techniques mentioned in Section 7 is that
the inverse of an elliptic operator is fairly well accessible in wavelet coordin-
ates. This concerns vaguelette techniques, which in the spirit of Section 1.5
(a), aim at diagonalizing the operator C (see Section 7.2). Several issues
such as the (adaptive) evaluation of vaguelette coefficients, freezing coeffi-
cient techniques for operators with variable coefficients and relaxed notions
like energy-pre-wavelets are discussed.

The next step is to consider a class of univariate (periodic) nonlinear evol-
ution model equations (Section 7.7). Several different approaches such as
vaguelette schemes and best bases methods wil l be discussed. The so-called
pseudo-wavelet approach aims at a systematic development of techniques
for an adaptively controlled accurate application of evolution operators and
nonlinear terms. An important vehicle in this context is the so-called non-
standard form of operators. I wil l try to point out the difference between
several approaches which are based on a number of very interesting and
fairly unconventional concepts.

These evolution equations are to be viewed as simplified models of more
complex systems like the Stokes and Navier-Stokes equations. In Sec-
tion 7.11 some ways of dealing with corresponding additional difficulties
are discussed. It seems that biorthogonal vaguelette versions combined with
(biorthogonal) compactly supported divergence-free wavelet bases offer an
interesting option, which has not been explored yet.

As mentioned before, a major motivation for the developments in Sec-
tion 7 was to embed problems denned on more general domains into the
ideal setting and then treat boundary conditions separately. Section 8 is
devoted to a brief discussion of several such embedding strategies. I will
focus on three options. The first is to use extension techniques in conjunc-
tion with the multilevel Schwarz schemes described in Section 6.5. This is
particularly tailored to variational formulations of problems involving self-
adjoint operators. An alternative is to correct boundary values by solving
a boundary integral equation. Finally, one can append boundary conditions
with the aid of Lagrange multipliers.

Section 9 deals with pseudo-differential and integral operators. As an
important case, this covers boundary integral equations. This type of prob-
lem is interesting for several reasons. First of all, it naturally came up in
Section 8 in connection with partial differential equations. Second, it poses
several challenges. On one hand, boundary integral formulations frequently
offer physically more adequate formulations and reduce, in the case of exter-
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ior boundary value problems, the discretization of an unbounded domain to
a discretization of a lower-dimensional compact domain. On the other hand,
they have the serious drawback that (in some cases in addition to precondi-
tioning issues) the resulting matrices are dense. However, as indicated by the
example in Section 1.3, such operators have a nearly sparse representation
relative to appropriately chosen wavelet bases. What exactly 'appropriate'
means, and some ingredients of a rigorous analysis of corresponding compres-
sion techniques will be explained in this section. The issue here is twofold,
namely reducing a matrix to a sparse matrix without losing asymptotical
accuracy of the solution, and the efficient computation of the compressed
matrices at costs that remain proportional to their size. Moreover, when the
operator has negative order (see Section 2.2) preconditioning does require
the full strength of wavelet decompositions. So, in principle, wavelets seem
to be particularly promising for this type of problem. One expects that
they offer a common platform for (i) efficiently applying operators that are
otherwise dense, (ii) preconditioning the linear systems and (iii ) facilitating
adaptive strategies for further reducing complexity.

However, the embedding strategies from Section 8 do not apply to closed
surfaces. So appropriate notions of wavelets on manifolds have to be de-
veloped. Discontinuous multi-wavelets have been employed so far. But ac-
cording to the results in Section 6, they are not optimal for preconditioning
operators of order — 1. Therefore Section 10 is devoted to the construc-
tion of wavelet bases on manifolds that have all the properties required by
the analysis in Section 9. This rests on two pillars: the characterization of
Sobolev spaces with respect to a partition of the manifold into parametric
images of the unit cube (recall that the classical definition of Sobolev spaces
on manifolds is based on open coverings), and certain biorthogonal wavelet
bases on the unit cube that satisfy special boundary conditions. The con-
struction of such bases, in turn, can be based on the ingredients presented
in Section 4.4. This refers partly to work in progress. Some consequences
with regard to domain decomposition are briefly indicated.

In Section 11 we take up again the issue of adaptivity. The main ob-
jective is to outline a rigorous analysis for a possibly general setting that
covers the previously discussed special cases. Some comments about relat-
ing this to adaptive strategies in the finite element context are included. In
addition, this part should complement the intriguing algorithmic concepts
discussed before. The section concludes with a brief discussion of the rela-
tion between the efficiency of adaptive approximation and Besov regularity
of the solutions of elliptic equations.

Finally, in Section 12 some further interesting directions of current and
perhaps future research are indicated.
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2. The scope of problems

The objective of this section is to put some meat on the skeleton of ideas in
Section 1.5 by identifying first a list of concrete model problems satisfying
(1.29) and (1.30). This requires some preparation.

2.1. Function spaces and other preliminaries

It is clear from the discussion in Section 1.5 that certain functional analytic
concepts related to Sobolev spaces play an important role. This section
contains corresponding relevant definitions, notation and conventions.

For any normed linear space S the norm is always denoted by ||  \\g. The
adjoint or dual of an operator C is denoted by C*.

Important examples are Lp spaces. For 1 < p < oo (with the usual sup-
norm interpretation for p = oo) and for any measure space (Q, d[i), the space
LP(Q) consists of those measurable functions v such that

oo.

For simplicity, we usually write dx instead of d/i(x), since only the Lebesgue
measure will matter. The case p = 2 is used most often. In this case
II ' Hi 2(n) = , w h e re

(u,v)n := / u(x)v(x)dx

n

denotes the corresponding standard inner product. Here Q may be Rn or
a domain in Rn or, more generally, a manifold such as a closed surface.
The latter interpretation is needed when dealing with boundary integral
equations.

Partial derivatives are denoted by d, or dx if it is stressed with respect
to which variable it applies. Common multi-index notation is used, that is,
zQ = a£1---z°», \a\ = |e*i| + --- + |an|, for a £ No, No := {0,1,2, 3 , . . . }.

Suppose now that fi C M.n is a domain. We shall always assume that
Q. is a bounded, open, and connected (at least) Lipschitz domain. This
covers all cases of practical interest. If m is a positive integer, the Sobolev
space Wm'p((Q)) consists of all functions / e LP(Q), whose distributional
derivatives du/, \v\ = m, satisfy

i/ik-pw := E il^/ii^n ) < °°; (2-1)

see, for example, Adams (1978). The pth root of (2.1) is the semi-norm for
Wm'p{n), and adding to it ||/||Lp(n) gives the norm ||/||Wm,P(n) in Wm>p{Q).
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For the present purposes the most important case is again p = 2, which is
denoted for short as Hm(Q) := Wm'2(Q,). Furthermore, Sobolev spaces with
noninteger index s € K are needed. There are several ways to define them.
For fi = R" one can use Fourier transforms

and set

H'(Rn) = { / € L2(K" ) : | ( 1 + |l/|2)8|/(y)|2 dy < oo},

where |  | is the Euclidean norm on Rn. When 0, ^ Rn, the Lipschitz property
implies that there exist extension operators E that are bounded in Hm for
any m e N. For s > 0 one can define ||/||tf*(fi) := inf{||5||#S(Rn) : g | Q= / } .
Alternatively, HS(Q.) can be defined by interpolation between Z/2(fi) and
Hm(n), m> s; see Bergh and Lofstrom (1976), DeVore and Popov (1988a)
and Triebel (1978). When s < 0 one can use duality. For any normed
linear space V, the dual space, consisting of all bounded linear functionals
on V, is denoted by V* . It is a Banach space under the norm ||w||y*  :=
sup||i ; ||v=1 |w(v)|. Specifically, when fi is a closed manifold (HS(Q))* =
H-a(Q).

We will briefly encounter Besov spaces B*(L p(fi)) ; see again Bergh and
Lofstrom (1976), DeVore and Popov (1988a), DeVore and Sharpley (1993)
and Triebel (1978). They arise by interpolation between LP(O) and Wm'p(n).
Recall that #S(Q) = £f (L2(ft)) .

As mentioned before, lower case boldface letters such as c, d will always
denote sequences over some (finite or infinite) index set A. As usual, for the
same range of p as above, we set

By convention, the elements of £P(A) wil l always be viewed as column vec-
tors, that is, cT,c*  are rows, the latter indicating complex conjugates when
using the complex field. Analogously, for a matrix M the transpose is M T ,
while M* denotes its complex conjugate transpose.

When there is no risk of confusion the reference to the domain or index
set will sometimes be dropped, that is, we write , , Hs, £2, etc.
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2.2. A general class of elliptic problems

(a) Scalar elliptic boundary value problems
For fi C K", an example of C in (1.30) is

Cu:=i2m Y. aa^{x)&*d pu = f on ft, Bu = 0 onffi , (2.2)
|a|,|/3|<m

where B is a suitable trace operator, and the polynomial

satisfies
P(O >6>0, ( e R " , i £ f i . (2.3)

Depending on the regularity of the domain, (1.29) holds with Hi = HS(O,),
H2 = Hs~2m(Q) for a certain range of s. An important special case is

-div (A(x)Vu) + a(x)u = / on O, u = 0on dfl, (2.4)

where A(x) is uniformly positive definite and symmetric on Q, and for a
vector field v the divergence operator is defined by divu := ]Cj=i ~&rvj-
Clearly A = I, a(x) = 0, gives Poisson's equation with Dirichlet boundary
conditions. Here Hi = H$(Q) and H2 = H'1^) = (H^(Q))*. Likewise, one
could take the Helmholtz equation C = — A+al for a > 0, or C = —A+/3-V.
Similarly with C = A2, Hx = H$(£l), H2 = H~2(n), fourth-order problems
are covered as well.

The special case that C is positive definite and selfadjoint is of particular
interest, that is,

a(u,v) = (Cu,v) (2-5)

is a symmetric bilinear form. Ellipticity here means that

<,-)~IHI^ , (2-6)
which implies (1.29). Clearly (2.4) falls into this category.

Such problems can be solved approximately with the aid of finite element-
based Galerkin schemes. There are several different problems that arise. For
n > 2 one obtains large linear systems, usually with sparse matrices which,
for instance in the case (2.4), are symmetric positive definite. Thus a major
challenge lies simply in the size of such problems. Since direct solvers based
on matrix factorizations would cause a significant fill-in  of nonzero entries
in the factors, and therefore prohibitively limit storage and computing time,
one has to resort to iterative solvers for large problem sizes. Unfortunately,
the condition numbers of the system matrices grow with their size iV like
N2m/n. It is therefore of vital importance to precondition these sytems.
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In fact, an asymptotically optimal scheme would require uniformly bounded
condition numbers.

When C is not selfadjoint, efficient schemes such as preconditioned conjug-
ate gradient (PCG) iterations have to be replaced by more expensive ones,
whose performance is no longer a simple function of the spectral condition
numbers.

Finally, the coefficients in A{x) or a(x) may vary rapidly. On one hand,
this may adversely affect the constants in (1.29). On the other hand, the
resolution of such fluctuations may require too small mesh sizes, so that
questions of homogenization arise. In the following we wil l primarily address
the first two issues.

(b) Saddle point equations
An important example for a system of partial differential equations is the
Stokes problem

-Au + Vp = /, onf l, JJ = O on dfl, (2.7)

div u = 0,

as a simple model for viscous incompressible flow. The vector valued func-
tion u and the scalar field p represent velocity and pressure of the fluid,
respectively. Obviously, one has to factor the constants from p, for instance
by requiring J p(x) dx = 0.

a
T h e weak f o r m u l a t i o n o f ( 2 . 7) r e q u i r es f i n d i n g ( u , p ) E V x M , w h e r e

) { } (2.8)

such that
a ( u , v) + b ( v , p) = ( f , v ) n, v e V

(2.9)
b(u,/j.) = 0, fj. <E M ,

with

a(u,v) = (Vu,Vu)n, b(v,n) =

So-called mixed formulations of (2.4) for a(x) = 0 arise when introducing
the flux a := — AVu as a new variable, so that —div (AVu) = f yields a
coupled system of first-order equations

AS/u = — a, div a = / ,

whose weak formulation is

a(a,T)-b(T,u) = 0, v£V :=  H (div, ft),
(2.11)

- b ( a , v) =  - < / , « ) « , v e M : = L 2 ( n ) .
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Here a(-, ) = (-, -)Q, , ) is defined as before in the Stokes problem, and

H(div,n) :=  {T € (L2(n))(n: divr €

endowed with the graph norm ||r| |H(d iV in ) = (||r|||2(n) + lldiv
Both cases (2.9) and (2.11) can be viewed as an operator equation of the

form (1.30) with

and A : V -> V*, B : V -> M* are denned by

(At,u)n = a(u,u), v G V, b(v, fi) = (Bv, fj)n, n& M.

It is well known that in both cases C is an isomorphism from H\ := V x M
onto H2 := F*  x M*, that is, (1.29) is valid (Braess 1997, Brezzi and Fortin
1991, Girault and Raviart 1986), which in this case means that

inf sup y y | >/3>0. (2.13)

Note that in the case (2.11) the Galerkin approximation of A is a mass
matrix. Introducing suitable weighted inner products on a high discretiza-
tion level would precondition this part well, which is one possible strategy
for dealing with fluctuating coefficients.

However, the numerical solution of (2.9) or (2.11) now poses additional
difficulties. The operator C is no longer definite. Preconditioning there-
fore requires additional care. Furthermore, the discretizations of V and M
must be compatible, that is, (2.13) has to hold uniformly in the family of
trial spaces under consideration. Both issues, preconditioning as well as the
construction of compatible trial spaces, will be discussed below.

(c) Time-dependent problems
Once elliptic problems of the above type can be handled, the next step is to
consider problems of the form

— +Cu + g{u) = 0, u(k)=u(k + l), k,leZn, (2.14)

tt(-,O) = n0,

where C is an elliptic operator of the form (2.4), and Q is a possibly nonlinear
function of u or a first-order derivative of u. Prominent examples are reaction
diffusion equations

^ + / , p > l , i / > 0, (2.15)
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or the viscous Burgers equation

du du d2 .

which describes the formation of shocks. Several wavelet schemes for this
type of equation will be discussed. Some will also apply to problems such
as the Korteweg-de Vries equations

du du d3

+ + (3 0 ( 2 1 7)

a, j3 constant, having special soliton solutions (Fornberg and Whitham 1978).

(d) Boundary integral equations
Many classical partial differential equations can be transformed into bound-
ary integral equations. This includes the Lame-Navier equations of linear-
ized, three-dimensional elasticity, (Wendland 1987), the oblique derivative
problem (Michlin 1965), arising in physical geodesy, the exterior Stokes flow
(Ladyshenskaya 1969); see Schneider (1995) for a brief overview. Here it
suffices to describe a simple example that exhibits the principal features of
this class of problem. Consider the boundary value problem

AC/ = 0, on n, dvU = f, on T := dQ, (2.18)

where Cl is a bounded domain in R3 and dv denotes the derivative in the
direction of the outer normal to F. It is well known that this boundary value
problem, which arises, for instance, in the computation of electrostatic fields,
is equivalent to the following integral equation of second kind provided by
the so-called indirect method

Cu = /, (2.19)

where C = \X + K. and

I ^_^u{y) dsy. (2.20)
r

Here vy denotes the exterior normal of F at y. K is called double layer
potential. For smooth V the operator /C is compact on 1/2 (F) so that the
principal symbol of C is 1/2. Thus (1.29) holds with Hx = H2 = L2(F)
and K is a zero order operator. Clearly, denoting by G(x — y) :=  4 , 1 _ .

the fundamental solution of (2.18), one has K,u{x) = Jdl/iVG(x — y)u(y) dSy
r

and the solution U of (2.18) can be obtained by evaluating U(x) = / G(x —
r

y)u{y) dsy, where u is the solution of (2.19).
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This approach is particularly tempting when (2.19) is to be solved on the
exterior M3 \ Q of some bounded domain. In this case one has to append
certain radiation conditions at infinity to determine the solution uniquely.

The so-called direct method arises in connection with transmission prob-
lems and is well suited to dealing with other boundary conditions. Problem
(2.18) subject to Dirichlet conditions U = / on T is known to be equivalent
to

Cu = Vu = (-l-JC)f, (2.21)

where

is the single layer potential. In this case (1.29) can be shown to hold for
Hi = H~ll2(Y) and H2 = #1 / 2( r ) , and C has order minus one.

In both cases the unique solvability of (1.30) and (1.29) can be established
along the following lines, which work for a much wider class of pseudo-
differential operators. In fact, for smooth Y these operators are classical
pseudo-differential operators characterized by their symbol; see Hildebrandt
and Wienholtz (1964), Kumano-go (1981). Equation (1.29) follows from the
boundedness of £, its injectivity on H\, and coercivity of the principal part
of its symbol.

The advantages of the approach are obvious. A 3D discretization of a
possibly unbounded domain is reduced to a 2D discretization of a compact
domain. One can also argue that in many cases the integral formulation is
physically more adequate.

On the other hand, there are serious drawbacks. If the order of the op-
erator C is different from zero, as in the case of the single layer potential
operator, the need for preconditioning remains. In addition, conventional
discretizations of the integral operators lead to dense matrices, which is per-
haps the most severe obstruction to the use of these concepts for realistic
problem sizes N. Appropriate wavelet bases will be seen to realize both
desired effects (b), (c) in Section 1.5 for this class of problem.

2.3. A reference class of problems

The examples in Section 2.2 illustrate the variety of problems that will be
discussed in this paper. To get some structure into the diversity of existing
studies of various special cases, I stress the fact that certain results, mainly
concerned with (b) in Section 1.5, actually hold in remarkable generality.
Presenting them in this generality will help to bring out what really mat-
ters. In all the above examples the operator C satisfies (1.29) where H\,H2
are Sobolev spaces or products of such. In order to keep the discussion
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homogeneous, we will confine the formulation of a model class of problems
to the scalar case. So we assume that there exist some positive constants
c\, C2 < oo such that

ci\\Cu\\H-t < \\u\\Ht < C2\\Cu\\H-t, (2.23)

where Hs stands for a suitable (subspace of a) Sobolev space (for instance,
determined by homogeneous boundary conditions) and H~s for its dual
space. The underlaying domain may be a bounded domain in M.n, M.n itself
or a more general manifold such as a closed surface according to the above
examples. Thus the problem

Cu = f (2.24)

has for every / G H~t a unique solution.
The analysis that follows will also cover operators with global Schwartz

kernel

Cu =  x)u(x) dx,

as considered in Section 2.2. As in the above examples, K will always be
assumed to be smooth off the diagonal x = y. Moreover, it is to satisfy the
following asymptotic estimates, which obviously hold in the above cases as
well,

(2.25)

where r = It is the order of the operator.

3. Mult iscale decomposi t ions of refinable spaces

In Section 1.5 the transform point of view has been stressed. As indic-
ated there the corresponding numerical schemes can be viewed as Galerkin
or, more generally, (generalized) Petrov-Galerkin schemes. The point is
that these schemes are always seen in connection with a whole ascending
sequence of trial spaces, often referred to as multiresolution analysis. This
permits the interaction of different scales of discretizations. In basis or trans-
form oriented methods this is effected with the aid of appropriate multiscale
bases of hierarchical type. Following Carnicer, Dahmen and Pena (1996),
Dahmen (1994), Dahmen (1996) and Dahmen (1995) a general framework
of multiresolution and multiscale decompositions of trial spaces is described
next in a form which will later host all the required specializations. The
examples in Sections 1.2 and 1.4 can be used as a conceptual as well as a
notational orientation.
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3.1. Multiresolution

The concept of multiresolution analysis plays a central role in the context
of classical wavelets on R". The anticipated applications here require a
suitable generalization. In the spirit of Section 1.5, let H be a Hilbert space
with inner product , ) and associated norm ||  || = ||  ||# = (-,-)1/2. A
multiresolution sequence S = {Sj}jeNo consists of nested closed subspaces
Sj C H whose union is dense in H

( |J Sj ) = H.
Vj6N0 /

j C Sj+1, CIOSH ( |J Sj ) = H. (3.1)

Define for any countable subset $ C H

:= clos#(span{<l>}),

the closure of the linear span of <fr. In all cases of practical interest the
spaces Sj have the form

SJ:=S(*J), $j = fe:fceA3}  (3.2)

for some (possibly infinite) index set Aj, where {3>j}  = {$j}jgN 0 is uniformly
stable in the sense that (see (1.23))

l|c||*2(A,-)~ll cT*jlltf - (3-3)

The $j wil l sometimes be called generator bases or single-scale bases. The
elements cpj  ̂ typically have good localization properties such as compact
supports whose size depends on the scale j .

An arbitrary but fixed highest level of discretization will usually be de-
noted by J, and

Nj :=  #Aj

abbreviates the dimension of the corresponding space
Examples are H = L2QO, 1]) and <f>j^  the box or tent functions (see Sec-

tions 1.2 and 1.4) with Aj = {0 , . . ., 2J '-1} or Aj = {0 , . . ., 2j}, respectively.

Two-scale relations
Nestedness of the spaces S($j) combined with (3.3) means that every (f>j^ £

( ) possesses an expansion

with a mask or filter sequence mJ
k = {mjk}i e& j+1 G £2(Aj+i)]  recall (1.2)

and (1.19). In our compact notation this can be rewritten as

* T = *J + 1M i l 0 , (3.4)



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 81

where the refinement matrix M^o contains the m .̂ as columns.
I will make frequent use of this notation, for two reasons. First, it saves

several layers of indices. Second, it clearly brings out the conceptual simil-
arities shared by all the technically different subsequent specializations. On
the other hand, a word of warning is also appropriate. The special features
of the actual implementation remain somewhat obscure. For instance, it will
by no means always be necessary to assemble the complete matrices M^o-
In most cases its application to a vector amounts to applying local filters.
Keeping this in mind, I still grant priority to convenience.

To illustrate (3.4), recall from (1.2) that the refinement matrix for the
box functions is the 2J+1 x 2J matrix

/ J_

Mj,o =

72
0 1

0 0

0 0

0
V2

0 75 0

0

o o 4s
0

0 7!

0 7 5 /

(3.5)

whose dependence on j concerns only its size. Likewise, (1.19) gives the
1 - 1) x (2? - 1) matrix

1

2v/2
1

V2
1

2v/2
0

0

0

0

0
1

2v/2
1

V2
1

0

0

0

0

0

2V

0

0

\

0
1

0 A
0 575/

(3.6)
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3.2. Stable completions

Since the union of S is dense in H, a basis for H can be assembled from func-
tions which span complements between any two successive trial spaces. One
may think of orthogonal complements as in Section 1.2 or of the hierarchical
complements in Section 1.4 induced by Lagrange interpolation (1.21). De-
pending on the case at hand, different choices wil l be seen to be preferable.
So at this point we follow Carnicer et al. (1996) and keep the specific choices
open. Thus one looks for collections VPj = {4>j,k : fc € Vj }  C £($ j+ i ), such
that

S($ i + 1 ) = ) ®S(tf,-) , (3.7)

and {<&j U \&j}  is still uniformly stable in the sense of (3.3). Like refinabil-
ity, such decompositions may be expressed equivalently in terms of matrix
relations that will provide a convenient algebraic platform for a unified treat-
ment of subsequent specializations. As above, (3.7) implies that there exists
some matrix M^i such that

9] = *] +1Mjtl. (3.8)

It is easy to see that (3.7) is equivalent to the fact that the operator

defined by Mj (£) := Mj^c+M^id , for c G ^(Aj) , d G h(Vj), is invertible
as a mapping from ^(Aj ) x ^(Vj ) onto ^(Aj+i) . Moreover, {$ j U \Pj}  is
uniformly stable if and only if

IIMjII.HM^HOa) , j€N, (3.9)

where ||  || is the spectral norm (Carnicer et al. 1996).
I t is convenient to block M " 1 as

so that
I = MjGj = MjfiGjfi + Mj.iGj.i (3.11)

and

Gi ieM i ie/ = <5e,e'I, e, e' G {0,1} . (3.12)

Of course, those who are familiar with wavelets recognize in (3.11) the
classical filter relations. The matrix Mj describes a change of bases and
hence the reverse change Gj, that is, $ j+ i can be expressed in terms of the
coarse scale basis &j  and the complement basis \&j. One readily concludes
from (3.4), (3.8) and (3.11) the reconstruction relation

. (3.13)



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 83

In general it may be difficult to identify the inverse Gj, or, better, to ar-
range Mj, i in such a way that also Gj has a nice structure such as sparseness.
One rather expects that when M j is sparse, Gj wil l be full. In some sense,
the art of wavelet construction can be viewed as finding the exceptions.

It is again instructive to recall the examples in Section 1. The rela-
tion (1.3), denning the Haar wavelet, corresponds to the 2J +1 x 2J matrix

i
72

0 0
1

V2
0

0

75

0

0

0

0

0

1
V2

1

"7 5
0

(3.14)

0
1

V2
0 0 —*=

\ V2 /
Since the Haar system is orthonormal, one simply has in this case

Gj = M j , ||Mj|| = HMT1!! = 1. (3.15)

Adding and subtracting (1.2) and (1.3), one could also deduce directly that

1 H * H\

For the hierarchical basis from Section 1.4 one obtains the (2J'+1 — 1) x 2J

matrix

\

Moreover, since by (1.19) and (1.22),

1 , ,

1

21

1
0

0

0
0

1

0

0

0

0

0

0

1

0

0

0

0
1

(3.16)
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while

- 1 ,

one readily identifies, in view of (3.13), the inverse Gj as

/ O v ^ O 0 0 ... 0 0 \

0 0 0 y/2 0 : 0 0
Gjfi = : : : :

y/2 0 0 0

v 0 0 ... 0 0 \/2 0 )

and

(3.17)

1
0

\

\

-5 °
-i 1

(3.18)

Again one trivially has ||Mj||, ||Gj|| = O(l), j € No, so that the hierarch-
ical complement bases are also uniformly stable in the above sense.

Remark 3.1 Evidently, the identification of a complement basis (3.7) is
equivalent to completing a given refinement matrix M^o to an invertible
mapping. Any M^i for which the completed matrix Mj satisfies (3.9) will
be called stable completion of M_j,o-

3.3. Multiscale bases

Repeating the decomposition (3.7), one can write each space 5($j) as a
sum of complement spaces

3=0

Accordingly, gj G S($j) can be expanded in single-scale form with respect
to $j as

9J = (3.19)

as well as in multiscale form as

(3.20)



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 85

with respect to the multiscale basis

J-i

* J := $0 U * j . (3.21)
3=0

Hence, by the denseness of S (3.1), the union

oo

*  := $JO U (J Vj =:  {V>A : A G V }  (3.22)
3=30

is a candidate for a basis for the whole space H. Here jo is some fixed
coarsest level (which, for simplicity, will usually be assumed to be jo = 0).
We will always use the convention

V : = A + U V _ , (3.23)

where

A + := A i o , VA = <t>j o,k, A := (j0, k), V_ := {(j, k) : k G Vj,j G No} .

In principle, there is no need to consider only subsets * J of * defined by
levelwise truncation. Instead one can select arbitrary subsets A C V to form
trial spaces

SA := 5 ( * A ) , * A := {V>A : A G A} ,

to discretize (1.30), say. According to (d) in Section 1.5, the selection of A,
depending on a particular problem at hand, is a very natural way of steering
adaptivity. This is perhaps one of the most promising aspects of multiscale
basis-oriented methods in comparison with conventional discretizations.

3.4- Multiscale transformations

On the other hand, working with arbitrary subsets A C V will be seen to
cause practical problems that should not be underestimated. Adequate data
structures have yet to be developed. Things are much simpler for the special
case

Aj := {A G V : |A| < J } , (3.24)

where
/ if ip\ G * j ,
/o - 1 if A G A+,

which deserves some special attention.
To this end, both coefficient vectors c and d appearing in (3.19), (3.20),

respectively, convey different information. While cJ in (3.19) indicates in
many cases, for instance, the geometrical location of the graph of gj, the d-7

in (3.20) have the character of differences. While usually all the entries of cJ

are needed to represent gj accurately, many of the entries in d may be small,
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and replacing some of them by zero may still permit a sufficiently accurate
approximation to gj (recall (1.9) in Section 1.2). On the other hand, the
pointwise evaluation of gj is much simpler in the single-scale form (3.19).
These questions wil l be encountered repeatedly in the course of subsequent
developments.

To exploit the benefits of both representations, one needs a mechanism
to convert one into the other. These transformations all have a common
pyramid structure, which is explained next. Since by (3.4) and (3.8),

the transformation

is schematically given by

M o,o
c° ->

M0,i

d°

c1

d1

T j

Ml ,

Mi,i

: d -

c2

d2

+ c (3.25)

(3.26)

To express this in terms of matrix multiplications, define for j < J the
x # $j matrix

o i
where I is the identity block of size #3>j — #<1>J+I. Then (3.26) becomes

Tj = TJ, j_i---Tj i 0. (3.27)

As for the inverse transformation, since, by (3.13),

1 is realized by

Gj-2,0
OJ , _J-1 . rJ-2 r0

Gj—i i Gj_21 Go i (3.28)

d-7" 1 dJ~2 d°,

which, of course, has a similar product structure as (3.27) involving the
blocks Gj.
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Complexity of multiscale transformations
Let us comment first on the complexity of the transformations T j , TJ1. In
the above two examples (see (3.5), (3.6), (3.14), (3.16)) the matrices Mj
and Gj have only finitely many nonzero entries in each column and row.
Thus the operations that take c-7,dJ into e?'+1 as well as cJ +1 into cJ,d-7

require the order of #Aj+i operations uniformly in j . Since in both cases
#Aj+i/#Aj ~ Q > 1 (here g = 2), one concludes that the execution of
T j and T j requires the order of # A j = dim S($j) operations uniformly
in J € N. Note that one need not assemble the global transformation T j
but rather apply local niters like (1.2) and (1.19) which correspond to the
successive application of the factors TJJ . This pattern holds in much greater
generality, as long as #Aj /#Aj_ i > g > 1, and the matrices Mj , Gj stay
uniformly sparse. By this we mean that the columns (rows) of Mj , (Gj)
contain only a uniformly bounded number of nonzero entries. Thus one may
record the following for later use.

Remark 3.2 When all Mj are uniformly sparse and the cardinality of <5j
grows geometrically, then the application of T j requires 0(#A j) operations.
Under the same assumptions on the Gj an analogous statement holds for

i— Jthe inverse transformation T 1

Let us see next how the transformation T j may enter a numerical scheme
for the approximate solution of (1.30). Suppose one wants to employ a
Galerkin scheme based on S($j), that is, one has to compute uj € S($j)
satisfying

(Cuj,v) = (f,v), veS($j). (3.29)

If uj is to be represented in single-scale form uj = (cJ)T$j, this amounts
to solving the linear system

(3.30)

for the unknown coefficient vector cJ. As pointed out in Section 2.2, the
matrix A$7 := (£$,/, <J>j)T may be sparse but increasingly ill-conditioned
when J grows. In the special situation of Section 1.4 it has been observed
that the stiffness matrix relative to the hierarchical basis has more favourable
properties. One readily checks that, in general, the stiffness matrix A^ j :=

J relative to the multiscale basis tyJ (see (3.21)) has the form

T/. (3.31)

Hence A^j is a principal section of the (infinite) matrix

A* := (£* , *>T, (3.32)

which is often called standard representation of C.
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Let us assume that £ is a differential operator, so that, when $ j con-
sists of compactly supported functions, A$7 is sparse and has only O(Nj)
nonvanishing entries, where, as before, Nj = #Aj. Hence its accurate com-
putation requires only the order of Nj operations and storage. Since the
basis *l! J contains functions denned on coarse levels, basis functions from
different scales will generally interact, so that Ayj will generally be much
denser. However, in the context of iterative schemes, only the application
of a matrix to a vector matters. By (3.31), the application of Ayj to a
vector reduces to applying successively Tj, A ĵ and T j , each requiring, on
account of Remark 3.2, the order of Nj operations.

In the above form these multiscale transformations are very efficient rel-
ative to the complexity of the full space S($j). At this point, though, it is
not clear how to deal with spaces S(^A) spanned by subsets of * J .

Stability and biorthogonality
There is obviously a continuum of possible complement bases tyj that yield
decompositions (3.7), and the question arises whether they are all equally
suitable. The Haar basis corresponds to taking orthogonal complements
relative to the ^-inner product, while the hierarchical basis spans orthogonal
complements relative to the inner product a(u,v) = (U',V')IQ  ̂ in HQ([0, 1]).
Thus orthogonal complements appear to be a canonical choice. However,
they are frequently not easy to realize. For instance, any stable completion
for (3.6), which induces orthogonal complements, is either dense or gives
rise to dense inverses Gj. Moreover, we will encounter situations where
orthogonal complements are actually not the best choice.

At any rate, the qualification of the complement bases tyj will be seen to
depend crucially on the topological properties of their union \P. Aside from
efficiency, a first reasonable constraint on the choice of the tyj is the stability
of the multiscale transformations; see, for example, Dahmen (1994, 1996).

Theorem 3.3 The transformations T j are well conditioned in the sense
that

||Ti / ||,||T71|| = 0(l), Jen, (3.33)

if and only if the collection \I/, defined by (3.22), is a Riesz basis of H. This
means that every / € H has unique expansions

/ = E (/' W A = E </> V^A , (3-34)
Aev Aev

where ^ C H is a biorthogonal Riesz basis, that is,

(*,* ) = I, (3.35)

such that
(3-36)
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Thus biorthogonality is as far as one can deviate from orthogonality. It will
be seen that the framework of biorthogonal bases offers a much more flexible
setting for constructing multiscale bases such that the matrices Mj as well
as their inverses Gj are uniformly sparse and give rise to well-conditioned
multiscale transformations. Moreover, several schemes that have originally
been formulated for orthogonal wavelets (at the expense of infinite although
decaying niters) can be adapted to the biorthogonal setting with better
localization in physical space.

Remark 3.4 Biorthogonality came out as a necessary condition. In gen-
eral, it is not quite a sufficient condition for the Riesz basis property (3.36).
In fact, as observed by Meyer (1994), not every Schauder basis in a separable
Hilbert space is a Riesz basis. Additional conditions ensuring (3.36) will be
discussed later.

3.5. Stable completions continued

Constructing a stable completion in the sense of Section 3.2 does not yet
guarantee that a collection \1/ of the form (3.22) is a Riesz basis in H. Since
in general we cannot resort to Fourier techniques, other tools are needed. As
we have seen in Sections 1.2 and 1.4, sometimes certain stable completions
can be found that may not yet have the desired form. For instance, the
hierarchical bases in Sections 1.4 and 4.1 are not Riesz bases. In such cases
a simple device will help, that allows one to modify the complement bases
(Carnicer et al. 1996). It will have several applications later. The first
important observation is that, once some stable completion is known, all
others can be parametrized as follows.

Proposition 3.5 Suppose that $j are uniformly stable with refinement
matrices M^o and let Mj,i be some (uniformly) stable completion of M^o-

Gj := ( J ' ° ) denote the inverse of Mj = (M^cM^i ) Then M^i is alsoLet Gj := (QJ'°) denote the inverse of Mj = (M^cM^i) . Then
a stable completion of M^o, if and only if there exist

such that Lj , Kj , KJ1 are uniformly bounded as operators and

Mj, i = MJ-OLJ + MJ . IKJ. (3.37)

Moreover, the inverse Gj of Mj = (Mj,o,Mj ;i) is given by

Gj,o = Gj,o - L J - K J1 ^ , ! , Gj-i = KT 1^ , ! . (3.38)

Thus, given M^i , varying Lj and Kj produces a whole family of fur-
ther stable completions and corresponding decompositions of the spaces

j). The special case Kj = I covers the lifting scheme proposed by
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Sweldens (1996, 1997). In this case one has

that is, in terms of individual functions, one has

hk- (3-39)

Thus the new wavelet ipj^ is obtained from the initial wavelet ^j  ̂ by adding
a linear combination of coarse scale generating functions.

Now the task remains to pick from the above family of stable completions
a certain desired one. Specifically, we will have to identify stable completions
associated with linear projectors of the form , Sj)$j where ($j,Sj) = I.

In fact, Carnicer et al. (1996) have shown that

M,-! = (I - Mj, 0<* i+ i,S,)T) Mjtl (3.40)

are also stable completions with

Gj,o = Gj-o + ($j+ i ,SJ-)
TM j l iG j i l , Gj,i = Gj,i. (3.41)

This obviously corresponds to the case Kj = I and

LJ =-(* j+1,Sj)TMjA. (3.42)

To see the relevance of this latter observation in the present context, let
for any A C V

*A := { ^ : A e A} . (3.43)

If * and ̂  are biorthogonal collections (3.35), then

QAv := (v, *A ) *A , Q*AV :=  (v, * A)*A , (3.44)

are projectors onto the spaces S'(^'A), -S'(^A)) respectively, which are adjoints
of each other. In particular, for A = Aj we simply write Qj = QAj.

Remark 3.6 If * and ̂  are biorthogonal, then

QAQA = QA when A C A c V. (3.45)

If in addition (3.36) holds, then the QAIQA
 aie uniformly bounded in H,

A c V.

Suppose now that the desired biorthogonal multiscale bases are not yet
known. Projectors can be also represented with respect to the basis $j of

) . So let

QiV = (v,$i)*i, (3.46)

where

<*i ,* i>=I . (3-47)



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 91

for some $j C 5l(4rJ). We will see next what (3.45) means for the $j.

Remark 3.7 The Qj defined by (3.46) satisfy (3.45), if and only if the
collection $j is refinable, that is, there exists a matrix M^o such that

*f  = *f+1Mjfl, (3.48)
and

M;,0M i i 0 = I- (3.49)

The key to constructing biorthogonal wavelet bases is the following ob-
servation (Carnicer et al. 1996). The point is that if dual pairs of refinable
generator bases $j,$j satisfying (3.47) are given and some initial  stable
completion is known, then biorthogonal wavelets can easily be obtained as
follows. One infers from (3.40) and (3.41) the following.

Proposition 3.8 Under the assumptions of Proposition 3.5,

Mj, i = (i - M i i0M* 0) % i (3-50)

are also stable completions with

Gji 0 = M* 0, Gj-,1 = &,-,!. (3.51)

Moreover, Mj,i := Ĝ  x is a stable completion of Mj,o and the collections
\&, ^ obtained from

*J:=*j +1Mjtl, Vj:=$J+1MjA, (3.52)
by (3.22), are biorthogonal.

Note that when Mj , Gj and Mj,o are sparse, then the biorthogonal wave-
lets in \& and \f have compact support.

4. Examples

The objective of this section is to identify several specializations of the set-
ting described in Section 3, which will be needed later.

4-1. Hierarchical bases

The first example concerns the bivariate counterpart to the construction in
Section 1.4. It has attracted considerable attention in connection with the
hierarchical bases preconditioner (Yserentant 1986).

Suppose Q is a bounded polygonal domain in R2 and % is some trian-
gulation of fl. This means the union of triangles in To agrees with Q and
the intersection of any two different triangles r, r' G To is either empty or a
common vertex or a common edge. A sequence of triangulations T}  is then
obtained by subdividing each r € 7}_i into four congruent triangles. With
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each Tj we associate the space Sj of continuous piecewise linear functions
on Q. Thus, as in the univariate case (see Section 1.4), tent functions form
a basis for Sj. In fact, denoting by <f)j tk the unique piecewise linear function
which has the value 2-' at the vertex k of Tj while vanishing at all other
vertices, one can show that the corresponding collections $j are uniformly
stable (3.3); see, for instance, Oswald (1990). It is clear that the union of
the S($j) is dense in H = L2{9).

The hierarchical bases are obtained by adding to $j just those basis func-
tions on the next level that correspond to the new vertices at the midpoints
of the edges in Tj. Thus, denoting by Aj the vertices in Tj and by Vj the
midpoints of the edges in Tj or, equivalently, Vj = Aj+i \ Aj , and calling
J\fj+i tk for k E Aj the set of neighbouring vertices of k in Aj+i , one has

k E A (4.1)

that is, the entries of M^o are given by

Since

one has the completion

j , k  4>j+i,k,

2' m = K

1
- , meMj

0, else.

6 V,-

(4.2)

>m,k V3-.

(4.3)

(4.4)

On the other hand, since also for m € Aj one has A/j+i iTn C Vj , (4.1) and
(4.3) imply

Ui*  (4-5)

(4.6)

(4.7)

so that in this case we infer from (3.13)

(Gi,o)fe)m =

and

- - , m 6 Aj,k G A/"j +i,m,

0, else.
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Since obviously ||Mj||, ||Gj|| = 0(1), j € N, the M^i , denned by (4.4), are
indeed uniformly stable completions.

However, note that

(4.

where the Lj are the interpolation projectors defined by

Ljf :=

Hence the basis * obtained in this way (see (3.22)) has no dual in
and is therefore not a Riesz basis. However, it will serve as a convenient
initial stable completion in the sense of Proposition 3.8. Some consequences
of these facts will be discussed later in connection with preconditioning.

4.2. Wavelets on Rn

The construction of wavelet bases is best understood for H = L2 (M.), where
the notion of multiresolution analysis has originated from Mallat (1989),
Meyer (1990) and Daubechies (1988).

Stationary multiresolution
Let us first consider the univariate case n = 1. Suppose that <f>  6 L2W has
stable shifts

^2 Ck4>(- — k) (4.9)
fcez

and is refinable, that is, there exists a mask a € £2(2) such that

(f>(x) = '^2,ak4>{2x — k), x e E, almost everywhere. (4-10)
fcez

Hence the collections

are uniformly stable (3.3) and satisfy (3.4) with M^o = Mo = (ai-2k)l,kez-
Thus the refinement matrices are stationary, that is, they are independent
of the scale j and the spatial location k. The examples from Sections 1.2
and 1.4 are obviously obtained by restricting collections $j of this type
to [0,1]. The function <f>  is often called scaling function or generator of
the multiresolution sequence S = {S($j)}j€z, which is known to be dense
in L2OR); see> f° r example, de Boor, DeVore and Ron (1993) and Jia and
Micchelli (1991).

Time-frequency analysis and Fourier techniques have been an indispens-
ible source of construction tools. It is well known (de Boor et al. 1993,
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Daubechies 1992, Mallat 1989, Jia and Micchelli 1991) that, in terms of the
Fourier transform, stability (4.9) is equivalent to

>c>0, (4.11)
feez

while the refinement relation (4.10) reads

fa) = 2-1a{e-iy/2)4>{y/2). (4.12)

The Laurent polynomial

is called the symbol of the mask a. Since under the present assumptions 4>
is continuous, reiteration of (4.12) yields

( oo )

kv) = { I I (2-Ve-i2~^)J \ 0(0), (4.13)

where the product converges uniformly on compact sets so that we always
have <f>(0)  ̂ 0. Thus we may assume that <f>  is normalized to 4>(0) = 1.

An important special case arises when the shifts </>(  — k) are orthonormal
so that (4.9) becomes an equality. An example is the scaling function (see
Daubechies (1992, page 137))

f 1, \y\ < 2V3,
kv)'=\ cos( fz/ (^ |y | - l ) ), 2TT/3 < |y| < 4TT/3, (4.14)

( 0, otherwise,

where v is a smooth function satisfying

), x < 0,

Another interesting example is

4>(y) = 2 + (1 - e-^qiy), (4.15)

where the trigonometric polynomial q is chosen, so that the shifts 4>{-—k),k 6
Z are orthonormal and

-r-{< £ l v = o= SQ,I, l = 0,...,d-l.

This latter condition means that

f xl(j){x)dx = 6Oii, l = 0,...,d-l, (4.16)

that is, the scaling function <j>  also has certain vanishing moments. Using
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essentially the same Taylor expansion argument as in Section 1.3, condition
(4.16) implies that, for smooth / , one has {f,cj)j,k)sL ~ 2Jl2f(1~Jk). In fact,
one can show that, for instance,

(4.17)
fcez

so that the expansion Sfcgz/(2~"7^)<^(2"/x —A;) almost interpolates f. While
4> from (4.14) has global support, the support width of <j>  from (4.15) is 3d— 1
(Daubechies 1992, page 258).

The now famous scaling functions (j>  with orthonormal shifts of smaller
support (of width Id— 1) have been constructed by Daubechies (1988, 1992).

When the shifts of <f>  are orthonormal, it can be verified that the shifts of

-l)kax_k(f)(2x - k) (4-18)
feez

form an orthonormal basis of the orthogonal complement of 5($o) m

so that the corresponding tpjtk constitute an orthonormal basis for
The function <fr  from (4.14) gives rise to the Meyer wavelet (Meyer 1990)
which has extremely good localization in Fourier space but has rather slow
decay in physical space. The wavelets for (4.15) are called coiflets and wil l
be referred to later again.

In general one can say that <fi  and i\) act like low pass and band pass niters.
For an extensive discussion of this background see Daubechies (1992).

However, orthonormality wil l merely be viewed as a special case of the
more flexible concept of biorthogonality that came up in Section 3.4; see
Cohen, Daubechies and Feauveau (1992).

Dual pairs
The scaling functions 4>, § are said to form a dual pair if

-k)dx = 60,k, keZ. (4.19)

We will sometimes refer to (f> and 0 as primal and dual generator, respect-
ively. It is easy to see that compact support of <fi  and </> implies that the
masks a and a have finite support and that (4.19) implies stability (4.9).
Moreover, it is known that the functions

- k) (4.20)
fcez fcez

satisfy

< ^ ( - - fc))n = < ^ ( - - *0>R = 0, < ^ ( - - fc))R = So,*, keZ, (4.21)
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which obviously covers (4.18) as a special case. Observe next that straight-
forward computations confirm that the relations (4.19) and (4.21) are equi-
valent to

_ W 4 °) (422)
b(z) b(-z) ) \ a(-z) b(-z) ) \ 0 4 j '

This can be used for the construction of the dual generator (ft. Given the
mask a one can determine a satisfying the first relation in (4.22) and then
show that the product (4.13) with a, instead of a, is the Fourier transform
of an /^-function.

One easily deduces from (4.10) and (4.21) that for tyj := {ip^k : k G Z} ,
iffj  := {ipj^ : k € Z}  the collections

are biorthogonal.
To relate this to the discussion in Section 3.2, note that with bk :=

(-l)ka\-k, bk  (-l) fcai_fc the bi-infinite matrix Mj, i = M i := (6/_2fc)/,A;ez
is a stable completion of Mo above and that in this case (see Proposition
3.8),

Go = MS = (a,-2fc) fcJez> G, = M t = (S, -* )f c J 6 Z. (4.24)

B-splines as primal generators give rise to an important class of dual
pairs where both generators have compact support. Let [x\ {\x\) denote
the largest (smallest) integer less (greater) than or equal to x, and define
Nd = X[o,i) *  * X[o,i) as the d-fold convolution of the box function (1.1).
Then, for

~.ey j , (4.25)~.ey

(4.10) becomes

/ d \
4>{x)=  Y, 2 l " d L , M d0(2x-fc). (4.26)

Cohen et al. (1992) have shown that for every d,d G N, d > d, d + d even,
there exists a compactly supported scaling function d  ̂ such that (d<f>,  d j0)

form a dual pair. The role of the parameters d, d wil l be pointed out below.
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Polynomial exactness
It is remarkable that in the present stationary setting the refinement equa-
tion (4.12) has further important consequences. In fact, since, by (4.12),

4>(2*k2n) = I n (2-1a(e-i 2"- J2-)) 1 4>(2irk),

letting n tend to infinity and applying the Riemann-Lebesgue lemma yields

</>(2TTA;) = 0, A;<EZ\{0} . (4.27)

By the Poisson summation formula, this means that (Cavaretta, Dahmen
and Micchelli 1991)

l = ^ 0 ( x - f c ), i e l . (4.28)
fcez

Similarly, a somewhat refined argument shows that <j>  € Hr(R) implies

0(/)(27rfc) = 0, k e Z \ {0} , Z = 0,.. ., r, (4.29)

(Cavaretta et al. 1991) so that Poisson's summation formula again implies
that, for any polynomial p of degree at most r, there exists some polynomial
q of lower degree such that

J > - f c ) + <7(z). (4.30)
fcez

In particular, when the scaling function </> also has vanishing moments
(4.16), then the polynomial q can be shown to vanish. Combining this poly-
nomial reproduction property with arguments from the proof of Proposition
5.1 below yields estimates of the form (4.17) above. The fact that shifts of
<f>  represent polynomials of degree r exactly is reflected by the fact that the
symbol a(z) contains a power of (1 + z), that is

a(z) = {l  + z)r+1q(z) (4.31)

where q(l) = 2~r (Daubechies 1992).
Returning to the above family (^0, d j</>) of dual pairs, the parameters d, d

are exactly the respective orders of polynomial reproduction. Thus (4.19)
yields

fcez

fcez

which has two important consequences. On one hand, as indicated above,
the order of polynomial reproduction governs the approximation power of
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the spaces S(&j); see, for instance, Cavaretta et al. (1991). This will be
established later in somewhat greater generality. Here we mention first the
following important further implication.

Moment conditions
As an immediate consequence of (4.21) and (4.32), we state that

Ixrip(x)dx = 0, r = O , . . . , i - l , fxri>{x)dx = 0, r = 0 , . . . , d - l,

when tp,tp are the wavelets (4.20) relative to the dual pair (d</>, d(j<^) from

above. The wavelets ip, ift are said to have vanishing moments of order d, d,
respectively. Recall from Section 1.3 that the order of vanishing moments
governs the compression capacity of a wavelet. The fact that in connection
with biorthogonal wavelets the order of vanishing moments can be chosen
independently of the order of exactness wil l play an important role later.

Integration by parts
There is an important trick for generating a dual pair from another one,
essentially by integrating up and differentiating down (Dahmen, Kunoth and
Urban 1996c, Lemarie-Rieusset 1992, Urban 1995a). To this end, suppose
that (<fi,  (j>)  is a dual pair and <\>  € H1+£(R). By the previous remarks, its
symbol a(z) is divisible by (1 + z). The new symbols

a-(z):=^-za(z), d+(z) := ^d(z) (4.34)

obviously still satisfy the first relation in (4.22). Moreover, the refinement
relations (4.11J relative to the masks a~ ,a+ can be shown still to possess
solutions <p~,(f>+ <E L2(M) with compact support, which are related by

^ 0 ( x ) = ^ - ( x ) - 0 " ( x - l ) , ^+(x) = 4>(x + l)-4>(x). (4.35)

Since one still has a (z)a+(z) + a (—z)a+{—z) — 4, (<f>  , 4>+) is still a dual
pair. Moreover, the corresponding wavelets ip~,ip+, defined by (4.20), are
related to ip, ip by

/ ( ) 4 p - ( ) p + ( ) A j { ) . (4.36)i/>(x) 4ip(x), tp(x)
dx ax

We will have several opportunities to make use of these facts later.

The multivariate case
The simplest way of generating orthogonal or biorthogonal wavelets on R"
is via tensor products. Given any dual pair (ip, (p) of univariate scaling
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functions, the products

<f>(x)  := f(xi)---ip(xn), 4>(x) :=  <p(xi)  <p(xn) (4.37)

obviously form a dual pair in
The corresponding masks are obtained from the univariate ones in a

straightforward fashion. One should note that for scalings by powers of
two one now needs 2n — 1 different wavelets whose shifts span the comple-
ment spaces. Setting E := {0,1}" , E* := E \ {0} , it is convenient to index
these mother wavelets as follows,

^e(x) = Ve1(xi)---Veri(a;n), e e £ », (4.38)

where we sometimes denote for convenience I/JQ := ip. The ipe are denned
analogously. Thus, while associating the functions

<f> jtk :=  2nj/2cl)(2j  -k), k € Z n , (4.39)

with the index set or grid Aj := 2~JZn, the wavelets ipej,k, 4>e,j,k correspond
to VCj := 2-3 (§ + Zn), so that A i + 1 = A, U (\JeeE, V ej ) .

Several alternatives have been studied. First, one might look for genu-
inely multivariate scaling functions and wavelets. The practical relevance
in terms of small masks and locality seems to be confined to a few spe-
cial cases; see, for instance, Cohen and Schlenker (1993). On the other
hand, the tensor product structure offers numerous advantages with regard
to computational efficiency, via reduction to univariate problems, and data
structures, as long as the underlying grid structure is regular. However, to
reduce the number of mother wavelets, one might employ scalings by suit-
able integer matrices M with all eigenvalues strictly greater than one. One
then needs |detM| — 1 mother wavelets (Grochenich and Madych 1992, Co-
hen and Daubechies 1993, Dahlke, Dahmen and Latour 1995). Again, much
less machinery is available in this case. Finally, instead of considering spaces
generated by a single scaling function, one can use a fixed finite collection of
generators. In summary, however, since none of these approaches overcomes
the obstructions posed by more complex domain geometries, it is fair to
say they do not offer any significant advantages for the problems considered
here.

Computational issues
Obviously, the stationary setting offers a variety of computational advant-
ages. One need not assemble any level dependent refinement or completion
matrices. The multiscale transformations (3.26) and (3.28) reduce to local
applications of finite filter masks which are fixed once and for all; see Barsch,
Kunoth and Urban (1997) for a discussion of these issues. The main point
of this section is to present some computational techniques for basic tasks
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like evaluating function values, derivatives and integrals of wavelets, which
have no counterpart in conventional discretization settings.

Even though many scaling functions and hence corresponding wavelets
possess no closed analytic representation, all essential information can be
drawn from the masks. We wil l briefly exemplify this fact for the com-
putation of integrals of products of scaling functions and wavelets or their
derivatives. More details of the following facts can be found in Dahmen and
Micchelli (1993) and Latto, Resnikoff and Tenenbaum (1992), and corres-
ponding implementations are documented in Kunoth (1995).

Due to the two scale relations (4.20), integrals involving wavelets can
be reduced to integrals involving only scaling functions. Thus Galerkin
discretization of a partial differential equation requires evaluating terms like

a(x)dacj)jtk(x)d0
(l) j,i(x) dx, (4.40)

n

where a successive application of (4.10) has been used when wavelets on
different levels j , f are involved. Assuming for simplicity that Q is a union
of rectangular domains, the above integral can be written as

f Xj,m(^Hx)dacPj,k(x)d^cj)J!l(x)dx, (4.41)

where x = Xn is the characteristic function of the unit cube  = [0,1]71.
Due to the compact support of (p, the sum is actually finite and involves at
most |supp |̂ terms.

Applying quadrature to quantities like (4.40) may not always be advis-
able, since although a(x) may be very regular the accuracy of the quadrat-
ure is limited by the factors da4>j,k, which may have very low regularity.
Let us therefore point out how to evaluate (4.40) up to an accuracy that
only depends on a(x). To this end, let 8 be any other scaling function
such as a (tensor product) B-spline. Replacing a(x) by some approximation
Z)iez»» ai6j,l{x) = : aj{ x) which could, for instance, be obtained by interpol-
ation, the compact support of 9 again ensures that, when replacing a(x) by
a,j(x) in (4.41), the sum over I £ Z" is again finite, so that one ultimately
has to compute after rescaling the quantities

f Xo(x)9(x - kl)d^(f){x - k2)d0</){x - k3) dx. (4.42)

Similar expressions arise when discretizing nonlinear terms such as those
appearing in Burgers equation.

Here a new idea enters. The point is now that, given any finite number
of (possibly different) scaling functions fa, (with finitely supported masks),
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i = 0 , . . ., m, with fa € Cr(M.n) say, then expressions of the form

^aOn^ViOr-^dz (4.43)

can be computed exactly (up to round-off). Thus the accuracy of the quant-
ities in (4.40) depends only on the approximability of the coefficient a(x).

This is essentially a consequence of refinability and its close connection
with subdivision techniques; see Cavaretta et al. (1991), Dahmen and Mic-
chelli (1993) and Latto et al. (1992). The main ideas are now sketched.
Suppose (\> is a scaling function. Differentiating and evaluating (4.10) at
(multi-)integers, yields

(4.44)

Clearly (d^^k) : k e Zn) is finitely supported. Thus (4.44) may be seen as
an eigenvector relation, that is, the vector VM = {d^(f){k) : k € supp </>) is an
eigenvector of a finite section of the transpose of the refinement matrix for
the eigenvalue 2~ L̂ When n > 1, that is, // is a multi-integer, every V^
with |/x| = r is an eigenvector with eigenvalue 2~r.

To exploit these relations for evaluating d^4>{k), fceZ", one therefore has
to find suitable additional conditions and show that they actually identify
each V uniquely. Before we describe such conditions we point out that,

(i) once c^ |Z n is known, successive use of (4.10) yields ^</>|2-jZn, j 6 N
(ii ) this can be used to determine the integrals (4.43).

To explain this latter fact, let us catenate (fc1,..., km), (/x1,..., / /" ) to
vectors k, fi in Zs, Z^_, respectively, where s = mn. Note that

(4.45)

where

F{y) := j 0o(z)<h(z " V1)  <l>m(x - ym) dx.
Rn

The point is that F is again a refinable function with mask coefficients
m

Ck = Tn ^ a? Y[ al_ki, (4.46)

where a1 is the mask of fa.

Theorem 4.1 (Dahmen and Micchelli 1993) Suppose that all fa are
stable in the sense of (4.9) and fa 6 Cr(K") , i = 1 , . .. ,m. Then for any
^ g g^n, |^| < r> there exists a unique sequence V^ of finite support in



102 W. DAHMEN

Zmn, satisfying

cu-W, k e Zmn, (4.47)
/ezmn

and

, M < H, ^ 6 N r , (4.48)

where c is defined by (4.46). Moreover, one has

Vjj! = d^F{k) = {-iyi{k, fi), k € Zmn. (4.49)

The moment conditions (4.48) are implied by the polynomial reproduction
(4.30), (4.32). The proof that these conditions determine the VM uniquely,
employs the concept of subdivision algorithms (Dahmen and Micchelli 1993,
Cavarettaet al. 1991).

Other variants of similar nature can be found in Dahmen and Micchelli
(1993) and Sweldens and Piessens (1994), among them recursions for eval-
uating moments like /Rn x@(f>(x — a) dx.

Remark 4.2 The efficiency of this concept deteriorates when the factors
in the integrals (4.40) or (4.41) involve functions on different scales, since
this requires correspondingly many prior applications of refinement matrices.
This problem does not arise when working with the so-called non-standard
representation, which will be introduced later. Likewise, when £ is a differ-
ential operator and 4> has compact support, the above scheme can be used to
compute the stiffness matrix A$j := (C$j, $ j )T accurately and efficiently.
The multiscale transformation T j (3.26) can then be employed to generate
the stiffness matrix A^j (3.32) at the expense of O{Nj) operations. Again
this may not be the best strategy for dealing with matrices A^A for arbitrary
A c V.

4-3. Periodization

The above setting is clearly not suitable yet for the treatment of operator
equations which are usually defined on bounded domains.

A very special but nevertheless important framework is the periodic setting
(Meyer 1990). It essentially retains all the structural and computational
advantages of the stationary shift-invariant case considered above. There
are at least two reasons for addressing this case with great care. First, many
effects will be seen to be local in nature and hence also provide important
insight for more general situations. Second, one might aim at a two-stage
process, trying to carry out the bulk of computation via the full spatial
dimension relative to a periodized problem, while treating domain-related
effects like boundary conditions separately.
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The simple trick is to replace the meaning of gjtk  2n-?/2<?(2-7-—k), k G Zn,
for compactly supported or rapidly decaying g G L,2(M.n) by its periodized
counterpart

gjtk(x) := 2n^2 Y, 9 (?{.x + I) - k) . (4.50)
zez™

Given any dual pair (4>,<t>)  on En, and setting Aj := Zn/2J'Zn, the corres-
ponding sets

* i : = i<t>j,k  k G Aj}, * e j := {ipe,j,k  k G Aj}, e G £*, (4.51)

and likewise $ j, ^ e j , have finite cardinality 2"J and consist of functions
which are one-periodic in each variable. Note that this preserves orthogon-
ality relations. One easily checks that (4.19) and (4.21) still imply that

(<l>j,k,  4>j,i)a = I <l>j,k( x)hAx)dx = sk,i, k,I G A j , (4.52)
n

and that the collections

* := $0 U U ( U * e j ) , * := *0 U U ( U *ej ) , (4.53)

j=0 VeeE*  / j=0 \eeE*  )

are biorthogonal

( * , * )  = I. (4.54)

Hence the <S = {<S'($j)}j eNo) S = {^(^OliGNo form two biorthogonal
multiresolution sequences fitting into the framework of Section 3 for H =
L2(M

n/Zn). One readily verifies that

( E 2~n/2ai-2k+v+im) <t>j+i,i,  (4.55)

that is, the new masks are obtained by 2^+1-periodization. Thus the refine-
ment matrices M^o have circulant structure and analogously the completion
M^i (as well as M,-,o, M^i) .

Denning the discrete Fourier coefficients

it is clear that for the periodization [g]  := J2mezn 5(" + m) o ne n as

= g(k), k G zn.

Hence any results relative to Rn are readily related to corresponding results
for R"/Zn; see also Frohlich and Schneider (1995).
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4-4- Wavelets on the interval

There is one further extension beyond M.n or Mn/Zn that is worth mentioning,
namely wavelet-like bases on [0,1]. This still seems to be awfully restrictive.
However, it wil l later be seen to be a key ingredient for the construction of
wavelets on any domain that can be represented as a disjoint union of para-
metric images of cubes. This includes closed surfaces arising in connection
with boundary integral equations (see Section 2.2).

Wavelets on the interval have been discussed in several papers; see, for
instance Andersson, Hall, Jawerth and Peters (1994), Cohen, Daubechies
and Vial (1993), Chui and Quak (1992) and Dahmen, Kunoth and Urban
(19966). The basic idea common to all these approaches is to construct
multiresolution sequences S on [0,1], which, up to local boundary effects,
agree with the restriction of the stationary spaces defined on all of R. Thus
one retains possibly many translates 2^2cf)(2:'  —k) whose support is strictly
inside (0,1). In addition, one takes fixed linear combinations of those trans-
lates interfering with the boundaries in such a way that the original order
of polynomial exactness is preserved. The following discussion is based on
Dahmen et al. (19966), which differs somewhat from the other sources but
seems to be tailored best to the needs of subsequent applications.

For any dual pair (0,4>) from the spline family (4.25), that is, <f>  = d<f>i
<j>  =  d j<f>,  d> d, d + d even, define

f m))R = {{-) r A{- - m))R =: am, r , (4.56)

and

V 2 > i / 2 ^  - m ) )R = <(# - - ) r ^ ( - " ™)>R) (4-57)

for r = 0 , . . ., d — 1. Likewise a m̂r, &fm r, r = 0 , . . ., d — 1, are denned by
replacing cf) by 0. It is known that the support of <f>  always contains supp <f). It
turns out that things depend somewhat on the parity l(d) := G?mod2. So fix
I e N, such that for j > j 0 , supp </>(2̂  - m) C (0,1), for I < m < V -1- l(d).
Define left (L) and right (R) boundary functions by

m=—h+l

I [0,1]
m=2i-l-l'"  ~

J 8 )
where supp0 = [^,[2]- Since by (4.56), (4.57), the functions <t>f tk>&f,k  a re

simply truncations of the polynomial representations (4.32), it is easy to see
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that the collections of left and right boundary functions

< i r : r = 0 , . .. ,d - 1}  (4.59)

together with the interior translates

¥j : = {2j/24>(2j  -m) : m = 1,..., 2j - I- l(d)}

span all polynomials II j of degree < d — 1 on [0,1], that is,

nd~ C 5 ($f U $} U I f ) . (4.60)

Setting

l:=l-(d-d),

the functions (f) k̂, 4>^k are defined in exactly the same way with all tildes
removed, providing

nd C S($f U *J U $f). (4.61)
Also, by construction,

# ($f u *} u $f) = # ( ^  u !> j u $f).

However, while the interior functions in # j , l>j are still biorthogonal, the
boundary modifications have certainly destroyed biorthogonality of the ele-
ments in $j^, $j^, X € {L , i?} . Nevertheless, it can be shown that these
collections can always be biorthogonalized. Moreover, this is a completely
local process, which need be done only once. In this and in several other re-
spects it is very fortunate that things have been set up to exploit symmetry
as much as possible. In fact, using the fact that <fi  and </> are symmetric
around l(d)/2, one can show that

<f>*2>-i-i(d)+d-r( 1-x) = <l>j,i-d+r(xl  r = 0 , . . . , d - l , (4.62)

and likewise for < f̂c, </>̂ fc. Thus one ends up with pairs of collections

where Aj := {I  — d,... ,2J' — I — l(d) + d}, with the following properties
(Dahmen et al. 19966).

(i) The functions in $j,®j have small support, that is,

diam(supp(/)j)fc), diam(supp0j;fc) ~ 2~3. (4.63)

(ii ) The $ j , $j are biorthogonal
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(iii ) The spaces S($j), S(<&j) are exact of order d, d, respectively, that is,

, nd  (4.64)

(iv) The spaces <S($j), S($j) are nested. This can be verified by exploiting
trivial scaling properties of polynomials and refmability of the interior
translates.

It is worth commenting on the structure of the corresponding refinement
matrices in

* J = <&J+1M i)0, $ T = £ T + I M , 0 . (4.65)

Each M j^ , Mj,o consists of a stationary interior block, whose size grows
like 2J, as well as an upper left and lower right block, which are completely
independent of j and of fixed size. The interior blocks are just finite sections
of the bi-infinite refinement matrices K-2m)lc,mez. (a*;-2m)fc,mez- Moreover,
symmetry surfaces again. Denoting for a given matrix M by M^ the matrix
obtained from M by reversing the order of rows and columns, one can show
(see also (4.62)) that

Mj i 0 = M j>0, M j ) 0 = M i i 0 . (4.66)

The next step, namely to construct corresponding biorthogonal bases,
is somewhat more involved. Using tools from spline theory, one can first
construct suitable initial  stable completions. Then Proposition 3.8 can be
applied providing new (sparse) stable completions M^i , Mj, i of the above
refinement matrices, which have completely analogous structure and satisfy

M i i0M?;0 + M j - iM ^ = I, MTCM3- e, = <5e>e,I, e , e ' e { 0 , l }. (4.67)

Thus the wavelet bases

* J = $T+1MJ-,1, *}:=*} +1MjA (4.68)

satisfy (*j,*j')[o,i ] = <5j,j'I a nd hence

[Ojl] = I, tf : = * j o U (J 9j, * := $ i0 U U * „ (4.69)

are biorthogonal.
Al l niters have finite length so that the t/jj,k,'4>j,k a^so satisfy (4.63). The

niters are stationary in the above sense. Thus the multiscale transformations
T j (3.26) and T J1 (3.28) are still efficient and require the order of Nj
operations. Finally, observe that the techniques described in Section 4.2
still apply, since all operations ultimately reduce to restrictions of </>(2J  —k)
to [0,1] which can be realized by choosing Xj t as an additional factor in
(4.43).
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5. Norm equivalences and function spaces

One of the most important properties of wavelets is that they can be used
to characterize function spaces; see, for example, (DeVore et al. 1992, Meyer
1990). The Riesz basis property (3.36) which came up in connection with
the stability of multiscale transformations (Theorem 3.3) is a special case
in a whole scale of similar relations. This will be seen to play a vital role
for preconditioning, matrix compression and adaptive techniques (recall (b),
(c) and (d) in Section 3.1).

In the classical stationary shift invariant or periodic setting such results
are established by making heavy use of Fourier techniques. They no longer
apply in a straightforward manner for other domains such as the interval
or more complex cases such as closed surfaces yet to come. Recall from
Section 3.4 that the Riesz basis property as one instance of such norm
equivalences naturally leads to the concept of biorthogonal bases. When
these bases correspond to orthogonal complements between successive spaces
5($j), 5(3>j+i), the Riesz basis property reduces to the Pythagorean the-
orem, once the complement bases ^fj are uniformly stable relative to each
level. However, orthogonal decompositions are often difficult to realize, lead
to dense matrices Gj, and in some cases are not optimal for the application
at hand. Thus understanding the general class of biorthogonal multiscale
bases is vital. However, while being necessary, biorthogonality by itself is
not quite sufficient to imply the Riesz basis property (Meyer 1994). The
developments in this section are therefore guided by the following point:

 find criteria for the validity of the Riesz basis property and other norm
equivalences for biorthogonal bases, which can still be employed in
situations where Fourier techniques no longer work.

A key ingredient is a pair of direct and inverse estimates; these are also
known to play an important role in convergence theory of multigrid al-
gorithms.

5.1. Direct and inverse estimates

The type of estimate we are aiming at is rooted in approximation theory,
concerning approximation and regularity properties of the trial spaces. To
formulate versions suitable for the present purpose, suppose that $7 C Rn is
an open connected domain (the case 0 = Rn included). If Cl has a boundary
we assume that it has some minimal regularity such as the uniform cone
condition; see, for instance, DeVore and Sharpley (1993) and Johnen and
Scherer (1977). Thus there exists an extension operator E : Lp(Cl) —> Lp(R

n)
that is bounded in W™(£l) for any m€N. The estimates we require are

(5.1)
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We wil l refer to such estimates as direct or Jackson estimates. By interpol-
ation, one derives from (5.1) a scale of similar estimates with the right-hand
side replaced by l2~s-'\\f\\Bs{Lp(n))-> s < m, 1 < q < oo, where Bg(Lp(Q)) are
corresponding Besov spaces (see Section 2.1).

There is often a counterpart called inverse or Bernstein estimate

IMlBj(Mn) ) £ 2 S JHL p (n), « £ % )  (5.2)

We next give a simple criterion for verifying (5.1) that will apply in all
cases of interest.

Proposition 5.1 Let $j C Lp(Cl) and Ej C Zy(fi ) with  ̂+ \ = 1 have
the following properties:

(i) Ej and $j are biorthogonal,

(* i ,H i )n = I (5.3)

where , -)Q denotes the dual pairing for LP(J2) x Lp/(Q).
(ii ) The elements of <&j and Sj are uniformly bounded, that is,

ll^-,fc||Lp,||ej,fc||LJ),(n)=O(l), JGN, he&j. (5.4)

(iii ) The collections 3>j, Sj are locally finite, that is, there exists a constant
C < oo such that

#{k' : Di)fc n Dj,fc, ^ 0}  < C, diam Diif c < 2"^ (5.5)

where Q,-̂  is the smallest cube containing supp^-̂  and supp^fc.
(iv) The spaces S($j) contain all polynomials of order d (degree < d — 1)

on Q,

Ud C S(<f>j). (5.6)

Then one has

| | / - ( / ,5 , )o^ | | Mn ) < 2-*"||/|| w,(n). (5.7)

The type of argument needed here is essentially folklore. Since it plays a
central role we sketch a proof. By (5.6), one has for any P € ILj

\\f-ni p{u3k)+ E

(5.8)
On account of (5.5), the sum involves a uniformly bounded number of sum-
mands. Using (5.4) gives

\^k'\\
P

Lpm < \ \ f - P \ \ P L , { u i t k , ) Z 2 ~ d ^

where a Bramble-Hilbert-type argument has been used in the last step.
A littl e care has to be taken near the boundary. In order to employ the
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scaling argument needed for the Bramble-Hilbert argument, one can employ
extension techniques; see Oswald (1997) for details. Bearing (5.5) in mind,
and summing over k G Aj , yields (5.7).

Estimates of the type (5.1) readily lead to estimates without regular-
ity assumptions. Consider the K-functional (see, for instance, Bergh and
Lofstrom (1976))

) = K(f,t,Lp,Wf):= mi {\\f-g\\Lpm+td\\g\\wd{n)}. (5.10)

One immediately infers from (5.1) that

inf \\!-v\\Lvisl) < Kd(f,2~i). (5.11)

Remark 5.2 Under assumptions (5.4) and (5.5), the $j are uniformly
stable (relative to ||  | |i p ( n) and ||  \\ep(Ad))-

Remark 5.3 Obviously Proposition 5.1 applies to all the above examples
of biorthogonal multiresolution sequences (with Ej = $j). In fact, for wave-
lets on Rn recall (4.32), the multiresolution on [0,1] was constructed in
Section 4.4 so that (5.6) holds, while all other conditions are obviously sat-
isfied. Thus we will assume from now on that the direct estimate (5.1) is
valid for the order d of polynomial exactness.

Remark 5.4 Suppose <j>  £ L2OR™) is a (compactly supported stable) scal-
ing function. Let

7 := sup{s : (/) € Hs(Rn)}.

Then
j , (5.12)

holds for any s < 7. It is also known that <\>  E -L2(K
n) implies <j>  G Hs(Rn)

for some s > 0 (Villemoes 1993).

For a proof see, for instance, Dahmen (1995). One can show that when </>, </>
is a dual pair of compactly supported generators, then their integer shifts
are locally linearly independent. Then ||  ||/j«(rj) and ||  ||L2(D)

 a re equivalent
norms on S($o) a nd the claim for integer 5 follows from summing the local
norms and rescaling.

Remark 5.5 (Dahmen 1995, Dahmen et al. 19966) Let $, C L2([0,1])
denote the generator bases constructed in Section 4.4. Then

, s<7- (5-13)

Finally, the inverse inequalities can be expressed in terms of the K-
functional as well. In fact, from (5.2), one can deduce that

Kd(v,t) < ( m i n { l , ^ } ) l i , | | M n ) , veS($j). (5.14)
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The form (5.10) and (5.14) of the direct and inverse estimates will guide the
subsequent discussion.

5.2. The Riesz basis property

As pointed out in Section 3.4, the stability of multiscale transformations
(3.26), (3.28) is equivalent to the Riesz basis property of the basis \& (and
iff). It turns out that sufficient conditions which apply in our cases of interest
can be formulated in a general Hilbert space setting. This will shed some
light on the essential mechanisms. An important point is that, as one will
see, once a biorthogonal pair \P, ty is given, additional conditions implying
the Riesz basis property only concern properties of the spaces spanned by
subsets of \l> and ^, not of the particular bases. These properties can be
formulated in terms of the estimates (5.10), (5.14).

In order to stress this point, we will first reformulate the problem some-
what, which, by the way, corresponds also to the strategy of constructing
Riesz bases employed in Section 4.4. First of all, it is usually not so difficult
to assure stability of a complement basis vl/j = {ipj tk  k £ Vj }  in the space

. We will therefore assume in the following that

. (5.15)

Moreover, recall from (3.45) that biorthogonality is equivalent to

QjQl = Qj for j < l , (5.16)

where the Qj are the projectors QjV = (v,$j)$j = (u, #-')\F of (3.44),
(3.46), which, by Remark 3.6, have to be uniformly bounded when \& and
$ are Riesz bases. Then, by (5.15), the norm equivalence (3.36) can be
equivalently expressed as

 ~ NQ(f) ~ NQ.(f), (5.17)

where, for Q-\ :=  0,

- (5-18)
3=0

The objective now is to establish the validity of (5.18) for a given sequence
Q of projectors satisfying the necessary conditions of uniform boundedness
and (5.16). It is important to note that in this form the result applies when
the Qj are given only in the form QjV = (v, $j)$j, that is, without explicit
knowledge of the right complement bases \&j yet. Note also that the con-
dition (5.16) implies that the ranges Sj of the adjoints Q*j  are also nested.
Moreover, these spaces are also dense in H (Dahmen 1994, 1996). Let us
denote the corresponding sequence by S. The following result says that the
Riesz basis property holds when, in addition to biorthogonality, the primal
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and dual multiresolution sequences S, S both have some approximation and
regularity properties expressed in terms of pairs of direct and inverse estim-
ates (Dahmen 1996).

Theorem 5.6 Let <S be an ascending dense sequence of closed subspaces
of H and let Q be a sequence of uniformly if-bounded projectors with
ranges <S satisfying (5.16). Let S be the ranges of the adjoint sequence Q*.
Suppose there exists a family of uniformly bounded subadditive functional
Lo(-,t) : H —> K+, t > 0, such that Iim4^o+ o>(/, t) = 0 for each / G H and
that the pair of estimates

udJ\f-v\\H < u(f,2-i), (5.19)

and

u(Vj,t) < (min{l,&}y\\vj\\H, VjCVj, (5.20)

holds for V = S and V = S with some 7,7 > 0, respectively. Then

\\-\\H~NQ(-)~NQ.(-). (5.21)

Here is an immediate consequence of Theorem 5.6.

Remark 5.7 Note that the Zf-functional Ka(-,t) denned by (5.10) has,
by (5.11), (5.14),(5.13), (5.12), all the properties of w(-,£) required above.
Thus the biorthogonal bases constructed in Sections 4.2 and 4.4 are indeed
Riesz bases.

A few comments on the proof of Theorem 5.6 are in order; see Dahmen
(1996) for details. First one observes that (Cohen 1994)

NQ(-) < ||  \\H if and only if ||  ||H < iV e.(-).

Thus it suffices to prove that

\\-\\H < NQ(-) and \\.\\H < NQ.(-), (5.22)

or the corresponding pair of opposite inequalities. To prove estimates of the
form (5.22) one can employ a technique which is also familiar in the analysis
of multilevel preconditioners.

Strengthened Cauchy inequalities
To this end, suppose there is a (dense) subspace U C H with a (stronger)
norm ||  \\u such that, for some e > 0,

Wf-QjfWu- < 2-je\\f\\H, \\f-Qjf\\H < 2-J£\\f\\u, (5.23)

and

hjWv <  V'WVJWH, \\VJWH < 2 ^ H | t / ., VjeSj. (5.24)
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Then €>ne can estimate

\\(Qj-Qj-i)f\\u-\\(Qi-Qi-i)f\\u i f * < J .

1 - g i - i ) / ! ! ^ if i > j .
Thus by (5.23), (5.24),

oo

= £

< NQ(f)2.
i,j=0

When Q is uniformly bounded on U* the estimates (5.23) and (5.24) can
be shown to hold by duality also for Q*. Thus the same argument also yields

2H <

A scale of interpolation spaces
So, it remains to find such a subspace U. Natural candidates are the spaces
AQ which are defined for s > 0 as the collection of those / G H for which

e
3=0

They are dense reflexive subspaces of H, and, with a proper understanding
of continuously extended projectors, one has a representation of their duals
in terms of the dual projectors Q* (Dahmen 1996)

(AS
Q)*=AQI.  (5.25)

Moreover, these spaces are defined so that, again under assumption (5.16),
a pair of direct and inverse inequalities hold, namely

\\f-Qjf\\H < 2-'l/|U.Q, \\f-Qjf\\(A.Qmy <  2 - '1 / | |H, (5.26)

and

IMU' Q < V'WVJWH, WVJWH < V'WvjW^y- (5.27)

Finally, by (5.16), Q is trivially uniformly bounded on AQ for all s, that is,

||QilU«Q = l , j G N 0 , s G R. (5.28)

Thus one almost has the pair of inequalities (5.23), (5.24) without any
assumption on Q beyond (5.16) and uniform boundedness. What is missing
is the relation between the spaces (ASQ*)*  and (ASQ)*. If they were equi-
valent, (5.26) and (5.27), together with the strengthened Cauchy inequality
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argument, would confirm (5.22) and hence the claim of Theorem 5.6. This
is where the direct and inverse inequalities (5.19), (5.20) come into play. In
fact, with the aid of these inequalities one can prove that

IU*e. for 0<s<min{7,7} , (5.29)

where

3=0

which closes the gap.
These results are closely related to interpolation theory. In fact, the ASQ

are interpolation spaces obtained by the real method; see, for instance, Bergh
and Lofstrom (1976), DeVore and Popov (1988 a), DeVore and Sharpley
(1993) and Peetre (1978). A detailed discussion of this point of view can be
found in Dahmen (1995).

As mentioned before, the role of w(-, t) is typically played by a if-functional
or a modulus of smoothness, which under our assumptions on the underlying
domain are equivalent seminorms (Johnen and Scherer 1977). In that sense
the spaces B  ̂ can be viewed as generalized Besov spaces. Thus, in addition
to the Riesz basis property, the above criteria automatically establish norm
equivalences for a whole scale of spaces. The equivalence of the artificial
spaces AQ with the Besov-type spaces B  ̂ in some range of s immediately
yields norm equivalences for these (classical) function spaces, which wil l be
addressed next.

5.3. Characterization of Sobolev spaces

When fi is a domain in Rn as above and u>(-, t) is an L2 modulus of smooth-
ness

"  S UP II— tlJ l\^2(Mdh)
\h\<t

where A^ = A^A^" 1, Ahf = / (  + h)- ) and Qdih = {x : x + Ih G Q, I =
0, . . ., d}, or when u(-,t) is the if-functional from (5.10), the norm in (5.30)
is equivalent to ||  ||#s(fi ) for 0 < s < d, and

Hs(fl) ~ B|(L2(n)). (5.31)

We will now apply the above results for H = Hs(tt). For simplicity we focus
on H°(Sl) = L2(fi) . Moreover, let us denote for s > 0 by Hs some closed
subspace of Hs(Ct) (or HS(Q.) itself) which is, for instance, determined by
some homogeneous boundary conditions. The key role is again played by a
pair of direct and inverse inequalities

in f ||t; - Wj | |L a (n) < 2 - a i \ \ v \ \ H ' ( n ) , v€Hs,0<s<dv, ( 5 .32)
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and

M ( ) KI|L2(n), vjeVj, s<7v- (5.33)

Recall from Section 5.1 under which circumstances such inequalities hold.
The direct inequality may be affected by homogeneous boundary conditions
incorporated in <S. If this is done properly the argument stays essentially
the same, since near the boundary not all polynomials are needed.

Prom (5.29), (5.28) and duality (5.25) one infers the following fact.

Theorem 5.8 Let Q be uniformly bounded with range <S and suppose
that (5.16) holds. Moreover, assume that S and the range S of Q* satisfy
(5.32) and (5.33) for some d := ds,d :=  dg, 0 < 7 := min{7s,d}  and
0 < 7 := min{7(5,J}, respectively. Then

j j lmj () '€(-7,7). (5-34)

where it is to be understood that Hs(fl) = (H~S(Q))* for s < 0. Moreover,
Q is uniformly bounded in Hs for that range

(5.35)

When Hs = HS(Q) and both sequences S, S have a high order of exactness
d, d, respectively, the above range may have a significant part for s < 0.
There is, however, always some 7 > 0 reaching into the negative range. It
could be small if Hs is a true subspace of HS(Q) and the corresponding
boundary conditions are incorporated in S. What matters, though, is that,
by (5.25), (5.31) and the above result applied to s > 0, one still has

V2
- ., « € [ 0 ,7 ) . (5-36)

It is convenient to express these relations in terms of the operators
00

- Q i _1 ) / , (5.37)
j=0

which act as a shift in the Sobolev scale

\\Xaf\\Ht(ti) ~ \\f\\m+'(n), « + «£ (-7,7), (5-38)

just like classical Bessel potential operators in harmonic analysis. Due to
(5.16), one has

-1 = E_S, K = J22JS (Q*j ~ Qj-i)  (5-39^
3=0
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It is important to note that one-sided estimates of type (5.34) hold for a
wider range of s. In fact, the uniform boundedness of the Qj ensures that

Thus by Proposition 5.1 and (5.11) one obtains

Since

V 7=0

is known to be a norm for the Besov space 5|(L2(0)) = Hs(Cl), one obtains,
for instance,

oo

.(n), -i<s<d. (5.40)

If corresponding wavelet bases \&, * are known, Ss can be written as

T,sf=YJ^
W{fMu^x, (5.41)

Aev

and (5.34) becomes

||/||H. ~ ||D'</, *)S||/2(V), s G (-7,7) , (5.42)

where Ds denotes the diagonal matrix

(D9)x,x> = rW8x,\>. (5.43)

Remzirk 5.9 In view of Proposition 5.1, Remark 5.4, Remark 5.5, The-
orem 5.8 implies that the wavelet bases constructed in (4.23) for L2W, in

(4.53) for the periodic case and (4.69) for the interval [0,1] all satisfy (5.42)
for s e (—7,7).

Frames

It is important to note that norm equivalences of the type (5.34) for s > 0

do not require knowlege of concrete bases for decompositions (Qj — Qj-i)Sj.

Instead one can prove that (Dahmen 1995, Oswald 1994, Oswald 1992, Os-

wald 1990)

E^H/illLw :/ = £/;}  (5-44)
3=0 3=0 )

In terms of interpolation theory, norms of this type correspond to the J-
method (Bergh and Lofstrom 1976, Peetre 1978). Such norm equivalences
will play a crucial role in preconditioning.
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These results have further natural extensions to other (reflexive) Banach
spaces like Lp-spaces (1 < p < oc). Interpolation between LP(U) and

) , say, leads to Besov spaces Bq(Lp(£l)) endowed with the norms

o

— \\f\\q -I -

^ P ( - \\J \\Lp(n) +

3=0
for d > s > 0. Assuming that * , ^ are biorthogonal wavelet bases (in

one still obtains norm equivalences of the form

3=30

(5.46)
which, of course, reduce to (5.42) for s > 0, p = q = 2. These norm
equivalences play an important role in nonlinear approximation (DeVore
and Lucier 1992, DeVore et al. 1992). This, in turn, will be of interest in
connection with adaptive schemes (see Section 11).

6. Preconditioning

This section is only concerned with preconditioning systems arising from
discretizations of operator equations, which in a loose sense may be termed
elliptic. In particular, all the examples in Section 2 are covered (see also (b)
in Section 1.5). I would like to stress the following points.

 Once the norm equivalences discussed in Section 5.3 are available, the
principal argument is rather simple and applies to a relatively wide
range of cases, represented by the reference problem in Section 2.3. To
bring out the basic mechanism, I will address it first in this generality,
which will cover various special cases treated in the literature.

 The strongest interrelation between rather independent developments
in the area of wavelets on one hand and finite element discretizations
on the other hand occurs in connection with preconditioning. Since
these developments usually ignore each other, I will comment on both.
In view of the existing excellent treatments of multilevel subspace cor-
rection methods seen through the finite element eye, the main focus
here will be on the wavelet or basis oriented point of view.

 In the present generality the results are purely asymptotical. The ac-
tual performance of corresponding schemes depends very much on the
concrete case at hand. In general, it is hard to say which concept is
best able do cope with near degeneracies or strong isotropies.
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6.1. Discretization and projection methods

Consider problem (2.24) for the spaces Ht,H~t,L2 as described in Sec-
tion 2.3. Throughout the following we will assume that ^ = {ijj\  : A € V} ,
*  = {V̂ A  : A € V} , with V = A + U V_, are biorthogonal wavelet bases in
Z/2 such that the norm equivalences

\\f\\HS ~ ||DS(/,*) T | |^2(V), s € (-7,7), (6-1)

hold.
The numerical schemes to be used for the solution of (2.24) may be viewed

as generalized Petrov-Galerkin schemes. To describe this, we adhere to
notation (3.43) and suppose that ©A is a collection of functionals that is
denned and total over S(C Â). To solve (2.24), the objective is to determine
UA G 5 ( * A ) such that

(6.2)

Of course, © = ^ gives rise to a classical Galerkin scheme, while colloca-
tion is obtained when © involves Dirac functionals. In the latter case the
right-hand side has to be taken from a sufficiently smooth space. This is
appropriate when £ is also known to be boundedly invertible as an oper-
ator from Hs into Hs~~2t for some larger s g l . To explain what is meant
by stability of the scheme, it is convenient to reinterpret (6.2) as a projec-
tion method. Suppose that ©is a sufficiently regular dual set for 0 and let
PA := A be an associated projector. Then (6.2) is equivalent to

PACQAU = PA /- (6.3)

The scheme (6.2) is said to be (s, 2t)-stable if for #A large

\\PACv\\HS-2t ~ \\v\\Hs, veS(*A), (6.4)

that is, the finite-dimensional operators CA := PACQA are uniformly bounded
invertible mappings from HsDS(^fA) onto Hs~2tDS(OA). In terms of linear
systems, substituting uA = dr ^A into (6.2) yields the linear system

dT(£VA,QA) = {f,QA). (6.5)

In particular, for the Galerkin case, (6.3) becomes

Q*A£QAUA = Q*Af. (6.6)

The most important case for the subsequent discussion is (t, 2i)-stability, in
brief stability, which then means

HH-* ~ HI** , « € SA. (6.7)
In general not much is known about stability for the above general class of

Petrov-Galerkin schemes. For (nonconstant coefficient) pseudo-differential
operators on the torus, stability conditions are established in Dahmen,



118 W. DAHMEN

Profidorf and Schneider (1994c); see also Dahmen, Kleemann, Profidorf and
Schneider (1996a) for an application to collocation.

When £ is a pseudo-differential operator, its injectivity, boundedness and
coercivity of the principal part of its symbol also imply stability (6.7) of the
Galerkin scheme (Dahmen et al. 1994c, Dahmen, Profidorf and Schneider
19946, Hildebrandt and Wienholtz 1964). Of course, when C is selfadjoint
in the sense that

a(u, v) :=  (£u, v) (6.8)

is a symmetric bilinear form, ellipticity (2.23) means that

IH| 2:=a(-,-)2~IHI*« , (6-9)
and the Galerkin scheme is trivially stable.

We think of the trial spaces having large dimension so that direct solv-
ers based on factorization techniques are prohibitively expensive in storage
and computing time. On the other hand, in the symmetric case (6.9), for
instance, the speed of convergence of iterative methods is known to be gov-
erned by the condition numbers

:= Amax(£A)/Amin(£A), (6.10)

where

:= sup ' , Amin(£A) := inf ' . (6.11)
() (vv) eS(*) (v,v)

Note that when t / 0, the condition numbers grow with increasing #A. In
fact, on account of the norm equivalence (6.1) and (6.9), one obtains

Amin(£A) <

while

Thus choosing |A| as the lowest or highest level in A, depending on the sign
of t, it is clear that

WW (6.12)

where |A| := max{|A| - |A'| : A, A' € A} .
Thus, in such cases the objective is to find a symmetric positive definite

operator CA such that K2{C\C\) remains possibly uniformly bounded, so
that schemes like

or, better, correspondingly preconditioned conjugate gradient iterations,
would converge rapidly.
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6.2. An application of norm equivalences

With the results of Section 5.3 at hand, the task of preconditioning has
become relatively easy. Since, under the assumption (2.23), C acts as a shift
in the Sobolev scale, it is reasonable to exploit the fact that Ss from (5.37)
does that too. Hence Es should have the capability of undoing the effect of
C. By the previous remarks, the stiffness matrix

(6.13)

relative to the wavelet basis \PA is ill conditioned for t ^ 0 and large #A.
However, a diagonal symmetric scaling suffices to remedy this. This observa-
tion has been made on various different levels of generality in several papers;
see, for instance Beylkin (1993), Dahmen and Kunoth (1992), Dahmen et
al. (1996c), Dahmen et al. (19946), Jaffard (1992) and Oswald (1992).

Theorem 6.1 (Dahmen et al. 19946) Suppose that the Galerkin scheme
(6.6) is stable (6.7) and that the parameters 7,7 in (6.1) satisfy

1*1 < 7,7- (6.14)
Let DA be the diagonal matrix denned by (5.43). Then the matrices

B A := DX*A ADX* (6.15)

have uniformly bounded spectral condition numbers

||BA ||||BX1||=O(1), ACV . (6.16)

Proof. Consider any v € «SA and set w := Sju (see (5.37)). Thus, by (6.14)
and (5.38), one obtains

where we have used the stability (6.7) in the last step. Employing the norm
equivalence (5.38), now relative to the dual basis, and bearing (5.39) in
mind, yields

This means that the operators

are uniformly boundedly invertible, that is,

oo. (6.17)

It is now a matter of straightforward calculation to verify that the matrix
representation of CttA relative to \I/A is

<£,A*A , * A ) T = DX*A ADX', (6.18)

which proves the claim.
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Letting #A tend to infinity, the original equation Cu = f can be viewed
as an infinite discrete system (recall (1.35) in Section 1.5)

d = D * f (6.19)

where D~* and A are the infinite counterparts of D^* , A A , respectively, and
f := (/, \P)T is the coefficient sequence of / expanded relative to the dual
basis ^ . The sequence d then consists of the wavelet coefficients (relative
to \1/) of the solution

of (2.24). The infinite matrix B := D~*AD~ i is, on account of Theorem 6.1,
a boundedly invertible mapping from ^(V) onto ̂ (V) .

It is remarkable that similar techniques also lead to preconditioners for
collocation matrices (Schneider 1995). In brief, recall that (6.3) defines a
collocation scheme, when the PA in (6.3) are interpolation projectors. Let
us consider full sets Aj , defined in (3.24), which means S($j) = S\j, and
assume that for a suitable mesh of points {xj^}keAj, the corresponding
projectors have the form

PAjf = Ljf=  Y, 2 /

that is, <$j,fc0j,m = 0j<m(xjtk) = 2Jd/26k,m, k,m e A j . For instance, 9
could be a spline function interpolating the Kronecker sequence. Moreover,
assume that

(Lj+1-Lj)f = (f,-dj)lj, (6.20)

where

I?J = «T+ 1M5 J 1, 7 , = ^ ^ , (6.21)

are corresponding stable completions.

Theorem 6.2 (Schneider  1995) Suppose that the collocation method
(6.3) relative to P\j = Lj is (s, 2i)-stable in the sense of (6.4), and assume
that

| < a - 2t, | < 7j, 7 > 0, s < 7. (6.22)

Then the matrices

Bsf2t (CVJ\tfJYBjs (6.23)

have uniformly bounded spectral condition numbers.
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Details of the proof can be found in Schneider (1995). It uses continuity
of £ as a mapping on Sobolev spaces, the stability (6.4) and the fact that

3=0

for n/2 < T < 7g. As for this norm equivalence, note that the Lj do
satisfy (5.16). But they are only bounded in higher Sobolev spaces, which
causes conditions (6.22). Keeping this in mind, the above equivalence can
be deduced from the general results in Sections 5.2 and 5.3. For details see
Dahmen (1996).

The above simple argument is designed to show the qualitative role of
norm equivalences in connection with preconditioning. In practice, the con-
stants involved will matter. However, in principle, it should be noted that,
in Theorem 6.1, neither

 selfadjointness of £, nor
 positive order 2t > 0

is required for the validity of (6.16).
For unsymmetric problems, (6.16) alone is not sufficient to imply the

efficiency of corresponding variants of the preconditioned conjugate gradi-
ent method, such as GMRES. But behind the validity of (1.29) or (2.23)
there is usually a symmetric principal part of the operator C, in which case
GMRES will perform well, provided that the condition numbers stay small.
Alternatively, if the constant in (6.16) stays moderate, one can square the
preconditioned system and the conjugate gradient scheme works well. We
can summarize this under the following purely asymptotic result.

Remark 6.3 Suppose that every matrix vector multiplication with AA
can be carried out in O(#A) operations uniformly in A C V, and assume
that the (exact) Galerkin solution u\ of (6.6) in 5A satisfies

Then an approximate solution u\ of (6.6) satisfying \\u — UAWH*
 = O(e\)

uniformly in A can be computed at the expense of O(#A) operations.

The argument is based on standard nested iteration. Solving first on a
small Ao C V, then doubling #Ao to Ai, say, and noting that eAo/̂ Ai < C,
only O(Ai) iterations on the preconditioned system are needed to reduce
the error from £\0 to e\x, when using u\0 as a starting solution. Repeating
this argument confirms the assertion.

Next, let us address some algorithmic issues. When £ is a differential
operator, the stiffness matrices

, , * j ) T
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relative to the fine scale (nodal) bases <&j are sparse under the usual as-
sumption (5.5). Due to the larger supports of wavelets from coarser scales
the corresponding stiffness matrices A A J relative to the wavelet bases of
S($j) are less sparse. Thus, assembling the wavelet stiffness matrix exactly
would increase computational and storage complexity. However, when work-
ing with the fully refined sequence of spaces S($j), this can be remedied as
follows. Al l that is needed in an iterative scheme is the application of the
preconditioned matrix. Since by (3.31),

A A j = T jA^TV , (6.24)

where T j is the multiscale transformation from (3.25), (3.26), the applica-
tion of the preconditioned matrix B j := D^*  AA 7D^ *  to a vector v can be
carried out as follows.

ALGORITHM 1 (CB: CHANGE OF BASES)

(1) Compute w = TjD^*v . Due to the pyramid structure of Tj (3.26)
and the geometrical increase of #$_,-, this requires O(#$j) operations,
where the constant depends on the length of the masks in Mj .

(2) Compute z := A ^ w , which, due to the sparseness of A$j is again a
O(#$j) process.

(3) Compute D^*TjZ , which corresponds to the first step.

Remark 6.4 When £ is a differential operator, the application of the
preconditioned matrix D ^ A A J D ^ *  relative to the full spaces S(<frj) to a
vector requires the amount of 0(#<tj) = O(Nj) operations and storage.

Remark 6.5 In the periodic case, or when working on the interval,
can be computed very efficiently (even for variable coefficients) by the meth-
ods described in Section 4.2.

Remark 6.6 It is also important to note that the above preconditioner
only requires knowlege of the transformation T j in (3.26) not of the inverse
Tj1 (see Section 3.4). Recall that T j involves the refinement matrices for
$j and the stable completions M^i , j < J, that is, the masks of the wavelets
(see (3.27)). Hence this method can still be used in the present context with
the same efficiency when only the matrices M j are sparse while the inverses
Gj are fully populated. This is the case for many pre-wavelets, that is,
for stable complement bases tyj, which span the orthogonal complement of

in

So far this strategy refers to fully refined spaces S($j). Things change
when the trial spaces are to be adapted during the solution process. This
means that one actually wants to compute a solution from spaces 5A where
A is a much smaller lacunary subset of Aj , J = max{|A| + 1 : A € A} . To
take full advantage of the corresponding principal reduction of complexity,
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any steps requiring the computational complexity of the full space
should be avoided. This suggests building up the matrix AA directly but
only relative to the elements in A. How to do this efficiently depends very
much on the particular operator C. We will comment on this issue later
in more detail for operators satisfying (2.25). In this case one can exploit
certain decay properties of the entries of AA to compute AA approximately
to any desired accuracy.

6.3. Hierarchical bases preconditioner

The change of bases preconditioner has already been employed in connection
with hierarchical bases (Yserentant 1986). The corresponding setting of
piecewise linear bivariate finite element and associated hierarchical bases
was described in Section 4.1. Due to the simple and very sparse structure
of the matrices Mj (see (4.2) and (4.4)), Algorithm 1 above is very efficient.
However, the hierarchical bases are invariant under the application of Lj —
Lj-i  as in (6.20), where the Lj are Lagrange interpolation operators relative
to the triangulation Tj. Hence they are not bounded in Z/2(O) and the
collection <I>oUtJĵ o * j  1S not a Riesz basis for L2(O,). Moreover, ||  \\Hi is not

1/2
equivalent to the discrete norm (L_i := 0) (E^Lo  ̂ ll(Lj+i ~ Li)SfQ)
for n > 2. Hence the hierarchical basis preconditioner, based on Algorithm
1, is not asymptotically optimal. For n = 2, the condition numbers grow
like the square of the number of levels, while for n = 3 they already exhibit
an exponential growth. Nevertheless, its extreme simplicity accounts for its
attractiveness for n = 2. Ways of stabilizing it, for instance with the aid of
the techniques in Section 3.5, will be presented later.

6.4. BPX scheme

Although, as it stands, the simple hierarchical complement bases do not
provide an asymptotically optimal scheme with regard to preconditioning,
it turns out that the full power of wavelet decompositions is needed only
for operators of non-positive order. Throughout this section we will assume
that C is selfadjoint positive definite (6.8), (6.9) and that the order It of
JC is positive. In this case one gets away with much less. So, suppose the
bases \Pj are stable in the sense of (3.3) and give rise to a hierarchy of
nested spaces Sj = S($j) C H*  as before. The following discussion reflects
an approach to multilevel preconditioners developed in the context of finite
element discretizations (Bramble et al. 1990, Oswald 1992, Yserentant 1990,
Xu 1992, Zhang 1992). The objective is to find a positive definite selfadjoint
operator Cj on Sj such that

(CjV v) ~ (Cjv, v) = a(v, v), v G Sj, (6.25)
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which means that Cj and Cj are spectrally equivalent. In fact, the uniformity
of (6.25) in J implies, in view of the min-max characterization of eigenvalues,
that

''max I w '"J'-J I

TT T T ~ L (626)
Amin

To describe a candidate for Cj, let Pj denote the orthogonal projector onto
Sj. Clearly the Pj satisfy (5.16) and P} = Pj. Thus Theorem 5.8 applies
and (5.38) means that

CJ^Z^PJ -PH I ), P_I:=0,

3=0

satisfies
<CjV«> = (CJ1/2v,Cj1/2v) = \\Xtv\\L2 ~ ||W||H,. (6.27)

Hence, by ellipticity,

(CJ1?;, v) ~ a(u, u), u € S j, (6.28)

so that CJPJCPJ have uniformly bounded condition numbers. This corres-
ponds to the situation assumed in Theorem 6.1, since the evaluation of Cj
seems to require knowledge of explicit bases for the orthogonal complements.
However, since, clearly, by (5.39),

3=0

and t > 0, Cj is easily seen to be spectrally equivalent to Cj := X)/=o 2
which, by the uniform stability of the 3>j, is spectrally equivalent to

J

Cjv := £ 2-2t^  ̂ («, <t>j,k)<l>j,k-  (6-29)

Combining the spectral equivalence of Cj and Cj with (6.27) and (6.29)
yields

{CJPJCPJV,V) ~ (v,v). (6.30)

Hence (Dahmen and Kunoth 1992, Oswald 1992, Zhang 1992),

* 2 (CJPJCPJ) = 0(1), j e N. (6.31)

Note that application of Cj does not require explicit knowledge of any com-
plement basis. It also requires only the order of # $j operations. For more
details about the actual implementation, the reader is referred to Bramble
et al. (1990) and Xu (1992).
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Exact decompositions in terms of complement bases have been replaced
by redundant spanning sets, which consist here of properly weighted nodal
basis functions on each level. In brief, the collections {2~2^(f>j^ : k € Aj, j =
0,..., J} form frames for /f*(f2) . Here {gj}  is called a frame for H, if

V>9J)H\2' V<EH- (6-32)
j

It is perhaps worth stressing the relation to the wavelet transforms.
Remark 6.7 The corresponding wavelet preconditioner looks like

Since the tpj  ̂are linear combinations of the 0j+i?m, its evaluation always
seems to be more expensive than that of (6.29). The cost of each iteration
increases with the lengths of the masks of the wavelets (Griebel and Oswald
19956, Oswald 1994).

Adaptive grids
Theorem 6.1 has been formulated for arbitrary subsets A C V. Thus ad-
aptivity can be based, in principle, on adapting the choice of A to the prob-
lem at hand. It will be explained later how to arrange that. Roughly speak-
ing, the behaviour of the wavelet coefficients themselves is an indication for
the selection of relevant indices. The point is that this kind of adaptation
essentially requires managing index sets.

So far, in a finite element context, the above discussion of the BPX scheme
refers to spaces generated by uniform refinements. Adaptivity usually re-
quires mesh refinement strategies based on monitoring the current solution
through additional local comparisons. It is interesting to see how precondi-
tioning is affected when working with adaptively refined meshes. Employing
hanging or slave nodes, that is, adding locally further nodal basis functions,
corresponds, roughly speaking, to considering submatrices of those stem-
ming from uniform refinements. Since the convex hull of the spectrum of the
latter matrices contains the spectrum of the submatrices, the BPX scheme
is trivially adapted to nonuniform refinements and the condition numbers
remain bounded.

Slave nodes require a littl e care retrieving stable bases for the resulting
finite element spaces. If one wants to avoid slave nodes, the nonuniform re-
finements have to be closed by introducing suitable transition elements; see,
for instance, Bank, Sherman and Weiser (1983). In this case, the submatrix
argument does not work in a strict sense. Nevertheless, one can prove that
for such adaptive refinements resulting in highly nonuniform meshes, the
BPX scheme still produces uniformly bounded condition numbers. This has



126 W. DAHMEN

been shown first in Dahmen and Kunoth (1992), where further details can
be found; see also Bornemann and Yserentant (1993).

An analogous result holds for fourth-order problems. As a model case, one
could consider C = A2 with homogeneous Dirichlet boundary conditions. A
convenient conforming finite element discretization can be based on certain
piecewise cubic macro patches generated by suitable subdivisions of (non
rectangular) quadrilaterals. These are obtained by connecting the intersec-
tion of diagonals with the midpoint of the edges of the quadrilateral. The
nodal basis functions are fundamental interpolators relative to point values
and gradients at the corners of the quadrilaterals and normal derivatives at
the midpoints of edges. The resulting spaces are nested and the underlying
mesh refinements stay regular, in the sense that smallest angles are bounded
away from zero. See Dahmen, Oswald and Shi (1993a) for more details. Ad-
aptive refinements analogous to the piecewise linear case are discussed by
Kunoth (1994), where the corresponding result about uniformly bounded
condition numbers is also established. One should note that the classical
cubic Clough-Tocher macro element is not suited for refinements. Since the
quintic C1-Argyris element requires higher smoothness at the vertices, its
refinement leads to nonnested trial spaces.

The hierarchical basis and BPX preconditioner are special instances of
the following more general class of schemes that have a long tradition in the
finite element context.

6.5. Multilevel Schwarz schemes

We wil l briefly indicate how the above material ties into the more general
setting of Schwarz schemes and stable splittings, which is also a conveni-
ent framework for incorporating domain decomposition and multigrid tech-
niques. For a more extensive treatment of these issues, as well as further
details concerning the following discussion, we refer, for example, to Griebel
and Oswald (1995a), Oswald (1994), Xu (1992) and Yserentant (1993). As
above, C wil l be selfadjoint positive definite on some separable Hilbert space
H = Hi, that is, a(u, v) := (Cu,v) is a symmetric bilinear form and we as-
sume that (6.9) holds with H*  replaced by H. We wish to find u € H such
that

a(u,v) = f(v), veH, (6.33)

where / is a linear functional on H. In fact, at this point one can think of
H being some Sobolev space Hl as above but also of the finite dimensional
trial space S($j) of highest resolution. Let {Vj}  be an at most countable
collection of closed nested subspaces of H such that every v G H has at least
one expansion
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which converges in H, in brief H = J2j Vj.
The basic idea is to solve for each Vj the problem restricted to Vj and then

add these solutions up. This corresponds to (block) Gauss-Seidel or Jacobi
relaxation. The solution of the subproblems will be based on auxiliary inner
products bj(-, ) on Vj which approximate a(-, . Following Oswald (1994),
we write {H; a}, {VJ; bj} to express that each Vj, H, are Hilbertian relative
to the scalar products bj, a. The subspace splitting

is called stable if

H{^ }  : = i n f {  J2 bj(v3'vi)  VJ G V3iv = Yl V3
~ ~ - - 3 3

Taking Vj = S{®j), bj(v,v) := 22si(v,v), H = Hs(fl), we see that the
norm equivalence (5.44) is a special case of (6.34).—Alternatively, setting
V-i :=  5($0), Vj = S(Vj), j > 0, Vj = (Qj - Qj-i)v, bj(v,v) as before, it
is clear that ||v||{6 }  < ||v|Us  Now consider the following Riesz operators
Tj, gj which interrelate the scalar products.

Tj  H -» Vj : bj (TJV, VJ) = a(v, Vj),
(6.35)

9i e V3 : bj{gj,Vj) = f(vj), Vj € Vj.

Defining Bj : H —> Vj by b(v,Vj) = (BjV,Vj),Vj G Vj, and recalling that
a(u, v) = (Cu,v), we infer that Tj = BJ1C, so that each application of
Tj corresponds to the solution of a restricted (typically small) problem. A
central observation in this context is the following result; see Oswald (1994)
for the background and further references.

Theorem 6.8 Let

T:=^Tj, g = Y,9j- (6-36)
3 3

Then equation (6.33) is equivalent to the operator equation

Tu = g, (6.37)

which is called the additive Schwarz formulation of (6.33). Moreover, T is
self adjoint positive definite and when H is finite-dimensional its smallest
and largest eigenvalue are Amin(T), Amax(T), where

(n-, a(v,v) . . . a(v,v)
» J — S U P ijj jjfo > A m i n \1 ) = 1HI - TTTK

H M2
{b}

 V€H M\bj}

respectively.



128 W. DAHMEN

Since

(6.38)

the condition of (6.37) is bounded by the ratio of the constants in the upper
and lower bound in (6.34). A corresponding asymptotic statement requires
the ratio of the upper and lower bound to remain uniformly bounded when
the dimension of H increases. The quantitative relevance of such statements
again depends, of course, on the problem at hand.

Theorem 6.8 can be deduced from the following result, which is interesting
in its own right and has several further applications mentioned below.

Theorem 6.9 (Nepomnyaschikh 1990) Let H, H be two Hilbert spaces
with scalar products > (">')#> respectively, and with bilinear forms a, a
induced by symmetric positive definite operators C : H —+ H, C : H —> H.
Suppose that there exists a surjective bounded linear operator 1Z : H —> H
such that

a(v,v) ~ inf d(v, v) :— | u |, v 6 H.
veH,v=1Zv

Then V := TZ£~11Z*£ : H —> H is symmetric positive definite with

\ (T>\ - a(ViV) i (T>\-  t a(V>V)

Of course, Theorem 6.8 is obtained by taking H := {v =  {v, }  : v\ G
Vii Si bi{vi, vi) < oo}; see, for example, Oswald (1994).

An interesting case is, for example, H = S($j) for some (large J) where
the splitting consists of one-dimensional subspaces Vjtk  S({(f)jtk})- Thus
the corresponding Riesz operator Tj  ̂ has the form Tj^v = Cj^fij^ where

cj}k = a(v, </>j,k)/bj,k{<l>j,k,  4>j,k)- (6.39)

Thus

Hence (6.34) means that {<f>j,k/bj,k(<l>j,k:<l>j,k)}  forms a frame for {HJO}.

The BPX scheme and the hierarchical basis preconditioner are examples
of this type. To see this, let f(v) = {f,v), where ) is induced by the
L2 inner product. Let Bjtk be denned by bj,k(,Uj,k,Vjtk) = (Bj,kuj,k,Vjtk), so
that Tjtk = B^Pj^C, Pj,k the orthogonal projection onto Vjtk- Then one
can write
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Thus, choosing bjtk(-,-) := 22^<-,-) and Vjik = S({</>j,k}),k € Aj, Vjtk =
S({(f>j,k})ik G Aj \ Aj_i , yields the BPX and hierarchical basis precondi-
tioner, respectively (see (6.29)).

There is obviously great flexibility  in choosing the subspaces Vj. In gen-
eral, realization of the operators Tj requires solving linear systems of the size
determined by Vj. In the context of parallel computing one might accept
spaces Vj of growing dimension. For instance, the Vj could be chosen as
subspaces of H associated with a decomposition of the underlying domain.
A survey of applications of this type can be found in Chan and Mathew
(1994).

The proofs establishing the critical equivalence (6.34) are, of course, re-
lated to the concepts discussed in Section 5.3. The norm |||  |r6.}  can in
certain cases be evaluated exactly, which greatly simplifies the analysis;
compare Griebel and Oswald (1995a), and Niefien (1995). The bounds
II' }  ~ a( ' ' ') typically involve approximation theory tools. The converse
estimates are often reduced to the validity of a strengthened Cauchy-Schwarz
inequality (recall Section 5.2), which in this context has the form

a(vj,Vh) < lj,kbj{vj,Vj)bk(vk,vk), VjeVj,vkeVk, (6.41)

where (7^) should be bounded in £2. For a detailed discussion of these
issues, compare Griebel and Oswald (1995a), Yserentant (1993).

Again following Oswald (1997), we mention an interesting extension of
the splitting concept which aims at relaxing the assumption of nestedness
Vj C Vj+i,  as well as of conformity Vj C H. This, again, is an application
of Theorem 6.9. It requires introducing mappings Rj : Vj —> H such that
R:=Y,j Rj  Uj vj ->  H is onto and

R3VJ I ~ a(u> v)> v G H-
3 3 '

(6.42)
In this case, T in (6.37) has to be replaced by T :=  Y.j{RjBjlR*)C,
where Bj : Vj —> Vj is now defined by b(uj,Vj) = {BjUj,Vj)vj, Vj € Vj.
Equivalently, one can write T = Y.j Rjij, where Tj : H —> Vj is given by
b(Tjv,Vj) = a(v,RjVj), Vj € Vj. See Oswald (1994), Griebel and Oswald
(1995a).

We now indicate a typical iteration based on (6.35) and (6.36). The
additive version A creates a sequence of approximations {u1} given by

= ul + cu J2(9j - ^ A (6-43)

Here u plays the same role of a relaxation parameter as in the Jacobi or
Richardson iteration. Recall that each iteration requires the solution of
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variational problems on the spaces Vj. Perhaps the structure of the iteration
(6.43) becomes more transparent on recalling that Tj = B~lC, so that
gj — TjU1 = Bjlr l, where rl = / — Cul is the residual from the last step.
Likewise, in the more general version (6.42), gj — TjU1 has to be replaced by
RjBjlR*r l.

The multiplicative version M reads

igj-j-Tj-y), j = O,...,J, (6.44)
v° := vf,

ui+\ =

generalizing SOR. The corresponding iteration operators are

MA = I - uT, MM = (I - LO%)(I - wTi ) -

The convergence theory is given by Bramble (1993), Griebel and Oswald
(1995a), Xu (1992) and Yserentant (1993). For the interpretation of these
schemes in the multigrid context, see Bramble (1993) and Griebel (1994).
Here we quote the following result from Griebel and Oswald (1995a).

Theorem 6.10 Assume that H is finite-dimensional and the algorithms
M and A are given by (6.43) and (6.44).

(i) A converges for 0 < UJ < 2/Amax(T). The optimal rate is achieved for
u* = 2/(Amax(T) + Amin(T)) and equals

(ii) Suppose (6.41) holds with jjj  = 1. Then M converges for 0 < w < 2.
The optimal rate is bounded by

PM < 1 -
2Amax(T) + l"

For various modifications see Oswald (1997) and the literature cited there.

6.6. Finite element-based wavelets

The previous discussion shows that preconditioning matrices stemming from
Galerkin discretizations of elliptic operators of positive order does not re-
quire explicit knowledge of wavelet bases. Nevertheless, a number of recent
studies have addressed the construction and application of wavelets in a fi-
nite element context, to obtain wavelet-based stable splittings for Schwarz
schemes. Let us briefly postpone giving reasons why the additional effort
might still pay in this context, and first outline some ingredients of the
various approaches.
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-3/5 -3/5

Fig. 1. Pre-wavelets for HQ([O, 1])

-3/5

Pre-wavelets
Recall from (6.24) that preconditioning based on a change of basis does
not require the transform TJ1 . Thus it suffices to make sure that the
scheme (3.26) is efficient, which means that the masks of the wavelets have
possibly small support. Most of the presently known FE-based wavelets still
refer to an underlying uniform grid structure for multilinear finite elements
on regular lattices hZd (type-1 mesh) or to regular triangulations of the
plane which are generated from the standard uniform rectangular mesh by
inserting in each square element the southwest-northeast diagonal (type-2
mesh).

When dealing with meshes of type 1 restricted to the unit square  =
[0,1]2, say, one can employ tensor products of biorthogonal wavelets on
[0,1] discussed in Section 4.4. For k G Z, e £ {0,1} 2, j > jo, they have the
form

where ipo,j,k = <l>j,ki  ipi,j,k = ^j,k a re the corresponding univariate gener-
ator and wavelet functions. When (f> is the standard piecewise linear tent
function (1.15) and the dual bases are exact of order 2 as well, the mask coef-
ficients can be found in Dahmen et al. (19966), and Dahmen and Schneider
(1997a).

In most cases, however, so-called piecewise linear pre-wavelets have been
used; see, for example, Griebel and Oswald (19956). Interior and boundary
wavelets are shown below in Figure 1.

Here, pre-wavelet means that these wavelets form uniformly L2-stable
bases for orthogonal complements between two successive trial spaces. Hence
they also form a Riesz basis for ^([0,1])- In this case the masks in the in-
verse transformations are not local but, as mentioned before, this is harmless
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here. Obviously the masks for the tensor product wavelets have 15 or 25
nonzero coefficients.

Piecewise linear pre-wavelets for meshes of type 2 have been constructed
by Kotyczka and Oswald (1996). Those of smallest possible support have
13 nonzero coefficients. The construction principle is to make an ansatz of
a linear combination of tent functions on the fine scale so that, for possibly
few nonzero coefficients, orthogonality to the tent functions on the coarser
scale holds. Usually, the difficult part is to verify that three such linear
combinations form a stable basis on each given level. Also, the adaptation
to the boundary is in this case more difficult than in the tensor product
case.

The resulting pre-wavelets still have relatively large support. Therefore
several alternatives have been proposed resulting in complement spaces that
are no longer orthogonal but are spanned by functions of smaller support,
while still exhibiting better stability properties across levels than the hier-
archical bases.

For instance, the discretization of the double layer potential equation on a
polyhedron in Dahmen, Kleemann, ProBdorfand Schneider (1994 a) involves
piecewise linear wavelet type functions of the form shown in Figure 2.

Fig. 2. Short support wavelets

The stencils in this case are
0 0 -1/2
0 1 0

-1/2 0 0

0 0 0
-1/2 1 -1/2

0 0 0

0 -1/2 0
0 1 0
0 -1/2 0

Here the central coefficient refers to a point in the coarse mesh, while all
neighbours refer to points in the next finer mesh. Its univariate counterpart
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for (j) defined by (1.15) is

^ + 1) + <f>(2x) -  - 1 ), (6.45)

used by Dahmen et al. (1996a) to discretize the Helmholtz equation on a
closed curve. The fact that these functions actually span Riesz bases in
L2 was shown by Stevenson (19956). More precisely, as pointed out by
Lorentz and Oswald (1996, 1997), the functions give rise to Sobolev norm
equivalences (6.1) for n < 3 in the range s G (-0.992036,3/2).

Motivated by earlier work by Hackbusch (1989) about frequency filtering,
an interesting systematic approach to constructing L2-stable finite element
wavelet bases was proposed by Stevenson (1995&, 1996, 1995a). Again let Sj
denote the space of piecewise linear finite elements on meshes of type 2 with
scale 2~J = h. The central idea is to employ level dependent discrete scalar
products which on those spaces are uniformly equivalent to the standard
L2-inner product. For instance, writing

f(x)g(x) dx = (/, g)n = £ (/, g)r, (6.46)

where Tj is the triangulation of level j of f2, the terms (f,g)T are replaced
by a quadrature rule. The rationale is that orthogonality with respect to
discrete inner products is often easier to realize and corresponding masks
are shorter, which gives rise to functions with smaller support. Thus, when
r = [a;1, a;2, a;3] G Tj has vertices x1^2,!3 one can set

1 x " " " ' '" (6.47)

Now, given the usual tent functions <frj tk from (4.1) as generators for Sj, one
then seeks for a biorthogonal collection Sj C Sj+i of linear combinations on
the next higher level, that is,

<*; ,2;>=I , (6.48)

where the ( j ^ G Ej have possibly small support. These auxiliary collec-
tions Sj are then used to construct complement functions in Sj+i which are
orthogonal to Sj relative to the level dependent inner product. As men-
tioned before, one exploits the fact that orthogonality with respect to the
discrete inner products is much easier to realize than for the standard inner
product. Details and concrete examples can be found in Stevenson (19956,
1996, 1995a). In light of Section 5.2, the discrete inner products have been
used here to construct a Riesz basis in L2 without identifying the dual basis
relative to the standard inner product. Compared with orthogonal split-
tings, one takes advantage of significantly smaller filters.
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Stabilization of hierarchical bases
A further alternative has been proposed by Carnicer et al. (1996) for re-
finements Tj of arbitrary triangulations described in Section 4.1. Again
denoting by &j  the ./^-normalized tent functions relative to Tj, a biortho-
gonal collection Hj is constructed which consists of (discontinuous) piecewise
linear functions. To describe this briefly, let Aj again denote the set of ver-
tices of triangulation Tj and let r = [k,m,p] be a triangle in Tj. Then
there exist unique afnne functions aTjq such that j (j>j^ q{x)aT- ,{x) dx = 6q,q>,

q,q' £ {k,m,p}. Set

' (6-49)
0, x

where n  ̂ is the number of triangles having k as a vertex. Thus (6.48)
($j , Hj) = 1 again holds, and the question arises of how to identify a stable
basis *$!j  for the complement space

Wj :=  {{g, Zj+1)n$j+i ~ (9, Zj)n$j : g € Sj+1} , (6.50)

induced by the projectors  As in the previously discussed case,
this can be done by exploiting the fact that some initial  complement space
is available, namely the one spanned by the hierarchical basis described in
Section 4.1. To distinguish it, it will be denoted here as

* j := {(/> j+ltk  : k E A i + i \ Aj) . (6.51)

At this point the techniques described in Section 3.5 come into play. In
particular, (3.40) applies. In fact, M^o, M^i , G^o, Gj,i are given by (4.2),
(4.4), (4.6), (4.7) respectively. Thus, with Sj defined by (6.49), the new
stable completions M^ i defined by (3.40) are readily computable. In view
of the form (3.39) of the new basis functions, this process may be viewed
as a coarse grid stabilization. The construction is not restricted to regular
triangulations. In the case n = 2 and the special case of regular triangula-
tions of type 2 (see above), the stabilized complement basis functions have
the form

4

\ A?> (6-52)

where k are the midpoints of the edges in the triangulation Tj, and the k(l)
denote the vertices of the parallelepiped having the edge associated with k as
a diagonal. The construction obtained above through (6.49) is a special case
of a whole family of stabilizations (6.52) of the form (Lorentz and Oswald
1996, Lorentz and Oswald 1997)

a\ = a<i = a, 03 = a  ̂= - — a, a € R, (6.53)
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namely for a = 1/6. The corresponding basis for the uniform setting is shown
by Lorentz and Oswald (1996, 1997) to satisfy (6.1) for s G (-0.35768, 3/2).
The choice a = 3/16 from Lorentz and Oswald (1996) gives a somewhat
larger range s £ (—0.440765,3/2), which is maximal in this class.

There is a closely related but slightly different approach to such coarse
grid stabilizations, proposed by Vassilevski and Wang (1997a). Recall that
the multiscale transformations Tj associated with the hierarchical bases tyj
from (6.51) are extremely efficient. Since it only involves nodal basis func-
tions, not with respect to the full bases on each level but with respect to
the complements only, it is even more efficient than BPX. The objective is
to stabilize the hierarchical basis while retaining as much of its efficiency as
possible. When switching to another stable completion of the form (3.40),
the efficiency of Tj can still be exploited. In fact, the multiscale transform-
ation Tj can be performed in two stages. First perform a step of Tj and
then correct it, on account of (3.39) or (6.52), by terms involving only the
coarse scale generator basis functions. Relevant algorithmic details are given
in Sweldens (1996, 1997). The idea is to construct complement functions,
that are close to functions which span the orthogonal complement between
two successive trial spaces. I would like to deviate from the original ap-
proach and phrase this here in terms of the stable completions described in
Section 3.5. Again, straightforward computations show that, given Mj,i as
above,

Mjtl  = (i - (MJ,0<*J, $j ) - 1($ i , * j + i ) ) ) Mj,i (6.54)

gives rise to a basis \&J = $J+1M J]i spanning the orthogonal complement
of S($j) in S($j+i). In other words,

Lj = -<*j , $j )"
1($j , *j+i)Mj,i , Kj = I, (6.55)

(see (3.37)) yield a suitable new stable completion. Note that, by (3.4),
(<&j,$j+1) = MJ: O($J+I ,$J+I ). Of course, the matrix ($j,$,-)~x is dense
and so is M^i . However, to compute Mj^d for any coefficient vector d
it suffices to compute M^i d =: d and (<&_,-, $j+i)d =: b. Next, instead of
computing ($j,$j)~1b exactly, one performs only a few relaxation sweeps
for the linear system

followed by d — Mj^y . Note that ($,-, 3>j) is positive definite and uniformly
well conditioned, since the $j are uniformly stable. Further details are found
in Vassilevski and Wang (1997a), Vassilevski and Wang (19976). Special
cases again lead to (6.52) with coefficients a; as in (6.53) with a = 5/48 and
s G (0.248994,3/2) (Lorentz and Oswald 1996).
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Efficiency and robustness
Which of these options should be preferred? There is, of course, no uni-
form answer. The decision would depend on the precise problem, on the
mesh and on many other side constraints. As soon as one fixes a particular
model problem, some aspects become prominent. Nevertheless, there have
been some recent comparisons that provide interesting information. These
comparisons address two important issues, namely efficiency and robustness.

Firstly, efficiency comparisons are discussed by Ko, Kurdila and Oswald
(1997) for the model problem

—Au + qu — f on fi, u = 0 on <9f2, (6.56)

where Q C IR2 is a simple domain such as a rectangle, so that wavelet-based
preconditioners can compete without struggling too much with technicalit-
ies.

Poisson-like problems
The tests in Ko et al. (1997), Lorentz and Oswald (1996) and Lorentz and
Oswald (1997) indicate that, for the Poisson problem q = 0 in (6.56), the
BPX scheme is superior to the wavelet-based methods, both with regard
to the number of iterations needed to ensure a desired accuracy and to
the cost of each iteration. As for the cost, this is obvious (recall Remark
6.7). Several types of wavelets, such as Daubechies wavelets, the above finite
element-based wavelets, and so-called multi-wavelets, were included in the
comparisons. For this kind of problem, the scheme based on Daubechies
wavelets appears to be the weakest, since the cost per iteration is higher
due to larger masks, while a careful study of corresponding condition num-
bers(Lorentz and Oswald 1997) shows that the frame bounds for the HQ-
frames behind the BPX scheme are tighter than those of all wavelet bases.
However, the finite element-based wavelets with small support come quite
close. The condition numbers produced by the BPX- and by the coarse grid
corrections (6.52) with a = 1/6 and a = 3/16 are reported to stay below 11
(Lorentz and Oswald 1997). The fact that the wavelets also form a Riesz
basis in L2 is not crucial in this case.

Helmholtz problems
The situation changes when q > 0 in (6.56) is increased. Now the additional
zero-order term starts to affect stability. The efficiency of the BPX scheme
in its original form starts to deteriorate. However, a suitable (inexpensive)
modification, namely including a properly weighted zero-order term in the
auxiliary form bj^(-, ) has been observed to stabilize it (Oswald 1994). The
condition numbers for the wavelet schemes are now smaller and the finite
element-based wavelets with small support do quite well (Stevenson 1996,
1995 a. These schemes are in that sense more robust for the class of prob-



WAVELET AND MULTISCALE METHODS FOR OPERATOR EQUATIONS 137

lems (6.56). The reason is that, in contrast to the i^g-frames behind the
BPX scheme, the wavelets form a Riesz basis for a larger range of Sobolev
spaces including L2, so that the zero-order term qu is handled better. In
particular, when q gets very large, the condition numbers for orthonormal
wavelets tend to one, simply because the operator approaches (a multiple
of) the identity. Eventually this starts to offset the higher cost per itera-
tion. This is of particular importance for implicit discretizations of parabolic
problems

-u = Au, (6.57)

where for each time step an elliptic problem C = / — At A has to be solved.
Here wavelet preconditioners work well for a wide range of time steps without
additional tuning.

The same robustness issue is also treated by Stevenson (19956), using
the wavelet (6.45) derived from the frequency decomposition approach men-
tioned in Section 6.6. It is shown to be superior to the BPX scheme for this
type of problem with regard to efficiency and robustness.

Of course, when the solution is very smooth, the higher cost of a higher-
order wavelet scheme per iteration may well be offset by the better approx-
imation. Also, the effect of adaptive refinements has not been taken into
account in the above comparisons.

Anisotropies
A similar observation can be made for problems of the type

d2u d2u
-e-z—~ ~ ir^>  +qu = f on n, u = 0 on dto, (6.58)

where £1 is again a rectangle for simplicity and e is small. Such anisotropies
aligned with coordinated lines arise, for instance, when employing boundary-
adapted grids with high-aspect ratios in flow computations. Griebel and
Oswald (19956) compare multilevel Schwarz preconditioners based on tensor
product pre-wavelets (see Figure 1) with nodal basis oriented splittings for
problems of the type (6.58). Again, the latter method is typically twice as
efficient as the wavelet scheme when using proper tuning, while the wavelet
scheme is clearly more robust relative to varying e and q in (6.58). Moreover,
in the 3D case it still works in combination with sparse grid techniques.

The same issue is treated by Stevenson (1996) (for q = 0) with the aid
of the modified frequency decomposition multilevel schemes discussed in
Section 6.6. Moreover, triangular-based wavelets constructed via discrete
inner products are applied by Stevenson (1995a) to several types of second-
order elliptic boundary value problems with leading term div (A grad). In
particular, the case where A is a piecewise constant diagonal matrix with
large jumps is considered. The main result is to show that the proposed
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wavelet-based multilevel scheme is robust for the class of problem where
A exhibits possible anisotropies along the three directions of a type-2 grid,
when this mesh is used for the discretization.

More detailed information about comparisons can be found in Ko et al.
(1997), Lorentz and Oswald (1996) and Lorentz and Oswald (1997). In
summary, it seems that the robustness issue is in favour of wavelet-based
discretizations. One should not forget, though, that the comparisons did not
include multiplicative multigrid schemes, which are usually more efficient
than additive counterparts such as the BPX method. Of course, the story
changes again when nonuniform grids and complicated domain geometries
are considered. Classical wavelets no longer apply directly (see below for a
two-stage approach), while the above coarse grid corrected wavelets are still
defined.

Finally, a more interesting question occurs when adaptivity is employed,
for instance, for a domain with reentrant corners. To my knowledge, direct
comparisons have not yet been made. It wil l be seen later that wavelets
seem to have a great potential in this regard.

7. The ideal setting

7.1. Preliminary remarks

Preconditioning is only one aspect of wavelet schemes. At least for posit-
ive order operators it does not require the full sophistication of wavelets,
since simpler suitable frames are seen to work as well, often even better,
and for more flexible meshes. In this sense, preconditioning puts only weak
demands on the wavelet as a discretization tool. To exploit the full potential
of wavelets one is led to ask for more. Two possible directions are, firstly, to
consider operators such as integral operators whose conventional discretiza-
tion gives rise to dense matrices, or, secondly, when dealing with differential
operators, to try to diagonalize C in the sense of Section 1.5 (a). We will
first address the latter issue. Of course, one cannot expect such an objective
to be feasible under the most general circumstances. The basic rationale
is to develop a two-stage process. First design highly efficient schemes for
an ideal setting (ideal with regard to highest efficiency and availability of
the tools) and then try to reduce realistic problems to the ideal case at an
additional expense which, however, should be of lower order. As indicated
in Sections 4.2 and 4.3, wavelets unfold their full potential when working on
the whole Euclidean space R" or on the n-torus Rn/Zn. I will refer to this
as the ideal setting.

A great deal of effort has been spent on studying elliptic operators C of
the form (2.4), where a > 0 and A(x) is a symmetric matrix satisfying

z,£€R", (7.1)
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for some 6 > 0, and whose coefficients satisfy certain (weak) regularity prop-
erties. The subsequent discussion mainly reflects related work by Angeletti,
Mazet and Tchamitchian (1997), Liandrat and Tchamitchian (1997) and
Tchamitchian (1996). Typical questions to be studied are

(i) the continuity of C~1 in Sobolev scales Ws'p depending on the coeffi-
cients of A(x)

(ii) the boundedness of associated Galerkin projections in this scale
(iii ) efficient numerical procedures for the approximate solution of

Cu = f on Rn or Rn/Zn (7.2)

with the aid of wavelet bases.

These questions are clearly closely interrelated. Our main concern here
will be (iii) , while recent studies of (i) and (ii) are given by Angeletti et al.
(1997).

Recall from Section 4.2 the format of the biorthogonal wavelet bases \I/ =
{ip\ : A € V}  and likewise \& to be used when ft = R™. By (4.38), one has
to deal with 2" - 1 mother wavelets tpe, e € £*  := {0, l } n \ {0} . In this
case it is convenient to take jo = — oo as the coarsest level so that V = V_.
When working on the torus it will always be tacitly assumed that jo > 0 is
fixed. In either case, the indices A € V have the geometric interpretation
A = 2~j(k + §), k G Zn, j e Z ,j > jo, e € -E1*. We continue denoting by d, d
the order of polynomial exactness of the spaces S($j), S($j), so that the
direct inequalities (5.1) hold with d, d, respectively.

The principal goal is to diagonalize the operator C in (7.2) as indicated
in Section 1.5 (a). The relevant theoretical background is the theory of
Calderon-Zygmund operators. To support the understanding of the sub-
sequent developments I include some brief comments in this regard, mainly
following Tchamitchian (1996).

7.2. Vaguelettes and Calderon-Zygmund operators

The subsequent discussion first follows the original development that has
been tailored to orthonormal wavelets and therefore admits wavelets with
global support as long as there is enough decay. Orthonormality is not
crucial, though, and analogous statements can be made for the biorthogonal
case as well. So assume that the tpe decay rapidly along with their derivatives
up to some order ro > 3. For \a\ = ro, daipe is supposed to be defined almost
everywhere while ijj e e C-^R" ), e € {0,1}" .

In addition to the wavelet basis * we consider another family 0 = {6\ :
A € V}  which is related to \I> by

= 6, (7.3)



140 W. DAHMEN

for some linear operator T. Ultimately, we wil l be interested in T = (C~1)*.
Unfortunately, the 9\ wil l not arise from finitely many mother functions by
means of dilation and translation. However, in cases of interest to us, the 9\
still share the following properties with the tpx, A G V: there exist positive
numbers C, q, r and a non-negative integer d G [0, q), such that for A G V_,

\0\{x)\ < C 2j n / 2 ( l + 2 J > - A | ) " 9 , x e K " . (7.4)

Furthermore, 6\ G C^-l (K™), ([aj being the largest integer less than or equal
to a), and for all a G Z" , \a\ < \r\ one has

\da6x{x)\ <C2j(%+lal)(l + 2j\x-\\ynq, i£Rn. (7.5)

Moreover, for \a\ = [r\  the 5Q#A are Holder continuous, that is,

xERn,
(7.6)

and for every polynomial P of order at most d one has

P(x)9x(x) dx = 0, A G V_. (7.7)

The set B is called a family of vaguelettes with index (d, q, r). Note that
the kernel of the operator T defined by (7.3) has the form

6x(xjfa(y). (7.8)
Aev

One can then show (see, for instance, Tchamitchian (1996)) that the estim-
ates (7.4), combined with corresponding standard estimates for the wavelets,
imply that there exist constants C, 6 > 0, such that

\K(x,y)\<—?— x^y, (7.9)
\x y\

and

x - x'*6

\K(x,y) - K(x',y)\ + \K(y,x) - K(y,x')\ < C ^ , (7.10)
x-y\]

when |x—x'| < \x—y\/2. An operator T, such that for any two test functions
/ , g with disjoint compact supports

(Tf,g)= K(x,y)f(y)g(x)dydx,
J J

is called a Calderon-Zygmund operator (CZO) if T is continuous on L2 and
K satisfies the so-called standard estimates (7.9), (7.10). The above notions
are now interrelated by the following result, whose proof can be found in
Meyer (1990).
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Theorem 7.1 Suppose © is a family of vaguelettes with index (d,q,r).
Then T defined by (7.3) extends to a CZO. It is continuous on Ws'p(E.n) for
1 < p < oo and \s\ < inf(ro,r, d+ l,q). The corresponding operator norms
depend on the parameters and on the constant C in (7.4)-(7.7).

Let us denote by CMA the collection of operators T such that © = T\I/
is a family of vaguelettes.

Theorem 7.2

(i) CM.A is independent of the choice of \1/ (provided that r$ > 0).
(ii) CMA is an algebra which is stable under taking adjoints.
(iii ) CMA is exactly the set of CZOs T such that T(l) = 7"*(1) = 0.
(iv) CMA is not stable under taking inverses.

Assertions (i) to (iii ) are due to Lemarie (1984); (iii ) is related to the Tl-
Theorem by G. David and J. L. Journe, which characterizes the continuity
of an operator T satisfying the estimates (7.9), (7.10). This result will be
mentioned later again. As for (iv), we refer the reader to Tchamitchian
(1996), and its implications will become clearer later on. Since a CZO takes
Loo(R

n) into the space of functions of bounded mean oscillation (BMO),
T(l ) and T*(l)  are indeed defined. Recall that a locally integrable function
/ belongs to BMO if and only if, for any cube C, there exists a constant a
such that

where \C\ denotes the volume of C.
The following characterization of CMA in terms of matrices will be im-

portant in the present context. Let M denote the set of matrices A such
that for some 7 > 0 one has

IAA,A'I < {1 +  ̂ Z\ly\}\x\'\)^- (7-n)

Thus the entries of A decay with increasing difference in scale and spatial
location of the indices A, A'. Recall that this estimate is of the type (1.11).
In fact, essentially the same argument can be employed to show that, when
J 8\ = 0, As V, then (0, 0) G M. Moreover, the following result can be
found in Angeletti et al. (1997).

Theorem 7.3 T belongs to CMA if and only if the matrix (^>,T^f) be-
longs to M.

Next, we will describe an approach, initiated by Tchamitchian (1987),
which is based on the above concepts and aims at avoiding the solution of
linear systems essentially by diagonalizing the operator.
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7.3. Constant coefficient operators

The basic strategy is to proceed again in two steps: first treat carefully
the case of constant coefficient operators and then use a freezing coefficient
technique. We wil l specify the operator C from (2.2) first to the special case
where aap(x) = aap are constant so that

Cu = - Yl a*pdadP + a. (7.12)
M,|0|=i

The operator C will always be assumed to be elliptic, which here means that
the principal part ao(y) of its symbol a is strictly positive on R™, that is,

Mv)-= E aa/3y
a+/3 > 6 > 0, yeRn, a(y) = ao(y) + a. (7.13)

M,|0|=i

We follow Liandrat and Tchamitchian (1997) and try to solve Cu = f con-
ceptually by applying the inverse C~l to the right-hand side /. Although
at first glance this may contradict basic principles in numerical analysis, it
does have tempting aspects, as shown next.

Suppose that ^ , ^ are biorthogonal Riesz bases in L2(Mn). Then the
solution u of (7.2) has the form u = dT\I> with unknown coefficient sequence
dT = (u, * ) . Inserting u = C~l / , one obtains

dr = {u, * ) = {£~lf, * ) = (/, GO** ) - (/, 6>, (7.14)

that is, the roles of T and * in (7.3) are played here by (£-1)*  and 4f,
respectively. Thus the solution u of Cu = / is formally given as

u=(/,0>*. (7.15)

Proposition 7.4 (Angeletti et al. 1997) The collection 9, defined
by © = (C'1)*^, is a family of vaguelettes.The constant C in (7.4)-(7.7)
depends on the aap and \&, \I> but not on a.

Thus the image of ^ under {C~1)*  still has nice localization properties
reflected by estimates (7.4)-(7.7). This suggests the following approach
(Liandrat and Tchamitchian 1997).

A projection scheme
A natural idea is to compute an approximate solution of (7.2) by truncating
(/,©). Fixing any finite A C V, this corresponds to projecting u into the
finite-dimensional space 5A = S{^x) *A = {̂ A  : A € A} , (see (3.43)), that
is,

UK = (u, * A ) * A = (/, © A ) # A . (7.16)

Note that this is a Petrov-Galerkin approximation (6.2).
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Convergence
Under assumptions (7.13), C is also a boundedly invertible mapping from
H2+s(Rn) to Hs(Rn), s e R. Thus, noting that, by (7.15), uA = Q\u =
QKC"1 f, one has uA — u = (QA — I)£~lf. Employing our direct estimates
(5.1) (for p = 2), we obtain

\\(QA - / ) £ -7 | |i 2 < 2-d^A )||£-1/l l^ , (7-17)I K - u\\L2 =
where j(A) = max{j : |A| < j =>  A G A} . Continuity of C~l in the Sobolev
scale gives

^ ( A ) d - 2 . (7.18)

Analogous estimates for the spaces Ws'p are obtained in exactly the same
way as long as one has continuity of C~l (see question (ii) in the Section 7.1).
Moreover, standard interpolation arguments yield

\\uA-u\\L2 <  2 - a * A > | | / | |H . - 2 , d>s>2. (7.19)

Estimates of this type are very crude. They guarantee convergence as long
as the spaces 5A include sufficiently many low frequencies, that is, j'(A) grows
with #A. The interesting part, of course, concerns the adaptation of A to
the problem at hand, which may result in a selection of highly nonuniformly
shaped subsets A C V. In view of (7.16), this is closely related to the next
point.

7.4- Evaluation of (/, QA)

By (7.15), the success of the approach hinges on identifying and computing
the significant coefficients of (/,©), represented here by the finite array
(/>@A)- The important point is that, by Proposition 7.4, C~* is a CZO;
here and elsewhere, we shall write C~* instead of (£*) -1. Hence, according
to (7.11), £~* has a quasi sparse matrix representation.

Noting that (£u)"(y) = a(y)u(y), where a is by (7.13) strictly positive on
R", the definition (7.14) of 9 means that

Since the wavelets are well localized in Fourier space, one could employ

quadrature to compute (/, a~lr ip^} up to any desired precision.

Projections into S and convolutions
We now describe an alternative approach proposed by Liandrat and Tcham-
itchian (1997). Due to the vaguelette estimates, 6\ belongs up to a desired
tolerance to 5($|,x|+p) for some p € N, which depends on £, *!/ and ^ but
not on |A|. This suggests projecting / into the space 5($|/\|+p). As before,
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we wil l always denote by Qj or Q\ the canonical projectors onto the spaces
, 5 ( * A ) , respectively. This suggests replacing ( / ,0A) by (Q|A|+P/ ,0A)-

In fact, since

K/A ) - (Qjf,0x)\ < I I / | | L 2 | | ( / - ^ A I I L 2 ,

the precision depends on the approximation properties of the spaces S($j)
and on the regularity of the 9\ and hence of the ip\. Now suppose |A| = j
and write

p-\ p-i

Qi+pf = Qj+if  + E (Gi+i+i - Qj+i)  f = c]+i*j+i  + E dJ+/*i+J.
/=i 1=1

where c j+ 1 = (/, l>i+i ) , dj+l  = (/, * i + / ) , so that

(Qj+P/,0A) = cf+l{* j+1,ex) + EdJ+;(* J+;,0A). (7.20)
/=i

This amounts to discrete convolution of the wavelet coefficients of / with
niters that depend only on ^ and C. To compute these niters once and for
all, one can again resort to Fourier transforms.

Moreover, if the right-hand side / is smooth except at isolated points,
then only a small number of the coefficients d\ = (/, ij)\)  exceed a given
threshold in magnitude. The sequences fifj+i,  &\), I = 1,. . ,p — 1, describe
how the wavelet coefficients d\, |A| = j + I, are smeared by the application
of C~*. Thus (7.20) is to be applied to the compressed arrays of wavelet
coefficients, which result from thresholding.

Let us first add a few comments on the structure of the sequences (vPj+j, 0\)
which can be viewed as one column of the matrix (\Pj+;,Oj) where Qj :=
{6»A : |A| = j}. Recalling the two-scale relations (3.4) and (3.8), * J =
$J+1Mj ! i , (which is here stationary in j but would sizewise depend on j in
the periodic case), one obtains

j
(7.21)

Thus, once the arrays Fq := ($9, C *3>9) are known, the matrices (tyj+i,  Qj)
are obtained with the aid of pyramid-type schemes like (3.26). Moreover, a
typical entry of Fq has the form

= (2ir)"n J 4>{y)4>(y)a{2(iy)-le-iy<k-1  ̂ dy.
(7.22)
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As for the cost of these operations, let us consider the periodic case (see
Section 4.3), where J denotes the highest discretization level and p as above
is fixed. Suppose that the arrays Fq have been (approximately) computed
once and for all in an initialization step. Note that the fast decay of a(2qy)~1

for large q implies that Fq can be ever better approximated by a bounded
matrix with small bandwidth. Hence the computation of all vaguelette coef-
ficients on level r boils down to

P -1

(Qr+pf, ©r) = cT+ 1Fr + iM r ) i + Y  ̂ dJ+lMj+ltl Fr+ i+lMr+i fi  M r + i , 0M r , i .
1=1

(7.23)
Thus, when the wavelets have compact support and each Fr_|_/_|_i is replaced
by a sparse matrix, this requires the order of 2^r+p^n (n being the spa-
tial dimension) operations, where the constant depends on ^>,^> and the
accuracy of Fr+ i+i. Consequently, the computation of UA is of the order
2(P+W)n „  JVAJ NA : = dimS($|A |), where |A| := max{|A| + 1 : A € A} ,
with a constant depending on p. Note that when rapidly decaying wave-
lets with global support (but very good localization in Fourier space - see
Section 4.2) are used, the matrices Mj,o, Mj, i are no longer sparse but, in
the periodic case, are circulants, so that FFT can be employed to limit the
order of operations to Â A log N\.

On the other hand, the above work estimate has been very crude. In fact,
when the right-hand side / is smooth except at isolated points, only very few
of its wavelet coefficients d\ are expected to exceed a given tolerance e > 0.
Due to the localization and cancellation properties of the vaguelettes 9\, the
coefficients (/, 9\) are expected to exhibit similar behaviour. In fact, since
C~* is a CZO the decay of the entries in (V&j+j , ©j) is governed by estimates
of the form (7.11), and the spread of the wavelet coefficients of / due to
C~* can be seen from (7.20). This suggests computing (f,0\) or, better,
(Q|A|+p/> $A) only for those A in a certain neighbourhood of the significant
coefficients of / . The number of these coefficients may, of course, be much
smaller than dim5($|A |). A more formal treatment of this issue in Liandrat
and Tchamitchian (1997) is based on the notion of (e, s)-adapted spaces.

Nevertheless, it does not appear to be completely obvious how to carry
out all computations without requiring the full complexity of the highest
discretization level at some point. In fact, while thresholding the arrays
dr+/ on the right-hand side of (7.23) facilitates the successive multiplication
with possibly very short vectors, the first summand involving cr_|_i does not
seem to be compressible in this form.

Remark 7.5 Another point concerns the various tolerances in the above
procedure. Uniformity of the work estimates in #A are ultimately of lim-
ited value when the involved tolerances and thresholds are kept fixed. In
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fact, increasing #A should produce better overall accuracy. Correspond-
ingly tighter thresholds, in turn, are expected to require a larger p, and
hence a higher computational cost that may no longer stay proportional to
#A. Questions of this form will be encountered in similar contexts several
times.

A hybrid scheme
There exist several variants of the above scheme (see, for instance, Ponenti
(1994)) among which I would like to mention the hybrid scheme proposed
by Frohlich and Schneider (1995), which differs from the above procedure
in an essential way. The main point in Frohlich and Schneider (1995) is to
economize the evaluation of the vaguelette coefficients (/, 6\) by incorporat-
ing interpolation techniques. Again it is designed for the periodic case. For
simplicity, we consider bases on R and refer the reader to Section 4.3 for
standard periodization (see also Frohlich and Schneider (1995)) and tensor
product versions for the bivariate situation.

j ^ \ be an elliptic operator; that is, as before, its

symbol a(y\ := Sm=o am{w)m is strictly positive on M. By construction,
the family 6 := £\& is biorthogonal to G = (C"1)*^. Hence one has

/ = </,e>0. (7.24)

Thus, instead of approximating / first by projecting into the spaces 5($_/),
as in the previous approach, one could try to expand / approximately with
respect to 0. Thus, consider the spaces

SC,J := S({9X € G : |A| < J}) = S(C$j). (7.25)

The idea is now to employ Lagrange interpolation to efficiently obtain an
approximation to / in Sc,j, say. Therefore one is interested in finding the
fundamental Lagrange functions

Lj(x) = Y,9k (Ch*) (x) = gT £^ (x ), (7.26)

such that

L j ( 2 - j k ) = 6Otk, k € Z . (7.27)

This is equivalent to saying that

fcez
Standard arguments (Dahmen et al. 1994c, Frohlich and Schneider 1995)
yield

27rife)
fcez
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which, of course, requires the sum in the denominator to be nonzero.
Recall that, by (7.14), the solution u of Cu = f is given by

(7.29)

In order to project the right-hand side / first into Sc,j, one can use the
samples of / at 2~Jk. In view of (7.27),

fj(x) := £ f(2-Jk)Lj(x - 2~Jk) (7.30)
fcez

interpolates / in Sc,j- Thus, to obtain an approximation to the coefficients
in (/, QJ), say, one has to rewrite fj in (7.30), in view of (7.24), in terms of
QJ = C^J. Since this is the central point, we describe this change of bases
in a littl e more detail. Let Lj = (Lj(- — 2~^k) : k G Z) and define

D, := (L^e^- i ), j = l , . . . ,J, D _ i : = (1,0,00**0), (7.31)

fv := (fj(2-ik):keZ).

Since fj € Sc,j, it can be expanded as

fj = fjLj = (fJ Lj, £-*$j)C<f>j  = fJ (Lj , C-**J)£*J.

Now, combining (3.11) and (3.13) with Proposition 3.8, one obtains $j =
$j_1M* J_1 0 + * J _ 1 M J _ 1 1. Substituting this into the above relation and
using (3.12) yields

fj = fj (Lj, C-'QJ-JCQJ-! + fT (Lj, QJ^QJ-!, (7.32)

where

/ j _ ! := t}(Lj,£-**J-i)£*J-i  e Sc,j-i. (7.33)

Thus we have determined the vaguelette coefficients (/, ©j-i ) « (fj, ©j-i )
of / relative to 0 as

dj_! = f jDj , (7.34)

where Dj is given by (7.31). To continue this process, one only has to
determine the samples of / j_i defined in (7.33) on the coarse grid, that is,

= fj(2-J2k) - dT_19j_1(2-Jfc), (7.35)

once one has computed ©j_i = £* j_ i . Instead of performing (7.35) ex-
actly, one can discard entries in dj_i that stay below a certain threshold,
to generate step-by-step compressed vectors dj, j < J, such that

uj :=
0<j<J

approximates u in (7.29). The following algorithm, from Prohlich and Schnei-
der (1995), does exactly that.
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ALGORITHM 2 (FS)

Initialization: Compute the filters Dj and £<fo,(b £ipj,o, J = 0 , . . ., J — 1.

(1) Set j = 3 and determine fj(2~Jk) = f(2-Jk), k G Z.
(2) Forj = J - l , J - 2 , . . . , 0,

f, = (/ j (2-Jfc):fcGZ), / j ( J

(3) Compute cj with the aid of the filter in (Lo, £~*$o).

A few comments on this scheme are in order.

 When the change of bases is done exactly and no thresholding is ap-
plied, the above scheme is a collocation scheme.

 Instead of starting with a set $j of orthonormal scaling functions as
in Frohlich and Schneider (1995), we have kept the flexibilit y of using
biorthogonal pairs $ j , $ j . In Frohlich and Schneider (1995), orthogon-
ality was paid for by infinite masks which require additional truncation.
Starting with biorthogonal spline wavelets (4.25), the collection 0 still
consists of compactly supported functions. Likewise the representation
of uj involves only the compactly supported functions in \& and $o-
This might favour embedding techniques for more general domains. It
is clear that the Lj have typically global support but decay exponen-
tially. Here the actual computation requires a truncation. Of course,
the Dj are obtained by computing only one mask, which involves trun-
cation of the vaguelettes too. The matrix formulation for the periodic
case is identical once Z is replaced by Z/2Z.

 In Frohlich and Schneider (1995), it is assumed that a reduced set
A c {A : |A| < 3} is given from the start. The above algorithm is
formulated there in a way that takes advantage of this data reduction.
This requires a priori  knowledge about the solution u. Such informa-
tion is often available when dealing with time-dependent problems and
an initial guess of A can be obtained from the approximation on the
previous time level. In this case the samples of / are not required on
the full grid of level 3. This can be incorporated above as well by
requiring samples only at places determined by significant vaguelette
coefficients.

The scheme is applied by Frohlich and Schneider (1996) to Helmholz-type
problems as well as to nonlinear parabolic PDEs and to the computation of
flame fronts. The experiments indicate dramatic savings if the computation
can be fully confined to the significant wavelet contributions.
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7.5. Freezing coefficients

The numerical feasibility of the above vaguelette schemes hinges in an es-
sential way on the constant coefficient model problem. Let us now sketch
some ideas from Lazaar, Liandrat and Tchamitchian (1994) about how to
extend these techniques to the case of non-constant coefficients. Roughly
speaking, an exact solver on a coarse scale is employed in conjunction with
a freezing coefficient/vaguelette scheme on higher scales. For simplicity, we
consider the univariate case n = 1 only, that is, C = X — J^, (^(x)g^) where
v(x) > v > 0 is Lipschitz continuous. Here we have C = C*.

The objective is to evaluate a projection of the inverse C~1. Consider the
Galerkin projection of the low-frequency part

Aq :=  Qq{Q* qCQq)-
lQ*q (7.36)

of the inverse, where Qqf = (/, $q)$q. Due to the variable coefficient u(x),

the evaluation of C~li^)\ is not feasible where, as before, A = 2~J (k + \ J.

Instead one defines functions 9\ by

^ A = V>A, A e V , (7.37)

which, according to the preceding discussion, are vaguelettes (see Tchamit-
chian (1997)), so that the operator Vq defined by

is a bounded mapping from L2(M) to H2(R). Here, Vq is often termed a
parametrix of £, that is, the exact inverse of an approximation to £ at high
frequencies. In fact, by definition, one has, for |A| > q,

while CVq(4>\) = 0 for |A| < q. Hence one obtains

CVq = {I-Qq) + Hq, (7.39)

and one can show that (Lazaar et al. 1994)

I I ^ IU a < 2-9||<7||La. (7.40)

Now Aq + Vg is expected to approximate C~x well. In fact, a von Neumann
series argument yields the following theorem.
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Theorem 7.6 (Lazaar  et al. 1994) Let Uq := 1 - £(Aq + Vq). Then
11̂9 IU2 ;$ 2~9 so that, for q sufficiently large (depending on \I>, $ and v),

Ul- (7-41)
/=o

As for the numerical realization, choose some J > q. The idea is to replace
the role of L2 in the above scheme by Sj — S($j), that is, let Cj := Q*JCQJ,

and denote by Ajq the Galerkin projection obtained by replacing £ in (7.36)
by Cj.

The next step is to approximate £ j l in the neighbourhood of each wavelet
on high scales by Vjtq denned by

q<\\\<J

where the T\ are here defined by

-v{\)Q*jd2
xQjTX = j , x , |A| > q,

As above, Aj,q + Vj,q approximates Cj on Sj. One can now formulate an
analogue to Theorem 7.6, setting Uj:q = T — Cp(Aj}(}  + "Pj,q), so that

Thus the solution of Cu — f in Sj is given by

k>\

where

fk : = ( J - ( A / , , + Vj,q)£)fk-i, k>l,

and /1 := (^4j,? + Vjiq)f. An approximate solution in 5j is obtained by
truncating the series (7.42).

Note that, in view of (5.16), Ajyq is denned by

Q*(Q*jCQj)QqAj,q = Q*qCQqAj,q = 1,

so that the application of Ajtq requires solving the (small) linear system in
Sq C Sj. However, the discretization of £ that involves inner products with
non-constant coefficients has to have the accuracy of the highest discretiz-
ation level J in order not to spoil the overall accuracy. The application of
Vj>q again requires a sufficiently accurate evaluation of the vaguelettes T\.
Here the remarks of the preceding discussion apply. Again, in the periodic
setting wavelets with global support are usually admitted at the expense
of an additional log term introduced by FFT. Employing compactly sup-
ported wavelets and approximating the vaguelettes as indicated before, one
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may still hope to keep the computational work proportional to dim Sj. Of
course, the practical realization involves several approximation and trunca-
tion steps depending on the choice of J, q and \I/, ^, and these have to be
carefully balanced. One has to keep in mind that the general philosophy is
to spend quite some effort on initialization and precomputation in order to
reduce the solution to rapid evaluation schemes. It should be interesting to
compare the scheme with conventional preconditioning schemes. Numerical
tests for a periodic model problem show rapid convergence of the scheme
(Lazaar et al. 1994). Details of the numerical schemes, their analysis and
numerical experiments are presented in Lazaar (1995).

7.6. Energy pre-wavelets

One drawback of the above vaguelette schemes is that even when biortho-
gonal pairs ^f, * of compactly supported wavelets are used, the collections
Q generally involve globally supported functions. This can be remedied in
certain cases at the expense of exact diagonalization. In fact, consider again
a constant coefficient elliptic operator C = S|Q|,|/3|<S

 aapdad  ̂ with strictly
positive symbol a. Suppose that 4> £ -^2(K")> n < 3, is a stable generator
(see (4.9)), which is smooth enough to satisfy

E a(y + ^k) ~ I, (7.43)

( Y2

/ I J2 \4>{x ~ k)\\ dx < oo. Moreover, assume that </> is skew-J
symmetric about some point a G Kn, that is, </>(a + x) = (p(a — x), x G
Rn. It was shown by Dahlke and Weinreich (1994) (see also Dahlke (1996)
and Dahlke and Weinreich (1993)) that there exist ipe G 5($i), e G E* =
{0, l } n \ {0 } , such that

and

#e> = 0, eG£*. (7.44)

Thus the ^>e generate complement spaces that are orthogonal relative to
the energy inner product a(u, v) = (Cu,v) (when C is symmetric, recall
Section 1.4). One should note that this also covers genuinely multivariate
generators (f> not obtained by tensor products of univariate ones. The re-
striction to spatial dimensions n < 3 arises from the fact that in these cases
the masks for the wavelets can be retrieved from the mask of the generators
in an explicit way, which plays a central role in the construction.
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The above result (7.44) concerns the decomposition for one level. Due
to the appearance of the symbol a, the adapted wavelets are (as in the
vaguelette case) scale-dependent. To obtain a complete wavelet basis, one
has to demand that (7.43) holds for all symbols a3 :=  a{V  Let {V'j.ejees.
be the wavelet family constructed above relative to CTj. Then {(f>(-  — k) : k 6
Z"}  U {tpj,e(2

j  -k) : k € Zn, e e £*, j = 0,1, 2, . . .}  forms a wavelet basis
satisfying

(&l> j,e(--k),rl> fte,(--k'))=O, e,e'e£*, k,k'eZn, j^f, (7.45)

(Dahlke and Weinreich 1994, Dahlke 1996).
Returning to the periodic case, the stiffness matrices relative to this basis

is therefore block-diagonal. In particular, the case C = —A + a, a > 0 is
covered. In this case the wavelets can be chosen to have compact support.
Therefore the diagonal blocks are sparse. Properly scaled, each block is well
conditioned. Thus such matrices are easily inverted, which suggests using
them for preconditioning purposes, when C has a more complicated form.

7.7. Evolution equations

The next step is to consider problems of the form (2.14) described in Sec-
tion 2.2. A common approach to such problems is to fix a time discretization
that is implicit in the leading second-order term Cu and explicit in Q(u).
The simplest example is the Euler scheme

+ Q{u^) = 0, (7.46)

where the upper index I denotes the time level, that is, u  ̂ is an approxim-
ation to u(-, ti), ti = ti-i  + At. Thus for each time step one has to solve an
elliptic problem

(/ + AtC)u{l+l)  = uw - Ata(«( 0) , (7-47)

of the form discussed in previous sections. Of course, any elliptic solver such
as the robust FE-based wavelet preconditioners discussed in Section 6 can
be used for that purpose too. Once space discretizations Cj, Gj for C and Q
relative to the spaces S($j) =:  Sj, say, have been chosen, one has to solve
linear problems

In particular, when Q = 0 one formally obtains

u{
3
l+l)  = {I  + AtC3)-

luf. (7.48)

Note that the projection scheme from the previous section, with respect to
orthonormal wavelet bases, gives rise to a conceptually somewhat different
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scheme of the form

4 1) '40), (7.49)
where one can use the fact that

(Qj(I + AtC)-1)1 = (Qj{I  + Ai£)- 1Qi ) '-1(Qi (7 + A^ ) " 1) . (7.50)

Liandrat and Tchamitchian (1997) have pointed out that there exists no
discretization Cj of C, independent of At, such that (I + AtCj)~Y = Qj(I +

l

An algorithm based on (7.49) is proposed and analysed in Liandrat and
Tchamitchian (1997). This time-dependent vaguelette scheme looks schem-
atically as follows.

ALGORITHM 3 (TIME-DEPENDENT V-SCHEME)

(1) Choice of * , * , At.
(2) Initialization:

 When globally supported wavelets are used, fix truncated versions
of the filter matrices MJi0, M^i from (3.4), (3.8).

 Approximate the niters

F, :=<$„( / +A^)- 1*,) .
(3) Compute the scalar products

{uf - Atg{uf),ex)
according to (7.23) (or the hybrid evaluation scheme in Section 7.4).

(4) The representation of vS in terms of <3>j is obtained with the aid
of (3.26).

To ensure that this scheme is competitive with finite element schemes,
an efficient evaluation of the nonlinear terms G(vS ) is needed. This is a
nontrivial task when working in the wavelet representation. Some proposals
on how to deal with this task can be found in Liandrat and Tchamitchian
(1997). We will address this issue again later.

Wavelet representation of evolution operators
We will now briefly describe an alternative approach pursued by a number of
researchers; see, for example, Beylkin and Keiser (1997), Dorobantu (1995),
Enquist, Osher and Zhong (1994) and Perrier (1996). The order of time and
space discretization is now reversed. The basic ideas will be explained again
for the model case of univariate evolution equations on [0,1] with periodic
boundary conditions of the form

-^- = Cu + g{u), u(;to) = uo, u(x,t) = u(x + l,t), (7.51)
at
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where, as before, Q is a possibly nonlinear operator and C is a constant
coefficient second-order operator Cu = v-§£z, v > 0. Again the examples
(2.15) and (2.16) are covered.

A key role is played by the classical semi-group approach. In fact, by
Duhamel's principle the solution u(x,t) to (7.51) is given by

t

u(x, t) = e^-^uoix) + f e^-T^cg{u{x, r)) dr. (7.52)

to

In particular, for the heat equation where Q = 0 and v = 1, the solution
operator etc has the form

1 c ( — )^
(etcv)(x) = -==  / eJL*r-v(y)dy. (7.53)

V 2irt J
K

The reason why the use of this representation has been mainly confined
to theoretical purposes is that conventional discretizations of the involved
operators are not sparse. The main thrust of the above mentioned papers
is that this is different when employing wavelet-based discretizations (recall
Section 1.5 (c)).

An example of this type is the following proposal from Enquist et al. (1994)
concerning long time solutions. It begins with a conventional discretization
by the method of lines

^-U = CjU + F (7.54)

of%=£u + f, where U = (Uk(t) » u(h2-J,t))^, F = ^ 1

(Cj\J)k = ^(Uk^(t) - 2Uk(t) + Uk+l(t))

is the classical second divided difference operator. Now Duhamel's principle
applied to (7.54) yields

t+At

V(t + At) = eAtci\J(t)+ f e(t+At-s^F(s)ds. (7.55)
t

Conventional numerical schemes are now obtained by expanding the evolu-
tion operator eAtCi. For instance, Taylor expansion and truncation yields
explicit schemes with the usual stability constraints on the time step At
relative to spatial mesh size Ax = 2~i in the present case. Any such ap-
proximation £ to eAtci provides

U(nAt) « U" = £ nU° + JT f - ' F (7.56)
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as a discrete counterpart of (7.55). The simplest examples are £ = (I +
AtCj) or £ = (I — A i£ j ) - 1 for the explicit and implicit Euler schemes,
respectively. Alternatively, £ = (I — ^ £ j ) - 1 ( / + ^fCj) corresponds to the
Crank-Nicholson scheme.

Now, suppose one is interested in long time solutions of the heat equation.
This requires high powers of £. In particular, the powers £2 can be obtained
by repeated squaring. Setting Sm  £2™, Cm  YA=Q1£*F, and noting
that

2 m - l

£ s i = I + £ + £2(I + £ ) + £4{I  + £ + £2 + £3) + ---

+ <?2 m~1( / + £ + --- + £ 2 m - 1 - 1 ) , (7.57)

the following algorithm approximates the solution at time t = 2mA£ after
m steps.

ALGORITHM 4

Set So := £, Co = F.

(1) For i = 1,2, ...,m:

d = (/ + 5j_i)Ci_i.

(2) Then U( 2m) = <SmU(0) + Cm is the approximate solution of (7.54) at
time 2mAt.

The conceptual advantage is that time is rapidly advanced by a few applic-
ations of powers of £. However, in this form Algorithm 4 cannot be applied
in practice since the corresponding matrices fil l up after a few squarings, so
that each step becomes too costly. The basic idea of Enquist et al. (1994) is
to transform Algorithm 4 in such a way that the Si become sparse (within
some tolerance). One exploits the fact that wavelet representations of CZO
(and their powers) are nearly sparse (recall Section 7.2). Similar ideas are
used by Perrier (1996). Consider again the 1-periodic case and a corres-
ponding dual pair of periodized generator bases $j , $j . Let N = 2J;. Each
c G RN can then be indentified with cT $j £ S($j) and the transform T " 1

defined by (3.28) transforms c into the corresponding wavelet coefficient vec-
tor d = T j 1c. If $j consists of pairwise orthogonal functions, for instance

periodized Daubechies scaling functions, so that $j = $ j , the transforma-
tion Tj is orthogonal and TJ1 = T j . Hence the application of Sf in wavelet
representation becomes

TJSfc = TJSfTjd =

Replacing <SQ in Algorithm 4 by Tj£Tj produces an equivalent scheme.
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The gain lies in the fact that the iterates Si now become sparse (cf. (7.11),
(6.24)). To increase the efficiency of the above scheme, one can introduce
the operation trunc(<Sj, e), which sets all entries to zero whose absolute value
stays below the threshold e > 0. This leads to the following.

ALGORITHM 5

Set <SO = t runc(T j^Ti ; e) and Co = T j F .

(1) For i = 1,2, . . . ,m:

Si = trunc(S£_ !,£:),

Of course, the threshold e has to be chosen appropriately. Also, modi-
fications and additional assumptions are necessary when / depends on t
explicitly. The error analysis carried out by Dorobantu (1995) indicates
that e < At is a reasonable choice. Although an explicit scheme constrains
At relative to Ax = 2~J, the experiments in Dorobantu (1995) suggest that
a simple explicit Euler scheme £ = (I + AtCj) is in this context superior to
an implicit scheme, although the solution of corresponding systems benefits
from the preconditioning effects of the wavelet bases. One should also note
that the choice of the wavelet basis is not necessarily related to the space
discretization, which above was just finite differences. On one hand, this in-
creases flexibilit y and reminds us of algebraic multigrid. On the other hand,
the scope for rigorous analysis of the scheme certainly decreases.

The non-standard form
The key idea of the above scheme is that, as soon as sparse representations
of evolution operators are available, discretizations of the integral repres-
entation (7.52) reduce to matrix-vector multiplications with (nearly) sparse
matrices. Therefore, the efficiency of this operation is crucial (just as in
the context of iterative solvers). So far, we have primarily exploited the
(near) sparseness of the matrices ( T * , * ) T , which are often referred to as
the standard form of the operator T. In particular, in the context of peri-
odic problems the following alternate representation has been propagated
by several researches. It is called non-standard (NS) form; see, for ex-
ample, Beylkin, Coifman and Rokhlin (1991), Beylkin and Keiser (1997)
and Dorobantu (1995). While (7"\1/,\1/)T arises from the formal expansion
(see (5.37))

T = S^TEo = £ (Q*j  - Q ; _ I ) T ( Q, - Q,_!) (7.58)
3,1=0
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setting Q-i = 0, the alternative telescoping expansion gives

3=0

where as before Qjf = (/, fc,}^ = (/, $o)$o + £Co(/> */>**  O ne r e a d%
checks that

oo

r = £ {(Qj+i  - Q*j)T(Qj+i  - QJ) + QinQj+i - Qi) + (Qj+i  ~ Q*J)TQJ}
3=0

+ Q*oTQo- (7.59)

Of course, one can start the expansion at any other fixed coarsest level jo
instead of jo = 0. Another way of looking at the NS form is to expand the
kernel of T relative to the dilates and translates of the bivariate wavelets

Since

(Qj+i  ~ Qj*)T{Q3+i - Qj)v = (v,

(Q*+1-Q*)TQjV = (V

Q*T(QJ+1 - Q3)v = (v

the matrix representations of the block operators are

A, ;=

and Ho := (T$o,^o) for the coarse level contribution. Thus these blocks
involve the three types of scalar products

4,1 = (^j,k^j,i), l%,i = (T^k, 4>j,i), yM = <T^)fc) 4>j,i), (7.61)

which, in contrast to the standard form, involve only functions on the same
level j in each block.

As a consequence, several practical advantages can be attributed to the
NS form. In contrast to the standard form, the NS form maintains the
convolution structure of an operator. Thus FFT can be used to enhance
further the efficiency of matrix vector multiplication in NS form. Moreover,
since the scalar products only involve functions on the same level, the meth-
ods described in Section 4.2 can be used to calculate them efficiently. Only
finitely different coefficients are needed to represent a constant coefficient
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Ho

Fig. 3. Schematic view of the NS form

differential operator in NS form. For an extensive discussion of the rep-
resentation of operators in wavelet bases, the reader is referred to Beylkin
(1992). However, one has to stress that one consequence of uncoupling levels
in the NS form is that the vectors it applies to are not representations of the
original vector with respect to any basis. Instead they could be viewed as
coefficient vectors relative to a redundant spanning set. Accordingly the size
of the NS form is up to almost twice the size of the corresponding standard
form; see, for example, Beylkin (1992) and Beylkin and Keiser (1997).

More precisely, the action of the truncated operator Tj := Q*JTQJ can
be described as

J-i

Tjv =
j=o

(7.62)
3=0
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where

dj := (v,^j)Aj + (v, ĵ)Bj, j = O,...,J-l,

cj := (v^Cj, j = l,...,J-l, (7.63)

Thus the application of Tj in the NS form requires, in addition to the wavelet
coefficients (v,tyj) of v in S(vPj), the scaling function coefficients (v,$j)
on level j . Hence, when v € S(<frj) is given in single-scale representation
v = {V,$J)$J, the array d j S := (co,do, . .. ,c j_i ,dj_i) representing the
application of Tj to v is obtained, according to (7.63), by applying the blocks
Aj,Bj, Cj to the result of the pyramid scheme (3.28) for the corresponding
level.

Conversely, to transform the output d j S back into a coefficient vector
relative to a basis of S($j), one can proceed as follows. Since by (3.4),
(3.8),

the pyramid scheme

_ c0 -> _ ci -> _ c2 ->  -^ c j _i ->  c j  6 4

do , ci /  d : , c2 / d2 , c3 Z1  / d j _ i , cj / " ' l ' ;

where

c o : = c o , Cj : = M j _ i i O c _ j _ i+ M J - _ 1 ) i d j _ i + C j , j = l,...,J,

similarly to (3.26) produces, in view of (7.62), the single-scale representation
Tjv = C J $ J. Likewise, in view of

(recall (3.13))

C j - l , d j _ 2 —> C j _ 2 , d j _ 3 —> C j _ 3 , d j _4 —>  —> C 0

dj-i \ dj_2 \ dj_3 \ \ d0 '

where

Cj :=Cj  + M*  ocj + i , dj := dj + M*  lCj+1, j = J - 2, . . ., 0,

generates the wavelet representation

7> = cg"*0 + dj^o +  + d j_2* j _ 2 + d j . ^ j - i . (7.66)

Computation of the blocks Aj, Bj , Cj
When T is a convolution operator one only has to determine the filter coef-
ficients aij,/?/, 7j?. Moreover, in view of (7.60), it suffices to determine the
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coefficients of (T&j,$j) and then apply portions of the pyramid schemes
/ A \ P

(3.26). When T is a homogeneous operator of order p such as ( ^ J this is
not even necessary, and one puts

( J ^ (7.67)

Specifically, when T = ( ^M , the coefficients in (7~<l>j, <I>j) form finite dif-
ference approximations of T in S($j) of order d + d — 1, when d, d are
the respective orders of exactness of the $j,$j and d > d. In fact, let

) f e := 2~j(k + [0,1]) and v € C°°(K). Hence there exists a polynomial P
of degree d — 1 and a smooth remainder R so that

Thus

Q*TQjV-Tv = Q*TP + 2-jdQ*TR-TP-2-jdTR

= (Q* - I)TP + 2~jd(Q* - I)TR.

( A \P ~*

^ J , TP is a polynomial of degree at most d — 1 — p < d, the
first summand on the right-hand side vanishes. Moreover, locally (Q^-I)TR
behaves for smooth R in a neighbourhood of D^ like 2~di in the Loo-norm,
say (see Proposition 5.1).
Moment conditions of the H-blocks
By (7.62), the blocks Aj and Cj are multiplied by vectors that contain
wavelet coefficients. Since possibly only a few of these coefficients exceed
a given threshold, one expects that these multiplications can be carried
out efficiently within a desired accuracy. Instead, the vectors multiplying
the blocks Bj consist of scaling function coefficients representing averages.
Therefore these arrays are generally dense. However, it is important to note
that the matrices Bj = (T$j, tyj) have vanishing moments when

T = H or T = / (-—) , (7.68)

where Ti is the Hilbert transform (see Section 1.3) and / is analytic. More
precisely, for any p := (P(Z))/ez, P a polynomial of degree < d — 1, one has

pTBj = 0 (7.69)

for any T from (7.68); see Beylkin and Keiser (1997). In fact, by (7.60), one
has

^ ) . (7.70)

By (4.30), pT(£j is a polynomial of degree d—1. Expanding / (g j) in powers
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of ^ , it is clear that /(^)pT^>j is a polynomial of degree < d — 1. Since,
by assumption d > d, (7.69) follows in this case from (4.33). When T = H
an argument similar to the one used in Section 1.3 also confirms (7.69); see
Beylkin and Keiser (1997).

Some theoretical remarks
Due to the appearance of at least one wavelet in the scalar products (7.61)
there is still a compression effect. In fact, if the kernel K of T satisfies

QT

dy'
< x — (7.71)

for x  ̂ ?/mod 1, one can show that (Tchamitchian 1996)

< \k-l\r+ \ (7.72)

provided that the corresponding functions with indices k and I have disjoint
supports. For the remaining cases the additional assumption

(7.73)

is needed, which is called the weak boundedness property. This condition is
weaker than Z/2-boundedness of the operator. It plays an important role in
the following celebrated theorem due to G. David and J. L. Journe; see, for
instance, Tchamitchian (1996).

Theorem 7.7 Suppose that the kernel of T satisfies (7.9), (7.10). Then
T is continuous on L2 if and only if it has the weak boundedness prop-
erty (7.73), T(l) G BMO and T*(l ) G BMO.

7.8. A pseudo-wavelet approach

The previous section contains major ingredients of an approach to solving
periodic nonlinear equations of the form (7.51) proposed by Beylkin and
Keiser (1997). There it is termed the pseudo-wavelet approach. It is a
systematic attempt to compute an approximate solution to (7.51) at the
expense of a number of arithmetic operations proportional to the number
of wavelet coefficients required for representing the approximate solution to
the desired accuracy. The central idea is to employ appropriate discretiza-
tions of (7.52) which ultimately reduce to the adaptive application of certain
operators in the NS form to corresponding coefficient vectors.

One basic tool is a class of time discretization schemes presented by
Beylkin, Keiser and Vozovoi (1996). For instance, in the case of Burgers'
equation (2.16) the term

I(t,t0) ~ ~ (7.74)

to
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is approximated by

I(t + At,t) (7.75)

= \oc,x , to)^u(-,t + At) + u(-,t + At)£u(-,*)) + O((At)2),

where

Oc,m:=(emAtc-l)C-1. (7.76)

So the idea is to discretize Q(u(-, r)) in the time variable r so that the exact
t+At

application of / e(*+A*-T)£d r reduces to the application of Or,!- This
t

is essentially different from the procedure in Section 7.7 where the space
discretization was fixed before. For the derivation of higher-order schemes
and a corresponding stability analysis see Beylkin et al. (1996). Here it is
important that the operators C~l or emAtC can be evaluated exactly within
any chosen accuracy. Again in the case of Burgers' equation one has to
evaluate

u(x, t + At) = eAtCu(x, t) - I(t + At, t), (7.77)

/ „  \ 2
where C = v ( ^ J and Oc,i is given by (7.76).

In order to apply the operator functions eAtC and Oc,i efficiently one is
interested in computing their NS form. Therefore it is important to determ-
ine the NS form of / ( J |) when / is analytic. Beylkin and Keiser (1997)
propose two approaches, namely to compute

or

(7.79)

To compute the NS form of / f ^ j via (7.79) one can diagonalize J- with
the aid of the discrete Fourier transform and apply the spectral theorem
(Beylkin and Keiser 1997).

Using (7.78), according to the discussion in the previous section (see
(7.60)), one can first determine the arrays c7 := (/' (-fa) $j,$j), consist-
ing of the coefficients

=2J J ̂ x - k)f (J — k') dx =
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Using Fourier transforms, one can show that (Beylkin and Keiser 1997)

c/' = /ft-(O^'de, (7.80)
o

where

fcez

and exploit the fact that |< (̂£)|2 &c^s like a cut-off function. Thus gj{£) can
be approximated arbitrarily well by a finite sum gj(£) which can be used to
discretize (7.80). Recall the similar reasoning in the vaguelette approach.

Adaptive application of operators in NS form
According to (7.63), the application of an operator in NS form requires
evaluating

d̂  = (v, *j)Aj  + (v, ^j)Bj, c3 = (v, J,

To accomplish the goal of realizing an overall solution complexity, which
is proportional to the number of significant wavelet coefficients of the solu-
tion relative to a given accuracy, each calculation of Tjv has to be realized
within this order of complexity. A heuristic reasoning towards this goal can
be summarized as follows. The solution to the differential equations under
consideration are typically smooth except at isolated locations where singu-
larities such as shocks can build up. Consequently, many wavelet coefficients
of the solution can be expected to stay below a given threshold. Hence the
arrays (v,^fj) are typically short. However, the arrays (v,^j) consist of
averages and may be dense in spite of the smoothness of v. At this point
the vanishing moment property of the B-blocks established in the previous
section is crucial. Exploiting this property, Beylkin and Keiser (1997) argue
that, when a smooth vector is applied to Bj , the result will be sparse. In
fact, Beylkin and Keiser (1997) indicate how to use the wavelet coefficients
of v to replace the dense array (v, $j) by a sparse vector s-7 so as to realize an
efficient application of the Bj block within a desired tolerance of accuracy.
For a more detailed discussion of the components of such a scheme we refer
to Beylkin and Keiser (1997) and the literature cited there.

In addition, some interesting numerical experiments are discussed by
Beylkin and Keiser (1997). First a classical Crank-Nicholson scheme for
the heat equation ^ = v-^u is compared to the wavelet-based scheme,
which consists in this case of a repeated application of the NS form of eAtC

via

u(-,tj+ i) = eAtcu(-,tj), u(-,t0) = u0.

This is an explicit procedure, yet unconditionally stable, once the evalu-
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ation of eAt-C is accurate enough to cope with the higher-order oscillations
introduced by the nonlinear terms. In particular, the advantage of higher-
order schemes is stressed. In fact, due to the higher number of vanishing
moments, they result in better sparseness of the NS form of the operators.
Subsequently, the scheme is tested on several versions of Burgers' equation
and its generalizations. These experiments apparently confirm that the num-
ber of operations needed to update the solution in each time step remains
proportional to the number of significant wavelet coefficients.

7.9. Wavelet packets and best bases

There is yet another technique for discretizing evolution equations of the
form (2.14), which has been proposed by Joly, Maday and Perrier (1997),
for instance. It aims at realizing best possible compression of the approx-
imate solution by employing the concept of wavelet packets and best bases
developed by Coifman, Meyer, Quake and Wickerhauser (1993) and Coif-
man, Meyer and Wickerhauser (1992). This technique is also used by Farge,
Goirand, Meyer, Pascal and Wickerhauser (1992). Therefore we will briefly
indicate some of the ideas in Joly et al. (1997), where further details and
relevant references can be found.

To describe the concept of wavelet packets, we confine the discussion to
scaling functions 0 6 1*2 W , whose translates <j>(-  — k), k £ Z, are orthonor-
mal, that is, <fi = (j>.  Let us denote by a, b the masks of <f>  and the wavelet
ip, that is, 6fc = (—l)fcai_fc, k e Z (see (4.20)). One can use these masks to
recursively generate further basis functions, defined with V'o = <fii  1P1 = Vs
for n > 1 by

4>2n{x) = J2akipn(2x-k), ip2n+i(x) = ^ bktpn{2x - k). (7.81)
fcez fcez

One can then show that

S($j) =  S ( { ^ n ( - -k):0<n<2j,keZ}),

so that a variety of orthonormal bases are available. Let £j, respectively
£, denote any subset of N x (Z Pi (—00, J]), respectively N x Z. With each
(n,j) e N x Z associate the interval Inj := [2%, 2J'(n + 1)). Let

^nj,fc(x) := # /Vn(2>z - k).

Theorem 7.8 (Coifman et al. 1992) Any collection {ipn,j,k  {n,j,k) e
£j x Z resp. £ x Z}  is an orthonormal basis of S($j), respectively L2W, if
and only if

InJ = \0,2J),resp. \J InJ

(nj)e£j (n,j)e£j
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(ii) for all (n,j), (re',/) G £j, resp. £, one has Inj n In' f = 0 if {n,j) /
in',j')-

It is again convenient to abbreviate A = (re, j , k) £ £ x Z. For a given
problem, the point is now to select that basis which is best in a certain
sense, rather in the spirit of signal analysis. The decision is based on an
appropriate notion of entropy. For a given v G L2OR), let

V =

For T> G £ and any £ > 0, the quantity

He'v(v) := #{cA : |cA| > e, A G P x Z}  (7.82)

is called the cardinal entropy of v. Note the difference from the following
more familiar measure for the content of information,

Hv(v):=- J2 |cA|2ln|cA |, (7.83)
\eVxz

which is called Shannon entropy. Minimizing the cardinal entropy over V
corresponds to selecting a basis with respect to which the representation of v
has possibly few coefficients above the threshold e. The adaptation of these
notions to the periodic case is again standard. Corresponding decomposition
and reconstruction algorithms as well as the recursive determination of best
bases are described in Joly et al. (1997). A comparison between the different
notions of entropy favours the cardinal entropy for present purposes. Let us
denote by B£(v) C £j the index set for a best basis for v relative to (7.82)
and set A6(u) := {A = (n,j,k) : (re, j ) <E Be(v),ke Z/2*Z} .

To make use of these concepts here, one associates with each A the centre
x\ of the basis function ip\. Moreover, one assigns to A = (n,j,k) an
influence rectangle centred at (xA,re2-?) in the position-frequency diagram,
which symbolizes the time-frequency support of ip\. Once the position of ip\
is determined, one can define the neighbours of each ip\; see Joly et al. (1997)
for the precise definition. Given the best basis, the reduced representation
of v is given by

Q£v:= Yl (v,iPx)ip\, (7.84)

where
K(v) = {A £ A£(v) : \(v, VA>| > e} . (7.85)

The central step of the adaptive procedure proposed by Joly et al. (1997)
is to add to A£(v) the neighbours of its indices, which typically results in a
set that is not much larger than AE(v). In fact, for most elements in Ae(v),
one expects that its neighbours already belong to A£(v).
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Of course, for non-stationary problems the solution wil l change in time.
Small variations of a function may actually cause significant changes of the
best basis. However, Joly et al. (1997) observe that the entropy does not
change much when dealing with evolution equations like Burgers' equation.
Thus the best basis does not have to be updated after each time step.

We now outline the algorithm from Joly et al. (1997) for Burgers' equa-
tion (2.16). We wish to approximate the solution u(mAt, ) at time mAt by

e S($j) as follows.

ALGORITHM 6 (JMP)

Let Uj be the approximation of the initial value u° and let B^vPj) denote
its best basis. Let

be the reduced index set after thresholding,

(m + l)st step: Given

" m = £ cx(m)i/>x,
xeAm

where Am C A(u°j).

(i) Form Am as in (7.85) and um as in (7.84) (relative to Am).
(ii) Form Am+1 by adding to Am those elements in Ae(uj) that are

neighbours of elements from Am.
(iii ) Determine

um+1= £ cx(m

by requiring that the following Galerkin conditions hold:

\ — ( um + 1 — um) H {uT) , ipX ) = — v \ —u™, —tp

(7.86)
for A G Am+1, where u™ := \um - \um-1.

We conclude with a brief discussion of the implementation.
Since the sets Am change, the stiffness matrices needed in (7.86) change

as well. Therefore Joly et al. (1997) propose to precompute the whole stiff-
ness matrix relative to the entire (periodized) basis $7. To generate the
possible wavelet packets, one then has to use the corresponding multiscale
transformations, providing a matrix of size 2J x J2J.

Using orthonormal spline wavelets, the masks are no longer short, so that
one has to resort to FFT in the multiscale transformations. This introduces
additional log factors in the operation count. The decomposition of the
columns in the extended stiffness matrix according to the chosen best basis
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requires the order of J22J operations. It seems that this strategy at some
stage requires computational work which is quadratic in the dimension of
the uncompressed problem size corresponding to S($j). This may be a
serious drawback when dealing with several spatial variables.

The evaluation of nonlinear terms requires special care, which will be
discussed in the following section.

7.10. Evaluation of nonlinear terms

A critical role in all the above developments is played by the evaluation
of nonlinear terms. It is perhaps worthwhile to comment briefly on the
principal problems arising in this context. As before, let ^A = {V'A : ^ £
A} . So far the discussion has stressed important advantages of multiscale
representations of the form u\ = dJ^A, where A selects only those wavelets
that are needed to represent a function u to some given tolerance. However,
note that at any point in the domain, wavelets from all levels appearing
in A may contribute. Thus the cost of evaluating a function in multiscale
representation at a single point could be proportional to the highest level
J appearing in A. When frequent evaluations are necessary, this could of
course significantly diminish efficiency. In contrast, evaluating a function
in single-scale representation requires only a finite number of operations
independent of the level J. On the other hand, #A could be very small
compared to dim S($j). Thus the transformation of u\ into single-scale
representation in S($j) would produce a much larger array of coefficients
which, due to their nature of representing averages, may all be significant.
This would waste the significant reduction of complexity gained by the sparse
representation of UA in wavelet coordinates.

This problem is exacerbated when, instead of point evaluations, one has
to compute nonlinear functionals of a function u  ̂ given in multiscale repres-
entation. A typical example arises in connection with the elliptic problem
(7.47). Suppose that the approximate solution u'1' from the previous time
step / is given as u^ = dJ*A, where A is a possibly small lacunary subset
of V. If one uses a collocation scheme for solving (7.47), one has to evaluate
the nonlinear term Q(u^) on some grid. This requires the evaluation of u®
on that grid, which is the task discussed above, followed by the application
of Q. If the application of Q is expensive, an alternative is to approximate
G(u®) first and then evaluate this approximation. When J is the highest
scale in A, depending on the nature of Q, one expects that (/(d^^A) c an

be accurately resolved on a level J > J. But, again, if the approximation
were given in a single-scale form, its evaluation would be inexpensive, but
the representation itself would possibly involve far more coefficients than
those in the array dA- This suggests also seeking some lacunary multiscale
representation d^HA « (?(dA\I/A) with respect to a suitable basis H (not
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necessarily equal to \I>). In fact, when (7.47) is to be solved by a Galer-
kin scheme, one would have to approximate the quantities ^
Thus, for H = * , the array d? would readily provide these quantities.

Overall, since in many cases one expects that the somewhat higher cost
of evaluating a function in multiscale representation is by far offset by the
sparseness of the representation, the central objective can be summarized
as follows. If, for e > 0, the set A C V is needed to approximate the
solution by u\ = dJ Â within a tolerance e, find a possibly small set A and
an approximation d^SA to Q(d1j^\) that is sufficiently accurate to preserve
the overall precision of the solution scheme. Moreover, when e tends to zero,
so that the cardinality of A = Ae increases, the ideal situation would be that
the corresponding size of A = Ae stays proportional to #Ae uniformly in e.
Likewise, the computational work needed to determine the approximation
d^ SA should also be of the order of #Ae (perhaps times a logarithmic
term).

It seems that we are at present far from this goal, at least in the above
strict asymptotic sense. Since this is currently a subject of intense research,
the state of the art will probably change quickly in the near future. Giving
a detailed account of the various existing approaches would certainly go
beyond the scope of this paper. Nevertheless, sketching some ideas, at least,
should be worthwhile.

A typical nonlinear term arising, for instance, in (2.16) and (2.17) is u-^u.
Since products of functions can be obtained as differences of squares, it
suffices to consider f(u) = u2. The approach pursued by Beylkin and Keiser
(1997) starts with the expansion

J-I

(QJV)2 - (Qov)2 = £ ((Qi+iu)2 - (Q3v?)
3=0
J - l

(7.87)

where we abbreviate Rj := Qj+\ — Qj.
In fact, within a given tolerance, one has v « Qjv for J sufficiently large.

This gives
J-I

v2 « (Qov)2 + Yl (2(QJV)(RJV) + (RjV)2) . (7.88)
3=0

The evaluation of (QQV)2 is inexpensive. The problem is that products in
the summation will generally not belong to the same space as the factors.
Since products correspond to convolutions in the Fourier domain, one can
estimate the extent to which higher oscillations are introduced. To resolve
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them accurately enough one needs a higher level of resolution. However, es-
timating the spread in the Fourier domain, one can argue that, again within
some tolerance, (QJV)(RJV) and (RJV)2 belong to 5($j+j0) for some positive
jo- For any given tolerance a positive jo does indeed exist independent of j
(Beylkin and Keiser 1997). Thus, by repeated application of the refinement
matrices, one can determine the representation of QjV and RjV in 5($j+j0),
for instance,

RjV = (tf+*)T* j+jo .

If, in addition, the functions in $j were interpolatory, that is, <f>(-  — k) = ^o,/o
the assumption v,f(v) G S($j) would give

f(v) = £ f(ck)4>(- -k), v =
k k

In this case one would have (RJV) = ((dJ+JI0)2) $j+j 0, where the square is
to be understood componentwise. Thus the coefficients c-7"1"-70 (v2) in S($j+j0)
are computed (approximately) as

<J+*>(v2) = 2(cj+jo{Qjv))(dj+jo(Rjv)) + (dj+jo(RjV))2. (7.90)

The justification for taking componentwise products of the coefficient se-
quences assumes the use of scaling functions whose shifts are orthogonal
and which are almost interpolatory in the sense of (4.17). Recall that this is
the case when the scaling function has sufficiently many vanishing moments
(4.16); see Beylkin et al. (1991).

Note that at least one factor in each product on the right-hand side of
(7.90) involves wavelet coefficients. These arrays are usually sparse, so that
only significant products need be calculated. Accordingly, one should only
compute those scaling function coefficients in ci+i°(Qjv) affected by large
wavelet coefficients. This requires suitably localized multiscale transform-
ations. Depending on the context, the resulting (local) single-scale arrays
cJ+-7°(u2) can be used for point evaluations, or have to be transformed into
wavelet representations. Therefore, the development of appropriate data
structures is certainly an important issue.

A promising alternative is offered by an adaptation of Algorithm 2 from
Section 7.4, by which an interpolating approximation is transformed into a
wavelet representation. A different strategy is pursued in Joly et al. (1997);
see also related work in Danchin (1997), Maday, Perrier and Ravel (1991).
Joly et al. (1997) propose interpolating the reduced approximation um at all
the points x\ corresponding to the entire basis. The values at these points
are computed through a fast evaluation scheme (setting those coefficients to
zero whose indices do not belong to Am: see the algorithm in the previous
section). The values of (nm)2 are then computed at each point and (um)2

is interpolated with respect to the best basis. The overall cost is O(J2J),
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which unfortunately exceeds the number of significant coefficients in Am. If
the best bases need not be changed, the collocation can be based on the
centres xx, A e A m +1 (Danchin 1997).

7.11. Stokes and Navier-Stokes equations

Of course, the above evolution equations can be viewed as simplified test
cases for the next higher mathematical model, namely the Navier-Stokes
equations for incompressible fluids, which, properly normalized, read

du
— -vAu + (u-V)u + Vp = f,

V  u = 0;

see, for example, Girault and Raviart (1986). Here u : Rn x R+ -+ Rn

represents the velocity of the fluid, and p : E" x R+ -> R the pressure, and
v is a positive number called the kinematic viscosity. So when v gets small
the formally parabolic first system becomes hyperbolic. One usually looks
for (u,p) satisfying (7.91) in some domain 0 subject to initial and boundary
conditions

u(-, 0) = u0 in ft, u = 0 on 89, x [0, T], (7.92)

and

fp(x,t)dx = 0, te(0,T), (7.93)

n

since p is only determined up to a constant. In this section we outline some
recent attempts that tackle the numerical solution of this kind of problem
by means of wavelet discretizations.

Amongst the difficulties in treating (7.91) numerically is the constraint
V  u = 0. One way to avoid this is to write (7.91) in the so-called vorticity
stream function formulation

0u
—-+U-VC0- vAu = 0, (7.94)

Vxti = u,

which is valid in this form for n = 2; see, for example, Quartapelle (1993).
For Cl = R2/Z2 and periodic boundary conditions, Algorithm 2 (see Sec-

tion 7.4) is applied to (7.94) by Frohlich and Schneider (1996). Wavelet
schemes based on the methodologies described in Section 7.7 are applied
to (7.94), among other model problems, in Charton and Perrier (1996), ac-
companied by a complexity analysis which indicates that the complexity
of the scheme is proportional to the dimension of the highest resolution.
Although working with possibly highly lacunary sets A of wavelet indices,
one has to employ at some stage the transformation between single and
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multiscale representation. So part of the principal efficiency is diminished
again by this typical bottleneck. On the other hand, if this is the only place
where the complexity of the full spaces enters, the constants appearing in
the complexity estimates can be expected to be moderate.

To become competitive with the existing numerical methods, it is concep-
tually important to overcome the restriction to the vorticity stream function
formulation, which is convenient only in the two-dimensional case. When
working with the primitive variables u,p in (7.91), it is known that the con-
straint V  u = 0 imposes certain compatibility conditions on the trial spaces
for velocity and pressure that are necessary for an asymptotically stable
solution procedure Suitable families of such finite element spaces are known
(Girault and Raviart 1986). However, for n = 3, they become quite involved
when trying to raise the order of exactness. We will therefore briefly dis-
cuss what potential contributions of wavelet concepts in this regard can be
expected.

Saddle point formulation
Suppose we fix trial spaces Vh C (H^Cl))" and

Mh C L2fi(n) = {ge L2(Q) : Jg(x) dx = 0}.
n

A semi-implicit discretization of (7.91) in conjunction with a weak formula-
tion of the corresponding linear problem yields

(vh,Vp) = (f-u%-Vuf,vh), vheVh,
(divu%+\fih) = 0, nh€Mh. (7.95)

One may question for which time steps and under which circumstances it is
reasonable to use an explicit discretization of the transport term u™  Vu™
and put it on the right-hand side. But for the time being we ignore this
point and remark that (7.95) corresponds to the linear system of equations

(7.96)

Here A â is the stiffness matrix of the operator C = I — aA, a — Atv, and
B T is the discretization of the gradient V relative to the chosen bases in
Vh, Mh. Recall from Section 2.2 (b) that the stationary Stokes problem (2.7)
leads to an analogous system where A^ a is replaced by the discretization
of C = î A. Both share the same operator B/,, however.

To ensure that the discretizations are stable, that is, that the inverses of
the discretized operators Ch are uniformly bounded, the pairs (Vh, Mh) have
to satisfy the Ladysenskaya-Babuska-Brezzi condition (LBB), which means
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that the inf-sup condition (2.13) holds uniformly in h

inf sup „  h^hfh\ > /5 > 0, (7.97)

heMheV \\vh\\v\\ii h\\M

i n f s u p „ ^ f \
nheMhVheVh \\vh\\v\\ii h\\M

where as before b(v,/j.) = (div u,//). The following well-known fact charac-
terizes the validity of (7.97); see Fortin (1977).

Proposit ion 7.9 Suppose (2.13) holds for the pairs (V, M) and some /3 >
0. Then the subspaces Vh, Mh satisfy (7.97) uniformly in h, if and only if
there exist linear operators Qh  V —> Vh satisfying

\\Qhv\\v < \\v\\v, veV, (7.98)

and

b(v - Qhv, nh) = 0, v<EV, fih<E Mh. (7.99)

While in the finite element context this observation is primarily of the-
oretical use, it does offer a constructive angle in the wavelet setting. We
briefly sketch the approach of Dahmen et al. (1996c). In fact, (7.99) may
be viewed as a biorthogonality condition with respect to , . Again this
is most conveniently explained first for the case ft = M.n.

To describe this consider any dual pair of biorthogonal compactly sup-
ported generators <f), (f> e L2{M.n) (see (4.19)). Assuming that <f>  € H1+e(R),
the procedure mentioned in Section 4.2 (see (4.34)) yields another dual pair
(0~,</>+) of biorthogonal compactly supported generators. More generally,
let us set

and likewise ipi,4>i, i = 0,1. Here ip~,$+ are the corresponding compactly
supported new biorthogonal mother wavelets, which, by (4.36), arise from tp
and ip essentially by differentiation and integration, respectively. The trial
spaces on Rn are again obtained by taking tensor products. In particular,
the multivariate scaling functions and mother wavelets ip~'t(x),ip^'l(x) are
obtained for e € E = {0,1}" , i = 1 , . .. ,n, by replacing in (4.38) the ith
factor by -ip~(xi),ipf.(xi), respectively. Specifically, we set <fi~'1 =:  VV*>
^ '

Now let

Vj := {v G V : vt G £($+'*), i = 1 , . . ., n}  (7.100)

and

Mj := S($j). (7.101)

Thus we can also write

^), i^-^x-.x^, (7.102)
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and the pairs ^j® , &J® are biorthogonal, where $7® is defined analogously.
Hence

QJV := (v, QT^QZQ (7.103)

are projectors from V onto Vj. Since

oo

" QJV = E (Gm - Qi)v (7-104)
1=3 + 1

and

we conclude from (4.36) that

^ ( ( Qm - Qi)v\ = -4{vi, Vp')*!. (7.105)

But since biorthogonality of \& and \& ensures that ($ j ,^ /) = 0, / > j , one
immediately infers from (7.101), (7.104) and (7.105) that

(div (v - QJV), fij) = 0, for all JJLJ G MJ = S($j). (7.106)

Moreover, for <p G Hl+£, Theorem 5.8 implies that the Qj are uniformly
bounded on V. Thus Proposition 7.9 applies and confirms that the spaces
Vj,Mj defined by (7.100) and (7.101) do satisfy the LBB condition (7.97).

There is no difficulty in adapting this construction to the periodic case.
It is perhaps more interesting to note that it can also be extended to
fi  =  = (0,1)" and homogeneous boundary conditions (7.92). This is
done in Dahmen et al. (1996c) by starting with a dual pair 4>, <\>  as above
and constructing biorthogonal refinable bases <&j, <f>j adapted to [0,1] as in-
dicated in Section 4.4. The key is that the modified dual pair (p~,4>+ again
gives rise to pairs of refinable biorthogonal bases &J,  ̂ where, however, we

now have the inclusion S(^J) C HQ(\3). Defining the collections tyj'1,^'1

in analogy to the previous construction, one can prove that one still has

S (^i"'* ) = S(*j\ (7-107)

Thus the same reasoning as before shows that for analogously defined pro-
jectors Qj (7.106) is still valid. The validity of the LBB condition (7.97)
also follows in this case from Proposition 7.9.

Solving the linear systems
Since the matrix in (7.96) is indefinite, the solution of (7.96) by iterat-
ive methods requires a bit more care; see Bramble and Pasciak (1988).
The upshot of all the options is that, whenever a good preconditioner for
the (positive definite) matrix Aj )Q, as well as for the Schur complement
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Kj j a := BjAj^Bj , is available, one can combine both so as to obtain a
correspondingly efficient iterative scheme for the treatment of (7.96). An
example is mentioned below in Section 8.3 in a different context. In the
case of the stationary Stokes problem, the block Aj>a corresponds to a stiff-
ness matrix for the Laplace operator A. Asymptotically optimal precon-
ditioners for this component were discussed in Section 6. In this case the
Schur complement is an operator of order zero and hence does not require
any further preconditioning. In the time-dependent case, the roles are re-
versed: Aj â is a discretization of the Helmholtz operator I — aA, which, for
small a, resembles the identity. Thus Aj )Q is already moderately well con-
ditioned. Nevertheless, the robust wavelet-based preconditioners discussed
in Section 6.6 would here cover the full range of possible values of a. Now,
for small a the Schur complement tends more and more to a second-order
operator, so that preconditioning becomes necessary; see Bramble and Pas-
ciak (1994). Again, an asymptotically optimal preconditioner-based on the
above wavelet bases, namely Algorithm 1 in Section 6.2, is proposed by
Dahmen et al. (1996c). The concrete examples considered there are based
on dual pairs (f>,<j>  where 4> is chosen as a B-spline (see Section 4.4). All
basis functions and wavelets for Vj and Mj have compact support. The con-
struction allows one to realize any desired order of exactness for any spatial
dimension. The numerical experiments in Dahmen et al. (1996c) for the lin-
earized problem cover two- and three-dimensional examples and confirm the
predicted asymptotic optimality, that is, iteration numbers are independent
of the size of the problem.

Divergence-free wavelets
Instead of seeking pairs of trial spaces Vj, Mj satisfying the LBB conditions,
one could try to find trial spaces Vj which satisfy the constraint div v = 0,
v € Vj weakly, that is, b(v,fi) = 0 for all yu € Mj, v € Vj. This has
been realized in the finite element context but corresponding constructions
are rather involved, in particular for the 3D case. One could even go one
step further and try to construct spaces VJ* C V° := {v € (i/o(fi))n :
div v = 0}. Orthogonal divergence-free wavelets have been constructed
by Battle and Federbusch. These wavelets have necessarily global support
(Lemarie-Rieusset 1994) although they decay exponentially. A somewhat
different line based on Section 4.2 has been pursued by Jouini (1992) and
Lemarie-Rieusset (1992). Dispensing with orthogonality, one can construct
divergence-free biorthogonal wavelets with compact support. This point was
taken up by Urban (1995a, 19956), where, in addition to tensor products,
genuinely multivariate divergence-free wavelets are constructed.

Using such trial spaces, the weak formulation (7.95) reduces to

Vvj) = (F,Vj), VjEVf, (7.108)
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that is, to a Helmholtz problem on V°. Here F collects the terms on the
right-hand side of (7.95).

First, numerical experiences for the 3D case are reported by Urban (1995c,
1996). These experiments concern classical Galerkin schemes. On the other
hand, the above reduction to the Helmholtz problem suggests the following
interesting alternative. Because of the constraint div u = 0, the fast vague-
lette evaluation schemes based on orthonormal wavelets have been confined
to the vorticity stream function formulation and thus to the bivariate case.
Recalling that the vaguelette approach can be extended to biorthogonal
wavelet bases, one can combine it with the above divergence-free wavelets,
which also work in the three-dimensional case.

We conclude this section with some brief remarks on the construction.
The key observation (Lemarie-Rieusset 1992, Urban 1995a, Urban 19956) is
the commutation property

 (7'109)
To make use of this fact for the construction of divergence-free wavelets, one
has to iterate the modifications from Section 4.2 by setting

a nd ana logous ly for 4>,ip a nd rp. For i € { 1 , . . . ,n} let Mi = {I,... ,n} \ {i}
and define functions ipJtU, v G {1 , . . ., n}, by

t = v,

where ie G {1 , . . ., n} is any index such that ej = 1. The collections

* V == W%vj,k :e€E*,v?ie,jeZ,k€ Zn}

can then be shown to be a divergence-free wavelet basis (Urban 1995 a,
19956). Again, further analysis, implementations and numerical experiments
can be found in Urban (19956), (1995c) and (1996).

8. Extension to more general domains

Except for the extensions to wavelets on cubes (see Section 4.4 and the
comments in the previous section) all approaches described so far rely in an
essential way on the underlying stationary shift-invariant structure of the
discretization. It has long been known in numerical analysis that, beyond
mere asymptotic estimates, regular discretizations often support efficiency
in many ways, reflected by superconvergence effects, for instance. Therefore
it may pay in the end in many situations to exploit such advantages for
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the bulk of computation and treat boundary effects separately. The mat-
rix capacitance method is an example of such a strategy which has been
extensively studied in connection with finite difference schemes. Moreover,
when dealing with problems where the geometry changes in time, such a
concept may even be a necessity rather than an option. One possibility
that may come to mind first is to enforce essential boundary conditions by
means of penalty terms; see, for example, Glowinski, Pan, Wells and Zhou
(1996) and Glowinski, Rieder, Wells and Zhou (1993). Aside from accur-
acy issues, a conceptual difficulty with this approach seems to be that it
stiffens the problem significantly and thereby wastes previously gained ad-
vantages on the preconditioning side. A relatively simple alternative is to
refine the spaces near the boundary. Incorporating additional basis functions
on higher discretization levels whose supports are still inside the domain can
compensate the loss of accuracy encountered otherwise. From a complexity
point of view this works in the bivariate case but no longer for domains in
R3 (Jaffard 1992, Oswald 1997). Therefore we wil l now concentrate on three
alternative possibilities.

8.1. An extension technique

Throughout this subsection assume that £ is a selfadjoint elliptic operator so
that, for a(-, ) defined by (2.5), with respect to natural boundary conditions,
the problem in variational form is to find urn H = i/*(f2 ) such that

a ( u , v) = ( f , v ) , v £ H (8.1)

for some / G H* (cf. (6.9)). We briefly sketch some ideas from Oswald
(1997) that fit into the multilevel Schwarz concepts described in Section 6.5.

The starting point is a nested sequence of finite element or spline spaces
Sj, j € No, defined on regular meshes of types 1 or 2 (see Section 6.6). Now
Q C Kn is supposed to be an arbitrary bounded domain with sufficiently
regular boundary to admit the existence of extension operators E, which
are bounded in an appropriate Sobolev scale. For instance, the validity of
a uniform cone condition or Lipschitz boundaries would do (Johnen and
Scherer 1977).

The first step is to construct collections &j,n consisting mainly of functions
0(2J  —k), k € Zn, whose support does not intersect dQ, where 4> is in this
case a tensor product B-spline, say. In addition, one needs functions that are
adapted to the boundary. Their restriction to ft is supported in a margin of
width ~ 2~J along the boundary. They consist of fixed linear combinations
of 4>{2i  —k) designed in such a way that the span of the entire collection
$j contains all polynomials up to some degree d — 1 on ft. This is similar to
the ideas presented in Section 4.4 and to the recent developments in Cohen,
Dahmen and DeVore (1995). However, in order to keep these boundary-near
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cluster functions as simple as possible, they are, in contrast to Cohen et al.
(1995), not required to be refinable. Thus one generally has

S($i ) n )£S( * i + i , n ) . (8.2)

However, along with $j,n, a biorthogonal collection E^Q is constructed in
such a way that the projectors

Qjv := (v^jfl)*^ (8.3)

satisfy the direct estimates (5.7). Essential hypotheses are that the <p(- — k)
are locally linearly independent (that is, the vanishing of a linear combina-
tion on any neighbourhood implies that the coefficients of the overlapping
translates <f>(-  — k) are zero), as well as the availability of extension operators.

Due to the lack of nestedness (8.2), the techniques from Section 6.5 can-
not yet be applied directly. To remedy this, Oswald (1997) shows how to
construct another sequence of nested spaces Sj C i?*(R) spanned by suit-
ably chosen B-splines (on all levels I < j) which overlap tt. In addition,
appropriate restriction and extension operators

are identified. In fact, RjV = (v, S^n)^- .̂ The Ej have the form

J

EJVJ := J2(Pj ~ Pj-i>j  G Sj,
3=0

where the Pj are similar quasi-interpolant type operators as the Qj in (8.3)
above. In fact, PjV = (viEj)$j, where the elements ^-^ G Ej are either
supported in $7 when supp <£(2J'  — k) D Cl  ̂ 0, or zero otherwise. To establish
suitable norm estimates for these operators, one needs certain additional
requirements on the domain which, for instance, ensure that the margin of
boundary affected basis functions has width ~ 2~-7 on level  j . One can then
prove that (Oswald 1997)

RJEJVJ = Vj, Vj € S($j}n),

and

Vl "U^' ^ e '' (8.4)

One can then proceed as follows. Fix any if*(M")-ellipti c form a(-, ) and de-
termine a preconditioner Cj on 5, for the operator tj defined by a(v,j,Vj) =
(CjUj,Vj), UJ,VJ G Sj, by the methods from Section 6.5. Then, defining

Cj :=  RJCJRJ (8-5)
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and Cj by (CUJ,VJ)Q = a(uj,Vj), Uj, Vj € S($jtn), the operators CjCj satisfy

K2(Cj£j) ~ 1 if K2(CjCj) ~ 1. (8.6)

The proof relies on the fictitious space Theorem 6.9 (Nepomnyaschikh 1990);
see Oswald (1997) for details. The treatment of essential boundary condi-
tions and further extensions are also discussed in Oswald (1997).

In this form the scheme does not make explicit use of any wavelet basis
or a corresponding exact representation of complement components. Hence
it is tailored to the selfadjoint case but otherwise very flexible in connection
with many standard discretizations.

8.2. Boundary value correction

Consider operators of the form (2.4), that is, C = — div(^4(z)V) + a(x)I.
Suppose Q c 1" is a bounded domain. The following strategy for solving

Cu = f onfi, Bu\aa=g, (8.7)

where B is some boundary value operator, has been proposed in Averbuch,
Beylkin, Coifman and Israeli (1995). Without loss of generality one may
assume that ficD:= (0, l ) n.

(1) Determine a smooth extension /ext and an operator £ext of / and C
respectively, from $7 to D.

(2) Solve the problem

Cextu = fext on  (8.8)

with periodic boundary conditions.

(3) Given the solution Uext of (8.8), solve the homogeneous problem

Cu = 0 on n (8.9)

subject to the boundary conditions

Bu\dn = g - Buext\9u, (8.10)

with the aid of a boundary integral method (see Section 2.2 (d)).

Averbuch et al. (1995) only address (8.8), arguing that efficient methods
for (8.9), (8.10) are available. The rationale is that fast wavelet methods
such as those described in Section 7 do a particularly efficient job on the
bulk of the problem. In fact, in the periodic setting, the significant wavelet
coefficients are indeed determined by the significant wavelet coefficients of
the right-hand side in the following sense. Suppose that A/j£ is the subset of
wavelet coefficients needed to represent /ext on  with accuracy e. Then the
set AU;£ of coefficients needed to represent the solution Uext with accuracy
e is contained in a certain 'neighbourhood' of A/ i£, that is, a somewhat
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larger set containing Ay;£ where #AUj£ is claimed to be proportional to
#A ĵ£;. However, it is not apparent how this proportionality depends on e
and on the norm with respect to which accuracy is measured. Nevertheless,
according to Theorem 6.2, a diagonally preconditioned conjugate gradient
scheme constrained to the space S(^AU C ) would produce (perhaps combined
with nested iteration) an approximate solution of accuracy e at the expense
of 0(#AU]£) operations. For higher dimensions, in particular, this seems
very tempting, since a high degree of adaptivity can be obtained without
worrying about the substantial complications caused by mesh refinement
strategies in conventional finite-difference or finite-element schemes.

On the other hand, there are still many points that need to be carefully
addressed.

(1) If the boundary dCl is fairly regular, a standard multilevel finite element
scheme, at least in the 2D case, combined with the existing adapt-
ive refinement schemes (see, for instance, Bornemann, Erdmann and
Kornhuber (1996), Bank and Weiser (1985)) applied directly to the
problem on Q would realize at least the same favourable complexity.

(2) If the boundary has very littl e regularity, it is not clear how to properly
balance the regularity of the extension to avoid introducing artificial
singularities, and how to realize the extension numerically.

(3) For problems in Rn with n > 2, and nonconstant diffusion matrix
A(x) in (2.4), the treatment of the boundary integral equation arising
from (8.9) and (8.10) may no longer be so trivial, let alone the extension
problem.

Nevertheless, this approach offers a methodology for separating the bulk of
computation in the highest spatial dimension from the boundary treatment.

8.3. Lagrange multipliers

The following alternative is in principle by no means new, but has been to
some extent revived by the development of wavelet schemes; see, for example,
Babuska (1973) and Brezzi and Fortin (1991). The idea of appending essen-
tial boundary conditions by means of Lagrange multipliers has been taken
up again and analysed from the point of view of multilevel schemes, in Kun-
oth (1994) and Kunoth (1995). Suppose that Cl is a cube containing Q, let
a(u,v) = (£extu,v)ft and M = (#s-0(dfi))* , when B maps Hs(£l) onto
Hs-P(dn). Choosing H = Hs(Cl) or H = tfo

s(Q) or the subspace H°(Cl)
consisting of periodic functions in Hs(Cl) and defining

(8.11)
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the corresponding weak formulation of (8.7) requires rinding (u,p) 6 H x M
such that

a(u,v) + b(v,p) = (/,v)jj , v € H,
(8.12)

6(u,/x) = ^ , / i €M .

The solution (u,p) of (8.12) solves the saddle-point problem

inf sup I -a(v, v) + b(v, fi) - (/, v)  ̂ - b(g, //) I (8.13)

(recall (7.91) and (7.95)). For general conditions under which (8.12) and
(8.13) are equivalent see Brezzi and Fortin (1991). It is also known that,
for instance for C = —A + a and B = I , the Lagrange multiplier p in the
solution of (8.12) agrees with |^ on dfl where du denotes the derivative in
the direction of the outward normal of dfl.

Let us again denote by

(8.14)

the operator equation corresponding to (8.12) projected on Sh x Mh C H x
M. Recall that solving (8.14) (and hence solving (8.7) approximately for
the above choice of a(-, ) and , , requires addressing the following two
issues.

 Ensure that (Sh,Mh) satisfies the corresponding LBB condition.
 Find an efficient iteration scheme coping with the fact that the matrices

in (8.14) are indefinite.

The first issue depends on the particular situation at hand; see Bramble
(1981) and Glowinski et al. (1996). Following Bramble and Pasciak (1988),
Kunoth (1994) and Kunoth (1995), the second task can be tackled for in-
stance as follows.

Suppose that the selfadjoint positive definite operator Ch is a precondi-
tioner for Ah satisfying

(Ci1v,v)~{Ahv,v), ((Ah-Ch)v,v)<r)(Ahv,v), v e Sh. (8.15)

Moreover, assume that Kh is a preconditioner for the Schur complement,
that is,

V 1 M e Mh. (8.16)

According to Bramble and Pasciak (1988) (see also Kunoth (1995)), one can
use the fact that (8.14) is equivalent to

ChAh ChB*h \ ( u \ _ ( Chf \
Bh(ChAh - X) BhChB*h ) [p - \BhChf - g ' ^U)
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and then show that, under the assumption (8.15), M.h is positive definite
relative to the inner product

Moreover, when in addition (8.16) holds, one can verify that

AC2 (G]!2MhG
l
h
/2) ~ 1, h -+ 0, (8.18)

where
/ I 0 \

yh  n t - 1\ U A^ /

Kunoth (1994, 1995) has shown how to construct preconditioners Ch and
Kh based on multilevel decompositions of appropriate trial spaces Sj = Shj,
Mj = Mhp j 6 No. For Ch one could use a multilevel Schwarz scheme
or a wavelet-based preconditioner, as detailed in Sections 6.2 (Algorithm
1), 6.4 and 6.5. The operator BhA~^B*h takes (Hs~@(dtt)) — H^~s(dQ)

into Hs~P(d£l) and thus has typically negative order and BPX or Schwarz
schemes do not apply directly. The following strategy is suggested by the
results in Kunoth (1995). Let F = dtt and suppose that * r , \i>r are biortho-
gonal Riesz bases for -^(F) with corresponding single-scale bases $J,$J.
Let

and define Bj by

(BJV,n)r = {QTjBv,/i)r, v e Sj+jo ,

that is, Mj = 5($J). Here the choice of jo € Z leaves some flexibility
for satisfying the LBB condition. One can then realize an asymptotically
optimal preconditioner fCj = Khj for the Schur complement BjA~lBj with
the aid of the change of bases scheme (Algorithm 1) from Section 6.2. For
further details see Kunoth (1995).

The tempting aspect of this strategy is that it has the potential to be
extended to a wider class of problems. For instance, using divergence-free
wavelets for discretizing the Stokes problem on a cube or torus and ap-
pending boundary conditions by Lagrange multipliers leads to the type of
saddle-point problem considered above with C = —A. Moreover, in view
of (8.17), one need not deal with the exact Schur complement but retain
sparse representations of the zero-order operator on V.

On the other hand, one needs suitable multiscale bases \tr , * r on F. When
n = 2, F is a curve and one can readily resort, at least for sufficiently smooth
curves, to periodic univariate wavelets, or to composite wavelet bases of the
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type considered in Section 4.4. When n > 2, things are more complicated.
However, due to the typically low order of the Schur complement, the bases
\ ] / r , \|rr generally need not be very regular. A more detailed discussion of
constructing wavelet bases on manifolds such as closed surfaces, particularly
in the context of boundary integral equations, is given in Sections 9 and 10.

9. Pseudo-differential and boundary integral equations

So far the discussion has been essentially confined to differential operat-
ors. Of course, the appearance of integral operators is also implicit in
the vaguelette concept. Moreover, they occur explicitly in Section 8.2 as
a solution component for treating partial differential equations (see also
Section 2.2 (d)). In addition to the issue of preconditioning, the numerical
treatment of integral operators or, more generally, of operators with global
Schwartz kernel faces a further serious obstruction: conventional discretiz-
ations lead to dense matrices so that both assembling these matrices and
solving the linear systems quickly become prohibitively expensive for real-
istic problems. In fact, direct solvers require the order of TV3 operations
when N denotes the problem size, and each matrix vector multiplication in
an iterative method is of the order N2. A conceptual remedy is to perform
the matrix vector multiplications only approximately within some tolerance.
In many cases this indeed allows one to reduce the computational complexity
to almost linear growth, if the analytical background of the problem is prop-
erly exploited. Examples of this type are panel clustering (Hackbusch and
Nowak 1984, Hackbusch and Sauter 1993, Sauter 1992) or the closely related
multipole expansions (Carrier, Greengard and Rokhlin 1988, Greengard and
Rokhlin 1987, Rokhlin 1985). A similar finite difference-based approach is
presented in Brandt and Venner (preprint) and Brandt and Lubrecht (1990).

Yet another direction has been initiated by the startling paper by Beylkin
et al. (1991). As announced in Section 1.5 (c), the representation of cer-
tain integral operators in wavelet coordinates is nearly sparse (see Sec-
tion 1.3). Roughly speaking, the idea is to replace the exact stiffness matrix
A j := {£tyj,$!j)T by a compressed matrix A}  arising from Aj by setting
all entries below a given threshold to zero. Beylkin et al. (1991) have shown
that the product Ajd, d G RNj, Nj = dim5($j), is still within accuracy
e from Ajd if only the order of Nj log Nj entries in A j are different from
zero. This result has since started a number of investigations centred upon
the following questions.

(1) How to deal with operators of nonzero order?
(2) What can be said about other schemes such as collocation?
(3) How to deal with nonperiodic problems, specifically with boundary in-

tegral equations on closed surfaces?
(4) What can be said about asymptotics, that is, how sparse can A j
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be made while still guaranteeing that the solution exhibits the same
asymptotic accuracy as the solution of the uncompressed system?

(i) Beylkin et al. (1991) consider a zero-order operator, so that no precon-
ditioning is necessary. Important applications (see Section 2.2 (d)) involve
operators of order different from zero, such as the single-layer potential
operator. Aside from a possible need of regularization in such cases, pre-
conditioning again becomes necessary. For operators of order minus one,
a preconditioner-based on multigrid techniques was developed by Bramble,
Leyk and Pasciak (1994), by introducing a suitable discrete norm for H~1.
One then obtains a fast method by combining this concept with any of the
above mentioned fast matrix-vector multiplication schemes. It seems that,
in the context of wavelet-based schemes, the preconditioning of operators of
any order, as explained in Section 6.2, and its effect on matrix compression
were first solved by Dahmen, Profidorf and Schneider (19936) and Dahmen
et al. (19946).

(ii ) While Beylkin et al. (1991) only consider a 'classical Galerkin scheme',
in practice collocation is often preferred to Galerkin schemes as a discretiza-
tion tool for integral operators, because it reduces the dimension of numer-
ical integration. Comparatively littl e is known about stability criteria for
collocation schemes in that context. The class of classical periodic pseudo-
differential operators

(Cu)(x)= 5>(z,A0n(fc)e27rifc-* , (9.1)

where u(k) are the Fourier coefficients of u, was chosen by Dahmen et al.
(1994c) as a model setting for studying the following issues: stability criteria
for various types of elliptic pseudo-differential operators and various types
of generalized Petrov Galerkin discretization in a multiresolution context,
as well as an asymptotic analysis of fast solution by compression techniques.
The schemes considered there are of the type (6.3) with projectors of the
form

PJV = J2 Vj,k(v)<t>j,k,

where $j are periodized refinable single-scale bases and

arise from some fixed functional r? defined on S(£$j). Thus r\ = 6(- — a)
corresponds to collocation while rj  = (f> covers the Galerkin scheme. The
operators C under consideration are assumed to be elliptic in the sense that
the principal part OQ(X,£) of their symbol <r(x,£) is coercive, that is, for
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some 6 > 0 one has

for|ei>«5, x € Rn/Zn. (9.2)

The main result of Dahmen et al. (1994c) can be stated as follows. For
any fixed y G Rn/Zn, let ay(k) := ao(y,k) induce the constant coefficient
operator Cy. Let

av(w,y) :=  Y~] ay(w + 2irk)<t>(w + 2irk)fj(w + 2irk)

denote the numerical symbol relative to Cy, which under suitable assump-
tions on <f>  is well defined. Here i) is the Fourier transform of 77 in the
distributional sense. The numerical symbol is called elliptic (see Wendland
(1987)) if

\av(w,y)\>\w\r, f o r w e f - i i f , and y G Rn/Zn. (9.3)

A freezing coefficient technique based on superconvergence results in con-
nection with the so-called discrete commutator property is used by Dahmen
et al. (1994c) to show that the generalized Petrov-Galerkin scheme (6.3) is
(s, r)-stable, in the sense of (6.4), if and only if the scheme is (s, r)-stable for
Cy for all y € M.n/Zn. This in turn finally yields that, under the above as-
sumptions on C, the scheme (6.3) is (s, r)-stable if and only if the numerical
symbol av is elliptic in the sense of (9.3). Condition (9.3) naturally extends
the stability condition (4.11), which refers to C = I.

This criterion is useful for verifying stability of collocation schemes where
17 = 1 (compare with (7.28)); see, for instance, Dahmen et al. (1996a).
(iii ) The above-mentioned results on periodic pseudo-differential equations
immediately apply to boundary integral equations for two-dimensional do-
mains with smooth boundary, which, via a smooth reparametrization, can
be identified with the circle. Univariate periodic wavelets provide all the
necessary tools for this case. Important contributions for Galerkin schemes
are given by von Petersdorff and Schwab (19976).

However, when the boundary integral equation lives on a surface of higher
dimension, being able to treat periodic problems is ultimately not sufficient
any longer. This puts conceptually new demands on the tools, that is, on
the construction of appropriate wavelets. This issue will be addressed later
in more detail.

To see how well the analysis of the periodic case predicts the right be-
haviour in more realistic situations, a multiscale collocation method for the
double-layer potential equation on two-dimensional polyhedral surfaces in
R3 was developed and tested by Dahmen et al. (1994a). The multiresolu-
tion spaces consist of continuous piecewise linear finite elements relative to
uniform triangulations of the (triangular) faces of the polyhedron. The func-
tions indicated in Figure 2 were used as wavelets. Since in this construction
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the order of vanishing moments decreases near face edges, this approach was
still provisional. Although, in contrast to the torus, the surfaces considered
by Dahmen et al. (1994a) were no longer smooth, by and large the same
compression and convergence behaviour could be observed as predicted by
the analysis of the idealized situation. However, full practical use of these
findings requires computing the compressed matrices A j at costs which are
essentially of the order of nonvanishing entries. Meanwhile substantial pro-
gress has been made in this regard, which we sketch later; see Dahmen and
Schneider (19976) and von Petersdorff and Schwab (1997a).

(iv) While in Beylkin et al. (1991) the compression rate referred to a
fixed accuracy e, an asymptotic analysis was carried out in Dahmen et al.
(19936), Dahmen et al. (19946), von Petersdorff and Schwab (19976) and von
Petersdorff, Schneider and Schwab (1997). In particular, Schneider (1995)
has shown that, under certain assumptions on the domain and on the wavelet
bases, A j can be compressed to O(Nj) nonvanishing entries while still real-
izing the asymptotic accuracy of the unperturbed scheme. Recently, signific-
ant progress on a practicable realization in terms of a nearby asymptotically
optimal fully discrete scheme for zero-order operators was accomplished by
von Petersdorff and Schwab (1997a).

In summary, the practical success of such concepts requires handling the
following central tasks.

(a) Construct appropriate wavelet bases \I>, ^ defined on a manifold F such
that the underlying operator can be preconditioned well and efficiently
compressed.

(b) Develop a scheme for computing the compressed operator at an expense
that stays proportional to the number of nonvanishing entries.

(c) Combine these techniques with adaptive space refinement strategies,
that is, with identifying sets A C V adapted to the problem at hand.
By Remark 6.3, these together would provide an asymptotically optimal
scheme.

In principle, all three goals are in sight. We will first sketch some basic
ingredients of several contributions to (a) and (b).

9.1. Geometry considerations

The numerical treatment of realistic boundary integral equations obviously
requires more than periodized wavelets. A natural starting point is the
representation of the boundary manifold F = d^l. In the context of boundary
integral equations, one is primarily interested in spatial dimensions n = 1,2
of F. However, the same ideas also apply in principle to other manifolds,
such as bounded domains in R3, so it is worth keeping n arbitrary at this
point.
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Concrete free-form surface representations are generated by CAD pack-
ages. There, a surface F is usually parametrically defined, that is, F is a
disjoint union of (open) patches Fj,

M

r = (J Ti, r< n r , = 0, i^i.  (9.4)

The global regularity of F is usually described with the aid of an atlas
{( f i, Ki)}^. This consists of a covering F = (Ji î f» and associated regular
mappings

Ki : Oi -> t i , Di C R n , i = l,...,M,

that is, «j and K~ are smooth mappings so that, in particular, the corres-
ponding functional determinant \dni(x)\ does not vanish on Fj. Moreover,
for  C fli^ i 2t, o ne ha«

Ki\a = Ti, i = l,...,M. (9.5)

The set F is called a Cm manifold, respectively Lipschitz manifold, if the
mappings are Cm, respectively Lipschitz. In practice, one does not work
with coverings. Instead the global smoothness requirements are then trans-
lated into relations between the control parameters in the mappings Kj cor-
responding to adjacent patches. Again, these considerations also apply to
domain decompositions of domains in R3.

9.2. Function spaces on F

The discussion in Section 6 has made it very clear that the qualification
of a wavelet basis It for a given problem is closely related to the relevant
function spaces. Thus one has to understand such function spaces defined
on F. Denoting by ds the surface measure on F, the space L,2(T) of square
integrable functions on F is a Hilbert space with respect to the inner product

(u, v)r = u(x)v(x)dsx. (9.6)
r

With the aid of the above atlas, one can also define Sobolev spaces HS(T)
on F. On the other hand, it would be extremely useful to relate the function
space structure back to the parameter domain . Locally this is possible.
Since the Ki are smooth, it is easy to see that for s > 0

H * ( T i ) = { v € L 2 ( T i ) : v o K i e H S ( D ) } . (9.7)

Moreover,
M

(u,v)i, (9.8)
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where

(u,v)i= / (u o Ki)(x)(v o Ki)(x)dx, (9.9)

n

defines an inner product on F and

(v,v) ~ (v,v)r, veL2{T). (9.10)

Equations (9.7) and (9.8) suggest the norms

M

for the space Fltl i Ha(Ti).
Since the properties of the operator equation are usually specified in terms

of a global topology on F, such as the one induced by spaces HS(T), say, it
is important to know how these spaces relate to each other. While HS(T) is
generally a closed subspace of Y\iL\ Hs{Ti) with respect to the norm (9.11),
one even has

M 1 1

nr ) (912)

that is, both spaces agree as sets and the norms are equivalent. However,
there is, of course, the restriction s < 1/2, which will be seen later to be an
unfortunate obstruction.

9.3. Multi-wavelets

The above geometric setting suggests the following natural concept; see
Alpert (1993), Alpert, Beylkin, Coifman and Rokhlin (1993), von Petersdorff
and Schwab (1997a) and von Petersdorff et al. (1997). Let II d be the set
of polynomials of total degree less than d on Rn and let P :=  {Pv : \u\ =
v\ + ... + vn < d} be an orthonormal basis of 11̂  on D, which can be
generated by the Gram-Schmidt process from the monomial basis. For
simplicity, let us now write  = (0, l ) n. A similar variant of what follows
can be developed for the standard simplex (and even more generally for
invariant sets (Micchelli and Xu 1994)) as well. Let  be divided into 2j n

congruent cubes

aj>v :=  2~i{r, + U), n e {0, . . ., 2*  - l } n =: Ej,

and let TjiTI(x) :=  Vx — r]  denote the affine transformation that takes OjtV
onto D. Now one easily generates spaces of (discontinuous) piecewise poly-
nomials of degree < d relative to the partition of  into D ^, r\ € Ej. Trans-
porting these spaces to the patches Fj then creates 'piecewise polynomials'
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defined on F. Formally, this can be described as follows. Let

Aj := {k = (i, rj,u) : rj € Ej} v e Z+, \v\ < d, i = 1,..., M},

and set for k — (i, 77, u)

o

o,

fj.vAV) - \ o, else.

Obviously the spaces S($j) are nested and their union is dense in
The construction of orthogonal complements between adjacent trial spaces

works as follows. Again using Gram-Schmidt, one can construct an ortho-
gonal basis {r t : I = l,...,(2re - l ) ^ ^ 1 ) }  of the local space S{P) in
S({(pi,T],i>  V £ Ei, \u\ < d}). The complement basis $>j in 5(<&j+i) is then
obtained by (9.13) with pv replaced by r\. The collection

oo

3=0

=  $0 U f^A : A = (i,j,l),l  <i  <M,j  > 0,1 < Z < (2n - 1

is by construction orthonormal with respect to the inner product , ) defined
by (9.8), (9.9). Thus every v £ -^(T) has a unique expansion

« = (i/,tt)tt, H|L2(r)~||(«,*)||<3. (9-14)

Moreover, for every i G {1 , . . ., M} and any polynomial p E lid the general-
ized moment conditions hold

(poK"1,V) = 0, ^ $ \ % (9.15)

This relation implies that for any smooth function / on F one has for A =
(i,3,l), \M =3,

| ( / , ^ ) r| < 2-lA l^ +^||/||woo,,J(BUpp̂ ). (9.16)

In fact, setting Wi(y) = \dKi{y)\, g(y) := Wi(y)(f o K,)(y), yields

J
D

Since, by construction, Jp(x)(ip\oKi)(x) dx = 0, p G Fî , (9.16) follows from

Taylor expansion of g around any point in suppV'A ° Kii  a nd the fact that
Wi(y) and K\ are smooth.
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Using Proposition 5.1, it is also standard to confirm the direct estimates
(Dahmen and Schneider 1996)

\L2ir) < 2-Jd\\v\\d, (9.17)

provided that F is smooth enough to admit the definition of Hd(T) in the
above sense.

This approach can be extended to other parameter domains exhibiting
a certain selfsimilarity; see Micchelli and Xu (1994). The following points
should be kept in mind, however.

(i) Note that the order of moment conditions in (9.15) equals the order
of accuracy in (9.17). It will be seen later that asymptotic optimality
sometimes demands that the order of moment conditions is higher than
the order of exactness.

(ii) The multi-wavelet basis is very flexible and relatively easy to imple-
ment. On the other hand, due to the discontinuous character of the
trial functions, dim S($j) = N2n^ (nJ^d_\l)  This effect could be damped
by forming composite wavelet bases according to the following recipe
(Dahmen and Schneider 1996).

 Construct biorthogonal wavelet bases \J/n, \ j / n on the parameter do-
main  by taking tensor products of the bases discussed in Sec-
tion 4.4.

 Lift these bases with the aid of the parametric mappings Kj as
above to composite biorthogonal bases * , ^ with respect to the
inner product , ) (9.8).

This alternative has the following attractive features.

 Although the same order d of exactness (9.17) is retained, one has
dim S($j) < N2nj, which is the fraction f 1 ^ 1 ) " 1 of the dimension
of the corresponding discontinuous space. Moreover, on each patch
the trial functions are still d — 2 times differentiate.

 The order d of vanishing moments can be chosen as d > d inde-
pendently of the order d of accuracy, which will be seen to support
compression.

 The Riesz basis property of the biorthogonal bases is not quite
as straightforward as in the orthonormal case. However, it is still
straightforward to verify the validity of direct and inverse estimates
as in Section 5.1 (see Proposition 5.1), so that Theorem 5.8 applies
and confirms, among other things, (9.14) in this case.

 Recall from (6.14) and Theorem 6.1 that optimal preconditioning
depends on the validity of norm equivalences (6.1) in a range (—7,7)
containing t, where 2t = r is the order of C Thus, by (9.12), bases



190 W. DAHMEN

of the above type are not optimal for the single-layer potential op-
erator, which requires — \ G (—7,7). Since discontinuities are con-
fined to the patch boundaries, this adverse effect is expected to be
milder than for a basis with increasingly dense discontinuities. The
validity of norm equivalences of the form (6.1) for function spaces
on manifolds wil l be seen later to be closely related to suitable char-
acterizations of the function spaces with respect to partitions, not
coverings, of the manifold (see Section 10.1 below).

Nevertheless, for operators of order zero, multi-wavelets are admissible.
This program has been carried through by von Petersdorff and Schwab
(1997 a), arriving ultimately at a fully discrete scheme which solves the
discretized boundary integral equation with matrices of size Nj at a cost
of O(Nj(\ogNj)4) operations and storage up to nearly asymptotically op-
timal accuracy. Some ingredients of the schemes in Dahmen et al. (19946),
Dahmen and Schneider (19976) and Schneider (1995) wil l now be sketched,
primarily from the point of view taken in Dahmen et al. (19946), namely to
identify the precise requirements on a pair of biorthogonal bases * r , ^ r for
L2(r) that gives rise to an symptotically optimal scheme. These findings, in
turn, wil l then guide the construction of suitable bases for the general case.
One can then also get rid of logarithmic factors in the work estimates.

9.4- A basic estimate

In the following we wil l assume that the operator

Cv= j K(-,x)v(x) dsx (9.18)
r

satisfies the estimate (2.23) and that its Schwartz kernel K is smooth except
on the diagonal, such that (2.25) holds (see Section 2.3). F is an (at least
Lipschitz) manifold of dimension n. To solve the equation

Cu = f, (9.19)

we wish to employ a pair of biorthogonal wavelet bases ^ = {ip\ : A 6 V} ,
*  = {4>\ : A G V}  with V = A + U V_ as before. We will assume for the
moment that this pair is ideal in the following sense.

Assumptions. For any order of accuracy d we have dth order of vanishing
moments

(poK- \^A ) = 0, A e V _, p€lld-, (9.20)

where K is a regular parametrization as above. Moreover, the pair of biortho-
gonal bases \&, \tr satisfy the norm equivalence (6.1) (or (5.42)) for the range
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s € (—7,7)- The regularity bounds 7,7 are related to C by

1*1 < 7,7, (9-21)
where again r = 2t is the order of £. Of course, we will also assume that
the Galerkin method is stable, that is, (6.7) holds.

The first important step is to verify an estimate of the type (7.11) (see
also (1.11)). Denote again by |A| the scale associated with ip\ and by fl\ the
support of xj)\. In view of the moment condition (9.20), the argument leading
to (9.16) can be applied to each variable consecutively (recall Section 1.3),
which provides

2-(|A|+|A'|)(n/2+d)
(9.22)

whenever dist(ftA, fly) > 2~minCIAl'iA'l) (Dahmen et al. 19946, von Petersdorff
and Schwab 19976, von Petersdorff and Schwab 1997a). When the supports
of if)\ and ij)\i  overlap, or more generally, when dist($7A, fly) < 2~min(lAl'lA'D,
one can use the norm equivalence (6.1) as follows (Dahlke et al. 19976). To
this end, suppose that C has the following additional continuity properties.
There exists some r > 0 such that

||4t;||tf-t+. < IMIi/t+s, v € Ht+s,0< \s\ <T. (9.23)

Without loss of generality one can assume that |A| > |A'|, that is, A e
V_, A' G V. Using Schwarz's inequality and the continuity of C (9.23) gives

IIH-^I I^AII^- " < UAH^W^PXWH^- (9.24)
Thus, when

a < r, i + a < 7, t — a > —7,

one can apply now the norm equivalence (5.42) to each factor on the right-
hand side of (9.24) which, upon using biorthogonality, yields

IA'I-IAI). (9.25)

Combining (9.22) and (9.25) and assuming that

n/2 + d + t > a, (9.26)

one arrives at the following central estimate

This is exactly of the form (7.11). Note that the preconditioning has already
been incorporated so that, in agreement with (7.11), the quantities on the



192 W. DAHMEN

left-hand side now represent a zero-order operator. Note also that the num-
ber of vanishing moments d determines the decay on fixed levels. It was
important above in (9.26) to be able to choose d large enough.

As earlier, let ^J := $o U"=o ̂ fj. The idea is to replace by zero those
entries in the stiffness matrices

which, according to the a priori  estimates (9.27), are guaranteed to stay
below a given threshold. However, that would leave the order of J2J entries
for which no decay is predicted by (9.27) (Dahmen et al. 19946, Dahmen
and Schneider 19976, von Petersdorff and Schwab 19976, von Petersdorff
and Schwab 1997a). A further reduction requires more subtle estimates
developed by Schneider (1995). To this end, we will assume that the wavelets
are, up to parametric transformation, piecewise polynomials, and we will
denote the singular support of ipy (Dahmen, Kunoth and Schneider 1997,
Schneider 1995) by

ftf, :=sing supp-i/'A',

which consists of the boundaries of the subdomains in fly whose parametric
preimages in  are maximal regions where tpy o m is a polynomial (in this
case of order d). If |A'| < |A| and dist(fi^,fi^/) < 2~IA'I, then it is shown
in Schneider (1995) that the estimate

2-|A|(l+d)2|A' |
(9.28)

(dist(nA,nf,))2t+d

holds.

9.5. Matrix compression

With the above estimates at hand, a level dependent a priori truncation rule
can be designed in such a way that, on zeroing all entries which stay below
the corresponding threshold, the resulting compressed matrix A^ j is sparse
and contains only O(Nj) nonvanishing entries. As earlier, Nj := dim S($j)
is the dimension of the trial space of highest resolution. In addition to the
above constraint (9.26) on d it is important here to have

d<d + 2t. (9.29)

Thus for operators of nonpositive order the order of vanishing moments
should exceed the order of accuracy of the underlying scheme.

The compression proceeds in two steps. Fixing some a > 0 and d! €

bjd, ~ max { a2-i,a2-^,a2(-/(2d'-2t)-^(J+d')-^J+r f'))/(2 j+2t)} , (9.30)
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and set

a1 , = I (A * JK* ' ' if dist(ftA,ftA/) < bjj>, ,g 31)
A>A' ' \ 0, otherwise. '

Hence the bands get narrower when progressing to higher scales. In a second
step, one sets

a\ A,, j'<j  and dist(fiA,
' j<  f and dist(fif< f and dist(fif, fiv) < bfd,, (9.32)

0, otherwise.

Here the truncation parameters bs- -t controlling the distance from the sin-
gular support are given by

b%, ~ max {a' 2"', a' 2-^a'2^2d'-^-m^^-^+^d'^+^}, (9.33)

and the parameters a, a' are fixed constants independent of J. For instance,
a determines the bandwidth in the block matrices A J J = (A^ ,J )JI J =
((Cip\',ip\))\\'\t\\\=j-  The choice of a, a' will be further specified later (Dah-
men et al. 19946, Schneider 1995).

Theorem 9.1 If the moment conditions (9.20) hold for d satisfying (9.29),
then under the above assumptions on C and \I/, ̂  the compression strategy
(9.31), (9.32) generates matrices A^j containing only O(Nj) non-vanishing
entries.

9.6. Asymptotic estimates

The basic tool for estimating the effect of the above compression is a suitable
version of a weighted Schur lemma. Recall that if for some matrix A =
(ai,j)i,jel  there exists a positive constant c and a sequence b with bi > 0,
such that

\ai,j\bi ^ c bj  for a 11 J e Ji
16/

and

Yl \ai,j\bJ <cbi f o r a11 J G !i
jei

then ||A|| < c, where ||  || denotes the spectral norm. In the present context
the bj are chosen as 2~SJ for suitable choices of s > 0. Again denoting by
D s the diagonal matrix with entries (DS)A,A ' = 2SIAI<5A,A'> the Schur lemma
can be used to show that

^)D75|| < j-ia-2t-2d2-J(s+s-2t)_
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At this point the norm equivalences enter again. In fact, one infers from the
above estimate combined with (6.1) consistency estimates of the form

|| (A, - Ccj) u\\H.-* <  a-
2*- M y<-T> \\u\\HT , (9.34)

where a > 1 is fixed, Cj, Ccj are the finite-dimensional operators corres-
ponding to Ayj and A^ j , respectively, and the range of the parameters s
and r is — d + 2t < s < 7, —7 < r < d. As before, 7 and d reflect the
regularity and the order of accuracy of the trial functions. In particular, for
any e > 0 one can choose a > 1 such that

\\(Cj-Ccj)u\\H-t < e\\u\\Ht. (9.35)

A perturbation argument combined with these estimates ensures stability of
the compressed operator in the energy norm and even for lower norms, we
have

(9.36)

for 2t — d < s < t; see, for example, Dahmen et al. (19946).
These facts can then be combined to prove the following result (Dahmen

et al. 19946, Dahmen et al. 19936, Dahmen and Schneider 19976, Schneider
1995).

Theorem 9.2 Under the above circumstances the compressed system

possesses a unique solution and ucj :=  d j * " 7 has asymptotically optimal
accuracy

\W-ucj\\HT < 2J(—) \\u\\HS , (9.37)

where — d + 2t < T < 7, T < s, t < s < d and u is the exact solution of
Cu = / . Moreover, the matrices B j = D~*A^jD~ * have the order of Nj
nonvanishing entries and uniformly bounded condition numbers.

By Remark 6.3, one obtains a scheme that solves (9.19) with asymptotic-
ally optimal accuracy in linear time.

We summarize the required conditions on the wavelet basis. To realize an
asymptotically optimal balance between accuracy and efficiency, the regu-
larity 7 of \1>, the regularity 7 of the dual basis iff, the order of vanishing
moments d and the order of exactness d of the trial spaces S($j) should be
related in the following way.

Regularity
Order
Vanishing moments

7 > t conformity 7 > — t preconditioning
d convergence rate 2
d > d - 2t
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9.7. Adaptive quadrature

In the above analysis it has been assumed that the matrix entries {Cip\, ip\')v
are given exactly. Of course, in general they have no closed analytical rep-
resentation.

In principle, one can first compute the stiffness matrix (£&j, 3>j)p relative
to the single-scale basis <£j (for instance with the aid of the techniques
described in Section 4.2) with sufficient accuracy to preserve the overall
precision of the above scheme. In fact, the multiscale transformation T j
from (3.25) yields

However, since (£$,/, <frj)r is a dense matrix, this process requires at least
the order of Nj operations and storage which would completely destroy the
efficiency of the fully discrete scheme.

To find a more economic strategy, one has to bear the following points in
mind.

 There is an a priori  criterion to decide whether a matrix coefficient
must be computed or can be neglected.

 Note that dist (fi^^A' ) > |̂A|,|A'| implies that dist ( f t^ fV ) > b\v\t\vi\
holds for nu C ftA and Vtv> C Qy, \u\ > |A|, \u'\ > |A'|. Thus, one
does not have to check condition (9.31) or (9.32) for all pairs A, A'.
Exploiting the hierarchical structure of multiscale bases, one needs at
most O(2nJ) — O(Nj) checks to decide whether or not an entry has to
be computed.

An accurate computation of the remaining nonzero coefficients by numer-
ical quadrature is a difficult task. Significant coefficients involving low-level
wavelets have to be computed with accuracy determined by the discretiza-
tion error of the scheme. We wil l see later that, based on the construction
outlined in Section 4.4, wavelets with the above ideal properties can be
constructed whose pullbacks to the parameter domain are piecewise poly-
nomials. Hence the approximation of (Cip\,ip\')r can be reduced to the
evaluation of integrals of the form

j J K(x,y)i>x(x)ip\>{y)ds£dsy, (9.38)

where D j C D denotes a cube such that ip\OKi |nA is a polynomial of degree
d — 1. Thus one ultimately has to compute expressions of the type

J H(x,y)Px(x)px,{y)dxdy, (9.39)
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where p\,py are polynomials of degree d — 1 satisfying

(9.40)

When Ki(nA) D K,(DA /) = 0, #(z,3/) = #(«i0*0, Kjfo))|0Ki(a:)||0K,(y)| is
arbitrarily smooth. Thus high-order quadrature can be used to compute
entries not discarded by the decay estimates. When integrating over pairs
of domains that share an edge, a vertex or are identical, then in general the
integral is singular. In this case some sort of regularization should be ap-
plied to reduce the integral to a weakly singular integral (Nedelec 1982, von
Petersdorff and Schwab 1997a). Then one can use transformation techniques
like Duffy's trick proposed by Sauter (1992) to end up with analytical in-
tegrals (von Petersdorff and Schwab 1997a, Schwab 1994).

The central objective is now to balance the error caused by quadrature
with the desired overall accuracy of the scheme, while preserving efficiency.
Employing adaptive quadrature in connection with a multi-wavelet discret-
ization for zero-order operators, a fully discrete scheme has recently been
developed in von Petersdorff and Schwab (1997a), where essential use is
also made of the analyticity of the kernel K in a neighbourhood of the two-
dimensional surface F in K3. The resulting fully discrete scheme requires
0(iVj(logiVj) 4) operations. A somewhat different approach is given by
Dahmen and Schneider (19976), ending up with a slightly more favourable
complexity analysis.

The balancing of errors is guided by the following considerations. The
problem of quadrature has to be seen in close connection with compression
and the special features of multiscale bases. Basis functions from coarser
scales introduce large domains of integration while requiring high accuracy.
In particular, on the coarsest scale A, A' € A+ the full accuracy 2~J(2d ~2t)
depending on J is required, while on the highest scale |A|, |A'| = J the
computation of each entry requires only a fixed number of quadrature points
independent of J. In fact, diam supp Â ~ 2~J and \(Ctp\,ipx')r\ < 2j 2 t

for |A| = |A'| = j . Thus, many entries only have to be computed with low
accuracy, while high accuracy is merely required for a small portion of the
matrix. Using the analysis of matrix compression as a guideline, a careful
balancing of the various effects shows that most matrix entries
must be computed with a precision

for some d! > d (Dahmen et al. 1997, Dahmen and Schneider 19976).
The fully discretized Galerkin method in Dahmen and Schneider (19976)

is based on product-type Gaussian formulae of order D for approximating
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inner and outer integrals

Q2®Q£(p-p'), for all p,p'£UD, (9.41)

where the domains r and r' are congruent to . According to the previous
remarks, the error estimate for the quadrature method has much in common
with estimating matrix coefficients relative to wavelet bases. The relevant
estimates are summarized as follows.

Lemma 9.3 Let Q^®Q^, be a product-type Gaussian quadrature method
of order D and r C O\, r' C Dy. Furthermore, suppose that £ is a boundary
integral operator with the above properties and F is a piecewise analytic
boundary surface. In local parametrization let the kernel be denoted by
H(x,y) as above and set G(x,y) := H (x, y)p\(x)p\< (y). If r D r' = 0, then
there exists a constant c such that the estimate

G(x,y)dxdy-Q? ®Q?,(G)\
T T'

2(lAMA'D(max{diam r,diam r'}) D-d(diam r)2(diam r')2

dist (K,'(T'} KI('7~N)')2+2t+.D—d

holds, provided that 2 + 2t + D-d>0.

The principal strategy is to choose the diameter of the subdomains pro-
portional to the distance from the singularity while the degree D has to be
adapted to maintain the desired accuracy taking the decay of the entries
into account. Details can be found in Dahmen et al. (1997) and Dahmen
and Schneider (19976):

In summary the following result can be proved (Dahmen et al. 1997, Dah-
men and Schneider 19976).

Theorem 9.4 Under the above assumptions the fully discretized com-
pressed system A^jdCj = (/, 1J/J)T possesses a unique solution and uCj :—

realizes asymptotically optimal accuracy

where — d + 2t < T < j , T < s, t < s < d and u is the exact solution
of Cu = f. Moreover, the nonzero coefficients of the matrix A^j can be
computed at the expense of O(Nj) floating point operations and storage.

10. Wavelets on manifolds and domain decomposition

The periodic case is certainly the most convenient setting for constructing
wavelets and exploiting their full computational efficiency. On the other
hand, the application of embedding techniques as described in Section 8
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is certainly limited. For instance, problems denned on closed surfaces, as
discussed in Section 9, cannot be treated in this way. Also, the resolution
of boundary layer effects may cause difficulties.

This has motivated various attempts to extend wavelet-like tools to more
general settings. This is, for instance, reflected by the general framework
in Section 3, and concepts like stable completions; see Section 3.2 and Car-
nicer et al. (1996). The so-called lifting scheme (Sweldens 1996, Sweldens
1997) is very similar in spirit. Its applications, for instance in computer
graphics, also demonstrate its versatility and efficiency in connection with
unstructured grids (Schroder and Sweldens 1995). Unfortunately, the un-
derstanding of analytical properties like stability and norm equivalences in
a more general setting still appears to be in its infancy. Attempts to develop
stability criteria that work in sufficiently flexible settings have been sketched
in Section 5; see Dahmen (1994) and (1996). Some recent consequences of
these developments wil l be indicated next.

Many problem formulations suggest in a natural way a decomposition of
the underlying domain into subdomains, which in turn are often represent-
able as parametric images of cubes. As was indicated in Section 4.4, wavelet
bases on cubes are well understood and much of the efficiency of wavelet
bases in the ideal setting can be retained. This can readily be combined
with the idea described in Section 9.2 to obtain wavelet bases with essen-
tially the same nice properties on any domain Cl, as long as fi = ) is a
smooth regular parametric image of the unit cube, that is,

| 9 K ( X ) | ^ 0, xeO. (10.1)

In fact, the canonical inner product (-,-)n can be replaced by the inner
product (see (9.9))

(u, v) :=  (uo K)(X)(V o n)(x)dx, (10.2)

D

which induces an equivalent norm for L2(Q), say. Moreover, when F C
Li2(Sl) denotes a Besov or Sobolev space on fl, it can be pulled back to a
corresponding space on O by

F(n) = {goK-1:geF(D)}, (10.3)

with

\\V\\F(Q) ~ \\VOK\\F(D). (10.4)

Any biorthogonal wavelet bases \I/, $ on  then induce collections \I/n :=
\P o K" 1, vj>̂  := ^ o K" 1 which are biorthogonal Riesz bases on Q relative
to the inner product (10.2). On account of (10.4), they inherit all the norm
equivalences satisfied by \f, ^>. In this way, all computations are ultimately
carried out on the standard domain D.
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Of course, the qualitative properties of the bases \l/n, ^ depend on the
mapping K, which in practice confines this approach to rather simple do-
mains Cl. However, the next step, which was made, to some extent, in
Section 9, is to consider domains that are disjoint unions of such simple do-
mains. Modelling closed surfaces, as considered in Section 9.1, falls exactly
into this category. Although the following facts are by no means restricted
to this case, we will adopt the same notation and assumptions made in Sec-
tion 9.1 but keep in mind that F may as well denote some bounded domain
in Euclidean space.

The whole preceding development shows that the power of wavelet dis-
cretizations hinges on its relation to certain function spaces, in particular,
on corresponding norm equivalences. However, this is exactly the point
where one easily gets stuck. In fact, recall from (9.12) that managing norm
equivalences on the individual spaces F(Ti) with the aid of the transpor-
ted bases ^/Vi, ^fr' does not generally imply corresponding relations with
respect to the global space F(F). The problem is that the norms ||  \\F(T)
and (J2i=i II' \\2F(T ))1^2 d° n°t generally determine the same space. Below we
indicate several attempts, mostly referring to work in progress, to overcome
this difficulty.

10.1. Composite wavelet bases

The following comments are based on Dahmen and Schneider (1996), and
related special cases considered in Jouini and Lemarie-Rieusset (1993). The
basic idea is to glue the bases denned on each patch together so that the
resulting global bases are at least continuous on all of F. One way to achieve
this is to carefully inspect the construction of biorthogonal spline wavelets
on [0,1], described in Section 4.4. One can show that the biorthogonal gen-
erator bases $j and $j on [0,1] can be arranged to have the following prop-
erty. All but one basis function at each end of the interval vanish at 0 and 1.
This fact can then be exploited to construct pairs of refinable biorthogonal
generator bases ^J , ! ^, which belong to C(F). Unfortunately, the wavelets
corresponding to these global generator bases cannot be easily obtained by
stitching local wavelet bases together. The reason is that not all the wavelets
for the local bases can be arranged to vanish at the patch boundaries. Nev-
ertheless, one can employ the concept of stable completions from Section 3.2
to construct compactly supported biorthogonal wavelet bases Vtr, ̂ r on F,
which also belong to C(F) (Dahmen and Schneider 1996). The disadvantage
of this construction is that, since some wavelets have support in more than
one patch Fj, moment conditions of the form (9.20) no longer hold in full
strength near the patch boundaries.

Nevertheless, since all basis functions are local and since the trial spaces
J retain the same approximation properties as the local spaces transpor-
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ted from D, these spaces can be used for conforming Galerkin discretizations
for second-order problems, even in connection with nonoverlapping domain
decomposition strategies, for instance. On the other hand, it is clear that
such an approach is limited for principal reasons. For example, it does not
provide the ideal bases in the sense of Section 9.6 for operators of order
minus one. More generally, this approach is not suited for handling duality.

An alternative approach, which is interesting from several points of view,
wil l be outlined next.

10.2. Characterization of function spaces via partitions of domains

In the following we will denote by F(V) spaces of the form HS(T') or Besov
spaces, where I" C F. The problem with (9.12) is that the spaces F(T) are
usually defined through overlapping coverings of F, not through a partition
of F. Therefore a fundamental step towards overcoming limitations of the
type (9.12) is first to derive a characterization of function spaces on F in
terms of partitions. Such characterizations were developed by Ciesielski and
Figiel (1983), in terms of mappings

M M

T : F{T) -+ n X r ^ ^ F ) ) ), V : F(T) -+ J[xr,(^(F(F))), (10.5)
i=\ i=l

defined by

Tv = (xriPiv)£1, ^ = (xr4i?i0£i- (10.6)

Here XTi denotes the characteristic function of F, and the Pi are certain
projectors on ^ ( F ), constructed in such way that T and V are actually
topological isomorphisms with respect to F, and the factors XTi(Pi(F(T)))
are closed subspaces of F(F,) determined by certain homogeneous trace con-
ditions.

The main focus of Ciesielski and Figiel (1983) was the existence of un-
conditional bases of Sobolev and Besov spaces on compact C°°-manifolds.
The objective of Dahmen and Schneider (1997a) is to employ such concepts
for the development of practicable schemes. This requires us to identify
practically realizable projections P, needed in (10.5) and to combine this
with the recently developed technology of biorthogonal wavelet bases on D.
This provides practically feasible wavelet bases for the component spaces
XTi{Pi(F(T))), and hence through (10.5) also for F. The resulting bases can
be shown to exhibit all the desired properties listed in Section 9.6. The main
ingredients of this program can be outlined as follows.

Ordering of patches
First one orders the patches Fj in a certain fashion. If Fj n F; := ê  is a
common face and i < I, then e /̂ is called an outflow (inflow) face for F, (F;).
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dT\, dVl are called the outflow and inflow boundary of the patch Fj. Let
V] denote an extension of F, in F which contains the outflow boundary dV\
in its relative interior and whose boundary contains the inflow boundary
dT\ of Fj. Thus Y\ could be taken as the union of F, and those patches
whose closure intersects the relative interior of the outflow boundary dT\.
Analogously one defines T\ with respect to the reverse flow.

Extensions
Now suppose that Ei is an extension operator from the domain Fj to Tj.
It turns out that the topological properties of the projectors Pi to be con-
structed for (10.5) hinge upon the following continuity properties of the
extensions Ei. To describe this, the following notation is convenient. Let

fux)._ / /(*) . * e rt-,

denote the trivial extension of / € F(Ti) to Fj and define

F(F,)T := { / € F(Ti) : /T 6 F(TJ)}, ||/||F(r i )T := ||/T | |F( rT r

Thus F(Ti)  ̂ consists of those elements in the local space -F(Fj) whose trace
vanishes on the outflow boundary dTJ. Again the spaces F(Fj)̂  are defined
analogously.

Now suppose that the extensions Ei satisfy

Due to the simple form of the parameter domain D, such extensions can
be constructed explicitly as tensor products of Hestenes-type extensions
(Ciesielski and Figiel 1983, Dahmen and Schneider 1997a). However, some
deviations from the construction in Ciesielski and Figiel (1983), which are
essential from a practical point of view, will be mentioned later.

Topological isomorphisms
Given Ei as above, one now defines

i * = 2 , . . . ,M. (10.8)
Ki

One can prove the following facts (Dahmen and Schneider 1997a).

Theorem 10.1 One has

XrAPiW)) = FFi)1, Xr>(P;(F(r)))  = F(F,)T. (10.9)

The mappings

T : f  ̂ {XTtPif}fii,  V:f^{xrA*f}tii  (10-10)
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define topological isomorphisms acting from F(T) onto the product spaces
^  ̂ ^ ^ , respectively, whose inverses are given for v =

M M

PiXr.Vi, (10.11)

respectively. Specifically, one has

M M

F(T) =

(10.12)
Moreover, the maps T, V extend to isomorphisms from F*(T) onto the spaces
Ufii  F^Ti)1 and n ^ i F*(Ti)\ respectively, and

^ e ^ * ( r ) . (10.13)

Note that duality is incorporated in a natural way.

10.3. Biorthogonal wavelets on T

With Theorem 10.1 at hand, one can now construct wavelet bases on T that
give rise to the desired norm equivalences. The basic steps can be roughly
sketched as follows.

First, for each i let hi be an extension of Kj (with as much smoothness
as permitted by the regularity of T\) and n| a hyperrectangle such that
£j(nj) = FJ and K, |p= «j. As above, the spaces F(D)^ then consist of
those elements in F(O) whose trivial extension to D\ by zero belongs to

For each pair of complementary homogeneous boundary conditions in
F([0,1]), construct biorthogonal wavelet bases on [0,1] based on the
schemes described in Section 4.4. By this we mean, for instance, that
when the wavelets and generators on the primal side are to vanish
up to some order at zero, there are no boundary constraints at zero
for the functions in the dual system (and analogously for all possible
combinations).
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Using tensor products, this leads to biorthogonal wavelet bases

 The bases

tfr< := * Dl i o K" 1 C FiTi)1, #r*  := * D ' i o K~1 C

are biorthogonal with respect to the inner product « defined by
(9.9).

The collections

r r ^ 4r ^jfi^, (10.14)

where 5, U are defined in (10.11), are biorthogonal wavelet bases on F
relative to the inner product (9.8). Moreover, from Theorem 10.1 and
(10.3), (10.4) one infers that for F = Hs

l|dTtf r|Us(r)H|D*d||,2. (10.15)

The range of s € R is constrained here by the regularity bounds 7,7 of
the bases ^D'* , \j>n>?, respectively, and by the regularity of F, which re-
stricts the range of Sobolev indices. As before, Ds denotes the diagonal
matrix with entries (Ds)\:\>  = 2s^6x,y-

10.4- Computational aspects

In practice one would not compute ^ r explicitly. To discuss this issue,
consider the inner product

M

(v,u)n :=Y^{vhUi)Ti
i= l

on n ^ j Z ^ F i ) , which is of course also equivalent to ) defined by (9.8).
Formally the stiffness matr ix relative to \I/ r constructed above is given by

where S is defined in (10.11). When C is an isomorphism from F(T) into
F*(F), Theorem 10.1 assures that £n := S*CS is an isomorphism from
nx := a =i F^i)1 into Ilf := Ufii  F*^, that is

| |^nv| |n|~| |v | |n i , v e ^ . (10.16)

Thus the problem Cu = / is equivalent to

= f, (10.17)
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where f = S*f = Vf. Of course, when u solves (10.17), then u = Su is
the solution to the original problem. Straightforward calculation shows that
(10.17), in turn, can be stated as

M

where

C i ^ X T i P f C P i X r t, fi = XTlP*f, i,l = l,...M. (10.18)

If, in addition, £ is selfadjoint, one infers from (10.16) that

Thus, choosing v := {v^i,l\fLu this yields

IIA,iu||F-(roT ~ N l n r o * ' i = l,...,M, (10.19)

which suggests solving (10.17) by an iteration of the form

M

A 4 i = l,...,M. (10.20)

In fact this fits into the framework of Schwarz-type iterations described
in Section 6.5. Specifically, on account of Theorem 10.1, one can apply
Theorem 6.9, where S, denned by (10.11), plays the role of the mapping TZ
in Theorem 6.9, so that convergence of the iteration follows from Theorem
6.10.

Hence the solution of (10.17) has been reduced to the parallel solution of
local problems of the form

£ i , i u i = g i , i = l,...,M, (10.21)

which may be viewed as a domain decomposition method. On account of the
relation F(Ti)1 = {^OK" 1 : g <E F{U)^} (cf. (9.7)) and the definition of the
bases ^r* , each equation in (10.21) is in effect an elliptic problem defined
on the unit cube. On the unit cube D, wavelet bases with all the desired
properties are available. In addition, full advantage can be taken of highly
efficient tensor product grid structures. As will be shown in Section 11,
the adaptive potential of wavelet bases for elliptic problems can be fully
exploited to facilitate an economic solution of each equation (10.21).

Note that, in principle, the approach works for differential as well as
integral operators C. The practical realization of the pullback of Ci  ̂ to
depends, of course, on the type of C. Let us therefore briefly comment on
the practical aspects. First observe that, on Fj,

= Xr.Ei^. (10.22)
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Now, if a wavelet ipFi is supported inside Fj, then its trivial extension (ipFi)^
to r j (by zero) already belongs to F(TJ). However, the extensions construc-
ted by Ciesielski and Figiel (1983) may still give rise to a nontrivial extension
^V£*  = Eiip^*, which on Tt \ Fj differs from zero, and hence from (V£0 >̂
even though the wavelet ipFi is not close to the outflow boundary. To sup-
press this strong coupling between adjacent patches, Dahmen and Schneider
(19976) have shown how to construct extensions with the required continu-
ity properties for which all wavelets in ^>Fi that already belong to F(FiY
are extended by zero. This is again done by exploiting properties of suit-
able local multiscale bases on D. The nontrivial extension of the remaining
(boundary-near) wavelets represent the (scale-dependent) coupling condi-
tions for the domain decomposition method. Thus Lagrange multipliers
are not necessary for coupling the subproblems so that indefinite sytems
are avoided. Note also that the discretizations, particularly their respective
order of exactness, can be chosen independently on each patch Fj.

Since domain decomposition is comparatively less developed for integral
operators, we take a closer look at the case where C has a global kernel
K. One can show (Dahmen and Schneider 19976) that the entries of the
stiffness matrices then take the form

(10.23)

where the kernel K^i depends on the indices u, A of the wavelets in the
following way. When both wavelets are supported in the interior of the cube,
one has Kiti(x,y) = \dKi(x)\\dni(y)\K(Ki(x), Ki(y)), where \dKi\ denotes the
functional determinant of the mapping Kj. However, when both wavelets
have nontrivial extensions, for instance, one has to set

Kitl(x,y) = \dKi(x)\\dKi(y)\((E; 0 Et)K)(Ki(x),Ki(y)).

The remaining mixed cases are analogous. Hence, in this case the coupling
conditions simply boil down to modifications of the kernel. Note that (E* <g>
Ei) are restriction operators. In particular, this enforces the appropriate
boundary conditions. In fact, one (locally) has

Khl(-, y) G F(D)T.', HiJL{x,  € F(D)1>1, (10.24)

as long as the parameters y, x stay away from the respective outflow bound-
aries. This has the following important consequences (Dahmen and Schnei-
der 19976).

Moment conditions
Due to the complementary boundary conditions satisfied by the pairs of
bases ^D '1, 5rD)Z on D, the spaces 5($°'1) generally do not contain all poly-
nomials of order d on D. Hence the wavelets ipa'1 near the outflow boundary
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do not have vanishing moments of corresponding low orders, but annihilate
only those polynomials locally contained in F(D)T>\ Therefore the wavelets
still satisfy the estimate (9.16) for any function / € F(D)^*. In view of
(10.24), the kernel K^i satisfies these boundary conditions. Hence the same
argument that led to (9.27) still applies to Kij(x, y). Therefore the wavelets
still give rise to estimates like (9.22), (9.27) and hence to optimal compres-
sion determined by the order d of the dual multiresolution. In particular,
the kernels K  ̂ become more and more negligible when F, and F; are far
apart.

Norm equivalences
Since the wavelets on  give rise to norm equivalences of the form (6.1),
the individual equations (10.21) are easily preconditioned. Moreover, the
analysis of corresponding adaptive schemes described in the next section
applies to the situation at hand.

11. Analysis of adaptive schemes for  ellipti c problems

11.1. Some preliminary remarks

The motivation for the following discussion is twofold. On one hand, the
inherent potential of wavelet discretizations for adaptivity has been stated
often above. However, as natural as it appears, a closer look reveals that on
a rigorous and on a conceptual level a number of questions remain open. The
discretizations typically involve several types of truncation that often remain
unspecified. It is not always clear how corresponding errors propagate in
the global scheme and how the tolerances have to be chosen to guarantee a
specified overall accuracy. Moreover, thresholding arguments are often not
clearly related to the norm, that is to measure global accuracy.

In many studies, some a priori  assumptions are made about the type of
singularity, for instance, in terms of the distribution of significant wavelet
coefficients. For periodic problems the singularities of the solution are de-
termined by the right-hand side alone (when the coefficients are smooth).
This is no longer the case when essential boundary conditions for more com-
plex geometries are imposed. Finally, what is the preferred strategy? In
the spirit of image compression, a fine-to-coarse approach would aim at dis-
carding insignificant wavelet coefficients, starting from a discretization for
a fixed highest level of resolution. The obvious disadvantage is that such
an approach accepts the complexity of a fully refined discretization at some
stage. Alternatively, in a coarse-to-fine approach, one would try to track the
significant wavelets needed to realize the desired accuracy, starting from a
coarse discretization. The risk of missing important information along the
way is perhaps even higher in this approach. However, the analysis outlined
below indicates ways of dealing with this problem. So the subsequent dis-
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cussion can be viewed as an attempt to address such questions on a rigorous
level, and thereby complement the intriguing adaptive algorithmic develop-
ments discussed before.

On the other hand, adaptive techniques have been extensively studied in
the context of finite element discretizations of (primarily) elliptic differential
equations; see, for instance, Babuska and Miller (1987), Babuska and Rhein-
boldt (1978), Bank and Weiser (1985), Bornemann et al. (1996), Eriksson,
Estep, Hansbo and Johnson (1995) and Verfiirth (1994). These methods are
based on a posteriori error indicators or estimators. In practice they have
been proven to be quite successful. However, the analysis and the schemes
are rather dependent on the particular problem at hand and on the partic-
ular type of finite element discretization. The geometrical problems caused
by suitable mesh refinements become nontrivial for 3D problems. From a
principal point of view, it is furthermore unsatisfactory that the proof of
the overall convergence of such schemes usually requires making an a priori
assumption on the unknown solution, as explained below in more detail.

The adaptive treatment of integral equations in the context of classical
finite element discretizations is comparatively less developed. The global
nature of the operator makes a local analysis harder. Typical a posteriori
strategies therefore constrain the structure of admissible meshes (Carstensen
1996), which certainly interferes with the essence of adaptive methods.

These considerations have motivated recent investigations by Dahlke et
al. (19976), which substantiate that the main potential of wavelet discret-
izations lies in adaptivity. Some of the ingredients of the analysis will be
outlined next. As in the context of preconditioning, a wide range of prob-
lems, including differential as well as integral operators, can be treated in a
unified way. A convergence proof is only based on assumptions on the (ac-
cessible) data rather than on the (unknown) solution. Furthermore, there is
no restriction on the emerging index sets.

Again, a key role is played by the validity of norm equivalences of the form
(6.1) in combination with compression arguments based on the estimates
(9.27) or (11.2) below.

To bring out the essential mechanisms, we will refer to the general problem
in Section 2.3. Thus we will assume throughout the rest of this section that C
satisfies (2.23) and (2.25). We consider stationary elliptic problems because
they also arise in timestepping schemes. In fact, time-dependent problems
are in some sense even easier, because information from the preceding time
step can be used. Likewise the present formulation can be viewed as an
ingredient of an iteration in nonlinear problems.

Moreover, in view of the developments in preceding sections, it is justified
to assume that \I> and ^ are biorthogonal wavelet bases satisfying the norm
equivalences (6.1). Their range of validity is to satisfy (6.14). Specifically,
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there then exist finite positive constants 03,04 such that

C3||D-*d||,2 < \\dTnH-t < C4||D-*d||/2. (11.1)

Moreover, the corresponding spaces <S(3>j) are assumed to be exact of order d
and the wavelets tp\,\£ V_, satisfy a suitable version of moment conditions
of order d (see, for instance, (9.15)) when C is an integral operator, or are
regular enough when £ is a differential operator, so that in either case the
estimate

o-||A|-|A'||<7

£ ! ( 1 L 2 )

holds (see (9.27)). Finally, we will assume that the Galerkin scheme is stable
(6.7) (recall the comments in Section 9).

11.2. The saturation property

Suppose for a moment that C is selfadjoint, in which case (2.23) means that
the bilinear form

a(u,v) :=  (Cu,v) (11.3)

induces a norm which is equivalent to ||  \\Ht

II  II 2 : = a ( - , - ) ~ || -\\2Ht. ( 1 1 . 4)
In this case a well-known starting point for finite element-based adaptive
schemes is the following observation concerning the equivalence between the
validity of two-sided error estimates and the so-called saturation property
(Bornemann et al. 1996). The basic reasoning can be sketched as follows.
Suppose that S C V C H* are two trial spaces with respective Galerkin
solutions us,uv- By orthogonality one has

\\uv ~us\\ < \\u-us\\.

Moreover, one easily checks that

| | u -uv | |< /3 | | « -us || (11.5)

holds for some /3 < 1, if and only if

(1 - 02)1/2\\u - us\\ < \\uv - us\\. (H.6)

Here and elsewhere u denotes the exact solution to Cu = / . Thus, if the
refined solution uy captures a sufficiently large portion of the remainder
(11.6) the global energy error is guaranteed to decrease by a factor /3 when
passing to the refined solution uy. Moreover, one has the bounds

I K - us\\ < \\u - us\\ < (1 - (32)-l/2\\uv - us||, (11.7)
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which are computable. In practice one controls the local behaviour of uy—us
and refines the mesh at places where (an estimate for) this difference is
largest. This results in balancing the error bounds. Although this has been
observed to work well in many cases, the principal problem remains that, to
prove convergence of the overall adaptive algorithm, something like (11.6)
has to be assumed about the unknown solution.

Dahlke et al. (1997&) pursue a similar updating strategy. Let some current
solution space S\ and a Galerkin solution uA be given. The objective is to
find for a fixed decay rate (3 < 1, a possibly small A C V = A+ U V_, A C A
such that

which implies convergence.

11.3. A posteriori error estimates

I t is well known that for elliptic problems the error in energy norm can be
estimated by the residual in a dual norm which, at least in principle, can be
evaluated. In fact, since

rA := £uA - f = £(uA - u),

the bounded invertibility of C (2.23) yields

-t < \\u - uA\\Ht < c2||rA ||jj-t. (11.8)

Expanding the residual rA relative to the dual basis iff and taking the Galer-
kin conditions into account, the norm equivalence (11.1) and (11.8) provide

( \1/2 / V / 2

ClC3 Y, ^(A)2 <||«-UA||tft<C2C4 £ 6X(A)2\ , (11.9)
\AGV\A / \AeV\A /

where the quantities

6x = 6x(A):=2-tW\(rAM\, A € V \ A,

are, in principle, local quantities bounding the error \\u — u\\\Ht from below
and above. They indicate which wavelets are significant in the representation
of u. However, since these quantities involve infinitely many (unknown)
terms, (11.9) is in its present form of no practical use.

The objective of the following considerations is to replace the quantit-
ies 6\(A) in (11.9) by finitely many computable ones which, up to a given
tolerance depending only on the data, still provide lower and upper bounds.

Denoting by uy — (/uA,f/'A')> /A : = (/> V'A) the wavelet coefficients of the
current approximation u\ and the right-hand side / with respect to \& and
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ty, respectively, it is helpful to rewrite

«5A(A) = 2̂ f\-
A'eA

(11.10)

This shows that the size of 6\(A) is influenced by two quantities. First, if
the right-hand side / itself has singularities, this will result in large wavelet
coefficients f\. Second, the sum ~^2\ie\{Cil)\i,ip\)u\i  gives the contribution
of the current solution which, for instance, could reflect the influence of the
boundary. Thus, to estimate the 6\(A) one needs

(a) estimates on the smearing effect of C
(b) some a priori  knowledge about / .

So far we have only used the ellipticity (2.23) of C and the norm equi-
valence (11.1). To deal with (a) one has to make essential use of the decay
estimates (11.2). We now describe their use. Let 6 < a — n/2, where a > n/2
is the constant in (11.2). Choose for any e > 0, positive numbers e\, e2 such
that

For each A € V, define the influence sets

V v := {A ' e V : ||A| - |A'|| < e^1 and 2min^Al'lA'l> dist(nA ,fi A ') <

where fl\ again denotes the support of tp\. The sets VA;£ describe the signi-
ficant portion of {CUA,^\) appearing in the residual weights 8\(A) (11.10).
In fact, using the estimate of (9.35), one can show the existence of a constant
C5 independent of / and A, such that the remainder

can be estimated by

( £ 2-Wt\ex\
2f<c5e\\uA\\; (11.11)

A£V\A

see also Dahlke et al. (19976), Dahmen et al. (19936) and Dahmen et al.
(19946). Note that, again by (6.1),

so that the right-hand side in (11.11) can be evaluated by means of the
wavelet coefficients of the current solution u\. Moreover, one can even give
an a priori  bound. In fact, the stability of the Galerkin scheme (6.7) states,
on account of the uniform boundedness of the Q\ in H~l (see Theorem 5.8),
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that

IMI <
As for (b) above, by construction, the significant neighbourhood of A in

V\ A

] V A , £ : = { A G V \ A : A n V A , t ^ }  (11.13)

is finite

#iV < oo.

Outside JVX.e, the quantities 6\(A) in (11.10) are essentially influenced by
wavelet coefficients of / . But this portion is a remainder of / . In fact, by
(6.1),

(
A6V\(AuiV A,e)

< c6 j n f \\f -v\\H-t <ce inf \\f-v\\H-t,
S S

for some c% < oo. This suggests defining

dA(A,e) :=2-*l A l | ] £ {&l>x>Mux>\,  A G V \ A.
A'eAnvA,e

Note that, in view of (11.13),

dA(A,e) = 0, A G V \ A , X^NX,€. (11-14)

The main result can now be formulated as follows (Dahlke et al. 19976).

Theorem 11.1 Under the above assumptions, one has

| | « - « A | I H * < C 2 C 4 (( £ dx(A,e)2)h +c'5e\\f\\H-t+ce inf \\f-v\\H.t)
\ \r -ice. '

as well as

Moreover, for any A C V, A C A, one has

H _ t + C 6 inf \\f-v\\H.t
S

~

This result provides, up to the controllable tolerance

r(A,e) :=C5eps||/||H- t+ce inf | | / - u ||
veSA



212 W. DAHMEN

computable lower and upper bounds for the error ||u — u^\\Ht. For second-
order two-point boundary value problems, estimates of the above type were
first obtained by Bertoluzza (1994). Under much more specialized assump-
tions, results of similar nature have also been established in the finite element
context; see, for example, Dorfler (1996).

11.4- Convergence of an adaptive refinement scheme

In the present setting, it can be shown with the aid of Theorem 11.1 that,
under mild assumptions on the right-hand side / , a suitable adaptive choice
of A enforces the validity of the saturation property (11.6). We continue
with the notation of Section 11.3. However, for simplicity we confine the
discussion to the selfadjoint case (11.3), (11.4), that is, the norm ||  \\jjt is
replaced by the energy norm ||  ||. The constants Q have to be properly
adjusted. The following theorem was proved by Dahlke et al. (19976).

Theorem 11.2 Let tol > 0 be a given tolerance and fix  9 E (0,1). Define

(11.15)
\ciu3 ^C2C4/

choose n > 0 such that

^  2 ( 2 - 7- - '  (1L16>
and set

Suppose that for A C V, one has

ce inf \\f -v\\H-t < -n tol.
veSA 1

Then, whenever A C V, A C A is chosen so that

there exists a constant (3 € (0,1) depending only on the constants JJL, 9,
i = 1 , . . ., 6, such that either

||w-«A|| <(3\\u-u\\\

or

AeV\A
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For the discussion of unsymmetric problems see Dahlke et al. (19976) and
Hochmuth (1996).

Of course, the idea is to choose A D A as small as possible, that is, in any
case A \ A C N ê. This leads to the following.

ALGORITHM 7

Choose Ao = 0, eps > 0, tol > eps, 9 € (0,1).

1) Compute C*, n according to (11.15), (11.16).
(2) Compute e = e(//,tol) by (11.17).
(3) Determine A C V, Ao C A such that

c6 inf \\f -v\\H-t < -n tol.
vesA *

(4) Solve

(Cu\, v) = (/, v), for all v <E SA-

(5) Compute

i/A, e:=( £ <*A(A,e)2)* .

A€Af A,e

If 77A,£ < tol:

 If tol < eps, accept UA as solution and stop.
 Otherwise set A —> Ao, ^ —» tol, and go to (2).

Otherwise, go to (6).
(6) Determine A with A c A c A U NA,£ such that

AGA

Set A —> A and go to (4).

Although quite different with regard to its technical ingredients, the above
algorithm is very similar in spirit to the adaptive scheme proposed by Dorfler
(1996) for bivariate piecewise linear finite element discretizations of Poisson's
equation. As above, Dorfler (1996) chooses the coarsest grid in such a way
that all errors stemming from data are kept below any desired tolerance.

A brief comment on step (4) in Algorithm 7 is in order. By Theorem 6.1,
the principal sections of the matrix BA := D^JCVPA, * A ) T D ~ *  are well con-
ditioned. This can be exploited to update a current Galerkin approximation
UA, as follows. Let UA := (UA,^A)T be the vector of wavelet coefficients
of UA- To compute the coefficient vector uA of uA we choose an initial
approximation v according to

wx,
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where wA> A are the coefficients of the Galerkin solution w Â of the com-
plement system

: A <E A \ A} .

The corresponding matrix entries have to be determined anyway for the
adaptive refinement. Since, by (6.16), the corresponding section BA , A of BA

is well conditioned, only a few conjugate gradient iterations are expected to
be necessary to approximate wA, A well enough to provide a good starting
approximation of the form (11.18). This will then have to be improved by
(a few) further iterations on the system matrix BA .

11.5. Besov regularity

The results of the previous section imply convergence of the adaptic scheme
but do not provide any concrete information about the efficiency, for in-
stance by relating the final accuracy to the number #A needed to realize it
by the scheme. The ideal case would be that the scheme picks at each stage
the minimal number of additional indices needed to reduce the current error
by a fixed fraction. This cannot be concluded, since the scheme selects the
indices with respect to bounds, not with respect to the true error. Never-
theless, since these bounds are lower and upper ones, one expects that the
selected index sets are close to minimal ones. Given this assumption, the
question of for which circumstances the above adaptive scheme is signific-
antly more efficient than working simply with uniform refinements is closely
related to characterizing the efficiency of so-called best N-term approxim-
ation, or nonlinear approximation. A beautiful theory for these issues has
been developed in a number of papers; see, for instance, DeVore and Popov
(1988a), DeVore et al. (1992) and DeVore and Lucier (1992). Here we in-
dicate very briefly some typical facts suited to the present context. To this
end, consider

aNit{g) :=  inf | llff - E d^x\\m : dx <ER, \ 6 A CV, #A = N
{ AeA

Employing the norm equivalence (5.38) yields

<7N,t(v) ~ VNflCEtv) := o-N(Stv), (11.19)

which in turn leads to the following (Dahlke, Dahmen and DeVore 1997a).

Remark 11.3 Let v € H*. We take AJV to be a set of N indices A for
which 2t\x\\(v,'ip\)\ is largest. Then one has

aN,t(v)~\\v-QANv\\Ht, N£N. (11.20)
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Thus, picking the N first largest weighted coefficients realizes asymptotically
the best TV-term approximation relative to the norm ||  \\Ht and hence, in
case (11.4), also relative to the energy norm ||  ||.

Combining (11.20) with analogous results about <JN,t for t = 0, the best N-
term approximation of a function v relative to ||  ||#t can be characterized
in terms of its Besov regularity (Dahlke et al. 1997a).

Proposition 11.4 Assume that a — t < 7 and let for t < a

Then one has
00 *

£ ( ^ W V < 00 (11.22)
J V =1

(where n is again the spatial dimension of the underlying domain ft), if and
only if v € .B°»(Lr«(fi)). Recall the characterization of Besov norms (5.46).

Proposition 11.4 has an interesting application to the Poisson equation

-A n = / in ft, u = 0 on <9ft, (11.23)

when ft is a bounded Lipschitz domain in Rn. The efficiency of the best
TV-term approximation when applied to the solution of Laplace's equation
has been studied by Dahlke and DeVore (1995). However, these results were
formulated with respect to approximation in L,2(£l). For elliptic equations,
the energy norm is more natural. A combination of Proposition 11.4 and the
results of Dahlke and DeVore (1995) provides the following result concerning
approximation relative to ||  \\Hi (Dahlke et al. 1997a).

Proposition 11.5 Let ft be a bounded Lipschitz domain in Rn, and let u
denote the solution of (11.23) with / <E B%~1 (L2(fl)), a > 1. Then

oo

^ (Ns/naNA(u)Y < oo for all 0 < s < s*/3, (11.24)
N=l

where s* = m i n { 2^ 1 ) ,a + 1}  and r = (s - l ) / n + 1/2.

To illustrate this result, consider the example where n = 2. If a > 2, then
s* = 3. Hence, in this case, the nonlinear method gives an //^-approximation
to u of order up to TV"1/2, whereas a linear method, that is, uniform refine-
ments, using TV terms could only give TV"1/4 in the worst case.

These facts indicate that adaptive refinements will generally perform sig-
nificantly better. Establishing a closer connection between the adaptive
scheme discussed in the preceding section and TV-term approximation is an
interesting question under current investigation.



216 W. DAHMEN

12. What else?

Evidently a lot more than could be included in a survey. Therefore I would
like to add only a few brief comments on further interesting directions.

Collocation
It has been pointed out that collocation plays an important role in con-
nection with the fast evaluation of nonlinear terms. Bertoluzza (1997) has
discussed some promising features of collocation in connection with highly
accurate discretizations. There, interpolatory scaling functions are employed
and corresponding analogues to hierarchical bases are established. Again,
interpolatory representations are helpful with regard to evaluating nonlinear
terms.

Transport problems
The above concepts are more or less tailored to elliptic problems. It is less
clear how to treat transport terms. Typical model problems are convection-
diffusion problems of the form

-A u + f3(x)  Vu = f in ft, u = 0 on <9ft, (12.1)

where the convection term is strongly dominant. Canuto and Cravero (1996)
have proposed discretizing (12.1) with a conventional finite element method
and use wavelet expansions of the current solution to determine successive
mesh refinements at locations where wavelet coefficients are large. First res-
ults by Dahmen, Miiller and Schlinkmann (199x) indicate that the concept
of stable completions can be successfully employed to design level-dependent
Petrov-Galerkin discretizations, which in a multigrid context recover the
usual multigrid efficiency for elliptic problems even in the case of strong
convection terms.

Discrete multiresolution concepts have been developed by Harten (1995),
with special emphasis on the treatment of hyperbolic conservation laws. It
is well known that such systems can be viewed as evolution equations for
cell averages. This fact serves as the basis for finite volume discretizations.
However, when advancing in time, these schemes require at some stage the
computation of fluxes across cell boundaries, which in turn need pointwise
values of the conservative variables. To realize high accuracy, one therefore
has to design highly accurate reconstruction schemes to recover the point-
wise values from the cell averages, which is actually the only place where a
discretization error is introduced. Unfortunately, in realistic problems the
evaluation of corresponding numerical fluxes is very costly. The main thrust
of Harten's concept therefore aims at reducing the cost of numerical flux
computations according to the following idea. Fluxes are initially computed
only on a very coarse grid (using, however, data corresponding to the highest
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level of resolution). The flux values on successively finer grids are then de-
termined either by cheap interpolation schemes from those on coarser levels,
whenever they are smooth, or otherwise by expensive accurate schemes.
This decision is based on a suitable multiscale representation of the data.
This is highly reminiscent of data compression techniques. The underlying
multiscale decomposition concept proposed by Harten is very flexible and
has to be made concrete in each application. The multiscale transformations
have the format (3.26) and (3.28), although, in principle, no explicit know-
ledge of underlying bases $j,\l/j is required. Nevertheless, many technical
as well as conceptual problems arise when applying this methodology to
concrete problems, in particular, when dealing with several space variables.
Some recent contributions can be found in Gottschlich-Miiller and Miiller
(1996), Sjogreen (1995) and Sonar (1995), for instance.

Software
To unfold the full efficiency of most of the concepts discussed so far, rather
new data structures are needed. It does not seem to be possible to simply
hook wavelet components to existing software for conventional discretization
schemes. Existing codes still seem to be confined to model problems. The
beginnings of a systematic software development for wavelet schemes in a
PDE context are discussed by Barsch et al. (1997), for example.

Wavelets as analysis tools
The primary objective of the developments detailed in this paper is the un-
derstanding and design of highly efficient solvers for large-scale problems. I
find the variety of contributions very promising and interesting. However,
because of the state of the software development, and for conceptual reas-
ons mainly in connection with geometry constraints, it is fair to say that
wavelet schemes have not yet become quite competitive with well tuned
multigrid codes for realistic problems. On the other hand, the discussion
also indicates that the potential of wavelets has not yet been exhausted, and
that the results that have been achieved so far provide a highly stimulating
source of ideas and further progress. In fact, the above comments on the
convection-diffusion problem suggest that true benefit for future generations
of multiscale techniques may result from a marriage of different methodolo-
gies. I would be very pleased if the present paper could be of some help in
this regard.

On the other hand, it has already been indicated that, aside from al-
gorithmic developments, wavelets offer powerful analysis tools. An example,
namely investigating the boundedness of Galerkin projectors in Lp-Sobolev
spaces has already been mentioned by Angeletti et al. (1997). The determ-
ination of Besov regularity of solutions to elliptic boundary value problems
(Dahlke and DeVore 1995, Dahlke 1996) is another intriguing instance which
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is important for the understanding of adaptivity. The multiresolution ap-
proach to homogenization (Brewster and Beylkin 1995, Dorobantu 1995)
opens further startling perspectives. Wavelets have recently been employed
in the study of turbulence and multiscale interaction of flow phenomena
(Elezgaray, Berkooz, Dankowicz, Holmes and Myers 1997, Wickerhauser,
Farge and Goirand 1997, Farge et al. 1992).

In summary, it seems that wavelets have become indispensible as a con-
ceptual source for understanding multiscale phenomena and corresponding
solution schemes.
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1. Introduction

In this paper, we introduce a new version of the Fast Multipole Method
(FMM) for the evaluation of potential fields in three dimensions. The scheme
evaluates all pairwise interactions in large ensembles of particles, i.e. expres-
sions of the form

i= i \\xj ~ xi\\

for the gravitational or electrostatic potential, and

for the field, where xi,X2,...,xn are points in K3, and qi,q2,  ,qn are a
set of (real) coefficients. Here ||  || denotes the Euclidean norm.

The evaluation of expressions of the form (1.1) is closely related to a
number of important problems in applied mathematics, physics, chemistry
and biology. Molecular dynamics and Hartree-Fock calculations in chem-
istry, the evolution of large-scale gravitational systems in astrophysics, ca-
pacitance extraction in electrical engineering, and vortex methods in fluid
dynamics are all examples of areas where simulations require rapid and ac-
curate evaluation of sums of the form (1.1) and (1.2). When certain closely
related interactions are considered as well, involving expressions of the form

ik\\xj-xi\\

the list of applications becomes even more extensive.
This paper is a continuation (after an interval of several years) of a se-

quence of joint papers by the authors, starting with Greengard and Rokh-
lin (1987) and Carrier, Greengard and Rokhlin (1988) which introduced
the Fast Multipole Method in two dimensions. Subsequent work extended
the method to three dimensions (Greengard 1988, Greengard and Rokhlin
1988a, 19886), and there followed a number of versions of the scheme, both
by the present authors and by other researchers; see, for example, Anderson
(1992), Nabors, Korsmeyer, Leighton and White (1994), Berman (1995),
Epton and Dembart (1995), Elliott and Board (1996). After about ten
years of research, however, a somewhat unsatisfactory picture has emerged.
In short, there now exist extremely efficient algorithms for the evaluation of
the two-dimensional analogues of (1.1), (1.2) with (practically) arbitrarily
high precision, as well as very efficient and accurate algorithms for a host of
related problems (Rokhlin 1988, Alpert and Rokhlin 1991, Beylkin, Coifman
and Rokhlin 1991, Coifman and Meyer 1991, Greengard and Strain 1991,



NEW FMM IN THREE DIMENSIONS 231

Strain 1991, Alpert, Beylkin, Coifman and Rokhlin 1993). However, for the
sums (1.1) and (1.2), there are few practical schemes, and these provide only
limited accuracy. Since most real-world problems are three-dimensional, it
can be said that analysis-based 'fast' methods are a promising group of
techniques, but that they have not yet lived up to all their expectations.

In the present paper, we try to remedy this situation. We describe a ver-
sion of the Fast Multipole Method in three dimensions that produces high
accuracy at an acceptable computational cost. As will be seen from the
numerical examples in Section 9, the new scheme has a break-even point of
n ~ 2000 when compared with direct calculation in single precision; with
10-digit accuracy, the break-even point is n ~ 5000; with 3-digit accuracy,
it is n ~ 500. The approach uses a considerably more involved mathem-
atical (and numerical) apparatus than is customary in the design of fast
multipole-type algorithms. This apparatus is based on a new diagonal form
for translation operators acting on harmonic functions, extending the two-
dimensional version introduced by Hrycak and Rokhlin (1995). The overall
approach bears some resemblance to that used in Fast Multipole Methods
for high-frequency scattering problems, which are based on diagonal forms
of translation operators for the Helmholtz equation (Rokhlin 19906, 1995,
Epton and Dembart 1995).

2. Philosophical preliminaries

We begin with an overview of analysis-based 'fast' numerical algorithms,
concentrating on the evaluation of expressions of the form (1.1). Where
possible, we summarize the current 'state of the art' in the field.

If we define the n x n matrix A by the formula

we can rewrite (1.1) in the form

$ = Aq, (2.2)

with $,g G Mn (the expression (1.2) can be rewritten in a similar fashion).
Obviously, straightforward evaluation of either of the expressions (1.1), (1.2)
requires O(n2) operations (evaluating n potentials at n points), and for large-
scale problems this estimate is prohibitively large. On the other hand, the
evaluation of expressions of the forms (1.1), (1.2) is an integral part of the
numerical solution of many important problems in applied mathematics, and
during the last decade, several 'fast' schemes have been proposed for this
purpose, that is, schemes whose computational cost is less than O(n2). Typ-
ically, such methods require O(n) or O(n log n) operations (Rokhlin 1985,
Anderson 1986, Greengard and Rokhlin 1987, Carrier et al. 1988, Rokhlin
1988, 19906, Brandt and Lubrecht 1990, Brandt 1991, Alpert and Rokhlin
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1991, Beylkin et al. 1991, Coifman and Meyer 1991, Greengard and Strain
1991, Strain 1991, 1992, Epton and Dembart 1995). All of them are based
on the straightforward observation that the potentials are smooth functions
in R3, except when Xi is near Xj, and as a result, large submatrices of A are
well approximated by low-rank matrices. Clearly, applying a matrix of di-
mension nxn but rank J to an arbitrary vector requires only nJ operations
(as opposed to n2); this simple observation leads directly to a variety of
asymptotically 'fast' schemes for the evaluation of (1.1); below, we illustrate
the construction of such schemes with a simple example.

Suppose that, in the expression (1.1), the points x\,X2~  ,xn are equi-
spaced and lie on the interval [—1,1], so that

x \ =  - 1 , X2 = - l + h, . . ., x n - i = l - h , x n = l, (2.3)

where h = 2/(n — 1). Given three integers I, m, k such that

1 < I < n,
1 < m < n,

1 < k<n-l,

1 < k <n-m, (2.4)

we will denote by AitTn̂  the submatrix of A consisting of such elements Aij
that

I < i < l + k-l,

m < j < m + k-l, (2.5)

and say that A m̂  ̂ is separated from the diagonal if

l-{m + k-l) \>k, (2.6)

and

m-(l + k-l)\>k. (2.7)

In other words, we will say that the submatrix Aitm<k of the matrix A is
separated from the diagonal if its distance from the diagonal of A is greater
than or equal to its own size (Figure 1). We will construct a rudimentary
'fast' algorithm for the application of the matrix A to an arbitrary vector
by means of the following lemma; its proof is based on several well-known
facts, all of which can be found in Dahlquist and Bjork (1974).

Lemma 2.1 For any integer p < 1, and any l,m,k satisfying the condi-
tions (2.4), there exists a matrix i?i,m,fc of dimension k x k and rank J, such
that

Pz,m,fc-£WH<p- (2.8)
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Fig. 1. Subdivision of matrix into well separated blocks. The submatrices marked
by an X are not well separated from the diagonal

In other words, any submatrix of A separated from the diagonal is of rank
J, to the precision 1/4*7.

Outline of proof. We start by defining the function / : K2

formula

f(x,y) =  TJ jp

ix by the

(2.9)

and observing that / is smooth everywhere in M2, except when x = y. We
wil l say that the square [a, a + c] x [b, b + c] C M2 is separated from the
diagonal if

\a + c-b\>c, (2.10)

and

b + c — a |> c, (2.11)

and observe that on any such square, the function / can be expanded in a
two-dimensional Chebychev series, that is, represented in the form

f(x,y) = }  ̂apqTp [ —
p,q=0 V

Tq [ —
2b

(2.12)

with Tj denoting the jth Chebychev polynomial. Finally, we observe that
for any a, b, c satisfying the conditions (2.10), (2.11), the convergence of the
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expansion (2.12) is given by the formula

2b

p,q=0

In other words, for any square separated from the diagonal, the expansion
(2.12) converges to accuracy e after no more than Iog4(e) terms. Combining
(2.6), (2.7) and (1.1) with (2.12) and (2.13), we observe that, for any i,j
satisfying the inequalities (2.5),

!/,  c + 2b\

p,q=U

with a = (21)/n - 1 , 6= (2m)/n - 1, c = (2k)/n. The matrix BXmk defined
by

3 „  (2Xi
{

p q = 0 V t- i-

clearly satisfies the desired condition (2.8).

In order to develop a fast algorithm, we first subdivide the matrix A into
a collection of submatrices, as depicted in Figure 1. Each of the submatrices
in this structure is separated from the diagonal, except the submatrices near
the diagonal whose ranks are small simply because their dimensionality is
small. By virtue of Lemma 2.1, each of the separated submatrices is of rank
J, to the accuracy 4~J. In order to apply A to an arbitrary vector with fixed
but finite accuracy (which is always the case in numerical computations),
we can apply each of the submatrices to the appropriate part of the vector
for a cost proportional to kJ, where k is the size of the submatrix. Adding
up the costs for all such submatrices, we obtain the operation count of

Jn log n ~ log | - j n log n, (2-16)

instead of n2.
The scheme outlined above is extremely simple, but representative of the

current approach to the design of 'fast' summation algorithms. Several com-
ments are in order.

1. It is easy to see that the matrix A defined in (2.1) with the spacing
defined by (2.3) is in fact a Toeplitz matrix that can be applied to an
arbitrary vector for a cost proportional to n log n via the Fast Fourier
Transform. This situation occurs sometimes, both in one and higher
dimensions. However, the Toeplitz nature of the matrix A is lost when
the points are not distributed on a uniform grid, and direct application
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of the FFT becomes impossible. For 'somewhat uniformly' distributed
points Xi, various types of local corrections have been successfully util-
ized. When the points are not distributed uniformly (for example, on
a curve or surface), FFT-based methods become ineffective.

2. As described, the scheme is only applicable to one-dimensional prob-
lems, and under very limited conditions. In most situations, the subdi-
vision of the matrix has to be modified, taking into account the geomet-
ric distribution of points in order to locate submatrices whose 'numer-
ical rank' is low. Examples of such subdivisions can be found in Carrier
et al. (1988), Van Dommelen and Rundensteiner (1989), Beylkin et al.
(1991) and Nabors et al. (1994).

3. The scheme is extremely simple and general. It is entirely unrelated
to the detailed nature of the matrix A, needing only some inequality
like (2.13). In other words, so long as the entries of the matrix A are
smooth functions of their indices away from the diagonal, a scheme of
the type outlined above will work. In fact, even that is not necessary;
the elements of the matrix have only to be sufficiently smooth functions
of their indices on a sufficiently large part of the matrix.

4. The scheme admits a large number of modifications; the most obvious
ones replace the Chebychev expansion in (2.12) with other approxim-
ations; one should be careful in doing so, since under many conditions
the Chebychev approximation is optimal (among polynomial approx-
imations), or nearly so. Some of the special-purpose approximation
schemes that have been used successfully employ wavelets and related
bases (Beylkin et al. 1991, Alpert et al. 1993).

Another obvious modification is a change in the choice of submatrices of
low rank; the use of rectangular submatrices (as opposed to the square
ones in Figure 1) permits coarser subdivisions and tends to result in
more efficient algorithms.

5. Algorithms of the type described above usually do not work for prob-
lems where the matrix A is a discretization of an integral operator with
an oscillatory kernel, since such discretizations (normally) have a more
or less constant number of nodes per wavelength of the dominant os-
cillation. As a result, the rank of each submatrix is proportional to its
size, and the resulting algorithms have CPU time estimates of the or-
der O(n2). Sometimes, the calculation can be accelerated by reducing
the size of the constant (Wagner and Chew 1994), but the asymptotic
complexity in such cases is the same as for the direct approach. For cer-
tain classes of oscillatory problems (such as Helmholtz and Schrodinger
equations at high frequency), there exist asymptotically 'fast' schemes
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based on a different (and considerably more involved) analytical ap-
paratus; see, for example, Rokhlin (1988, 19906, 1993), Canning (1989,
1992, 1993), Coifman and Meyer (1991), Bradie, Coifman and Gross-
mann (1993), Coifman, Rokhlin and Wandzura (1993, 1994), Wagner
and Chew (1994), Epton and Dembart (1995). As noted in the intro-
duction, these schemes are related to the scheme we will present below.
They are, however, outside the scope of this paper.

3. Mathematical preliminarie s I

In this section, we briefly derive the multipole expansion of a charge dis-
tribution and refer the reader to Kellogg (1953), Jackson (1975), Wallace
(1984), and Greengard (1988) for more detailed discussions.

If a point charge of strength q is located at PQ = (xo,yo,zo), then the
potential and electrostatic field due to this charge at a distinct point P =
(x, y, z) are given by

*  ( 3 1 }

and
'X — XQ y -yo z - z0

respectively, where R denotes the distance between points Po and P.
We would like to derive a series expansion for the potential at P in terms

of its distance from the origin r. For this, let the spherical coordinates of P
be (r, 9, 4>) and of PQ be (p, a, (3). Letting 7 be the angle between the vectors
P and Po, we have from the cosine rule

R2 =  r
2 + p2 - 2rp cos 7, (3.3)

with

cos 7 = cos 9 cos a + sin 9 sin a cos(</> — /?). (3.4)

Thus,

- = 1 =  1 , (3.5)
R r y i _ 2 £C o s 7 +^ rVl  - 2u/x + /i2 '

having set

fi = - and u = cos7. (3-6)
r

For // < 1, we may expand the inverse square root in powers of /i, resulting
in a series of the form
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where

Po(u) = l, Pi(u) = u, p2(u) = l ( u 2 - \ ) >  (3-8)

and, in general, Pn(u) is the Legendre polynomial of degree n. Our expres-
sion for the field now takes the form

R = E ^ n ( t l ) . (3-9)
71=0

The angular parameter u, however, depends on both the source and the
target locations. A more general representation will require the introduction
of spherical harmonics, which are solutions of the Laplace equation obtained
by separation of variables in spherical coordinates. Any harmonic function
<J> can be expanded in the form

E Crn + ^ r OM). (3-10)
n=0m=—n ^ '

The terms Y™(9, <p)rn are referred to as spherical harmonics of degree n
or solid harmonics, the terms Y™(6, (f))/rn+1 are called spherical harmonics
of degree — n — 1 or multipoles, and the coefficients L™ and M™ are known
as the moments of the expansion.

The spherical harmonics can be expressed in terms of partial derivatives
of l/r  (Wallace 1984) as

For m > 0, we have

Y™(6,<l>) - ™ / d . + , _ , ,
<dz

and

x dy,

where

A? =  >/(n_
(~)

1,)
(^ + m),- (3-14)

They also satisfy the relation

: * 1^' p l m l /'pot; R\f>^Tn<^ C\ 1 ̂ "i
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where we have omitted the normalization factor of \J{2n + l)/47r, to match
the definitions (3.11)—(3.13) given above. The special functions P™ are
called associated Legendre functions and can be denned by Rodrigues' for-
mula

Theorem 3.1 (Additio n theorem for  Legendre polynomials) Let
P and Q be points with spherical coordinates (r, 6, <j>)  and (p, a, (3), respect-
ively, and let 7 be the angle subtended between them. Then

m=—n

Pn(cos7) =

Combining Theorem 3.1 and equation (3.9), we have

(3.16)

(3-17)
n=0 m=—n

It is now straightforward to expand the field due to a collection of sources
in terms of multipoles.

Theorem 3.2 (Multipol e expansion) Suppose that k charges of
strengths {qi, i = 1,..., k} are located at the points {Qi — (pi, ai, Pi), i =
1,..., k}, with \pi\ < a. Then for any P = (r, 0, 0) € K3 with r > a, the
potential $(P) is given by

00 n Mm

E E ^CW) ,
n=0m=—n

where

Furthermore, for any p > 1,

p n

 > >

n=0m=—n

where

r — a \r

a\ p+1

(3.18)

(3.19)

(3.20)

(3.21)
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Proof. The formula (3.19) follows from equation (3.17) and superposition.
The error bound is obtained from the triangle inequality and the fact that
the ratios pi/r are bounded from above by a/r.

Suppose now that r = 2a in the context of the preceding theorem. Then
the error bound (3.20) becomes

Mm A /l\p+1

—-rrYJ, (y! <?v — — I ~~ I ) (6.22)
rn +1 a \2J

n=0m=-n V '
and setting p = Iog2(l/e) yields a precision e relative to the ratio A/a.

4. An N log N algorithm

Theorem 3.2 is all that is required to construct a simple fast algorithm of
arbitrary precision. To reduce the number of issues addressed, we assume
that the particles are fairly homogeneously distributed in a square so that
adaptive refinement is not required.

In order to make systematic use of multipole expansions, we introduce a
hierarchy of boxes which refine the computational domain into smaller and
smaller regions. At refinement level 0, we have the entire computational
domain. Refinement level / + 1 is obtained recursively from level I by subdi-
vision of each box into eight equal parts. This yields a natural tree structure,
where the eight boxes at level I + 1 obtained by subdivision of a box at level
I are considered its children.

Definition 4.1 Two boxes are said to be near neighbours if they are at the
same refinement level and share a boundary point (a box is a near neighbour
of itself).

Definition 4.2 Two boxes are said to be well separated if they are at the
same refinement level and are not near neighbours.

Definition 4.3 With each box i we associate an interaction list, consisting
of the children of the near neighbours of i's parent which are well separated
from box i (Figure 4).

Definition 4.4 With each box i at level / we associate a multipole expan-
sion $;J about the box centre, which describes the far field induced by the
particles contained inside the box.

The basic idea is to consider clusters of particles at successive levels of
spatial refinement, and to compute interactions between distant clusters by
means of multipole expansions when possible. It is clear that at levels 0
and 1, there are no pairs of boxes that are well separated. At level 2, on
the other hand, sixty-four boxes have been created and there is a number
of well separated pairs. Multipole expansions can then be used to compute
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X

Fig. 2. The first step of the algorithm, depicted in two space dimensions for
clarity. Interactions between particles in box X and its near neighbours (grey) are

not computed. Interactions between well separated boxes are computed via
multipole expansions

interactions between these well separated pairs (Figure 2) with rigorous
bounds on the error. In fact, it is easy to see that the bound (3.20) applies
with the ratio a/r < l / \ / 3 . Thus, to achieve a given precision e, we need to
use p = log /^(l/e) terms.

It remains to compute the interactions between particles contained in
each box with those contained in the box's near neighbours, and this is
done recursively. We first refine each level 2 box to create level 3. For a
given level 3 box, we then seek to determine which other level 3 boxes can
be interacted with by means of multipole expansions. Since those boxes
outside the region of the parent's nearest neighbours are already accounted
for (at level 2), they can be ignored. Since interactions with near neighbours
cannot be accounted for accurately by means of an expansion, they can also
be ignored for the moment. The remaining boxes correspond exactly to the
interaction list denned above (Figure 3).

The nature of the recursion is now clear. At every level, the multipole
expansion is formed for each box due to the particles it contains. The
resulting expansion is then evaluated for each particle in the region covered
by its interaction list (Figure 4).

We halt the recursive process after roughly log8 N levels of refinement.
The amount of work done at each level is of the order O(N). To see this, note
first that approximately N p2 operations are needed to create all expansions,
since each particle contributes to p2 expansion coefficients. Secondly, from
the point of view of a single particle, there are at most 189 boxes (the
maximum size of the interaction list) whose expansions are computed, so
that 189 Np2 operations are needed for all evaluations.
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Fig. 3. The second step of the algorithm, depicted in two space dimensions. After
refinement, note that the particles in the box marked X have already interacted

with the most distant particles (light grey). They are now well separated from the
particles in the white boxes, so that these interactions can be computed via
multipole expansions. The near neighbour interactions (dark grey) are not

computed

Fig. 4. Subsequent steps of the algorithm. The interaction list for box X is
indicated in white. In three dimensions, it contains up to 189 boxes
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Fig. 5. At the finest level, interactions with near neighbours are computed
directly. In three dimensions, there are up to 27 near neighbours

At the finest level, we have created roughly 8logsiV = N boxes and it
remains only to compute interactions between nearest neighbours. By the
assumption of homogeneity, there are 0(1) particles per box, so that this
last step requires about 27 iV operations (Figure 5). The total cost is ap-
proximately

189iVp2 log8 N + 27N. (4.1)

The algorithm just described is, in essence, a nonadaptive version of the
one proposed by Barnes and Hut (1986), except that it achieves arbit-
rary precision through the use of high order expansions. Two-dimensional
schemes of this type are due to Van Dommelen and Rundensteiner (1989)
and Odlyzko and Schonhage (1988). Unfortunately, while such schemes have
good asymptotic work estimates, the three-dimensional versions provide only
modest speedups at high precision for the values of N encountered in present
day applications. At N = 100,000, for example, seven digits of accuracy re-
quire p « 20, and the N log N scheme is only two to three times faster than
the direct O(N2) method. In order to accelerate the calculation significantly,
we need some further analytic machinery.

5. Mathematical preliminaries II

The FMM relies on three translation operators, acting on either multipole
(far field) or solid harmonic (local) expansions. They are described in the
next three theorems (Greengard and Rokhlin 1988a, Greengard 1988).

Theorem 5.1 (Translation of a multipol e expansion) Suppose that
I charges of strengths qi,q2,---,qi are located inside the sphere D of radius
a with centre at Q = (p,a,(3), and that for points P = (r,0,<f)) outside D,
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the potential due to these charges is given by the multipole expansion

°° n ryn

n=0 m=—n

where P — Q = (r', 8'',(/>'). Then for any point P = (r,9,(f)) outside the
sphere D\ of radius (a + p),

where

oo j j ^

E E ^  (5.2)
j=ok=-j

j n f)k-m-\k\-\m\-\k-m\ Am Ak-m n*y-m(n a\

= J2 E ^ ^  AI '  (5-3)
n=0 m=-n

with A™ denned by equation (3.14). Furthermore, for any p > 1,

D+l

. „ , . .- *r  — (a + p)
(5.4)

Definitio n 5.1 The linear operator mapping old multipole coefficients
{Oj : 0 < n < p, —n < m < n}, to new multipole coefficients {M^ :
0 < n < p, —n < m < n} according to equation (5.3) will be denoted by

Theorem 5.2 (Conversion of a multipol e expansion into a local
expansion) Suppose that / charges of strengths qi,q2,  are located
inside the sphere DQ of radius a with centre at Q = (p,a,(3), and that
p > (c+ l)a with c > 1. Then the corresponding multipole expansion (5.1)
converges inside the sphere Do of radius a centred at the origin. Inside
-Do, the potential due to the charges gi,<72>  >9* is described by a local
expansion:

oo j

j=0k=-j

where
n f)mAk-m\-\k\-\m\ Am Ak-ym—ki o\

n=0 m=—n

with As
r defined by equation (3.14). Furthermore, for any p > 1,

p

E tfY3
k(o,. „ . . v ca — a

j=Ok=-j

(5.7)
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Def in i t io n 5.2 The linear operator mapping truncated multipole expan-
sion coefficients {Oj : 0 < j < p, —j<k<j}to  local coefficients
{Lj  : 0 < j < p, —j<k< j}  according to equation (5.6) wil l be de-
noted by T

Theorem 5.3 (Translation of a local expansion) Let Q = (p,a,f3)
be the origin of a local expansion

n

E O™Y™(0',4>Vn, (5-8)
n=0m=—n

r '  9' <jj)where P = (r, 8, <f>)  and P - Q = (r', 0', 0')- Then

J=Ofc=-j

where

p n Qmj\

n=j m=—n

with As
r defined by equation (3.14).

Definition 5.3 The linear operator mapping old local expansion coeffi-
cients {O™ : 0 < n < p, —n < m < n} to new local expansion coefficients
{L™ : 0 < n < p, —n < m < n) according to equation (5.10) will be denoted
by TLL.
{
by TLL

6. The original FMM

We can now construct a scheme with cost proportional to N, by using The-
orem 5.2 to convert the far field expansion of a source box into a local
expansion inside a target box, rather than by direct evaluation of the far
field expansion at individual target positions.

Definition 6.1 With each box i at level I we associate a local expansion
^iti about the box centre, which describes the potential field induced by all
particles outside box Vs near neighbours.

Definition 6.2 With each box i at level I we associate a local expansion
^f^i about the box centre, which describes the potential field induced by all
particles outside the near neighbours of z's parent.
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ALGORITHM 1
The parent of a box j will be denoted by p(j). The list of children of a box
j will be denoted by c(j). The interaction list of a box j will be denoted by
ilist(j).

Upward pass
Initialization
Choose the number of refinement levels n « log8 JV, and the order of the
multipole expansion desired p. The number of boxes at the finest level is
then 8", and the average number of particles per box is s = N/(8n).

Step 1
Form multipole expansions $Hij of potential field due to particles in each
box about the box centre at the finest mesh level, via Theorem 3.2.

Step 2
For levels I = n — 1,... ,2,

Form multipole expansion $; j about the centre of each box at level I
by merging expansions from its eight children via Theorem 5.1.

Downward pass
Initialization
Set * i , i = tf i i 2 =  = * 1 >8 - ( 0 , 0 , . . ., 0).

Step 3
For levels I = 2 , . . ., n,

Form the expansion ^>ij  for each box j at level I, by using Theorem
5.3 to shift the local \& expansion of j ' s parent to j itself.

Form ^>ij  by using Theorem 5.2 to convert the multipole expansion
$itk of each box k in the interaction list of box j to a local expansion
about the centre of box j , adding these local expansions together,
and adding the result to ^ij.

Step 4
For each particle in each box j at the finest level n,

evaluate \&nj at the particle position.

Step 5
For each particle in each box j at the finest level n,

compute interactions with particles in near neighbour boxes directly.
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Since s is the average number of particles per box at the finest level, there are
approximately N/s boxes in the tree hierarchy. Therefore, Step 1 requires
approximately Np2 work, Step 2 requires (N/s)p4 work, Step 3 requires
189(N/s)p4 work, Step 4 requires N p2 work, and Step 5 requires 27TV s
work. Thus, a reasonable estimate for the total operation count is

191 (—~\ pA + 2Np2 + 27Ns. (6.1)

With s = 2p2, the operation count becomes approximately

150/Vp2. (6.2)

This would appear to beat the estimate (4.1) for any N, but there is a
subtle catch. The number of terms p needed for a fixed precision in the
N log N scheme is smaller than the number of terms needed in the FMM
described above. To see why, consider two interacting cubes A and B of unit
volume, with sources in A and targets in B. The worst-case multipole error
decays like (\/3/3)p, since \/3/2 is the radius of the smallest sphere enclosing
cube A and 3/2 is the shortest distance to a target in B. The conversion
of a multipole expansion in A to a local expansion in B, however, satisfies
an error bound which depends on the smallest sphere enclosing B as well as
the smallest sphere enclosing A. Prom equation (5.7), the worst case error is
less than (0.76)p, although with more detailed analysis, one can show that
the error is bounded by (0.75)p (Petersen, Smith and Soelvason 1995).

In the original FMM (Greengard and Rokhlin 1988a, Greengard 1988), it
was suggested that one redefine the nearest neighbour list to include 'second
nearest neighbours,' so that boxes which interact via multipole expansions
are separated by at least two intervening boxes of the same size. The error
can then be shown to decay approximately like (0.4)p. However, the number
of near neighbours increases from 27 to 125 and the size of the interaction
list increases from 189 to 875.

It is clear that the major obstacle to achieving reasonable efficiency at high
precision is the cost of the multipole to local translations (189p4 operations
per box). There are several schemes that have been suggested for reducing
the cost of applying translation operators. The simplest is based on rotating
the coordinate system so that the vector connecting the source box B and
the target box C lies along the z-axis, shifting the expansion along the z-axis,
and then rotating back to the original coordinate system.

6.1. The FMM using rotation matrices

We begin with the following obvious result.
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Lemma 6.1 Consider a harmonic function given by
00 n

*C) = £ E
n=0m=—n

where (r, #, </>) are the spherical coordinates of the point P. If we rotate the
coordinate system through an angle j3 in the positive sense about the z-axis,
then

00 n / jTj-m \

*(** ) = £ E U»rB + ^ U r W ) ,
n=0m=-n \ /

where (r, 0, <//) are the new coordinates of P,

Z™ = L™eim/3, and M™ = M™eimf3.

Definitio n 6.3 Given a rotation angle /?, the diagonal operator mapping
old multipole coefficients to rotated multipole coefficients (O™ —> 0™ eim@)
wil l be denoted by Tlz((3).

We also need to be able to rotate the coordinate system about the y-axis.

Lemma 6.2 Consider a harmonic function given by

*( p) = E E
n=0m=-n

where (r, 0, (f)) are the spherical coordinates of the point P. If we rotate the
coordinate system through an angle a in the positive sense about the y-axis,
then there exist coefficients R(n,m,m',a) such that

00 n

n=0m'=-n \

where (r, 9, <//) are the new coordinates of P,

L™'= J2 R(n,m,m',a)L™ (6.3)
m=—n

and

AC'= E R(n,m,m',a)M™. (6.4)
m=—n

Proof. See Biedenharn and Louck (1981) for a complete discussion and for a
variety of methods that can be used to compute the coefficients R(n, m, m', a).

a
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Lemma 6.3 In order to shift a multipole expansion a distance p along the
z-axis, one can replace equation (5.3) with the simpler formula

_
n=0 A3

In order to convert a multipole expansion centred at the origin into a local
expansion centred at (0,0, p), one can replace equation (5.6) with the simpler
formula

In order to translate the centre of a local expansion from the origin to the
point (0,0, p), one can replace equation (5.10) with the simpler formula

, OAn 1
TK \ 71 71 — J j

3 ~~ Z^ (_-l\n+jAk ' VU'U
n=j \ X) ^n

Definitio n 6.4 Given a rotation angle a, the diagonal operator mapping
old multipole coefficients to rotated multipole coefficients according to for-
mula (6.3) or (6.4) wil l be denoted by 7Zy(a). The special cases of the linear
operators TMM, TML, and TLL which shift a distance p in the ^-direction
according to the formulae (6.5), (6.6), and (6.7) will be denoted by T^^ip),
T L̂{p), and T£L(p).

We can now combine Lemmas 6.1, 6.2 and 6.3 to obtain the desired fac-
torizations of TMM, 7ML,

Lemma 6.4
TMM = nz(-P)ny(-a)TMM(p)1ly(a)nz(f3),
TML = nz{

where (p, a, f3) is the desired shifting vector.

Clearly, the cost of applying TMM, TML, or TLL by means of the preceding
factorization is

O(P
2) + O(p3) + O(p3) + O(p3) + O(p2).

Thus, the total computational cost of the FMM can be reduced to approx-
imately

191 (—} 3p3 + 2Np2 + 27Ns.
\ s J

With s = 3p3/2, the operation count becomes

270Np3/2 + 2Np2. (6.8)
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7. Mathematical preliminaries II I

Over the last few years, a number of 'fast' or diagonal translation schemes
have been developed that require O(p2) work (Greengard and Rokhlin 19886,
Berman 1995, Elliott and Board 1996). Unfortunately, they are all subject
to certain numerical instabilities. The instabilities can be overcome, but at
additional cost, the details of which we leave to the cited papers.

The latest generation of fast algorithms is based on combining multipole
expansions with exponential or 'plane wave' expansions. The reason for
using exponentials is that translation corresponds to multiplication and,
like the earlier fast schemes, requires only O(p2) work. Unlike in the earlier
diagonal schemes, however, no numerical instabilities are encountered. The
two-dimensional theory is described in Hrycak and Rokhlin (1995), and we
present the three-dimensional theory here.

Remark 7.1 A complicating feature of the new approach is that six plane
wave expansions will be associated with each box, one emanating from each
face of the cube. To fix notation, we will refer to the +z direction as up, to
the — z direction as down; to the +y direction as north, to the — y direction
as south; to the +x direction as east, and to the —x direction as west. The
interaction list for each box will be subdivided into six lists, one associated
with each direction.

Definition 7.1 The Uplist for a box B consists of elements of the inter-
action list that lie above B and are separated by at least one box in the
+z direction (Figure 6). The Downlist for a box B consists of elements of
the interaction list that lie below B and are separated by at least one box
in the — z direction. The Northlist for a box B consists of elements of the
interaction list that lie north of B, are separated by at least one box in the
+y direction, and are not contained in the Up- or Downlists. The Southlist
for a box B consists of elements of the interaction list that lie south of B,
are separated by at least one box in the — y direction, and are not contained
in the Up- or Downlists. The Eastlist for a box B consists of elements of the
interaction list that lie east of B, are separated by at least one box in the +x
direction, and are not contained in the Up-, Down-, North-, or Southlists.
The Westlist for a box B consists of elements of the interaction list that lie
west of B, are separated by at least one box in the — x direction, and are
not contained in the Up-, Down-, North-, or Southlists.

It is easy to verify that the original interaction list is the union of the Up-,
Down-, North-, South-, East- and Westlists. It is also easy to verify that

C G Uplist(B) & B G Downlist(C)
C € Northlist(B) o B <E Southlist(C)

C G Eastlist(B) « B e Westlist(C). (7.1)
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W

Fig. 6. The Uplist for the box B (see Definition 7.1)

Given a source location P = (xo, yo, ZQ) and a target location Q = (x, y, z),
our starting point is the well-known integral representation (Morse and Fesh-
bach 1953, p. 1256)

/( ) {y y)

_ _ / g-A(z-zo) /
2TT JO JO

(z -

- x 0 )2x 0 )2 - y0)
2) dA, (7.2)

valid for z > ZQ.
To get a discrete representation, we must use an appropriate quadrature

formula. The inner integral, with respect to a, is easily handled by the
trapezoidal rule (which achieves spectral accuracy for periodic functions),
but the outer integral requires more care. Laguerre quadrature is an ap-
propriate choice here, but even better performance can be obtained using
generalized Gaussian quadrature rules (Yarvin and Rokhlin 1996). These
have been designed with the geometry of the interaction list in mind.

Because of the restriction that z > ZQ, we will assume, for the moment,
that the source P is contained in a box B and that the target Q lies in a
box C G Uplist(B). The following lemma describes several discrete approx-
imations of the double integral in (7.2) as double sums.
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Lemma 7.1 Let P € B and Q £ C G Uplist(i?), where B is a box of unit
volume. Then

1 9 .... M(k)

<  10"15, (7.3)

where aj = 2itj/M(k), and the weights wi,..., wg, nodes Ai,..., Ag, and
values M(l ) , . . ., M(9) are given in Section 12, Table 5. (The total number
of exponentials required is 109.)

18 wk
 M{k)

—\k[(z—zo)—i(x-xo) cosaj-(y-yo) sin aj] < 10 "b , (7.4)

where â  = 2irj/M(k), and the weights iv\,..., w\%, nodes A i , . . . , Aig, and
values M ( l ) , . . . , M(18) are given in Section 12, Table 6. (The total number
of exponentials required is 558.)

30 M{k)

k

kTl M(*0 £{
(7-5)

where aj = 2irj/M(k), and the weights w\,..., W30, nodes Ai,..., A30, and
values M(l ) , . . ., M(30) are given in Section 12, Table 7. (The total number
of exponentials required is 1751.)

Remark 7.2 The formulae (7.3)-(7.5) are somewhat complex, but have a
simple interpretation. The outer sums use the generalized Gaussian weights
and nodes {u>fc,Afc}  obtained in Yarvin and Rokhlin (1996) to approxim-
ate the outer integral (with respect to A), while the inner sums use the
trapezoidal rule to approximate the inner integral (with respect to a). The
number of nodes in each inner integral depends on the value A& for which the
integration is being performed, and is denoted by M(k). These are derived
from standard estimates concerning Bessel functions (Watson 1944, pp. 227,
255; Rokhlin 1995).

Remark 7.3 In the remainder of this paper, we will assume that the de-
sired precision e is clear from the context, and will write

s(e)M(k)
V^ y ^ _J£k_ Afc(z-zo) i\k((x-x0) cos aj+(y-y0) sin aj

where aj = 2nj/M(k). This is a mild abuse of notation, since the weights,
nodes and values M(k) depend on e as well. The total number of exponential
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basis functions used will be denoted by 5exp, so that

fc=l

Corollar y 7.1 Let B b ea box of unit volume centred at the origin con-
taining TV charges of strengths {qi, I = 1,...,N}, located at the points
{Ql = (xi,yi,zi), 1 = 1,... ,N}. Then, for any P contained in Uplist(5),
the potential 3>(P) satisfies

s(e) M(k)

fc=l j=l

where A = J2iL\ \QI\ and

N

1=1

Corollar y 7.2 (Diagonal translation) Let B b ea box of unit volume
centred at the origin containing iV charges of strengths {qi : I = 1,..., N},
located at the points {Qi = \xi,yi,zi) : / = 1,..., iV}  and let C be a box
in Uplist(.B) centred at {x\,y\,z\). For P G C, let the potential $(P) be
approximated by the exponential expansion centred at the origin

s(e) M{k)

$(P) = J2 Yl W{k,j)e-XkZeiX^ xcosa^+ysina^ + O(e). (7.9)
fc=i j=i

Then
s(e) M(k)

V(k, j)e-
A'=(2-zi)e

iA fc((a:-^i)cosQ:,+(t/-j/i)sinQ:,) _|_ Q /£ \

j
(7.10)

where
^(fc,j ) = W(k, j) e-^i ei\k(x1coSaj+ylSmaj) _ ^^

Definition 7.2 The diagonal operator mapping the original set of expo-
nential expansion coefficients {W(k, j)}  to the shifted exponential expansion
coefficients {V(k, j)}  according to (7.11) will be denoted by ' P ^, where
BC = (#i, j/i , z\) is the vector from the centre of B to the centre of C.

In the FMM, we will be given the multipole expansion of a charge dis-
tribution for a box B rather than the charge distribution itself, and will
need to convert it to an exponential expansion. This is accomplished by the
following theorem.
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Theorem 7.1 Let B be a box of unit volume centred at the origin con-
taining N charges of strengths {qi, I = 1,...,JV}, located at the points
{Ql = (xi,Vi, zi), I = 1, , N}. Let P € C € Uplist(S) and suppose that
the potential 4>(P) is given as the multipole expansion

$(P) = E E -^kY^{e^)- (7-12)
n=0 m=—n

Then

S(E) M(fc)

fc=l j=\

where A = J2i=i \il

^ y/(n-m)\{n
(7.14)

Proof. The formula (7.14) follows from the definitions (3.11) (3.12) and
(3.13). The estimate (7.13) follows from Corollary 7.1.

Definitio n 7.3 The linear operator mapping a finite multipole expansion
{M™ : 0 < n < p, —n < m < n}, to the corresponding set of coefficients
in an exponential expansion {W(k,j)} according to equation (7.14) will be
denoted by CMX-

Once the multipole expansion for a source box has been converted into
an exponential expansion (via Theorem 7.1) and translated to a target box
centre (via Corollary 7.2), we will need to convert the exponential expan-
sion back into a solid harmonic series. The following theorem provides the
necessary machinery.

Theorem 7.2 Let B be a box of unit volume containing N charges of
strengths {<#, I = 1,...,JV}, located at the points {Qi = (xi,yi,zi), I =
1, . . ., N}. Let P be contained in a box C G Uplist(-B), centred at the origin,
and suppose that the potential $(P) is given as the exponential expansion

s(e) M(k)

E E W(k,j)e-XkZeiX^xcos^+ysina^\ < Ae, (7.15)
fc=i j=i

where A = J2i=i fa\- Then

E
n=0m=—n

<Ae, (7.16)
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where

(_j\\m\ s(£) M(k)
l l £ ( A ) B £ W(k,j)eima>. (7.17)

Proof. Equation (7.17) follows easily from the formula in Hobson (1955,
p. 123),

(z + ix cos a + iy sin a)n =

rn jpn(cos0) + 2 £ (i)-m
 {n^m)](-irP™(coSe) cosm(0 - a)\ ,

where (r, #, (f>) are the spherical coordinates of the point with Cartesian
coordinates (x,y, z).

Definitio n 7.4 The linear operator mapping the set of coefficients in an
exponential expansion {W(k,j)} to the coefficients in the corresponding
truncated solid harmonic expansion {L™ : 0 < n < p, —n<m<n},
according to equation (7.17) will be denoted by CXL-

Remark 7.4 Theorems 7.1 and 7.2, like Theorem 5.2, are not quite the
right tools needed to obtain rigorous error estimates for the FMM. In both
cases, we have ignored the fact that the multipole and local expansions are
truncated. It is straightforward but tedious to derive precise estimates, and
we ignore this issue in the present paper. We should note that the nature of
such estimates depends on how the multipole-to-exponential, multipole-to-
solid harmonic or exponential-to-solid harmonic conversion is carried out.
Formulae (7.14), (7.17) and (5.6) are the easiest to derive, being the Taylor
expansions of the potential $. However, each of these conversions is simply
a linear mapping from one set of basis functions to another. The formulae
(7.17), (7.14), and (5.6) can be shown to correspond to minimizing the L2
error on the surface of a sphere enclosing the given source or target box.
One could choose a variety of other possible projections, such as minimizing
the L2 or Loo error on the surface of the corresponding box itself.

Remark 7.5 By inspection of formula (7.14), it is clear that the cost of
applying the operator TMX is p2 s(e) +pSexp. The same is true for the
operator TXL- It is also worth noting that Fast Fourier Transforms can be
used to reduce the cost of the outer sum in the truncated version of formula
(7.14) and the inner sum in the truncated version of formula (7.17).

Corollar y 7.3 (Multipol e to local factorization) Let B be a box
of unit volume and C a box in Uplist(-S). If TML is the translation oper-
ator converting the multipole expansion centred in B to the local expansion
centred in C, then

B-C CMX- (7.18)
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Remark 7.6 It is important to note that Lemma 7.1 provides a carefully
designed quadrature formula which assumes that the source box B has unit
volume and that the target is in .B's Uplist. In order to use these quadrature
weights and nodes, we need to rescale the multipole and local expansions so
that the box dimension always has unit volume. To accomplish this, if

*C) = E E ~^hYn^^) (7.i9)
n=0 m=—n

is the multipole expansion for a box B of volume d3, we simply write

£ E (STiV(^)- (7.20)
n=0m=-n Vla>

The local expansion for a target box in .B's interaction list is accumulated
as

3 % ( ) (7-21)
j=Ok=-j  V O t /

Corollar y 7.4 (Scaled multipol e to local factorization) Let B be a
box of volume d3 and C a box in Uplist(B), with the vector from the centre
of B to the centre of C given by {x\,y\,z\). If TML is the translation oper-
ator converting the multipole expansion centred in B to the local expansion
centred in C, then

£ic (7.22)

where

and B~C = BC/d.

The cost of a single multipole-to-local translation using the factorization
of Corollary 7.4 is

2p2 + 2p2s(s) + 2p5exp « 2p3,

since s « p and 5exp ~ P2  If each translation were carried out in this man-
ner, we would not improve on the rotation-based scheme discussed in Section
6.1. However, once the multipole expansion for a box B has been converted
to an exponential expansion (via the application of V^M and CMX), it can
be translated to each box in its Uplist at a cost of Sexp ~ p2 operations.
Conversely, once a box B has accumulated all the exponential expansions
transmitted from its Downlist (see equation (7.1)), a single application of
the operators CXL and T>^L yields the local harmonic expansion describing
the field due to the sources in the Downlist of box B (Figure 7).

Up to this point, we have considered only the exponential representation
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Multipole
representation

( M
V
\ ^—

P3

I
\

ni\
Ln 1 * zz

P3 or p4

-x, P L ^
*P j ~*^^^~

Exponential
representation

Local
representation

X- 1 T

— ~ ( v

)

P3

y

Exponential
representation

Fig. 7. In the new FMM, a large number of multipole-to-local translations,
costing O(p3) or O(p4) work, can be replaced by a large number of exponential

translations, costing O(p2) work

needed to shift information in the upward (+z) direction. As noted in the
beginning of this section, however, there are six outgoing directions that
need to be accounted for. The most straightforward way of generating the
appropriate expansions is to rotate the coordinate system so that the z-axis
points in the desired direction. The following lemma provides the necessary
formulae.

Lemma 7.2 Let B be a box of volume d3 and C a 'target' box. Let TML
be the translation operator converting the multipole expansion centred in B
to the local expansion centred in C.
If C € Downlist(S), then

(TT) VdM.

If C e Eastlist(5), then

If C <E Westlist(-B), then

^ML' = ?>d,L Tly(7r

If C € Northlist(-B), then

7MLth = VdtL ny{-ir/2)  nz(-ir/2) CXL

If C E Southlist(-B), then

where BC is the appropriately scaled vector from the centre of B to the
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centre of C in the rotated coordinate system. The operators 1ZZ and TZy are
defined in Section 6.1.

Definitio n 7.5 Let T^P
L be given by the operator TML defined in equation

(7.22). Then, for Dir e {Up, Down, East, West, North, South}, we wil l write

7-Dir /^>Dir T1 TjDi r
ML = y U~BC F '

so that

QUp = ^ d i L CX L ,

PU p = CMXVdM,

gDown = Vd,LHy{-T:)CxL,

etc.

We are now in a position to describe the new FMM in detail.

8. The new FM M

ALGORITH M 2
The parent of a box j wil l be denoted by p(j). The list of children of a
box j will be denoted by c(j). For each box j , the 'outgoing' exponential
expansion with coefficients {W(n,m) : 1 < n < s(e), 1 < m < M(n)},
wil l be denoted by Wj. We will also associate an 'incoming' exponential
expansion with each box, denoted by Vj.

Upward pass
Initialization
Choose the number of refinement levels n « log8 N, and the order of the
multipole expansion desired p. The number of boxes at the finest level is
then 8n, and the average number of particles per box is s = N/(8n).

Step 1
Form multipole expansions <!>„,, of potential field due to particles in each
box about the box centre at the finest mesh level, via Theorem 3.2.

Step 2
Do for levels I = n — 1,... ,2,

Form multipole expansion $;j about the centre of each box at level I
by merging expansions from its eight children via Theorem 5.1.

(In applying TMM, use the factorization of Lemma 6.4.)
End do
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Downward pass
Initialization
Set * i , ! = # i j 2 =  = * 1 )8 = (0 ,0 , . . ., 0).

Step 3A
Do for levels I = 2,... ,n,

Form the expansion ^>ij  for each box j at level / by using
Theorem 5.3 to shift the local * expansion of j ' s parent to j itself.

(In applying TLL, use the factorization of Lemma 6.4.) Set \I//.j = ^i.j.

Step SB
For each direction Dir = Up, Down, North, South, East, West, the opposite
direction will be denoted by —Dir, so that —Up = Down, —Down = Up,
etc. Thus, if a box B sends an outgoing expansion in direction Dir to Box
C on its Dir list, then C can be viewed as receiving the expansion from B
which is an element of its —Dirlist (see equation (7.1)).

Do for Dir = Up, Down, North, South, East, West,
For each box j at level /, convert the multipole expansion <J>jj
into the 'outgoing' exponential expansion for direction Dir.

Wj = VDir^id.

For each box j at level I, collect the 'outgoing' exponential
expansions from the —Dirlist of box j as an 'incoming'
exponential expansion

where kj is the appropriately scaled vector from the centre of
box k to the centre of box j in the rotated coordinate system.

For each box j at level I, convert the accumulated 'incoming'
exponential expansion Vj into a local harmonic expansion and
add result to ^ij.

* i j = * u + QDirVj.
End do

End do

Step 4
For each particle in each box j at the finest level n,

evaluate n̂,j at the particle position.

Step 5
For each particle in each box j at the finest level n,

compute interactions with particles in near neighbour boxes directly.
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Since we are using the rotation scheme for applying TMM and Tn in Steps 2
and 3A, these now require a total of 3p3 (N/s) work, where s is the number
of particles per box on the finest level. In Step 3B, the applications of
the multipole to exponential operators 7?Dir and the exponential-to-local-
operators QDir require a total of approximately 6p3(N/s) work, while the
exponential translations require approximately 189 p2 {N/s) work. The total
operation count is therefore of the order

189 — p2 + 2 Np2 + 27TV s + 6— p3.
s s

With s = 2p, the total operation count is about

8.1. Current improvements

There are several ways in which the algorithm described above has been
accelerated. Symmetry considerations, for example, allow the pairs of oper-
ators {pUp-pDown̂  {-pNorth^Soutĥ  & n d {-pEast -pWest}  tQ b e a p p l i ed s i m.

ultaneously. The same is true for the adjoint pairs {<2Up, <2Down} , etc. Thus,
the 6p3(N/s) work needed in Step 3B can be replaced by Sp3(N/s) work.

Even more significant is the fact that the number of translations per box
can be reduced from 189 to less than 40. To see why, suppose that a box B
at level I has eight children, denoted B\,..., B$, and that boxes C\,..., Cj
lie in the Uplist of each child. In the new FMM described above, we accu-
mulated an 'incoming' exponential expansion in each box Cj as

where W  ̂is the 'outgoing' exponential expansion for B^. Repeating this for
j = 1,. . ., J requires a total of 8 J translations. Since all translations are
diagonal, however, it is easy to verify that

fc=i

fc=l

Thus, by first merging the 'outgoing' expansions, and then translating their
sum to each target box Cj, only 8 + J translations are needed. It should
be emphasized that this improvement relies on the diagonal form of the
operators. One could try to merge expansions in this manner in the context
of the original FMM, but the local expansion coefficients computed with and
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without merging would not be the same. There would be a significant loss
of precision, consistent with the error bound (5.7).

8.2. Further improvements

There are several ways in which the scheme can be accelerated that have not
been incorporated into the existing code. The most significant of these is
probably a change in the choice of the translation operators TMM and TLL ,
as well as the multipole-to-exponential and exponential-to-local conversion
operators CMX and CXL- AS mentioned previously, the obvious formulae
(5.3), (5.10), (7.14), and (7.17) are obtained via Taylor expansion and are
clearly not optimal. Preliminary numerical experiments indicate that repla-
cing them with more carefully optimized tools will reduce the cost of these
calculations within the FMM by a factor of three. Furthermore, the im-
provement described in Remark 7.5 has not yet been implemented; we are
using the explicit matrix form of the discrete Fourier transform in applying
CMX and CXL, rather than the FFT.

The incorporation of all these modifications is likely to reduce the overall
cost by a factor of two.

9. Numerical results

The new FMM has been implemented in Fortran 77 and tested on uniform
random distributions. The results of our experiments are summarized in
Tables 1-4, with all times calculated in seconds using a Sun Ultra-1/140
workstation. In each table, the first column lists the number of particles,
the second column lists the number of levels used in the multipole hierarchy,
the third column lists the order of the multipole expansion used, and the
fourth column lists the corresponding number of exponential basis functions.
Columns five and six indicate the times required by the FMM and the direct
calculation, respectively, and column seven lists the I2 norm of the error in
the FMM approximation

v E£ii*o*)i a ;
For the largest simulations, with iV > 10000, we have carried out the direct
calculation on a subset of only 100 particles. The stated times, indicated in
parentheses, are then computed by extrapolation and the errors are obtained
by restricting the formula (9.1) to this subset.
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Table 1. Timing results for the FMM using fifth-order expansions and
twenty-eight exponential basis functions

N

500
5000

40000
300000

Levels

3
4
5
6

P

5
5
5
5

^exp

28
28
28
28

TFMM

0.18
1.9
20
175

Tdir

0.20
20.1

(1461)
(82475)

Error

4.5 x 10"3

7.6 x 10-3

7.0 x 10"3

1.3 x 10"2

Table 2. Timing results for the FMM using ninth-order expansions and 109
exponential basis functions

N

2000
10000
80000

Levels

3
4
5

P

9
9
9

p

109
109
109

TFMM

1.4
7.9
111

Tdir

3.37
83

(5838)

1
3
4

Error

Ax
.6x
.1 X

10"4

io-4

10"4

Table 3. Timing results for the FMM using eighteenth-order expansions
and 558 exponential basis functions

Tdir Error

13.4 1.1 x 10"7

(567) 1.5 x 10"7

(20100) 1.9 x 10-7

N

4000
25000

150000

Levels

3
4
5

P

18
18
18

'-'exp

558
558
558

J-FM

8.3
68
495

Table 4. Timing results for the FMM using thirtieth-order expansions and
1751 exponential basis functions

N I Levels p 5e xp TFMM Tdir Error

5000
50000

30 1751
30 1751

22
316

20.8 6.2 x 10"12

(2280) 6.2 x 10"12
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10. Extensions and generalizations

The scheme presented in this paper is not adaptive and assumes that the
distribution of points is reasonably uniform in space. In order to handle
more general distributions, one needs to allow some regions to be subdivided
into finer refinement levels than others. Adaptive structures of this type
have been designed by several groups (Carrier et al. 1988, Van Dommelen
and Rundensteiner 1989, Nabors et al. 1994) and we are in the process of
incorporating these structures into the new FMM.

While a number of techniques now exist for high-frequency scattering
problems (Rokhlin 1988, 1990, 1993, Canning 1989, 1992, 1993, Coifman
and Meyer 1991, Bradie et al. 1993, Coifman et al. 1993, 1994, Wagner
and Chew 1994, Epton and Dembart 1995), an important generalization of
the algorithm of this paper is to the calculation of potentials governed by
the Helmholtz equation at low frequency. By this we mean an environment
in which the region of interest is no more than a few wavelengths in size,
but contains a large number of discretization points (for example, due to the
complexity of some structure being modelled). Algorithms for such problems
are currently being designed.

11. Conclusions

A new version of the FMM has been developed. It is based on a new diag-
onal form for translation operators, and is significantly faster than previous
implementations at any desired level of precision. Of particular interest is
the fact that high precision calculations have been brought within practical
reach.
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12. Tables: quadrature weights and nodes
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Table 5. Columns 1 and 2 contain the nine weights and nodes needed for
discretization of the outer integral in (7.2) at three-digit accuracy. Column
3 contains the number of discretization points needed in the inner integral,
which we denote by M(k)

Node

0.09927399673971
0.47725674637049
1.05533661382183
1.76759343354008
2.57342629351471
3.44824339201583
4.37680983554726
5.34895757205460
6.35765785313375

Weight

0.24776441819008
0.49188566500464
0.65378749137677
0.76433038408784
0.84376180565628
0.90445883985098
0.95378613136833
0.99670261613218
1.10429422730252

M{k)

4
7
11
15
20
20
24
7
1
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Table 6. Columns 1 and 2 contain the eighteen weights and nodes for
discretization of the outer integral in (7.2) at six-digit accuracy. Column 3
contains the number of discretization points needed in the inner integral,
which we denote by M(k)

Node Weight

0.05278852766117
0.26949859838931
0.63220353174689
1.11307564277608
1.68939496140213
2.34376200469530
3.06269982907806
3.83562941265296
4.65424734321562
5.51209386593581
6.40421268377278
7.32688001906175
8.27740099258238
9.25397180602489
10.25560272374640
11.28208829787774
12.33406790967692
13.41492024017240

M(k)

0.13438265914335 5
0.29457752727395 8
0.42607819361148 12
0.53189220776549 16
0.61787306245538 20
0.68863156078905 25
0.74749099381426 29
0.79699192718599 34
0.83917454386997 38
0.87570092283745 43
0.90792943590067 47
0.93698393742461 51
0.96382546688788 56
0.98932985769673 59
1.01438284597917 59
1.04003654374165 51
1.06815489269567 4
1.10907580975537 1
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Table 7. Columns 1 and 2 contain the thirty weights and nodes for
discretization of the outer integral in (7.2) at ten-digit accuracy. Column 3
contains the number of discretization points needed in the inner integral,
which we denote by M{k)

Node Weight

0.03239542384523
0.16861844033714
0.40611377169029
0.73466473057596
1.14340561998398
1.62232408412252
2.16276138867422
2.75739199003682
3.40002470112078
4.08539104793552
4.80897515497095
5.56688915983444
6.35578243654166
7.17277232990713
8.01538803542112
8.88152313049502
9.76939480982937
10.67750922034750
11.60463289992789
12.54977061299652
13.51215012257297
14.49121482655196
15.48662587630224
16.49827659770404
17.52632405530625
18.57124579700721
19.63393428118300
20.71585163675095
21.81939113866225
22.95080495008893

M{k)

0.08289159611006 7
0.18838810673274 10
0.28485143005306 14
0.37041553715895 18
0.44539043894975 22
0.51100452150290 26
0.56865283856139 30
0.61958013174010 35
0.66481004321965 39
0.70517204769960 43
0.74134967169016 48
0.77392103530415 53
0.80338600122756 57
0.83018277269650 62
0.85469824839953 66
0.87727539085565 71
0.89821948245755 76
0.91780416582368 80
0.93627766216629 85
0.95386940504388 89
0.97079739700556 94
0.98727684670885 97
1.00353112433459 103
1.01980697905712 107
1.03639774457222 110
1.05368191266322 112
1.07219343903929 108
1.09278318162014 84
1.11737373706779 4
1.15786184931141 1



266 L. GREENGARD AND V. ROKHLIN

REFERENCES

B. K. Alpert and V. Rokhlin (1991), 'A fast algorithm for the evaluation of Legendre
expansions', SIAM J. Sci. Statist. Comput. 12, 158-179.

B. K. Alpert, G. Beylkin, R. Coifman and V. Rokhlin (1993), 'Wavelet-like bases
for the fast solution of second-kind integral equations', SIAM J. Sci. Statist.
Comput. 14, 159-184.

C. R. Anderson (1986), 'A method of local corrections for computing the velocity
field due to a distribution of vortex blobs', J. Comput. Phys. 62, 111-123.

C. R. Anderson (1992), 'An implementation of the fast multipole method without
multipoles', SIAM J. Sci. Statist. Comput. 13, 923-947.

A. W. Appel (1985), 'An efficient program for many-body simulation', SIAM J. Sci.
Statist. Comput. 6, 85-103.

J. Barnes and P. Hut (1986), 'A hierarchical O(N log N) force-calculation algorithm',
Nature 324, 446-449.

L. Berman (1995), 'Grid-multipole calculations', SIAM J. Sci. Comput. 16, 1082-
1091.

G. Beylkin, R. Coifman and V. Rokhlin (1991), 'Fast wavelet transforms and nu-
merical algorithms I', Comm. Pure Appl. Math. 44, 141-183.

L. C. Biedenharn and J. D. Louck (1981), Angular Momentum in Quantum Physics:
Theory and Application, Addison Wesley, London.

J.A. Board, J. W. Causey, J. F. Leathrum, A. Windemuth and K. Schulten (1992),
'Accelerated molecular dynamics simulation with the parallel fast multipole
method', Chem. Phys. Let. 198, 89-94.

B. Bradie, R. Coifman and A. Grossmann (1993), 'Fast numerical computations of
oscillatory integrals related to acoustic scattering, I', Appl. Comput. Harm.
Anal. 1, 94-99.

A. Brandt (1991), 'Multilevel computations of integral transforms and particle in-
teractions with oscillatory kernels', Comp. Phys. Comm. 65, 24-38.

A. Brandt and A. A. Lubrecht (1990), 'Multilevel matrix multiplication and fast
solution of integral equations', J. Comput. Phys. 90, 348-370.

F. X. Canning (1989), 'Reducing moment method storage from order N2 to order
N\ Electron. Let. 25, 1274-1275.

F. X. Canning (1992), 'Sparse approximation for solving integral equations with
oscillatory kernels', SIAM J. Sci. Statist. Comput. 13, 71-87.

F. X. Canning (1993), 'Improved impedance matrix localization method', IEEE
Trans. Antennas and Propagation 41, 658-667.

J. Carrier, L. Greengard and V. Rokhlin (1988), 'A fast adaptive multipole algorithm
for particle simulations', SIAM J. Sci. Statist. Comput. 9, 669-686.

R. Coifman and Y. Meyer (1991), 'Remarques sur 1'analyse de Fourier a fenetre', C.
R. Acad. Sci. Paris 312, Serie 1, 259-261.

R. Coifman, V. Rokhlin and S. Wandzura (1993), 'The fast multipole method for the
wave equation: a pedestrian prescription', IEEE Antennas and Propagation
Mag. 35, 7-12.

R. Coifman, V. Rokhlin and S. Wandzura (1994), 'Faster single-stage Multipole
Method for the wave equation', 10th Annual Review of Progress in Applied
Computational Electromagnetics, Vol. 1, pp. 19-24, Monterey, CA, Applied
Computational Electromagnetics Society.



NEW FMM IN THREE DIMENSIONS 267

G. Dahlquist and A. Bjork (1974), Numerical Methods Prentice-Hall, Englewood
Cliffs, NJ.

H.-Q. Ding, N. Karasawa and W. A. Goddard, III (1992), 'Atomic level simulations
on a million particles: The Cell Multipole Method for Coulomb and London
nonbond interactions, J. Chem. Phys. 97, 4309-4315.

W. D. Elliott and J.A. Board (1996), 'Fast Fourier Transform accelerated fast mul-
tipole algorithm', SIAM J. Sci. Comput. 17, 398-415.

M. A. Epton and B. Dembart (1995), 'Multipole translation theory for three-
dimensional Laplace and Helmholtz equations', SIAM J. Sci. Comput. 16,
865-897.

A. Greenbaum, L. Greengard and G. B. McFadden (1993), 'Laplace's equation and
the Dirichlet-Neumann map in multiply connected domains', J. Comput.
Phys. 105, 267-278.

L. Greengard (1988), The Rapid Evaluation of Potential Fields in Particle Systems,
MIT Press, Cambridge, MA.

L. Greengard (1990), 'The numerical solution of the TV-body problem', Computers
in Physics 4, 142-152.

L. Greengard (1994), 'Fast algorithms for classical physics', Science 265, 909-914.
L. Greengard and J.-Y. Lee (1996), 'A direct adaptive Poisson solver of arbitrary

order accuracy', J. Comput. Phys. 125, 415-424.
L. Greengard and M. Moura (1994), 'On the numerical evaluation of electrostatic

fields in composite materials', in Ada Numerica, Vol. 3, Cambridge University
Press, pp. 379-410.

L. Greengard and V. Rokhlin (1987), 'A fast algorithm for particle simulations', J.
Comput. Phys. 73, 325-348.

L. Greengard and V. Rokhlin (1988a), 'Rapid evaluation of potential fields in three
dimensions', in Vortex Methods, C. Anderson and C. Greengard (eds.), Lecture
Notes in Mathematics, vol. 1360, Springer, 121-141.

L. Greengard and V. Rokhlin (19886), 'On the efficient implementation of the fast
multipole algorithm', Department of Computer Science Research Report 602,
Yale University.

L. Greengard and V. Rokhlin (1989), 'On the evaluation of electrostatic interactions
in molecular modeling', Chemica Scripta 29A, 139-144.

L. Greengard and J. Strain (1991), 'The fast Gauss transform', SIAM J. Sci. Statist.
Comput. 12, 79-94.

L. Greengard, M. C. Kropinski and A. Mayo (1996), 'Integral equation methods for
Stokes flow and isotropic elasticity', J. Comput. Phys. 125, 403-414.

M. Gu and S. C. Eisenstat (1992), 'A divide-and-conquer algorithm for the symmetric
tridiagonal eigenproblem', Department of Computer Science Research Report
932, Yale University.

W. Hackbusch and Z. P. Nowak (1989), 'On the fast matrix multiplication in the
boundary element method by panel clustering', Numer. Math. 54, 463-491.

E. W. Hobson (1955), Spherical and Ellipsoidal Harmonics, Dover, New York.
R. W. Hockney and J. W. Eastwood (1981), Computer Simulation Using Particles,

McGraw-Hill, New York.



268 L. GREENGARD AND V. ROKHLIN

T. Hrycak and V. Rokhlin (1995), 'An improved fast multipole algorithm for po-
tential fields', Department of Computer Science Research Report 1089, Yale
University.

J. D. Jackson (1975), Classical Electrodynamics, Wiley, New York.
O. D. Kellogg (1953), Foundations of Potential Theory, Dover, New York.
P. M. Morse and H. Feshbach (1953), Methods of Theoretical Physics, McGraw-Hill,

New York.
K. Nabors and J. White (1991), 'FastCap: a multipole accelerated 3-D capacitance

extraction program', IEEE Trans. Computer-Aided Design 10, 1447-1459.
K. Nabors and J. White (1992), 'Multipole-accelerated capacitance extraction al-

gorithms for 3-D structures with multiple dielectrics', IEEE Trans. Circuits
and Systems 39, 946-954.

K. Nabors, F. T. Korsmeyer, F. T. Leighton and J. White (1994), 'Preconditioned,
adaptive, multipole-accelerated iterative methods for three-dimensional first-
kind integral equations of potential theory', SIAM J. Sci. Statist. Comput.
15, 714-735.

A. M. Odlyzko and A. Schonhage (1988), 'Fast algorithms for multiple evaluations
of the Riemann zeta function', Trans. Amer. Math. Soc. 309, 797-809.

H. G. Petersen, E. R. Smith and D. Soelvason (1995), 'Error estimates for the fast
multipole method. II . The three-dimensional case', Proc. R. Soc. London,
Series A 448, 401-418.

V. Rokhlin (1985), 'Rapid solution of integral equations of classical potential theory',
J. Comput. Phys. 60, 187-207.

V. Rokhlin (1988), 'A fast algorithm for the discrete Laplace transformation', J.
Complexity 4, 12-32.

V. Rokhlin (1990a), 'End-point corrected trapezoidal quadrature rules for singular
functions', Computers Math. Applic. 20, 51-62.

V. Rokhlin (19906), 'Rapid solution of integral equations of scattering theory in two
dimensions', J. Comput. Phys. 86, 414-439.

V. Rokhlin (1993), 'Diagonal forms of translation operators for the Helmholtz equa-
tion in three dimensions', Appl. Comput. Harm. Anal. 1, 82-93.

V. Rokhlin (1995), 'Sparse diagonal forms of translation operators for the Helmholtz
equation in two dimensions, Department of Computer Science Research Report
1095, Yale University.

J. M. Song and W. C. Chew (1995), 'Multilevel fast multipole algorithm for solving
combined field integral equations of electromagnetic scattering', Microwave
and Opt. Technol. Letters 10 14-19.

J. Strain (1991), 'The Fast Gauss Transform with variable scales', SIAM J. Sci.
Statist. Comput. 12, 1131-1139.

J. Strain (1992), 'The Fast Laplace Transform based on Laguerre functions', Math.
Comp. 58, 275-283.

L. Van Dommelen and E. A. Rundensteiner (1989), 'Fast, adaptive summation of
point forces in the two-dimensional Poisson equation', J. Comput. Phys. 83,
126-147.

P. R. Wallace (1984), Mathematical Analysis of Physical Problems, Dover, New York.
R. L. Wagner and W. C. Chew (1994), 'A ray-propagation fast multipole algorithm',

Microwave and Opt. Technol. Letters 7 348-351.



NEW FMM IN THREE DIMENSIONS 269

R. L. Wagner and W. C. Chew (1995), 'A study of wavelets for the solution of
electromagnetic integral equations', IEEE Antennas Propag. 43 802-810.

H. Y. Wang and R. LeSar (1995), 'An efficient fast-multipole algorithm based on an
expansion in the solid harmonics', J. Chem. Phys. 104, 4173-4179.

G. N. Watson (1944), A Treatise on the Theory of Bessel Functions, Cambridge
University Press.

N. Yarvin and V. Rokhlin (1996), 'Generalized Gaussian quadratures and singular
value decompositions of integral operators', Department of Computer Science
Research Report 1109, Yale University.



Acta Numerica (1997), pp. 271-397 © Cambridge University Press, 1997

Lanczos-type solvers for nonsymmetric
linear systems of equations

Martin H. Gutknecht
Swiss Center for Scientific Computing

ETH-Zentrum, CH-8092 Zurich, Switzerland
E-mail: mhg@scsc.ethz.ch

Among the iterative methods for solving large linear systems with a sparse
(or, possibly, structured) nonsymmetric matrix, those that are based on the
Lanczos process feature short recurrences for the generation of the Krylov
space. This means low cost and low memory requirement. This review article
introduces the reader not only to the basic forms of the Lanczos process and
some of the related theory, but also describes in detail a number of solvers that
are based on it, including those that are considered to be the most efficient
ones. Possible breakdowns of the algorithms and ways to cure them by look-
ahead are also discussed.
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1. Introduction

The task of solving huge sparse systems of linear equations comes up in
many if not most large-scale problems of scientific computing. In fact, if
tasks were judged according to hours spent on them on high-performance
computers, the one of solving linear systems might be by far the most im-
portant one. There are two types of approach: direct methods, which are
basically ingenious variations of Gaussian elimination, and iterative ones,
which come in many flavours. The latter are the clear winners when we
have to solve equations arising from the discretization of three-dimensional
partial differential equations, while for two-dimensional problems none of
the two approaches can claim to be superior in general.

Among the many existing iterative methods, those based on the Lanczos
process - and we consider the conjugate gradient (CG) method to be in-
cluded in this class - are definitely among the most effective ones. For
symmetric positive definite systems, CG is normally the best choice, and



LANCZOS-TYPE SOLVERS 273

arguments among users are restricted to which preconditioning technique to
use and whether it is worthwhile, or even necessary, to combine the method
with other techniques such as domain decomposition or multigrid.

For nonsymmetric (or, more correctly, non-Hermitian) systems it would
be hard to make a generally accepted recommendation. There are dozens
of algorithms that are generalizations of CG or are at least related to it.
They fall basically into two classes: (i) methods based on orthogonalization,
many of which feature a minimality property of the residuals with respect
to some norm, but have to make use of long recurrences involving all pre-
viously found iterates and residuals (or direction vectors), unless truncated
or restarted, in which case the optimality is lost; and (ii) methods based
on biorthogonalization (or, duality) that feature short recurrences and a
competitive speed of convergence. It is the latter class that is the topic of
this article. The gain in memory requirement and computational effort that
comes from short recurrences is often crucial for making a problem solv-
able. While computers get faster and memory cheaper, users turn to bigger
problems, so that efficient methods become more rather than less important.

The application of recursive biorthogonalization to the numerical solu-
tion of eigenvalue problems and linear systems goes back to Lanczos (1950,
1952) and is therefore referred to as the Lanczos process. In its basic form,
the process generates a pair of biorthogonal (or, dual) bases for a pair of
Krylov spaces, one generated by the coefficient matrix A and the other by
its Hermitian transpose or adjoint A* . This process features a three-term
recurrence and is here called Lanczos biorthogonalization or BlO algorithm
(see Section 2). A variation of it, described in the second Lanczos paper,
applies instead a pair of coupled two-term recurrences and is here referred
to as BlOC algorithm, because it produces additionally a second pair of
biconjugate bases (see Section 7). Both these algorithms can be applied for
solving a linear system Ax = b or for finding a part of the spectrum of
A. For the eigenvalue problem it has so far been standard to use the BlO
algorithm, but there are indications that this may change in the future (see
the comments in Section 7).

The emphasis here is neither on eigenvalue problems nor on symmetric
linear systems, but on solving nonsymmetric systems. Although the determ-
ination of eigenvalues is based on the same process, its application to this
problem has a different flavour and is well known for additional numerical
difficulties. Moreover, for the eigenvalue problem, the spectrum of a tridiag-
onal matrix has to be determined in a postprocessing step. For generality,
our formulations include complex systems, although the methods are mainly
applied to real data.

For symmetric positive definite systems, the Lanczos process is equival-
ent to the conjugate gradient (CG) method of Hestenes and Stiefel (1952),
which has been well understood for a long time and is widely treated in the
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literature. Related algorithms for indefinite symmetric systems are also well
known. Therefore, we can concentrate on the nonsymmetric case.

For an annotated bibliography of the early work on the CG and the
Lanczos methods we refer to Golub and O'Leary (1989). The two Lanczos
papers are briefly reviewed in Stewart (1994).

There are several ways of solving linear systems iteratively with the Lan-
czos process. Like any other Krylov space method, the Lanczos process
generates a nested sequence of Krylov subspaces1 Kn: at each step, the
so far created basis {yo,... ,yn_i }  is augmented by a new (right) Lanczos
vector yn that is a linear combination of Ay n_i and the old basis. The
starting vector yo is the residual of some initial approximation xo, that is,
yo := b —Axo. The nth approximation xn (the nth 'iterate') is then chosen
to have a representation

n

xn = x0 + Yl yjKo so t n at xn - x0 G K.n. (1.1)
3=0

This is what characterizes a Krylov space solver. Note, however, that the
algorithms to be discussed will not make use of this representation since it
would require us to store the whole Krylov space basis. It is a feature of
all competitive Lanczos-type solvers that the iterates can be obtained with
short recurrences.

The Lanczos process is special in that it generates two nested sequences of
Krylov spaces, one, {/Cn} , from A and some yo, the other, {Kn} from A* and
some yo- The iterates of the classical Lanczos-type solver, the biconjugate
gradient (BlCG) method, are then characterized by K.n _L rn, where rn :=
b — Axn is the nth residual.

In the 'symmetric case', when A is Hermitian and yo = yo> so that Kn =
Kn (for all n), this orthogonality condition is a Galerkin condition, and the
method reduces to the conjugate gradient (CG) method, which is known to
minimize the error in the A-norm when the matrix is positive definite. Of
course, the minimization is subject to the condition (1.1). By replacing in
the symmetric case the orthogonality by A-orthogonality, that is, imposing
Kn _L Arn, we obtain the conjugate residual (CR) or minimum residual
method - a particular algorithm due to Paige and Saunders (1975) is called
MINRES, see Section 5 - with the property that the residual is minimized.
As a consequence, the norm of the residuals decreases monotonically.

For non-Hermitian matrices A the two Krylov spaces are different, and
K,n J_ rn becomes a Petrov-Galerkin condition. In the BlCG method the
short recurrences of CG and CR survive, but, unfortunately, the error and
residual minimization properties are lost. In fact, in practice the norm of

1 Throughout the paper we refer for simplicity mostly to Krylov spaces, not subspaces,
as do many other authors.
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the residuals sometimes increases suddenly by orders of magnitude, but also
reduces soon after to the previous level. This is referred to as a peak in
the residual norm plot, and when this happens several times in an example,
BiCG is said to have an erratic convergence behaviour.

There are two good ways to achieve a smoother residual norm plot of
BiCG. First, one can pipe the iterates xn and the residuals rn of BiCG
through a simple smoothing process that determines smoothed iterates xn

and rn according to

xn := xn_i(l - 0n) + xn9n, rn := rn_i( l - 0n) + rn0n,

where 9n is chosen such that the 2-norm of rn is as small as possible. This
simple recursive weighting process is very effective. It was proposed by
Schonauer (1987) and further investigated by Weiss (1990). Now it is re-
ferred to as minimal residual (MR) smoothing; we will discuss it in Sec-
tion 17.

An alternative is the quasi-minimal residual (QMR) method of Freund
and Nachtigal (1991), which does not use the BiCG iterates directly, but
only the basis {yj}  of JCn that is generated by the Lanczos process. The
basic idea is to determine iterates xn so that the coordinate vector of their
residual with respect to the Lanczos basis has minimum length. This turns
out to be a least squares problem with an (n + 1) x n tridiagonal matrix,
the same problem as in MINRES; see Section 5.

QMR can also be understood as a harmonic mean smoothing process
for the residual norm plot, and therefore, theoretically, neither QMR nor
MR smoothing can really speed up the convergence considerably. In prac-
tice, however, it often happens that straightforward implementations of the
BiCG method converge more slowly than a carefully implemented QMR
algorithm (or not at all).

At this point we should add that there are various ways to realize the
BiCG method (see Sections 4, 8 9), and that they all allow us to com-
bine it with a smoothing process. In theory, the various algorithms are
mathematically nearly equivalent, but with respect to round-off they differ.
And round-off is indeed a serious problem for all Lanczos process based al-
gorithms with short recurrences: when building up the dual bases we only
enforce the orthogonality to the two previous vectors; the orthogonality to
the earlier vectors is inherited and, with time, is more and more lost due to
round-off. We will discuss this and other issues of finite precision arithmetic
briefly in Section 18.

In contrast to smoothing, an idea due to Sonneveld (1989) really increases
the speed of convergence. At once, it eliminates the following two disad-
vantages of the nonsymmetric Lanczos process: first, in addition to the
subroutine for the product Ax that is required by all Krylov space solv-
ers, BiCG also needs one for A*x; second, each step of BiCG increases
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the dimension of both K,n and Kn by one and, naturally, needs two matrix-
vector multiplications to do so, but only one of them helps to reduce the
approximation error by increasing the dimension of the approximation space.
To explain Sonneveld's idea we note that every vector in the Krylov space
Kn+i  has a representation of the form pn(A)yo with a polynomial of degree
at most n. In the standard version of the BlCG method, the basis vectors
generated are linked by this polynomial:

yn = Pn(A)y0, yn = pn(A*)y0.

Here, the bar denotes complex conjugation of the coefficients. Since yn

happens to be the residual rn of xn, pn is actually the residual polynomial.
Sonneveld found with his conjugate gradient squared (CGS) algorithm a
method where the nth residual is instead given by rn = p^(A)yo G K.2n-
Per step it increases the Krylov space by two dimensions. Moreover, the
transpose or adjoint matrix is no longer needed. In practice, the conver-
gence is indeed typically nearly twice as fast as for BlCG, and thus also in
terms of matrix-vector multiplications the method is nearly twice as effect-
ive. However, it turns out that the convergence is even more erratic. We
wil l refer to this method more appropriately as biconjugate gradient squared
(BlCGS) method and treat various forms of it in Section 14.

To get smoother convergence, van der Vorst (1992) modified the ap-
proach in his B I C G S T AB algorithm by choosing residuals of the form rn =
pn(A)tn(A)yo G K.2n, where the polynomials tn are built up in factored form,
with a new zero being added in each step in such a way that the residual
undergoes a one-dimensional minimization process. This method was soon
enhanced further and became the germ of a group of methods that one might
call the B I C G S T AB family. It includes B I C G S T A B2 with two-dimensional
minimization every other step, and the more general B ICGSTAB(^) with £-
dimensional minimization after a compound step that costs 2£ matrix-vector
products and increases the dimension of the Krylov space by 2£. The B I C G-

STAB family is a subset of an even larger class, the Lanczos-type product
methods (LTPMs), which are characterized by residual polynomials that are
products of a Lanczos polynomial pn and another polynomial tn of the same
degree. All LTPMs are transpose-free and gain one dimension of the Krylov
space per matrix-vector multiplication. Basically an infinite number of such
methods exist, but it is not so easy to find one that can outperform, say,
B I C G S T A B 2. One that seems to be slightly better is based on the same
idea as B I C G S T A B2 and, in fact, requires only the modification of a single
condition in the code. We call it BiCGxMR2. It does a two-dimensional
minimization in each step. LTPMs in general and the examples mentioned
here are discussed in Section 16.

Another good idea is to apply the QMR approach suitably to BlCGS.
The resulting transpose-free QMR (TFQMR) algorithm of Freund (1993)
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can compete in efficiency with the best LTPMs; we treat it in Section 15. It
is also possible to apply the QMR approach to LTPMs; see the introduction
of Section 16 for references.

A disadvantage of Krylov space methods based on the Lanczos process
is that they can break down for several reasons (even in exact arithmetic).
Particularly troublesome are the 'serious' Lanczos breakdowns that occur
when

(yn,yn)=0, but y n ^ ° , y n ^ o.

Though true ('exact') breakdowns are extremely unlikely (except in con-
trived or specially structured examples), near-breakdowns can be (but need
not be) the cause for an interruption or a slow-down of the convergence.
These breakdowns were surely among the reasons why the BiCG method
was rarely used over decades. However, as problem sizes grew, it became
more and more important to have a method with short recurrences. Fortu-
nately, it turned out that there is a mathematically correct way to circum-
vent both exact and near-breakdowns. The first to come up with such a
procedure for the BiO algorithm for eigenvalue computations were Parlett,
Taylor and Liu (1985), who also coined the term 'look-ahead'. In their view,
this was a generalization of the two-sided Gram-Schmidt algorithm. In 1988
look-ahead was rediscovered by Gutknecht from a completely different per-
spective: for him, look-ahead was a translation of general recurrences in the
Pade table, and a realization of what Gragg (1974) had indicated in a few
lines long before. Although classical Pade and continued fraction theory
put no emphasis on singular cases, the recurrences for what corresponds
to an exact breakdown had been known for a long time. Moreover, it was
possible to generalize them in order to treat near-breakdowns. This theory
and the application to several versions of the BiCG method are compiled
in Gutknecht (1992, 1994a). The careful implementation and the numerical
tests of Freund, Gutknecht and Nachtigal (1993) ultimately proved, that all
this can be turned into robust and efficient algorithms. Many other authors
have also contributed to look-ahead Lanczos algorithms; see our references
in Section 19. Moreover, the basic idea can be adapted to many other related
recurrences in numerical analysis.

Here, we describe in Section 3 in detail the various ways in which the
BiO algorithm can break down or terminate. Throughout the manuscript
we then point out under which conditions the other algorithms break down.
Although breakdowns are rare, knowing where and why they occur is im-
portant for learning how to avoid them and for gaining a full understanding
of Lanczos-type algorithms. Quality software should be able to cope with
breakdowns, or at least indicate to the user when a critical situation occurs.
Seemingly, we only indicate exact breakdowns, but, of course, to include
near-breakdowns the conditions '= o' and '= 0' just have to be replaced
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by other appropriate conditions. In practice, however, the question of what
'appropriate' means is not always so easy to answer. It is briefly touched on
in Section 19.

The derivations of the look-ahead BlO and BlOC algorithms we present
are based on the interpretation as two-sided Gram-Schmidt process. The
algorithms themselves are improved versions with reduced memory require-
ment. The look-ahead BlO algorithm makes use of a trick hidden in Freund
and Zha (1993) and pointed out in Hochbruck (1996). We establish this
simplification in a few lines, making use of a result from Gutknecht (1992).
For the look-ahead BlOC algorithm the simplification is due to Hochbruck
(1996), but also proved here in a different way.

We give many pointers to the vast literature on Krylov space solvers
based on the Lanczos process, but treating all the algorithms proposed is far
beyond our scope. In fact, this literature has grown so much in the last few
years that we have even had to limit the number of references. Moreover,
there must exist papers we are unaware of. Our intention is mainly to give
an easy introduction to the nonsymmetric Lanczos process and some of the
linear system solvers based on it. We have tried in particular to explain the
underlying ideas and to make clear the limitations and difficulties of this
family of methods. We have chosen to treat those algorithms that we think
are important for understanding, as well as those we think are among the
most effective.

There are many aspects that are not covered or only briefly referred to.
First of all, the important question of convergence and its deterioration due
to numerical effects is touched on only superficially. Also, we do not give
any numerical results, since giving a representative set would have required
considerable time and space. In fact, while straightforward implementation
of the algorithms requires littl e work, we believe that the production of
quality software taking into account some of the possible enhancements we
mention in Section 18 - not to speak of the look-ahead option that should be
included - requires considerable effort. Testing and evaluating such software
is not easy either, as simple examples do not show the effects of the enhance-
ments, while complicated ones make it difficult to link causes and effects. To
our knowledge, the best available software is Freund and Nachtigal's QM-
RPACK, which is freely available from NETLIB, but is restricted to various
forms of the QMR and TFQMR methods; see Freund and Nachtigal (1996).

While we are aware that in practice preconditioning can improve the con-
vergence of an iterative method dramatically and can reduce the overall
costs, we describe only briefly in Section 11 how preconditioners can be in-
tegrated into the algorithms, but not how they are found. For a survey of
preconditioning techniques we refer, for example, to Saad (1996).

Also among the things we skip are the adaptations of the Lanczos method
to systems with multiple right-hand sides. Recent work includes Aliaga,
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Hernandez and Boley (1994) and Freund and Malhotra (1997), which is
an extension of Ruhe's band Lanczos algorithm (Ruhe 1979) blended with
QMR.

The Lanczos process is closely linked to other topics with the same math-
ematical background, in particular, formal orthogonal polynomials, Pade
approximation, continued fractions, the recursive solution of linear systems
with Hankel matrix, and the partial realization problem of system theory.
We discuss formal orthogonal polynomials (FOPs) briefly in Section 12, but
the other topics are not touched on. For the Pade connection, which is very
helpful for understanding breakdowns and the look-ahead approach to cure
them, we refer to Gutknecht (19946) for a simple treatment. The relation-
ship is described in much more detail and capitalized upon in Gutknecht
(1992, 1994a), where Lanczos look-ahead for both the BlO and the BlOC
process was introduced based on this connection. The relations between vari-
ous look-ahead recurrences in the Pade table and variations of look-ahead
Lanczos algorithms are also a topic of Hochbruck (1996). A fast Hankel
solver based on look-ahead Lanczos was worked out in detail in Freund and
Zha (1993). For the connection to the partial realization problem; see Boley
(1994), Boley and Golub (1991), Golub, Kagstrom and Van Dooren (1992),
and Parlett (1992).

In the wider neighbourhood of the Lanczos process we also find the Eu-
clidean algorithm, Gauss quadrature, the matrix moment problem and its
modified form, certain extrapolation methods, and the interpretation of con-
jugate direction methods as a special form of Gauss elimination. But these
subjects are not treated here.

A preliminary version of a few sections of this overview was presented as an
invited talk at the Copper Mountain Conference on Iterative Methods 1990
and was printed in the Preliminary Proceedings distributed at the conference.
The present Section 14 (plus some additional material) was made available
on separate sheets at that conference. We refer here to these two sources as
Gutknecht (1990).

Notation
Matrices and vectors are denoted by upper and lower case boldface letters.
In particular, O and o are the zero matrix and vector, respectively. The
transpose of A is AT; its conjugate transpose is A* . Blocks of block vec-
tors and matrices are sometimes printed in roman instead of boldface. For
coefficients and other scalars we normally choose lower case Greek letters.
However, for polynomials (and some function values) we use lower case ro-
man letters. Sets are denoted by calligraphic letters; for instance, Vn is the
set of polynomials of degree at most n.
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We write scalars on the right-hand side of vectors, for instance xa, so
that this product becomes a special case of matrix multiplication2. The
inner product in C^ is assumed to be defined by (x,y) := x*y, so that
(xa,y/3) = a(3(x,y). The symbol := is used both for definitions and for
algorithmic assignments.

To achieve a uniform nomenclature for the methods and algorithms we
consider, we have modified some of the denominations used by other authors
(but we also refer to the original name if the identity is not apparent). We
hope that this will help readers to find their way in the maze of Lanczos-type
solvers.

2. The unsymmetric Lanczos or  BiO algorithm

In this section we describe the basic nonsymmetric Lanczos process that
generates a pair of biorthogonal vector sequences. These define a pair of
nested sequences of Krylov spaces, one generated by the given matrix or
operator A, the other by its Hermitian transpose A*. The Lanczos algorithm
is based on a successive extension of these two spaces, coupled with a two-
sided Gram-Schmidt process for the construction of dual bases for them.
The recurrence coefficients are the elements of a tridiagonal matrix that is,
in theory, similar to A if the algorithm does not stop early. In the next
section we will discuss the various ways in which the process can terminate
or break down.

2.1. Derivation of the BiO algorithm

Let A € CNxN be any real or complex N x N matrix, and let B be a
nonsingular matrix that commutes with A and is used to define the formal
(i.e., not necessarily symmetric definite) inner product (y,y)B : = y*By
on C^ x C^. Orthogonality will usually be referred to with respect to
this formal inner product. For simplicity, we do not call it B-orthogonality,
except when this inaccuracy becomes misleading. However, we are mostly
interested in the case where B is the identity I and thus (y, y)B is the
ordinary Euclidean inner product of C^. The case B = A will also play a
role. Due to AB = BA we will have (y, Ay)s = (A*y, y)s  Finally, we
let yo, yo £ CN be two non-orthogonal initial vectors: (yo,yo)B ¥" 0-

The Lanczos biorthogonalization (BiO) algorithm, called method of min-
imized iterations by Lanczos (1950, 1952), but often referred to as the un-
symmetric or two-sided Lanczos algorithm, is a process for generating two
finite sequences {yn}n=o an<^ {yn}n=oi whose length v depends on A, B,

2 To see the rationale, think of the case where a turns out to be an inner product or
where we generalize to block algorithms and a becomes a block of a vector.
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yo, and yo, such that, for m, n = 0 , 1 , . . ., v — 1,

y n € K.n+i := span (y0, A y 0 , . . ., A"y 0) ,
(2.1)

 span (y0, A*yo,.. ., (A*) my0)

and
) if

= n. ( 2'2)

Kn and JCm are Krylov (sub)spaces of A and A*, respectively. The condition
(2.2) means that the sequences are biorthogonal. Their elements yn and ym

are called right and left Lanczos vectors, respectively. In view of (2.1) y^
and yn can be expressed as

yn=Pn(A)y0, yn=pn(A*)y 0, (2.3)

where pn and pn are polynomials of degree at most n into which A and A*
are substituted for the variable. We call pn the nth Lanczos polynomial^.
We will see in a moment that pn has exact degree n and that the sequence
{y m}  can be chosen such that pn = pn, where pn is the polynomial with the
complex conjugate coefficients. In the general case, pn will be seen to be a
scalar multiple of pn.

The biorthogonal sequences of Lanczos vectors are constructed by a two-
sided version of the well-known Gram-Schmidt process, but the latter is not
applied to the bases used in the definition (2.1), since these are normally very
ill-conditioned, that is, close to linearly dependent. Instead, the vectors that
are orthogonalized are of the form Ayn and A*y n; that is, they are created
in each step from the most recently constructed pair by multiplication with
A and A*, respectively.

The length v of the sequences is determined by the impossibility of ex-
tending them such that the conditions (2.1) and (2.2) still hold with 6n  ̂ 0.
We will discuss the various reasons for a termination or a breakdown of the
process below.

Clearly K.n+\ I> ICn, K.n+\  2 £n> and from (2.2) it follows that equality
cannot hold when n < v, since (y, yn)B = 0 for all y 6 K,n and (yn, Y)B = 0
for all y e Kn, or, briefly,

n, Yn J-B £n, (2.4)

but ICn+i JL-B yn, yn JLB /Cn+i . Consequently, for n = 1 , . . ., v - 1,

y n G K.n+i\K-n, yn G >Cn+i\JCn (2.5)

3 In classical analysis, depending on the normalization, the Lanczos polynomials are
called Hankel polynomials or Hadamard polynomials, the latter being monic (Henrici
1974).
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(where the backslash denotes the set-theoretic difference), and thus

/Cn+i = span(yo,y i , . . . ,yT l ) , £«+i = span (yo,y i ,  ,yn)- (2.6)

Note that the relation on the left of (2.4) is equivalent to yn J_B*  K-n, but
not to yn J_B K-m m general.

Prom (2.5) and (2.6) we conclude that for some complex constants Tk,n-i,
Tk,n-i {k = 0 , . . ., n; n = 1 , . . ., v - 1)

ynTn,n-i = A*y n_i — yn-iTn-i,n-i —  — y ^

where Tn^n-\  ̂ 0 and Tn,n-\  ̂ 0 can be chosen arbitrarily, for instance, for
normalizing yn and yn. The choice will of course affect the constants 6m

and the coefficients rn^m and Tn^m for m > n, but only in a transparent way.
For n = v, (2.7) can still be satisfied for any nonzero values of TVyV-\ and

Tv,v-i by some y^ *  £V a nd some yu J_B fcu, but these two vectors may
be orthogonal to each other, so that (2.2) does not hold. In particular, one
or even both may be the zero vector o. Nevertheless, (2.4) and (2.6)-(2.7)
also hold for n = v.

For n < v, let us introduce the N x n matrices

Y n := [ y0 yi  yn- i ], Yn := [ yo yi  yn- i ], (2.8)

the diagonal matrices

and the n x n Hessenberg matrices Tn :=
Then (2.2) and (2.7) become

= D6;i/ (2.9)

and

AY , = Y.TV + y ^ - i C , A*Y , = %fv + y ^ - i l j , (2-10)

where j n - \ := rHin_i and 7n_i := rniTl_i, and where 1̂  is the last row of
the n x n identity matrix, n < u. Using (2.9) and Kv J_B yv-, yv J-B K-v we
conclude further that

Y^BAY , = T>s.iVTv, Y*B*A*Y , = T>6;vTv, (2.11)

and hence

T>S.VTV = TfD6.v. (2.12)

Here, on the left-hand side we have a lower Hessenberg matrix, while on the
right-hand side there is an upper Hessenberg matrix. Consequently, both
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TV and TV must be tridiagonal. We simplify the notation by letting

Tn=:

QJO

7o

{30

71

Pi

a2

Pn-2
7n-2

and naming the elements of Tn analogously with tildes.
By comparing diagonal and off-diagonal elements on both sides of (2.12)

we obtain

an = On~ (2.13)

= 8nJn. (2.14)
and

Hence,

(2.15)

TV :=  TV. (2.16)

which could be satisfied by setting4

Pn  Pn, 7n == 7n, i-C

This would further allow us to set 7n := 1 (for all n) Another frequent choice
is

Pn-=Tn, 7n'-=K, *-e., TV := T*, (2.17)

which according to (2.14) yields 6n = 6Q for all n.
However, we want to keep the freedom to scale yn and yn, since most

algorithms that apply the Lanczos process for solving linear systems make
use of it. (As, for instance, the standard BlCG algorithm discussed in
Section 9 and the QMR approach of Section 5). Moreover, yn = 1 (for all n)
can cause overflow or underflow. In view of (2.14), we have in general

Pn = Pn = 7n<Wl/<Sn = Pnln/ln, (2.18)

in accordance with (2.15). The choice between (2.16) and (2.17), and more
generally, any choice that can be made to satisfy (2.14)-(2.15) only affects
the scaling (including the sign, or, in the complex case, the argument of all
components) of yn and yn. As we will see, it just leads to diagonal similarity
transformations of the matrices TV and TV.

4 By replacing the Euclidean inner product (y, y) = y*y by the bilinear form yTy, and
replacing A* by AT, we could avoid the complex conjugation of the coefficients of A
and of the recurrence coefficients; see, for instance, Preund et al. (1993). We prefer here
to use the standard inner product.
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After shifting the index n by 1, (2.7) can now be written as

= Ayn - ynan - yn-iPn-i,

= A*y n - ynan - yn-iPn-i,

n = 0,...,v — 1, with y_i := y_i := o, (3-\ := /3_i := 0. Taking inner
products of the first formula with y n - i , yn, and yn+i we get three relations
involving Sn+i,  6n, 6n-\, and the recurrence coefficients an, /3n_i, 7n. In par-
ticular, an = (yn, Ay n)B /6n and, as is seen by inserting A*y n_i according
to (2.19),

Pn-l = (yn-1, Ay n)B /^n-1 = (A*yn-l,yn)B /*n-l = 7n-l*n/*n-l (2-20)

as in (2.18). Since (2.13) and the second relation in (2.18) determine an and
/3n_i we are left with two degrees of freedom that can be used to fix two of
the three coefficients j n , j n , and 6n+i-  We just exploit here the fact that
the relations (2.9)-(2.11) can be used to determine Yj, , Yv, Tu, T^, and
lDs;v column by column. Altogether we get the following general version of
the unsymmetric Lanczos or biorthogonalization (BlO) algorithm.

ALGORITHM 1. (BiO ALGORITHM)

Choose yo, yo £ CN such that So :=  (yo, yo)B  ̂ 0, and set f3-\ :=  0. For
n = 0 , 1 , . .. compute

= {yn,Ayn)B/6n, (2.21a)

= a ^ (2.21b)

= 7^T<V<Sn-i (if n > 0), (2.21c)

= 7n-l<V<Sn-l = /?n-l7n-l/7n-l (if n > 0), (2.21d)Pn-l
y t emp := Ay n - ynan - yn_i/3n_i, (2.21e)

ytemp := A*y n - ynan - y n - i & - i , (2.21f)

(ytemp, ytemp)B; (2.21g)

if t̂emp = 0, choose 7n 7̂  0 and 7n ^ 0, set

v := n + 1, y^ := ytemP/7n, y^ ~ Ytemp/ln, <Wi := 0, (2.21h)

and stop; otherwise, choose 7n  ̂ 0, j n ̂  0, and <5n+i such that

inTntn+l = <5temP, (2.211)

set

yn+l := ytemp/7n, yn+1 : = ytemp/7n, (2.21J)

and proceed with the next step.

The definitions in (2.21h) will guarantee that formulae we derive below
remain valid for n = v.
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In exact arithmetic, which we assume throughout most of the text, the
following basic result holds.

Theorem 2.1 The two sequences {y n}^= o a nd {yn}n=o generated by the
BlO algorithm satisfy (2.1) and (2.2), and hence (2.4)-(2.5). Moreover,
(2.1) and (2.2) also hold when m — v or n = is, except that 6U = 0.

Conversely, if (2.1) and (2.2) hold for m, n = 0 , . . ., u, except that 8V = 0,
and if the choice (2.16) for satisfying (2.15) is made, then the recurrence
formulae of the BlO algorithm are valid for n = 0 , . . ., v — 1, but the al-
gorithm will stop at n = v — 1 due to <5temp = 0. The conditions (2.1) and
(2.2) determine {y n}n=o a n^ {yn}n=o uniquely up to scaling.

Proof. The second part is covered by our derivation. It remains to prove the
first part by induction. Assume that the sequences {y n}^= o an<^ {ym}m~=o
have been generated by the BlO algorithm and that (2.1) and (2.2) hold for
m, n = 0 , . . ., k (< u). (For k = 0 this is clearly the case.) Then the validity
of (2.1) for m = k + 1 or n = k + 1 is obvious from (2.21e) and (2.21f).
Moreover, by (2.21j), (2.21e), and (2.21f),

k(*k - yk-i0k-i)B/lk (2.22a)

5TOym + Pm-iym-\,yk)B

) k- (2.22b)

If m < k — 2, all terms on the right-hand side of (2.22b) vanish. For
m = k — 1, we use (2.20) and (2.2) to obtain on the right-hand side of
(2.22a) (/3fc_i«fc_i - 0 - Pk-ih-^/ik = 0. Next, using (2.21a) and (2.2)
we get for m = k in (2.22a) (a.k6k — <Xk&k)hk = 0- Analogous argu-
ments yield <yf c+i ,yn)B = 0 for n = 0 , . . . , *. Finally, by (2.21g)-(2.21j),
(yfc+iiyfc+i)B = Sk- This completes the induction.

In summary, the Lanczos process generates a pair of biorthogonal bases of
a pair of Krylov spaces and does this with a pair of three-term recurrences
that are closely linked to each other. In each step only two pairs of ortho-
gonality conditions need to be enforced, which, due to the linkage, reduce
to just one pair and thus require only two inner products in total. All the
other orthogonality conditions are inherited: they are satisfied automatic-
ally, at least in theory. Of course, if we want normalized basis vectors, we
need to invest another two inner products per step. Clearly, we also need
two matrix-vector products per step to expand the two Krylov spaces.

2.2. Matrix relations

The matrix relations (2.9)-(2.11) can be considered as a shorthand notation
for the BlO algorithm: the relations (2.10) describe the recurrences for yn
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and yn, while (2.9) and (2.11) summarize the formulae for determining the
elements of TV, TV, and D,$;,,. These matrix relations hold as well after
n < v steps, and in fact are obtained for such an intermediate stage by
considering submatrices of the appropriate size.

Equation (2.10) can be simplified by introducing the (n + l ) x n leading
principal submatrices of TV and TV, the extended tridiagonal matrices5

I T

To ai Pi

7i "2

 Pn-2
7n-2 «n-l

7n-l

and the analogous matrices with tildes. Then we have altogether

AY n = Y n + 1T n , A*Y n = Y n + 1T n (n < «/),

= D6 ; n, Y^BAY ^ = BS;nTn (n<v),

D g ; nT n = T*nT>6,n (n<u).

(2.23)

(2.24)

(2.25)

The first relation in (2.23) means that Tn is the representation in the basis
{yo> > Yn} of the restriction of A to the subspace K.n, which is mapped into
K-n+\. The subspace Kn is 'nearly invariant' as its image requires only one
additional space dimension. When it turns out that the component of Ayn_i
in this direction is relatively short, then we can expect that the eigenvalues
of Tn are close approximations of eigenvalues of A. This is vaguely the
reasoning for applying the BlO algorithm to eigenvalue computations. There
are several reasons that make this argument dangerous. First, the basis is
not orthogonal, and thus Tn is linked to A by an oblique projection only:
while in the Hermitian case the eigenvalues of Tn are Ritz values, that is,
Galerkin or Rayleigh-Ritz approximations, they are in the non-Hermitian
case only Petrov-Galerkin approximations, which are sometimes referred to
as Petrov values. Second, since neither A nor Tn are Hermitian in the case
considered here, eigenvalues need not behave nicely under perturbation.

A notorious problem with the Lanczos process is that in finite precision
arithmetic round-off affects it strongly. In particular, since only two or-
thogonality conditions are enforced at every step, while orthogonality with
respect to earlier vectors is inherited, a loss of (bi)orthogonality is noticed

5 By underlining Tn we want to indicate that we augment this matrix by an additional
row. We suggest reading Tn as 'T sub n extended'. The same notation will be used on
other occasions.
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in practice, which means that T)s-,n is not diagonal. This is also a serious
problem in the Hermitian case; we will return to it briefly in Section 18.

2.3. Normalization; simplification due to symmetry

As discussed before, in the BlO algorithm (Algorithm 1) the coefficients an,
an, 0n-\, j3n-i, 7n, 7n, and 6n+\  are defined uniquely except that in (2.21i)
we are free to choose two of the three quantities 7n, 7n, and <5n+i. Special
versions of the algorithm are found by making a particular choice for two
of the coefficients 7n, %, and 6n+i, and capitalizing upon the particular
choice. The classical choices for theoretical work are 7n := 7n := 1 (Lanczos
1950, Lanczos 1952, Rutishauser 1953, Householder 1964) or 7n = 7n and
<5n+1 ;= 1. The latter makes the two vector sequences biorthonormal and
yields (3n-\ = 7n- i ; that is, Tu = T j is real or complex symmetric, cf.
(2.18). (Consequently, (2.16) and (2.17) then coincide.) For numerical com-
putations the former choice is risky with respect to overflow, and the latter
is inappropriate for real nonsymmetric matrices since it may lead to some
complex 7n. Therefore, in the real nonsymmetric case, the two choices

In  In  y |<Stemp| ' <Wl  :== ^temp/(inln) = <5temp/|<Stemp|, (2.26)

In  ||ytemp|| , In  ||ytemp|| , <Wl := <5temp/'(7n7n), (2-27)

are normally suggested, but there may be a special reason for yet another
one. Note that (2.27) requires two additional inner products. These are often
justified anyway by the necessity of stability and round-off error control; see
Section 18.

Replacing, say, ")n = 1 (for all n) by some other choice means replacing
Yn by

9n  yn/ rn, where r n := 7071  7n_i, (2.28)

which in view of (2.23) amounts to replacing Tn by

T n := DfJ.TnDrjn, where D r ; n := diag(r0, I \ , . . ., rn_x ) , (2.29)

If 7n and 7n are chosen independently of ytemp and ytemP) the formulae
(2.21e)-(2.21j) can be simplified; cf. Algorithm 2 below.

If A and B are Hermitian and B is positive definite, starting with yo = yo
and making the natural choice 7n := 7n and 6n > 0 leads to TV = Tu = Tu

(that is, Tj/ = Tj, is real) and yn = Yn (for all n). Thus, the recursion
(2.21f) for yn is redundant, the costs are reduced to roughly half, and the
Lanczos vectors are orthogonal to each other. Moreover, one can choose
7n > 0 (for all n), which then implies that (5n-\ > 0 also. Finally, choosing
6n := <50 (for all n) makes Tu real symmetric. Then the BlO algorithm
becomes the symmetric Lanczos algorithm, which is often just called the
Lanczos algorithm.
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If A is complex symmetric and yo = yo, then yn = yn (for all n). Again,
the costs reduce to about half. Now, setting 6n := 1 (for all n) makes Tu

complex symmetric, but this can be achieved in general and has nothing to
do with A being complex symmetric. See Freund (1992) for further details
on this case.

In Section 6 we will discuss yet other cases where the BlO algorithm
simplifies.

3. Termination, breakdowns and convergence

The BlO algorithm stops with u := n + 1 when 6temp — 0, since atn+i  would
become infinite or indefinite. We call v here the index of first breakdown
or termination. Of course, v is bounded by the maximum dimension of the
Krylov spaces, but u may be smaller for several reasons. The maximum
dimension of the subspaces Kn denned by (2.1) depends not only on A but
also on yo; it is called the grade of yo with respect to A and is here denoted
by z/(yo, A) . As is easy to prove, it satisfies

y(yo, A) = min {n : dim/Cn = d im£n + i }  ,

and it is at most equal to the degree u( A) of the minimum polynomial of A.
Clearly, the Lanczos process stops with ytemp = ytemp = o when v = u(A).
If this full termination due to ytemP = ytemp = o happens before the degree
of the minimum polynomial is reached, that is, if v < v(A), we call it an
early full termination. However, the BlO algorithm can also stop with either
ytemp = o or ytemp = o, and even with (ytemp, ytemP)B = 0 when ytemp  ̂ o
and ytemp 7̂  o. Then we say that it breaks down, or, more exactly, that we
have a one-sided termination or a serious breakdown, respectively6.

Lanczos (1950, 1952) was already aware of these various breakdowns.
They have since been discussed by many authors; see, in particular, Fad-
deev and Faddeeva (1964), Gutknecht (1990), Householder (1964), Joubert
(1992), Parlett (1992), Parlett et al. (1985), Rutishauser (1953), Saad (1982),
and Taylor (1982).

Of course, in floating-point arithmetic, a near-breakdown passed without
taking special measures may lead to stability problems. Therefore, in prac-
tice, breakdown conditions '= o' and '= 0' have to be replaced by other
conditions that should not depend on scaling and should prevent us from
numerical instability. We will return to this question in Section 19.

6 Parlett (1992) refers to a benign breakdown when we have either an early full termination
or a one-sided termination.
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3.1. Full termination

In the case of full termination, that is, when the BlO algorithm terminates
with

ytemp = Ytemp = O, (3.1)

we can conclude from (2.10) that

AY,, = YVTV, ATYV = Yv%. (3.2)

This means that Ku and Kv are invariant subspaces of dimension v of A
and A*, respectively. The set of eigenvalues of TV is then a subset of the
spectrum of A.

The formula AY,, = Y^T^ points to an often cited objective of the BlO
algorithm: the similarity reduction of a given matrix A to a tridiagonal
matrix TV. For the latter the computation of the eigenvalues is much less
costly, in particular in the Hermitian case. However, unless v = N or the
Lanczos process is restarted (possibly several times) with some new pair yV,
y,, satisfying (2.4), it can never determine the geometric multiplicity of an
eigenvalue, since it can at best find the factors of the minimal polynomial of
A. In theory, to find the whole spectrum, we could continue the algorithm
after a full termination with v < N by constructing first a new pair (y,,, yV)
of nonzero vectors that are biorthogonal to the pair of vector sequences
constructed so far, i.e., satisfy (2.4); see, for instance, Householder (1964),
Lanczos (1950), Lanczos (1952), and Rutishauser (1953). Starting from a
trial pair (y,y) one would have to construct

yk(yk,y)B/6k, (3.3a)
k=0
v-l

yu  y - X ) y f c ( y f c ' y ) B * / ^ ' (3-3b)
fc=0

and hope that the two resulting vectors are nonzero. Then, one can set
7^_i := /?„_! := 0, so that after the restart the relations (2.10) hold even
beyond this v. If no breakdown or one-sided termination later occurs, and
if any further early full termination is also followed by such a restart, then
in theory the algorithm must terminate with ytemP = ytemp — o and v =
N. The relations (3.2) then hold with all the matrices being square of
order N. The tridiagonal matrix TJV may have some elements 7fc = Ac =
0 duetto the restarts, and the same will then happen to TV. Since Y^
and Y;v are nonsingular, Tjv is similar to A, and TJV is similar to A*.
Unfortunately, in practice this all works only for very small N: first, as
is seen from (3.3a)-(3.3b), the restart with persisting biorthogonality (2.2)
requires all previously computed vectors of the two sequences, but these are
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normally not stored; second, completely avoiding loss of (bi)orthogonality
during the iteration would require full reorthogonalization with respect to
previous Lanczos vectors, which means giving up the greatest advantages of
the Lanczos process, the short recurrences.

For the same reasons, finding all the roots of the minimal polynomial
with the Lanczos process is in practice normally beyond reach: due to loss
of (bi)orthogonality or because i>(A) is too large and the process has to
be stopped early, only few of the eigenvalues are found with acceptable
accuracy; fortunately, these are often those that are of prime interest.

3.2. One-sided termination

When the BlO algorithm stops due to

either y t emp = o or ytemp = o

(but not ytemp = ytemp = o), we call this a one-sided termination. In some
applications this is welcome, but in others it may still be a serious difficulty.
In view of (2.10), it means that either K,u or £„  is an invariant subspace of
dimension v of A or A* , respectively. For eigenvalue computations, this is
very useful information, although sometimes one may need to continue the
algorithm with a pair (yi,,yv) that is biorthogonal to the pairs constructed
so far, in order to find further eigenvalues. Determining the missing vector of
this pair wil l again require the expensive orthogonalization of a trial vector
with respect to a z^-dimensional Krylov subspace, that is, either (3.3a) or
(3.3b).

In contrast, when we have to solve a linear system, then ytemp = o is
all we aim at, as we will see in the next section. Unfortunately, when
ytemp = o but ytemp 7̂  °> we have a nasty situation where we have to find a
replacement for ytemP that is orthogonal to Kv. In practice, codes either just
use some ytemp that consists of scaled up round-off errors or restart the BlO
algorithm. In either case the convergence slows down. The best precaution
against this type of breakdown seems to be choosing as left initial vector yo
a random one.

3.3. Serious breakdowns

Let us now discuss the serious breakdowns of the BlO algorithm, which
we also call Lanczos breakdowns to distinguish them from a second type of
serious breakdown that can occur additionally in the standard form of the
biconjugate gradient method. Hence, assume that the BlO algorithm stops
due to

<5temP = 0, but neither ytemp = o nor ytemp = o.
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In the past, the recommendation was to restart the algorithm from scratch.
Nowadays one should implement what is called look-ahead. It is the curing
of these breakdowns and the corresponding near-breakdowns that is ad-
dressed by the look-ahead Lanczos algorithms which have attracted so much
attention recently. We will discuss the look-ahead BlO algorithm and some
of the related theory in Section 19, where we will also give detailed refer-
ences. In most cases, look-ahead is successful. Oversimplifying matters,
we can say that curing a serious breakdown with look-ahead requires that
(yv, A.kyv)-Q ^ 0 for some k, while the breakdown is incurable when

(y«,,A*y./>B = 0 (for all k > 0).

In theory, the condition (yv, Afcy^)B  ̂ 0 has to be replaced by a positive
lower bound for the smallest singular value of a k x k matrix, but in practice
even this condition is not safe.

The serious breakdown does not occur if A and B are Hermitian, B is
positive definite, yo = yo> 7« = 7 ,̂ and 6n > 0 (for all n), since then
Yn — yn (for all n), and (., . )B is an inner product. Also, choosing j n , 7n,
or 6n differently will not destroy this property. On the other hand, serious
breakdowns can still occur for a real symmetric matrix A if yo 7̂  yo-

Under the standard assumption B = I it was shown by Rutishauser (1953)
(for another proof see Householder (1964)) that there exist yo and yo such
that neither a serious breakdown nor a premature termination occurs; that
is, such that the process does not end before the degree of the minimal
polynomial is attained. Unfortunately, such a pair (yo, yo) is in general not
known. Joubert (1992) even showed that, in a probabilistic sense, nearly all
pairs have this property; that is, the assumption of having neither a prema-
ture termination nor a breakdown is a generic property. This is no longer
true if the matrix is real and one restricts the initial vectors by requiring
y0 = y0 £ M.N. Joubert gives an example where serious breakdowns then
occur for almost all yo. Of course, the set of pairs (yo,yo) that lead to
a near-breakdown never has measure zero. But practice shows that near-
breakdowns that have a devastating effect on the process are fairly rare.

3.4- Convergence

Although in theory the BlO algorithm either terminates or breaks down in at
most min{z/(yo, A), i>(yo, A*) }  steps, this rarely happens in practice, and the
process can be continued far beyond N. For small matrices this is sometimes
necessary when one wants to find all eigenvalues or to solve a linear system.
But the BlO algorithm is usually applied to very large matrices and stopped
at some n < N, so that only (2.10) and (2.11) hold, but not (3.2). The
n eigenvalues of T n are then considered as approximations of n eigenvalues
of A, and typically they tend to approximate eigenvalues that lie near the
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border of the spectrum. For eigenvalues of small absolute value, the absolute
error is comparable to the one for large eigenvalues; hence, the relative error
tends to be large. Therefore, the method is best at finding the dominant
eigenvalues. Lanczos (1950, p. 270) found a heuristic explanation for this
important phenomenon. Some remarks and references on the convergence
of Lanczos-type solvers will be made in the next section when we discuss
the basic properties of the BlCG method.

An additional difficulty is that due to the loss of biorthogonality, eigenval-
ues of A may reappear in T n with too high multiplicity. One refers to these
extra eigenvalues as ghost eigenvalues. We will come back to this problem
in Section 18.

4. The BIORES form of the BlCG method

Let us now turn to applying the Lanczos BlO algorithm to the problem
of solving linear systems of equations Ax = b. We first review the basic
properties of the conjugate gradient (CG) and the conjugate residual (CR)
methods and then describe a first version, B I O R E S, of the biconjugate gradi-
ent (BlCG) method. In the next section we will further cover the MINRES

algorithm for the CR method and a first version of the QMR method.
We assume that A is nonsingular and denote the solution of Ax = b by

xex, its initial approximation by xo, the nth approximation (or iterate) by
xn, and the corresponding residual by rn := b — Ax n. Additionally, we let
yo := ro, or yo := ro/||ro|| if we aim for normalized Lanczos vectors. As in
(2.1), K,n is the nth Krylov space generated by A from yo, which now has
the direction of the initial residual. From time to time we also refer to the
nth error, xex — xn. Note that rn = A(xex — xn) .

4-1. The conjugate gradient and conjugate residual methods

We first assume that A and B are commuting Hermitian positive definite
matrices and recall some facts about the conjugate gradient (CG) method
of Hestenes and Stiefel (1952). It is characterized by the property that the
nth iterate xn minimizes the quadratic function

x (-> ((xex - x), A(xex - x ) )B

among all x £ xo + K.n. The standard case is again B = I. By differenti-
ation one readily verifies that the minimization problem is equivalent to the
Galerkin condition

(y,rn)B = 0 (for all y € Kn), i.e., Kn _LB rn. (4.1)

Note that

rn = b - Ax 0 + A(x 0 - xn) e r0 + AfCn C Kn+\- (4.2)
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In view of (4.1) and (4.2), rn spans the orthogonal complement of fCn in
/Cn+i. Hence, if we let yo := ro and generate the basis {yfc}£_0 of JCn+\ by
recursively orthogonalizing Ay m with respect to /Cm+i (m = 0, . . ., n — 1),
then yn is proportional to rn, and by suitable normalization we can achieve
y« = rn. This recursive orthogonalization procedure is none other than the
symmetric Lanczos process, that is, the BlO algorithm with yo = yo and
commuting Hermitian matrices A and B. Note also that by (4.2), rn =
pn(A)yo, where pn is a polynomial of exact degree n satisfying pn(0) = 1.
This property, which is equivalent to xn € xo + ICn, means that CG is a
Krylov space solver, as defined by (1.1). Of course, up to normalization,
the residual polynomial pn is here the Lanczos polynomial of (2.3).

The directions xn—xn_i can be seen to be conjugate to each other (i.e., A-
orthogonal with respect to the B-inner product, or, simply, AB-orthogonal),
whence CG is a special conjugate direction method. In their classical CG
method Hestenes and Stiefel (1952) chose B = I and thus minimized x i—>
((xex — x), A(xex — x)), which is the square of the A-norm of the error. (This
is a norm since A is Hermitian positive definite.) With respect to the inner
product induced by A, we then have from (4.1) and (4.2)

K,n J-A (Xex ~
 X«)> (X*x - Xn) ~ (Xex ~ X0) £ Kn.

This means that xo — xn = (xex — xn) — (xex — xo) is the A-orthogonal
projection of the initial error xex — xo into /Cn, and the error xex — xn is
the difference between the initial error and its projection. Therefore, the
CG method can also be viewed as an orthogonal projection method in the
error space endowed with the A-norm. Moreover, it can be understood as
an orthogonal projection method in the residual space endowed with the
A~1-norm.

If B = A = A*  instead, we have

( ( x e x- x ) , A ( x e x- x ) ) B = | | A ( xe x- x ) | |2 = | | b - A x | |2 , (4-3)

which shows that the residual norm is now minimized. The B-orthogonality
of the residuals means here that they are conjugate. The method is therefore
called conjugate residual (CR) or minimum residual method. Normally, the
abbreviation MINRES stands for a particular algorithm due to Paige and
Saunders (1975) for this method. We will come back to it in Section 5.
Like some other versions of the CR method, MINRES is also applicable
to Hermitian indefinite systems; see Ashby, Manteuffel and Saylor (1990),
Fletcher (1976).

Prom (4.1) and (4.2) we can conclude here that rn is chosen so that it is
orthogonal to A/Cn and ro — rn lies in AK-n. In other words, with respect
to the standard inner product in Euclidean space, ro — rn is the orthogonal
projection of ro onto A/Cn. Therefore, the CR method is an orthogonal
projection method in the residual space.
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Prom the fact that the CG-residuals are mutually orthogonal and the
CR-residuals are mutually conjugate, it follows in particular that in both
cases r,, = o for some v < N, and thus xu = xex- However, in practice
this finite termination property is fairly irrelevant, as it is severely spoiled
by round-off.

So far we only know how to construct the residuals, but we still need an-
other recurrence for the iterates xn themselves. As we will see in a moment,
such a recurrence is found by multiplying by A " 1 the one for the residuals,
that is, the one for the appropriately scaled right Lanczos vectors. This then
leads to the three-term version7, ORES, of the conjugate gradient method
(Hestenes 1951). The standard version of the CG method, OMlN, instead
uses coupled two-term recurrences also involving the direction vectors, which
are multiples of the corrections xn + i — xn. In the rest of this section and in
Section 8 we want to describe generalizations to the nonsymmetric case.

4-2. Basic properties of the BiCG method

If A is non-Hermitian, the construction of an orthogonal basis {yn} of
the Krylov space becomes expensive and memory-intensive, since the re-
currences for yn generally involve all previous vectors (as first assumed in
(2.7)). Therefore, the resulting Arnoldi or full orthogonalization method
(FOM) (Arnoldi 1951, Saad 1981) has to be either restarted periodically or
truncated, which means that some of the information that was built up is
lost. The same applies to the generalized conjugate residual (GCR) method
(Eisenstat, Elman and Schultz 1983) and its special form, the G M R ES al-
gorithm of Saad and Schultz (1986), which extends the M INRB S algorithm
to the nonsymmetric case.

However, we know how to construct efficiently a pair of biorthogonal se-
quences {y n} , {yn} , namely by the BlO algorithm of Section 2. By requiring
that iterates xn € Xo + K.n satisfy the Petrov-Galerkin condition

( y , rn) B = 0 (for all y <E ICn), i.e., K,n _LB rn, (4.4)

we find the biconjugate gradient (BiCG) method. In contrast to the Galerkin
condition (4.1) of the CG method, this one does not belong to a minimiza-
tion problem in a fixed norm8.

7 The acronyms ORES, OMIN, and ODiR were introduced in Ashby et al. (1990) as
abbreviations for ORTHORES, ORTHOMIN, and ORTHODIR. We suggest using the short
form whenever the basic recurrences of the method are short. Note that our acronyms
BIORES, BIOMIN , and BIODIR for the various forms of the BiCG method fit into this
pattern, as these algorithms also feature short recurrences.

8 Baxth and ManteufFel (1994) showed that BiCG and QMR fit into the framework of
variable metric methods: in exact arithmetic, if the methods do not break down or
terminate with v < N, then the iterates that have been created minimize the error in a
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Now rn is chosen so that it is orthogonal to JCn and so that ro — rn lies
in A/Cn. This means that ro — rn is the projection of ro onto A/Cn along a
direction that is orthogonal to another space, namely /Cn, and, hence, is in
general oblique with respect to the projection space AK.n. Therefore, the
BiCG method is said to be an oblique projection method (Saad 1982, Saad
1996).

Since both the residual rn and the right Lanczos vector yn satisfy (4.4) and
both lie in K,n+\, and since we have seen in Section 2 that yn is determined up
to a scalar factor by these conditions, we can again conclude that the residual
must be a scalar multiple of the Lanczos vector and that by appropriate
normalization of the latter we could attain rn = yn.

The most straightforward way of taking into account the two conditions
xn € xo + Kn and K,n J_B rn is the following one. Representing xn — xo in
terms of the Lanczos vectors we can write

xn = x0 + Y nk n, rn = r0 - AY nkn, (4.5)

with some coordinate vector kn. Using AY n = Y n + i T n , see (2.23), and

with §! := [ 1 0 0  ] T e K n +1 and p0 :=  ||ro|| (assuming ||yo|| = 1
here), we find that

rn = Y n + i (elPo - T n k n ) . (4.6)

In view of Y*BY n+i = [ D,5;n | o ], the Petrov-Galerkin condition (4.4),
which may be written as Y*Br n = o, finally yields the square tridiagonal
linear system

T nk n = eipo, (4.7)

where now ei € Mn. By solving it for kn and inserting the solution into (4.5)
we could compute xn. However, this approach, which is sometimes called the
Lanczos method for solving linear systems, is very memory-intensive, as one
has to store all right Lanczos vectors for evaluating (4.5). Fortunately, there
are more efficient versions of the BiCG method that generate not only the
residuals (essentially the right Lanczos vectors) but also the iterates with
short recurrences. We could try to find such recurrences from the above
relations, but we will derive them in a more general and more elegant way.

Unless one encounters a serious breakdown, the BiCG method terminates
theoretically with vv = o or yv = o for some v. Therefore, the BiCG
method also has the finite termination property, except that it is spoiled
not only by round-off but also by the possibility of a breakdown (a serious

norm that depends on the created basis, that is, on A and yo- This result also follows
easily from one of Hochbruck and Lubich (1997a)
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one or a left-sided termination). We must emphasize again, however, that
it is misleading to motivate the CG method or the BiCG method (in any
of their forms) by this finite termination property, because this property
is irrelevant when large linear systems are solved. What really counts are
certain approximation properties that make the residuals (and errors) of the
iterates xn decrease rapidly. There is a simple, standard error bound that
implies at least linear convergence for the CG and CR methods (see, for
instance, Kaniel (1966), Saad (1980, 1994, 1996)), but in practice superlinear
convergence is observed; there are indeed more sophisticated estimates that
explain the superlinearity under certain assumptions on the spectrum (van
der Sluis and van der Vorst 1986, 1987, Strakos 1991, van der Sluis 1992,
Hanke 1997). These bounds are no longer valid in the nonsymmetric case,
but some of the considerations can be extended to it (van der Vorst and
Vuik 1993, Ye 1991). The true mechanism of convergence lies deeper, and
seems to remain the same in the nonsymmetric case. For the CR method
and its generalization to nonsymmetric systems it has been analysed by
Nevanlinna (1993). For the BiCG method convergence seems harder to
analyse, however. Recently, a unified approach to error bounds for BiCG,
QMR, FOM, and G M R E S, as well as comparisons among their residual
norms, have been established in Hochbruck and Lubich (1997a).

The BiCG method is based on Lanczos (1952) and Fletcher (1976), but,
as we will see, there are various algorithms that realize it.

4-3. Recurrences for the BiCG iterates; the consistency condition

The recurrence for the iterates xn is obtained from the one for the re-
siduals by following a general rule that we will use over and over again.
By definition, xn — xo € fCn for any Krylov space solver, and thus (4.2)
holds; here Kn is still the nth Krylov space generated by A from yo = To-
Since rn = pn(A)yo with a polynomial pn of exact degree n, the vectors
ro, , rn_i span Kn (even when they are linearly dependent, in which case
JCn = JCn-i). Therefore, if we let

Rn := [ ro ri  rn_i ], X n := [ xo xi  xn_i ],

and define the extended (n + 1) x n Frobenius (or companion) matrix

- 1 - 1  - 1
1

¥„:=

1

then we have, in view of xn — Xo £ /Cn,

i F n = - R ^ (4.8)
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with some upper triangular n x n matrix \Jn and an extra minus sign. Each
column sum in Fn is zero, that is, [ 1 1  1 ] Fn = oT, and therefore,
for an arbitrary b G C^, multiplication of Fn from the left by the N x (ra+1)
matrix [ b b  b ] yields an N x n zero matrix. Therefore,

I W i F n = ([ b  b ] - AX n+1) Fn = -AX n + 1Fn = A R ^ . (4.9)

Since rm and Arm_i are both represented by polynomials of exact degree
m, the diagonal elements of \Jn cannot vanish. Hence, if we let

Hn := Hn\Jn ,

we can write (4.8) and (4.9) as

Rn = -X n + 1H n ) AR, = Hn+1mn, (4-10)

where Hn is an (n + 1) x n upper Hessenberg matrix that satisfies9

eTHn = oT, where eT :=[ 1 1  1 ], (4.11)

as a consequence of eTFn = oT. This is the matrix form of the consistency
condition for Krylov space solvers. It means that in each column of H^
the elements must sum up to 0; see, for instance, Gutknecht (19896). This
property is inherited from Fn. The relations in (4.10) are the matrix rep-
resentations of the recurrences for computing the iterates and the residuals:
xn is a linear combination of rn_i and xo,.. ., xn_i, and rn is a linear com-
bination of Arn_i and ro,. . ., rn_i. Note that the recurrence coefficients,
which are stored in Hn, are the same in both formulae.

Another, equivalent form of the consistency condition is the property
pn{0) = 1 of the residual polynomials.

We call a Krylov space solver consistent if it generates a basis consisting
of the residuals (and not of some multiples of them).

4-4- The BIORES algorithm

In the usual, consistent forms of the BiCG method, the Lanczos vectors yn

are equal to the residuals rn and thus the Lanczos polynomials satisfy the
consistency condition pn(0) = 1. To apply the above approach, we have to
set Hn := Tn and Rn := Yn. Therefore, the zero column sum condition
requires us to choose j n := — an — fln-\. However, this can lead to yet
another type of breakdown, namely when an + Pn-i = 0. Following Bank
and Chan (1993) we call this a pivot breakdown (for reasons we will describe
later, in Section 9), while a breakdown due to 6temp = 0 in the BlO algorithm
is referred to as a Lanczos breakdown10, as before.

9 The dimension of the vectors o and e is always defined by the context.
10 In Gutknecht (1990) we suggested calling a pivot breakdown a normalization breakdown,

which is an appropriate name in view of its analogous occurrence in other Krylov space
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Recalling that the formulae for the BiO algorithm can be simplified if j n

is independent of Stemp, and adding the appropriate recurrence for the ap-
proximants xn, we find the following BlORES version of the BlCG method.

ALGORITHM 2. ( B I O R ES FORM OF THE B I C G METHOD)

For solving Ax = b, choose an initial approximation Xo, set yo := b — Axo,
and choose yo such that 60 := (yo,yo)B 7̂  0- Then apply Algorithm 1
(BiO) with

7n := -an - /?„_! (4.12)

and some 7n 7̂  0, so that (2.21e)-(2.21j) simplify to

yn+i := (Ayn - ynan - yn-iPn-i)/ln, (4.13a)
yn+i := (A^yn-ynan-yn-i0n-i)/%, (4.13b)

6n+i  := (yn+i,yn+i)B- (4.13c)

Additionally, compute the vectors

xn +i := - ( yn + xnan + xn_i/?n_i)/7n. (4.13d)

If j n = 0, the algorithm breaks down ('pivot breakdown'), and we set v :— n.
If yn+i = o, it terminates and xn+i is the solution; if yn+i  ̂ o, but
<5n+i = 0, the algorithm also breaks down ('Lanczos breakdown' if yn+i 7̂  o,
'left termination' if yn+i = o). In these two cases we set v := n + 1.

First we verify the relation between residuals and iterates.

Lemma 4.1 In Algorithm 2 (B IORES) the vector yn is the residual of the
nth iterate xn; that is, b — Ax n = yn (n = 0 ,1 , . . ., v).

Proof. First, b —Axo = yo by definition of yo- Assuming n > 1, b—Axn =
yn, and b — Ax re_! = yn_i, and using (4.13a)-(4.13d), (2.21e), (2.21j), and
(4.12), we get

b - Axn+i = b + (Ayn

= b + (Ayn - ynan - yn-iPn-i + b(an + f3n-\))hn

which is what is needed for the induction. When n = 0, the same relations
hold without the terms involving /3_i.

solvers. Joubert (1992) calls the pivot breakdown a hard breakdown since it causes all
three standard versions of the BiCG method discussed in Jea and Young (1983) to
break down, as we will see in Section 9. In his terminology the Lanczos breakdown
is a soft breakdown. Brezinski, Redivo Zaglia and Sadok (1993) use the terms true
breakdown and ghost breakdown, respectively, while Freund and Nachtigal (1991) refer
to breakdowns of the second kind and breakdowns of the first kind. However, we wil l see
that in the algorithms most often used in practice, it is easier to circumvent a pivot (or
hard, or true, or second kind) breakdown than a Lanczos breakdown.
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The shorthand notation (2.23)-(2.24) for the BlO algorithm can easily
be extended to the B IORES algorithm. Due to the additional possibility
of a pivot breakdown, the index of first breakdown or termination is now
v (< v). We also have to add the matrix representation of the recurrence
for the iterates, (4.13d),

Yn = -Xn+1Tn (n<0). (4.14)

Analogously to (4.11), the column sum condition (4.12) can be expressed as

eT T n = oT (n<j>). (4.15)

4-5. The inconsistent B IORES algorithm

We claim that by a small modification introduced in Gutknecht (1990) it
is possible to avoid the pivot breakdown that may occur in Algorithm 2
(BIORES).

ALGORITHM 3. (INCONSISTENT B IORES ALGORITHM)

Initially , let yo := (b — Axo)/7_i with some 7_i  ̂ 0, and redefine xo :=
xo/7-1. (For example, choose 7_i := ||b — Axo|| or 7_i := 1.) Modify
Algorithm 2 (B IORES) by always choosing j n  ̂ 0 (instead of setting j n :=
—an — I3n-i). Compute additionally the sequence {Kn} that is denned re-
cursively by

7T0 := l /7- l , 7Tn+i := -(an7rn + /3ri_17rn_i)/7n, n = 0 ,1 , . . ., v - 1.
(4.16)

We will see later in Theorem 12.1 that 7rn is the value at 0 of the Lanczos
polynomial pn of (2.3), which up to normalization is also the residual poly-
nomial of xn. We will also see that pn, if normalized to be monic, is the
characteristic polynomial of the n x n leading principal submatrix of Tv.
The problem with B IORES is that this value may become zero, and hence
there may not exist a residual polynomial normalized to be 1 at C, = 0. In
other words, inconsistent B IORES works with 'unnormalized residual poly-
nomials' not satisfying the consistency condition. The same idea can be
applied to other Krylov space solvers that break down for the same reason.
It follows immediately that the pivot breakdown is avoided.

Lemma 4.2 The index of first breakdown or termination u of the BlO
algorithm and the one of the inconsistent B IORES algorithm are identical;
the index of first breakdown or termination z> of the consistent B IORES

algorithm can, but need not, be smaller.

Moreover, in view of the following result, inconsistent B IORES delivers
the solution of Ax = b whenever it does not break down.
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Lemma 4.3 In the inconsistent B I O R ES algorithm, yn and xn are related
by

yn = b7rn - Ax n. (4.17)

If Yvlu = 0, then u  ̂ 0, and xex = x^/riv is the solution of Ax = b.

Proof. For n = 0, (4.17) is correct. Assume it is correct up to the index n.
Then by (4.13a)-(4.13d) and (4.16)

(b7Tn+i -

= -b(an7rn + /3n_i7r?1_i) + Ay n + A x nan + Axn_i/3n_i

= Ay n - ynan - y n - i

As mentioned above, ~kn is, up to normalization, the value at 0 of the char-
acteristic polynomial pn of the n x n leading principal submatrix of Tu. In
particular, 7ru is a nonzero multiple of the value at 0 of the characteristic
polynomial pu of Tu. We know that when the algorithm terminates due to
Ytemp = yi/7i/ = o, then the eigenvalues of TV are also eigenvalues of A.
Hence, TT̂  = 0 would imply that A is singular, contrary to our assumption
in this chapter.

Lemma 4.3 indicates that in practice termination should be based on
||yn||/|7Tn| being small. If we let

Pn  Ko  7Tn_i ] ,

we can formulate the extra recurrence (4.16) of inconsistent B I O R ES and
its residual relation (4.17) as

p !+ iT n = oT (n < i/),

Yn = [ b  b ] diag(7r0, , 7Tn_i) - AX n (n < v + 1).

From (4.17) we conclude that 7Tn and the choice of 7m (m < n) only affect
the scaling of yn and xn. It is clear from this formula that whenever -kn / 0
for all n < u, one can rescale yn, xn (n < v) to get the corresponding vectors
of (consistent) B I O R E S. But once -kn = 0 for some n < v, this is impossible
and B I O R ES breaks down, that is, v < v. In contrast, here one can still
go on, and if yv = o one finds a solution that is not accessible through
Algorithm 2 (using the same initial data). In practice, where vanishing
of 7rn is unlikely, but near-vanishing matters, inconsistent B I O R ES must
be considered as a slightly stabilized version of B I O R ES that eliminates
the possibility of overflow or division by zero. In floating-point arithmetic,
however, there is no other stability pitfall caused by the particular scaling
of (consistent) B I O R ES or by any other scaling.
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5. The QMR solution of a linear  system

While the BlCG method yields a Petrov-Galerkin approximation of the
solution of a linear system, the Quasi-Minimal Residual (QMR) method of
Freund and Nachtigal (Freund 1992, Freund and Nachtigal 1991, Freund
and Nachtigal 1994) produces a solution whose residual has a coordinate
vector of minimum length. However, since the basis of the space is - for
economy reasons - the one generated by the Lanczos process, and thus is
not orthonormal, in general, the residual vector itself is not of minimum
length.

Basically, the QMR method takes the right Krylov space basis generated
by the Lanczos process and solves a least squares problem in coordinate
space in the same way as the MINRES algorithm of Paige and Saunders
(1975) and the GMRES algorithm of Saad and Schultz (1986). However,
the QMR algorithm in (Freund and Nachtigal 1991) has additional features:
its Lanczos part includes an implementation of look-ahead from Freund et
al. (1993), and its least squares part allows for weights, which, however, are
rarely used and therefore dropped in our presentation11.

In principle, the QMR philosophy has a wide scope of applications, which
goes beyond what has been treated in the literature. In particular, we can
apply it to any Krylov space generation procedure producing a relation of
the form AY n = Y n+ iH n (preferably with column vectors of norm 1) or of
certain equivalent forms. We will return to this in Sections 10, 15 and 17.

Since MINRES plays an essential role in QMR, we need to look at it first.
We are going to discuss a variation of it that is suitable for QMR, since it
is easily adapted to allow for look-ahead.

5.1. The MINRES algorithm

The MINRES algorithm of Paige and Saunders (1975), as well as QMR
and GMRES, start from the representation (4.6) of the residual. MINRES
is a particular algorithm for the CR method for Hermitian systems, and
thus the aim is to minimize the residual norm. The method makes use of
the isometry induced by the coordinate mapping of an inner product space
with an orthonormal basis. This isometry is also manifested by the well-
known Parseval relation. It implies that instead of minimizing the residual
we can minimize its coordinate vector. In fact, by running the symmetric
Lanczos algorithm with B = I (despite the fact that the inner product
matrix B = A is used in the minimization problem (4.3) of the CR method)
and normalizing the resulting orthogonal basis {y m}  of the Krylov space,

11 In Tong (1994) the diagonal weight matrix is replaced by a block diagonal one with
2 x 2 or 3 x 3 blocks that are chosen suitably. However, the numerical results show
littl e gain in efficiency, if any at all.
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we have Y* +1Yn+i = In+i, and therefore from (4.6)

Il rn|| = H îPo — Xnkn|| . (5-1)

This is a least squares problem in coordinate space: e\Po has to be approx-
imated by a linear combination of the columns of the tridiagonal (n + 1) x n
matrix Tn.

For example, this problem can be solved using the QR or the LQ decom-
position of the matrix and, due to the tridiagonality, these decompositions
only require n or n — 1 Givens rotations, respectively12. The QR decompos-
ition of an upper Hessenberg matrix of the same size still only requires n + 1
rotations, and that is why both the GMRES and the QMR algorithms ap-
ply QR, while Paige and Saunders used an LQ decomposition. In GMRES
T_n is replaced by a Hessenberg matrix, and in the QMR algorithm Tn is
tridiagonal except for a few extra nonzero elements above the upper codi-
agonal if look-ahead is needed; hence, it is a nearly tridiagonal Hessenberg
matrix. Although we assume in our presentation of the QMR method in
this section that look-ahead does not occur, we choose to work with the QR
decomposition, and we modify the original MINRES algorithm accordingly.
Our treatment is adapted from Freund and Nachtigal (1991).

Let Tn = QnR£fR be a QR decomposition of Tn. The last row of the
upper triangular (n + 1) x n matrix RjfR is zero. If we denote its upper
square n x n submatrix by RjfR (not to be confused with the matrix R™ of
residual vectors) and let

hn

(5.2)
. Vn+l .

we see that
kn := (RjfR)~ hn (5.3)

is the solution of our least squares problem since

H l̂PO ~~ .i-n^nll  = \\*-in—lP0~—n *n\\

(5-4)

= l^n+ll2- (5.5)

In fact, multiplying the least squares problem (5.1) by the unitary matrix
Q* turns it into one with an upper triangular matrix, see (5.4), where the
choice of kn no longer influences the defect of the last equation, and thus the
problem is solved by choosing kn such that the first n equations are fulfilled.

12 An alternative is to apply Householder transformations; see Walker (1988).
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Prom (5.1) and (5.5) we see in particular that the minimum residual norm
is equal to \fjn+i | and hence can be found without computing kn or the resid-
ual. The unitary matrix Qn is only determined in its factored form, as the
product of n Givens rotations that are chosen to annihilate the subdiagonal
elements of the tridiagonal (or Hessenberg) matrix

Qn-l O

1
Gn with Gn :=

In-1

O T

o

c

I

o

- S n

Cn

(5.6)

where Cn > 0 and sn G Cn satisfying cn + |sn| = 1 are chosen such that

fJ-n

vn

k

0

with

Vn

Qn-l

[ o T

o

1 J
T
in

" 0

L)
. 1

which means that

fJ-n

Cn  0, Sn  1,

i f fXn  ̂ 0,

if fj,n = 0.

(5.7)

If T n is real, Cn and sn are the cosine and sine of the rotation angle.
The formula for updating hn is therefore very simple:

*in ^ n

' hn_! '

0
p *

h n - l

Vn
0

hn-l

CnVn
. Sn Vn .

(5.8)
. Vn+1 .

In particular, it follows that

||eiPo - Tnk n|| = |r?n+i| = | sn^ n | = \s\ s2  sn\ ||ro||, (5.9)

since 771 = ||ro||. Even more important is the fact that hn G Cn emerges
from hn- i G C""1 by just appending an additional component cnr\n- By
rewriting the first equation in (4.5) using (5.3) as

xn = x0 + Znhn, where Zn := [ zo . .. zn_i ] := 1

contains the QMR direction vectors, we can conclude that

X n
 = Xn—1 + Zn (5.10)
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Finally, since R£fR is a banded upper tridiagonal matrix with bandwidth
three, the relation

Y n = R"RZn (5.11)

can be viewed as the matrix representation of a three-term recurrence for
generating the vectors {zfc}^ . (In contrast, in GMR.ES R£fR is no longer
banded, and therefore this recurrence is not short.)

Multiplying (5.10) by A we could find an analogous recurrence for the
residuals, but since it would require an extra matrix-vector product, it is of
no interest. There is another, cheaper way of updating the residual. First,
inserting T_n = QnR_£fR and (5.3) into (4.6) and taking (5.2) into account
we get

rn = Y n +1 (elPo - QnRj = Y n + 1 lelPo - Qn
0

= Yn+ iQA+ i i+ i , where ln+1 = [ 0 ... 0 1 ] T G Rn+1 (5.12)

as before. Using (5.6) we conclude further that

' Qn_i I o
fn = [ Yn | y

O

Gn Vn+l

= -YnQn-ilnSnr} n+1 +ync

Finally, using (5.12) and rjn+i  = —sTiVn (see (5.8)) to simplify the first term
on the right-hand side, we get the recursion

!„  2 , .
rn — (5.13)

However, recall that updating the residual is unnecessary for MINRES since
its norm is equal to |%+i|. But (5.13) also holds for GMRES, and, since
we have not used the fact that Y n has orthogonal columns, it will become
clear that it remains true for QMR.

5.2. A first version of the QMR method: BiOQMR

The basic version of the QMR method without look-ahead is now easily
explained: the BiO algorithm with normalized Lanczos vectors (that is,
with normalization (2.27)) is applied to build up bases of the growing Krylov
spaces JCn and )Cn. As in inconsistent BlORES, the right initial vector
y0 := ro/||ro|| is the normalized initial residual, while the left one, yo> can
be chosen arbitrarily. The relations (4.5)-(4.6) remain valid, but (5.1) is no
longer true, since the basis {yfcĵ Zg is no longer orthonormal when A is not
Hermitian or yo  ̂yo-
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Since finding the minimum residual becomes too expensive, Freund and
Nachtigal (Freund 1992, Freund and Nachtigal 1991) instead promoted min-
imizing the coefficient vector of the residual with respect to that basis, the
so-called quasi-residual

- Tnkn, satisfying rn = Yn+iq^, (5.14)

see (4.6). Minimizing ||qn|| is accomplished exactly as described in the
previous subsection, and even the recurrences (5.10) and (5.13) for updating
the iterates and residuals, respectively, remain valid.

What differs, however, is that ||rn|| = ||qn|| no longer holds, in general.
Instead we just have

jn+i

since Y n+i has columns of length 1, and ||qn|| = \fjn+i\  as before; see (5.5).
The factor \/n + 1 normally leads to a large overestimate, so that the bound
is of limited value. However, the relationship between the residual and the
quasi-residual may suggest sparing the work for updating the residual and
computing its norm until the norm |%+i| of the quasi-residual has dropped
below a certain tolerance. In the following summary of a (simplified) version
of the QMR method we nevertheless assume that the residual is updated.
We choose to call it BlOQMR for distinction, to indicate that it is based
on the BlO algorithm without look-ahead, whose results are then piped into
the QMR least squares process.

ALGORITHM 4. (BiOQMR VERSION OF THE QMR METHOD)

For solving Ax = b, choose an initial approximation xo G C^, let ro := (b —
Axo) and yo := ro/||i"o||, choose yo of unit length, and apply Algorithm 1
(BlO) with the option (2.27) producing normalized Lanczos vectors. Within
step n — 1 of the main loop, after generating yn and yn,

(1) update the QR factorization T n = Qn E ^R according to (5.6)-(5.7)
(2) compute the coefficient vector hn by appending the component cnr\n to

hn- i, and compute the new last component 77n+i := —^n^n of hn

(3) compute zn_i according to the three-term recurrence implied by (5.11)
(4) compute xn and rn according to (5.10) and (5.13), respectively
(5) stop if | | rn| | / | | ro|| is sufficiently small.

Note that the extra cost (in excess of those for the BlO algorithm) is
very small. On the other hand, the smoothing effect of the QMR method
is often very striking: while the Petrov-Galerkin condition imposed in the
BiCG method sometimes leads to a rather erratic residual norm plot, the
norms of the QMR residuals typically decrease nearly monotonically, though
not necessarily completely monotonically; see, for instance, the examples in
Freund and Nachtigal (1991).
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5.3. The relation between (Petrov-)Galerkin and the (Quasi-)Minimal
Residual solutions

Between the BlCG iterates and residuals and those of the QMR method
exist relationships inherited from CG and CR. For the latter two methods,
most of them were found by Paige and Saunders (1975) as a byproduct
of their derivation of the MINRES algorithm from the symmetric Lanczos
process, but more transparent derivations and some new results and inter-
pretations have been found more recently. These relations between Galerkin-
based and minimal-residual-based solutions carry over in a straightforward
way to the corresponding orthogonahzation methods for nonsymmetric sys-
tems, the Arnoldi method (or FOM) and the GMRES algorithm for the
GCR method, as was shown by Brown (1991).

The transition from CG to CR and from FOM to GCR is also possible
by applying to the CG residuals or the Arnoldi residuals, respectively, the
minimal residual smoothing process that we will discuss in Section 17. In
particular, we will see there why a peak in the FOM residual norm plot
leads to a plateau in the one of GCR.

Here we follow first the treatment of Freund and Nachtigal (1991); see
also Paige and Saunders (1975, pp. 625-626).

Recall that the Galerkin condition of CG and the Petrov-Galerkin con-
dition of BiCG yield in coordinate space the linear system (4.7),

Tnk£ = eipo, (5.15)

while MINRES and QMR require us to minimize the quasi-residual

T^r (5.16)

of (5.14). Now we have to distinguish the two coordinate vectors, and we
will likewise denote the respective iterates and residuals by x^, r^ and xJfR,
r£fR. The results we are going to derive hold for any of the three relations
CG-CR, BiCG-QMR, and F O M - G M R E S, but some minor modifications
in the derivation are needed for the last pair.

The minimization of ||qn||
2 is the least squares problem that we solved

in the first subsection by QR decomposition of the (n + 1) x n tridiagonal
matrix Tn. (The latter could be replaced by the (n+1) x n upper Hessenberg
matrix produced by GMRES or by QMR with look-ahead.) Inserting the
update formula (5.6) for Qn into Tn = QnRjf R and moving the accumulated
left factor to the left-hand side of this equation, we get

Q*n-1

O T

— GnRn
MR



LANCZOS-TYPE SOLVERS

Deleting the last row yields

307

"In-1

. oT

o

Cn .

RMK . TJl i
n n>

where R^ is again upper triangular and, hence, Tn = Qn_iR^ is the QR
decomposition of the square tridiagonal matrix Tn. Of course, we can solve
(5.15) using this decomposition, getting

\ - 1

ieipo

1

O T

(Tl MR\-
~ K^n )

O

Cn .

"In-1

. oT

On-l

O

Cn1 -

o

Cn1 ~ Cn .

(5.17)

On the other hand, from (5.2) and (5.3) we conclude by inserting (5.6) that

KK =
o o

MR^ly , _ C-RMR^-1

In-1

OMR\-1
-Qn-1 o

1 .

\ - 1
"In-1

. oT

o

Cn .
Qn-lelP0,

which shows that the first of the two terms in (5.17) is just k^. To simplify
the other we note that by (5.2) the last component of Q*_1eipo is fjn, so
that altogether:

+
MR\-1

O

Vn- (5.18)

For the iterates, which are in both cases of the form xn =
find the relation

G _ VMR , v
-n —X-n + Yn

or, since cn
l — Cn = \sn\

2

c
n

, finally,

G _ V M R

t0 + Ynkn, we

-n1 - Cn)fjn,

^ &n-
\sn\ Vn

cn
(5.19)
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This formula allows us to compute the BlCG iterates from quantities
produced by the BlOQMR algorithm. But, of course, we could also generate
these iterates recursively according to inconsistent BlOR.ES, that is, from
(4.13d), (4.16), and x^ := xn/?rn; see Lemma 4.3.

Multiplication of (5.19) by A and subtraction from b yields an analogue
relation for the residuals. However, its direct usage would cost an extra
matrix-vector multiplication. Moreover, inserting zn_i according to (5.10)
and making use of (5.13) leads in a few lines to

(5-20)

This is no surprise since we know that the CG and BlCG residuals are
multiples of the Lanczos vectors. The analogue also holds for the FOM
residuals. What we learn is that, using (5.9) and (5.16), we can express the
residual norm as

Gil \Vn+l\ 1 |, I, \S\S2---S
r n \\ = = — llqnll =

C C C

n\
11r 011 - (5.21)

As shown by Paige and Saunders (1975, p. 623), formula (5.20) is easily
obtained directly: splitting Y n+i up into its first n and its last column, we
get from (4.6)

Here, the first term vanishes, and for the second we see from (5.17) that
the last component of k^ is l T k° = fjn/(Pn,nCn), where pn<n is the (n,n)-
element of R^R, which, in view of T n = QnB M R and (5.6),' is linked to 7n

by 7n = ^n~Pn,n, SO that

G inQn snVn Vn+1
r Y ~yn — Yn

C C

n Yn yn
Pn,nCn

This result also means that the quasi-residual q° that one can associate
according to (5.14) with a Galerkin method is given by

qn =
Cn

From (5.20) we conclude further that (5.13) can be rewritten as

MR _ MR | |2 , G 2 (KOO}

and, in view of |sn|2 + cn = 1, subtraction from b and premultiplication by
A" 1 yields

VMR _ MR
x n — x n - l

2 , G 2

Finally, once again using |sn|2 + cn = 1 and rjn+i  = ~^nVn (see (5.8)), we
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see that

which allows us to find |r7n+i|
2 recursively without the QR decomposition,

just from the residual norms of the Galerkin method. Then, weights in
(5.22) and (5.23) are obtained from

ln+l\
\rG\
\'-n I

|2

= 1 - 4. (5.25)

Recall that |?7n+i| = ||rMR|| in the CR and FOM settings, while \r] n+i =
||qn|| is the norm of the quasi-residual if we apply the above to the BlCG-
QMR connection. The relations (5.22)-(5.25) open up an alternative way
to compute the QMR (or CR or GCR) iterates and residuals from the
corresponding Galerkin residuals, that is, the BlCG (or CG or FOM) re-
siduals. Zhou and Walker (1994), who introduced this approach, call it
QMR smoothing. We will return to it in Section 17.

The relation (5.22) has its root in the analogue one that holds for the
coordinate vectors,

1,MR
K n - 1

.MR _ i „ z _j_

0

which was given in Freund (1993, Lemma 4.1).

6. Variations of the Lanczos BlO algorithm

6.1. Further cases where the BlO and BIORES algorithms simplify

We have mentioned before that in the symmetric case the BlO algorithm
simplifies: the left and the right Lanczos vectors coincide, and therefore only
one matrix-vector product is needed per step. In fact, this simplification
applies in a somewhat more general situation.

For every square matrix A there exists a nonsingular matrix S such that
AT = SAS"1, but, in general, the spectral decomposition of A is needed
to construct S, and thus S is normally not available. See, for instance,
Horn and Johnson (1985, p. 134) for a proof of this result. Rutishauser
(1953) and, later, Fletcher (1976) noticed that choosing yo = Syo in the
BlO algorithm yields yn = Syn (n = 0,1,... ,v — 1). (Rutishauser's and
Fletcher's remarks are restricted to real matrices, but generalize in the way
indicated above to the complex case.) Of course, it then suffices to generate
{y n}  by the three-term recurrence, which means that the BlO algorithm
becomes transpose-free and only one matrix-vector product involving A is
needed per step. Hence, storage and work are then reduced to roughly
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half, except for the additional multiplication by S for temporarily creating
yn, which appears in the inner products for an and 6teuip. Moreover, under
these assumptions one-sided termination cannot happen: yn = o if and only
if yn = o. However, serious breakdowns are in general still possible.

Fortunately, there are several interesting situations where the matrix S is
known and is simple to multiply with. A trivial case is when A = AT is
symmetric (real or complex), and thus S = I. Freund (1994) lists several
classes of S-symmetric and S-Hermitian matrices satisfying by definition
ATS = SA, S = ST and A*S = SA, S = S*, respectively. In particular,
every Toeplitz matrix is S-symmetric with S the antidiagonal unit matrix.
Real Hamiltonian matrices multiplied by i := \f—l are also S-symmetric.
However, note that the conditions S = ST or S = S* are not needed for the
simplification. Also, the class of S-Hermitian matrices is rather restricted
since any such matrix has a real spectrum.

Incidentally, the transformation S is also crucial in a paper of Jea and
Young (1983, Def. 1.1, Thm 4.1).

6.2. The one-sided Lanczos algorithm

It has been pointed out by Saad (see Algorithm 3 in (Saad 1982)), that one
can exploit additional freedom in choosing the sequence {y n}  of left Lanczos
vectors without affecting the sequence {y n}  of right Lanczos vectors: we
can use for the former any sequence that spans the nested Krylov spaces Kn

successively. In fact, a closer look at our derivation in Section 2 shows that
up to a scalar factor the right Lanczos vectors are fully determined by the
orthogonality condition Kn _I_B Yn- Therefore, it does not matter which set
of nested bases is used for the left Krylov spaces Kn. All we need is that

yn = ^(A*)y 0

with a polynomial tn of exact degree n or, equivalently, that for yn a recur-
rence holds that is of type (2.7) with Tn<n-\  ̂ 0. Since this means giving
up the mutual biorthogonality of the two vector sequences, we have to re-
derive the formulae for an and f3n-\. Again taking inner products of the
first Lanczos recurrence in (2.19) with yn_i and yn, we see that the formula
(2.20) for /3n-i does not change, but the one for an changes into one of the
following two:

n - yn-lPn~l)B /f>n

B7n-i - (yn-i,Ayn_i)B/?n-i

+ Pn-lSn-lTn-l,n-l) /{in-l^n)-

These formulae, together with the standard recurrence for the right Lanczos
vectors and a nearly arbitrary recurrence for the left Lanczos vectors leads
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to Saad's variation of the BlO algorithm that we call here the one-sided
Lanczos algorithm; in contrast to Saad we prefer the first formula for an,
which is also used in Gutknecht and Ressel (1996).

ALGORITHM 5. (ONE-SIDED LANCZOS ALGORITHM)

Choose yo, yo £ C^ such that <5o := (yo, YO)B ¥" 0, and set /3_i := 0. For
n = 0 ,1 , . .. compute

A.-1 := 7n-i«n/«n-i, (if n > 0), (6.1a)

an  (yn,Ay n -yn-iPn-i)B/f>n, (6.1b)

ytemp := Ayn - ynan - yn-\Pn-\, (6.1c)

y t e mp := A*y n - ynfn>n yoTO,n, (6.1d)

t̂emp := (ytemp, ytemp)B ! (6.1e)

if t̂emp = 0, choose 7n ^ 0 a nd 7n 7̂  0, s et

V.= n+\, yu :=  ytemp/7n, yV  Ytemp/7n, <Wl == 0,

and stop; otherwise, choose 7n 7̂  0, 7n ^ 0, and Sn+\ such that

set

y«+l : = ytemp/7n> fn+1

and proceed with the next step.

Here, the coefficients Tfci7i have been assumed to be given, but there are
situations where one might want to determine them from recently computed
right Lanczos vectors. It is easy to adapt this algorithm to the problem of
solving Ax = b and to specify the resulting one-sided consistent B IORES

algorithm with 7n := — an — /3n_i, or the one-sided inconsistent BlORES
algorithm, or to combine it with the QMR approach.

Theoretically, one could use for the left sequence the Krylov vectors yn :=
(A*) ny0, thus simplifying (6.Id) to ytemP := A*y n, but in practice these soon
become nearly multiples of each other (and of the eigenvector associated with
the absolutely largest eigenvalue); therefore, even for moderate n, they are
useless as a basis for Kn, and methods that rely on them do not work for most
problems. On the other hand, to use a long recurrence for the left vectors
would be a waste. Hence, only two-term or three-term recurrences are a
serious option, and in most situations, the normal left Lanczos recurrences
wil l be the best one.

Saad points out that this algorithm reminds us that the orthogonality
of the left vectors, that is, y J_B JCn, is not essential, and that, therefore,
in the BlO algorithm there is no reason to improve this orthogonality by
reorthogonalization.
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However, there are at least two situations where the one-sided Lanczos
algorithm is valuable. First, a purely theoretical application is that it can
serve as an intermediate step in the derivation of Lanczos-type product
methods; see Section 16. Second, for the numerical stability of the Lanczos
process it is most important that the space-expanding term in the recursion
for the Lanczos vectors, that is, Ay or A*y , respectively, is not too small
compared to the two other terms. If this happens to the right sequence,
we have to switch to a look-ahead step (see Section 19). However, if only
the left sequence is affected, we can just switch to the one-sided Lanczos
algorithm instead.

In fact, for numerical stability, the optimal choice for the left sequence
would be the one generated by the Arnoldi process applied to A* with start-
ing vector yo- However, the cost of this process forbids this: recall that
the main advantage of the Lanczos process over the Arnoldi process is the
large reduction of memory and computational costs. As a cost-effective com-
promise we may choose the ORTHORES(2) process instead, which amounts
to making ytemP orthogonal to yn and yn- i (instead of yn and yn- i ) :

Ytemp := A * y n - y n ( y n , A * y n ) B - yn- i (yn- i, A*y r i)B ,

except that the last term does not exist when n = 1. However, it is better to
implement this according to the modified Gram-Schmidt process, and thus
compute

'—' A ~k'—

ytemp ' = - yVi)

ytemp  ytemp jn\jrn ytemp/B j

ytemp := ^temp ~ Yn-1 (YU-I , ytemp)B , (if 71 > 0).

6.3. An abstract setting for the Lanczos process

We have introduced the Lanczos process for a real or complex N x N matrix
A. Such a matrix can always be thought of as a linear operator A : M.N —>
~RN or A : C^ —> CN, respectively. For generality, let us concentrate on the
complex case: the Euclidean space C^ is a finite-dimensional inner product
space, and we have made use of its inner product (.,.) when defining the
formal inner product (y, y )s : = (y>By) = y*By , which involves a matrix
B that commutes with A and is in most applications just the identity I. The
norm that comes with (.,.) was occasionally used to normalize vectors, but,
as we have seen, the Lanczos process can work with unnormalized vectors,
and thus the norm is only needed as soon as we want to measure convergence.

It is straightforward to reformulate the Lanczos process for an infinite-
dimensional Hilbert space, and there are indeed applications for this set-
ting; see, for instance, Hayes (1954), Kreuzer, Miller and Berger (1981) and
Lanczos (1950). However, as pointed out by Parlett (1992) (and further
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developed in a private discussion), one can go a big step futher with respect
to generality.

Parlett makes the point that the Lanczos algorithm can be defined in
a plain vector space. There is no need to normalize the Lanczos vectors
because they can be defined by the monic Lanczos polynomials. There is
no need for A*  or AT provided that one set of Lanczos vectors consists of
row vectors and the other consists of column vectors. There is no need for
a normed space, let alone an inner product space. The point is that there
is no norm or inner product natural to the Lanczos algorithm. Different
applications might require different norms. The choice of norm or inner
product needs to be justified, not assumed.

Let V be a linear space over the field C (for simplicity), and A : V — V
a linear operator. The linear functionals defined on V form another linear
space, the algebraic dual space Vx of V; see, for instance, Kreyszig (1978,
Section 2.8-8). A linear operator Ax : Vx —> Vx adjoint to A can be defined
by

(Axy)(y) := y(Ay) (for all y e V, y e Vx).

If V is in addition normed, one considers typically the normed dual space V'
of V consisting only of the linear functionals that are bounded. Then, if A
is bounded, the restriction of Ax to V becomes a bounded linear operator,
the adjoint A' of A on V'. It has the same (operator) norm as A; see, for
instance, Kreyszig (1978, Section 4.5-2), Rudin (1973, pp. 92-93).

For either of these two situations we can define the Lanczos process if we
replace 'y € CN is (B-)orthogonal to y G C^' by 'y € V is a zero of y € Vx

[or: V']' :

(y,y)B = o ~» y(y) = 0

In particular, instead of (B-)biorthogonal bases satisfying (ym,yn)B =
8m,n6n, the Lanczos process then produces dual bases satisfying

We need, however, to point out a difference between this setting and the
one in a complex Hilbert space, in particular C^. The inner product (y,y)
in C^ is sesquilinear, while y(y) is bilinear. Therefore, the above defined
adjoint operators Ax and A' are not identical with the Hermitian transpose
A* if V = C^ (or with the Hilbert space adjoint if V is a Hilbert space),
but rather with the transpose AT of A; see, for instance, Kreyszig (1978,
Section 4.5-3), Rudin (1973, pp. 297-298). For this reason, the formulae
of our algorithms require some small modifications if translated into the
abstract setting of dual spaces.
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7. Coupled recurrences: the BiOC algorithm

In his second paper on the subject, Lanczos (1952) suggested under the
section heading 'The complete algorithm for minimized iterations' an al-
ternative algorithm for computing the sequences {y n} , {y^}  generated by
the BlO algorithm. He also discussed in detail how to apply this algorithm
for solving linear systems of equations. While the BlO algorithm for the
nonsymmetric Lanczos process described in Section 2 is based on a three-
term recurrence we turn now to another algorithm based on a coupled pair
of two-term recurrences for the same process. The relationship between the
two types of recurrence is the same as that between a linear second-order
ordinary differential equation and an equivalent pair of coupled first-order
equations: we just introduce an auxiliary quantity. In addition to the pair
of biorthogonal (i.e., B-biorthogonal) Krylov space bases, a second pair of
biconjugate (i.e., BA-biorthogonal) bases for the same Krylov space is now
generated. That is why we introduce here the acronym BiOC for this al-
gorithm.

While the BlO algorithm supplies us with a tridiagonal matrix T that
represents a projection of A, the new algorithm produces the two bidiagonal
matrices that are the LU-factors of T. If an LU-factorization (without
pivoting) of T does not exist, the BiOC algorithm breaks down early. This
seems to be a disadvantage of the Lanczos process based on coupled two-term
recurrences (BiOC algorithm) compared to the one based on three-term
recurrences (BlO algorithm). However, practice shows that nevertheless
the BiOC algorithm is often numerically preferable, as round-off seems to
have less impact.

The usual application of the BiOC algorithm is to solve a linear system
of equations Ax = b, again either by additionally computing iterates that
satisfy the Petrov-Galerkin condition of the BiCG method, or by solving
the least squares problem in coordinate space of the QMR method. Further
investigations are necessary to find out if the BiOC algorithm is also ad-
visable for eigenvalue computations, where it has hardly ever been applied
until now. Parlett (1995) lists several advantages of the factored form. In
particular, if we assume that Tn and its LU-factors are known to a cer-
tain precision, then the factors implicitly determine the entries of Tn to
higher precision. The factors are also the input data of Rutishauser's dif-
ferential QD algorithm of 1970 (see Rutishauser (1990)), which has recently
been enhanced by Fernando and Parlett (1994). Enriched by a suitable shift
strategy, it has become the method of choice for the bidiagonal singular value
problem and the eigenvalue problem of a real symmetric positive definite tri-
diagonal matrix. By avoiding explicit shifts, it can be made competitive to
the QR algorithm even for the general real symmetric tridiagonal eigen-
value problem. Making its nonsymmetric version sufficiently stable seems



LANCZOS-TYPE SOLVERS 315

to be a long way ahead, however. It would be less expensive than the nor-
mally applied QR algorithm, as it works with bidiagonal matrices, while QR
transforms the nonsymmetric tridiagonal into an upper Hessenberg matrix.

7.1. The BlOC algorithm

We start with the formulation of the BlOC algorithm and a discussion of
its main properties.

ALGORITHM 6. (BiOC ALGORITHM)

Choose yo,yo G CN such that 60 := (yo,yo)B ¥" 0 and 6'0 := (y0, AV O)B ^
0, and set vo := yo, vo := yo. F°r n = 0,1,. . ., choose 7« 7̂  0, 7n / 0 and
compute

Yn+1

fn+1

Vn+1

Vn+1
S'n+1

=  (Avn -
=  (A*v n -

(7.1a)
(7.1b)
(7.1c)

= yn+i - vn^n,

= (vn +i ,Av n +i ) B -

(7-lg)

(7-lj)

If 8n+\ = 0 or 6'n+1 = 0, set v := n + 1 and stop; otherwise proceed with the
next step.

The formulae (7.1c)-(7.1d) and (7.1h)-(7.1i) are known as coupled two-
term recurrences. We will see below that by eliminating vn and vm from
them we get back to the three-term recurrences (2.19) of the BiO algorithm.

The basic result for this BlOC algorithm is the following one.

Theorem 7.1 The sequences {yn}^=0) {y«}n=o generated by the BlOC
algorithm are biorthogonal, and the sequences {v n}^ =0 and {v n}^ =0 are
biconjugate (with respect to A) except that (yc, y^B = 0 or (v,>, AV^) B =
0. That is, for m, n = 0 ,1 , . . ., z>,

= \
0, m ^ n,
Sn, m = n,

(vm,Av n)B =
0 , m 7̂  n,
6'n = 6nipn , m = n,

(7.2)

(7.3)
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where 6n  ̂ 0 and 6'n  ̂ 0 for 0 < n < i>  — 1, but So = 0 or So = 0. Moreover,
for n = 1 , . . ., 2/ — 1 holds in addition to (2.5)

vn € /Cn+i\/Cn , vn e £n + i \ £ n . (7.4)

Proof. We provide an adaptation of Fletcher's proof (Fletcher 1976) to the
complex case and to our adjustable normalization. For m — n = 0, (7.2)-
(7.4) and (2.5) clearly hold. Assume that they hold for m, n = 0 , . . ., k (< v).
From (7.1c) and (7.1i) we get

(7.5)

= (ym, Avfc - ykfk)B Ilk

=  ((vm, Av fc)B + ^m- i ( vm_ i , Av f c)B - (ym, yfc)B< f̂c) /7fc- (7-6)

Here, for m < k — 1, all terms are zero by assumption. On the other hand,
if rn = k, (7.1a), (7.1e), and (7.1j) inserted into (7.6) yield (yfc,yfc+i)B =
((pkSk + 0-<fk^k)/lk = 0; hence, (ym,yfc+i)B = 0 for m < k. By symmetry,
(yfe+ijym)B = 0 for m < A; too, and together with (7.1e) it follows that
(7.2) holds up to k + 1.

Similarly, using (7.1h) and (7.Id) we get

(vm,Av f c + i ) B

= (vm, A(y fc+i - vfcV'fc))B

= 7m(ym+l, yfc+l)B +&m(ym, yfc+l)B - (vm

Here, too, for m < k — 1, all terms are zero by assumption. If m = k, we see
from (7.1h), (7.1d), (7.2), (7.3), and (7.1f) that (vfc, Av f c + 1)B = Tkh+i +
0 — S'kijjk  — 0. Hence, (vm, Avfc+i) B = 0 for m < k, and by symmetry
(vfe+i) A v m ) B = 0 too. Finally, the equation in (7.3) for m = n = k + 1
results from (7.1a).

The formulae (7.1c), (7.Id), (7.Hi), (7.1i)_, (2.5), and (7.4) show clearly
that yfc+i,Vfc+i e /Cfc+2 and yfc+1,vfc+i^G )Ck+2- As in Section 2, 6n  ̂ 0
implies that yfc+i 0 K,k+\ a nd yfc+i ^ 1Ck+i- By (7.1h) and (7.1i) it thus
follows that (7.4) holds for n = k + 1. This completes the induction.

7.2. Matrix relations

The BlOC algorithm has a matrix interpretation, which quickly reveals the
relation to the BlO algorithm. In addition to Yn and Y n of (2.8) we need
the N x n matrices

V n := [ v0 vi  vn_i ], V n := [ v0 vi  vn_i ],



LANCZOS-TYPE SOLVERS 317

the n x n matrices

7o </>i
7i

7n-2 fn-1

, Un : =

which are lower and upper bidiagonal, respectively, and the extended bidi-
agonal matrices

7o
7i

7n-2 Vn-1
7n-l

and

1 V>0
1

1 V V i - 1

withjin additionaJLrow and column, respectively13. Analogously, we define
Ln> Un, Ln, and Un in the obvious way. Then, according to (7.1h), (7.1i),
(7.1c), and (7.1d),

and

After setting14

and

Yn = V nUn, Y n = V nUn (n < v)

v T \*\r  "V T (ir, <

i — in+li^TH A v n — *-n+lMn \ n -

Tn :=  LnUn, Tn := UlnLn

X n := LnUn, Tn := Un +iL n,

(7.7)

(7.8)

13 Note that the additional column is indicated by a vertical line. We suggest reading this
symbol as 'U sub n extended'.

14 The prime does not mean transposition.
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and likewise denning Tn , T'n, Tn , and Tn , we conclude by eliminating V n

and V n or Y n and Y n , respectively, that

AY n = Y n + 1T n , A*Y n = Y n + 1T n (7.9)

and

AV n = V n + 1T ; , A*V n = V n + i f l . (7.10)

Note that T'n = U n L n
 a nd U nL n differ only by the rank-one matrix

iraTn-iV'Ti-ilri ) w m ch just modifies the element in the lower right corner
of UnL n by adding 7n_i^n_i to it.

Since the matrix T n with the recurrence coefficients am, (3m, 7m of the
BlO algorithm, and the matrices L n and Un with the recurrence coefficients
ipn and tpn-i of the BlOC algorithm, as well as the tridiagonal matrix T^
with elements a'm, (3'm, ^'m are related by (7.7), these three sets of parameters
are easily converted into each other. After setting tp-i := 0, we obtain

(i) from TV = L,>U,> :

an = ipn + Tn- l^n- l, Pn = priori, In = In,

(ii) from % = U^U :

P'n = Vn+l^n, In = In-

These are essentially the rhombus rules of the QD algorithm (Rutishauser
1957). Of course, the same formulae also hold with tildes.

Since (7.9) is identical to (2.23), except for the possibility that i>  < v, we
obtain the following result.

Theorem 7.2 If the same starting vectors yo and yo and the same scale
factors 7n and 7n are chosen in the BlO and the BlOC algorithms, then the
same biorthogonal vector sequences {y n}  and {yn} are produced, except
that the BlOC algorithm may break down earlier due to 6'  ̂ = 0. The
bidiagonal matrices L,>, L,>, UV, and U,> of the recurrence coefficients of the
BlOC algorithm can be obtained by LU decomposition of the tridiagonal
matrix Tj> with the recurrence coefficients of the first v steps of the BlO
algorithm. The possible earlier breakdown of the BlOC algorithm is due
to the possible nonexistence of the LU decomposition (without pivoting) of
TV.

This result implies in particular that from the bidiagonal matrices con-
structed in the BlOC algorithm we can still compute the eigenvalues of
Tn, the so-called Petrov values (or, Ritz values in the Hermitian case), as
approximations for eigenvalues of A. As mentioned at the beginning of
this section, there are a number of reasons why the bidiagonal matrices are
preferable; see Parlett (1995).
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Theorem 7.2 holds analogously for the ORTHORES and ORTHOMIN ver-
sions of the generalized CG and the GCR methods, except that T ,̂ is then
upper Hessenberg and U,> is upper triangular, while L,> is still lower bid-
iagonal; see Gutknecht (1993a). There is also a similar result that links
ORTHOMIN with ORTHODIR. We will encounter its analogue in Section 9.

7.3. Normalization; simplification due to symmetry

For the BlO algorithm (Algorithm 1) we have chosen a somewhat complic-
ated formulation to make explicit the freedom in choosing two of the three
quantities 7n, 7n, and <5n+i. The same freedom exists in our formulation
of BlOC, although we have not made that explicit. In particular, as nor-
malization we can still enforce (2.26) or (2.27). In these two cases, it is
necessary to define in a straightforward manner ytemp, Ytemp, and 6temp, as
in Algorithm 1. The second choice, (2.27), will lead to Lanczos vectors of
length 1. However, if we also wanted to have normalized direction vectors,
we would have to introduce additional scale factors in (7.1h) and (7.1i), and
to compensate for them in some of the other formulae.

What has been said in Sections 2.1 and 2.6 regarding simplification due
to symmetry also carries over to the BlOC algorithm. In particular, if A
is Hermitian, complex symmetric, S-Hermitian, or S-symmetric, then the
matrix-vector multiplication by A*  can be replaced by multiplication by S.

8. The B I O M I N form of the BiCG method

A consistent version of the BiCG method based on the BlOC algorithm was
presented by Fletcher (1976). He referred to it as the biconjugate gradient
(BiCG) algorithm, while later, Jea and Young (1983) called it Lanczos/OR-
THOMlN. Here we use the name BlOMlN in order to stress the analogy to
the OMIN (Hestenes-Stiefel) version of the conjugate gradient (CG) method
(Hestenes and Stiefel 1952) and the differently flavoured analogy to B IORES

and BlODlR. The latter is discussed later. The BlOC algorithm is related
to the B IOMI N version of BiCG and to the OMI N version of CG in the
same way as the Lanczos BlO algorithm is related to the B IORES version
of BiCG and to the ORES version of CG.

We will refer to BlOMlN also as the standard version of BiCG. We keep
using the abbreviation BiCG (like CG) as the generic name for the various
biconjugate gradient algorithms that are mathematically equivalent except
for possible deviations in the breakdown conditions.

8.1. The B IOMI N algorithm

When applying the BlO algorithm to solving linear systems in such a way
that the right Lanczos vectors became the residuals, we had to stick to a
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particular choice of  j n , namely 7n := — an — (3n-i, in order to fulfi l the
consistency condition for Krylov space solvers. Likewise, 7n is determined
here by the latter condition. In fact, since L n = TnU~x , the bidiagonal
matrix ~Ln inherits from T_n the property of zero column sums, which, as we
recall, was inherited to T_n from Fn ; that is, we need

TT _ T

or, in terms of matrix elements,

In :=  -<pn. (8.1)

Again, we can then define the iterates xn in such a way that yn is the nth

residual: multiplicaton of (4.14) from the right by U^1 yields

n — — -X-n+lldn (n S V),

or,
x n+l  :— x n

if we set
1 _ 1

<Pn In

!n, but the normal choice is

(8.2)

Basically we are free to choose 7n, but the normal choice is 7n := -yn, which
implies that ipn :=  ipn and ipn :=  —6n+i/6n, see (7.1f)-(7.1g). This leads us
to the standard BlOMiN form of the BiCG method.

ALGORITHM 7. ( B I O M I N FORM OF THE B I C G METHOD)

For solving Ax = b choose an initial approximation xo, set vo := yo := b —
Ax 0, and choose y0 such that 80 := (yo,yo)B ¥" 0 and 6'0 := (y0, AV O )B 7^
0. Then let v0 := yo, and apply Algorithm 6 (BiOC) with 7n := —tpn and
7n := — Vn, so that after substituting con := l/<pn the nth step consists of:

wn := Sn/6
;
n, (8.3a)

- Av nwn, (8.3b)

- A * v nc ^, (8.3c)

+ vn<j n, (8.3d)

B , (8.3e)

(8.3f)

(8-3g)

(8.3h)
Vn+1

Vn+1

8'n+1

= yn+1 - Vn^n,

= (Vn+1, Av n + i ) B .

If yn+i = 0 the process terminates and xn+i is the solution; if 6n+i  = 0
(and hence ipn = 0) or 6'n+1 = 0, but yn + i  ̂ 0, the algorithm breaks down.
In all cases we set i>  := n + 1.
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Assuming b — Ax n = yn and using (8.3d) and (8.3b) we in fact get

b - Ax n + i = b - Ax n - AvBwn = yn - Av nwn = y n + i ,

so that by induction b — Ax n = yn for n = 0 , 1 , . . ., z>. Consequently, if
y  ̂ = 0, then x.c is the solution of the system.

Note that by definition of v we have

6 / 0, VVi-i ^ 0, ipn ^ 0, ton 7̂  0, n = (0), 1 , . .. ,i>  — 1, (8.4a)

and one of the following three cases:

S  ̂= 0, % = 0 = > Vi>-i = 0, ¥>*, ^ undefined. (8.4d)

In the first case, (8.4b), a pivot breakdown occurs. The second case, (8.4c),
is a Lanczos breakdown. Here, we could still compute y^+i = yc, yWi =
yc, and Sc+i = 0; but then ipc would be indefinite, and we would have
v,>_|_i £ ICc+i, vc+i £ K-c+i for any value of ^c- In other words, the Krylov
space generation is stopped. Hence, the algorithm stalls permanently, with
no chance to recover. In the next section we will derive yet another version,
BlODlR, of the BlCG method, which under a certain assumption can re-
cover in this situation. The last case, (8.4d), is simultaneously a Lanczos
and a pivot breakdown.

Formula (8.3d) shows clearly that the approximations xn are modified by
moving along the direction vectors vn, and it allows us to express xn — xo
as a sum of corrections:

n - l
xn = x0 + ^ v j o ; j .

i=0

This formula was actually the starting point of Lanczos' application of the
BlOC algorithm to linear systems (Lanczos 1952, p. 37). When A is
Hermitian positive definite and B = I, that is, in the classical CG situ-
ation, one can say that for finding xn+i one moves along the straight line
determined by the approximation xn and the direction vn until one reaches
the minimum of the quadratic function x i—> ^x*A x — b*x on this line, or
equivalently, the minimum of x i—> (xex — x)*A(x ex — x). In fact, as we have
mentioned in Section 4, this is then also the minimum among all x £ xo+/Cn.
At xn the gradient (direction of steepest ascent) of this function happens
to be — yn. Thus the gradients (residuals) are orthogonal to each other.
This geometric interpretation leads readily to a variety of generalizations of
the conjugate gradient method to nonlinear minimization problems; see, for
instance, Murray (1972, Chapter 5) and Hestenes (1980).
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8.2. The inconsistent BiOMlN algorithm

After successfully eliminating the pivot breakdown of the B IORES algorithm
by making a minor modification we may wonder whether it is possible to
eliminate this type of breakdown here too by introducing an inconsistent
version of BiOMlN. It is not difficult to define such a version, but it turns out
that the goal is missed. Nevertheless, the inconsistent BiOMlN algorithm is
of some interest due to its close relationship to the coupled two-term version
of the QMR method.

ALGORITHM 8. (INCONSISTENT B IOMI N FORM OF THE B I C G METHOD)

Let yo := (b —Axo)/7-i with some 7_i ^ 0, redefine xo := Xo/7_i, and set
7To := I/7-1 as in Algorithm 3 (inconsistent B IORES). Modify Algorithm 6
(BlOC) by also computing, at the nth step,

X n+l := -(-Xrifn + V

and

7Tn+i := -Kn<Pnhn- (8-5)

In this algorithm the vectors yn and xn are again related by (4.17), with
the same scale factors 7rn. The proof is once again by induction:

However, the BlOC algorithm, and thus also the inconsistent BiOMlN
algorithm, in any case break down when 6'n+1 = 0. Therefore, in exact
arithmetic, the latter algorithm does not bring any substantial advantage.
However, as we mentioned before, the BlOC algorithm seems to be less
affected by round-off than the BlO algorithm. While we do not expect a
big difference between consistent and inconsistent BiOMlN in this respect,
round-off error control measures are somewhat easier to implement when
the Lanczos vectors are normalized.

Concerning the relation to B IORES the following holds.

Lemma 8.1 If the same starting vectors are used, then the three al-
gorithms B IORES (Algorithm 2), BiOMlN (Algorithm 7), and inconsistent
BIOMI N (Algorithm 8) are mathematically equivalent, that is, they break
down at the same time and they produce the same iterates xn, except that
those of inconsistent B IOMI N are scaled by the factors 7rn.

Proof. The relation between the BlO and the BlOC algorithm was estab-
lished in Theorem 7.2. Compared to the BlO algorithm, B IORES addition-
ally requires that "yn := — an — /3n-i 7̂  0. But since 7n is the same for the
BlO and the BlOC algorithm, and 7n := — (pn in BiOMlN, this condition is
equivalent to ipn  ̂ 0, which has to be observed in the BlOC algorithm any-
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way, and which, conversely, is the only additional condition there compared
to the BlO algorithm.

9. The BIODI R form of the BiCG method; comparison

9.1. The BlC algorithm

Formula (8.3d) suggests that the iterates xn can be computed by building up
the biconjugate sequences {v n} and {v n}  and using the vectors yn and yn

only for the determination of the step size l/ifn, which depends on them via
6n; see (7.1a). Since the biconjugate sequences can be thought of as being
biorthogonal with respect to the formal inner product (v, V)BA := v*BAv ,
we can construct them with the BlO algorithm if we substitute this inner
product there. The sequences generated in this way can differ in scaling
from those produced by BlOMlN, but we will see in a moment how to make
them identical. We call the resulting algorithm the biconjugation or BlC
algorithm, and although it is identical to the BlO algorithm except for the
change in the formal inner product, we give it here in detail, because it
wil l be a part of the B I O D I R form of BiCG, and because we want to fix
the notation. We distinguish the new recurrence coefficients and the inner
products by primes from those of the BlO algorithm.

ALGORITHM 9. (BiC ALGORITHM)

Choose vo, vo £ C^ such that 6'0 := (vo, AVO) B 7̂  0, and set fi'_i  0. For
n =  0 , 1 , . .. compute

oL := <A*v n ,Av n) B /C (9.1a)

= < , (9-lb)

= 7n-l*n/*n-l> (i f n > °)> (9- l c)

* n

an

* temp

°ttemp

= Avn - vna'n - Vn-i^.j ,

, Av temp)B ;

if 6'temp = 0, choose 7^ 7̂  0 and 7^ 7̂  0, set

and stop; otherwise, choose 7^ 7̂  0, 7^ 7̂  0, and S'n+1 such that

7n7n"n+l "temp'

set

and proceed with the next step.
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I t is most natural to choose 7^ := ||ytemp||, l'n  ||ytemP||, so that the
||vn +i | | = | |vn +i | | = 1, in analogy to (2.27).

Theorem 2.1 now transforms into the following statement.

Corol lary 9.1 The sequences {v n} ^ = 0 and {v n} ^ = 0 generated by the BlC
algorithm are biconjugate (with respect to A), except that (v,/, A V , / ) B = 0.
That is, for m, n = 0 , 1 , . . ., z/,

f 0, m / n, , .

^  mZnj (9-2)
where 6'n 7̂  0 for 0 < n < v' — 1, but <5£, = 0. Moreover, for n = 1 , . . ., 1/ — 1,
(7.4) is valid for vn and vn. Conversely, the sequences {v n}^'_ 0 and {v n}^' =0

are uniquely determined up to scaling by the condition (9.2) with S'n  ̂ 0
(n = 0 , 1 , . . ., v' — 1), 8'v, = 0, and the assumption vn e /Cn+i, vn G ^

In view of (7.10) it should be clear that the recurrence coefficients a'n, 0'n,
j ' n and a'n, 0'n, 7^ in the BlC algorithm are the elements of the matrices T^

and T n that we introduced in Section 7. In particular, (7.7)-(7.8) hold, and
the shorthand notation for recurrences is

AV — V , i T ' A* V — V , , T '

9.2. The BlODiR algorithm

For the application of the BlC algorithm to linear systems of equations an
additional recurrence for xn is needed again. We keep the freedom of scaling
the direction vectors vn and \ n arbitrarily, but then have to determine the
step length appropriately.

ALGORITHM 10. (B IODI R FORM OF THE B I C G METHOD)

For solving Ax = b choose an initial approximation xo, set vo := yo :=
b — Axo, and apply Algorithm 9 (BlC), additionally computing

u£ == <vn,yn>B/C (9.3a)
xn +i := xn + vnu'n, (9.3b)

'n . (9.3c)

If yn+i = o, the process terminates and xn + i is the solution; if 6'n+1 = 0,
but yn+i 7̂  o, the algorithm breaks down. In both cases we set 1/ :=  n + 1.

Again, yn is the nth residual. In fact, by assuming that b — Ax n = yn

and using (9.3b) and (9.3c) we get

b - Ax B + i = b - Ax n - Avnuj'n = yn- Avnu'n = y n + 1,
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as required. The formula (9.3a) for u>'n enforces (vn,yn+i)B — 0. In The-
orem 9.2 below, we will verify that BlODlR creates the same iterates as
BlOMlN and B I O R E S, but has different breakdown conditions.

9.3. Comparison of breakdown conditions o/BiCG algorithms

The BlODlR algorithm can only break down due to ^e rap = 0. When
ui'n = 0, the algorithm can recover: although it stalls for one step, that is,
x n + i = xn and yn+i = yn, a new direction vn + i is created. Therefore,
in general, the method cannot be equivalent to B I O R ES or BlOMlN since
necessarily yn + i / yn in both. But if u'n  ̂ 0 (n = 0 , . . ., v — 1), it is indeed
equivalent to these two methods, as was noted in Jea and Young (1983,
p. 411) and is proven next. In the following theorem the various conditions
for a first breakdown, a stagnation point, or the termination are summarized
and compared.

Theorem 9.2 Assume that the same initial approximation xo and the
same initial vectors vo := yo := b — Axo and vo := yo are used in
BlODlR, consistent or inconsistent BlOMlN, and consistent and inconsist-
ent B I O R E S. Let v', v, and v be the indices of first breakdown or ter-
mination of BlODlR, inconsistent B I O R E S, and the other three algorithms,
respectively.

Then i>  = iain{u,u'}, and the following five conditions for a Lanczos
breakdown are equivalent:

(i') co'm^0 (for all m < n) and (vn,yn)B = 0 in BlODlR
(ii' j 6n = 0in B I O M I N

(iii' ) Sn = 0 in (consistent) B I O R ES

(iv') am + pm-i ^ 0 (for all m < n) and 8n = 0 in inconsistent B I O R ES

(v') n = v = v.

Condition (i') implies that either uj'n = 0 or 8'n = 0; in the latter case, u)'n is
undefined and n = v = v = i/. In the former, we have stagnation but no
breakdown of BlODlR.

Likewise, the next four conditions for a pivot breakdown are equivalent:

(i" ) (vmJm)B 7̂  0 (for all m < n) and 6'n = 0 in BlODlR
(ii" ) 8'n = 0 in BlOMlN
(iii" ) an + /?n_i = 0 in (consistent) B I O R ES

(iv" ) 7rn = 0 in inconsistent B I O R ES

(v") n = v = v'.

The conditions (ii')-(iv' ) and (i")-(iii" ) all cause either the termination or
a breakdown of the respective algorithm. However, (iv") does not stop
inconsistent B I O R E S.
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The three consistent algorithms produce the same approximants x i , . . ., Xj,
and hence the same residuals y i , . . ., y^. If we choose

7n == In (= -¥>„ = - I K ) (9.4)

in BlODiR, then, for n = 0 , . . ., z>, the vectors vn =: vJ^IR and vn =: v° I R

produced by BlODiR are the same as the biconjugate vectors vn =:  vJfIN

and \ n =:  v^ I N of BlOMiN. This implies that for 0 < n < v - 1 the
parameters dn,fl'n-\,7'n of BlODiR are the elements of the matrix T_£, of
(7.8).

In general, without the particular choice (9.4), we have

MINp _ DIRTV -MIN f _MINp _ DIRTV -MIN
v x v L v

where

rn:=707i"-7n- i, r ; : = 7 ^ - - -7 ; _ 1 . (9.6)

The submatrix T'o of the tridiagonal matrix T'v, with the parameters a'n,
$i-i> 7n °f BlODiR and the bidiagonal matrices L,> and U,> of BlOMiN are
then related by

Df,^  T^  D r v = DfJ U^ L^  Dr;^, (9.7)

where

D r ;n:=diag(l,ri,...,rn_i), Dr';n:=diag(l,r'1,...,r;_1). (9.8)

The step size u'n in BlODiR can be expressed as

u'n = unVn/Tn = -r'jTn+i,  n = 0,1, . . ., v - 1.

Proof. It is clear that up to a possible earlier breakdown of BlOMiN the
formulae (9.1a)-(9.1h) of the BlC algorithm produce the same biconjugate
sequences {v n} ^ = 0 and {v n} ^ = 0 as B I O M I N if the (n + l,n)-element j ' n of
the matrix T'o satisfying (7.10) is chosen appropriately, namely, so that T^
and Ti, are related by (7.7). (In fact, according to Theorem 2.1, applied
with B := BA, these sequences are uniquely determined by the biconjugacy
condition and the scaling.) Since TV and T£, then have the same subdiagonal
elements, we need 7^ = j n for identical sequences. Choosing 7̂  differently
just rescales the two vector sequences. Prom (7.1c), (7.1d), (7.1h), and
(7.1i), it follows easily that (9.5) and (9.6) hold, which, in view of (7.7) and
(7.10), lead readily to (9.7).

In the formulae (9.3a)-(9.3c), a scale factor for vn inherited by S'n yields
the inverse factor for u'n, which cancels when yn + i and xn+i  are evaluated.
Moreover, a scale factor for vn has no effect. Hence, to prove that the latter
two vectors are the same as in consistent BlOMiN it suffices to verify this
for a fixed scaling, say for the one induced by 7^ := 7n = —<pn, when vn

and \ n are the same as in B I O M I N . For the induction proof we assume
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that the pair yn, xn is the same as in B I O M I N . Comparing (9.3b) and
(9.3c) with (8.3b) and (8.3d) we see that the pair yn+i , xn + i is again the
same as in BlOMiN if and only if Jn = un. By (7.2), (7.4), and (8.3h),
(yn,yn)B = <vn,yn)B- Furthermore, if 6'n ^ 0, then by (7.2), (8.3a), and
(9.3a) we can conclude that indeed

This line also exhibits that u>'n  ̂ 0, n = 0 , . . ., v — 1. Since (yn, yn)B =
(vn, yn)B is still valid for n = z>, the equivalence of (i')-(iii' ) holds, and since
ft;, = 0 is the common breakdown condition of consistent and inconsistent
B I O R E S, (iv) and (v') are equivalent too.

In view of (8.2) and (8.3a) the condition </?,> = 0 (which by definition of
v implies 6  ̂  ̂ 0; see (8.4a)-(8.4d)) is clearly equivalent to 8'0 = 0. Fur-
thermore, since the consistent versions of BlOMiN and B I O R ES are related
by <pn = —In = Oin + (3n-i, the equivalence of (i")-(iii" ) and (v") follows.
The fact that, in inconsistent B I O R E S, 7rn — 0 signals a pivot breakdown
wil l follow in Section 12 (Theorem 12.1), where we will prove that irn is
the value at 0 of the nth Lanczos polynomial. It is also indicated by the
infinity of the nth approximant xn/-kn of the solution xex. Finally, since all
conditions except (i') for BlODiR and (iv") for inconsistent B I O R ES imply
a breakdown or the termination of the respective algorithm, and since no
other types of breakdown exist, it follows that v < v' and v < u, and that
always at least one equality sign holds.

What more can we say about the case where u < u', that is, ui'n = 0
for some n < v'1 As we have seen, BlODiR stalls but does not break
down. The sequences {^m}m=o a nd {v m}m=o a re s t m biconjugate (since
they are generated by the BlC algorithm), and ym is still the residual of xm.
Using the connection to Pade approximation one can easily show that in this
situation oj'n = 0 can only occur for isolated values of n. The proof was given
in Gutknecht (1990, p. 30); the facts it is based on, namely the Lanczos-
Pade connection and the block structure theorem, were also presented in
Gutknecht (19946). This has the following immediate consequence.

Theorem 9.3 If in the B I O D I R algorithm uj'n = 0 for some n, then ui'n_1 ^
0 (if n > 0) and u'n+i  ̂ 0 (if n < i/— 1). The sequence {yn}n=o of residuals
generated by B I O D I R satisfies

-i-B Yn+l if ^n ¥" °>

-I-B yn+1 = Yn ^ u'n = 0.
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Table 1. Matrix relations that describe the recurrences of the BlO, BlOC,
and BlC algorithms. Only those for the right Lanczos and direction vectors
are shown. Additionally, on the left, the biorthogonality and biconjugacy
conditions are shown, while, on the right, the relations between the
matrices of the recurrence coefficients are listed. The lower relation,
T^ = ~Un+i~Ln, assumes that j ' k = 7̂  (for all k)

Algorithm

1 BiO

6 BiOC

9 BlC

Biorthogonality

Y*BY n = D,;n

V*BAV n = DS'.,n

Recurrences

AY n = Y n + 1T n

(n = V nUn AV n = Yn

AV n = V n + 1T ;

Relationships

Tn = LnUn

+1Ln

T'n = Un+1L n

9.4- An overview of BiCG algorithms

In Table 1 we first summarize the principle matrix relations of the BlO,
BlOC, and BlC algorithms. To get an overview of the five BiCG algorithms
that we have discussed, we list in Table 2 the various vectors and the corres-
ponding polynomials that come up (except for the iterates xn, which appear
everywhere, of course). Those vectors that are listed in several algorithms
are, up to scaling, the same. The table does not give full information about
the memory requirement, however, as sometimes previously computed vec-
tors or results of matrix-vector products have to be stored. In the last two
columns of the table it is indicated if a Lanczos breakdown ('L') or a pivot
breakdown ('P') can occur in the respective algorithm.

In Table 3 we compile the names of the coefficients and the corresponding
matrices that belong to each method. However, we do not include those
with tildes, as they are closely related to those without tildes.

10. Alternat ive ways to apply the QMR approach to BiCG

As an alternative to the BiCG method that is based on a Petrov-Galerkin
condition, we discussed in Section 5 the QMR approach for solving a non-
Hermitian linear system of equations. Starting from the representations

xn = x0 + Ynkn, rn = r0 - AY nkn, (10.1)

for the nth approximate solution and its residual, we saw by inserting AY n =
Yn+iT_n and r0 = yopo = Yn+i^po that

rn = Yn+iq^, qn := e^o - Tnkn. (10.2)
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Table 2. Krylov space vectors and corresponding polynomials that appear in
our five forms of the BlCG method. Different scaling is mirrored by upper
indices in the notation for the polynomials, but not in the one for the
vectors. The complex conjugate polynomials, which are associated with left
vectors, can be multiplied by yet another scale factor, in general. In the
columns 'L' and 'P' we indicate if an algorithm is susceptible to Lanczos
breakdown or pivot breakdown, respectively

Algorithm

2 BIORES

3 BIORES

7 BIOMI N

8 BIOMI N

10 BIODIR

(consistent)
(inconsistent)
(standard BlCG)
(inconsistent)

Vectors

yn,yn

yn, Yn, Vn, Vn

V V V
t/ 715 * 71 J * 71

Polynomials

Pn, Pn~
-INC INC
Pn > Pn
Pn, Pn", Pn, Pn
-INC -INC £JNC CX
Pn , Pn > Pn i A-

Pn, Pn , Pn

L

v7

v7

V
?c v7

p

v7

v7

v7

v7

Table 3. Coefficients, inner products, and corresponding matrices that
appear in our five forms of the BlCG method

Algorithm

2
3
7
8

10

BIORES
BIORES
BIOMI N
BIOMI N
BIODI R

(consistent)
(inconsistent)
(stand. BlCG)
(inconsistent)

Coefficients

&n, Pn — 1, ^in

Qfl] /?n-l; In, 7Tn+l
W n , 4>n

Un, V>n, In,

" n . P'n, In, Wn

Inner
products

Sn+i
6n
Sn,S'n
6n,Vn

S'n+l

Matrices

Tn, D^;n

T n , T>s-n
L n, Un , T>S;n, D«';n
Ln, Un, Dfi;n, ^6';n
Tn, Ln, D^/;n

Recall that here the columns of Y n +i are expected to be normalized. The
QMR method then minimizes the quasi-residual qn (instead of the residual),
and this amounts to solving the least squares problem

HeiPo -Tnk n | |2 = min! (10.3)

with the (n + 1) x n tridiagonal matrix Tn (which will have some additional
fill-i n in the upper triangle if look-ahead is needed).

Instead of using the BlO algorithm, can we also apply the BlOC or even
the BiC algorithm to find the QMR iterates? Replacing (10.1) by

xn = x0 + Vnkn, rn = r0 - AV nkn,



330 M. H. GUTKNECHT

and now substituting AV n = Y n+iL n, we find

Since rn is again written as a linear combination of the columns of Y n + i ,
the coefficient vector qn is the same as in (10.2). The least squares problem

||eiPo - L n k n | |2 = min!

that has now to be solved involves a lower bidiagonal matrix, but it is
equivalent to the one of (10.3): it could have been obtained from the latter
by inserting Tra = L raUn and Unk n = kn. Hence, all we have done is a
linear change of variables: while the coefficient vector kn is different from
kn, the approximate solution xn is the same as before. (Of course, exact
arithmetic is assumed here.) We suggest calling this form of the QMR
method BlOCQMR for distinction. A complete description of it and its
implementation, including a version of the BlOC algorithm with look-ahead,
was given by Preund and Nachtigal (1994, 1993).

We can also construct a BiCQMR form of the QMR approach. Writing

x n = x0 + V nk^, rn = r0 - AV^k^ ,

and inserting AV n = V n + iT ^  and ro = yoPo = vopo = Vn+iejpo, we
obtain

rn = V

However, the resulting least squares problem

- XXII 2 = min!
is no longer equivalent to the two previous ones, since rn is here represented
in a different basis, the columns of Vn+i. One must expect that in typical
examples these columns are even further away from orthogonal than those
of Yn+i (which are orthogonal in the symmetric case), and that therefore
the norm of the true residual is larger than in BlOQMR and BlOCQMR.

11. Preconditioning

By suitable preconditioning the convergence of iterative linear equation solv-
ers is often improved dramatically. In fact, in practice large linear systems
of equations resulting from the discretization of partial differential equations
are often so hard to treat that iterative methods do not converge at all un-
less the system is preconditioned, which means that the coefficient matrix
is - implicitly or explicitly - replaced by another one with better conver-
gence properties. However, the more effective preconditioners are, the more
costly they tend to be, both regarding their one-time computation and the
additional cost of evaluation (for instance matrix multiplication) per step.
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In general, preconditioning can be viewed as replacing the given system,
say,

Ax = b with initial approximation xo, (H-l)

by an equivalent system,

Ax = b with initial approximation xo,

where either
A := CLAC f i , b := CLb,

x0 := C^xo, x := C^x,
or

A := CLAC«, b := CL (b -Ax 0) ,
(11.o)

x0 := o, x := x0 + CRX.

The second version combines the preconditioning with a shift of the origin at
the beginning of the iteration, as suggested by Preund and Nachtigal (1991).
Note that the same shift of origin is also applied in the general concept of
iterative refinement, and in Section 18 we will suggest also applying it at
later stages.

We call CL and CR the left and the right preconditioner (as, for instance,
in Ashby et al. (1990)). Many other authors (for instance, Golub and van
Loan (1989), Saad (1996), Barrett, Berry, Chan, Demmel, Donato, Don-
garra, Eijkhout, Pozo, Romine and van der Vorst (1994)) refer to M^ :=
C^1 and Mft := C^1 as left and right preconditioners. In fact, some precon-
ditioning techniques, such as the various forms of incomplete LU factoriza-
tions (Meijerink and van der Vorst 1977), primarily generate M i and MR,
and then evaluate y = Ay by solving the two linear systems M/j t = y and
M^y = At. Other preconditioning techniques emerge directly as proced-
ures for computing t = C#y and y = C^At. Finally, many algorithms can
be reformulated so that the left and the right preconditioner can be com-
bined into one matrix multiplication by the product CRCL or one linear
system with matrix M^M ^ to solve per step; see, for instance, Saad (1996).

Often, only either a left or a right preconditioner is applied, that is, either
CR := I or CL  I. In the first case, x = x, so that the errors of the
preconditioned system are the same as those of the original system. In the
second case, the residuals remain unchanged. In the general situation, if we
set xex = A - 1b and xex = A - 1b, both (11.2) and (11.3) imply the relations

r n = C iT n , Xex — Xn = CR (xex — Xn)

between the preconditioned residuals rn := b — Axn and the preconditioned
errors xex — xn on the one hand and the residuals rn := b — A5cn and errors
5cex — 5cn of the original system (11.1) on the other hand.
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12. Lanczos and direction polynomials

Any vector y in the Krylov space ICn+i  := span (y0, Ayo , . . ., A"y 0) can be
written in the form y = p(A)yo, where p is a polynomial of degree at most n,
in which the matrix A is substituted for the argument. The induced mapping
is an isomorphism as long as /Cn+i  ̂ Kn, that is, as long as n is smaller
than the grade of yo with respect to A. The sequence {yn}n~=o °f right
Lanczos vectors generated by the BlO algorithm is in this way associated
with the sequence {pn}^= o °f Lanczos polynomials, and from the three-term
recurrence (2.19) for the former we get immediately a three-term recurrence
formula for the latter. Of course, the analogue is true for the sequence
{yn}n=o °f left Lanczos vectors, the operator A*, and the corresponding
nested sequence of Krylov spaces Kn+\ := span (yo, A*yo,..., (A*)"yo) .
But from the recurrences (2.19) and the relations (2.21b) and (2.21d) we
see that the coefficients of this second set of polynomials, {p n}^~ 0, are just
complex conjugate to those of the Lanczos polynomials if we choose 7n =
7n. (Otherwise, in view of (2.28), pn would be a scalar multiple of p^;
for simplicity, we assume j n = 7^ in this section.) Similarly, from the
BlOC formulae (7.1a)-(7.1j) it is seen that the vectors vn € lCn+i  and
vn € K-n+i can then be represented by a polynomial pn of degree n and
the one with complex conjugate coefficients, pn, respectively. Since vn is
a direction vector, we call pn a direction polynomial. The coupled two-
term recurrences of the BlOC algorithm translate into coupled two-term
recurrences for the two polynomial sequences {pn} and {pn}- A three-term
recurrence for the direction polynomials alone follows by eliminating pn from
the coupled recurrences. Recall that the analogous elimination brought us
from the BlOC to the BiC algorithm. The recurrences remain valid up
to n = u, but the correspondence between Vn and Kn may no longer be
one-to-one for n = v. When taking the different indices of first breakdown
or termination of the various algorithms into account, we obtain altogether
the following result.

Theorem 12.1 Let {yn}n=0 and {y n}n=o ^°e the biorthogonal vector se-
quences generated by the BlO algorithm with 7n = 7n, and let {v n}^ = 0

and {v n}^_ 0 be the biconjugate vector sequences generated by the BiC al-
gorithm using 7^ = 7n and j ' n = 7 .̂ Then there is a pair of sequences of
polynomials, {pn}n=o a nd {Pnk'=o> s u ch that

yn=Pn{A.)y0, yn=^T(A*)yo, n = 0, l,..., i>,

and

v n = pn ( A ) v 0 , vn=pn(A* )v 0 , n = 0, l , . . . , iA
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For n < v = min{i/ , i/ }  these polynomial sequences satisfy the coupled
two-term recurrences

Po(0 == 1,

Po(C) :=  1, ( 1 2 1)

Pn+l(()  [tPn(O ~ <PnPn{t)\/in,

PrH-l(C)  Pn+l(C) ~ ^nPn(C), n = 0, 1, . . . , Z> - 1.

They also satisfy individual three-term recurrences, namely

Po(C)  1,
Pi(C) := (C - "o)Po(C)/7o,

Pn+l(C) := [ ( C - " n ) P n ( C) ~ Pn-lPn-l(O]hn, U=1,...,U-1,
(12.2)

and

pb(C)  1,

Pi(C) := (C - ao)
V1 ~

(12.3)
respectively. Both pn and p̂  have exact degree n, and both have the leading
coefficient F"1, where

rn:=7o7i--"7n-i- (12.4)

If 7n = —(fin (for all n) as in (8.1) or, equivalently, if 7n = — an —
(3n-i (for all n) as in (4.12), then

Pn(0) = l , n = 0,l,...,u. (12.5)

Otherwise, the values 7rn := pn(0) can be computed recursively according to
(4.16) or (8.5).

Proof. The recurrences (4.16) and (8.5) follow from (12.2) and (12.1), re-
spectively, by inserting ( = 0. It remains to verify the formulae (12.4) for
the leading coefficients and (12.5) on the normalization at ( = 0. Both
follow by induction from the recurrences.

Since the Lanczos vector yn is the nth residual of the three consistent ver-
sions of the BiCG method that we discussed in Sections 4, 8 and 9, pn is for
each of these algorithms the so-called residual polynomial. Property (12.5) is
the standard consistency condition for residual polynomials of Krylov space
solvers.

For the general Krylov space solver that we briefly considered in Sec-
tion 4, the recurrence relations (4.10) for the residuals also imply recurrence
relations for the residual polynomials, namely, in shorthand notation,

C[P0  P n - l ] = [P0  P n - l Pn ] H n . (12.6)
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From this formula it is easy to see that the condition Pk(0) = 1 (A; < n) is
equivalent to the zero column sum condition (4.11) for Hn and the choice of
po(C) = 1 as the constant polynomial. In analogy to (12.6) the recurrences
(12.2) and (12.3) can be written as

C[PO

C[PO

Pn-l ] =

Pn-l } =

PO Pn-l

Pn-l

Pn JTn,

Pn ] T ; .

Let us now define on the linear space V of all polynomials two linear
functionals 3> and $'. They are specified by the values they take on the
monomial basis:

€ N),

where
:= (yo, Afcyo)B = yoBAfeyo.

(12.7)

(12.8)

Here /i^ is called the Arth moment associated with A, yo, and yo- In engin-
eering, the set of moments is referred to as impulse response or as the set of
Markov parameters of a system; in the older mathematical literature they
are sometimes called the Schwarz constants (Rutishauser 1957).

Note that for arbitrary polynomials s and t and corresponding Krylov
space vectors s(A)yo, £(A*)yo we have

(12.9)

(12.10)

(12.11)

(t(A*)y o,As(A)yo>B =*'(<«) =
When we represent s and t by their coefficients,

and introduce the infinite coefficient vectors (extended with zeros),

s := [ c r0 <72 C73  ] T , t := [ - - - l T

as well as the infinite moment matrices
r2 r3

M: =

Mo M2

, M': =

Ml
M2
M3

M2

M3

M3

associated with the functionals $ and $', we see from

and from the analogous formula for $' that

= tTMs, *'(ta) = tTM's. (12.12)
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The matrices M and M' have Hankel structure: the (k, Z)-element only
depends on k + l. This is a consequence of the fact that the product (k+l of
Qk and (l only depends on k + I.

What can we say about the relationship between the functional # and the
original data of the problem: the matrices A and B and the initial vectors
yo and yo? (Recall that we are mainly interested in the case B = I, where
we can forget B.)

To explore this relationship, let us for a few lines assume that the matrices
A and B are diagonalizable. Then, since they commute by assumption, they
have a common complete system of eigenvectors (Wilkinson 1965, p. 52):
there is a nonsingular N x N matrix W of eigenvectors such that

AW = WDA , BW = WDK

where T)\ and DK are diagonal matrices containing the eigenvalues Ai,..., Ajv
of A and the eigenvalues K\, ..., KN of B, respectively. From A*W~* =
W~*D^ it is clear that the columns of W~* are a set of eigenvectors of A*.
We let

W=: [w i ,w 2 w 4 W"* [ W i , W 2 , . . . , W ; v j ,

and represent yo in the basis {w*.} , yo in the basis {w^} :

N
= w

Vi

. VN .

N

, yo=:E^ ^  = w" *
L VN J

Then

 (yo,Afcyo)B = [
m N

Therefore, //& can formally be written as the kth moment of a discrete meas-
ure d^i(X) with masses KjVjVj a*  the points A :̂

Mfc
f= Xkdfi(X), where ??J??J <5(A — Aj)dA .

(In the last formula, 6 is the Dirac function. Of course, if some of the
eigenvalues coincide, the corresponding masses have to be added.) More
generally,

$(S) = (yo,s(A)yo)B = I s(X)dfi(X).

In the symmetric case (A = A*, yo = Yo), where Xj G M. and rjj  = rjj,
dfi(X) is indeed a discrete positive measure whose support consists of the
eigenvalues Xj that are represented in yo (i.e., for which r]j  / 0).
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By the induced mapping from the Krylov space to polynomials, the biortho-
gonality (2.2) of the Lanczos vectors and the biconjugacy (7.3) of the se-
quences {v n}  and {v n}  now take the form

o = 6mn6n, n = 0,l,...,v,

and

yoBpm(A)Ap n(A)y o = 8mn6'n, n = 0 , 1 , . . ., v',

respectively, in view of A B = BA. With the above definitions, we can
translate these conditions into

Pn) = SmnSn, m,n = 0,1, ... ,V,

$'(PmPn) = 6mnS'n, m,n = 0,1, ... ,v'.

From the linearity of <E> and <J>' one concludes further that

and

which is another way to characterize these polynomial sequences. At this
point we need to recall the following definition; see, for instance, Gutknecht
(1992).

Definition 12.1 If the polynomial pn of exact degree n satisfies (12.13)
for some 6n  ̂ 0 and is uniquely determined by these conditions, it is called
a regular formal orthogonal polynomial (FOP) of the functional $.

In other words, (12.13) and (12.14) mean that {pn}n=o ^s a sequence of
regular FOPs of the functional $, and that {p n}^ = 0 is such a sequence for
$'.

If pn and pn are expressed in the monomial basis,

fc=O

and

n

fc=O

where T T ^ = Trn
n) = T'1, t h en t he first n equa t i ons of (12.13) a nd (12.14)

become homogeneous n x (n + 1) linear systems for the coefficients nk and

vri , respectively. Since -Kn and ??„  are known, we can move them on the
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right-hand side:

Mn = -

L ^ n - l

= -

[i-n

Mn+1

. M2n-1

" Mn+1

Mn+2

. M2n .

ir^ with M n :=

9  ̂ with M^ :=

Mo
Ml

. M n - l

" Ml

M2

Mi

M2

»n

M2
M3

Mn+1

'  M n - l

 M2n-2 .

(12.15)

 ^n '

Mn+1

 M2n-1 .

In the engineering literature, linear systems of this form are called Yule-
Walker equations. The matrices M n and M^ are the nth leading principal
submatrices of the infinite moment matrices M and M'. Since (12.13) and
(12.14) are equivalent to (2.2) and (7.3), respectively, it follows from the
uniqueness statements in Theorem 2.1 and Corollary 9.1 that for prescribed
leading coefficients 7rn and 7?n the solutions of these linear systems are
uniquely determined as long as 1 < n < v in the first and 1 < n < v'
in the second system. Clearly, this existence and uniqueness statement is
equivalent to the nonsingularity of the matrices M n and M^ in the respective
range of indices. For future use we state part of this result so that it also
applies for n > v and n > u', respectively.

Lemma 12.2 A Lanczos polynomial pn of exact degree n that is a regular
FOP of $ (that is, which satisfies the orthogonality conditions $(CmPn) = 0
(0 < m < n) and is up to a scalar multiple uniquely determined by them)
exists if and only if M n is nonsingular.

Likewise, a direction polynomial pn of exact degree n that is a regular
FOP of $' (that is, which satisfies the orthogonality conditions $'(CmPn) = 0
(0 < m < n) and is up to a scalar multiple uniquely determined by them)
exists if and only if M^ is nonsingular.

In particular, the indices of first breakdown or termination, v and //, of
the BlO algorithm and the BlC algorithm (Algorithms 1 and 9 in Sections
2 and 9), respectively, satisfy

v = min {n : M n +i singular},
' ==  min {n : singular}.

Proof. It remains to show that M^+i and M'j,,^ are singular. Set n :=  v.

First, for given   ̂ 0, the linear system (12.15) uniquely determines
the coefficients of a polynomial pn that corresponds to a vector yn e /Cn+i
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satisfying K.n _LB yn- At the same time, pn is mapped into yn € /Cn+i
satisfying yn J_B ICn- We want to prove that, in contrast to the defini-
tion of v, the conditions (2.1)-(2.2) could be fulfille d up to v + 1 if M^+i
were nonsingular. It remains to show that (y«,yn)B = 0 unless M^+i is
nonsingular. In fact, if this inner product is 0, then the additional equation

Mn7To") ^ 1" M2n-i7rn"l
)
1 + H2n  ̂ = 0 holds, which extends system (12.15)

by an extra row at the bottom. Consequently, the coefficients of pn satisfy
M,,+i [ 7ri  iTn ] T = °> which implies that M^+i is singular.

Of course, the singularity of is shown the same way.

If  the consistency condition (12.5) holds, then TTQ = 1 and we can move
the first column of M n to the right-hand side of (12.15), in exchange for the
current right-hand side that is moved back to the left. In this way, M n is
replaced by M^ , and the system becomes

(12.16)

L e m m a 12.3 A residual polynomial pn of exact degree n that satisfies the
consistency condition (12.5) and the orthogonality conditions $(CmPn) = 0
(0 < m < n) and is uniquely determined by the latter exists if and only if
M n and M ^ are nonsingular.

In particular, if z> denotes the index of first breakdown or termination of
the B I O R ES and the B I O M I N algorithm (Algorithms 2 and 7 in Sections 4
and 8, then

i>  = min {n : M n + i or M ^ + 1 singular}.

= —

Mo
Mi

. M n - l -

Proof. Prom the previous Lemma we know that an essentially unique pn

satisfying the orthogonality conditions exists if and only if M n is nonsingu-
lar. In order that pn can be normalized by pn(0) = 1, we need TT̂   ̂ 0;
then the normalized coefficients satisfy (12.16). If this system had more
than one solution, it would have infinitely many solutions with itn '  ̂ 0.
Renormalizing them, we would find infinitely many solutions of (12.15) with
ftn — 1, in contrast to the nonsingularity of M n .

Conversely, if both matrices are nonsingular, then the residual polynomial
wit h the stated properties clearly exists and is uniquely determined.

The above derivation of Lemma 12.2 relies on the existence and unique-
ness statements in Theorem 2.1 and Corollary 9.1, which describe the con-
struction of the Krylov space vectors y n and v n that are the images of
the polynomials pn and pn. There is another, more direct approach to this
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lemma. Since M n and M^ are nonsingular for 1 < n < v and 1 < n < v;,
respectively, the matrices M^ and Wv, have LDU decompositions (without
pivoting). In view of the Hankel structure, M^ and M.'u, are real or complex
symmetric, so that these LDU decompositions are symmetric ones. It turns
out that the upper triangular factors contain in their columns the coefficients
of the polynomials pm and pm, respectively. In fact, let

7T,
(0)

7Tn 7T,
(n)

'? '
7T,(0) 7Tn 7T,0

(1)

(n)
0
(n)

and, as before, let Yn and Yn be the N x n matrices with columns ym and
ym, m = 0 ,1 , . . ., n — 1, respectively, so that

Yn = [y 0 Ay0 ... A » - V o ] P n^

Y n = [y 0 A*y0  (A*)"" 1^ ]P^-

(We still assume that 7n = 7n for all n.) By the definition of the moments,

Yo

~ *  A n— 1

B [ y0 Ay 0 . .. A n" 1yo ] = M n .

Inserting here (12.17) and the orthogonality property Y*BY n = T>s-n (see
(2.24)) yields

P "T Ds-,n Pn1 = M n (n < u), (12.18)

and likewise we find

These are the claimed (symmetric) LDU decompositions of the nth moment
submatrices M n and M^ if the polynomials are monic, that is, 7n = 7n =
1 (for all n). Otherwise we get a nonstandard symmetric LDU decomposi-
tions with prescribed diagonal elements of the triangular factors. P "1 and
P"1 are the upper triangular matrices that contain the coefficients of the
monomials when expressed as linear combinations of the Lanczos and the
direction polynomials, respectively. Of course, if the decompositions (12.18)
and (12.19) exist for n = v and n = is', respectively, and if the diagonal
matrices D^.,, and T>s';n a re nonsingular, then these decompositions exist
for all n in the range specified. On the other hand, the latter holds if and
only if the leading principal submatrices M n and M^ are all nonsingular.
Moreover, we can conclude conversely that the inverses of the triangular
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factors contain the coefficients of monic FOPs pm (m =  0 , 1 , . . ., v — 1) asso-
ciated with $ and of monic FOPs pm (m =  0 , 1 , . . ., u' — 1) associated with
<£', respectively. Hence, the singularity of M^+i and M^,+1 as well as the
other statements of Lemma 12.2 follow.

13. The Lanczos process for  polynomials: the Stieltjes
procedure

So far we have considered the Lanczos process as a tool for generating
biorthogonal bases for a pair of Krylov spaces of the linear operators A and
A* denned on CN (or, more generally, a linear space and its dual space).
In the symmetric case (that is, when A* = A and yo = yo) the two bases
coincide and are orthogonal. We can apply the same process to the multi-
plication operator M defined on the space V of all polynomials with complex
coefficients:

We aim for a setting where the dual space is also V. In the case of classical
(real) orthogonal polynomials an inner product defined on V x V is given
by some bilinear integral operator:

(t,s) := J t(Os(()dfi(() =:  $(ts), (t,s) eVxV. (13.1)

Here d/i is a positive measure whose support is a subset of the real line.
Note that the integral only depends on the product ts, and therefore the
inner product is a linear functional $ of this product.

For the Lanczos process applied to polynomials we want to preserve this
property, but to relax the assumption on $. This means, however, that
in the complex case our formal inner product is still based on a bilinear
functional, and not on a sesquilinear15 one. Therefore it is better to forget
the integral and just let

(t,s):=$(ts) (13.2)

with an arbitrary complex linear functional <£ defined on V, which may, but
need not be, defined by its moments //&, the values it takes on the monomials:

This exhibits the connection to the Lanczos process for an operator A,
where the moments are given by (12.8). When we represent s and t by their
coefficient vectors, as in (12.10)—(12.11), the inner product is still given by
(12.12).

15 A sesquilinear functional (.,.}  on V x V is one for which (at, /3s) = a(3(t, s).



LANCZOS-TYPE SOLVERS 341

Note that as a consequence of (13.2) we have

M*  = M.

However, this does not mean that M is a selfadjoint operator, unless (13.2)
is really an inner product, which is not true in general, even in the real case,
as we do not require that (s, s) = <&(s2) > 0 if s  ̂ 0.

It is now an easy matter to reformulate the Lanczos process, be it in the
BlO or BlOC form, as a recursive process for generating formal orthogonal
polynomials (FOPs). For the BlO form, we start with po(() = 1; in the nth
step, we apply the multiplication operator to pn-i and then 'orthogonalize'
the product CP(C) with respect to pn-\ and pn-2 to get the new member
pn of the sequence. Here 'orthogonalize' refers to the formal inner product
(13.2). Again it is seen that the orthogonality with respect to polynomials
of lower degree follows automatically. This construction leads exactly to
the three-term recurrence (12.2). A similar one that parallels the BlOC
algorithm yields the coupled two-term recurrences (12.1).

Lanczos (1952) was well aware of this form of his process, but, at least for
classical orthogonal polynomials, it was published long before by Stieltjes
(1884). This polynomial version of the Lanczos process is therefore called
the Stieltjes procedure.

It remains to give formulae for the recurrence coefficients in terms of values
of <£>. Since $', which appears in the BlOC form, is linked to $ by

$'(s) = $(Cs) (s e V)

(see (12.7)), it is easily substituted. As mentioned before, when the aim is
the construction of orthogonal polynomials for a measure supported on a
subset of the real line, $ is the integral operator (13.1). In terms of $ the
BlO recurrence coefficients can be expressed as follows:

an = $((P
2
n)/6n, (13.3a)

Ai- l = *(CPn-lPn)/«n-l = 7n- lW*n-l (if n > 0), (13.3b)

Sn+1 = *(p£+1). (13.3c)

Of course, if the functional $ is not definite, and thus can assume the value
zero at p +̂i, the Stieltjes procedure can also break down.

For the BlOC version of the Stieltjes procedure we just need

6n+1 = *(p* +1), (13.4a)

6'n+1 = fc(Cptu), (13.4b)

since tpn and (pn+i  are expressed in terms of these values.
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14. The biconjugate gradient squared method

One of the disadvantages of the BlCG method is that it also requires matrix-
vector multiplications with the transpose matrix A* or AT, although the
relevant Krylov space containing the residuals is generated only by A. In
practice, A is typically large and sparse, and providing an efficient sub-
routine for both these products can be a nontrivial task. Moreover, since
two Krylov spaces are generated, two matrix-vector products are needed per
dimension of the subspaces JCn that matter.

In 1984 Sonneveld (1989) proposed a new Lanczos-type method that cir-
cumvents these two disadvantages and proved to be very successful in prac-
tice. He called it the conjugate gradient squared (CGS) algorithm, although
it is aimed at nonsymmetric problems and is not derived from a CG, but
from a BlCG algorithm, namely BlOMlN. Its nth residual polynomial is
the square p^ of the nth residual polynomial pn of BlCG.

Here Sonneveld's version will be called BIOMINS, but we refer to the
underlying approach as the biconjugate gradient squared (BiCGS) method.
As for the BlCG method, there exist several different forms of the BiCGS
method: in addition to BIOMIN S there are consistent and inconsistent ver-
sions of  B IORESS and two version of  B IODIRS. The latter two are not
really competitive, and therefore they are not discussed here. Together with
the two B IORESS versions they were presented in a separately distributed
part (Section 7) of Gutknecht (1990).

All competitive versions of the BiCGS method require two applications
of the operator A at each step; this is comparable to the two matrix-vector
multiplications with A and A* in BlOMlN, but in many applications it
is an advantage that the multiplication with A* is replaced by one with
A. For example, this is true when certain preconditioning techniques are
applied, when ordinary differential equations are solved with the help of the
Lanczos process (see, for instance, Hochbruck and Lubich (19976)), or, quite
generally, when vector and parallel computers are used.

The BiCGS method typically converges nearly twice as fast as the BlCG
method. However, the convergence is even less smooth, and in tough prob-
lems very erratic: the norm of the residual can suddenly increase again by
several orders of magnitude and then drop to the former level after just one
or a few steps. Such peaks in the residual norm plot indicate a reduction of
the ultimate accuracy of the solution that can be attained, but in Section 18
we will describe a remedy for this loss.
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14.1. The B I O M I N S form of the BlCGS method

For the derivation of B I O M I N S we start from the recurrences (12.1), choos-
ing 7n := —fn and substituting ujn := l/ipn, as in BlOMlN:

Prc+1  Pn-Vn(pn, (14-1)

Pn+l := Pn+l ~ 4>nPn  (14-2)

(In this section we use the sloppy notation C,pn instead of CPn(O-) Multiply-
ing (14.1) by pn and (14.2) by pn+i  yields

Pn+lPn = PnPn ~ ^nCPn, (14-3)

Pn+lPn+1 = Pn+l ~ fpnPn+lPn- (14-4)

Next, squaring both sides of (14.1) and (14.2) and using (14.3) and (14.4),
respectively, leads to

Pn+l = Pn - ZUnCPnPn + ^ICtn (14.5a)

= P2n~ WnC(PnPn + Pn+lPn) (14.5b)

and

Pn+l = Pn+l - 2V>nPn+lPn + V'nPn

= Pn+lPn+1 - V'nPn+lPn + 1plpn- (14-6)

The point is that equations (14.3), (14.5b), (14.6), and (14.4) are, in this
order, a system of recurrence relations for the four polynomial sequences
{PnPn-i}, {p n} , {Pn}, and {pnPn}- From (13.4a)-(13.4b) it follows that the
recurrence coefficients can be computed from the values that the functional
$ denned by (12.7) takes at the polynomials Cpn) Pn+i> a nd Pn- Here we
need to express these values in terms of the new Krylov space vectors

rn := pn(A)r 0, rn := pn(A)r 0,

Sn := pn(A)pn(A)r 0, ŝ  := pn +i (A)p n(A)r 0

and their inner products with an additional vector y0, which is now only
used for these inner products. In his seminal paper, Sonneveld (1989) chose
y0 := ro, but today it is known that a random vector is likely to yield better
convergence; see, for instance, Joubert (1990, 1992).

Once we have written down the recurrences for the four vector sequences
of (14.7), we have managed to 'square' a special case of the BlOC algorithm.
Like B I O M I N , the B I O M I N S algorithm is then based on the fact that one
can additionally compute a vector sequence {x n}  with the property that rn

is the residual at xn. In summary, we obtain the following standard BlOMlN
version of the BlCGS method.
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ALGORITHM 11. ( B I O M I N S FORM OF THE B I C GS METHOD)

For solving Ax = b choose an initial approximation xo 6 C^ and set
so := ro := ?o := b — Ax o Choose yo G C^ such that So := (yo,ro)B ¥" 0
and 6'0 :— (y0, A?O)B 7̂  0. Then compute for n = 0 , 1 , . ..

Sn+1

6'n+l

= sn - Ar nwn,
— f» A / c 1 i
—  ft ~^^\*^T\j 1̂  '

- s'nipn,

=  (yo,Ar n +i ) B .

(14.8a)

(14.8b)

(14.8c)

(14.8d)

(14.8e)

(14.8f)

(14.8g)

(14.8h)

If rn + i = o, the process terminates and xn + i is the solution; if rn+i 7̂  o
but Sn+i = 0 or S'n+l = 0, the algorithm breaks down. In each case we set
i>  := n + 1.

The recurrences for the vectors sn, s'n, rn, and fn are direct translations
of equations (14.3)^(14.6), and the formulae for Sn+\ and S'n+1 are in view
of (12.9) and (14.7) equivalent to (13.4a)-(13.4b). Finally, the recurrence
for xn is chosen so that rn — b — Ax n (for all n): by (14.8d), (14.8c), and
by induction we indeed get rn_|_i = vn — A(xn_)_i — xn) = b — Ax n+i .

From our derivation of this algorithm it is clear that the following holds.

Theorem 14.1 If BlOMiN and B I O M I N S are started with the same xo
and yo, the index of first breakdown or termination z>, the recurrence coeffi-
cients ipn, tpn-i, and the inner products Sn are for both methods the same.
The residual polynomials are pn and p^, respectively.

Although, theoretically, if convergence were denned by rn = o exactly,
the two algorithms would converge or break down at the same step, it is
evident that in practice, where convergence is denned by a condition like
||rn|| < ell ro||, B I O M I N S converges normally faster than BlOMiN, since
\pl(()\ = \pn(()\

2 < \pn(0\ i f t h e l a t t er i s smaller than 1.
Each step requires two applications of the operator A, that is, two multi-

plications of A with a vector, namely Ar n and A(sn + s'n).
Since the coefficients ujn = l/<pn and ipn-i are the same as in BlOMiN, the

bidiagonal matrices L n and Un are again available, and thus the tridiagonal
matrix T n = L nU n may still be used to obtain eigenvalue estimates for A.
In fact, deleting (14.8d) from Algorithm 11, we get what one might call a
special squared BlOC algorithm, and we could easily modify it to allow for
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the freedom of choosing j n independently from <pn, as in our formulation of
BiOC.

14-2. BlOS: the squared BiO algorithm

At this point one may ask whether, in analogy to the other two main forms
of the BlCG method, BlORES and BlODlR, there are also other forms of
the BlCGS method. To derive the analogue of B IORES, we first need a
squared BiO algorithm based on separate recurrences for the polynomials
p\ and p\. We start with those for p\: multiplying (12.2) by pn and
squaring (12.2) we obtain, respectively,

lnVnVn+l = (C ~ «n)Pn ~ Pn-lPn-lPn, (14-9)

7nPn+l = (C - an)
2
P

2n " 2(C " «n)/3n-lPn-lPn + ^ - lPn -1

= (C - «n)(7nPnPn+l - Pn-\Pn-lPn) + (%-iPl-i , (14.10)

where (14.9) has already been used to simplify (14.10). These two relations
allow us to generate the two sequences {pn-iPn} a nd {p^} recursively. The
coefficients an, /3n-i are given by (13.3a)-(13.3c). So far, the parameters
7n can be chosen freely (^ 0), and this freedom persists if one aims at an
inconsistent version of B I O R E S S. Later, we will want to choose 7n := — an —
Pn-i in the case of consistent B I O R E S S, since this condition is equivalent
to pn(0) = 1, which implies #[(0) = 1, the consistency condition for the
residual polynomial p\. (The freedom of choosing the sign of pn(0) would
not help to avoid any type of breakdown.)

In summary, we see that a method for generating

rn := p2
n(A)r0, r'n := pn(A)pn+1(A)r0 (14.11)

can be based on (14.9), (14.10), and (13.3a)-(13.3c). This is the squared
biorthogonalization or BlOS algorithm.

ALGORITHM 12. (BiOS ALGORITHM)

Choose ro, yo £ CN such that <5o := (yo>ro)B  ̂ 0, and set r'_! := o € C^,
(3-1 :=  0. Choosing arbitrary scale factors 7n 7̂  0, compute, for n = 0 ,1 , . . .,

an :=  (yo,Arn)B/6n, (14.12a)

0n-l :=  in-lSn/Sn-i (if U > 0), (14.12b)

r^ := [Arn - rnan - r ^ ^n - i j ^n, (14.12c)

rn+i := [A(r^7n - r ^ ^ n - i ) - ( r ^ - r^_ !/?„_!)«„

+ Tn.tfl_x]hl,  (14.12d)
6n+i := (yo,rn +i ) B (14.12e)

until 6n+i  = 0, when we set v := n + 1.
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Note that 7n can be chosen to make rn of unit length.
This algorithm was proposed independently both by Chronopoulos and

Ma (1989) and by Gutknecht (1990); later it was rediscovered by Chan,
de Pillis and van der Vorst (1991).

14.3. The B I O R E SS forms of the BiCGS method

After we have 'squared' the BiO algorithm so that nested Krylov spaces of
the double dimension are generated, it remains to find a way to compute
the sequence {x n}  of approximants with the property that

rn = b - Ax n

in the case of consistent B I O R E S S, or, more generally,

rn = b7r£ - Ax n, (14.13)

where n  Pn{Q) as before. This approach to solving a linear system of
equations follows exactly the general scheme discussed in Section 4. Assum-
ing that it works, we conclude from (14.12d) and (4.16) that

2 (14.14)

-A(rf
n'rn-r'n_1f3n-1), (14.15)

where

that is,

r^_! = b7rn_i7rn - A X ;_j . (14.16)

Multiplying (14.15) by A" 1 yields a recursive formula for xn + i . Similarly,
using (14.12c) and (4.16) we get

= - b(7r^an + 7rn_i7irn/3n_i) - Arn + rnan

= - Axnan - A x ^ j ^ - i - Arn.

If we set TT_I := 0, TTQ :=  1, then (14.13) and (14.16) hold for ro := b — Axo,
r'_1 := x'_1 := o, and the recurrence can be started with these initial values.

ALGORITHM 13. (INCONSISTENT B I O R E SS FORM OF B I C G S)

For solving Ax = b choose an initial approximation xo G C^, set ro :=
(b — A X Q ) / 7 _I with some 7_i  ̂ 0 (for instance, such that ||ro|| = 1), and
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redefine xo := xo/7-1. Furthermore, let r'_j := x'_: := o £ C^, /3_i := 0,
7r_i := 0, 7ro := I /7 -1, and choose yo € C^ such that <*>o := (yo5

ro)B 7̂  0.
Then apply Algorithm 12, additionally computing

7rn+i := -(aT l 7rn + /3TJ_i7r7j_i)/7T1, (14.17a)

x^ := - (xnan + x^_1/3n_i+rn)/7n, (14.17b)

xn+i := [xn_i(3l_1-x'nan'yn + -x.'n_1an/3n-i

-ton-rUiAi-i)]^ - (14.17c)

If rn + i 7^ = o and 7rn+i 7̂  0, the algorithm terminates and xex := xn+i/7ir^+1

is the solution of Ax = b; likewise, if r^7n — o, irn  ̂ 0, and 7rn+i 7̂  0, the
algorithm terminates and xex := yi'n n'knjr\) is the solution; if rn+i 7̂  o
but 6n+\ = 0, the algorithm stops due to a Lanczos breakdown. In each
case we set v := n + 1.

ALGORITHM 14. (CONSISTENT B I O R E SS FORM OF B I C G S)

Modify Algorithm 13 by choosing 7_i := 1 and 7n := —an — (3n-\ (n > 0),
so that vrn = 1 (n > 0). If 7n = 0 for some n, the algorithm stops due to a
pivot breakdown, and we set v :=  n. Otherwise, i>  := u.

In both versions of B I O R E SS each step again requires two applications of
the operator A, namely for A r n and A(r^7n — r^_1/3Tl_i). But note that
these algorithms also produce two iterates and the corresponding residuals
per step. The 'normal' BiCGS iterates are xn, but in practice the interme-
diate iterates x.'n are often better. In fact, in Fokkema, Sleijpen and van der
Vorst (1996), a shifted CGS algorithm is proposed whose residual polynomi-
als are (1 — nC)Pn-i{()Pn{C)> where fi is a preselected value. This algorithm
converges somewhat more smoothly than BiCGS. With B I O R E SS we ac-
tually get a similar kind of iterates in addition to the usual ones. However,
the three-term recurrence may spoil the accuracy more than the two-term
recurrence of shifted CGS.

According to the derivation of these two algorithms the recurrence coeffi-
cients and the breakdown conditions are the same as those of the respective
version of B I O R E S. Hence, in view of Theorem 9.2, the following result is
straightforward.

Theorem 14.2 If consistent B I O R ES and consistent B I O R E SS are started
with the same Xo and yo, then the index of first breakdown or termination
2>, the recurrence coefficients an, (in-\ (and thus 7n := — an — (3n-i), and the
inner products 6n are the same for both algorithms. Moreover, consistent
B I O R E SS and B I O M I N S produce the same iterates xn and thus also the
same residuals rn = b — Ax n and the same residual polynomials -p\.

Likewise, if inconsistent B I O R ES and inconsistent B I O R E SS are started
with the same XQ and yo, and if the same constants 7n are used in both
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Table 4. Krylov space vectors and corresponding polynomials that appear in
our five forms of the BlCGS method. Different scaling is mirrored by
upper indices in the notation for the polynomials, but not in the one for the
vectors. In the columns 'L' and 'P' it is indicated if an algorithm is
susceptible to Lanczos breakdown or pivot breakdown, respectively

Algorithm Vectors Polynomials L P

11 BIOMIN S (CGS)

13 B IORESS (cons.)
14 B IORESS (incons.)

BiODmSi
BIODIRS2

Pn,  PnPn,  Pn+lPn

Pn,  Pn+lPn

n+lPn
(p^N^2 ^INC^INC

PI

V V
V V
V
V V

V

algorithms, then the index of first breakdown or termination u, the recur-
rence coefficients an, /3n-i ,

 a nd the inner products 6n are the same for both
algorithms. The iterates xn and the vectors rn are related by (4.17) and
(14.13), respectively.

It follows in particular that B IORESS yields as a by-product the same
tridiagonal submatrices Tn, and thus, optionally, the same eigenvalue es-
timates as BIORES.

14-4- An overview 0/B1CGS algorithms

For the reader's convenience we list in Table 4 the various vectors and the
corresponding polynomials that come up in the three BlCGS algorithms
that we have discussed and the two, B IODIRSI and B1OD1R.S2 from Sec-
tion 7 of Gutknecht (1990), that we only alluded to. The vectors that are
listed in several algorithms are, up to scaling, identical. However, neither
the iterates xn nor the auxiliary vectors ~x!n that appear in BIORESS and
in the two forms of B IODIRS, respectively, are contained in the list. If we
wanted to judge the memory requirements, we would also have to take into
account the storage of the results of matrix-vector products and the some-
times required storage of previously computed vectors. Also indicated in
Table 4 are the breakdown possibilities.

Let us repeat that since the coefficients computed in the squared methods
are the same as those of the respective unsquared method, one still impli-
citly generates the matrices T_n, Ln and Un, or T!n, respectively. Therefore,
theoretically, the squared methods can be used for eigenvalue computations.
However, it does not seem so easy to mimic ideas like selective reorthogonal-
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ization or to find other ways to enhance the numerical stability. Therefore,
in practice, it may be difficult to obtain reliable eigenvalue information from
these methods.

15. The transpose-free QMR algorithm

In Section 14 we have seen that 'squaring' the BiCG method leads to a very
effective method, BlCGS, which, however, typically exhibits a somewhat
erratic convergence behaviour. An obvious remedy would be to 'square'
the QMR method instead, since it converges as fast as BiCG, but more
smoothly. However, it is not so obvious how this can be achieved. There
are various answers to this question, but only one turns out to be convin-
cing: Freund (1993) found a way to apply the QMR approach to bases
built up from Krylov space vectors that correspond to squares and products
of Lanczos and direction polynomials. The details are given below. This
transpose-free QMR (TFQMR) algorithm, as he called it, is roughly equally
fast but much more smoothly converging than the BlCGS method, and the
cost per step is only slightly higher. Since smoother convergence often helps
to reduce round-off, one may expect that there are examples where the al-
gorithm outperforms B I O M I N S in speed, but the examples in Freund's pa-
per do not yet confirm this. However, Freund has examples where TFQMR
clearly outperforms the B I C G S T AB algorithm of Section 16.

In Freund and Szeto (1991) an alternative strategy was followed: the
quasi-minimal residual squared (QMRS) algorithm generates residuals whose
residual polynomials are the squares of the QMR residual polynomials. Con-
sequently, the convergence is fast and smooth. However, this method re-
quires three matrix-vector products per step in contrast to two in TFQMR
and B I O M I N S, thus increasing the work per step by roughly 50%.

While for both these methods the residual lies in fan after n iterations,
this is not true for the transpose-free implementation of the QMR method
proposed by Chan et al. (1991). Here the idea is simply to run the BlOS
algorithm for determining the Lanczos coefficients an, /?n-i> and "fn, and
then to construct the QMR iterates (or alternatively, the BiCG iterates, if
a transpose-free BiCG algorithm is sought) by additionally executing the
recurrences of the QMR (or the B I O R E S) algorithm, except for those that
generate Kn. Clearly, such an approach requires considerable extra work, in
particular three matrix-vector products per step instead of two. Neverthe-
less, the convergence speed is at best equal to the one of the BiCG method,
not the one of the BlCGS method. Moreover, the Lanczos coefficients found
by the BlOS algorithm, although in theory identical to those of inconsistent
B I O R E S, turn out to be more contaminated by round-off. Therefore, con-
vergence is in practice often worse than for QMR and BiCG, respectively.
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Algorithms using this approach cannot compete with other transpose-free
methods.

Let us now turn to the preferred approach, the TFQMR algorithm. Mul-
tiplying (14.1) by pn and pn~\, we get the two relations

PnPn+l  •=  p\  -  V nCpnpn,

Pl+1  '•=  PnPn+l  ~  ̂ nC,Pn+\Pn-

Recalling the definitions (see (14.7) and (14.11))

rn := p2(A)r0, r'n :=  pn+i(A)pn(A)r0,

sn := pn(A)pn{A)r0, s'n := pn+i(A)p n(A)r 0,

we can translate this into the recurrences

r'n := rn - Asnu;n, (15.1)

rn+1 := r'n - As'nun, (15.2)

which, together with (14.8b), (14.8c), and

Af n+i := Asn+i - As'nipn + Afnipl,

allow us to build up the Krylov space. Note that (14.8h) generates Afn

recursively, so that there is no need to determine rn itself. Only the two
matrix-vector products Asn and As^ are required per step, and they boost
the dimension of the space by two.

Defining the matrices

R-2n := [ r0 r'o n ... rn_i r^_j ],
S2n := [ So So Sl . .. Sn_i S^_j ],

each containing a basis for Kini and extending this definition to odd indices
by dropping the last component, we can write (15.1)—(15.2) as

where

ASm =

1
- 1

(15.3)

1
- 1

- 1 1
- 1

is (m + 1) x m lower bidiagonal and D^,^^ is the m x m diagonal matrix

Dw|u;;m := diag(o;0, LOO, ui, w i , u2 ,  .)

Note that m can either be even, m — 2n, or odd, m = 2n + 1.
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Once (15.3) is found, the usual QMR approach applies. We represent the
mth iterate as

TFQMR _
m — x 0 "t"

so that r^FQMR = ro — ASmk m holds for the residual. Inserting (15.3) yields

and the quasi-residual

with the diagonal matrix

Dr|r';m+i := diag(||

used to normalize the columns of

Qm := el P 0 - L ^ M R k m with

This (m + 1) x m least squares problem is solved by a QR decomposition
based on Givens rotations as before. Once again, the quasi-residual norms
are found for free, and the iterates can be updated as in Section 5.

Writing t instead of A r we can formulate the TFQMR algorithm as
follows.

ALGORITHM 15. (TFQMR ALGORITHM)

For solving Ax = b choose an initial approximation xo € C^, set So
b — Axo, to := Aro, and choose yo £ <CN such that <5o := (yo, I"O)B
S'o := (yoi A?O)B ¥" 0- Then compute for n = 0 , 1 , . ..

— tnujn,

= r' — As'

7̂  0 and

(15.4a)

(15.4b)

(15.4c)

(15.4d)

(15.4e)

(15.4f)

sn+i := rn+i - s'nipn, (15.4g)

t n + i := Asn + i — A s ^ n + tnipn> (15.4h)

^n+i  :~ (yo,tn+i)B- (15.4i)

Within this loop, for m := 2n + 1 and 2n + 2, additionally

(1) update the QR factorization L^FQMR = QmR£F Q M R, analogous to
(5.6)-(5.7) (with T n replaced by L^FQMR)

(2) according to (5.8), compute the coefficient vector hm by appending
the component Cmrjm to hm_ i , and compute the new last component
Vm+l -= ~sm Vm °t flm

(3) compute zm_i according to the two-term recurrence implied by Sm =
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(4) compute x^ and xn+i according to

:== X + % C V x n + l : = X n

respectively,
(5) if the norm of the quasi-residual, rjm, is below a certain bound, check

the norm of the true residual; stop if it is also small enough.

Like B IORESS, the TFQMR algorithm has the benefit that it delivers
two iterates and corresponding residual norms per step. We will encounter
the same property again in the following section on Lanczos-type product
methods.

By comparison with Algorithm 11, note that by inserting the assignment

after (15.4d), we could additionally produce the BiCGS iterates x^ at al-
most no cost.

16. Lanczos-type product methods

As we mentioned, Sonneveld's BiCGS method has the disadvantage that
convergence is often interrupted by a sudden large increase of the residual
norm, followed by an equally fast decrease to the previous order of mag-
nitude. Although such spikes normally do not prevent convergence, they
may reduce the speed of convergence and, in particular, the ultimate accur-
acy of the solution. Actually, it is sometimes rather the maximum norm of
the iterates (not the residuals) that counts; see Section 18. Most users of
iterative methods prefer a smoother, if not monotone, residual norm plot.

By improving an unpublished idea of Sonneveld, van der Vorst (1992)
was the first to find a modification of the BiCGS method with smoother
convergence. In retrospect, his BICGSTAB algorithm can be understood as
the application of the BiCGS approach to a coupled two-term version of the
one-sided Lanczos process of Section 6 instead of BlOMlN. In other words,
we make use of the freedom to choose the left polynomials tn different from
the Lanczos polynomials. The residual polynomials of the resulting method
are no longer the squares p\ but the products pntn, where tn is an arbitrary
polynomial of exact degree n satisfying tn(0) = 1. We therefore call the
class of such methods Lanczos-type product methods (LTPMs).

In BICGSTAB the polynomials tn are determined indirectly by local one-
dimensional residual minimization, and in BICGSTAB2 (Gutknecht 1993c)
we have extended this approach to local two-dimensional minimization,
which is more appropriate in view of the typically complex spectrum of
non-Hermitian matrices. In the same paper we presented the formulae for
using an arbitrary set of polynomials tn satisfying a three-term recurrence,
such as, for instance, suitably shifted and scaled Chebyshev polynomials as
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they are used in the Chebyshev method for solving linear systems. Other
authors have also contributed to the class of LTPMs; see in particular Brez-
inski and Redivo Zaglia (1995), Fokkema et al. (1996), Zhang (1997). There
are several algorithms that compete for being the most efficient one for a
broad variety of examples: among these are B ICGSTAB2 (Gutknecht 1993c),
BICGSTAB(^) (Sleijpen and Fokkema 1993), and BlCGxMR2 (Gutknecht
1994c), which are treated as examples below.

We concentrate here on consistent LTPMs based on the coupled two-term
recurrences for the Lanczos polynomials and a three-term recurrence for
the second set of polynomials, but we will indicate modifications needed
for other classes. Consistent and inconsistent LTPMs based on three-term
recurrences for both sets are treated in Gutknecht and Ressel (1996), where
the application of look-ahead to these methods was also achieved. Eijkhout
(1994) also derived a three-term version of B ICGSTAB, but his way of finding
the Lanczos recurrence coefficients is unnecessarily complicated. Brezinski
and Redivo Zaglia (1995) suggested a different way of doing look-ahead; see
Section 19 for comments.

Algorithms that combine the BlCGS method or an LTPM with smooth-
ing processes attain convergence speeds equal to the best LTPMs and an
even smoother residual norm plot. In particular, the BlCGS method and
LTPMs can be combined with quasi-residual minimization. In the former
case one finds Freund's TFQMR algorithm (Freund 1993) of Section 15.
A QMR-smoothed BiCGStab algorithm was introduced in Chan, Gallo-
poulos, Simoncini, Szeto and Tong (1994), while QMR minimization for
general LTPMs is described by Ressel and Gutknecht (1996). A very effect-
ive alternative is the minimum residual (MR) smoothing process, which can
be applied to any Krylov space solver and will be described in Section 17.

Most of the methods discussed in this section only make sense if B is
Hermitian positive definite. Since B is also required to commute with A,
there are hardly any interesting examples other than B = I. We therefore
assume here that this holds, that is, we drop B.

16.1. LTPMs based on coupled two-term recurrences

When choosing the polynomials tn of an LTPM we mainly aim at two proper-
ties: (i) fast and smooth convergence of the resulting solver; (ii) low memory
requirements, which, in particular, means short recurrences. In B ICGSTAB

the recurrence is two-term, but this is a strong restriction for a basis of
polynomials of increasing degree. In contrast, three-term recurrences are
satisfied by a broad class of such bases including all sets of classical ortho-
gonal polynomials. We assume the recurrence to be of the form
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with i-i(C) := 0, to(C)  1 and £o = 1- Note that this form conserves the
consistency condition: fy(0) = 1 (for all n). The formulae for the resulting
LTPM were given in Gutknecht (1993 c), but we choose here a different
exposition that is analogous to the one in Gutknecht and Ressel (1996) and
Ressel and Gutknecht (1996) for LTPMs based on the Lanczos three-term
recurrences.

We define two doubly indexed sequences of product vectors:

w n := */( A)yn = M A )Pn(A)y0,

w^ := ti(A)vn = ti(A)pn(A)y0.

Here, yn and vn are the right Lanczos and direction vectors of BlOMlN;
they wil l not appear in the final algorithm. Additionally, we introduce a
doubly indexed sequence of product iterates xl

n with the properties

b-Ax.ln = wl
n and x ^ e xo + /Cn+,. (16.2)

The diagonal sequences {x™}  and {w™}  contain the iterates and residuals
we really aim at. Some other product iterates and product vectors will
appear in the recurrences and can occasionally also be considered as useful
approximations to the solution vector xex of Ax = b and the corresponding
residual, respectively.

Let us arrange the product vectors into a w-table and a w-table. These two
tables are very helpful for explaining the underlying mechanism of LTPMs.
To fix matters, we let the n-axis point downwards and the /-axis point to the
right. Then the iteration wil l essentially proceed from the upper left corner
(with the initial vectors w§ := w§ := ro := b —Axo) to the lower right. The
entries that are actually needed in competitive algorithms lie on or close to
a diagonal of the tables, that is, \n — l\ is small for them. For moving down
the tables, we apply the consistent coupled two-term Lanczos recurrences
(14.1)-(14.2). Multiplying them by £;(£) and translating into Krylov space
notation we obtain

:= wl
n-Awl

nion, (16.3a)

:= w^+1 - w ^ n- (16.3b)

On the other hand, for moving to the right we multiply (16.1) by pn and pn,
respectively. Translating into Krylov space notation we then get

w^+1 := Awl
nVl + w ^ + wJT l̂ - ft), (16.3c)

w^+1 := A w ^ + w ^ + w ^ U - f t ) . (16.3d)

Of course, since the Lanczos two-term recurrences are coupled, elements of
both tables appear in (16.3a) and (16.3b), while (16.3c) and (16.3d) each
affect only one table. Constructing recursively the diagonals of the two
tables requires us to apply these formulae cyclically for a certain sequence



LANCZOS-TYPE SOLVERS

w-table w-table

0 1 2 3 4 / 0 1 2 3 4
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[b] [b] d
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'

Fig. 1. The w-table and the w-table of an LTPM based on coupled two-term
Lanczos recurrences and a three-term recurrence for the polynomials £;. The

numbers in the upper tables specify the order in which the elements v?l
n and w^

of the two tables are computed. The letters in the lower tables indicate which
formula among (16.3a)-(16.3d) to use for computing the corresponding entry. An
entry in a solid box indicates that its product with A also has to be computed.
For the entries in dashed boxes the product with A can be computed indirectly,

without executing a matrix-vector product

of (/, n)-pairs. The order in which the formulae are applied is indicated by
the numbers in the upper half of Figure 1, while the letters in the lower half
specify the formula applied.

Inserting (16.2) into formulae (16.3a) and (16.3c), subtracting b on each
side of them, and multiplying by the inverse of A we readily get correspond-
ing recurrences for the product iterates:

n+1
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Of course, we could arrange them in an x-table and display it along with
the w-table, very much like Figure 1. Note that xg := xo-

It remains to specify formulae for determininĝ the coefficients u>n and
ipn. Recall that in the Lanczos process we have JCn J_ yn and Kn _L Avn.
Because {ti(A.)yo}™~Q is a basis of JCn (as long as n does not exceed the
grade of yo with respect to A*) , we conclude that

(yo, w^) = 0, (y0, Aw{. ) = 0, if I < n. (16.5)

In particular, if we set I :=  n — 1 and then replace n by n + 1, we have

(yo, K+i)  = 0, (yo, Aw£+1) - 0.

Taking this orthogonality into account in the recursions (16.3a)-(16.3b) for
I = n and defining

">, s'n  (yo,

(yo,w )̂ sn

leads us to

and

For the last equation we have expressed Aw™+1 according to (16.3c) and
taken (16.5) into account to see that (yo, Aw" +1) = (yo, w j j } ) / ^ .

Summarizing, we find the following generic consistent (3, 2x2)-type LTPM.
Its type (3, 2 x 2) indicates that we apply a three-term recurrence for the
polynomials ti and two coupled two-term recurrences for the Lanczos and
the direction polynomials. In Ressel and Gutknecht (1996) the analogous
(3,3)-type LTPM is called BiOx THREE.

ALGORITHM 16. (GENERIC CONSISTENT (3,2 x 2)-TYPE LTPM)
For solving Ax = b choose an initial approximation x§ G C^ and set
WQ := WQ := b — AXQ. Choose yo € C^ such that <$o := (yo,wo) ¥" 0 a nd
6'0 := (yo, Awg)  ̂ 0. Then compute for n = 0 ,1 , . ..

(16.6a)

if n > 0, (16.6b)

if n > 0, (16.6c)

(16.6d)

(16.6e)

L- f n) , (16.6f)

w
n -1
71+1
n -1

W,n+1

W

Si+1
n+1
n+1

= wJ-Aw>n,
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<X\  -<+irh + <+iZn + <+{(l-Zn),  (16.6g)

n+1 :=  (yo.wJJ+J), (16.6h)

:= 6n+il(6' n-nn), (16.6J)

:= w £+ 1 - w > n , (16.6k)

:= Aw: +1 - Aw^n, (16.61)

Vn, (16.6m)

(16.6n)

If wjj +1 = o for Z = n — 1, n, or n + 1, then the algorithm terminates and
xjj +1 is the solution of Ax = b. However, if none of these residuals vanishes,
but 8n+\ = 0 or 8'n+l = 0, the algorithm breaks down.

Note that Aw™+1 is obtained without using a matrix-vector product,
hence only two of them are needed per step: Aw™+1 and Aw™+J. In the
above form, the algorithm requires considerable storage (although of course
we assume that entries on the same (co-)diagonal of any of our four tables
are stored at the same memory location). However, some of the vectors can
be spared, namely those that are used only once later and do not depend on
a quantity that is overwritten before the vector is used. An extra benefit
of the given algorithm is that we not only obtain one approximate solution
per step but three, since each of the vectors x^ can be considered as one and
its residual is available. However, checking the length of such a residual re-
quires an inner product. On the other hand, in more sophisticated versions
of the algorithm some of these inner products may get computed anyway
in order to determine if it is worth recomputing the vector by applying
reorthogonalization; see Section 18.

If the polynomials tn satisfy a two-term recurrence instead of the three-
term recurrence, that is, if £i = 1 (for all /), then we do not need the quant-
ities on the lowest codiagonal of each table. This is the most important
advantage of BICGSTAB over other LTPMs.

16.2. The BICGSTAB algorithm

In van der Vorst's BICGSTAB method (van der Vorst 1992), the polynomials
t\ are built up in factored form,

and, hence, they satisfy a two-term recurrence:
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This means that in the three-term recurrence of (16.1) we have

6 = 1, m = -Xl+i-

Note that such a two-term recurrence necessarily means that the zeros re-
main fixed, except that an additional one is added at each step.

In the nth step, the reciprocal Xn+i of the (n + l)th zero is chosen such
that Wn+\ n as minimum length:

:= min ||w£+1 - Aw£+ l X | |. (16.7)

This one-dimensional minimization problem is solved by making w™ }̂  or-
thogonal to Aw™+1, which means that

This remains correct in the case of complex data; see Gutknecht (1993c).
Due to the two-term recurrence, there is no need to compute w™^}, w™+1,

and Aw^ + 1, so that the corresponding lines in Algorithm 16 can be dropped.
Moreover, in order to minimize the memory requirements we insert the for-
mulae for x™+1 and w" + 1 at the points where these vectors are actually
used.

ALGORITHM 17. ( B I C G S T AB ALGORITHM)

For solving Ax = b choose an initial approximation x(] € C^ and set
wg := wg := b - Axg. Choose y0 G C^ such that 60 := (y0, wg)  ̂ 0 and
<5Q := (yo> Aw§)  ̂ 0. Then compute for n = 0 , 1 , . ..

" „  == 6n/6'n, (16.9a)

w^+1 := w£ - A w > n , (16.9b)

Xn+i :=  <Aw£+ 1,w£+ 1)/ | |Aw£+ 1| |2, (16.9c)

(16.9d)

(16.9e)

6n+1 := (yo,w^+i), (16.9f)

il> n := -6n+1/(6'nXn+i), (16.9g)

(16.9h)

S'n+1 : =

If ~Wn+l = ° or wJJ+1 = o, the algorithm terminates and, respectively,
x%X\ o r xn+i (defi ned by xJJ+1 := x" + w"o;n) is the solution of Ax = b.
Otherwise, if (5n+i = 0 or 6'n+1 = 0, the algorithm breaks down.
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Note that this algorithm, like TFQMR, provides two residuals and cor-
responding iterates per step, although, as suggested in our formulation, we
need to compute only one iterate per step and can determine the other only
once its residual satisfies the convergence criterion.

The breakdown conditions <5n+i = 0 and 6'n+1 = 0 seem to indicate a
Lanczos or pivot breakdown, respectively. However, B I C G S T AB is also sub-
ject to a somewhat hidden danger of breakdown. In fact, due to the different
leading coefficients of pn and tn, the inner products 8n+\, 6'n+1 of the Lanczos
process and <5n+i, 6'n+1 of B I C G S T AB are related by

7 r XlX2'"Xn+ l 7, c, Xl X2 '  Xn+1
On+1 = < Wl , 0n+1 = 0

Consequently, not only the Lanczos breakdown (<5n+i = 0) and the pivot
breakdown (6'n+1 = 0) take their toll, but also the minimization breakdown
Xn+i = 0. But the latter also surfaces as a vanishing of <5n+i (and 6'n+1).
It is no surprise that a vanishing Xn+i causes a disaster, since the Krylov
space is then no longer expanded by (16.9d).

Unfortunately, there are applications where \ n tends to be small, namely
if A has eigenvalues with small real part, but non-small imaginary part.
An example are matrices resulting from the discretization of convection-
dominated convection-diffusion equations.

B I C G S T AB has the additional disadvantage that, for real matrices and
right-hand sides (and real initial vectors), the zeros 1/xfc of t\ are neces-
sarily always real, and therefore they cannot efficiently help to damp error
components associated with eigenvalues of A with large imaginary part.

16.3. The B I C G S T A B2 algorithm

Both above-mentioned disadvantages of B I C G S T AB can be removed by re-
placing the local one-dimensional minimization by a two-dimensional one
in every other step. In between, in the odd steps, we may still do a one-
dimensional minimization, but it wil l have no effect on what follows, at least
not in exact arithmetic, as long as we advance in the Krylov space. This
is the idea behind B I C G S T A B2 (Gutknecht 1993c). Here, if required to be
consistent, t\ satisfies recurrences of the form

:= ( 1 - X m O M C ), i f / i s even,

W O := (6 + ^C)*l( 0 + ( l -6 ) *J - i (C ), i f / i s odd.

The pair (£n,Vn) is again chosen to minimize wj^} , and in view of the
relevant recurrence (16.3c) this means that the pair is the minimizer of

I I ^ + ^ + ^ K O H (16.11)
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This is a standard least squares problem for two unknowns. It could be
solved via the 2 x 2 system of normal equations, but since this system can
be ill-conditioned, it may be preferable to use a QR decomposition. In
theory, the system cannot be rank-deficient except when the Krylov space
is exhausted: rank-deficiency means here that AwJJ+1 £ £2^+3 and w" +1 —
Wn+l ^ K-2n+2 are linearly dependent.

In Gutknecht (1993 c) we chose \n such that in the odd steps the one-
dimensional minimization problem (16.7) is solved. At the cost of one ad-
ditional inner product16, this choice has the advantage of also producing at
odd steps a new, normally better iterate that may satisfy the convergence
criterion. On the other hand, the result of the next, even step does not
depend on \ n as long as Xn 7̂  0, except for a possible effect on round-off.

Sleijpen and Fokkema (1993) pointed out that round-off may indeed be
a problem if |xn+i | is small, which is likely to happen for some n if A
has eigenvalues close to the imaginary axis. In contrast to B I C G S T A B,

which will then have the same round-off problem, we can get around it here.
In this case, for example, we could just redefine Xn+i as 1 (or some other
suitably chosen value). We could even go further, forget the one-dimensional
minimization problem completely, and just let Xn+i  1 for all n. This has
the additional advantage that one inner product can be saved. The choice
of 1 as value of Xn+\ (and, thus, of an additional zero at 1 of tn if n is odd)
can be justified by the fact that well preconditioned matrices often have a
cluster of eigenvalues around 1. However, numerical experiments indicate
that Xn+i : = 1 is n° t always the best choice.

In fact, choosing Xn+i requires us to compromise between several object-
ives (see Section 18 for more details):

(i) finding small residuals, or at least, avoiding large intermediate iterates
x£ and x r J

(ii ) avoiding round-off errors in the computation of the inner products 6n+\

and 6'n+1

(iii ) avoiding stagnation of the Krylov space generation.

An analysis (Sleijpen and van der Vorst 1995a) shows that the last two
objectives go hand in hand and suggests choosing x«+i as minimizer of

Ixl Ixl

instead of (16.7), which optimizes the first objective. This requires us to

16 The other one is needed anyway for solving (16.11).
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make Aw" + 1 — w" + 1/ x n+i orthogonal to w" + 1, that is, to choose

N w " I I 2

Xn+l  1—z. 7 ~ r. (10.12J
( W n+ l>A w n+ l>

Compromising suitably between (16.8) and (16.12), taking the value of

into account, ultimately leads to our recommendation (Gutknecht and Ressel
1997) to let in B I C G S T A B2

(16.13)

11 Aw"
it bn+i

This is a variation of a proposal of Sleijpen and van der Vorst (1995a) for
choosing Xn+i in B I C G S T AB such that the effect of rounding errors in case
of stagnation is minimized (Sleijpen and van der Vorst 1995a, Section 3.4).

In their B I C G S T A B ( 2) algorithm, which is mathematically equivalent to
B I C G S T A B 2, Sleijpen and Fokkema (1993) gave up the consistency condi-
tion of ti for odd / and simply based the iteration on

tl+ i(() := CMC), i f / i s even, (16.14a)

t/+i(C) := ( l-XlC-Xl+lC 2)<Z-i(O
= ti-i(C)-XiMC)-Xi+iC*l(C ) i f / i s odd, (16.14b)

where xi an<i Xi+i  a re n o w the parameters of the two-dimensional minimiz-
ation problem for w™+}.

This saves a few operations, but has the disadvantage that the odd steps
do not produce a residual and a corresponding iterate. Therefore, only every
four matrix-vector products does one have a chance to realize that the al-
gorithm has converged. On the other hand, once the problems caused by
small values of |xn+i| a nd ill-conditioned least squares problems have been
eliminated in B I C G S T A B 2, we can expect that it is numerically as stable as
B I C G S T A B ( 2 ), in particular since (16.14b) seems to be more susceptible to
a growing gap between recursively computed and true residuals, a difference
barely noticed in practice, however; see Section 18 for more details. Altern-
ative versions of B I C G S T A B ( 2) introduced in Sleijpen, van der Vorst and
Fokkema (1994) also avoid these two drawbacks.

B I C G S T A B2 is easy to generalize by allowing any sequence of one-, two-,
or even higher-dimensional minimizations. Let us define S  ̂ as the set of
indices n + 1 where we perform an ^-dimensional minimization, and let SQ
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denote the set of indices where no minimization is performed. Since n + 1
starts at 1 in our algorithms, we then have, for example, Si = {1,3,5,...}
and S2 = {2,4,6,.. .}  for standard B I C G S T A B 2, but <S0 = {1,3,5,...}  and
S2 = {2,4,6,.. .}  for BlCGSTAB(2). In the variant of B I C G S T A B2 obtained
by observing (16.13), which in contrast to B I C G S T A B ( 2) is still consistent
at each n, it is determined on the fly whether an odd index belongs to So
or Si. But even if it does not, the residual will not normally grow so much,
so that the loss of ultimate accuracy is kept within limits.

With this notation, B I C G S T A B2 and its consistent variants can be for-
mulated as follows.

ALGORITHM 18. (GENERALIZED B I C G S T A B2 ALGORITHM)

For solving Ax = b choose an initial approximation x§ € C^
WQ := w§ := b — Ax§. Choose yo £ C^ such that So :=  (yo, w§)
S'o := (yoi AWQ) ^ 0. Then, for n = 0 ,1 , . . ., compute

w
71-1
71+1

n-1
SJ+1 := x,

n
.n-1

if n + 1 G «S2,

if n + 1 e S2,

K +i

If n + 1 ^ 52, define Xn+i, for example, by (16.13) and let

w,
,71+1

n+1

Si+1

w,
.71+1

W
71+1

n+1

= ~Sn+i/(6'nXn+l),

= AwB" +1 - if n + 2 e S2,

— w
n+l  w n

.n+1V'n ,

and set
^ 0 and

(16.15a)

(16.15b)

(16.15c)

(16.15d)

(16.15e)

(16.15f)

(16.15g)

(16.15h)

(16.15i)

(16.15J)

(16.15k)

(16.151)

(16.15m)

else (that is, if n + 1 e S2) determine £n and rjn as solutions of (16.11) and
proceed with

L-£ n) , (16.15n)

- £„), (16.15o)

„) , (16.15p)

Xn+1 : = ~ wn+l1n
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(16.15q)

:= 6n+1/(6'nVn), (16.15r)

(16.15s)

n, (16.15t)

^ . (16.15u)

Finally, set

6'n+1 :=  (yo,Aw:+l). (16.15v)

If AV^ J = o for / = n — 1, n, o rn + 1, then the algorithm terminates and
x^+1 is the solution of Ax = b. However, if none of these residuals vanishes,
but 8n+i = 0 or 6'n+l — 0, the algorithm breaks down.

Note that as in B I C G S T AB storing x™+1 and x"^J could be avoided, and
that w™+1 could be stored over w™+1.

I6.4. The BlCGxMR2 and B I C G X C H E BY methods

In the framework of Algorithm 18 we may in particular let S2 = {2, 3 ,4 , . . . },
which means that we do a two-dimensional minimization at every step except
the first one (where n+1 = 1). This yields a method we call BlCGxMR2 or,
if we want to indicate that we mean the version based on coupled two-term
recurrences, the BlOCxMR2 algorithm. It was proposed in Gutknecht
(1994c) and also independently by Cao (19976) and by Zhang (1997); a
look-ahead variant based on the three-term look-ahead Lanczos recurrences
is given in Gutknecht and Ressel (1996), while the combination with the
QMR approach is explored in Ressel and Gutknecht (1996). This method
has the advantage of avoiding the sometimes doubtful one-dimensional min-
imization step and yet producing an iterate and its residual at every step.
Experiments show that it typically converges slightly faster than BlCG-
STAB2, which often converges markedly faster than B I C G S T A B. The latter
can be considered as a B lCGxMRl method.

Compared to B I C G S T A B 2, the character of the polynomials tn changes
drastically in BlCGxMR2: while in the former method just two new zeros
are added in every other step, but all the other zeros remain fixed, here all the
zeros get modified in each step, as is the case with orthogonal polynomials,
for which the zeros interlace.

A further alternative is to look at product methods where the second
set of polynomials, {£/} , consists of the residual polynomials of some other
Krylov space solver. For example, one might choose them as suitably shifted
and scaled Chebyshev polynomials, as mentioned as a possibility in van der
Vorst (1992) and Gutknecht (1993c). This requires the construction of an
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ellipse containing the eigenvalues of A. A technique for this task was de-
vised by Manteuffel (1977). The recurrences of the resulting B I C G X C H E BY

algorithm are the same as those for BlCGxMR2, but the coefficients r\n

and £n are known in advance; they are determined by the foci of the ellipse.

16.5. The B I C G S T A B ( ^) algorithm

Sleijpen and Fokkema (1993) went one step further in the generalization
of B I C G S T AB and B I C G S T A B 2: with B ICGSTAB(^) (where £ is a positive
integer) they introduced a method that performs an ^-dimensional minim-
ization every £ steps. In other words, the polynomials tn are built up by
appending polynomial factors of degree £. The original paper suggested gen-
erating the Krylov space in between by simply multiplying w£| successively
by A as in (16.14a). We have mentioned already that this may cause a de-
parture of the recursively computed from the true residual. Therefore, two
other realizations of this method were proposed and compared in Sleijpen
et al. (1994): a 'stabilized matrix' version, which is, for £ > 4, considerably
more costly, and an 'orthogonal matrix' version, which sometimes seems to
converge more slowly; see Tables 1 and 5 in Sleijpen et al. (1994). Further
tests ultimately led to the enhanced implementation of B ICGSTAB(^) of
Fokkema (1996a, 19966).

There are examples where £ = 4 is markedly superior to £ = 2, and there
are even cases where £ = 8 works well, while neither £ < 8 nor any other
method tried converged. But in most examples the convergence rate seems
to be about the same. There are two reasons to expect better convergence:
first, the residual reduction due to ^-dimensional minimization is clearly
stronger than for £ times of one-dimensional minimization; second, it can be
seen that the Lanczos process is less affected by round-off if one works with
larger £.

16.6. Further LTPMs

As is clear from the definition of LTPMs, there exist infinitely many such
methods, even when we allow at most three terms in the recursion for tn,
and quite a few of them may seem to make sense for one reason or another.
But our interest is of course restricted to those that are competitive.

Moreover, as mentioned, LTPMs come in various versions depending on
the recursions used. We have chosen here to describe what we call the (3,2 x
2)-type LTPM, which applies a three-term recurrence for the polynomials
t\ and two coupled two-term recurrences for the Lanczos and the direction
polynomials. We could equally well use the three-term recurrence for the
Lanczos polynomials, as in Gutknecht and Ressel (1996) and Ressel and
Gutknecht (1996), thus getting (3, 3)-type LTPMs. Then there is no w-
table, but the w-table has in the generic case bandwidth 4. On the other
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hand, one can also turn to coupled two-term recurrences for both polynomial
sequences, that is, (2 x 2, 2 x 2)-type LTPMs, as suggested by Fokkema et al.
(1996) as well as Zhang (1997). This has the advantage that the standard
BIOMIN S version of the BiCGS method fits into the pattern, but, on the
other hand, methods like B ICGSTAB2 and BlCGxMR2 are less easy to
reformulate. To display these versions in a way that is analogous to our
Figure 1, we would have to introduce four tables for four different types of
product vectors, and in each table the bandwidth would be 2.

Among the recently proposed LTPMs is the already mentioned shifted
CGS algorithm of Fokkema et al. (1996) whose residual polynomials are
(1 — LJ>()pn-i{()Pn((), where /x is a fixed chosen value, for instance the inverse
of an estimate for the largest eigenvalue for A. The authors' examples
indicate that its residual norm histories have typically less dramatic peaks
than BiCGS. The same is true for the CGS2 method introduced in the
same paper: there, both polynomials are Lanczos polynomials of the same
degree, but they correspond to two different left initial vectors. A number
of further LTPMs were suggested by Brezinski and Redivo Zaglia (1995),
but examples for demonstrating their usefulness are missing.

17. Smoothing processes

The erratic convergence behaviour of the basic Lanczos-type solvers, the
BiCG and BiCGS methods, often gives rise to criticism. Plots of the re-
sidual norm are the most often used tool when algorithms are compared
and, therefore, a method sells well if it converges quickly and smoothly.
Thus, it is not surprising that there is an interest in smoothing processes
that modify the BiCG or BiCGS iterates so that the residual norm plot
becomes smoother. However, we should say that smoothing is also dubi-
ous. In fact, what really counts in practice is that a method should find the
solution (up to a certain error) as quickly as possible and, since the error
cannot be checked, the residual is monitored instead. The smoothness of the
convergence does not matter from that point of view. Nevertheless, smooth-
ing processes are of some interest since they can speed up the convergence
slightly. On the other hand, they hide some useful information: a peak
in the residual norm plot indicates a temporary stagnation of convergence,
while in the smoothed residual plot we cannot distinguish temporary from
permanent stagnation.

A question that has been resolved concerns the relationship between the
convergence behaviour of CG and CR, as well as FOM and G M R E S. This
relationship approximately carries over to BiCG and QMR, and makes us
understand why peaks in the residual norm plot of BiCG are matched by
plateaux in the one of QMR. This result is closely related to our previous dis-
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cussion of the relationship between (Petrov-)Galerkin and (quasi-) minimal
residual methods, in Section 5.

17.1. Trivial minimal residual smoothing

If a monotone residual norm plot is all we aim at, then there is a trivial
recipe. We let17

~ _ / xn_i , ~ _ J rn_ i , if | |?n_i|| < ||rn||,
" ' " I  xn, r " - \ rn, if !!?„_! ! | > ||rn||.

This clearly implies that the residuals rn of the 'smoothed' iterates satisfy

||rn|| =m in {||rn_i||, | |rn| |}  = min {||ro||, | | r i | | , . . ., | | rn | | } .

We call this trivial minimal residual (TMR) smoothing. We do not consider
this as a serious proposal, but mention it, because it is sometimes applied
when numerical results are presented. It reflects the position mentioned
above, that all that really matters is to fulfi l a prescribed bound for the
residual norm as quickly as possible. This is a legitimate reason for applying
TM R smoothing when publishing results, but the code of conduct requires
that authors declare it.

Note that TMR neither increases nor reduces round-off.

17.2. Minimal residual smoothing

Given any pair of sequences of iterates and residuals, for example those
produced by the BlCG method, Schonauer (1987) proposed to replace them
by the smoothed sequences

xn := xn_i ( l — 9n) + xn#n, rn := rn_ i ( l — 9n) + rn9n, (17.1)

where 9n is chosen to make the residual as small as possible, which requires
that

?„_! - rn JL rn, (17.2)

or

n "~ II? , - r ||2 ' (17>3^
Il rn-1 rn\\

From the relations (17.1) and (17.2) we conclude by Pythagoras' theorem
that

| |?n| |2 = HF^H2 - ||rn_i - rn| |2|0n|2. (17.4)

The idea was further developed and investigated by Weiss (1990, 1994),

17 Before, we used tildes for the left Lanczos vectors and the left direction vectors, but we
did not define xn and rn. These vectors are now the smoothed iterates and residuals.
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and then taken up by Gutknecht (1993a) as well as Zhou and Walker (1994);
see also Walker (1995). Following Zhou and Walker, we call it minimal re-
sidual (MR) smoothing. Note that we perform a local, one-dimensional
minimization, as we did in B I C G S T A B. Of course, we could generalize this
approach to a local MR(€) smoothing, that is, an ^-dimensional minimiz-
ation additionally involving rn_2 , . . ., ?n_^. However, numerical tests show
that this is hardly worth the extra work (Zhou and Walker 1994).

Obviously, MR smoothing is some kind of a recursive weighted mean pro-
cess, but, in general, the weights need not be positive. From the definition
it is clear, however, that the resulting residual norm plot is monotonically
decreasing. Therefore, this is a very effective smoothing process. Note that
the given sequence is piped through the process without generating any
feedback.

The main theoretical result of Weiss' thesis is that applying MR smooth-
ing to the FOM iterates yields the GCR (or, G M R E S) iterates: the or-
thogonal residuals of the former become conjugate and minimal residuals
of the latter method. For a short proof see Gutknecht (1993a, p. 49). A
fortiori,  applying the MR smoothing to the CG iterates yields the CR iter-
ates. Hence, in these two cases the transformation must be identical to the
relations (5.22) and (5.23), and we conclude that

Actually, in these cases of orthogonal residual methods, where rn _L fCn,
(17.3) and (17.4) simplify since we have rn _L rn_i € K,n and thus, again by
Pythagoras, ||rn_i - rn| |2 = | | rn_i | |2 + ||rn||2, so that

|2
rn- i

r I I 2

Inserting this into (17.4) and taking the reciprocal yields

I IT* l | 2 Mr* i l | 2 | | r * l | 2 \\r i l | 2 |l*> | | 2

I I 1" ! ! l l ' n — 1 | | I |x n 11 | | x n — 1 | | l l ^n l l ^ . _ Q I I * - K | |

Here, for the last equality, we applied induction in order to represent the
norm of the smoothed residual in terms of the original residual norms. Con-
versely, solving for ||rn||2 leads to

We will comment on these formulae later, but want to remind the reader
at this point that they only hold if the given residuals rn are mutually
orthogonal.

In Gutknecht (1993a) we pointed out that there is also an algorithm to
do the inverse of MR smoothing. One motivation for using it can be that in
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Galerkin methods the errors xn — xex have a different spectral decomposition
and are often smaller than in methods that minimize the residual.

17.3. Quasi-minimal residual smoothing

When we apply MR smoothing to the BiCG iterates, the resulting smoothed
iterates differ from those of the QMR method. But in Section 5 we have seen
that nevertheless the BiCG iterates xn := x° and their residuals rn := r°
are related to the QMR iterates xn := x£fR by the relations (5.22) and
(5.23), which are of the form (17.1) with 6n satisfying (17.5). Now 9n is no
longer determined by one-dimensional minimization in the residual space,
which leads to the choice (17.3), but given by (17.5), where, as we have seen
in (5.25), c2 and |sn|2 can be expressed in terms of the norms of the BiCG
residual, ||r^||, and the quasi-residual, ||qn|| = |?7n+i|:

Moreover, ||qn| |2 satisfies the recursion (5.24):

1 1 1

qnir llQn-ii r llr«H
Of course, in practice, a substitution vn := ||qn| |2 will be made, because we
do not compute qn.

Zhou and Walker (1994) suggest applying the smoothing process (17.1)
with this choice of weights to any kind of Krylov space solver. They call
this QMR smoothing.

Comparing (17.9) with (17.6) we see that ||qn|| here takes the place of
||rn||. In particular, as in (17.6) and (17.7), we now have

There is an alternative to formulae (17.8) and (17.9) that leads to the
same weights: according to (5.21) we have

In view of the interpretation of sn and Cn as sine and cosine, this suggests
defining

Then we let

Cn :=  COSTn = ,,, ,^n~1, , , „ , Sn == SU1 Tn =
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It is easy to verify that this construction is consistent with the former one of
(17.8) and (17.9), and that, as before, ||rn|| Cn = ||qn|| = ||qn-i||sn- Note
that here sn e [0,1), while in the QMR method sn can take complex values.

17.4- An alternative smoothing algorithm using direction vectors

Zhou and Walker (1994) noticed that when MR or QMR smoothing is
applied to BlOMlN or BIOMINS, better numerical results can be obtained
with a reformulated algorithm that updates the smoothed iterates using
direction vectors. Assume that our iterates and residuals are generated by
a formula of the form

xn+i := xn + vnuJn, rn +i := rn - Avnwn. (17.11)

Here, vn and un can, but need not, be the quantities from BlOMlN. In
order to rewrite the smoothing formulae (17.1) we introduce the difference
un := xn — xn_i, so that

xn := xn_i + UnOn, rn := rn_i - Aun9n. (17.12)

Next we need update formulae for un and Aun; we do not want to spend an
extra matrix-vector product on the latter and consider it as a single vector.
Substituting the above update formulae into Urj+i = xn+i — xn yields

Un+i := vnu;n + un ( l - 0 n ) , Aun +i := A\nujn + Aun( l - 0n). (17.13)

Consequently, if for a Krylov space solver (17.11) holds, then the formulae
(17.12) and (17.13) are an alternative form of the smoothing process based
on (17.1). For MR smoothing there is also a simplified formula for the
weight 9n:

17.5. The peak-plateau connection

Numerical experiments with the QMR methods and with MR smoothing
show that peaks in the residual norm plot of BiCG or BiCGS are always
matched by plateaux in the plot for the smoothed method, a plateau being
a region where the residual norm stagnates or decreases only slowly. This
phenomenon was studied in Brown (1991) and Cullum (1995), but it was
finally Cullum and Greenbaum (1996) who came up with a simple explana-
tion based on formulae we derived above, notably (17.7) and the analogue
one in (17.10); see also Walker (1995). They also proved by example that
the peaks in a FOM residual plot need not come from a near-singular Hn.

Indeed, according to (17.7), if ||rn|| S> ||?n||, then the denominator must
be small, that is, ||rn|| « ||rn_i||, and vice versa. On the other hand, if the
norm of the smoothed residual decreases quickly, then the denominator will
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be close to 1, and thus the residual of the original method is nearly as small
as the smoothed one. Consequently, in a very vague sense, either both the
original method and the smoothed one do well, or both do badly. Equation
(17.6) also makes clear that the smoothed residual cannot be much smaller
than the original one; in fact, it follows that

1

and equality only holds if ||rfc|| = ||rn|| for k < n. However, we need to recall
that (17.6) and (17.7) assume orthogonal original residuals. Therefore, the
application of MR smoothing to BlCG residuals is not covered.

Regarding the QMR method (or the application of QMR smoothing to
the BlCG residuals), we can draw the same conclusions on the plateau
behaviour of the quasi-residuals qn, since these appear in (17.10). Moreover,
we know that the QMR residual is at most \/n + 1 times larger than the
quasi-residual, and in practice the factor is often closer to 1. Since the peaks
in the BlCG residual norm plot can be several orders of magnitude high,
this factor is rather unimportant in this discussion.

18. Accuracy considerations

Unfortunately, in finite precision arithmetic, inherent round-off problems
jeopardize the use of the BlO and BlOC processes and related algorithms.
There are at least four effects that can cause trouble:

(i) the loss of (bi) orthogonality
(ii ) the low relative accuracy of certain inner products, notably 8n and 6'n

(iii ) inaccurate Krylov space extension
(iv) the deviation between the recursively computed and the true residual.

There has been considerable work on analysing some of these effects, and
also on finding ways to reduce them or compensate for them. Regarding
the nonsymmetric Lanczos process, this is an area where results are very
recent and investigations are still going on: one wants to know where and
why Lanczos-type algorithms lose accuracy, and how one can avoid that
at a reasonable price. The production of quality software relies heavily on
such findings. But this also means that a good implementation of these
algorithms is much more complicated than one would expect from the basic
descriptions we have given here. We can only give a very brief and superficial
overview of this area, however.

Considerable effort has also been invested into the backwards error ana-
lysis of the symmetric Lanczos and the standard CG algorithms (Greenbaum
1989, Greenbaum 19946, Greenbaum and Strakos 1992). More recently, this
effort has been extended to BiOMlN (Tong and Ye 1995). But we cannot
discuss this work here.
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18.1. Loss of biorthogonality

Recall that, in the nth step of the BlO algorithm, the vectors yn+i and
y n + i are determined so that yn _LB Yn+i, Yn-i -L-B Yn+i and yn+i _LB Yn,
y n + i B yn-i- Nevertheless, the biorthogonality ym _LB Yn+i, Yn+i -LB Ym
theoretically holds for all m < n. But due to round-off one encounters a
loss of this inherited biorthogonality when n — m becomes large. This is
no surprise: orthogonal projection necessarily reduces the size of a vector
and thus its relative accuracy. If recursively generated projections of vectors
are the relevant data used in the process of building up dual bases, and if
one counts on inherited orthogonality, it is not surprising that working with
finite precision may have a strong effect.

Lanczos (1952, pp. 39-40) was aware of this loss and suggested, on one
hand, full reorthogonalization as a possible yet expensive remedy and, on
the other hand, for the iterative solution of linear systems, the modification
of the right-hand side by damping the components that correspond to the
large eigenvalues. This second remedy, which he called 'purification' of the
right-hand side, is similar in spirit to what we now call polynomial precondi-
tioning, but he applied it only before the Lanczos process and not at every
step. By suitable preconditioning the loss of (bi)orthogonality is reduced
and, at the same time, becomes less relevant since the residual becomes
sufficiently small long before n is comparable to TV in size.

On the other hand, for the eigenvalue problem, where only few precon-
ditioning techniques apply and the accuracy of the tridiagonal matrix is
crucial, the loss of orthogonality is a serious problem even in the symmetric
case, for which this numerical phenomenon was analysed by Paige (1971,
1976, 1980). His theory is also discussed in Cullum and Willoughby (1985)
and Parlett (1980). It allows us to recognize when a critical step occurs that
wil l induce loss of orthogonality. This loss is coupled with the occurrence
of extra, so-called spurious copies of eigenvalues and eigenvectors. This
is nicely demonstrated by the numerical experiments displayed in Parlett
(1994). For Hermitian A, Parlett and his coworkers (Parlett 1980, Parlett
and Nour-Omid 1989, Parlett and Reid 1981, Parlett and Scott 1979, Parlett
et al. 1985, Simon 1984a, Simon 19846) as well as Cullum and Willough-
by (Cullum and Willoughby 1985, Cullum 1994), and others have explored
various ways to get around this problem in practice. While Cullum and Wil -
loughby developed a method to distinguish spurious eigenvalues from true
ones, Parlett's group chose to avoid the spurious ones from the beginning
by partial or selective reorthogonalization, that is, by orthogonalizing ytemp
additionally with respect to those basis vectors that were constructed earlier
in certain critical steps. All this earlier work is on the symmetric Lanczos
process based on three-term recurrences.
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Recently, Bai (1994) generalized Paige's theory to the nonsymmetric case
and Parlett's student Day (Day, II I 1993, Day 1997) adopted the partial
reorthogonalization technique; he refers to it in this case as maintaining
duality. Again, certain earlier computed Lanczos vectors are included in the
now two-sided Gram-Schmidt process. This is quite an effective remedy for
the loss of biorthogonality, but of course, it causes considerable overhead
in memory requirement, computational cost, and program complexity. For
eigenvalue computations this extra effort may well be worthwhile, but for
linear solvers it seems too costly. Moreover, it is impossible to extend this
technique to squared and product methods.

Day also aims at reducing the local error as much as possible. First, since
the BlO algorithm involves two-sided Gram-Schmidt orthogonalization, we
can implement it in the modified form, that is, replace (2.21e) and (2.21f)
by

Ytemp := Ay n -yn_i /?„_ ! , ytemp := A*y n - Yn-lPn-l,
OCn  (YTI, Ytemp)B/<*>«, " n := Ckn,

ytemp  ytemp Jn^-n  ̂ ytemp  ytemp jn^Ti1

Then we can make a tiny correction in order to reinforce the orthogonality
that we just took into account:

dan := (yn> ytemp)B/ ,̂ dan := (yn,ytemP)B /6n,
an := an + dan, an := an + dan,

ytemp : = ytemp ~~ YnOOini ytemp : = ytemp ~~ ynO&n-

While Day proposes to apply this local reorthogonalization at every step, one
can choose to include it only when ||ytemP|| or ||ytemP|| is much shorter than
||Ayn|| or ||A*yn||, respectively. We can also implement this enhancement
in LTPMs like B I C G S T A B 2.

18.2. Low relative accuracy of certain inner products

The inner products 8n := (yn,yn}B and 6'n := (vn, Av n)B are crucial for
determining the recurrence coefficients of the BlO and BlOMlN algorithms:

._ (yn,Ayn)B „ _ 7n<$n ._ Sn _ (Sn-|-l
On °n-l O'n 0n

Most of the algorithms we discussed break down if one of these inner products
is used but vanishes. Then one has to resort to look-ahead, which is dis-
cussed in the next section. However, typically, the look-ahead tolerance is
chosen to be rather small. It is therefore quite normal to proceed without
look-ahead, although

< 1 or „_ . . " < 1,
| |yn| | | |Byn|| | |vn| | | |BAvn|
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and this means that 6n and 6'n suffer from low relative accuracy. It does not
help to compute them in double precision.

Note that this is a difficulty that occurs only in the nonsymmetric case
and, regarding 6'n, the symmetric indefinite case. A possible remedy consists
of switching to a suitable one-sided Lanczos process (see Section 6), but so
far tests have not been so successful.

The same issue comes up in LTPMs, but there the inner products for
6n and 8'n are different. Taking appropriate measures leads to improved
versions of algorithms from the B ICGSTAB family; see Sleijpen and van der
Vorst (1995a, 1995&) and Gutknecht and Ressel (1997).

18.3. Inaccurate Krylov space extension

The generation of well-conditioned Krylov space bases is the prime aim of
the Lanczos process. In this regard it is important that in the recursions the
term that increases the dimension is not small compared to those that lie in
the current subspace. For example, in the BlO algorithm it is dangerous if
||Ayn|| is considerably smaller than ||ynan|| or ||yn_i/3n_i||; in the BiOC
algorithm it is dangerous if ||Avn|| is much smaller than ||yn<£n||; and in the
BICGSTAB algorithm HAw^^H should not be small compared to ||w"||,
nor should ||Aw"+1Xn+i|| be small compared to ||w"+1||. While one has a
choice to modify Xn+i m

 BICGSTAB2, the other cases call for the application
of look-ahead; see Section 19.

18.4- Deviation between recursive and true residual

Krylov space solvers normally update the residuals recursively, since the
computation of the true residual b — Ax n costs an extra matrix-vector mul-
tiplication and, according to folklore, convergence is slower if the true re-
siduals are used for further computation; see, for instance, van der Vorst
(1992) and Greenbaum (1997). However, while the size of the true resid-
uals is bounded below by the round-off errors that occur in its evaluation,
recursively computed residuals keep getting smaller and smaller if a method
converges. This is easy to understand for most Krylov space solvers: they
are scale-invariant with respect to the size of the residuals, as long as we
neglect the iterates. Therefore, at some point the recursively computed and
the true residuals necessarily start to deviate from each other completely.
Normally, from then on the true residual remains on roughly the same level,
while the recursive one continues to decrease.

Numerical experiments readily show that this branch point is not just
determined by the round-off in the evaluation of the true residual, but that
it may be reached much earlier. In particular, examples with BlCG or
BlCGS with peaks in the residual norm plot that are much higher than ||ro||
seem to indicate that the tallest peak, max||rn||, determines the ultimate
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level of the true residual. Sleijpen et al. (1994) provide a theory to support
this observation. However, a more careful analysis of Greenbaum (1994a,
1997) shows that under the assumption that the Krylov space solver uses
direction vectors, as in (17.11), it is the maximum norm of the iterates (or
the corrections) that matters. Of course, very high peaks in the residual
norm plot normally go along with iterates whose norm exceeds by far the
one of xex- Therefore such peaks normally imply a loss of accuracy.

By estimating the round-off in the evaluation of xn + i and rn + i according
to (17.11), Greenbaum (1997) finds the following result.

Theorem 18.1 If iterates and residuals are updated according to (17.11),
the difference between the true residual b — Ax n and the recursively com-
puted residual rn satisfies

| |
r" 11 < (6 + O(e2)) [n + 2 + (1 + 7 + (n + l)(10 + 27) )6n ] ,

where e denotes the machine-epsilon, 7 is a constant that is needed to es-
timate the round-off in the matrix-vector product according to

||Avn-fl(Av n)||<7€||A||||vn||,

and

k<n | |xe x||

This estimate is only based on (17.11), and it does not matter where the
direction vectors vn and the step sizes uJn come from. Therefore, errors in
these quantities do not influence the gap between true and recursive resid-
uals. Clearly, the theorem not only applies to BlOMiN, but, for instance,
also to the smoothing process (17.12) and to B I C G S T AB if we force (16.9e)
to be executed in the given order. It does not directly apply to our gen-
eral (3,2 x 2)-type LTPM algorithm (Algorithm 16), since the latter also
involves three-term recurrences. For these the maximum residual plays an
essential role too. Applying these considerations to the B I C G S T A B ( 2) re-
cursions (16.14a)-(16.14b), we conclude that if the Krylov space vectors
associated with C^-i(C) a nd C2^/-i(C) a re close to being linearly dependent,
the corresponding terms in

could be large compared to w™+J and w£+|, thus causing a large deviation
between x™+}  and its recursively computed residual w"^ |.

I t is often possible to overcome the loss of accuracy discussed above by
a modification that was first proposed for B I O M I N S by Neumaier (1994),
but is equally applicable to other methods, although for some it will cost an
additional matrix-vector multiplication per step; see Sleijpen and van der
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Vorst (1996). One can think of it as a repeated shift of the origin or an
implicit iterative refinement. First, we let

b' := b - Axo, x' := x0, xo := o,

so that b — Ax = b' — Ah, where h := x — x'. We then apply our algorithm
of choice to A h = b'. At step n, if the update condition

||rn|| < ||b'|| V (where 7' G (0,1] is given) (18.1)

is satisfied, we include the reassignments

b' := b' - Ax n, x' := x' + xn, xn := o. (18.2)

Note that at every step, we then have

rn = W - Ax n = b - A(x '

Neumaier actually computed the true residual at every step and chose 7' = 1,
which means that the update is performed at every step where the residual
decreases, hence, nearly always. Sleijpen and van der Vorst (1996) followed
up on this idea, provided an analysis, and suggested several alternatives
to the update condition (18.1). According to our numerical tests, the best
strategy depends on the particular example.

In general, each update (18.2) requires an extra matrix-vector product.
However, Neumaier found a way to use it in B I O M I N S for replacing one of
the two other such products, and Sleijpen and van der Vorst achieved the
same for B I C G S T A B.

19. Look-ahead Lanczos algorithms

Look-ahead Lanczos algorithms are extensions of Lanczos-type algorithms,
in particular the BlO and BlOC algorithms, that circumvent the break-
downs one might encounter, or at least most of them. The look-ahead BlO
algorithm was first thought of by Gragg (1974) in a paper on matrix inter-
pretations of recursions for continued fractions and Pade fractions; however,
he only followed up on his idea in the context of the partial realization prob-
lem of system theory (Gragg and Lindquist 1983). Years later it materialized
in Taylor's thesis (Taylor 1982) and the paper by Parlett et al. (1985), who,
however, concentrated on steps of length two only and used a very different
approach, namely by thinking of the BlO algorithm as a two-sided Gram-
Schmidt process. Look-ahead was then rediscovered by Gutknecht (1992,
1994a) in connection with work on continued fractions associated with ra-
tional interpolation (Gutknecht 1989a) and joint work with Gene Golub on
the modified Chebyshev algorithm (Golub and Gutknecht 1990). At the
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same time18, the subject was also taken up by Joubert (1990) and Par-
lett (1992), and latterly also by Boley, Elhay, Golub and Gutknecht (1991),
Preund et al. (1993), Nachtigal (1991), Brezinski, Redivo Zaglia and Sadok
(19926), Hochbruck (1992), and others. Much of the earlier work (including
Gragg's note) was on exact breakdowns, and the idea was to treat near-
breakdowns as if they were exact ones. But Gutknecht (1994a, Sections 9
and 10), Freund et al. (1993), Hochbruck (1992), Nachtigal (1991), and Par-
lett (1992) addressed explicitly the general near-breakdown case. Moreover,
in contrast to the continued fraction approach, the two-sided Gram-Schmidt
approach requires no modification for near-breakdowns.

We first derive a look-ahead BlO algorithm, or LABi O for short, and then
treat an analogue look-ahead BlOC algorithm with mixed recurrences. In
both cases we first describe the standard versions as given in Gutknecht
(1994a), Freund et al. (1993), and Freund and Nachtigal (1994) and then
describe recently found simplifications. We do not state recursions for the it-
erates, because these two look-ahead algorithms are normally coupled either
with QMR or with 'inconsistent' update formulae for the Galerkin iterates,
as in our inconsistent B I O R ES and BiOMlN algorithms. Finally we refer
to some other look-ahead algorithms, including the composite-step BiCG
algorithm of Bank and Chan (1993) and Bank and Chan (1994) and the
GMRZ and other algorithms of Brezinski, Redivo Zaglia and Sadok (1991).

In retrospect, the LABi O algorithm can be understood as follows: if a
breakdown or near-breakdown of the BlO algorithm occurs, we avoid it by
temporarily reducing the number of orthogonality conditions that have to
be fulfilled, in fact dropping the biorthogonality to the most recent basis
vectors. It turns out that in all but certain very exceptional situations
(which are referred to as incurable breakdowns) one can return to the full set
of conditions after just one or a few steps. The resulting pairs of Lanczos
vectors are then in a certain way block biorthogonal.

One could also consider making use of the freedom capitalized upon in the
one-sided Lanczos algorithm and apply look-ahead only to the right Lanczos
vectors.

As before, we could allow for a formal inner product matrix B that com-
mutes with A, but for simplicity we assume B = I.

19.1. LABiO : the look-ahead BlO algorithm

We know from Lemma 12.2 that a regular Lanczos polynomial, and, thus,
a pair of regular Lanczos vectors yn, yn [^ o) satisfying (2.4), exists if
and only if the nth leading principal submatrix M n of the moment matrix

18 The publication dates are misleading; one has to look at the dates where the papers
were submitted or preprints were made available.
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is nonsingular. In finite precision arithmetic we also need to avoid near-
singular sections; hence, we want to compute a pair of regular Lanczos
vectors only if M n is in a certain sense well-conditioned. However, we cannot
enforce this requirement directly: first, M n itself is not available and even if
it were, we would not want to have to compute its condition number; second,
leading principal submatrices of a Hankel matrix are notorious for their bad
condition; and third, the formulae below will show that, primarily, certain
other matrices need to be well-conditioned.

We let 0 = no < ni < 7X2 < . .. be a set of indices, where we can and want
to enforce all orthogonality conditions, that is, where

ICnj nj, ynj-L>Cny (19.1)

We will call these indices well-conditioned, and likewise the correspond-
ing Lanczos polynomial and vectors wil l be referred to as well-conditioned.
Clearly, if a Lanczos polynomial is well-conditioned, then it is also regular.
A step for constructing well-conditioned Lanczos vectors is therefore some-
times called a regular step. When n is not a well-conditioned index, we refer
to yn and yn as inner vectors; and we call a step for computing these vectors
an inner step. Of course, the well-conditioned indices will be chosen such
that the problem of finding the Lanczos polynomial and the Lanczos vectors
is well-conditioned in the usual sense. We aim at generating sequences of
Lanczos vectors that satisfy (2.5) and (2.6) as before, but where (2.4) is
relaxed to

K.n[ n, yn ni tfni<n<ni+i.  (19.2)

This implies that these sequences are block-biorthogonal: if we define matrix
blocks containing groups of Lanczos vectors,

Yi  [  yn, yn,+i  yn,+i-i ], Yi  [ yn, yn,+i  yn,+i-i ],
(19.3)

and matrix blocks containing the inner products of these vectors,

^ , (19.4)

then we have
Dl l f J' = *' (19 5)
o if j ^ i . l i y -D J

For the derivation of the recurrences we assume that every n is associated
with the I for which (19.2) holds. We let

hi :=  ni+i -m,

and denote the possibly incompleted last blocks by

Yi-n  [  y n , y n , + i  y n ] , Y i - n : = [ y n i y n i + 1  y n ] , ( 1 9 . 6)
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and

Then we have, in consistency with our earlier notation,

Y n + 1: = [ y 0  y,-! y,;n ], Y n + 1 : = [ r 0 ..

and (19.5) leads to

(19.7)

l-1 Yl;n

Y* +1Y n+i = Dn +1 := block diag (Do,..., A - i , Dl;n).

(19.8)

(19.9)

We still have to show that such sequences of Lanczos vectors exist, and
how they can be constructed. Let us for the moment assume that they exist.
Clearly, like any Krylov space basis, they could be constructed according to
(2.7), or, in shorthand notation, by

AY n = Y n +iT n) = Yn + 1T n. (19.10)

Assuming that the last block is completed, we conclude from (19.1) or (19.5)
that Y*Y n+i = [ Dn | o ] and Y* +1Y n = [ D j | o ] T , so that, as in (2.12),

D nT n = Y*  AY n = T*nBn if n = nl+1 - 1.

Here, the product on the left is a block upper Hessenberg matrix, while the
one on the right is a block lower Hessenberg matrix. Consequently, it must be
block tridiagonal, and thus Tn and Tn are themselves block tridiagonal, in
addition to being Hessenberg matrices. When all this is formulated in terms
of the Lanczos polynomials instead of the Lanczos vectors, as in Gutknecht
(1994 a), it is obvious that we can still choose Tn = Tn. If we want to
allow for independent scale factors j n and 7n for the left and right Lanczos
vectors, we can achieve this by diagonal scaling as in (2.29). Therefore, in
the following we only derive the formulae for the elements of Tn; we know
that those for Tn look analogous and do not require computing additional
inner products.

So, when the Zth block is just completed, that is, when n = n/+i - 1, then
Tn is of the form

T n = :

Ao Bo
Co Ai

where
i-i  =: [ 6,

is a block of size /i/_i x hi that is in general full, C\-\ is a /i/_i x hi block
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that is zero except for the element 7n,-i in the upper right corner, and
is a hi x hi block of Hessenberg form that we write as

Ai=:
an-\ a%

7n-l

oThe extended matrix T_n has at the bottom the additional row
In this notation the recurrences for the Lanczos vectors can be written as

yn+l := (Ayn - Yi-nan - Yt_il

yn+i := (A*y n - Yi-nan - Yt_i
if ni < n + 1 < ni+x. (19.11)

Here, j n and 7n are again used to normalize the Lanczos vectors.
By now we know that if there exist Lanczos vectors that fulfil (19.2), then

they satisfy the above recurrence. It is straightforward to see by induction
that, conversely, these recurrences produce such vectors if

(i) we choose the well-conditioned indices such that the diagonal blocks
Di are well-conditioned

(ii) we determine bn such that the biorthogonality to the previous block is
enforced

(iii ) we determine an in a regular step (that is, when n + 1 = ni+\) such
that the biorthogonality to the just completed block is enforced.

In the inner steps, an can be chosen arbitrarily. In particular, to reduce the
computational work, we can let it be the zero vector, although for stability
we might want to choose differently. For example, one can use these para-
meters to make the right Lanczos vectors within a block orthogonal to each
other, as proposed in Boley et al. (1991).

Enforcing the mentioned conditions readily yields

bn :=  Df^Y^Ayn, bn := D*zlY*_lA*yn, if n\ < n + 1 < raz+i,

an := D^~ YJ*Ayn, an :=  D^~ Y*A^yn, if n + 1 = ni^.\.
(19.12)

Formulae (19.11) and (19.12) are the standard ones for a look-ahead step,
as given in Gutknecht (1994a, §9) and Freund et al. (1993). In the latter
paper it is pointed out that by making use of recursions among the inner
products the large number of inner products that seem to be needed for
evaluating (19.4) and (19.12) can be reduced to just 2/ij, the same number
as for hi normal steps. Normalizing the Lanczos vectors costs another 2hi
inner products. Moreover, one has to store the current and the previous
pair of blocks of Lanczos vectors.
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However, there is a way to simplify recurrence (19.11). In the formula
for bn in (19.12), we note that due to (19.2) only the last column of Y^_i
contributes to Yl

ii1Ayn. Thus, we can replace Yf_x by ly*  _l 5 where 1 :=
l f t ; i := [ 0  0 1 ] T G mhl-\ Consequently, if we let

y[_x := Yt^Df_\l, y ^ :=  Y^D^l,

and

Pn-l := ylt-l
Ayn, P'n-l  Yn;-lA*y n (nj < 71 < 7l/+i),

then

and likewise y/_i6n = y'i_lj3'n_l. Moreover, using the same argument again,

(yf_i)*Ay n = r^ - i ^ - iAy n = (lT Df_\l)rni^Ayn = (lTDf_\l)l?n-i.

Thus we can redefine (3'n_i in terms of the new vector y'1-1 instead of yra i- i ;
and the analogue holds for /3^_1:

r (ni < n +1 < ni+i). (19.13)

The parenthesis contains only the bottom right element of Df\. Putting
the pieces together we see that the recursions (19.11) simplify to

y n + 1 := (Ayn - Yhnan - yt
l_1P'n_l)hn 1

~ ~ ~ ~ ~ ; ~ ; _ > i r r i ( < r z + l
yn +i := (A*y n - Yl;nan - y i_ /B_1) /7n J

(19.14)
In other words, the previous blocks are replaced by single vectors y/'_1 and
y[_i, respectively. It can be shown (Hochbruck 1996) that

JCni-i  y;_1? y'i-i -L /Cn,-!. (19.15)

At the root of this simplification is the fact that the blocks

are of rank one, as was pointed out in Gutknecht (1992). Using a similar
argument Preund and Zha (1993) implicitly capitalized upon this in their
Hankel solver, but only recently it was pointed out by Hochbruck (1996),
who used yet another approach, that this leads to the above simplification of
the look-ahead Lanczos process. In the polynomial formulation the vectors
y[_i and yni correspond to polynomials that are the denominators of a
regular (or, well-conditioned) pair of Pade approximants; see Gutknecht
(19936), Gutknecht and Gragg (1994). In the case of an exact breakdown,
the above simplification is irrelevant since the block 5/_i then has only a
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single nonzero element, the one in the upper right corner, and y;_x is then
a multiple of y ^ ^ ; see Gutknecht (1992).

A look-ahead algorithm always requires a look-ahead strategy, a recipe as
to when to start a look-ahead step and when to terminate it. The above for-
mulae clearly indicate that we need to avoid singular or near-singular blocks
Dj, and this suggests requiring that the smallest singular value, am[ n(Dj),
be larger than a certain tolerance. Indeed, Parlett (1992) showed that the
following quantitative result holds: if the Lanczos vectors are normalized,
then

min {crmin(Yn ), am i n(Y n )}  > min crmin(D i),
1 ' \Jni + 1 o<j<l

However, numerical examples reported in Preund et al. (1993) showed that,
in finite precision arithmetic, we should not rely on this result and not
monitor cmin(Z);.n) alone. Instead, it is suggested that the 1-norms of the
coefficient vectors in (19.11) be kept below a certain bound when n + 1 =

that is, when the new index n + 1 is declared as well-conditioned:

< T , | | 5n | | i < T, | | 6n | | i < T, | | 6n | | i <T =*  n / + 1 : = n + l .

Here, the bound T depends on A and is typically of the order of ||A||. For
example, one can start with T := max {||Ayo||, ||A*yo||}  and then adjust
this bound dynamically during the algorithm. See Freund et al. (1993) for
more details. If the simplified formulae (19.14) are used, the bound for
bn and bn can be replaced by one for y[_if3'n_1 and y{_1 f3'n_1. There is,
unfortunately, the possibility that Di-n remains singular or ill-conditioned
for all n > ni. This is what is called an incurable breakdown. Then there
is no way to escape a restart of the algorithm, but when solving a linear
system one can of course restart from the most recent approximation.

Clearly, the same approach can be used to specify an LABl C algorithm.
The look-ahead approach for Lanczos-type product methods (LTPMs) intro-
duced in Gutknecht and Ressel (1996) is based on the standard look-ahead
procedure, but can also accommodate the above simplification.

19.2. LABlOC: the look-ahead BlOC algorithm

The BlOC algorithm is susceptible to both Lanczos and pivot breakdowns,
and thus a look-ahead generalization of it should be able to cope with both.
In addition to the sequence of regular indices ni for the Lanczos vectors,
we therefore have a second sequence of regular indices m  ̂ for the direction
vectors. From Lemma 12.2 we know that detMn,  ̂ 0 and d e t M^ / 0
but, as in the last subsection, we only consider here those regular indices
that are in some sense well-conditioned. In addition to (19.2) we now want
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to enforce

£m f c_LAv n, A*v n_L/Cmfe, i£ mk<n<mk+i.  (19.16)

In the following, we associate with every n a pair (A;, I) such that

mk < n < mk+\ and ni <n < ni+\ (19.17)

hold, and we let h'k := rrik+i  — mk. Denning, in analogy to (19.3)-(19.4)
and (19.6)-(19.8), blocks Vk, Vk, D'k, Vk;n, Vk;n, and D'k.n, we then have, as
in (19.9),

AV n +1 = D ; + 1 := block diag (D'o,..., D'^, D'k.n). (19.18)

Since we want each of the sets {y^} , {yj} , {Vi} , {VJ }  to be a nested basis of
the respective Krylov space, it is clear that there should exist recurrences
with a matrix representation

Y n = V nU n , AVn = Y n + 1 L n,

Y n = V nU n , A*V n = Y n + 1L n ,

where L n and L n are of upper Hessenberg form and Un and Un are unit
upper triangular. From the polynomial formulation of the BlO algorithm we
could again readily conclude that we can assume L n and Un are diagonally
scaled versions of L n and Un, respectively. Moreover, as in Section 7, we
can return to (19.10) by eliminating V n and V n from (19.19), while by
eliminating Y n and Y n we find a block version of (7.10), if we assume the
definitions T n := L nU n and T^ := Un+iL n from (7.8). But we cannot
conclude that these are block LU and block UL factorizations of the block
triangular matrices T n and T^, respectively. The block triangularity of T^
can be verified as above for Tn , but we must keep in mind that the blocks
can be of different sizes to those of Tn .

If only exact breakdowns are considered, it has been shown that we in-
deed have block factorizations and that the block sizes are linked to each
other in a well-defined way; see Gutknecht (1994a). The link between the
block sizes follows directly from the block structure theorem for the Pade
table. If near-breakdowns are included, there are still arguments to have
the breakdowns linked, but not in the same rigid way: typically, for every
ni there is an mk such that n/ = mk or n/ = mk + 1. In the first case,
(pn(_i,pn() is a row-regular (or a row-well-conditioned) pair; in the second
case, (pn,_i,pn i_i) is a column-regular (or a column-well-conditioned) pair;
see Hochbruck (1996). The notions of row-regularity and column-regularity,
which play a crucial role here, were introduced in Gutknecht (19936). They
mean that the respective polynomials (which are FOPS for the two closely
related functionals $ and $' of Section 12) are not scalar multiples of each
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other; and they imply that these polynomials are even relatively prime; see
also Gutknecht and Hochbruck (1995), Gutknecht and Gragg (1994).

But let us first consider the general case: after replacing n by n + 1 in
the first line of (19.19), we can always write the last column of these matrix
equations as

Av n = Yn[fn + Yi-nfn.i +yn+i7n-

The conditions (19.2) and (19.16) that led to (19.9) and (19.18), respectively,
yield under assumption (19.17)

gn :=  D £ V ^ A y n , /„  := D " 1 ^ A v n . (19.21)

These formulae suggest that the recurrences (19.20) are long. However, in
(19.21) only few blocks of the block diagonal matrices are multiplied by
nonzero blocks of the vectors that follow. Recall that we have

v*Ay n = 0 if i < nj - 1, y*Av n = 0 if i < mk. (19.22)

Therefore, if we define

k* := max {j  : j < k, rrij  < max{n/ — 1,0}} ,

I*  := max {j  : j <l,  rij  < mk} ,

then in (19.21) only the blocks D'kir,..., D^._1 of D'mk and Dt*,..., £>/-i of
Dn; matter. Therefore, (19.20) becomes

Vn := y« Ej=fc j9n;j fc;nl5n;fc,
(19.23)

y n + i := [AY!^YfYfJ^

where

gn-j :=  Dj lVfAyn (j = k*,..., k - 1 if n <
j = k , . . . , k i t n = 77J.fc_|_i), ^ Q _ .̂

/n;j- := D~lYfA\n (j = I*,..., I - 1 if n < n^+i - 1,
j = I*,... ,1 if n = n/+ i — 1),

while gn-k and fn-i are arbitrary if n < nik+i or n < nj+i — 1, respectively.
This means that if we compute inner vectors, then these two coefficients can
be chosen as zero vectors, so that the corresponding terms in (19.23) can be
dropped. The recurrences (19.23)-(19.24) are due to Preund and Nachtigal
(1994); see also Preund and Nachtigal (1993). Of course, analogous formulae
exist for the left-hand side vectors. This look-ahead version of the BlOC
algorithm is more general than the one sketched in §10 of Gutknecht (1994 a),
because the two sequences of well-conditioned indices, {n{\ and {m^}  are
not assumed to be linked in a certain way.
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As mentioned above, typically either n\ = mk or n\ = mk + 1, and then
we can draw further conclusions:

ni=mk =^ k* = k-l, gn]k-i = D'^}1\\ l̂k_1Ayn,

l*  = l (t.e.,/n = o),

ni = mk + l =>  k* = k (i.e., gn = o),

I*  = 1-1, fnt-i = Df^ly^Avn,

Here, we have already taken into account that, in view of (19.22), in these
situations only the last columns of Vk-\ and VJ-i, respectively, yield a
nonzero contribution to V^ljAy n and Y*_i_A.xn. This gives rise to a sim-
plification analogous to the one that led from (19.12) to (19.13)—(19.14).
Letting

:= (lTI?j;i1
1l)-

1(v'fc_1)*Ay B, & := (lTi?'fc-
1
1l)-

1(V fc_1)*A*y» ,

(19.26)
we finally obtain the following simplified recurrences for the right-hand side
vectors: if ni = mk, then

vn = yn - v'k-i^'n \i mk<n< mk+i,
vn = yn ~ Vk-n-ign-k - v'k_iil)' n if ra = mfc+i ,

yn+i = Av n/7n if n/ < n < n/+i - 1,

yn+i = (Avn - Y\;nfn;i)hn if n = n; + i - 1,

while if n/ = m/- + 1, then

vn = yn if mk < n < mk+i,

vn = yn - Vk-tn-i9n;k if n = mf c+ i ,

y n + i = (Av n - y[_i<p'n) hn if m <n< nt+i - 1,

y n + i = (Av n - Yi-nfn.i - yl
l_ly'n)hn if n = n m - 1.

(19.28)
Again, analogous recurrences exist for the left-hand side vectors. The above
formulae appear in polynomial formulation based on a different derivation
in Hochbruck (1996). Again, the previous blocks are replaced by a single
vector, and, actually, only one of the Lanczos vectors or one of the direction
vectors is needed. Now, these two auxiliary vectors satisfy, respectively,
(19.15) and

ICmk̂  A v ^ ! , A*v;_!  Kmk-i. (19.29)

If we also know that m^+i = n/+i or mk+\  + 1 = n/+i holds at the end of
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the look-ahead step, then we can further capitalize upon this: only one of
the two recurrences for the regular step in (19.27) or (19.28), respectively,
is needed, but which of the two recurrences can be dropped depends on the
situation at the end of the step; see Hochbruck (1996).

19.3. Other look-ahead Lanczos algorithms

A simple, but also limited, look-ahead approach is the composite step BiCG
algorithm of Bank and Chan (1993, 1994): it is the poor man's look-ahead
Lanczos solver. It requires that no Lanczos breakdowns occur, which implies
that |mfc+i — mfc| < 2, as one can show by arguments involving the moment
matrices or the block structure theorem of the Pade table; see, for instance,
Gutknecht (1990, Theorem 3.6). The algorithm is a variation of BIOMI N
in which such pivot breakdowns are cured by a special double step: an
undefined Galerkin iterate xn+i is skipped, and xn+2 and its residual are
then constructed according to

X n+2 := Xn + \nJn + -Ln+X^n, Tn+2 := Tn - A\nu'n - Azn+iLO^

where 2,n+\ is an auxiliary vector that is itself a linear combination of rn

and Avn. As we know, there are other algorithms that are not susceptible
to pivot breakdowns, in particular, BiOQMR and inconsistent BIORES.
The composite step BiCG algorithm has the merit that it uses the standard
two-term BlOMlN version of the BiCG method as default.

The composite step approach has been extended to both BIOMIN S (Chan
and Szeto 1994) and to LTPMs based on the coupled two-term Lanczos
recurrences (Chan and Szeto 1996). Incidentally, the idea can be traced
back to Luenberger (1979) and Fletcher (1976), who designed for symmetric
indefinite systems CG algorithms that, in case of a breakdown, make use of
such double steps by exploiting the concept of hyperbolic pairs.

We mentioned earlier that by choosing the inner vectors appropriately in
a look-ahead algorithm we can further improve its numerical stability. For
the algorithm of Parlett et al. (1985), which was also restricted to steps of
length at most two, Khelifi (1991) investigated this freedom and specified
an optimal choice.

Recurrences for formal orthogonal polynomials (FOPs) and the closely re-
lated Pade approximants, which are so-called convergents ('partial sums') of
certain continued fractions, can serve as the basis for look-ahead algorithms
restricted to exact breakdowns; see Gutknecht (1992) and (1994a), where
these algorithms are called nongeneric. The relevant continued fractions,
the so-called q-fractions, can be traced back at least to Chebyshev; see
Gutknecht and Gragg (1994) for some historical remarks. Brezinski, Redivo
Zaglia, and Sadok have taken up this approach in a series of papers. In the
first one, Brezinski et al. (19926), they introduce the MRZ algorithm, which



386 M. H. GUTKNECHT

is basically the same as the nongeneric BlODlR algorithm of Gutknecht
(1994a). (One difference is that Brezinski et al. (19926) suggest using
(A*) zyo as the left vectors, which does not work in finite precision arith-
metic due to the extremely bad condition of this basis.) In Brezinski and
Sadok (1991) the same recurrences are used to define a nongeneric version
of the B1OD1R.S2 algorithm from Section 7 of Gutknecht (1990), and in Cao
(1997a) they are applied to the B I C G S T AB family.

Brezinski et al. (1991) first suggest two methods (SMRZ and BMRZ) that
apply mixed recurrences, but can handle only exact pivot breakdowns, in
contrast to other nongeneric algorithms that can cure exact breakdowns
of both types, such as, for instance, nongeneric BlOMlN from (Gutknecht
1994a). The authors then turn to the treatment of near-breakdowns in
the BlODlR algorithm. Their GMRZ algorithm is based on polynomial
recurrences of the form

Pmk+1(0  Ck(OPmk(C)+d'k(OPmk-AO^

Pmk+2(0  cJKC)Pmfc(C)+<(C)Anfc-i(C),
for the direction polynomials, where it is assumed that p m ^ , and pmk as
well as Pmk+1 and Pmk+2

 a re pairs of successive regular FOPs (with no ill -
conditioned, but in exact arithmetic regular FOPs between them). If, for
simplicity, we exclude the possibility of exact breakdowns, this means that
we require that

mk = rrik-i  + 1 and mk+2 = mk+i + 1- (19.31)

In (19.30), c'k, d'k, c'k', and dk are polynomials of the appropriate degrees,
namely h'k, h'k — 1, h'k + 1, and h'k, respectively, whose coefficients are de-
termined by enforcing the biconjugacy conditions. Translation into Krylov
space notation yields recurrences for the direction vectors. Note that even
when these are only applied to the right-hand side vectors, this costs 2hk +1
matrix-vector multiplications with A (not including those that might be
needed for inner products), as opposed to the hk + 1 required by LABlC .
Of course, the left Krylov space needs to be generated too, and the authors
again suggest using {(A*)"vo }  as basis.

Additional recurrences are needed to update the iterates and the residuals
of BlODlR. They are based on the following recursion for the residual
polynomials:

Pmk+1(0  ck(()pmk(O + (1 + Ce*(C)WO, (19-32)

where ck and ek have degrees h'k — 1 and h'k — 2 at most. Since the residual
polynomials are normalized at Q = 0 and need not have full degree, one can
easily verify that they are regular (in a suitably adapted sense) for the same
indices mk as the direction polynomials. However, if pmk is a multiple of
pmk (and mk > 0), the above formula cannot be true since it would imply
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that Pmk+l is also a multiple of pmk, while successive regular polynomials
are known to be relatively prime.

The authors indeed realized later that an extra condition has to be ob-
served; see Brezinski et al. (1993), a paper that gives an overview of the
methods proposed by this group. Incidentally, the missing condition is
equivalent to (pmk,Pmk) being a column-regular pair. As mentioned, this
means that the two polynomials are not scalar multiples of each other; even
more, they are then automatically relatively prime. Likewise, the restric-
tion mjt = mk-\ + 1 of (19.31) means that pmfc_i and pmk are a regular
pair, which also implies that they are relatively prime; see Gutknecht and
Gragg (1994). Fortunately, column-regularity implies regularity. Hence, if
we do not consider the possibility of exact breakdowns, then the GMRZ
algorithm requires us to treat successive look-ahead blocks as a single large
one, until we find a pair (Pmk-,Pmk) of well-conditioned column-regular {i.e.,
column-well-conditioned) polynomials. This means more overhead and less
numerical stability than when blocks of minimum length can be used.

In Brezinski et al. (1991) (see also Brezinski, Redivo Zaglia and Sadok
(1992a)), a BSMRZ algorithm is introduced additionally. It is supposed to
cure near-breakdowns of B I O M I N and is based on (19.32) and an analogue
recurrence for generatingPmk+1  Hence, it proceeds from the pair (pmk,Pmk)
to the pair (pmk+1, pmk+1), and thus these pairs are again required to be
column-regular. Consequently, in this algorithm too, the steps are in general
longer than in our LABlO C algorithm, discussed above, even if we only
allowed steps that start and end with a column-regular or row-regular pair
and thus always applied either (19.27) or (19.28). Moreover, the overhead
is again higher, since two matrix-vector products are needed to expand the
right Krylov space.

We emphasize that this approach, which was later also applied to the
BiCGS method (Brezinski and Redivo Zaglia 1994) and LTPMs (Brezinski
and Redivo Zaglia 1995), differs considerably from ours, described in detail
above, not only because of the preference for B I O D I R and BlOMlN, but
because of the different type of recurrence. The connection between the
two types has been clarified by Hochbruck (1996). The recursions (19.30)
with the restriction (19.31) represent a special case of those of Cabay and
Meleshko (1993); see also Gutknecht and Gragg (1994). To attain the gen-
erality of the Cabay-Meleshko recurrences we would have to replace pm f c l

and Pmk+i by differently defined polynomials of maximum degree m^^i and
mjfc+i, respectively.

As look-ahead strategy, Brezinski et al. suggest choosing the step size h'k
such that, for a suitably chosen e\ > 0,

,A ' + 1v \ / - £l if ° -
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Note that this condition does not guarantee the nonsingularity of the block
D'k that one would use in LABiC , and thus it cannot guarantee that vmjfc+1 is
regular, let alone well-conditioned. (As an example, consider the situation
where all the off-diagonal inner products in (19.33) are e\ and those on
the diagonal are slightly larger.) The authors did not in fact prove that
the resulting linear system for the coefficients is nonsingular, but suggest
prescribing in addition to (19.33) a threshold for the size of the pivots in the
Gaussian elimination; see Brezinski et al.(1992a, 1993).

Yet another proposal for curing Lanczos breakdowns has been made by
Ye (1994). However, it requires storing all the Lanczos vectors so that when
a breakdown occurs, yn+i can be replaced by a 'newstart vector' that is
orthogonal to all previously computed right Lanczos vectors, as in (3.3b). A
corresponding linear solver with QMR smoothing is described in Tong and
Ye (1996).

20. Outlook

We hope to have convinced the reader that despite some obvious difficulties
(such as breakdowns and loss of biorthogonality due to round-off) the un-
symmetric Lanczos process is the basis of a series of very effective and reliable
algorithms. We do not expect that yet another new algorithm of this type
wil l markedly surpass all those that we know already, but nevertheless there
is still research to be done in this area: convergence is not yet well under-
stood, further investigations on how to improve the accuracy and stability
of these algorithms are worthwhile, and there is still a shortage of quality
software both for conventional and parallel computer architectures.
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1. Introductio n

Let P(x) = 0 be a system of n polynomial equations in n unknowns. De-
noting P = (pi,... ,pn), we want to find all isolated solutions of

pi(xi,...,xn) = 0,

pn(xi,...,xn) = 0

for x = (x\,... ,xn). This problem is very common in many fields of sci-
ence and engineering, such as formula construction, geometric intersection
problems, inverse kinematics, power flow problems with PQ-specified bases,
computation of equilibrium states, etc. Elimination theory-based methods,
most notably the Buchberger algorithm (Buchberger 1985) for constructing
Grobner bases, are the classical approach to solving (1.1), but their reliance
on symbolic manipulation makes those methods seem somewhat unsuitable
for all but small problems.

*  This research was supported in part by the NSF under Grant DMS-9504953 and a
Guggenheim Fellowship.



400 T. Y. Li

In 1977, Garcia and Zangwill (1979) and Drexler (1977) independently
presented theorems suggesting that homotopy continuation could be used
to find numerically the full set of isolated solutions of (1.1). During the
last two decades, this method has been developed into a reliable and effi-
cient numerical algorithm for approximating all isolated zeros of polynomial
systems. Modern scientific computing is marked by the advent of vector
and parallel computers and the search for algorithms that are to a large
extent naturally parallel. A great advantage of the homotopy continuation
algorithm for solving polynomial systems is that it is to a large degree paral-
lel, in the sense that each isolated zero can be computed independently. This
natural parallelism makes the method an excellent candidate for a variety
of architectures. In this respect, it stands in contrast to the highly serial
Grobner bases method.

The homotopy continuation method for solving (1.1) is to define a trivial
system Q(x) = (q\(x),..., qn{x)) = 0 and then follow the curves in the real
variable t which make up the solution set of

0 = H(x,t) = (l-t)Q(x) + tP(x). (1.2)

More precisely, if Q(x) = 0 is chosen correctly, the following three properties
hold:

Property 0 {Triviality). The solutions of Q(x) = 0 are known.

Property 1 (Smoothness). The solution set of H(x,t) = 0 for 0 < t < 1
consists of a finite number of smooth paths, each parametrized by t in
[0,1).

Property 2 (Accessibility). Every isolated solution of H(x, 1) = P(x) = 0
can be reached by some path originating at t = 0. It follows that this
path starts at a solution of H(x, 0) = Q(x) = 0.

When the three properties hold, the solution paths can be followed from the
initial points (known because of Property 0) at t = 0 to all solutions of the
original problem P(x) = 0 at t = 1 using standard numerical techniques;
see Allgower and Georg (1990, 1993).

Several authors have suggested choices of Q that satisfy the three prop-
erties: cf. Chow, Mallet-Paret and Yorke (1979), Li (1983), Morgan (1986),
Wright (1985) and Zulener (1988) for a partial list. A typical suggestion is

qi(x) = aixd
x
l -b\,

(1.3)
qn(x) = anxin - bn,

where d\,..., dn are the degrees of pi(x),... ,pn(x) respectively, and a,, bi
are random complex numbers (and therefore nonzero, with probability one).
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So in one sense, the original problem posed is solved. All solutions of P{x) —
0 are found at the end of the d\-  dn paths that make up the solution set
olH(x,t) = 0 , 0< t < 1.

In this article, we report on some recent developments that make this
method more convenient to apply.

The reason the problem is not satisfactorily solved by the above consid-
erations is the existence of extraneous paths. Although the above method
produces d = d\  dn paths, the system P(x) = 0 may have fewer than d
solutions. We call such a system deficient. In this case, some of the paths
produced by the above method will be extraneous paths.

More precisely, even though Properties 0-2 imply that each solution of
P(x) = 0 will lie at the end of a solution path, it is also consistent with these
properties that some of the paths may diverge to infinity as the parameter
t approaches 1 (the smoothness property rules this out for t —> to < !)  In
other words, it is quite possible for Q(x) = 0 to have more solutions than
P(x) = 0. In this case, some of the paths leading from roots of Q{x) = 0
are extraneous, and diverge to infinity when t — 1 (see Figure 1).

Solutions to
start system
Q(x)=0

Solutions to
P(x)=0

infinity

t=l

Fig. 1.

Empirically, we find that most systems arising in applications are deficient.
A great majority of the systems have fewer than, and in some cases only a
small fraction of, the 'expected number' of solutions. For a typical example
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of this sort, let us look at the following Cassou-Nogues system

Pi = 1564cd2 + 664c3 + 21b4c2d - U4b2c - 8b2c2e
-28b2cde - 648b2d + 36b2d2e + 9b4d3 - 120,

p2 = 30b4c3d - 32cde2 - 720b2cd - 2462c3e - 43262c2 + 576ce
-576de + 16b2cd2e + \U2e2 + 16c2e2 + %4c4 + 3964c2d2

+1864cd3 - 432b2d2 + 24b2d3e - 16b2c2de - 240c + 5184, (1.4)

p3 = 216b2cd - 162b2d2 - 81b2c2 + 1008ce - 1008de + 15b2c2de
-15b2c3e - 80cde2 + 40d2e2 + 40c2e2 + 5184,

Pi = Ab2cd-3b2d2 -Ab2c2 + 22ce-22de + 261.

Since di = 7, d2 = 8, cfa = 6 and  = 4 for this system, the system Q(x)
in (1.3) will produce d\ x d2

x ^3 x c?4 = 7 x 8 x 6 x4 = 1344 paths for the
homotopy in (1.2). However, the system (1.4) has only 16 isolated zeros.
Consequently, most of the paths are extraneous. Sending out 1344 paths in
search of 16 solutions is a highly wasteful computation.

The choice of Q(x) in (1.3) to solve the system P(x) = 0 requires an
amount of computational effort proportional to d\  dn and, roughly, pro-
portional to the size of the system. We would like to derive methods for
solving deficient systems for which the computational effort is instead pro-
portional to the actual number of solutions.

To organize our discussion, we will at times use a notation that makes the
coefficients and variables in P(x) = 0 explicit. Thus, when the dependence
on coefficients is important, we will consider the system P(c,x) = 0 of n
polynomial equations in n unknowns, where c = (c\,..., CM) are coefficients
and x = ( x i , . . ., xn) are unknowns. Two different problems can be posed:

Problem A Solve the system of equations P(x) = 0.
Problem B For each of several different choices of coefficients c, solve the

system of equations P(c, x) = 0.

We divide our discussion on dealing with and eliminating extraneous paths
for Problem A in Section 2, and for Problem B in Section 3. In Section 4, an
algorithm is presented which, in some sense, uses the method for Problem
B to treat Problem A. Some numerical considerations, the use of projective
coordinates and real homotopies, are given in Section 5.

2. Methods for  Problem A

Progress on Problem A has been the least satisfactory among the areas
we discuss. For deficient systems, there are some partial results that use
algebraic geometry to reduce the number of extraneous paths, with various
degrees of success.
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2.1. Random product homotopy

For a specific example that is quite simple, consider the system

pi(x) = xi(anxi-\ \-alnxn) + bnxi-\ \- binxn + c\ = 0,

i (2.1)
Pn{x) = x\ {an\X\ + 1- annxn) + bn\X\ H h bnnxn + cn = 0.

This system has total degree d = d\  dn = 2". Thus the 'expected number'
of solutions is 2", and the classical homotopy continuation method using the
start system Q(x) = 0 in (1.3) sends out 2n paths from 2n trivial starting
points. However, the system P(x) = 0 has only n+1 isolated solutions (even
fewer for special choices of coefficients). This is a deficient system; at least
2" — n — 1 paths will be extraneous. It is never known from the start which
of the paths will end up being extraneous, so they must all be followed to
the end: wasteful computation.

The random product homotopy was developed in Li, Sauer and Yorke
(1987a, 19876) to alleviate this problem. According to that technique, a
more efficient choice for the trivial system Q(x) = 0 is

qi(x) = (xi + en)(xi + x2-\
q2(x) = (xi

qn(x) = (xi + eni){xn + en2). (2.2)

Set
H(x, t) = (l- t)cQ[x) + tP{x).

It is clear by inspection that for a generic choice of the complex numbers
ey, Q(x) = 0 has exactly n + 1 roots. Thus there are only n + 1 paths
starting from n +1 starting points for this choice of homotopy. It is proved
in Li, Sauer and Yorke (19876) that Properties 0 2 hold for this choice of
H(x, t) for almost all complex numbers ê  and c. Thus all solutions of
P(x) = 0 are found at the end of the n + 1 paths. The result of Li et al.
(19876) is then both a mathematical result (that there can be at most n + 1
solutions to (2.1)) and the basis of a numerical procedure for approximating
the solutions.

The reason this works is quite simple. The solution paths of (1.2) which
do not proceed to a solution of P(x) = 0 in Cn diverge to infinity. If the
system (1.2) is viewed in projective space

where the equivalent relation '~' is given by x ~ y if x = cy for some nonzero
c G C, the diverging paths simply proceed to a 'point at infinity' in Pn.
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For a polynomial f(x\,..., xn) of degree d, denote the associated homo-
geneous polynomial by

f ( X 0 , X l , . . . , X n ) = X 0 / ( — , . . . , ) .
XQ XO

The solutions of f(x) = 0 at infinity are those zeros of / in P" with Xo = 0,
and the remaining zeros of / with XQ  ̂ 0 are the solutions of f(x) = 0 in
Cn when xo is set to be 1.

Viewed in projective space P™ the system P(x) = 0 in (2.1) has some roots
at infinity. The roots at infinity make up a nonsingular variety, specifically
the linear space pn~2 denned by XQ = x\ = 0. A Chern class formula from
intersection theory (Fulton 1984, 9.1.1, 9.1.2) shows that the contribution of
a linear variety of solutions of dimension e to the 'total degree' {d\ x  x dn),
or the total expected number of solutions, of the system is at least s, where
s is the coefficient of te in the Maclaurin series expansion of

In our case, d\ =  = dn = 2, and e = n — 2, hence,

(1 + 2*)" _ ^"=o(1 + ^ " ^ ( " ) _ " t (n

and s = J2?=o I  ) > meaning there are at least J27=o (  ) solutions of

P{x) = 0 at infinity. Thus there are at most

solutions of P(x) = 0 in Cn. The system Q(x) = 0 is chosen to have the
same nonsingular variety at infinity, and this variety stays at infinity as the
homotopy progresses from £ = 0 to £ = 1. As a result, the infinity solutions
stay infinite, the finite solution paths stay finite, and no extraneous paths
exist.

This turns out to be a fairly typical situation. Even though the system
P(x) = 0 to be solved has isolated solutions, when viewed in projective
space there may be large number of roots at infinity, and quite often high-
dimensional manifolds of roots at infinity. Extraneous paths are those that
are drawn to the manifolds lying at infinity. If Q(x) = 0 can be chosen
correctly, extraneous paths can be eliminated.

As another example, consider the algebraic eigenvalue problem

Ax = Xx,
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where
on  a\n

is an n x n matrix. This problem is actually one of n polynomial equations
in the n + 1 variables A, x\,..., xn:

\x\ — (anxi + h a\nxn) = 0,

Xxn — (an\x\ +  + annxn) = 0.

Augmenting the system with a linear equation

C\X\ ~\ h CnXn + Cn+X = 0,

where c\,... ,cn+i are chosen at random, we have a polynomial system of
n+1 equations in n+1 variables. This system has total degree 2n. However,
it can have at most n isolated solutions. So, the system is deficient. But the
system Q(x) in random product form:

<72 =

Qn = (A
qn+l = C\X\ -\ h CnXn

has n isolated zeros for randomly chosen e^s. This Q(x) will produce n
curves for the homotopy in (1.3) that proceed to all solutions of the ei-
genvalue problem. Implicit in this is the fact that the algebraic eigenvalue
problem has at most n solutions. Moreover, the generic eigenvalue problem
has exactly n solutions.

To be more precise, we state the main random product homotopy result,
Theorem 2.2 of Li et al. (19876). Let V^Q) and V^P) denote the variety
of roots at infinity of Q{x) = 0 and P(x) = 0 respectively.

Theorem 2.1 If Voo(Q) is nonsingular and contained in Voo(P), then
Properties 1 and 2 hold.

Of course, Properties 1 and 2 are not enough. Without starting points, the
path-following method cannot begin. Thus Q(x) = 0 should also be chosen
to be of random product form, as in (2.2), these being trivial to solve.

This result was superseded by the result in Li and Sauer (1989). The
complex numbers ê  are chosen at random in Li et al. (19876) to ensure
Properties 1 and 2. In Li and Sauer (1989), it was proved that eij can be
any fixed numbers; as long as the complex number c is chosen at random,



406 T. Y. Li

Properties 1 and 2 still hold. In fact, the result in Li and Sauer (1989) implies
that the start system Q(x) = 0 in Theorem 2.1 need not be in product form.
It can be any chosen polynomial system as long as its zeros in C" are known
or easy to obtain and its variety of roots at infinity Voo(Q) is nonsingular
and contained in V^P).

Theorem 2.1 in Li and Wang (1991) goes one step further. Even when
the set Voo(Q) of roots at infinity of Q(x) = 0 has singularities, if the set is
contained in Voo(P) counting multiplicities, that is, containment in the sense
of scheme theory of algebraic geometry, then Properties 1 and 2 still hold.
To be more precise, let / =< q\,...,qn > and J =< p\,... ,pn > be the
homogeneous ideals spanned by homogenizations of qiS and p,s respectively.
For a point p at infinity, if the local rings Ip and Jp satisfy

ip a jp,

then Properties 1 and 2 hold. However, this hypothesis can be much more
difficul t to verify than the singularity of the set. This limits the usefulness
of this approach for practical examples.

2.2. m-homogeneous structure

In Morgan and Sommese (1987&), another interesting approach to Problem
A is developed, using the concept of m-homogeneous structure.

The complex n-space C" can be naturally embedded in Pn. Similarly, the
space Cfcl x  x Ckm can be naturally embedded in Pfcl x  x Pfcm. A
point ( j / i , . . ., ym) in Cfcl x  x Cfcm with y; = (y[% \ ..., y{£), i = l,...,m,
corresponds to a point (z\,..., zm) in Pfcl x  x Fkm with z\ = (ZQ , . . ., z%})

and ZQ = 1, i = 1,... ,m. The set of such points in Pfcl x  x Pfcm is usually
called the affine space in this setting. The points in Pkl x  x Pfcm with at
least one ZQ = 0 are called the points at infinity.

Let / be a polynomial in the n variables x i , . . . ,xn. If we partition the
v a r i a b l es i n t o m g r o u ps yx = ( x ^ \ ..., x ^ ) , y 2 = (xf\ ..., x ^ ) , . . . , y m =

(x^m , . . ., Xf^') with ki +  + km = n and let di be the degree of / with
respect to yi (more precisely, to the variables in yi), then we can define its
m-homogenization as

f ( zu . . . , zm ) = (41*) * x  x ( zt

This polynomial is homogeneous with respect to each Z{ = (ZQ ,... ,z^;),

i = 1 , . . ., m. Here Zj = x,l , for j  ̂ 0. Such a polynomial is said to be
m-homogeneous, and (d\,... ,dm) is the m-homogeneous degree of / . To
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illustrate this definition, let us consider the polynomial Pi(x) in (2.1):

Pi(x) = xi(anXi-\ \-ainxn) + buxi-\ \-binxn + Ci
= a,i\x\ + X\(ai2x2 H 1- ainxn + bn) + bi2x2 ^ h binxn + Cj.

It is sufficient to set y\ = {x\),y2 — (x2,  ,xn) and z\ = (x0 , Xi) , z2 =

(x0 ,x2,... ,xn). The degree of Pi(x) is two with respect to y\ and is one
with respect to y2. Hence, its 2-homogenization is

Pi{z\,z2) = <H\X\XQ + xix^\ai2x2  ̂ h ainxn + f

Q  + binxn +  C J 42 ) ) -

which is homogeneous with respect to both z\ and z2. When the system
(2.1) is viewed in Pn = {(XQ, X\, ..., xn)} with the homogenization

p i ( x o , x i , . . . , xn) =

+(6nxi H h binxn)x0 + CIXQ = 0,

pn(xo ,x i , . . . , xn) = Xi (o n i x H \-annxn)

+(bnixi H h bnnxn)x0 + Cnxl = 0,

its total degree, or Bezout number, is d = di  dn = 2n. However, when
(2.1) is viewed in P1 x P" -1 = {(zi,z2) = ( ( x ^ . x i ) , (xo

2 ),x2, . .. ,xn))}  with
the 2-homogenization

Pi(zi,z2) = auxfx^' +xixo
1)(ai2X2H h ainxn + bnxfr>)

+(xo
1 )) 2(6 i 2x 2 H h blnxn + cix^>),

 (2 -3)

Pn(zi,z2) = anix\x^' +  ZIZQ (an2x2 -\ h annxn + bnix^')

+ {x^')2(bn2X2 -\ 1- bnnXn ^'

the Bezout number d is different, and equals the coefficient of a\a^~l in
the product (2ai + a2)" . Thus, d = In. In general, for an m-homogeneous
system

pi(zi,...,zm) = 0,

pn{zi,...,zm) = 0, (2.4)

in Pkl x  x Pkm with pi having m-homogeneous degree (d\ , ...,dm),
i = 1 , . . ., n, with respect to (z\,..., zm), then the m-homogeneous Bezout
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number d of the system with respect to (z\,..., zm) is the coefficient of
a^1 x  x a%? in the product

(Shafarevich 1977). The classical Bezout Theorem says the system (2.4) has
no more than d isolated solutions, counting multiplicities, in Pfcl x  x Pfcm.
Applying this to our example in (2.3), the upper bound on the number of
isolated solutions of (2.3), in affine space and at infinity, is 2n. When solving
the original system in (2.1), we may choose the start system Q(x) = 0 in
the homotopy

H(x, t) = (1 - t)cQ(x) + tP(x)

in random product form to respect the 2-homogeneous structure of P(x).
For instance, we may choose Q(x) = 0 to be

qi(x) = (xi +en)(xi + e12)(x2 H

q2{x) = (xi

qn(x) = (xi + eni)(xi + en2)(xn + en3), (2.5)

which has the same 2-homogeneous structure as P(x) with y\ = (x\) and
V2 = (x2,  xn). Namely, each qt(x) has degree two with respect to y\ and
degree one with respect to y2. It is easy to see that for randomly chosen
complex numbers e ,̂ Q{x) = 0 has 2n solutions in Cn(= C1 x Cn - 1) (thus,
no solutions at infinity when viewed in P1 x Pn~1). Hence there are 2n paths
starting from 2n starting points for this choice of homotopy. It is shown in
Morgan and Sommese (19876) that Properties 1 and 2 hold for all complex
numbers c, except those lying on a finite number of rays starting at the
origin. Thus, all solutions of P{x) = 0 are found at the end of n + 1 paths.
The number of extraneous paths, 2n — (n + 1) = n — 1, is far less than the
corresponding number, namely 2n — n — 1, arising via classical homotopy
with Q(x) = 0 in (1.3).

More precisely, we state the main theorem in Morgan and Sommese
(19876).

Theorem 2.2 Let Q(x) be a system of equations chosen to have the same
m-homogeneous form as P(x) with respect to a certain partition of the
variables (x\,..., xn). Assume that Q(x) = 0 has exactly the Bezout number
of nonsingular solutions with respect to this partition, and define

H(x, t) = (1 - t)cQ(x) + tP{x),

where t G [0,1] and c G C. If c = rel° for some positive r, then, for all but
finitely many 0, Properties 1 and 2 hold.
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In general, if x = (x\,..., xn) is partitioned into x — (yi, . . ., ym) where

I (!) W\ ( (2) (2)\ / (m) (m)N

with ki +  + km — n, and Pi(x) has degree (dj1 , ..., dm) with respect
to (yi,..., ym), i = 1,..., n, then we may choose the start system Q(x) =

j=i e=i

Clearly, qi{x) has degree (<4 , . . ., dm) with respect to (yi,. . ., ym), the same
degree structure of Pi(x). Further, it is not hard to see that, for random
coefficients, Q(x) has exactly an m-homogeneous Bezout number, with re-
spect to this particular partition x = {y\,..., ym), of nonsingular isolated
solutions in Cn. Those solutions are easy to obtain: the system Q(x) in (2.5)
is constructed according to this principle. In Wampler (1994), the product
in (2.6) is modified along the same principle to be more efficient to evaluate.

In the example above, there are still n — 1 extraneous paths. This is
because, even when it is viewed in P1 x P""1, P(x) has zeros at infinity. One
can see in (2.3) that

S = {{(x£\Xl), (xg\x2,... ,xn)) G P1 x P"" 1 : 41} = 0,42) = 0}

is a set of zeros of P(x) at infinity. So, to lower the number of those ex-
traneous paths further, we may choose the start system to have the same
nonsingular variety of roots as P(x) = 0 at infinity, in addition to shar-
ing the same 2-homogeneous structure of P{x). For instance, the system
Q(x) = (qi(x),...,qn(x)) where

qx{x) = (xi + en)(xi + x2-\
q2(x) = (xi

qn(x) = {xi + eni)(xi + xn + en2)

shares the same 2-homogeneous structure of P(x) with yi = (xi) and y2 =
(x2,... ,xn), namely, each qi{x) has degree two with respect to y\ and degree
one with respect to y2. On the other hand, when viewed in (z\, z2) E P1 x
P""1 with z\ = (XQ ,X\) and z2 = (XQ ,X2, ... ,xn), this system has the
same nonsingular variety S at infinity as P(x). The system Q(x) = 0 also
has n+ 1 solutions in Cn for generic e^s, and there are no extraneous paths.
It can be shown (Li and Wang 1991, Morgan and Sommese 1987a) that if
Q(x) = 0 in

H(x, t) = (l- t)cQ(x) + tP(x)



410 T. Y. Li

is chosen to have the same m-homogeneous form as -P(x), and the set of
zeros V00(Q) of Q(x) at infinity is nonsingular and contained in Voo(P),
then Properties 1 and 2 hold for c = reld, r > 0, and for all but finitely
many 9.

The zeros of an m-homogeneous polynomial system P(z\,..., zm) at in-
finity in Fkl x  x Fkm may sometimes be difficult to obtain. Nevertheless,
the choice of Q(x) = 0 in Theorem 2.2, assuming no zeros at infinity re-
gardless of the structure of the zeros at infinity of P(x), can still reduce
the number of extraneous paths dramatically simply by sharing the same
m-homogeneous structure of P(x).

Let us consider the system

pi(x) = xi(ona;i-l \-ainxn) + bnxi-\ h binxn + ci = 0,

pn(x) = Xi(OnlXi-\ h annXn) + bn\X\ H \- bnnXn + Cn = 0

in (2.1) again. This time we partition the variables xi,...,xn into y\ —
(xi,x2) and 2/2 = (%3,  xn). For this partition, the 2-homogeneous degree
structure of pi (x) stays the same; namely, the degree of pi (x) is two with
respect to y\ and is one with respect to 2/2  However, the Bezout number with
respect to this partition becomes the coefficient of a\aQ~2 in the product
(2ai + 02)". This number is

which is greater than the original Bezout number 2n with respect to the
partition y\ = (xi) and j/2 = (x2,---,xn) when n > 2. Apparently, the
Bezout number is highly sensitive to the chosen partition: different ways
of partitioning the variables produce different Bezout numbers. By using
Theorem 2.2, we follow the Bezout number (with respect to the chosen
partition) of curves to obtain all the isolated zeros of P(x). To minimize
the number of extraneous paths, it is certainly desirable to find a partition
which provides the lowest Bezout number possible. In Wampler (1992), an
algorithm to this end was given. By using this algorithm, one can determine,
for example, the partition V = {(&) , (c, d, e)} which gives the lowest possible
Bezout number 368 for the Cassou-Nogues system in (1.4). Consequently,
we may construct a random product start system Q(x) to respect the degree
structure of the system with respect to this partition. The start system Q(x)
will have 368 isolated zeros in Cn, and, according to Theorem 2.2, only 368
homotopy curves need to be followed to obtain all 16 isolated zeros of the
Cassou-Nogues system, in contrast to following the 1344 curves, 1344 being
the total degree of the system.

The usefulness of the methods yet developed for Problem A is restricted
to application on an ad hoc basis. The challenge is, in a specific case, to
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find a Q(x) that is simple to solve (Property 0) and also produces minimal
extraneous paths.

3. Methods for  Problem B

The situation for Problem B is different. A method called the 'cheater's
homotopy' has been developed, which is, in some sense, an optimum solution
procedure; see Li, Sauer and Yorke (1988) and Li, Sauer and Yorke (1989) (a
similar procedure can be found in Morgan and Sommese (1989)). Problem
B asks that the system P(c, x) = 0 be solved for several different values of
the coefficients c. In other words, we think of P(c, x) = 0 as a system with
the same structure or sparsity.

The idea of the method is to establish Properties 1 and 2 theoretically
by deforming a sufficiently generic system (in a precise sense to be given
later) and then to 'cheat' on Property 0 by using a preprocessing step. The
amount of computation per preprocessing step may be large, but is shared
among the several solving characteristics of Problem B.

We begin with an example. Let P(x) be the system

pi{x) = x\x\ + cxx\xi + x\ + c2xi + c3 = 0, ,g ^
\ \ — x\ X2 + X2 + C5 = 0.

This is a system of two polynomial equations in two unknowns x\ and x2. We
want to solve Problem B, that is, we want to solve the system of equations
several times, for various specific choices of c = (ci,. . ., C5).

It turns out that, for any choice of coefficients c, system (3.1) has at most
10 isolated solutions. More precisely, there is an open dense subset S of
C5 such that, for c € S, there are 10 solutions of (3.1). Moreover, 10 is an
upper bound for the number of isolated solutions for all c in C5. The total
degree of the system is 6 x 5 = 30, meaning that if we had taken a generic
system of two polynomials in two variables of degree 5 and 6, there would
be 30 solutions. Thus (3.1), with any choice of c, is a deficient system.

Classical homotopy using the start system Q(x) = 0 in (1.3) produces
d = 30 paths, beginning at 30 trivial starting points. Thus there are (at
least) 20 extraneous paths.

The cheater's homotopy continuation approach begins by solving (3.1)
with randomly chosen complex coefficients c* = (c^,..., C5); let X* be the
set of 10 solutions. No work is saved, since 30 paths need to be followed
and 20 paths are wasted. However, the 10 elements of the set X* are the
seeds for the remainder of the process. Subsequently, for each choice of
coefficients c = (ci,. . ., C5) for which the system (3.1) needs to be solved, we
use the homotopy continuation method to follow a straight-line homotopy
from the system with coefficient c* to the system with coefficient c, and we
follow the 10 paths beginning at the 10 elements of X*. Thus Property 0,
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the existence of trivial starting points, is satisfied. The fact that Properties
1 and 2 are also satisfied is the content of Theorem 3.1 below. Thus for
each fixed c, all 10 (or fewer) isolated solutions of (3.1) lie at the end of
10 smooth homotopy paths beginning at the seeds in X*. After the initial
step of finding the seeds, the complexity of all further solvings of (3.1) is
proportional to the number of solutions 10, rather than the total degree 30.

Furthermore, this method, unlike the method for Problem A, requires no
a priori  analysis of the system. The first preprocessing step of finding the
seeds establishes a sharp upper bound on the number of isolated solutions
as a by-product of the computation; further solving of the system uses the
optimal number of paths to be followed.

We earlier characterized a successful homotopy continuation method as
having three properties: triviality , smoothness, and accessibility (Properties
0, 1 and 2, respectively). Given an arbitrary system of polynomial equations,
such as (3.1), it is not too hard (through generic perturbations) to find a
family of systems with the last two properties. The problem is that one
member of the family must be trivial to solve, or the path-following cannot
begin. The idea of the cheater's homotopy is simply to 'cheat' on this part
of the problem, and run a preprocessing step (the computation of the seeds
X*) which gives us Property 0 (triviality) in a roundabout way. Hence the
name, the 'cheater's homotopy'.

A statement of the theoretical result we need follows. Let

 ,CM,XI, ... ,xn) = 0,

Pn(ci,..-,CM,Xi,...,Xn) = 0, (3.2)

be a system of polynomial equations in the variables c\,..., CM, x\,... ,xn.
For each choice of c = (c\,... ,CM) in CM , this is a system of polynomial
equations in the variables x\,... ,xn. Let d be the total degree of the system
for a generic choice of c.

Theorem 3.1 Let c belong to CM. There exists an open, dense, full-
measure subset U of cn+M such that for (b\,..., 6*, cf,..., c*M) € U, the
following holds.

(a) The set X* of solutions x = (x\,..., xn) of

n ('y-, T \ — n (n* z1 *  T»-« <V \ _U h* C\ (*X ^l\

consists of do isolated points, for some do < d.
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(b) Properties 1 and 2 (smoothness and accessibility) hold for the homo-
topy

H ( x , t ) =

P ( ( l - t)c[ + t c i , . . . , (1 - t)c*M + t c M , X l , . . . , x n ) + ( 1 - t)b* ( 3 . 4)

where b* = (6J,..., 6*). It follows that every solution of P{x) = 0 is
reached by a path beginning at a point of X*.

A proof of Theorem 3.1 can be found in Li et al. (1989). The theorem is
used as part of the following procedure. Let P(c, x) = 0 as in (3.2) denote
the system to be solved for various values of the coefficients c.

Cheater's homotopy procedure

(1) Choose complex numbers {b\,..., 6*,cJ,..., c*M) at random, and use
the classical homotopy continuation method to solve Q(x) = 0 in (3.3).
Let do denote the number of solutions found (this number is bounded
above by the total degree d). Let X* denote the set of do solutions.

(2) For each new choice of coefficients c = (ci,. . ., CM), follow the do paths
defined by H(x,t) = 0 in (3.4), beginning at the points in X*, to find
all solutions of P(c, x) = 0.

In step (1) above, for random complex numbers (cf,..., c*M), using clas-
sical homotopy continuation methods to solve Q(x) = 0 in (3.3) may itself
sometimes be computationally expensive. It is desirable that those numbers
do not have to be random. For illustration, consider the linear system

\-cinxn =b\,

H \-CnnXn = bn, (3.5)

which may be considered as a polynomial system with each equation having
degree one. For generic QjS, (3.5) has a unique solution which is not available
right away. However, if we choose Cjj = 6{j (the Kronecker delta), the
solution is obvious.

For this purpose, an alternative is suggested in Li and Wang (1992). When
a system P(c, x) = 0 with a particular parameter c° is solved, this c° may be
chosen arbitrarily instead of being chosen randomly; then for any parameter
c G CM consider the nonlinear homotopy

H(a, x, t) = P ( (l - [ t - t ( l - t)a])c° + (t - t(l - t)a)c, x) = 0. (3.6)

It is shown in Li and Wang (1992) that for a randomly chosen complex a
the solution paths of (3.6) emanating from the solutions of P(c°, x) = 0 will
reach the isolated solutions of P(c,x) = 0 under the natural assumption
that, for generic c, P(c,x) has the same number of isolated zeros in Cn.
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The most important advantage of the homotopy in (3.6) is that the para-
meter c° of the start system P(c°, x) = 0 is arbritrary so long as P(c°, x) = 0
has the same number of solutions as P(c, x) = 0 for generic c. Therefore,
in some situations, when the solutions of P(c, x) = 0 are easily available for
certain c°, the system P(c°,x) = 0 may be used as the start system (3.6)
and the extra effort of solving P(c, x) = 0 for a randomly chosen c would be
saved.

To finish, we give a more non-trivial example of the procedure described
in this section.

Consider the indirect position problem for revolute-joint kinematic ma-
nipulators. Each joint is associated with a one-dimensional parametrization,
namely the angular position of the joint. If all angular positions are known,
then of course the position and orientation of the end of the manipulator
(the hand) are determined. The indirect position problem is the inverse
problem: given the desired position and orientation of the hand, find a set
of angular parameters for the (controllable) joints which will place the hand
in the desired state.

The indirect position problem for six joints is reduced to a system of eight
nonlinear equations in eight unknowns in Tsai and Morgan (1985). The
coefficients of the equations depend on the desired position and orientation,
and a solution of the system (an eight-vector) represents the sines and cosines
of the angular parameters. Whenever the manipulator's position is changed,
the system needs to be resolved with new coefficients. The equations are too
long to repeat here; see the appendix of Tsai and Morgan (1985). Suffice
it to say that it is a system of eight degree-two polynomial equations in
eight unknowns which is rather deficient. The total degree of the system is
28 = 256, but there are at most 32 isolated solutions.

The nonlinear homotopy of (3.6) requires only 32 paths to solve the system
with different sets of parameters (Li and Wang 1990, 1992). The system
contains 26 coefficients, and a specific set of coefficients is chosen for which
the system has 32 solutions. For subsequent solving of the system, for any
choice of the coefficients c i , . .. ,C26, all solutions can be found at the end
of exactly 32 paths, by using nonlinear homotopy in (3.6) with randomly
chosen complex a.

4. Polyhedral homotopy

In the last few years, a major computational breakthrough has occurred in
the solution of polynomial systems by the homotopy continuation method.
The new method takes great advantage of the Bernshtem theory, which
gives a much tighter bound, in general, for the number of isolated zeros
of a polynomial system in the algebraic tori (C*)n, where C* = C\{0} .
In Huber and Sturmfels (1995), this root count was used to actually find
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all the isolated zeros of the polynomial system by establishing polyhedral
homotopies. For a given polynomial system, the new method solves a new
polynomial system with the same monomials, but with randomly chosen
coefficients. The new system is then used as the start system in the cheater's
homotopy described in Section 3 to solve the original polynomial system. In
a way, the new method uses the method for Problem B to solve Problem A.
The new algorithm is very promising. In particular, for polynomial systems
without special structure, the new algorithm substantially outperformed
other methods.

We take the following example (Huber and Sturmfels 1995) as our point of
departure. Setting x = (xi,X2), consider the system P(x) = (p\(x),P2(x)),
where

Pi = C11X1X2 + C12X1 + C13X2 + C14 = 0, and

V2 = C2\X\x\ + C22x\x2 + C23 = 0. (4.1)

Here, ĉ  € C* = C\{0} . The monomials {1,0:10:2, xi, X2} in p\ can be
written as X1X2 = x\x2, x\ = x\x^, x2 = x\x\ and 1 = x^x®. The set of
their exponents

5i = {(0,0), (1,0), (1,1), (0,1)}

is called the support of pi, and its convex hull Q\ = conv(5i) is called the
Newton polytope of p\. Similarly, P2 has support 52 = {(0,0), (2,1), (1,2)}
with Newton polytope Q2 = conv(52)- Using multi-index notation xq =
x'px'2 where 9 = (91,92), we may rewrite (4.1) as

P\{x) = ]T cqx
q and p2{x) = ^ cqx

q.

The Minkowski sum R\ + R2 of polytopes R\ and R2 is defined as

R1 + R2 = {n + r2:ri  £ Ri and r2 € R2}

(polytopes Q\, Q2 and Qi + Q2 for (4.1) are shown in Figure 2). Now, let
us consider the area of the convex polytope A1Q1 + A2Q2 with non-negative
variables Ai and A2 for the system (4.1). From elementary geometry, the
area of a triangle on the plane with vertices u, v and w equals

det u — v
w — v

(4.2)

Thus, to compute the area /(Ai , A2) of A1Q1 + X2Q2, one may partition the
polytope into a collection of triangles, Z. These triangles are
mutually disjoint, and the vertices take the form A191 + A292, with 91 € Q\
and 92 G Q2- In other words, the vertices of these triangles coincide with
the vertices of the polytope \\Q\ + X2Q2- It follows from (4.2) that the
area of each Ai is a second-degree homogeneous polynomial in Ai and A2.
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Therefore, /(Ai , A2), as a sum of the areas of Ai, ...,Ak, is also a second-
degree homogeneous polynomial in Ai and A2. Writing

/(Ai , A2) = aiAf + a2\\ + ai2AiA 2,

the coefficient a\2 of A1A2 in / is called the mixed volume of the polytopes
Q\ and Q2. We denote it by M(Q\,Q2), or M(S\,S2) when no ambiguity
exists.

Clearly,

an = / ( l , l ) - / ( l , 0 ) - / ( 0 , l )
= area of (Qi + Q2) — area of (Qi) — area of ($2)-
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For (4.1), it is easy to see that the areas of Q\ + Q2, Qi and Q2 are 6.5, 1
and 3.5 respectively. Therefore, au = 6.5 — 1 — 1.5 = 4. On the other hand,
one can also easily see that system (4.1) has two zeros (0, 0,1) and (0,1,0)
at infinity in P2; hence it can have at most 4 isolated zeros in C2, or in (C*)2

in particular. According to the Bernshtein theory, this is not a coincidence:
the number of isolated zeros of (4.1) in (C*)2, counting multiplicities, is
bounded above by the mixed volume of its Newton polytopes. Further,
when the coefficients in (4.1) are chosen generically, then these two numbers
are exactly the same.

To state the Bernshtein theory in a more general form, we first allow
monomials x\l  x^"to have negative exponents; such a polynomial is called
a Laurent polynomial. With x = (x\, ., xn), let p(x) = (pi(x),... ,pn(x))
be a system of n Laurent polynomials with supports S\, ., Sn respectively
in Zn. The corresponding Newton polytopes are Qi,  ,Qn- Following
reasoning similar to that described above, the n-dimensional volume of the
polytope X1Q1 +  + \nQn, with non-negative variables Ai,..., An, is a
homogeneous polynomial in Ai,..., An of degree n. The coefficient of Ai x
A2 x  x \n in this polynomial is denned as the mixed volume of Qi,..., Qn,
denoted by M(Qi,..., Qn) or M(Si,..., Sn).

Theorem 4.1 (Bernshtein 1975) The number of isolated zeros, count-
ing multiplicities, of P(x) = (pi(x),... ,pn(x)) in (C*)n is bounded above by
the mixed volume A4(S\, ..., Sn). For generically chosen coefficients, the
system P(x) = 0 has exactly M(Si, ..., Sn) roots in (C*)n.

In Canny and Rojas (1991), this bound was nicknamed the BKK bound
after its inventors, Bernshtein (1975), Khovanskii (1978) and Kushnirenko
(1976). It turns out that this root count is very helpful in using the polyhed-
ral homotopy to solve sparse polynomial systems, sparse in the sense that
each polynomial in the system contains few terms. This sparseness is by
no means a big restriction. After all, almost all the polynomial systems we
encountered in application belong to this category.

An apparent limitation of the above theorem is that it counts only the
roots of a polynomial system in (C*)n, but not necessarily all roots in affine
space Cn. This problem was first attempted in Canny and Rojas (1991) and
Rojas (1994) by introducing the notion of the shadowed sets, and a bound
in Cn was obtained. Later, a significantly tighter bound was discovered in
the following theorem.

Theorem 4.2 (Li and Wang 1996) The number of isolated zeros in Cn,
counting multiplicities, of a polynomial system P(x) = (pi(x),... ,pn(x))
with supports Si,...,Sn is bounded above by the mixed volume
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This theorem was further extended in several ways by Huber and Stur-
mfels (1997) and Rojas and Wang (1996). When 0 € 5, for alH = 1, . . ., n,
so that each pi has a nontrivial constant term, then Theorem 4.2 implies
that the BKK bound of Theorem 4.1 gives the number of zeros of the poly-
nomial system in Cn. In fact, the proof of Theorem 4.2 uses the important
fact that generic constant perturbations of a polynomial system can only
have isolated zeros in (C*)n, and all isolated zeros become nonsingular.

Now consider the system (4.1) again. To compute the area of Q\ + Q2,
we can certainly subdivide Q\ + Q2 as we wish. The subdivision may not
consist of all triangles as before. However, the subdivision shown in Figure
3 - call it subdivision B - is of particular interest. By a cell of a subdivision
we mean any member of the subdivision. It can be easily verified that all
the cells in subdivision B have the following special properties.

Proposition 4.1

(a) Each one is a Minkowski sum of the convex hull of a subset C\ in S\
and the convex hull of a subset C2 in 52-

(b) For i = 1,2, conv(Cj) is a simplex of dimension #(C,) — 1, where #(Cj)
is the number of points in Q.

(c) Simplices conv(Ci) and conv(C2) are complementary to each other
in the sense that dim(conv(Ci)) + dim(conv(C2)) = dim(conv(Ci) +

In light of properties (a) and (b), each cell C = conv(Ci) + conv(C2)
in B can be identified as a cell of type (I1J2), where l\ = dim(conv(Ci))
and h = dim(conv(C2)). Property (c) mainly says that simplices conv(Ci)
and conv(C2) are 'linearly independent', for otherwise their Minkowski sum
would be lower dimensional.

In Rn, consider the n-dimensional volume of the Minkowski sum of sim-
plices A\,...,An with dimensions ki,...,kn, respectively, where ki > 0
for 1 < i < n and k\ + k  ̂ +  + kn = n. For i = 1 , . . ., n, let Ai =
convJQo , , <Zfc }  and let V be the n x n matrix whose rows are q? — %
for 1 < i < n and 1 < j < k^. Notice that any O-dimensional simplex con-
sists of only one point, and therefore contributes no rows to V. It can be
shown that

Voln(Ai + - + 4 ) = , , l , , |de tF |. (4.3)
k\\  kn\

Here, we use Voln to denote the n-dimensional volume; of course, Vol2(C)
represents the area of C. Applying (4.3) to cell ® = conv{a, d} + conv{e, q}
in subdivision B, we have

Vol2(cell (P = det
d — a
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Now, when Q\ and Q2 are scaled by Ai and A2, respectively, cell (I) becomes
conv{Aia, A2C?}  + conv{A2e, A25}  and its volume becomes

det
\\d — \\a\

)
(
V

det
d — a

x A1A2

= (volume of cell (T) before scaling) x A1A2.

From the definition of the mixed volume, it follows that the volume of the ori-
ginal cell (T) constitutes part of the mixed volume of Qi and Q2  On the other
hand, after scaling, cell (2) in subdivision B becomes conv{Aia, \\c, \\d} +
{A25}  and its volume becomes, according to (4.3),

1
det

\\d — Xaa
1

det , x A
d — a \

= (volume of cell (2) before scaling) x

Apparently, the volume of the original cell (2) has no contribution to the
mixed volume of Q\ and Q%.

In summary, only cells of type (1,1) contribute to the mixed volume
Q2) of Qi and Qi and, therefore,

) Q2) = the sum of the volumes of cells of type (1,1)

= volume of cell ® + volume of cell @ + volume of cell ©

= 1 + 2 + 1 = 4.

The type of subdivisions of Q1 + Q2 that share the same special properties
in Proposition 4.1 as subdivision B is called the fine mixed subdivision. To
state a formal definition with less notation, we omit '+' and 'conv', except
where absolutely necessary. For instance, {S\,... ,Sn) will replace Q\ +  +
Qn(=  conv(Si) +  + conv(5n)) as the key object.

Let 5 = (Si,..., Sn) be a sequence of finite subsets of Z", whose union
affinely spans Rn. By a cell of S we mean an n-tuple C = (Cq,.. ., Cn) of
subsets Ci C S{, for i = 1 , . . ., n. Define

type(C) := (dim(conv(Ci)),..., dim(conv(Cn))),

conv(C) := conv(Ci) +  + conv(Cn),

and Vol(C):=Vol(conv(C)). A face of C is a subcell F = (Fx,..., Fn) of C
where Fj C C, and some linear functional a 6 (M") v attains its minimum
over d at F,, for i = 1, . .. ,n. We call such an a an inner normal of F.
If F is a face of C then conv(Fj) is a face of the polytope conv(Ci) for
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c + f

b + f

a + e b + e

Fig. 3. Subdivision B for Qx + Q2

Definitio n 4.1 A fine mixed subdivision of S is a set
cells such that:

of

(a) for all j = 1 , . . ., m, dim(conv(C^^)) = n
(b) conv(C^))nconv(C^fc)) is a proper common face of conv(C^)) and

when it is nonempty for j  ̂ k
(c) UJli conv(C^)) = conv(S)

(d) for j = 1 , . . ., m, write C  ̂ = (c[j),..., C{J]). Then, each conv(Cp))

is a simplex of dimension #Cj- — 1, and for each j ,

dim(conv(Cp))) +  + dim(conv(C^))) = n.

As we have discussed for the special system (4.1), when a polynomial
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system P(x) = (p\(x),... ,pn(x)) in C[x\,...,xn]  is given with support S —
(S\,..., Sn), where Si is the support of pi, and if we can find a fine mixed
subdivision for S, then the mixed volume M(S\,..., Sn) will be the sum
of the volumes of cells of type (1,... ,1). Thus formula (4.3), together with
condition (d) above, makes the volume computation of this type of cell quite
easy.

A fine mixed subdivision for S = (Si,..., Sn) can be found by the fol-
lowing standard process: choose real-valued functions wW : Si —> R, for
i = 1,..., n; call the n-tuple ui = (co^\ ... ,LU^) a lifting function on S, and
say that to lifts Si to its graph St = {(q,u^(q)) : q € Si} C Rn+1. This
notation is extended in the obvious way: S = (Si,..., Sn), Qi =conv(Srj),
Q = Qi +  + Qn, etc. Let Su be the set of cells {C} of S which satisfy

(a) dim(conv((7)) = n,
(b) C is a facet (an n-dimensional face) of S whose inner normal a e

(]Rn+1)v has positive last coordinate.

In other words, conv(C) is a facet of the lower hull of Q. The fact is that
when the lifting function u is chosen generically, Sw always gives a fine mixed
subdivision for S (Gel'fand, Kapranov and Zelevinskii 1994, Lee 1991). The
subdivision B in Figure 3 for system (4.1) is, in fact, induced by the lifting
w = ((0,1,1,1), (0,0,0)), that is,

5 = ({(a, 0), (b, 1), (c, 1), (d, 1)}, {(e, 0), (/, 0), (g, 0)})

(see Figure 4). While this lifting does not seem so generic, it is sufficient to
give a fine mixed subdivision.

Let us return to our main issue: how can this Bernshtem theory help us to
solve polynomial systems by homotopy continuation methods? Actually, the
lifting function introduced above has already provided a nonlinear homotopy.
This ingenious idea is due to Huber and Sturmfels (1995).

For a given polynomial system P(x) = (pi(x),... ,pn(x)) in C[x\,..., xn],
to find all isolated zeros of P(x) in Cn instead of (C*)n, we first, according
to Theorem 4.2, augment the monomial x°(= 1) to those p,s which do not
have constant terms. We then choose the coefficients of all the monomials
in P(x) at random. For simplicity, we abuse notation and retain the name
P(x) = (pi(x),... ,pn(x)) for this system. We wish to solve this system
first, and then, by using the cheater's homotopy introduced in Section 3, it
can be used as the start system for solution of the original system by linear
homotopy.

Let Si be the support of pi, so that

Pi(x) = ^2 cqx
q, i = l,...,n,

where q = (qi,..., qn) and xq = x91  x^. Let t denote a new complex
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3(0,1,1)
c (1,1,1)

Fig. 4.

variable and consider the polynomials in n + 1 variables given by

Pi(x,t) = (4.4)

where each a>j : Si —> R for i = 1, . .. ,n is chosen generically. The support
of pi is now Si = {q = (q,Ui(q)) : q G Si] with Newton polytope Qi =
conv(Si). The function u = (u>i,..., u>n) can be viewed as a liftin g function
on S = (Si,..., Sn) which lift s Si to Si. The induced subdivision S  ̂on S is
then a fine mixed subdivision and the mixed volume M.(S\,..., Sn) equals
the sum of the volumes of cells of type (1 , . .. ,1) in S&. Recall that, for each
t G (0,1], the isolated zeros of the system

P(x,t) = (pi(x,t),...,pn(x,t))
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are all nonsingular and, by the Bernshtein theory, the total number of those
zeros is equal to Ai(Si,..., Sn). We may write these zeros as x1 ( £ ) , . . ., xk(t)
where k = M(Si,... ,Sn), so P(xj(t),t) = 0 for each t G (0,1] and j =
l,...,k.

Let C = (Ci,. . ., Cn) be a cell of type (1,. .. ,1) in S^. For i = 1,. . ., n,
let d = {q\ ,q\ }  C Si and Vi = q\ — ^ . Since Su is a fine mixed
subdivision, {v\,..., vn} is linearly independent; otherwise, dim(conv(Ci)) +

 + dim(conv(Cn)) < n. So,

det

On the other hand, C = (C\,..., Cn) is a facet of S = (5 i , . . ., Sn) whose in-
ner normal a € (Mn+1)v has positive last coordinate. Let a = (a\,..., an, 1)
and a = (an,... ,an), so a = (a, 1). Let x(t) represent general solution
curves x1^),... ,xk(t) of P(x,t) — 0. Setting x(t) = (xi(t),... ,xn(t)), let

taiyi(t) =

tanyn{t) = xn(t).

Or, simply, tay(t) = x(t). Substituting this into (4.4) yields

Pi = £

- V
— /

(4.5)

Let Pi = mmqeSi(&,q)- Since C is a facet of S, Ci = {q\ ,q\ } is a face
of Si and d = (a, 1) also serves as an inner normal of Ci. It follows that

(d, q\ ') = (a, q\ ') = /3j and (a,q) > Pi for q G £>i\Ci. Hence, factoring out
t&  i n (4.5), we have

J1)
% 1 , . . . , 71,

where ĉ o = c (o) , = c (i) and

Ri(y,t) =

Evidently, Ri(y,0) = 0 for each i, since {&,q) — Pi > 0 for q G Si\Ci. Now,
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consider the homotopy H(y, t) = (hi(y, i),..., hn(y, t)) = 0 where

, t) = , t), i = l,...,n.

The solutions (y(t),t) of this homotopy satisfy

(0)
3 +

(1)

n = o, j = l , . . . , r a,

(4.6)

(4.7)

at t = 0. For t ^ 0, they agree with the zeros of (4.5) and, since tay(t) = x(t)
for y(t) in (4.5), they also agree with the zeros of (4.4) at t = 1. In other
words, y(\) of (4.6) are solutions of P(x) = 0. So, by following the solution
curves (y(t),t) of the homotopy H(y,t) = 0 defined by (4.6), we may reach
the solutions of P(x) = 0, at t = 1. Of course, we need to solve the system
(4.7) at t = 0 to begin with. It can be shown that for randomly chosen Cij,
for i = 1 , . . ., n and j = 0,1, system (4.7) has

det =  the volume of C

solutions in (C*)n; recall that V{ = q\ — q\ for i = 1 , . . ., n. To see how to
solve (4.7) in (C*)n, we rewrite (4.7) as

yvi = h,

VVn = bn, (4.8)

where b\  62  bn 7̂  0, and let

V =

For brevity, write yv = (yVl,..., yVn) and b = (bi,...,bn). Then (4.8)
becomes

yyv =b. (4.9)

With this notation, one can easily check that for a n n xn integer matrix U,
the following holds:
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When V is a lower nonsingular triangular integer matrix

vn

(4.8) becomes

V =

y?"

0

(4.10)

Obviously, by forward substitution, (4.10) has |i>n| x  x \vnn\ = | det T/|
solutions. In general, we may lower triangularize V by multiplying on the
right by an integer matrix U with | det C7| = 1, which can be found by the
following procedure. Firstly, the greatest common divisor d of two integers
a and b is

d = gcd(a,b) = ka + Ib, for certain k,l € Z.

Let

k I
b a

Then det(M) = 1 and

M
k

b
d

I
a
d

In view of this, a series of n x n matrices like M can be used to produce
zeros in matrices in a similar way to the use of Givens rotations for the QR
factorization. For instance, if a and b are the zth and jth components of an
n-dimensional vector v, that is,

v =
ith

jth,

then we set



426 T. Y. Li

k I
1

1

so that det(U(i,j, a, b)) = 1 and the jth component of U(i,j, a, b)v will van-
ish. Thus, a product of a series of matrices in the form of U(i,j, a, b) can be
chosen to upper triangularize a matrix from the left. To lower triangularize
V, let U be an integer matrix with | det U\ = 1 such that UTVT is upper
triangular; hence, VU is lower triangular.

Now, let zu = y and substitute it into (4.9); we have

y = (zu) = zvu = b. (4.11)

Since VU is lower triangular, z = {z\,..., zn) in (4.11) can be solved and the
number of solutions is equal to | det(VU)\ = | det(F)|  | det(f/)| = | det(F)|.
Consequently, we have as many solutions of y = (yi,..., yn) in (4.9).

In summary, to find all the isolated zeros of a polynomial system P(x) =
(pi(x),... ,pn(x)) in C[£i,... ,xn), we augment x° to those pis without con-
stant terms first, then equip all the monomials in P{x) with generic coeffi-
cients. In the same notation, we construct P(x,t) = (pi(x,t),... ,pn(x,t)),
where

Pi{x,t) =

Here Si is the support of pi and the lifting function u = (a>i,... ,con) is
chosen at random. Then each cell C of type (1,... ,1) in the induced fine
mixed subdivision S  ̂ provides a set of k starting points for the homotopy
H(y,t) = 0 defined by (4.6), where k denotes the volume of C. Following
the solution curves of this homotopy with those k starting points from 0 to
1, we reach k of the solutions of P{x) — 0. By Bernshtem's theory, the total
number of isolated zeros of P(x) equals the sum of the volumes of all cells
of this type. We are thus able to find all the isolated zeros of P(x), and this
modified system can then be used as a start system of the linear homotopy
to find all the isolated zeros of the original system.



MULTIVARIAT E POLYNOMIAL SYSTEMS AND HOMOTOPY METHODS 427

What seems to be missing in the process described above is a construct-
ive way of finding cells of type (1 , . .. ,1) in the induced fine mixed subdivi-
sion 5^ corresponding to the liftin g to. This issue was discussed in Emiris
(1994), Verschelde (1996) and Verschelde, Gatermann and Cools (1996), pa-
pers which provided different ways to deal with this problem. At present,
the most efficient technique for finding those cells is still undetermined.

The algorithm has been implemented with remarkable success. Recall
that the Cassou-Nogues system in (1.4) has total degree 1344 and optimal
m-homogeneous Bezout number 368. This system has 16 isolated zeros and
its mixed volume equals 24. So, by using polyhedral nonlinear homotopies,
one need only follow 24 paths to reach all isolated zeros of the system.

Originally, a more general version of the above process was presented in
Huber and Sturmfels (1995). If some of the pis have the same supports,
then cells of the 'appropriate' types, instead of cells of type ( 1 , . . ., 1), can
serve the same purpose. The method can be made much more efficient by
taking this special structure into consideration. For simplicity, we describe
here only the special, and more common, case where the supports of the piS
are all different.

Polyhedral homotopies have been applied to solve symmetric polynomial
systems by means of constructing symmetric polyhedral homotopies (Ver-
schelde and Cools 1994, Verschelde and Gatermann 1995). On the other
hand, the Bernshtein theory is also used for constructing random product
start systems for linear homotopies with various degrees of success (Li, Wang
and Wang 1996, Li and Wang 1994).

5. Numerical considerations

5.1. Protective coordinates

As described in Section 1, solution paths of (1.2) that do not proceed to a
solution of P(x) = 0 in Cn diverge to infinity: a very poor state of affairs for
numerical methods. However, there is a simple idea from classical mathem-
atics which improves the situation. If the system (1.2) is viewed in Pn, the
diverging paths are simply proceeding to a 'point at infinity ' in projective
space. Since projective space is compact, we can force all paths, including
the extraneous ones, to have finite length by using projective coordinates.

For P(x) = (pi(xi,.. .,xn),... ,pn(xi,.. .,xn)) = 0, cons ider t he sys tem
of n + 1 equations in n + 1 unknowns after homogenization,

Pi(xQ,...,xn) = 0,

P:
pn(x0,...,Xn) = 0,
aoxo -\ h anxn - 1 = 0,
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where CLQ,  ,an are complex numbers. When a start system

Q(x) = {q\{xi,... ,xn),... ,qn(xi,... ,xn)) = 0

is chosen, we also homogenize Q(x) and consider the system

q~i(xo,... ,xn) = 0,

Q- \ :

qn(x0,...,xn) = 0,
. aoxo -\ + anxn — 1 = 0.

We then use the classical homotopy continuation procedure to follow all the
solution paths of the homotopy

H(xQ, XI, ..., x n , t) = ( 1 - t ) c Q ( x o, ...,xn) + tP(x0,..., x n ) .

For almost every choice of oo, , an, the paths stay in C"+1. It only remains
to ignore solutions with XQ = 0. Of the remaining solutions with XQ  ̂ 0, it
is easy to see that x = (X\/XQ, ... ,xn/xo) is the corresponding solution of
P(x) = 0.

A similar technique is described in Morgan and Sommese (1987a), where
it is called a 'projective transformation'. It differs from the above in the
following way. Instead of increasing the size of the problem from n x n to
(n + 1) x (n + 1), they implicitly consider solving the last equation for z0

and substituting in the other equations, essentially retaining n equations
in n unknowns. Then the chain rule is used for the Jacobian calculations
needed for path following. In many cases, it seems that this may create
extra work. Suppose, for example, that the tenth equation in the system is
Pio(x) = xf—X1X2; its homogeneous version is pio(x) =  XJ—XQXIX2. Since XO

is now considered as a function of all other variables, the partial derivative of
pio with respect to every variable is suddenly nonzero. This results in added
computation for each Jacobian evaluation, and is particularly problematic
if the original problem is large and/or sparse.

A more advanced technique, the projected Newton method, was suggested
in Shub and Smale (1993). A typical step to follow a solution curve in Cn of
homotopy H(x,t) — 0, a system of n equations in n + 1 variables, consists
of two major steps: prediction and correction. The prediction step locates
a point (x(°\to). For fixed to, H(x,to) — 0 is a system of n equations in n
unknowns. With starting points x^°\ Newton's iteration,

x(m+l) = x(m) _ [fl- x(a;(m))to)]-l fr(a;(m)) t o^ m = 0, 1, . . .

can be applied to find the solution of H(x, to) = 0. If x  ̂ is suitably
chosen by the prediction step, the iteration will converge to a solution of
H(x,to) — 0 close to x^°\ This is called the correction step. To follow
the solution curve in projective space Pn after homogenization, H(x,t) = 0
becomes H(x,t) = 0 and, for fixed to, H(x,to) = 0 is now a system of n
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equations in n + 1 variables: XQ, ... ,xn. It is, therefore, unsuitable for the
classical Newton iteration at the correction step. However, for any nonzero
constant c £ C, x and ex in C"+1 are considered to be equal in Pn, whence
the magnitude of x in Cn+1 is no longer significant in P™. Therefore it is
reasonable to project every step of the Newton iteration onto the hyperplane
perpendicular to the current point in Cn+1. At x  ̂ G Cn+1, we now have
n + 1 equations in n + 1 unknowns, namely

and one step of Newton's iteration for this system can be used to obtain
J(m+1) = ~(m) _ [ ^ ( j H

The efficiency of this strategy, known as the projected Newton iteration,
when applied to following the homotopy curve in Pn, is intuitively clear. See
Figure 5. It frequently allows a bigger step size at the prediction stage.

= 1

Fig. 5.

For practical considerations, we revise the above procedure as follows. At
t = t\, let

x(h) = (xo(ti),xi(t1),...,xn(tn)) e P"

be the corresponding point on a homotopy curve (x(t),t) of H(x(t),t) = 0.
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Let

a:i(ti)| = max(|zo(*i)| , , \xn(h)\).

We then fix the variable xi in H(x, t) = 0 by the number Xi(t\), and there-
after, H(xo,..., Xi-i, Xj+i,.. . , xn, £) = 0 becomes a system of n equations
in n + 1 variables. A standard prediction-correction procedure can now be
applied to arrive at a new point (xo(t2), , ajj_ 1(^2), Xi+i(t 2),  ,xn(t2)),
which satisfies

H(x0,... ,Xi-i,xi+ i,... ,xn,t2) = 0.

Letting x(t2) = (xo(t2),..., Xi-i(t2), Xi(h), xi+ i(t2),..., xn(t2)), the point
on the curve (x(t),t) for t = t2 is obtained. A major advantage of this revi-
sion is that the size of the problem remains n x n throughout the procedure.

5.2. Real homotopy

Most polynomial systems arising in applications consist of polynomials with
real coefficients, and most often the only desired solutions are real solutions.
This suggests the use of real homotopies. That is, when the coefficients of
the target polynomial system P(x) = 0 we want to solve are all real, we
may choose a start system Q(x) = 0 with real coefficients, ensuring that
the homotopy H(x, t) = 0 has real coefficients for all t. Thus, for fixed
t, if a: is a solution of H(x, t) = 0, so is its conjugate x. Accordingly, a
major advantage of real homotopy is that following a complex homotopy
path (x(s),t(s)) provides its conjugate homotopy path (x(s),t(s)) as a by-
product without any further computation. On the other hand, although the
homotopy H(x, t) is still a map from C" x [0,1] to Cn, when a real homotopy
path is traced, we may consider H(x,t) as a map from Rn x [0,1] to E",
and hence the computation can be achieved in real arithmetic. In this way,
a considerable reduction in computation is achieved.

There are numerous computational problems associated with the path fol-
lowing algorithms of real homotopies. In particular, when real homotopies
are used, in contrast to the complex homotopy, bifurcation of some of the
homotopy paths is inevitable. Hence, efficient algorithms must be developed
to identify the bifurcation points and to follow the path after bifurcation.
We can no longer parametrize the homotopy path of H(x,t) = 0 by t con-
ventionally. Instead, the arclength s can be used as a parameter, and both
x and t are considered to be independent variables. We now have

H(x(s),t(s)) = 0

and

Hxx + Hti = 0,
dx  dt

where x = —, i = — and Ilill 2 + lil 2 = 1. It is easy to see that bifurca-
ds as
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tions can only occur at turning points, points (x*,t*)  for which i = 0 and
Hx(x*,t*)  = 0 is singular. To identify the bifurcation point, let a® = (x^Q\to)
be a point on the homotopy path F with i(ao) > 0. After a standard Euler
prediction with step size ho and Newton corrections (Allgower and Georg
1990, 1993), we obtain a point a\ = {x^l\t\) on F. When the tangent vec-
tor (x,i) is calculated at a\ with i(a\) < 0, a turning point a* = (x*,t*)
apparently exists in this situation (see Figure 6).

Fig. 6.

To identify a*, we take the following procedure.

(1) Let hi be the solution of the equation ...

h  . ho — h ..
i ( ) + 2 t7

ho

Taking the Euler prediction at ao with step size h\ followed by Newton
corrections, we obtain a new point 02 on F.

(2) If i(oa) > 0, we replace ao by OQ, and replace ho by the real part of
the inner product of {a\ — OQ) and the unit tangent vector at aq,. If
Ka2) < 0> we replace ai by QQ, and ho by h\.

(3) (3) Repeat step 1 until i{ai)  is sufficiently small. Then, aq, will be taken
as a bifurcation point a* = (x*,t*).

When the bifurcation point a* is identified, in order to follow the bifurca-
tion branches, tangent vectors of the branches need to be characterized. It
turns out that for the following special kind of turning point the bifurcation
phenomenon is rather simple.

Definitio n 5.1 A singular point {x* ,t*) e C "x [0,1] is said to be a quad-
ratic turning point of H(x, t) = 0 if

(1) Ra,nkRHx(x*,t*)  = 2n-2
(2) RuDkR[H x(x*,t*),H t(x*,t*)]  = 2n-l
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(3) For y ECn\ {0}  satisfying Hx(x*,t*)y = 0, we have

RankR[H x(x*,t*),H xx(x*,t*)yy) = In.

Here, Rank# denotes the real rank.

Proposition 5.1 (Li and Wang 1994) Let (x*,t*)  be a quadratic turn-
ing point. Then, there are only two branches of solution paths F and I"
passing through (x*,t*). If 4> is the tangent vector of the path F at (x*,t*),
then the tangent vector of F' is the direction of i<f>  (see Figure 7).

When F is a real path, the assertion of this proposition can be considered
as a special case of Allgower (1984) and Henderson and Keller (1990). The
most general version, where F and x* may both be complex, was proved in
Li and Wang (1993).

Fig. 7.

To follow the bifurcation branch F' at a quadratic turning point, we con-
sider the following three situations.

(1) F is a real path.
Then, 0 is real and i(fi  is pure imaginary. Apparently, the bifurcation
branch F' consists of a complex path and its complex conjugacy. We
need only to follow one of them with tangent vector icf> or — i<f>.

(2) F is a complex path and (x*,t*)  is real.
Then, F consists of complex conjugate pairs (x, t) and (x,t) for each
t <t*.  The tangent vector at (x*,t*)  is

(x(Sl),t(sl))-(x(s2),t{s2))
0 Si — S2

= lim

where x(s2) = x(si),t(si) = £($2) is clearly pure imaginary. Hence,
icj) is real. Consequently, the bifurcation branch F' consists of two real
paths. We may follow them in real space R" x [0,1] with real tangent
vectors i(f>  and —i<j>  respectively.
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(3) F is a complex path and x* is complex.
The bifurcation branch V, in this case, consists of two complex solution
paths. They are not conjugate to each other. We may follow them with
tangent vector i<f>  and — i<p respectively.

It was conjectured in Brunovsky and Meravy (1984) and proved in Li and
Wang (1993) that, generically, real homotopies contain no singular points
other than a finite number of quadratic turning points.

5.3. Software

Several software packages dedicated to solving polynomial systems by ho-
motopy continuation are publicly available. HOMPACK (Morgan, Sommese
and Watson 1989) and CONSOL (Morgan 1987) are written in FORTRAN
77. HOMPACK is a general package for homotopy continuation with a
polynomial driver. It has been parallelized to various architectures (Allison,
Chakraborty and Watson 1989, Harimoto and Watson 1989). The code for
CONSOL is contained in Morgan (1987), Appendix 6. The programs pss
(Malajovich, software) and Pelican (Huber, software) are written in C. The
pss contains facilities for parallel continuation and Pelican provides the poly-
hedral methods. The package PHC and MVC (Verschelde 1995) is written
in Ada and compiled on three different hardware platforms, for which ex-
ecutables are available on request. Two main features of this package are
the wide variety of homotopy methods and the powerful facilities for mixed
volume computation.

Nonetheless, a more efficient and user-friendly code including all the fea-
tures described in this article is still under development. In particular, a
better understanding of the convex geometry with a clever use of linear pro-
gramming techniques will make the polyhedra homotopy method described
in Section 3 much more powerful.
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1. Introductio n

One of the most difficult problems in the numerical solution of ordinary dif-
ferential equations (ODEs) and in differential-algebraic equations (DAEs)
is the development of methods for dealing with highly oscillatory systems.
These types of systems arise, for example, in vehicle simulation when mod-
elling the suspension system or tyres, in models for contact and impact,
in flexible body simulation from vibrations in the structural model, in mo-
lecular dynamics, in orbital mechanics, and in circuit simulation. Standard
numerical methods can require a huge number of time-steps to track the os-
cillations, and even with small stepsizes they can alter the dynamics, unless
the method is chosen very carefully.

What is a highly oscillatory system, and what constitutes a solution of
such a system? As we will see, this question is somewhat application-
dependent, to the extent that it does not seem possible to give a precise
mathematical definition which would include most of the problems that
scientists, engineers and numerical analysts have described as highly os-
cillatory. Webster's Ninth New Collegiate Dictionary (1985) includes the
following definitions for oscillate: 'to swing backward and forward like a
pendulum; to move or travel back and forth between two points; to vary
above and below a mean value.' Here we are mainly interested in systems
whose solutions may be oscillatory in the sense that there is a fast solution
which varies regularly about a slow solution. The problem will be referred
to as highly oscillatory if the timescale of the fast solution is much shorter
than the interval of integration.

We will begin with a simple example of an oscillating problem from
multibody dynamics. In Cartesian coordinates, a simple stiff spring pen-
dulum model with unit mass, length, and gravity, can be expressed as

(1.1a)
(Lib)
(1.1c)
(l.ld)

where 1/e2 S> 1 is the spring constant. Preloading the spring by using
e = VlO~3, the initial position (xo>2/o) = (0.9,0.1), and the zero initial
velocity (UQ, VQ) = (0,0), the results of the states (x, y, u, v) in the 0 to 10[s]
simulation are shown in Fig. 1.

The solution to this problem consists of a low-amplitude, high-frequency
oscillation superimposed on a slow solution. It is not immediately clear that
a slow solution appears in the above problem. In fact, we can only identify

0

0

0

0

= x'

= y'
= v!
= v'

V

-u,

-v,

+ xX,
+ J /A -1,

'x2 + y2 - 1
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Fig. 1. Stiff spring pendulum in Cartesian coordinates

the slow solution of (1.1) using a proper nonlinear coordinate transforma-
tion (x,y) = (r cos(0), r sin(0)). In polar coordinates (r,6), we obtain the
equations of motion of (1.1):

0
0

0

0

= r'
= 6'

= z'

= J

- z,
-u,

+ ru> +

(2zu
r

1
e2

-cose),

— sin#,

(1.2a)
(1.2b)

(1.2c)

(1.2d)

where (z,u) is the velocity. In the 0 to 10[s] second simulation, using the
same initial conditions, we obtain the solution in Fig. 2. It is clear that the
length r represents the fast motion and the angle 6 the slow motion.

One of the questions one must answer in selecting an appropriate math-
ematical or numerical method is: 'What do we mean by a solution?' For
example, one might be interested only in finding the slow solution. On the
other hand, in some situations it may be important to recover more inform-
ation about the high-frequency oscillation, such as its amplitude, its energy
or its envelope. The most detailed information about the high-frequency
oscillation also includes its phase; this information is usually very difficult
to recover, particularly over intervals which are long in comparison to the
period of the oscillation. Efficiency is often an important consideration; one
might be willin g to give up on tracking some of the detailed information of



440 L. R. PETZOLD, L. O. JAY, AND J. YEN

0 1 2 3 4 5 6 7 8 9 10

-5
0 1 2 3 4 5 6 7 8 9 10

5

| o
-5

0 1 2 3 4 5 6 7 8 9 10

-2
0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Stiff spring pendulum in polar coordinates

the high-frequency oscillation in order to take much larger stepsizes. This is
the case in real-time simulation of mechanical systems. For other problems,
maintaining physical and mathematical properties in the numerical solution
can be critical, particularly over long-time intervals. For example, in mo-
lecular dynamics it may be important to maintain invariants like the energy
or the symplectic structure of the problem (Arnold 1989). What is meant
by a solution is determined not only by the physical properties of the system
and its mathematical structure, but also by how the information from the
simulation is to be used.

The form and structure of the oscillating problem is highly application-
dependent. Some problems are posed as a first-order ODE system, others as
a second-order ODE system. Other problems include constraints, and hence
are formulated as a DAE system. Often these ODE and DAE systems have
a special mathematical structure. Some applications yield problems which
are linear or nearly linear, while other applications require the solution of
highly nonlinear oscillating systems. Some problems may have a single high
frequency and be nearly periodic, whereas other problems may have mul-
tiple high-frequency components. Some oscillating problems, for example
in ocean dynamics (Garrett and Munk 1979, Gjaja and Holm 1996), cor-
rosion modelling (Tidblad and Graedel 1996), atmospheric modelling (Ko-
pell 1985), nonlinear optics (Agrawal 1989), ab initio molecular dynamics
(Tuckerman and Parrinello 1994) yield partial differential equation (PDE)
systems; these problems are beyond the scope of the present paper although
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many of the same considerations and types of methods apply for the time
integration.

This paper will deal mainly with numerical methods for oscillating sys-
tems. There is an extensive literature in applied mathematics (Bogoliubov
and Mitropolski 1961, Minorsky 1974, Fenichel 1979, Kevorkian and Cole
1981) including the method of averaging, the method of multiple scales,
and the stroboscopic method, on approximating the solution to oscillating
problems. Some of these techniques are related to the numerical methods
described here. Methods from applied mathematics can sometimes be com-
bined advantageously with numerical methods (Kirchgraber 1982) for the
solution of oscillating problems. Most of the mathematical techniques re-
quire a nearly linear structure of the problem. For some applications, the
equations naturally occur in this structure or can be easily reformulated; for
others, casting the problem in this form is difficult or impossible. There is
also a tradition of physically motivated mathematical or numerical methods
that reformulate the system prior to numerical solution, using approxima-
tions that the scientist or engineer deems to be valid. These methods can be
quite powerful when used carefully. The LIN method (see Subsection 4.4)
for molecular dynamics, and modal analysis methods (see Subsection 3.4)
for structural analysis are examples of these kinds of methods.

A wide variety of numerical methods has been developed for highly os-
cillatory problems. The best method to use is strongly dependent on the
application. Small-amplitude oscillations in linear or nearly linear systems
can often be damped via highly stable implicit numerical methods. We
will see that it is also feasible to damp the oscillation in certain structured,
highly nonlinear oscillating problems from mechanical systems. Even with
numerical methods based simply on damping the oscillation, there can be
unforeseen difficulties due to the nonlinear oscillation, for example in auto-
matic stepsize control and in obtaining convergence of the Newton iteration
of implicit numerical methods. In other applications, damping the oscillation
can destroy important properties of the solution. For these problems, much
attention has been focused on preserving important physical and mathem-
atical properties like the energy or the symplectic structure of the system.
Many of the numerical methods that can do this require relatively small
stepsizes. Efficiency is also an important consideration, making these prob-
lems quite challenging. Still other problems yield systems with a single
high-frequency oscillation. Methods based on envelope following can yield
the smooth solution in this case.

It is important to recognize that, in general, one should not expect to be
able to numerically solve nonlinear highly oscillatory problems using step-
sizes which are large relative to the timescale of the fast solution. Stand-
ard numerical ODE methods make use only of local information about the
problem, obtained from evaluating the right-hand side of the differential
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equation. The methods which for some applications are able to take large
stepsizes are able to do this by implicitly or explicitly making use of global
information about the problem and/or its mathematical structure. For ex-
ample, it is feasible to damp the oscillation for certain mechanical systems
only because of a very specific mathematical structure. The LIN method
of molecular dynamics makes use of both the mathematics and the phys-
ics of the problem. Envelope-following methods make use of the fact that
for some problems it is known a priori  that the fast solution has a single
high-frequency component.

Unlike most stiff problems, which can be solved by strongly damped impli-
cit numerical methods, effective solution of nonlinear highly oscillatory prob-
lems generally requires exploitation of the problem structure and a careful
examination of the objectives and intended use of the computation. There-
fore we have based the organization of this paper on classes of application
problems. Section 2 covers linear problems and basic concepts that are fun-
damental to understanding numerical methods for highly oscillatory prob-
lems. Section 3 deals with highly oscillatory rigid and flexible mechanical
systems, describing the nonlinear structure of these systems and implica-
tions for numerical methods, when and how the oscillation can be safely
and efficiently damped, modal analysis techniques from structural analysis,
and the problems and considerations in extending these techniques to flex-
ible multibody systems. Section 4 briefly describes problems and numerical
methods for molecular dynamics. Section 5 describes problems from circuit
analysis and orbital mechanics for which envelope-following techniques are
applicable, and describes those numerical methods.

2. Basic concepts and methods for  linear  oscillatory systems

Numerical methods used to treat oscillatory problems differ, depending on
the formulation of the problem, the knowledge of certain characteristics of
the solution, and the objectives of the computation (Gear 1984). However,
certain concepts are common to most classes of methods. Since it is not
possible to give a uniform presentation of these concepts, as an illustra-
tion we will consider the class of partitioned Runge-Kutta (PRK) methods
which includes standard Runge-Kutta (RK) methods and other schemes of
interest, such as the Verlet algorithm (4.2). For other classes of methods,
the definitions are analogous.

To investigate the stability properties of numerical methods applied to
oscillatory systems, the scalar harmonic oscillator equation

y" = -u2y, (u> > 0) (2.1)

is chosen as a standard test equation. This is the analogue of Dahlquist's
test equation y' = Xy for first-order ODEs, although the situation is not
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totally parallel to problems with large negative eigenvalues of the Jacobian
matrix. The solutions to (2.1) are given by the family of sine curves y(t) =
Asm(u>t + <f>),  where the expression cut + 4> is called the phase. The real
parameters A > 0, u>, and cf> are called, respectively, the amplitude, the
pulse, and the phase-lag. The period of the solution is T := 2TT/UJ and its
frequency is / := 1/T = co/2n. The parameters A and 4> are determined
from the initial conditions. Sine curves are archetypal oscillatory functions
and they form the basis of Fourier analysis.

To apply PRK methods, we must first rewrite (2.1) as a first-order system
by introducing a new variable z :=  y', yielding

y' =  z, z' = -u2y. (2.2)

This is one of the simplest systems for which the eigenvalues  of the
Jacobian matrix of the system are purely imaginary. This is also a lin-
ear Hamiltonian system with Hamiltonian H(y, z) = (co2y2 + z2) /2. PRK
methods take advantage of the intrinsic partitioning of the equations by
making use of the conjunction of two sets of RK coefficients. One step of an
s-stage PRK method applied to partitioned systems of the form

y' = f{t,y,z), z' = g{t,y,z),

with initial values {yo,zo) at to &nd stepsize h, is defined by
s

y\ =Vo + hY, bif(U, Yi, Zi), Z! =zQ +

= yo + h Y,
j=l  3=1

where ti :=  to + c%h. The coefficients (6j, a,ij,Ci) and (bi, a,ij,Ci) are the coef-
ficients of two RK methods based on the same quadrature formula (6,,Ci).
Applying the PRK method to (2.2) we get

where fi :=  hu, Du := diag(l,u;), and M(/i ) is the 2 x 2 stability matrix of
the PRK method. This matrix is given by

V1 » °
where we have used ts to denote the s-dimensional vector ( 1 , . . ., 1)T, In for
the identity matrix in En X n, {A, A} for the matrices of the RK coefficients,
and b for the vector of the RK weights. Other expressions for the stability
matrix can be derived with the help of Van Der Houwen and Sommeijer
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(1989, Lemma 2.1). The exact solution to (2.2) at to + h can be expressed
by

/ y(to + h)\ r

The eigenvalues of the rotation matrix ©(//) are of modulus one. This mo-
tivates the following definition.

Definitio n 2.1 For a PRK method, an interval I with {0}  C / C M is
an interval of periodicity if for all // € / the eigenvalues Aj(/i ) (i = 1,2)
of the stability matrix M(/x) (2.3) satisfy |Aj(/^)| = 1 (z = 1,2) and, if
Ai(// ) = A2(/x), then this eigenvalue must possess two distinct eigenvectors.
A method is said to be P-stable if R is an interval of periodicity.

If the interval of periodicity is not reduced to {0} , the method is usually
called nondissipative. These concepts are due to Lambert and Watson (1976)
and were originally introduced for linear multistep methods applied to y" =
g(t,y). They proved that nondissipative linear multistep methods must be
symmetric. They also stated that P-stable linear multistep methods cannot
have order greater than two. A proof of this result in a more general setting
was given by Hairer (1979). This is a result similar to the famous Dahlquist's
second barrier (Dahlquist 1963). To overcome this order barrier, several
hybrid multistep methods have been derived (Cash 1981, Chawla and Rao
1985, Hairer 1979), for instance, a P-stable modification to the fourth-order
Numerov method (Hairer 1979). For standard RK methods (A = A) the
eigenvalues of the stability matrix are simply given by Ai(/x) = -R(i/x) and
A2(/x) = R(-in) = Ai(//) , where R(z) = 1 + zbT(Is - zA)~lts is the usual
stability function of the RK method. Hence, we have the following well-
known result.

Theorem 2.1 Symmetric RK methods are P-stable.

For example, the implicit midpoint rule is P-stable. However, a similar
theorem does not hold for PRK methods. For example, we can consider the
coefficients of the two-stage Lobatto IIIA-III B method (Jay 1996)

This symmetric and symplectic method is equivalent to the famous leapfrog/
Stormer/Encke/Verlet method (4.2) used for second-order ODEs. Necessary
conditions on the coefficients of the stability matrix M(//) to satisfy the
conditions of Definition 2.1 are given by

det(MQu)) = 1, | tr(M(/x))| < 2. (2.4)
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The stability matrix of the two-stage Lobatto IIIA-III B method is

I  - n2/2 n

It satisfies det(M(//)) = 1, but only |tr(M(/x))| = |2 — fj?\. Thus, according
to (2.4) this method is not P-stable; its interval of periodicity (and of abso-
lute stability, see below) is (—2,2). As pointed out in Lambert and Watson
(1976), the relevance of the property of P-stability seems restricted to situ-
ations exhibiting periodic stiffness, that is, where the oscillatory solution
is of negligible amplitude. The reason is that the stepsize of a method is
not only limited by stability requirements but is also dictated by accuracy
requirements. A stepsize of the same magnitude as the period of oscilla-
tion with highest frequency is required even for P-stable methods to follow
this oscillation in order to preserve the accuracy of the method, unless its
amplitude is sufficiently small.

The weaker property of nondissipativity is of primary interest in celestial
mechanics for orbital computation, where it is desired that the numerically
computed orbits do not spiral inwards or outwards. In this context, a related
notion is the property of orbital stability of Cooper (1987), that is, the preser-
vation of quadratic invariants by the numerical method. The construction of
nondissipative explicit Runge—Kutta-Nystrom (RKN) methods of order two
to five with a minimal number of function evaluations per step and possess-
ing relatively large intervals of periodicity is given in Chawla and Sharma
(1981a) and (19816). In Portillo and Sanz-Serna (1995), it is shown with
an example that, for Hamiltonian systems, nondissipative methods do not
in general share the advantageous error propagation mechanism possessed
by symplectic methods (Sanz-Serna and Calvo 1994). In this framework, an
explicit symplectic method of effective order four with three function eval-
uations per step and with a maximal interval of periodicity is presented in
Lopez-Marcos, Sanz-Serna and Skeel (19956).

In certain applications, it can be desirable to leave the fast oscillation
modes unresolved. For example, in many structural dynamics applications
(see Subsection 3.5), high-frequency oscillations are spurious and should be
damped out. Hence, we can consider a less stringent notion of stability.

Definition 2.2 Replacing the condition |Aj(/z)| = 1 by |Aj(/x)| < 1 in
Definition 2.1 we define the notions of an interval of absolute stability and
of I-stability.

For standard RK methods we recover the usual definition of I-stability
(Hairer and Wanner 1996). L-stable RK methods, i.e., RK methods satis-
fying R(oc) = 0 and |i?(z)| < 1 when Re(z) < 0, such as the implicit Euler
method, may be appropriate to damp out highly oscillatory components
(corresponding to large /i) since they are I-stable and satisfy l im^oo |Aj(/Lt)|
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= 0 (i = 1,2). When the eigenvalues of the stability matrix (2.3) are con-
jugate, we can write

where p(/x) and 9(fj,) are real-valued functions. Notice that the exact solu-
tion of (2.2) in C is reproduced if p(/i) = 1 and 6(fi) = /i. Following Brusa
and Nigro (1980), we can define the functions a(fi) and &(//) by the rela-
tions p(fi) = e~^a  ̂ and #(/z) = ^b(fi). The function a(fi) is called the
factor of numerical (or algorithmic) damping. Owren and Simonsen (1995)
have constructed families of L-stable singly diagonally implicit Runge-Kutta
(SDIRK) methods with controllable numerical damping. The expression
|6(/x) — 11 is called the frequency distortion. In the phase-lag expansion of
the relative period errorb(fi) — l = br(fi)fi

r + O(/j,r+1) with br(fi) ^ 0, the ex-
ponent r is called the dispersion order. In Van Der Houwen and Sommeijer
(1987) and (1989), several nondissipative RKN methods and diagonally im-
plicit RK (DIRK) methods with high order of dispersion are derived. On
certain test problems with oscillatory solutions, they show that the accuracy
of the method is mostly determined by its dispersion rather than by its usual
local truncation error. Other related error measures are often used in the
literature to compare the merits of different methods, such as the (relative)
amplitude (or amplification) error for 1 — p(/j,) and the phase (or period)
error (or dispersion or phase-lag) for // — 0(fi).

In addition to the natural free modes of oscillation of a system, modelled
by the harmonic oscillator equation (2.2), the presence of forcing terms of
oscillation may be considered. A simple inhomogeneous test equation in C
is given by

y" = -uPy + Se™**, (u  ̂ uf,uj >0,uf > 0),

where Uf/2ir represents the frequency of the forcing term. The exact solution
is

y(t) = Ae 6

I t may be of interest to know how well a numerical method approximates the
second term of the solution, corresponding to the forcing term. Nevertheless,
it must be emphasized that the inhomogeneous phase error introduced by
the forcing term remains constant, whereas the homogeneous phase error
due to the free oscillation accumulates with time and is therefore the main
source of errors (Van Der Houwen and Sommeijer 1987). Methods with
no inhomogeneous phase error are said to have in-phase forced oscillations
(Gladwell and Thomas 1983).

Several different methods have been proposed for problems whose solu-
tions are known to be periodic and such that the period can be estimated
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a priori. In Section 5 we will treat in detail the envelope-following tech-
niques. Another category of methods which can be interpreted as exponen-
tially fitted methods (Liniger and Willoughby 1970) is based on the exact
integration of the trigonometric polynomials cos(lu)t), sin(£ujt) (£ = 1, . . ., r)
with UJ fixed. Such methods depend on a parameter u approximating ui.
They are exact when UJ = u, but they may be sensitive to an inaccurate
estimate of UJ. Gautschi (1961) was the first to develop a basic theory for
linear multistep methods with modified coefficients depending on Jl :=  ujh.
In the limit as Ji —> 0, those methods reduce to the classical Adams and
Stormer methods. As an example, the modified two-step explicit Stormer
method of classical order p = 2 and of trigonometric order r = 1 applied to
y" = g(t, y) is given by

l 2 /2sin(/I/2)\2 .
yn+i - 1yn + yn-i = hA I h^—1-) g(tn, yn).

Methods of Nystrom and Milne-Simpson type, less sensitive to inaccuracy
in estimating UJ, can be found in Neta and Ford (1984). Using different
techniques from mixed interpolation (De Meyer, Vanthournout and Vanden
Berghe 1990), Vanthournout, Vanden Berghe and De Meyer (1990) have
constructed methods of Adams, Nystrom, and Milne-Simpson type with
an elegant derivation of their local truncation error. More general, and re-
quiring more parameters, is the exact integration of products of ordinary
polynomials and trigonometric functions with multiple frequencies given in
Stiefel and Bettis (1969) and Bettis (1970), where methods of Stormer type
are constructed. This was motivated from applications in celestial mechanics
to take into account secular effects of orbit motion. Still in the same frame-
work, the minimax methods of multistep type proposed by Van Der Houwen
and Sommeijer (1984) attempt to minimize the local truncation error over a
given interval of frequencies [a>min, wmax]- Such methods are less sensitive to
inaccurate prediction of the frequencies. However, as for all methods men-
tioned in this paragraph, the presence of perturbations superimposed on
the oscillations generally decreases dramatically the performance of these
methods. Using an approach based on the 'principle of coherence' of Hersch
(1958), numerical methods of multistep type for nearly linear ODEs are pro-
posed in Denk (1993) and (1994), but they require the exact computation
of the matrix exponential.

For certain problems with slow and fast components, multirate methods
may be applied to reduce the total computational effort. A first method is
used with one macrostep H to integrate the slow components and a second
method is applied iV times with a microstep h (H = Nh to ensure synchron-
ization) to integrate the fast components. The main difficulty with multirate
methods is the assumption, before performing a macrostep, that the split-
ting between slow and fast components is known. In a counterintuitive but
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justified 'slowest first strategy' (Gear and Wells 1984), the slow compon-
ents are integrated first using extrapolated values for the fast components
and then the fast components are integrated using interpolated values for
the slow components. Multirate Rosenbrock-Wanner (MROW) methods are
analysed in detail in Giinther and Rentrop (1993a) and (19936). They have
constructed a four-stage A-stable method of order three with a second-order
embedded formula for error estimation. Their partitioning strategy is based
on the stepsizes predicted for each component. In highly integrated electrical
circuits applications, where most of the elements at any given time are in-
active, they also make use of some information about the neighbourhood of
the active elements to improve the performance of the partitioning strategy.
A multirate extrapolation method based on the explicit Euler method has
been developed by Engstler and Lubich (1995). An inexpensive partitioning
strategy is implemented, which consists of stopping to build the extrapola-
tion tableau for the components recognized as sufficiently accurate. Closely
related to multirate methods are multiple time-stepping (MTS) methods.
The right-hand side of the ODE is split as a sum of fast and slowly varying
functions which are evaluated at different rates (see Subsection 4.5).

In the next sections we will deal with different classes of problems ex-
hibiting oscillatory behaviour. For each class of problems we will discuss
the structure of the equations, the objectives of the numerical simulation,
the computational challenges, and some numerical methods that may be
appropriate.

3. Mechanical systems

3.1. Multibody systems

The governing equations of motion of a mechanical system of stiff or highly
oscillatory force devices may be written as a system of DAEs (Brenan,
Campbell and Petzold 1995)

M(q)q" + GT(q)\-(f
s(q',q,t) + fn(q',q,t)) = 0, (3.1a)

g(q) = 0, (3.1b)

where q =  , qn)
T are the generalized coordinates, q' = dq/dt the gen-

eralized velocities, q" = d2q/dt2 the generalized accelerations, A = (Ai,...,
\m)T the Lagrange multipliers, M is the mass-inertia matrix, g = (g\,...,
gm)T the holonomic constraints, and G = dg/dq. The stiff or oscillatory
force is fs = Y^f ft\ a nd fn includes all the field forces and the external
forces which are nonstiff compared to the stiff components, that is,

dfs II dfn>> H
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The stiff force components in (3.1a) can often be written in the form

(3.2)

where r\i  is smooth, i G { l , . . . , ra / } , Bt = (dr]i/dq)T, and Ki, d are the
associated stiffness and damping matrices. For some generalized coordinate
sets, the functions r\i  may be linear, or even the identity. When the compon-
ents of the coefficient matrices K\ and C% are large, these force components
may cause rapid decay or high frequency oscillation in the solution of (3.1).
It is well known that the characteristics of the fast or slow solution are de-
termined not only by the modelling aspects, for example the coefficients of
the stiffness and damping matrices, but also by the initial conditions and
events that may excite stiff components in the system during the simulation.

To demonstrate some of the potential difficulties caused by highly oscil-
latory forces in mechanical systems, we consider two common oscillatory
forces: a spring force (which is exemplified by the stiff spring pendulum of
Section 1), and a 2D bushing force. The former is a very simple example of
a type of system often seen in molecular dynamics (see Section 4), and the
latter is a general form of modelling force devices in multibody mechanical
systems.

Spring force
The stiff spring pendulum of Section 1 is an example of a point-mass con-
nected to a stiff spring force. The equations of motion of the particle in
Cartesian coordinates are given by (1.1), where the spring force is given by
(xX,y\)T. This problem is highly nonlinear, due to (l. le). Since most of
the mathematical methods for oscillatory problems assume a nearly linear
form of the problem, and many numerical techniques are implicitly based on
linearization, we will begin by examining the structure of the local linearized
system. The eigenvalues of the underlying ODE of (1.1), that is, substitut-
ing (l.le) into (1.1c, l . ld), are illustrated for e = A /10"3 in Fig. 3. The
dominant eigenvalues are  i/e. As e —> 0, the dominant pair of eigenvalues
approaches o along the imaginary axis. The other pair of eigenvalues
oscillates on the complex plane, with amplitude and frequency approaching

. The amplitude of the oscillations in the eigenvalues depends on the
initial conditions for the problem. If the initial conditions are on the slow
solution, then the amplitude is zero. In Fig. 3, we have chosen the initial
conditions to be slightly off the slow solution, which is the situation for most
numerical methods. From this we can see that methods based on lineariza-
tion are likely to fail for this problem unless the stepsizes are very small or
the linearization is performed exactly on the slow solution.

In Section 1, we showed that a slow solution for this problem could be
identified by shifting to polar coordinates. One might guess that perhaps
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-10

real-axis -20 o
Time

Fig. 3. Eigenvalues of stiff spring pendulum in Cartesian coordinates, e = 10- in-i-5

the oscillation in the eigenvalues described above is due to the choice of the
Cartesian coordinate system, which is unnatural for this problem. This is
true, but only partly so. The eigenvalues along the solution trajectory in
polar coordinates are shown in Fig. 4. The dominant eigenvalues are of the
same magnitude as those in (1.1); see Fig. 3. This is because the coordinate
transformation is linear with respect to the fast moving r. The oscillation
of the other pair of eigenvalues along the real axis persists.

Bushing force
Nonlinear oscillations in general multibody systems are often generated by
forces from components such as bushings. This type of component is used
in modelling vehicle suspension systems. Unlike the spring, this element is
usually an anisotropic force, that is, it has different spring coefficients along
the principle axes of the bushing local coordinate frame. The bushing force
between body-i and body-j may be denned using the relative displacement
dij, its time derivative d\y and the relative angle 9ij and its time derivative
Otj of two body-fixed local coordinate frames at the bushing location on
two bodies. Using the vectors Sj and Sj representing the bushing location
in body-Vs and body-fs centroid local coordinate systems, respectively, we
have
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eigenvalue 1 eigenvalue 3

real-axis -0.01 0

eigenvalue 4

real-axis -10 0

eigenvalues 1-4

;-0.5

0.5
real-axis -10 0 ( j m e real-axis -10 0

Fig. 4. Eigenvalues of stiff spring pendulum in polar coordinates, e = 10~15

where the orientation transformation matrices

A _
k ~

are

-sin(0fc)
sin((?fc) cos( )̂

and (xk,yk,9k) are coordinates at body-fixed frames. The bushing force
can then be written as

and the applied torque is

kx 0
0 ky ~r" -f*-i 0 c

y
Td!ATd!

at

where kx, ky, and ke are the spring coefficients associated with the x, y, and
6 coordinates, and (f, cy, and ce are the corresponding damping coefficients.

An example of a simple mechanical system incorporating this force may
be obtained from this model using unit mass-inertia and gravity, and setting
the bushing location on the body to s = (—1/2,0). A bushing element with
no damping, attached at the global position of (1/2,0), yields

o =

= V" +k,(y-'jfiy 1,
(3.3a)

(3.3b)
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0 = r + kee -
cos(0)

cos(0)
(3.3c)

fc"  (y -
sin(0)

It can be seen from (3.3) that the local eigenstructure of the system may
change rapidly, depending on the size of the stiffness coefficients. Using
the initial values (x,y,6) = (1.1,0.1,0.0) with (kx,kv,ke) = (104,104,103),
the solution of (3.3) exhibits high-frequency oscillations in all variables, as
shown in Fig. 5. Solving the eigenvalue problem of (3.3) at each time-step
yields three pairs of eigenvalues as illustrated in Fig. 6.

0.2 0.4

Fig. 5. Bushing problem in Cartesian coordinates

Structure of limiting DAE
Another source of difficulties for the numerical solution arises from the struc-
ture of stiff multibody systems. These systems are singular singular perturb-
ation problems (O'Malley 1991). In the limit as the fast timescale tends to
infinity , the system becomes a high-index DAE. For example, as e —» 0 in the
stiff spring pendulum problem (1.1) or (1.2), the equations become those of
a rigid pendulum. This index-3 DAE has a Hessenberg structure. Numerical
solution of high-index DAE systems of Hessenberg structure has been extens-
ively studied (Brenan et al. 1995, Hairer, Lubich and Roche 1989, Hairer and
Wanner 1996). There are well-known difficulties with numerical accuracy,
matrix conditioning, error control, and stepsize selection. Roughly speak-
ing, the higher the index of a DAE, the more difficulties for its numerical
solution. Hence, it is not surprising that there would be difficulties for the
numerical solution of highly oscillatory mechanical systems.
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initial condition [1.1,0.1,0.0], k*x=k«y=10M, kAz=10A3

-0.5

real-axis

Fig. 6. Eigenvalues of bushing problem

3.2. Finding the slow solution

Given the situation of a rapidly changing local eigenstructure, perhaps the
simplest strategy for numerical solution is to consider damping the oscil-
lation, when it is of sufficiently small amplitude, via highly stable implicit
numerical methods. First, we want to emphasize that damping the oscil-
lation for general nonlinear systems is not safe and can easily lead to an
erroneous solution! However, the system may have a very special structure
such that this approach is appropriate.

Lubich (1993) has shown that the numerical solution of stiff spring mech-
anical systems of a strong potential energy (for instance, a stiff spring force
such as in (1.1)) by a class of implicit Runge-Kutta methods with step-
size independent of the parameter e, converges to the slowly varying part
of the solution. These results have been extended to a class of multistep
Runge-Kutta methods (Schneider 1995). Unfortunately, it is not clear that
these results may apply directly to all the types of oscillatory components
in multibody systems. As indicated in Lubich (1993), the representation of
stiff or oscillatory components in an appropriate coordinate system is not
always possible, that is, the constraints associated with the stiff or oscillat-
ory potential force can be difficult to obtain in general. Nevertheless, for
(3.1), an approximation of the dynamics of such local coordinates can be
obtained for oscillatory force components of the form (3.2).

The amount of damping in a highly stable implicit method is controlled
by the stepsize; for the types of methods that one would consider using
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for this purpose, the damping increases with the stepsize. One might hope
that the automatic stepsize selection mechanisms used in variable-stepsize
ODE/DAE codes would increase the stepsize whenever the magnitude of
the oscillation is small compared with the local error tolerances. This works
well, but only if the usual error control strategy is changed to one that is
appropriate for the limiting high-index DAE.

There are also difficulties with Newton convergence for implicit numerical
methods applied to highly oscillatory nonlinear mechanical systems (Lubich
1993, Yen and Petzold 1997). The Newton iteration at each time-step does
not converge for large (relative to the period of the high-frequency oscilla-
tion) stepsizes. The problem is due to the linearization on which Newton's
method is based. With the eigenstructure of the local Jacobian matrix chan-
ging so rapidly, Newton's method does not yield good directions to the slow
solution unless the initial guess (prediction) is extremely accurate; such an
accurate initial guess can only be attained by using very small stepsizes.
Some variables can be predicted more accurately than others. Variables
that play the role of Lagrange multipliers in (3.1) are not predicted well by
polynomial extrapolation, which is used in many ODE/DAE codes. This is
not surprising: these variables depend directly on the second derivatives of
the highly oscillatory position variables.

Yen and Petzold (1997) have recently proposed a coordinate-split formula-
tion of the equations of motion which eliminates difficulties due to obtaining
an accurate predictor for the Lagrange multiplier variables, because these
variables are no longer present in the computation. These methods are par-
ticularly effective for oscillatory multibody systems with components such
as the stiff bushing. The coordinate-split formulation is described as follows.
Direct numerical integration of the index-3 DAE (3.1) suffers from the well-
known difficulties inherent in the solution of high-index DAEs. One way to
lower the index involves introducing derivatives of the constraint g(q), along
with additional Lagrange multipliers fi. This yields the stabilized index-2 or
GGL formulation of the constrained equations of motion (Gear, Gupta and
Leimkuhler 1985)

q' -v + GT(q)fj, = 0, (3.4a)

M(q)v' + GT(q)\-f(v,q,t) = 0, (3.4b)

G(q)v = 0, (3.4c)

g{q) = 0, (3.4d)

where v = q' and / = fs+fn, which has been used widely in simulation. The
Lagrange multiplier variables A and fj, fulfi l the role of projecting the solution
onto the position (3.4d) and the velocity (3.4c) constraints, respectively.
Many of the numerical methods for multibody systems solve the system
(3.4) directly. It is also possible to eliminate the Lagrange multipliers and
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reduce the size of the system to the number of degrees of freedom. One way
to accomplish this begins with the stabilized index-2 system (3.4). Suppose
that G(p) is full-rank on the constraint manifold M. = {q € R" : g(q) =
0}. Then one can find an annihilation matrix P(q) <E R(«-m)x" such that
P(q)GT(q) = 0, for all q <E M. Premultiplying (3.4a) and (3.4b) by P{q)
yields an index-1 DAE

P{q){q'-v) = 0, (3.5a)
P(q)(M(q)v'-f(v,q,t)) = 0, (3.5b)

G(q)v = 0, (3.5c)
g(q) = 0. (3.5d)

An important practical consequence of (3.5) is that (//, A) have been elim-
inated from the DAE, via multiplication of (3.4a, 3.4b) by the nonlinear
P(q). Thus, the error test and the Newton iteration convergence test in a
numerical implementation of (3.5) no longer need to include the problematic
Lagrange multipliers (fi, A).

The coordinate-split method gives an inexpensive way to find P(q) via
a splitting of the Cartesian basis (Yen and Petzold 1996). Discretizing the
coordinate-split formulation by an implicit method like BDF or an implicit
Runge—Kutta method, it seems at first glance that the local Jacobian mat-
rix might be difficult to compute, because it involves derivatives of P(q).
However, this is easily overcome by using the formulae for the derivative of
a projector given by Golub and Pereyra (1973) and the resulting method
lends itself to efficient implementation.

The performance of damped numerical methods for highly oscillatory
mechanical systems is improved by using the coordinate-split formulation.
However, for problems with very high-frequency oscillations, there are still
difficulties for Newton convergence. To obtain rates of convergence which
are independent of the frequency of the oscillation, Yen and Petzold (1997)
have introduced a modification to the Newton iteration, that is, the modified
coordinate-split (CM)-iteration. The basic idea of the CM-iteration is that
there are terms in the Jacobian which involve derivatives of the projection
onto the constraint manifold. These terms are large and complicated to com-
pute, but small on the slow solution. For example, applying a (low-order)
BDF formula to (3.5) yields the nonlinear system

P(qn)h(Phqn - vn) = 0, (3.6a)
P(qn)h(M(qn)phvn- f{vn,qn,tn)) = 0, (3.6b)

G(qn)vn = 0, (3.6c)

9(qn) = 0, (3.6d)

where ph is the discretization operator, and h is the stepsize of the time
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discretization. Given an initial prediction (qb ,Vn ) , applying Newton-type
methods to (3.6) requires the solution of a linear system

J(qn,vn)(Aqn,Avn) = -r(qn,vn)

such that Aqn and Avn are the increments of qn and vn,

/ P(n.M(dGT(i"hs, -ufe%taal -hP(qn)

J(qn,vn) =

V G{qn)

and

r(qn,vn) =

where sx = -(GY)~TYTri,  s2 = -(GY)-TYTr2, n = h(phqn - vn), and
r2 = h(M(qn)pflvn — f(vn,qn,tn)). The terms which cause the Newton
convergence problem are those involving si and s2- Away from the slow
solution, small perturbations in the positions can result in large changes in
these terms, leading to convergence difficulties for the Newton iteration. The
CM-iteration sets these terms to zero, yielding a reliable direction towards
the slow solution for the Newton-type iteration. Convergence results for
the CM-iteration are given in Yen and Petzold (1997). For nonoscillatory
mechanical systems, the convergence behaviour of the CM-modification is
similar to that of standard Newton.

For nonlinear mechanical systems with small-amplitude, high-frequency
oscillations, the CS formulation combined with a highly stable implicit meth-
od to damp the oscillations and the CM-modification to the Newton iteration
can be highly effective. A two-body pendulum problem in 2D Cartesian co-
ordinates, with a bushing force, as given in Subsection 3.1, which is the
source of the high-frequency oscillation, is described in Yen and Petzold
(1997). In experiments at very high frequencies using the BDF code DASSL
(Brenan et al. 1995) with the method order restricted to two, the CS for-
mulation is solved twice as efficiently as the GGL formulation (3.4). The
CM modification to the Newton iteration further improves the efficiency
by a factor of more than a hundred. At lower frequencies, of course, the
comparison is less dramatic.

An alternative to numerical methods that use damping to find the slow
solution is to approximate the slow solution directly. Reich (1995) has ex-
tended the principle of slow manifold, which has been widely used in the
approximation of multiple timescale systems (Fenichel 1979, Kopell 1985),
to the DAEs of multibody systems with highly oscillatory force terms. Al-
gebraic constraints corresponding to the slow motion were introduced with
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a relaxation parameter to preserve the slow solution, while adding flexibilit y
to it in the slow manifold approach.

3.3. Flexible multibody mechanical systems

The numerical solution of flexible multibody systems is required for non-
linear dynamic analysis of articulated structures. The need for modelling
deformable bodies has been kindled by the dynamic simulation of physic-
ally large and massive mechanisms, such as aeroplanes, industrial robots
and automobiles. These are structures in which kinematic connections per-
mit large relative motion between components that undergo small elastic
deformation. A source of difficulty in the solution of flexible multibody
equations of motion is the coupling between the elastodynamic equations
and the gross motion. The methods for analysing flexible mechanisms can
generally be divided into two categories:

(i) methods that focus on the structure, while using the gross multibody
motion as a source of dynamic loading

(ii) methods that incorporate flexibilit y effects into the multibody dynamic
analysis.

Simulation of flexible multibody systems has been an active research topic
for the last two decades. Many of the methods for flexible multibody sys-
tems have been implemented in multibody dynamic analysis codes (Haug
1989, Nikravesh 1988, Pereira and Ambrosio 1993). For such systems, an
important feature of the solution is the nonlinear oscillations induced by the
elastodynamics equations. Moreover, since the governing equations of flex-
ible multibody systems are often modelled using algebraic constraints, the
numerical solution of DAEs is required. As discussed in the two previous
subsections, the numerical solution of the resulting highly oscillatory DAEs
presents many challenging problems.

Modelling of flexibilit y effects in multibody systems can significantly al-
ter the dimension and solutions of the governing equations of motion. It
is well documented that adding flexible components to rigid body models
can drastically increase the computational complexity. For instance, a typ-
ical rigid-body model of a ground vehicle, such as a passenger car, may
consist of several rigid bodies of 10-100 coordinates. Replacing the chassis
of the car with its flexible model can increase the number of coordinates
to millions. Compounding the difficulty of an increased dimension are the
high-frequency oscillations that arise from the modal stiffness and damping
coefficients. They represent both the physical and geometrical approxim-
ations of the elastic, plastic, and viscoelastic effects of the flexible bodies,
and their eigenvalues are usually of magnitudes greater than those of the
gross motion. It has been shown for some flexible multibody systems that
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the coupling of unresolved high frequencies to the rigid motion may result
in a nonlinear instability. In Simo, Tarnow and Doblare (1993), the nu-
merical simulation of a flexible rod illustrates the nonlinear instability in
Hamiltonian systems. For nonconservative flexible mechanisms, such prob-
lems can be found in the approximation of the deformation of elastic bodies
in constrained multibody systems (Yoo and Haug 1986, Yen, Petzold and
Raha 1996). Special care must be taken to maintain the stability of the
oscillatory components in the solution. In the following, we give an over-
view of the numerical techniques used for handling oscillations in flexible
multibody systems. We begin with a summary of computational methods
used in structural dynamics.

3.4- Modal analysis of structures

Applying spatial discretization to the elastomechanical PDE, the dynamic
equations of the response of a discrete structural model are given by

Meu" + Ceu' + Keu = f(t), (3.7)

where u is the nodal displacement, f(t) is the load, and Me, Ce, and Ke

are constant mass, damping, and stiffness matrices of the node coordinates,
respectively. Numerical methods have been developed based on spectral
decomposition of this linear ODE system. Rewriting (3.7) as a first-order
ODE, we obtain

0 M M d / U ' \ / - M e 0 \ / « ' \ _ / 0
M e C e ) d *  [ u ) + { 0 K*  ) { u ) - { f(t)

Denoting z = (u1, u)T, the solution of (3.8) can be written explicitly,

z = e-tAzo + F(t), (3.9)

where ZQ and F(t) are two vectors that depend on the initial values and
loading function, and

. _ / 0 Me \~l ( -Me 0
\ Me Ce J \ 0 Ke

Using (3.9), numerical solution techniques for (3.7) can be unified in the
framework of approximating the exponential of the matrix A times a vector.

A straightforward approach for dealing with the high frequencies in (3.7) is
to truncate the higher eigenmodes, which were obtained from the generalized
eigenvalue problem of the matrix Ke — u2Me (Bathe and Wilson 1976, Craig
and Bampton 1968). For most structures the eigenvectors, or normal modes
<j>i,  span the nodal coordinate space, and form the coordinate transformation,
for instance the modal matrix, from the nodal coordinates u to the modal
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coordinates n,
N

<t>irn  = $?i. (3.10)

Note that the nodal and modal coordinates in (3.10) are those corresponding
to the undamped system of (3.7).

To approximate the harmonic frequencies of (3.7) with fewer modes, one
can apply the Rayleigh-Ritz method to the undamped system, employing the
Rayleigh quotient and Ritz vectors (Bathe and Wilson 1976). In contrast to
the mode-superposition method, which requires all the natural frequencies
(eigenvalues) and modes (eigenvectors) to satisfy

(Ke - tofM6)^ = 0, for i = l,2,...,N,

the Rayleigh-Ritz method allows the use of a few shape vectors (Ritz vec-
tors) to approximate the solution of (3.7). For some classes of problems, the
Rayleigh-Ritz method is more efficient than eigenvector mode superposition
methods for computing the dynamic response of (3.7). Efficient numerical
procedures have been developed for determining a set of lowest orthonormal-
ized Ritz vectors (Chen and Taylor 1989, Wilson, Yuan and Dickens 1982).
For flexible multibody simulation, the oscillatory solution can be eliminated
by removing the high modes, provided that the reduced structural model is
consistent. More precisely, the deformations at the locations of kinematic
joint and force attachment nodes must be taken into account for some proper
mode shapes, for instance constraint or attachment modes (Craig 1981).

For damped systems, the aforementioned methods assume proportional
damping or, more generally, modal damping of (3.7) (i.e., that the damping
matrix satisfies 4>fCe(f>j  = 0, i  ̂ j) for lack of a more realistic representation
in many of the structural models. This approach may be too simplistic to be
effective in some applications. A general approach to the numerical solution
of (3.7) solves the generalized unsymmetric eigenvalue problem (Lanczos
1950), where the equations of dynamic equilibrium are first transformed
into a first-order system (3.8) (Nour-Omid and Clough 1984). The develop-
ment of numerical solution techniques for this problem has been one of the
most active research topics in iterative solution of linear systems (Freund,
Golub and Nachtigal 1992). Some efficient numerical methods developed in
recent years are based on Krylov subspace approximations to (3.9) (Fries-
ner, Tuckerman, Dornblaser and Russo 1989, Gallopoulos and Saad 1992).
Such Krylov subspace approximations have been used in structural dynam-
ics (Nour-Omid and Clough 1984) and chemical physics (Park and Light
1986). A recent study (Hochbruck, Lubich and Selhofer 1995) indicated
that a class of exponential integrators has favourable properties in the nu-
merical integration of large oscillatory systems. What remains to be seen is



460 L. R. PETZOLD, L. O. JAY, AND J. YEN

an effective application of these exponential integrators for simulating large
flexible mechanisms.

Another approach to incorporating flexible components in multibody dy-
namics is to use nonlinear beam theory, which applies finite element approx-
imation to the forces resulting from body deformation (Hughes 1987, Simo
and Vu-Quoc 1986, Cardona and Geradin 1993). An appropriate nonlinear
beam formalism requires in many cases incorporating geometric nonlinear
effects such as geometric stiffening, which contribute inertia forces to the
global motion. The approximation of the inertia force due to geometric non-
linearity usually depends on the nodal position and velocity, for instance, the
damping and stiffness matrices of (3.7) become nonconstant. In some cases,
these nonlinear forces introduce additional oscillations, which can hinder
efficient numerical solution of flexible multibody systems (Simeon 1996).

3.5. Numerical integration methods

Time integration algorithms for solving structural dynamics problems have
been developed since the late 1950s (Newmark 1959). General requirements
and the foundations of these methods have been well documented (Bathe
and Wilson 1976, Chung and Hulbert 1993, Hilber, Hughes and Taylor 1977,
Hoff and Pahl 1988, Wood, Bossak and Zienkiewicz 1980). Although their
main application area is to linear structural dynamics, these methods can
be directly applied to initial value problems of nonlinear second-order ODEs

q" = f(q',q,t). (3.11)

Accuracy and stability analysis hold for the numerical methods, provided the
discretized nonlinear equations have been solved accurately, that is, within
a small enough tolerance. For example, the HHT-a method (Hilber et al.
1977) for (3.11) is given by

an+i = (1 -f a)fn+i - afn, (3.12a)

qn+i  = qn + hvn + h2((--/3)an + Pan+l), (3.12b)

vn+i = vn + h((l-j)an + jan+i), (3.12c)

where h is the stepsize, a G [—1/3,0], f3 = (1 — a)2/4, and 7 = 1/2 - a.
I t is well known that the HHT-a family is second-order accurate and A-
stable. Numerical damping is maximum for a = —0.3, and zero for a = 0.
Controllable numerical damping and unconditional stability are needed to
deal with the high-frequency modes which often result from standard finite
element spatial discretization. For nonlinear oscillations, these properties
are also required in the solution of flexible multibody systems. Rather than
using ad hoc mode-selection processes, this approach is desirable because
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the elimination of higher frequencies is controlled by selection of the method
parameters.

Recent work has dealt with extending these types of methods to treat
flexible multibody systems (Cardona and Geradin 1989, Yen et al. 1996).
The basic form of constrained multibody equations of motion is given by
(3.1), which is a DAE of index-3. Due to the problems of numerical instabil-
ity in solving index-3 DAEs, most of the solution techniques for (3.1) have
been developed using differentiation of the constraints (3.1b). Assuming
that M is invertible, direct application of (3.12) to the underlying ODE of
(3.1) (Fiihrer and Leimkuhler 1991), for instance,

q" = 4>(q',q,t) = M-\q){f{q'\q,t) - GT(q)X), (3.13)

where

A = {GM^G7)-1 (GM~lf +

can be carried out. However, the numerical solution will not generally pre-
serve the constraint (3.1b) and its derivative. To enforce the constraints, the
numerical solution should be projected onto the constraint manifold. Ap-
plying the method of Lagrange multipliers to combine the projection with
the solution of (3.13), which has been discretized using (3.12), leads to the
DAE a-method (Yen et al. 1996)

Mn+i(qn+i  -

Mn+i(vn+i

- qn) - (3h .

- Vn) ~ jh,

fn+l + Gn+1Vn+i

fn+l + G%+1Hn+l

Gn+ivn+i

9(Qn+l)

= o,
= o,
= o,
= o,

(3.

(3.

(3.

(3.

14a)

14b)

14c)

14d)

where (3 = /3(1 + a), 7 = 7(1 + a),

Qn = Qn + hvn + Y? ( ( - - (3 ) an - Pa4>n

Vn = Vn + h ((1 -

4>n = M~l(fn - G^\n), a0 = <f)0 and an = (1 + a)<j)n + a</>n-i for n >
1. The algebraic variables vn+\  and /in+i in (3.14) comprise h2(3\n+i and
the corresponding correction terms, which project the position and velocity
variables onto the constraint manifold. A convergence analysis of (3.14) was
given by Yen et al. (1996).

The DAE a-methods are most effective when combined with the CS for-
mulation and CM iteration described earlier. In the Lagrange multipliers
formulation there may be convergence difficulties with the Newton iteration.
Premultiplying (3.14a) and (3.14b) by the CS matrix P(q) yields

P(qn+1)(Mn+1{qn+1-qn)-ph2fn+1) = 0, (3.15a)
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P(qn+1)(Mn+1(vn+1 - vn) - jhfn+1) = 0, (3.15b)

Gn+1vn+1 = 0, (3.15c)

g(qn+1) = 0. (3.15d)

Accuracy and stability of the a-methods for ODEs are preserved. More im-
portantly, the high-index variables (fn+i, Mn+i), which exhibit high-frequen-
cy oscillations of large amplitudes, are not present in (3.15). Compared to
the Lagrangian form (3.14), much improved Newton convergence was ob-
served in a number of flexible multibody simulations (Yen et al. 1996). When
applying strong numerical damping to the higher modes, the CM iteration
illustrated even better convergence in these examples.

4. Classical molecular  dynamics

Classical molecular dynamics (MD) has become an important tool in the
study of (bio)molecules, such as nucleic acids, polymers, and proteins (Allen
and Tildesley 1987, Board Jr., Kale, Schulten, Skeel and Schlick 1994, Ger-
schel 1995). In classical MD, quantum effects are neglected and the motion
of the atoms is often described by Newton's equations

q1 = v, Mv' = -VU(q), (4.1)

where the vector q contains the Cartesian coordinates of the atoms, the vec-
tor v contains their velocities, M is the diagonal matrix of atomic masses,
and U(q) is a semi-empirical potential energy function. Denning the mo-
menta p := Mv, these equations form a Hamiltonian system with Hamilto-
nian H(q,p) :=  ^pTM~1p + U(q). Therefore, the Hamiltonian (the energy)
and the symplectic form dq A dp are invariant under the action of the flow
(Arnold 1989). More sophisticated dynamics are also often considered in
MD simulation. In Langevin dynamics (4.5), stochastic and friction forces
are introduced to model additional aspects (see Subsection 4.4). In Nose dy-
namics, temperature and pressure constraints are included to treat nonequi-
librium situations (Nose 1984, Hoover 1991).

The potential energy function U(q) is generally given by a repeated sum
over the atoms of pairwise potentials modelling interactions of diverse type
(Gerschel 1995): electrostatic, dipolar, polar, dispersive, repulsive, etc. The-
se interactions vary with the interatomic distance and have different ranges
of influence: localized for the covalent bondings, short-range for the Van
der Waals forces, and long-range for the electrostatic forces. They also
differ in their strength and timescale, making the dynamics of (bio)molecules
very complex, even chaotic. The equations of MD are highly nonlinear and
extremely sensitive to perturbations. A perturbation grows roughly by a
factor of 10 every picosecond (= 10~12[s]). Therefore, due to various sources
of approximation and error in MD simulation, it is not reasonable from the
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viewpoint of forward error analysis to ask for an accurate representation of
the molecular configuration after several picoseconds. The framework of MD
is actually statistical mechanics. To emphasize this point, let us mention
that the initial velocities of the atoms of a (bio) molecule are usually chosen
randomly to follow a Boltzmann-Maxwell distribution. What is actually
desired in MD is to generate a statistically acceptable motion or to obtain
a good sampling of phase space over sufficiently long periods of time to
provide spatial and temporal information; it is not usually necessary to
follow an exact trajectory. Monte Carlo simulation, by generating random
configurations, is another technique used in the study of molecular systems
based on their statistical properties, but this falls outside the scope of this
article. For large (bio)molecules, MD simulation is usually preferred.

Conformational changes of a (bio)molecule arise on a continuum from
1 [ps] to 102 [s]. In MD simulation the main difficulty in the integration of the
equations is the presence of a spectrum of very high-frequency oscillations
of Brownian character. The fastest vibrations are the bond stretchings and
the bond-angle bendings which are orders of magnitude stronger than the
other interactions. For example a C-H stretch has an oscillation around
an equilibrium position of approximate frequency 0.9-1014[Hz] (Streitwieser
Jr. and Heathcock 1985). This imposes a severe limit on the stepsize used
by standard integration schemes in order to resolve these high-frequency
oscillations; for example, a stepsize around l[fs] (= 10~15[s]) is necessary for
the widely used Verlet algorithm (4.2). Computing the forces for a large
system at each step is computationally expensive. Therefore, with today's
computer technology this stepsize constraint limits the horizon of integration
to the order of a nanosecond (= 10~9[s]), several orders of magnitude less
than the biological timescale for which phenomena like protein folding («
lO"1^]) take place. Decreasing the ratio of force evaluation per step is
therefore a major goal to speed up the integration.

There are three ways of handling the high-frequency components in MD:
resolve them, model their effects, or suppress them. Methods combining
these different approaches are of course possible. The desire is that the
dynamics should be correctly reproduced from the point of view of statistical
mechanics. A recent detailed survey on MD integration methods is Schlick,
Barth and Mandziuk (1997); other references are Skeel, Biesiadecki and
Okunbor (1993) and Leimkuhler, Reich and Skeel (1995). In this section we
will briefly present different approaches, stressing some of their strengths
and weaknesses.

4-1- The Verlet algorithm

The most commonly used method in MD is the Verlet algorithm (Verlet
1967). Using the momenta p = Mv, this explicit second-order method
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applied to (4.1) can be expressed as follows:

Pn+l/2 = Pn~ g
l (4.2)

Pn+1 = Pn+l/2 ~ 2

Given the inaccuracy of the governing force field, such a low-order integra-
tion method is adequate in MD. Besides being relatively easy to program,
this method possesses several attractive features. It preserves two import-
ant geometric properties of the flow: symplecticness and reversibility under
the involution p t—> —p. For more details about symplectic discretization
we refer the reader to Sanz-Serna (1992) and Sanz-Serna and Calvo (1994).
The main interest in preserving the symplectic structure of the flow lies
in the following result of mixed backward-forward error analysis: for con-
stant stepsizes the numerical solution of a symplectic method can be in-
terpreted over long-time intervals as being exponentially close to the exact
solution of a perturbed Hamiltonian system (Hairer 1994, Hairer and Lubich
1997, Reich 1996a). This long-time stability property is the main distinction
of the Verlet algorithm, compared to nonsymplectic methods used in MD
for short-time integration, such as the Beeman algorithm (Beeman 1976).
When applied to the harmonic oscillator (2.2), the Verlet algorithm also
possesses the largest relative interval of periodicity among explicit RKN
methods (Chawla 1985). However, its use with variable stepsizes destroys
not only the aforementioned backward-forward error result but also the ex-
istence of an interval of periodicity (Skeel 1993). Nevertheless, a strategy
has been discovered recently by Hairer (1996) and Reich (1996a) combin-
ing variable stepsizes with symplectic integration: the symplectic method is
simply applied with constant stepsizes to a modified Hamiltonian function
s(q,p) (H(q,p) — H(qo,po)) where the scaling function s(q,p) corresponds
to a time-reparametrization of the original Hamiltonian system.

Since the Verlet method is explicit, the stepsize is usually limited to ap-
proximately l[fs], to resolve the high-frequency vibrations. As for other
symplectic integrators, resonance phenomena at certain stepsizes have also
been observed (Mandziuk and Schlick 1995). At those given stepsizes, large
fluctuations of energy or even instability may occur due to repeated sampling
of a component at certain points.

4-2. Implicit symplectic methods

To overcome the stability barrier of the explicit Verlet algorithm while pre-
serving its favourable long-time stability property, it is tempting to consider
the application of implicit symplectic methods, for instance the implicit mid-
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point (IM) rule. Applied to (4.1), one step of IM is given by the solution of
a nonlinear system

qn+\ = qn+  2 (vn

vn+1 = vn-

Having to solve a nonlinear system is the major drawback of implicit meth-
ods. Here, the solution can also be seen as a minimum of an optimization
problem, for instance, for IM qn+\  is a minimum of a 'dynamics function'

:=\i.q-qn- hvn)
TM(q - qn - hvn) + h2U ( ^ ^ )  (4.3)

Therefore, optimization techniques can be applied (Schlick and Fogelson
1992).

The IM method is known to be P-stable. However, in the limit of large
stepsizes, the high-frequency oscillations are misrepresented by being aliased
to one lower frequency. Moreover, as for the Verlet algorithm, instability at
certain stepsizes may occur due to numerical resonance. Recently, Ascher
and Reich (1997) have shown that, for implicit symmetric schemes applied
to highly oscillatory Hamiltonian systems, unless the stepsize is restricted
to the order of the square root of the period of the high-frequency oscil-
lation, then even the errors in slowly varying quantities, like energy, can
grow undesirably. This error growth is due to the fact that, at large step-
sizes, the numerical method fails to accurately represent the time-dependent
transformation that decouples the system into a slowly varying and highly
oscillatory part (for example, the transformation from Cartesian to polar co-
ordinates in the stiff spring pendulum). In Skeel, Zhang and Schlick (1997),
a general one-parameter family of symplectic integrators has been studied
in detail, including the explicit Verlet method and several implicit methods:
IM, the trapezoidal rule, the Numerov method, and the scheme LIM2 of
Zhang and Schlick (1995). Although the interval of periodicity of impli-
cit symplectic methods is larger than that of the Verlet algorithm, implicit
methods do not seem competitive in MD. Even when solving the nonlinear
equations in parallel by functional iterations, the two-stage implicit Gauss
RK method has been found on a standard test problem involving long-
range forces to be less efficient than the Verlet algorithm (Lopez-Marcos,
Sanz-Serna and Diaz 1995a). Implicit symplectic methods are not recom-
mended for resolving high-frequency oscillations efficiently, because of their
large overhead for only a modest increase in the allowable stepsize.
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4-3. Constrained dynamics and the Rattle algorithm

As mentioned previously, the highest frequencies in MD are due to the bond
stretchings and to the bond-angle bendings. The potential due to these
bonds can be expressed as follows,

Uhond(q) =  l-gT{q)Kg(q), (4.4)

where K is a diagonal matrix of large force constants and the vector g(q)
contains the stretches r(q) — f and the angle bends <f)(q) — </>, where f and
<f>  are equilibrium values. The potential U{q) can thus be decomposed as
U(q) = V(q) + t/bond(<?)- Introducing the new variable A := Kg(q), we can
rewrite the corresponding Hamilton's equations as follows:

q' = M-lp, p' = -VV(q)-GT(q)\, K-1X = g(q),

where G(q) := gq(q). If the elements of K are all of the same size and are
very large compared to ||Vqg||, the last equation can be replaced by holonomic
constraints

0 = g(q).

Mathematical conditions under which this approach is legitimate have been
analysed in detail by Bornemann and Schiitte (1995&). Constraining the
bond interactions has the effect of suppressing the presence of the high-
frequency oscillations associated with them, hence of allowing an increase
in the stepsize at the cost of some added complexity per integration step.
We have obtained a system of DAEs of index 3 where A plays the role of
a Lagrange multiplier (Brenan et al. 1995, Hairer and Wanner 1996, Jay
1996). Differentiating the constraint equations twice, we get two additional
constraints:

0 = G(q)M-lp,

0 = Gq(q

To integrate the above DAE system numerically, a generalization of the
Verlet algorithm is given by the Rattle algorithm (Andersen 1983)

Pn+l/2 = Pn--.

Qn+1 = Qn + hM~ Pn+i/2,

0 = g(qn+i),
h

Pn+1 = Pn+l/2 - ^

0 = G{qn+i)M- lpn+l.
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The computation of the projected value pn+\  can actually be avoided by
using the relation

Pn+l/2 = Pn-1/2 ~ h (W(qn) + GT(qn)A*n)

which is the basis of the Shake algorithm (Ryckaert, Ciccotti and Berendsen
1977). The method is semi-explicit in the sense that it requires only one
evaluation of VV(g) per step. The above equations form a nonlinear system
for the Lagrange multiplier A*  which can be solved iteratively. The Shake
iterations consist of a combination of Newton and Gauss-Seidel iterations.
An overrelaxation procedure that may improve the performance of the Shake
iterations by up to a factor two has been advocated in Barth, Kuczera,
Leimkuhler and Skeel (1995).

From a physical point of view, constraining a bond corresponds to freezing
the interaction. The dynamics of the constrained system is called the slow
dynamics (Reich 1994). Whereas this approach seems appropriate for bond
stretchings, it is inappropriate for bond-angle bendings since the original
dynamics is altered (Van Gunsteren and Karplus 1982). The justification in
MD for a constrained dynamics borrows arguments from mathematics and
statistical mechanics. From a mathematical point of view, one is interested
in a running average of the solution

t - s \ { q(t)
)pa(t) ) - a Loo P{ a ) \p(t)

for 0 < a <C 1 with an appropriate weight function p, for example,

p(x) - {
Pl ' ~ \ 0 otherwise.

The goal is to find the dynamics of (q^(t),p^(t)) for e
called the smoothed dynamics (Reich 1995, Schiitte 1995) and which gener-
ally differs from the slow dynamics. By introduction of an additional soft
potential W(q) aimed at correcting the dynamics of the constrained system,
the smoothed dynamics can be reestablished. The establishing of the cor-
recting potential has been the subject of recent controversy (Bornemann and
Schiitte 19956, Bornemann and Schiitte 1995a, Reich 19966). A standard
correction is given by the Fixman potential (Fixman 1974)

WF(q) = ^ log (det

where ks is the Boltzmann constant and T is the temperature. The compu-
tation of the Fixman potential is rather expensive in practice, but it can be
simplified by approximating the matrix G(q)M~1GT(q) by block-diagonal
parts (Reich 1997). To improve the correction it has also been proposed to
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replace the hard constraints 0 = g{q) by soft constraints (Reich 1995)

0 = g(q) = g(q) + K-1 (G{q)M-lGT{q))

restoring some flexibility  in the dynamics (Reich 1997). The controversy
about the correctness of the Fixman potential seems to be due to the intru-
sion of physical arguments in its derivation. The principle of equipartition of
energy of statistical mechanics (Diu, Guthmann, Lederer and Roulet 1989)
used to derive the Fixman potential (Fixman 1974, Reich 1995, Reich 1997)
is the likely source of the controversy, because of the hypothesis of ergodicity
postulated in statistical mechanics.

4-4- Normal-mode techniques in Langevin dynamics

To take into account the effects of a heat bath, of the constant energy transfer
between the slow and fast degrees of freedom due to molecular collisions, and
of various simplifications in the model, a more realistic dynamics in MD is
reflected by the Langevin dynamics. The Langevin equations are given by

q' = v, Mv1 = -VU(q) - -yMv + ((t), (4.5)

where 7 is a collision frequency (friction) parameter and £(£) is a random
force chosen to counterbalance the frictional damping to establish temper-
ature equilibrium. One of the main motivations for the Langevin/implicit-
Euler/normal-mode (LIN) method of Zhang and Schlick (1993) is to mit-
igate the undesirable severe high-frequency damping of the implicit Euler
method, which may alter the dynamics, while maintaining its ability to take
large stepsizes (Peskin and Schlick 1989). In LIN the solution is decomposed
into fast and slow components, that is, q = qf + qs. A linear approximation
to the Langevin equations is used for the fast components

q'f = vf, Mv'f = -VU{qr) - H(qr)(qf - qr) ~ jMvf + ((t), (4.6)

where qr is a reference point and H(qr) is a sparse (usually block-diagonal)
approximation to Uqq(qr). These equations are solved over a relatively large
stepsize, for instance, by using standard normal-mode techniques: by diag-
onalizing the matrix M~l^2H(qr)M~1^2, the system (4.6) is rewritten as a
set of decoupled equations

where q = TMl/2(qf - qr), v = TMll2vf, D =
is diagonal, and 6(t) = TM - 1/2(£( t) — VU{qr))\ these equations can then
be solved analytically (Zhang and Schlick 1994). Nevertheless, it has been
observed recently in Barth, Mandziuk and Schlick (1997) and Schlick et al.
(1997) that the direct numerical integration of (4.6) can in fact be much
faster than computing the normal modes, for instance, by application of
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the second-order Lobatto IIIA-III B PRK method with small inner step-
sizes. The above procedure, consisting of computing the fast components,
turns out to be a very competitive method in itself, and constitutes the
Langevin/'normal (LN) method. In LIN there is an additional correction
step for the slowly varying anharmonic part of the solution

q's = va, Mv's = -VU(qf + qs) + VU(qr) + H{qr)(qf ~ 9r) - lMvs.

This system is integrated by the implicit Euler method with one large step-
size h or, equivalently, by minimizing a dynamics function similar to (4.3).

4-5. Multiple time-stepping methods in MD

Since the forces in MD can be decomposed as a sum of hard short-range
interactions and soft long-range interactions on a different time-scale, it is
natural to consider the application of multiple time-stepping (MTS) meth-
ods. The idea is to reduce the overall computational work by evaluating
the soft forces less often than the hard forces (Streett, Tildesley and Saville
1978). In (4.1) the potential U(q) is decomposed into hard and soft parts

The bonded interactions (4.4) enter into the hard part. Moreover, an ar-
tificial partitioning of a long-range interaction into one hard and one soft
part has been proposed in Skeel and Biesiadecki (1994), for example, an
electrostatic interaction V(r) = C/r can be decomposed as

r ) / ut if r < rcut'
{>  \C/r if r > r c u t ,

and Fhard(r) = V(r) - Vsoit(r) where rcut is a cut-off distance. MTS meth-
ods do not generally preserve the symplectic and reversible character of the
flow of (4.1). However, the Verlet-I algorithm (Grubmiiller, Heller, Win-
demuth and Schulten 1991, Biesiadecki and Skeel 1993) or, equivalently,
the r-RESPA method (Tuckerman, Berne and Martyna 1992), is an MTS
method retaining these properties. One macrostep H of this method can
be seen as a composition method: the Verlet algorithm is first applied with
stepsize H/2 to

q' = 0, Mv' = -VUsoh(q); (4.7)

then it is applied iV times with a microstep h = H/N to

q' = v, Mv' = -Wh a r d( t f ) ;

finally it is again applied with stepsize H/2 to (4.7). Basically, the soft
forces are evaluated every macrostep H while the hard forces are evaluated
every microstep h = H/N. It must be mentioned that resonance and other
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problems have been reported (Grubmiiller et al. 1991, Biesiadecki and Skeel
1993).

5. Circui t simulation

5.1. Introduction

There are a number of applications where the solution has the property that
the fast solution is composed of an oscillation with a single high frequency.
In this section we wil l explore some problems from circuit simulation, and
a class of methods based on envelope-following ideas, which exploit this
property. These methods are often able to take stepsizes that are much
larger than the period of the oscillation. The problem of transient simulation
in this case is very closely related to the problem of finding a periodic steady
state; we will also discuss how similar ideas have been employed in numerical
methods for this problem.

Circuit simulation programs like SPICE (Nagel 1975) often need to employ
hundreds of thousands of time-steps to simulate the transient behaviour
of clocked analog circuits like switching power converters and phase-locked
loops. This is because in circuit simulation the stepsizes must be chosen (for
accuracy) to be much smaller than a clock period, but the time interval of
interest to a designer can be thousands of clock periods. Circuit designers are
typically not interested in the details of the node voltage behaviour in every
clock cycle, but instead are interested in the envelope of that behaviour.
With that in mind, the quasi-envelope is denned to be a continuous function
derived by the following process. Starting at the initial value or at some
other point on the solution, define a discrete sequence of points by sampling
the state of the system after every clock period T (see Fig. 7). The quasi-
envelope is derived by interpolating that sequence to form a smooth curve.
We note that the quasi-envelope is different from the more standard notion
of envelope because the quasi-envelope is not unique but instead depends
on the initial time used to generate the sequence.

Envelope-following methods are based on the idea that if the sequence of
points formed by sampling the state at the beginning of each cycle changes
slowly as a function of the cycle number, then the quasi-envelope will vary
relatively slowly and we will be able to approximate it using stepsizes which
are large relative to the length of a cycle.

Envelope-following methods are closely related to the stroboscopic method
proposed in 1951 by Minorsky (1974) for the study of differential equations.
Numerical methods using the envelope-following idea were first introduced
by astronomers in 1957 for calculating the orbits of artificial satellites (Mace
and Thomas 1960, Taratynova 1960) and were called multirevolution meth-
ods. Unlike circuit designers, who are interested in the envelope of the
oscillations but not in the details, the astronomers were concerned with com-
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quasi-envelope z(t)

to to+T

Fig. 7. ODE solution and quasi-envelope

puting future orbits accurately. The multirevolution methods developed in
Mace and Thomas (1960), Taratynova (1960) and Graff and Bettis (1975)
were generalizations of explicit multistep and Runge-Kutta methods for
ODEs to approximately solve the difference equation which generates the
sequence of points defining the quasi-envelope. Thus they would always take
stepsizes which are multiples of the period of the oscillation. Rather than
using an arbitrary starting point to define the quasi-envelope, as above,
they used a physical reference point (for example, node, apogee, or peri-
gee). Petzold (1981) extended these methods to more general systems by
denning the smooth quasi-envelope as above (independent of any physical
reference points), by providing a separate algorithm for finding the period
of the oscillation in the fast solution, and by showing how to handle the
case of a slowing changing period of the oscillation. Convergence results
for envelope-following numerical methods were also given in Petzold (1981).
Gear and Gallivan (Gallivan 1980, Gallivan 1983, Gear 1984) explored the
design of general ODE codes which incorporate multirevolution techniques
and attempt to detect the onset of oscillations. Kirchgraber (1982, 1983)
proposed a novel class of methods which synthesize ideas from the method
of averaging with envelope-following techniques. White et al. (White and
Leeb 1991, Kundert, White and Sangiovanni-Vincentelli 19886, Kundert,
White and Sangiovanni-Vincentelli 1988 a, Telichevesky, Kundert and White
1995, Telichevesky, Kundert and White 1996) applied envelope-following
methods to circuit simulation, developing implicit methods which are quite
efficient for this application and for finding the periodic steady state.
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5.2. Envelope-following methods

Given the initial value problem

y' = f(y,t), 2/(0) = yo, o<t<L, (5.1)

where y(t) is periodic or nearly periodic with period T, the quasi-envelope
z(t) is defined more precisely by

z(t + T) = z(t)+Tg(z(t),t), 0<t<L-T, (5.2)

where

and

—y(t + s,t) = f(y(t + s, t), t + s), y(t, t) = z.

It is easy to see that if z(0) = y(0) then z{KT) = y(KT), 0 < KT < L, so
that z agrees with y at multiples of the period. Since y is nearly periodic,
the values of z at points {KT}, K an integer, should change slowly. Solving
(5.2) exactly amounts to solving the differential equation (5.1) over the entire
interval [0, L], because g(z,t) is determined by integrating the differential
equation over one period of the oscillation. The basis of envelope-following
methods is to compute an approximation to z, that is, to solve the difference
equation (5.2) approximately with stepsizes H much larger than T. For
some applications, like circuit simulation, it is possible to define a smooth z
over the entire interval [0, L]. For other applications like orbit calculations,
it is best to consider z as a discrete function and to take stepsizes in the
approximation method which are multiples of T. We note that the solution
to the differential equation can be recovered at any time from the (discrete)
quasi-envelope, by solving the original ODE with initial condition on the
quasi-envelope for no more than one cycle.

Envelope-following methods that are generalizations of linear multistep
methods or Runge-Kutta methods have been derived (Gallivan 1983, Graff
and Bettis 1975, Petzold 1981, Taratynova 1960). For example, the 'trapez-
oidal' envelope-following method is given by

(H-T\ , , (H + T\
I 7> g{Zn+l,tn+l)  + ^ ) g{Zn,tr,
\ * J \  /

We note that the coefficients of these methods reduce to those of standard
ODE methods as T —> 0, and that the methods are 'exact' (up to errors
in solving the original ODE numerically over each individual cycle) when
T = H. For efficiency, the objective is to be able to take H >̂ T.

In some applications, the period (cycle length) of the oscillation might
also be slowly varying. This is handled in envelope-following methods by
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means of a change of independent variable t so that in the new variable i
the period r of the oscillation is a constant, that is,

t{i  + r) - t(i) = T(t(i)), t(0) = 0.

Defining y(i) := y(t(i)) and z(i) := z(t(i)), the difference equations that
define the quasi-envelope in the case of a slowly varying period of the oscil-
lation are given by

z(i + r) = z(i) + Tg(z(i),t). z(0) = z(0),

t(i + r) = t^ + rt7^-), t(0)=0,

where

The accuracy and stability of these formulas have been analysed by Petzold
(1981).

5.3. Finding the period

In some applications, such as circuit simulation, the period of the oscillation
is known a priori. In other applications, and in finding a periodic steady
state, finding the period of the high-frequency oscillation is an important
part of the method.

Several algorithms have been proposed for finding the period. Noting that
if y were periodic, \\y(t) — y(t + T)\\ = 0, Petzold (1981) proposed finding
the period T by miminizing \\y(t) — y(t + T)\\ over one approximate period.
More precisely, Tm+\ is defined as the value of T*  that satisfies

min
0<e<T*<

In practice, in order to better model problems whose solutions are given by
a fast oscillation superimposed on a slowly varying solution, the period is
found by solving

fTm 2
n i i n / (y Pm+i ( 2 /1^ > J-m+i) Pm+i\t i lm+i))) d r ,

where pm+\  is a polynomial which approximates the slow solution that is
found at each iteration for Tm+i via another minimization. It is shown
in Petzold (1978) that this algorithm converges, given a sufficiently smooth
initial guess. A similar approach has been used in finding the periodic steady
state, as we will discuss below.
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The above method of comparing the solution over two periods to find
the period of the oscillation is quite general; however, it suffers from the
drawback that it is somewhat inefficient. In particular, each time the period
needs to be found, the original problem must be solved over two cycles,
whereas the envelope-following formulas require the solution over only one
cycle. For problems with a slowly varying period (where the period needs
to be recomputed often) this is a relatively large expense. To remedy this
problem, another algorithm was proposed by Gallivan and Gear (Gallivan
1980, Gallivan 1983, Gear 1984). This algorithm is based on the idea of
defining the period by identifying certain points on the solution at which
a simple characterization is repeated, such as zero crossing. Astronomers
did this for the multirevolution methods by identifying points of physical
interest, such as node, apogee or perigee. For a general problem, the solution
itself may have no zero crossing, and there may be difficulty in choosing
any value which is crossed periodically. However, the derivative will have
periodic sign changes, so the method examines the zero crossings of cTy',
where c is a vector of constant weights. Since there may be more than one
zero crossing in a single period, ||y'(£i) — 2/(^2) || is also examined, where t\
and £2 are the times of zero crossings. If the norm is small, the possibility
of a period is considered. For some problems, the solution may not start
out oscillatory. This type of algorithm can be used to detect the onset of
oscillations, by monitoring the sequence of periods T which are computed.
In the event that highly oscillatory behaviour is detected, the software can
switch to envelope-following methods.

5.4- Stiffness and implicit methods

As we have noted, the objectives of circuit designers for simulation differ
from those of astronomers because circuit designers are not usually inter-
ested in the fine details of the oscillation. There are also significant differ-
ences in the properties of the ODE systems which influence the choice of
numerical methods. In particular, circuit simulation problems are usually
quite stiff. Thus they require the use of implicit versions of the envelope-
following methods.

White et al. (White and Leeb 1991, Kundert et al. 19886, Kundert et al.
1988a, Telichevesky et al. 1995, Telichevesky et al. 1996) have developed ef-
ficient implicit algorithms based on the envelope-following idea, and applied
them to circuit simulation. The simplest implicit envelope-following method
is based on the implicit Euler method and is given by

Zn+i = zn + Hg(zn+i,tn+i). (5.3)

Solving the nonlinear system (5.3) for zn+\, which is accomplished in stiff
ODE codes by a modified Newton iteration, requires an approximate Jac-
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obian matrix dg/dz. Gallivan (1983) has considered the implementation of
implicit envelope-following methods and suggests computing the Jacobian
by finite difference approximation. This can work well for small problems,
but for large systems it is prohibitively expensive because each evaluation
of g requires solving the original problem over one cycle.

A more efficient and accurate approach (White and Leeb 1991) is to view
this computation as finding the sensitivities of g with respect to perturba-
tions in z. The sensitivity problem is solved concurrently with the original
system over one cycle. This can be implemented very efficiently by noting
that the Jacobian matrix at every time-step for the sensitivities with respect
to each parameter is the same as the Jacobian matrix of the original sys-
tem. Hence this matrix, if it is dense, can be formed and decomposed once,
then used in the Newton iteration for each sensitivity. Differencing in this
way is also more accurate than directly differencing the numerical solution
over each cycle, because the original system and the sensitivity equations
use the same sequence of stepsizes and orders (Hairer, N0rsett and Wanner
1993). White and Leeb (1991) have further noted that if the implicit Euler
envelope-following method is used unmodified, the stepsize H will be con-
strained by the component of y with the fastest-changing envelope. This can
be unnecessarily conservative; components of y which have rapidly changing
envelopes in stiff problems are likely to be 'nearly algebraic' functions of
other, more slowly changing components, over the timescale of one period.
These nearly algebraic components of y are computed in White and Leeb
(1991) directly from the other components via a DC (steady-state) analysis,
and hence are not computed by the envelope-following method. A compon-
ent yi of y is considered quasi-algebraic if the zth column of the sensitivity
matrix is nearly zero.

For large-scale systems, approximating the Jacobian matrix directly is
too expensive, because there are so many sensitivities to be computed. Te-
lichevesky et al. (1996) have applied preconditioned iterative methods to
solve the linear system at each Newton iteration. These Krylov subspace
methods have the property that the Jacobian is never needed directly. In-
stead, the iterative method needs the product of the Jacobian matrix times
a given vector. This can be approximated by a directional difference (a sens-
itivit y in the direction of the given vector). Further efficiency is attained by
exploiting the structure of the system in a 'recycled' version of the Krylov
algorithm. Telichevesky et al. (1996) found that this method can be as much
as forty times faster than direct factorization, for large circuits.

Finally, we note that the solution of stiff oscillatory systems by implicit
envelope-following methods has much in common with finding the periodic
steady state. That problem can be described as finding y and T such that

y(T)-y(0) = 0,
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which can also be written as

g(z(0),T) = 0.

Aprill e Jr. and Trick (1972) proposed a Newton-type algorithm for solv-
ing the steady-state problem in circuit analysis. Telichevesky et al. (1995)
have efficiently performed steady-state analysis for large-scale circuits mak-
ing use of the Krylov subspace approach described above. Lust, Roose,
Spence and Champneys (1997) have proposed an algorithm for computing
periodic steady states of general ODE systems which combines the recurs-
ive projection method of Shroff and Keller (1993), which separates the slow
from the fast components, with a Krylov method.
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The progressive miniaturization of semiconductor devices, and the use of bulk
materials other than silicon, necessitates the use of a wide variety of models
in semiconductor device simulation. These include classical and semiclassical
models, such as the Boltzmann equation and the hydrodynamic system, as
well as quantum transport models such as the quantum Boltzmann equation
and the quantum hydrodynamic system. This paper gives an overview of
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1. Introduction

The goal of numerical semiconductor device simulation is to model the
flow of electrons in a crystal in order to predict macroscopically measur-
able quantities, such as currents and heat fluxes, in given operating and
environmental conditions, such as the bias applied to a given device and
ambient temperature. Other than in process simulation, it is always the
same physical process that is considered, namely the transport of charged
particles in a solid state medium. Different mathematical models are used
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only because of the wide range of device dimensions and operating condi-
tions. Since one and the same set of equations can be used to model a wide
variety of devices, it is reasonable to develop customized numerical methods
for the governing equations.

The key parameters influencing the choice of model equations are the
mean free path of electrons (the average length of free flight before the
electron undergoes a scattering event), the number of free electrons in a
given device, the size of the Planck constant in relation to the dimensions
of the simulation domain, and the ambient temperature. These parameters
determine whether the electrons can be modelled as a continuum, as classical
particles or via quantum mechanical descriptions.

The resulting model equations range from the Schrodinger equation for
the evolution of the electron wave function to the drift-diffusion system for
the evolution of an 'electron gas' which is close to a Maxwellian equilibrium.
Because of the progressive miniaturization of semiconductor devices and the
use of materials whose mean free path is considerably longer than that of
silicon, the trend in device simulation is certainly towards a more and more
microscopic description. Since the field is now so wide, one necessarily has
to limit the scope of an overview of numerical techniques in device simula-
tion. There are two types of models and simulation techniques which are
extremely well developed and documented at this point. One consists of
finite difference and finite element techniques for the drift-diffusion system,
and the other of Monte Carlo methods for the Boltzmann equation. Since
it would be impossible to do all this work justice in the space provided, we
have instead decided to focus on more recent developments, and refer the
reader to excellent reference works such as Kersch and Morokoff (1995) and
Selberherr (1981) for these topics. The first category of methods presented
in this paper deals with the intermediate regime between the Boltzmann
equation and the drift-diffusion system. This category comprises methods
based on series expansion of the Boltzmann equation and various forms
of moment closure hierarchies, including the so-called hydrodynamic mod-
els. The second category includes methods for quantum kinetic equations
and their moment closure hierarchies, such as the so-called quantum hydro-
dynamic model.

This paper is organized as follows. Section 2 presents a brief overview of
the various models, pointing out some of the features relevant to numerical
simulations. Section 3 deals with methods for semiclassical transport de-
scriptions, based on the semiclassical Boltzmann equation. Series expansion
methods around a Maxwell distribution are discussed in Section 3.1, numer-
ical methods for the hydrodynamic model are discussed in Section 3.2, and
extensions of hydrodynamic models are presented in Section 3.3. Section 4
is devoted to numerical methods for quantum transport models. In Section
4.1 numerical methods for the quantum Boltzmann equation are discussed.
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As is the case for the classical Boltzmann equation, many of the interest-
ing effects can be studied using much simpler macroscopic models based on
moment hierarchies, leading to the quantum hydrodynamic model. Section
4.2 deals with numerical methods for the quantum hydrodynamic system.

2. Model equations

In this section a brief overview of the underlying model equation is presen-
ted. Models for semiconductor device simulations generally fall into two cat-
egories, namely semiclassical models, based on the semiclassical Boltzmann
equation, and quantum mechanical models, derived from the Schrodinger
equation. In Section 2.1 we discuss the semiclassical Boltzmann equation
together with some of its features, such as conservation properties. In Sec-
tion 2.2 its quantum mechanical equivalent, namely the quantum Boltzmann
equation, is presented.

2.1. The semiclassical Boltzmann equation

The basis for the semiclassical description of electron transport is the Boltz-
mann equation in the form

dtf + divx(v(k)f) - I divk(E(x, t)f) = Q(f). (2.1)

Here f(x, k, i) denotes the density of electrons, x stands for position, k de-
notes the three-dimensional wave vector, and t time. If we let e(k) denote
the energy of an electron with wave vector k in a certain band, the cor-
responding velocity in (2.1) is given by v(k) = h~lVk£. In a vacuum, the
classical Hamiltonian yields the energy-wave vector relationship

Thus the velocity v and the wave vector k are identical up to the constant
h/m and the classical Boltzmann transport equation is obtained. In a crys-
tal, the relationship between the wave vector and the energy is given by the
parametrization of the eigenfunctions of the Schrodinger equation with a po-
tential that is periodic on the crystal lattice, and the energy band function
e(k) has to be computed. However, for small wave vectors, and consequently
for small velocities, the energy band function is often approximated locally
by a parabolic function via the effective mass approximation, for analytical
purposes. The collision integral Q(f) on the right-hand side of (2.1) is given
by

Q(f)(x,k,t) = JS(k,k')f(l - /) - S(k',k)f{\ - /')d/c', (2.3)
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where the notation

f = f(x,k,t), f' = f(x,k',t) (2.4)

is used. The collision integral Q(f) models the interaction of electrons with
the crystal lattice. These interactions include scattering with crystal impur-
ities and acoustic and polar optical phonons (the vibrations of the lattice).
A more complicated collision operator Qee is used to model the interaction
of electrons with each other. The electron-electron collision operator is of
the form

Qee(f)(x,k,t) =

Q (V h1 hf \c h \ f /*> (~\ ff\(~\ ff\ rib-, Ale1 Ah1 (0 K\
O g g I X , f t j r i i 5 fV) A- }  M J l l - I — j I \ J- — J 1 ) U . M / 1 L l / v (J.*vi f \&.O t

where / = f(x,k,t), f = f(x,k',t), h = f{x,kx,t), and /{  = f(x,k[,t).
However, other than in gas dynamics, particle-particle scattering is a rather
rare event in most semiconductor devices and the operator Qee is rarely
used.

Conservation and equilibrium
There are two important features of the collision operator Q that need to be
reflected by any numerical method, namely conservation and the existence
of a thermal equilibrium. A quantity g(k) is said to be conserved if

g(k)Q(f)(x,k,t)dk = O (2.6)

holds for any density function /. For reasons of symmetry g(k) = 1, the num-
ber of particles, is obviously conserved by all collision operators. The second
property is the existence of a thermal equilibrium, namely a density func-
tion fe such that, because of the principle of detailed balance (Markowich,
Ringhofer and Schmeiser 1990),

S(k, k')f'e(l - fe) = S(k', k)fe(l - f'e) (2.7)

holds. The thermal equilibrium density fe is given by the Fermi-Dirac
density function

where ep is the Fermi energy, ks is the Boltzmann constant, and T denotes
the lattice temperature of the crystal. The principle of detailed balance (2.7)
implies the relation

,k') = M(k)s(k,k'), M W = e xp ( ^ $) (2-9)
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for the scattering rate 5, where M is called the Maxwellian distribution and
s is symmetric in the variables k and k', so s(k,k') = s(k',k) holds.

Low density and relaxation time approximations
In order to derive simplified models from the Boltzmann equation (2.1), it is
often necessary to make simplifying approximations to the collision operator
Q. The first approximation is to assume the density function / to be small,
and therefore to drop the quadratic terms in the collision operator Q in
(2.3), giving the linear operator

Q(f)(x, k,t) = Js(k, k')f - s(k', k)f dk>. (2.10)

Next, it is assumed that the density function / is close to a Maxwellian
distribution of the form

(=£ffi) / (£ f f i ) t (2.u)

Replacing / ' in the linear collision operator (2.10) by the expression (2.11)
gives

Q(f) {x, k, t) = ^ y (n(x, t)M{k) - / ) , (2.12)

with

———=[ s(k',k)dk', n(x,t) = [  f(x,k,t)dk, (2.13)

and

The term T(X, k) is called the relaxation time.

Collision frequency, mean free path and scaling
One of the most important quantitative parameters determining which model
to choose is the mean free path. The mean free path is given by the shape of
the scattering rate s(k, k') and the the energy band function e. If we define
the collision frequency u> by

u(k)= f M(k')s(k',k)dk', (2.14)

then a;"1 is the average time an electron travels freely before undergoing a
collision event. Scaling the velocity wave vector relationship

v(k) = \vke{k) = vov (j£j , (2.15)
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where VQ and &o are chosen such that v(k) is an O(l) function, the expression

Ao = - (2.16)

gives the average distance an electron travels between collision events. If we
now scale the position variable x by the device length L, the wave vector
k by ko and the time by 7 = UJQL2/VQ, we obtain the scaled Boltzmann
equation

\2dtfs + Xdivx(v(k)fs) - Adiv fc(Eaf8) = Q(fs) (2.17a)

QUs) = f dk 8a(Mafa(l - fs) - M'JS{1 - f's)), (2.17b)

where x, k and t are now dimensionless and the scaled field and scattering
rate Es and ss are given by

7-./ .\ vo/ifco /a; £\
E(x,t) = —j—Es[T,-\

L \L 7/k k

M(k) = Ma(J~y (2.18)

and A = Xo/L is the Knudsen number, the ratio of the mean free path
and the size of the simulation domain. To what extent macroscopic models
provide an accurate transport picture depends mainly on the size of the
Knudsen number A. In the limit for A — 0 one obtains from the Hilbert
expansion (see Markowich et al. (1990)) that fs = n(x,t)Ms(k) + O(X)
holds, where the macroscopic electron density n satisfies the drift—diffusion
equation

dtn - divx (DVxn - mEsn) = 0. (2.19)

(We wil l drop the subscript s from now on.) Through miniaturization,
the device length L decreases, and through the use of materials such as
gallium arsenide, the mean free path Ao increases, making the drift-diffusion
system less and less valid. Current state-of-the-art technology for devices
like MOSFETs works with values of A = O(0.1), which makes simulations
based on alternative models necessary.

Boundary conditions for the semiclassical Boltzmann equation
For the simulation of an actual device, the simulation domain will con-
sist of a bounded region Q, whose boundary dQ is made up of segments
dSlc, dQi, dQ,a, corresponding to contacts, insulating surfaces and artificial
boundaries, introduced to limit the size of the simulation domain. At con-
tacts, the inflow of electrons according to a certain given distribution fc is
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prescribed. At insulating surfaces we usually prescribe a specular reflection
condition, and at artificial surface segments zero influx is required. The situ-
ation will be somewhat more complicated in the quantum case (see Section
4.1). So altogether we have

fix,
fix,
fix,

on
k,t)
k,t)
k,t)

= dilc
= b(x,
= 0
= fix,
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t)fc
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where v denotes the outward normal vector on the boundary dfl. The
function fe(x, t) in (2.20b) gives the amount of electrons injected. Assuming
that the device is part of a circuit, b is given by Ohm's law.

The Poisson equation
The electric field E is, in general, derived from Maxwell's equations. However,
since we operate in a regime where the speed of light can safely be set to
infinity, Maxwell's equations become

divx(eDE) = p, VxxE = 0, (2.21)

where ED denotes the dielectric constant of the material. The charge density
p is given by p = e(iV£> — NA — n), where e is the unit charge and No and
NA are the pre-concentrations of donor and acceptor atoms in the crystal,
due to doping. Here n is the spatial density of free electrons, given by the
zeroth order moment of the density function / in the Boltzmann equation.
Introducing the potential V by E = — VXV, we obtain the Poisson equation

div E) = e(ND-NA-n), E = -VXV, n=[  dk n. (2.22)

The Poisson equation (2.22) is coupled to the Boltzmann equation (2.1) via
the charge density n in (2.12), and therefore the two equations have to be
solved simultaneously. A bias is applied to the contacts of the device by
prescribing a potential difference between the contacts, that is, by setting
V at the boundary segments corresponding to contacts.

2.2. Quantum transport models

As device dimensions decrease, quantum mechanical transport phenomena
play an increasing role in the function of devices. It is therefore necessary
to develop simulation models that are capable of describing these effects.
These models are a generalization of the classical models in the sense that
they reduce to the Boltzmann transport picture in the classical limit, that is,
when an appropriately scaled form of the Planck constant tends to zero. The
quantum mechanical description of the motion of an electron in a vacuum
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under the influence of a potential field is given by the Schrodinger equation

h2

AipeVip, (2.23)
2m

where tp denotes the wave function and V denotes the potential. The oper-
ator H is called the quantum Hamiltonian. The electron density n and the
electron current density J are then given by

n=\ip\2 and eJ = — Im(ipVif)). (2.24)
m

In order to describe transport in an actual device, several features have
to be added to the above transport picture.

 An ensemble of Schrodinger equations must be considered in order to
model the mixed state of an electron.

 The electron is moving in a crystal and not in a vacuum.
 Collisions, representing the interaction of the electron with the crystal

lattice, have to be modelled.
 The system has to interact with the outside world via boundary con-

ditions at device contacts and insulating surfaces.

Several steps are taken to achieve these goals. Some are mathematic-
ally precise, whereas some are purely phenomenological. First, the density
matrix for mixed states of the form

p(r, s,t)=J2 <r(uj)il>(r,  *)>(* , *) (2-25)
j

is introduced, where each of the wave functions tpj satisfies the Schrodinger
equation (2.23). The density matrix p then satisfies the quantum Liouvill e
equation

= (Hs - Hr)p = A-(A r - As)p + e(V(r) - V(s))p, (2.26)

and the electron and current densities n and J are given by

ih
n(x,t) = p(x,x,t), eJ(x,t) — — (V rp - V sp)(r = x,s — x, t). (2.27)

ZJ l i t

In order to relate the quantum picture to the classical picture it is convenient
to introduce the Wigner function (Wigner 1932)

w(x, k, t) =  (2TT)-3 J  ̂ dr]P(x+ l-r,, x - ^r,, ?j e^k, (2.28)

which then satisfies the Fourier transformed version of the quantum Liouvill e
equation, often referred to as the Wigner equation

ft ie / 1 \
—k-Vxw+-6V[x,-Vk)w = 0, (2.29)
m n V 2i J
m
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and the electron and current densities are given by

n(x,t) = [ dkw, J(x,t) = —f dk kw, (2.30)

and the operator 8V (x, (l/2z) Vfc) in (2.29) is defined in the sense of pseudo-
differential operators (Taylor 1981) as

6V\x,—Vk)w(x,k,t) =

(2TT)-3 / dr] f dk' 6V (x, -ri) w(x,k1,t)eir>< k-k'^,
JR3 JR3 V 2 /

where 6V [x, -rj\  = V (x + -rj) - V (x + -rjJ . (2.31)
\ 2 / \ 2 / \ 2 J

The advantage of the Wigner formulation lies in the fact that it relates
the quantum mechanical picture to the classical picture. For quadratic po-
tentials V, the Wigner equation (2.29) reduces to the Boltzmann equation
without collision terms. It can be shown (Markowich and Ringhofer 1989)
that the Wigner function converges to the solution of the collisionless Boltz-
mann equation in the limit of large time and spatial scales. However, from
the point of view of device simulation, we are interested in quantum trans-
port equations in regimes which are quite far away from the classical picture.
Here, the advantage of the Wigner equation lies in the fact that it allows for
a more phenomenological treatment of collision terms and boundary condi-
tions. Clearly the Wigner equation (2.29) is the quantum equivalent of the
Boltzmann equation with a parabolic band structure (2.2), since the starting
point was the quantum Hamiltonian for a vacuum. In order to describe the
motion of the electron in a crystal, a modified Hamiltonian of the form

H = - ^ - A x - e{VL + V) (2.32)
2m

has to be considered, where VL denotes the potential due to a periodic crystal
lattice (Ashcroft and Mermin 1976). So

VL(x + -yzj) = VL(x), j = 1,2,3 (2.33)

holds, where the Zj are the lattice directions and 7 is the length scale of
the lattice, chosen such that det (Z) = 1, where Z = (z\, z?, z%). It can be
shown by using a Bloch wave decomposition (Arnold, Degond, Markowich
and Steinriick 1989, Poupaud and Ringhofer 1995, Markowich, Mauser and
Poupaud 1994) that the projection of the wave function onto the mth energy
band satisfies the Schrodinger equation

T (2.34)
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where em(k) is the mth eigenvalue of the Hamiltonian HL = —(h2/2m)A +
VL together with quasi-periodic boundary conditions. Here B denotes the
Brillouin zone, the unit cell of the dual crystal lattice defined as B =
Z~T[—vr/7, TT/7]3. Performing the Wigner transformation for the mixed state,
as before, now gives the Wigner equation in a crystal of the form

+ div

^SV (x, ^V f c ) w = 0,

where all functions are now periodic in the wave vector k on the Brillouin
zone B and Fourier transforms and pseudo-differential operators are appro-
priately reformulated as

v(k) = y^ v(m) exp
m

(x,k,t) = (2.36)

2-\ Y I dk' 6V (x,lZn)w(x,k',t)exp(ij(k - k'fZn).
^J „ -/B V 2 /

Since the length scale 7 of the crystal lattice will be small even for quantum
mechanical simulations, the formal limit 7 —> 0 is used in equation (2.35)
for actual simulations giving

ie / 1 \
dtw + divx(v(k)w) + -6V x, — Vfc )w = 0. (2.37)

h \ ii  J

In the limit 7 —> 0, the Brillouin zone becomes infinite and the definition of
Fourier transforms and pseudo-differential operators reverts to (2.31).

Modelling the scattering processes of electrons with phonons quantum
mechanically is a much more complicated task. Most models lead to equa-
tions which are too high-dimensional to be actually used in the simulation
of devices (Ferry and Grubin 1995). Therefore, we are in practice reduced
to two approaches to formulating the quantum Boltzmann equation

ie / 1 \
dtw+divx{v{k)w) + 6[V}w = Q(w), e[V}w = -6V[x,-Vk)w, (2.38)

n \ 2,1 /

namely the relaxation time model and the Fokker-Planck term. The relax-
ation time model is, as in the classical case, given by

Q(w) = - { — w 0 - w ) ,

i(x,t) = / dk w(x, k,t),
JR3
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no(x) = f dkwQ(x,k), (2.39)

where wo(x, k) denotes the quantum mechanical thermal equilibrium density,
the quantum equivalent to the Maxwellian. The Fokker-Planck term model
is given by

Q(w) = X- div k (?~VkW + kw^J , (2.40)

where To denotes the lattice temperature.

Thermal equilibrium
To carry out actual simulations it is necessary to compute a quantum mech-
anical thermal equilibrium solution. This is necessary for two reasons. First,
the thermal equilibrium solution wo is used in the relaxation time approxim-
ation (2.39). Second, transient simulations are started by using the thermal
equilibrium as initial datum. For a mixed state, the thermal equilibrium
density matrix is defined by

pTE(r,s) = Y^aiLJjWjirtyjis), (2.41)

where the ipj and lj  are the eigenfunctions and eigenvalues of the quantum
Hamiltonian and cr{uj) is the statistical distribution. For Boltzmann statist-
ics, a is of the form U(UJ) = exp(—OJ/TQ).

3. Numerical methods for semiclassical and classical
transport

In this section we describe two types of approaches to simulating semicon-
ductor devices based on the semiclassical Boltzmann equation (2.17). Both
approaches are more or less restricted to the case of parabolic band struc-
tures, so (2.2) is assumed. A relatively easy generalization is to assume a
more general quadratic band structure of the form e(k) = (h2/2m)kTZk
with a positive definite symmetric matrix Z. This corresponds to a Taylor
expansion of the band energy e for small wave vectors k and leads to the
so-called effective mass approximation. Since generalizing the presented nu-
merical methods to this case is straightforward, it will not be considered
separately here. The discussed methods cannot be expected to represent
the physical transport picture as accurately as a complete Monte Carlo sim-
ulation in all possible cases. They have, however, the great advantage of
dealing with deterministic computational models that possess a well defined
steady state. At the same time, they seem to give a reasonably accurate
transport description for current device dimensions, as verified by compar-
isons with experiments and Monte Carlo calculations.
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3.1. Series expansion methods

Series expansion methods for the Boltzmann transport equation have the
advantage that they give, in some sense, a direct extension of macroscopic
models such as the drift-diffusion system and the hydrodynamic system, to
be discussed in the next section. Usually a spectral Galerkin approach is
used in the wave vector direction, while some other standard finite difference
or finite element discretization is employed in the spatial and time directions.
Most series expansion methods assume a parabolic band structure (2.2).
So, after an appropriate scaling, the wave vector can be identified with the
velocity vector. We will discuss series expansion methods on the scaled
Boltzmann transport equation

X2dtf + Xv  Vxf - \E  Vvf = Q(f), (3.1)

where A denotes the Knudsen number, the ratio of the mean free path to
the length scale of the simulation domain. Most expansion methods for the
Boltzmann transport equation use the assumption of isotropic scattering,
that is, that the scattering rates s(v, v') in (2.3) as well as the Maxwellian
depend only on the energy e. So, after scaling, and assuming a parabolic
band structure, the collision integral Q(f) in (3.1) and the Maxwellian are
of the form

Q(f)(x,v,t) = J^dv {s(\v\,\v'\)(Mf'(l- f)-M'f(l -

M{v) = exp ( — ^ ) . (3.2)

One of the drawbacks of series expansion methods is that the evaluation
of the collision integral is quite complicated and expensive if no Monte Carlo
approach is used. The dependence of the integral kernel on the energy alone,
reduces the complexity of this problem considerably once polar coordinates

v = (rcos8,rsmdcos(/),rsm6sm(f))T,

where 0e[0,n], </> G [-7r,7r], re [0 ,oo), (3.3)

are used. In polar coordinates, the collision integral Q then becomes

Q(f)(x,r,0,</>,t) = (3.4)
/"OO I-K C-K . .

J dr'J dd'J dcfr'r'2sm(e)s(r,r')(Mf'{l-f)-M'f(l - / ' ) ),

and the integration over the angular variables can be carried out explicitly,
giving

O . .

Q(f)(x,r,0,<f>,t)= / dr>r l2s(r,rl)(MF'(l-f)-M'f(4n-F')),  (3.5)
Jo

where F(x, r, t) denotes the average of the density function over spheres of
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equal energy

F(x,r,t)=[  d0 / d(f> sm(9)f(x,r,0,(f>,t), (3.6)
Jo J-n

and again the terms / ' and F' mean that the corresponding functions are
evaluated at (r',9',(f)') rather than at (r,9,(f>). The advantage of the use
of polar coordinates lies in the fact that the collision integral is now one-
dimensional and the collision terms for scattering of acoustic and polar op-
tical phonons, whose scattering rates are of the form

s{r,r') = £ l(\j\)S(r2 - r'2 - juph), (3.7)

with ujph the energy of emission/absorption of a polar optical phonon, amount
to pointwise evaluation of F. The Boltzmann transport equation in polar
coordinates takes the form

X2dtf + Am  V x / - XE  (adrf + bdef + cd+f) = Q(f), (3.8)

where

1 I cos 9 \ 1 / - s i n0 \ 1 / °
a = -v = I s in9cos6 I , b= - \ cos9cos</> I , c = —:—- I — sin<j>

\ sin 9 sin <j>)  \ cos 6 sin <f>  ) \ cos 4

Starting with Odeh, Gnudi, Baccarani, Rudan and Ventura (Ventura,
Gnudi and Baccarani 1991, Ventura, Gnudi, Baccarani and Odeh 1992), and
continuing with the work of Goldsman and Prey (Goldsman, Wu and Prey
1990, Goldsman, Henrickson and Prey 1991), spherical harmonic expansions
of the Boltzmann transport equation in polar coordinates have been used
with great success, meaning that good agreement with Monte Carlo simu-
lations has been achieved for realistic devices using only a relatively small
number of terms. We recall that spherical harmonic functions take the form

Sn(9,<fr) = Ln(cos9)(sm9)n2exp(in24>), n = (m,n2) , (3.9)

where Ln is the associated Legendre polynomial of degree (ni, n2). Thus Ln

is a polynomial of degree n\ satisfying the orthogonality relation

C Lni,n2(2/)L,1,n2(y)(l - y2)" 2 dy = ^-6{m - Vl), (3.10)
J-l 27T

and consequently the spherical harmonics satisfy

fn d(f> r d9sm(9)S^(9,cf>)S1/(9,<t)) = 6(n - u). (3.11)
J-n Jo

Expanding the density function / in spherical harmonics gives

<?,</>), (3.12)
n£N
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where N denotes some suitable index set, and using the standard Galerkin
approach, we find

A Otjn + ^MmmOi./m ~ -C/i \AinmOrJm + tiinmjm) ~ Qn-i (o.lo)

where the summation convention is used in (3.13) and the coefficients Ainm

and Binm(r) are given by

Ainm = r d6 r dcf) sm(6)SnaiSm, (3.14a)
JO J--K

Binm = r d9 r d<f> sm(e)Sn(bideSrn + Q^5m) (3.14b)
JO J-1T

qn = / dr'r'25(r,r')
Jo
(MfQ (47T«(n) - V^fn) - M'fn (ilT - V ^ / Q ) ) .(3.14C)

Stability and discretization
Equation (3.13) represents a hyperbolic first-order system in the spatial
and time variables (x,t) and the energy variable r = \v\. In principle, the
system (3.13) could be discretized by any number of methods suitable for
hyperbolic systems. In Ventura et al. (1991) and (1992), standard finite
differences are used in all variables. However, in addition to exhibiting
the usual stiffness of PDE discretizations, (3.13) is extremely stiff in time
close to the drift-diffusion regime, for small values of the Knudsen number
A, and in space for large values of the electric field E. It therefore pays
to investigate the stability properties of the system (3.13) before writing
down any approximation scheme. We will now give a simple linear stability
estimate, first derived by Poupaud (1991), which indicates how to discretize
the system in the spatial, time and energy variables. The Galerkin approach
implies the equation

2 I 6.0 I d<£ sin(6)fN (3.15)
JO J-TT

(\2dtf
N + At;  Vxf

N - XE  (adrf
N + bdef

N + cfy/") ~ Q(fN)) = °-

Integrating (3.15) by parts yields

X2dtG

+ P dOP dcf> sin(0)A (diVa; (vfm) -E-adr (fN2))

+fN2E  (de(bsme) + fy(sin0c)) - 2fNQ (/" ) = 0, (3.16)
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where

G(x,rtt) = r d6 f d</> sm(9)fN2 = £ fn(x,r,t)2 (3.17)
Jo J-*  ntN

is the norm of the coefficient vector (fn).
Because of the properties of polar coordinates, we have

de(bsm9) + d (̂sin0c) = -2^^-a, (3.18)

and (3.16) can be rewritten as

X2dtG

+ r d6 r dcj) sin(0)A (divx (vfN2"j  - E  a\dr (r2/^2))

-2fNQ (fN) = 0. (3.19)

Using the scaled Maxwellian M(r) = exp (—r2/2), the term r~2dr(r
2fN2)

can be rewritten as r'2dr(r
2fN2) = (M/r2)dr((r

2/M)fN2) - rfN2 and,
since v = ar and E = — VXV holds, we have

E  a^dr (r2f»2) = E  a^dr ^ f ^ j + VXV  vf»2. (3.20)

Thus equation (3.16) can be written in conservation form as

X2dtG

(e~vdWx (e
vvfN2) - E  a^dr (^

-2fNQ(fN) = 0. (3.21)

Next, we note the following basic identity for the linearized collision op-
erator Q(f) = /R3 dvs[Mf - M'f}:

2 r d9 [W dcf> sm(9)r2fQ(f)
Jo J-n

= - fn d9 r d<t> r d̂  r W sm{9)r2sin(9')r'2sMM' (-?- - -(-]
Jo J--K Jo J—-K \M M /

< 0, (3.22)

which can be verified by direct calculation. Therefore, multiplying (3.21) by
evr2/M and integrating with respect to x and r gives

dt ( dx f°° dr e-vT-G(x,r,t) < (3.23)
JQ JO M

- dx dr(dtV)e-v--G(x,r,t)-  ̂ / dr—e-y{v  v)fN2,
Jo. JO M A Jan Jo M
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where v denotes the unit outward normal vector of the domain Q. The
second term on the right-hand side of (3.23) has to be controlled by the
boundary fluxes and (3.23) yields a Gronwall inequality for the term

dx dr --e-vG(x,r,t) = £ / dx / dr —e- y / n(z , r , i )2.
Jo, Jo M neN-'V -*0

(3.24)
The significance of the estimate (3.24) lies in the fact that it is independent

of the Knudsen number A, and therefore is a valid stability result even in the
stiff case close to the drift—diffusion regime. Therefore, the discretization of
the hyperbolic system (3.13) in the x,t and r variables should reflect this
estimate. Without going into the explicit details, we will now show how
to construct the discretization for system (3.13). Because of the equality
(3.18) the matrices Ai and Bi, made up of the coefficients Ainm and Binm

in (3.13), satisfy

Bi + B? = -Ai, i = 1,2,3, (3.25)
r

and, consequently, the matrices Bi — (l/r)Ai  are skew symmetric. In the
linear case the terms qn on the right-hand side of (3.13) are given by a matrix
integral operator of the form

In = 2  ̂ Cnmfm, (3.26)
n€7V

/*OO , .

where Cnmg(x,r,t) = Air I dr' r'2s\8(n)8(m)Mg - 6(n - m)M'g),

and, because of (3.22), the matrix operator C satisfies

I oo .̂2

dr — fJ Cf < 0, (3.27)
o M

where f denotes the vector of coefficients (/n)- The stability estimate for
the semi-discretized Boltzmann transport equation suggests rewriting the
system as

A2 (dt (e-V'H) + I {dtV)e~v'H) + \rAtdXl (e^'H) + (3.28)

£ (Me~v) V2 EiAidr (rM-'/H) + Xe-^Ei {B, - U ) f = e

Multiplying (3.28) from the left with (r2/M)e~v/2fT and integrating with
respect to x and r gives the stability estimate

r poo ^.2 / o ~*2

dt dx dr ^e-v\{\2 = - dx dr (dtV)e-v\f\2. (3.29)
Jn Jo M Jci Jo M
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Therefore, any difference discretization of the system (3.13) should build
on differencing the terms e~v'2f in the spatial and rM^ '^ f in the energy
direction. A completely time-implicit scheme for (3.13) would immediately
reproduce the stability estimate (3.29). Unfortunately, completely time-
implicit schemes are usually too computationally expensive. From (3.28)
it is clear, however, that at least the collision term on the right-hand side
should be discretized implicitly in time in order to reduce the O(A2) stiffness
of the system to O(X). So, system (3.13) should be discretized as

*?dtfn -Qn = Ar exp ( — ) AinmdXi (exp ( - — ) fm ) - (3.30a)

XEt ^M1/2'Ainmdr (rM-l/2fm) +

1 /*oo

Qn = £ 7(tf I) / dr' r'26(r2 - r'2 - juph) (3.30b)
i=-i  Jo

(Mf'Q (47r«(n) - V&fn) ~ M'fn (4TT -

where the terms on the left-hand side are taken implicitly, and a standard hy-
perbolic scheme, such as Lax-Wendroff, is used on the right-hand side, yield-
ing a Courant-Friedrich-Lewy (CFL) condition of the form At/(AArc) <
const. In the case of a linear collision operator (1 - / « 1 in (3.30b)), if
the mesh size in the energy direction is taken as an integer fraction of the
energy u>ph of the emission of a polar optical phonon, the collision operator
C becomes a sparse matrix whose LU decomposition can be computed once
and reused for every grid point in the x-direction (Ventura et al. 1991,
1992). An alternative to this approach is to use a spectral discretization
in the energy direction as well. In order to preserve the stability estimate
(3.23), it is necessary to use the function r2/M as a weight function for
the scalar product. This approach has, in principle, been used in Schmeiser
and Zwirchmayr (1995) and (1997), although there, Cartesian coordinates
in v and Laguerre polynomial basis functions are used. Consequently, the
matrix collision operator matrix C becomes a full matrix and the scheme is
restricted to relatively few terms in the expansion.

3.2. The hydrodynamic model

The series expansion methods described in the previous section are centred
around an almost spherically symmetric density function. Although they
present a non-perturbative theory and are always convergent, we can expect
slow convergence far from equilibrium, that is, in the case of large group
velocities. As device dimensions decrease, the value of the Knudsen number
A increases, and the transport picture is not dominated by the collision
term any longer. In order to study ballistic transport in short channels of
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a transistor, an alternative model is used. This model corresponds to the
compressible Euler equations for a gas driven by an external force. This
model, not very aptly named the 'hydrodynamic model for semiconductors',
is obtained by taking moments of the Boltzmann equation with respect to
the wave vector k, corresponding to the macroscopic particle density, the
group velocity and the energy. The hydrodynamic model usually assumes
a parabolic band structure as given in (2.2). Multiplying the Boltzmann
transport equation (2.17) by l,k and \k\2 and integrating with respect to
the wave vector k gives the moment equations

X2dt (1) + XdXl (hi) = 0, (3.31a)

X2dt (kj) + \0Xl (kikj) + XEj (1) = ( y W ) ) > (3.31b)

(3.31C)

where the symbol ) denotes the expectation of a quantity with respect to
the density / . So

>=  f dk (gf) (3.32)
V/K 3

holds and the summation convention is again used in (3.31). (3.31) is re-
garded as a system for the particle density n = (1), the moment (k) = nv
and the total energy W = ((l/2)|fc|2). The so-called closure problem is then
given by expressing the higher order moments kjki, ki\k\2 and the moments
of the collision operator Q in terms of the primary variables n, v and W. This
is achieved by the assumption that the density function / is approximately
equal to a displaced Maxwellian of the form

/(*, k, t) « fa, t) exp f - ^ = ^ * ) , (3-33)

where v denotes the macroscopic velocity and T the electron temperature.
Under assumption (3.33), the higher order moments are of the form

(A;) = Xnv, (kjki) = n(T6ji + X2vjvl), (3.34)

\ ^ A>|2), {kt\k\2) =  + X2\v\2),

and (3.31) can be written as

dt (n) + dXl (vin) = 0 (3.35a)

X2dt(nvj) + X2dXl(nviVj) + dXj(nT) + Ejn = /^-Q(f)\ (3.35b)
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dt W + dXl (vtW) + dXl {nviT) (3.35c)

+\EiVin- divX(KVXT) =

Here the term divx(«VxT) denotes the heat flux which is derived from a
higher order perturbation theory, and K denotes the heat conductivity. The
moments of the collision terms are modelled phenomenologically as

(3.36)

(see Baccarani and Wordeman (1985)).
Note that, for A —> 0, the transport terms in (3.35) vanish and T = To

holds. Thus the drift-diffusion system is recovered in the limit. However,
the hydrodynamic model is used in regimes where the active region of the
device is of the same order as the mean free path and A = 0(1) usually holds.
For K = 0, neglecting the heat flux, the hydrodynamic model represents a
nonlinear hyperbolic system with sound speed c = (1 /A)Y /5T/3 which will
usually exhibit shocks for A = 0(1). For finite values of the heat conductivity
K, these shocks will have a finite width of order O(K) (Gardner 19916). For
short and relatively small active regions (of the order of 0.1-0.5//m) the
hydrodynamic model equations (3.35) usually lead to a sufficiently good
agreement with Monte Carlo simulations (Gardner 19936).

Steady state calculations
The most common approach to discretizing the hydrodynamic model equa-
tions in steady state is upwind box integration (Gardner 1992, Gardner
1991a). To this end, the steady state version of the model equations (3.35)
is put in conservation form as

dXl (vidj) + Hj = 0, j = 0,. . ., 5, (3.37)

where the Gij and Hj are given by

= n and Gtj = \2nvj, j = 1,2,3, (3.38)

\2)~ndx.V, G/5 = 0,

Ho = 0, Hj = 6Xj (nT) - ndXj V - -nVj, j = 1,2,3,
Tp

HA = -V*  (KVXT) +  (3(T - To) + A2M2),

and H$ = — divx(eVxV) = n — D,
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where we have already included the Poisson equation for the potential V.
Using the upwind box integration method, the terms dXl(viGij) in (3.37) are
discretized by

(3.39)

where the discrete difference and averaging operators 8\ and m are defined
by

Stz(x) = z(x + -Axlel)-z(x--Axlel),
\ z j \ z j

= - (z (x+-Axlel) + z (x --Axieijj , (3.40)

where Axi denotes the (variable) stepsize and e/ denotes the unit vec-
tor in the Zth coordinate direction. The derivatives in the terms Hj in
(3.37) are usually discretized by standard centred finite differences (Gard-
ner 19916, Gardner 1992). In order to deal with locally large electric fields,
a modification of the Scharfetter-Gummel scheme (Selberherr 1981) may be
used for Hj,j = 1, 2, 3. In this modification the derivative

= dXj {nT) - ndXj V --Vj (3.41)
Tp

is written as

/V\ z ( p ( - K ) j / \ nH'  - -d"  © ^ H ? ) ) "nVd" (l(|r|))

The derivatives in (3.42) are then discretized by using standard differences.
For constant temperature T the discretization of (3.42) then reduces to the
classical Scharfetter-Gummel scheme, which has the advantage of correctly
performing the right upwinding in the direction of the electric field E =

-vxy.
After carrying out the discretization, a large sparse nonlinear system of

algebraic equations has to be solved. After linearization this leads to the
solution of the linear system

-F(z), z = (n,v,T,V)T, (3.43)

at each step. Here the vector F denotes the discretization of (3.37) on the
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mesh and the Jacobian J has the block structure

J =

dF0
dn
dF^
dn
dF4
dn

dn

dv
dFj
dv

dFi
dv

0

0

~Wr
dFi
dT

0

0
dFj
dV

oFd

wdFQ
dV

(3.44)

In Lanzkron, Gardner and Rose (1991) and Gardner, Jerome and Rose
(1989), detailed investigations of the convergence of block iterative methods
for the solution of the Newton equations (3.43) have been carried out. The
basic result is that block under-relaxation methods, in conjunction with
conjugate gradient methods for the individual blocks, perform well as long as
the equations for the density n and the velocities v are treated as one block.
In this case chaotic under-relaxation methods on parallel architectures also
give good results.

3.3. Generalizations of the hydrodynamic model - Grad systems

The relative simplicity of the hydrodynamic model equations and their cer-
tain shortcomings, such as the overestimation of velocities close to P-N junc-
tions (see Ringhofer (1997)), suggests a generalization of the underlying prin-
ciple to higher order moment methods. In the ballistic regime, that is, in
the presence of large electron velocities, series expansion methods based on
a perturbation of a spherical symmetric density function will in general not
perform well. This suggests the introduction of a modified series expansion
approach based not on a centred Maxwellian distribution function but on
a wave vector displaced Maxwellian instead. This idea was first introduced
by Grad (1949, 1958) for the study of the fine structure of shock waves in
fluid dynamics. Since the assumption underlying the hydrodynamic model
is that the density function is approximately of the form (3.33), it is nat-
ural to expand the Boltzmann equation around a Maxwellian distribution
function in a stretched variable coordinate system in wave vector space with
the macroscopic velocity u as the origin and the square root of the macro-
scopic temperature T as the stretching factor. Introducing the coordinate
transformation

(x,v, t) —> (x, w,t), v = a(x,t)w + u(x,t) (3.45)

gives the transformed Boltzmann equation

X2dtf + \v  Vxf - -H  Vwf = Q(f) (3.46)
a

H = E + X((dta)w + dtu) + ( w(Vxa)T + ~ ) v, v =
V ox)
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Equation (3.46) is now approximated by a Galerkin method in the micro-
scopic velocity variable v where a and u are still kept as free parameters.
There are two conditions which we have to place on the choice of basis
functions and the scalar product in order to obtain a generalization of the
hydrodynamic model.

 The lowest order basis function is the displaced Maxwellian e"'™' I2.
 The Galerkin approach should correspond to taking the moments of
the Boltzmann equation (3.46).

This is achieved by choosing basis functions of the form

/ \w\2\

ipm = M(w)pm(w), M(w) = expl -!-£- I , (3.47)

where the pm in (3.47) are vector basis polynomials containing the polyno-
mials l,to and |ii;|2. So

{l,w,\w\2} C span{po,---,PAf}  (3.48)

holds. Secondly, the scalar product is taken to be of the form

<f,9>=  JR3 dw J^TfT9- (3.49)

Thus, taking the scalar product of the Boltzmann equation with the basis
function ^m corresponds to integrating against the polynomial pm, and the
moments leading to the hydrodynamic model are reproduced. Expanding
the density function

w) (3.50)

and using the Galerkin procedure yields the system

A dtfm + ^dXl[Almnfn] H Bmnfn = Cmnfn, (3.51)

with

Almn = (il>m,Vlil>n)  ,

Bmn = ~ (4>m, divw(Hi/j n)) = dw 1pnH  Vwpm,
JR3

Cmn = (il>m,Qii>n).  (3-52)
It remains to choose the parameters a(x,t) and u(x,t). In the original

Grad system (Grad 1949), they are chosen to correspond to the square root
of the temperature and the group velocity:

_ /R3 d̂  vf . |2 2 _ /R3 di; \v\2f
u ——z - —, i t -f- aa ——j. - - ,

/RS dv / /K3 dv f
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which implies

/ dw [wf]  = 0, f dw [\w\2 - 3 ] / = 0. (3.54)

If we denote the basis functions M, w\M, W2M, W3M, \w\2M by ipo,..., ^4,
this becomes

fj = 0, j = 1,2,3 and /4 = const /0. (3.55)

Thus / 1 , . . ., fi can be eliminated from the system and the corresponding
equations determine the free parameters a and u. By virtue of construction
the system reduces to the hydrodynamic model (without heat conduction)
if only the basis functions ipo,..., ^4 are used. One of the major problem of
Grad systems is that they are not necessarily well-posed. Equation (3.51),
together with the constraints (3.55), represents a hyperbolic differential al-
gebraic system. If the coefficient functions / i , . . . , /4 are eliminated from
the system the resulting equations form a first-order system for the vari-
ables (/o, a, u\,U2, U3, f$...) whose linearization can have complex eigenval-
ues, and therefore modes can grow proportionally to their frequencies. This
ill-posedness occurs at quite moderate Mach numbers and has been analysed
by Cordier (1994a, 19946) for some special sets of basis functions. Several
approaches to remedy this problem have been given by Ringhofer (19946,
1994a, 1997). They involve relaxing the conditions (3.55) in some way or
another, and lead to well-posed problems.

4. Numerical methods for quantum transport

The numerical methods discussed in this section are essentially mirror im-
ages of the methods for semiclassical transport from Section 3. The quantum
Boltzmann equation (2.38) replaces the semiclassical Boltzmann equation
(2.1) and its moment expansion gives the quantum hydrodynamic model.
There are, however, several important differences which do not allow us to
treat quantum transport phenomena as just a perturbation of semiclassical
transport. First, the discretization of the pseudo-differential operator 6 in
(2.38) is not trivial. The transport term on the left-hand side of (2.38) does
not possess classical characteristics. (They would be replaced by the paths
in the Feynman path integrals.) Second, because of the nonlocality of the
transport operator, the formulation of proper boundary conditions is more
complicated than in the classical case. Finally, because of the dispersive
nature of the underlying Schrodinger equation, moment models, such as the
quantum hydrodynamic equations, will also be dispersive, that is, waves will
be able to travel at all speeds. Therefore, the artificial diffusion introduced
by a discretization scheme will play a crucial role in its accuracy.
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4-1- Discretization of the quantum Boltzmann equation

We now turn to the design of numerical methods for the quantum Boltz-
mann equation (2.38). There is a variety of possible choices for discret-
ization schemes in the spatial and temporal directions, which will be dis-
cussed in more detail later. The more fundamental problem is posed by
the discretization of the wave vector k, in particular by the approximation
of the pseudo-differential operator 0, the quantum equivalent of the oper-
ator —VXV  Vfc in the classical Boltzmann equation. Since the quantum
Boltzmann equation does not possess characteristics in the classical sense,
and the Wigner function w does not necessarily remain nonnegative (see
Tatarski (1983)), a Monte Carlo type approach becomes too complicated to
be practically feasible. On the other hand, since the operator 0 is defined
in terms of Fourier transforms, a spectral discretization using trigonometric
basis functions seems natural.

First we note that the quantum Boltzmann equation (2.38) allows for a
reduction in dimension. If the potential V is only dependent on the variables
x\,... ,Xd with d = 1 or 2 (so there is no field pointing in the direction
Xd+\,  ,£3) the quantum Boltzmann equation with both collision terms
(2.39),(2.40) allows for solutions of the form

w(x,k,t) = exp ( - - (kj+i  H  ̂H) ) w(xi,... ,xd,h,... ,kd,t). (4.1)

The dimensionally reduced quantum Boltzmann equation for w is then of
the form

dtw + k- Viw + 6[V]w = Q{w) (4.2a)

0[V}w(x,k,t) = (2vr)-d (4.2b)

I dk' dij — 6V I x, — r/,t) w(x, k, t) explir/  (k — k') I,
jRd JKd h \ 2 J V /

w h e re x — {x\,. . . , xd ) T , k =  ( f e i , . . ., k d ) T

Here we have already used the quantum Boltzmann equation in a scaled
and dimensionless form, where h denotes the scaled Planck constant H. Of
course, the Poisson equation has to be modified accordingly to take into
account the integral of the Maxwellian in the directions kd+i,... ,k%. Since
the reduced quantum Boltzmann equation has the same form as the three-
dimensional equation, we will from now on drop the tilde symbol. Following
Ringhofer (1990) and (1992), we approximate the Wigner function robya
trigonometric polynomial of the form

k), N = {-N + l,...,N}d, (4.3)
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( a\d'2
<t>n(k) = ^ ~ I exp(icm  k).

\2TTJ

Thus we approximate the L2 function w by the (2vr/a)-periodic function
and, consequently, a will have to go to zero in the limit to achieve con-

vergence. The quantum Boltzmann equation (4.2) is simply approximated
by collocation at the appropriate equally spaced nodes. So

+ k  VXWN + 0[V]WN = QN(WN) at k = kj, (4-4)

k3=f3j, jGN, 0 ^

holds. If the relaxation time approximation is used for the collision term Q
then the corresponding approximation QN has to be modified accordingly
to account for the fact that densities are now computed from periodic basis
functions. So, in this case,

QN(w)(x, k,t) = - ( — W O N - W ), (4.5)

n= w, nQ= w0N, MN = V co{x,n) n̂,
J{-K/a,n/a]<i J[-7r/a,n/a]d ^

holds. Here WON denotes a suitable approximation of the thermal equilib-
rium density wo- The advantage of this approach lies in the fact that the
highly oscillatory integrals in the definition (4.2b) of the pseudo-differential
operator 9 can be evaluated exactly. The basis functions 4>n satisfy the
orthogonality relations

(f)*m(t>n = S(m — n), j3 y^ (f^ik^ifin^v) =  6N(ITI — n), (4.6)

where 6N denotes the Kronecker 6 on N periodically extended over all in-
tegers. Using these orthogonality relations, a direct calculation yields

,k,t) — y  ̂ -6V(x,—n,t)c(x,n,t)(f)n(k),

c(x,n,t) = pdJ2<J>n(k»)wN(x,ku,t). (4.7)
I/6N

Collecting the function values of the trigonometric polynomial WN at the
collocation points kv into a vector W, one obtains the hyperbolic system

j = QW, (4.8)

where the Aj are diagonal matrices made up of the j th component of the
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collocation points ku, and the tensor B is given by

B(n, u)=(3dJ2 TW (X, ^n,t) tMPtiMP")- (4-9)
n e N " V z /

Multiplication with the tensor B can now be carried out using FFTs, a
significant advantage in higher dimensions.

Spectral accuracy
A complete convergence proof for the semi-discretized scheme can be found
in Ringhofer (1990) and (1992), and turns out to be quite tedious. We
will here only sketch the consistency of the discretization in order to indic-
ate under what conditions and with what order the scheme is convergent.
Note that the discretization scheme (4.8) is somewhat nonstandard. The
basis functions (j> n are not elements of the same space as the exact solution,
since we have approximated the L2 solution by periodic functions. Let the
interpolation operator P be denned by

Pw(x, k,t) = ^2 c(x,n, t)4>n{k), Pw(x, kv, t) = w(x, kv,t), v e N.

(4.10)
Then the scheme can be formally written as

P(dtwN + k  VxwN + 6[V]wN - QNwN^j = 0. (4.11)

Denning the global discretization error as e = w  ̂— Pw we obtain

P(dte + k- Vxe + Q[V]e-QNe) = L, (4.12)

where the local discretization error L is given by

L = -p(dtPw + k-VxPw + O[V]Pw-QNPw)

= (P6-9P)w + {QNP-PQ)w (4.13)

The interpolation operator P has the representation

Pf(k) = (3dJ2Yl f(ku)K(kv)Mk) (4.14)

and, consequently, the interpolant of any (27r/a)-periodic function / is given
by

Pf= E E f(n + 2Ns)<t>n, / = E hn)<t>n- (4.15)

The formula (4.15) represents the usual aliasing error. The exact solution
w is now smoothly decomposed into a part which vanishes identically outside
the interval [—Tr/a,ir/a]d and a part which vanishes identically inside a
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subinterval of [—n/a, 7r/a]d, that is,

w = Wi + wo, Wi = 0 for k <£ [ } d, }
a + e a + e

So wo denotes the tail of the distribution and u>i equals w in the smaller
domain. Clearly Wi is (27r/a)-periodic and, therefore, using (4.15),

(9P-P9)Wi = E E

Wi(n + 2Ns) (f)V(x, an, t) - 6V(x, an + 2Ns, t)\(j)n,

where wi = E ^i(n)<^n) (4-17)
nezd

holds. Note that the sum in equation (4.17) only contains Fourier coefficients
with indices larger than iV, and therefore

\\(9P - Pe)wi\\L2{[ _^ ]̂d) < CqWSVWooWwiWH^z^ (4.18)

holds, which gives the usual estimate for spectral accuracy of the discretiz-
ation scheme.

Time discretization
After employing the spectral collocation scheme in the wave vector direction,
it remains to discretize the first-order hyperbolic system (4.8) in space and
time. Of course, every method for hyperbolic systems would do this job.
However, the use of a standard hyperbolic scheme for (4.8) will result in
a CFL condition of the form At/(aAx) < const, which will be prohibitive
in practice since a —> 0 has to hold for the spectral discretization to be
convergent. The best alternative, given in Arnold and Ringhofer (19956)
is to employ operator splitting to the semi discretizeed equation (4.8). In
the operator splitting approach, one time step of length At for the equation
(4.8), starting from W(x,tn) is performed by

dtWi+Ajd^W! = 0, W1(x,t) = W(x,tn) (4.19a)
dtW2 + B(V)W2 = Q(W2), W2(x,tn) = Wi(Mn + At) (4.19b)

W(x,tn+1) = W2(x,tn+1), tn+1=tn + At. (4.19c)

This discretization is first-order accurate in time. A second-order accur-
ate discretization can be achieved with a slight modification using so-called
Strang splitting (Arnold and Ringhofer 1995 a) . The step (4.19b) repres-
ents the solution of a system of ordinary differential equations. This can be
achieved using any ODE integrator. (Actually, in the absence of the colli-
sion term Q, this step can be carried out exactly.) In theory, the first step
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(4.19a) could be carried out exactly as well, since it is given by the shift

Wi(x, kj,tn + At) = W(x - kjAt, kj,tn), (4.20)

eliminating any type of CFL condition. In practice, since the vector W
is given on a fixed mesh on the x-axis, the term W(x — kjAt,kj,tn) will
have to be interpolated between the nearest gridpoints. Using second-order
interpolation between nearest neighbours in the x-mesh and a first-order
ODE integrator for step (4.19b) gives a first-order accurate scheme (Arnold
and Ringhofer 19956).

Boundary conditions
One of the major problems in the application of quantum kinetic models to
the simulation of actual devices is the appropriate formulation of boundary
conditions. In a device, the simulation region will be a bounded domain
whose boundaries will consist of contacts, insulating surfaces or artificial
boundaries, which are introduced to limit the size of the simulation domain.
The quantum Boltzmann equation is nonlocal in the wave vector k and
the transport term on the left-hand side of (2.38) does not possess classical
characteristics. Nevertheless, the quantum Boltzmann equation allows for
wave solutions since, at least in the collisionless case, it is equivalent to
the Schrodinger equation. Thus, if care is not taken in the formulation of
boundary conditions, artificial reflections of waves at the boundaries will
occur, and these spurious waves will propagate back in the interior of the
simulation domain. We will first treat the case of an artificial boundary,
where the boundary conditions should be such that reflection of waves at
the boundary is kept to a minimum. For simplicity, let us consider a one-
dimensional model i G l ' ^ e l 1 which is obtained from the Schrodinger
equation in one spatial dimension. The presented methodology is given in
detail in Ringhofer, Ferry and Kluksdahl (1989) and represents a generaliz-
ation of the approach of Engquist and Majda (1977) for hyperbolic systems
to the infinite-dimensional case. In the one-dimensional collisionless case
the Wigner equation becomes

dtw + kdxw + 9[V]w = 0,x,keR1. (4.21)

We will assume the boundary to be located at x = 0 and the simulation
domain to be given by the half plane x > 0. Generalizations to more than
one boundary are straightforward. In the absence of the pseudo-differential
operator 0, the absorbing boundary condition would trivially be given by

w(x = 0, k, t) = 0, for k > 0, (4.22)
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since we assume that no waves enter the domain from outside the region.
The same would be true for an equation of the form

= f dk' G(x,t,k,k')w(x,k',t), (4.23)
JR

if the operator F is block diagonal in the sense that G(x, t, k, k') = 0 when
kk' < 0, since the solution w(x,k,t) for k < 0 is completely decoupled
from the solution w(x, k, t) for k > 0. The goal of the presented approach
is to achieve such a decoupling asymptotically for large wave speeds. If
we assume a plane wave solution in the x, t plane of the form w(x,k,t) =
g(k) exp[i£(x — ut)} with a velocity uo and a frequency £, dtw = —i^uiw holds
and the time derivative will be proportional to the velocity u. Thus, we
formally decouple k < 0 from k > 0 by expanding the operator in powers of
d~j~l for 'large dt'. This will be made more precise later. Setting formally

u = w - d^A[kw}, A[f](x, k,t)= [ dk' a(x,t, k, k')f{x, k\t), (4.24)

we obtain

kdxu = (1 - dtlkA)[kdxw] - kd^Ax[kw],  (4.25)

where the operator Ax arises from differentiating the product, so

Ax[f](x,k,t)=  I dk' dxa(x,t,k,k')f(x,k',t) (4.26)
JR

holds. Using the differential equation (4.21) yields

kdxu = (1 - di1kA)(-dt - 6[V])[w  - kd^Ax{kw)}. (4.27)

Asymptotically, the inverse of the operator 1 — d~[lAk will be given by
l l 2l + d^lAk and w = u + d^lA(ku) + O(d^2) holds. So, formally, up to terms

of order O(dt~ ) we obtain

kdxu = -dtu + (dtlkAdt-Ak-d)u + O{dt2u)

= -dtu+(kA-Ak-6)u + O{dt2u). (4.28)

Therefore, we choose the operator A such that it diagonalizes the equation
(4.28). If we write the pseudo-differential operator 6 in terms of its kernel

6(u)(x,k,t) = [ dk' D(x,t,k-k')u(x,k',t),
/TO

D(x,t,r) = Jdv'-SV^c^e^, (4.29)
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then (k — k')a(x, t, k, k') — D(x, t, k - k') = 0 has to hold for kk' < 0. So, we
set

r D(x,t,k-k') , , , , n

a(x,t,k,k') = { *-* ' t or **  < U ' (4.30)
[ 0 otherwise,

and the absorbing boundary condition reads

u = w-dl~
1fdk'a(x,t,k,k')k'w(x,k',t)=O for x = 0, fc > 0.

(4.31)
Differentiating (4.31) once with respect to time gives an implementable

boundary condition. The above formal manipulations can be made precise
to make the whole approach more plausible. Given a solution w of the
Wigner equation (4.21), we define u by

dtu = dtw — I dk' a(x,t,k,k')k'w(x,k',t), u(x,k) = w(x,k). (4.32)
Jm.

A direct calculation gives the residuals for the inverse transformations

R = w-u, S = dt{w -u)- [ dk' a(x, t, k, k')k'u(x, k', t) (4.33)

dtR = A(kw), S = A(kR).

Inserting the new variable u into the transport operator and differentiation
with respect to time gives

dt (dtu + kdxu^j

= dt [dt + kdx) w-(dt + kdx) A(kw)

= -dt6(w) - (dt + kdx)A(kw)

= -6{dtw) - A(kdtw) - kA{kdxw) - (etw + At{kw) - kAx{kw)^j

= -B{dtw) - A(kdtw) - kA(dtw + 6(w)) - (otw + At(kw) - kAx{kw))

= -T(dtw) - L(w), (4.34)

where the operators 0t, At and Ax are the ones obtained from differentiating
the kernels with respect to x and t, the block diagonal operator F is given
by r(/) = 0(f) + A(kf) - kA(f) and L is given by L(f) = 0t(f) + At(kf) -
kAx(f) - kA(8(f)). Setting w = u + R and dtw = dtu + A(ku) + S, and
integrating with respect to time gives

dtu + kdxu + T(u) = H,

dtH = Tt(u)-T(A(ku))-T(A(kR))-L(u)-L(R),

dtR = A(k(u + R)). (4.35)
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The above system is decoupled up to the lower order term H. Imposing
the boundary condition u(x = 0, k > 0,t) = 0 and inserting a plane wave of
the form

u(x,k,t) = gu(k:u;,

H(x,k,t) = gH(k,LU,

R(x,k,t) = gR(k,LU,Oexp(i^(x-uJt) ̂ (4.36)

immediately gives that the waves travelling to the right (for k > 0) have
amplitudes of order 0{UJ~2), that is, gu(k,u,€) = O(co~2) for k > 0 holds.
So, the second-order absorbing boundary condition is of the form

dtu(0,k>O,t) = (dtw - A{kw)j(0, k > 0,t) = 0. (4.37)

In the case of an insulating surface, perfect reflection is imposed instead.
So, in this case, the boundary condition u(0, k, t) = u(0, —k, t), or

(dtw-A(kw)yo,k,t)=(dtw-A(kw)^(O,-k,t), for k > 0, (4.38)

holds. Finally, in the case of a contact, we will impose a boundary condition
modelling the injection of electrons according to a certain distribution. The
corresponding boundary condition is then given such that nothing but the
injected part of the distribution is reflected. Therefore, if we denote the
injection distribution by f(k), the absorbing boundary condition in (4.31)
acts o n i o- p(t)f, giving

dtw - f dk' o(x, t, k, k')k'w{x, k', t) = (4.39)
JR

f(k)dtp(t) - p(t) [ dk' a(x, t, k, k')k'f{k') for x = 0, k > 0,
JR

where the function p(t) is chosen such that the total charge in the device is
conserved.

4-2. Quantum hydrodynamic models

The calculation of quantum transport phenomena via the quantum Boltz-
mann equation becomes prohibitively expensive in more than two dimen-
sions. However, certain essential effects, such as non-monotone voltage
current characteristics or negative differential resistance (Gardner 1993a),
which are characteristic of the behaviour of quantum devices, can be simu-
lated using much simpler macroscopic models. Like their classical counter-
part, these model equations, the so-called quantum hydrodynamic equations
(Gardner 1994), are derived from a moment expansion of the underlying
kinetic equation. So, in the classical limit for h —  0, they reduce to the hy-
drodynamic model equations treated previously. Denoting the momentum
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hk by p and the corresponding moments by

(1) = / dk w, (pj) = / dk hkjiv,
JR3 JR3

= [ dk h2kjkiw, (\p\2) = f dk h2\k\2
Jm3  ̂ ' JR3

= f dk n3kj\k\2w, (4.40)
JK.3

2w,

and taking the first three moments of the quantum Boltzmann equation
(2.38) gives

dt(l) + -dxl(Pl) = 0 (4.41a)
lib

dt<P3) + ̂ dXl(plPj)-edXjV(l) = {PjQ) (4.41b)

dt(\p\2) + Xl(pl\p\2)-2edXlV(pl) = (\p\2Q). (4.41C)

(In (4.41) the summation convention is used again.) The system has to be
closed again by expressing the pseudo-expectations (piPj), (pi\p\2), (PjQ)
and (\p\2Q) in terms of the primary variables (1) , (pj) and (|p|2). If the
Fokker-Planck term (2.40) is used as a collision operator, the moments on
the right-hand side of (4.41) become

<PiQ) = ~(Pj), (\p\2Q) = l(3mT0(l)-(\p\2)). (4.42)

As in the classical case, closure is achieved by assuming that the Wigner
function w is close to a wave vector displaced equilibrium density. Note that
the first three moments of the quantum Boltzmann equation are the same
as in the classical case. Therefore, quantum effects will enter solely through
the closure conditions. If we assume the form of a wave vector displaced
equilibrium density, so that

w(x, k, t) = we (x, k u{x,t)\ (4.43)
\ ti /

holds with some group velocity vector u, we obtain

(1) = n, (pj) = mnuj, (pjPi) = m2nujUi - mPji, (4.44)

= m2n\u\2 + mP =:  2mW, (p>|2) = 2m2 (UjW -

where the Pji and P denote the second moments of the equilibrium density,
that is,

= ~ f dk kjkiwe,
771 J R3
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holds. (It can always be assumed that the equilibrium density is symmetric,
which implies that the odd order moments of we vanish.) Following Gardner
(1994), the approximate equilibrium density is taken as

we(x,k) = A(x,t)fc- (4.46)

where p = hk holds and fc denotes the classical equilibrium density

fc = A(x,t)exp\—^= + - | . (4.47)

The form (4.46) is derived from an 0{hi) approximation of the thermal
equilibrium density first given by Wigner (1932). With this form of the
equilibrium density the moments Pji and P in (4.44) become

Pji = -nT63l - ^82
X]Xl log(n) + O(h% P =*-nT + ^ - Ax log(n)

(4.48)
and the quantum hydrodynamic equations become

dtn + dXl (nui) = 0 (4.49a)

mnuj) + dXl (mnuiUj — Pji) — edXjVn = —mnuj (4.49b)
r

1 ,o _\ / /Idt [-mn\u\2 + p\ +dXl(ui (-mn\u\2 + P) -PijUj + qA (4.49c)

2 / l9

—endx,Vui = - [3Ton — m\u\

The structure of the quantum hydrodynamic equations is considerably
more complex than that of the classical hydrodynamic model. Because of
the presence of the term j2m,dXXln in the correction to the stress tensor
Pjk, the quantum hydrodynamic equations show the same dispersive beha-
viour as the underlying Wigner or Schrodinger equation. More precisely,
an analysis of the linearized problem shows that the corresponding mat-
rix has two hyperbolic (pure imaginary) eigenvalues, two dispersive modes
(real eigenvalues which are proportional to the frequency) of order h2 and
one parabolic eigenvalue, due to the presence of the heat conduction term
divx(«;VxT) (Gardner 1993a). At present, there are essentially two ap-
proaches to discretizing the quantum hydrodynamic system (4.49). The
first treats the quantum hydrodynamic equations as a perturbation of the
classical hydrodynamic system and uses a discretization appropriate for hy-
perbolic conservation laws. In this approach, the system is written as

dtZj + dXlFij{Z)  = Rj(Z), Z = (n, mnu, WC
T), (4.50)
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where Wc denotes the classical energy term Wc = (l/2)(3nT+ mn\u\2), and
the flux F and the right-hand side R are given by

nu
TF(Z) = mnuu1 + nTl |,

\ (Wc + nT)u
0

R(Z) = I nVxV - - p _ n VxQ , ̂  (4_51a)

nuTVxV - (Wc - \nT)lr + divx(«Va:r)

Q =

The term Q in (4.51b) is referred to as the Bohm potential. Writing
the quantum hydrodynamic system in the form (4.51), numerical methods
suitable for hyperbolic conservation laws are used. In Chen, Cockburn,
Gardner and Jerome (1995), a discontinuous Galerkin method is used in the
spatial direction to simulate hysteresis effects in resonant tunnelling diodes.
The time variable is discretized by a second-order explicit Runge-Kutta
method, where each of the intermediate stages are projected orthogonally
onto the manifold given by the Poisson equation.

A different approach to the discretization of the quantum hydrodynamic
system is used in Gardner (1993 a) for one-dimensional steady state simula-
tions. Here, as in the classical case, the system is written in a form suitable
for upwinding methods as

dx(uGj) + Hj + Sj = 0, j = 0,. . ., 3, (4.52)

with the Gj, hj and Sj given by

Go = n, G\ = mnu,

G2 = ̂ nT + \mnu2 - —d2
x log(n) - nV, G3 = 0 (4.53a)

Ho = 0, H1= dx(nT) - dx (^dl log(n) J - ndxV,

H2 = -dx(ndxT), H3 = ed2
xV (4.53b)

\nT + \mnu2 - ^ d 2 log(n) - ^

e2(ND -NA-n). (4.53c)
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Here the Poisson equation has already been included in the system. In this
form the one-dimensional quantum hydrodynamic equations are discretized
by conservative upwinding similar to the classical case. Thus, the term
dx(uGj) is discretized as

dx{uG3) « -L-6X (inxu)(nxGj) - x̂u\(6xGj)  ̂ , (4.54)

where the averaging operator fix and the difference operator 8X are defined
as in (3.40). Notice, that the philosophy behind the upwind discretiza-
tion differs from the one presented above since the quantum correction
term (h2n/m)dx

l log(n) is included in the transport term G. This is only
possible in the one-dimensional case and results in the dispersive modes
of the quantum hydrodynamic system being heavily damped out through
the artificial diffusion produced by upwinding method. However, this one-
dimensional scheme has proven nevertheless to be quite successful in the
simulation of quantum mechanical phenomena, such as negative differential
resistance in actual devices.
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Preface

Section 5 is written in collaboration with Ya Yan Lu of the Department of
Mathematics, City University of Hong Kong.

1. Introduction

Complexity theory of numerical analysis is the study of the number of arith-
metic operations required to pass from the input to the output of a numerical
problem.

To a large extent this requires the (global) analysis of the basic algorithms
of numerical analysis. This analysis is complicated by the existence of ill -
posed problems, conditioning and round-off error.

A complementary aspect ('lower bounds') is the examination of efficiency
for all algorithms solving a given problem. This study is difficult and needs
a formal definition of algorithm.
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Highly developed complexity theory of computer science provides some
inspiration to the subject at hand. Yet the nature of theoretical computer
science, with its foundations in discrete Turing machines, prevents a simple
transfer to a subject where real number algorithms such as Newton's method
dominate.

One can indeed be sceptical about a formal development of complexity
into the domain of numerical analysis, where problems are solved only to a
certain precision and round-off error is central.

Recall that, according to computer science, an algorithm defined by a
Turing machine is polynomial time if the computing time (measured by the
number of Turing machine operations) T(y) on input y satisfies:

T(y) < K(Size(y))c. (1.1)

Here, size(y) is the number of bits of y. A problem is said to be in P (or
tractable) if there is a polynomial time algorithm (i.e. machine) solving it.

The most natural replacement for a Turing machine operation in a nu-
merical analysis context is an arithmetical operation, since that is the basic
measure of cost in numerical analysis. Thus, one can say with littl e objec-
tion that the problem of solving a linear system Ax = b is tractable because
the number of required Gaussian pivots is bounded by en and the input size
of the matrix A and vector b is about n2. (There remain some crucial ques-
tions of conditioning to be discussed later.) In this way complexity theory
is part of the tradition of numerical analysis.

But this situation is no doubt exceptional in numerical analysis in that one
obtains an exact answer, and most algorithms in numerical analysis solve
problems only approximately with, say, accuracy e > 0, or precision logs"1.
Moreover, the time required depends more typically on the condition of the
problem. Therefore it is reasonable for 'polynomial time' to be recast in the
form:

T(y, e)<K {^(y) + size(y) - log e^j \ (1.2)

Here, y =  ,yn)>  with J/J G R is the input of a numerical problem,
with size(y) = n. The accuracy required is e > 0 and /i(y) is a number
representing the condition of the particular problem represented by y (n(y)
could be a condition number). There are situations where one might replace
/i by log// or loge"1 by log logs"1, for example. Moreover, using the notion
of approximate zero, described below, the e might be eliminated.

I see much of the complexity theory ('upper bound' aspect) of numerical
analysis conveniently represented by a two-part scheme. Part 1 is the es-
timate (1.2). Part 2 is an estimate of the probability distribution of /x, and
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takes the form

prob < y-Ky)>K\<  [ — ), (1.3)

where a probability measure has been put on the space of inputs.
Then Parts 1 and 2 combine, eliminating the /i, to give a probability

bound of the complexity of the algorithm. The following sections illustrate
this theme. One needs to understand the condition number /i with great
clarity for the procedure to succeed.

I hope this gives some immediate motivation for a complexity theory of
numerical analysis and even to indicate that, all along, numerical analysts
have often been thinking in complexity terms.

Now, complexity theory of computer science has also studied extensively
the problem of finding lower bounds for certain basic problems. For this
one needs a formal definition of algorithm, and the Turing machine begins
to play a serious role. That makes littl e sense when the real numbers of
numerical analysis dominate the mathematics. However without too much
fuss we can extend the concept of a machine to deal with real numbers,
and one can also start dealing with lower bounds of real number algorithms.
This last is not so traditional for numerical analysis, yet the real number
machine leads to exciting new perspectives and problems.

In computer science, consideration of polynomial time bounds led to
the fundamentally important and notoriously difficult problem 'P = NP?'.
There is a corresponding problem for real number machines, namely 'P =
NP over R?'.

The above is a highly simplified, idealized snapshot of a complexity theory
of numerical analysis. Some details follow in the sections below. Also see
Blum, Cucker, Shub and Smale (1996), referred to hereafter as the Mani-
festo, and its references for more background, history and examples.

2. Fundamental theorem of algebra

The fundamental theorem of algebra (FTA) deserves special attention. Its
study in the past has been a decisive factor in the discovery of algebraic num-
bers, complex numbers, group theory and more recently in the development
of the foundations of algorithms.

Gauss gave four proofs of this result. The first was in his thesis which, in
spite of a gap (see Ostrowski in Gauss), anticipates some modern algorithms
(see Smale 1981). Constructive proofs of the FTA were given in 1924 by
Brouwer and Weyl.

Further, Peter Henrici and his co-workers have given a substantial de-
velopment for analysing algorithms and a complexity theory for the FTA.
See Dejon and Henrici (1969) and Henrici (1977). Also, Collins (1975) gave
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a contribution to the complexity of FTA. See especially Pan (1996) and
McNamee (1993) for historical background and references.

In 1981-82, two articles appeared with approximately the same title,
Schonhage (1982) and Smale (1981), which systematically pursued the issue
of complexity for the FTA. Coincidentally, both authors gave main talks
at the International Congress of Mathematicians, Berkeley 1986, on this
subject; see Schonhage (1987) and Smale (1987a).

These articles fully illustrate two contrasting approaches.
Schonhage's algorithm is in the tradition of Weyl, with a number of ad-

ded features which give very good polynomial time complexity bounds. The
Schonhage analysis includes the worst case and the implicit model is the Tur-
ing machine. On the other hand, the methods have never extended to more
than one variable, and the algorithm is complicated. Some subsequent de-
velopments in a similar spirit include Renegar (19876), Bini and Pan (1987),
Neff (1994), and Neff and Reif (1996). See Pan (1997) for an account of this
approach to the FTA.

In contrast, in Smale (1981), the algorithm is based on continuation meth-
ods such as Kellog, Li, and Yorke (1976), Smale (1976), Keller (1978), and
Hirsch and Smale (1979). See Allgower and Georg (1990, 1993) for a survey.
The complexity analysis of the 1981 paper was a probabilistic polynomial
time bound on the number of arithmetic operations, but much cruder than
Schonhage's. The algorithm, based on Newton's method, was simple, ro-
bust, easy to program, and extended eventually to many variables. The
implicit machine model was that of Blum, Shub and Smale (1989), here-
after referred to as BSS (1989). Subsequent developments along these lines
include Shub and Smale (1985, 1986), Kim (1988), Renegar (19876), Shub
and Smale (1993a, 19936, 1993c, 1996 and 1994), hereafter referred to as
Bez I-V , respectively, and Blum, Cucker, Shub and Smale (1997), hereafter
referred to as BCSS (1997).

Here is a brief account of some of the ideas of Smale (1981). A point z is
called an approximate zero if Newton's method starting at z converges well
in a certain precise sense; see Section 4 below. The main theorem of this
paper asserts the following.

Theorem 2.1 A sufficient number of steps of a modified Newton's method
to obtain an approximate zero of a polynomial / (starting at 0) is polyno-
mially bounded by the degree of the polynomial and 1/cr, where u is the
probability of failure.

For the proof, an invariant // = / i(/ ) of / is defined akin to a condition
number of / . Then the proof is broken into two parts.

Part 1: A sufficient number of modified Newton steps to obtain an approx-
imate zero of / is polynomially bounded by n{f).
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The proof of Part 1 relies on a Loewner estimate related to the Bieberbach
conjecture.

Part 2: The probability that fi(f) is larger than k is less than k~c, some
constant c.

The proof of Part 2 uses elimination theory of algebraic geometry and
geometric probability theory, Crofton's formula, as in Santalo (1976).

The crude bounds given in Smale (1981), and the mathematics too, were
substantially developed in Shub and Smale (1985, 1986).

Here is a more detailed, more developed, complexity theoretic version of
the FTA in the spirit of numerical analysis. See BCSS (1997) for the details.

Assume given (or input):

a complex polynomial f(z) = ^ aiZ1 in one complex variable,

a complex number ZQ, and an e > 0.

Here is the algorithm to produce a solution (output) z* satisfying

\f(z*)\ <e. (2.1)

Let to = 0, ti = ti-i  + At, where At — 1/k, for some positive integer k;
thus £fc = 1, and we have a partition of [0,1]. For any polynomial g, we
define Newton's method by

Ng(z) = z - ^jr\, for all z e C, such that g'(z)  ̂ 0.
9 \z)

Let ft(z) = f(z) — (1 — t)f(zo). Then, generally, there is a unique path (t
such that ft((t) = 0 all t € [0,1] and Co = zo- Define inductively

Zi = Nfti(zi-i), i = l,...,k, z* = zk. (2.2)

It is easily shown that for almost all (/, ZQ), Z{ will be denned, i = 1, . . ., k,
provided At is small enough. We may say that k = I/At is the 'complexity'.
It is the main measure of complexity in any case: the problem at hand is,
'how big may we choose At and still have z* satisfying (2.1) and (2.2)?' (i.e.
so that the complexity is the lowest).

Next a 'condition number' fi(f,zo) is denned which measures how close
£t is to being ill-defined. (More precisely fi(f,zo) = cosecfl where 6 is the
supremum of the angles of sectors about f(zo) for which the inverse f~l

mapping f(zo) to ZQ is denned.)

Theorem 2.2 A sufficient number k of Newton steps defined in (2.2) to
achieve (2.1) is given by
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Remark 2.1

(a) We are assuming 0 < e < 1/2.
(b) Note that the degree d of / plays no role, and the result holds for any

(f,zo,e).
(c) The proof is based on 'point estimates' (a-theory) (see Section 4 below)

and an estimate of Loewner from Schlicht function theory. Thus it
doesn't quite extend to n variables. It remains a good problem to find
the connection between Theorem 2.2 and Theorem 6.1.

For the next result suppose that / has the form

z=0

Theorem 2.3 The set of points ZQ € C, \ZQ\ = R > 2, such that //(/, ZQ) >
b, is contained in the union of 2(d — 1) arcs of total angle

2 / I
- -r + sin

- l

d \b R-\

This result is an estimate on how infrequently poorly conditioned pairs
( / , ZQ) OCCUr.

I t is straightforward to combine Theorems 2.2 and 2.3 to eliminate the
\i and obtain both probabilistic and deterministic complexity bounds for
approximating a zero of a polynomial. The probabilistic estimate improves
the deterministic one by a factor of d. Theorem 2.3 and these results are in
Shub and Smale (1985, 1986), but see also BCSS (1997), and Smale (1985).

Remark 2.2 The above-mentioned development might be improved in
sharpness in two ways.

(A) Replace the hypothesis on the polynomial / by assuming as in Renegar
(19876) and Pan (1996) that all the roots of / are in the unit disk.

(B) Suppose that the input polynomial / is described not by its coefficients,
but by a 'program' for / .

3. Condition numbers

The condition number as studied by Wilkinson (1963), important in its own
right in numerical analysis, also plays a key role in complexity theory. We
review it now, especially some recent developments. For linear systems,
Ax = b, the condition number is denned in most basic numerical analysis
texts.

The Eckart and Young (1936) theorem is central, and may be stated as
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where A is a non-singular n x n matrix, with the operator norm on the left
and the Frobenius distance on the right. Moreover, £„  is the subspace of
singular matrices.

The case of 1-variable polynomials was studied by Wilkinson (1963) and
Demmel (1987), among others. Demmel gave estimates on the condition
number and the reciprocal of the distance to the set of polynomials with
multiple roots.

We now give a more general context for condition numbers and give exact
formulae for the condition number as the reciprocal of a distance to the set
of ill-posed problems following Bez I, II , IV, Dedieu (1997a, 19976, 1997c)
and BCSS (1997).

Consider first the context of the implicit function theorem:

F : R f c x R m ^ R m , C1, F(ao,yo) = Q,
dF
-TT" (a>o,yo) : Mm -^ Rm non-singular.
By

Then there exists an open neighbourhood U of ao in Rk and a C1 map
G : U -> Km such that G(a0) = yo and F(a, G(a)) = 0, for a <E W.

Regard Fa : Rm —> Rm, Fa(y) = F(a,y), as a system of equations para-
meterized by a € Rk. Then a might be the input of a problem Fa(y) = 0
with output y; G is the 'implicit function'.

Let us call the derivative DG(ao) : Rk —> Mm the condition matrix at
(ao,2/o)- Then the condition number n(ao,yo) = /i, as in Wilkinson (1963),
Rice (1966), Wozniakowski (1977), Demmel (1987), Bez IV, and Dedieu
(1997 a), is denned by

the operator norm. Thus /i(oo,j/o) is the bound on the infinitesimal output
error of the system Fa(y) = 0 in terms of the infinitesimal input error.

It is important to note that, while the map G is given only implicitly, the
condition matrix

nrt \ dF( \-^dF( \
By Ba

is given explicitly, as is its norm, the condition number /x(ao,j/o)-
An example, given by Wilkinson, is the case where Rk is the space of real

polynomials / in one variable of degree < k — 1, and Em = R the space of
C, F(f, Q = /(C)- One may compute that in this case

-o IC I )

For the discussion of several variable polynomial systems, it is convenient
to use complex numbers and homogeneous polynomials.



530 S. SMALE

If / : C" —> C is a polynomial of degree d, we may introduce a new vari-
able, say zo, and define / : C"+1 —» C by / ( I , zi,...,zn) = f(z\, ...,zn)
and f(Xzo, Xzi,..., Xzn) = Xdf(zo,..., zn). Thus / is a homogeneous poly-
nomial.

If / : C" -> Cn, / = ( / i , . . ., / „) , deg /, = dt, i = 1 , . . ., n, is a polynomial
system, then by letting / equal ( / i , . . ., /«), we obtain a homogeneous sys-
tem / : Cn +1 —> Cn. Any zero of / will also be a zero of / and justification
can be made for the study of such systems in their own right. Thus now we
wil l consider such systems, say / : Cn +1 —  Cn and denote the space of all
such / by Hd, d = {d\,..., dn), degree fc = di.

Recall that an Hermitian inner product on Cn+1 is defined by
n

(z,w) = Y^ZiWi, z,w£Cn+l.
i=0

Now, define for degree d homogeneous polynomials / , g : Cn+1 —> C,
1

fa9a,

where

f(z) = ^2 faZa, g{z) = ^2 gaz
a-

\a\=d \a\=d

Here a = (ai , . . ., an+i) is a multi-index and

d\ d\ . .
\a\ =I — 1 ',i

a) a i ! - - - a n + i ! '  ^

The weighting by the multinomial coefficient is important, and yields unitary
invariance of the inner product, as below.

Proposition 3.1 (Reznick 1992) Let f,Nx : Cn+1 -> C be degree d
homogeneous polynomials, where Nx(z) = (x,z)d. Then f(x) = (f,Nx).

Corollar y 3.1

| < 11/11 IliVxI l < 11/11 \\x\\d.
For f,gEHd, define

It Q\ - V ^ (fi>9i)  \\f\\ _ if f\l/2

Dedieu has suggested weighting by 1/d, to make the Condition Number
Theorem below more natural.

The unitary group U(n+ 1) is the group of all linear automorphisms of
Cn+1 which preserve the Hermitian inner product.
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There is an induced action of U(n + 1) on Hd defined by

(af)(z) = f(a-1z), a€U(n + l), z£Cn+1, f£Hd.

Then it can be proved (see, for instance, BCSS 1997) that

This is unitary invariance.
There is a history of this inner product going back at least to Weyl (1932),

with contributions or uses in Kostlan (1993), Brockett (1973), Reznick
(1992), Bez I-V , Degot and Beauzamy (1997), Stein and Weiss (1971),
Dedieu (1997a).

Now we may define the condition number jj,(f, £) for / € Tid, C £ Cn+1,
/(£) = 0 using the previously denned implicit function context. To be
technically correct, one must extend this context to Riemannian manifolds
to deal with the implicitly denned projective spaces. See Bez IV for details.

The following is proved in Bez I (but see also Bez III , Bez IV) .

Condition Number  Theorem 1 Let / 6 Hd, ( e C"+1, f(Q = 0. Then

)

Here the distance d is the projective distance in the space {g €. Tid
= 0}  t o the subset where £ is a multiple root of g.

The proof uses unitary invariance of all the objects. Thus one can reduce
to the point ( = (1,0, , 0), and then to the linear terms, and then to the
Eckart-Young theorem.

Dedieu (1997a) has generalized this result quite substantially, and has
considered sparse polynomial systems (Dedieu 19976). Thus a formula for
the eigenvalue problem becomes a special case.

4. Newton's method and point estimates

Say that z <E C" is an approximate zero of / : Cn —> C" (or Rn —> Kn, or even
for Banach spaces) if there is an actual zero ( of / (the 'associated zero')
and

N - C I I < Q ) 2 V-CII , (4-1)
where Zi is given by Newton's method

= z-Df(z)-If(z).

Here Df(z) : Cn -> Cn is the (Prechet) derivative of / at z.
An approximate zero z gives an effective termination for an algorithm

provided one can determine whether z has the property (4.1).
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Towards that end, the following invariant is decisive.

fc>2 k\

Here D^f(z) is the kth derivative of / considered as a ^-linear map and
we have taken the operator norm of its composition with Df(z)~l; if the
expression is not defined, then use 7 = 00. See Smale (1986), Smale (1987a)
and Bez I for details of this development.

The invariant 7 turns out to be a key element in the complexity theory of
non-linear systems. Although it is defined in terms of all the higher deriv-
atives, in many contexts it can be estimated in terms of the first derivative,
or even the condition number.

Theorem 4.1 (Smale 1986; see also Traub and Wozniakowski 1979)
Let / :C"^Cn,CeCn with f(() = 0. If

then z is an approximate zero of / with associated zero (.

Now let

a = a(f, z) = /?( /, z)7(f, z), /?( /, z) = \\Df (z)~x f {z)\\.

Theorem 4.2 (Smale 1986) There exists a universal constant ao > 0
such that: if a(f, z) < ao for / : Cn — Cn, z € Cn, then z is an approximate
zero of / (for some associated actual zero ( of / ) .

Remark 4.1 This is the result that motivates 'point estimates'. One uses
it to conclude that z is an approximate zero / by checking an estimate at
the point z only. Nothing is assumed about / in a region or / at (.

Remark 4.2 For this definition of approximate zero, the best value of ao
is probably no smaller than 1/10. See developments, details and discussions
in Smale (1987a), Wang (1993), Bez I, and BCSS (1997).

Now how might one estimate 7? In Smale (1986, 1987a), there is an
estimate in terms of the first derivative of /, but an estimate in Bez I seems
much more useful. In the context of Section 3, let / € Ha, C € C"+1,
/(C) = 0, and 7o(/, C) = IICIITCA 0- The last is to make 7 projectively
invariant. Recall that D = max(dj), d = (d\,... ,dn), di = deg/j.

Theorem 4.3 (Bez I)

Recall that //(/, Q is the condition number.
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Remark 4.3 One has a similar estimate without assuming f(() = 0.

As a corollary of Theorem 4.3 and a projective version of Theorem 4.1,
one obtains the following.

Theorem 4.4 (Separation of zeros, Malajovich-Muno z 1993, BCSS
1997, Dedieu 19976, 1997d) Let / G Hd, and C, C' be two distinct zeros
of/. Then

D = max(deg/j), / = ( / i , . . ., / „) ,
//(/) = max /j,(f, £) is the condition number of / ,

and d is the distance in projective space.

Remark 4.4 One has also the stronger result

Remark 4.5 The strength of Theorem 4.4 lies in its global aspect. It is
not asymptotic even though fi is denned just by a derivative.

We end this section by stating a global perturbation theorem (Dedieu
(19976)).

Theorem 4.5 Let /, g : Cn -  Cn, ( e Cn with f(Q = 0. Then, if

( ^ |3-3yTf|
<*{g, Q < ^  and

there is a zero £' of g such that

||C-C/||
Here everything is affine including fi(f,(). This uses Theorem 4.2.

5. Linear  algebra

Complexity theory is quite implicit in the numerical linear algebra literature.
Indeed, numerical analysts have studied the execution time and memory
requirements for many linear algebra algorithms. This is particularly true for
direct algorithms that solve a problem (such as a linear system of equations)
in a finite number of steps. On the other hand, for more difficult linear
algebra problems (such as the matrix eigenvalue problem) where iterative
methods are needed, the complexity theory is not fully developed. It is our



534 S. SMALE

belief that a more detailed complexity analysis is desirable and such a study
could help lead to better algorithms in the future.

5.1. Linear systems

Consider the classical problem of a system of linear equations Ax = b,
where A is a n x n non-singular matrix, b is a column vector of length
n. The standard method for solving this problem is Gaussian elimination
(say, with partial pivoting). The number of arithmetic operations required
for this method can be found in most numerical analysis textbooks: it is
2n3/3 + O(n2). Most of these operations come from the LU factorization
of the matrix A, with suitable row exchanges. Namely, PA = LU, where
L is a unit lower triangular matrix (whose entries satisfy \kj\ < 1), U is an
upper triangular matrix, and P is the permutation matrix representing the
row exchanges. When this factorization is completed, the solution of Ax = b
can be found in O(n2) operations. Similar operation counts are also avail-
able for other direct methods for linear systems, for example, the Cholesky
decomposition for symmetric positive definite matrices. Another method
for solving Ax = b, and, more importantly, for least squares problems, is
to use the QR factorization of A. The number of required operations is
4ra3/3 + O(n2). All these direct methods for linear systems involve only a
finite number of steps to find the solution. The complexity of these meth-
ods can be found by counting the total number of arithmetic operations
involved.

A related problem is to investigate the average loss of precision for solving
linear systems. It is well known that the condition number K of the matrix A
bounds the relative errors introduced in the solution by small perturbations
in b and A. Therefore, log K is a measure of the loss of numerical precision.
To find its average, a statistical analysis is needed. The following result for
the expected value of log K is obtained by Edelman.

Theorem 5.1 (Edelman 1988) Let A be a random nxn matrix whose
entries (real and imaginary parts of the entries, for the complex case) are
independent random variables with the standard normal distribution, and
let K = \\A\\ H^l"1!! be its condition number in the 2-norm; then

E(logK,) = logn + c +o(l), for n —> oo,

where c « 1.537 for real random matrices and c « 0.982 for complex random
matrices.

The above result on the average loss of precision is a general result valid for
any method, as a lower bound. If one uses the singular value decomposition
to solve Ax = b, the average loss of precision should be close to E(log K)
above. For a more practical method like Gaussian elimination with partial
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pivoting, the same average could be larger. In fact, Wilkinson's backward
error analysis reveals that the numerical solution x obtained from a finite
precision calculation is the exact solution of a perturbed system (A + E)x =
b. The magnitude of E could be larger than the round-off of A by an extra
growth factor p{A). This gives rise to the extra loss of precision caused
by the particular method used, namely, Gaussian elimination with partial
pivoting. Well-known examples indicate that the growth factor can be as
large as 2n~1. But the following result suggests that large growth factors
only rarely appear exponentially.

Conjecture 5.1 (Trefethen) For any fixed constant p > 0, let A be a
random n x n matrix, whose entries (real and complex parts of the entries
for the complex case, scaled by \/2) are independent samples of the standard
normal distribution. Then, for all sufficiently large n,

Prob (p(A) > na) < n'p,

where a > 1/2.

For iterative methods, we mention that a complexity result is available
for the conjugate gradient method (Hestenes and Stiefel 1952). Let A be a
real symmetric positive definite matrix, XQ be an initial guess for the exact
solution x* of Ax = b, and Xj be the jth. iterate of the conjugate gradient
method. Then the following result is well known (Axelsson (1994), Appendix
B):

where the ^4-norm of a vector v is defined as \\V\\A = (vTAv)1^2. From this,
one easily concludes that if

then \\XJ — X*\\A <

5.2. Eigenvalue problems

In this subsection, we consider a number of basic algorithms for eigenvalue
problems. Complexity results for these methods are more difficult to obtain.

For a matrix A, the power method approximates the eigenvector corres-
ponding to the dominant eigenvalue (largest in absolute value). If there
is one dominant eigenvalue, for almost all initial guesses XQ, the sequence
generated by the power method Xj = A^xo/WA^xoW converges to the dom-
inant eigenvector. A statistical complexity analysis for the power method
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tries to determine the average number of iterations required to produce an
approximation to the exact eigenvector, such that the angle between the
approximate and exact eigenvectors is less than a given small number e (e-
dominant eigenvector). These questions have been studied by Kostlan. The
average is first taken for all initial guesses XQ and a fixed matrix A, then
extended to all matrices for some distribution.

Theorem 5.2 (Kostlan 1988) For any real symmetric n x n matrix A
with eigenvalues |Ai| > [A21 > ... > |An|, the number of iterations re(A) re-
quired for the power method to produce an e-dominant eigenvector, averaged
over all initial vectors, satisfies

logcote i[^(n/2)-V(l/2)]+log cote
< Te\A) < . . 1- 1,log |Ai | — log |A2| log |Ai | — log |A2

where I/J(X) =F'(X)/T(X).

When an average is taken for the set of n x n random real symmetric
matrices (the entries are independent random variables with Gaussian dis-
tributions of zero mean, the variance of any diagonal entry is twice the
variance of any off-diagonal entry), the required number of iterations is in-
finite. However, a finite bound can be obtained if a set of 'bad' initial guesses
and 'bad' matrices of normalized measure r]  are excluded.

Theorem 5.3 (Kostlan 1988) For the above n x n random real sym-
metric matrix, with the probability 1 — 77, the average required number of
iterations to produce an e-dominant eigenvector satisfies

< : J ; (^(n/2) - V(V2) + 2 log cot e).

Similar results hold for complex Hermitian matrices. Furthermore, a fi-
nite bound on random symmetric positive definite matrices is also available.
Statistical complexity analysis for a different method of dominant eigen-
vector calculation can be found in Kostlan (1991).

In practice, the Rayleigh quotient iteration method is much more efficient.
Starting from an initial guess XQ, a sequence of vectors {XJ} is generated from

]A y
x X

For symmetric matrices, the following global convergence result has been
established.

Theorem 5.4 (Ostrowski 1958, Parlett and Kahan 1969, Batterson
and Smilli e 1989) Let A be a symmetric n x n matrix. For almost any
choice of XQ, the Rayleigh quotient iteration sequence {XJ} converges to an
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eigenvector and lim^oo 9j+\/9^ < 1, where 8j is the angle between Xj and
the closest eigenvector.

A statistical complexity analysis for this method is still not available.
In fact, even for a fixed symmetric matrix A, there is no upper bound on
the number of iterations required to produce a small angle, say, 6j < e for
a small constant e. In general, for a given initial vector xo, one can not
predict which eigenvector it converges to (if the sequence does converge).
On the other hand, for nonsymmetric matrices, we have the following result
on non-convergence.

Theorem 5.5 (Batterson and Smillie 1990) For each n > 3, there is
a nonempty open set of matrices, each of which possesses an open set of
initial vectors for which the Rayleigh quotient iteration sequence does not
converge to an invariant subspace.

Practical numerical methods for matrix eigenvalue problems are often
based on reductions to the condensed forms by orthogonal similarity trans-
formations. For an n xn symmetric matrix A, one typically uses Householder
reflections to obtain a symmetric tridiagonal matrix T. The reduction step
is a finite calculation that requires O(n3) arithmetic operations. While many
numerical methods are available for calculating the eigenvalues and eigen-
vectors of symmetric tridiagonal matrices, we see the lack of a complexity
analysis for these methods.

The QR method with Wilkinson's shift always converges; see Wilkinson
(1968). In this method, the tridiagonal matrix T is replaced by si + RQ
(still symmetric tridiagonal), where s is the eigenvalue of the last 2 x2 block
of T that is closer to the (n, n) entry of T, and QR = T — si is the QR
factorization of T — si. Wilkinson proved that the (n, n — 1) entries of this
sequence of T always converge to zero. Hoffman and Parlett (1978) gave
a simpler proof for the global linear convergence. The following is an easy
corollary of their result.

Theorem 5.6 Let T be a real symmetric nxn tridiagonal matrix. For
any e > 0, let m be a positive integer satisfying

m > 61og2 -  ̂+ log2(Tln_1T l̂jn_2) + 1.

Then, after m QR iterations with Wilkinson's shift, the last subdiagonal
entry of T satisfies

It would be interesting to develop better complexity results based on the
higher asymptotic convergence rate. Alternative definitions for the last sub-
diagonal entry to be sufficiently small are desirable, because the usual de-
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coupling criterion is based on a comparison with the two adjacent diagonal
entries.

The divide and conquer method suggested by Cuppen (1981) calculates
the eigensystem of an unreduced symmetric tridiagonal matrix based on
the eigensystems of two tridiagonal matrices of half size and a rank-one
updating scheme. The computation of the eigenvalues is reduced to solving
the following nonlinear equation

n 2

where {dj}  are the eigenvalues of the two smaller matrices and {CJ} are re-
lated to their eigenvectors. This method is complicated by the possibilities
that the elements in {dj}  may be not distinct and the set {CJ} may con-
tain zeros. Dongarra and Sorensen (1987) developed an iterative method
for solving the nonlinear equation based on simple rational function approx-
imations. See Bini and Pan (1994) for a complexity analysis of a related
algorithm.

A related method for computing just the eigenvalues uses the set {dj}
to separate the eigenvalues and a nonlinear equation solver for the charac-
teristic polynomial. In Du, Jin, Li and Zeng (19976), the quasi-Laguerre
method is used. An asymptotic convergence result has been established in
Du, Jin, Li and Zeng (1997a), but a complexity analysis is still not available.
The method is complicated by the switch to other methods (the bisection
or Newton's method) to obtain good starting points for the quasi-Laguerre
iterations.

For a general real nonsymmetric matrix A, the QR iteration with Fran-
cis's double shift is widely used to triangularize the Hessenberg matrix H
obtained from the reduction by orthogonal similarity transformations from
A. In this case, there are simple examples for which the QR iteration does
not lead to a decoupling. In Batterson and Day (1992), matrices where
the asymptotic rate of decoupling is only linear are identified. For normal
Hessenberg matrices, Batterson discovered the precise conditions for decoup-
ling under the QR iteration. See Batterson (1994) for details. To develop a
statistical complexity analysis for this method is a great challenge.

6. Complexity in many variables

Consider the problem of following a path, implicitly defined, by a computa-
tionally effective algorithm. Let Tid be as in Section 3.

Let F : [0,1] - Hd x Cn+\ F(t) = (ft, &), satisfy ft((t) = 0, 0 < t < 1,
with the derivative Dft{C,t) having maximum rank. For example, (t could
be given by the implicit function theorem from ft and the initial Co with
/o(Co) = O.
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Next, suppose [0,1] is partitioned into k parts by to = 0, ij = t\-\ + At,
At = 1/fc; thus ife = 1.

Define via Newton's method Nft.

Zi = N f t . ( z i - i ) , i = l,...,k, 20 = Co- (6.1)

For sufficiently small At, the z, are well defined and are good approximations
of Q. But k = I/At represents the complexity, so the problem is to avoid
taking At much smaller than necessary. What is a sufficient number of
Newton steps?

Theorem 6.1 (The main theorem of Bez I) The biggest integer k in

cLD2i?

is sufficient to yield Zi by (6.1) which is an approximate zero of fti with
associated actual zero Qi: each i = 1, . . ., k.

In this estimate c is a rather small universal constant, L is the length of
the curve ft in the projective space, P{7id), 0 < t < 1, D is the max of the
di, i = 1,. . ., n and fj, = maxo<*<i n(ft, (t), where /x(/i, Ct) is the condition
number as denned in Section 3.

Newton's method and approximate zero have been adapted to projective
space. Thus Nf for / e Hd at z € Cn+1 is the ordinary Newton method
applied to the restriction of / to

z + {yeCn+l:(y,z) = 0}.
As a consequence of the Condition Number Theorem and Theorem 6.1,

the complexity depends mainly on how close the path (ft,(t) comes to the
set of ill-conditioned problems. An improved proof of Theorem 6.1 may be
found in BCSS (1997).

For earlier work on complexity theory for Newton's method in several
variables, see Renegar (1987a). Malajovich (1994) has implemented the
algorithm and developed some of the ideas of Bez I.

The main theorem of the final paper of the series Bez I-Bez V is as follows.

Theorem 6.2 The average number of arithmetic operations sufficient to
find an approximate zero of a system / : Cn —> Cn of polynomials is poly-
nomially bounded in the input size (the number of coefficients of / ) .

On one hand, this result is surprising, because it gives a polynomial time
bound for a problem that is almost intractable. On the other hand, the
'algorithm' is not uniform: it depends on the degrees of the (fi) and even
the desired probability of success. Moreover, the algorithm isn't known! It
is only proved to exist. Thus Theorem 6.2 cries out for understanding and
development. In fact, Mike Shub and I were unable to find a sufficiently
good exposition to include in BCSS (1997).
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Since deciding if there is a solution to / : Cn —> Cn is unMkely to be
accomplished in polynomial time, even using exact arithmetic (see Section
8), an astute analysis of Theorem 6.2 can give insight into the basic problem
'What are the limits of computation?' For example, is it 'on the average'
that gives the possibility of polynomial time?

A real (rather than complex) analogue of Theorem 6.2 also remains to be
found.

Let us give some mathematical detail about the statement of Theorem
6.2. An 'approximate zero' has been denned in Section 4, as, of course,
exact zeros cannot be found (Abel, Galois, et al.). Averaging is performed
relative to a measure induced by the unitarily invariant inner product on
homogenized polynomials of degree d = (d\,... ,dn), where d% = deg/j,
/ = ( / i , . . ., fn) (see Section 3). If N — N(d) is the number of coefficients
of such a system / , then unless n < 4 or some d{ = 1, the number of
arithmetic operations is bounded by cN4. If n < 4 or some di = 1, then we
get cN5.

An important special case is that of quadratic systems, when di = 2
and so N < n3. Then the average arithmetic complexity is bounded by a
polynomial function of n.

'On the average' in the main result is needed because certain polynomial
systems, even affine ones of the type / : C2 —> C2, have one-dimensional sets
of zeros, extremely sensitive to any (practical) real number algorithm; one
would say such / are ill posed.

The algorithm (non-uniform) of the theorem is similar to those of Section
2. It is a continuation method where each step is given by Newton's method
(the step size At is no longer a constant). The continuation starts from a
given 'known' pair g : Cn +1 —> Cn and ( G Cn + 1, g(() = 0. It is conjectured
in Bez V that one could take for g, the system denned by gi(z) = z§~x z\,
i = 1 , . . ., n and £ = (1, 0 , . . ., 0). A proof of this conjecture would yield a
uniform algorithm.

Finally, we remark that in Bez V, Theorem 6.2 is generalized to the prob-
lem of finding £ zeros, when £ is any number between one and the Bezout
number Yi?=i di and the number of arithmetic operations is augmented by
the factor £2.

The proof of Theorem 6.2 uses Theorem 6.1 and the geometric probability
methods of the next section.

7. Probabilistic estimates

As described in the Introduction, our complexity perspective has two parts,
and the second deals with probability estimates of the condition number.
We have already seen some aspects of this in Sections 2 and 5. Here are
some further results.
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Section 3 describes a condition number for studying zeros of polynomial
systems of equations. We have dealt especially with the homogeneous setting
and defined projective condition number /x(/, Q for / € Hd, d = (d\,..., dn),
degree ft = dh and C <E C"+1 with / ( () = 0. Then

The unitarily invariant inner product (Section 3) on Hd induces a probab-
ilit y measure on Hd (or equivalently on the projective space P(Hd))- With
this measure the following is proved in Bez II .

Theorem 7.1

Probability lf£Hd : //(/) > - j < Cde
A

-2)X>, N = dimHd, T> =

In the background of this and a number of related results is a geometric
picture (from geometric probability theory), briefly described as follows. It
is convenient to use the projective spaces P(Hd), P(Cn+1) and their product
for the environment of this analysis. Define V to be the subset of ordered
pairs (system, solution):

P{Hd) x P(Cn+1) : /(C) = 0} .

Let 7ri : V -> P(Hd), TT2 : V -> P(Cn + 1) be the restrictions of the corres-
ponding projections, as shown below.

V C P(Hd) x P(Cn + 1)

P{Hd) P{Cn+1)

Theorem 7.2 (Bez II ) Let U be an open set in V", then

/ #Uil{x)nU) = f I detfDG(a)DG(a)*\
JxeP{Hd)

 v ' JzeP{cn+ l) J(a,z)en~1(z)nu v '

Here DG(a) is the condition matrix, DG(a)* its adjoint and # means car-
dinality.

This result and the underlying theory is valid in great generality (see Bez
II , IV, V, BCSS (1997)).
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There is one aspect of these results and arguments that is quite unsettling
and pervades Bez II-V : the implicit existence theory is not very constructive.

Consider the simplest case (Bez III) . For the moment, let d > 1 be an
integer and Tid the space of homogeneous polynomials in two variables of
degree d. It follows from the above geometric probability arguments that
there is a subset Sd of P(7id) of probability measure larger than one-half
such that, for / G Sd, M( / ) < d.

Problem 7.1 (Bez III ) Construct a family {fd e Hd : d = 2,3,.. .}  so
that

M/d) < d, o r e v en

for c any constant.

By 'construct', we mean to provide a polynomial time algorithm (e.g.
in the sense of the machine of Section 8) which, given input d, outputs fd
satisfying the above condition. (This amounts to constructing elliptic Fekete
polynomials.) See also Rakhmanov, Saff and Zhou (1994, 1995).

Another example of an application of the above setting of geometric prob-
ability is the following result. For d = (d\,..., dn), let Ti® denote the space of
real homogeneous systems ( / i , .. , fn) in n +1 variables with degree ft = d{.
One can average just as before and obtain the following.

Theorem 7.3 (Bez II ) The average number of real zeros of a real homo-
geneous polynomial system is exactly the square root of the Bezout number
T> = nr=i di (D being the number of complex solutions).

See Kostlan (1993) for earlier special cases. See also Edelman and Kostlan
(1995).

For the complexity results of Bez IV, V, Theorem 7.1 is inadequate. There
one has similar theorems where the maximum of the condition number along
an interval is estimated.

8. Real machines

Up to now, our discussion might be called the complexity analysis of al-
gorithms, or upper bounds for the time required to solve problems. To
complement this theory one needs lower bound estimates for problem solv-
ing.

For this endeavour, one must consider all possible algorithms that solve a
given problem. In turn this needs a formal definition and the development
of algorithms and machines. The traditional Turing machine is ill-suited
for this purpose, as is argued in the Manifesto. A 'real number machine'
is the most natural vehicle to deal with problem-solving schemes based on
Newton's method, for example.
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There is a recent development of such a machine in BSS (1989) and BCSS
(1997), which we will review very briefly.

Each input is a string y of real numbers of the form

 yn000 ;

the size S(y) of y is n. These inputs may be restricted to code an instance
of a problem. An 'input node' transforms an input into a state string.

No

y

y - f(y)

2/1 >0 ?

Yes

2/

Input node

Computation node

Branch node

Output node

Fig. 1. Example of a real number machine

The computation node replaces the state string by a shifted one, right
or left shifted, or does an arithmetic operation on the first elements of the
string. The branch nodes and output nodes are self-explanatory.

The definition of a real machine (or a 'machine over M') is suggested by the
example and consists of an input node and a finite number of computation,
branch, and output nodes organized into a directed graph. It is the flow
chart of a computer program seen as a mathematical object. One might
say that this real number machine is a 'real Turing machine' or an idealized
Fortran program.

The halting set of a real machine is the set of all inputs such that, acting
on the nodal instructions, we eventually land on an output node. An input-
output map (f> is defined on the halting set by 'following the flow' of the flow
chart. For precise definitions and developments see BSS (1989) and BCSS
(1997).



544 S. SMALE

A machine has polynomial time complexity (sometimes with a restricted
class of inputs) if it enjoys the property

T(y) < S(y)c, for all inputs y, (8.1)

where c is independent of y. In this estimate, T(y) is the time to the
output for the input y measured by the number of nodes encountered in the
computation of <f>(y). Recall that the size S(y) of y is the length of the input
string y.

If the size of the inputs is bounded, and there are no loops, i.e., the
machine is a tree of nodes, then one has a tame machine, or an algebraic
computation tree. These objects have been used to obtain lower bounds
for real number problems. One such development is that of Steele and
Yau (1982) and Ben-Or (1983), based on a real algebraic geometry estimate
of Oleinik and Petrovski (1949), Oleinik (1951), Milnor (1964) and Thorn
(1965). Another is that of Smale (19876) and Vassiliev (1992), and based
on the cohomology of the braid group.

Lower bounds tend to be modest and difficult to obtain, but are necessary
for the understanding of the fundamental problem: 'What are the limits of
computation?'

Note that the definition of a real machine is valid with strings of numbers
lying in any field if one replaces the branch node with the question, ly\ = 0?'
If this field is the field of two elements, one has a Turing machine, and the
size becomes the number of bits. If one uses complex numbers, then one has
a 'complex machine'.

Side remarks 8.1 The study of zeros of polynomial systems plays a cent-
ral role in both mathematics and computation theory. Deciding whether
a set of polynomial equations has a zero over K is even universal in a
formal sense in the theory of real computation. This problem is called
'NP-complete over K' and hence its solution in polynomial time is equival-
ent to 'P = NP over M.' For machines over C, this problem is that of the
Hilbert Nullstellensatz, and Brownawell's (1987) work was critical in get-
ting the fastest-known algorithm (but not polynomial time!) The relation
to NP-complete over C and 'P = NP over C is as in the real case. The same
applies to the field Z2 of two elements and 'P = NP over Z2?' is the same
as the classical Cook-Karp problem 'P = NP?' of computer science. See
BCSS (1997).

My own belief is that this problem is one of the three great unsolved prob-
lems of mathematics (together with the Riemann hypothesis and Poincare's
conjecture in three dimensions).

The rest of Section 8 is more tentative, as we present suggestions in the
direction of a 'second generation' real machine.

For an input y of a problem, an extended notion of size still denoted by
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S(y) could be convenient. The extended notion would be the maximum of
the length of the string (i.e. the previously defined size) and other ingredi-
ents, as follows:

(i) the condition number n(y), or its log, or similar invariants of y
(ii) the precision loge"1, where e is the required accuracy (or perhaps,

depending on the problem, e, or even log log e"1) of the output
(iii ) for integer machines, the number of bits.

It is convenient to consider the traditional size of the input as part of
the input (BSS 1989, BCSS 1997). Should the same hold for the extended
size? We won't try to give a definitive answer here. Part of this answer is a
question of convenience, part interpretation. Should the algorithm assume
that the condition number is known explicitly? Probably not, at least very
generally. On the other hand, if one has a good theoretical result on the
distribution, one can make some guess about the condition number. This
can to some extent justify taking the condition number of the particular
problem as input. It is analogous, for example, to running a path-following
program inputing an initial step size as a guess.

Let me give an example of an open problem that fits into this framework.
Let d = (di,..., dm) and Vn  ̂ be the space of m-tuples of real polynomials
/ = ( / i , . . . , /m) m n variables with deg/i < di. Put some distance D
on Vn,d- Say that / is feasible if the system of inequalities fc(x) > 0, all
i = 1,..., m has a solution x € Kn. Let the 'condition number' of / be
defined by:

H(f)=(  inf D(f,g)\ if / is feasible,
\g not feasible J

( mf D(f,g) ) if / is not feasible.
\g feasible J

Let the extended size S(f) of / e Vn<d be the maximum (perhaps oo) of
dimVn,d and //(/).

Problem 8.1 Is there a polynomial time algorithm deciding the above
feasibility problem using the extended size?

The problem is formalized in terms of the real machines described above,
using exact arithmetic in particular.

We now propose an extension of the earlier notion of real machine to allow
round-off error in the computation.

A round-off machine over E is a real machine, together with a function
of inputs that, at each input, computation and output node, adds a state
vector of magnitude less than some positive constant 6. One has no a priori
knowledge of the added state vector (it's an adversary). This idealization
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has the virtue of simplicity; we hope this compensates for its ignorance of 

important detail. 

A problem wil l be called robustly solvable if it can be solved for inputs of 

finit e extended size by a round-off machine, no matter what the round-off 

error. 

More important is the concept of robustly solvable in polynomial time. In 

addition to the estimate (8.1) with extended size, S(y), one adds a require

ment such as 

m -siyf- m 

One can now sharpen Problem 8.1 to ask for a decision which is robustly 

solvable in polynomial time. 

The above gives some sense of the notion of a robust or numerically stable 

algorithm, perhaps improving on the attempts in Isaacson and Keller (1966), 

Wozniakowski (1977), Smale (1990) and Shub (1993). 

9. Some other  directions 

Many aspects of complexity theory in numerical analysis have not been dealt 

with in this brief report. We now refer to some of these omissions. 

A general reference is Renegar, Shub and Smale (1997), which expands 

on the previous topics and those below. 

There is the important, well-developed field of algebraic complexity the

ory, which relates very much to some of our account. I have the greatest 

admiration for this work, but wil l only mention here Bini and Pan (1994), 

Grigoriev (1987), and Giusti et al. (1997). 

Also well-developed is the area of information-based complexity. In spite 

of its relevance and importance to our review, I wil l only mention Traub, 

Wasilkowski and Wozniakowski (1988), where one wil l find a good introduc

tion and survey. 

Another area in which the mathematical foundation and development 

are strong is the science of mathematical programming, or optimization. 

I believe that numerical analysts interested in complexity considerations 

can learn much from what has happened and is happening in that field. I 

especially like the perspective and work of Renegar (1996). 
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