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1. Introductio n

Since its popularization in the late 1970s, Sequential Quadratic Program-
ming (SQP) has arguably become the most successful method for solving
nonlinearly constrained optimization problems. As with most optimization
methods, SQP is not a single algorithm, but rather a conceptual method
from which numerous specific algorithms have evolved. Backed by a solid
theoretical and computational foundation, both commercial and public-
domain SQP algorithms have been developed and used to solve a remarkably
large set of important practical problems. Recently large-scale versions have
been devised and tested with promising results.

In this paper we examine the underlying ideas of the SQP method and the
theory that establishes it as a framework from which effective algorithms can

*  Contribution of the National Institute of Standards and Technology and not subject to
copyright in the United States.



2 BOGGS AND TOLLE

be derived. In the process we will describe the most popular manifestations
of the method, discuss their theoretical properties and comment on their
practical implementations.

The nonlinear programming problem to be solved is

minimize f{x)
x

subject to: h(x) = 0, (NLP)
9(x) < 0,

where /: TZn —> 11, h: Un — 72™, and g: Hn —> W. Such problems arise in
a variety of applications in science, engineering, industry and management.
In the form (NLP) the problem is quite general; it includes as special cases
linear and quadratic programs in which the constraint functions, h and g,
are afRne and / is linear or quadratic. While these problems are impor-
tant and numerous, the great strength of the SQP method is its ability to
solve problems with nonlinear constraints. For this reason it is assumed that
(NLP) contains at least one nonlinear constraint function.

The basic idea of SQP is to model (NLP) at a given approximate so-
lution, say xk, by a quadratic programming subproblem, and then to use
the solution to this subproblem to construct a better approximation xk+1.
This process is iterated to create a sequence of approximations that, it
is hoped, will converge to a solution x*. Perhaps the key to understanding
the performance and theory of SQP is the fact that, with an appropriate
choice of quadratic subproblem, the method can be viewed as the natural
extension of Newton and quasi-Newton methods to the constrained opti-
mization setting. Thus one would expect SQP methods to share the char-
acteristics of Newton-like methods, namely, rapid convergence when the
iterates are close to the solution but possible erratic behaviour that needs
to be carefully controlled when the iterates are far from a solution. While
this correspondence is valid in general, the presence of constraints makes
both the analysis and implementation of SQP methods significantly more
complex.

Two additional properties of the SQP method should be pointed out.
First, SQP is not a feasible-point method; that is, neither the initial point
nor any of the subsequent iterates need be feasible (a feasible point satisfies
all of the constraints of (NLP)). This is a major advantage since finding a
feasible point when there are nonlinear constraints may be nearly as hard
as solving (NLP) itself. SQP methods can be easily modified so that lin-
ear constraints, including simple bounds, are always satisfied. Second, the
success of the SQP methods depends on the existence of rapid and accurate
algorithms for solving quadratic programs. Fortunately, quadratic programs
are easy to solve in the sense that there are good procedures for their so-
lution. Indeed, when there are only equality constraints the solution to a
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quadratic program reduces to the solution of a linear system of equations.
When there are inequality constraints a sequence of systems may have to be
solved.

A comprehensive theoretical foundation does not guarantee that a pro-
posed algorithm will be effective in practice. In real-life problems hypotheses
may not be satisfied, certain constants and bounds may not be computable,
matrices may be numerically singular, or the scaling may be poor. A suc-
cessful algorithm needs adaptive safeguards that deal with these pathologies.
The algorithmic details to overcome such difficulties, as well as more mun-
dane questions - how to choose parameters, how to recognize convergence
and how to carry out the numerical linear algebra - are lumped under the
term 'implementation'. While a detailed treatment of this topic is not pos-
sible here, we will take care to point out questions of implementation that
pertain specifically to the SQP method.

This survey is arranged as follows. In Section 2 we state the basic SQP
method along with the assumptions about (NLP) that will hold throughout
the paper. We also make some necessary remarks about notation and termi-
nology. Section 3 treats local convergence, that is, behaviour of the iterates
when they are close to the solution. Rates of convergence are provided both
in general terms and for some specific SQP algorithms. The goal is not to
present the strongest results but to establish the relation between Newton's
method and SQP, to delineate the kinds of quadratic models that will yield
satisfactory theoretical results and to place current variations of the SQP
method within this scheme.

The term global is used in two different contexts in nonlinear optimiza-
tion and is often the source of confusion. An algorithm is said to be globally
convergent if, under suitable conditions, it will converge to some local so-
lution from any remote starting point. Nonlinear optimization problems
can have multiple local solutions; the global solution is that local solution
corresponding to the least value of /. SQP methods, like Newton's method
and steepest descent, are only guaranteed to find a local solution of (NLP);
they should not be confused with algorithms for finding the global solution,
which are of an entirely different flavour.

To establish global convergence for constrained optimization algorithms,
a way of measuring progress towards a solution is needed. For SQP this is
done by constructing a merit function, a reduction in which implies that an
acceptable step has been taken. In Section 4, two standard merit functions
are defined and their advantages and disadvantages for forcing global con-
vergence are considered. In Section 5, the problems of the transition from
global to local convergence are discussed. In Sections 4 and 5 the emphasis
is on line-search methods. Because trust region methods, which have been
found to be effective in unconstrained optimization, have been extended to
fit into the SQP framework, a brief description of this approach is given in
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Section 6. Section 7 is devoted to implementation issues, including those
associated with large-scale problems.

To avoid interrupting the flow of the presentation, comments on related
results and references to the literature are provided at the end of each sec-
tion. The number of papers on the SQP method and its variants is large
and space prohibits us from compiling a complete list of references; we have
tried to give enough references to each topic to direct the interested reader
to further material.

1.1. Notes and References

The earliest reference to SQP-type algorithms seems to have been in the
PhD thesis of Wilson (1963) at Harvard University, in which he proposed the
method we call in Section 3 the Newton-SQP algorithm. The development
of the secant or variable-metric algorithms for unconstrained optimization in
the late 1960s and early 1970s naturally led to the extension of these methods
to the constrained problem. The initial work on these methods was done
by Mangasarian and his students at the University of Wisconsin. Garcia-
Palomares and Mangasarian (1976) investigated an SQP-type algorithm in
which the entire Hessian matrix of the Lagrangian, that is, the matrix of
second derivatives with respect to both to x and the multipliers, was updated
at each step. Shortly thereafter, Han (1976, 1977) provided further impetus
for the study of SQP methods. In the first paper Han gave local convergence
and rate of convergence theorems for the PSB- and BFGS-SQP algorithms
for the inequality-constrained problem and, in the second, employed the
t\ merit function to obtain a global convergence theorem in the convex
case. In a series of papers presented at conferences, Powell (1977, 1978a,
1978b), Han's work was brought to the attention of the general optimization
audience. Prom that time there has been a continuous production of research
papers on the SQP method.

As noted, a significant advantage of SQP is that feasible points are not
required at any stage of the process. Nevertheless, a version of SQP that
always remains feasible has been developed and studied, for example, by
Bonnans et al. (1992).

2. The Basic SQP Method

2.1. Assumptions and Notation

As with virtually all nonlinear problems, it is necessary to make some as-
sumptions on the problem (NLP) that clarify the class of problems for which
the algorithm can be shown to perform well. These assumptions, as well as
the consequent theory of nonlinear programming, are also needed to de-
scribe the SQP algorithm itself. In this presentation we do not attempt to
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make the weakest assumptions possible, but rather provide what we consider
reasonable assumptions under which the main ideas can be illustrated.

We make the blanket assumption that all of the functions in (NLP) are
three times continuously differentiable. We denote the gradient of a scalar-
valued function by V, for example, S7f(x). (Here, and throughout the paper,
all vectors are assumed to be column vectors; we use the superscript * to
denote transpose.) For vector-valued functions we also use V to denote the
Jacobian of the function. For example,

Vh(aj) = (Vfci(x), V/i 2(as),..., Vhm(x)).

The Hessian of a scalar-valued function, denoted by the letter H, is defined
to be the symmetric matrix whose (i,j)th component is

d2f(x)
) =

Where a function is defined on more than one set of variables, such as the
Lagrangian function defined below, the differentiation operators V and H
will refer to differentiation with respect to x only.

A key function, one that plays a central role in all of the theory of con-
strained optimization, is the scalar-valued Lagrangian function defined by

C(x, u, v) = f{x) + u*h{x) + vtg{x), (2.1)

where u € 7tLm and v € TZP are the multiplier vectors. Given a vector x, the
set of active constraints at x consists of the inequality constraints, if any,
satisfied as equalities at x. We denote the index set of active constraints by

l(x) = {i  : 9i{x) = 0}.

The matrix G(x) made up of the matrix Vh(x) along with the columns
V<7j(a;), i G 1{x), will be important in describing the basic assumptions
and carrying out the subsequent analyses. Assuming that the matrix G(x)
has full column rank, the null space of G(x)*  defines the tangent space to
the equality and active inequality constraints at x. The projection onto this
tangent space can be written as

V{x) = 1- G{x) (G{x)tG(x)y1 Gix)*. (2.2)

The corresponding projection onto the range space of G(x) will be written

Q(x) = I-V(x). (2.3)

For convenience, these projection matrices evaluated at iterates xk and at a
solution x* will be denoted by Vk, V*, Qfcand Q*. Similarly, we will write

H£* = H£(x*,u*,v*)

throughout the remainder of this paper.
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In this paper x* will represent any particular local solution of (NLP). We
assume that the following conditions apply to each such solution.

A l : The first order necessary conditions hold, that is, there exist optimal
multiplier vectors u* and v* > 0 such that

VC(x*,u*,v*) = V/(aj*) + Vh{x*)u* + Vg(x*)v* = 0.

A2: The columns of G(x*) are linearly independent.
A3: Strict complementary slackness holds, that is,

for i = 1,... ,p and, if g^x*) = 0, then v* > 0.
A4: The Hessian of the Lagrangian function with respect to x is positive

definite on the null space of G(x*)i; that is,

dlHC*d 0

for all d / 0 such that G(x*)td = 0.

The above conditions, sometimes called the strong second order sufficient
conditions, in fact guarantee that x* is an isolated local minimum of (NLP)
and that the optimal multiplier vectors u* and v* are unique. It should be
noted that without strong additional assumptions (NLP) may have multiple
local solutions.

We use the term critical point to denote a feasible point that satisfies the
first order necessary conditions Al . A critical point may or may not be a
local minimum of (NLP).

In discussing convergence of SQP algorithms the asymptotic rate of con-
vergence plays an important role. Three standard measures of convergence
rates will be emphasized in this paper. In the definitions that follow, and
throughout the paper, the norm ||-|| will refer to the 2-norm unless specifi-
cally noted otherwise. Other norms can be used for most of the analysis.

Definition 1 Let {xk} be a sequence converging to x*. The sequence is
said to converge linearly if there exists a positive constant £ < 1 such that

for all k sufficiently large, superlinearly if there exists a sequence of positive
constants £u —> 0 such that

xk+i  _ x* xk -x*

for all k sufficiently large, and quadratically if there exists a positive constant
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such that

— x

for all k sufficiently large.

These rates, which measure improvement at each step, are sometimes
referred to as Q-rates. We will also have occasion to state results in terms of
a measure of the average rate of convergence called the R-rate. A sequence
{xk} will be said to converge R-linearly if the sequence {  xk — x* }  is
bounded by a sequence that converges Q-linearly to zero. Similar definitions
exist for R-superlinear and R-quadratic. There are two relations between
R-rate and Q-rate convergence that are of importance for this paper. First,
m-step Q-linear convergence (where k + 1 is replaced by k + m in the above
definitions) implies an R-linear rate of convergence and, second, a Q-rate of
convergence of a sequence of vectors implies the same R-rate (but not the
same Q-rate) of convergence of its components. In the analyses that follow,
rates not designated explicitly as Q- or R-rates are assumed to be Q-rates.

2.2. The Quadratic Subproblem

As suggested in the Introduction the SQP method is an iterative method
in which, at a current iterate xk, the step to the next iterate is obtained
through information generated by solving a quadratic subproblem. The
subproblem is assumed to reflect in some way the local properties of the
original problem. The major reason for using a quadratic subproblem, that
is, a problem with a quadratic objective function and linear constraints, is
that such problems are relatively easy to solve and yet, in their objective
function, can reflect the nonlinearities of the original problem. The technical
details of solving quadratic programs will not be dealt with here, although
the algorithmic issues involved in solving these quadratic subproblems are
nontrivial and their resolution wil l affect the overall performance of the SQP
algorithm. Further comments on this are made in Section 7.

A major concern in SQP methods is the choice of appropriate quadratic
subproblems. At a current approximation xk a reasonable choice for the
constraints is a linearization of the actual constraints about xk. Thus the
quadratic subproblem will have the form

minimize (rfe) tdI + ^dxB^dx
dx

subject to: Vh(xk)xdx + h(xk) =
xk)xdx + g(xk) <

0,
0,

where dx — x — xk. The vector rk and the symmetric matrix
be chosen.

remain to
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The most obvious choice for the objective function in this quadratic pro-
gram is the local quadratic approximation to / at xk. That is, B  ̂is taken as
the Hessian and rfe as the gradient of / at xk. While this is a reasonable ap-
proximation to use if the constraints are linear, the presence of nonlinear con-
straints makes this choice inappropriate. For example, consider the problem

minimize x\ — \{x2)2
x

subject to: (zi)2 + (X2)2 — 1 = 0.

The point (1,0) is a solution satisfying A1-A4, but at the point (1 + e,0)
the approximating quadratic program is (with d replacing dx)

minimize —d\ — \{d2)2
d

subject to: d\ = -\e{2 + e)(l + e)"1.

which is unbounded regardless of how small e is. Thus the algorithm that
computes d breaks down for this problem.

To take nonlinearities in the constraints into account while maintaining
the linearity of the constraints in the subproblem, the SQP method uses a
quadratic model of the Lagrangian function as the objective. This can be
justified by noting that conditions A1-A4 imply that x* is a local minimum
for the problem

minimize L(x,u*,v*)
x

subject to: h(x) = 0,
g(x) < 0.

Note that the constraint functions are included in the objective function for
this equivalent problem. Although the optimal multipliers are not known,
approximations uk and vk to the multipliers can be maintained as part of the
iterative process. Then given a current iterate, (xk,uk,vk), the quadratic
Taylor-series approximation in x for the Lagrangian is

C(xk, uk, vk) + V£(xk, uk, vkfdx + \dx
xHC{xk, uk, vk)dx.

A strong motivation for using this function as the objective function in the
quadratic subproblem is that it generates iterates that are identical to those
generated by Newton's method when applied to the system composed of the
first order necessary condition (condition Al ) and the constraint equations
(including the active inequality constraints). This means that the resulting
algorithm will have good local convergence properties. In spite of these local
convergence properties there are good reasons to consider choices other than
the actual Hessian of the Lagrangian, for example, approximating matrices
that have properties that permit the quadratic subproblem to be solved at
any xk and the resulting algorithm to be amenable to a global convergence
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analysis. Letting Bk be an approximation of HC(xk, uk, vk), we can write
the quadratic subproblem as:

minimize VX(xk, uk, v^dx + ^dx
tBk dx

dx

subject to: Vh(xkfdx + h(xk) = 0, (2-4)
Vg{xk)tdx + g(xk) < 0.

The form of the quadratic subproblem most often found in the literature,
and the one that will be employed here, is

minimize V/(x fc) tdI + ^dJ'Bk dx
dx

subject to: \7h{xkfdx + h{xk) = 0,
Vg(xk?dx+g{xk) < 0.

These two forms are equivalent for problems with only equality constraints
since, by virtue of the linearized constraints, the term Vh(xk)tdx is constant
and the objective function becomes Vf{xk)tdx + ^dJ-Bkdx. The two sub-
problems are not quite equivalent in the inequality-constrained case unless
the multiplier estimate vk is zero for all inactive linear constraints. However,
(QP) is equivalent to (2.4) for the slack-variable formulation of (NLP) given
by

(2.5)

where z £ Kp is the vector of slack variables. Therefore (QP) can be con-
sidered an appropriate quadratic subproblem for (NLP).

The solution dx of (QP) can be used to generate a new iterate xk+1, by
taking a step from xk in the direction of dx. But to continue to the next
iteration new estimates for the multipliers are needed. There are several
ways in which these can be chosen, but one obvious approach is to use the
optimal multipliers of the quadratic subproblem. (Other possibilities will be
discussed where appropriate.) Letting the optimal multipliers of (QP) be
denoted by tiqp and vqp and setting

do = Vqp~Vk,

allow the updates of (x,u,v) to be written in the compact form

minimize j
x, z

subject to:

i \X)

h(x)
g(x) + z

z

=
=
>

o,
o,
o,

xk+l = xk + adx,

vk+l _
(2.6)
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for some selection of the steplength parameter a. Once the new iterates
are constructed, the problem functions and derivatives are evaluated and a
prescribed choice of -Bfc+i calculated. It will be seen that the effectiveness
of the algorithm is determined in large part by this choice.

2.3. The Basic Algorithm

Since the quadratic subproblem (QP) has to be solved to generate steps in
the algorithm, the first priority in analyzing an SQP algorithm is to deter-
mine conditions that guarantee that (QP) has a solution. To have a solution
the system of constraints of (QP) must have a nonempty feasible set (i.e.
the system must be consistent) and the quadratic objective function should
be bounded below on that set (although a local solution can sometimes exist
without this condition). The consistency condition can be guaranteed when
xk is in a neighborhood of x* by virtue of Assumption A2 but, depending
on the problem, may fail at nonlocal points. Practical means of dealing
with this possibility will be considered in Section 7. An appropriate choice
of .Bfc will ensure that a consistent quadratic problem will have a solution;
the discussion of this point will be a significant part of the analysis of the
next two sections.

Assuming that (QP) can be solved, the question of whether the sequence
generated by the algorithm will converge must then be resolved. As de-
scribed in the Introduction, convergence properties generally are classified
as either local or global. Local convergence results proceed from the as-
sumptions that the initial a:-iterate is close to a solution x* and the initial
Hessian approximation is, in an appropriate sense, close to HC*. Conditions
on the updating schemes that ensure that the xk (and the Bk) stay close to
x* (and HC*) are then formulated. These conditions allow one to conclude
that (QP) is a good model of (NLP) at each iteration and hence that the
system of equations denned by the first order conditions and the constraints
for (QP) are nearly the same as those for (NLP) at x*. Local convergence
proofs can be modeled on the proof of convergence of the classical Newton's
method, which assumes a = 1 in (2.6).

Convergence from a remote starting point is called global convergence. As
stated in the Introduction, to ensure global convergence the SQP algorithm
needs to be equipped with a measure of progress, a merit function <f>,  whose
reduction implies progress towards a solution. In order to guarantee that 4>
is reduced at each step a procedure for adjusting the steplength parameter
a in (2.6) is required. Using the decrease in (f) it can be shown that under
certain assumptions the iterates will converge to a solution (or, to be precise,
a potential solution) even if the initial a;-iterate, a;0, is not close to a solution.

Local convergence theorems are based on Newton's method whereas global
convergence theorems are based on descent. Ideally an algorithm should be
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such that as the iterates get close to the solution, the conditions for local
convergence will be satisfied and the local convergence theory will apply
without the need for the merit function. In general a global algorithm,
although ultimately forcing the x-iterates to get close to x*, does not auto-
matically force the other local conditions (such as unit steplengths and close
Hessian approximations) to hold and therefore the merit function must be
used throughout the iteration process. Since there is no practical way to
know when, if ever, the local convergence conditions will hold an implemen-
tation's true performance can be deduced only from numerical experience.
These issues will be discussed more fully in Section 5.

With this background we can now state a basic SQP algorithm. This tem-
plate indicates the general steps only, without the numerous details required
for a general code.

Basic Algorith m

Given approximations (x°,u°,v°), Bo, and a merit function <j>,  set k = 0.

1. Form and solve (QP) to obtain (dx,du,dv).

2. Choose steplength a so that

<j>(x k + adx)<<j>(x k).

3. Set

4.
5.
6.

Stop if converged.
Compute Bk+\.
Set k := k + 1; go to 1.

xk+i

uk+i

vk+i

= xk-
= uk-

= VkA

\-adx,
\-adu,
-adv.

2.4- Notes and References

The basic second order sufficient conditions as well as a description of the
major theoretical ideas of finite-dimensional nonlinear constrained optimiza-
tion can be found in numerous sources. See, for example, Luenberger (1984),
Nash and Sofer (1995) or Gill, Murray and Wright (1981). The basic defini-
tions for various rates of convergence and the relations among them can be
found in Ortega and Rheinboldt (1970) and Dennis and Schnabel (1983).

The trust region methods discussed in Section 6 use different quadratic
subproblems than those given here. Also Fukushima (1986) considers a
different quadratic subproblem in order to avoid the Maratos effect discussed
in Section 5.
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3. Local Convergence

In this section the theory of local convergence for the most common versions
of the SQP method is developed. The local convergence analysis establishes
conditions under which the iterates converge to a solution and at what rate,
given that the starting data (e.g. a;0, «°, v°, Bo) are sufficiently close to
the corresponding data at a solution x*. As will be seen, it is the method of
generating the matrices Bf. that will be the determining factor in obtaining
the convergence results.

An SQP method can have excellent theoretical local convergence proper-
ties; quadratic, superlinear or two-step superlinear convergence of the x -
iterates can be achieved by requiring the B  ̂to approximate HC* in an ap-
propriate manner. Although each of these local convergence rates is achiev-
able in practice under certain conditions, the need for a globally convergent
algorithm further restricts the choice of the B^. Certain choices of the B^
have led to algorithms that extensive numerical experience has shown to be
quite acceptable. Therefore, while there is a gap between what is theoreti-
cally possible and what has been achieved in terms of local convergence, this
discrepancy should not obscure the very real progress that the SQP methods
represent in solving nonlinearly constrained optimization problems.

Two important assumptions simplify the presentation. First, it will be
assumed that the active inequality constraints for (NLP) at x*are known.
As will be discussed in Section 5, this assumption can be justified for many
of the SQP algorithms because the problem (QP) at xk will have the same
active constraints as (NLP) at x* when xk is near x*. The fact that the
active constraints, and hence the inactive constraints, are correctly iden-
tified at xk means that those inequality constraints that are inactive for
(NLP) at x* can be ignored and those that are active can be changed to
equality constraints without changing the solution of (QP). Thus, under
this assumption, only equality-constrained problems need be considered for
the local analysis. For the remainder of this section (NLP) will be assumed
to be an equality-constrained problem and the reference to inequality mul-
tiplier vectors (the vtg(x) term) will be eliminated from the Lagrangian.
For reference, we rewrite the quadratic subproblem with only equality con-
straints:

minimize \7f(xk)idx + \dx B  ̂dx

dx (ECQP)
subject to: Vh(xkfdx + h(xk) = 0.

The second assumption follows from the fact that the local convergence
for SQP methods, as for many optimization methods, is based on Newton's
method; that is, the convergence and rate-of-convergence results are ob-
tained by demonstrating an asymptotic relation between the iterates of the
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method being analyzed and the classical Newton steps. Because Newton's
method for a system with a nonsingular Jacobian at the solution requires
that unit steps be taken to obtain rapid convergence, we assume that the
merit function allows a = 1 to be used in the update formulae (2.6). Sim-
ilar results to those given in this section can be obtained if the steplengths
converge to one sufficiently quickly.

For the equality-constrained problem a good initial estimate of x can be
used to obtain a good estimate for the optimal multiplier vector. The first
order necessary condition, A l , together with condition A2, leads to the
formula

u* = -[Vh(a;*) tAV/i(x*)]- 1V/i(x*) tAV/(a:* ) (3.1)

for any nonsingular matrix A that is positive definite on the null space of
V/i(x*) t. In particular, if A is taken to be the identity matrix, then (3.1)
defines the least squares solution of the first order necessary conditions. By
our smoothness assumptions, it follows that

u° = -[Vhix^Vhix^^Vhix^Vfix0) (3.2)

can be made arbitrarily close to u* by choosing x° close to x*. Consequently,
no additional assumption will be made about an initial optimal multiplier
estimate for the local convergence analysis.

Denoting the optimal multiplier for (ECQP) by uqp we see that the first
order conditions for this problem are

Bkdx + Vh(xk)Uqp = -Vf(xk),

Vh(xk)tdx = -h(xk).

If, as discussed in Section 2, we set

uk+1 =Uqp = uk + du (3.3)

then the above equations become

Bk dx + Vh(xk)du = -VC(xk,uk), (3.4)

Vh(xk)tdx = ~h(xk). (3.5)

We are now in a position to begin the analysis of the SQP methods.

3.1. The Newton SQP Method

The straightforward SQP method derived from setting

Bk = HC(xk,uk)

will be analyzed first. Assuming that x° is close to x* it follows from (3.2)
that «° can be presumed to be close to u* and hence that HC(x°,u°) is
close to HC*. The local convergence for the SQP algorithm now follows
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from the application of Newton's method to the nonlinear system of equa-
tions obtained from the first order necessary conditions and the constraint
equation:

From assumptions A l and A4 the Jacobian of this system at the solution,

Vh(x*)
? 0

is nonsingular. Therefore, the Newton iteration scheme

xk+l = xk + sx,

uk+1 = uk + su,

where the vector s = (sx, su) is the solution to

J(xk,uk)s = -t>(xk,uk), (3.7)

yields iterates that converge to (x*,u*) quadratically provided (x°,u°) is
sufficiently close to (x*,u*). The equations (3.7) are identical to equations
(3.4) and (3.5) with B\. = H£(xk,uk), dx = sx and du = su. Consequently
the iterates (xk+1, uk+1) are exactly those generated by the SQP algorithm.
For this reason we call this version of the algorithm the (local) Newton SQP
method. The basic local convergence results are summarized in the following
theorem:

Theorem 1 Let x° be an initial estimate of the solution to (NLP) and
let u° be given by (3.2). Suppose that the sequence of iterates {(xk, uk)} is
generated by

xk+l  = xk + dx)

uk+l  = uk + duj

where dx and Uqp = uk + du are the solution and multiplier of the quadratic
program (ECQP) with Bk = H£(xk,uk). Then, if\\x° - x*\\ is sufficiently
small, the sequence of iterates in (x,u)-space is well defined and converges
quadratically to the pair (x*,u*).

It is important to emphasize that this version of the SQP algorithm always
requires a unit step in the variables; there is no line search to try to determine
a better point. If a line search is used (the so-called damped Newton method)
then the rate of convergence of the iterates can be significantly decreased -
usually to linear.

In a sense, the Newton version of the SQP algorithm can be thought of
as the ideal algorithm for solving the nonlinear program: it provides rapid
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convergence with no requirement for line searches and no necessity for the
introduction of additional parameters. Of course, in this form it has littl e
practical value. It is often difficult to choose an initial point close enough
to the true solution to guarantee that the Newton algorithm will converge
to a minimum of /. When remote from the solution HC(xk,uk) cannot
be assumed to be positive definite on the appropriate subspace and hence
a solution to the subproblem (ECQP) cannot be guaranteed to exist. The
value of this Newton SQP method is that it provides a standard against
which the local behavior of other versions can be measured. In fact, to obtain
superlinear convergence it is necessary and sufficient that the steps aproach
the Newton steps as the solution is neared. Despite the disadvantages, the
use of HC(xk,uk) often makes (ECQP) an excellent model of (NLP) and
its use, combined with some of the techniques of Sections 6 and 7, can
lead to effective algorithms. The actual computation of HC(xk,uk) can be
accomplished efficiently by using finite difference techniques or by automatic
differentiation methods.

3.2. Conditions for Local Convergence

Here we discuss the theoretical properties of the approximation matrices,
Bk, that are sufficient to guarantee that the local SQP method will give
Newton-like convergence results. In the following subsections the practi-
cal attempts to generate matrices that satisfy these properties will be de-
scribed.

In order to formulate conditions on B  ̂that will yield locally convergent
SQP algorithms, the following assumption on HC* will be imposed.

A5: The matrix HC* is nonsingular.

In light of A4 most of the results that follow could be extended to cover
the case where this condition is not satisfied, but the resulting complexity
of the arguments would clutter the exposition.

The following conditions on the matrix approximations will be referenced
in the remainder of the paper.

Bl : The matrices Bk are uniformly positive definite on the null spaces of
the matrices S/h(xk)t, that is, there exists a Pi > 0 such that for each k

dlBkd > ft \\d\\2

for all d satisfying
Vh(xk)ld = 0.

B2: The sequence {B^} is uniformly bounded, that is, there exists a /?2 > 0
such that for each k

\\Bk\\<fo.



16 BOGGS AND TOLLE

B3: The matrices Bk have uniformly bounded inverses, that is, there exists
a /?3 > 0 such that for each k, Bk'1 exists and

As the SQP methods require the solution of the quadratic subproblem at
each step, it is imperative that the choice of matrices Bk make that pos-
sible. The second order sufficient conditions for a solution to (ECQP) to
exist require that the matrix Bk be positive definite on the null space of
Wh(xk)t (cf. A4). Condition B l is a slight strengthening of this require-
ment. Assumption A5 and the fact that the matrices Bk are to approximate
the Hessian of the Lagrangian suggest that conditions B2 and B3 are not
unreasonable.

Under assumptions B1-B3 (3.4) and (3.5) have a solution provided (xk,
uk) is sufficiently close to (a;*, u*). Moreover, the solutions can be written
in the form

du = [V/i(a;fc)t.Bfe-
1V/i(a;fc)]-1[/i(x fc) - Vh(a;'!)tSr1V/;(x fc,wfc)] (3.8)

and

dx = -Bk-
lVC(xk,uk+1), (3.9)

where uk+1 is given by (3.3). In particular (3.8) leads to the relation

uk+l = [Vh(xk)tBk~
1Vh(xk)}-1[h(xk)-Vh{xk)tBk~

1Vf(xk)}

= W(xk,Bk).

Setting A = Bk~
l in (3.1) yields

u* = W(x*,Bk).

It can now be deduced that

uk+ l-u* = W(xk,Bk)-W(x*,Bk)

=  [V/i(a;*) t-Bfc-
1V^(a;*)]- 1Vh(a;*)tSfc-

1(JBfc - HC*)(xk - x*)

+wk, (3.10)

where, by assumptions B2 and B3,

Wk < K Xk — X*

for some K independent of k. It should be noted that (3.10) can be used in
conjunction with Theorem 1 to prove that the sequence {xk}  is quadratically
convergent when the Newton SQP method is used and HC* is nonsingular.
In that case {uk}  converges R-quadratically.
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Equations (3.9) and (3.10) and A2 now yield

xk+\ _x*  = xk _ x*  _ Bk-i \yc(xk,uk+l) -

= Bk~
l [(Bk - HC*){xk - x*) - Vh(x*)(uk+1 - u*)

17

= Bk-
lVk{Bk-HC*){xk-x xk-x*\\ ,(3.11)

where

Vk = I - Wh{x*)[Vh{x*)tBk-
1Vh(x*)]-1Vh(x*y:Bk-

1.

The projection operator denned by (2.2), which in the equality-constrained
case has the form

V{x) =1- V/i(x)[V/i(a;) tVh(j;)]- 1V/i(s)t,

satisfies
VkV

k =

Thus (3.11) leads to the inequality

xk+1 - x < \\Bk-
1 \\Vk\\ Vk{Bk-HC*){xk-x*

\xk -x (3.12)

Using induction the above analysis can be made rigorous to yield the fol-
lowing local convergence theorem.

Theorem 2 Let assumptions B1-B3 hold. Then there exist positive con-
stants e and 7 such that if

-rO - <r*l l <- Px — x \\ <. e,

< €

and

\vk(Bk - H£*)(xk - x* 7 \\xk — x* (3.13)

for all k, then the sequences {xk} and {(xk, uk)} generated by the SQP algo-
rithm are well defined and converge linearly to x* and (x*,u*), respectively.
The sequence {uk} converges R-linearly to u*.

Condition (3.13) is, in conjuction with the other hypotheses of the theo-
rem, almost necessary for linear convergence. In fact, if the other hypotheses
of the theorem hold and the sequence {xk} converges linearly, then there
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exists a £ such that

\\rk(Bk - HC*)(xk - x*) x - x*)\

for all k. These results and those that follow indicate the crucial role that
the projection of (Bk — HC*) plays in the theory. The inequality (3.13) is
guaranteed by either of the stronger conditions:

< 7,

or
\\(Bk-HC*)\\< 7 (3.14)

which are easier to verify in practice.
In order to satisfy (3.14) it is not necessary that the approximations

converge to the true Hessian but only that the growth of the difference
\\Bh — HC*\\ be kept under some control. In the quasi-Newton theory for
unconstrained optimization this can be accomplished if the approximating
matrices have a property called bounded deterioration. This concept can be
generalized from unconstrained optimization to the constrained setting in a
straightforward way.

Definition 2 A sequence of matrix approximations, {Bk}, for the SQP
method is said to have the bounded deterioration property if there exist
constants a\ and 02 independent of k such that

\\Bk+l - HC*\\ < \\Bk - HC*\ (3.15)

where

= max{ xk+1 - x> \xk - x* u
fc+1 \uk - u*

It seems plausible that the bounded deterioration condition when applied
to the SQP process will lead to a sequence of matrices that satisfy B2.
B3 and (3.13) provided the initial matrix is close to the Hessian of the
Lagrangian and (xk,uk) is close to (x*,u*). Indeed this is the case, as can
be shown by induction to lead to the following result.

Theorem 3 Suppose that the sequence of iterates {(xk.uk)} is gener-
ated by the SQP algorithm and the sequence {Bk} of symmetric matrix
approximations satisfies Bl and (3.15). If \\x° — x*\\ and \\Bo — HC*\\ are
sufficiently small and u° is given by (3.2) then the hypotheses of Theorem
2 hold.

The linear convergence for the iterates guaranteed by the above theorem is
hardly satisfactory in light of the quadratic convergence of the Newton SQP
method. As would be expected, a stronger relation between the approxima-
tion matrices, Bk, and the Hessian of the Lagrangian is needed to improve
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the rate of convergence; however, this relation still depends only on the pro-
jection of the difference between the approximation and the true Hessian.
With some effort the following theorem can be deduced as a consequence of
the inequalities above.

Theorem 4 Let assumptions B1-B3 hold and let the sequence {(xk, uk)}
be generated, by the SQP algorithm. Assume that xk —> x*. Then the se-
quence {xk} converges to x* superlinearly if and only if the matrix approx-
imations satisfy

\\vk(Bk - H£*){xk+1 - xk)\\
lim 1!  n—: : = 0. (3.16)

fc->oo -Xk)

If this equation holds then the sequence {uk} converges R-superlinearly to
u* and the sequence {(xk,uk)} converges superlinearly.

Not that this theorem requires convergence of the cc-iterates; (3.16) does
not appear to be enough to yield convergence by itself. A slightly different
result that uses a two-sided approximation of the Hessian approximation
can be obtained by writing (3.16) as

<Vk(Bk HC)Vksk Vk
{Bk-HCpQksk\

\ Kll Kll J
where sk = (xk+1 — xk). It can be shown that if only the first term goes to
zero then a weaker form of superlinear convergence holds.

Theorem 5 Let assumptions B1-B3 hold and let the sequence {(xk, uk)}
be generated by the SQP algorithm. Assume that xk —  x*. Then, if

lim
k—»oo

Vk(Bk - HC*)Vk(xk+1 - xk)
= 0, (3.18)

(xk+1-xk)\

the sequence {xk} converges to x* two-step superlinearly.

If the sequence {xk+1 — xk} approaches zero in a manner tangent to the null
space of the Jacobians, that is,

.. Qk{xk+1-xk) n
l i m —M-* rp- = 0,

k—>oo L.fc+1 _ T* :

then (3.18) implies (3.16) and superlinear convergence results. This tan-
gential convergence has been observed in practice for some of the methods
discussed below.

It has been difficult to find useful updating schemes for the Bk that sat-
isfy these conditions for linear and superlinear convergence. Two basic ap-
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proaches have been tried for generating good matrix approximations. In full
Hessian approximations the matrices Bk are chosen to approximate HC*
while in reduced Hessian approximations only matrices that approximate the
Hessian on the null space of the Jacobians of the constraints are computed.
Each of these methods will be described in turn.

3.3. Full Hessian Approximations

An obvious choice of the matrix Bk is a finite-difference approximation of the
Hessian of the Lagrangian at (xk, uk). It is clear from Theorems 2 and 4 that
if a finite-difference method is used, the resulting sequence will be superlin-
early convergent if the finite-difference step size goes to zero and will have
rapid linear convergence for fixed step size. Of course using finite-difference
approximations, while not requiring evaluation of second derivatives, suffers
from the same global difficulties as the Newton SQP method described in
the earlier subsection.

As has been seen, one way of obtaining convergence is to use a sequence
of Hessian approximations that satisfies the bounded deterioration property.
However, this property is not, by itself, enough to guarantee that (3.16)
is satisfied and hence it does not guarantee super linear convergence. The
condition (3.16) essentially requires the component of the step generated
by the Hessian approximation in the direction of the null space to converge
asymptotically to the corresponding component of the step generated by
the Newton SQP method. In the following a class of approximations called
secant approximations, which satisfy a version of this condition and have
the bounded deterioration property as well, is considered.

Under the smoothness assumptions of this paper the Lagrangian satisfies

VC(xk+1, uk+1) - VC(xk,uk+1) « HC(xk+\uk+1)(xk+1 - xk),

with equality if the Lagrangian is quadratic in a;. As a result, it makes sense
to approximate the Hessian of the Lagrangian at (xk+l ,uk+1) by requiring
.Bfc+i to satisfy

Bk+1(x
k+1 - xk) = WC(xk+l,uk+1) - V£(xk, uk+1), (3.19)

especially since this approximation strongly suggests that (3.16) is likely to
be satisfied near the solution. Equation (3.19) is called the secant equation;
it plays an important role in the algorithmic theory of nonlinear systems
and unconstrained optimization.

A common procedure for generating the Hessian approximations that sat-
isfy (3.19) is to compute (xk+1,uk+1) with a given Bk and then to update
Bk according to
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where Uk is a rank-one or rank-two matrix that depends on the values of
Bk, xk, uk, xk+l and uk+1. In choosing secant approximations that have
the bounded deterioration property, it is natural to look to those updating
schemes of this type that have been developed for unconstrained optimiza-
tion.

The rank-two Powell-symmetric-Broyden (PSB) formula gives one such
updating scheme. For the constrained case this update is given by

B k + l = Bk + y - r ^ i i y t 1

where
s = xk+1 - xk (3.21)

and

y = V£(asfc+1, uk+1) - VC(xk, uk+1). (3.22)

The PSB-SQP algorithm which employs this update has been shown to have
the desired local convergence properties.

Theorem 6 Suppose that the sequence of iterates {(xk, uk)} is generated
by the SQP algorithm using the sequence {Bk} of matrix approximations
generated by the PSB update formulas, (3.20)-(3.22). Then, if \\x° - x*\\
and ||Bo — HC(x*,u*)\\ are sufficiently small and u° is given by (3.2), the
sequence {Bk} is of bounded deterioration and the iterates (xk, uk) are well
defined and converge superlinearly to (x*,u*). In addition the x-iterates
converge superlinearly and the multipliers converge R-superlinearly.

Note that there is no assumption of positive definiteness here. In fact, while
B2 and B3 are satisfied as a result of the bounded deterioration, Bl does not
necessarily hold. Consequently, dx and du are solutions of not necessarily
(ECQP), but of the first order conditions (3.4) and (3.5).

As a practical method, the PSB-SQP algorithm has the advantage over the
Newton SQP method of not requiring the computation of the Hessian of the
Lagrangian (but, as a result, yields only super linear rather than quadratic
convergence). However, because the matrices are not necessarily positive
definite it suffers from the same serious drawback; the problem (ECQP) may
not have a solution if the initial starting point is not close to the solution.
Consequently, it does not appear to be useful in establishing a globally
convergent algorithm (see, however, Section 6). As mentioned above, solving
(ECQP) requires that the matrices be positive definite on the appropriate
subspace for each subproblem. One way to enforce this is to require the
matrices to be positive definite.
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A rank-two updating scheme that is considered to be the most effective
for unconstrained problems and has useful positive definite properties is the
BFGS method. The formula for this update, generalized to be applicable to
the constrained problem, is

Bk+i — B).
sty

where s and y are as in (3.21) and (3.22). The important qualities of the
matrices generated by this formula are that they have the bounded deterio-
ration property and satisfy a hereditary positive definiteness condition. The
latter states that if Bk is positive definite and

yxs > 0 (3.24)

then .Bfc+i is positive definite. If the matrix approximations are positive
definite then (ECQP) is easily solved and the SQP steps are well defined.
Unfortunately, because the Hessian of the Lagrangian at (x*,u*) need only
be positive definite on a subspace, it need not be the case that (3.24) is
satisfied and hence the algorithm may break down, even close to the solution.
However, if the Hessian of the Lagrangian is positive definite, (3.24) is valid
provided Bk is positive definite and (xk, uk) is close to (x*,u*). In this case
this BFGS-SQP algorithm has the same local convergence properties as the
PSB-SQP method.

Theorem 7 Suppose that HC* is positive definite and let Bo be an initial
positive definite matrix. Suppose that the sequence of iterates {(xk,uk)}
is generated by the SQP algorithm using the sequence of matrix approx-
imations generated by the BFGS update (3.23). Then, if \\x° — x*\\ and
\\Bo — HC(x*,u*)\\ are sufficiently small and u° is given by (3.2), the se-
quence {Bk} is of bounded deterioration and (3.16) is satisfied. Therefore,
the iterates (xk,uk) converge superlinearly to the pair (x*,u*). In addi-
tion the x-iterates converge superlinearly and the multipliers converge R-
superlinearly.

The assumption that HC* is positive definite allows Bo to be both positive
definite and close to HC*. The requirement that HC* be positive definite is
satisfied, for example, if (NLP) is convex, but cannot be assumed in general.
However, because the positive definiteness of Bk permits the solution of the
quadratic subproblems independently of the nearness of the iterate to the
solution, the BFGS method has been the focus of vigorous research efforts
to adapt it to the general case. Several of these efforts have resulted in
implementable algorithms.

One scheme, which we call the Powell-SQP method, is to maintain the
positive definite property of the Hessian approximations by modifying the
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update formula (3.23) by replacing y in (3.22) with

y = 6y + (l-e)Bks (3.25)

for some 6 e (0,1]. With this modification, the condition (3.24) can always
be satisfied although the updates no longer satisfy the secant condition. Nev-
ertheless, it has been shown that a specific choice of 0 leads to a sequence,
{xk}, that converges R-superlinearly to x* provided that the sequence con-
verges. Unfortunately, no proof of local covergence has been found although
algorithms based on this procedure have proven to be quite successful in
practice.

A second approach is to transform the problem so that HC* is posi-
tive definite and then to apply the BFGS-SQP method on the transformed
problem. It is a common trick in developing algorithms for solving equality-
constrained optimization problems to replace the objective function in (NLP)
by the function

for a positive value of the parameter 77. This change gives a new Lagrangian
function, the so-called augmented Lagrangian

£A(x,u) = £(x,u) +  Tl\\h(x)\\2 ,

for which (x* ,u*) is a critical point. The Hessian of the the augmented
Lagrangian at (x*  ,u*) has the form

HCA{x*,u*)  = HC* +r 1Wh(x*)Vh(x*)t.

It follows from A4 that there exists a positive value rj*  such that for 77 > 77*,
HCA(X*,U*) is positive definite. If the value of rf is known then the
BFGS-SQP algorithm can be applied directly to the transformed prob-
lem with 77 > rf and, by Theorem 7, a superlinearly convergent algorithm
results. This version of the SQP algorithm has been extensively studied
and implemented. Although adequate for local convergence theory, this
augmented-BFGS method has major drawbacks that are related to the fact
that it is difficult to choose an appropriate value of 77. To apply Theo-
rem 7, the value of 77 must be large enough to ensure that HCA(x*,u*)
is positive definite, a condition that requires a priori knowledge of x*. If
unnecessarily large values of rf are used without care numerical instabil-
ities can result. This problem is exacerbated by the fact that if the it-
erates are not close to the solution' appropriate values of 77 may not ex-
ist.

Quite recently, an intriguing adaptation of the BFGS-SQP algorithm has
been suggested that shows promise of leading to a resolution of the above
difficulties. This method, called the SALSA-SQP method, is related to the
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augmented Lagrangian SQP method but differs (locally) in the sense that a
precise estimate of 77 can be chosen independently of x*. If

yA = VCA{xk+\uk^) - VCA(xk,

then

where y is the vector generated by the ordinary Lagrangian in (3.22). If

yAs > 0, (3.26)

then the BFGS updates for the augmented Lagrangian have the hereditary
positive definiteness property. A minimum value of rfk, not directly depen-
dent on x*, can be given that guarantees that y\s is 'sufficiently' positive
for given values of xk and uk+1 in a neighbourhood of (x*,u*). The (local)
version of this algorithm proceeds by using the augmented Lagrangian at
each iteration with the required value of rjk (which may be zero) to force
the satisfaction of this condition. The Bk generated by this procedure are
positive definite while HC* may not be; hence, the standard bounded dete-
rioration property is not applicable. As a result a local convergence theorem
is not yet available. As in the Powell-SQP algorithm, an R-superlinear rate
of convergence of the xk to x* has been shown, provided that the sequence
is known to converge.

3.4- Reduced Hessian SQP Methods

An entirely different approach to approximating the Hessian is based on
the fact that assumption A4 requires HC* to be positive definite only on
a particular subspace. The reduced Hessian methods approximate only the
portion of the Hessian matrix relevant to this subspace. The advantages
of these methods are that the standard positive definite updates can be
used and that the dimension of the problem is reduced t o n -m (possibly
a significant reduction). In this section we discuss the local convergence
properties of such an approach. Several versions of a reduced Hessian type of
algorithm have been proposed; they differ in the ways the multiplier vectors
are chosen and the way the reduced Hessian approximation is updated, in
particular, in the form of y that is used (see (3.31)). A general outline of
the essential features of the method is given below.

Let xk be an iterate for which V/i(a?fc) has full rank and let Z\- and Yjt
be matrices whose columns form bases for the null space of Vh(xk)*  and
range space of Vh(xk), respectively. Also assume that the columns of Z  ̂are
orthogonal. Z& and Yk could be obtained, for example, by a QR factorization
of Vh(xk).
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Definitio n 3 Let (xk,uk) be a given solution-multiplier pair and assume
that Vh(xk) has full rank. The matrix

is called a reduced Hessian for the Lagrangian function at (xk,uk).

The reduced Hessian is not unique; its form depends upon the choice of basis
for the null space of Vh.(a;fc)t. Since by A4 a reduced Hessian at the solution
is positive definite, it follows that if (xk,uk) is close enough to (x*,u*) then
the reduced Hessian at (xk, uk) is positive definite. Decomposing the vector
dx as

dx = ZkPz+YkpY (3.27)

it can be seen that the constraint equation of (ECQP) becomes

Vh(xk)tYkpY = -h(xk),

which by virtue of A2 can be solved to obtain

pY = -[Vh(xk)tYk]-
1h(xk). (3.28)

The minimization problem (ECQP) is now an unconstrained problem in
n — m variables given by

minimize \pz
xZk

xBkZk pz + (Vf{xkf + pY
xBk)Zk pz.

Pz
The matrix in this unconstrained problem is an approximation to the re-
duced Hessian of the Lagrangian at xk. Rather than update Bk and then
compute Zk

xBkZk, the reduced matrix itself is updated. Thus at a partic-
ular iteration, given a positive definite (n — m) x (n — m) matrix Rk, an
iterate xk and a multiplier estimate uk, the new iterate can be found by
first computing pY from (3.28), setting

pz = -R^Zk\Vf(xk) + BkPy), (3.29)

and setting a;fc+1 = xk + dx, where dx is given by (3.27). A new multiplier,
uk+1, is generated and the reduced Hessian approximation is updated using
the BFGS formula (3.23) with the Rk replacing Bk,

s = Zk\x
k+1 - xk) = Zk

xZk pz (3.30)

and

y = Zk
t[VC(xk + Zkpz,u

k) - VC{xk,uk)]. (3.31)

The choices of s and y are motivated by the fact that only the reduced
Hessian is being approximated.

This method does not stipulate a new multiplier iterate directly since
the problem being solved at each step is unconstrained. However, the least
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squares solution for the first order conditions (cf. (3.2)) can be used. Gen-
erally, all that is needed is that the multipliers satisfy

(3.32)

Since Vk = Z^Z  ̂ the approximation

k

can be thought of as an approximation of

VkHC(xk,uk)Vk.

Thus since this method does not approximate

VkHC*

neither the local convergence theorem nor the superlinear-rate-of-conver-
gence theorem, Theorems 2 and 4, follow as for full Hessian approximations.
Nevertheless, the two-sided approximation of the Hessian matrix suggests
that the conditions of Theorem 3.5 may hold. In fact, if it is assumed that
the matrices Zk are chosen in a smooth way, that is, so that

\\Zk-Z(x*)\\ = o(\\xk-x*\\), (3.33)

the assumption of local convergence leads to two-step superlinear conver-
gence.

Theorem 8 Assume that the reduced Hessian algorithm is applied with
uk and Zk chosen so that (3.32) and (3.33) are satisfied. If the sequence {xk}
converges to x* R-linearly then {Rk} and {R^1} are uniformly bounded and
{xk} converges two-step superlinearly.

While the condition on the multiplier iterates is easy to satisfy, some care
is required to ensure that (3.33) is satisfied as it has been observed that
arbitrary choices of Z  ̂ may be be discontinuous and hence invalidate the
theorem.

3.5. Notes and References

The study of Newton's method applied to the first order necessary condi-
tions for constrained optimization can be found in Tapia (1974) and Good-
man (1985). The equivalence of Newton's method applied to the system of
first order equations and feasibility conditions and the SQP step with the
Lagrangian Hessian was first mentioned by Tapia (1978).

The expository paper Dennis and More (1977) is a good source for an
introductory discussion of bounded deterioration and of updating methods
satisfying the secant condition in the setting of unconstrained optimization.
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The paper by Broyden, Dennis and More (1973) provides the basic results
on the convergence properties for quasi-Newton methods.

Theorems (2) and (4) were first proven by Boggs, Tolle and Wang (1982).
The latter theorem was proven under the assumption that the iterates con-
verge linearly, generalizing the result for unconstrained optimization given
in Dennis and More (1977). The assumption was substantially weakened
by several authors; see, for example, Fontecilla, Steihaug and Tapia (1987).
Theorem (5) is due to Powell (1978b). The paper by Coleman (1990) con-
tains a good general overview of superlinear convergence theorems for SQP
methods.

The (local) superlinear convergence of the PSB-SQP method was proven
by Han (1976) in his first paper on SQP methods. This paper also included
the proof of superlinear covergence for the positive definite updates when the
Hessian of the Lagrangian is positive definite (Theorem (7)) and suggested
the use of the augmenting term in the general case. The augmented method
was also investigated in Schittkowski (1981) and Tapia (1977). A description
of the Powell-SQP method appears in Powell (1978b) while the SALSA-SQP
method is introduced in Tapia (1988) and developed further in Byrd, Tapia
and Zhang (1992).

The reduced Hessian SQP method has been the subject of research by a
number of authors. The presentation here follows that of Byrd and Nocedal
(1991). Other important articles include Coleman and Conn (1984), Nocedal
and Overton (1985), Gabay (1982), Yuan (1985) and Gilbert (1993). The
problems involved in satisfying (3.33) have been addressed in Byrd and
Schnabel (1986), Coleman and Sorensen (1984) and Gill et al. (1985).

Other papers of interest on local convergence for SQP methods include
Schittkowski (1983), Panier and Tits (1993), Bertsekas (1980), Coleman and
Feynes (1992), Glad (1979), Fukushima (1986) and Fontecilla (1988).

4. Meri t Functions and Global Convergence

In the previous section we demonstrated the existence of variants of the SQP
method that are rapidly locally convergent. Here we show how the merit
function assures that the iterates eventually get close to a critical point;
in the next section we point out some gaps in the theory that prevent a
complete analysis.

A merit function <f>  is incorporated into an SQP algorithm for the purpose
of achieving global convergence. As described in Section 2.3, a line-search
procedure is used to modify the length of the step dx so that the step from
xk to xk+l reduces the value of <f>.  This reduction is taken to imply that
acceptable progress towards the solution is being made.

The standard way to ensure that a reduction in <p indicates progress is
to construct (f> so that the solutions of (NLP) are the unconstrained min-
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imizers of (j). Then it must be possible to decrease <j>  by taking a step in
the direction dx generated by solving the quadratic subproblem, that is, dx

must be a descent direction for </>. If this is the case, then for a sufficiently
small a, <p(xk + adx) will be less than (f>{xk). An appropriate steplength
that decreases (j>  can then be computed; for example, by a 'backtracking'
procedure of trying successively smaller values of a until a suitable one is
obtained.

Given that a merit function is found that has these properties and that a
procedure is used to take a step that decreases the function, global conver-
gence proofs for the resulting SQP algorithm are generally similar to those
found in unconstrained optimization: they depend on proving that the limit
points of the cc-iterates are critical points of (f>. These proofs rely heavily on
being able to guarantee that a 'sufficient' decrease in <j>  can be achieved at
each iteration.

In unconstrained minimization there is a natural merit function, namely,
the objective function itself. In the constrained setting, unless the iterates
are always feasible, a merit function has to balance the drive to decrease
/ with the need to satisfy the constraints. This balance is often controlled
by a parameter in <j)  that weights a measure of the infeasibility against the
value of either the objective function or the Lagrangian function. In this
section, we illustrate these ideas by describing two of the most popular
merit functions: a differentiable augmented Lagrangian function and the
simpler, but nondifferentiable, £.\ penalty function. We derive some of the
important properties of these functions and discuss some of the advantages
and disadvantages of each. In addition, we provide appropriate rules for
choosing the steplength parameter so as to obtain the basic convergence
results.

To simplify the presentation we restrict our attention at the beginning to
the problem with only equality constraints. Extensions that allow inequality
constraints are discussed at the ends of the sections.

As might be expected, some additional assumptions are needed if global
convergence is to be achieved. In fact, the need for these assumptions raises
the issue as to what exactly is meant by 'global' convergence. It is impossible
to conceive of an algorithm that would converge from any starting point
for every (NLP). The very nature of nonlinearity allows the possibility, for
example, of perfectly satisfactory iterations following a steadily decreasing
function towards achieving feasibility and a minimum at some infinite point.
In order to focus attention on the methods and not the problem structure
we make the following assumptions.

C l : The starting point and all succeeding iterates lie in some compact set
C.

C2: The columns of Vh(x) are linearly independent for all x e C.
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The first assumption is made in some guise in almost all global conver-
gence proofs, often by making specific assumptions about the functions.
The second assumption ensures that the systems of linearized constraints
are consistent. An additional assumption wil l be made about the matrix
approximations B^, depending on the particular merit function.

4-1. Augmented Lagrangian merit functions

Our first example of a merit function is the augmented Lagrangian function.
There are several versions of this function; we use the following version to
illustrate the class:

<l> F(x; V) = f(x) + Hxfuix) + | \\h(x)\\l, (4.1)

where r\ is a constant to be determined and

u{x) = - \sjh{x)^h{x)\ ~*  V/i(x) tV/(a;). (4.2)

The multipliers TZ(JC) defined by (4.2) are the least squares estimates of the
optimal multipliers based on the first order necessary conditions and hence
u(x*) = u* (see (3.1) and (3.2)). Under the assumptions, <j> F and u are
differentiable and <f>p is bounded from below on C for r/ sufficiently large.
The following, formulae wil l be useful in the discussion:

) , (4.3)

= V/(x) + Vh(x)u(x)

+Vu(x)h(x) + rjVh(x)h(x). (4.4)

The function Ri(x) in (4.3) is bounded and satisfies R\(x*) = 0 if x*
satisfies the first order necessary conditions.

The following theorem establishes that the augmented Lagrangian merit
function has the essential properties of a merit function for the equality-
constrained nonlinear program.

Theorem 9 Assume Bl , B2, Cl and C2 are satisfied. Then for 77 suffi-
ciently large the following properties hold:

(i) x* € C is a strong local minimum of <f)F if and only ifx* is a strong
local minimum of (NLP) and

(ii)  if x is not a critical point of (NLP) then dx is a descent direction
for <j> F.

The proof is rather technical, but it does illustrate the techniques that are
often used in such arguments and it provides a useful intermediate result,
namely, (4.10). A key idea is to decompose certain vectors according to the
range- and null-space projections V and Q.
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Proof. If x* G C is feasible, and satisfies the first order necessary conditions,
then it follows from (4.4) that V<t>F(x*,rj)  = 0. Conversely, if a;*  € C,
V(f)F(x*;rj)  = 0 and r]  is sufficiently large then it follows from Cl and C2
that h(x*) = 0 and x* satisfies A l for (NLP). To establish (i), the relation
between H4>F(x*;  rj) and HC* must be explored for such points x*. It follows
from (4.4) that

H<j> F{x*;i)  = HC* - Q*HC* - HC*Q* + ??Vh(x*)V/i(a;*) t, (4.5)

where Q* is defined by (2.3). Now let y € Tln, y + 0, be arbitrary. Then
setting y = Q*y + V*y, (4.5) yields

- (V*y)tHC*(V*y)-(Q*y)tHC*(Q*y)
+v(Q*y)t [vhix^VHx*)*}  (Q*y).

Assume that x* is a strong local minimum of (NLP). Since Q*y is in the
range space of Wh(x*), it follows from A2 that there exists a constant /x
such that

(Q*y)t [vhOz^VM**)' ] (Q*y) > v\\Q*y\\2-

Let the maximum eigenvalue of HC* in absolute value be crmax and let crmin
be the minimum eigenvalue of V*HC*V*,  which by A4 is positive. Defining

r= \\Q*y\\
\\y\\ '

which implies

_ .
llvf

and dividing both sides of (4.6) by ||y||2 gives

yxH(j> F{x*;r))y
— c r r a a x —

This last expression wil l be positive for r]  sufficiently large, which implies
that x* is a strong local minimum of (f>F. Conversely, if x* is a strong local
minimum of <f> F then (4.6) must be positive for all y. This implies that HC*
must be positive definite on the null space of V/i(a;*) t and hence that x* is
a strong local minimum of (NLP). This establishes (i).

To show that the direction dx is always a descent direction for 4>F, t n e

inner product of both sides of (4.4) is taken with dx to yield

k) { '
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Using (4.2) it follows that

J ILyjL  J — LLX V ItyJL  J V ItyjL)  V IbyJLJ  V flydj  j V J \*L*)

(4.8)
Writing dx = Qkdx+Vkdx and noting that h(xk) = -V/i(ccfe)tQfedx results
in

= Vkdx
tVf(xk)-dx

tVu(xk)Vh(xk)tQkdx

f\ (Qkdx).

Finally, using the first order necessary conditions for (ECQP) and the fact
that VkVh(xkf = 0, the following is obtained:

= -{VkdxfBk{V
kdx)-{Q

kdxfBkdx

-dx
tVu(xk)Vh{xk)tQkdx (4.9)

\ \ (Qkdx).

Now, from (4.3) and assumptions Cl and C2 it follows that

dx
tVu(xk)Vh(xk)tQkdx < 7 l \\Q

kdx\\ \\dx\\

for some constant 71. Dividing both sides of (4.9) by ||dz|| , letting

Qkdx\\
e =

\dx\

and using B l yields

|2 - < -01 + 726 - r?73e
2 (4.10)

*x |

for constants 72 and 73. The quantity on the left of (4.10) is then negative
and can be uniformly bounded away from zero provided 77 is sufficiently
large, thus proving dx is a descent direction for 4>.

I t is interesting to observe that the value of rj  necessary to obtain descent
of dx depends on the eigenvalue bounds on {-Bfe} , whereas the value of 7/
necessary to ensure that x* is a strong local minimizer of 4>p depends on the
eigenvalues of HC*. Thus a strategy to adjust 77 to achieve a good descent
direction may not be sufficient to prove that H(f>F(x*) is positive definite.
We comment further on this below.

This line of reasoning can be continued to obtain a more useful form of
the descent result. From (4.4) and arguments similar to those above,
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for some constant 74. Thus from (4.10) it follows that there exists a constant
75 such that

V<t> F{xk;r,fdx

Kll
< -75 < 0 (4.11)

for all k. This inequality ensures that the cosine of the angle 8k between
the direction dx and the negative gradient of <fr F is bounded away from zero,
that is, for all k

V ^ ( ! t ; " ? ' d
5 > 0 . (4.12)

11*11
This condition is sufficient to guarantee convergence of the sequence if it
is coupled with suitable line-search criteria that impose restrictions on the
steplength a. For example, the Wolfe conditions require a steplength a to
satisfy

< (f)F(xk;rj)  + cria, V<fiF(xk;r)) tdx, (4.13)

> a2V<j> F(xk;v)tdx, (4.14)

where 0 < o\ < a2 < 1. Inequality (4.13) ensures that there wil l be a
sufficient reduction in 4>F while (4.14) guarantees that the steplength a will
not be too small. An important property of these conditions is that if dx is
a descent direction for <f> F, then a steplength a satisfying (4.13)-(4.14) can
always be found. Furthermore, the reduction in 4>F for such a step satisfies

(xk;v) - 76

for some positive constant 76. Therefore

£cos2(0f c ) \\V<f>F(xk;ri)  < 00 (4.15)
fe=i

and, since cos(0fc) is uniformly bounded away from 0, it follows that

lim S/(pF(xk;rj)  = 0.
k—HX

This implies that {xk} converges to a critical point of 4>F. The following
theorem results:

Theorem 10 Assume that r\ is chosen such that (4.12) holds. Then the
SQP algorithm with steplength a chosen to satisfy the Wolfe conditions
(4.13)-(4.14) is globally convergent to a critical point of' 4>F.

If the critical points of <j) F all correspond to local minima of (NLP) then
the algorithm wil l converge to a local solution. This, however, can rarely
be guaranteed. Only convergence to a critical point, and not to a local
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minimum of <f>p, is guaranteed. It is easy to see from the following example
that convergence can occur to a local maximum of (NLP). Consider

minimize x\
x (4-16)

subject to: x\ + x\ — 1 = 0

with a starting approximation of (2,0) and Bj. = / for all k. The iterates
will converge from the right to the point (1,0), which is a local maximum
of the problem, but <pF will decrease appropriately at each iteration. The
point (1,0), however, is a saddle point of $F- In practice convergence to a
maximizer of (NLP) rarely occurs.

Theorems 9 and 10 require that 77 be sufficiently large. Since it is not
known in advance how large 77 needs to be, it is necessary to employ an
adaptive strategy for adjusting 77 when designing a practical code. Such
adjustment strategies can have a dramatic effect on the performance of the
implementation, as is discussed in Section 7.

Augmented Lagrangian merit functions have been extended to handle
inequality constrained problems in several ways. Two successful approaches
are described below.

In the first an active set strategy is employed, that is, at each iteration
a set of the inequality constraints is selected and treated as if they were
equality constraints; the remaining inequalities are handled differently. The
active set is selected by using the multipliers from (QP). In particular,

With this choice, Jfc will contain all unsatisfied constraints and no 'safely
satisfied' ones. The merit function at xk is defined by

<f>pi  is still differentiable and, as a result of A3, the correct active set is
eventually identified in a neighbourhood of the solution. In this formula-
tion, the multipliers are the multipliers from (QP), not the least squares
multipliers. Therefore <f)FI is a function of both x and these multipliers and,
consequently, the analysis for <f)FI is somewhat more complicated.
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A second approach uses the idea of squared slack variables. One can
consider the problem

(4.17)

where t is the vector of slack variables. This problem is equivalent to (NLP)
in the sense that both have a strong local solution at x* where, in (4.17),
(t*) 2 = —gi(x*). By writing out the function cf>F for the problem (4.17), it
is observed that the merit function only involves the squares of t{. Thus, by
letting Zi = t2 and setting

minimize
x, t

subject to:

T\x)

9i(a

h(x)
') + (ti)2

= o,
= o,

we can construct the merit function

4>FZ{x,z) = f(x) + h(x,z)tu(x,z) + -

Here u(x,z) is the least squares estimate for all of the multipliers. Note
that (4.17) is not used to create the quadratic subproblem, but rather (QP)
is solved at each iteration to obtain the step dx. The slack variables can
then be updated at each iteration in a manner guaranteed to maintain the
nonnegativity of z. For example, a step

dz =-(Vg(xk)tdx'+g(xk) + zk)

can be calculated. Then the constraints of (QP) imply that zk+l = zk +
adz > 0 if zk > 0 and a € (0,1].

4-2. The £i Merit Function

One of the first merit functions to be introduced was the l\ exact penalty
function that, in the equality-constrained case, is given by

) \ \ 1 , (4.18)

where p is a positive constant to be chosen. The properties of this function
vis-a-vis the equality-constrained optimization problem have been well doc-
umented in the literature. For our purposes it is sufficient to note that 4>\,
like the augmented Lagrangian of the previous section, is an 'exact' penalty
function; that is, there exists a positive p* such that for all p > p*, an uncon-
strained minimum of fa corresponds to a solution of (NLP). Note that fa
is not differentiate on the feasible set. If the penalty term were squared to
achieve differentiability then the 'exact' property would be lost; minimizers
of fa would only converge to solutions of (NLP) as p —> oo.
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Although (j)\ is not differentiable, it does have a directional derivative
along dx. It can be shown that this directional derivative, denoted by the
operator D, is given by

D(<t> l(x
k;p);dx) = Vf(xk)tdx-p\\h(xk)\\i. (4.19)

Substituting the first order necessary conditions for (ECQP) into (4.19)
yields

D(<f> 1(x
k; p); dx) = -dx

xBkdx - dx*Vh(xk)U(iP - p \

It follows from the linearized constraints of (ECQP) that

dx
tVh(xk)uqp = -/i(a;fc)1:Uqp

and, since

M* fc)t«qP<ll«qplloo||Ma'A! )||1. (4-20)

the inequality

D(<P(xk;p);dx) < -dx
lBkdx - (p - \\Uqp\\J fM**) ^ (4-21)

is obtained. In order to have dx be a descent direction for fa and to ob-
tain a convergence theorem it is sufficient to assume the uniform positive
definiteness of {Bk}:

B4: For all d € Tln there are positive constants 0\ and 02 > 0 such that

Ih \\d\\2 < dxBkd < 02 \\d\\2

for all k.

The assumptions Bl and B2 that were made for the augmented Lagrangian
are sufficient, but we make the stronger assumption to simplify the presen-
tation. Using B4, the first term in (4.21) is always negative and thus dx is
a guaranteed descent direction for 4>\ if p > HwqpH -̂

Global convergence of an algorithm that uses ^ as a merit function can
be demonstrated using arguments similar to those for Theorem 9. First, at
each iteration, the parameter p is chosen by

P=ll«qplloo + P (4-22)

for some constant p > 0. Next, the first Wolfe line-search condition, (4.13),
is replaced by

xk;pY,dx), (4.23)

where C S (0, | ). (The condition £ < ^ is for technical reasons; in practice
C is usually chosen to be much smaller.) Recall that the second of the
Wolfe conditions, (4.14), is to prevent a steplength that is too small. The
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assumptions that have been made guarantee that the use of a backtracking
line-search procedure produces steplengths that are uniformly bounded away
from zero for all iterations. Denoting this lower bound by a, it now follows
from (4.21) and (4.23) that the reduction in <f) l at each step satisfies

fa{xk + adx) - fa{xk) < -C" [w K l l 2 + P \h<y*k)\]  (4-24)

Assumption Cl and (4.24) imply that

and therefore

< oo
fc=l'  '  ' l l

2
dx(x

k)\\ + \\h(xk) -> 0 as k -> oo. Since dx = 0 if and

only if xk is a feasible point satisfying Al , the following theorem results.

Theorem 11 Assume that p is chosen such that (4.22) holds. Then the
SQP algorithm started at any point x° with steplength a > a > 0 chosen
to satisfy (4.23) converges to a stationary point of fa.

As in the case of 4>F convergence to a local minimum of (NLP) cannot
be guaranteed. In fact, the same counterexample used in that case applies
here.

An advantage of fa over the augmented Lagrangian is that fa is easily
extended to handle inequalities. Since differentiability is not an issue in this
case, the function (j)l can simply be defined as

where
+ _ r o if  9i(x) < o,

9i {X) ~ \ 9i(x) if  9i(x) > 0.

All of the theoretical results continue to hold under this extension.
The merit function 0X has been popular because of its simplicity - it

requires only the evaluation of /, h and g to check a prospective point. (f>F,
on the other hand, is expensive to evaluate in that it requires the evaluation
of /, h, g and their gradients just to check a prospective point. In addition,
in the large scale case, the evaluation of u(x) involves nontrivial algebra.
Implementations that use these merit functions partially circumvent this
difficulty by using an approximation to <f> F, for example, by approximating
u by a linear function or by keeping it fixed over the current step.

4-3. Notes and References

The augmented Lagrangian merit function was first proposed as an exact
penalty function by Fletcher (1972). See also Bertsekas (1982) and Boggs
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and Tolle (1980). It was suggested as a merit function in Powell and Yuan
(1986) and in a slightly different form in Boggs and Tolle (1984) and Boggs
and Tolle (1989). See Byrd and Nocedal (1991) for its application to reduced
Hessian methods. The Wolfe conditions have been studied by numerous
authors; we recommend Nocedal (1992) or Dennis and Schnabel (1983).

Schittkowski (1981) and Schittkowski (1983) developed the form for in-
equalities given by (f)FI. This form has been further developed and incorpo-
rated into a highly successful algorithm by Gill et al. (1986). Boggs, Tolle
and Kearsley (1991) proposed the form given by (frpz-

The £\ exact penalty function was originally suggested as a merit function
by Han (1977) where he obtained the first global convergence results for SQP
methods. See Fletcher (1981) for a good introduction to nondifferentiable
optimization and the use of this function. See also Polak (1989) and Wolfe
(1975). Byrd and Nocedal (1991) study the i\ merit function in the context
of reduced Hessian methods. The analysis for the l\ merit function applies
to the corresponding £p merit function with the only change ocurring in
(4.20), where the oo-norm and the 1-norm are replaced by the p-norm and
the q-norm with 1/p + 1/q = 1.

5. Global to Local Behaviour

In the previous two sections we have examined conditions that imply that
the basic SQP algorithm will converge. Section 3 dealt with local conver-
gence where the emphasis was on the rates of convergence, while Section 4
was concerned with obtaining convergence from remote starting points, the
implicit hope being that the two theories would come together to produce a
unified theory that would be applicable to a given algorithm. For the global
convergence theories, where the process has to be controlled by a merit func-
tion, it was seen in Section 4 that convergence of {xk} to a critical point
of <f>  is all that can be demonstrated. Assuming that this critical point is a
solution of (NLP), the question that arises is whether or not the conditions
for the local convergence theories are eventually satisfied by this sequence.
If they are then the more rapid rates of local convergence can be achieved.
In this section we discuss three questions concerning this possibility: will
the correct active set be chosen by (QP) when xk is close to x*;  will Bk
eventually approximate HC* in one of the ways stipulated in Section 3 that
yields rapid local convergence; and will the merit function allow a steplength
of one if the underlying process can achieve rapid local convergence?

Recall that the local convergence theory was proven for equality-con-
strained problems only. This was based on the assumption that the active
inequality constraints at the solution of (NLP) would be identified by (SQP)
when xk gets close to the solution. The question of when the active con-
straints for (QP) will be the same as those for (NLP) is resolved by using a
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perturbation theory result as follows. Consider (NLP) with only inequality
constraints

minimize f(x)
x (5.1)

subject to: g(x) < 0

and the quadratic program with the same solution

minimize V/(a;*)t(a; -x*) + \{x- x*)xB{x - x*)
x (5.2)

subject to: Vg(x*)*^ - a:*) + g(x*) < 0,

where the only restriction on B is that

VXBy > 0 (5.3)

for all y such that Vg(x*)*y — 0. It is easily verified that (x*,v*) is a
strong local minimizer of both (5.1) and (5.2). This implies that the active
sets are the same and that strict complementary slackness (assumption A3)
holds for both. The quadratic programming approximation to (5.1) is

minimize V/(x fc) tdx + ^dx Bf-dx

dx (5.4)
subject to: Vflr(a;fc)tdx + g(xk) < 0.

A standard perturbation argument now asserts that if xk is close enough to
x* and Bk is close enough to B, then the active set for (5.4) is the same as
the active set for (5.2). It follows that the active sets for (5.1) and (5.4) are
the same. As a result, if xk is sufficiently close to x* and Bk is sufficiently
close to any matrix B satisfying (5.3) then (5.4) will identify the correct
active set. The condition (5.3) will be satisfied if the Bk are always positive
definite or if they satisfy the condition

lim Vk(Bk - HC*)Vk = 0. (5.5)
k—>oo

This latter condition implies two-step superlinear convergence by Theorem 5.
Prom Section 3 linear, superlinear or two-step superlinear convergence is

ensured if Bk approaches HC* in one of the ways hypothesized in Theorems
2-5. Since the initial matrix is unlikely in practice to be a good approxima-
tion to HC*, it is reasonable to ask under what conditions the subsequent Bk
will be good enough approximations to HC* for these results of Section 3 to
hold. If the Bk satisfy the secant equation (3.19) then it is reasonable to ex-
pect that the B  ̂will converge to HC* provided that the directions, dx, span
1Zn repeatedly, for example, if each set of n directions is (uniformly) linearly
independent. Some recent research supports this expectation. However, if
positive definiteness is maintained, it is not possible for the Bk to converge to
HC* unless the latter is at least positive semidefinite. So for the general case,
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further analysis is necessary. As seen in Section 3, (3.16) is equivalent to

V*(Bk-HC*)V*sk V*(Bk-HC*)Q*sk\1 j|—ji \ = 0, (5.6)
\\sk\\ J

where sk = [xk+l — xk). For superlinear convergence both of these terms
must tend to zero if the directions sk/ \\sk\\ repeatedly span Hn. Thus for
positive definite Bk superlinear convergence is not likely unless the second
term goes to zero, which is the type of tangential convergence mentioned
in Section 3.2. However, two-step superlinear convergence, in which the
first term of (5.6) goes to zero, is possible for positive definite updates and
for reduced Hessian updates as well, provided that convergence occurs and
steplengths of one are acceptable. Thus, it is important from the point of
view of obtaining a rapid local rate of convergence that a steplength of one
be taken near x*.

For the general algorithm, however, the use of the merit function with
the line search continues throughout the course of the algorithm. Thus, the
line search for the merit function should allow a steplength of one if the
matrix approximations are such that rapid local convergence is possible. In
the case of the augmented Lagrangian merit function it can be shown, using
arguments similar to those in Section 4, that

6F(xk+1)-(pF(xk) . i f l . 2
F \\dJ ~ -hh+WV^

, Vk\Bk-HC(xkM(xk))]dx (5.7)
+ ¥4
+O{\\dx\\).

Then, if the process is converging superlinearly, the penultimate term in (5.7)
tends to zero by Theorem 4 and the right-hand side of (5.7) is ultimately
less than zero, thus showing that a steplength of one decreases <pF. A slight
extension to this argument shows that the Wolfe condition (4.13) also can
be satisfied for a steplength of one.

A significant disadvantage of the merit function (f)  ̂is that it may not
allow a steplength of a = 1 near the solution, no matter how good the
approximation of (QP) to (NLP). This phenomenon, which can prohibit su-
perlinear convergence, is called the Maratos effect. Several procedures have
been proposed to overcome this problem, including so-called nonmonotone
line searches, that is, techniques that allow the merit function to increase
over one or more iterations (see Section 7).
5.1. Notes and References

The perturbation argument showing conditions under which (QP) has the
same active set as (NLP) is derived from the work of Robinson (1974) who
proves a general perturbation result. For a discussion of the convergence of
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matrix updates see Boggs and Tolle (1994), Ge and Powell (1983) and Stoer
(1984).

The Maratos effect, that is, the fact that the l\ merit function may not
allow a steplength of one even when the iterates are close to the solution
and Bk is a good approximation to HC*, was discussed by Chamberlain
et al. (1982). These authors suggested the 'watchdog' technique, which
is essentially a nonmonotone line search method. (See also Bonnans et al.
(1992)) The fact that the augmented Lagrangian merit function does not
suffer from this problem has been shown by many authors.

6. SQP Trust Region Methods

Trust region algorithms have become a part of the arsenal for solving un-
constrained optimization problems, so it is natural to attempt to extend the
ideas to solving constrained optimization problems and, in particular, to
SQP methods. In this section an outline of the basic ideas of this approach
will be provided. As the subject is still in a state of flux, no attempt will
be made to give a comprehensive account of the algorithms that have been
proposed. The discussion will be limited to equality-constrained problems;
the inclusion of inequality constraints into trust region algorithms has been
the subject of littl e research.

A major difficulty associated with SQP methods arises from trying to
ensure that (QP) has a solution. As was seen in the preceding, the require-
ment that the Hessian approximations be positive definite on the null space
of the constraints is difficult to guarantee short of requiring the B  ̂to be
positive definite. The trust region methods attempt to avoid this difficulty
by the addition of a bounding constraint. Since this added constraint causes
the feasible region to be bounded the subproblem is guaranteed to have a
solution independently of the choice of Bk provided the feasible region is
nonempty. To be precise, a straightforward trust region adaptation of the
SQP method would generate the iterates by solving the problem

minimize V f{xk)'tdx + ^dx
tBk dx

dx

subject to: V/i(a;fc)tdx + h(xk) = 0, t6-1)
\\Sdx\\

2 < A|,

where S is a positive diagonal scaling matrix and Afc is the trust region
radius. In this discussion we assume the norm is the Euclidean norm but
other norms have been used in the trust region constraint. The trust region
radius is updated at each iteration based on a comparison of the actual
decrease in a merit function to the decrease predicted by the model. If
there is good agreement the radius is maintained or increased; if not, it is
decreased.
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It is worth noting that the necessary condition for dx to be a solution to
(6.1) is that

{Bk + fi S2)dx = -Vh(xk)u - Vf(xk) (6.2)

for some multiplier vector it and some nonnegative scalar //. This equation
is used to generate approximate solutions to (6.1).

The removal of the positive definite requirement on Bk does not come
without cost. The additional constraint is a quadratic inequality constraint
and hence it is not a trivial matter to find a good approximate solution to
(6.1). Moreover, there is the bothersome possibility that the solution sets
of the linear constraints and the trust region constraint may be disjoint.
For this reason, research on trust region methods has centered on finding
different types of subproblems that have feasible solutions but still capture
the essence of the quadratic subproblem. Several avenues of investigation
are summarized below.

One approach is to relax the linear constraints in such a way that the
resulting problem is feasible. In this case the linear constraint in (6.1) is
replaced by

Vhix^dx + 9kh(xk) = 0, (6.3)

where 0 < 6k < 1. A major difficulty with this approach is the problem
of choosing 6k so that (6.3) together with the trust region constraint has a
solution.

A second approach is to replace the equality constraints by a least squares
approximation. Then the equality constraints in (6.1) become the quadratic
constraint

Vh{xkfdx + h{xk) f < (pfc)
2, (6.4)

where pk is an appropriate value. One choice of pk is the error in the linear
constraints evaluated at the 'Cauchy' point. The Cauchy point is denned to
be the optimal step in the steepest descent direction for the function

that is, the step, scp, that minimizes this function in the steepest descent
direction. This yields

Another possibility is to take pk to be any value of V/i(x fe)ts +
for which

where 0 < u\ < 02 < 1- This approach ensures that the quadratic sub-
problem is always feasible, but at the cost of some extra computation to
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obtain pk. Moreover, while the resulting subproblem has only two quadratic
constraints, finding a good approximate solution quickly is a matter that
has not been completely resolved.

Finally, in a reduced Hessian approach to the trust region method the
linear constraint in (6.1) is replaced by

Vh{xk)xdx + Vh{xk)xsk = 0, (6.5)

where sk is the solution of

I J. I I 2

minimize y7h(xk)xs + h(xk)\\
s

subject to: ||s|| < rAk

for r € (0,1). Using the decomposition (3.27) from Section 3.4

dx = Zkpz +YkpY

where the columns of Z(xk) are a basis for the null space of Vh(xk)x and
the columns of Yk are a basis for the range space of Vh(xk), it follows from
(6.5) that

YkPy = -sk.

As in Section 3.4, the null space component, pz, can now be seen to be the
solution of the quadratic problem

[/(a:fe) + Bksk\ pz + \pxZk
xBk Zkpzminimize [/(a:) + Bksk\ pz + \pZkBk Zkpz

Pz

subject to: \\pz < (Afc)
2 - ||sfc||2.

A great deal of research has been done on the subject of minimizing a
quadratic function subject to a trust region constraint so quick and ac-
curate methods for approximating the solutions to these two problems are
available.

Much of the work to be done in transforming these approaches into al-
gorithms for which local and global convergence theorems can be proven is
similar in nature to that which must be done for standard SQP methods.
In particular, a method for updating the matrices Bk needs to be specified
(a wider class of updating schemes is now available, at least in theory, be-
cause there is no necessity of requiring them to have the positive definiteness
properties) and a merit function has to be specified. As was shown in Sec-
tion 3, local superlinear convergence depends on the steps approaching the
Newton-SQP steps as the solution is neared. In particular, this requires that
the modified constraints reduce to the linearized constraint of (ECQP) and
that the trust region constraint not be active so that steplengths of one can
be accepted. Conditions under which these events will occur have not been
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established. Global convergence theorems have been proved for most of the
above variations of the trust region method by utilizing either the l\ or the
augmented Lagrangian merit function under the assumptions Cl and C2.

6.1. Notes and References

An introductory exposition of trust region methods for unconstrained opti-
mization can be found in the book by Dennis and Schnabel (1983). Methods
for minimizing a quadratic function subject to a trust region constraint can
be found in Gay (1981) and More and Sorensen (1983).

The first application of trust region methods to the constrained problem
appears to be that of Vardi (1985), who uses the constraint (6.3) in place of
the linearized equality constraints. This approach was also used by Byrd,
Schnabel and Schultz (1985). The introduction of the quadratic constraint
(6.4) as a substitute for the linear constraint is due to Celis, Dennis and
Tapia (1985), who used the error at the 'Cauchy point' as the pk- A global
convergence theory for this strategy is given in El-Alem (1991). Powell and
Yuan (1986) suggested the second version of this approach mentioned in
the text. Yuan (1990) proposed solution techniques for the resulting sub-
problem. The reduced Hessian approach has been introduced by Omojokun
(1989) who also considers the case when inequality constraints are present.
This approach has also been used by Lalee, Nocedal and Plantega (1993)
for large-scale problems.

7. Practical Considerations

Our goal throughout this survey has been to concentrate on those theoretical
properties that bear on actual implementations, but we have mentioned
some of the difficulties that arise in the implementation of an SQP algorithm
when the assumptions that we have made are not satisfied. In this section
we elaborate on a few of the more important of these difficulties and suggest
some common computational techniques that can be used to work around
them. No attempt is made to be complete; the object is to give an indication
of the issues involved. We also discuss briefly the extension of the SQP
algorithm to the large scale case, where special considerations are necessary
to create an efficient algorithm.

7.1. The Solution of (QP)

The assumptions behind the theory in Sections 3 and 4 imply that (QP)
always has a solution. In practice, of course, this may not be the case.
(QP) may be infeasible or the objective function may be unbounded on the
feasible set and have no local minima. As stated earlier, surveying methods
for solving (QP) is beyond the scope of this paper, but we discuss some ways
of continuing the computations when these difficulties arise.
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One technique to avoid infeasibilities is to relax the constraints by using
the trust region methods of Section 6. Another approach is to take dx to be
some convenient direction when (QP) is infeasible, for example, the steepest
descent direction for the merit function. The infeasibility of (QP) is usually
detected during a 'phase I' procedure that is used to obtain a feasible point
with which to begin the quadratic programming algorithm. If the constraints
are inconsistent, then there are no feasible points and the phase I procedure
wil l fail. However, the direction, dx, obtained in this case can sometimes
be used to produce directions that reduce the constraint infeasibilities and
can thus be used to improve xk. For example, the phase I procedure known
as the 'big M' method modifies (QP) by adding one new variable, say 9, in
such a way that the new problem

minimize Vf(xkfdx + \dx
xBkdx + M9

dx

subject to: Vh{xkfdx + h(xk) = 0, (7-1)
fct + g(xk) - 9e < 0

is feasible. In this form M is a constant and e is the vector of ones. For
9° = max{gi(xk) : gi(xk) > 0}  the initial point (dx,9) = (0,9°) is feasible
for (7.1). The constant M is chosen large enough that, as (7.1) is being
solved, 9 is forced to be reduced. Once 9 < 0, dx is a feasible point for
(QP). If 9 cannot be reduced to zero, then the inequalities are inconsistent.
Nevertheless, it can be shown under certain conditions that the resulting dx

is a descent direction for the merit function (f>F.
If the problem is unbounded, but feasible, then the difficulty is due to

the structure of the Hessian approximation, B^. For example, if Bk is not
positive definite then a multiple of the identity (or non-negative diagonal
matrix) can be added to Bk to ensure that it is positive definite. Note that
adding a strictly positive diagonal matrix to Bk is equivalent to using a trust
region constraint (see (6.2)).

Finally, in cases where (QP) does not yield approximate multipliers for
nonlinear program such as when (QP) is infeasible or the matrix G(xk) has
linearly dependent columns, any reasonable approximation of the multipliers
wil l usually suffice. The most common approach in these cases is to use a
least squares multiplier approximation. If (NLP) does not satisfy A2 then
at best the theoretical convergence rate will be slowed (if x* is a simple
degeneracy) and at worst even the Newton method may fail.

7.2. Adjusting the Merit Function Parameter

It was shown in Section 4 that setting the parameter p to ensure that the
direction dx is a descent direction for .the merit function fa given by (4.18)
can be relatively straightforward. Setting the parameter for <pF is only a
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littl e more difficult. In either case adjusting the parameter can cause both
theoretical and computational difficulties. In theory, there is no problem
with having the parameter large. Indeed, if only increases in the parameter
are allowed, the assumptions of Section 4 coupled with a reasonable ad-
justment strategy will lead to a provably finite value of the parameter and
convergence can be proved using the techniques of Section 4. Computation-
ally, however, having a large value of the parameter implies that there will
be too much emphasis on satisfying the constraints. The result will be that
the iterates will be forced to follow the constraint boundary closely, which,
in highly nonlinear problems, can cause the algorithm to be slow. A strategy
for only allowing increases in the parameter can lead to an excessively large
value due entirely to an early iterate's being far from the solution.

Ideally the parameter should be adjusted up or down at various stages
of the iteration process to ensure both good theoretical and computational
performance. Some strategies for this have been proposed. For example, it
is possible to allow controlled decreases in the parameter that ensure that
the predicted decrease in the merit function is not dominated by a decrease
in the constraint infeasibilities. For such choices it is still possible to prove
convergence.

7.3. Nonmonotone Decrease of the Merit Function

Global convergence results are usually proved by insisting that an appro-
priate merit function be sufficiently reduced at each iteration. Sometimes,
however, it is more efficient computationally to be less conservative and
to allow steps to be accepted even if the merit function is temporarily in-
creased. If, for example, the merit function is forced to be reduced over
any fixed number of iterations, then convergence follows. In practice such
strategies have been quite successful, especially near the solution. As a par-
ticular example, note that the merit function fa may not allow a steplength
of one near the solution. One remedy for this is to accept the full step tem-
porarily even if fa increases. Then, if fa is not sufficiently reduced after a
small number of steps, the last good iterate is restored and reduction in fa
is required for the next iteration.

As a second example, it was noted in Section 4 that the use of 4>F requires
the evaluation of /, h, g and their gradients just to test a prospective point
for acceptance. This difficulty can be circumvented by using an 'approxi-
mate' or 'working' merit function that only requires evaluation of /, h and
g, and no gradients, to test a point. For example, 4>F could be approximated
(in the equality-constrained case) by

4(x) = f(x) + hixfuix*) + \T) \\h(x)f ,

where u(xk) stays fixed throughout the fcth iteration. This is then coupled
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with a strategy to monitor the iterations to ensure that (f)F is sufficiently
reduced after a certain number of iterations as discussed above.

7.4- Large Scale Problems

Efficient SQP algorithms in the large scale case depend on carefully address-
ing many factors. In this section we mention two of these, namely, problem
structure and the solution of large scale quadratic programs.

Problems are considered large if, to solve them efficiently, either their
structure must be exploited or the storage and manipulation of the matrices
involved must be handled in a special manner. The most obvious structure,
and the one most commonly considered, is sparsity of the matrices V/i , Vg
and HC. Typically in large scale problems most constraints depend on only
a few of the variables and the objective function is 'partially separable' (a
partially separable function is, for example, made up of a sum of functions,
each of which depends on only a few of the variables). In such cases the
matrices are sparse. In other cases, one or more of the matrices is of low
rank, and this structure can also be exploited.

A key to using SQP in the large scale case is to be able to solve, or
to solve approximately, the large quadratic programming subproblems. In
the small scale case, it rarely matters how (QP) is solved and it usually
makes sense to solve it completely. Depending on the algorithm used in the
large scale case, it is often essential to realize that (QP) at iteration k + 1
differs only slightly from that at iteration k. In these cases, the active set
may remain the same, or change only slightly, and it follows that solving
(approximately) the next (QP) can be accomplished quickly. It must be
shown, however, that approximate solutions of (QP) are descent directions
for an appropriate merit function.

Recently, efficient interior point methods have been developed for solving
large scale linear programs; these ideas are now being applied to large scale
quadratic programs. One such method is the 'subspace' method where, at
each iteration, a low-dimensional subspace is chosen and (QP) restricted to
that subspace is solved. A step in the resulting direction is calculated and
the procedure iterated. It has been shown that any number of iterations of
this technique gives rise to a descent direction for an augmented Lagrangian
merit function; an SQP algorithm based on this has shown promise.

7.5. Notes and References

See Fletcher (1981) for an introduction to the solution of quadratic programs
using classical techniques, including the Big M method. Recently there
have been numerous papers on the application of interior-point methods
to quadratic programming problems. This is still the subject of intense
research and there are no good survey papers on the subject. See Vanderbei
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and Carpenter (1993) and Boggs, Domich et al. (1991) or Boggs, Domich
et al. (1994) for a discussion of two different approaches.

Adjusting the penalty parameter in the augmented Lagrangian merit func-
tion is discussed in Schittkowski (1981), Schittkowski (1983), Powell and
Yuan (1986), Byrd and Nocedal (1991), Boggs, Tolle and Kearsley (1994),
Byrd and Nocedal (1991), and El-Alem (1992). The idea of allowing the
merit function to increase temporarily is an old one. It is sometimes re-
ferred to as a nonmonotone line search; for a general discussion see Grippo,
Lampariello and Lucidi (1986). Its use with the l\ merit function is dis-
cussed in Chamberlain, Lemarechal, Pedersen and Powell (1982). Using
approximate merit functions is suggested in Powell and Yuan (1986), Boggs
and Tolle (1989) and Boggs, Tolle and Kearsley (1994).

Based on the work to date there is significant promise for SQP in the large
scale case, but more work is required to compare SQP with other large scale
techniques. For the work to date see Murray (1994), Murray and Prieto
(1995) and Boggs, Tolle and Kearsley (1994).
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Let / be a formal power-series. A Pade approximant of / is a rational
function whose numerator and denominator are chosen so that its power
series expansion (which is obtained by dividing the numerator by the de-
nominator) agrees with / as far as possible, that is, at least up to the term
whose degree equals the sum of the degrees of the numerator and the de-
nominator of the rational function.

Such approximants have a long history and they have played an impor-
tant role in the solution of many problems such as the transcendence of
the numbers e and IT and have given birth to some fundamental ideas in
mathematics such as the spectral theory of operators. They are also closely
connected to continued fractions; see Brezinski (1990) and Lorentzen and
Waadeland (1992). Thirty years ago, Pade approximants were rediscov-
ered by physicists and they proved to be a very efficient tool not only for
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improving existing methods but also for extracting important information
from power series and thus leading to new possibilities which were not open
before.

Let us give some examples and begin with a purely mathematical one.
We shall consider the series

which is known to converge to ln(l + z) for \z\ < l,z 7̂  — 1. Thus the
simplest process for obtaining an approximate value of ln(l + z) is to sum
the series up to a certain term. Let us call fk(z) the partial sum of / up
to the term of degree k inclusive and let \p/q]f(z) be the Pade approximant
of / whose numerator and denominator have the respective degrees p and q
at most. As we shall see below, the computation of this Pade approximant
requires the knowledge of the coefficients of / up to that of the power p + q.

For z = 1 we have In 2 = 0.6931471805599453.... For z = 2, the series
diverges and we have In 3 = 1.098612288668110.... The Pade approximants
give the results presented in the following table.

k

1
2
3
4
5
6
7
8
9
10

/2fc(l )

0.83 0
0.78 3
0.75 9
0.74 5
0.73 6
0.73 0
0.72 5
0.72 1
0.71 8
0.71 6

0.7
0.693 3
0.69315 2
0.6931473 3
0.693147184 9
0.6931471806 8
0.69314718056 3
0.6931471805600 0
0.693147180559948 5
0.693147180559945 4

k

1
2
3
4
5
6
7
8
9
10

/2fc(2 )

0.26 0 •  10 1

0.50 6 •  10 1

0.12 6 •  10 2

0.37 5 •  10 2

0.12 1 •  10 3

0.41 0 •  10 3

0.14 2 •  10 4

0.50 4 •  10 4

0.18 1 •  10 5

0.65 5 •  10 5

mm

1.1 4
1.10 1
1.098 8
1.09862 5
1.098613 2
1.0986123 5
1.09861229 3
1.098612289 0
1.09861228869 2
1.098612288669 8

Figures 1 and 2 below display respectively the partial sums [3/0], [5/0] and
[7/0] of the series for arctan x for real values of x and its Pade approximants
[2/1], [3/2] and [4/3]. Each of them is easily recognizable. They clearly show
that the domain of convergence of the series has been increased.

For other examples from physics, the interested reader is referred to the
very complete book of Baker and Graves-Morris (1981), to the work of A. P.
Magnus (1988) and to Guttmann (1989). Applications to numerical analysis,
through the use of continued fractions, are described by Jones and Thron
(1988). See Brezinski (1991a) for a bibliography.
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1.5-

0.5-

-0 .5 -

Fig. 1. Partial sums of arctanx

1.5--

0.5-

- 0 . 5

Fig. 2. Pade approximants of arctanz

1. Algebraic theory

Let us first begin with some definitions.

1.1. Definitions

Let us now give the exact definition of Pade approximants. We shall give
two approaches to the subject: a direct one which is sufficient to under-
stand it and a more complicated one which leads to a better grasp of its
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numerous relations with the theory of formal orthogonal polynomials and
wil l serve as a basic tool for developing recurrence relations for the compu-
tation of Pade approximants and for other purposes that will be discussed
later.

Let / be a formal power series with complex coefficients

/ 0 ) = co + ciz + c2z
2 + c3z

3 + .

Definitio n 1.1 The Pade approximant \p/q]f(z) is a rational function
N(z)/D(z) such that degree iV < p, degree D < q and

N{z)-f

Let us write

N(z) = ao + a\z H V apz
p,

D(z) = bo + hz + --- + bqz
q.

Then the conditions of the definition lead to

a\ =

+ Cp-ibl +  + Cp-qbq,

0 = Cp+i&o + Cph H h Cp-

0 = Cp+qbo + Cp_|_9_l6l +  + CQbq

with the convention that Cj = 0 for i < 0.
The last q equations contain q + 1 unknowns bo,... ,bq and, thus, this

system has a non-trivial solution. With knowledge of the 6j's, the first p +1
equations directly give the a^'s.

Two solutions of the problem lead to the same rational function since
N1(z)-f{z)D1(z) = O(ZP

+"+1) and N2(z)-f(z)D2(z) = O(zP+q+1) implies
Ni(z)D2(z) - D1(z)N2{z) = O(zP+i+1). But the degree of NXD2 - DXN2

is at most p + q and thus Ni(z)D2(z) is identical to D\{z)N2(z). N and
D can have a common factor. In particular if zk is a factor of D, it is
also a factor of N, as can be seen from the previous system, and thus
N(z)/D(z) cannot have a pole at the origin. Dividing by the highest
power k in z contained in D gives a solution with D(0)  ̂ 0 and degree
N <p-k, degree D <q- k,N(z) - f{z)D(z) = o ( ^+«+ 1- f c ) , and we
have
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Theorem 1.1 Let R(z) — N(z)/D(z) be an irreducible rational function
with degree N = p — k, degree D — q — k, k > 0, and

Then, for i, j — 0 , . . ., k,

and no other Pade approximant is identical to R if k is a maximum.

The result follows from the definition of Pade approximants and their
uniqueness. This identity between Pade approximants can hold for all i
and j (see Property 1.5) and, in that case, / is a rational function with a
numerator of degree p — k and a denominator of degree q — k or there may
exist a maximal value of k for which it holds and, in that case, no other
Pade approximant is identical to R.

Usually the Pade approximants are arranged in a double-entry table known
as the Pade table

[0/0] [0/1] [0/2]
[1/0] [1/1] [1/2]
[2/0] [2/1] [2/2]

The theorem given above was proved by Henri Pade in 1892 (see Pade,
1984). It says that identical Pade approximants can only occur in square
blocks of the table, a property known as the block structure of the Pade
table. If the Pade table does not contain blocks, it is said to be normal;
otherwise it is called non-normal. This block structure corresponds in fact
to the block structure of the table of formal orthogonal polynomials (see
Subsection 1.4) which itself mimics the block structure of the table of Hankel
determinants (see Subsection 1.3). On these questions see Gragg (1972), de
Bruin and Van Rossum (1975), Gilewicz (1978) and Draux (1983).

Other algebraic properties of Pade approximants wil l be given in Subsec-
tion 1.2.

Let us now come to the second approach to the subject.
Let c be the linear functional on the space of complex polynomials defined

by

c(s*) = a.

The functional c can be extended to the space of formal power series, thus
leading to formal (that is, term-by-term) identities.

Our second approach is based on the following obvious formal identity
which is given as a theorem since it is fundamental.
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Theorem 1.2

The problem of approximating f(z) is classical in numerical analysis. For
example, if an approximation of

fb1=1 g(x)w(x) dx
Ja

is wanted, one can replace g by an interpolation polynomial and integrate it.
This procedure leads to a so-called interpolatory quadrature formula which
is exact on the space of polynomials of degree at most k — 1 if A: interpolation
points are used. If these interpolation points are the zeros of the polynomial
of degree A; belonging to the family of orthogonal polynomials on [a, b] with
respect to w, the quadrature formula, called a Gaussian quadrature formula,
becomes exact on the space of polynomials of degree at most 2k — 1 (instead
of k — 1). Thus, in order to obtain an approximation of f(z), let us replace
1/(1 — xz) by its (Hermite) interpolation polynomial and then apply the
functional c (which is analogous to integration). We have

Theorem 1.3 Let Vk(x) = (x — x\)kl  (x — xn)
kn, where x\,... ,xn are

distinct points in the complex plane and k = k\ +  + kn. The polynomial

is the Hermite interpolation polynomial of degree k — 1 of (1 — xz) 1, that
is, the polynomial such that

p(3)/-.\ _ "  f-i  T ?1"

for i = 1 , . . ., n and j — 0 , . . ., ki — 1.

The proof of this result was given by Brezinski (1983a). Let us now apply
the functional c to Rk in order to obtain an approximation of f(z). We have

Setting
'vk(z) - vk(x)

z — x
where c acts on x and z is a parameter, it is easy to see that Wk is a
polynomial of degree k — 1 in z and that

c(Rk(x)) = wk(z)/vk(z),
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where wk(z) = zk~1Wk(z~1) and vk(z) = zkvk(z~l). Thus c(Rk(x)) is a
rational function whose numerator has degree k — 1 at most and whose
denominator has degree k at most. Moreover

, „ . ,. / 1 \ zk ( vk(x) \
C{Rk(x)) = C - - — - C T ^ ^ -

\l-xzj vk(z) \l-xzj

This property is quite similar to the property of interpolatory quadrature
formulae to be exact on the space of polynomials of degree at most k — 1.
Thus c(Rk(x)) appears as a generalization of such formulae for the func-
tion (1 — xz)~l. Such rational functions, whose poles (the zeros of vk) are
arbitrarily chosen, are called Pade-type approximants of /. They will be
denoted by (p/q)f{z). They generalize the Pade approximants. They have
interesting properties and will be studied in Subsection 3.1.

From the above formula for the error, we have

c(Rk(x)) = f(z) - ̂ - )C Lk(x)

The polynomial vk, called the generating polynomial of the Pade-type
approximant (k — I/A;), can be arbitrarily chosen and we have k degrees of
freedom (its k zeros or k among its k + 1 coefficients since the numerator
and the denominator of a rational function are uniquely defined apart from
a multiplying factor). Thus, let us take vk such that

c(xlvk(x)) = 0 for i = 0,. . ., k — 1.

In that case we shall have

But Ik = (fc—l)+fc+l which shows that c(Rk(x)) matches the original series
/ up to the degree of the numerator plus the degree of the denominator.
Thus c(Rk(x)) is the Pade approximant [k — 1/k] of /. It can be understood
as a generalization of Gaussian quadrature formulae for the function (1 —
xz)~l since it is exact on the space of polynomials of degree at most 2k — 1.

The relations c(xlvk(x)) = 0 for i — 0,... ,k — 1 show that vk is the
polynomial of degree k belonging to the family of (formal) orthogonal poly-
nomials with respect to the functional c. In that case vk will be denoted by
Pk. Thus formal orthogonal polynomials appear in a very natural way in the
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theory of Pade approximants. They form the basis of their algebraic study
and lead to recurrence relationships for their computation. These questions
wil l be studied in Subsection 1.5.

Moreover, by construction, we have the following error formula

/«-[*-1/% M =

But (Pfc(x) — Pk(z~1))/(1 — xz) is a polynomial of degree k — 1 in x and,
due to the orthogonality relations of P&,

\ I- xz I V I - xz

and thus

These expressions are useful for estimating the error in Pade approximation.
It is easy to see that

f(z) -[k- l/k] f(z) = -
^2fc oo

withdj = c(xlPk(x)) = boa+bxa+i  ̂ h6fcci+fc and Pk(x) = bo-\ \-bkXk.
Obviously, by the orthogonality property of Pfc, dj = 0 for i — 0 , . . ., k — 1.

1.2. Algebraic properties

In this subsection we shall give some algebraic properties of the Pade ap-
proximants. The first one is a determinantal formula which was obtained
by Jacobi in 1846 using a determinantal formula due to Cauchy for interpo-
lating rational functions.

We set

it

fk(z) = Yj*zi for*:>0,
i=0

= 0' for k < 0.

Then, the following property holds:
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Property 1.1

\PIQW) =

zflfp-q(z) z*-1 f
Cp-q+l Cp-q+2

fP(z)

Cp-q+l Cp-q+2 ' *

Let us now assume that /(0) = CQ / 0 and let g be the reciprocal series
of / formally defined by

f(z)g(z) = l.

Setting g(z) = do + d\z + d,2Z2 -\ we have

=  1,
+ c\d + Cid0 = 0, i > 1.

Then we have

Property 1.2

This property is very useful since it relates the two halves of the Pade
table.

The other algebraic properties deal with transformations of the variable
and of the series. They have been gathered in the two following properties:

Property 1.3

1. Let g(z) = f(az),a  ̂ 0. Then \p/q]g(z) = \p/q]f{az).
2. Let g(z) = f(zk), k > 0. Then, Vi, j such that % + j < k - 1, \pk +
i/qk + j}g(z) = \p/q}f(z

k).
3. Let T(z) = Azk/R(z),A  ̂ 0, with R a polynomial of the degree
k > 0 such that R(0) ^ 0. Let g(z) = f(T{z)). Then, Vi, j such that
i + j<k-l,\pk + i/qk + j] g(z) = \p/q}f{T(z)).

Property 1.4

1. Let g{z) = zkf(z). Then \p + k/q]g{z) = zk\p/q]f(z).
2. If Co =  = Cfc_i = 0 and 0 and if we set g{z) — z~kf(z) then

3. Let R be a polynomial of degree k. li  p > q + k then \p/q]f+fi(z) =
\p/q]f(z) + R(z).
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4. Let g(z) = (A + Bf(z))/(C + Df(z)) with C + Deo + 0. Then

A + B\p/p]f(z)
*)  = C + D]p/p] f(zY

5. Let g{z) = af(z),a  ̂ 0. Then ]p/q]g(z) = a\p/q]f(z).

An important property is that of consistency.

Property 1.5 Let / be the power-series expansion of a rational function
with a numerator of degree p and a denominator of degree q. Then Vz, j >

A useful formula is the so-called Nuttall compact formula, obtained by
Nuttall (1967). A generalization of it is

Property 1.6 Let {qn} be an arbitrary family of polynomials such that
Vn, qn has the exact degree n. Let V be the fc x k matrix with elements
V{j = c((l — xz)qi-i(x)qj-\(x)) for i,j = l,...,k, let v' be the vector with
components v\ — c(qi-\(x)(l — Vk(x)/vfc(z~1))) for i = 1 , . . ., k and let u be
the vector with components u, = c(qi-\(x)) for i — 1,..., k. Then

where Vk is the generating polynomial of (k — 1/fc). If ffc = Pk then

If qn(x) = xn, then Vij = Q+j-2 — zCi+j-i,Ui  = Cj_i and the formula
for [k — 1/fc] exactly reduces to Nuttall's. Since (fc — 1/fc) only depends on
Co,..., Cfc_i then, in the preceding formula, c^,..., c2k-i can be arbitrarily
chosen. In particular they can be set to zero. If qn(x) = Pn(x), the preceding
extension of Nuttall's formula is closely related to the matrix interpretation
of Pade approximants; see Gragg (1972).

1.3. Formal orthogonal polynomials

As seen in Subsection 1.1, Pade approximants are based on formal orthog-
onal polynomials. Thus we shall now digress to treat this subject. The
other approximants of the table are related to other families of orthogonal
polynomials, called adjacent families of orthogonal polynomials, which will
be studied in Subsection 1.4.

Let c be the linear functional on the space of complex polynomials defined
by its moments Cj

c(x%) = a, i>  0.

Let {Pk} be a family of polynomials. {Pk} is said to be the family of formal
orthogonal polynomials with respect to c if, Vfc > 0,
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1. .Pfc has the exact degree k;
2. ctfPkix)) = 0 for i = 0,. . ., k - 1.

Conditions (2) are the so-called orthogonality relations. They are equivalent
to the condition c(p(x)Pk(x)) = 0 for any polynomial p of degree k — 1 at
most or to c(Pn(x)Pk(x)) = 0, Vn ^ k. The usual orthogonal polynomials
(that is, those orthogonal with respect to c(-) — Ja{-) da(x) with a bounded
and nondecreassing in [a, b]) are known to satisfy a bunch of interesting
properties such as a three-term recurrence relation, the Christoffel-Darboux
identity, properties of their zeros, etc. Most of these properties still hold for
formal orthogonal polynomials. However, in that case, the first question is
that of existence. Let us write Pk as

Pk(x) = a0 + a\x H \- akx
k.

Then the orthogonality relations are equivalent to the system

+  aiCj+i +  + a,kCi+k — 0, i = 0,. . ., k — 1.

must be different from zero or,Since Pk must have the exact degree k,
in other words, the Hankel determinant

Co
c\

C f c - l

Cfc-l

C2fe-2

r(0)must not vanish. Thus, in the sequel, we shall assume that Vfc > 0, i7^ ^ 0.
In that case, we shall say that the functional c is definite, a property clearly
related to the normality of the Pade table. The case where the functional c
is non-definite has been extensively studied by Draux (1983).

In the definite case, the polynomial Pk is uniquely determined apart from
an arbitrary non-zero constant. Moreover we have the following determi-
nantal formula

Pk{x) = Dk

CO

c\

C f e -1
1

Cl

C2

Cfc
X

Ck

 C f c +l

 C 2 f c _ l

 xk

with Dk 7̂  0 and PQ(X) = DQ. Let us set Pk(x) =
a family of formal orthogonal polynomials we have

+ . For

Theorem 1.4 Vfc > 0,

Pk+i(x)  - Bk+1)Pk(x) - Ck+1Pk-i(x)
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with P_i(x) = 0, P0(x) = t0,

Ak+l  = tk+l/tk, -Dfe+1 = —"

ak = c(xPi(x)), hk =

Since Pfc is determined apart from a multiplying factor, the i^'s in the
preceding recurrence relation can be arbitrarily chosen and thus this relation
can be used for computing recursively the Pfc's. In particular the choice
tk = 1 leads to monic orthogonal polynomials.

The reciprocal of this theorem was first proved by Favard (1935) for the
usual orthogonal polynomials. It was extended by Shohat (1938) (see also
Van Rossum (1953)) to the formal case.

Theorem 1.5 Let {Pjt}  be a family of polynomials such that the relation
of Theorem 1.4 holds with tQ ^ 0 and Vk,AkCk / 0. Then {Pk} is a family
of formal orthogonal polynomials with respect to a linear functional c whose
moments Cj can be computed.

Let us now define the associated polynomials Qk by

Qkiz) = C { x-z ) '
where c acts on x and where z is a parameter. It is easy to see that Qk is a
polynomial of degree k — 1 in z, that Qo(z) = 0 and that, for k > 1,

Co Ci C2

Cfc-l Cfe Ck+1  C 2 f c - 1

0 co CQZ + CI  {cQZk~l + cizk~2 +

Qk(z) = Dk

Theorem 1.6 The family {Qk} satisfies the three-term recurrence rela-
tion of Theorem 1.4 with Q-i(x) = -l,Q0(x) = 0 and C\ = Aic{P0(x)).
Moreover, \/k > 0

Pk(x)Qk+i(x) - Qk(x)Pk+i(x)  = Ak+1hk.

Some other relations satisfied by the P^'s and the <5fc's are given in the
definite case by Brezinski (1980, chapter 2).

It follows from Theorem 1.6 that

[k/k + l] f(z) = [k - l/k] f(z)
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a relation known as the Euler-Minding identity and which follows directly
from the theory of continued fractions.

Al l these relations have been extended to the non-definite case by Draux
(1983).

The zeros of the classical orthogonal polynomials are known to possess
some properties. Not all of them extend to the formal case. In particular the
zeros of formal orthogonal polynomials need not be simple or real. However,
we have

Theorem 1.7 If c is definite, then VA; > 0

1. Pk and Pfc+i have no common zero,

2. Qk and Qk+i have no common zero,

3. Pk and Qk have no common zero.

To end this subsection let us mention that a matrix formalism of orthog-
onality can be given via tridiagonal matrices. Orthogonal polynomials are
known to play an important role in numerical analysis. In particular they
are closely connected with projection methods used in the theory of lin-
ear operators, for example, with the method of moments, Lanczos's method
and the conjugate gradient algorithms (see Section 4). All these connections
were reviewed by Brezinski (1980, section 2.7, 1994); see also the works of
Gutknecht (1990, 1992).

The notion of orthogonality studied in this subsection is a particular case
of the more general notion of biorthogqnality between a family of elements of
a vector space and a family of elements of its dual. The notion of biorthog-
onality was extensively studied in Brezinski (1991b).

1.4. Adjacent families of orthogonal polynomials

Let us now define the linear functionals c  ̂ by

With the same convention as above, namely, that Cj = 0 for i < 0, these
linear functionals c  ̂ can be defined even for negative values of the upper
index n.

Let us denote by {PJ. } the family of formal orthogonal polynomials with
respect to c^n\ The family {Pk} studied in Subsection 1.3 corresponds to
n = 0. Such families are called adjacent families of orthogonal polynomials.
They satisfy the same properties as above after replacing c by c  ̂ or, in other
words, the sequence CQ,CI , . .. by the sequence Cn,Cn+i,.... In particular
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{P^} exists only if VA;,n

Hk ~

Cn+k-1  Cn+2k-2

In that case we shall say that the linear functional c is completely definite.
For the non-completely definite case, we again refer the interested reader to
Draux (1983).

The polynomials P^n are usually placed in a double-entry table similar
to the Pade table

p(0)
pW
p(2)

p(h

p(-!)
p(0)

(1)

p(2)
M)

p("2)
p|(-l)
p^O)

p(l)

p(-3)
p(-2)

(-1)
2

p(0)
2

Many relationships exist between adjacent polynomials of this table. First
of all, each family of orthogonal polynomials satisfies a three-term recurrence
relation similar to that of Theorem 1.4. Assuming all the polynomials to be
monic we shall write this relation as

P0
( B )(X ) =

A  indicates the position of a polynomial that is known in the table, while a
*  indicates the position of the polynomial that is computed by the relation.

We also have

Using alternatively these two relations allows us to compute recursively

the two adjacent families {P  ̂ } and {P  ̂ } .
I t can be proved (see, for example, Brezinski (1980, section 2.8) where all

these relations and the following ones are given) that the numbers ejj. and

q^1' are related by

%' =0, q\ ' =
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An) (n) _ (n+1) (n+1)

(n) (n) (n+1) (n+1)

which is the so-called Qd algorithm. This algorithm can be used for their
recursive computation. It is due to Rutishauser (1954) (see also Henrici
(1974)) and was the basis for the development of the Li?-algorithm for the
computation of the eigenvalues of a matrix. Setting x = 0 in the preceding
relations, it is easy to see that

Jn) _ tr(«+1) tr(«) I ff{n) Tr{n+l)
% - Hk iik-\ltlk Hk-\ >

e
(n) __ rr(n+l)  rr{n) , rr{n)  rr(n+l)

- Hk-l Nk+l/Nk Hkek - Hk-l Nk+l/Nk Hk

From these determinantal expressions and from the three preceding rela-
tions we can obtain the following ones

H{n+2) H{n) p{n), , _ r rr{n+l) }2 p(n+l), s ff(n) rr(n+2)  p(n+2) ( x
nk nk ^k \x) — lak \ ^k \ x ) + nk+\nk~\ rk-l \x)'

(n-l) p(n-l) ( s _ „ (n-1) rr(n+l)  p(n+l) , s H(n) rr(n) p(n)
fc+i yk+\ \x) - xtik+\ Hk -Nt \x)-uk+1uk tJk

(n-l) rr(n+l)  p(n+l)  ( , __ r rr(n+l)  rr(n~l) rr(n) rr(nW(n)p(n)
t i r (x) [ x n / i + n n \ u r

r{n) rr(n+l) rr(n-l)p(n-l)/
k+lHk Hk Fk \

r(n) rr(n+l)  rr(n-l)  p(n-l) ( s _ r rr(n-l) rr(n+l)  H(n) rr(n) , rr(n) p(n) , x
" " S ^ J L X " - " f c ~nk Uk+l\nk ^k \X>

) rj(n) r r ( n + l )p ( n + l ) / x
" ^ ^ \X>

Combining these relations leads to many other ones. However, the preced-
ing eight relations are sufficient to follow any path in the table of the adjacent
families of orthogonal polynomials. Of course similar relations hold among
the associated polynomials

1.5. Recursive computation of Pade approximants

Let us first relate all the approximants of the Pade table to the adjacent
families of orthogonal polynomials defined in the Subsection 1.4. Thus the
recurrence relations given there will provide recursive methods for computing
any sequence of Pade approximants.

In Subsection 1.1, we saw that

Making use of the convention that a sum with a negative upper index is
equal to zero, it is easy to see that
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Theorem 1.8 VA; > 0,Vn > -A;

[n + k/k]f(z) = 5"

in+1\z) = zkP^l\z~l) and Q{n+1\z) = ^with Pin+1\z) = zkP^l\z~l) and Q{
k
n+1\z) = ^

Let us set

[n + k/k]f(z) = Nin+1\i1\

and

The relations

Nk+i(z)
p(n) , ,

Nin\z)
P{

k
n\z)

k

i=0
n+k-l

i= 0

of the preceding subsection give

an+k "
(fc,n+l)

an+k '

an+k

Vk (z) zan+k+1.
p(n+2), s y(k,n+2)
rk \Z) Zan+k+l

2)jr(n+l),  v (fe,n+l
iVfc l z/ an+fc

2)5(n+l)/ v (fc,n+l
f̂c («) - an+fc

iV f c
n +1 (

p^n+l)(

)7v(n+2;

)p(n+2)

»

'(«)

(z)

These two relations are identical with a method due to Longman (1971)
for computing recursively approximants located on an ascending staircase
of the Pade table. They also cover an algorithm due to Baker (1970).

We have

with CW = hphl+V,  ̂ = 4n+1V4n) and
k^l'. These two relations are identical to a method due to

Watson (1973) to compute recursively approximants located on a descending
staircase of the Pade table.
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We also have

.(fc,n+l) p(n) , x A
°k rk+\yz> ~ ZOk+\

Njn_f\z) = bik<n+1)Nln\z)-b£'
p(n+2), x ,(fc,n+l)5(n), x ,(fc,
-Tjt_i v̂ J ok rk (Z) - okk

_NJn\z)-NJn+1\z)

Combining these relations together allows one to obtain all the other pos-
sible ones. Eight of them were used in a conversational program to com-
pute recursively any sequence of Pade approximants in the normal case; see
Brezinski (1980, appendix).

All these recurrence relations were extended by Draux (1983) to the non-
normal case. A universal conversational program for computing any se-
quence of Pade approximants in the non-normal case was given by Draux
and Van Ingelandt (1986). In order to avoid numerical instability and also
for the detection of the block structure of the Pade table, it was necessary
to program these relations in exact arithmetic that is in rational arithmetic
coded on several words. All these programs are written in FORTRAN.

Setting for simplicity

[n + k- 1/fc] = N,

[n + k/k -1] = W, [n + k/k] = C, [n + k/k + 1] = E,

[n + k + 1/fc] = S,
we obtain, after elimination among the preceding identities, the so-called
cross rule of Wynn (1966)

(N - C)~l + {S- C)-1 = {W- C)-1 + {E- C)-1.

When a square block of size m occurs in the Pade table, this cross rule was
extended by Cordellier (1979) who proved that

(Ni - C)-1 + (Si - C)"1 - (Wi - C)"1 + {Et - C)"1

for i — 0,.. ., m, where the iVj's and the Wj's are numbered from the upper
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left corner of the block and the S;'s and the EiS from its lower right one.
The initial values are

\P/O]f(z) =

[-l/q]f(z)  =0, [p/ - \}f{z) = oo,

[0/q] f(z) =
i = 0

where the dj's are the coefficients of the reciprocal series g of /.
Thus, the theory of formal orthogonal polynomials provides a basis for

rediscovering known recursive methods for the computation of sequences
of Pade approximants which were found more or less heuristically by their
authors. This theory also gives us the possibility of computing any sequence
of approximants by new recursive algorithms. It has been possible to extend
the theory to the non-normal case, thus leading for the first time to all the
possible recurrence relationships among the entries of a non-normal Pade
table and to write the only existing complete subroutine.

1.6. The e-algorithm

We shall now deal with a subject which, a priori, has nothing to do with
Pade approximation but which is, in fact, closely related to it: convergence
acceleration.

Let (Sn) be a sequence converging to S. If the convergence is slow, one
can try to accelerate it. For that purpose, we shall transform the sequence
(Sn) into another sequence (Tn) such that, if possible, (Tn) converges to 5
faster than (Sn), that is,

KmfTn - S)/(Sn - S) = 0.

One of the most popular sequence transformations for that purpose is cer-
tainly Aitken's A2 process which corresponds to

Tn = Sn - (ASn)
2/A2Sn for n = 0 , 1 , . . ..

If the sequence (Sn) is such that 3a ^ l,limn^oo(S'n_|-i — S)/(Sn — S) = a
then (Tn) obtained by Aitken's process converges to 5 faster than (Sn).

In 1955, Shanks (1955) gave a generalization of Aitken's process. He
considered the various transformations e& : (Sn) —> (efc(5n)) where

ek(Sn) = Sn+k

A2Sn A2S,n+k-l

 A 25n + 2 f e_2
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A recursive algorithm to compute the efc(5n)'s without computing the de-
terminants involved in their definition was found one year later by Wynn
(1956). It is the e-algorithm whose rules are

e_j — u, £0 — on, n — u, i , . . . ,

It is related to Shanks's transformation by

The £2fc+i's a re o my intermediate quantities. The e-algorithm is a quite
powerful acceleration process which has been widely studied. For its theory
one can consult, for example, Brezinski (1977). Subroutines and applications
can be found in Brezinski and Redivo-Zaglia (1991).

The e-algorithm is related to Pade approximants in the following way: if
it is applied to the partial sums of the series /, that is, if

CiZ1, n, = 0 , 1 , . . .,

i=0

then

Thus the e-algorithm can be used to compute recursively the lower half
of the Pade table. The upper half of the Pade table can be computed by
applying the e-algorithm to the partial sums of the reciprocal series g of / as
stated in Property 1.2. Let us mention that the elimination of the e's with
an odd lower index leads to Wynn's cross rule mentioned in the preceding
subsection.

2. Convergence

2.1. Introduction

More complete results about convergence can be found in Brezinski and Van
Iseghem (1994) or Baker and Graves-Morris (1981).

The problem of convergence of Pade approximants, which means the con-
vergence of a sequence of Pade approximants when at least one of the degrees
tends to infinity, is a difficult problem which can be studied from different
points of view. The first one is to study all the abilities of convergence to one
function and the first theorem (due to Pade) is an example of such a study
for the exponential function. The history of numbers such as e or TT tells
us, through the link with continued fractions, that it is also possible to do
so for functions such as tanx, arctanx and some others. At the other end,
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it is possible to hope for convergence results for a whole class of functions.
The most useful and well known examples are the meromorphic functions
with a fixed number of poles in a disc (convergence of the columns) and the
Stieltjes functions, for which the classical uniform convergence on compact
subsets of C can be proved for the diagonal and paradiagonal sequences.

In each case, the problems are different if the sequences considered are in a
column, a diagonal or a paradiagonal; close to these cases are, for example,
sectorial sequences where m/n has lower and upper bounds as n goes to
infinity . Other cases could also be considered.

We wil l first quote two results which show the most optimistic result that
can be expected and a counterexample which limits our ambitions.

Theorem 2.1 For any sequence (m,,ni),i > 1, where m, + ni tends to
infinity , the poles of the Pade approximants of e2 tend to infinity and

lim [mi/rii](z)  = e2

i—KX

uniformly on any compact set of C.

The following result is due to Wallin (1974).

Theorem 2.2 There exists an entire function / such that the sequence
of diagonal Pade approximants ([n/n]f) is unbounded at every point of the
complex plane except zero, and so no convergence result can be expected in
any open set of the plane.

As we shall see below, the location of the poles of the approximants is of
primary importance for studying convergence: for meromorphic functions,
they are supposed to be known, and so Montessus de Ballore's theorem
is obtained. For Stieltjes functions, the link with orthogonal polynomials
is extensively used; they are, in that case, defined by a positive-definite
functional, and so properties about the zeros are known.

As a consequence, functions with branch points, for example, are outside
of our study, and convergence will be obtained on extremal subsets of C that
localize the set of zeros and poles of the Pade approximants as a barrier to
convergence.

Let us now give a very simple example showing the difficulties related
with the convergence of Pade approximants (that is, the convergence of a
sequence of approximants). We consider the series given by Bender and
Orszag (1978)

,, , 10 + 2 ^

i=0
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with C2i = 10 and C21+1 = 1. It converges for \z\ < 1. We have

When k is odd, [fc/1] has a simple pole at z = 1/10 while / has no pole.
Thus the sequence ([fc/1]) cannot converge to / in \z\ < 1.

This example shows that the poles of the Pade approximants can prevent
convergence and that a sequence of approximants can be non-convergent
in a domain where the series is. In order to prove the convergence of a
sequence of Pade approximants in a domain D of the complex plane, it
must be proved that the spurious poles of the approximants (that is, the
poles that do not approximate poles of / ) move out of D when the degree(s)
of the approximants tends to infinity.

Another more paradoxical situation can arise: the zeros of the Pade ap-
proximants can also prevent convergence. Let us take the reciprocal series
g of the series / of the preceding example

, . 1-z2

" v ' 10

It converges in \z\ < 10. We have

Since [l/2fc + l] 9(0.1) = 0 and g(0.1) # 0 the sequence ([l/k] g) cannot
converge in \z\ < 10 where the series g does.

Another counterexample is due to Perron (1957). Let an arbitrary se-
quence (zn) of points of C be given, and let us define the following function

if |
C3n+1 = C3n+2 = l /(3n + 2)!,

if \zn\ > 1, c3n = c3n+i = l / (3n + 2)!,
1

We have |CJ| < 1/i, Vi > 0. Thus / is an entire function and either [3n/l] or
[3n + 1/1] has a pole at zn. The sequence (zn) is a subsequence of the poles
of ([m/1]) and if (zn) is dense in C, the sequence ([m/1]) cannot converge
in any open set of the complex plane.

2.2. Meromorphic functions

Let us first consider the convergence of the columns ([m/n])m of the Pade
table.

The most famous theorem is that of de Montessus de Ballore (1902). It is
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concerned with meromorphic functions with a fixed known number of poles
in the disc of radius R centered at the origin.

An extension of this result has been given by Saff (1972) for the case of
interpolating rational functions instead of Pade approximants. Montessus's
theorem is then a particular case of it when all the interpolation points
coincide at zero.

Theorem 2.3 (Montessus de Ballore's theorem). Let / be analytic at
z = 0 and meromorphic with exactly n poles ai,...,an, counted with their
multiplicities, in the disc DR = {z, \z\ < R}. Let D be the domain DR —
{oti}i=l,...,n

The sequence ([m/n])m>o converges to / uniformly on every compact
subset of D. The poles of [m/n] approach the poles of / as m tends to
infinity.

This result is optimal since, if there is a pole on the boundary of DR, then
divergence of the sequence Rmtn occurs outside C — D as proved by Wallin
(1987).

Let us now have a look at some simple examples to illustrate the dif-
ferent aspects of the result. The computations have been conducted with
Mathematica and they are given up to the first inexact digit with at most 9
digits.

First of all, the convergence to the poles is obtained with a speed of con-
vergence that is O(r/R), where r is the modulus of the pole to be computed
and R is the radius of the largest disc of meromorphy of the function, or
O(r) if the function is meromorphic in the whole plane.

For the function s\nz/(z — l)(z — 2)(z — 3), we obtain the following results,
where the various columns represent the three zeros of the Pade approximant
[n/3] (up to the first inexact digit).

[n/3 j
3
5
7
9
11
13
15
17

0.99 1
1.000 6
1.00000 1
0.9999999 1
1.00000000 0
1.00000000 0
1.00000000 0
1.00000000 0

2.3
1.9 2
1.99 6
2.00 1
1.9999 7
2.000000 4
1.99999999 4
2.00000000 0

-0. 5
0.2
-4.
2. 6
3.0 2
2.998 9
3.0000 3
2.999999 0

Now, let us consider the function log(a + z)/(l — zz). Here R = \a\ and we
take a = 1.1 and a — 3. The two conjugate poles are in the same column.
The convergence is, of course, much better for the last two columns which
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correspond to a = 3.

[n/3j
1
3
5
7
9
11
13

1.1
1.06
1.04
1.02
1.01
1.01
1.007

-.59
-.52
-.44
-.52
-.504
-.49
-.508

1 i
1 i
4 i
4 i
8 i

i
8 i

1.01
1.0005
1.00004
1.000003
1.0000003
1.00000003
1.000000003

-.48
-.501
-.499992
-.499994
-.5000005
-.499999993
-.499999995

5 i
i
i

i
i
i
i

Let us finally consider the function 1/cosz, which has an infinite number
of simple poles. Although the theorem concerns the columns, this example
shows that it is possible, in some cases, to obtain approximations of all the
poles using the diagonals (only the positive poles are given).

[n/n\
2
4
6
8

exact

1.54
1.57082
1.570796320
1.570796327
1.570796327

4.4
4.72
4.71231
4.712388981

6.9
8.0
7.8539

9.0
10.9955

Montessus's theorem provides a result only if the exact number n of poles
is known and only for the column sequence ([m/n])m>o- The poles of /
serve as attractors for the poles of [m/n]. But if / has less than n poles,
then only some of the poles of [m/n] are attracted and the other ones may
go anywhere, destroying the convergence. If another column is considered,
no result can be obtained as can be seen from counterexamples. The first
one, due to Bender and Orszag (1978) and already quoted above, concerns
the series f(z) = (10 + ,z)/(l — z2) where the first column ([m/l])m>o cannot
converge.

Taking into account the last counterexample (due to Perron (1957)), and
coming back to a meromorphic function with n poles, it is now obvious that
it is impossible to obtain a convergence result for all the sequences ([m/k])m

with k smaller or greater than n. It is a conjecture, made by Baker and
Graves-Morris (1977), that at least a subsequence of ([m/k])m>o converges
for k > n. Such a result was proved by Beardon (1968) for the column
sequence ([m/l])m>0:

Theorem 2.4 Let / be analytic in \z\ < R. Then, for r < R, there exists
a subsequence of ([m/l])m>o converging uniformly to / in the disc \z\ < r.

The same result has been proved by Baker and Graves-Morris (1977) for
the second and third columns. Buslaev, Goncar and Suetin (1984) estab-
lished the conjecture for entire functions. For R < oo they showed that the
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conjecture is still true in a neighborhood of zero and they gave a counterex-
ample for the whole disc.

2.3. Stieltjes series

The main references for this section are Baker (1975) and Baker and Graves-
Morris (1981). The complete proofs are given in the last reference. A study
of the subject can also be found in Karlson and Von Sydow (1976).

A Stieltjes series is a power series of the form

with
/-oo

where (p is a positive, bounded, non-decreasing measure. The Stieltjes func-
tion associated to the Stieltjes series is

1 + xz
So, the series S is the formal expansion of / into a power series, although
this series may not converge except for z = 0 while the function is analytic
in the cut plane C — (—oo,0). This is, for example, the case for the Euler
series

X ^  lZ n=0

An important question is the moment problem, i.e. the existence and
uniqueness of / corresponding to the moments / j . If tp takes only a finite
number of values, it is a step function: <p is constant on (ui, tij+i ) for a finite
number of u; and so

To avoid this too-simple case, <p is assumed in the sequel to take an infinite
number of different values.

The particularity of Stieltjes series is that the special form of the coeffi-
cients fi allows us to study the corresponding Hankel determinants and thus
to locate the zeros of the orthogonal polynomials Pn where

is the denominator of [m + n — 1/n].
So the most natural sequences to be considered are the paradiagonal se-

quences ([n + J/n])n, J > —1. Prom the first section we know that for each
J the P™+J(= Pn) satisfy the three-term recurrence relation

n+1
(X) = (X-
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_ , / h h __ JJ-l)(p2)_ (J-l)(np \ TT(J-1)/H(J-1)

It can be proved that all the Pade approximants exist for m > n — 1. So
the Pade table is normal. Then, in the recurrence relation of Pn

m , all the
7™ are positive. From the theory of orthogonal polynomials, it means that

each diagonal sequence (Pn)n, m fixed, is orthogonal with respect to a
positive-definite functional. So Pn has n real distinct zeros and the zeros
of Pn and -P^+i interlace. We have the following theorem:

Theorem 2.5 All the zeros of Pn are real, distinct and negative, for
m > n - 1 > 0.

Let us now consider the convergence of paradiagonal sequences. As Pn
m

has n simple negative zeros CCJ, the denominators Dmn have also n simple
negative zeros I/a;. Thus, all the poles of the Pade approximants ([n +
J/n])n lie on the cut and there is no obstacle to the convergence in the cut
plane C - (-oo,0].

We have the following theorem:

Theorem 2.6 Let D(A,r) = {z € C,\z\ < r and \/x < 0,d(z,x) > A}.
Then, for each J > — 1, the sequence ([n + J/n])n converges uniformly on
D(A, r) to a function fJ analytic in the cut plane C — (—oo, 0].

If the moment problem is determinate (i.e. if there exists a measure ip
such that for all i the coefficients /j of / are given by fc = J^° xl d<p(x)),
then all the fJ are identical to / . The problem is known to be determinate
if the Stieltjes series has a nonzero radius of convergence R, or if R = 0 and
the /j's satisfy Carleman's condition: Y^i>iUi)~1^21 diverges.

For the Euler series, Carleman's condition is satisfied since

is equivalent to
n>\

which diverges, and so the last theorem holds for the Euler function

Jo l + tz

For such sequences, Pade approximants can be useful for reconstructing
the function from its power series expansion.

In the case of convergent Stieltjes series of radius R, the last theorem can
be put into a more precise form due to Markov (1948):

f llR d(f(u)
Theorem 2.7 f(z) = / is analytic in the cut plane C — (—00,

Jo l + uz
—R}. All the poles of [n + J/n] lie in (—00, — R]. The convergence of the
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sequence ([n + J/n])n is uniform in D+(A,r), where

D+(A,r) = {2,|* | < r , V ze (-00, -R],d(x,z) > A} .

A convergence result has also been proved by Prevost (1990) for the prod-
uct of two Stieltjes functions:

Theorem 2.8 r  d Q ( X ) A f \ f° df3^  V, A
Let /(z) = / and g(z) = / , where a and

Jo 1 — xz J-b 1 — xz
b are finite and positive, and let a and /3 be positive, bounded and non-
decreasing measures. Let also the integral J_b Jo

a -^  ̂da(x) d/3(z) be as-
fa d'j(x)

sumed to exist. Then /  g(z) = / is a Stieltjes function, and
J-b 1 — xz

the sequence ([m^ + J,mk}f.g)mk (J > —1 and limfc-nx, m̂  = +oo) of
Pade approximants of /  g converges uniformly on every compact subset
of C - ((-oo, -b'1} U [a"1, +oo)).

3. Generalizations

There exist many generalizations of Pade approximants. First of all, it is
possible to define rational approximants to formal power series where the
denominator is arbitrarily chosen and the numerator is then denned in or-
der to achieve the maximum order of approximation. Such approximants
are called Pade-type approximants. Their definition was given in the first
section and we shall study below some of their convergence properties. In
rational approximants, it is also possible to choose only a part of the de-
nominator or a part of the numerator and the denominator. These are the
partial Pade approximants. Such generalizations allow us to include into the
construction of the approximant the information that is known about the
zeros and the poles of the function being approximated, thus often leading to
better convergence properties. Multipoint Pade approximants have expan-
sions around several points which agree with the expansion of the function
around the same points up to given orders. Pade approximants for series
of functions have also received much attention. Other generalizations deal
with Pade approximants for double series. Another important generalization
is the vector case, which will be studied below. Series with coefficients in
a non-commutative algebra have also received much interest, in particular
the matrix case, due to their applications. Other types of approximants,
such as the Cauchy-type approximants or the Pade-Hermite approximants,
have been defined. It is, of course, possible to study combinations of these
various generalizations such as the multipoint Pade-type approximants for
multiple series of functions with matrix coefficients. Due to the space limi-
tation of this article, we shall only present Pade-type approximants and the
vector case and refer the interested reader to Brezinski and Van Iseghem
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(1994) where more details about these generalizations can be found with
the relevant references to the literature.

3.1. Pade-type approximants

As we saw in the first section, the function f(z) = J2n>o °nzn completely
defines the linear functional c. It always has an integral representation in
the complex field as stated by the following theorem:

Theorem 3.1 Let R be the radius of convergence of the series / and Ha

the space of holomorphic functions in the disc Di/a. Then c has the following
representation

1 r r\r

2m J\x\=r x a <r  < R.
r|=r "

In fact, in practical situations, the contour can be transformed continu-
ously in such a way that f(x)g(l/x) remains holomorphic in a neighborhood
of it. An application of this result is the representation of the remainder
term of Pade or Pade-type approximants f(z) — Pn-i/Qn(z).

f(z) = ^cnz
n, vn{z) = znvn(z-1),

n>0

2m J-

27nvn(z) Jc x-z
vn(x) fjx-1) ^

- xz)

Finally, using the notation of Cala Rodriguez and Wallin (1992), condi-
tions on F = —C"1,/ and vn are now summarized, with vn(z) = Qn(z) =
n"=i ( l — Pjnz), which means that the /3jn are the poles of the approximant
whose denominator is Qn{z) = YYj=i(z~Pjn) and the following error formula
is obtained.

Theorem 3.2 Let / be analytic in a domain D containing zero, let /3jn, 1 <
j < n, n > 1, be given complex numbers and let z € D — {Pj^}- Let T be
a contour in D " 1 consisting of a finite number of piecewise continuously
differentiable closed curves with index

1 if a G C - Z ) -1 ,
0 if a — z ,z ^ 0.
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Finally, let Pn-i/Qn be the (n — l/n) Pade-type approximant of / with
preassigned poles at the zeros of Qn. Then

Pn-i(z)
Qn(z)

fit-1) -dt.
ln(z-1) t{l  - Zt)

Let us now formulate the theorem of Eiermann (1984) in the form he
proved it (for a complete and detailed proof, see Eiermann (1984) or Cala
Rodriguez and Wallin (1992)).

Theorem 3.3 Let / be analytic in a domain D C C containing zero. Let
(3jn, j = l , . . . ,n, be the given zeros of Qn, and let A C C2 containing
C x {0}  and such that, uniformly for (x, z) in compact subsets of A,

= 0.
Quiz-1)

Then, the sequence of Pade-type approximants Pn-\/Qn converges to /
uniformly on compact subsets of A — {z, V£ € C/D, (£~1,z) 6 A} .

If / is a Stieltjes function defined on C — (—oo, —R], then K = C — D~l =
[—1/.R, 0], and F is any contour containing K. The best choice is to take
F as small as possible, and the assumption on Qn becomes, for z in some

Q (x)
compact subset F of D, lim sup sup = 0. This remark leads to

Quiz-1)
the following alternative results. With the same notation as before, we get:
Theorem 3.4 Let K = C/D"1, O a neighborhood of K and F some com-
pact subset of D. If

n^So( sup
Qn(t) Pn-l(z)= 0, then l̂irn^ (max f(z) - " ^Z) ) = 0.

Similarly, we have the following theorem:

Theorem 3.5 Let K = C/D"1,0 a neighborhood of K and F some com-
pact subset of D. Then for the sup norm on F (z G F), if

lim (sup Qn(t)

Quiz-1)

l/n
) < r < l,then lim (1 f(z) -

Qn(z)

l/n

F
) < r.

If the Qn's are some orthogonal polynomials for which asymptotic formu-
lae are known, the preceding theorem leads to interesting results (Prevost,
1983).

Another idea is to take Qn with one multiple zero, so that |Qn(x)| 'n =
x — (3n\. Two cases are to be considered: the first one with (3n — j3 or

limn (3n = j3 (which gives the same rate of convergence), the second one with
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/3n depending on n (and which may tend to oo) in the case of entire functions
having one singularity at +00 and none at —00 such as the exponential
function (Van Iseghem, 1992; Le Ferrand, 1992b).

3.2. The vector case

 Introduction
There are at least two ways for obtaining approximations for vector prob-

lems.
The first one consists in considering simultaneously d scalar functions de-

fined by their power series expansions in a neighborhood of zero, organizing
them as one power series with vector coefficients in Cd and then looking
for a rational approximation following the idea of Pade approximation, that
is, finding a best approximant. This approach has been developed through
the simultaneous approximants by de Bruin (1984) and through the vector
approximants by Van Iseghem (1985, 1987b). In each case, the result is
a rational approximant {P\/Q,..., Pd/Q)- In the vector case, all the Pi's
have the same degree while they have to satisfy some constraints in the si-
multaneous case. Although the ideas are rather similar, the approximants
are not the same, except when deg Q = nd and deg Pi = n, i = 1,. . ., d. In
both cases, the scalar Pade approximants are recovered if the dimension d
of the vectors is one. Only the vector case, which seems to be simpler, will
be explained here.

The second way for obtaining vector approximations is through extrapola-
tion and acceleration of vector sequences. In the scalar case, the e-algorithm
provides a way for computing Pade approximants and such a link can also
be developed through the vector e-algorithm or the topological e-algorithm,
as we shall see below.

 Vector Pade approximants
For vector Pade approximants, giving m as the common degree of all

the numerators Pi and n as the degree of the common denominator Q de-
fines completely the approximant. The vector Pade approximant R(t) =
{Pa/Q)a=i,...,d is the best in the sense that it is impossible to improve si-
multaneously the order of approximation of all the components.

Let F = ( /1 , . . ., fd). If, for each a — 1,..., d, we write

then we set Fj = (c| , . . ., cf)T G Cd and we define the series F by
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Let F : C[[x\]  —> <Cd be the linear functional denned by

Taking the components of the vector approximant as the Pade-type approx-
imants of the /Q's, we get the following theorem:

Theorem 3.6 Let P be the Hermite interpolation polynomial of 1/(1—xz)
at xi,...,xn. Setting

v(x) = f[(x - Xi), v(t) = tnv{t~l), W(z) =

where the functional F acts on x, we have F(P) — ~W(z)/v(z), and

~W(z)/v(z) is called the Pade-type approximant (n — 1/n) of F.
The proof of this result is similar to that of the scalar case because

each component (W(z)/V(z))a is the Pade-type approximant of fa for

In order to improve the order of approximation on all the components,
we have to choose the polynomial v such that a maximum number of Di
are zero. Di is a vector of Cd and so Di = 0 represents d scalar equations
with the coefficients of v as unknowns. Thus, n being the degree of the
denominator, the best order of approximation by rational functions of type
(n — 1, n) is n + [n/d], where [n/d] is the integer part of n/d.

Pade-type approximants (s/r) for arbitrary degrees s and r can be defined
as for the scalar case. For any integer h, positive or not, we get

h-l

¥(z) = y^ FiZi + Fh(z), Fj = 0 if i < 0,
i=0

h - l

(r + h- l/r)F(z) = Y, I V + (r- l/r)¥h(z).
i=0

The order of approximation is r + h — 1. It can be increased up to r + h -
1 + [r/d]  by choosing the generating polynomials v of the vector Pade-type
approximants. Let r and h be arbitrary integers (r = nd + k, 0 < k < d);
let us denote by F ^ the linear functional defined by T^h\xl) = ^i+h &nd
by P^d+k tne polynomial defined by the following equations:
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The Pade-type approximant (r + h — l/r)  generated by P^J+k w m n a ve t n e

maximal order of approximation: the order of approximation is r + h + n — 1
at least, r + h + n for the first k components. This approximant wil l be
called the vector Pade approximant [r  + h — l/r]-p.

Writing the conditions (3.1) as a linear system, we get an expression of
Pr as a ratio of two determinants. As usual the determinantal expression
for Pr gives rise to a determinantal expression for the vector Pade approx-
imants where only the last row of the numerator is a vector, all the other
rows (P j , . . ., Tr+ i) being put for d scalar rows and the last one ( P ^ ^ , . . .)
representing the first k components of (Pn+ft,  Setting s = r + h and

 n+h
1

 n+h

 r s

 n+s

 xr

 ' Ln+s-l

h+n  n+s

-"s— 1

 h+n

ZT

 n+s

1

Similarly to the scalar case, the polynomials (Pr )r>o are the generating
polynomials of [h + r — 1/r], and for each ^ they satisfy a recurrence formula,
which, here, is of order d + 1 (i.e. with d + 2 terms):

(3.2)

If all the Pr exist, then the last coefficient 7^ is not zero. Since a theory
analogous to the theory of orthogonal polynomials can be developed, these
polynomials have been called vector orthogonal polynomials (or of dimension
d) (Van Iseghem, 1985, 1987b, 1989). A Shohat-Favard theorem can be
proved: given a family (Pr)r>o satisfying the the relation (3.2), there exist
d functionals c1,...,cd such that the Pr 's satisfy the relation (3.1) with
respect to P = (c1, . . ., cd). The space of all possible P's is a vector space of
dimension (d!). And so there is, as in the scalar case, an equivalence between
the vector orthogonality denned by the relations (3.1) and the family of
polynomials denned by the recurrence relations (3.2).

From an algorithmic point of view, a QD-type algorithm linking two di-
agonals (Pr )r and (Pr + )r can be defined. It allows one to move in all
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directions either in the table of the polynomials (Pr ) or in the table of the
vector Pade approximants. The approximants can be also computed by al-
gorithms such as the recursive projection algorithm (R.P.A.) or the compact
recursive projection algorithm (C.R.P.A.) of Brezinski (1983b).

An example of an algorithm deduced from the recurrence relations in the
table of the polynomials is the generalization of the cross rule of Wynn
obtained by Van Iseghem (1986). In the scalar case, this cross rule involves
five approximants in the following array:

N
W C E

S

and it can be written in two different forms

(E - N)(C - W)(S - C) = (C-N)(E-C)(S-W),
1 1 1 1

C-N + C-S ~ C-E + C-W

The proof can be extended to the vector case. The approximants involved
are the following: Wi and Ni lying on diagonals and

Wd Nd

Ni N
Wi C E

S

The explicit form is given for all the components (E — C)a,a — 1,... ,d, the
Di being dx d determinants and the vectors indicated being the columns of
the determinants

Dl = \C-WU Wd-Wd-U ... ,W2

D4 = \C-N,Nd-1-Nd^2,... ,NX-C\,

1 D3D4 ,
(C N)a {CN)aDD' i,---,a-(E - C)a (C - N)a

As in the scalar case, symbolic negative columns are denned so that the
algorithm can be used with the center term C in the column with subscript
zero. So this algorithm can be used for computing E from the first column
and it gives all the approximants \p/q] with p > q — 1.

Vector Pade approximants can be used for accelerating the convergence of
vector sequences. Let F = Yli>o Ti-z1. Then, a vector sequence (Sn) can be
canonically associated to F by taking Fj = A5j . Thus Sn is the nth partial
sum of the series F( l) and the vector Pade approximants are associated to
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a transformation of sequences. By combining the rows in the determinantal
expression of the vector approximant of F it follows that

[r  + h/r]F{l)  =

Sh Sh+r

AS;h+n AS[()h+r+n

1

The first row is formed by vectors and the following rows stand for the d
rows of their components except, as usual, the last one which contains only
the first k components.

The basic result is the following theorem.

Theorem 3.7 A necessary and sufficient condition for ipr(Sn) = SVn is
that the sequence (Sn) satisfies a linear recurrence relationship, that is, Vn

r r

Y2ai(Sn+i — S) = 0, with ^ O i ^ O, ai € C.
i=0 i=0

In the scalar case, Aitken's A2 process is recovered for r = 2 and the
Pade table, Shanks transformation and e-algorithm for r > 2. If d  ̂ 1 and
if r < d, we recover the MPE (Minimal Polynomial Extrapolation) algo-
rithm studied by Sidi, Ford and Smith (1986). For r = d, a transformation
due to Henrici (1964) is obtained. For r > d, the transformation does not
seem to have been studied yet independently from the vector Pade approx-
imants (Van Iseghem, 1994). Graves-Morris (1994) defined another kind of
approximants, also called vector Pade approximants, different from those
studied below, which are generated by the vector e-algorithm.

From the relation of the theorem above, it is clear that the results of
this extrapolation method are to be linked with those of other extrapolation
methods such as the vector e-algorithm or the topological e-algorithm.

 The vector e-algorithm
The rule of the e-algorithm is

£k+l — £k~l [4n + 1) - 4n ) ] - 1

with e_l = 0 and EQ = Sn.
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Now, if Sn is a vector of Cp, the preceding rule can be applied if the
inverse of a nonzero vector y is denned. Using the pseudo-inverse of the
rectangular matrix y, Wynn (1962) took y~l = y/(y, y). For this algorithm,
the following result holds.

Theorem 3.8 A sufficient condition for e^ = 5Vn is that Vn,

ao(Sn - S) +  + ak(Sn+k -S)=0

with ao +  + ak ^ 0 and aoak  ̂ 0.

This theorem was first given by McLeod (1971) in the case where the Oj's
are real numbers. The full proof was obtained by Graves-Morris (1983) for
complex coefficients. Contrary to the scalar case, only the sufficiency has
been proved. The theory of this vector e-algorithm and its applications were
based only on this theorem and other results about it were quite difficult
to obtain (see, for example, Cordellier (1977)). This was due to the nonex-
istence of determinantal formulae for the vectors ek . It has been proved
by Salam (1994) that these vectors can be expressed as a ratio of two des-
ignants, a notion generalizing that of determinants in a non-commutative
algebra. This approach should lead to new theoretical results about the
vector e-algorithm.

 The topological e-algorithm
A drawback of the vector e-algorithm was its lack of determinantal expres-

sions for the ek , due to the fact that this algorithm was obtained directly
from the rule of the scalar e-algorithm, by defining the inverse of a vector.
Thus a possible remedy was to construct a vector-sequence transformation
following the ideas of Shanks (1955) for the scalar case and then to obtain a
recursive algorithm for its implementation following Wynn (1956). We start
by assuming that the sequence (Sn) satisfies Vn,

ao(Sn - S) +  + ak(Sn+k -S) = 0.

Since, as above, it is assumed that ao +  + ak ^ 0, it is not a restriction
to set this sum to 1. Thus we have Vn,

S = aoSn -\ h akSn+k.

For computing the aj's, we subtract this relation from the next one and
multiply it scalarly by an arbitrary vector y. Thus for i = 0,..., k — 1, we
have

ao(y, ASn+i) H \- ak(y, ASn+i+k) = 0.
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Solving this system provides the aj's and S. If we set

Sn  <Sn+fc

ek(Sn) = (y,ASn+2k-i
1

(y,ASn) (y,

L)  (y,ASn+2k~i)

then, by construction, we have Vra, eh(Sn) = S if the sequence (5n) satisfies
the relation given above. If the sequence does not satisfy such a relation,
then the determinants appearing in the expression of ek{Sn) can, however,
be computed (the determinant in the numerator denotes the vector obtained
as the linear combination of the vectors in its first row given by using the
classical rules for expanding a determinant), and ek{Sn) is a generalization
of the Shanks transformation and Pade approximants. Now, from a practical
point of view, it is necessary to find an algorithm for computing recursively
the vectors ek(Sn) without computing explicitly the determinants involved
in the formula. This algorithm was called the topological e-algorithm. Its
rules are the following (Brezinski, 1975), with £_/ = 0 and EQ = Sn:

An)
£2k+l = £,

y
2 f c - l

£2k+2 — £2k

(
~-2k — e

(n)
2fc

_ (n) (n+1)
£2fc+l>£2fc ''2k

The topological e-algorithm can be considered as the construction of Pade
approximants in the direction of y. If d independent directions are chosen
and if the rows ((y, ASn+i),...), i = 0,. . ., A; — 1, are replaced by the d rows
((j/i, ASn),...), i = 1,..., d, then the vector Pade approximants (or more
exactly ipk{Sn)) are recovered. For k — d + 1, Henrici's transformation is
obtained.

All these algorithms are, in fact, constructed from the same idea which
is that of Pade approximation of achieving the maximum degree of approx-
imation at zero. So, as we shall see in the next section, they have similar
properties for their applications, for example, in solving systems of linear
and nonlinear equations.

4. Applications

Other applications can be found in Cuyt and Wuytack (1987).
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4-1. A-acceptable approximations to the exponential function

Let us consider the differential equation y'(x) = —Xy(x) where A is a com-
plex number whose real part is strictly positive. Thus the solution will sat-
isfy lima^oo y(x) = 0. This differential equation (with the initial condition
y(0) = yo) is integrated by a numerical method that computes approxima-
tions yn of the exact solution y(nh), where h is the step size. This numerical
method is said to be A-stable if V/iA such that Re(/iA) > 0, limn-^ yn = 0,
which means that both the exact and the approximate solutions tend to zero
at infinity.

Of course, since the exact solution is y(x) — yoe~Xx, we have y(xn+i)  =
e~hXy(xn) with xn = nh. When using either a one-step or a multistep
method, it can be proved that the approximate solution satisfies

2M+1 = r(hX)yn,

where r is a rational function. Thus, if the numerical method has order p,
we have

r(z) = e~z + 1

Moreover, if the method is A-stable we must have, Vz such that Ke(z) >
0, \r(z)\ < 1 since yn = [r(hX)] ny0.

Such a rational approximation to the exponential function is called A-ac-
ceptable and, of course, Pade, Pade-type and partial Pade approximants are
candidates for such an r.

Using the maximum-modulus principle it can be shown that r is A-
acceptable if and only if Vt € R, |r(it)| < l,lim|2|_>oo \r(z)\ < 1 and r is
analytic in the right half part of the complex plane; see Alt (1972).

The A-acceptability of Pade approximants to the exponential function
was studied by Ehle (1973) who proved:

Theorem 4.1 The Pade approximants [n/ra], [n — 1/n] and [n — 2/n] of
e~z are A-acceptable for all n.

Let us now turn to Pade-type approximants. The following result is an
adaptation of that of Crouzeix and Ruamps (1977) for rational approximants
to the exponential function.

Theorem 4.2 Let r be a Pade-type approximant of eTz with real coeffi-
cients, whose numerator has degree k and whose denominator has degree
n + k (n > 0). Let

If the zeros of the denominator of r have negative reals parts, if /% < OJJ
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for i = [k/2] + 1,..., k and if 0 < â  for i = k + 1,.. ., k + n, then r is
^-acceptable, ([x]  denotes the integer part of the real number x.)

When solving a parabolic partial differential equation of the second order,
one obtains, after discretization of the space variable, a differential system
of the form

Cu'(t) = -Au(t) + v(t),

u(0) = u0,

where C and A are real square matrices whose elements are independent of
the time t. Using a one-step method for integrating this differential equation
leads to Qk(Bh)un+i = Pm(Bh)un + Tn, where, B = C~lA Tn, is a matrix
depending on k and m, un is an approximation of the exact solution u(tn) at
the point tn and Qk and Pm are matrix polynomials of the respective degrees
k and m. As before, [Qk(Bh)]~lPm(Bh) must be an approximation of e~Bh

and the order of the method is determined by that of the approximation.
This approximation must be ^4-acceptable if an ^4-stable one-step method
is needed. The computation of un+i  from un requires the computation of
the inverse of the matrix Qk(Bh). This computation is greatly simplified if
Qk{z) = (1 + otkz)k. Indeed, in that case, the computation of un+\ reduces
to the solution of k systems of linear equations with the same matrix

(7 + otkBh)vp+i = vp, p = 0,. . ., k - 1, v0 = Pm{Bh)un + Tn, vk = un+i.

Of course, such a simplification is impossible with Pade approximants but
it becomes possible with Pade-type approximants. For convergence reasons,
since limfc_>o<D(l + z/k)k = ez we shall make the choice a*; — 1/k which
corresponds to the generating polynomials vk{x) = (x+l/k)k. The following
result can be proved:

Theorem 4.3 The Pade-type approximants (k — 1/k) of e~z constructed
with the generating polynomials vk(x) — (x + l/k)k are A-acceptable for
k = 1,2,3. The Pade-type approximants (k/k) constructed with the same
generating polynomials are A-acceptable for k = 1,... ,4. (6/6) is not A-
acceptable.

The study of the convergence of these approximants is due to Van Iseghem
(1984) who proved the following results:

Theorem 4.4 The sequences ((k — 1/k)) and ((k/k)) of Pade-type ap-
proximants to exp(—z) constructed with the generating polynomials vk(x) =
(x + l/k)k converge to exp(—z) uniformly and geometrically on every com-
pact subset of the complex plane.

Complementary results on the A-acceptability of Pade-type approximants
with a single pole were given by Gonzalez-Concepcion (1987). See Wanner
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(1987) for a review on the ^-acceptability of Pade approximants to the
exponential function.

4-2. Laplace and other transforms

In this section, we shall show how Pade approximants can be used in the
numerical solution of problems related to the Laplace, the Borel and the
z-transforms.

The Laplace transform of a function / is defined by

fip) = / e-*/(t)dt.Jo
The Borel transform is a Laplace transform, B(z) = f(l/z), and the z-
transform is a discrete equivalent of the Laplace transform, as will be shown
at the end of this section.

The Laplace transform is used in several cases: if / satisfies a functional
equation, / satisfies a simpler one which can be solved more easily. For
example, a linear ordinary differential equation is replaced by an algebraic
equation, a linear partial differential equation is replaced by an ordinary dif-
ferential equation and so forth. For example, the partial differential equation

ydr2 drdx

is transformed, with respect to x, into

r \dr dx) r2 I

The problem is to find f(t) from f{p)- It requires the construction of
approximate methods for computing inverse Laplace transforms that permit
us to find the original function in a broad class of cases.

It must be noticed at once that the problem is always unstable: if f(p) =
l/(p — a), then f(t) = eat. So if there is an error in a, of say e, then there
is an amplification of the error: f£ — e£*/ . Conversely, if / is modified on a
small interval, then / will have a very smooth change.

An extensive literature exists on the subject and on the different methods
for inverting the Laplace transform. A review can be found, for example, in
Luke (1969). We will only discuss here the problem of inversion by use of
rational approximants.

In many applications, one knows explicitly f(p) and one wants to find f(t)
numerically. One way of obtaining approximations to the inverse f(t) of f(p)
is by approximating f(p) by a sequence of rational functions fn(p), n > 1,
and then inverting the fn{p) exactly to obtain the sequence fn(t), n > 1.
The hope is that, if the sequence (f(p))n converges to f(p) quickly, then the
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sequence (fn(t))n will converge to f(t) also, more or less quickly. There are
several ways of obtaining rational approximations to a given function, one of
them being by expanding it into a Taylor series, and then forming the Pade
table associated with the Taylor series. Detailed discussions and references
to various applications can be found in the paper by Longman (1973).

The link with Prony's method (interpolation by a sum of exponential
functions) has been generalized by Sidi (1981).

If fn(p) has n poles, not necessarily distinct but of multiplicity rii,  with
Y1T ni < ni then

So the problem is the approximation of /(£) by functions of the same type
as fn(t). The result proved by Sidi is as follows:

Theorem 4.5 Define the set Gn as

{ m rii  rn

5(*) = E E Bijti-^, at âj,^2ni< n, Btj G
i=i j=i l

Now, let gn(t) be the function, if it exists, belonging to Gn that approximates
f(t) in [0, oo) in the following weak sense:

L tNe-wt(f(t) - gn(t))t
ldt = 0, i = 0,. . ., In - 1.

o
Then gn(p), the Laplace transform of gn(t), is the Pade approximant [n—l/n]
of f(p — w). Furthermore, gn(t) is a real function of t if f(p) is real for real
P-

As seen before, Pade-type approximants can give better numerical results
than Pade approximants if some information about the poles is known. Var-
ious investigations have been conducted in the past ten years concerning the
convergence of methods using Pade or Pade-type approximants.

One research path, followed by Van Iseghem (1987a), is through orthog-
onal polynomials and Pade-type approximants with one multiple pole. The
basic remark is the following one, due to Tricomi (see Sneddon (1972)),
about the Laguerre polynomials of order zero:

/(* ) = extLk(2Xt) * f(p) =
X)k+1

So, the Laplace transform formally achieves a correspondence between a
series in powers of (p—A)/(p+A) and an expansion in Laguerre polynomials.
Convergence in the least-squares sense is to be expected for (/n), but better
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results are obtained. We have

The partial sum fn(p) of this series is the (n/n + 1) Pade-type approximant
of f(p) with denominator (p + A)n+1. If f(p) = ^ i>oc*0 ? ~ )̂*> then the
afc's are easily computed:

i=0

The following results are obtained:

Theorem 4.6 Let us assume that / is analytic in the half plane Re(p) > 0,
f(t) exists and f£° f2(t)dt < oo. Then the sequence (f(p))n converges to /,
uniformly on every compact set of the half plane Ke(p) > 0. The sequence
(fn(t))n converges to / in the least-squares sense. Furthermore if (p+A)/(p)
is analytic at infinity and if f(p) is analytic in Re(p) > 0, then the sequence
(fn(t))n converges to f(t) uniformly on compact sets of R+.

This theorem can be improved in two directions:
 / is analytic in Re(p) > w (instead of w = 0);
 (p + X)f(k\p) is analytic at infinity (instead of k = 0).

With the first assumption, we get the following sequence (hn(t)):

1 . "  /-oo

hn(t) = ^e(-w-x)tJ2aiLi(^t), lim / t2ke~2wt(f(t) - hn(t))
2dt = 0.

t Q ° Jo

With the second one, the same sequence converges uniformly to / on com-
pact sets of R+.

The idea is to obtain a quickly decreasing sequence aj(A), and the com-
putations are very sensitive to that choice, even if the theoretical results are
not. The choice of A must be made in order to speed up the convergence of
the power series S^aiU1 (i.e. the convergence of fn(p) to f(p)). Let

p — A
(P(u) = J2aiu\ (p + \)f(p) = ip(u), u = ——-.

i P + A

The singularities of <p are (a — A)/a + A) with a a singularity of /. So R\,
the radius of convergence of ip, is R\ = l/(maxj |Iu4i|) with L being the
point represented by the complex number 1, and A{ being represented by
2A/(A — Oii). So, the best A is obtained by minimizing maxj |L-Aj|. Compu-
tations have been made and compared with those of Longman (1973) using
Pade approximants. For the examples studied (with poles, branch points or
isolated essential singularities) they give better results.
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Let us now summarize two examples: the first one shows the improvement
due to the choice of A for the approximant i*V(£) (the case A = 1 has been
obtained by Ward in Sneddon (1972) and the exact inverse F(t) = e~* — e~2t

is known); for the second example the results are obtained with the weight
function, depending on k, t2ke~2kt, the choice of A being optimal. The last
line of each array contains the exact results when known.

A
1

1. 2
1. 4

t = A
.0179 7

.017979 7

.017980 2

.017980 1

t = l
.2326 3

.232543 0

.232544 0

.232544 1

*  =  0. 5
.2386 6

.238653 3

.238651 3

.238651 2

k
1
3
5
7

t  =  4
.01317 9
.01304 4
.01304 8
.01305 4

t = 2
.04913 3
.04889 9
.04890 0
.04889 7
.04890 0

t  =  0. 5
.55836 8
.55983 5
.55978 7
.55966 2
.55977 3

It is obvious that for such unstable problems, no single method will give
optimal results for all purposes and all occasions.

As the Borel transform is also a Laplace transform, Pade and Pade-type
approximants can be used for its inversion, as explained by Marziani (1987).
Let us first recall the basis of the Borel method, namely, the Watson-
Nevanlinna theorem:

Theorem 4.7 Let a > 0, R > 0 and A > 0 be given. We set Da>R —
{z € C, 0 < \z\ < R, | arg z\ < a + TT/2}, Ta,A = {z € C, \z\ < I/A} U {z G
C, | arg z\ < a}. Let / be analytic in Da  ̂ and continuous on -Da,R and have
there the asymptotic expansion f(z) — Y^-o°nzn (z ~*  0). We assume
that there exists C > 0 such that Vz € DaR and ViV

N

f(Z) -
n=0

l)\A N+1\z\N+1

Then the Borel transform series B(z) = 2J —;zn converges in {z G C, \z\ <
n=o n"

I/A}, B(z) has an analytic continuation g(z) in Ta^, the integral F(z) =

- / e~*'2<7(£)d£ is absolutely convergent Vz G {z G C, |z| < R, | arg z| <

a}  Lid F(z) = f(z).

Thus the integral F(z) provides a formal sum for the asymptotic series
f(z) and the Taylor expansion of F around the origin coincides with the
series /.

The main drawback of this method is that usually g is not known since, in
practice, only a finite set of numerically computed coefficients Cn is available.
The series B cannot be used either since it converges only for \z\ < I/A.
Thus, the idea was to replace g(t) in the definition of F by [n +
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with n > — 1, giving rise to the Borel-Pade approximants

To prove that these Borel-Pade approximants tend to f(z) when k tends
to infinity, one has first to prove that [n + k/k]B tends to B uniformly
when k —> oo. Usually this is not possible and this was the reason why
Marziani (1987) replaced the Pade approximant [n + k/k\B by the Pade-
type approximant (n + k/k) thus obtaining the so-called Borel-Pade-type
approximant denoted by Fg . Using the convergence results for Pade-
type approximants, he was able to prove the following theorem:

Theorem 4.8 Let / be an analytic function satisfying the assumptions
of the preceding theorem with a arbitrarily close to n. If the generating
polynomials Vk are the Chebyshev polynomials of the first kind Vk{x) =
Tk(2x/A + 1), then Vn > -1

f(z) = lim FB
n+k'k\z)

k—>oo

for every z in the half plane {z,Re(z) > 0} .

The numerical results given by Marziani (1987) show that the Borel-Pade-
type approximants converge with almost the same rate as the Borel-Pade
approximants. The main advantage is that one has complete control of
the poles when using the Pade-type approximants and thus a proof of the
convergence of the method can be obtained.

Let us end this section with the z-transform. It is a functional trans-
formation of sequences that can be considered as equivalent to the Laplace
transform for functions. While the Laplace transform is useful in solving
differential equations, the z-transform plays a central role in the solution of
difference equations. If one changes z into z~l, it is identical to the method
of generating functions introduced by the French mathematician Frangois
Nicole (1683-1758) and developed by Joseph Louis Lagrange (1736-1813).
It has many applications in digital filtering and in signal processing as ex-
emplified by Vich (1987). By signal processing we mean the transformation
of a function / of the time t, called the input signal, into an output signal h.
This transformation is realized via a system G called a digital filter. / can
be known for all values of t, and in that case we speak of a continuous signal
and a continuous filter, or it can only be known at equally spaced values of
t, tn — nT for n = 0 , 1 , . . ., where T is the period, and, in that case, we
speak of a discrete signal and a discrete filter. The z-transform of a discrete
signal is given by F(z) = J2%Lo fnZ~n, where fn = f(nT). Corresponding
to the input sequence (/n) is the output sequence (hn — h(nT)). If we set
H(z) = 5Z^=o hn,z~n then the system G can be represented by its so-called
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transfer function G(z) such that H(z) = G(z)F(z). In other words, if we
write G{z) = £~= 0 gnz~n then hn = E L o fk9n-k, n = 0 ,1 , . . .. Thus if (/n)
and (hn) are known, then (gn) can be computed. An important problem in
the analysis of digital filters is the identification of the transfer function
when (fn) and (hn) are known. If the filter is linear then G is a rational
function of z and, if not, its transfer function can be approximated by a
rational function R(z) = P(z)/Q(z) which is in fact the Pade approximant
[s/s]G(z).

4-3. Systems of equations

As explained in Section 1.6, the scalar e-algorithm (Wynn, 1956) is a re-
cursive method for computing Pade approximants. It is also a powerful
convergence-acceleration process (see, for example, Brezinski and Redivo-
Zaglia (1991)). Since, in numerical analysis, one often has to deal with
vector sequences, the e-algorithm was generalized to the vector case. Also
as usual, when generalizing from one dimension to several, several possible
generalizations exist. However, in our case, they all have some properties in
common since they were all built in order to compute exactly the vector S
for sequences of vectors (Sn) such that, Vn,

ao(Sn - S) +  + ak{Sn+k -S) = 0,

where ao,. . ., a& are scalars such that ao +  + ak / 0.

Due to this property, the various generalizations of the e-algorithm (which
obviously give rise to the corresponding generalizations of Pade approxi-
mants for series with vector coefficients) have applications in linear algebra.
Indeed, let us consider the sequence of vectors (xn) generated by

xn+i = Bxn + b,

where B is a square matrix such that A — I — B is regular and b is a vector.
Let x be the unique solution of the system Ax — b. Then xn—x = Bn(xQ—x),
where XQ is the initial vector of the sequence (xn). Let Pk(t) = ao + a\t +

 + akt
k be the minimal polynomial of the matrix B for the vector XQ — x,

that is, the polynomial of the minimal degree such that Pk(A)(xo — x) = 0.
Then, Vn, AnPk(A)(xo - x) — ao(xn - x) -\ (- a,k(xn+k - x) = 0. More-
over, since A is assumed to be regular, 1 is not an eigenvalue of B, that is,
Pfc(l) = ao +  + afe 7̂  0. It follows, from the aforementioned property
shared by the various generalizations of the e-algorithm, that, when applied
to the sequence (xn), they will all lead to e^ = a;Vn. Thus, all these gener-
alizations (and also the scalar e-algorithm applied componentwise) are direct
methods for solving systems of linear equations.
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As we shall see below, the connection between extrapolation methods and
linear algebra is still deeper. Moreover, such algorithms can also be used for
solving systems of nonlinear equations. They are derivative-free and exhibit
a quadratic convergence under the usual assumptions.

 The vector e-algorithm
Let us give an application of Theorem 3.8 to the solution of systems of

linear equations. We have the following theorem (Brezinski, 1974):

Theorem 4.9 Let us apply the vector ^-algorithm to the sequence

xn+i = Bxn + b, n = 0 , 1 , . . .,

where XQ is a given arbitrary vector.
If A = I — B is regular, if m is the degree of the minimal polynomial of

B for the vector XQ — x and if 0 is a zero of multiplicity r (possibly = 0) of
this polynomial, then Vn > 0

s{n+r)  ~x

If A is singular, if b belongs to its range (which means that the system has
infinitely many solutions), if m and r are denned as above and if q denotes
the multiplicity of the zero equal to 1 of this polynomial, then, if q = 1 we
have Vn > 0

£2(m-r)-2) ~ X>

where x is one of the solutions of the system. If q = 2, then Vn > 0

(n) _
£2(m-r)-3 ~~ ^'

where y is a constant vector independent of n.
If A is singular, if b does not belong to its range (which means that the

system has no solution), if m is the degree of the minimal polynomial of B
for the vector x\ — XQ, if 0 is a zero of multiplicity r (possibly = 0) of this
polynomial and if q denotes the multiplicity of its zero equal to 1, then, if
q = 1, we have Vn > 0

£{n+r)  _

where z is a constant vector independent of n.

This theorem was generalized to the case where the sequence (xn) is gen-
erated by

k

i=0

where the fij's are square matrices (Brezinski, 1974).
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 The topological e-algorithm
We saw above that the coefficients a\ appearing in the recurrence relation

assumed to be satisfied by the 5n's are obtained by writing

ao(y, ASn+i) H h ak(y, ASn+k+i)  = 0

for i = 0, ...,k — 1, where y is an arbitrary vector. Another possibility
consists in taking i = 0 in this relation and choosing several linearly in-
dependent vectors yi instead of y. Again, solving the system of equations
(together with ao +  + a*. = 1) provides the a '̂s and thus S. A recursive
algorithm for implementing this procedure (Brezinski, 1975) was obtained
by Jbilou (1988). It is called the S/J-algorithm. When ŷ  = ej, the method
proposed by Henrici (1964) is recovered. Its theory was developed in detail
by Sadok (1990) and a recursive algorithm for its implementation, called the
if-algorithm, was given by Brezinski and Sadok (1987).

Thus, from Theorem 3.8, the scalar (applied component-wise), the vector
and the topological e-algorithms and the 5/3-algorithm are direct methods
for solving systems of linear equations. However, it must be noticed that,
due to their storage requirements, the e-algorithms are not competitive with
other direct methods from the practical point of view.

The topological e-algorithm is also related to the method due to Lanczos
(1952) for solving a system of linear equations Ax = b. This method consists
in constructing a sequence of vectors (xk) such that

 xk - XQ € span(r0, Ar0,..., A^ro),
 rk = b- Axk -L span(y, A*y,..., A^^y),

where XQ and y are arbitrary vectors and r§ = b — AXQ. These relations
completely define the vectors xk if they exist. An important property of the
Lanczos method is its finite termination, namely, that 3k < p (the dimension
of the system) such that xk = x.

The vectors xk and rk can be recursively computed by several algorithms,
the most well known being the biconjugate-gradient method due to Fletcher
(1976) which becomes the conjugate gradient of Hestenes and Stiefel (1952)
when the matrix A is symmetric and positive definite. The other algorithms
for implementing the Lanczos method can be deduced from the theory of
formal orthogonal polynomials (Brezinski and Sadok, 1993) thus showing
the link with Pade approximants as studied by Gutknecht (1990). Thanks
to the theory of formal orthogonal polynomials, the vectors rk of the Lanc-
zos method can be expressed as the ratios of two determinants. After some
manipulations on the rows and the columns of these determinants and using
the relation B — I—A, it can be proved (Brezinski, 1980) that the vectors xk

generated by the Lanczos method are identical to the vectors ê fc obtained
by applying the topological e-algorithm to the sequence yn+i  — Byn + b with
yo = XQ. With the determinantal formula of the topological e-algorithm, a
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determinantal expression for the iterates of the CGS algorithm of Sonneveld
(1989), which consists in squaring the formal orthogonal polynomials in-
volved in the Lanczos method, was obtained by Brezinski and Sadok (1993).

There are many more connections between methods of numerical linear
algebra and extrapolation algorithms but it is not our purpose here to em-
phasize this point. We shall refer the interested reader to Brezinski (1980),
Sidi (1988), Brezinski and Redivo-Zaglia (1991), Brezinski and Sadok (1992)
and Brezinski (1993).

 Systems of nonlinear equations
Let us consider the nonlinear fixed-point problem x = F(x), where F is

an application of W into itself. This problem can be solved by Newton's
method which constructs a sequence of vectors converging quadratically to x
under some assumptions. The main drawback of Newton's method is that it
needs the knowledge of the Jacobian matrix of F, which is not always easily
available. Quasi-Newton methods provide an alternative but with a slower
rate of convergence. When p = 1, a well-known method is Steffensen's,
which has a quadratic convergence under the same assumptions as Newton's
method. Steffensen's method is based on Aitken's A2 process and it does not
need the knowledge of the derivative of F. Since the e-algorithm generalizes
Aitken's process, the problem arises of finding a generalization of Steffensen's
method for solving a system of p nonlinear equations written in the form
x = F(x). This algorithm (Brezinski, 1970; Gekeler, 1972) is as follows:

 choose xo,
 for n = 0 , 1 , . .. until convergence
 set u$ — xn,
 compute U{+i — F{iii)  for i = 0, . . ., 2pn — 1, where pn is the degree of

the minimal polynomial of F'(x) for the vector xn — x,
 apply the e-algorithm to the vectors uo,...,U2Pn,

In this method, either the scalar (component-wise), the vector or the topo-
logical e-algorithm could be used. However, the following theorem (Le Fer-
rand, 1992a) was only proved in the case of the topological e-algorithm al-
though all the numerical experiments show that it might also be true for the
two other e-algorithms. The proof is based on the determinantal expression
of the vectors computed by the topological e-algorithm. A similar result was
also proved to hold for the vector Pade approximants (Van Iseghem, 1994).
Let Hn be the matrix

/ 1  1 \
{y,AuQ)  {y,AuPn)

(y,Au2pn-i)



A TASTE OF PADE APPROXIMATION 99

Theorem 4.10 If the matrix I — F'(x) is regular, if F' satisfies a Lipschitz
condition and if 3N, 3a > 0 such that Vn > N,\detHn\ > a, then the
sequence (xn) generated by the previous algorithm converges quadratically
to x for any XQ in a neighborhood of x.

Henrici's method is also a method with a quadratic convergence for sys-
tems of nonlinear equations (Ortega and Rheinboldt, 1970). It is equivalent
to the vector Pade approximants when k = d + 1. It has the same gen-
eral structure as the algorithm given above after replacing 2pn by pn + 1
and using either the S/?-algorithm or the i7-algorithm instead of one of the
^-algorithms.
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Knowing thus the Algorithm of this calculus, which I call Differential Calcu-
lus, all differential equations can be solved by a common method (Gottfried
Wilhelm von Leibniz, 1646-1719).

When, several years ago, I saw for the first time an instrument which, when
carried, automatically records the number of steps taken by a pedestrian, it
occurred to me at once that the entire arithmetic could be subjected to a
similar kind of machinery so that not only addition and subtraction, but also
multiplication and division, could be accomplished by a suitably arranged ma-
chine easily, promptly and with sure results.... For it is unworthy of excellent
men to lose hours like slaves in the labour of calculations, which could safely
be left to anyone else if the machine was used.... And now that we may give
final praise to the machine, we may say that it will be desirable to all who
are engaged in computations which, as is well known, are the managers of
financial affairs, the administrators of others estates, merchants, surveyors,
navigators, astronomers, and those connected with any of the crafts that use
mathematics (Leibniz).
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1. Leibniz's vision

Newton and Leibniz invented calculus in the late 17th century and laid the
foundation for the revolutionary development of science and technology up
to the present day. Already 300 years ago, Leibniz sought to create a 'mar-
riage' between calculus and computation, but failed because the calculator
he invented was not sufficiently powerful. However, the invention of the
modern computer in the 1940s started a second revolution and today, we
are experiencing the realization of the original Leibniz vision. A concrete
piece of evidence of the 'marriage' is the rapid development and spread of
mathematical software such as Mathematica, Matlab and Maple and the
large number of finite-element codes.

The basic mathematical models of science and engineering take the form
of differential equations, typically expressing laws of physics such as conser-
vation of mass or momentum. By determining the solution of a differential
equation for given data, one may gain information concerning the physi-
cal process being modelled. Exact solutions may sometimes be determined
through symbolic computation by hand or using software, but in most cases
this is not possible, and the alternative is to approximate solutions with
numerical computations using a computer. Often massive computational
effort is needed, but the cost of computation is rapidly decreasing and new
possibilities are quickly being opened. Today, differential equations mod-



INTRODUCTION TO ADAPTIVE METHODS FOR DIFFERENTIAL EQUATIONS 107

elling complex phenomena in three space dimensions may be solved using
desktop workstations.

As a familiar example of mathematical modelling and numerical solution,
consider weather prediction. Weather forecasting is sometimes based on
solving numerically a system of partial differential equations related to the
Navier-Stokes equations that model the evolution of the atmosphere begin-
ning from initial data obtained from measuring the physical conditions -
temperature, wind speed, etc. - at certain locations. Such forecasts some-
times give reasonably correct predictions but are also often incorrect. The
sources of errors affecting the reliability are data, modelling and compu-
tation. The initial conditions at the start of the computer simulation are
measured only approximately, the set of differential equations in the model
only approximately describe the evolution of the atmosphere, and finally
the differential equations can be solved only approximately. All these con-
tribute to the total error, which may be large. It is essential to be able to
estimate the total error by estimating individually the contributions from
the three sources and to improve the precision where most needed. This
example contains the issues in mathematical modelling that are common to
all applications.

In these notes, we present a framework for the design and analysis of
computational methods for differential equations. The general objective
is to achieve reliable control of the total error in mathematical modelling
including data, modelling and computation errors, while making efficient
use of computational resources. This goal may be achieved using adap-
tive methods with feedback from computations. The framework we de-
scribe is both simple enough to be introduced early in the mathematical
curriculum and general enough to be applied to problems on the frontiers
of research. We see a great advantage in using this framework in a math-
ematics education program. Namely, its simplicity suggests that numerical
methods for differential equations could be introduced even in the calcu-
lus curriculum, in line with the Leibniz idea of combining calculus and
computation. In these notes, we hope to reach a middle ground between
mathematical detail and ease of understanding. In Eriksson, et al. (1994),
we give an even more simplified version aimed at early incorporation in a
general mathematical curriculum. These notes, together with the software
Femlab implementing the adaptive methods for a variety of problems, are
publicly available through the Internet; see below. In the textbook Eriks-
son, et al. (in preparation), we develop the framework in detail and give
applications not only to model problems, but also to a variety of basic prob-
lems in science including, for example, the Navier-Stokes equations for fluid
flow.

We begin by discussing the basic concepts of predictability and com-
putability, which are quantitative measures of the accuracy of prediction
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from the computational solution of a mathematical model consisting of dif-
ferential equations.

In the next part, we present an abstract framework for discretization, er-
ror estimation and adaptive error control. We introduce the fundamental
concepts of the framework: reliability and efficiency, a priori and a posteriori
error estimates, accuracy and stability. We then recall the basic principles
underlying the Galerkin finite-element method (Fem), which we use as a gen-
eral method of discretization for all differential equations. We then describe
the fundamental ingredients of error estimates for Galerkin discretization,
including stability, duality, Galerkin orthogonality and interpolation. We
also discuss data, modelling, quadrature and discrete-solution errors briefly.

In the last part, we apply this framework to a variety of model problems.
We begin by recalling some essential facts from interpolation theory. We
next consider a collection of model problems including stationary as well
as time-dependent, linear and non-linear, ordinary and partial differential
equations. The model problems represent a spectrum of differential equa-
tions including problems of elliptic, parabolic and hyperbolic type, as well
as general systems of ordinary differential equations. In each case, we de-
rive a posteriori and a priori error bounds and then construct an adaptive
algorithm based on feedback from the computation. We present a sample of
computations to illustrate the results. We conclude with references to the
literature and some reflections on future developments and open problems.

2. Computabilit y and predictabilit y

Was man mit Fehlerkontrolle nicht berechnen kann, dariiber muss mann schweigen
(Wittgenstein).

The ability to make predictions from a mathematical model is determined by
the concepts of computability and predictability. We consider a mathematical
model of the form

A(u) = /, (2.1)

where A represents a differential operator with specified coefficients (includ-
ing boundary and initial conditions) on some domain, / is given data and u
is the unknown solution. Together, A and / define the mathematical model.
We assume that by numerical and/or symbolic computation an approxima-
tion U of the exact solution u is computed, and we define the computational
error ec = u — U. The solution u, and hence U, is subject to perturbations
from the data / and the operator A. Letting the unperturbed form of (2.1)
be

A(u) = f, (2.2)

with unperturbed operator A, data / and corresponding solution u, we de-
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fine the data-modelling error e^m = u — u. In a typical situation, the unper-
turbed problem (2.2) represents a complete model that is computationally
too complex to allow direct computation, and (2.1) a simplified model that
is actually used in the computation. For example, (2.2) may represent the
full Navier-Stokes equations, and (2.1) a modified Navier-Stokes equations
that is determined by a turbulence model that eliminates scales too small
to be resolved computationally.

We define the total error e as the sum of the data-modelling and compu-
tational errors,

e = u — U — u — u + u — U = edm + ec. (2.3)

Basic problems in computational mathematical modelling are: (i) estimate
quantitatively the total error by estimating both the data-modelling error
e&m and the computational error ec, and (ii) control any components of the
data-modelling and computational errors that can be controlled. Without
some quantitative estimation and even control of the total error, mathemat-
ical modelling loses its meaning.

We define the solution u of the unperturbed model (2.2) to be predictable
with respect to a given norm ||  || and tolerance TOL > 0 if ||edm|| < TOL.
We define the solution u of the perturbed model (2.1) to be computable
with respect to a given norm ||  ||, tolerance TOL and computational work,
if ||ec|| < TOL with the given computational work. Note that the choice
of norm depends on how the error is to be measured. For example, the
L2 and L°° norms are appropriate for the standard goal of approximating
the values of a solution. Other norms are appropriate if some qualitative
feature of the solution is the goal of approximation. We note that the
predictability of a solution is quantified in terms of the norm ||  || and the
tolerance TOL, whereas the computability of a solution is quantified in
terms of the available computational power, the norm ||  || and the tolerance
TOL. There is a natural scale for computability for all models, namely,
the level of computing power. The scale for predictablity depends on the
physical situation underlying the model. The relevant level of the tolerance
TOL and the choice of norm depend on the particular application and the
nature of the solution u.

A mathematical model with predictable and computable solutions may be
useful since computation with the given model and data may yield relevant
information concerning the phenomenon being modelled.

If the uncertainty in data and/or modelling is too large, individual solu-
tions may effectively be non-predictable, but may still be computable in the
sense that the computational error for each choice of data is below the chosen
tolerance. In such cases, accurate computations on a set of data may give
useful information of a statistical nature. Thus, models with non-predictable
but computable solutions may be considered partially deterministic, that is,
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deterministic from the computational point of view but non-deterministic
from the data-modelling point of view. One may think of weather prediction
again, in which it is not possible to describe the initial state as accurately
as one could enter the data into a computation. Finally, models for which
solutions are non-computable do not seem to be useful from a practical point
of view.

The computational error ec is connected to perturbations arising from
discretization through a certain stability factor Sc measuring the sensitivity
of u to perturbations from discretization. The computability of a problem
may be estimated quantitatively in terms of the stability factor Sc and a
quantity Q related to the nature of the solution u being computed and the
tolerance level. The basic test for computability reads: if

ScxQ <P (2.4)

where P is the available computational power, then the problem is numer-
ically computable, whereas if Sc x Q > P, then the problem is not com-
putable. In this way we may give the question of numerical computability
a precise quantitative form for a given exact solution, norm, tolerance and
amount of computational power. Note that Sc x Q is related to the complex-
ity of computing the solution u, and an uncomputable solution has a very
large stability factor Sc- This occurs with pointwise error control of direct
simulation of turbulent flow without turbulence modelling over a long time,
for example.

Similarly, the sensitivity of u to data errors may be measured in terms of
a stability factor Sd- If Sd x <$ is sufficiently small, where 6 measures the
error in the data, then the problem is predictable from the point of view of
data error. In addition, some kind of modelling errors can be associated to
a stability factor Sm and if Sm x \i is sufficiently small, where /x measures
the error in the model, then the problem is predictable from the point of
view of modelling.

Different perturbations propagate and accumulate differently, and this
is reflected in the different stability factors. The various stability factors
are approximated by numerically solving auxiliary linear problems. In the
adaptive algorithms to be given, these auxiliary computations are routinely
carried out as a part of the adaptive algorithm and give critically important
information on perturbation sensitivities.

3. The finite-element method

(Fe)m: Finite elements, For everything, For everyone, 'For ever' (m = 4).

Fern is based on

 Galerkin's method for discretization,
 piecewise-polynomial approximation in space, time or space/time.
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In a Galerkin method, the approximate solution is determined as the member
of a specified finite-dimensional space of trial functions for which the residual
error is orthogonal to a specified set of test functions. The residual error, or
simply the residual, is obtained by inserting the approximate solution into
the given differential equation. The residual of the exact solution is zero,
whereas the residual of approximate solutions deviates from zero. Applying
this method for a given set of data leads to a system of equations that is
solved using a computer to produce the approximate solution. In Fem, the
trial and test functions are piecewise polynomials. A piecewise polynomial
is a function that is equal to a polynomial, for example, a linear function,
on each element of a partition of a given domain in space, time or space-
time into subdomains. The subdivision is referred to as a mesh and the
subdomains as elements. In the simplest case, the trial and test space are
the same.

If the trial functions are continuous piecewise polynomials of degree q and
the test functions are continuous or discontinuous, we refer to the resulting
methods as continuous Galerkin or cG{q) methods. With discontinuous
piecewise polynomials of degree q in both trial and test space, we obtain
discontinuous Galerkin methods or dG(q) methods.

4. Adaptive computational methods

The goal of the design of any numerical computational method is

 reliability,
 efficiency.

Reliability means that the computational error is controlled on a given tol-
erance level; for instance, the numerical solution is guaranteed to be within
1 per cent of the exact solution at every point. Efficiency means that the
computational work to compute a solution within the given tolerance is
essentially as small as possible.

The computational error of a Fem has three sources:

 Galerkin discretization,
 quadrature,
 solution of the discrete problem.

The Galerkin discretization error arises because the solution is approximated
by piecewise polynomials. The quadrature error comes from evaluating the
integrals arising in the Galerkin formulation using numerical quadrature,
and the discrete-solution error results from solving the resulting discrete
systems only approximately, using Newton's method or multigrid methods,
for example. It is natural to seek to balance the contribution to the total
computational error from the three sources.
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To achieve the goals of reliability and efficiency, a computational method
must be adaptive with feedback from the computational process. An adap-
tive method consists of a discretization method together with an adaptive
algorithm. An adaptive algorithm consists of

 a stopping criterion guaranteeing error control to a given tolerance
level,

 a modification strategy in case the stopping criterion is not satisfied.

The adaptive algorithm is used to optimize the computational resources to
achieve both reliability and efficiency. In practice, optimization is performed
by an iterative process, where in each step an approximate solution is com-
puted on a given mesh with piecewise polynomials of a certain degree, a
certain quadrature and a discrete-solution procedure. If the stopping crite-
rion is satisfied, then the approximate solution is accepted. If the stopping
criterion is not satisfied, then a new mesh, polynomial approximation, set
of quadrature points and discrete-solution process are determined through
the modification strategy and the process is continued. To start the proce-
dure, a coarse mesh, low-order piecewise-polynomial approximation, set of
quadrature points and discrete-solution procedure are needed.

Feedback is centrally important to the optimization process. The feedback
is provided by the computational information used in the stopping criteria
and the modification strategy.

We now consider the Galerkin discretization error. Adaptive control of
this error is built on error estimates. The control of quadrature and discrete-
solution errors is largely parallel, but each error has its own special features
to be taken into account.

5. General framework for  analysis of Fein

5.1. Error estimates

Error estimates for Galerkin discretizations come in two forms:

 a priori error estimates,
 a posteriori error estimates.

An a priori estimate relates the error between the exact and the approxi-
mate solution to the regularity properties of the exact (unknown) solution.
In an a posteriori estimate, the error is related to the regularity of the ap-
proximation.

The basic concepts underlying error estimates are

 accuracy,
 stability.
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Accuracy is a measure of the level of the discretization at each point of the
domain, while stability is a measure of the degree to which discretization
errors throughout the domain interact and accumulate to form the total
error. These properties enter in different forms in the a posteriori and a priori
error estimates. The a posteriori version may be expressed conceptually as
follows:

small residual + stability of the continuous problem ==> small error, (5.1)

where the continuous problem refers to the given differential equation. The
a priori version takes the conceptual form

small interpolation error + stability of the discrete problem =>  small error,
(5.2)

where the interpolation error is the difference between the exact solution
and a piecewise polynomial in the Fem space that interpolates the exact
solution in some fashion. Note that the a posteriori error estimate involves
the stability of the continuous problem and the a priori estimate the stability
of the discrete problem. We see that accuracy is connected to the size of
the residual in the a posteriori case, and to the interpolation error in the a
priori case.

Both the residual and the interpolation error contribute to the total error
in the Galerkin solution. The concept of stability measures the accumu-
lation of the contributions and is therefore fundamental. The stability is
measured by a multiplicative stability factor. The size of this factor re-
flects the computational difficulty of the problem. If the stability factor is
large, then the problem is sensitive to perturbations from the Galerkin dis-
cretization and more computational work is needed to reach a certain error
tolerance.

In general, there is a trade-off between the norms used to measure stabil-
ity and accuracy, that is, using a stronger norm to measure stability allows
a weaker norm to be used to measure accuracy. The goal is to balance
the measurements of stability and accuracy to obtain the smallest possi-
ble bound on the error. The appropriate stability concept for Galerkin
discretization methods on many problems is referred to as strong stability
because the norms used to measure stability involve derivatives. Strong
stability is possible because of the orthogonality built into the Galerkin dis-
cretization. For some problems, Galerkin's method needs modification to
enhance stability.

The stopping criterion is based solely on the a posteriori error estimate.
The modification strategy, in addition, may build on a priori error estimates.
The adaptive feature comes from the information gained through computed
solutions.
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5.2. A posteriori error estimates

The ingredients of the proofs of a posteriori error estimates for Galerkin
discretization are:

1 Representation of the error in terms of the residual of the finite-element
solution and the solution of a continuous (linearized) dual problem.

2 Use of Galerkin orthogonality.
3 Local interpolation estimates for the dual solution.
4 Strong-stability estimates for the continuous dual problem.

We describe (l)-(4) in an abstract situation for a symbolic linear problem
of the form

Au = /, (5.3)

where A: V —> V is a given linear operator on V, a Hilbert space with inner
product ) and corresponding norm ||  ||, and / G V is given data. The
corresponding Galerkin problem is: find U £ Vh such that

(AU,v) = (f,v), VveVh,

where Vh C V is a finite-element space. In many cases, V — L2(Q,), where
Q, is a domain in Rn. We let e = u — U.

1 Error representation via a dual problem:

||e||2 = (e, e) = (e, A*<p) = (Ae, p) = (/ - AU, <p) = -(R{U), <p),

where tp solves the dual problem

A*<p = e,

with A* denoting the adjoint of A, and R(U) is the residual denned by

R(U) = AU-f.

2 Galerkin orthogonality: Since (Ae,v) = -(R{U),v) = 0, Vv G Vh,

where TT̂</7 € Vh is an interpolant of ip.
Interpolation estimate:

where C\ is an interpolation constant, h is a measure of the size of
the discretization and D^tp denotes derivatives of order /3 of the dual
solution ip. Such estimates follow from classical interpolation theory
when the solution is smooth.
Strong-stability estimate for the dual continuous problem:

where Sc is a strong-stability factor.
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Combining (l)-(4), we obtain

||e||2 = (R(U),nhip -<p)< ScCi\\hPR(V)\\ ||e||,

which gives the following a posteriori error estimate

\\u-U\\ <5cCi||^i?(C7)||. (5.4)

The indicated framework for deriving a posteriori error estimates for
Galerkin methods is very general. In particular, it extends to problems
A(u) = /, where A is a nonlinear operator. In such a case, the operator
A* in the dual problem is the adjoint of the Prechet derivative of A (lin-
earized form of A) evaluated between u and U. Details are given below in
the context of systems of nonlinear ordinary differential equations.

5.3. A priori error estimates

Proofs of a priori  error estimates have similar ingredients:

1 Representation of the error in terms of the exact solution and a discrete
linearized dual problem.

2 Use of Galerkin orthogonality to introduce the interpolation error in
the error representation.

3 Local estimates for the interpolation error.
4 Strong-stability estimates for the discrete dual problem.

We give more details for the above abstract case.

1 Error representation via a discrete dual problem:

\Wh\\2 = (eh, eh) = (eh,A*iph) = (Aeh,iph),

where eh = TT̂U — U, for TT/JU an interpolant of uinVh, and the discrete
dual problem with solution iph G Vh is defined by

2 Galerkin orthogonality: Using (Ae,v) = 0, Vv € Vh, gives

||efc||2 = (A(irhu - U),iph) = (^hu ~ u, A*<ph).

3 Interpolation estimate:

< d\\haDau\\,

where C\ is an interpolation constant.
4 Strong-stability estimate for the discrete dual problem:

where 5C)̂  is discrete strong-stability factor.
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Combining (l)-(4), we get an a priori error estimate:

\\u-U\\<Ci(SCth + l)\\haDau\\. (5.5)

The interplay between the 'strong' norm, used in the strong stability involv-
ing A*, and the corresponding 'weak' norm, used to estimate the interpola-
tion error, is crucial.

Note that the stability of a continuous dual problem is used in the a
posteriori error analysis whereas the stability of a discrete dual problem is
used to prove the a priori error estimate. In both cases, the stability of the
dual problems reflect the error accumulation and propagation properties of
the discretization procedure.

5.J,.. Adaptive algorithms

Suppose the computational goal is to determine an approximate solution U
such that ||n — U\\ < TOL, where TOL is a given tolerance. The corre-
sponding stopping criterion reads:

ScCi\\h^R{U)\\<TOL, (5.6)

which guarantees the desired error control via the a posteriori error estimate
(5.4). The strategy of adaptive error control can be posed as a constrained
nonlinear optimization problem: compute an approximation U satisfying
(5.6) with minimal computational effort. In the case of Galerkin discretiza-
tion, the control parameters are the local mesh size h and the local degree
of the piecewise polynomials q and we seek h and q that minimize compu-
tational effort. We solve this problem iteratively, where the modification
strategy indicates how to compute an improved iterate from the current
iterate. The modification strategy is based on both the a posteriori error
estimate (5.4) and the a priori error estimate (5.5). The mesh modification
itself requires a mesh generator capable of generating a mesh with given
mesh sizes. Mesh modification may also involve stretching and orientating
the mesh. Such mesh generators in two and three dimensions are available
today.

Adaptive algorithms using (5.6) as stopping criterion are reliable in the
sense that by (5.4) the error control ||u — U\\ < TOL is guaranteed. The
efficiency of the adaptive algorithm depends on the quality of the mesh-
modification strategy.

5.5. The stability factors and interpolation constants

The stability factor Sc and the interpolation constant C\ in the a posteriori
error estimate denning the stopping criterion have to be computed to give
the error control a quantitative meaning.
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The stability factor Sc depends in general on the particular solution be-
ing approximated, since it is defined in terms of the linearized continuous
dual problem. In some cases, all solutions have the same stability factors.
For example, for typical elliptic problems with analysis in the energy norm,
5c = SC:h = 1 with a suitable definition of norms. In general, this is not
true. Analytic upper bounds on Sc often are too crude to be useful for
quantitative error control. Hence, in the adaptive algorithms the stability
factors Sc are approximated by solving the linearized continuous dual prob-
lem numerically. The amount of work required to compute Sc with sufficient
accuracy is problem and solution dependent and depends on the degree of
reliability desired. For complex problems, complete reliability cannot be
reached, but the degree of reliability may be increased by spending more on
the computation of the Sc.

The interpolation constants C\ depend on the shape of the elements, the
local order of the polynomial approximation and the choice of norms, but
not on the particular solution being approximated or the mesh size. Bounds
for the interpolation constants C\ may be determined analytically or numer-
ically from interpolation theory. Alternatively, once stability factors have
been computed, the interpolation constants may be determined through cal-
ibration by numerically solving problems with known exact solutions.

5.6. Error estimates for quadrature, discrete-solution, data and modelling
errors

A posteriori estimates of quadrature, discrete-solution and data-modelling
errors are performed in a similar fashion to the analysis of the Galerkin-
discretization error. The key difference is due to the fact that different
perturbations accumulate at different rates. In particular, perturbations
satisfying an orthogonality relation are connected to strong stability. For
example, orthogonality is the basis of the Galerkin discretization and multi-
grid methods for discrete solutions. In general, weak stability must be used.
A typical weak-stability estimate for the dual continuous problem takes the
form

where the dual solution <p is estimated in terms of the data e and the weak-
stability factor. The corresponding a posteriori error estimate takes the
form

(5.7)

Note that the factor hP that resulted from the use of strong stability is
missing.
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6. Piecewise-polynomial approximation

In this section, we review results on piecewise-polynomial interpolation that
are used below. For the sake of simplicity, we limit ourselves to discontinuous
piecewise-constant approximation and continuous piecewise-linear approxi-
mation on an interval / = (a, b) in space or time. Higher-order results are
similar. Two-dimensional analogues are given below.

Assuming first that / = (0,1) is a space interval, let 0 = XQ < x\ < X2 <
 <  XM+I = 1 be a subdivision of I into subintervals Ij  =  (XJ-\,XJ) of

length hj = Xj — Xj-\. We use the notation Th = {Ij}  for the corresponding
mesh and define its mesh function h(x) by h(x) — hj for x in Ij.

We also consider the situation in which / is a time interval, for example,
/ = (0, oo). In this case, the mesh is given by a sequence of discrete time
levels 0 = to < ti <  < tn <  with corresponding time intervals
/„  = (tn-i,tn), time steps kn = tn — tn-\ and mesh function k(t) defined by
k(t) = kn for t in In. We denote the corresponding mesh by TV

We let Wh denote the space of discontinuous piecewise-constant functions
v = v(x) on I, that is, v is constant on each subinterval Ij. We define the
interpolant TT̂ U € Wh of an integrable function v by

(v — ithv) dx = 0, (6.1)

that is,

TTh,v — 7- v(x) dx on Ij (6.2)
3 ^i

is the average of v on each element. It is easy to show that for 1 < p < 00,

\\v-*hv\\p<\\hv'\\p, (6.3)

where ||  ||p denotes the usual IP {I)  norm.
We let Vh denote the space of functions that are continuous on / and linear

on each subinterval Ij, j = 1,..., M + 1. We denote by Vh° the subspace of
functions v € 14 satisfying v(0) = v(l) = 0. For a continuous function v on
I, we define the nodal interpolant 717,v in 14 by

= 0,...,M + l. (6.4)

Then, there are constants Chk such that for 1 < p < 00,

2
p < a i i l | u " | | p , (6-5)

lpKC^Wv'Wp, (6.6)

|p<Ci,3||u"||p. (6.7)

Remark 1 The interpolation constants C-hk have the values 1/8, 1 and
1/2 for k = 1,2, 3 respectively.
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Remark 2 Below, we use weighted I? norms. Given a continuous positive
function a(x), a weighted 1? norm is denned by

The interpolation results (6.3), (6.5)-(6.7) hold in the weighted norm with
C\ depending on maxj (max/̂  a/ min .̂ a).

7. An ellipti c model problem in one dimension

As a model case, we consider a two-point boundary-value problem: find u(x)
such that

- ( a ( x ) u ' y + b(x)u' + c(x)u = f ( x ) , z G / = ( 0 , l ) , ( ,
u(0) = 0, n(l) = 0, {'-L)

where a(x), b(x) and c(x) are given coefficients with a(x) > 0, and / = f(x)
is a given source term. This is a model for a stationary diffusion-convection-
absorption process in one dimension. If \b\/a is not large, then this problem
has elliptic character, while if \b\/a is large then the character is hyperbolic.
We first consider the elliptic case with 6 = 0 for simplicity, and comment on
the hyperbolic case with \b\/a large in Remark 3 below.

In the elliptic case, we first assume c = 0. The variational formulation of
(7.1) with b = c = 0, resulting from integration by parts, takes the form

f au'v' dx= I fv dx, Vv G Vg. (7.2)

The cG(l) method for (7.1) reads: find U G Vfi such that

f aU'v' dx= f fv dx, Vv G Vg. (7.3)

This expresses the Galerkin orthogonality condition on the residual error
which is apparent upon subtracting (7.3) from (7.2) to obtain

a(u - U)'v' dx = 0, Vv G Vg. (7.4)

Representing the finite-element solution as
M

, (7.5)

where {(fj}^L 1 is the set of basis functions associated with the interior nodes,
we find that (7.3) is equivalent to a matrix equation for the vector £ = (£,):

M = b, (7.6)

where A = (a )̂ is the M x M stiffness matrix with coefficients

ciij  = / atfijip'i  dx, (7.7)
JI
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and b = (6j) is the load vector with elements

ipidx. (7.8)

The system matrix A is positive definite and tridiagonal and is easily solved
by Gaussian elimination to give the approximate solution U.

The basic issue is the size of the error u — U. We first prove an a posteriori
error estimate and then an a priori error estimate.

7.1. A posteriori error estimate in the energy norm

We prove an a posteriori estimate of the error e = u — U in the energy norm
||  \\E defined for functions v with v(0) = v(l) — 0 by

Using Galerkin orthogonality (7.3) by choosing v = Tr̂ e e V®, we obtain the
error representation:

||e'||2 = fj ae'e'dx = Jj au'e' dx - JT aU'e' dx = JT fedx - Jj aU'e' dx
= Ii f(e ~ *he) dx - Jj aU'(e - Khe)' dx
= Jj f(e - 7the) dx - E ^ ! 1 4 aU'(e - nhe)' dx.

(7.9)
In this case, the solution of the dual problem is the error itself. We integrate
by parts over each subinterval Ij in the last term, and use the fact that all
the boundary terms disappear, to get

||e'||2 = / R(U)(e - irhe)dx < \\hR(U)\\ i ^ 1 (e - 7rhc)||a,
Jl

where R(U) is the residual defined on each subinterval Ij by

R(U) = f + (aUj.

Recalling (6.6) for the weighted L2 norm, one proves:

Theorem 1 The finite-element solution U satisfies

7.2. An adaptive algorithm

We design an adaptive algorithm for automatic control of the energy-norm
error ||tt — U\\E using the a posteriori error estimate (7.10) as follows:

1 Choose an initial mesh Th(o) of mesh size
2 Compute the corresponding cG(l) finite-element solution U  ̂ in
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3 Given a computed solution U^m~1  ̂ in Vh(m-i) on a mesh with mesh size
h^m-l\ stop if

Ci ||/i
(m-1)i?(t/(m-1))||i <TOL. (7.11)

a

4 If not, determine a new mesh Th(m-i) with mesh function /i^" 1) of
maximal size such that

(7.12)
a

and continue.

We note that (7.11) is the stopping criterion and (7.12) defines the mesh-
modification strategy. By Theorem 1, it follows that the error \\u — U\\E is
controlled to the tolerance TOL if the stopping criterion (7.11) is reached
with U = [/(m-i) . The relation (7.12) defines the new mesh size M™"1) by
maximality, that is, we seek a mesh function Mm-1) as large as possible (to
maintain efficiency) such that (7.12) holds. In general, maximality in ||  || is
obtained by the 'equidistribution' of error such that the error contributions
from the individual intervals Ij are kept equal.

Equidistribution of the error results in the equation

aix^ih^WRttJ^'^W ,)2h{m) - T°L ? - l iV (m)

a\xj) \ n j W-H-yV )\\Looj(m)) llj — yy-(m) '  ~ 1 ' - - - > i v >

(7.13)
where j\Km) is the number of intervals in Th(m). The equation reflects the
fact that the total error is given by the sum of the errors from each in-
terval, and so the error on each interval must be a fraction of the total
error. In practice, this nonlinear equation is simplified by replacing N  ̂ by

Example 1. Consider problem (7.1) with a{x) = x + e, e = 0.01, b = c — 0
and f(x) = 1. Because the diffusion coefficient a is small near x = 0,
the solution u and its derivatives u' and u" there change rapidly with x;
see Figure la. To compute u, we use the code Femlab which contains an
implementation of the adaptive algorithm just described. Figure lb shows
the residual R(U) of the computed solution U, and Figure lc shows, the local
mesh size h(x) when the stopping criterion with TOL = 0.05 was reached.
Note that the mesh size is small near x — 0 where the residual is large.

7.3. A priori error estimate in the energy norm

We now prove an a priori energy-norm error estimate for (7.3) by comparing
the Galerkin-discretization error to the interpolation error. Using Galerkin
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Fig. 1. Solution, residual and mesh size for Example 1

orthogonality (7.4) with v = U — nhU, we obtain

fa(u-U)'{u-U)'dx = [a(u-U)'(u-Trhu)'dx< \\u'-U'\\a\\(u-irhu)'\\a,
Ji Ji

so

\u'-U'\\a<\\(u-TrhUy\\a (7.14)

This shows that the Galerkin approximation is optimal because its error in
the energy norm is less than the error of the interpolant. Together with
(6.7), this proves:

(7.15)

Theorem 2 The finite-element solution U satisfies

H«'- l7 ' | |a<Ci| |W||o.

Remark 3 It is easy to show that

Ci\\hR{U)\\i<CCi\\hu"\\a,
a

with C a constant depending on a, indicating that the a posteriori energy
error estimate is optimal in the same sense as the a priori estimate.

7.4- A posteriori error estimate in the 1? norm

We prove an a posteriori error estimate in the L2-norm, allowing the ab-
sorption coefficient c in (7.1) to be nonzero. The extension of (7.3) to this
case is direct by including /7 cUv dx on the left-hand side. We introduce the
dual problem

—{a<p')' + ap = e, x £ I,
= 0,

(7.16)
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which takes the same form as the original problem (7.1). We use Galerkin
orthogonality (7.3), by choosing v = ir^e G V®, to get

ap)dx = Jj(ae'(p' + ce(p)dx
= fj(au'ip' + cutp) dx — Jj(aU'if' + cU(p) dx
= Jjfipdx-Jj (aU'ip1 + cUf) dx

fit1 + cU(<p - w)) dx.

We now integrate by parts over each subinterval Ij, using the fact that all
the boundary terms disappear, to get

where R(U) = f + (all')' + ell on each subinterval. Using (6.3) and denning
the strong-stability factor 5c by

Sc=  max M j ^ , (7.17)
eLHi) \\g\\2

where tyg satisfies

- ( a i l / g ) ' + ctl>g = g , x e l , , ,
rl> g(0) = 0, ^ ( l ) = 0, {'-iS)

we obtain:

Theorem 3 The finite-element solution U satisfies

||u-[/||2<ScCi||/*2#(t/)||2. (7.19)

Example 2. In Figure 2a, we plot the computed solution in the case a =
0.01, c — \ and f(x) — 1/x with I? error control based on (7.19) with
TOL — .01. The residual and mesh size are plotted in Figures 2b and 2c.
In this example, there are two sources of singularities in the solution. First,
because the diffusion coefficient a is small, the solution may have boundary
layers; second, the source term / is large near x — 0. The singularity in
the data / enters only through the residual, while the smallness of a enters
both through the residual and through the stability factor Sc- The adaptive
algorithm computes the stability factor Sc by solving the dual problem (7.16)
with e replaced by an approximation obtained by subtracting approximate
solutions on two different grids. In this example, Sc ~ 37.

7.5. A priori error estimate in the L2 norm

We now prove an a priori error estimate in the I? norm, assuming for
simplicity that the mesh size h is constant and that c = 0.

Theorem 4 The finite-element solution U satisfies

\\u - U\\2 < CiSc\\h(u - U)% < CiScll/iV'Ha, (7.20)
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Fig. 2. Approximation, residual and mesh size for Example 2

where Sc = maxseL2(J) H^'IL/Nh, with ipg satisfying (7.18).

Proof. By (7.4) and (6.7), for <p satisfying (7.16) with c = 0, we have

l|e||| = // a eV  = Jj ae?(<p - nh<p)' dx
< \\he'\\a\\h~\ip -

The proof is finished by noting that multiplying the energy-norm error esti-
mate by h gives

iM l a < Ci\\h2u"\\a. (7.21)

a

This estimate generalizes to the case of variable h assuming that the mesh
size h does not change too rapidly from one element to the next, (cf. Eriksson
(1994)).

7.6. Data and modelling errors

We make an a posteriori estimate of data and modelling errors. Suppose
that a(x) and f(x) in (7.3) are approximations of the correct coefficient a(x)
and data f(x) and let u be the corresponding correct solution. We seek an
a posteriori error estimate of the total error e = u — U including Galerkin-
discretization, data and modelling errors. We start from a modified form of
the error representation (7.9),

, M+i  .
\\(u-U)'\\l = / f(e-nhe)dx- V / aU'(e-irhe)'dx

Ji 7 = 1 Jij

+
. M+l  .
(f-f)edx- Y / (a-a)U'e'dx

= I+  11-III,
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with the obvious definition of /, / / and / / / . The first term I is estimated
as above. For the new term III,  we have

III<Ci\\(a-a)U'\\i\\ef\\&.
d

Similarly, integration by parts gives

where F' = /, F' = / and F(0) = F(0) = 0. Altogether, we obtain:

Theorem 5 The finite-element solution U satisfies

\\u' - UX < Ci(\\hR{U)\\x + \\F - F\\ i + \\(a - a)U'\\x). (7.22)
d d a

An adaptive algorithm for control of both Galerkin and data-modelling
errors can be based on (7.22). It is natural to assume that ||d — a||oo < M
or || (a — c^a"1 ||oo < /i, corresponding to an absolute or relative error in a
on the level /x. In the first case, we obtain ||(a — a)U'\\i < (j,\\U'\\i, and in

d d

the second case, ||(a — a)C/'||i < /i||£/'||a. /i is supplied by the user while
&

the relevant norm on U is computed by the program. For example, for the
problem in Example 2 we find that \\U'\\i = 13.3531 while \\U'\\& = 0.5406.

d

Remark 4 If \b\/a is large then the problem (7.1) has a hyperbolic char-
acter. If a < h then a modified Galerkin method with improved stability
properties is used which is called the streamline diffusion method. The mod-
ifications consist of a weighted least-squares stabilization that gives extra
control of the residual R(U) and a modification of the viscosity coefficient
a. I? error estimates for this method are derived similarly to the case with
b = 0. The resulting I? a posteriori error estimate has essentially the form
(7.19), where the stability constant Sc contains a dependence on the viscos-
ity a. In the generic case with a constant, we have Sc ~ ^. The result of
using strong stability and Galerkin orthogonality is a factor ^~ coupled with
the residual R(U). In a direct approach that uses weak stability, the result
does not contain the factor ^-. Thus, an improvement results if a > h2. In
particular, if a > h then the standard unmodified Galerkin method may be
used and the above analysis applies. The condition a > h may be satisfied
on the last mesh in the sequence of meshes used in the adaptive process.
In this case, the streamline diffusion modification is used only on the initial
coarse meshes. Details of this extension to hyperbolic convection-diffusion
problems are given in Eriksson and Johnson (1993), (to appear).
Example 3. Consider problem (7.1) with a(x) = 0.02, b(x) = 1, c(x) = 0
and f(x) = 1. In Figure 3, we plot the computed solution together with the
residual and mesh size obtained using an adaptive algorithm based on an
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Fig. 3. Solution, residual and mesh size for Example 3

a posteriori error estimate of the form (7.19) with TOL = .02. Notice the
singularity in u in the boundary layer near x = 1.

8. Basic time-dependent model problems

As a first example, we consider the scalar linear initial-value problem: find
u = u(t) such that

u' + a(t)u = f(t), t > 0,
u(0) = u0,

(8.1)

where a(t) is a given coefficient, f(t) is a given source term and v' = ^ now
denotes the time derivative of v. The exact solution u(t) is given by the
formula

u(t) = e~A^u0 + f e-W)-AWf{s) da, (8.2)
Jo

where A' = a and A{fS) = 0, from which we can draw some conclusions
about the dependence of u on a. In general, the exponential factors may
become large with time. However, if a(t) > 0 for all t, then A(t) > 0 and
A(t) — A(s) > 0 for all t > s, and both uo and / are multiplied by quan-
tities that are less than or equal to one. We shall see that if a(t) > 0,
then Galerkin-discretization errors accumulate in such a way that accurate
long-time computation is possible. The problem (8.1) with a(t) > 0 is a
model for a class of parabolic problems that includes generalizations of (8.1)
with the coefficient a replaced by —V  (aV) with a > 0. The analysis for
the case a > 0 allowing long-time integration without error accumulation
extends directly to this more complex case.

For the sake of simplicity, we consider the dG(0) method, which reads:
find U in Wk such that for all polynomials v of degree 0 on /„ ,

f ([/' + a(t)U)vdt + [C/n-i]^_i = f fv dt,
Jin Jin

(8.3)

where [vn]  = (t>+ — v~), v  ̂= lims o v{tn + s) and UQ = UQ. We note that
(8.3) says that the 'sum' of the residual U't + a(t)U — f in In, and the 'jump'
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[f/ n_i] is orthogonal to all discrete test functions. Since U is a constant on
In, U' = 0 on /„ .

If Un denotes the constant value of U on the time interval In, then the
dG(0) method (8.3) satisfies

Un-Un-i + Un f adt= f fdt, n = l , 2 , . . ., (8.4)
Jin Jin

where UQ = UQ. The classical backward Euler method is thus the dG(0)
method with the rectangle rule applied to the integrals. We assume that
if a(t) is negative, then the time step is small enough that | /7 adt\ <
1, in which case (8.4) defines Un uniquely. We use the notation ||u||/ =

] \v(t)\, where I = (0,T) is a given time interval.

8.1. An a posteriori error estimate

To derive an a posteriori error estimate for the error ejv =
N > 1, we introduce the continuous dual 'backward' problem,

-<p' + a(t)<p = 0, te(O,tN),
ip{tN) = eN,

with solution given by ip(t) = eA^~A^N^eM- Integration by parts over each
subinterval In gives

(8.6)

where in the last step we use the facts that U' = 0 on each In and Uo =
Now we use Galerkin orthogonality (8.3) by taking v = 7Tfc<p with

t — 0 n = 1 N

to obtain the error representation formula:

N /

Using (6.3), we obtain

where Sc{tN) is the stability factor defined by

f (8.8)
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To complete the proof of the a posteriori error estimate, we need to es-
timate Sc(tjv). The following lemma presents such a stability estimate in
both the general case and the dissipative case when a(t) > 0 for all t. We
also state an estimate for ip itself.

Lemma 1 If \a(t)\ < A for t € (0, t/v), then <p satisfies for all t e (O,tjv):

\<p(t)\ < exp(AtN)\eN\, (8.9)

and

Sc(tN) <AtNeynp(AtN). (8.10)

If a(t) > 0 for all t, then <p satisfies for all t <E (0, tjv):

|V(*) | < M , (8.11)

and

Sc(tN) < 1. (8.12)

Proof. The first and second estimates follow from the boundedness as-
sumption on a. The third estimate follows from the fact that A(t^) — A(t)
is non-negative for t < <AT- Further, since a is non-negative,

h \<f/\dt = \eN\ Jj a(t) exp(A(tN) - A(t))dt
= \eN\(l - exp(A{0) - A(tN))) < \eN\,

which completes the proof.

We insert the strong-stability estimates (8.10) or (8.12) into (8.7) and obtain
the a posteriori error estimate:

Theorem 6 The finite-element solution U satisfies for N = 1,2,...

\u(tN) - UN\ < Sc(tN)\kR(U)\{OttN),

where
Pn-Un-l]+\f-aU\In, teln.

8.2. An a priori error estimate

The a priori error estimate for (8.3) reads as follows:

Theorem 7 If \a(t)\ < A for all t, then there is a constant C > 0 such
that U satisfies for N — 1,2,....

\u(tN) - UN\ < CAiivexp(CAtAr)|A;u/|/,

and if a{t) > 0 for all t, then for N = 1,2,...,

\u(tN)-UN\<\ku'\{OttN). (8.13)
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We note the optimal nature of the estimate compared to interpolation in
the case a(i) > 0.

Proof. We introduce the discrete dual backward problem: find $ € Wk

such that for n = N, N - 1,..., 1,

f (-* ' + a(t)$)vdt - [*„]« " = 0, \/ve Wk,
J In

(8.14)

where $^ = (irku — U)N. It suffices to estimate the 'discrete' error e =
TTfcU — U in Wk since u — TTfctt is already known. With the choice v — e,
the Galerkin orthogonality allows U to be replaced by u and we obtain the
following representation:

n = l n = l

= E
n=l '

N-l

n=\

Jl

N-l

- Trku)N,
n = l

where we use $' = 0 on each time interval. Recalling (6.3), we get the desired
result follows from a lemma expressing the weak and strong stability of the
discrete dual problem (8.14).

Lemma 2 When \a(t)\ < A for all t, then there is a constant C > 0 such
that the solution of the discrete dual problem (8.14) satisfies

)|e^|, (8.15)

N-l

< CAtNexp(CAtN)\eJf\,
n = l

N

E
n=l

/
in

If a(t) > 0 for all t, then

(8.16)

(8.17)

(8.18)

N-l

E i
n=l
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E / a\$n\dt < \ejf\. (8.20)
n=l ' In

Proof. The discrete dual problem (8.14) takes the form

- $„  + $ „ / a(t)dt = 0, n = N,N -1,...,1,
Jin

= eN,

where 3>n denotes the value of $ on 7n, so
N

In the case where a is bounded, the results follow from standard estimates.
When a is nonnegative, this proves (8.18) immediately. To prove (8.19), we
assume without loss of generality that <I>JV+I is positive, so the sequence <£„
decreases when n decreases, and

N N

E K*n]l = E[$nl = *"+ l - $1 ^ l^+ll -
7 1 =1 7 1 =1

Finally, (8.20) follows from the discrete equation.

We note that the a priori error estimate (8.13) is optimal compared to
interpolation in the case a > 0.

Remark 5 It is important to compare the general results of Theorem 6
and Theorem 8.13, when a is only known to be bounded, to the result for
dissipative problems with a > 0. In the first case, the errors can accumulate
at an 'exponential' rate, and, depending on A, 5c(ijv ) can become so large
that controlling the error is no longer possible. In the case a > 0, there is no
accumulation of error so accurate computation is possible over arbitrarily
long times. Note that we do not require a(t) to be positive and bounded
away from zero; it is enough to assume that a is non-negative.

Example 4. Consider the dissipative problem u' + u = sint, u(0) = 1
with solution u(t) — 1.5e~* + .5(sint — cost). We compute with dG(0) and
plot the solution and the approximation in Figure 4a. The approximation is
computed with an error tolerance of .001. In Figure 4b, we plot Sc{t) versus
time. Note that Sc(t) tends to 1 as t increases, indicating that the numerical
error does not grow significantly with time, and accurate computations can
be made over arbitrarily long time intervals.

Example 5. We now consider the problem u'—u = 0, u(0) = 1 with solution
u(t) = e*. We compute with dG(0) keeping the error below .025. Since the
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Fig. 4. Solution, approximation and stability factor for Example 4

(a) (b)

Fig. 5. Error and stability factor for Example 5

problem is not dissipative, we expect to see the error grow. The difference
U(t) — u(t) is plotted in Figure 5a and the exponential growth rate is clearly
visible. Given a certain amount of computational power, for example, a
fixed precision or a fixed amount of computing time, there is some point in
time at which accurate computation is no longer possible. Sc(t) is plotted
in Figure 5b, and we note that it reflects the rate of instability precisely.

8.3. Adaptive error control

An adaptive algorithm based on the a posteriori error estimate takes the
form: determine the time steps kn so that

Sc(tN)(\Un - Un-i\ + kn\f - aU\in) = TOL, n = 1, ...,N,
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where SC(£JV) = rnaxi<n<7v Sc(tn). This guarantees that

\u(tn)-Un\<TOL, n = l,---N.

As mentioned above, 5c(tjv) is approximated in an auxiliary computation
solving the backward problem with chosen initial data; see below and [25]
and [8] for more details.

Example 6. We consider a more complicated problem,

u' + (.25 + 2TTsin(27rt))u = 0, t > 0,
n(0) = 1,

with solution
u(t) = exp(-.25i -I- cos(27ri) - 1).

The unstable solution oscillates as time passes, but the oscillations dampen.
In Figure 6a, we plot the solution together with the dG(0) approximation
computed with error below .12. In Figure 6b, we plot the time steps used
for the computation. We see that the steps are adjusted for each oscillation
and in addition that there is an overall trend to increasing the steps as the
size of the solution decreases.

In addition, the solution has changing stability characteristics. In Figure
7a, we plot the stability factor versus time, and it is evident that the numer-
ical error decreases and increases in alternating periods of time. If a crude
'exponential' bound on the stability factor is used instead of a computational
estimate, then the error is greatly overestimated with the consequence that
the computation can only be done over a much smaller interval. To demon-
strate the effectiveness of the a posteriori estimate for error control, we plot
the ratio of the true error to the computed bound versus time in Figure 7b.
The ratio quickly settles down to a constant, which means that the bound
is predicting the behaviour of the error in spite of the fact that the error
oscillates a good deal.

8.4- Quadrature errors

We now consider the error arising from computing the integrals in the dG(0)
method (8.3) approximately using quadrature. We focus on the error from
computing Jj f dt using quadrature. To illustrate essential aspects, we con-
sider the midpoint rule,

i k fit i\ t i = — (t i + i ) (821)
" " r n~2 2 nh \- )

and also the rectangle rule,

I fdt^knf(tn). (8.22)
J In
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Fig. 7. Stability factor and error/bound ratio for Example 6

We recall that the backward Euler scheme is generated by using the rectangle
rule. We compare dG(0) approximations computed with the two quadra-
tures (8.21) and (8.22) and conclude that the classical choice (8.22) is less
accurate for many problems. The analysis shows the advantage of separat-
ing the Galerkin and quadrature errors since they accumulate differently.

For the midpoint rule (8.21), the quadrature error on a single interval is
bounded by

/ fdt-knf(tn_i_)
Jin 2

\kf'\dt,l
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The corresponding error estimate for the rectangle rule reads

/ fdt-knf(tn) < f \kf\dt. (8.24)
Jin Jin

We notice that the midpoint rule is more accurate unless \f"\ » \f'\, while
the cost of the two rules is the same.

We now determine the effect of quadrature on the final error u(tjy) — UN
after N steps. We start with the modified form of the the error representa-
tion

"  ( r ,
eN = / / ( / ~ aU){lf  — 7Tfc<p)d£ — [Un-\](<f  — Kh^n-l

Jin

(f-f)<pdt). (8.25)

n=l  yJln

/
In

where for t € In we define f(t) = f(tn_i) for the midpoint rule and f(t) =

f(tn) for the rectangle rule. Introducing the weak-stability factor

Sc{tN) = ,

I
we obtain a modified a posteriori error estimate that includes the quadrature
errors.

Theorem 8 U satisfies for N = 1,2,...,

HtN) - UN\ < Sc(tN)\kR(U)\{OttN) + Sdt^Cqj j

where
I On - Un-iR(U)=

and J = 1 for the rectangle rule, j = 2 for the midpoint rule, Cqi = 1,
Cq2 = 1/2, /CD = / ' and /W = f".

We note that this estimate includes the factor JQN ti\f^\ dt that grows
linearly with tjv if the integrand is bounded. This linear growth in time,
representing the accumulation of quadrature errors, is also present in the
case a > 0 when £(*#) < 1. For long-time integration in the case a > 0, it is
thus natural to use the midpoint rule, since the accumulation of quadrature
error can be compensated by the second-order accuracy.

In general, since the computational cost of the quadrature is usually small
compared to the Galerkin computational work (which requires the solution
of a system of equations), the precision of the quadrature may be increased if
needed without significantly increasing the overall work. This illustrates the
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Fig. 8. Approximation and errors for Example 7

importance of separating Galerkin-discretization and quadrature errors since
they accumulate at different rates. These errors should not be combined as
happens in the classic analysis of difference schemes, leading to non-optimal
performance.

Example 7. We consider the approximation of u' — .lu — t3, u(0) = 1.
We compute using the dG(0) method, the backward Euler scheme (rectangle
rule quadrature), and the midpoint rule, with accuracies plotted below. The
approximation is plotted in Figure 8a; the problem is not dissipative, so we
expect error accumulation. We plot the errors of the three computations in
Figure 8b. The dG(0) and the dG(0) with midpoint rule approximations
are very close in accuracy, while the backward-Euler computation errors
accumulate at a much faster rate.

8.5. A 'hyperbolic' model problem

We consider the ordinary differential equation model for a 'hyperbolic' prob-
lem: find u = (ui,U2) such that

u[
u'2 - au\ =

0,
0, (8.26)

where the a = a(t) is a given bounded coefficient with \a\ < A, and the fi
and Uio are given data. This is a simple model for wave propagation.

We study the application of the cG(l) method to (8.26), where Vk is the set
of continuous piecewise-linear functions v = (^1,^2) on a partition T^. This
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method takes the form: find U = (U\, U2) in V^ such that for n = 1,2,...,

n

t = JInhdt, (8.27)
U1(0)=uw, 172(0) =corresponding to using piecewise-constant test functions on each interval In.

We use piecewise-constant test functions because there are only first-order
derivatives in (8.26), in contrast to the elliptic problem discussed above. In
the case where a is constant, with the notation U n̂ = Ui(tn), the method
(8.27) reduces to:

Ui,n-Ui,n-1 + kna(U2,n + U2,n-i)/2 = JInfidt,
U2,n-U2,n-i-kna{Ulin + Ui,n-i)/2 = fInf2dt, (8.28)

Ui(0) = u10, U2(0) = U20,

from which the classical Crank-Nicolson method can be obtained by an
appropriate choice of quadrature. The method cG(l) has less dissipation
and better accuracy than dG(0), and it is advantageous to use it in this
problem since the solution is smooth.

8.6. An a posteriori error estimate

To derive an a posteriori error estimate for the error ex = u(iiv) — C/jv,
= U(t]sf), we introduce the dual problem: find ip — (<p\,<p2) such that

-ip'2-aip! = 0,+ e (Oi + iV), (8.29)
(f(tN) = eN.

Again using Galerkin orthogonality, we obtain an error representation for-
mula:

Jo
where

Ri = £/j + (1U2 — / 1, -R2 = U2 — aU\ — §2

and TTfc is the nodal interpolation operator into V&. Multiplying the equations
by tpi and (̂ 2 respectively and using the cancellation of the terms
we obtain the following stability estimates:

max ||<p(t)|| < lleivll

and

max ||y?'(£)|| < A||ejv||-

Combining the error representation with the strong-stability estimate and
using the interpolation estimate (6.3) we have proved:
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Fig. 9. Approximation and stability factors for Example 8

Theorem 9 U satisfies for N = 1,2,...,

\\u(tN)-UN\\ < A / " fc||i?|| di.
Jo

8.7. An a priori error estimate

The corresponding a priori error estimate takes the form:

Theorem 10

u'2

\\u(tN) - UN\\ < A f N | |kV|| dt < AtN\\k2u\0,tN)-

We note the linear growth of error with time that is characteristic of a
hyperbolic problem.

Example 8. We compute for the problem:

2u2 = cos(7ri/3), t > 0,
2ui = 0, t> 0,

m(0)=0, u2(0) = l,

using the cG(l) method with error below .07. The two components of the
approximation are plotted in Figure 9a. This demonstrates that different
components of a system of equations may behave differently at different
times. The error control discussed here must choose the time steps to main-
tain accuracy in all components simultaneously. In Figure 9b, we plot the
stability factor, and the linear growth of error is evident.

9. Nonlinear  systems of ordinary differential equations

The framework for a posteriori error analysis described above directly ex-
tends to initial-value problems for nonlinear systems of differential equations
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in Rd, d > 1 (or more generally a Hilbert space). The ease of the extension
depends on the definition of the stability factors occurring in the a posteriori
analysis. In the adaptive algorithms built on the a posteriori error estimates,
the stability factors are estimated by computation and not by analysis. Thus
the essential computational difficulty is the approximation of the stability
factors and the essential mathematical difficulty is the justification of this
process. We return to this issue after presenting the extension.

We consider the computation of solutions u — u(t) of the following initial-
value problem:

u' + f(t,u) = 0, t>0, ( g l )

where f(t, ) : Rd —» Rd is a given function and tzo given initial data. We
assume that / and tio are perturbations of correct / and tio, and denote by
ti the corresponding exact solution satisfying

f,' _i_ f(f f,\ — f) f > n

u(0) = tio.

We seek an a posteriori error bound for the complete error e = u — U,
where U is the dG(0) approximate solution of (9.1) defined by: find U in Wk
such that for all constant vectors v,

f (Uf + f(t, U))  vdt + [I7n_i]  v+_x = 0, (9.3)
J In

where [vn]  = v+ — v~, v  ̂ = lims n + s) and Uo~ = tio- With the
notation Un = U\jn, the dG(0) method (9.3) takes the form

Un-Un-i+  f f(t,Un)dt = 0, n = l,2,..., (9.4)
Jin

where UQ — UQ. Again, this is an improved variation of the classical back-
ward Euler method with exact evaluation of the integral with integrand
f(t,U).

9.1. An a posteriori error estimate

To derive an a posteriori error estimate for ejv for N > 1 including data,
modelling and Galerkin-discretization errors, we introduce the continuous
dual 'backward' problem

o = 0, te(0,tN),
<p(tN) = eN,

where

A(t)= [ fu(t,su + (l-s)U)ds,
Jo
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where fu(t, ) denotes the Jacobian of f(t, ) and * denotes the transpose.
Note that

l

A(t)e= fu(t,su + (l-s)U)eds
Jo

I iL/( t> Su + (1 - s)U) ds = f{t, u) - f(t, U).
Jo ds

and

Integrating by parts, with ||  || denoting the Euclidean norm, we get

N

Ml 2

N „ N-l

= E I (e' + A(t)e) -VM+Yl Kl  Vn + eo  V(O)

n =l

E /
Now we use Galerkin orthogonality (9.3) to insert nk<P in the first term on the
right, and we obtain, since U' — 0on/n, the following error representation
formula:

n =l

+e0-  ^(0) + JT [ (fit, U) - f{t, U))  <pdt
n = l Jl™

rtN JV-1
= - / /(i,C/)-(^-7rfc^)di-E[t/n]-(^-

+ rN (/(*,c/) -f(t,u))-ipdt.
Jo

Recalling the interpolation estimate (6.3), we see that

IM|2<



140 K. ERIKSSON, D. ESTEP, P. HANSBO AND C. JOHNSON

Finally, we define the strong-stability factor Sc(tN) by

= 1WT

- /o "

( 6 )

and the data and modelling stability factors by

+Sm(tN) max. ||/(., Un)-f(; Un)\\In,
l<n<N

and arrive at an a posteriori error estimate for data, modelling and Galerkin-
discretization errors.

Theorem 11 U satisfies for N — 1,2,...,

— UN\\ < SJtpf) max knR(n,U)
l<n<N

+Sd(tN)\\uo -

where

Remark 6 There is a corresponding a priori result with stability factors
related to discrete dual problems.

9.2. Computational evaluation of stability factors

To give the a posteriori estimate concrete meaning, the stability factors have
to be determined. Accurate analytic estimates are possible only in a few
special cases, and in general we resort to numerical integration of the dual
linearized problems. The critical mathematical issue is the reliability of this
evaluation, since this directly translates into the reliability of the adaptive
algorithm. The basic sources of error in the computational evaluation of
stability factors are (i) the choice of linearization and (ii) the choice of
data, and (iii ) the numerical solution of the dual linearized problem. In
practice, the problem is linearized around an approximation rather than the
mean value that involves the unknown exact solution used in the definition
of the dual problems. Moreover, the current error is unknown, and hence
the true initial data for the dual problems cannot be used. Finally, the
resulting problem must be approximated numerically. The reliability of the
computation of stability factors related to (i) and (ii) may be guaranteed for
certain classes of problems but in the general case, littl e is known. Reliability
with respect to (iii ) seems to be an issue of smaller magnitude.

In many experiments, (see Estep (to appear), Estep and French, (to ap-
pear), Eslep and Johnson (1994)), we have seen that the choice of initial
data in the dual problem is often immaterial provided the time interval is
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Fig. 10. Two views of a solution of the Lorenz system

sufficiently long. Otherwise, computing dual problems using several different
initial values improves reliability. Moreover, unless grossly inaccurate, ap-
proximate trajectories seem to provide reasonably accurate stability factors.

Example 9. In the early 1960s, the meteorologist E. Lorenz presented
a simple model in order to explain why weather forecasts over more than
a couple of days are unreliable. The model is derived by taking a three-
element Fem space discretization of the Navier-Stokes equations for fluid
flow (the 'fluid' being the atmosphere in this case) and simply ignoring the
discretization error. This gives a three-dimensional system of ODE's in time:

x = —ax
y = —rx — y — xz,
z' = -bz + xy,
x{0) = xo,y(O) = yo,.

t >0,
t>0,
t>0, (9.7)

= z0,

where a, r and b are positive constants. These were determined originally
as part of the physical problem, but the interest among mathematicians
quickly shifted to studying (9.7) for values of the parameters that make the
problem chaotic.

A precise definition of chaotic behaviour seems difficult to give, but we
point out two distinguishing features: while confined to a fixed region in
space, the solutions do not 'settle down' into a steady state or periodic state;
and the solutions are data sensitive, which means that perturbations of the
initial data of a given solution eventually cause large changes in the solu-
tion. This corresponds to the 'butterfly effect' in meteorology in which small
causes may sometimes have large effects on the evolution of the weather. In
such situations, numerical approximations always become inaccurate after
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Fig. 11. Stability factors and error bound for the Lorentz system

some time. An important issue is to determine this time, since, for example,
it is related to the maximal length of a weather forecast.

We choose standard values a = 10, b = 8/3 and r = 28, and we compute
with the dG(l) method. In Figure 10, we plot two views of the solution
corresponding to initial data (1,0,0) computed with an error of .5 up to
time 30. The solutions always behave similarly: after some short initial
time, they begin to 'orbit' around one of two points, with an occasional
'flip ' back and forth between the points. The chaotic nature of the solutions
is this flipping that occurs at apparently random times. In fact, accurate
computation can reveal much detail about the behaviour of the solutions;
see Eriksson et al. (19946).

Here, we settle for demonstrating the quality of the error control explained
in these notes. In Figure lla, we plot the approximate stability factors on
a logarithmic scale. The data sensitivity of this problem is reflected in the
overall exponential growth of the factors, and it is clear that any computa-
tion becomes inaccurate at some point. The error control allows this time
to be determined. Note, however, that the factors do not grow uniformly
rapidly and there are periods of time with different data sensitivity. It is
important for the error control to detect these to avoid gross overestimation
of the error. To test this, we do an experiment. We compute using two error
tolerances, one 10~5 smaller than the other, and then we subtract the less
accurate computation from the more accurate computation. This should be
a good approximation to the true error (which is unknown of course). In
Figure l ib , we plot this approximate error together with the error bound
predicted by the error control based on a posteriori estimates as we have
described. There is remarkable agreement.

Finally, in Figure 12a, we plot the Sc for the various trajectories computed
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Fig. 12. Stability factors for the Lorentz system

with different tolerances. Overall, the stability factors are roughly the same
order of magnitude for all trajectories. The stability factors agree as long as
the trajectories are near each other, but variations occur as some trajectories
enter more data-sensitive areas than others at the same time. In Figure 12b,
we plot the approximation to Sc computed for three different choices of initial
data for the dual problem (9.5).

10. An ellipti c model problem in two dimensions

In this section, we consider Fem for Poisson's equation in two dimensions.
We discuss a priori and a posteriori error estimates for the Galerkin-
discretization error and also the discrete-solution error for a multigrid
method, and design corresponding adaptive methods. The analysis is largely
parallel to that of the one-dimensional model problem, though the analysis
of the multigrid method is more technical.

Consider the Poisson equation with homogeneous Dirichlet boundary con-
ditions: find u — u(x) such that

-Au = / ,
u =0,

x (10.1)

where Q, is a bounded domain in JR.2 with boundary d£l, x = (#i,X2), A is
the Laplace operator and / = f(x) is given data. The variational form of
(10.1) reads: find u € #d( )̂ s u ch t h at

(V«,Vu) = (/,«), VveH^n), (10.2)

where (w,v) = Jnwvdx, (Vw,Vv) =  JQVW  Vvdx and HQ(Q.) is the
Sobolev space of square-integrable functions with square integrable deriva-
tives on Q that vanish on dil. We recall that ||V  ||2 is a norm in HQ(Q.)
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that is equivalent to the iJ1(f2) norm. The existence of a unique solution
of (10.2) follows by the Riesz representation theorem if / G iif~1(f2), where
H~X(Q) is the dual space of HQ(Q) with norm

H-HCi)=  SUP (/>*>)

We recall strong-stability (or elliptic regularity) estimates for the solution
of (10.2) to be used below. The estimates are termed 'strong' because
derivatives of the solution u are estimated. We use the notation D°v = v,

Dlv = |Vu| and D2v = ( E L i ( g S i - )2 ) ^ Further, we use ||  || = ||  ||n to

denote the L2(U) norm.

Lemma 3 The solution u of (10.2) satisfies

-i(n)- (10.3)

Furthermore, if tt is convex with polygonal boundary, or if dQ, is smooth,
then there is a constant Sc independent of / , such that

\\D2u\\ < Sc\\f\\. (10.4)

If f2 is convex, then Sc = 1.

10.1. Fem for Poisson's equation

The simplest Fem for (10.1) results from applying Galerkin's method to the
variational formulation (10.2) using a finite-dimensional subspace Vh HQ(Q.)

based on piecewise-linear approximation on triangles. For simplicity, we
consider the case of a convex polygonal domain. Let Th = {K}  be a finite-
element triangulation of $7 into triangles K of diameter KK with associ-
ated set of nodes Nh = {N} such that each node iV is the corner of at
least one triangle. We require that the intersection of any two triangles
K' and K" in Th be either empty, a common triangle side or a common
node.

To the mesh Th we associate a mesh function h(x) satisfying, for some
positive constant c\,

cihK < h(x) < hK, Vx eK, \/K e Th. (10.5)

We further assume that there is a positive constant ci such that

c2h\ < 2\K\, VK € Th. (10.6)

This is a 'minimum angle' condition stating that angles of triangles in Th
are bounded from below by the constant C2- As usual, C\ denotes an inter-
polation constant related to piecewise-linear interpolation on the mesh Th-
in this case, C\ depends on c\ and c2, but not on h otherwise.
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With Vh C HQ(Q) denoting the standard finite-element space of piecewise-
linear functions on T^, the Fem for (10.1) reads: find Uh G Vh such that

(Vuh,Vt;) = (/,«), VveVh. (10.7)

Galerkin orthogonality for (10.7), resulting from (10.2) and (10.7), takes the
form:

(V(« - uh),Vv) = 0, V-y € Vh. (10.8)

We write Uh = YldLi &¥>i> where {ipi}  is the usual basis for Vh associated
to the set of nodes N® = {Ni}^ in the interior of ft and £j = Uh(Ni). Then,
(10.7) is equivalent to the linear system of equations

A£ = b, (10.9)

where £ = (^i)fii, A = (a , j ) ^= 1 is the MxM stiffness matrix with elements
Oij = (V<j>i,V<pj)  and 6 = (bj)jLi is the load vector with bj = (f,(pj). We
use a multigrid method to solve the discrete system (10.9), producing an
approximation Uh G V^ of the exact discrete solution Uh-

We require an error estimate for interpolation by piecewise-linear func-
tions, where the piecewise-linear nodal interpolant TThW € Vh of a given
function w G H&{Q)  n H2(n) is defined by ^ ^ ( iV ) - w(N), VAT G
We also need an analogous estimate for a 'quasi-interpolant' of w G
that requires less regularity where the 'quasi-interpolant' interpolates local
mean values of w over neighbouring elements. We use the same notation
for the nodal interpolant and the quasi-interpolant. The basic interpolation
estimate is:

Lemma 4 For s < m + 1, m G {0,1} , there are constants C\ depending
only on c\ and c2 such that for w G #o(ft) n Hm+1(£l)

( Y
\\h-m-1+sDs(w--Khw)\\+[  Y, h-K

2m-l\\w-Khw\\lK\ <Ci\\Dm+1w\\.
\KeTh J

10.2. The discrete and continuous residuals

We shall prove an a posteriori error estimate for the total error e = u —
Uh = u — Uh + Uh — Uh including the Galerkin-discretization error u — Uh
and the discrete-solution error Uh — Uh- The a posteriori error estimate
involves both a discrete residual Rh(uh) related to solving the discrete system
(10.7) approximately and an estimate R(v,h) of the residual related to the
continuous problem (10.1).

To define Rh(uh), we introduce the L2-projection Ph: L2(f2) —> Vh denned
by (it - PhU,v) — 0, Vv £ Vh, and the 'discrete Laplacian' A^ : Vh —> Vh
on Vh denned by (AhW,v) = —(Viu, Vu), W,u> G Vh- We may then write
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(10.7) equivalently as Rh(uh) = 0, where for w € Vh the discrete residual
Rh{w) is defined as

Rh(w) = Ahw + Phf. (10.10)

For the approximate solution Uh, we have Rh(uh) / 0.

Remark 7 Letting Uh denote the nodal-valued vector of the approximate
solution Uh, we define the 'algebraic' residual rh{Uh) by rh(Uh) = b — AUh-
By the definition of Rh(uh), it follows that rh(Uh) = MhRh(uh), where
Mh = ("iij)fj= i is the mass matrix with elements rriij  = (</?j, <pj) and Rh(uh)
is the nodal-valued vector of R{uh)- Thus, Rh(v,h) is computable from the
algebraic residual rh(Uh) by applying M^1. In practice, Mh may be replaced
by a diagonal matrix corresponding to 'mass lumping'.

The estimate R(v.h) for the continuous residual is defined on each element
K € Th by

R(uh) = |/ + Auh\ + D2
huh, x€JK, (10.11)

where for v E Vh

Dlv\K = -^=\\h-K
l[Vv]\\ dK, (10.12)

where [Vv]  denotes the jump in Vf across dK. Note that D\ resembles a
second derivative in the case of piecewise-linear approximation when Vi> is
constant on each element K. The factor 1/2 arises naturally because the
jump is associated to two neighbouring elements. We note that D\v is a
piecewise-constant function and thus in particular belongs to L2(Q).

The residual function R(v,h) also belongs to L2($1) and has two parts: the
'interior' part \f + Auh\ and the 'boundary' part D\UK- The boundary part
can be made to vanish in the one-dimensional problems considered above,
because the interpolation error vanishes at inter-element boundaries. In
the present case with piecewise-linear approximation, Riuh) = \f\ + Dfah,
x € K, while in the case of higher-order polynomials, Au/, no longer vanishes
on each triangle and has to be taken into account.

In the proofs below, we use the following crucial estimate:

Lemma 5 For m G {0,1} , there is a constant C\ such that Vv G HQ(£1) n
+1

\(f,v-irhv)-(Vuh,V(v-*hv))\ <a| | /»m + 1i2(«h)| | | |^m + 1u||. (10.13)

Appropriate values of the constant C\ in (10.13) can be calculated ana-
lytically or numerically. If c\ ~ 1 and C2 ~ 1, then C\ ~ 0.2 for m = 0,1 (cf.
Johnson and Hansbo (19926), Becker et al. (1994)).
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Proof. By integration by parts, observing that v — TT^V is continuous, we
have

if,v-Trhv) - (S7uh,V(v
H > V ~ 7rhV)K ~ (dnUh, V - TThv)dK}

\(f+  AiL
h,v-irhv)K --([Vuh],v-TThv)dK\ ,

KeTh

with [Vuh] denoting the jump of Viih across the element edges, from which
the result follows by Lemma 4.

10.3. A priori estimates of the Galerkin-discretization error

We first give an a priori error estimate of the Galerkin-discretization error
u — Uh in the energy norm.

Theorem 12 There exists a constant C\ depending only on c\ and C2 such
that

||V(n - U)\\ < ||V(« - 7rhu)|| < C{\\hD2
U\\. (10.14)

Proof. In (10.8), we choose v = U — TT̂ U and use Cauchy's inequality to
get

||Ve||2 = (Ve, V(u - U)) = (Ve, V(u - 17)) + (Ve, V(C/ - Trhu))
=  (Ve, V(« - irhu)) < \\Ve\\ \\V(u - irhu)\\,

(10.15)
from which the desired result follows from Lemma 4.

We next give an a priori error estimate in the L2 norm.

Theorem 13 There exists a constant C\ only depending on c\ and C2 such
that

||«-^||<5cCi||W(«-^)||, (10.16)

where

S - max I | J D V | 1

with tp € HQ(Q) satisfying — Atp = g in fL Further, if |V/i(x)| < fi, x G Q,
with n a sufficiently small positive constant, then

| |W(u - U)\\ < Ci||/i2D2u||, (10.17)

where C\ now depends also on fi.

Proof. The proof of (10.16) uses duality in a manner similar to that of the
proof of Theorem 4. Note that (10.17) follows directly from the energy-norm
error estimate if h is constant.
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10.4- A posteriori error estimates of Galerkin and discrete-solution errors

We now turn to a posteriori error estimates, including the discrete-solution
error in the case of multigrid methods. Let Tj, j = 0,1,2,... ,k, be a hi-
erarchy of successively refined meshes with corresponding nested sequence
of finite-element spaces Vj and mesh functions hj, where the final mesh Tk

corresponds to the mesh 7X in the above presentation. We seek to compute
an approximation uk G 14 of the finite-element solution uk G 14 on the final
mesh Tfc, using a multigrid algorithm based on the hierarchy of meshes. For
j G {0 , . . ., A;} , define the residual Rj(uk) G Vj related to the mesh Tj by the
relation

Rj(uk) = Pj(f + Akuk), (10.18)

where Pj is the L2-projection onto Vj and Ak : 14 —> 14 is the discrete
Laplacian on 14-

The multigrid algorithm consists of a sequence of smoothing operations
Vj —*  Vj (e.g. Jacobi, Gauss-Seidel or ILU iterations) on the different
meshes Tj, which are together with grid transfer operations (prolongations
and restrictions). The objective of the multigrid algorithm is to make the
residual Rk(uk) on the final mesh Tk small, which is realized in a hierarchical
process that also makes the residuals Rj(uk) small for j = 0 ,1 , . . ., k — 1.
We assume that Ro(uk) = 0, which corresponds to solving the discrete
equations exactly on the coarsest mesh. The details of the multigrid method
are immaterial for the a posteriori error estimate to be given.

We now state and prove the a posteriori error estimate and then briefly
discuss a corresponding adaptive algorithm.

Theorem 14 For m € {0,1} , there are constants d and 5C such that,
if u is the solution of (10.1) and uk G 14 is an approximate finite-element
solution with Ro(iik) = 0, then

2-m\\Dm(u - uk)\\ < 5cCi I \\h2
k-

mR(uk)\\ + Y, \\h^Rj(uk)\\ |  (10.19)

If m = 1, or if m = 0 and U is convex, then Sc = 1.

Proof. For m = 0 or m = 1, let (p G HQ(Q,) be the solution to the dual
continuous problem

(Vu, Vip) = (Dmv, Dme), Vv G H%(Sl).

Taking v = e, we obtain the error representation

\\Dmef = (We, V< )̂ = (/, <p) - (Vuk, V<p) = (r(uk),<p).
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For j < k, we have the telescoping identity

k

(r(ufc), ip) = (r(nfc), tp - nk<p) + ^ ( r ( u f c ) , -Kjip - itj-\(p) + (r(«fc), 7rov?),

where TTJ denotes the interpolation operator into Vj related to the mesh Tj.
Observing that for v € Vj, since Vj cVk,

{r{u k),v) = (Pj(f + Akuk),v) = (Rj(uk),v),

and that Ro(uk) = 0 by assumption, we reduce this to
k

(r(uk),ip) = (r(uk),<p - 7rfcv7>

Hence, we obtain using Lemma 4 and Lemma 5

\\Dme\\2 < C, I ll^-^CuOIIHZ?2-^!! + E | | ^2 i r ^ (

from which the assertion follows using Lemma 3.

Remark 8 For the exact solution Uh of the finite-element equation (10.7),
the a posteriori error estimate has the familiar form

\\Dm(u - uh)\\ < 5cCi||^-mi2(ti h)||. (10.20)

Remark 9 The effect of round-off in the computation of the discrete so-
lution uk may be taken into account as follows: Suppose the multigrid com-
putation is carried out in single precision. The a posteriori error estimate
is valid if the residuals R(uk) and Rj(uk), j = 0 ,1 , . . ., k, are evaluated ex-
actly. In practice, this means in double precision. We can also add the term
H-RO^JOH to take into account that Ro(uk) = 0 in single precision only. If the
a posteriori error estimators evaluated in single and double precision differ
by more than the chosen tolerance, then the entire computation should be
redone in double precision.

11. Adaptive algorithms

The stopping criterion of an adaptive algorithm based on Theorem 14 takes
the form

(J \\h2jI?Rj(uk)l ll^-^fiifc)! ! J < \TOL, (11.1)

which ensures that the Galerkin-discretization and the discrete-solution er-
rors are equilibriated. The form of the stopping criterion for the discrete-
solution error suggests how to monitor the smoothing process on the different
levels to make the different residuals Rj(uk) appropriately small.
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11.1. A posteriori error estimates in the L°°(fi ) norm

We now give an a posteriori error estimate for the Galerkin-discretization
error u — Uh in the L°°(Q) norm ||  ]]„>.

Theorem 15 There is a constant d such that

2 , (H.2)

with 5C = max Q̂ || log(| — y\) lD2tpy\\i, where tpy is the Green's function
for Aonfi with pole at y G fl, and L  ̂= (1 + log(l//im;n)), where hm[ n is
the minimal mesh size of T .̂ There is a constant C such that Sc < C for
all polygonal domains Q. of diameter at most one.

Proof. The proof is based on the following error representation:

(u - Uh)(y) = / f(ipy - iThi/jy) dx - / Vuh  V(V>y - Khipy) da:,
Jn Jn

from which the desired estimate follows by arguments analogous to those
used above.

Example 10. We now present results obtained using adaptive algorithms
based on Theorem 15 for L°° control and Theorem 14 for energy-norm con-
trol with m — 1 and 5C = 1, where $7 is the L-shaped domain (—1,1) x
(—1,1) \ (0,1) x (—1,0). We consider a case with an exact solution u with
a singularity at the nonconvex corner, given by u(r, 9) = rs sin(|#) in polar
coordinates.

In the case of maximum-norm control, the stability factor 5C is determined
by computing approximately ifty for some sample points y. In this case
apparently, a few choices of y are sufficient. The interpolation constant
is set to C\ = 1/8. In Figure 13, we present the initial mesh (112 nodes
and 182 elements) and the level curves of the exact solution. In Figure
14, we show the final mesh (217 nodes and 382 triangles) produced by the
adaptive algorithm with TOL = 0.005. Figure 15 shows the variation of the
efficiency index and the stability constant Sc as functions of the number of
refinement levels. The efficiency index, defined as the ratio of the error to
the computed bound, increases slightly from the coarsest to the finest grid.
In Figure 16, we show the final mesh (295/538) using energy-norm error
control with TOL = 0.005. Note that the final meshes in the two cases are
considerably different.

12. The heat equation

We briefly consider the extension of the results for the scalar equation u' +
au = f with a > 0 given above, to the heat equation, the standard model
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Fig. 13. Original mesh and isolines of the solution on a fine mesh

Fig. 14. Maximum-norm control of the error

problem of parabolic type: find u — u(x, t) such that

n, k A-)*  f (T"  +\ £Z O V T

LLf i—1 LI — J  ̂ III , U C i t A I ,

u = 0, (i,t)eaQx/,
u = no, x G n,

(12.1)

where fi is a bounded polygonal domain in R2, / = (0, T) is a time interval,
ut = du/dt and the functions / and UQ are given data.

For discretization of (12.1) in time and space we use the dG(r) method
based on a partition 0 = to < h <  < tn <  < ijv = T of / and
associate with each time interval /„  = (tn_i, tn]  of length kn = tn — tn_i a
triangulation Tn of Q, with mesh function hn and the corresponding space
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1 2 3 4 5 6
Refinement Level

0—° efficiency index
 stability factor

Fig. 15. Stability constant and efficiency index on the different refinement levels

Vn 6 HQ (Q.) of piecewise-linear functions as in Section 5. Note that we allow
the space discretizations to change with time. We define

Vrn = I v : v = ^T t3<pj, <pj in Vn > ,
I j=0 J

and discretize (12.1) as follows: find U such that for n = 1,2,..., U\nxin €
Vrn and

/ {(Ut,v)+(VU,Vv)}dt+([U] n-1,v+_1) = / (f,v)dt, Vz; € Vrn, (12.2)

where [w] n = w+ - w~, wt = linij^o-K- ) w(tn + s) and UQ = u0.
As above, if r = 0, then (12.2) reduces to a variant of the Euler back-

ward method, and for r = 1 it reduces to a variant of the subdiagonal
Pade scheme of order (2,1), that is third-order accurate in U~ at the nodal
points tn.

The a posteriori error estimate in the case r = 0 has the form

\\u(tN) - UN\\2 < CiLN max (\\h2
nR(Un)\\ + \\[Un-i]\\  + H fe^n - i l i r ) ,

n=l,...,N
(12.3)

where R(U) is defined by (10.11), LN = maxn=iv..iAr(l + log(^1-))2 is a loga-
rithmic factor and the starred term is present only if the space mesh changes
at time £n_i. The analogous a priori error estimate assuming h  ̂< kn
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Fig. 16. Energy-norm control of the error

takes the form

\\u(tN) - UN\\ <
n=l,...,JV

(\\hlD2u\\in (12.4)

An adaptive algorithm may be based on (12.3). We note the optimal char-
acter of (12.4) and (12.3), that in particular allows long-time integration
without error accumulation.

13. References

We give here a brief account of the current status of the development of
the framework for adaptive approximation of differential equations that we
have described. We also give some references to the extensive literature on
adaptive methods that are of particular relevance for our work.

Adaptive methods for linear elliptic problems with energy-norm control
were first developed by Babuska et al. (see Babuska (1986) and references
therein) and Bank et al. (see Bank (1986)). In both cases, a posteriori error
estimates were obtained by solving local problems with the residual acting
as data. Residual-based a posteriori energy-norm error estimates were also
derived for Stokes's equations in Verfurth (1989).

The basic approach we use for adaptive methods for linear elliptic prob-
lems, including a priori and a posteriori error estimates in H1, 1? and L°°
norms, is presented in Eriksson and Johnson (1991) and Eriksson (to ap-
pear). Extensions to adaptive control of the discrete-solution error using
multigrid methods is developed in Becker et al. (1994). Nonlinear ellip-
tic problems including obstacle and plasticity problems are considered in
Johnson (1992a), Johnson and Hansbo (1992a) and Johnson and Hansbo
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(19926). Recently, applications to eigenvalue problems have been given in
Nystedt (in preparation).

Early a posteriori error analysis for ordinary differential equations was
used in Cooper (1971) and Zadunaisky (1976). These approaches are quite
different from ours. We develop adaptive global error control for systems of
ordinary differential equations in Johnson (1988), Estep (to appear), Estep
and French (to appear), Estep and Johnson (1994), and Estep and Williams
(in preparation). Lippold (1988) had an influence on our early work.

The series Eriksson and Johnson (1991), Eriksson and Johnson (1994a, b,
c, d), (to appear), Eriksson, Johnson and Larsson (1994) develops adaptive
Fem for a class of parabolic problems in considerable generality including
space-time discretization that is variable in space-time, and applications to
nonlinear problems.

Adaptive Fem for linear convection-diffusion problems is considered in
Johnson (1990), Eriksson and Johnson (1993) and Eriksson and Johnson (to
appear). Extensions to the compressible Euler equations are given in Hansbo
and Johnson (1991) and Johnson and Szepessy (to appear). Extensions to
the Navier-Stokes equations for incompressible flow are given in Johnson, et
al. (to appear), Johnson and Rannacher (1993) and Johnson, et al. (1994).
Second order wave equations are considered in Johnson (1993).

The presented framework also applies to Galerkin methods for integral
equations. An application to integral equations is given in Asadzadeh and
Eriksson (to appear). The potential of the framework is explored in
Carstensen and Stephan (1993).

14. Conclusion, open problems

The framework for deriving a posteriori error estimates and designing adap-
tive algorithms for quantitative error control may be applied to virtually
any differential equation. The essential difficulties are (i) the computational
estimates of stability factors and (ii) the design of the modification strategy.
The reliability depends on the accuracy of the computed stability factors
and may be increased by increasing the fraction of the total work spent on
stability factors. Optimization of computations of stability factors is an im-
portant open problem. Optimal design of the modification criterion is also
largely an open matter for complex problems. Thus, the contours of a gen-
eral methodology for adaptive error control seem to be visible, but essential
concrete algorithmic problems connected mainly with (i) and (ii) remain to
be solved. The degree of difficulty involved depends on the features of the
underlying problem related to, for example, stability and nonlinearities.

The concept of computability as a measure of computational complexity
is central. A basic problem in mathematical modelling is to develop mathe-
matical models for which solutions are computable. A basic problem of this
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form is turbulence modelling. Isolating computational errors from mod-
elling errors gives the possibility of evaluating and improving the quality of
mathematical models.

To sum up, it appears to be possible to develop reliable and efficient
adaptive computational software for a large class of differential and integral
equations arising in applications, which could be made available to a large
group of users from calculus students to engineers and scientists. If such a
program can be successfully realised, it will open up entirely new possibilites
in mathematical modelling.

15. How to obtain Femlab and 'Introduction to Numerical
Methods for Differential Equations'

Femlab contains software for solving: (i) one dimensional, two point bound-
ary value problems (Femlab-ld); (ii) initial value problems for general sys-
tems of ordinary differential equations (Femlab-ode); and two dimensional
boundary valve problems (Femlab-2d). Femlab, together with the educa-
tional material Eriksson et al. (1994), can be obtained over the Internet.
Femlab-ode can be obtained by anonymous ftp to

ftp.math.gatech.edu.
Change to directory /pub/users/estep and get femlabode.tar. This tar

file contains the codes and a brief user's manual. In that same directory is
intro.ps.Z, a compressed postscript version of Eriksson et al. [1994].

To obtain Femlab-ld and Femlab-2d open to the WWW (World Wide
Web) address

http://www.math.chalmers.se/ kenneth
using (for instance) the Mosaic program. There is a README file located
there that gives further instructions.

Femlab-ld consists of a number of Matlab script files and M-files. You
can import these files using the 'save as ...' command under the 'file' menu.
To run the code, you then just start your local Matlab program and give
the command adfem, calling the script file adfem.m. For more details, see
the README file.
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2. BOUNDARY CONTROL

2.1. Dirichlet control (I): Formulation of the control problem
We consider again the state equation

^ + Ay = 0 in Q, (2.1)

where the second-order elliptic operator A is as in Section 1.1, and where
the control v is now a boundary control of Dirichlet type, namely

/ t>on£o = r0x (0 ,T ), , >
y ~ \ 0 on £\S0, [ }

where Eo is a (regular) subset of F.
The initial condition is (for simplicity)

y(0) - o. (2.3)

In (2.2) we assume that

v € L2(S0). (2.4)

Then, assuming that the coefficients of operator A are smooth enough (cf.
Lions and Magenes (1968) for precise statements), the parabolic problem
(2.1)-(2.3) has a unique solution such that

yeL\0,T;L2(Q))(=L2(Q)), |eL2(0,T;r
2(Q)), (2.5)

so that

yeC°([0,T};H-\n)). (2.6)

Remark 2.1 The solution y to (2.1)-(2.3) is denned, as usual, by transpo-
sition. Properties (2.5) and (2.6) still hold true if v e L2(0,T;i/-1/2(r0))
(the notation is that used in Lions and Magenes (1968)).

Concerning controllability, the key result is given by the following:

Proposition 2.1 When v spans L2(So), the function y(T; v) spans a dense
subspace of H~l(Q).

Proof. We shall give a (nonconstructive) proof based on the Hahn-Banach
theorem. Consider, thus, / € HQ(£1) such that

(y(T;v),f)=0, Vu€L2(Eo), (2.7)

where, in (2.7), , ) denotes the duality pairing between i7-1(f] ) and HQ (
next, define ip by

- -£- + A*ip = 0 in Q, V(r) = /, V = 0 on S. (2.8)
at
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Multiplying both sides of the first equation in (2.8) by the solution {x, t) —>
y(x,t;v) of problem (2.1)-(2.3) we obtain after integration by parts

(y(T;v),f) = - [  J^LvdTdt, (2.9)
Js onA

where d/driA* denotes the conormal derivative operator associated with A*
(if A = A* = -A , then d/dnA = d/dnA*  = d/dn where d/dn is the usual
outward normal derivative operator at F). Then (2.7) is equivalent to

- = 0 on Eo. (2.10)

It follows from (2.8), (2.10) that the Cauchy data of ip are zero on Eo;
using again the Mizohata's uniqueness theorem, we obtain that ip — 0 in Q,
so that / = 0, which completes the proof of the proposition.

We can now formulate the following approximate controllability problems
(where dE = drdi):

Problem 1. It is defined by

inf \f , ve L2(S0), y(T; v) e yT + /3£-i, (2.11)

where, in (2.11), yr is given in if~1(J7), (3 > 0, B-i denotes the unit ball
of H~1(Q) and t —> y(t; v) is the solution of (2.1)-(2.3) associated with the
control v.

Problem 2. It is the variant of problem (2.11) denned by

inf I1- f ^dS + i f cHr^ - r fJ, (2.12)
veLz{T,o) yl JT,o J

where, in (2.12), k > 0, yr and y(T;v) are as in (2.11), and where

a x 1/2
JV<^| 2dxj

with ip the unique solution in HQ(Q) of

L
Both problems (2.11) and (2.12) have a unique solution.

2.2. Dirichlet control (II) : Optimalit y conditions and dual
formulation s

We discuss first problem (2.12) which is simpler than problem (2.11). Let
us denote by Jfc(-) the cost function in (2.12); using the relation

Jk(v + Ow) - Jk(v) 2

= hm —- -̂  ^—L, Vv,w G L (EQ), (2.13)
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we can show that

( J» ,™)L 2 ( E o) = ^ ^ - J ^ w d E , Vu,«;€L2(So), (2-14)

where, in (2.14), the adjoint state function p is obtained from v via the
solution of (2.1)-(2.3) and of the adjoint state equation

- ~ + A*p = 0 in Q, p = 0on£,

p(T) € H$(Q) and - Ap(T) = /c(y(r) - yT) in Q. (2.15)

Suppose now that u is </ie solution of the control problem (2.12); since
J'k{u) — 0, we have then the following optimality system satisfied by u and
the corresponding state and adjoint state functions:

dp ,

- ^ + Ay = 0 in Q, y{0) = 0, y = 0 on S\S0 and y = —?- on Eo,

-% + A*p = 0 in Q, p = 0onE, p(T) = f,
ot

where / is the unique solution in HQ(Q) of the Dirichlet problem

- A / = fc(y(T) - yT) in fi, / = 0 on T. (2.16)

In order to identify the dual problem of (2.12), we proceed as in the above
sections by introducing (in the spirit of the Hilbert Uniqueness Method) the
operator A € C(H&(Q); #- 1( ^ ) ) defined by

(2-17)

where the function 0 is obtained from / as follows:
Solve first

 ̂ + A*^ = 0inQ, xl> = 0 on E, ^(T) = / (2.18)
ot

and then,

4v + A<p = 0 in Q, £(0) = 0, ^ = 0on S\S0, ^ = -^- on Eo. (2.19)
Ol OUA

We can easily show that (with obvious notation)

(A/1,/2) = / p^p^dTdt, V/i, h G ^o1^)- (2.20)
JEo on A* OUA*

It follows from (2.20) that the operator A is self-adjoint and positive semi-
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definite; indeed, it follows from Mizohata's uniqueness theorem that the op-
erator A is positive definite. However, the operator A is not an isomorphism
from HQ(Q,) onto H'1^) (implying that, in general, we do not have exact
boundary controllability here).

Back to (2.16) we observe that from the definition of A we have y(T) =
—A/, which implies in turn that / is the unique solution in HQ(Q,) of

1 Af = -yT. (2.21)

Problem (2.21) is precisely the dual problem we are looking for. Prom
the properties of operator — k~lA + A, problem (2.21) can be solved by a
conjugate gradient algorithm operating in the space HQ(CI); we shall return
to this issue in Section 2.3.

Let us consider the control problem (2.11); using the Fenchel-Rockafellar
convex duality theory as in the above sections, we can show that the solution
u of problem (2.11) is characterized by the following optimality system

% +Ay = 0 in Q, y(0) = 0, y = 0 on S\E0 and y = - ^ - on Eo, (2.23)
at oriA

- ^ + A*p = 0 in Q, p = 0 on E, p{T) = /, (2.24)

where / is the unique solution of the following variational inequality (with

11/11*1(0) = (/n IV/Tdx)1^, v/ e tfW

(2.25)
Problem (2.25) is precisely the dual problem to (2.11). The solution of

problem (2.25) will be discussed in Section 2.3.

2.3. Dirichlet control (III) : Iterativ e solution of the control
problems

2.3.1. Conjugate gradient solution of problem (2.12)
I t follows from Section 2.2 that solving the control problem (2.12) is equiv-

alent to solving the linear equation

J'k{u) = 0, (2.26)

where operator J'k is denned by (2.1)-(2.3), (2.14), (2.15). It is fairly easy
to show that the linear part of operator J'k, namely
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is symmetric and strongly elliptic over L2(Eo). Prom these properties, prob-
lem (2.26) can be solved by a conjugate gradient algorithm operating in the
space L2(Eo). It follows from Section 1.8.2 that this algorithm is as follows.

Description of the conjugate gradient algorithm:

u° is given in L2(E0); (2.27)

solve

dv°
-^- + Ay° = 0in Q, y°(0) = 0, y° = u° on E0, y° = 0 on S\S0, (2.28)
ot

and then
f f° <E Hk(Q)

and finally

BrP
--& +  A*P° = 0 in Q, p° = 0 on E, p°(T) = f°. (2.30)

Set

and then

w° = g°. (2.32)

For n > 0, assuming that un, gn, wn are known, compute un+l, gn+1,
wn+l as follows:
Solve

+ Ayn = 0 in Q, yn{0) = 0, yn = wn on Eo, yn = 0 on S\E0, (2.33)
dt

and then

- A / " = kyn(T) in Q,

finally

+ A*pn = 0 in Q, f1 = 0 on S, p"(T) = /" . (2.35)
dt

Compute

and

/So
= / | < f f d r d « // gnwndTdt, (2.37)

n / -'En
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un+l =un_ pnWn  ̂ ( 2 33)

gn+1=gn-Pn9n- (2.39)

° < e take u =  uU+1>  else compute

and update wn by

wn+l=gn+l +  lnw
n. (2.41)

Do n = n + 1 and go to (2.33).

Remark 2.2 The number of iterations necessary to obtain the convergence
varies here too, as A;1/2 me"1/2.

2.3.2. Conjugate gradient solution of the dual problem (2.21)
We mentioned in Section 2.2 that the dual problem (2.21), namely

can be solved by a conjugate gradient algorithm operating in the space
HQ(Q); from the definition of operator A (see (2.17)-(2.19)), and from Sec-
tion 1.8.2, this algorithm takes the following form:

f is given in tfo1 (ft); (2.42)

solve

- -  ̂ + A*p° = 0inQ, p° = 0 on S, p°(T) = f, (2.43)

and

-JL + Ay0 = 0 in Q, y°(0) = 0, y° = 0 on S\E0, y° = ^ - on Eo.

(2.44)
Solve now

= k-1 f Vf°-Vzdx+(yT-y
0(T),z), Vz G H^Sl),

JQ.
[
U

(2.45)
and set

w° = g°. (2.46)

Then, forn > 0, assuming that fn, gn, wn are known, compute fn+l, gn+l,
wn+l as follows:
Solve

dp"
dt

+ A*pn = 0 in Q, pn = 0 on E, pn(T) = wn, (2.47)
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and
dvn

ar A
(2.48)

Solve now

dv
+ Ayn = 0 in Q, yn(0) = 0, yn = 0 on E\E0, T = -^— on So-

[  Vgn-Vzdx = k-1 [ Vwn  Vzdx - (yn(T),z), Vz G ^(fi) .
in in

(2.49)

pn= [ \Vgn\2 dx I f Vgn  Vwn dx (2.50)
Jn I m

and then

gn+1=gn-png
n. (2.52)

V 110TH"1 HtfH^/H^lltf 1^) < e ^ e / = fn+l and solve (2.24) to obtain
u — dp/dnA*\?;0; if the above stopping test is not satisfied, compute

In

and then

= [ \Vgn+1\2dx/ [ \Vgn\2dx (2.53)
JQ I Jn

wn+l  = gn+l  + lnWn_ (2.54)

Do n = n + 1 and go to (2.47).

Remark 2.3 Remark 2.2 still holds for algorithm (2.42)-(2.54).

The finite element implementation of the above algorithm will be dis-
cussed in Section 2.5, while the results of numerical experiments will be
presented in Section 2.6.

2.3.3. Iterative solution of problem (2.25)
Problem (2.25) can also be written as

-yTeAf + f3dj(f), (2.55)

which is a multivalued equation in H~1(Q), the unknown function / belong-
ing to i7g(ri); in (2.55), dj(f) denotes the subgradient at / of the convex
function j : HQ(Q) —> M. defined by

O r

Problem (2.25), (2.55) is clearly a variant of problem (1.237) (see Sec-
tion 1.8.8) and as such can be solved by those operator splitting methods
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advocated in Section 1.8.8. To derive these methods we associate with the
'elliptic problem' (2.55) the following initial value problem

 + Af + 0dj(f) = -Vr, (2 56)

where, in (2.56), r is a pseudo-time.
To capture the steady-state solution of (2.56) (i.e. the solution of problem

(2.25), (2.55)) we can approximately integrate (2.56) from r = 0 to r = +oo
by a Peaceman-Rachford scheme, like the one described just below:

/° = /0 given in H^Sl); (2.57)

then, for m > 0, compute fm+1/2 and fm+1, from fm, by solving in
the following problems:

( — A fn+^/^\  _ ( — A fm\
A r / 2 A/ m = -vr, (2.58)

and

( ~ A / m + 1 ) ~ A / m + 1 / 2 ) *1'2 + Afm+1 = - W ' (2-59)

where Ar(> 0) is a (pseudo) time discretization step.
As in Section 1.8.8, for problem (1.237), the convergence of {fm}m>o to

the solution of (2.25), (2.55) is a direct consequence of P.L. Lions and B.
Merrier (1979), Gabay (1982; 1983) and Glowinski and Le Tallec (1989);
the convergence results proved in the above references apply to the present
problem since operator A (respectively functional j(-)) is linear, continuous
and positive definite (respectively convex and continuous) over HQ(Q). AS

in Section 1.8.8, we can also use a 0-scheme to solve problem (2.25), (2.55);
we shall not describe this scheme here since it is a straightforward variant of
algorithm (1.242)-(1.245) (actually such an algorithm is described in Carthel
et al. (1994), where it has been applied to the solution of the boundary
control problem (2.11), (2.25) in the particular case where To = F).

Back to algorithm (2.57)-(2.59) we observe that problem (2.59) can also
be written as

Problem (2.60) is a particular case of problem (2.21); it can be solved
therefore by the conjugate gradient algorithm described in Section 2.3.2.
Concerning the solution of problem (2.58), we observe that the solution of
a closely related problem (namely problem (1.343) in Section 1.10.4) has
already been discussed; since the solution methods for problem (1.343) and
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(2.58) are essentially the same we shall not discuss the solution of (2.58)
further.

2.4. Dirichlet control (IV): Approximation of the control
problems

2-4-1- Generalities and synopsis
It follows from Section 2.3.3 that the solution of the state constrained

control problem (2.11) (in fact of its dual problem (2.25)) can be reduced
to a sequence of problems similar to (2.21), which is itself the dual problem
of the control problem (2.12) (where the closeness of y{T) to the target yr
is forced via penalty); we shall therefore concentrate our discussion on the
approximation of the control problem (2.12), only.

We shall address both the 'direct' solution of problem (2.12) and the
solution of the dual problem (2.21).

The notation will be essentially as in Sections 1.8 and 1.10.6.

2-4-2. Time discretization of problems (2.12) and (2.21)
The time discretization of problems (2.12) and (2.21) can be achieved us-

ing either first-order or second-order accurate time discretization schemes,
very close to those already discussed in Sections 1.8 and 1.10.6 (see also
Carthel et al. (1994, Sections 5 and 6)). Instead of essentially repeating the
discussion which took place in the above sections and reference, we shall
describe another second-order accurate time discretization scheme, recently
introduced by Carthel (1994); actually, the numerical results shown in Sec-
tion 2.6 have been obtained using this new scheme.

The time discretization of the control problem (2.12) is denned as follows
(where At = T/N, N being a positive integer):

Min jfrHv), (2.61)
ve(L2(r0))

N-1

where v = {vn}^~i and
TV— 1

7 1 =1

in (2.62) we have an = 1 for n = 1,2,..., N - 2, aN-i = 3/2 and yN

obtained from v as follows:
y° = 0; (2.63)

to obtain y1 (respectively yn, n = 2, . . ., N—1) we solve the following elliptic
problem

V—^~- + A(\yx + |y°) = 0 in ft, y1 = v1 on To, y1 = 0 on T\T0 (2.64)
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(respectively

\yn - 2yn'1
Af + Ayn = OmQ, yn = vn on Fo, yn = 0 on r \ r0) ;

(2.65)
finally yN is defined via

— V—- + AyN~1 = 0. (2.66)

Problem (2.61) has a unique solution.
In order to discretize the dual problem (2.21) we look for the dual problem

of the discrete control problem (2.61). The simplest way to derive the dual
of problem (2.61) is to start from the optimality condition

VJ^4(uA t ) = 0, (2.67)

where, in (2.67), uA t = {un}^~i is the solution of the discrete control
problem (2.61), and where VJA t denotes the gradient of the discrete cost
function JAf . Suppose that the discrete control space UAt — (L2(To))N~1

is equipped with the scalar product

N-l .

(v, w)A t = AtYan vnwn dT, Vv, w e UAt; (2.68)

then a tedious calculation will show that Vv, w G UAt

(Vif(v),w) Ai

2

'r > Q N—l 1 Q N ~

f ^ + ^ l »»-'dr,
3 ariyi*  3 an »̂

where, in (2.69), the adjoint state vector {pn}^=1 belongs to (HQ(£1))N and
is obtained as follows.

First, compute pN as the solution in HQ(Q) of the elliptic problem

- ApN = k(yN - yT) in Q, pN = 0 on F, (2.70)

then pN~l (respectively pn, n — N — 2 , . . ., 2,1) as the solution in HQ(Q) of
the elliptic problem

jf^- + A*(lpN~l + \pN) = 0 in Q, pN-x = 0 on F (2.71)

(respectively

^ P lP + A*pn = 0 in n, pn = 0on T). (2.72)
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Combining (2.67) and (2.69) shows that the optimal triple

{uA\{yn}%=1,{P
n}Li}

is characterized by

un =
I To

(2.73)
to be completed by (2.70)-(2.72) and by

V° = 0, (2.74)

.,i _ .,o
i  ̂ + hy0) = 0inf i , y1 = u1onT0, y1 = 0 on T\ro, (2.75)

+ Ayn = 0 in n, yn = un on To, yn = 0 on T \ r0

(2.76)
if n = 2 , . . . , i V - l ,

(2-77)At + ^ 0 -

Following Section 2.2 we define AA i G £ ( ^ ( 0 ), H~l(n)) by

At N 1 (2.78)

where <£̂  is obtained from / via the solution of the discrete backward
parabolic problem

4>N = f , (2.79)

^ ~ ^ +vl*(f^ iV -1 + ^ J V ) = 0 inn, 4>N~1=0onT, (2.80)

-u i^, ^ ^ ^ n = Q .n ^^ ^i" = o on T (2.81)
At

for n = N — 2 , . . ., 1, and then of the discrete forward parabolic problem

</3° = 0, (2.82)

10°) = 0 in n, <pl = j£- on To, ^ = 0on T\r0,

(2.83)

A

At A
(2.84)
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if n = 2,...,N-2,

(2.86)

We can show that (with obvious notation) we have, V/i , fa £

(2.87)

where, in (2.87), , ) denotes the duality pairing between H"1^) and

It follows from (2.87) that operator AA t is self-adjoint and positive semi-
definite over HQ(Q).

Back to the optimality system (2.70)-(2.77), let us denote by fAt the
function pN; it follows then from the definition of AA*  that (2.70) can be
reformulated as

- AT1 A/ A *  + AAtfAt = -yT, (2.88)

which is precisely the dual problem we have been looking for. The full
space/time discretization of problems (2.12) and (2.21) wil l be discussed in
the following.

2.4-3. Full space/time discretization of problems (2.12) and (2.21)
The full discretization of control problems, related to (2.12) and (2.21),

has been already discussed in Sections 1.8.4 and 1.10.6. Despite many simi-
larities, the boundary control problems discussed here are substantially more
complicated to fully discretize than the above distributed and pointwise con-
trol problems. The main reason for this increased complexity arises from
the fact that we still intend to employ low-order finite element approxima-
tions - as in Sections 1.8 and 1.10 - to space discretize the parabolic state
problem (2.1)-(2.3) and the corresponding adjoint system (2.15). With such
a choice the 'obvious' approximations of d/driA* |r0

 w u l be fairly inaccurate.
In order to obtain second-order accurate approximations of d/dnA*\rOi  w e

shall rely on a discrete Green's formula, following a strategy which has been
successfully used in, e.g., Glowinski et al. (1990), Glowinski (1992a) (for the
boundary control of the wave equation) and Carthel et al. (1994) (for the
boundary control of the heat equation).
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We suppose for simplicity that f2 is a bounded polygonal domain of K2.
We introduce then, as in Sections 1.8.4. and 1.10.6, a triangulation Th of $7
(h: largest length of the edges of the triangles of Th). Next, we approximate
H1(n),L2(ty and H&(Q) by

Hi = {zh\zh G C°(n),zh\T G Pi,Vr G Th}, (2.89)

Hl
Qh = {zh\zh G f#, *h = 0 on r}( = Hfctt) n f#), (2.90)

respectively (with, as usual, Pi the space of polynomials in x\, X2 of degree
< 1). Another important finite element space is

Voh = {zh | zh G Hlzh - 0 on r \ r0} ; (2.91)

if /rx r dF > 0 we shall assume that those boundary points at the interface
of To and F\Fo are vertices of Tj,. Finally, the role of L2(To) will be played
by the space Mh(c Voh) denned as follows:

Mh © Hlh = Voh, nh€Mh  ̂ Hh | r= 0, VT € Th, such as dT n T = 0.
(2.92)

Space Mft is clearly isomorphic to the boundary space consisting of the
traces on V of those functions belonging to Voh', also, dim(M/j) is equal to
the number of Th boundary vertices interior to To and the following bilinear
form

/
Jr0

/
r0

defines a scalar product on Mh-
Since the full space/time discretization of problems (2.12) and (2.21) will

rely on variational techniques, it is convenient to introduce the bilinear form
a : H^ft) x H%(Q) -> R defined by

a(y,z) = (Ay,z), Vy G H^il), Vz e H^to), (2.93)

where , ) denotes the duality pairing between i7~1(O) and HQ(£1). Assum-
ing that the coefficients of the second-order elliptic operator A are sufficiently
smooth we also have

a(y,z)= f(A*z)ydx+ [ j^-ydT, Vy G H\n), Vz G H^{il)  n H2(tl),

(2.94)
which is definitely a generalization of the well-known Green's formula

fvy-Vzdx = - [  Azydx+ [ -^-ydY, Vy G Hx(Sl), Vz G H^(n)r)H2(n).
Jn Jn Jr on
Following Section 2.4.2 we approximate the control problem (2.12) by

n (2-95)
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where, in (2.95), we have U^1 = (Mh)N~l, v = {v"}^!" / and

h V 2 ^ a n Jn V 2jr

with, in (2.96), 4>N obtained from v via the solution of the following well-
posed discrete parabolic and elliptic problems

Parabolic problem.

y° = 0; (2.97)

compute y1 from

yl e vOh, y1 = v1 on r0,
(2 981

then yn from

Vn € Fo/i, 2/n = «" on To,

Hr-vZ + if-'^ + a(y,t). o,

for n = 2 , . . ., iV — 1, and yN from

N e ^ f c ,
^ . i ! (2.100)

Elliptic problem.
l

 Vzdz = / (y^ - yr)zdx, \/z € Hlh.

We then have the following

Proposition 2.2 The discrete control problem (2.95) has a unique solu-
tion u *̂  = {un}nZ\  If we denote by y  ̂ = {yn}^=0 the solution of (2.97)-
(2.100) associated with v = u^*, the optimal pair {u^* , y^4}  is character-
ized by the existence of p^*  = {pn}^=l  6 (HQh)

N such that

I VpN -Vzdx = k\j yNzdx-{yT,z) , Vz £ H ĥ,

: duality pairing between i / " 1 ^ ) and i/g(
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for n = N — 2 , . . ., 1, and a/so

G Mft ,

un u, dr ^ /
3 Jn At

(2.105)
if n = 1,2,... ,N — 2, and finally

G

(2.106)

Proof. The existence and uniqueness properties are obvious. Concerning
now the relations characterizing the optimal pair {u^*,y^* }  they follow
from the optimality condition

VJ ,A i ( u f ) = 0, (2.107)

where V J f is the gradient of the functional JA* . Indeed, if we use
J V - l .

(V, w)At = AtJ2an VnWn dr
n=l  jF°

as the scalar product over U^1, it can be shown that, Vv, w G U^, we have

(VJ,Ai (v),w)A i

o ^ - i ^ - i  dr  - / n ^ ^ ^ - !  d x

- o ^ " 1 , fp^-1 + IPN)] , (2.108)

where, in (2.108), {pn}n=i  is obtained from v = {vn}%=i  via the solution
of the discrete parabolic and elliptic problems (2.97)-(2.100), (2.102) and
(2.103), (2.104). Relations (2.107) and (2.108) clearly imply (2.102)-(2.106).

Remark 2.4 Relations (2.105), (2.106) are not that mysterious. For the
continuous problem (2.12), we know (see Section 2.2) that the optimal con-
trol u satisfies

u = - ^ - on So, (2.109)
dnA*

where p is the solution of the corresponding adjoint system (2.15). We have
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thus dp/dt = A*p, which combined with Green's formula (2.94), implies
that a.e. on (0, T) we have

, „  ̂  ̂ + a(u, p), Vu £ H1^), u = 0 on T\Tn. (2.110)
n at

Relations (2.105), (2.106) are clearly discrete analogues of (2.110).

To obtain the fully discrete analogue of the dual problems (2.21) and (2.88)
we introduce A^* € C(HQh,HQh) denned as follows

A£* / = -<pN, V/ G Hlh, (2.111)

where (pN is obtained from / via the solution of the fully discrete backward
parabolic problem

ipN = f, (2.112)

H0hi

1 ~ q')N 2 "N-l i "JVN 1 ('

i"  e H«n.

for n = iV — 2 , . . ., 1, and then of the fully discrete forward parabolic problem

0° = 0, (2.115)

if1 € Voh, (pl = u1 on r0,

n G Voh, (pn = un on To,
3,%n o.p.n-1 i i ,-nn-2

~2<P ~ \ + ^ .

for n = 2 , . . ., iV — 1, and finally

JV.! ! (2.118)

in (2.116), (2.117) the vector {un}^ is denned from {^ n}^ =1 as follows

un G Ai),,
/" /" 37?,n _ O7?.n+1 i i.j.n+2

/ «Vdr= / Sl LW ^  ̂ fidx + a^,^), V»eMh

Jr0 Jn At
(2.119)
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if n = 1,2, ...,N-2, and

(2.120)

<  fiJV-i

Ir0 Jo. At
+a(fi, f^" 1 + i ^ ) , V/x G Afh.

We can show that

7 V - 1

f (Af/ i ) / 2dx = AtY,  ̂ I un
xu

n
2 dT, V/i , /2 G Fo\ , (2.121)

where, in (2.121), {O^Tj 1, i = 1,2 is obtained from /, via (2.112)-(2.114),
(2.119), (2.120).

It follows from (2.121) that operator A^* is symmetric and positive semi-
definite over HQH. D

Let us consider now the optimal triple {u^*,y^*,p^* }  and define f£l G

ftl=pN- (2.122)

It follows then from Proposition 2.2 and from the definition of A^' that

A£'/£* = -VN- (2-123)

Combining (2.123) with (2.102) we obtain

-(yTz)^zeH1
0h

 ( 2" 1 2 4)1 f Vftt-Vzdx+ f

Problem (2.124) is precisely the fully discrete dual problem we were looking
for. From the properties of A^*  (symmetry and semi-positiveness), problem
(2.124) can be solved by a conjugate gradient algorithm operating in HQH

(a fully discrete analogue of algorithm (2.42)-(2.54)); we shall describe this
algorithm in Section 2.5.

Remark 2.5 Prom a practical point of view, it makes sense to use the
trapezoidal rule to (approximately) compute the various L2(Q) and L2(Po)
scalar products occurring in the definition of the approximate control prob-
lem (2.95), and of its dual problem (2.124). If this approach is retained,
the corresponding operator A^* has the same basic properties as that de-
fined by (2.111), namely symmetry and semi-positiveness, implying that the
corresponding variant of problem (2.121) can also be solved by a conjugate
gradient algorithm operating in the space HQH.
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2.5. Dirichlet control (V): Iterativ e solution of the full y
discrete dual problem (2.124)

We have described in Section 2.3 a conjugate gradient algorithm for solving
the control problem (2.12), either directly (by algorithm (2.27)-(2.41); see
Section 2.3.1) or via the solution of the dual problem (2.21) (by algorithm
(2.42)-(2.54); see Section 2.3.2). Since the numerical results presented in
the following section were obtained via the solution of the dual problem
we shall focus our discussion on the iterative solution of the fully discrete
approximation of problem (2.21) (i.e. problem (2.124)). From the properties
of A^*  problem (2.124) can be solved by a conjugate gradient algorithm
operating in the finite dimensional space HQH. From Sections 1.8.2 and 2.3.2
this algorithm takes the following form:

/o is given in H ĥ; (2.125)

set

Po = /o (2-126)

and solve first

/ Pp ~ Po A , ( 2 N-l I l JV\_n y p g l ^

i n At ' 3 3

and

a0 *-  iv i /i )

f vN~X - vN

UQ /xdF = / /xdx + ot(/x, §PQ + | PQ  ^M G M^,
r0 Jn At

(2.128)
and then for n = N — 2 , . . ., 1

Po fc -"Oh'

Jn At

g G Mh,
l 2

(2.130)
Solve next the following fully discrete forward parabolic problem

VQo = 0, (2.131)

Vo <£ Voh, yl = u\ on r0 ,

f yI^T^x + a{lyl + lyl z) = 0, V, € 1&, (
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% G vOh, y% = < on r0 ,

M - ^ + ir t- ' , dx + „ « , z) = 0, V
for n = 2 , . . ., N — 1 and finally

Solve now

90 G Hlh,

f Vg0 -Vzdx = k'1 f V/ o  Vzdx + (yT, z) - f ygzdx, Vz G H&h
Jn Ju Jn

(2.135)
and set

w0 = go- (2.136)

Then for m > 0, assuming that fm, gm, wm are known, compute /m+ i ,
gm+i, wm+i as follows:
Take

P™ = wm (2.137)

and solve

^ ̂  ^ . 2 _JV_! + , -ivx = 0 w G ^ i (2-138)

and

u^1 G Mh,

f «5[-Vdr= / P"~\7^/xdx + a(/x, f p ^ - ^ ^ ) = 0, V/i e
(2.139)

and then for n = N — 2 , . . ., 1

G ffoV
^ 2 (2.140)/ ^T zax -\- a{z,pm) — v, vz e noh,

m e Mh,

/ n > d r= / *Pm ZPm +*Pm vdx + a(^pnj, V p e M,

(2.141)
Solve next the following discrete forward parabolic problem

fm = 0, (2.142)
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yl
m e Voh, yl

m = um on r 0 ,

^ - ^ z d x + af'v1 + ^ ° z)-0 VzeHK (2-143)

/or n = 2 , . . ., iV — 1, and finally

Vzdx - f y^zdx, Vz G /fo\>
Jn

(2.146)
and compute

\2dx/ I Vgm  Vwmdz, (2.147)
/ 7o

= I \Vg

fm+l = fm- PmWm, (2.148)

9m+l = 9m~ Pm9m- (2.149)

e to  ̂ /^*  = / m + 1 and so/we (2.112)-(2.120)

f = f^1 to obtain u^*  = {un}n=\ > tf ^ e above stopping test is not
satisfied, compute

7m = I |V<?m+i|2dz/ f \V9m\2dx, (2.150)

7n / Jn

and then

Wm+l = #m+l + 7m^m- (2.151)
Do m = m + 1 and go to (2.137).

Remark 2.6 Algorithm (2.125)-(2.151) may seem complicated (27 instruc-
tions); in fact it is quite easy to implement since it essentially requires a fast
elliptic solver, for the calculations presented in Section 2.6 we have been us-
ing a multigrid based elliptic solver (see, e.g., Hackbush (1985), Yserentant
(1993) and the references therein for a thorough discussion of the solution
of discrete elliptic problems by multigrid methods).

Remark 2.7 If h and At are sufficiently small Remarks 2.2 and 2.3 still
hold for algorithm (2.125)-(2.151).
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2.6. Dirichlet control (VI) : Numerical experiments
2.6.1. First test problem

The first test problem is one for which the exact controllability property
holds; indeed, to construct more easily a test problem whose exact solution
is known we have taken a nonzero source term in the right-hand side of the
state equation (2.1), obtaining thus

 ̂ + Ay = s in Q, (2.1)'

and also replaced the initial condition (2.3) by

y(0) = yo, (2.3)'

with yo 7̂  0. For these numerical experiments we have taken Q = (0,1) x
(0,1), To = T, T - 1 and A = -i/A, with v > 0 ((2.1)' is therefore a heat
equation); the source term s, the initial value yo and the target function yx
are defined by

s(xi,x2,t) = 37T3zve27r2l/*(sm7nri +sin7nr2), (2.152)

yo(xi,X2) = 7r(sin7rxi +sin7TX2), (2.153)

,X2) — ?re27r ^(sinrrxi +sin7nr2), (2.154)

respectively.
With these data the (unique) solution u of the optimal control problem

MinJ(v) (2.155)

(with

J(v) = \ f \v\2dTdt,
Uf — {v | v G L2(S), the pair {v,y}

satisfies (2.1)', (2.2), (2.3)' and y(T) = yT})

is given by

{ u(xi,X2,t) = ire2* 2"* sinnxi if 0 < x\ < 1 and X2 = 0 or 1, , .
u(xi,X2,t) — 7re27r2|/*sin7rx2 if 0 < X2 < 1 and x\ = 0 or 1,

the corresponding function y being defined by

y(xi,X2,t) = 7re27r2"*(sin7ra;i + sin?rx2). (2.157)

Concerning now the dual problem of (2.155) we can easily show that it is
defined by

Af = Y0(T)-yT, (2.158)
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/\/\/\/\/\A7V
Fig. 1. A regular triangulation of (0,1) x (0,1).

where operator A is still denned by (2.17)-(2.19) and where the function
is the solution of

dY0

dt AY0 = s on Q, YQ(0) = j/o, Yo = 0 on E. (2.159)

Since the data have been chosen so that we have exact controllability, the
dual problem (2.158) has a unique solution which, in the particular case
discussed here, is given by

To approximate problem (2.158) (and therefore problem (2.155)) we have
used the method described in Sections 2.3 to 2.5, namely: time discretiza-
tion by a second-order accurate scheme, space discretization by finite el-
ement methods (using regular triangulations 7̂  like the one in Figure 1)
and iterative solution by a trivial variant of algorithm (2.125)-(2.151) (with
k = +oo) with e = 10~4 for the stopping criterium.

The above solution methodology has been tested for various values of h
and At; for all of them, we have taken v =  1/2TT2(= 5.066059... x HT2).
On Table 1 we have summarized the results which have been obtained (we
have used a * to indicate a computed quantity). All the calculations have
been done with /o = 0 as initializer for the conjugate gradient algorithms.

The results presented in Table 1 deserve some comments:

1 The convergence of the conjugate gradient algorithm is fairly fast if we
keep in mind that the solution /^*  of the discrete problem which has
been solved can be viewed as a vector with (31)2 = 961 components
if h = At = 1/32 (respectively (63)2 = 3969 components if h = At =
1/64).

2 The target function yx has been reached within a good accuracy, similar
comments holding for the approximation of the optimal control u and
of the solution / to the dual problem (2.158).

3 For information, we have ||u/||£,2(£) = 7r\/e2 — 1 = 7.94087251... and
= ne/V2 = 6.03850398....
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Table 1. Summary of numerical results.

Number of iterations 10 11
O JA y 1 f\ — 5 1 '7Q w 1 Ci — 5

7.791 7.863
]- 2.50 x 10-3 1.21 x 10"3

ll/*llifi(Q ) 6.07 6.041
l l / l / l l 2.44 xlO" 2 2.85 x

6.53 x 10-3 7.02 x

On Figures 2 and 3 we have compared yT(xi,0.5) (...) and y^(x\,0.5)
(—) for xi £ (0,1) and h = At = 1/32, h = At = 1/64, respectively;
we recall that y  ̂ = y^*(T) and that our methodology forces y^*(T) to
belong to HQH, explaining the observed behaviour of the above function
in the neighbourhood of F. On Figures 4 and 5 we have represented the
functions t —> ||tt(*)||£2(r) (...) and t —» ||«*(£)||L2(r) (—) for t G (0,T) and
h = At = 1/32, h = At = 1/64, respectively. Finally, on Figures 6 and 7
we have compared /(zi ,0.5) (...) and /*(zi,0.5) (—) for x\ G (0,1) and
h = At = 1/32, h = At = 1/64, respectively. Comparing these two figures
shows that h — At = 1/32 provides a (slightly) better approximation than
h = At = 1/64; this is in agreement with the results in Table 1.

The results obtained here compared favourably with those in Carthel et al.
(1994) where the same test problem was solved by other methods, including
a second-order accurate time discretization method close to that discussed
in Section 1.8.6 for distributed control problems (see also Carthel (1994) for
further results and comments).

2.6.2. Second test problem
If one uses the notation of Section 2.6.1 we have for this test problem Q, =

(0,1) x (0,1), T = l, s = 0, yo = O, yT(xi,x2) = mm(xi,X2,l-xi,l-x2)
and v = 1/2TT2; unlike the test problem of Section 2.6.1, for which Fo = F,
we have here Fo ^ F since

Fo = {{xi,x2} | 0 < xi < 1, x2 = 0}  .

The function yr is Lipschitz continuous, but not smooth enough to have (see
the discussion in Carthel et al. (1994, Section 2.3.3)) exact controllability.
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Fig. 2. Comparison between yT (...) and y  ̂ (—) (h = At = 1/32).

17.5

12.5

2 . 5

Fig. 3. Comparison between yr ) and (h = At = 1/64).

This implies that problem (2.21) has no solution if k = +oo; on the other
hand, problems (2.11), (2.12), (2.21), (2.25) are well-posed for any finite
positive value of k or (3. Focusing on the solution of problem (2.21) we have
used the same space and time discretization methods as for the first test
problem, with h = At = 1/32 and h = At = 1/64. We have taken k = 105
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12

10

0.25 0.5 0.75

Fig. 4. Comparison between ||u(t)||L2(r) ) and ||u*(t)||L2(r) (—) (h — At =
1/32).

12

10

0.25 0.5

t

0.75

Fig. 5. Comparison between ||u(i)||i,2(r) ) &nd ||w*(£)||.L2(r) (—) (h = At =
1/64).

and 107 for the penalty parameter and used e = 10~3 for the stopping
criterium of the conjugate gradient algorithm (2.125)-(2.151) (which has
been initialized with f° = 0).

The numerical results have been summarized in Table 2.
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2 .5

1.5

0.5

0.25 0.5

X

0.75

Fig. 6. Comparison between / (...) and /*  (—) (h = At = 1/32).

2 .5

1.5

0 .5

0.25 0 .5

X

0 .75

Fig. 7. Comparison between / ( . . .) and /*  (—) (h = At = 1/64).

The above results suggest the following comments: first, we observe that
WVT - y^*(r)||_i varies like AT1/4, approximately. Second, we observe that
the number of iterations necessary for convergence, increases as h, At and
k~l decrease; there is no mystery here, since - from Section 1.8.2, relation
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Table 2. Summary of numerical results.

h = At

k
Number of
iterations
\\y*T-yT\\-\

llyrll- i
1 M*IU 2(Eo)
||/*||ff i(n)

II/IU^Q)

1/32

105

56

1 31 x 10-1

8.18
600.4
75.95

1/64

105

60
1

8.12
584.2
73.63

1/32

107

292

/ Ky in-2

25.59
18,960
1,632

1/64

107

505

Q qo v in - 2

24.78
17,950
1,525

(1.130) - the key factor controlling the speed of convergence is the condition
number of the bilinear form in the left-hand side of equation (2.124). This
condition number, denoted by v^t{k), is defined by

v^\k)= max Rh{z) I min Rh{z), (2.161)
*eHo

1
h-{o}  / z e ^ -M

where, in (2.161), Rh(z) is the Rayleigh quotient defined by

it can be shown that

lim v£\k) = k\\A\\c{HimH-im, (2.163)

implying that for small values of h, At and A;"1, problem (2.124) is badly
conditioned. Indeed, we can expect from (2.163) and from Section 1.8.2, re-
lation (1.130), that for h and At sufficiently small the number of iterations
necessary to obtain convergence will vary like A;1/2, approximately; this pre-
diction is confirmed by the results in Table 2 (and will be further confirmed
by the results in Section 2.6.3, Table 3, concerning our third test problem).
Third, and finally, we observe that ||i**  Hz/2(s0) (respectively H/*!!// 1^)) varies
like A;1/4 (respectively A;3/4); it can be shown that the behaviour of ||/*||#i(m
follows from that of \\yr — 2/xll-i since we have (see, e.g., Carthel et al. (1994,
Remark 4.3))

where y is the state function obtained from the optimal control u via (2.1)-
(2.3).
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0 .4

0 .2

Fig. 8. Graph of the target function yr (yT(xi,x2) = m i n ( x i , x2 , l — x i , l —
x2),0<xux2<l).

On the following figures, we have represented or shown the following in-
formation and results.

A view of the target function yx on Figure 8. On Figures 9(a) to 12(a)
(respectively 9(b) to 12(b)) the graph of the function yT (= y^l{T)) (respec-
tively a comparison between yr (...) and the actually reached state function
yT (—)) for various values of h, At and k (we have shown the graphs of the
functions X2 — yx(0.5, X2) and £2 —*  2/T(O-5> ̂ 2) for £2 € (0,1)). The graphs
of the computed solution f^t{=  /* ) and of the function X2 —> f£t(0.5,X2)
on Figures 13 to 16. On Figures 17 to 20 the graphs of the functions
t — ||u*(t)||i2(r0)

 a n (i (x i)^ }  —* u*(xi,t). Finally, we have visualized on
Figures 21 to 24 (using a log-scale) the convergence to zero of the conjugate
gradient residual ||</m||ifi(fi); the observed behaviour (highly oscillatory, par-
ticularly for k = 107) is typical of a badly conditioned problem.

2.6.3. Third test problem
For this test problem U, T, To, yo, s, A, v are as in Section 2.6.2, namely

n = (0.1) x (0.1), T = 1, y0 = 0, s = 0, A = -vA with v =  1/2TT2; the
only difference is that this time yx is the discontinuous function defined by

yT{xi,x2) =
if l/4<xux2 <3/4,
otherwise.

(2.165)

We have applied to this problem the solution methods considered in Section
2.6.2; their behaviour here is essentially the same as that for the test problem
of Section 2.6.2 (where yr was Lipschitz continuous). We have shown in the
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Table 3. Summary of numerical results.

h = At

k
Number of
iterations

\\VT\\-I

1/32

105

55

1.64 x 10-1

14.68
1,407
120.7

1/64

105

56

1.57 x 10-1

15.07
1,410
122.5

1/32

107

361

1.05 x 10-i

56.80
90,010
5,608

1/64

107

569

9.88 x 10 2

58.53
88,510
5,566

following Table 3 the results of our numerical experiments (the notation is
as in Section 2.6.2).

Comparing to Table 2 we observe that the convergence properties of
the conjugate gradient algorithm are essentially the same, despite the fact
that yx is much less smooth here; on the other hand we observe that
\\yr — 2/^(^)11-1 varies like k~llz, approximately, implying in turn (from
(2.164)) that ||/*||#im) varies like k7/8, approximately. The dependence of

II U*IIL 2(E0)
 1S ̂ ess c le ar (to us at least); it looks 'faster', however, than A;1/4.

On Figure 25 we have visualized the graph of the target function yr, then
on Figures 26 and 27 we have compared the function X2 — 2/r(0.5,X2) to
%2 —> yxi^-^f X2) (—) f° r various values of A;, h and At; on Figures 28 and
29 we have shown the graphs of the corresponding function yT. Finally,
for the above values of k, h and At, we have shown, on Figures 30 to
35, further information concerning uft*, ff  ̂ and the convergence of the
conjugate gradient algorithm (2.125)-(2.151).

2.7. Neumann control (I): Formulation of the control
problems

We consider again the state equation (2.1) in Q and the initial condition
(2.3). We suppose this time that the boundary control is of the Neumann's
type. To be more precise, the state function y is defined now by

% + Ay = 0 in Q, y(0) = 0, p- = v on Eo, p- = 0 on S\E0. (2.166)
at QUA oriA

In (2.166), d/driA denotes the conormal derivative operator; if operator
A is defined by
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Fig. 9. (a) Graph of the function y^(k = 105, h = At = 1/32). (b) Comparison
between yT (...) and y  ̂ {—) {k = 105, h = At = 1/32).



190 R. GLOWINSKI AND J.L. LIONS
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o . 5 h

0 . 4 h

0.3

0.2

0 .1

Fig. 10. (a) Graph of the function y^(k = 105, h = At = 1/64). (b) Comparison
between yT ) and y? {—) (k = 105, h = At = 1/64).
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0.25 0.5 0.75

Fig. 11. (a) Graph of the function y^(k = 107, h = At = 1/32). (b) Comparison
between yT (...) and j/f (—) (k = 107, h = At = 1/32).
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0.41-
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0 .1

0 . 2 5 0 . 5 0 . 7 5

Fig. 12. (a) Graph of the function y*T(k = 107, h = At = 1/64). (b) Comparison
between yT (...) and y  ̂ (—) (k = 107, h — At = 1/64).
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0.25 0.75

Fig. 13. (a) Graph of the function f^(k = 105, h = At = 1/32). (b) Graph of
the function x2 -> f£t(0.5,x2)(k = 105, h = At = 1/32).
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50

x 2

Fig. 14. (a) Graph of the function f^(k = 105, h = At = 1/64). (b) Graph of
the function x2 -> f£t{0.5,x2){k = 105, h = At = 1/64).
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4000

2000

Fig. 15. (a) Graph of the function f^(k = 107, h = At = 1/32). (b) Graph of
the function x2 -  f^t(0.5.x2)(k = 107. h = At = 1/32).
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4000

2000

x 2

Fig. 16. (a) Graph of the function f^(k = 107, h = At = 1/64). (b) Graph of
the function x2 -> f£t(0.5,x2){k = 107, h = At = 1/64).
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Mul l

u

-10

Fig. 17. (a) Graph of t -> ||u*(t)||z,2(ro)(A; = 105, h = At = 1/32). (b) Graph of
the computed boundary control (k = 105, h = At = 1/32).
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Fig. 18. (a) Graph oft-* ||«*(*)||rr2(ro)(fc = 105, h = At = 1/64). (b) Graph of
the computed boundary control (k = 105, h = At = 1/64).
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Null

u

Fig. 19. (a) Graph of t -> ||u*(i)||L2(ro)(A; = 107, h = At = 1/32). (b) Graph of
the computed boundary control (k = 107, h = At = 1/32).
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Hul l

Fig. 20. (a) Graph of t -> ||u*(t)||L2(ro)(fc = 107, h = At = 1/64). (b) Graph of
the computed boundary control (k = 107, h — At = 1/64).
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Fig. 21. Variation of \\gm\\Hi ln)/\\go\\Hl(a)(k = 105, h = At = 1/32).
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Fig. 22. Variation of \\gm\\Hi(n)/\\go\\Hnn)(k = 105, h = At = 1/64).
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Fig. 23. Variation of ||Smllffi(n)/l|0bllHi(n)(fr = 1 0 ?' h =  A f = x/32).
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Fig. 24. Variation of = 1 0 ? '  h = A t =
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0 .5

Fig. 25. Graph of the target function yT (yr is the characteristic function of the
square (l/4,3/4)2).

then d/driA is defined by

(2.168)

where n = {rii}f =1 is the unit vector of the outward normal at F.
We assume that

v € L2(E0). (2.169)

There are slight (and subtle) technical differences between Neumann and
Dirichlet boundary controls. Indeed, suppose that operator A is denned by
(2.167) with the following additional properties

\fl<i,j<d,  (2.170)

d d

> a-e- i n n . w i t h a (2.171)
1=1j=l

(in (2.171), |£|2 = £ l i |&|2, V£ = {&}f =1 € Rd); then problem (2.166) can
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Fig. 26. Comparison between yT (...) and y  ̂ (—) {k = 105, h = At = 1/64).

be expressed in variational form as follows

y(t) € a.e. on (0,T), j/(0) = 0,

where

(actually, all this applies to the case where the coefficients â  depend on x
and t and verify a,ij(x,t) € L°°(Q) and

d d

E E ^ ^ ' ) ^ ^  aî i 2- v^GRd'  a-e-in ^
t=lj=l

with a > 0). Therefore, without any further hypothesis on the coefficients
Oy, problem (2.166) admits a unique solution y(v) = y(x, t; v) such that

y(v) € L2(0,T; ^ ( f i ) ) n C°([0, T}; L2(fi)) . (2.174)

To obtain the approximate controllability property we shall assume further
regularity properties for the a^'s, more specifically we shall assume that

Oij e C 1 ^ ) , VI < i,j < d. (2.175)

We have then the following
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1.4

1.2

Fig. 27. Comparison between yT ) and y  ̂ (—) (k = 107, h = At = 1/64).

Proposition 2.3 Suppose that coefficients aij verify (2.171) and (2.175).
Then y(T;v) spans a dense subset of L2(£l) when v spans L2(Eo).

Proof. The proof is similar to the proof of Proposition 2.1 (see Section 2.1).
Let us assume therefore that / G L2(f2) satisfies

(2.176)y(T;v)f dx = 0, V« G L2(E0).

We introduce ip as the solution of

dip
=  0 on S; (2.177)

then (2.176) is equivalent to

tp = 0 on Eo. (2.178)

Thanks to the regularity hypothesis (2.175) we can use the Mizohata's
uniqueness theorem (Mizohata, 1958) (see also Saut and Schoerer (1987)):
it follows then from (2.177) and (2.178) that ip = 0, hence / = 0 and the
proof is completed.

Remark 2.8 The applicability of the Mizohata uniqueness theorem under
the only assumption that a  ̂ G L°°(Q) does not seem to have been com-
pletely settled, yet.

We can state two basic controllability problems both closely related to
problems (2.11) and (2.12) in Section 2.1.
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0.5

Fig. 28. Graph of the function y^(k = 105, h = At = 1/64).

The first Neumann control problem that we consider is defined by

where v is subjected to

(2.179)

(2.180)

in (2.180), y(t;v) is the solution of problem (2.166), the target function y-f
belongs to L2(Q), B denotes the closed unit ball of L2(f2) and 0 is a positive
number, arbitrarily small.

The second Neumann control problem to be considered is defined by

inf [\
where k is a positive number, arbitrarily large.

Both problems (2.179) and (2.181) admit a unique solution. There is
however a technical difference between these two problems since problem
(2.181) admits a unique solution under the only hypothesis â  £ L°°(J1)
(and of course the ellipticity property (2.171)), while the existence of a
solution for problem (2.179), with /3 arbitrarily small, requires, so far, some
regularity property (such as (2.175)) for the a^'s. In the following we shall
assume that property (2.175) holds, even if this hypothesis is not always
necessary.
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0.5

Fig. 29. Graph of the function y}(k = 107, h = At = 1/64).

2.8. Neumann control (II) : Optimalit y conditions and dual
formulation s

The optimality system for problem (2.181) is obtained by arguments which
are fairly classical (see, e.g., Lions (1968)), as recalled in Section 2.2. Follow-
ing, precisely, the approach taken in Section 2.2, we introduce the functional
Jfc : L2(£o) -> K denned by

 ̂ v2 dS + \k\\y{T; v) - yT\\h{il y

We can show that the derivative J'k of Jfc is denned by

Jk{v) = \

= f

(2.182)

(2.183)

where, in (2.183), the adjoint state function p is obtained from v via the
solution of (2.166) and of the adjoint state equation

=  0 on E, p(T) = %(T) - yT). (2.184)

Suppose now that u is the solution of the control problem (2.181); since
J'k(u) = 0, we have then the following optimality system satisfied by u and
by the corresponding state and adjoint state functions:

(2-185)
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Fig. 30. (a) Graph of f£l(k = 105, h = At = 1/64). (b) Graph of x2

ft(0.5,x2)(k = 105, h = At = 1/64).
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Fig. 31. (a) Graph of f
f£t(0.b,x2){k = 107, h =

k = 107, h = At = 1/64). (b) Graph of x2

= 1/64).
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Null
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-20 .

Fig. 32. (a) Graph of t -+ \\u*(t)\\L2{ro)(k = 105, h = At = 1/64). (b) Graph of
the computed boundary control (k = 105, h = At = 1/64).
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-100

Fig. 33. (a) Graph of t -> ||u*(t)||L2(ro)(fc = 107, h = At = 1/64). (b) Graph of
the computed boundary control (fc=107, h = At = 1/64).
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Fig. 34. Variation of
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Fig. 35. Variation of | = !07> h = At = 1/64).
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 ̂ + Ay = 0 in Q, y(0) = 0, ^ - = 0 on E\E0, ^ = - p on So,

(2.186)

-yT). (2.187)

In order to identify the dual problem of (2.181) we proceed essentially as
in Section 2.2. We introduce therefore the operator A € £(L2(f2);L2(£2))
defined by

/ 2 (2.188)

where, in (2.188), (p is obtained from / as follows.
Solve first

- ^ + A*$ = 0 in Q, -p- = 0 on E, ^(T) = /, (2.189)
at oriA

and then

^ = 0 in Q, 0(0) = 0, ^ - = 0 on E\E0, ^ - = ~V> on Eo.
at an î an̂

(2.190)
We can easily show that (with obvious notation)

/ (A/i)/ 2dx = / ^ iV 2d£, V/1,/2 € L2(fi) . (2.191)
n 7E0

It follows from (2.191) that operator A is symmetric and positive semi-
definite; indeed, it follows from the Mizohata's uniqueness theorem that
operator A is positive definite (if (2.175) holds, at least). However, operator
A is not an isomorphism from L2(Cl) onto L2(fi ) (implying that, in general,
we do not have here exact boundary controllability).

Back to (2.188), we observe that, if we denote by / the function p(T) in
(2.187), it follows from the definition of operator A that we have

k-1f + Af = -yT- (2.192)

Problem (2.192) is the dual problem of (2.181). From the properties of the
operator k~lI + A, problem (2.192) can be solved by a conjugate gradient
algorithm operating in the space L2(fl);  we shall return to this issue in
Section 2.9.

The dual problem (2.192) has been obtained by a fairly simple method.
Obtaining the dual problem of (2.179) is more complicated. We can use
- as already done in previous sections - the Fenchel-Rockafellar duality
theory, however, in order to introduce (possibly) our readers to other duality
techniques we shall derive the dual problem of (2.179) through a Lagrangian
approach (which is indeed closely related to the Fenchel-Rockafellar method,
as shown in, e.g., Rockafellar (1970) and Ekeland and Temam (1974)).
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Our starting point is to observe that problem (2.179) is equivalent to

i n f i / <;2d£, (2.193)
{v,z} 2 Jz0

where, in (2.193), the pair {v,z} satisfies

v e L2(S0), (2.194)

zeyT + (3B, (2.195)

y(T) - 2 = 0, (2.196)

y{T) being obtained from v via the solution of (2.166). The idea here is to
'dualize' the linear constraint (2.196) via an appropriate Lagrangian func-
tional and then to compute the corresponding dual functional. A Lagrangian
functional naturally associated with problem (2.193)^(2.196) is defined by

C(v, z\fi) = l I v2 d£ + / fi(y(T) - z) dx. (2.197)

The dual problem associated with (2.193)-(2.197) is defined by

inf J*(n), (2.198)

where, in (2.198), the dual functional J* is defined by

J*(M) = - inf £(v,z;n), (2.199)

where {v,z} still satisfies (2.194), (2.195). We clearly have

inf £(t;,z;/x)= inf [1 f v2 dX + f y(T)fidx] - sup [fizdx,

(2.200)
and then

sup fizdx = sup / n(z — yr) dx + nyr dx

z£yx-\-0B JSl z£yT-\-f3B L JH JQ.

= /̂ llA lllL 2(n) "I" / fJ-VTdx. (2.201)

I t remains to evaluate

inf [ i f v2dE+ / y(T)iidx] ; (2.202)
z)eL2(E0) L2 7 E0 ^n Jindeed, solving the (linear) control problem (2.202) is quite easy since its

unique solution u  ̂ is characterized (see, e.g., Lions (1968)) by the existence
°f {Vn,Pfj,} such that

u  ̂ = - ty lso,  (2.203)
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^ + AVfi = 0 in Q, ^(0 ) = 0, J ^  = -P/i on Eo, J ^ - = 0 on E\E0,
(2.204)

- ^ + ,4*pM = 0 in Q, ^ - = 0 on £, PfX(T) = /i. (2.205)

We have then from (2.202)-(2.205) and from the definition and properties
of the operator A

inf \f v
2 JEO 0

= - \ /(A/x)/xdx. (2.206)
2 y^

Combining (2.199), (2.200), (2.201) to (2.206) implies that

\ J(Afi)fidx + /S||MIIL2(O) + Jn VTfidx. (2.207)

The dual problem to (2.179) is defined then by

\ I (A/)/dx + /3||/||L2(n) + / yrfdx] , (2.208)

or, equivalently, by the following variational inequality

f e L2(n),

- /) dx + (3\\f\\L2{n) - /J||/||L2(n) (2.209)

yr(f-f)dx>0, 2

Once / is known, obtaining the solution « of problem (2.179) is quite easy,
since

« = - P | E0 . (2-210)

where, in (2.210), p is the solution of

-^+A*p = Q, ^ = 0onE,p(T) = /. (2.211)
ot oriA*

The numerical solution of problem (2.208), (2.209) will be discussed in Sec-
tion 2.10.

Remark 2.9 Proving directly the existence and uniqueness of the solution /
of problem (2.208), (2.209) is not obvious. Actually, proving it without some
regularity hypothesis on the o^-'s (like (2.175)) is still an open question.
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2.9. Neumann control (III) : Conjugate gradient solution of
the dual problem (2.192)

We shall address in this section the iterative solution of the control problem
(2.181), via the solution of its dual problem (2.192). Prom the properties
of A (symmetry and positive definiteness) problem (2.192) can be solved
by a conjugate gradient algorithm operating in the space L2(fl). Such an
algorithm is given below; we will use there a variational description in order
to facilitate finite element implementations of the algorithm.

Description of the algorithm

f is given in L2(O); (2.212)

solve

(2.213)i
ip°(t) € H^Q), a.e. on(0,r),

1>°(T) = f, (2.213)2

and then

Jr0

<p°(0) = 0. (2.214)2

/ro v / ' v " (2.214)!
€ H1^), a.e. on (0,T),

Solve next

/ g°vdx — k l / f°vdx+ / (yr ~ (p°(T))vdx, W € 1
JQ Jn Jn

(2.215)
and set

w° = g°. (2.216)

Then, for n > 0, assuming that fn, gn, wn are known, compute fn+1,
gn+1, wn+1 as follows.
Solve

{ [  dibn

— / (t)zdx

Jn ot
n(i) G Hl(Q),

(2.217)1
, a.e. on(0,T) ,

(2.217)2



/ gnvdx = k 1 / wnvdx- / ipn(T)vdx,
Jn Jn Jn

and compute

Set then
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and then

f d<Z>n _ f -
/ -^-—(t)zdx + a((p{t),z) = - ipn(t)zdT, Vz e B

Jn at Jr0

if n(t) e i / 1^) , a.e. on (0,T) ,

<pn(0) = 0. (2.218)2

Solve next

gn € L2{Q,),

(2.219)

Pn= [  \9n\2 dxlj gnwn dx. (2.220)
Jn I Ju

9n-Pn9n- (2-222)

If \\9n+1\\L\n)l\\9Q\\LHSi) < £, take f = / n + 1 ; else, compute

7n= / \gn+1\2dx/ \gn\2dx (2.223)
7n / 7Q

and update wn+1 via

Do n = n + 1 ond 30 to (2.217).
In (2.212)-(2.224), the bilinear form a(-, ) is defined by (2.173).
It is fairly easy to derive a fully discrete analogue of algorithm (2.212)-

(2.224), obtained by combining finite elements for the space discretization
and finite differences for the time discretization. We shall then obtain a
variation of algorithm (2.125)-(2.151) (see Section 2.5), which is itself the
fully discrete analogue of algorithm (2.42)-(2.54) (see Section 2.3). Actually,
algorithm (2.212)-(2.224) is easier to implement than (2.42)-(2.54) since it
operates in L2(f]) , instead of HQ(£1); no preconditioning is required, thus.

2.10. Neumann control (IV) : Iterativ e solution of the dual
problem (2.208), (2.209)

Problem (2.208), (2.209) can also be formulated as

(2.225)
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which is a multivalued equation in L2(O). In (2.225), dj(-) is the subgradient
of the convex functional j(-) denned by

a x 1/2
J / |2 d xJ , V / £

As done in preceding sections we associate with the elliptic equation (2.225)
the initial value problem

/(0) = /o-

To obtain the steady state solution of (2.226), i.e. the solution of (2.225),
we shall use the following algorithm obtained, from (2.226), by application
of the Peaceman-Rachford time discretization scheme (where Ar(> 0) is a
pseudo-time discretization step)

f° = /o; (2.227)

then, for n>0, compute fn+1/2 and fn+l, from fn, via

fn+l/2 _ fn
1 J + A r + Pdj(fn+1/2) = -vr, (2.228)

tn+l  _ fn+l/2
J J + 1 +l '2 (2-229)

Problem (2.229) can be reformulated as

fn+l _ o fn+l/2 i fn

A
J

r / 2
 J + A / n + 1 = A/" ; (2.230)

problem (2.230) being a simple variation of problem (2.192) can be solved by
an algorithm similar to (2.212)-(2.224). On the other hand, problem (2.228)
can be (easily) solved by the methods used in Section 1.8.8 to solve problems
(1.240), (1.243), (1.245) which are simple variants of problems (2.228).

3. CONTROL OF THE STOKES SYSTEM

3.1. Generalities. Synopsis

The control problems and methods which were discussed in Section 2 were
mostly concerned with systems governed by linear diffusion equations of
the parabolic type, associated with second-order elliptic operators. Indeed,
these methods have been applied, in, e.g., Berggren (1992) and Berggren
and Glowinski (1994), to the solution of approximate boundary controllabil-
ity problems for systems governed by strongly advection dominated linear
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advection-diffusion equations. These methods can also be applied to sys-
tems of linear advection-diffusion equations and to higher-order parabolic
equations (or systems of such equations). Motivated by the solution of
controllability problems for the Navier-Stokes equations modelling incom-
pressible viscous flow, we will now discuss controllability issues for a system
of partial differential equations which is not of the Cauchy-Kowalewski type,
namely the classical Stokes system.

3.2. Formulation of the Stokes system. A fundamental
controllabilit y result

In the following, we equip the Euclidian space M.d(d > 2) with its classical
scalar product and with the corresponding norm, i.e.

d

a -b = £ oi & i , Va={ai}f =1) b = {&i}? =1 € Rd; |a| = (a- a)1/2, Va G Rd.

We suppose from now on that the control v is distributed over Q, with its
support in 6 C Q, (as in Sections 1.1 to 1.8, whose notation is kept). The
state equation is given by

dt

V  y = 0 in Q,

subjected to the following initial and boundary conditions

y(0) = 0, y = 0 on £. (3.2)

In (3.1) we shall assume that

v G V = closed subpsace of L2(O x (0, T))d. (3.3)

To fix ideas we shall take d = 3, and consider the following cases for V:

V = L2(Ox (0,T))3, (3.4)
V = {ui,V2,0} , {vuv2} GL2(Ox (0,T))2, (3.5)

V = {ui,0,0} , vi eL2(Ox (0,T)). (3.6)

Problem (3.1), (3.2) has a unique solution, such that (in particular)

y(i;v)GL2(0,T;(^0
1(f2))3), V  y = 0,

where V is the dual space of V with

V = {ip | y>G (^(fi)) 3,V-¥3 = 0}. (3.8)
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I t follows from (3.7) that

t -> y(t; v) belongs to C°([0, T\;H), (3.9)

where

H - closure of V in (L2(ft))3

= {<p | tp € (L2(ft))3, V  v? = 0, p  n - 0 on F}  (3.10)

(where n denotes the outward unit normal vector at F).
We are now going to prove the following

Proposition 3.1 If V is defined by either (3.4) or (3.5), then the space
spanned by y(T; v) is dense in H.

Proof. It suffices to prove the above results for the case (3.5). Let us therefore
consider f G H such that

/ y(T; v)  f dx = 0, Vv G V. (3.11)

To f we associate the solution ip of the following backward Stokes problem

dip
T\ ZA'U } = v o~ i n LJ, /Q i o\
ot y^-1^)

V  ifr = 0 in Q,
tl)(T) = f, t/> = 0 on S. (3.13)

Multiplyin g by y = y(v) the first equation in (3.12) and integrating by parts
we find that

If tp-vdxdt = 0, VvG V. (3.14)
J JOx(0,T)

Therefore

But t/> is (among other things) continuous in t and real analytic in 2 in
ft x (0 , r ), so that (3.15) implies that

Since V  T/> = 0, it follows from (3.16) that dtp3/dx3 = 0 in ft x (0, T), and
since tp3 = 0 on S, then ^3 = 0 in ft x (0, T), so that f = 0, which completes
the proof.

Remark 3.1 The above density result does not always hold if V is defined
by (3.6), as proven by I. Diaz and Fursikov (1994).

Remark 3.2 Proposition 3.1 was proved in the lectures of the second author
at College de France in 1990/91. Other results along these lines are due to
Fursikov (1992).
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The density result in Proposition 3.1 implies (at least) approximate con-
trollability. Thus, we shall formulate and discuss, in the following sections,
two approximate controllability problems.

3.3. Two approximate controllabilit y problems

The first problem is defined by

min - [ f |v|2dxdt, (3.17)

veUf 2JJox(0,T)

where

Uf = {v | v G V, {v,y }  verifies (3.1), (3.2) and y(T) G yT + (3BH};  (3.18)
in (3.18), yr is given in H, (5 is an arbitrary small positive number, BH is
the closed unit ball of H and - to fix ideas - V is defined by (3.5).

The second problem is obtained by penalization of the final condition
y(T) = yr; we have then

mm
vev

\ ff \v\2dxdt + h f |y(T)-yT|2dz , (3.19)
2JJox(o,T) 2 Jn

where, in (3.19), k is an arbitrary large positive number, y is obtained from
v via (3.1), (3.2) and V is as above.

It follows from Proposition 3.1 that both control problems (3.17) and
(3.19) have a unique solution.

3.4. Optimalit y conditions and dual problems

We start with problem (3.19), since it is simpler than problem (3.17). If we
denote by Jfc the cost functional in (3.19), we have

- «M.w) - / / (v-p).wd«*, (3.20)- «M.w) - / /

where, in (3.20), the adjoint velocity field p is solution of the following
backward Stokes problem

V  p = 0 in Q,

p = 0 on S, p(T) - k(yT - y(T)). (3.22)

Suppose now that u is the unique solution of problem (3.19); it is charac-
terized by

f u G V,
\ (J£(u),w) = 0, VwGV,
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which implies in turn that the optimal triple {u, y, p}  is characterized by

u\ = pi\o, u2 = P2\o, u3 = 0, (3.24)

y(0) = 0, y = 0 on E, (3.26)

to be completed by (3.21), (3.22).
To obtain the dual problem of (3.19) from the above optimality conditions

we proceed as in the preceding sections by introducing an operator A G
C(H; H) denned as follows:

Af = <p(T), Vf G H, (3.27)

where to obtain <p(T) we solve first

V  t/> = 0 in Q,

f, 0 = OonS, (3.29)

and then
( fttn

inQ,

V  Cp = 0 in Q,

tp(O) = 0 , <f = 0 on E (3.31)

(the two above Stokes problems are well-posed).
Integrating by parts in time and using Green's formula we can show that

(with obvious notation) we have

/ (Af)  f'dx = / / ( ^ $ + 2̂)dxdt, V/, / ' G H. (3.32)
Jn J JOX(O,T)

I t follows from relation (3.32) that the operator A is symmetric and positive
semi-definite over H; indeed using the approach taken in Section 3.2 to
prove Proposition 3.1, we can show that A is positive definite over H.

Back to the optimality conditions, let us denote by f the function p(T);
it follows then from (3.22) and from the definition of A that f satisfies

k~H + Af = y r (3.33)

which is precisely the dual problem of (3.19).
Prom the symmetry of A, problem (3.33) can be solved by a conjugate

gradient algorithm operating in the space H.
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Consider control problem (3.17); applying the Fenchel-Rockafellar duality
theory it can be shown that the unique solution u of problem (3.17) can be
obtained via

u-i = PiXO, u2 = P2X0, U3 = 0, (3.34)

where, in (3.34), p is the solution of the backward Stokes problem

V  p = 0 in Q,

p(T) = f, p = 0 on E, (3.36)

where, in (3.36), f is the solution of the following variational inequality

f € H; Vf € H, we have

/ (Af)  (f - f) dz + (3\\f \\H - p\\f\\H > j yT  (f - f) dx (3-37)

Jn Ju

where ||f||*  = (/n |f
Problem (3.37) can be viewed as the dual of problem (3.17).

3.5. Iterativ e solution of the control problem

The various primal or dual control problems considered in Sections 3.3 and
3.4 can be solved by variants of the algorithms which have been used to solve
their scalar diffusion analogues; these algorithms have been described in
Section 1.8. Here we shall focus on the direct solution of the control problem
(3.19), by a conjugate gradient algorithm, since we used this approach to
solve the test problem discussed in Section 3.7. The unique solution u of the
control problem (3.19) is characterized as also being the unique solution of
the linear variational problem (3.23). From the properties of the functional
Jfc, this problem is a particular case of problem (1.121) in Section 1.8.2;
applying thus algorithm (1.122)—(1.129) to problem (3.23) we obtain:

u° chosen in V; (3.38)

solve

-J^ - Ay0 + VTT° = u°xo in Q, ^ ^
V  y0 = 0 in Q,

y°(0) = 0, y° = 0 on S, (3.40)

and then

¥ = OinQ' (3-41)
V  p° = 0 in Q,
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p° = 0 on E, p°(T) = k(yT - y°(T)). (3.42)

now

g°eV,
g°vdxdt=[[ (u°-p°)-vdxdi, VVG V,

JOx(0,T) J JOx(0,T)
and set

w° - g°. (3.44)

Then for n > 0, assuming that un, g", wn are known, we obtain un + 1,
gn + 1, w n + 1 as follows.

Solve

' ^ - A y " -

V  y" = 0 in Q,

yn(0) = 0, yn = 0 on E, (3.46)

and

V  pn = 0 in Q,

pn = 0 on E, pn(T) - -Ay n(T). (3.48)

/ g / / (un-pn)-vdxdf, VveV,
Ox(0,T) J JOx(0,T)

and compute

n=ff \gn\2dxdt/[[ gn-w"dxdt, (3.50)Pnff \ g \ / [ [
un+l = un _

g" -png" . (3.52)
//l|g"+1|lL2(Ox(o,r))<*/llg°llL2(Ox(o,T))<* < e to^e u = u" + 1; else> compute

\gn+1\2dxdt/ [[  |gn|2dxdf (3.53)
Ox(0,T) I J JOx(0,T)

and update wn by

w n + 1= g
n + 1+ 7 nw n . (3.54)

go to (3.45).
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Remark 3.3 For a given value of e the number of iterations necessary to
obtain the convergence of algorithm (3.38)-(3.54) varies like k1/"2 (as before
for closely related algorithms).

Remark 3.4 The implementation of algorithm (3.38)-(3.54) requires effi-
cient Stokes solvers, for solving problems (3.39) (3.40), (3.41) (3.42), (3.45)
(3.46), (3.47) and (3.48). Such solvers can be found in, e.g., Glowinski and
Le Tallec (1989), Glowinski (1991; 1992a); actually, this issue is fully ad-
dressed in the related article by Berggren and Glowinski (1994), for more
general boundary conditions than Dirichlet.

3.6. Time discretization of the control problem (3.19)

The practical implementation of algorithm (3.38)^(3.54) requires space and
time approximations of the control problem (3.19). Focusing on the time
discretization only (the space discretization wil l be addressed in Berggren
and Glowinski (1994)) we introduce a time discretization step At = T/N
(with JV a positive integer), denote by v the vector {v"}^ r_1 and approximate
problem (3.19) by

JV

mm
v6VA t

where, by analogy with (3.4)-(3.6), VAt is defined by either

VAt = { {v n}^ = 1 | vn = {u?,vj,u£}  G (L2(O))3, Vn = 1 , . . . ,.

or

(3.55)

and where y" is obtained from v via

y° = 0; (3.56)

for n = 1,...,N, we obtain {y",^" }  from y " " 1 by solving the following
steady Stokes type problem

i naf (3.57)
V  yn = 0 in Q,

yn = 0on r. (3.58)

The above scheme is nothing but a backward Euler time discretization of
problem (3.1), (3.2). Efficient algorithms for solving problem (3.57), (3.58)
(and finite element approximations of it) can be found in, e.g., Glowinski and
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Le Tallec (1989), Glowinski (1991; 1992a) (see also Berggren and Glowinski
(1994)).

The discrete control problem (3.55) has a unique solution; for the optimal-
ity conditions and a discrete analogue of the conjugate gradient algorithm
(3.38)-(3.54) see Berggren and Glowinski (1994) (see also the above refer-
ence for a discussion of the full discretization of problem (3.19) and solution
methods for the fully discrete problem).

3.7. Numerical experiments

Following Berggren and Glowinski (1994), we (briefly) consider the practical
solution of the following variant of problem (3.19):

k
Ivl 2 ^ f |y(T)-yT|2dz

2 Jn
(3.59)

Ox(0 ,T ) '  " ' -

where, in (3.59), O C ft C R2, v = {i>i,O} , V = {v | v = |>i,O},ui G
L2(O x (0, T))} , where y(T) is obtained from v via the solution of the
following Stokes problem

V  y = 0 in Q,

y(0) = yo, with y0 € (L2(n))2, V  y0 = 0, y0  n = 0 on £„(= To x (0, T)),
(3.61)

y = g0 on So, (3.62)

v^- - nTT = g l on Si (= r i x (0,T)), (3.63)
on

and where the target function y^ is given in (L2(f2))2. In (3.60)-(3.63)
v(> 0) is a viscosity parameter and To fl Fi = 0, closure of Fo U Fi = F.
Actually the boundary condition (3.63) is not particularly physical, but
it can be used to implement downstream boundary conditions for flow in
unbounded regions.

The test problem that we consider is the particular problem (3.59) where:

1 n = (0,2) x (0,1), O = (1/2, 3/2) x (1/4, 3/4), T = 1;
2 Fo = {{zi} 2

=1 | x2 = 0 or 1, 0 < n < 2}, F1 = {{xi} 2
=l \ xi =

0 or 2, 0 < x2 < 1};
3 go = 0, gi = 0;
4 y r = 0, A; = 20;
5 i/ = 5x lO "2 ;
6 yo corresponds to a plane Poiseuille flow of maximum velocity equal

to 1, i.e.
(x) = {4x 2( l -x 2) ,O} , V x e n.
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Fig. 36. Variation of HY^ 'MI^L 2^) ) 2 with (—) and without (...) control.

Integrating equations (3.60)-(3.63) with v = 0 will lead to a solution that
decays in time with a rate determined by the size of the viscosity parameter
v. The problem here is to find - via (3.59) - a control that will speed up
this decay as much as possible at time T.

The time discretization has been obtained through a variant of scheme
(3.56)-(3.58), using At = 1/50; the space discretization was achieved using a
finite element approximation associated with a 32 x 16 (respectively (16 x 8))
regular grid for the velocity (respectively the pressure) (see Berggren and
Glowinski (1994), for details). A fully discrete variant of the conjugate gra-
dient algorithm (3.38)-(3.54) was used to compute the approximate optimal
control u *̂  and the associated velocity field y^*.

On Figure 36 we compare the decays between t = 0 and t = T — 1 of the
noncontrolled flow velocity (...) and of the controlled flow velocity (—) (we
have shown the values of (/n \y(t)\2 dx)1/2; remember that \ j n |y(£)|2dx is
the flow kinetic energy). On Figure 37, we have compared, at time T, the
kinetic energy distributions of the controlled flow (lower graph) and of the
noncontrolled one (upper graph). Control has been effective to reduce the
flow kinetic energy, particularly on the support O of the optimal control
(according to Figure 37, at least). The results displayed on the following
figures were obtained after 70 iterations.

Finally, we have shown on Figure 38 the graph of the first component of
the computed optimal control u^f at various values of t.

For further details and comments about these computations see Berggren
and Glowinski (1994), where further numerical experiments are also dis-
cussed.
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Fig. 37. Kinetic energy distribution of the controlled flow (lower graph) and
noncontrolled flow (upper graph). Kinetic energy distribution of the controlled
flow (lower graph) and noncontrolled flow (upper graph).

4. CONTROL OF NONLINEAR DIFFUSION
SYSTEMS

4.1. Generalities. Synopsis

The various controllability problems which have been discussed so far have
all been associated with systems governed by linear diffusion equations.

In this section we briefly address the nonlinear situation and would like
to show that nonlinearity may bring noncontrollability (as seen in Section
4.2) and also to discuss (in Section 4.3) the solution of pointwise control
problems for the viscous Burgers equation.

Further information is given in V. Komornik (1994), J.L. Lions (1991a),
I. Lasiecka (1992), I. Lasiecka and R. Tataru (1994), E. Zuazua (1988) and
the references therein.

4.2. An example of a noncontrollable nonlinear  system

In this section, we want to emphasize that approximate controllability is very
unstable under 'small' nonlinear perturbations.

Let us consider again the state equation

dy
— - Ay = vxo in Q, y(0) = 0, y = 0 on S, (4.1)

which is the same equation as in Section 1.1, but where we take A = — A to
make things as simple as possible.
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Fig. 38. (a) Graph of the computed optimal control (t = 0.5). (b) Graph of the
computed optimal control (t — 0.84).
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Fig. 38 (cont.) (c) Graph of the computed optimal control (t = 0.96). (d) Graph
of the computed optimal control (t = 1.0).
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We consider now the nonlinear partial differential equation

^ - A y + ay3 = vXo in Q, y(0) = 0, y = 0 on S, (4.2)
at

where a is positive, otherwise arbitrarily small. Problem (4.2) has a unique
solution (see, e.g., Lions (1969)). Contrary to what happens for (4.1), the set
described by y(T;v) (y(v) is the solution of (4.2)) when v spans L 2(0x(O, T))
is far from being dense in L2(Q).

There are several proofs of this result, some of them based on maximum
principles. The following one is due to A. Bamberger (1977) and is reported
in the PhD thesis of Henry (1978). It is based on a simple energy estimate.
One multiplies (4.2) by my, where m(x) > 0, m = 0 near O, m € Cl(Q).
Then

1 d f f f r
/ my2dx+ / m|Vy|2dx+ / yVy  Vm dx + a / my4dx = 0. (4.3)

2 dt Jn Jn Jn Jn

Let us write

/ yVy-Vmdx= / ml/Ay(ml/2Vy)  (m^Vm)da;
Jo. Jn

so that there exists a constant C such that

/ yVy -Vmdx <a my4dx + / m\Vy\2dx + C / m~3|Vm|4dx.
Jo. Jn Jci Jn

(4.4)
Combining (4.3) and (4.4) gives

~ f my2dx<C f m-3|Vm|4dx
dt 2 Jn Jn

so that

1 f m(x)\y{x,T;v)\2dx < CT f m-3\Vm\4dx (4.5)
2 Jn Jn

no matter how v is chosen, since the right-hand side of (4.5) does not depend
on v. Of course, this calculation assumes that we can choose m as above and
such that / n m~3|Vm|4 dx < +oo; such functions m are easy to construct.

Remark 4.1 Examples and counter examples of controllability for nonlinear
diffusion type equations are given in Diaz (1991).

4.3. Pointwise control of the viscous Burgers equation

4-3.1. Motivation
The inviscid or viscous Burgers equations have, for many years, attracted

the attention of many investigators, from both the theoretical and numer-
ical points of view. There are several reasons for this 'popularity', one of
them being certainly that the Burgers equations provide not too unrealistic
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simplifications of the Euler and Navier-Stokes equations of Fluid Dynam-
ics; among the features, common with those more complicated equations,
nonlinearity is certainly the most important single one. It is not surprising,
therefore, that the Burgers equations have also attracted the attention of
the Control Community (see, e.g., Burns and Kang (1991), Burns and Mar-
rekchi (1993)). The present section is another contribution in that direction:
we shall address here the solution of controllability problems for the viscous
Burgers equation via pointwise controls; from that point of view this section
can be seen as a generalization of Section 1.10 where we addressed the point-
wise control of linear diffusion systems (the viscous Burgers equation consid-
ered here belongs to the class of the nonlinear advection-diffusion systems
whose most celebrated representative is the Navier-Stokes equation system).

4-3.2. Formulation of the control problems
As in Berggren and Glowinski (1994) (see also Berggren (1992) and Dean

and Gubernatis (1991)) we can consider the following pointwise control prob-
lem for the viscous Burgers equation

||v||2 +h\\y(T)-yT\\lHQJ , (4.6)

where, in (4.6), we have:

1 v = KJ£f=1, U = L2(0,T;MM), ||v||w = (££f=i /O
T \ \

2 k > 0, arbitrarily large;
3 yx € L2(0,1) and y(T) is obtained from v via the solution of the viscous

Burgers equation, below

V% = f+Y. vm6(x-arn) in Q(= (0,1) x (0,T)), (4.7)
m=l

dv
^ ( 0 , t ) = 0,i/(l,t) = 0 a.e. on (0,T), (4.8)

= yo(eL2(O,l)); (4.9)

in (4.7), v(> 0) is a viscosity parameter, f a forcing term, am € (0,1), Vm =
1 , . . ., M and x —> 6(x — am) denotes the Dirac measure at am.

Let us denote by V the (Sobolev) space defined by

V = {z\zeHl(0,l),z(l) = 0}, (4.10)

and suppose that / € L2(0,T;V) (V: dual space of V); it follows then
from Lions (1969) that for v given in U the Burgers system (4.7)-(4.9) has a
unique solution in L2(0, T; V)nC°([0, T];  L2(0,1)). Prom this result, we can
show that the control problem (4.6) has a solution (not necessarily unique,
due to the nonconvexity of the functional J : U —> K, where J is the cost
function in (4.6)).
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Remark 4.2 In Glowinski and Berggren (1994), we have discussed the
solution of the variant of problem (4.6) where the location on (0,1) of the
am's is unknown (am: 'support' of the mth pointwise control). The solution
methods described in the following can easily be modified to accommodate
this more complicated situation (see the above reference for details and
numerical results).

4-3.3. Optimality conditions for problem (4-6)
To compute a control u solution of problem (4.6) we shall derive first

necessary optimality conditions and use them (in Section 4.3.4) through a
conjugate gradient algorithm to obtain the above solution.

The derivative J'(v) of J at v can be obtained from

tr't \ ^ r -/(v + 0w) - J(v)
(J'(v),w)w = lim - i ^ K  (4.11)

Actually, instead of (4.11), we shall use a (formal) perturbation analysis to
obtain J'(v):

First, we have

) = (J'(v),6v)u= Yl / vm6vmdt+k / (y(T)-yT)6y(T)dx (4.12)
£J° Jo

where (from (4.7)-(4.9)) 6y(T) is obtained from <5v via the solution of the
following variational problem

/ 9
\dt

6y(t) € V a.e. on (0,T); Vz € V we have a.e. on (0,T)

c \ f1 d Bz J f1 c dy , fl d c .
6y,z)+u —6y—dx+ 8y—zdx+\ y—dyzdx

I Jo ox dx Jo dx Jo dx

Svmz(am), (4-13)

6y(0) = 0; (4.14)

in (4.13), , ) denotes the duality pairing between V' and V.
Consider now p G L2(0,T;V) n C°([0,T];L2(0,1)) such that dp/dt €

L2(0,T; V); taking z G p(t) in (4.13) we obtain

m = l

dy d \
w- + y-^-&y)pdxdt
ox ox J

fT ri

+ / /
Jo Jo

M ,T
= J2 P(am,t)6vmdt. (4.15)

m=lJ°
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Integrating by parts over (0, T) it follows from (4.14), (4.15) that

rT idv \ rT r1

{ l LrT r1 d dv

"l  L & ^
rT rl ( dv d \

+L L [6yo-x
+yd-x

6y)pdxdt

M T

= J2 P(am,t)6vmdt. (4.16)
m=l" /0

Suppose now that p satisfies also
/dp \ f1 dpdz , f1 fdy dz
\dt I Jo dxdx Jo \dx dx
\/ze V, a.e. on (0,T), (4.17)

and
p(T) = k(yT-y(T)); (4.18)

it follows then from (4.16) that

-i M .T
k / (y(T)-yT)6y(T)dx = - V) / p(am,t)6vmdt,

which combined with (4.12) implies in turn that

M .

/ (vm(t)-p(am,t))6vm(t)dt.

We have thus 'proved' that, Vv, w eW

M ,T
(J'(v),w)M= 5] / K,(<)-p(<W))«>m(*)dt. (4.19)

Remark 4.3 Starting from (4.11) we can give a rigorous proof of (4.19).

Suppose now that u is a solution of problem (4.6); we have then J'(u) = 0
which provides the following optimality system

um(t)=p(am,t), V m = l , . . . , M, on (0,T), (4.20)

dy " ,
V y— = f + } , umo(x — am) in Q, (4-21)

| | ( 0 , i) = 0, y(l,t) = 0 on (0,T), (4.22)

2/(0) = 2/0 (4.23)
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) = 0on(0,r), (4.25)

= k(jfr-y(T)). (4.26)

4-3.4- Iterative solution of the control problem (4-6)
Conjugate gradient algorithms are particularly attractive for large scale

nonlinear problems since their applications requires only - in principle - first
derivative information (see, e.g., Daniel (1970), Polack (1971) and Nocedal
(1992) for further comments and convergence proofs). Problem (4.6) is a
particular case of the minimization problem

where H is a real Hilbert space for the scalar product , ) and the corre-
sponding norm ||  || and where the functional j : H —> K is differentiate; we
denote by j'(v) (G H'; H': dual space of H) the differential of j at v.

A conjugate gradient algorithm for solving (4.27) is denned as follows:

u° is given in H; (4.28)

solve

and set

w° = g°. (4.30)

For n > 0, assuming that un, gn, wn are known, compute un+l, gn+l,
wn+1 by

Find p B £ l such that f4 QI \
j(un - pnw

n) < j(un - pwn), Vp G R, ^ '

set

un+1 =un- pnw
n, (4.32)

and solve

n+\v) = {f(un+1)v) Vv G H ( 4 3 3)(gn+\v) = {f(un+1),v), W G # .

If ll<?n+1||/ll9r°ll ^ e take u = un+1; else compute either

(Fletcher-Reeves update) (4.34) 1
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or

7n = ' 2 (Polack-Ribiere update) (4.34)2

and then

Do n — n + 1 and go to (4.31).
We observe that each iteration requires the solution of a linear problem

((4.29) for n = 0, (4.33) for n > 1) and the line search (4.31). In most
applications the Polack-Ribiere variant of algorithm (4.28)-(4.35) is faster
than the Fletcher-Reeves one (see, e.g,, Powell (1976) for an explanation of
this fact).

Application to problem (4-6). Problem (4.6) is a particular case of (4.27)
where H = U = L 2(0,T;RM ) ; combining (4.19) and (4.28)-(4.35) we obtain
the following solution method for problem (4.6):

u° is given in U\ (4.36)

solve

0 m
0

~^(0,t) = O,y°(l,t) = 0 on (0,T), y°(0) = y0,

and

~~dt ax

(4.38)i

/^- (0, t) + y°(0, t)p°(O, t) = 0, p°(l, t) = 0 on (0, T),
(4.38)2

Solve then

g° € U; Vv € U, we have
M  rT

= 53 fT(uo
m(t)-P°(am,t))vm(t)dt,

and set

w° = g°. (4.40)

T/ien for n > 0, assuming that un, gn, wn are known compute un + 1,
gn + 1, w" + 1 as follows.
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Solve the following one-dimensional minimization problem

Pn G R ' (4 41)
J{un - pnw

n) < J(un - pwn), Vp € R, { }

and update u" by

Next, solve

un+l  = un _

M

m = 1 (4.43)

,t) = O,yn+I(l,t) = 0 on (0,T), yn+1(0) = y0,

and

_dt v

yn+1(O,t)pn+1(O,t) = O, P
n+1(l,t) = Oon (0,T),

(4.44)!

(4.44)2

then

g"+1 € U; Vv € W, we

7n

or

1.wdt=J£ (u^+1(t)-P
n+1(am,t))vm(t)dt. ^

^/l|g°l|iY < e tofce u = un + 1; else compute either

= [ \gn+1\2dt/ [ |g"|2 di (Fletcher-Reeves) (4.46)i
Jo / Jo

rT
In = [ g"+1  (g"+1 - gn) dt / / \gn\2 dt (Polack-Ribiere) (4.46)2

Jo / Jo
update w" 6y

w n +1 = gn + 1+ 7 nw " . (4.47)

£)o n = n + 1 and ^o to (4.41).
The practical implementation of algorithm (4.36)-(4.47) wil l rely on the

numerical integration of the parabolic problems (4.37), (4.38), (4.43), (4.44)
(to be discussed in Section 4.3.5) and on the efficiency and accuracy of the
line search (4.41); actually, to solve the nonlinear problem (4.41) we have
employed the cubic backtracking strategy advocated in Dennis and Schnabel
(1983, Ch. 6).
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4-3.5. Space-time discretization of the control problem (4-6). Optimality
conditions

We shall use a combination of finite element and finite difference methods
for the space-time discretization of problem (4.6); for simplicity, we shall
consider uniform meshes for both discretizations. We consider therefore
two positive integers / and At (to be 'large' in practice) and define the
discretization steps h and At by h = I / I , At = T/N. Next, we define
Xi = ih, i — 0,1,... ,1 and approximate L2(0,1) and i/1(0,1) by

H\ = {zh | zh G C°[0,1], zh\[xi_1>Xi]  € Pu Vi = 1 , . . . , / },

where P\ denotes the space of the polynomials in one variable of degree less
than or equal to one. The space V in (4.10) is approximated by

Vh = {zh | zh € Hi zh(l) = 0}  (= V n Hi),

while the control space U{=  L2(0, T;EM )) in (4.6) is approximated by

WA*  = {RM)N = { v | v = {{<}£f =1}^ =1}  , (4.48)

to be equipped with the following scalar product

N M

(v,w)Ai = At£ Y. « . Vv,w €^At.
n=l m=l

We approximate then the control problem (4.6) by

f(v), (4.49)

where the functional JA t : UAt —> R is defined by

A ^ ^ , (4.50)

with yN defined from v via the solution of the following discrete Burgers
equation:

V° = yoh € Hi such that lim ||yOfc - yo\\^(o,i) = 0; (4.51)

for n = 1 , . . ., N we obtain yn from yn~l via the solution of the following
discrete linear (elliptic) variational problem

yn € Vh\ Vz G Vh we have

Jo dx dx Jo dx (4.52)

M

/ !
Jo

1
= /

Jo m = l
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Scheme (4.51), (4.52) is semi-implicit since the nonlinear term y(dy/dx) is
treated explicitly; we can expect therefore that At has to satisfy a stability
condition. It is easily verified that obtaining yn from yn~l is equivalent
to solving a linear system for a matrix (the discrete analogue of operator
(I/At) — i^d2/dx2) which is tridiagonal, symmetric and positive definite. If
At is constant over the time interval (0, T) this matrix being independent
of n can be Cholesky factored once for all.

The approximate control problem (4.49) has at least one solution u^*  =
{{ um}m=i}n=i-  Any solution of problem (4.49) satisfies the (necessary)
optimality condition

VJf (uf) = 0, (4.53)

where V J ^1 is the gradient of the functional J^.
Following the approach taken in Section 4.3.3 for the continuous problem

(4.6) we can show that

N M

(V4Ai(v),w) = A t ^ X>£-pn(am)K,, Vv,weWAl, (4.54)
n=l m=l

where {pn}^=1 is obtained from v via the solution of the discrete Burg-
ers equation (4.51), (4.52), followed by the solution of the discrete adjoint
equation, below.

Compute

pN+1 e Vh such that / pN+1zdx = k (yT - yN)zdx, Vz e Vh, (4.55)
Jo Jo

and then for n = JV, N — 1 , . . ., 1, pn is obtained from pn+1 via the solution
of the discrete elliptic problem

pn £ Vh', we have
rl pn_pn+l  ,1 dn dz ,1

/ ^ 6 Zdx + V / -p—dx+ /
Jo At Jo dx dx Jo

da; dx J
(4.56)

The comments concerning the calculation of yn from yn 1 still apply here;
actually, the linear systems to be solved at each time step to obtain pn from
pn+1 have the same matrix as those encountered in the calculation of yn

from yn~l.
Prom (4.54), we can derive a fully discrete variant of algorithm (4.36)-

(4.47) to solve the approximate control problem (4.49) via the optimality
conditions (4.53); such an algorithm is discussed in Berggren and Glowinski
(1994).

4-3.6. Numerical experiments
Following Berggren and Glowinski (1994) (see also Dean and Gubernatis

(1991), Glowinski (1991)) we consider particular cases of problem (4.6) which
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Table 4. Summary of numerical results.

a 1/5 2/3

Number of

iterations 89 47

- 2 x 10"1 9 x 10"2

0.11 0.11

have in common:

T = l,u = 10"2, k = 8, y0 = 0,

1 if {x,t}£ (0,1/2) x (0,T),
2(1 - x) if {x, t} e (1/2,1) x (0, T),

/ \ i 'I  C M s- /A 1 "\
1 Irr-i  I 'T* I I O™ 1T f * f— 111 I Iw j V **̂  / - **̂  i -*-̂ - " ^  -̂— \ ^  1 / *

To discretize the corresponding control problems, we have used the methods
described in Section 4.3.5 with h - 1/128 and At = 1/256. The discrete
control problems (4.49) have been solved by the fully discrete variant of
algorithm (4.36)-(4.47) mentioned in Section 4.3.5, using u° = 0 as an
initial  guess and e = 10~5 as the stopping criterium.

First, several experiments were performed with a single control point
(M = 1) for different values of o(= a\). In Table 4 we have summarized
some of the numerical results concerning the computed optimal control ŵ *
and the corresponding discrete state function yfr*:

For a = 1/5 (respectively a = 2/3) we have visualized on Figure 39(a)
(respectively Figure 40(a)) the computed optimal control u  ̂ while on Figure
39(a) (respectively Figure 40(b)) we have compared the target function yx
(...) with the computed approximation y^l{T) (—) of y(T).

For a = 2/3 a good fit downstream from the control point can be noticed,
while the solution seems to be close to uncontrollable upstream. The posi-
tive sign of the solution implies that the convection is directed towards the
increasing values of x, which is why it seems reasonable that the system
is at least locally controllable in that direction. The only way of control-
ling the system upstream is through the diffusion term, which is small here
(v = 10~2) compared with the convection term. For the case a — 1/5 there
are clearly problems with controllability far downstream of the controller
(recall that there is a distributed, uncontrolled forcing term, /, which af-
fects the solution).

Figure 41 shows the target and the final state when two control points
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Fig. 39. (a) Graph of the computed control u^t(a = 1/5). (b) Comparison
between yT (...) and y£*(T) (—) (a - 1/5).
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 40. (a) Graph of the computed control u^{a = 2/3). (b) Comparison
between yT (...) and y f (T) (—) (a = 2/3).



EXACT AND APPROXIMATE CONTROLLABILITY 243

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
i

Fig. 41. Comparison between yT (...) and yAt(T) (—) (a = {1/5,3/5}).

Table 5. Summary of numerical results.

a {1/5,3/5}  {0.1,0.3,0.5,0.7,0.9}

Number of
iterations

I|2/T||L2(O,I)

86 82

2 5 x l 0 _ 2 8 - 5 x l 0_ 3

are used, namely a\ = 1/5 and a2 = 3/5; the results are significantly better.
Actually the results become 'very good' (as shown on Figure 42) when one
uses the five control points a\ = 0.1, a  ̂ = 0.3, 03 = 0.5, 04 = 0.7 and
05 = 0.9; in that case we are 'close' to a control distributed over the whole
interval (0,1). Some further results are summarized in Table 5.

Remark 4.4 Concerning the convergence of the conjugate gradient algo-
rithm used to solve the approximate control problems (4.49) let us mention
that

(i) The Fletcher-Reeves variant seems to have here a faster convergence
than the Polak-Ribiere one.

(ii ) The computational time does not depend too much on the number
M of control points. For example the CPU time (user time on a SUN



244 R. GLOWINSKI AND J.L. LIONS

0.9

Fig. 42. Comparison between yT ) and j/£*(T) (—) (a = {0.1,0.3,0.5,
0.7,0.9}).

Workstation SPARC10) was about 22 s for the case with one control point
at a = 1/5, to be compared with 27 s for the five control points test problem.
Thus, the time-consuming part is the solution of the discrete state and
adjoint state equations and not the manipulation of the control vectors (see
Berggren and Glowinski (1994) for further details).

Remark 4.5 In Berggren and Glowinski (1994) we have also addressed and
solved the more complicated problem where the control u and the location
a of the controllers are unknown; this new problem can also be solved by
a conjugate gradient algorithm operating in L2(0,T;]RM) x RM; compared
with the case where a is fixed the convergence of the new algorithm is
much (about 4 times) slower (see, Berggren and Glowinski (1994) for the
computational aspects and for numerical results).

4.3.7. Controllability and the Navier-Stokes equations
Flow control is an important part of Engineering and from that point of

view has been around for many years. However the corresponding mathe-
matical problems are quite difficult and most of them are still open; it is
therefore our opinion that a survey on the numerical aspects of these prob-
lems is still premature.

It is nevertheless worth mentioning that a most important issue in that
direction is the control of turbulence motivated, for example, by drag reduc-
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tion (see, e.g., Buschnell and Hefner (1990) and Sellin and Moses (1989)).
Another important issue concerns the control of turbulent combustion as dis-
cussed in, e.g., McManus, Poinsot and Candel (1993) and Samaniego, Yip,
Poinsot and Candel (1993).

Despite the lack of theoretical results there is an enormous amount of
literature on flow control topics (see, e.g., the four above publications and
the references therein). Focusing on recent work in the spirit of the present
article, let us mention Abergel and Temam (1990), Lions (1991a), Glowinski
(1991), this list being far from complete. In the following we shall give
further references; they concern the application of Dynamic Programming
to the control of system governed by the Navier-Stokes equations.

5. DYNAMI C PROGRAMMING FOR LINEAR
DIFFUSION EQUATIONS

5.1. Introduction. Synopsis

We address in this section the Weal time'' aspect of the controllability prob-
lems. We proceed in a largely formal fashion. The content of this section is
based on Lions (1991b)

We consider again the state equation

dy
— + Ay = vxo, (5.1)

now in the time interval (s,T],0 < s < T; the 'initial'  condition is

y(s) = h, (5.2)

where h is an arbitrary function in L2(fi) ; the boundary condition is

y = 0 on Es = T x (s, T). (5.3)

Consider now the following control problem

inf - / / f2dxdt, v E L2(O x (s,T)) so that y(T;v) € yT + 0B,
2 J JOx{s,T)

(5.4)
where in (5.4), 0 > 0, B is the closed unit ball of L2(fi ) centred at 0,
yT € L2{Q) and t -> y(t;v) is the solution of (5.1)-(5.3).

The minimum in (5.4) is now a function of h and s, we define 4>(h, s) by

(f>(h, s) = minimal value of the cost function in (5.4). (5.5)

We now derive the Hamilton-Jacobi-Bellman (HJB) equation satisfied by
<?!>on x (0 ,T ).
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5.2. Derivation of the Hamilton—Jacobi—Bellman equation

As we said above, we shall proceed in a largely formal fashion. We take

v(x, t) = w(x) in (s, s + e), e > 0 'very small'. (5-6)

With this choice of v, the state function y(t) moves during the time interval
(s, s + e) from h to an element 'very close' to

h£ = h —eAh +ewxo, (5-7)

assuming that h G iJ2(O) 0 HQ(CI) (h£ is obtained from h by the explicit
Euler scheme).

On the time interval (s+e, T) we consider the whole process starting from
h£ at time s + e. The optimality principle leads to

(p(h, s) = inf - / w2 dx + 4>{h£, s + e) + 'negligible terms'. (5.8)w L2 JO J

Taking now the e-expansion of the function <f>(h£, s + e) we obtain

= <f>(h,x) - e (—(h,s),Ah) +e ( — (h,s),wxo)

+e—-(h, s) + higher-order terms, (5.9)
as

where

with h and h in L2(Q) and, actually, smooth enough so that h and h belong
to H2(n)nH^(n).

Combining (5.8) to (5.9), dividing by e, and letting e —> 0, we obtain

'sf [5 L ^d*  - (%<">  s ) - A h ) ( ) ]
(5.10)

hence it follows that

| ) i / ( * ) ' * [ - o . (5.1D

The functional equation (5.11) is the Hamilton-Jacobi-Bellmann equa-
tion. It is a partial differential equation in infinite dimensions since h 6
L2(ft) (in fact, /i G #2( n) n H^(Q)), and where s e (0,T).

We have to add an 'initial'  condition, here for t = T, since we integrate
(5.11) backward in time.

When s —> T, we have less and less time to 'correct' the trajectory. There-
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fore (this is again formal but it can be made precise without difficulty)

HKT) = \0JhfyT + ̂  (5.12)
v ' \ +00 otherwise. v ;

5.3. Some remarks

Remark 5.1 The 'solution' of equations (5.11) and (5.12) should be defined
in the framework of the viscosity solutions of Crandall and P.L. Lions (1985;
1986a,b; 1990; 1991), which was generalized by those authors to the infinite-
dimensional case, which is the present situation.

Remark 5.2 Let h be given in L2(fi ) and let y  ̂be the solution of

^ + Ayh = 0 inn x (s, T), yh(s) = h, yh = 0 on Es (5.13)

(i.e. we choose v = 0 in (5.1)-(5.3)). Let us denote by Es the set of those
functions h in (5.13) such that

yh(T)eyT + pB. (5.14)

We clearly have (from (5.11), (5.12))

(j)(h,s) = Oi{ heEs. (5.15)

We can - formally - draw the picture of Figure 43.

Remark 5.3 As usual in the dynamic programming approach, the best
decision at time s corresponds to the element w in L2(O) which achieves
the minimum in (5.10), namely

u(s) = -^(h,s)Xo; (5.16)

This is the 'real time' optimal policy - provided we know how to compute
(d<f)/dh)(h,s) - a formidable task indeed).

Remark 5.4 The Duality formulas of Section 1.4 can of course be applied.
We obtain

4>(h, s) = - . inf I \ ff tf dxdt-f f(yT - yh(T)) dx + (3\\f\\L2(Q)\,

(5.17)
where yh is defined by (5.13) and where ip is defined by

81J) ~ -
- - ^ + A*tl) = 0 in ft x ( s , T ), </>(T) = / , V = 0 on E8 . (5.18)

ot
Remark 5.5 Dynamic programming has been applied to the closed loop
control of the Navier-Stokes equations for incompressible viscous flow in
Sritharan (1991a,b).



248 R. GLOWINSKI AND J.L. LIONS

<|>(T)=0

<()(T)=+oo
,HT)=+o

Fig. 43. Distribution of (j>  in the set L2(ft) x (0,T).

6. WAVE EQUATIONS

6.1. Wave equations: Dirichlet boundary control

Let 0, be a bounded open set in Rd, with a smooth boundary F. In Q —
£1 x (0, T), we consider the wave equation

-Ay = O, (6.1)

where A is a second-order elliptic operator, with smooth coefficients, and
such that

- A * .

A classical case is

We assume that

= 0, | r (o) = o,

(6.2)

(6.3)

(6.4)
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and we suppose that the control is applied on a part of the boundary. More
precisely, let To be a 'smooth' subset of T. Then

We denote by y(v) : t —> y(£; u) the solution of the wave problem (6.1), (6.4),
(6.5), assuming that the control v satisfies 'some' further properties. Indeed,
we shall assume that

v € L2(E0), (6.6)

since this is - as far as the control itself is concerned! - certainly the simplest
possible choice. However, a few preliminary remarks are necessary here.

Remark 6.1. Even assuming that F, To and the coefficients of operator A
are very smooth, once the choice (6.6) has been made, one has to deal with
weak solutions of (6.1), (6.4), (6.5). In fact (cf. Lions (1988a) and (1988b,
Vol. 1)) the (unique) solution y(v) of (6.1), (6.4), (6.5) satisfies the following
properties

y(v) is continuous from [0,T] to L2(Q), (6.7)

yt(v) is continuous from [0, T] to H~1(Q), (6.8)

where, in (6.8) and in the following, we have set

The solution y — y(v) is defined by transposition as in Lions and Magenes
(1968). If we consider the adjoint equation

J tptt + A<p = f in Q, , Q,
I f\T) = <Pt{T) = 0, <p = 0 on E,

where / e L1(0,T;L2(O)), then y is defined by

yfdxdt = - —^-vdY,, (6.10)

where d/driA denotes the normal derivative associated with A (it is the
usual normal derivative if A = —A). The linear form

dip
-—udE
onA

is continuous over L1(0,T;L2(f2)); this is the key point since we can show
that

dip

dnA
(6-11)
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One uses then the restriction of dtp/driA to Eo and therefore

y£L°°(0,T;L2(Q)).

One proceeds then to obtain (6.7), (6.8).

Remark 6.2. The original proof (Lions (1983)) assumes that F is smooth.
Strangely enough, it took ten years - and a nontrivial technical proof - to
generalize (6.11) to Lipschitz boundaries (in the sense of Necas (1967)); this
was done by Chiara (1993).

We now want to study the controllability for systems modelled by (6.1),
(6.4), (6.5), i.e., given

T(0 < T < +oo), given {z°,z1} <E L2(Q) x i/~x(O),

can we find v such that

( y{T; v) = z° or y(T; v) 'very close' to z°, ,g ^
\ yt{T;v) = z1 or yt(T;v)'very close' to z1. '

There is a fundamental difference between the present situation and those
discussed in Sections 1 and 2 for diffusion equations, due to the finite propa-
gation velocity of the waves (or singularities) the solution is made of, whereas
this velocity is infinite for diffusion equations (and for Petrowsky's type
equations as well). It follows from this property that

Conditions (6.12) may be possible only if T is sufficiently large. (6.13)

This wil l be made precise in the following sections.

6.2. Approximat e controllabilit y

For technical reasons, we shall always consider the mapping

L:v^{-yt(T;v),y(T;v)} (6.14)

(which is a continuous linear mapping from L2(So) into if~1(Q) x
instead of the mapping

v^{y(T;v),yt(T;v)}

(but this does not go beyond simplifying - we hope - some formulae).
Let us first discuss the range R(L) of operator L; we consider thus f =

{Z 0, /1}  such that

f € H%(Q) x L2(Q) (6.15)

and

(I t ; > f )=O, V V G L 2 ( S0 ) , (6.16)
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i.e.

-(yt(T;v), f°) + / y(T;v)fl dx = 0, Vv € L2(S0); (6.16)'
Jn

in (6.16) (respectively (6.16)'), , ) denotes the duality pairing between
H~1(Q.) x L2(ft) and HQ(Q.) X L2(fi ) (respectively H~l(Cl) and HQ(Q)).

We introduce ip solution of

iptt + Aip = 0 in Q = n x (0, T), V(^) = / ° , Vt(^) = / \ V = 0 on E.
(6.17)

It is a smooth solution, which satisfies in particular

Ijwm) + 11/ Ili 2(n))- (6.18)
dn On,

Multiplying the first equation in (6.17) by y and integrating by parts, we
obtain

{Lv,f) = / ; ^ - v d S. (6.19)

Thus (6.16) is equivalent to

^ = 0 on So. (6.20)
dnA

Therefore the Cauchy data are zero for ip on So- According to the Holmgren's
Uniqueness Theorem (cf. Hormander (1976)) it follows that

If T > 2(diameter of fi), then {y(T; v),yt{T; v)}

describes a dense subspace of L2(Q) x H~1(fl) (6-21)

(in (6.21), the 'diameter' of U is related to the geodetic distance associated
with A. It is the usual geodetic distance if A = —A).

Indeed, according to Holmgren's Theorem, we have ip = 0 so that / = 0
(see, for example, Lions (1988b, Vol. 1)).

Remark 6.3. Holmgren's theorem applies with the conditions

ip = 0 and ~ - = 0 on SO,
dnA

without having necessarily ip = 0 on E\So- The fact that in the present
situation we have ip = 0 on the whole S provides some more flexibility  to
obtain uniqueness results. We shall return to this later on.

6.3. Formulation of the approximate controllabilit y problem

We shall make the following hypothesis:

So allows the application of the Holmgren's Uniqueness Theorem.
(6.22)
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Then, {zQ,z1} being given in L2(il)  x H~1(Q,), there always exist controls
v (actually an infinite number of them) such that

, yt{T;v) G z1 + faB-i, (6.23)

where B (respectively B-\) denotes the unit ball of L2(f2) (respectively
H~l(Sl)), and where A),/?i are given positive members, arbitrarily small.

The optimal control problem that we consider is

i n f - / u2dS, v satisfying (6.23). (6.24)

Remark 6.4. Exact controllability corresponds to /?o = Pi = 0.

6.4. Dual problems

We proceed essentially as in Section 1.4. We introduce therefore

^2dE, W G L2(E0), (6.25)

and then F2 : H'1^) x L2(fi ) - ^ EU {+00}  by

F2(f ) = F 2 ( / , / ) = | + Q o o t h e r w i se

(6.26)
With this notation, the control problem (6.20) can be formulated as

inf' \F1(v) + F2(Lv)}. (6.27)
L2(T)

Using, as in Section 1.4, Duality Theory we obtain

F2(Lv)}+ inf [F1*(L*f ) + F2*(- f ) ]=0 , (6.28)
2(x0) feH0

1(O)xL2(n)

where

\ I w2dS, Vv € L2(S0), (6.29)!

Using (6.19) we have

L*i  = —— on So, (6.30)

where ip is given by (6.17) (with f = f). We have therefore the following
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Theorem 6.1 We suppose that (6.22) holds true. For /?o and Pi given
arbitrarily  small, problem (6.24) has a unique solution such that

/
EO

f zOfUx + frWpW  ̂ +/3O|| /1| |L2 (Q)1
i J

(6.31)

where, in (6.31), v G L2(E0) and verifies (6.23), f G H^(n) x L2(ft) , and
where > is given by (6.17), with f = f.

The dual problem is the minimization problem in the right-hand side of
(6.31). If f is the solution of the dual problem and if ip is the corresponding
solution of (6.17) then the optimal control, i.e. the solution u of problem
(6.24) is given by

u = -^- on Eo. (6.32)
dnA

6.5. Direct solution of the dual problem

One can formulate the dual problem in an equivalent fashion which wil l be
useful when /3o and (3\ converge to zero, and also for numerical calculations.

To this effect, we introduce the following operator A:
Given f = {/° , f1} e if<J(fi) x L2(f2), we define $ and y by

= f\ i> = 0 on S, (6.33)!

ya + Ay = 0 in Q, y(0) = yt{0) = 0, y = -^- on Eo, y = 0 on S\E0,
on A

(6.33)2
and we set

(6.34)

We define in this way an operator A such that

A G £(H%(Q) x L2(ft) ; H'1^) x L2(Cl)). (6.35)

If we multiply both sides of the first equation in (6.33)2 by xp' (which corre-
sponds to f' € HQ(Q) x L2(Q)) and if we integrate by parts we obtain (with
obvious notation):

(Af,?>=/ ; ^#dS. (6.36)
7E0 dnA dnA

I t follows from (6.36) that the operator A is self-adjoint and positive semi-
definite.
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The dual problem is then equivalent to

inf [i(Af , f) + {z\ f°) - jT z0/1 dx + /3i||/0||Hi
(a) + , (6-37)

where, in (6.37), f G f#(ft ) x
Assuming that the condition (6.22) holds true, problem (6.37) has a unique

solution for /?o and /?i > 0, arbitrarily small. If we denote by f the solu-
tion of problem (6.37) it is also the solution of the following variational
inequality

f G H&(Q) x L2(Q); Vf € fl£(n) x L2(ft) we have

(Af, f - f) + {z\ f° - f°) - f z\fl - f1) dx

(6.38)

Remark 6.5. Problems (6.37), (6.38) are equivalent to the minimization
problem in the right-hand side of (6.31), but they are better suited for the
solution of the dual problem.

Remark 6.6. The operator A is the same as the one introduced in the
Hilbert Uniqueness Method (HUM). This is made more precise in the fol-
lowing section (see also Lions (1986; 1988a,b)).

Remark 6.7. Relation (6.36) makes sense, because there exists a constant
C such that

2

(6.39)
./So dnA

where, in (6.39), tp and f = {/° , f1} are related by (6.33).

6.6. Exact controllabilit y and new functional spaces

Let us now consider problem (6.37), (6.38) with the idea of letting /?o and
/?i converge to zero. We introduce on HQ(Q) X L2(fi ) the following new
functional

[/] = «A/ , /»1 / 2- (6-40)

Since we assume that the condition (6.22) holds true, the functional ] is in
fact a norm, of a pre-Hilbertian nature. We introduce then

E = Completion of #o(fi) x L2(J1) for the norm ; (6.41)

with this notation we can state that

A is an isomorphism from E onto E'. (6.42)
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If 0O = 0\ = 0, problem (6.37), (6.38) is equivalent to

inf f^[/] 2 + (z\f°) - I z°flda:] , f G H^Sl) x L2(fi) . (6.43)

Problem (6.44) has a unique solution if and only if

{-z\z°}eE'. (6.44)

If we denote by i@ — {/§, fl}  the solution of problem (6.37), (6.38), where
/3 = {A>,/3i},then

lim fg = f0 = the solution of (6.43) (6.45)

if and only if condition (6.44) holds true.

Remark 6.8. The method of solution that we have just presented is what
is called HUM (Hilbert Uniqueness Method) (cf. Lions (1986; 1988a,b)) since
the key element is the introduction of the new Hilbert space E based on a
uniqueness property.

Remark 6.9. Problems (6.38) or (6.43) give a constructive approach to
approximate or exact controllability; we shall make this more precise in the
next sections.

Remark 6.10. Condition (6.44) means that exact controllability is possible
if and only if z° and z1 are taken in a convenient Hilbert space.

Remark 6.11. The approach taken in the present section is closely related
to the one followed in Section 1.5. With the notation of Section 1.5, Remark
1.14, we would have

There is, however, a very important technical difference between the two
situations, since for the diffusion problems discussed in Section 1 the space
L2{p) is never a 'simple' distribution space (except for the case O = f2, i.e.
the control is distributed over the whole domain U). For the wave equation
the situation is quite different, as we shall see in the next section.

6.7. On the structure of space E

We follow here Bardos, Lebeau and Rauch (1988).
We shall say that So enjoys the geometrical control condition if any ray,

starting from any point of Cl at t — 0, reaches eventually (after geometrical
reflexions on F) the set To before time t = T.

The main result is then

If So satisfies the geometrical control condition, then E — HQ(Q) X L2(fi) .
(6.46)
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Actually the geometrical control condition is also necessary in order (6.46)
to be true. The inequality corresponding to (6.46) is the reverse of inequality
(6.39): there exists a constant C\ > 0 such that

(6.47)
dnA

if and only if So satisfies the geometrical control condition.

Remark 6.12. We refer to Lions (1988b) for the various contributions, by
many authors, which led to the fundamental inequality (6.47).

Remark 6.13. If So does not satisfy the geometrical control condition, but
does satisfy the conditions for the Holmgren's Uniqueness Theorem, then

dtp \l/2

dSjdnA

is a norm, strictly weaker than the HQ(Q) X L2(Q) norm. In that case E is
a new Hilbert space, such that

x L2(Q) C E, strictly, (6.48)

and the exact structure of E is far from being simple, since the space E can
contain elements which are not distributions on Q,.

6.8. Numerical methods for  the Dirichlet boundary
controllabilit y of the wave equation

6.8.1. Generalities. Synopsis
In this section which is largely inspired by Dean, Glowinski and Li (1989),

Glowinski et al. (1990), Glowinski (1992a) we shall discuss the numerical so-
lution of the exact and approximate Dirichlet boundary controllability prob-
lems considered in the preceding sections.

To make it simpler we shall assume that Eo satisfies the geometrical control
condition (see the above section), so that

% 2 (6.49)

and the operator A defined in Section 6.5 is an isomorphism from E onto
E'{— H~1(fl) x L2(O)). The properties of A (symmetry and strong elliptic-
ity) wil l make the solution of the exact controllability problem possible by
a conjugate gradient algorithm operating in the space E. We shall describe
next the time and space discretizations of the exact controllability problem
by a combination of finite difference (FD) and finite element (FE) methods
and then discuss the iterative solution of the corresponding approximate
problem. Finally we shall describe solution methods for the approximate
boundary controllability problem (6.24).
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Both exact and approximate controllability problems wil l be solved using
their dual formulation since the corresponding control problems are easier
to solve than their primal counterparts.

The results of numerical experiments obtained by the methods described
in the present section wil l be reported in Section 6.9, hereafter.

Remark 6.14. A spectral method - still based on HUM - for solving directly
(i.e. noniteratively) the exact Dirichlet boundary controllability problem is
discussed in Bourquin (1993), where numerical results are also presented.

6.8.2. Dual formulation of the exact controllability problem. Further prop-
erties of A

To obtain the dual problem corresponding to exact controllability it suffices
to take (3Q = (5\ — 0 in formulations (6.37), (6.38); we obtain then

Af = {-z\z0}. (6.50)

Since we supposed (see Section 6.8.1) that the geometrical control condition
holds, we know (from Section 6.6) that

A is an isomorphism from E onto E', (6.51)

with E = H^(n) x L2(n), E' = H'1^) x L2(Q). Problem (6.50) has there-
fore a unique solution, V{z° , z1} £ L2(Cl) x H~l{Vt). The solution f of (6.50)
is also the solution of the following linear variational problem

f G E; Vf = {/° , f1} £ E we have
f (6 52)

Jo.

Since (from Sections 6.5 to 6.7) A is continuous, self-adjoint and strongly
elliptic (in the sense that there exists C > 0 such that

the bilinear functional

{f , f'}  -> (Af, f') : E x E -> R

is continuous, symmetric and E-elliptic over E x E. On the other hand, the
linear functional in the right-hand side of (6.52) is clearly continuous over
E, implying (cf. Section 1.8.2) that problem (6.50), (6.52) can be solved by
a conjugate gradient algorithm operating in the space E. such an algorithm
wil l be described in the following section.

Remark 6.15. We suppose here that To = F and that A = —A; we suppose
also that there exists xo G Q and C > 0 such that

n = C, VM G T, (6.53)

with n the unit vector of the outward normal at T, at M. Domains satisfying
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(6.53) are easy to characterize geometrically, simple cases being disks and
squares. Now let us denote by AT the operator A associated with T. It has
been shown by J.L. Lions (unpublished result) and Bensoussan (1990) that

Result (6.54) is quite important for the validation of the numerical meth-
ods described hereafter, since it easily provides

lim Tfr = { x , x } , (6-55)

where, from (6.54),

Ax° = Cz1 in ft, x° = 0 on T, (6.56)

X1 = Cz°. (6.57)

6.8.3. Conjugate gradient solution of problem (6.50), (6.52).
Assuming that the geometrical control condition holds, it follows from

Section 6.8.2. that we can apply the general conjugate gradient algorithm
(1.122)-(1.129) to the solution of problem (6.50), (6.52); indeed, it suffices
to take

V = E,a(;-) = (A-,-), L:f^-(z1J°)+ f z°f1 dx.
Jn

On E, we shall use as scalar product

{v , w}  -> / (Vv°  Vw° + v1w1) dx, Vv, w € E.
Jn

We obtain then the following algorithm

Algorithm. Step 0: Initialization

/o e #o(ft) a nd /o G L2(ty a re §i ven; (6-58)
solve then

'o = 0 in Q, ^o = O on E,
(6.

I  u^Q \  } — / r\  I J- } — Tr\ «

and

+ Aipo = in Q, ip0 = -—5- on So, Vo = 0 on S\E0,
dnA (6.60)

Compute go = {#o>5o}  G E bV

^ 1 ^ n f t , ^ = 0 o n r, (6.61)
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respectively. Set then

w0 = go-

(6.62)

(6.63)

Now, for n > 0, assuming that f n,gn, wn are known, compute fn+i, gn+i,
w n +i as follows.

: Descent

Solve

dt2
+ Aipn = 0 in Q, i\)n = 0 on E,

(6.64)

=  0 in Q, (pn = - — o n S0 , ^ = 0 on S\S0,
an

and set

Compute now

Pn =

Pn = <?n(T).

+

(6.65)

(6.66)

(6.67)

w^dx, (6.68)

(6.69)

(6.70)

Step 2: Test of the convergence and construction of the new descent di-
rection. If gn+i = 0, or is sufficiently small (i.e.

gl\2)dx<e2) (6.71)

^|2)dx, (6.72)

= gn+l + 7nWn. (6.73)

f n+i = fn - pnwn,

gn+l = gn - Pngn-

take f = fn+i; if not, compute

and set

/ (

Do n = n + 1 and 30 to (6.64).
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Remark 6.16. It appears at first glance that algorithm (6.58)-(6.73) is
quite memory demanding since it seems to require the storage of dtpn/dnA.\T,0
(in practice the storage of d-tpn/driA over a discrete - but still large - subset
of So). In fact, we can avoid this storage problem by observing that since
the wave equation in (6.64) is reversible we can integrate simultaneously,
from 0 to T, the wave equations (6.65) and

+ A4>n = 0 in Q, iPn = 0 on £,

and -T<-^(0) known from the integration of (6.64) from T to 0.

(6.74)
In the particular case where an explicit scheme is used for solving the

wave equations (6.64), (6.65) and (6.74), the extra cost associated with the
solution of (6.74) is negligible compared with the saving due to not storing
dipn/dnA on So-

Remark 6.17. Once the solution f of the dual problem (6.50), (6.52) is
known it suffices to integrate the wave equation (6.33) i with f = f to obtain
ip. The optimal control u, solution of the exact controllability problem is
given then by

dip
u = dnA

(6.75)

6.8.4- Finite difference approximation of the dual problem (6.50), (6.52)
6.8.4-1. Generalities. An FE/FD approximation of problem (6.50), (6.52)
wil l be discussed in Section 6.8.7 (see also Glowinski et al. (1990), Glowin-
ski (1992a), and the references therein). At the present moment, we shall
concentrate on the case where

and where FD methods are used both for the space and time discretizations.
Indeed, these approximations can also be obtained via space discretizations
associated with FE grids like the one shown on Figure 1 of Section 2.6 (we
should use, as shown in Glowinski et al. (1990), piecewise linear approxima-
tions and numerical integration by the trapezoidal rule).

Let / and N be positive integers; we define h (space discretization step)
and At (time discretization step) by

*  At ( 6 J 6)

respectively, and then denote by Mij  the point {ih,jh}.
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6.8.4-2. Approximation of the wave equation (6.33)\. Let us first discuss
the discretization of the following wave problem

/ ipu - AiP = 0 in Q, ip = 0on E, ,g _

With ^ an approximation of ip(Mij,nAt), we approximate (6.77) by the
following explicit FD scheme

h?
0<n<N,

(6.78)!

C; = 0 if Mkl€T, (6.78)2

^ ^ + 1 - < " 1 = 2At/1(M i i ), l < i , j < J . (6.78)3

To be stable, the above scheme has to satisfy the following (stability)
condition

At < /i/\/2. (6.79)

6.8.4-3. Approximation of (dip/dn)\s. Suppose that we want to approxi-
mate dip/dn at M 6 F, as shown in Figure 44. Suppose that ip is known at
E; we shall then approximate dip/dn at M by

In fact, tp(E) is not known since E 0 Q. However - formally at least -
ip = 0 on S implies i/to = 0 on S, which combined with iptt — A^ = 0 implies
A ^ = 0 on S; discretizing this last relation at M yields

rP(W) + tP(E) + iP(N) + V>(5) - 4V>(M)  ̂ Q

it

Since N, M, S belong to T, (6.81) reduces to

^(W) = -il>{E),  (6.82)

which combined with (6.80) implies that

{M}  „  . ( 6.8 3)

In that particular case, the centred approximation (6.80) (which is second-
order accurate) coincides with the one-sided one in (6.83) (which is only
first-order accurate, in general). In the sequel, we shall use, therefore, (6.83)
to approximate dip/dn at M and we shall denote by SMI/) the corresponding
approximation of dip/dn at M  ̂ G V.
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n

Fig. 44.

...._ c

6.8.4-4- Approximation of the wave problem (6.33)2- Similarly to (6.33)i,
the wave problem (6.33)2, namely here,

iptt - A(p = 0 in Q, if = —- on S,
onip(0) = 0, <pt(0) = 0

wil l be approximated by

0<n<N,

(6.84)

0>

(6.85)!

(6.85)2

(6.85)3

6.8.4-5. Approximation of A.. Starting from

and via the solution of the discrete wave equations (6.78), (6.85) we approx-
imate Af by

JV+1 _ , JV-1

2At
(6.86)

It is proved in Glowinski et al. (1990, pp. 17-19) that we have (with
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obvious notation)

(A£%,fh)hAt = h2 Y. Nfl

AT

>iAt£an £ WWn, (6-87)
n=o

where, in (6.87), «o = aN = 5, <*„  = l,Vn = 1, . .. ,iV —1, and where F*  = F
minus the four corners {0,0} , {0,1} , {1,0} , {1,1} . It follows from (6.87)
that A^*  is symmetric and positive semi-definite. Actually, it is proved in
Glowinski et al. (1990, Section 6.2) that A^*  is positive definite if T > Tm;n «
At/h. This property implies that if T(> 0) is given, it suffices to take At/h
sufficiently small to have exact boundary controllability for the discrete wave
equation. This property is in contradiction with the continuous case where
the exact boundary controllability property is lost if T is too small (T < 1
here). The reason for this discrepancy wil l be discussed in the following.

6.8.4-6. Approximation of the dual problem (6.50), (6.52). With z/j a conve-
nient approximation of z = {z°,z1} we approximate problem (6.50), (6.52)
by

f  ̂ (6-88)

where, in (6.88), a denotes the matrix ( J. In Glowinski et al. (1990,

Section 6.3), one may find a discrete variation of the conjugate gradient
algorithm (6.58)-(6.73) which can be used to solve the approximate problem
(6.88).

6.8.5. Numerical solution of a test problem; ill-posedness of the discrete
problem (6.88)

Following Glowinski et al. (1990, Section 7), Dean et al. (1989, Section
2.7), Glowinski (1992a, Section 2.7) we still consider the case Q = (0,1)2,
Fo = F, A — - A ; we take T = 3.75/v̂  (> 1, so that the exact controlla-
bilit y property holds) and f = {/° , Z1}  defined by

/°(x i ,x 2) = sin7rzisin7rz2, Z1 = - T T V ^ / 0 . (6.89)

It is shown in Glowinski et al. (1990, Section 7) that using separation of
variables methods we can compute a Fourier Series expansion of Af. The
corresponding functions z° and z1 (both computed by Fast Fourier Trans-
form) have been visualized on Figures 45 and 46, respectively (the graph on
Figure 46 is the plot of — z1).

From the above figures, z° is a Lipschitz continuous function which is not
C1; similarly, zl is bounded but discontinuous. On Figure 47, we have shown
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Table 6. Summary of numerical results (n.c: no convergence)

h
Number of
conjugate gradient
iterations

ll/ ° — /*  L2(fi)
11/ ~ /*  HiJ£(fi)
ll/ 1 — /*  L2(Q)
||tt - U*| |L2(E )

\\U.\\LHV)

I
8

20

0.42 x 10"1

0.65
0.20
0.51
7.320

16

38

0.18 x 10"1

0.54
0.64 x 10-1

0.24
7.395

1
32

84

0.41 x 10"1

2.54
1.18
0.24
7.456

1
64

363

3.89
498.1
170.6
1.31

7.520

128

n.c.

n.c.
n.c.
n.c.
n.c.
n.c.

the plot of the function t —* \\dip/dn{t)\\L2  ̂ where ip, given by

xj){x,t) = \/2cos7r\/2 I t =̂ ) sinTrxi sin7TX2,
V 2 v 2/

is the solution of the wave equation (6.77) when f° and Z1 are given by
(6.89); we recall that dip/dn\^(— u) is precisely the optimal Dirichlet control
for which we have exact boundary controllability.

The numerical methods described in Sections 6.8.3 and 6.8.4 have been
applied to the solution of the above test problem taking At — h/y/2. Inter-
estingly enough, the numerical results deteriorate as h and At converge to
zero; moreover, taking At twice smaller, i.e. At = h/2y/2, does not improve
the situation. Also, the number of conjugate gradient iterations necessary
to achieve convergence increases as h and At decrease. Results of the nu-
merical experiments are reported on Table 6. In Table 6, /*  , fl and u*, are
the computed values of / ° , f1 and u respectively.

The most striking fact coming from Table 6 is the deterioration in the
numerical results as h and At tend to zero; indeed, for h = 1/128, conver-
gence was not achieved after 1000 iterations. To illustrate this deterioration
further as h and At —> 0 we have compared, in Figures 48 to 51, f° and
f1 with their computed approximations / ° and f}, for h = 1/32 and 1/64;
we observe that for h — 1/64 the variations in /° and fl are so large that
we have been obliged to use a very large scale to be able to picture them
(indeed we have plotted —fl, —fl)

If, for the same values of h, one takes At smaller than h/y/2, the results
remain practically the same. In Section 6.8.6, we shall try to analyse the
reasons for this deterioration in the numerical results as h —> 0 and also to
cure it. To conclude this section we observe that the error \\u — «*||L2(S)

deteriorates much more slowly as h —>  0 than the errors /° — /*  , fl — fl; in
fact, the approximate values ||'U*||i,2(E) °f Il'ullz-2(S) a re quite good, even for
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Fig. 45. z°{Xl,.5).

h — 1/64 if one realizes that the exact value of ||u||i,2(S) is 7.386 68... For
further illustrations and more details see Glowinski (1992a, Section 2.7) and
the references therein.

6.8.6. Analysis and cures of the ill-posedness of the approximate problem
(6.88)

It follows from the numerical results discussed in Section 6.8.5, that when
h decreases to zero, the ill-posedness of the discrete problem gets worse.
From the oscillatory results shown in Figures 48 to 51 it is quite clear that
the trouble lies with the high-frequency components of the discrete solution
or, to be more precise, with the way in which the discrete operator A^*  acts
on the short-wavelength components of f̂ . Before analysing the mechanism
producing these unwanted oscillations let us introduce a vector basis of R/ x / ,
well suited to the following discussion. This basis Bh is defined by

(6.90)

(6.91)wpq = {sin pnih x smqTrjh}i<ij<j;

we recall that h = 1/(1 + 1).
From the oscillatory results described in Section 6.8.5 it is reasonable to

assume that the discrete operator A^*  damps too strongly those components
of f̂ *  with large wavenumbers p and q; in other words, we can expect that
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Z >*

Fig. 46. zl{xu.S).

if p and/or q are large then A^t{wpq,0} or A^*{0 , wpq} will be quite small
implying in turn (this is typical of ill-posed problems) that small perturba-
tions of the right-hand side of the discrete problem (6.88) can produce very
large variations in the corresponding solution.

Operator A^*  is fairly complicated (see Section 6.8.4 for its precise defi-
nition) and we can wonder which stage in it in particular acts as a low pass
filter (i.e. selectively damping the large wavenumber components of the dis-
crete solutions). Starting from the observation that the ill-posedness persists
if, for a fixed h, we decrease At, it is then natural (and much simpler) to
consider the semi-discrete case, where only the space derivatives have been
discretized.

In such a case, problem (6.77) is discretized as follows (with ip = dtp/dt,
$ = d2^/dt2) if ft = (0,1)2 as in Sections 6.8.4, 6.8.5:

+ A-ij + + i>ij-i  -
^IJ = 0, <i,j<I,  (6.92):

(6.92)2

j < /. (6.92)3

fh = « ^. /fc = 0- (6-93)

Since the vectors wpq are for 1 < p, q < I the eigenvectors of the discrete

u = 0 if {kh, lh} £ T,

pij(T) = f1
h(i

Consider now the particular case where
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1 1.5 2
t

Fig. 47. \\(di;/dn)(t)\\L2{r).

2.5

Laplace operator occurring in (6.92) i and that the corresponding eigenvalues
\Pq(h) are given by

we can easily prove that the solution of (6.92), (6.93) is given by

ipij(t)  = sinpnih sinqnjhcos ( yJ\pq(h)(T - t) j , 0 < z, j < 7 + 1. (6.95)

Next, we use (6.83) (see Section 6.8.4.3) to compute, from (6.95), the ap-
proximation ofdifj/dn at the boundary point MOj — {O,jh}, with 1 < j < I;
thus at time t, d(p/dn is approximated at MQJ by

6 ĥ(MOj,t) = - - smpKhsinqTTJhcos (Jxpq(h)(T - t)) . (6.96)
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Fig. 48. Variations of f°{xi, .5) and/°(x1,.5)( ) (ft =1/32).

If 1 < p < I, the coefficient Kh(p) defined by

sinpvr/i
Kh{p) = h

(6.97)

is an approximation of pir which is second-order accurate (with respect to
h); now if p ~ / /2 we have /^(p) ~ / and if p = / we have (since /i =

Back to the continuous problem, it is quite clear that (6.92), (6.93) is in
fact a semi-discrete approximation of the wave problem

=  0 in Q, = 0 on S,

ipt(x,T)=0.

The solution of (6.98) is given by

ijj(x, t) = sinp7rxi si

Computing (dip/dn)\j: we obtain

an

+ q2(T — t ) \ .

(6.98)i

(6.98)2

(6.99)

(6.100)

We observe that if p < / and q < /, then (dip/dn)(MOj,t) and 8ij> h{Moj,t)
are close quantities. Now, if the wavenumber p is large, then the coefficient
K(p) = irp in (6.100) is much larger than the corresponding coefficient Kh(p)
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Fig. 49. Variations of f(xu .5) ( ) and fl{xx, .5) ( ) {h = 1/32).

in (6.97); we have, in fact,

7T

' Kh(I)
I.

Figure 52, (where we have visualized, with an appropriate scaling, the
function pir —> pir and its discrete analogue, namely the function pi: —>
sinpnh/h) shows that for p,q> (I + l ) /2, the approximate normal deriva-
tive operator introduces a very strong damping. We would have obtained
similar results by considering, instead of (6.93), initial conditions such as

A° = 0, f l = wpq. (6.101)

From the above analysis it appears that the approximation of (dtp/dri)\z,
which is used to construct operator A^* , introduces very strong damping of
the large wavenumber components of f̂ . Possible cures for the ill-posedness
of the discrete problem have been discussed in Glowinski et al. (1990), Dean
et al. (1989), Glowinski (1992a). The first reference, in particular, contains
a detailed discussion of a biharmonic Tychonoff regularization procedure,
where problem (6.50) is approximated by a discrete version of

eMf  £ + AfV = —z
z

in fit, (6.102)i
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Fig. 50. Variations of /°(zi, .5) ( ) and f°(xu .5) ( ) (h = 1/64).

A/ ° = /£° = fl = 0 on r ,
where, in (6.102), e > 0, fe = {f®,f}},  and where operator M is denned by

M = [ " \ ) . (6.102)20

Various theoretical and numerical issues associated with (6.102) are dis-
cussed in Glowinski et al. (1990), including the choice of £ as a function of h;
indeed elementary boundary layer considerations show that e has to be of the
order of h2. The numerical results presented in Glowinski et al. (1990) and
Dean et al. (1989) validate convincingly the above regularization approach.
Also in Glowinski et al. (1990, p. 42) we suggest that mixed FE approx-
imations (see, e.g. Roberts and Thomas (1991), Brezzi and Fortin (1991)
for introductions to mixed FE methods) may improve the quality of the
numerical results; one of the reasons for this potential improvement is that
mixed FE methods are known to provide accurate approximations of deriva-
tives and also that derivative values at selected nodes (including boundary
ones) are natural degrees of freedom for these approximations. As shown
in Glowinski, Kinton and Wheeler (1989) and Dupont, Glowinski, Kinton
and Wheeler (1992) this approach substantially reduces the unwanted oscil-
lations, since without any regularization good numerical results have been
obtained using mixed FE implementation of HUM. The main drawback of
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Fig. 51. Variations of / ^ z i , .5) ( ) and ft(xi, .5) ( ) (h = 1/64).

4.0 0.4 0.6 1.2 1.6 2.0 2.4 2.B 3.2 9.6 4.0

Fig. 52.

the mixed FE approach is that (without regularization) the number of conju-
gate gradient iterations necessary to achieve convergence increases (slowly)
with h (in fact, roughly, as h~1^2); it seems, also, on the basis of numerical
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Fig. 53. Triangles of Th and Th/2.

experiments, that the level of unwanted oscillations increases (slowly, again)
with T.

Another cure for spurious oscillations has been introduced in Glowinski
and Li (1990) (see also Glowkinski (1992a, Section 3)); this (simple) cure,
suggested by Figure 52, consists of eliminating the short-wavelength compo-
nents of ffc with wavenumbers p and q larger than (I + l)/2; to achieve this
radical filtering it suffices to define f̂  on an FD grid of step size > 2h. An
FE implementation of the above filtering technique is discussed in Section
6.8.7; also, for the calculations described in Section 6.9 we have defined f̂
over a grid of step size 2h.

6.8.7. An FE implementation of the filtering technique of Section 6.8.6
6.8.7.1. Generalities. We go back to the case where (possibly) Q / (0,1)2,
Fo ^ F and A ^ — A; the most natural fashion of combining HUM and the
filtering technique discussed in Section 6.8.6 is to use finite elements for the
space approximation; in fact, as shown in Glowinski et al. (1990, Section
6.2), special triangulations (like the one shown in Figure 1 of Section 2.6.1)
wil l give back FD approximations closely related to the one discussed in
Section 6.8.6. For simplicity, we suppose that Q, is a polygonal domain of
IR2; we then introduce a triangulation 7^ of Q such that A = UreT ^> with
h the length of the largest edge (s) of 7 .̂ From %, we define Th/2 by joining
(see Figure 53), the midpoints of the edges of the triangles of 7 .̂

With Pi the space of the polynomials in two variables of degree < 1, we
define the spaces H\ and H ĥ by

H\ = {v \e C ° ( Q ) , V \T € P i , V T € % } , Hl
oh = { v \ v e H l

similarly, we define

observe that H\ C

=  0};
(6.103)

and -ffg/i/2 by replacing h by h/2 in (6.103). We

H^h C H\hi<i-  We then approximate the 2
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scalar product over H\ by

^5> Vu.tt; G if£, (6.104)
6 Q

where, in (6.104), Q describes the set of the vertices of 7^ and where LOQ is
the area of the polygonal domain, union of those triangles of 7 ,̂ with Q as
a common vertex. Similarly, we define , -)h/2 by substituting h/2 to h in
(6.104).

Finally, assuming that the points at the interface of To and F\To are
vertices of 7^/2) we define VQ/I/2 by

Vbv2 = {v\ve Hl
h/2, ^ o o n r o \ r } . (6.105)

6.8.7.2. Approximation of problem (6.50). We approximate the fundamen-
tal equation A / = {—zl,z0} by the following linear variational problem in

V

Vdar, Vv = {w 0^1}  G Hl
oh x if o\.

(6.106)
In (6.106), ) denotes the duality pairing between H~x{Sl) and HQ(CI),

and the bilinear form A^*(- , ) is defined as follows.

(i) Take fh = {ft, ft} G Hl
Qh x H%h and solve, for n = N,..., 0, the

discrete variational problem

with the final conditions

^ = A°, ffl+1-ffl-1 = 2teft; (6.108)
we recall that a(-, ) denotes the bilinear form defined by

a(u,w) = (Av,w), Vu € i 1

(ii ) To approximate di^/driA over Eo, first introduce the complementary
subspace M/i/2 of HQH ,2 defined by

/

\v€ Mh/2 ==> u |r = 0, VT G Th/2 such that T n T = 0; v ;

we observe that M^/2 is isomorphic to the space 7^0^/2 of the traces over

To of the functions of V0h/2. The approximation of (di>/dnA)\v0 at t = nAt
is then defined (cf. Glowinski et al. (1990) and Section 2.4.3) by solving the
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linear variational problem

1 G jV0h/2,

= a(fov), W € Mh/2.f
JTo

Variants of (6.110), leading to linear systems with diagonal matrices are
given in Glowinski et al. (1990).

(iii ) Now, for n = 0 , . . ., TV; solve the discrete variational problem

e v0h/2; rh
+1 = ̂ + 1 on r 0,

1 + # r 1 - 2 ^ , t ; ) f c / 2 + |At|2a(^,i;) = 0, W €

initialized via
<^ = 0, ^ - ^ = 0. (6.112)

(iv) Finally, define A^*(-, ) by

A f (fh, v) = (Aa,«°)V2 + (Ai ,^) V 2 , Vv = {v°, v1} € Hl
oh x Hl

Qh, (6.113)

where, in (6.113), A° and A^ both belong to H ĥ,2 and satisfy

2At '
= <Ph(P), VP interior vertex of Th/2. (6.114)

Following Glowinski et al. (1990, Section 6) we can prove that

N

Af (fifc, hh) = AtJ2<*n 6Wh6ifth dr, V/i h, /2h G Hl
Qh x ^ , (6.115)

n=0 Jro

where, in (6.115), ao = a  ̂ — 1/2, and an = 1 if 0 < n < N.
I t follows from (6.115) that the bilinear form A^*(-,- ) is symmetric and

positive semi-definite. As in Glowinski et al. (1990, Section 6.2), we should
prove that A^*(- , ) is positive definite if T is sufficiently large and if VL is
a square (or a rectangle) and %, Th/2 regular triangulations of fh From
the properties of A^*(- , ) the linear variational problem (6.106) (which ap-
proximates problem (6.50)) can be solved by a conjugate gradient algorithm
operating in HQH X HQh. This algorithm is described in Section 6.8.7.3.

6.8.7.3. Conjugate gradient solution of the approximate problem (6.106).
The conjugate gradient algorithm for solving problem (6.106) is an FE im-
plementation of algorithm (6.58)-(6.73) (see Section 6.8.3).

Description of the Conjugate Gradient Algorithm

Step 0: Initialization

/o° G HL fo € Hlh are given; (6.116)
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solve then, for n = N,N — 1,... ,0, the discrete linear variational problem

9ihn \ (6.117)

2^o>|;j  + a ( C , , ) = 0,V,Gif 0V2,

initialized by

1$ = & < + 1 - ^ - 1 = 2At/0
1, (6.118)

and store , V'o"1-
TTien /or n = 0 , 1 , . . ., N, compute tp^, SIJJQ, <^Q+1 by forward (discrete)

time integration, as follows.

1 Ifn = 0, compute SipQ from I/JQ using (6.110).
If n > 0, compute first i/>g by solving

(6.119)

/ 2, (6.120)

and i/ien 6^Q 6y using (6.110).
2 Tafce 9?Q = 6ipQ on To and use

to compute the values taken by <^g+1(e Voh/2) a  ̂ ^ e interior vertices
ofTh/2- These calculations are initialized by

<pl(P) = O,<fo(P) - VoH-P) = °> V-P interior vertex ofTh/2. (6.121)

Compute then go = {<7o'5o}  ^ ^oh x ^Oh by solving the following
discrete Dirichlet problem

9°o e #o\>
/ JV+l

(6.122)
and

9o

//go = 0, or is 'small', take f̂ *  = fo; i/noi, sê

wo = go- (6.124)



276 R. GLOWINSKI AND J.L. LIONS

Then for k > 0, assuming that ffc, gfc, w^ are known, compute ffc+i, gfc+i>
as follows.

Step 1: Descent
For n = N, N — 1 , . . ., 0, solve the discrete backward wave equation

/jn \ (6.125)

'h/2

initialized by

(6.126)

store ^ , ^ : .
Tfoen /or n = 0 , 1 , . . ., N, compute ip^, S^, 0^+l  by forward time inte-

gration as follows.

1 If n = 0, compute 8^. from ^ using (6.110).
If n > 0, compute first i/j£ 6y solving

)

(6.127)
and then 8ip  ̂ by using (6.110).

2 Take <p% = 8  ̂ on To and use

+a^lv) = 0, Vt; G H0\ /2, (6.128)

to compute the values taken by ^ + 1 ( G Vo/1/2) a^ ^ e interior vertices
of Th/2- These calculations are initialized by

<Pk(p) ~ Vkl{P) = ^2(P) = 0, VP interior vertex of Th/2. (6.129)

Compute now gfc(= {fif°,5fe} ) G îofc x ^ofc 62/

fk
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and then p;

Pk= 1"  P
Jn

Once pk is

k by

J K 1

known,

, j  /

 + {9k,9k)h/ ^

compute

ffc+1 =

gfc+i =

/

/n ^ ' Wk X +

ffc-PfcWfc,

gfe ~ Pfcgfe-

Sfc,«;i)h. (6.132)

(6.133)

(6.134)

Step 2. Test of the convergence and construction of the new descent di-
rection

If gfc+i = 0, or is 'small', take f̂ *  = ffc+i; if not, compute

/ \gk+l\ (gl+l ,gl+l)h/ / \gk\dx + (glgl)h, (6.135)

and set

wfc+i = gk+1 + 7fcWfc. (6.136)

Do k = k + 1 and go to (6.125).

Remark 6.18 The above algorithm may seem a littl e bit complicated at
first glance (21 statements); in fact, it is fairly easy to implement, since the
only nontrivial part of it is the solution (on the coarse grid) of the discrete
Dirichlet problems (6.122) and (6.130). An interesting feature of algorithm
(6.116)-(6.136) is that the forward integration of the discrete wave equations
(6.117) and (6.125) provides a very substantial computer memory saving.
To illustrate this claim, let us consider the case where fi = (0,1) x (0,1),
r 0 = T, T = 2A/2, h = 1/64, At = h/2s/2 = v^/256; we have then -
approximately - (512)2 discretization points on S, therefore in that specific
case, using algorithm (6.116)-(6.136) avoids the storage of 2.62 x 105 real
numbers. The saving would be even more substantial for larger T and
would be an absolute necessity for three-dimensional problems. In fact, the
above storage-saving strategy which is based on the time reversibility of the
wave equation (6.1) cannot be applied to the control problems discussed in
Sections 1 and 2 since they concern systems modelled by diffusion equations
which are, unfortunately, time irreversible.

Remark 6.19 The above remark shows the interest of solving the dual
problem from a computational point of view. In the original control problem,
the unknown is the control u which is defined over Do; for the dual problem
the unknown is then the solution f of problem (6.50). If one considers
again the particular case of Remark 6.18, i.e. O = (0,1) x (0,1), To = F,
T = 2\/2, h = 1/64, At = h/2\/2 the unknown u will be approximated
by a finite dimensional vector u^1 with 2.62 x 105 components, while f is
approximated by f̂ *  of dimension 2 x (63)2 = 7.938 x 103, a substantial
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saving indeed. Also, the dimension of ffr*  remains the same as T increases,
while the dimension of u *̂  is proportional to T.

Numerical results obtained using algorithm (6.116)-(6.136) will be dis-
cussed in Section 6.9.

6.8.8. Solution of the approximate boundary controllability problem (6.24)
Following the approach advocated for the exact boundary controllability

problem, we shall address the numerical solution of the approximate bound-
ary controllability problem (6.24) via the solution of its dual problem, namely
problem (6.37), (6.38). This can also be formulated as

(6-137)

where, in (6.137), the convex functional j : HQ(Q) X L2(fi ) —> R is defined
by

= {Z 0, /1}  € H^(Q)xL2(Q). (6.138)

Following a strategy already used in preceding sections (see, e.g. Section
1.8.8) we associate with the 'elliptic' problem (6.137) the following initial
value problem

( 6 .1 3 9)

where r is a pseudo-time. The particular form of problem (6.139) clearly sug-
gests time integration by operator splitting (see, again, Section 1.8.8). Con-
centrating on the Peaceman-Rachford scheme, we obtain - with Ar(> 0) a
pseudo-time step - the following algorithm to compute the steady-state so-
lution of problem (6.139), i.e. the solution of problem (6.37), (6.38), (6.137):

f° = fo; (6.140)

then, for k > 0, assuming that ik is known, we compute fk+l/2 and fk+1

via the solution of

- A
0

(6.142)

Let us discuss the solution of the subproblems (6.141), (6.142):
(i) Assuming that (6.141) has been solved, equation (6.142) can be for-
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mulated as

0 I)  AT/2

i.e.

) + -—Af . (6.143)

Problem (6.143) is a variant of problem (6.50) (a regularized one, in fact) and
can be solved by a conjugate gradient algorithm closely related to algorithm
(6.58)-(6.73) (we have to replace the bilinear form

{fi,f 2}  - <Afi,f2> :

by

(ii ) Concerning the solution of problem (6.141), we shall take advantage of
the fact that operator dj(-) is diagonal from HQ(Q) X L2(fi ) into H~1(fl) x
L2(Q); solving problem (6.141) is then equivalent to solving the two following
uncoupled minimization problems (where the notation is fairly obvious):

mm

f V/°' f c  V / ° dxl , (6.144)
n J

mm
PeL^U)

- / fl'kfin
(6.145)

Both problems (6.144), (6.145) have closed form solutions which can be
obtained as in Section 1.8.8 for the solution of problem (1.115). The solution
of problem (6.144) (respectively (6.145)) clearly provides the first (respec-
tively the second) component of ffc+1/2

) i.e. the one in HQ(CI) (respectively
in L2(Q)).

6.9. Experimental validation of the filtering  procedure of
Section 6.8.7 via the solution of the test problem of
Section 6.8.5

We consider in this section the solution of the test problem of Section 6.8.5.
The filtering technique discussed in Section 6.8.7 is applied with Th a regular
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triangulation like the one shown on Figure 1 of Section 2.6; we recall that
Th is used to approximate f̂ *, while tp and <p are approximated on 7^/2 ^
shown in Section 6.8.7. Instead of taking h to be equal to the length of the
largest edges of Th, it is convenient here to take h as the length of the edges
adjacent to the right angles of Th- The approximate problems (6.106) have
been solved by the conjugate gradient algorithm (6.116)-(6.136) of Section
6.8.7.3. This algorithm has been initialized with /g = /g = 0 and we have
used

f |V5oT dx + (glgfa < 10"14 (6.146)/
Jn

as the stopping criterion (for calculations on a CRAY X-MP).
Let us also mention that the functions z°, z1, u of the test problem in

Section 6.8.5, satisfy

||*°||L2(n) = 12.92 . . ., H^HH-HH) = H-77 , |MIL2 ( E ) = 7.386 68 . . ..

In the following we shall denote by ||  ||o,n, I  |i,n, ||  ||-i,n, II  ||o,E the L2(Q),
H£(Q), H-^Q), L2(S) norms, respectively (here |u|i,n = {JQ\VV\2dx)1^
and |H|_i_Q) = |iy|i,n where w £ HQ(£1) is the solution of the Dirichlet
problem - Aw = v in U, w = 0 on F).

To approximate problem (6.50) by the discrete problem (6.106) we have
been using h = 1/4,1/8,1/16,1/32,1/64 and At = h/2y/2 (since the wave
equations are solved on a space/time grid of step size h/2 for the space
discretization and h/2\^2 for the time discretization); we recall that T =
15/4>/2.

Results of our numerical experiments have been summarized in Table 7.
In this table / ° , /* , u*  are defined as in Section 6.8.5, and the new quantities
z®, z\ are the discrete analogues of y(T) and yt(T), where y is the solution
of (6.33)2, associated via (6.33)i, to the solution f of problem (6.50).

Remark 6.20 In Table 7 we have taken h/2 as discretization parameter
to make easier comparisons with the results of Table 6 and Glowinski et al.
(1990, Section 10).

Comparing the above results to those in Table 6, the following facts appear
quite clearly.

1 The filtering method described in Section 6.8.7 has been a very effective
cure to the ill-posedness of the approximate problem (6.88).

2 The number of conjugate gradient iterations necessary to achieve the
convergence is (for h sufficiently small) essentially independent of h; in
fact, if one realizes that for h — 1/64 the number of unknowns is 2 x
(63)2 = 7938, converging in 12 iterations is a fairly good performance.

3 The target functions z° and zl have been reached within a fairly high
accuracy.
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Table 7. Table 2.1. Summary of numerical results. a indicates the number
of conjugate gradient iterations.

h/2

7 10 12 12 12
CPU time(s)
CRAYX-M P 0.1 0.6 2.8 14.8 83.9
llf [\f%a"  9 ' 6 X 1 0~ 2 2 ' 6 X 1 0~ 2 2- 2 X 1 0~ 2 6- 4 X 1 0~ 3 1 >5 X 1 0~ 3

^l/uf;^" 3.5 x 10"1 1.8 x 10"1 9 x 10"2 4.4 x 10~2 2.2 x 10~2

Ulpfl ll°'n 1 x 10-1 2.6 x 10"2 1.5 x 10"2 7 x 10"3 3.2 x 10"3

"VafJ'"' "  2A x 10"8 3 x 10~8 6 x 10"8 8-3 x 10"8 6-6 x 10"8

"V l -Vn " 6'9 x 10~7 4-6 x 10"7 9'4 x 10"6 2 x 10"5 8-5 x 10~5

" " i ^ ; 1 ^ 1.2 x 10"1 4.3 x 10"2 2 x 10-2 7.6 x lO"3 3.4 x 10~3

||u»||o,s 7.271 7.386 7.453 7.405 7.381

The results of Table 6 compare favourably with those displayed in Ta-
bles 10.3 and 10.4 of Glowinski et al. (1990, pp. 58, 59) which were obtained
using the Tychonoff regularization procedure briefly recalled in Section 6.8.6;
in fact, fewer iterations are needed here, implying a smaller CPU time (actu-
ally the CPU time seems to be a sublinear function of h~3 which is - modulo
a multiplicative constant - the number of points of the space/time discretiza-
tion grid). Table 7 also shows that the approximation errors (roughly) satisfy

(6.147)
(6.148)

Estimates (6.147) are of optimal order with respect to h in the sense that
they have the order that we can expect when one approximates the solution
of a boundary value problem, for a second-order elliptic operator, by piece-
wise linear FE approximations; this result is not surprising since (from Sec-
tion 6.8.2, relation (6.54)) the operator A associated with O = (0,1) x (0,1)
behaves for T sufficiently large like

"0
A J) (6.149)

(we have here x0 = {1/2,1/2}  and C = i) .
In order to visualize the influence of h we have plotted for h = 1/4,

1/8, 1/16, 1/32, 1/64 and At = h/2y/2 the exact solutions / °, f1 and
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Fig. 54. (h = 1/4, At = ft/2v
/2). (a) Variation of /°(a;i,l/2) ( ) and

/,°0n,l/2) ( ); (b) Variation of -f\Xl,\/2) ( ) and -fl(xul/2)
( )

(a) (b)

Fig. 55. (h
/?(an, 1/2) (
( )

1/8, At = h/2y/2). (a) Variation of /°(a;i,l/2) ( ) and
 (b) Variation of -fl{xu\/2) ( ) and -fl(xul/2)

the corresponding computed solutions / ° , /* . To be more precise, we have
shown the plots of the functions x\ —> fo(x\, 1/2), xi —* — fl(xi, 1/2) (full
curves) and of the corresponding computed functions (dotted curves). These
results have been reported in Figures 54 to 58 and the captions there are
self-explanatory.
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(a)

Fig. 56. {h = 1/16, At = /i/2v/2). (a) Variation of /°(:n,l/2) ( ) and
/?(ii,l/2) ( )  (b) Variation of -f^x^lfc) ( ) and -fl(xul/2)

f "

1,0 O.I 0.2 0.3 0.1 0.5 0.5

(a) (b)

Fig. 57. (h = 1/32, At = h/2y/2). (a) Variation of /0(x1,l/2) ( ) and
/,°(zi,l/2) ( ). (b) Variation of -f^xul/l) ( ) and -fl{xul/2)
( )

The above numerical experiments have been done with T = 15/4-\/2; in
order to study the influence of T we have kept z° and z1 as in the above
experiments and taken T = 28.2843. For h = 1/64 and At = h/2y/2 we
need just 10 iterations of algorithm (6.116)-(6.136) to achieve convergence,
the corresponding CRAY X-MP CPU time being then 800s (!) (the number
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(a) (b)

Fig. 58. (h = 1/64, At = h/2y/2). (a) Variation of f°(xul/2) ( ) and
/?(a>i,l/2) ( )  (b) Variation of -fl{xul/2) ( ) and -/J(xi,l/2)

Ax° = zl/2 in n, x° = 0 on I\

X1 = z°/2.

of grid points for the space/time discretization is now « 86 x 106). We have
KIIL2(E ) = 2.32, \\z° - z°\\L2(Q) = 5.8 x 10"6, \\zl - zj||_i,n = 1-6 x 10"5.
The most interesting results are the ones reported on Figures 59(a) and
(b). There, we have compared T/° and Tf} (for T = 28.2843) with the
corresponding theoretical limits x° and x1 which, according to Section 6.8.2,
relations (6.55)-(6.57), are given by

(6.150)

(6.151)

The full curves represent the variations of x\ —> x°(xi, 1/2) and of x\ —*
—X1 (^1)1/2), while the dotted curves represent the variations of x\ —>
TfS(xu 1/2) and Xl -H. -Tfl{xu 1/2).

In our opinion the above figures provide an excellent numerical verifica-
tion of the convergence result (6.55) of Section 6.8.2 (we observe at xi = 0
and xi = 1 a (numerical) Gibbs phenomenon associated with the I? con-
vergence oiTfl to x1)- Conversely, these results provide a validation of the
numerical methodology discussed here; they show that this methodology is
particularly robust, accurate, nondissipative and perfectly able to handle
very long time intervals [0,T]. In fact, numerical experiments have shown
that the above-mentioned qualities of the numerical methods discussed here
persist for target functions 2° and z1 much rougher than those considered
in this section.

Additional results can be found in Glowinski et al. (1990, Section 4).
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0.0 0.1 0.2 0.3 0.*  0.5 0.? 0.8 0.9 1.0

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.5 0.7 0.8 0.9 1.0

(b) * !

Fig. 59. (h = 1/64, At = h/2y/2, T = 28.2843). (a) Variation of xo(zi, 1/2)
( ) and Tf°(x!,l/2) ( ). (b) Variation of - x 1 ^ ! , ! ^ ) ( ) and
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6.10. Other  boundary controls

6.10.1. Approximate Neumann boundary controllability
We consider now problems entirely similar to the previous ones but where

we 'exchange' the Dirichlet conditions for Neumann conditions.
We therefore define the state function y = y(v) by

dy

dnA

To fix ideas, we

ytt

on So -

+ Ay --

V(O)

= r ox

= 0 in(

= 0,

(0,T),

still assume that

vGL2

Vt(P) =

dy
dnA

(So).

x(0,

= 0,

- 0

n

on S \S0 .

(6.

(6.

(6.

152)!

 152)2

 152)3

(6.153)

Using again transposition, we can show that problem (6.152) has a unique
(weak) solution if (6.153) holds. In fact, the solution here is (slightly)
smoother than the one in Section 6.1. We can, in any case, define an operator
L from L 2(S0) into H'^fl) x L2(Q) by

Lv = {-yt(T;v),y(T;v)}. (6.154)

If v is smooth, the solution y(v) wil l also be smooth, assuming of course
that the coefficients of A are also smooth.

Let us study approximate controllability first.
We suppose that v is smooth; indeed, to fix  ideas we assume that

^ , | G L 2 ( S 0 ) , v\t = 0. (6.155)
at

Then, y(v) can be defined by a variational formulation, showing that

{ y is continuous from [0,T] into i/1(fi) , ,fi ..__>

yt is continuous from [0,T] into L2(Q).
Then in particular

Lv G L2{Q) x L2(O). (6.157)
Let us consider now f belonging to the orthogonal of the range of L, i.e.

, , (6.158)
- / f°yt{T)dx+ / f1y{T)dx = 0, Vv satisfying (6.155).

Jn Jn
We introduce ij)  defined by

iPu + Ail>  = 0 in Q, 1>(T) = f°, MT) = f\ ^ = 0 on S. (6.159)
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Multiplying the wave equation in (6.159) by y — y(v) and integrating by
parts, we obtain

(Lv,i) = - f 1/wdS. (6.160)

o

Therefore (6.158) is equivalent to

ip = 0 on So. (6.161)

If we assume (as in Section 6.3, relation (6.22)) that

So allows the application of the Holmgren's uniqueness theorem (6.162)
then (6.159), (6.161) imply that tp = 0 in Q, so that / = 0; we have proved
thus that

assuming (6.162) the range of L is dense in L2(Q) x L2(f2), (6.163)

which implies, in turn, approximate controllability.

Remark 6.20 Suppose that F is a C°° manifold. Then we can take

v € £>(So) (the space of the C°° functions with compact support in So),
(6.164)

and the range of L, for v describing £>(So), is still dense in L2($7) x L2(fi) .

We can now state the following control problem

inf \ f v2 dS; y(T) e z° + foB, yt(T) € zl + frB, (6.165)

where, in (6.165), {y,v} satisfies (6.152), (6.153), {z°,z1} G L2(O) x L2(Q),
and where B denotes the closed unit ball of L2(fi) .

Remark 6.21 We do not introduce H~l(Sl) here for two reasons:

1 in the present context the H~1(Q) space (which is not the dual of
H1^)) is not natural;

2 the choice of the same norm, in (6.165), for both y{T) and yt(T) shows
the flexibilit y of the methodology.

Remark 6.22 Problem (6.165) has a unique solution. Uniqueness follows
from the strict convexity. As far as existence is concerned let {un}n>o be
a minimizing sequence. Then {un}n>o is bounded in L2(So). Let us set
yn = y(un). By definition, {{yn(T),dyn/dt(T)}}n>o remains in a bounded
set of L2(J7) x L2(fi) . We can therefore extract from {«n}n>o a subsequence,
still denoted by {un}n>o> such that

un —> u weakly in L2(So), (6.166)

| yn( r ) , ~{T)  ̂ -> {£o,£i}  weakly in L2(O) x L2(Q). (6.167)
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However,

{y(T; un),yt(T; un)} -» {y(T; u), yt(T;«)}

weakly in L2(Q) x H~1(Q), so that £o = y(T; u), £1 = yt(T; u), which proves
the existence of a solution namely u to problem (6.165).

The uniqueness of the solution implies that the whole minimizing sequence
converges to u.

Remark 6.23 The use of fa and /?i > 0 allows the introduction of new (and
complicated) function spaces to be avoided. Unfortunately, these spaces
cannot be avoided if we let /?o and (3\ —* 0, as we shall see below.

6.10.2. Duality results: exact Neumann boundary controllability
Now, we use duality, as in previous sections. We then introduce function-

als F\ and F% by

l I v2dX, (6.168)

F rf) _ / 0 if /° G -z1 + fcB f1 ez° + 0
t2{t) ~ \ +oo otherwise on L2(fi ) x L2(O).

I t follows then from (6.154) that problem (6.165) is equivalent to

inf [Fi(v) + F2(Lv)]. (6.170)
L 2(£)

Using convex duality arguments, we obtain

inf [F l{v) + F2{Lv)]  = - inf [F:*(L*f ) + F2*(-f)] , (6.171)
L 2(£) 2

where we use L* with L thought of as an unbounded operator.
By virtue of (6.171), we have

(6-172)

where xj) is the solution of (6.159) when f replaces f.
We obtain then as dual problem of the control problem (6.165)

inf \\ f ^2dE+ /\z1f0-z°f1)dx

(6-173)

Remark 6.23 We shall give an alternative formulation of the dual problem
(6.173). This new formulation is particularly useful when {/?o>/?i}  —*  0.
Using the HUM approach, we introduce the operator A defined as follows.



EXACT AND APPROXIMATE CONTROLLABILITY 289

The functions / ° and f1 being given in, say, L2(fl), we define xp and y by

= f \ | ^ = 0 on E, (6.174)

%t + Ay = 0 in Q, y(0) = yt(0) = 0, —- = - ^ on Eo,
dy

 dUA (6-175)
jr*-  = 0 on E\E0.

We set then (with f = {/° , f1}):

At = {-yt(T),y(T)}. (6.176)

Taking f = fi and f2, and denoting by ij)\, -02 the corresponding solutions of
(6.174) we obtain from (6.174), (6.175) that

/ (Afi )  f2 dx = f Vi^2 dE. (6.177)
Jo 7E0

It follows from (6.177) that

A is symmetric and positive semi-definite over L2(f2) x L2(f2). (6.178)

It follows from (6.177) that problem (6.173) is equivalent to

inf \l /(Af)-fdx+ f
L2 J Ju
1 /(Af)
2 Jn

(6-179)

In order to discuss the case /?o = /?i = 0 in (6.179), we introduce over
L2(n) x L2(O) the norm [...] defined by

a x 1/2
(Af) - fdx ) , Vf G L2(Q) x L2(fi) . (6.180)

We define next the space E by

E = completion of L2(fi ) x L2(Q.) for the norm [...]. (6.181)

Taking now the limit in (6.179) as {A)>A }  —> 0 we obtain - formally - the
dual problem associated with exact controllability, namely

inf [I[f]2_( az,f) l (6.182)
feE L2 J

where, in (6.182), ( . . . , . . .) denotes the duality pairing between E' and E,
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Problem (6.182) has a solution (necessarily unique) if and only if

{-z1,z°}€El; (6.183)

equivalently, exact controllability is true if and only if condition (6.183) is
satisfied.

Remark 6.24 Contrary to the situation in Section 6.6, the space E, as
denned by (6.181), has no simple interpretation. For further information
concerning space E, we refer to Lions (1988b) and the references therein.

Remark 6.25 It is by now clear that the method followed here is general.
I t can, in particular, be applied to other boundary conditions.

6.10.3. A second approximate Neumann boundary controllability problem
Inspired by Sections 1 and 2, we consider, for k > 0, the following control

problem

(6.184)
where, in (6.184), y is - still - defined from v via the wave equation (6.152);
problem (6.184) is obtained by penalization of the conditions y(T) = z°,

5 L

Using the results of Section 6.10.1 it is quite easy to show that problem
(6.184) has a (necessarily unique) solution (even if (6.162) does not hold).
If we denote by u the solution of problem (6.184), it is characterized by the
existence of an adjoint state function p such that

ytt + Ay = 0 in Q, y(0) = yt(0) = 0,
dV ^ dV n vnv (6-185)

- — = u on So, -=— = 0 on E\E0,
OUA

dp
Pu + Ap = 0 in Q, -^- = 0 on E, (6.186)i

onA

p(T) = k(yt(T) - z1), pt(T) = -k(y(T) - z°), (6.186)2

u= -pon So. (6.187)

Let us define f = {/° , Z1}  € L2(Q) x L2(Cl) by

f° = p(T), fl=Pt{T);  (6.188)

it follows then from (6.186)2, and from the definition of A (see Section 6.10.2)
that

k~lf + Af = {-z1,z0}. (6.189)
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Problem (6.189) is the dual problem of (6.184).
From the properties of A (symmetry and positivity) and from the (L2(f2))2

ellipticity of the bilinear form associated with operator A;"11 + A, problem
(6.189) can be solved by a conjugate gradient algorithm operating in L2(Q) x
L2(f2); such an algorithm wil l be described in Section 6.10.4.

6.10.4- Conjugate gradient solution of the dual problem (6.189)
We can solve problem (6.189) by the following variant of algorithm (6.58)-

(6.73) (see Section 6.8.3):

fo = {fo, fo} given in L2(fl ) x L2(Q); (6.190)

solve then

at2
Q = 0 in Q, = fo,

dt

(6.191)

(6.192)

= — O on So,

Define g0 = {g$,gh} € L2(ft) x

r r f /in  i / n 1/i fl DnT — i* I f 4j nT* —I— I I
I J\J I J \J i \

Ju Ju Jti \

 = 0 on

by

V - vdx, Vv G L2(Q), (6.193)!

/ g^vdx = k-1 [  fbvdx+ [(<po(T)-z°)vdx, Vv e L2(Q), (6.193)2

and define wo = {U)Q, W®} by

w0 = g0. (6.194)

Assuming that fn, gn, wn are known, we obtain fn+i,gn+i, wn +i as follows.
Solve

dt

n = 0 in Q,

1 a n̂
(6.195)

. dnA
= —wn on

dnA
= 0 on E\E0.

(6.196)
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Define gn = {g^g\} G L2(fi ) x L2(fl) by

f fnvdx = k'1 f w^vdx - f -^{T)vdx, Vv G L2(ft), (6.197)i
Jn Jn Jn at

I g^vdx^k'1 / io^;da:-|- / (pn(T)vdx, \/v € L2(Q,). (6.197)2
Jn Jn Jn

Compute

Pn= f {\g°n\
2 + \gl

n\
2)dxl f (g°nw

Q
n + gl

nw
l
n)dx, (6.198)

Jn I Jn
and then

fn+1 = fn - pnwn, (6.199)

gn+l = gn - Pngn- (6.200)

Z/1 l|gn+i||L2(n)xL2(n)/l|go||L2(n)xL2(n) < e tofce f = fn+1; if not compute

||gn+l|||2(n)xL 2(n) , ,
Tn =  no — (6.201)

update wn 6y

w n + i = gn +i + 7nwn. (6.202)

Do n = n + 1 and go to (6.195).

Remark 6.26 The FE implementation of the above algorithm is just a
variation of the one of algorithm (6.58)-(6.73) (it is in fact simpler). In fact,
here too we can take advantage of the reversibility of the wave equations
to reduce the storage requirements of the discrete analogues of algorithm
(6.190)-(6.202).

Remark 6.27 In Glowinski and Li (1990), we can find a discussion of numer-
ical methods for solving exact Neumann boundary controllability problems;
the solution method is based on a combination of finite element approxi-
mations and of a conjugate gradient algorithm closely related to algorithm
(6.190)-(6.202). We also discuss, in the above reference, the asymptotic
behaviour of the solution f of the dual problem when T —> +oo; there too
the analytical results confirmed the numerical ones, validating therefore the
computational methodology.

6.10.5. Application to the solution of the dual problem (6.179)
Assuming that /?o and f3\ are positive the dual problem (6.179) can also

be written as

M + dj(f) = ( " / ) - (6-203)
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where the functional j : L2(H) x L2(fi ) —* R is denned by

3(i) = M^WmsD+PoWhlmn), Vf = {/° , Z1}  G L2(Q) x L2(Q). (6.204)

As in Section 6.8.8, we associate with (6.203) the following initial value
problem

/ 1 \
A/ fc+1 + aj(ffe+1/2) = ("/o )  (6-208)

( ) ( 6 2 0 5)

f (0) = fo

to be discretized, for example, by the following Peaceman-Rachford scheme:

f° = f0; (6.206)

then for k > 0, assuming that fk is known, we compute ffc+1/2 and fk+1 via

ffc+l/2 _ fk / i \

A r / 2 + A/fc + a;(ffc+V2) - (~/o ) , (6-207)

ffc+l _ ffc+l/2

A r / 2

Problem (6.207) is fairly easy to solve (see Section 6.8.8) since the operator
dj(...) is diagonal. On the other hand, once ffc+1/2 is known, problem
(6.208) is just a particular case of problem (6.189) (with k = AT/2); it can
be solved therefore by the conjugate gradient algorithm (6.190)-(6.202).

6.11. Distributed controls for  wave equations

Let us consider O C SI and let the state equation be

ytt + Ay = vXo in Q, y(0) = yt(0) = 0, y = 0 on E. (6.209)

We choose

v e L2(O x (0,T)). (6.210)

The solution of problem (11.1) is unique. It satisfies

{y,yt} is continuous from [0,T] into HQ(Q) X L2(Q,). (6.211)

Let us see when

{y(T),yt(T)} spans a dense subset of H^(Q) x L2(Q). (6.212)

We consider f = {/° , Z1}  G L2(Q) x H'1^) such that

- f yt(T)f°dx+(f1,y(T)) = 0, Vv € L2(O x (O,T)), (6.213)

where, in (6.213), ) denotes the duality pairing between H^1^) and
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We introduce ip solution of

iptt + Ar/> = 0 in Q, 4>(T) = / ° , MT) = f\ V = 0 on S. (6.214)

Then

- [  yt(T)f°6x+(fl,y(T)) = I ^vdxdt. (6.215)

Therefore (6.213) is equivalent to

^ = 0 o n Cx (O.T). (6.216)

We shall assume that we can apply Holmgren's uniqueness theorem to O x
(0, T); then ip = 0 and / = 0, so that (6.212) holds true.

We can then consider

v&\ ( I v2dxdt;y(T;v)£z0 + (30B1,yt(T;v)€z1+p1B (6.217)
v 2 J JOx(0,T)

where, in (6.217), y(v) is obtained from v via (6.209), {z°,z1} is given
in H^(Cl) x L2(Q), Bi (respectively B) is the closed unit ball of H%(£1)
(respectively L2(f2)).

Similar considerations to everything which has been said in the previous
sections can be adapted to the present situation, from either the purely math-
ematical point of view (see Lions (1988b)) or the numerical point of view.

Remark 6.28 One can also consider pointwise control, as in

ya + Ay = v(t)6(x - b) in Q, ,
y(0) = jfc(0) = 0, y = 0 on E (to fix  ideas). <

Control problems for systems modelled by (6.218) have been discussed in
Lions (1988b, Volume 1, Chapter 7). Interesting phenomena appear con-
cerning the role of b € Cl. Methods from harmonic analysis have been used
in this respect by Meyer (1989) and further developed by Haraux and Jaffard
(1991), I. Joo (1991).

6.12. Dynamic Programming

We are going to apply Dynamic Programming to the situations described
in Section 6.11. The approach is formal, somewhat similar to the one in
Section 5.

Remark 6.29. We could have applied dynamic programming to the situ-
ations described in Sections 6.1 or 6.10, but the situation is simpler for the
control problems described in Section 6.11.

We consider for s given in (0, T)

f ytt + Ay = vxo in O x (s,T), .
\ y(s) = h°, yt(s) = h\ y = 0 on Es = T x (s, T),
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with {/i 0,/!1}  G H&(Q) x L2(n).
We introduce

<t>(h o,h1,s) = iaf [ [ v2dxdt (6.220)
v J JOx{s,T)

where, in (6.220), v is such that {y(v),v} satisfies (6.219) and

y(T;v)ezo + (3oBu yt(T;v) G z1 + faB. (6.221)

The quantity (j>(h°, h1, s) is finite for every

z° G H^Sl), z1 G L\n), /30>0, /?i>0
if and only if the Holmgren's uniqueness theorem applies for O x (s, T) in
Vl x (s,T). This is true for s < SO,SQ a suitable number in (0, T). In that
case, the infimum in (6.221) is finite for s < SQ, implying that the function
4> is defined over HQ(Q) X L2(Cl) x (0,so)-

Let us write now the Hamilton- Jacobi-Bellmann (HJB) equation; we take

v(x,t) = w(x) in O x (s,s + e). (6.222)

With this choice of v, {y(t),yt(t)} 'moves' during the time interval (s, s + e)
from {h0,^} to

{h° + ehl,hl + ewXo - eAh0} + 0(e2)

(assuming that h° G HQ(£1) n i/2(r2)). Then, according to the optimality
principle, we have

(f){ho,h\s) = m.i\£- I w2&x + <f>{h Q + eh1^1 + ewXow [2 Jo

-eAh°,s + e)] +0(e2). (6.223)

Expanding 4> we obtain

5s Vô  / V /̂i1 / w€L?(O)[2 Jo ydh1 ) \
(6.224)

This is the HJB equation. We have the 'final' condition

<t>(h°,h\s0) = !0X{WnE,
^v ' ' u/ \ +oo otherwise v '

where E is the set described by y(so; v), yt(so', v) when y satisfies yu + Ay =
vxo in f i x (so,T), v G L2(O x {sQ,T)) y = 0 on T x (so,T), and (6.221)
holds true. This definition is not constructive. See Remark 6.31 below.

Remark 6.30 We emphasize once more that the above approach is fairly
formal.
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Remark 6.31 The real time optimal policy is given at time t € (0, so) by

^ ° \ . (6.226)

How to proceed for t G (so> T) seems to be an open question, even from a
conceptual point of view.

6.13. On the application of controllability methods to the
solution of the Helmholtz equation at large wave
numbers

6.13.1. Introduction
Stealth technologies have enjoyed a considerable growth of interest during

this last decade both for aircraft and space applications. Due to the very
high frequencies used by modern radars the computation of the Radar Cross
Section (RCS) of a full aircraft using the Maxwell equations is still a great
challenge (see Talflove (1992)). Prom the fact that boundary integral methods
are not well suited to general coated materials, field approaches seem to
provide an alternative which is worth exploring.

In this section, we consider a particular application of controllability meth-
ods to the solution of the Helmholtz equations obtained when looking for
the monochromatic solutions of linear wave problems. The idea here is to
go back to the original wave equation and to apply techniques, inspired by
controllability, which find its time periodic solutions. Indeed, this method
(introduced in Bristeau, Glowinski and Periaux (1993a,b)) is in competition
with - and is related to - the one in which the wave equation is integrated
from 0 to +oo in order to obtain asymptotically a time periodic solution;
it is well known from Lax and Phillips (1989) that if the scattering body
is convex then the solution wil l converge exponentially to the periodic solu-
tion. On the other hand, for non-convex reflectors (which is quite a common
situation) the convergence can be very slow; the method described in this
section substantially improves the speed of convergence of the asymptotic
one, particularly for stiff problems where internal rays can be trapped by
successive reflections.

6.13.2. The Helmholtz equation and its equivalent wave problem
Let us consider a scattering body B, of boundary dB = 7, 'illuminated'

by an incident monochromatic wave of frequency / = k/2n (see Figure 60).

In the case of the wave equation Uu — Au = 0 with a periodic solution u —
Re(£/e~lfe*) , the associated Helmholtz equation, satisfied by the coefficient
U(x) of e~lkt is given by

k2U = 0mRd\B{d = 2,3), (6.227)
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Fig. 60. Ui is the incident field.

U = G on 7. (6.228)

In practice, we bound Rd\B by an artificial boundary F on which we pre-
scribe, for example, an approximate first-order Sommerfeld condition such
as

dU
- ikU = 0 on F;
on

(6.229)

now, equation (6.227) is prescribed on 0 only, where fi is this portion of
Rd\B between 7 and F. In the above equations, U is the scattered field, —G
is the incident field, U and G are complex valued functions.

Remark 6.32 More complicated (and efficient) absorbing conditions than
(6.229) have been coupled to the controllability method described hereafter;
they allow the use of smaller computational domains. The resulting method-
ology will be described in a forthcoming publication.

Systems (6.227)-(6.229) is related to the T-periodic solutions (T = 2ir/k)
of the following wave equation and associated boundary conditions

utt - Au = 0 in Q{= Q x (0, T)), (6.230)

du du

(6.231)

(6.232)

where, in (6.231), g(x, t) is a time periodic function related to G by g(x, t) =
Re{e-'lktG(x)). If we denote

G(x) = GT(x)+iGim(x),

g satisfies

g(x, t) = GT(x) cos kt + Gim(x) sin kt.
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The goal, here, is to find periodic solutions to system (6.230)-(6.232) without
solving the Helmholtz problem (6.227)-(6.229).

In the following, we look for T-periodic solutions to systems such as
(6.230)-(6.232); this means solutions satisfying

u(0) = u(T), ut(0) = ut(T). (6.233)

These solutions can be written

u(x, t) = Re (e-iktU(x))

(or u(x, t) = UT cos kt + U-im sin kt) where U = UT + iUim is the solution of
(6.227)-(6.228); so we have

6.13.3. Exact controllability methods for the calculation of time periodic so-
lutions to the wave equation

In order to solve problem (6.230)-(6.233) we advocate the following ap-
proach whose main merit is to reduce the above problem to an exact control-
lability one, close to those problems whose solution is discussed in Sections
6.1 to 6.12. Indeed, problem (6.230)-(6.233) is clearly equivalent to the
following one:

Find e = {e^e1}  such that

utt - An = 0 in Q, (6.234)

u = g on a, (6.235)

£ + £-0«E, (,236)

u(0 )=e°, «t(O) = e\ u(T) = e°, ut(T) = e1. (6.237)

Problem (6.234)-(6.237) is an exact controllability problem which can be
solved by methods directly inspired by those in Sections 6.1 to 6.10. We
shall not address here the existence and uniqueness of solutions to problem
(6.234)-(6.237) (these issues are addressed in Bardos and Rauch (1994));
instead we shall focus on the practical calculation of such solutions, assuming
they do exist.

6.13.4- Least-squares formulation of the problem (6.234)-(6.237)
In order to be able to apply controllability methods to the solution of

problem (6.234)-(6.237) the appropriate choice for the space E containing
e = {e°, e1}  is fundamental. We advocate

E = Vg x L2(n), (6.238)
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where

Vg = {<p\<pe H1{Q),LP = 0(0) on 7 } . (6.239)

In order to solve (6.234)-(6.237), we use the following least-squares formu-
lation (where y plays the role of u in (6.234)-(6.237)):

minJ(v) (6.240)

with

Jiy) = \ j {\V{y{T)-vo)\2 + \yt(T)-vl\2)dx, Vv = 0 / V } , (6.241)
2 Jn

where, in (3.241), the function y is the solution of

Vtt - Ay = 0 in Q, (6.242)

y = g on a, (6.243)

£ + g-0«L, (,244)

y(0) - v°, yt{0) = v\ (6.245)

The choice of J is directly related to the fact that the natural energy )
associated with the system is denned by

£(t) = l [(\Vy\2 + \yt\
2)dx. (6.246)

Assuming that e is the solution of problem (6.240), it will satisfy the follow-
ing equation

( / (e) ,v) = 0, VvG£0, (6.247)

where, in (6.247), Eo = Vo x L2(Q) (with Vo = {<p \ <p e H1^), <p = 0 on 7})
and where ) denotes the duality pairing between E'Q and EQ (E'O: dual
space of Eo). In (6.247), J' denotes the differential of J.

Problem (6.247) can be solved by a conjugate gradient algorithm (de-
scribed in Section 6.13.6) operating in E; in order to implement this algo-
rithm, we need to be able to compute J'(v),Vv € E; this is the object of
the following section.

6.13.5. Calculation of J'
To compute J' we use a perturbation analysis: starting from (6.241), we

obtain

) = <J'(v),<5v)

= / V(v° - y(T))  V6v° dx+ [ (v1 - yt{T))8vl dx
Jn Jo.
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V(y(T) - v°)  V6y(T) dx
n

+ f {yt(T)-vl)8yt{T)dx. (6.248)
Jn

We also have from (6.242)-(6.245):

6ytt -A6y = 0 in Q, (6.249)

6y = 0 on a, (6.250)

y = 0 on E, (6.251)

<5y(0) - <5u°, <5yt(0) = ft;1. (6.252)

Consider now a function p of x and £ such that the function p(t) : x —> p(x, t)
vanishes on 7; next, multiply both sides of (6.249) by p, integrate on Q and
then by parts. It follows then from (6.250), (6.251) that

/ 6ytpdx\o - / 6yptdx\I + / puSydxdt+ / Vp-V6ydxdt
Jn Jn JQ JQ

+ f 6ypdT\l - [  pt6ydrdt - 0. (6.253)
Jr Js

Suppose that p satisfies

/ ipttz + V p  Vz) dx- I ptzdV = 0, Vz G V0,p = 0 on a, a.e. on (0,T);

(6.254)
(6.254) is equivalent to

ptt - Ap = 0 in Q, (6.255)

p = 0 on a, (6.256)

^ - ^ = 0 on E. (6.257)

Using (6.252), equation (6.253) reduces then to

f 6yt(T)p(T)dx- I 6y(T)pt(T)dx+ f 6y(T)p(T)6T'
Jn Jn Jr

- / 6yt(0)p{0) dx - f 6y(0)Pt{0) dx + [  6y{0)p(0) dT
Jn Jn Jr

= [  p(0)6vl dx- [  pt(0)Sv° dx + f p(0)6v° dr. (6.258)
Jn Jn Jr

Let us define p(T) and pt{T) by

p(T) = yt(T) - v1 (6.259)
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and

f Pt(T)zdx= f{yt{T)-vl)zdT- f V(y(T) - v°)  Vzdx, Vz e Vo,Jn JT Jn
(6.260)

respectively. Finally, using (6.248) and (6.258)-(6.260), with z = Sy{T),
shows that

(j'(v),w) = [  V{v°-y(T))-Vw°dx- [ pt(0)w°dx
Jn Jn

+ f p(0)w°dF+ [ p(0)w1dx+ f (v1 -yt{T))wldx,
JT Jn Jn

Vw = {wo,w1}eEo, (6.261)

where, in (6.261), p is the solution of the adjoint equation (6.255)-(6.257),
completed by the 'final conditions' (6.259), (6.260).

Remark 6.33 Relations (6.260) and (6.261) are largely formal; however, it
is worth mentioning that the discrete variants of these two relations make
sense and lead to algorithms with fast convergence properties.

Remark 6.34 The well-posedness of problem (6.240) is discussed in Bardos
and Rauch (1994), where sufficient conditions for existence and uniqueness
are given.

6.13.6. Conjugate gradient solution of the least-squares problem (6.240)
A conjugate gradient algorithm for the solution of the linear problem

(6.247) (equivalent to problem (6.240)) is given by
Step 0: Initialization

e0 = {eg, ej}  is given in E. (6.262)

Solve the following forward wave problem

m2

yo

dyo +

dn

3/0(0) =

Solve the following backward wavt

d2po
dt2

PO

Ayo = 0 in Q,

= g ona,

o dyo 1eo,-^-(O) = e0.

: problem

Ap0 = 0 in Q,

= 0 on a,

(6.263)i

(6.263)2

(6.263)3

(6.263)4

(6.264)i

(6.264)2
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^ - ^ = 0 on S, (6.264)2

ith po(T) and (dpo/dt)(T) given by

- el (6.264)4

f ^(T)zdx = f P0(T)zdT~ [ V(yo(T)-e°o)-Vzdx, Vz € Vo, (6-264)5n ot Jr Jn
respectively.

Define next g0 = {sg,^}  G #o(= Vo x L2(fi) ) 6y

/ Vg°0  Vzdx = f V(e°0 - yo(T))  Vzdx - / ^?(0)zdz
7n in in at (6.265)i

+ P0(0)zdT, VzeVb,
ir

^ (6-265)2

and i/ien

For k > 0, suppose
Wfc+i as follows

Step 1: Descent

Solve then

that efc, gfc,

a2y f c

at2

dy~k

dt

Vk(O) =

02pk

dt

w° = g°.

Wfc are known,

— liyf e — u in

yfe = 0 on a,

+ | ^ = 0on
an

0 ^ tn\

— ^Pfe — u i n

pfc = 0 on <r,

we compute then e

Q,

s,

Q,

(6.266)

fe+i) gfc+ii

(6.267)i

(6.267)2

(6.267)3

(6.267)4

(6.268)i

(6.268)2

ith pk{T) and (dpk/dt)(T) given by

Pk(T) = ?B(T)-wl (6.268)4
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f ~(T)zdx = f pk(T)zdT - f V(yk(T) - w°k)  Vzdx, \/z € Vo,
in ot JT in

(6.268)5
respectively. Define next gk = {gk,gk} G VQ X L2(Q) by

f Vg°k  Vzdx = f V(w°k - yk(T))  Vzdx - / ^ ( 0 ) ^ dx
in Ja Jn ot

J
(6.269)i

l ( ) l ^ ( ) (6.269)2

and then pk by

Pk= I (\Vgl\2 + \gl\2)dxl f {Vgl-Vwl+glwDdx. (6.270)
in / in

We update then ek and gk by

e/c+i = efe - pfcWfc, (6.271)

gfc+i = gfc - PkSk- (6.272)

Step 2: Test of the convergence and construction of the new descent direc-
tion. If (U\Vg°k+1\

2 + Isi+xlV^VUnaVso0! 2 + I^I 2)<^)1/2 < * take
e = efc+i; if not, compute

/ ( | 5 f e + 1 | | 5 i + 1 | ) / f { \ g l \ \ g l \ ) (6 .273)
n / in

and update w^ by

Wfc+i = gfc+i + 7feWfe. (6.274)
Do k = fc + 1 and 50 to (6.267).

Remark 6.35 Algorithm (6.262)-(6.274) looks complicated at first glance.
In fact, it is not that complicated to implement since each iteration requires
basically the solution of two wave equations such as (6.267) and (6.268) and
of an elliptic problem such as (6.269) 1. The above problems are classical
ones for which efficient solution methods already exist.

Remark 6.36 Algorithm (6.262)-(6.274) can be seen as a variation of the
asymptotic method mentioned in Section 6.13.1; there, we integrate the pe-
riodically excited wave equation until we reach a periodic solution (i.e. a
limit cycle). What algorithm (6.262)-(6.274) does indeed is to periodically
measure the lack (or defect) of periodicity and use the result of this measure
as a residual to speed up the convergence to a periodic solution. In fact,
a similar idea was used in Auchmuty, Dean, Glowinski and Zhang (1987)
to compute the periodic solutions of systems of stiff nonlinear differential
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equations (including cases where the period itself is an unknown parameter
of the problem).

6.13.7. An FD/FE implementation
The practical implementation of the previously presented control-based

method is straightforward. It is based on a time discretization by the centred
second-order accurate explicit FD scheme, already employed in Sections 6.8
and 6.9. This scheme is combined to piecewise linear FE approximations
(as in Sections 6.8 and 6.9) for the space variables; we use mass lumping -
through numerical integration by the trapezoidal rule - to obtain a diagonal
mass matrix for the acceleration term. The fully discrete scheme has to
satisfy a stability condition such as At < Ch, where C is a constant. To
obtain accurate solutions, we need to have h at least ten times smaller
than the wavelength; in fact, h has to be even smaller (h « A/20) in those
regions where internal rays are trapped by successive reflections. For the
mesh generation, the advancing front method proposed by George (1971)
has been used; this method (implemented at INRIA by George and Seveno)
gives homogeneous triangulations (see the following figures).

6.13.8. Numerical experiments.
In order to validate the methods discussed in the above sections, we have

considered the solution of three test problems of increasing difficulty, namely
the scattering of planar incident waves by a disk, then by a nonconvex re-
flector which can be seen as a semi-open cavity (a kind of - very - idealized
air intake) and finally the scattering of a planar wave by a two-dimensional
aircraft related body. For these different cases the artificial boundary is lo-
cated at a 3A distance from B and we assume that the boundary of the
reflector is perfectly conducting.

The following results have been obtained by Bristeau at INRIA (see Bris-
teau, Glowinski and Periaux (1993a,b,c) for further numerical experiments
and details).

Scattering by a disk. Before discussing our numerical experiments, let us
observe that model (6.234)-(6.236) assumes, implicitly, that its solutions
propagates with velocity 1, implying that, here, the wavelength is equal to
the period. If c(> 0) is different from 1, we shall rescale x and t, so that
c = 1. In the following examples, the data are given in the MKSA system
before rescaling.

Example 1 (Scattering by a disk) For this problem, B is a disk of radius
0.25 m, k = 2?r/ with / = 2.4 GHz, implying that the wavelength is 0.125 m;
the disk is illuminated by an incident planar wave coming from the left.
The artificial boundary is located at a distance of 3A from B. The FE
triangulation has 18,816 vertices and 36,970 triangles; the mean length of the
edges is A/15, the minimal value being A/28, while the maximal one is A/10.
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Fig. 61. Contours of the scattered field (real component).

The value of At is T/35. To obtain convergence of the iterative method, 74
iterations of algorithm (6.262)^(6.274) were needed (with e = 5 x 10~5 for
the stopping criterion) corresponding to a 3 min computation on a CRAY2.
Figure 61 shows the scattered field e° (real component of the Helmholtz
problem solution). For this test problem where the exact solution is known,
we have compared on Figures 62 and 63 the computed solution ( ) with
the exact one ( ) on two cross sections (incident direction, opposite to
incident direction, respectively). Of course, for this problem, the asymptotic
method (just integrating the wave equation from 0 to nT, n 'large') is less
CPU time consuming; we have chosen this example just to test the accuracy
of the approximations.
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0.0
sol. calculee _sol. exacte

Fig. 62. Comparison between exact ( ) and computed ( ) scattered fields
e°(:ri,0) (incident side).

0.0
sol. calculee _sol. exacte

Fig. 63. Comparison between exact (
e°(xi,0) (shadow side).

) and computed ( ) scattered fields
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Remark 6.37 We can substantially increase the accuracy by using on F
instead of (6.232), second-order absorbing boundary conditions like those
discussed in Bristeau, Glowinski and Periaux (1993c).

Example 2 (Scattering by semi-open cavities) We have considered two semi-
open cavities. We choose / = 3 GHz implying that the wavelength is 0.10 m.
For the first cavity, the inside dimensions are 4A x A and the thickness of the
wall is A/5. The FE triangulation has 22,951 vertices and 44,992 triangles.
The value of At corresponds to 40 time steps per period (i.e. At — T/40).
We consider an illuminating monochromatic wave of incidence a = 30°,
coming from the right. The contours of the scattered fields e° (real part)
and e1/k (imaginary part) are shown on Figures 64 and 65, respectively.
The convergence is reached with 136 iterations (e = 5 x 10~5), corresponding
to 8 min of CPU time on a CRAY2. Figure 66 shows the convergence of
the residuals Re° and Rê  associated to the controllability method; these
residuals are defined by

R o_ \\ek+i - ek\\^(Q) R i _ 114+1 -e&llL'(n)
k~ H 4 \ \ '  k H

The asymptotic method gives the same solution, but, for this nonconvex
obstacle, the convergence is much slower (800 iterations, 18 min of CPU
time on a CRAY2) than the convergence of the controllability method, as
shown on Figure 67.

We have considered a second semi-open cavity for the same frequency
and wavelength; the inside dimensions of this larger cavity are 20A x 5A,
the wall thickness being A. For this problem where many reflections take
place inside the cavity, we need a fine triangulation. The one used here has
208,015 vertices and 412,028 triangles, with A/30 as the mean length of the
edges inside the cavity (A/20 outside). We have taken At = T/70. The test
problem corresponds to an illuminating wave of incidence a = 30°, coming
from the right. The contours of the total field related to e° are shown on
Figure 68. Figure 69 shows the convergence of the cost function J(e )̂ with
J(-) defined by (6.241); we have also shown on Figure 69 the convergence to
zero of the two components of this cost function (the one related to e ,̂ and
the one related to e\).

For this difficult case the convergence is slower than for the above cavity
problem (300 iterations instead of 136).

We have shown on Figure 70 some details of the FE triangulation close
to the wall at the entrance of the cavity.

Example 3 (scattering by a two-dimensional aircraft related body) We con-
sider the reflector defined by the cross section of a Dassault Aviation Falcon
50 by its symmetry plane; the shape of the air-intake is given and we have
artificially closed it in order to enhance reflections. The plane length is about
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Fig. 64. Contours of the scattered field (real part; a = 30°).

18 m, while its height is 6 m. We take / = 0.6 GHz, so that A = 0.5 m.
The FE mesh has 143,850 vertices and 283,873 triangles; Figure 71 shows
an enlargement of the mesh near the air intake. We have used At = T/40.
We consider an illuminating wave with a = 0° as angle of incidence. The
contours of the total field (real part) are presented on Figure 72; we observe
the shadow region behind the aircraft. The convergence (for e = 5 x 10~5)
is obtained after 260 iterations, corresponding to 90 min of CPU time on a
CRAY2; Figure 73 shows the convergence of J(efc) to 0 as k — +oo.

Remark 6.38 For all the test problems discussed above, we have used
a direct method based on a sparse Cholesky solver to solve the (discrete)
elliptic problem encountered at each iteration of the discrete analogue of
algorithm (6.262)-(6.274). Despite the respectable size of these systems (up
to 2 x 105 unknowns) this part of the algorithm takes no more than a few
percent of the total computational effort.

Indeed, most of the computational time is spent integrating the forward
and backward wave equations; fortunately this is the easiest part to par-
allelize (hopefully in the near future; see Bristeau, Erhel, Glowinski and
Periaux (1993)) as it is based on an explicit time discretization scheme.
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Fig. 65. Contours of the scattered field (imaginary part; a = 30°).

6.13.9. Further comments
We have discussed in this section a controllability based novel approach to

solving the Helmholtz (and two-dimensional harmonic Maxwell) equations
for large wavenumbers and complicated geometries. The new method so far
appears to be more efficient than traditional computational methods which
are based on either time asymptotic behaviour or linear algebra algorithms
for very large indefinite linear systems.

The new methodology appears to be promising for the three-dimensional
Maxwell equations and for heterogeneous media, including dissipative ones.
For very large problems, we shall very probably have to combine the above
method with domain decomposition and/or fictitious domain methods, and
also to higher-order approximations, to reduce the number of grid points.

6.14. Further  problems

In this section we have discussed controllability issues concerning wave equa-
tions such as

utt - c2Au = 0; (6.275)
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Fig. 66. Convergence of the residual (control solution): , residual for y;
, residual of yt

a basic tool for studying exact or approximate controllability for equations
such as (3.275) has been the Hilbert Uniqueness Method (HUM). Actually,
HUM has been applied in Lagnese (1989) to prove the exact boundary con-
trollability of the Maxwell equations

at at
+ V x E = 0 in Q, (6.276)
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Fig. 67. Convergence of the residual (asymptotic solution):
, residual of yt-

-, residual for y;

V - E = V - H = 0in<2 (6.277)

(see also Bensoussan (1990)); most computational aspects still have to be
explored.

The Hilbert Uniqueness Method has been applied in Lions (1988b) and
Lagnese and Lions (1988) to the exact or approximate controllability of
systems (mostly from elasticity) modelled by Petrowsky's type equations.
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Fig. 68. Contours of the total field (a = 30°).

Concerning the numerical application of HUM to the exact controllability
of Petrowsky-type equations modelling elastic shells vibrations we refer to
Marini, Testa and Valente (1994).

Finally, very littl e is known about the exact or approximate controllability
of those (nonlinear) wave (or Petrowsky's type) equations modelling the
vibrations of nonlinear systems; we intend, however, to explore the solution
of these problems in the near future.

7. COUPLED SYSTEMS

In Sections 1 to 6 we have discussed controllability issues for diffusion and
wave equations, respectively. The control of systems obtained by the cou-
pling of different types of equations brings new difficulties which are worth
discussing, therefore justifying the present section. The numerical aspects
will not be addressed here, but in our opinion this Section can be a starting
point for investigations in this direction.

In this Section, we shall focus on the controllability of a simplified Ther-
moelasticity system but it is likely that the techniques described here can
be applied to systems modelled by more complicated equations.

7.1. A problem from thermoelasticity

Let Q be a bounded domain of Rd, d < 3, with a smooth boundary T.
Motivated by applications from Thermoelasticity we consider the following
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600. 800.

Fig. 69. Convergence of J(efe) ( ), of the e£ component of J{ek) ( ), and
of the eJ. component of J(efc) ( ).

system

dt2
- Ay + aV9 = 0 in Q = ft x (0, T),

at ot
(7-1)2
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Fig. 70. Enlargement of the mesh close to the cavity intake.

where y = {yj}f =1,a > 0. In (7.1), y (respectively 9) denotes an elastic
displacement (respectively a temperature) function of x and t. Scaling has
been made so that the constants in front of —A are equal to 1 in both
equations.

The initial conditions are

y(0) = 0, T?(0 ) = 0, (7.2):

9(0) = 0. (7.2)2

The control is applied on the boundary of ft, actually on To C F. Also, it is
only applied on the component y of the state vector {y , 9}.

Considering the boundary conditions, we shall consider the two following
cases:

Case I

y =

and

0 on E\S0,E = T x ( 0 ,f

9 = 9Q is given on E.

(7.3)

(7.4)
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Fig. 71. Enlargement of the mesh close to the aircraft air intake (by courtesy of
Dassault Aviation).

Case II

with (7.4) unchanged.

dy
dn

v on So,
0 on S\S0

(7.5)

Remark 7.1 One can consider a variety of other types of boundary condi-
tions and controls. The corresponding problems can be treated by methods
very close to those given below.

Remark 7.2 In order to simplify the proofs and formulae below, we shall
take

0o = 0, (7.6)

but this is just a technical detail.

In the following sections, we shall study the spaces described by y(T),
(dy/dt)(T) and 6(T); we shall show that under 'reasonable' conditions, one
can control y(T) and (dy/dt)(T) but not 0(T).

Remark 7.3 Controllability for equations (7.1)-(7.4) has been studied in
Lions (1988b,Vol. 2) (see also Narukawa (1983)). We follow here a slightly
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800.

Fig. 72. Convergence of the residuals.

different approach, our goal being to obtain constructive approximation
methods.

7.2. The limi t cases a —> 0 and a —> +oo

In order to obtain a better understanding, the limit cases a —> 0 and a —>
+oo are worthwhile looking at. Moreover, they have intrinsic mathematical
interest, particularly when a —> +oo.
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Fig. 73. Contours of the real part of the total field around a Falcon 50 two-
dimensional cross section (a = 0°) (by courtesy of Dassault Aviation).

7.2.1. The case a -> 0.
This case is simple. The coupled system (7.1)-(7.4) (or its variant (7.1),

(7.2), (7.4), (7.5)) reduces to uncoupled wave and heat equations. The con-
trol acts only on the y components; we then have

 ̂ - Ay = 0 in Q, y(0) = ^ ( 0) = 0, y = v on Eo, y = 0 on S\S0.
(7.7)

Since A is a diagonal operator we recover cases discussed in Section 6.

Remark 7.4. The general linear elasticity system (with A replaced by
XA+figraddiv; A, fj,: Lame coefficients) would lead to similar considerations,
with more complicated technical details.

Remark 7.5. Similar considerations apply when (7.3) is replaced by (7.5).

7.2.2. The case a —> +oo (boundary conditions (7.3).)
We shall assume (this is necessary for what follows) that

JTo
v-ndr = 0. (7.8)

Then, assuming v smooth enough (a condition which does not restrict the
generality, since we are going to consider approximate controllability) and

9v.
: 0 ,T, V(=o = T7t =o = O,

one can construct a function 0 such that

is smooth in Cl x (0, T), V  0 = 0 in Q x (0, T),
= v on SQ, <j>  = 0 on S \SQ.

(7.9)

(7.10)
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Then if we introduce z = y — </>,  we obtain

g - Az + aV* = - (  ̂ - A ^ (= f) in Q, (7.11)!

<9z
z = 0, 0 = O o n £, z(0) = —(0) = 0, 0(0) = 0. (7.11)3

We now multiply (7.11)i (respectively (7.11)2) by dz/dt (respectively 9).
We obtain with obvious notation (||  || = ||  H

I d r , ,3zl l 9 . . , ,_ ll9 . , ,^ l l 9 l . ,, .,,9 . I Y _ ~ 5 z \ / dz
' '  Oil I  ' ' Oi '2dt L at"

= (f - ) (7 12)

V at/
But

/ fl*\ /  tin \
= 0, (7.13)' dt.

so that (7.6) leads to a priori estimates which are independent of a.
I t follows then, that if we denote by {z Q,0a}  the solution of (7.11) one

has when a —> +oo

| z Q , ^ | -̂  { z , ^ }  weakly*  in L°°(0,T; HfcQ) x L2(Q)),

0Q -» 0 weakly in L 2(0 ,T ; ^ ( f i ) ) and weakly * in L°°(0,T; L2(^)).
(7.14)

Returning to the notation {y , 0} , we have that ya —> y, where y is the
solution of

- Ay + Vp = 0 in Q, V  y = 0 in Q,
f>v (7-15)

We clearly see why (7.8) is necessary (from the divergence theorem). We
observe that the system satisfied by {y , 0} is again uncoupled at the limit
when a —> +00, so that the best thing we can hope is the controllability of
{y(T) , (dy/dt)(T)}, but not, of course, the controllability of 0(T).

Remark 7.6. A systematic study of the controllability of system (7.15)
remains to be done (see, however Lions (1990b) for a discussion of the con-
trollability of system (7.15) under strict geometrical conditions).

Remark 7.7. Similar results hold when (7.3) is replaced by (7.5). Then no
additional condition such that (7.8) is needed.
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7.3. Approximate partial controllabilit y

We now return to the case 0 < a < +oo; we assume that

when v spans (L2(E0))
d, then |y(T; v), ^ ( T ; v)}  ( ? 1 6)

spans a dense subset of {L2(Q) x iJ~1(r2))d,

where {y(v),0(v)}  is the solution of (7.1)-(7.4).

Remark 7.8. Sufficient conditions for (7.16) to be true are given in Chapter
1 of Lions (1988b, Vol. 2); they are of the following type:

(i) So is 'sufficiently large',
(ii ) 0 < a < ctQ.

Necessary and sufficient conditions for (7.16) to be true do not seem to
be known. Interesting results have been obtained by E. Zuazua (1993).

We can then consider the following optimal control problem

inf - / |v|2 dS, v € (L2{Z0))
d such that

V 2 l / Eo * (7-17)
y(T;v) G z° + (30B, ^ ( T ; v) G z1 +/?iB_i,

where B (respectively B-i) denotes the unit ball of (L2(Q))d (respectively
d

Problem (7.17) has a unique solution; it can be characterized by a varia-
tional inequality which can be obtained either directly or by duality methods.
Here we use duality, because (among other things) it will be convenient for
the next section (where we introduce penalty arguments).

Formulation of a dual problem We follow the same approach as in
Section 6.4. We define an operator L from (L2(£0))

d into (H~1(fl))d x
(L2(fi)) d by

Lv={-^(T;v),y(T;v)} . (7.18)

We define next i*\ and F2 by

dE, (7.19)i

+00 otherwise.

Problem (7.17) is then equivalent to

inf \Fl(v) + F2(Lv)}. (7.20)
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By duality, we obtain

inf [
V£(L 2(E0))

d
F2(Lv) ] = - . inf [F?(L*f)

f l ( \ \ d ? « d

(7.21)
The operator L* is defined as follows. We introduce (p, ̂  solution of

—^- - Aip - aV  <p = 0 in Q,
ot

ip = 0, <fi  = 0 on S.

Thenif f ^ { fO. f 1} , wehave

L* f = f^  on
an

( 7- 2 2 )l

= 0, (7.22)2

(7.22)3

(7.23)

We obtain thus as dual problem (i.e. for the minimization problem in the
right-hand side of (7.21))

(7.24)

Remark 7.9. The same considerations apply to the Neumann controls (i.e.
of type (7.5)).

7.4. Approximate controllabilit y via penalty

We consider again (7.1)-(7.4) (with 6Q = 0) and we introduce (with obvious
notation):

So

In (7.25) we have

k — {ko, ki}, ki > 0, ki 'large' for i = 0,1.

The control problem

inf Jfc(v)
ve(

has a unique solution, u .̂

(7.26)

(7.27)
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Considerations similar to those of Section 6, apply; thus we shall have

y(T; ufc) G z° + (30B, ^ ( T ; u f c ) G z' + ftB-i, (7.28)

for k 'large enough', the 'large enough' not being denned in a constructive
way.

In order to obtain estimates on the choice of A;, we wil l now consider
the dual problem of (7.25). We consider again, therefore, the operator L:
(L 2(£0))d -> (H-1(n))d x (L2(n))d, defined by

and we introduce

F3(f ) = i/collf1 - z° | | |2 + ifcxHf0 + z1 ! ^ - !

With Fi(-) still denned by (7.19)i, we clearly have

inf Jf c(v)= inf
vG(L2(E0))

d e(L2(E
It follows by duality that

(7.29)

(7.30)

(7.31)

with f = {f o,fi }  G {H&(n))d x (L2(ty)d in (7.31).
After some calculations, we obtain

in»t (v) = -

(7.32)

Kz\f°>

(7.33)
with f = {f o,fx}  G (H&(Q))d x (L2(n))d in (7.33).

Let us denote by fk the solution of (7.33); it is characterized (with obvious
notation) by

T/ie duai problem to the control problem (7.27) is therefore

inf
f

k0
/

= /z°- f1dx-(z1, f ° )
in

Vf = {f° , f1}  G (7.34)
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Similarly, the solution fp of problem (7.24) is characterized by the following
variational inequality

-\\fl\\v)

Vf G (H^(n))d x (L2(n))d. (7.35)

Taking f = fk in (7.34) (respectively f = 0 and f = 2f̂  in (7.35)) we obtain

2 J ™

/ (7.36)

Assuming that problems (7.34), (7.35) have the same solution, it follows
from (7.36), (7.37) that

+ j^ l + (7-38)

which suggests the following simple (may be too simple) rule: adjust ko, k\
so that

ifcr1 - A- (7.39)fclli^o ' = A), ^
We plan numerical experiments to validate (7.39).
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ERRATA FOR SECTION 1.10.7

(1) Due to a coding mistake the algorithm used to solve the test problems
in Sections 1.10.7.2 and 1.10.7.3 of Part I (see Acta Numerica 1994) w as

not a genuine conjugate gradient algorithm. Indeed, the search direction
sequence {wn}n>o was improperly defined leading to a slow convergence;
for the 'small' values of k (e.g. 102, 103) the computed results were essen-
tially correct, but for larger values the slow convergence prevented us from
reaching the correct limit since we stopped iterating after a fixed number of
iterations (300 or 500, depending of the test problem).

The results obtained with the corrected algorithm are given in Tables 1
to 5 (which replace the coresponding tables of Part I, on pages 345, 356,
357 and 364). Due to the fast convergence properties we have been able
to consider much larger values of the penalty parameter k than in Part I
(upto 1010). The comments (i) and (ii) in pages 345 and 356 of Part I are
still relevant for the values of k used here since the convergence is achieved
for a number of iterations which is much smaller than the dimension of the

Table 1. Summary of numerical results (target defined by (I.46I)); T = 3,
h = At = 10-2.

b

1/2

TT/6

k

102

103

104

105

106

102

103

104

105

106

102

103

104

105

106

Number of

Iterations

5
7
9
9
12

5
7
7
9
10

5
7
7
9
12

IKIkw )

0.921
1.14
1.39
1.66
2.22

0.909
1.09
1.30
1.63
2.18

0.918
1.13
1.37
1.65
2.22

h]\yT
V\\X
6.0 x
2.3 x
9.1 x
5.6 x
4.1 x

5.5 x
2.1 x
9.3 x
5.1 x
3.2 x

5.9 x
2.3 x
9.1 x
5.4 x
3.9 x

lO-2

10"2

10"3
10"3
lO-3

lO-2

10"2

10"3

10"3
lO-3

lO-2

10"2

lO-3

lO-3

lO-3
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Table 2. Summary of numerical results (target defined by (1.462)); T = 3,
h = At = 10"2.

b

V2/3

1/2

TT/6

k

102

IO3

IO4

105

IO6

10i°

IO2

103

104

IO5

IO6

10i°

IO2

IO3

IO4

IO5

IO6

l Oi °

Number of

Iterations

6
7
10
11
13
21

5
7
7
9
9
14

5
7
9
12
15
21

11

11*11 ''

\\u IU2(0,T)

1.23
1.96
5.54
11.2
37.1
585

1.27
1.74
2.42
6.26
12.7
66.7

1.24
1.84
4.84
9.87
29.7
534

VT ~ VT\\L2(O

\\yr\\mo,i)

2.2 x 10
1.9 x 10
1.6 x 10
1.4 x 10
1.3 x 10
6.7 x 10

1.1 x 10
6.3 x 10
5.2 x 10
3.8 x 10
3.0 x 10
2.5 x 10

1.9 x 10
1.6 x 10
1.4 x 10
1.2 x 10
1.1 x 10
5.9 x 10

1)

- 1

- 1

- 1

- 1

- 1

- 2

- 1

- 2

- 2

- 2

" 2

" 2

-

—

—

—

—

- 2

solution of the discrete control problem. However, comment (iii ) may apply
to situations where the discrete control problem is really badly conditioned.
The figures corresponding to the new results will be reported elsewhere. For
k = 102,103 they are practically identical to the corresponding ones in Part
I; for larger values of k we still have a good agreement.

(2) In Section 1.10.7.3 of Part I, the target function yT(x) = 27x2(l - x)
was used for the numerical calculations, instead of the function yx defined
by (1.466), i.e. yT(x) = f x2( l - x).

Table 4 shows the results obtained for yr(x) = ^ x 2 ( l — x) with the
corrected conjugate gradient algorithm; the convergence is quite fast even
for large values of k.
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Table 3. Summary of numerical results (target defined by (1.4-63)); T = 3,
h = At = 10-2.

b

V^/3

1/2

TT/6

k

102

103

104

105

106

1010

102

103

104

105

106

1010

102

103

104

105

106

1010

Number of

Iterations

5
8
10
11
13
28

5
7
9
9
12
15

5
7
9
10
13
28

\\u*\\mo,T)

0.92
2.3
7.3
16
26

2200

0.99
2.08
6.3
10
36
540

0.94
2.4
6.9
16
29

2200

\\VT ~ 2/T||L2(O,I)

\\VT\ U2(o,i)

3.47 x 10"!
3.11 x 10"i
2.72 x 10"!
2.46 x 10"i
2.4 x 10"i

2.27 x 10"i

3.32 x 10"1

2.47 x 10"i
2.36 x 10"i
2.27 x 10-i
2.16 x 10"i
1.82 x 10"i

3.43 x 10~i
3.02 x 10"i
2.66 x 10"i
2.40 x 10"i
2.34 x 10"i
2.17 x 10"1
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Table 4. Summary of numerical results (target defined by (1.^66)); T = 3,
h = At = 1CT2.

b

V2/3

1/2

TT/6

k

104

105

106

1010

104

105

106

10i°

104

105

106

10i°

Number of

Iterations |

9
12
15
16

7
9
9
9

6
11
12
15

I«1L.(O,D

10.6
18.4
21.6
34.0

1.10
1.38
1.92
3.28

10.1
21.1
26.7
49.7

1.5 x 10"1

4.0 x 10"2

1.5 x 10"2

8.3 x 10-3

3.5 x 10"!
3.5 x 10"!
3.5 x 10"!
3.5 x 10"!

1.8 x 10"!
5.6 x lO"2

2.1 x 10"2
1.0 x 10"2
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Table 5. Summary of numerical results (target defined by (1.467)); T = 3,
h = At = 1(T2.

b

>/2/3

1/2

TT/6

k

103

104

105

106

1010

103

104

105

106

1010

103

104

105

106

1010

Number of

Iterations

8
11
12
16
31

7
9
9
9
15

8
10
12
16
16

II '
11*11 " '

ll u I|L2(O,T) —

6.53
21.8
41.6
58.8
1900

2.05
2.68
6.27
12.6
66.7

5.99
27.5
57.6
89.9
326

HyrlMo.i)

5.2 x 10"!
3.0 x 10-i
1.6 x 10"1

1.3 x 10"1

7.1 x 10"2

7.1 x 10"i
7.1 x 10"i
7.1 x 10"i
7.1 x 10"1

7.1 x 10"1

6.7 x 10"i
4.2 x 10"!
2.0 x 10"!
1.3 x 10"!
6.2 x 10-2



Ada Numerica (1995), pp. 335-415

Numerical Solutions to Free
Boundary Problems*

Thomas Y. Hou
Applied Mathematics,

California Institute of Technology,
Pasadena, CA 91125

E-mail: hou@ama.caltech.edu

Many physically interesting problems involve propagation of free surfaces.
Vortex-sheet roll-up in hydrodynamic instability, wave interactions on the
ocean's free surface, the solidification problem for crystal growth and Hele-
Shaw cells for pattern formation are some of the significant examples. These
problems present a great challenge to physicists and applied mathematicians
because the underlying problem is very singular. The physical solution is
sensitive to small perturbations. Naive discretisations may lead to numerical
instabilities. Other numerical difficulties include singularity formation and
possible change of topology in the moving free surfaces, and the severe time-
stepping stability constraint due to the stiffness of high-order regularisation
effects, such as surface tension.

This paper reviews some of the recent advances in developing stable and
efficient numerical algorithms for solving free boundary-value problems aris-
ing from fluid dynamics and materials science. In particular, we will consider
boundary integral methods and the level-set approach for water waves, gen-
eral multi-fluid interfaces, Hele-Shaw cells, crystal growth and solidification.
We will also consider the stabilising effect of surface tension and curvature
regularisation. The issue of numerical stability and convergence will be dis-
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be addressed. This paper is not intended to be a detailed survey and the
discussion is limited by both the taste and expertise of the author.
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1. Introductio n

Many physically interesting problems involve propagation of free surfaces.
Water waves, boundaries between immiscible fluids, vortex sheets, Hele-
Shaw-cells, thin-film growth, crystal growth and solidification are some of
the better-known examples. These problems present a great challenge to
physicists and applied mathematicians because the underlying fluid-dynamic
instabilities, such as the Kelvin-Helmholtz and the Rayleigh-Taylor insta-
bilities, produce very rich and complex solution structures. Here we would
like to review some of the recent advances in developing efficient and sta-
ble numerical approximations for these interfacial flows, and investigate the
competing mechanism between fluid-dynamic instabilities and the physical
regularising effects such as surface tension. In many applications, surface
tension has an important effect on the dynamics of interfaces. It is espe-
cially central to understanding such fluid phenomena as pattern formation
in Hele-Shaw cells, crystal growth and unstable solidification, the motion
of capillary waves on free surfaces, the formation of fluid droplets and noise
generation at the ocean surface Prosperetti, Crum and Pumphrey (1989).

We will divide this paper into three parts. The first part is concerned
with numerical methods and their stability analysis for locally well-posed
interface problems. This includes water waves, multi-fluid interfaces and
Hele-Shaw cells with surface tension. The second part is concerned with
numerical methods for ill-posed interface problems. This includes vortex
sheets and multi-fluid interfaces without surface tension. Typically these
problems experience the Kelvin-Helmholtz and/or Rayleigh-Taylor insta-
bilities. The third part is concerned with the level-set approach which uses
front capturing techniques. Using this approach, singularity formation and
topological changes in the free surfaces can be computed naturally.

1.1. Stable discretisations for locally well-posed interfaces

In this part of the paper, we are concerned with stable numerical methods
for water waves and multi-fluid interfaces with surface tension. Accurate
simulation of these free surfaces presents a problem of considerable diffi-
culty because the underlying physical problem is very singular and is sensi-
tive to small perturbations. The boundary-integral method has been one of
the most common approaches in solving these interfacial problems; see e.g.
Pozrikidis (1992). The earliest attempt at using boundary-integral methods
can be traced back to Rosenhead (1932) in his study of vortex-sheet roll-up.
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In the early Sixties, Birkhoff (1962) extended this method to more gen-
eral fluid interface problems. The first successful boundary integral method
was developed by Longuet-Higgins and Cokelet (1976) to compute plunging
breakers. Boundary-integral methods for the exact, time-dependent equa-
tions have been developed and used in many other works, including Vinje
and Brevig (1981), Baker, Meiron and Orszag (1982), Pullin (1979), Roberts
(1983), New, Mclver and Peregrine (1985), and Dold (1992). We refer to
Schwartz and Fenton (1982) and Yeung (1982) for a review of early works
in this area. For small-amplitude surface waves, efficient numerical methods
have also been developed based on perturbations about equilibrium in Eu-
lerian variables. An expansion in powers of the surface height is used to
calculate Fourier modes. These works include Stiassnie and Shemer (1984),
West, Brueckner and Janda (1987), Dommermuth and Yue (1987), Gloz-
man, Agnon and Stiassnie (1993), and Craig and Sulem (1993). The last
paper has the advantage that the expansion is uniform in wave number.

The advantage of using boundary-integral methods is that they reduce the
two-dimensional problem into a one-dimensional problem involving quanti-
ties along the interface only, consequently avoiding the difficulty of differ-
entiating discontinuous fluid quantities across the fluid interface. However,
numerical simulations using boundary-integral methods also suffer from sen-
sitivity to numerical instabilities because the underlying problems are very
singular (Longuet-Higgins and Cokelet 1976; Roberts 1983; Dold 1992).
Straightforward discretisations may lead to numerical instabilities. This
includes some of the existing boundary-integral methods. There are two
possible sources of numerical instability. First, a certain compatibility is
required between the choice of quadrature rule for the singular velocity inte-
gral and the choice of spatial derivative. This compatibility ensures that a
delicate balance of terms at the continuous level is preserved at the discrete
level. This balance is crucial for maintaining numerical stability. Second,
the periodicity of the numerical solution introduces aliasing errors which
affect adversely the balance of terms at the discrete level. Violation of this
delicate balance of terms will result in numerical instability.

The key in obtaining stable discretisations is to identify the most singular
(or the leading-order) contributions of the method, and to see how various
terms balance one another. To this end, we need to study the symbols
of discrete singular operators, such as the discrete Hilbert transform and
its variants. By studying the leading-order discrete singular operators, we
find that a certain amount of Fourier filtering on the interface variables is
required for the compatibility of the quadrature and derivative rules, Beale,
Hou and Lowengrub (to appear) and Beale et al. (1994). The amount of
filtering is determined by the quadrature rule in approximating the velocity
integral and the derivative rule being used. With this modification, we can
prove stability of the boundary-integral method for water waves and multi-
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fluid interfaces if surface tension effects are included. We also demonstrate
that this modification is necessary for stability. Without this modification,
the schemes using finite-order derivative operators are numerically unstable;
see Subsection 3.2.

Linear analysis has contributed to understanding of numerical instabilities
for boundary integral methods. Roberts (1983) showed how to remove a
sawtooth instability. Baker and Nachbin (to appear) have performed Fourier
analysis near equilibrium for various schemes for a vortex sheet with surface
tension, identified sources of instability, and proposed new schemes which
are free of linear instabilities. Dold (1992) emphasised the role of time
discretisation with respect to instabilities.

While the spatial discretisations are proved to be stable and convergent,
stability of the time discretisation is very difficult to obtain in the presence
of surface tension. Surface tension introduces a large number of spatial
derivatives through local curvature. If an explicit time integration method
is used, these high-order derivative terms induce strong stability constraints
on the time-step. For example, the time-step stability constraint for the
Hele-Shaw flows is given by At < Ch3, where At is the time step, and
h is the minimum particle spacing. These stability constraints are time
dependent, and become more severe by the differential clustering of points
along the interface.

In (Hou, Lowengrub and Shelley, 1994) we have successfully removed this
stiffness constraint by using an efficient implicit scheme based on a new refor-
mulation of the problem. This reformulation introduces a dynamic change
of variables from the (x, y) variables to the arclength metric and tangent
angle variables. In this framework, the leading-order singular terms are
shown to be linear and have constant coefficients (in space). Thus a Crank-
Nicholson-type of discretisation can be used to eliminate the stiffness of the
time discretisation. This reformulation greatly improves the stability con-
straint. For computations of the vortex sheet roll-up in an Euler flow with
surface tension using a modest number of points (128), the time step can be
chosen 250 times larger than that for an analogous explicit method. Many
interfacial problems that were previously unobtainable are now solvable us-
ing our method, and new phenomena are discovered.

How to compute beyond the singularity time is a challenging task for the
front tracking approach. Here we propose to use curvature regularisation in
the boundary-integral formulation to continue beyond the singularity time.
This borrows the idea from the level-set approach where curvature regular-
isation has been used successfully (Osher and Sethian, 1988). Curvature
regularisation has an important property of preserving the index of a curve.
Consequently, self-crossing of a curve is excluded under this regularisation.
Moreover, the curvature regularisation is frame invariant. This is very differ-
ent from putting an artificial viscosity in the Lagrangian variable. It turns
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out that the reformulated system of the interface problem can be used most
naturally with the curvature regularisation. In motion by mean curvature,
the equation for the tangent angle is nonlinear hyperbolic in the absence of
curvature regularisation. It is well-known that a smooth initial condition
may develop a shock discontinuity at later times. An entropy condition is
required to select the unique physical weak solution. The curvature regu-
larisation plays the same role as the viscosity regularisation for hyperbolic
conservation laws. Consequently a physical continuation is obtained with
curvature regularisation. In practice, we can use high-order Godunov-type
methods developed for conservation laws to discretise the equation for the
tangent angle (parameterised in arclength variable). This has a similar ef-
fect to curvature regularisation. Curvature regularisation can also be used
to regularise the ill-posed vortex-sheet problem, providing an attractive al-
ternative to compute vortex-sheet roll-up (Hou and Osher, 1994).

The idea of using curvature regularisation to boundary-integral formula-
tions combines the advantages of both front tracking and front capturing.
By applying curvature regularisation to a free surface directly, we do not
need to introduce one extra space dimension as in the level-set approach.
More accurate numerical methods can be designed since we only deal with
the free surface and don't have to differentiate across the free surface. Also,
the stiffness can be removed easily using our reformulated system.

1.2. Boundary integral methods for ill-posed interface problems

Methods of boundary-integral type have also been used for the ill-posed cases
of fluid-interface motion, including vortex sheets and Rayleigh-Taylor insta-
bilities (Moore, 1981; Anderson, 1985; Baker et al, 1982; Krasny, 1986a,b;
Kerr, 1988; Tryggvason, 1988, 1989; Baker and Shelley, 1990; Shelley, 1992).
Usually, either a regularisation or filtering of high wavenumbers is required
to obtain numerical stability and to maintain an accurate solution. Surface
tension and viscosity have been suggested and used as physical regularisa-
tions for these ill-posed problems. We refer to (Pullin, 1982; Rangel and
Sirignano 1988; Tryggvason and Aref, 1983; Baker and Nachbin, to appear;
Hou et al., 1994a; Dai and Shelley, 1993) for numerical study of surface
tension regularisation, and Pozrikidis (1992), Tryggvason (1991) for study
using viscosity regularisations.

Study of singularity formation in vortex sheets has been an active sub-
ject in the past decade. The possibility of a finite-time singularity in vortex
sheets was first conjectured by Birkhoff (1962). The first analytical evidence
of singularity formation was given by Moore (1979, 1985) in an asymptotic
analysis. He predicted that to leading order in the initial amplitude e, the
curvature of the vortex sheet blows up at a critical time and the inter-
face forms a branch-point singularity of order 3/2. Using Taylor series in
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time, Meiron, Baker and Orszag (1982) obtained results in agreement with
Moore's. Krasny (1986) performed direct numerical simulations of vortex-
sheet motion using the point-vortex approximation and a Fourier filter to
control the growth of round-off errors. His results were also consistent with
Moore's. Before the singularity time, the numerical solution converged, but
convergence was lost after the singularity time. By using an infinite-order
approximation combined with Krasny's Fourier filtering, Shelley (1992) has
provided strong numerical evidence that the branch singularity of order 3/2
is chosen. Caflisch and Orellana (1989) have found a continuum of explicit
solutions to the Birkhoff-Rott equation which display finite-time singulari-
ties. However, the physical interpretation of these constructed singularities
is not clear since branch-type singularities were built explicitly in their initial
data. The selection mechanism of a singularity for the general initial-value
problems is not known. Caflisch, Ercolani, Hou and Landis (1993) stud-
ied propagation of singularities for the localised Moore's approximations.
The 3/2 branch-point singularities were found to be generic. Singularity
formation during the Rayleigh-Taylor instability has also been investigated
by Baker, Caflisch and Siegel (to appear) using asymptotic and numerical
methods.

To compute beyond the singularity time, certain numerical or physical
regularisation is required. Moore (1978) has derived an evolution equation
for a vortex layer of small thickness. Pullin (1992) has included surface
tensions in the evolution equation. Pozrikidis and Higdom (1985) have nu-
merically studied a periodically perturbed layer of constant vorticity. Krasny
(Krasny, 1986b, 1987; Nitsche and Krasny, 1994) has used the vortex-blob
method to study vortex-sheet roll-up and has obtained a number of inter-
esting results. Baker and Shelley (1990) have considered regularisation of
a thin vortex layer. Tryggvason (1989) has considered the vortex-in-cell as
a grid-based vortex method, and has used an improved version of the VIC
method to study vortex-sheet roll-up. Bell and Marcus (1992) used a second-
order projection method for variable density flow to study Rayleigh-Taylor
instability. These computational results using different regularisations all
produced qualitatively similar results; at least they seem to agree outside
the region of vorticity concentration.

The global existence of weak solutions for vortex-sheet initial data is not
known in general. Motivated by the numerical studies of vortex sheets in
Krasny (1986b, 1987) and Baker and Shelley (1990), DiPerna and Majda
(1987a,b), introduced the concept of measure-valued solutions for vortex
sheets. These measure-valued solutions may develop regions of vorticity
concentration and may have a non-trivial set of defeat measure. If this
is the case, the vortex-sheet solution does not satisfy the incompressible,
inviscid Euler equations in the weak sense. In the special case of one-signed
vorticity, Delort (1991) has recently proved that vortex sheets are global
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weak solutions of the Euler equations. Using Delort's result, Liu and Xin
(1994) have been able to prove that the vortex-blob calculation converges to
a weak solution of the Euler equations provided that the initial vorticity is
of the same sign. Other theoretical results for vortex-sheet motion assume
analytic initial data. Existence and well-posedness of vortex-sheet motion
have been established for analytic data for short times; see, for example,
Sulem et al. (1981), Dochun and Robert (1986, 1988), Caflisch and Orellana
(1988) and Ebin (1988).

1.3. Level-set approach

Although it is usually highly desirable to reformulate a problem into
boundary-integral equations, there are certain applications for which the
boundary-integral method has difficulty handling. For example, in crystal
growth and thin-film growth, an initially smooth front can develop cusps
and cracklike singularities, and isolated islands of film material can merge
(Gray, Chisholm and Kaplan, 1993; Sethian and Strain, 1992; Snyder et al,
1991; Spencer, Voorhees and Davis, 1991). In order to compute up to and
continue beyond the singularity time, one has to use local-mesh refinement
and local surgery techniques (Unverdi and Tryggvason, 1992). This often
introduces some numerical instability and it is done in a somewhat unsat-
isfactory way. And it becomes increasingly difficult for three-dimensional
problems.

The level-set approach developed by Osher and Sethian (1988) provides a
powerful numerical method for capturing free surfaces in which topological
singularities may form dynamically. The idea is to regard the free surface
as a level set of a smooth function defined in one order higher space di-
mensions than the free surface. Only the information of the zeroth-level
set is physically relevant to the free surface we want to compute. Thus
we have sufficient freedom in specifying the level-set function away from
the zeroth-level set. This freedom makes it possible to select a relatively
smooth level-set function at all times. The free surface may form a singular-
ity such as corners or cusps, but the level-set function still remains relatively
smooth. Typically, we would like to choose the level-set function to be a
signed distance function from the free surface. By viewing the surface as
a level set, sharp corners and cusps are handled naturally, and changes of
topology in the moving boundary require no additional effort. Furthermore,
these methods work in any number of space dimensions.

Another important property of the level-set formulation is that it pro-
vides the correct equation of motion for a front propagating with curvature-
dependent speed. This equation is of Hamilton-Jacobi type with a right-
hand-side that depends on curvature effects. The limit of the right-hand-side
as the curvature effect goes to zero satisfies an associated entropy condi-
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tion. Thus high-order numerical approximations can be devised using tech-
niques developed for the solution of hyperbolic conservation laws (Harten
et al., 1987; Colella and Woodward, 1984; Osher and Shu, 1991). Re-
cently, this approach has been applied to computation of minimal surfaces
(Chopp, 1993), compressible gas dynamics (Mulder, Osher and Sethian,
1992), crystal growth and dendritic solidification (Sethian and Strain 1992;
Osher, private communication), and interaction of incompressible fluid bub-
bles (Chang et al., 1994; Sussman, Smereka and Osher, 1994). In addition,
theoretical analysis of mean curvature flow based on the level-set model pre-
sented in Osher and Sethian (1988) has been developed by Evans and Spruck
(1991, 1992).

The rest of the paper is organised as follows. In Section 2, we intro-
duce several important examples of free boundary-value problems arising
from fluid dynamics and materials science. These include water waves,
general two-fluid interfaces, Hele-Shaw cells, a model for crystal growth
and unstable solidification. Their boundary-integral formulations will be
given. In Section 3, we present a convergent boundary-integral method for
water waves. A compatibility condition between the quadrature rule and
the discrete derivative is given, and the stability property of the modified
boundary-integral method is analysed. Examples of a class of unstable algo-
rithms are given to illustrate why certain Fourier smoothings are necessary
for our modified method to be stable. A numerical example of breaking-wave
calculation supports the applicability of the method in the fully non-linear
regime. In Section 4, we present several numerical methods for calculating
vortex sheets and vortex-sheet roll-up. These include Krasny's filtering tech-
nique for the point-vortex method, vortex-blob desingularisation for vortex
sheets, thin vortex-layer desingularisation and vortex-in-cell method calcu-
lations for vortex-sheet roll-up. In Section 5, the stabilising effect of surface
tension is considered. We first consider a stable time-continuous discret-
isation. We then propose an efficient implicit time discretisation that com-
pletely removes the stiffness of surface tension by a dynamical reformulation
of the interface problems. We also propose a new approach to compute be-
yond singularity time using our reformulated system together with curvature
regularisation. Finally, in Section 6, we consider the level-set approach for
computing topological singularities. The basic ideas of level-set approaches
are reviewed. Applications to crystal growth and incompressible multi-fluid
bubbles are discussed.

2. General two-fluid interfaces

In this section, we consider several examples of interfacial flows arising from
fluid mechanics and materials science. They are water waves, stratified two-
density interfacial flows, Hele-Shaw flows, crystal growth and solidification.
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The stratified interfacial flows have been used as models to understand mix-
ing of fluids, separation of boundary layers, generation of sounds (in bubbly
flows) and coherent structures in turbulence models. Theoretical and numer-
ical studies of Hele-Shaw flows and crystal growth have received renewed
interest and increasing attention in recent years because of the rich phe-
nomena in the physical solutions and the potential applications in pattern
formation and materials science. These interfacial problems have one feature
in common. The underlying physical instability generates a rapid growth in
the high-frequency components of the solution. Without physical regular-
isations such as viscosity or surface tension, the problems are ill-posed in
the Hadamard sense (except for water waves). It is the competition between
the stabilising regularisation effect and the underlying physical instability
that generates many fascinating solution structures. Since these problems
are highly non-linear and non-local, it is usually difficult to obtain a com-
plete understanding by using only analytical tools. Numerical simulations
become essential in our study of these interfacial problems. It is not hard
to imagine that this is a very difficult task.

2.1. Water waves without surface tension

Unsteady motion of water waves is one of the most familiar examples of
free surfaces in our everyday experience, and it illustrates a rich variety of
phenomena in wave motion. One of the spectacular properties of the sea
surface is its capacity to turn over on itself and produce breaking waves.
Mathematical difficulties in dealing with the exact equations are due to the
free boundary, and the inherent non-linear, non-local nature of the prob-
lem. The usual linear theory and shallow-water theory for small-amplitude
waves have been very useful in studying many important aspects of the wave
motion. However, they are valid only where the fluid acceleration is suffi-
ciently small compared to gravity. To obtain a better understanding of the
large-amplitude wave interactions such as wave breaking, we need to develop
effective numerical methods to compute free surface motion.

There are several different approaches that may be adopted to study free
surface motion numerically. We refer to Yeung's (1982) paper for a partial
review. The boundary-integral formulation of the equations of water waves
leads to a natural approach for computing time-dependent motions. In this
approach, the moving interface is tracked explicitly. Only quantities on the
interface need be computed. However, high-frequency numerical instabilities
are difficult to avoid, because of the non-local and non-linear nature of the
problem, and the lack of dissipation.

Consider a two-dimensional incompressible, inviscid and irrotational fluid
below a free interface. We parameterise the interface by x = (x(a, t),y(a, t)),
where a is a Lagrangian parameter along the interface. The kinematic con-
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dition only requires that the normal velocity of the interface be equal to
that of the fluid at the interface. There is no physical constraint on the
tangential velocity of the interface. Tangential motions along the interface
give only changes in frame for its parameterisation and are not physically
specified as they do not affect its shape. Later, in Subsection 5.2, we will
exploit this freedom in choosing a tangential motion to remove the stiffness
of surface tension. Here, we use the usual convention of choosing the tan-
gential velocity to be that of the fluid. Thus the interface is convected by
the fluid velocity u at the interface:

^ = u(x(a,t),t). (2-1)

The fluid velocity u is determined by the incompressible Euler equations:

fi +  U- V u ) = ~V P - P93 (2-2)

with the incompressibility constraint V  u — 0, where p and p are the fluid
density and pressure, respectively, g is the constant of gravity and j is a unit
vector in the y direction. In the absence of surface tension, the pressure
is continuous across the interface. Since a vacuum is assumed above the
interface, the pressure is equal to zero at the interface. To simplify the
presentation, we only consider water waves with infinite depth in two space
dimensions. One can easily modify the formulation to accommodate the
bottom geometry if water waves with finite depth are considered, see, for
example, Baker et al. (1982). Generalisation to three dimensions can also
be carried out, see, for example Baker (1983) and Kaneda (1990).

Due to irrotationality, we can express velocity in terms of a velocity po-
tential <f>,  that is, u = V0. Then incompressibility implies that

in the interior flow region. Furthermore, the momentum equations (2.2) can
be integrated to obtain Bernoulli's equation for the potential:

 ̂ + \\V<t>\2 + gy = 0. (2.3)

Thus if <j)(a,0) — <j>o((x)  is given initially along the interface, then we can
evaluate <f>  at later times according to (2.3). To compute the fluid velocity at
the interface, we need to evaluate V</> at the interface. It is easy to evaluate
the tangential velocity component at the interface. But determining the
normal velocity would require solving the interior problem for <p. This could
be a difficult task since the relation between the Dirichlet value of 4> and its
normal derivative at the interface is non-local. There are several ways to
relate the normal derivative of (f> to its value at the interface, each involving
a Fredholm integral equation of a different kind.



NUMERICAL SOLUTIONS TO FREE BOUNDARY PROBLEMS 345

One way to relate the normal derivative of <f>  to its value at the interface is
to use Green's third identity. This is the approach taken by Longuet-Higgins
and Cokelet (1976), among others. This corresponds to using a single-layer
potential representation. Denote by V the interface. Green's third identity
gives

J^(x(a'))G(x(a),x(a'))dx(a')

 J^(a),x(a'))dx(a')), (2.4)

where ^ is the exterior normal derivative and G is the Green's function for
the Laplace equation. In two dimensions, we have G(x,x') = ^rlog|x — x'\.
If we prescribe <j>  at the interface, then (2.4) provides an integral relation
to determine the normal derivative of (f) at the interface. Equation (2.4)
is a Fredholm integral equation of the first kind for the normal derivative
of (f). Now the solution procedure is clear. Given x(a, t) and 0(a, t) at the
interface, we can compute the normal derivative of 4> by equation (2.4). This
determines the normal velocity at the interface. The tangential velocity is
given by c/>Q/|xQ|. Then we can update x in time by (2.1), and update cp by
Bernoulli's equation.

There are some disadvantages regarding this approach. To solve for d(f)/dn
from equation (2.4), we need to invert a dense N-by-N matrix if we discretise
the integral by TV grid points. Direct inversion of a N x N matrix requires
O(N2) storage locations and O(N3) operation counts. For large N, this be-
comes prohibitively expensive. We must look for some fast iterative method
to approximately invert the dense matrix. However, the matrix associated
with a Fredholm integral of the first kind is usually not well conditioned and
the number of iterations required increases rapidly with N.

An alternative approach is to use the dipole representation. Following
Baker, Meiron and Orszag (1982) and Beale, Hou and Lowengrub (1993a),
we express the complex potential by a double-layer representation. Denote
by /i(a, t) the dipole strength and denote the interface position by complex
variable z(a,t) — x(a,t) + iy(a,t). We can write the complex potential $
in the fluid domain in terms of [i

z — z\a , i)
for z away from the interface. The complex velocity w = u — \v can be
obtained by differentiating the complex potential with respect to z and per-
forming integration by parts. We get

d$ 1 f 1 / ,
dz 2TTI J z — z(a')
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where 7 is the non-normalised vortex-sheet strength. It is given as the
Lagrangian derivative of the dipole strength, that is, 7 = fia. Using the
Plemelj formula, we obtain the limiting velocity from the fluid region on the
interface as

™(Q) = 2 î J z(a) - z(a')da> + 2z~Ja)' ( 2'5)

Here the integral is the Cauchy principal-value integral. Denote by (j) the
real potential, 4> = Re($). We can determine 7 from the condition (f>a =
<f> xxa + 4>yya = Re(wza). Using (2.5) we obtain

K = I  + Re ( - ^  / . lK \ ,Ao!).
2 V 2TTI J z(a) — z(a') )

This is a Fredholm integral equation of the second kind. The kernel is an
adjoint double-layer potential.

It is customary to assume that the interface are periodic in the horizontal
direction. Under this assumption, we can express z(a, t) = a+s(a, t), where
s(a, t) and (f)(a, t) are periodic in a with period 2TT. This also implies that the
flow is at rest at infinity. We can sum the singular kernel 1/z over periodic
intervals to obtain a periodic kernel ^cot(z/2) defined over a single period.
To summarise, we obtain a system of time-evolution equations for z and </>
as follows:

2 J 2za{a)
u(a,t)-iv(a,t), (2.6)

(uz + tT) - g-y, (2.7)

where z is the complex conjugate of z. Equations (2.6)-(2.8) completely
determine the motion of the system. We remark that Bernoulli's equation
(2.7) is different from (2.3) because of the change to Lagrangian variables.

The advantage of using the dipole representation is that the Fredholm
integral of the second kind has a globally convergent Neumann series (Baker,
Meiron and Orszag, 1982; and Beale, Hou and Lowengrub, 1993a). This
means that the equation for 7 may be solved by iteration provided that the
interface is reasonably smooth. For example, if 7J is the jth. iterate, then

1 is computed by

+1(z) = 20Q(x) - 2Re ( ^ / % V ) c ot ( ^ l _ i ^ dc/) . (2.9)



NUMERICAL SOLUTIONS TO FREE BOUNDARY PROBLEMS 347

In general, only several iterations are required for high accuracy if we use
the 7 from the previous time level as our first iterate. By keeping values
of 7 at several previous time levels, an extrapolated first iterate can be
found which will further reduce the number of iterations to typically 1 or
2. More iterations are required when the solution develops a high-curvature
region such as in breaking surface waves. If the interface is not accurately
resolved in the high-curvature region, the iteration scheme will eventually
stop converging.

2.2. Stratified two-density fluid interfaces

Here we consider the motion of general two-density interfacial flows, that is,
an interface separating two inviscid, incompressible and irrotational fluids in
the presence of gravity and possibly surface tension in two space dimensions.
In the following, the subscript 2 denotes the fluid above the interface and 1
denotes the fluid below the interface. In each fluid, we have Euler's equations

The incompressibility and irrotationality constraints imply V  Uj = 0 and
V x u, = 0. Denote the interface by F. At the interface, we impose the
Laplace-Young boundary condition which relates the pressure jump to the
curvature of the interface, K, by

[p]|r = TK,

where [p]|r denotes the jump of pressure across the interface F and r is the
surface-tension coefficient. The normal velocity is assumed to be continuous
across the interface. As in the case of water waves, these interface problems
have vortex-sheet representations. We refer to Birkhoff (1962) and Baker,
Meiron and Orszag (1982) for a derivation of the governing equations.

The velocity at the interface is not uniquely defined since the tangential
velocity in general has a jump discontinuity across the interface. It is cus-
tomary to evolve the interface with the average velocity obtained from the
limiting velocities above and below the interface. As before, we denote the
interface position by complex variable z(a, t) = x(a,t) + iy(a,t), where a
is a Lagrangian parameter along the interface. Then, the interface evolves
according to

7 ( a ' ' t } -da', (2.10)
dz _ l r
di ~ 27ri/ z(a,t)-z(a',t)

where the integral is understood as the Cauchy principal-value integral and
7 is the unnormalised vortex-sheet strength. Equation (2.10) is also called
the Birkhoff-Rott equation in the literature. The evolution equation for 7
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can be obtained from Bernoulli's equations in both sides of the interface:

where A = (pi — p2)/{p\ + P2) is the Atwood number. The curvature, K, is
evaluated by

K~ ( 4 + ^)3/2

Note that equation (2.11) is actually a Predholm integral equation of the
second kind for d7/d£. It has been shown that their Neumann series are
globally convergent in the periodic case (Baker, Meiron and Orszag, 1982).
The result also holds for unbounded domains (Beale, Hou and Lowengrub,
1993a). Therefore, the integral equation for d'y/dt is invertible and can be
solved by iteration. Equations (2.10) and (2.11) completely determine the
motion of the interface.

2.3. Hele-Shaw flows

A closely related problem is the Hele-Shaw flow which describes the viscosity-
dominant creeping flow confined between two closely spaced plates. The case
in which one fluid displaces another has been studied extensively. This be-
gins with the theoretical work of Saffman and Taylor (1958). They found
exact self-similar fingers for the interface between the two fluids in a channel
geometry when surface tension is absent. The subsequent works have mostly
focused on the role of surface tension in the selection of finger width (see
Pelce, 1988, for a review). The dynamical behaviour of Hele-Shaw flows has
received a lot of interests inspired by the complex patterns formed by an
expanding bubble (Paterson, 1981, 1985; Rauseo, Barnes and Maher, 1987).
It is believed that surface tension plays an essential role in producing these
structures.

Consider an interface F that separates two Hele-Shaw fluids of different
viscosities and densities. For simplicity, F is assumed periodic in the horizon-
tal direction. The fluid below F is labelled fluid 1, and that above is labelled
2, and similarly for their respective viscosities and so forth. The velocity
in each fluid is given by Darcy's law, together with the incompressibility
constraint:

(UJ, VJ) = - — V ( p j - pjgy), V  Uj = 0.

Here b is the gap width of the Hele-Shaw cell, /J,J is the viscosity, pj is the
pressure, pj is the density and gy is the gravitational potential. The bound-
ary conditions are exactly the same as for the two-density fluid interfaces.
That is, the normal velocity is continuous across the interface, the jump in
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the pressure across the interface is proportional to the local mean curvature,
and velocity vanishes at infinity. Again, one can derive a boundary-integral
formulation for the Hele-Shaw problem using the dipole representation; see,
for example, Dai and Shelley (1993). The interface position will satisfy
the same Birkhoff-Rott equation as in (2.10). The vortex-sheet strength 7
satisfies

( | / 7 ^  l TK Q - Rya., 7 ^ , .z(a,t)-z{a',t)

Here A  ̂= (fii  — ^/(^l + M2) is the Atwood ratio of the viscosities, r is
the non-dimensional surface tension and R is a signed measure of density
stratification (pi < p% implies R <  0). As before, the equation for 7 is
a Fredholm integral of the second kind, and it has a globally convergent
Neumann series.

2.4- Crystal growth and dendritic solidification

The last example we consider is concerned with crystal growth in unsta-
ble solidification. This problem has attracted considerable interest over the
past decade from applied mathematicians, physicists and materials scien-
tists. Here we only consider one particular model for this problem. There
are many other interesting free-boundary problems arising from materials
science that can be studied by numerical methods similar to those described
in this paper. This includes the morphological instability in thin-film growth
and the Ostwald ripening problem, see, for example, Gray, Chisholm and
Kaplan (1993), Spencer, Voorhees and Davis (1991), Spencer and Meiron
(1994), Voorhees et al. (1988) and Voorhees (1992).

Consider a container of the liquid phase of the material. Suppose we
cool the box smoothly and uniformly below its freezing temperature. If this
is done very carefully, the liquid does not freeze. The system is now in a
'metastable' state. A small disturbance, such as dropping a tiny seed of solid
phase, will initiate a rapid and unstable process known as dendritic solidi-
fication. The solid phase will grow from the seed by sending out branching
fingers. This growth process is unstable in the sense that small perturbations
of the initial data can produce large changes in the solid/liquid boundary.
One can model this phenomenon by a moving-boundary problem. The tem-
perature field satisfies a heat equation in each phase, coupled through two
boundary conditions on the unknown moving solid/liquid boundary. We
refer to Langer (1980), Gurtin (1986) and Caginalp and Fife (1988) for
derivations. Extensive asymptotic analysis for the solution has been carried
out by several authors in the literature; see Langer (1986), Chadam and Or-
toleva (1983), Kessler and Levine (1986), Benamar and Pomeau (1986), and
Gaginalp and Fife (1988). It is also possible to reformulate the equations
of motion in boundary-integral forms, as is done in Meiron (1986), Strain
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(1989), Karma (1986), Kessler and Levine (1986) and Langer (1980). This
yields accurate results for smooth boundaries.

The set-up of the problem described below follows the framework of
Strain, Sethian and Strain (1992, 1989). Consider a square container, B =
[0,1] x [0,1], filled with the liquid and solid phases of some pure substance.
The unknowns are the temperature u(x, t) for x G B, and the solid/liquid
boundary T(t). The temperature field u is taken to satisfy the heat equa-
tion in each phase, together with an initial condition in B and boundary
conditions on the container walls. Thus we have

ut= Au in5offr(t),

u(x, t) = uo(x) in B at t = 0,

u(x, t) — UB{X) for x£dB.

Since the position of the moving boundary T(t) is unknown, two boundary
conditions on T(t) are required to determine u and T(t). Let n be the
outward normal to the boundary, pointing from solid to liquid. The first
boundary condition is the classical Stefan condition:

[du/dn] = -HV on r(t).

Here [du/dn] is the jump in the normal component of heat flux du/dn from
solid to liquid across T(t), V is the normal velocity of T(t) and if is a
constant. The second boundary condition on F(t) is the classical Gibbs-
Thomson relation,

u(x, t) — —eK{n)K — ev(n)V for x G T(t),

where K is the curvature at x on F(£). Here we model the crystalline
anisotropy by assuming that eK and ey depend on the local normal vec-
tor n. Now we describe how to put the problem into a boundary-integral
form. First we subtract the temperature field due to the initial condition
UQ and the boundary condition UB- Let U(x,t) be the solution to the heat
equation

U(x,

U(x,

Define W = u-U.

Ut= AU
0) = uo(x)

,t)= UB(x,t)

Then W satisfies

Wt= AW

W{x,0)= 0

W(x,t)= 0

in B,
at t = 0,

for x € dB and t > 0.

in B-T(t),

at t = 0,

for x G dB,

(2.12)

(2.13)

(2.14)

[dW/dn] = -HV on T(t), (2.15)
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W(x, t) = -eK(n)K - ev(n)V - U(x, t) for x G T(t). (2.16)

The temperature filed U can be obtained easily since there is no free bound-
ary present. For example, we can use any standard numerical discretisation
for the initial-boundary-value problem for the heat equation to obtain U.
The difficult part is to compute W. We will formulate it as a boundary-
integral equation. We use the kernel K of the heat equation to express the
solution W to equations (2.12)-(2.16) as a single-layer potential. Given a
function V on

T

FT = Y[F(t) = {(x,t)\x G r(t),0 < t < T},

the single-layer heat potential SV is denned for (x, t) in B x [0, T] by
SV(x,t)= [ f K(x,x',t-t')V(x',t')dx'dt'.

Jo Jr(t')

Here the x' integration is over the curves comprising F(t'), and the Green
function K of the heat equation in the box B — [0,1] x [0,1] with Dirichlet
boundary conditions on the box walls is given by

oo

K(x,x',t') = Y.
k1=lk2=l

x s:'

where x = (x\,X2) and x' — (x[,x'2). The function SV defined above is a
continuous function onBx [0, T], vanishing for t = 0 or on dB, and satisfying
the heat equation every where off FT- Across F(t), SV(x, t) has a jump in its
normal derivative equal to V. Thus, W(x, t) — H-SV(x, i) is the solution to
equations (2.12)-(2.16). All that remains is to satisfy the second boundary
condition (2.16). This is equivalent to the boundary-integral equation

eK(n)K + evV + U + H f f K(x,x',t - t')V(x',t')dx'dt' = 0, (2.17)
JO JT{t')

for x G F(£). Equation (2.17) is an integral equation for the normal velocity,
V, of the moving boundary. We note that the velocity V of a point x on F(t)
depends not only on the position of F(t) but also on its previous history.
Thus in order to evaluate V(x,i), we need to store information about the
temperature in the previous history of the boundary.

The boundary-integral formulation of the problem requires the evaluation
of the single-layer potential on a M x M grid in B. The computation of
SV(x, t) by a quadrature rule at M2 points at iV time steps would require
O(M3N2) work if there are O(M) points on F(t) at each time t. For M
and N large, this becomes prohibitively expensive (Strain, 1989). A fast
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algorithm has been developed by Greengard and Strain (1990) which reduces
the operation count to O(M2) per time step. This greatly improves the speed
of the calculation. A related, but different, fast method for solidification
has also been proposed and implemented by Spencer and Meiron (1994).
Recently, Osher and his coworker (private communication) have designed an
extremely efficient numerical method based on level-set formulation which
only involves a local heat equation solver without using boundary integral
formulation. The preliminary results seem to be very promising.

2.5. Linear stability around equilibrium solutions

I t is instructive to consider the linear stability of equilibrium solutions to
(2.10) and (2.11). The equilibrium solution is the flat sheet: z(a,t) =
a,j(a,t) = 70, where 70 is constant. Looking for solutions of (2.10) and
(2.11) of the form z = a + ez and 7 — 70 + ej, and keeping only the linear
terms in e give the linearised equations

dx 70

A7o7a + A%xaa - 2Agya + ryaaa,

where z — x + \y. Notice that d^/dt is determined explicitly in the third
equation. In the linear level, the integral equation contribution has dropped
out. H is the Hilbert transform denned as

(a')da'

I t is easy to see that it has the Fourier symbol H(k) = — isgn(fc). The
growth rates of the perturbations are determined by the eigenvalues of the
perturbed system which can be calculated explicitly in the Fourier space as
follows:

= 0, -4^1*  \ / ^ ( l - &) - Ag\k\ - r|fc|3.

The fact that the system admits zero eigenvalue implies that the interface
does not change its shape by translating Lagrangian points along the in-
terface. In the absence of surface tension, that is, r = 0, the other two
eigenvalues may grow with large A;. In fact, if 70  ̂ 0, the interface experi-
ences the Kelvin-Helmoltz instability, and the growth rate is proportional
to O(|fc|) for large k. On the other hand, if 70 = 0, the stability of the per-
turbation depends on the sign of the Atwood number A. If A > 0, then the
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interface is stable. If A < 0, then the interface experiences the Rayleigh-
Taylor instability. The growth rate is proportional to \/\k\. In general,
due to baroclinic generation of vorticity at the interface, the vortex-sheet
strength 7 can be non-zero in some region even if it is equal to zero initially.
Thus the Kelvin-Helholtz instability is always present for two-density inter-
faces as long as A2 ^ 1, even if we have lighter fluid on top of a heavy fluid.
In the case of positive surface tension, that is, r > 0, we can see that in the
high-wavenumber regime, the surface-tension term dominates. The eigenval-
ues become imaginary, which can produce oscillations but no growth at the
high modes. Thus surface tension is a dispersive regularisation of those in-
stabilities. Of course, for small surface tension, there is still a band of modes
below a certain critical wavenumber that can grow exponentially in time.

Similar linearised stability analysis for the Hele-Shaw flows indicates that
the surface tension is a dissipative regularisation. For simplicity, we take
Afi = 0. The eigenvalues are as follows:

(r|fc|

Therefore, if R < 0, there is a band of unstable modes near k = 0. This
is a Mullins-Sekerka type of instability (1963), driven by the unstable den-
sity stratification. At higher wavenumbers, this instability is cut off by the
surface-tension term which acts as a third-order dissipation.

3. A convergent boundary-integral method for  water  waves

The boundary-integral formulation of water waves is naturally suited for nu-
merical computation. There are many ways one can discretise the boundary-
integral equations, depending on how we choose to discretise the singular
integral and the derivatives. These choices affect critically the accuracy and
stability of the numerical method. Straightforward numerical discretisations
of (2.6)-(2.8) may lead to rapid growth in the high wavenumbers. In order
to avoid numerical instability, a certain compatibility between the choice
of quadrature rule for the singular integral and that of the discrete deriva-
tives must be satisfied. This compatibility ensures that a delicate balance
of terms at the continuous level is preserved at the discrete level. Violation
of this compatibility will lead to numerical instability.

We discretise the interval by choosing N equally spaced points aj = jh,
where h = 2n/N. Denote by Zj(t),<t>j(t),jj(t)  the discrete approximations of
z(otj,t),<j)(aj,t),'y(aj,t) respectively. To approximate the velocity integral,
we use the alternating trapezoidal rule:

7fe -ot fc*)  2h, (3.1)
\ * /k=-N/2+l

(k-j) odd
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The advantage of using this alternating trapezoidal quadrature is that the
approximation is spectrally accurate. This and related quadrature rules
have been used by several authors in the literature. Baker (1983) used the
alternating quadrature rule for a desingularised integrand in water-wave cal-
culations. It gives a quadrature similar to (3.1), but with a different (and
desingularised) integrand. Sidi and Israeli (1988) analysed the spectral ac-
curacy of a midpoint-rule approximation for a periodic singular integrand.
They realised that the alternating quadrature rule applied to singular, pe-
riodic Cauchy kernels such as the integral in (3.1) gives spectral accuracy.
Shelley (1992) used scheme (3.1) with Krasny's filtering in the context of
studying the vortex-sheet singularity by the point-vortex method. By using
the spectral accuracy of the alternating-trapezoidal rule, Hou, Lowengrub,
and Krasny (1991) gave a simplified proof of convergence of the point vortex
method for vortex sheets (Hou, Lowengrub and Krasny, 1991).

I t seems natural to use the alternating-quadrature rule and a finite-order
derivative operator (e.g. cubic spline) for the a-derivative. However, as will
be seen later, the resulting scheme is numerically unstable at equilibrium;
see Baker and Nachbin (to appear), Beale, Hou and Lowengrub (1993b) and
Beale et al. (to appear). To see how standard schemes can be modified so
that they become numerically stable, we use the discrete Fourier transform.
For a discrete function {fj}  on the periodic interval, the discrete transform
and its inverse are (assuming N is even)

JV/2 JV/2

f*  = jj  E fie~ikaj'  fi= E he-***.
j=-N/2+l  k=-N/2+l

We wil l write a discrete derivative operator in the form

JV/2
Dh)fi=  E P(kh)ikfke

ikai, k = -N/2 + l,...,N/2, (3.2)
k=-N/2+1

where p is some non-negative, even function satisfying p(0) =» l,p(7r) = 0.
The choice of /?(£) varies depending on what kind of derivative operator is
used. For example, we have P2(kh) — sin(kh)/kh for the second-order cen-
tred differencing; pc(kh) = 3sm.{kh)/(kh{2 + cos(fc/i))) for the cubic spline
approximation. It is easy to see that the order of accuracy is the order to
which p(£) —> 1 as £ —> 0. The spectral derivative without smoothing corre-
sponds to the choice of p = 1. We denote it by D^'. It is well known that the
pseudo-spectral methods without smoothing may introduce aliasing errors
which could lead to numerical instability (Kreiss and Oliger, 1979; Gottlieb
and Orszag, 1977; Tadmor, 1987; and Goodman, Hou and Tadmor, 1994).
To suppress aliasing errors, Fourier smoothing is often used. In that case,
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p should satisfy (i) p > 0, ) = 0; (ii) p(x) = 1 for \x\ <  ATT for some
0 < A < 1; and (iii ) p is smooth. Condition (ii) ensures spectral accuracy.

Once a derivative operator is chosen, we also use a smoothing based on
p. For arbitrary periodic function fj, we define /  by multiplying f\. by
p(kh) and taking the inverse Fourier transform. That is,

JV/2

fe=-JV/2+l

Thus, we have D  ̂fj = Dh f  . Similarly, we define z? by applying p to
the transform of Zj — aj. It is clear that f  ̂ is an rth-order approximation
to / if p corresponds to the rth-order derivative operator.

Now we can present our numerical algorithm for the water-wave equations
(2.6)-(2.8) as follows:

i

(k-j)odd

(p) >) _ Jp)

2/ l (3.5)

\ (fc-j)odd V ' /

In practice, we solve for jj  from (3.5) by iteration using (2.9).
Remark. The Fourier smoothing z  ̂ in (3.3) and (3.5) is to balance the

high-frequency errors introduced by Dfi  This will become apparent in the
discussion of stability below. The choice of such smoothing is sharp. If we
use finite-order derivative operators or Fourier smoothing for the spectral
derivative, the use of smoothing on z is necessary for stability. We do not
need to smooth on 7 because 7 denned by (3.5) has been smoothed im-
plicitly through D£ and z^. We now state the convergence result; see
Beale, Hou and Lowengrub (1993) and Beale et al. (to appear).

Theorem 1 (Convergence of a Boundary-Integral Method) Assume that
z(-,t),(f>(-,t) G Cm+2[0,27r] and7(-,t) G Cm+1[0,27r] form > 3, and \z(a,t)-
z(/3, t)\ > c\a - /3\ for 0 < t < T and c > 0. Furthermore, assume that

(ut,vt)-n-(O,-g)-n>co>O. (3.6)

Here (u, v) is the Lagrangian velocity, n is the normal vector to the interface,

pointing out of the fluid region, and CQ is some constant. Then if £
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corresponds to an rth-order-derivative approximation, we have for h < ho(T)

(3.7)

Similarly, <f>j  is accurate to order hr, and jj  is accurate to order hr~l in

the discrete L2 norm denned by ||2;||p — 12jLi \zj\2h- If -D/f corresponds to
the spectral approximation, we have the same convergence result as above
except for replacing hr by hm.

We remark that the sign condition (3.6) is required to prove well-posedness
of the water-wave equations (Beale, Hou and Lowengrub, 1993a). It guar-
antees that the problem is stably stratified. It means that the interface is
not accelerating downward, normal to itself, as rapidly as the normal accel-
eration of gravity. If (3.6) is violated, it would generate the Rayleigh-Taylor
instability as if water were above the interface. It can be viewed as a natural
generalisation of the criterion of Taylor (1950).

3.1. Discussion of stability analysis

Here we discuss some of the main ingredients in the stability analysis of the
scheme given by (3.3)-(3.5). We wil l mainly focus on the linear stability.
Once linear stability is established, non-linear stability can be obtained rel-
atively easily by using the smallness of the error and an induction argument.
The reader is referred to Beale, Hou and Lowengrub (to appear) and Beale
et al. (to appear) for details.

To analyse linear stability, we write equations for the errors Zj(t) = Zj(t) —
z(ctj,t), and so forth, and try to estimate their growth in time. If we compare
the sum in (3.3) for the discrete velocity with the corresponding one for the
exact velocity, the terms linear in Zj, jj  are

4
2 ,

where we have expanded the periodic sum, with k now unbounded. To
identify the most singular terms, we use the Taylor expansion to obtain the
most singular symbols

1 1
z{aj) - z(ak) za{aj){aj  - ak)

where / is a smooth function. Thus, the most important contribution to
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the first term is (2iza)~
lHi ljj,  where Hh is the discrete Hilbert transform

Hh(i3) = - £ -i*—*h. (3.8)

*  7T  a a
Similarly, the most important contribution to the second term is

l Z j ) , jvhere A^ is defined as follows:

Let H and A be the corresponding continuous operators for Hh and Ah,
respectively, that is, with the discrete sums replaced by continuous integrals.
At the continuous level, it is easy to show that

A(/ ) = i f (£>«/), (3.10)

where Da is the continuous derivative operator. It turns out that in order to
maintain numerical stability of the boundary-integral method, the quadra-
ture rule for the singular integral and the discrete derivative operator Dh

must satisfy a compatibility condition similar to (3.10). That is, a given
quadrature rule, which defines corresponding discrete operators Hh and A^,
and a discrete derivative Dh , must satisfy a compatibility condition similar
to (3.10):

Ah(zi) = Hh(Dh
p))(zi), (3.11)

for z satisfying ZQ = ijv/2 = 0- If (3.11) is violated, this wil l generate a

singular operator of the form (Ah — Hh(Dh
p'))(z) in the error equations.

This will generate numerical instability; see Subsection 2.6.
For the spectrally accurate alternating-trapezoidal-quadrature rule, the

discrete Hilbert transform defined above has properties that are surprisingly
similar to those of the continuum counterpart, that is,

(Hh)k = -isgn(fc), (Ah)k = \k\. (3.12)

Thus the compatibility condition (3.11) would imply that a spectral deriva-
tive operator without smoothing should be used to obtain numerical stabil-
ity. However, it is well known that aliasing errors can arise from products
for spectral methods without smoothing. These aliasing errors wil l upset
the high-mode balance of lower-order terms; see below.

By performing appropriate Fourier smoothing in the approximations of
the velocity integral, we can ensure a variant of compatibility condition
(3.11) is satisfied, that is,

f) = Hh(Dh
p))(Zj). (3.13)
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This can be verified from the spectrum properties of Hh and A^ and the
definition of the p smoothing. This modified compatibility condition is suf-
ficient to ensure stability of our modified boundary-integral method. This
explains why we need to smooth z in (3.3) and (3.5) when we approximate
the velocity integral. The modified algorithm also allows use of non-spectral
derivative operators.

The Fourier smoothing is also needed to eliminate aliasing errors in the
discrete integral operator with smooth kernels. Typically, the lower-order
terms are of the form J2(k-j)odd f{aji ak)zk2h for a smooth function / G Cm.
In the continuous case, we have for any z E L2

f(a,a')z(a')da' = A-m{z),

where m is the degree of regularities of / and A-m is a linear bounded
operator from W to H^+m, W being the Sobolev space of function with j
derivatives in L2. This is no longer true at the discrete level due to aliasing
errors associated with the alternating-point-quadrature rule. For example,
if we let Zj = e1 ^ / 2 " 1 ^ and f(a, a') = (el2a — el 2a' ) /(a — a'), we can show
that

(k-j)odd

which is of course no smoother than z. This is a result of aliasing errors at
the highest frequencies and is why we must use the Fourier smoothing to
eliminate the aliasing errors in the high modes. With the p smoothing, we
can prove that (Beale, Hou and Lowengrub, to appear)

(k-j)odd

With these observations, we can derive an error equation for Zj that is similar
to the continuum counterpart in the linear well-posedness study (Beale, Hou
and Lowengrub, 1993a)

^ = z~\l - iHh)D[ p)F + AQ(z) + A_!(0) + O(hr),

where F = <j>  — ux — vy. This also suggests that we should project the
error equation onto the local tangential and normal coordinate systems. In
these local coordinates, the stability property of the error equations becomes
apparent. Let zN,zT be the normal and tangential components of z with
respect to the underlying curve z(a), where N is the outward normal, and
6 = zT + Hhz

N. We obtain

) , (3-14)
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6t = A-X{4>) + A0{z), (3.15)

Ft = -c(a,t)zNA.1(z), c(a,t) = (ut,vt + g)-N, (3.16)

where equation (3.16) is obtained by performing error analysis on Bernoulli's
equation and using the Euler equations. In this form it is clear that only the
normal component of i is important. Now it is a trivial matter to establish
an energy estimate for the error equations. Note that Hh,D  ̂ is a positive
operator with a symbol p(kh)\k\. The problem is stable if the sign condition,
c(a, t) > 0, is satisfied. We refer to Beale, Hou and Lowengrub (to appear)
for details.

3.2. Example of unstable schemes

In this section, we present a class of unstable schemes based on an equivalent
boundary-integral formulation. We wil l demonstrate the numerical instabil-
ity by performing a von Neumann stability analysis around the equilibrium
(see also Baker and Nachbin (to appear)). Consider a boundary-integral
formulation that uses the dipole strength /i. The vortex-sheet strength is
defined in terms of /A by the relationship 7 = / i a. The evolution equations
for z and cf> are the same as before. The only difference is in the relation
between <fi  and //.

 - d + H- (53 £ M(a<)*,(«')cot ^C)-»CO) da<) . (3.17)

It is clear that equation (2.8) is obtained by differentiating the relation
(3.17) with respect to a and integrating by parts. A natural numerical
approximation to the above equations is given by

(3.19)

? h ( y ) 2h\ , (3.20)
(fc-j)odd V

*y j = D%)
H, (3.21)

where D£ can be any finite-order derivative approximation. As before, we

denote its Fourier symbol as Dh k = ikp{kh).
Now we perform a linear stability analysis around the equilibrium. Let

z = a + z; (f) — (p, fj, = 1 + fi.
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Substituting the above expressions into the discrete equations (3.18)—(3.21),
and using (3.12), we obtain to leading order

^ HHiDJpM + DPiisfa (3.22)

- ^ = -gyj, (3.23)

4>j =  ̂ + \(Hh(D
{
h
p)y3)-Ah(yj)), (3.24)

where Hh and A/j are denned as before. This system of equations has con-
stant coefficients and it can be diagonalised in the Fourier space. The eigen-
values of the resulting system in the Fourier space give the growth rates of
x, y, </>. They are explicitly given by

Ai = 0; A2, A3 = 0.5k2p(l - p)  0.5^Jk*p2{l  - p)2 - 16g\k\p.

Notice that if p ^ 0,1, then A2, A3 ~ O(k2) for large k. This indicates that
the numerical high-mode instability is even stronger than that of Kelvin-
Helmholtz! It is clear that the instability is caused by violating the compat-
ibilit y condition (3.11), that is, HhD  ̂ - kh ^ 0 (see (3.24)). If the Fourier
smoothing is used as in (3.3) and (3.5), then this term vanishes and one
can easily see that the modified method is stable. On the other hand, alias-
ing instabilities cannot be seen from this linear stability analysis around the
equilibrium solution because there is no mode mixing for constant-coefficient
problems. For computational evidences of numerical instabilities, we refer
to Longuet-Higgins and Cokelet (1976); Roberts (1983); Dold (1992); Beale,
Hou and Lowengrub (to appear); and Beale et al. (to appear).

There are other ways to perform smoothing to partially alleviate the diffi -
culty due to high-mode instability, see Longuet-Higgins and Cokelet (1976),
Roberts (1983) and Dold (1992). But they cannot completely eliminate the
source of numerical instability since the modified schemes still fail to satisfy
the compatibility constraint. So there is still a large number of intermediate
to high modes that are numerically unstable. As the number of grid points
increases, or as we compute further in time, the numerical scheme will suffer
from the high-mode instability. This has been one of the major obstacles in
computing free-surface waves.

3.3. A numerical calculation of wave breaking

Here we present a calculation of wave breaking to illustrate how well our
modified boundary integral performs in the fully non-linear regime. For a
survey of breaking waves; see Peregrine (1983). We use the following initial
condition:

x(a, 0) = a, y(a, 0) = 0.1 cos(27ra), 7(0-, 0) = 1.0 + 0.1 sin(27ra).
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The gravity coefficient is chosen to be g = 9.8. Note that the vortex-
sheet strength 7 does not have zero mean in this case. This amounts to
a convenient choice of frame of reference. Although the derivation of (2.6)-
(2.8) was for the special case where (f> is periodic and 7 has zero mean,
the formulation is still valid provided only that we apply D^' to equation
(2.7); only D  ̂ 4> is needed in (2.8). The time integration in this numer-
ical example is the fourth-order explicit Adams-Bashforth method. The
fourth-order Runge-Kutta method is used to initialise the first three time
steps. Also, a fourth-order extrapolation in time is used to obtain a more
accurate first iterate in the iterative scheme for 7, as suggested in Baker,
Meiron and Orszag (1982). With this improved initial guess, the itera-
tion will converge with an iteration error of order 10~10 in two iterations
for most time until the wave is close to breaking. In this calculation, we
use a 25th-order Fourier smoothing in the spectral derivative with p given
by

p(kh) = exp(-10  (2|Jfc|/JV)25), for \k\ < N/2.

In Figure 1, we present a series of interface profiles from t — 0.28 to
t = 0.5175. In order to see clearly the time evolution of the water wave, we
plot the solution at five different times in a single picture. The first curve
from the top is obtained by adding 0.6 to the y coordinate; the successive
ones are displaced by multiples of 0.3. Time increases from top to bottom.
As we can see from Figure lb, the interface becomes vertical around t =
0.32. After that, the wave turns over. In the mean time, the interface
develops large curvature, and requires more-refined numerical resolution.
With N = 256, we can compute up to t = 0.5 with six digits of accuracy in
the interface positions. But in order to compute very close to the time of
wave breaking, we need to increase our resolution to N = 512, or larger. Of
course, beyond t = 0.32 when the interface becomes vertical, our convergence
result will cease to be valid since it violates our condition (3.6) in Theorem
1. But one can see that our numerical calculations remain robust even after
condition (3.6) is violated. Without additional filtering, our code can run
up to i ~ 0.51. In order to compute all the way up to the time of wave
breaking, we need to use Krasny's filtering (see Subsection 4.1) beyond the
time of wave turnover (t ~ 0.32) to control the growth of round-off errors
due to the Rayleigh-Taylor instability.

In Figure lc, we plot the enlarged version of the wave fronts from t = 0.5
to 0.5175 when the wave is close to breaking. It is evident that the wave
will break in finite time. In Figure Id, we illustrate the number of com-
putational particles near the wave front at the final time of our calcula-
tions. We can see that the interface is still well resolved and more particles
are clustered near the head of the wave front where the curvature is the
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Fig. 1. (A) Water waves at t = 0.28,0.32,0.36,0.4,0.44, N = 256, At = 0.001. From
Beale, Hou and Lowengrub (to appear). (B) Water waves at t = 0.46,0.48,0.5,0.51,
0.5175, N = 512, At = 0.00025. From Beale, Hou and Lowengrub (-to appear). (C)
Enlarged view of wave fronts at t = 0.5,0.5025,..., 0.5175, iV = 512, At = 0.00025.
From Beale, Hou and Lowengrub (to appear). (D) Enlarged view of wave fronts at
t = 0.5175, N = 512, At = 0.00025. From Beale, Hou and Lowengrub (to appear)

largest (about 800 in amplitude). This demonstrates the self-adaptive na-
ture of the boundary-integral method. Details of the calculation and other
computational examples can be found in Beale, Hou and Lowengrub (to
appear).

4. Numerical computations of vortex-sheet roll-up

The idealisation of a shear layer as a vortex sheet separating two regions of
potential flow has often been used as a model to study mixing properties,
boundary layers and coherent structures of fluids. A vortex sheet corre-
sponds to the case when the two fluid densities are the same on each side
of the interface, but the tangential velocity across the interface has a jump
discontinuity. Without physical regularisation such as surface tension or vis-
cosity, the vortex-sheet problem is ill-posed in the Hadamard sense. Small
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perturbations can lead to exponential growth in high wavenumbers due to
the Kelvin-Helmholtz instability. Since the Kelvin-Helmholtz instability
is a generic fluid-dynamical instability for multi-fluid interfaces (except for
the case of unit Atwood number A2 = 1), the understanding of the numeri-
cal and analytical difficulties of the vortex-sheet problem would shed useful
light into the general multi-fluid interfaces. In fact, most of the numerical
techniques we, discuss in this section can be and have been extended to the
study of Rayleigh-Taylor instability in multi-fluid interfaces.

Assume the interface is periodic in the horizontal direction, that is,
z(a,t) — a + s(a,t) with s(a,t) being periodic in a. The vortex-sheet
strength 7 is also periodic. For a vortex sheet, the Atwood number is equal
to zero. This greatly simplifies the equations of motion for the interface.
The governing equations reduce to

dz 1 f . , . (z(a,t) - z(a',t)\ , ,

At

This shows that 7 is conserved along Lagrangian particle trajectories. If
the initial vortex-sheet strength 70 is positive, then we can parameterise the
interface by its circulation variable F. Then the above equations further
reduce to a single equation for the interface position z:

Linear stability around equilibrium solution z = F gives the dispersion rela-
tion

A2 = k2/4, (4.2)

so there is one growing eigenmode and one decaying eigenmode. Arbitrar-
ily small perturbation can lead to unbounded exponential growth in high
wavenumbers.

4-1. The point-vortex approximation

The point-vortex approximation to (4.1) was first introduced by Rosenhead
(1932). The idea is to represent the vortex sheet by a collection of point
sources. Let Zj(t) denote the numerical approximation of z(Tj,t), with Tj —
jh, h = 2-K/N. The integral on the right-hand side of (4.1) is approximated
by the trapezoidal rule, which omits the infinite contribution due to the
self-induced velocity at F' = F. This gives rise to a system of ordinary
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differential equations for the particle trajectories

(4.3)

Zj(0) = Tj +8(^,0). (4.4)

Equations (4.3) have a Hamiltonian structure for the conjugate variables
XjN~1l2,yjN~1l2. The Hamiltonian is given by

- 1 N

Y, 5Z m ( c o s n( % — 3/fc) — cos(xj - xfc)). (4.5)
3=1k>j

One immediate consequence from the Hamiltonian is that if the variables
Vj(t) remain bounded, then the invariance of H^it) implies that the point
vortices remain separated (recall that we have assumed one signed vorticity
distribution here).

The main issue here is the question of numerical stability of the point-
vortex approximation. Using a sinusoidal initial perturbation with a small
number of particles, Rosenhead integrated the vortex-sheet equation (4.3)
and obtained the expected roll-up of the vortex sheet. These calculations
were repeated by Birkhoff (1962). Birkhoff found that the point-vortex ap-
proximation did not converge as the number of particles increased. In fact,
the increased number of points led to irregular motion of the points and
early deterioration of the calculations. Some investigators have tried to use
high-order discretisations to resolve this difficulty, and different smoothing
techniques have been tried. But irregular motion still persists. We refer to
van de Vooren (1980), Higdon and Pozrikidis (1985), Pullin (1982), Moore
(1985) and Fink and Soh (1978) for more detailed discussions.

The source of numerical instability was later clarified by Krasny (1986a).
Krasny found that there are two types of irregular motion that can occur in
the numerical solution of the point-vortex equations for vortex sheets. The
first one occurs at smaller times t > 0 as the value of iV increases. The
second type occurs only beyond the vortex-sheet's critical time regardless
of the value of N. The second type of irregular motion is due to the loss
of regularity of the solution beyond the critical time. Without additional
physical or numerical regularisation, the point-vortex method will fail to
converge beyond the singularity time. The first type of irregular motion
is caused by round-off errors due to the computer's finite-precision arith-
metic. Once these round-off error perturbations enter the calculations, they
grow according to the equations' dynamics and are subject to the Kelvin-
Helmholtz instability. Thus the highest modes wil l grow the fastest and the
growth rate is exponential with increasing wavenumbers. This explains why
increasing the number of grid points wil l lead to rapid growth and early-
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time irregular motion. In order to control the growth of the round-off-error
perturbations, Krasny introduced a non-linear filtering technique (1986a).
That is, at every time step, before we evaluate the singular integral, we take
the Fourier transform of the particle position Zj. Set to zero those Fourier
coefficients that are below a certain cut-off level, say 10~13 if a 16-digit
arithmetic is used. Then take the inverse Fourier transform.

More specifically, we can consider Krasny's filtering as a projection oper-
ator, denoted by P. Given an error tolerance r, the projection operator P
is given by

(p~f)-f /*> if I/*I  ^ r '  (4 6)
K J)k \ 0, otherwise, l '

for any periodic function /. The filter P is non-linear because the wavenum-
bers at which it is applied depend on the solution. In order for this filtering
operator to be effective, we assume that the underlying function, /, has a
rapid decay in the Fourier space. Moreover, we want to take the filter level,
r, as small as possible for the sake of accuracy. So it is preferable to per-
form the numerical calculations in double-precision arithmetic. To illustrate
the method, we take the forward Euler discretisation for the point-vortex
method as an example. With Krasny's filtering, the numerical method
becomes

(4.7)

The effect of this filtering is dramatic. With this filtering, the first type of
irregular motion is eliminated. One can compute up to the time when the
curvature singularity is formed. Since the filter level is very small (typically
10~13 in a 16-digit arithmetic), it does not affect the accuracy much in the
smooth region. Comparison of the filtered calculation and the unfiltered
29-digit calculation shows very good agreement (Krasny, 1986a). Moreover,
the filter does not suppress the growth of high-wavenumber modes. With
the filtering, the high wavenumber modes can still grow through non-linear
interactions. Once the modes grow larger than the filtered level, they are
not affected by the filtering.

We include the calculations obtained by Krasny (1986a) for the initial
data (note that the period is 1, not 2TT):

x(T, 0) = T + 0.01 sin 2TIT, y(T, 0) = -0.01 sin 2TIT,

which is a small-amplitude perturbation of the equilibrium solution. The
filtering technique was used in double precision (16-digit) with N = 100. The
time step was set to be At = 0.01 for t < 0.25 and At = 0.001 for t > 0.25. A
fourth-order Runge-Kutta method was used for time integration. The filter
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Fig. 2A. Double-precision (16-digit) calculation with filter level set at 10 13 (the
horizontal line in (&)). This calculation used N = 100 and At = 0.01 for t < 0.25
and At = 0.001 for t > 0.25: (a) point-vortex positions; (6) log-linear plot of the
Fourier coefficients. (2.2) amplitudes versus wavenumber. From Krasny (1986a)

level was set to 10 13. In this case, the filter turned off at t ~ 0.35. The
resulting point positions and the Fourier coefficients are plotted in Figure 2A.
In this calculation the Hamiltonian was also well conserved. There is no
sign of the first type of irregular point motion which had appeared in the
unfiltered 16-digit calculation at t = 0.375; Using filtering with N — 200 in
double precision, Krasny can compute up to the singularity time t = 0.375;
see Figure 2B (d). It is worth noting that without filtering even a 29-digit
calculation yielded irregular motion at time t = 0.375 (see Fig 2B (c)), not
to mention the calculations obtained used single and double precisions (Fig
2B (a) and (6)).

Shelley (1992) used the spectrally accurate alternating quadrature ft) re-
examine the singularity formation in vortex-sheet motion, trying to acquire
more precise information on the singularity structure. Shelley's calculations
were performed in 30 digits of precision in conjunction with Krasny's filtering
technique. The filter level was set to 10~25. This high precision seems to
be necessary to discern the asymptotic behaviour of the spectrum. It was
found that Moore's asymptotic analysis is valid only at times well before
the singularity time. Near the singularity time the form of the singularity
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Fig. 2B. Point-vortex positions at t = 0.375 for N = 200: (a) single precision
(7 digit); (b) double precision (16 digit); (c) CDC double precision (29 digit); (d)
filtered at level 10~13, double precision (16 digit). From Krasny (1986a).

departs significantly from that predicted by Moore. Moreover, the real and
imaginary parts of the solutions behave differently near the singularity time.
The form of the singularity also depends upon the amplitude of the initial
disturbance.

Convergence of the point-vortex method for vortex sheets was first ob-
tained by Caflisch and Lowengrub (1989) for analytic initial data. A simpli-
fied proof was later obtained by Hou, Lowengrub and Krasny (1991), using
the spectral accuracy of the alternating quadrature rule. However, these
convergence results are for short times, and do not consider the effect of
round-off errors. In fact, with a simulated round-off-error term, the con-
vergence result breaks down very quickly as the number of computational
particles increases. Recently, Caflisch, Hou and Lowengrub (1994) have been
able to prove convergence of the point-vortex method for vortex sheets with
Krasny's filtering. The proof is in an analytic function class and uses a
discrete form of the Cauchy-Kowalewski theorem. The proof is presented
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for the case in which the sheet is initially near equilibrium and convergence
is obtained nearly up to the singularity time. The analysis in this paper
applies directly to other ill-posed problems such as Rayleigh-Taylor unsta-
ble interfaces in incompressible, inviscid and irrotational fluids, as well as to
Mullins-Sekerka unstable interfaces in Hele-Shaw cells.

4-2. Vortex-blob calculations

In this section, we present a vortex-blob desingularisation to study vortex-
sheet roll-up beyond the curvature singularity. The first application
of vortex-blob methods for vortex-sheet roll-up was given by Chorin and
Bernard (1973) in which they proposed to regularise the point-vortex method
by smooth vortex blobs. Subsequently, Anderson (1985) applied vortex-blob
methods to study vortex-sheet roll-up using the Bousinesqu approximation,
and performed a careful numerical convergence study. In a series of papers
(Krasny, 1986b; Krasny, 1987; Nitsche and Krasny, 1994), Krasny has used
the vortex-blob method to study vortex-sheet roll-up and has obtained a
number of interesting results. Some previous alternative desingularisations
for vortex sheets have incorporated a stabilising physical mechanism into the
model. Moore (1978) has derived an evolution equation for a vortex layer
of small thickness. Pozrikidis and Higdom (1985) have numerically stud-
ied a periodically perturbed layer of constant vorticity. Baker and Shelley
(1990) have considered regularisation of a thin vortex layer. Pullin (1982)
has included surface tension in the evolution equation. We will come back
to these other types of regularisation in later sections. Unlike these ap-
proaches, the specific form of desingularisation that is used in vortex-blob
methods does not correspond precisely to a physical effect. It is a purely
numerical regularisation.

The vortex-blob desingularisation for vortex sheets can be described as
follows. Let H e a non-negative real number. We wil l desingularise the
Birkhoff-Rott equations by placing a cut-off in the singular kernel.

-TT cosh(y - y') — cos(x — x') + 62

where x — x(F,t), x' = x(T',t). When 6 = 0, the integral is understood
as the Cauchy principal-value integral. In that case, we recover the vortex-
sheet equations in the periodic case.

A flat vortex sheet of constant strength is an equilibrium solution of the
desingularised equations. It is easy to perform a linear stability analysis
around the equilibrium solution. This helps us gain insight into the nature of
the desingularisation. The growth rates of the perturbation can be computed

ox
~di
dy
~dt

4TT

1
47

-W cosh(y - y>) - cos(x - x')

sin(a-a')
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by Fourier transform. The dispersion relation is given by Krasny (1986b)

The positive branch of to corresponds to the growing perturbations. For
a fixed value of 8 > 0, there is a wavenumber km for which the growth
rate u>(km) is maximum. In the limi t k —> oo we have u>(k) —> 0. For
example, with 8 — 0.05, the maximum growth rate of the eigenvalue is about
3.5. The desingularised equations therefore do not exhibit the severe short
wavelength instability of the exact vortex-sheet equations. As 8 —> 0 with a
fixed wavenumber, we recover the exact dispersion relation to2 ~ k2/4.

We can apply standard discretisation techniques to solve the initial value
problem (4.8)-(4.9). For example, the trapezoidal quadrature of the inte-
grals in (4.8)-(4.9) yields a system of ordinary differential equations in the
case of period-one initial condition

^ l s i n h 2-irjyj - yk)

s2 'h i c o s h 27r(% - w<) -cos

sin 2IT{XJ - x k ) ^

dt 2 h[ c o sn 27T(yj - Vk) - cos 2TT(XJ - xk) + 82

If 8 = 0, then the above discretisation is the point-vortex approximation of
Rosenhead (1932). As for the point-vortex system, for any 6 > 0, the equa-
tions (4.10),(4.11) form a Hamiltonian system for the conjugate variables
Xj  JV"1/2, yj  JV"1/2, with the Hamiltonian function given by

- 1 N

HN(t) = i ^ 2 E E l n ( c o sh 27r(% "  V")  - c os 2<XJ - xk) + &2)- (4-12)
i=i k>j

Krasny (1986b) used the above vortex-blob method to compute vortex-
sheet roll-up using the same initial condition as for the point-vortex method
calculation

Xj(0) = Tj + 0.01 sin 2irTj,yj(0) = -0.01 sin 2irTj. (4.13)

The fourth-order Runge-Kutta method was used to perform time integra-
tion. There are now three parameters, 8, At and h. It turns out that if one
simultaneously reduces all three parameters, one does not get a convergent
result in general. The strategy, which was first used by Anderson (1985), is
to first keep 8 fixed, and then reduce At and h until we get a convergent
solution of the 8 equations. By repeating this process for several values of
8, one can extrapolate the limi t 8 —+ 0.

Krasny (1986b) showed that using the <5-desingularisation the vortex sheet
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Fig. 3A. Vortex-blob-method solutions of the 6 equation at t = 1, N = 400. From
Krasny (1986b).

rolls up into a double-branched spiral past the critical time. The effect of
decreasing 6 at a fixed time (t = 1) beyond the critical time (tc = 0.375) is
shown in Figure 3A, which plots the interface for several values of 6 between
0.2 and 0.05. These calculations used N = 400 and At = 0.05. In the case of
6 = 0.05, a smaller time step was used, At = 0.01, and the computation was
performed in double-precision arithmetic (16 digits). As 6 decreases with
t = 1 in Figure 3A, more turns appear in the core. For 6 — 0.05, the core
region is tightly packed. An enlarged view is shown in Figure 3B, which
shows that each branch of the spiral contains five complete resolutions. The
curve's outer region seems to converge as 6 decreases. Some evidence was
given in Krasny (1986b).

Krasny also used the vortex-blob method for several other applications,
including computing the vortex-sheet roll-up in the Trefftz plane [95], and
computing vortex sheet roll-up past a sharp edge to study separation [112].
The calculation of vortex ring formation at the edge of a circular tube in
an axisymmetric 3-D vortex-sheet model seems to support the experimental
findings (Nitsche and Krasny, 1994). Related numerical studies for axisym-
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Fig. 3B. An enlarged view of the inner portion of the 6 = 0.04 case, t = 1, N = 400.
From Krasny (1986b).

metric vortex-sheet motion have been carried out by Pullin (1979), Caflisch,
Li and Shelley (1993), Pugh (1989), Kaneda (1990) and Dahm, Frieler and
Tryggvason (1992).

Convergence of vortex-blob methods for vortex sheets has been established
by Caflisch and Lowengrub (1989) for short times using analytic data. Fol-
lowing Delort's observation, Liu and Xin (to appear) have been able to prove
that Krasny's vortex-blob calculation converges globally to a weak solution
of the Euler equations if the initial vorticity does not change sign.

Finally, we remark that it is an easy matter to generalise the vortex-
blob method to study Rayleigh-Taylor instability for general two-density
interface problems; see, for example, Kerr (1988).

4.3. Thin-vorticity-layer regularisation of vortex sheets

Another approach to compute vortex-sheet motion beyond the singularity
time is to study the motion of smoother solutions to the Euler equation.
In 1990, Baker and Shelley approximated the vortex sheet by a thin layer
of constant and finite vorticity of mean width H. The limiting behaviour
of such vortex layers as H —> 0 was investigated to determine the possible
nature of the vortex sheet past its singularity time. They found that the
behaviour of an asymptotically thin vortex layer is given by a vortex sheet
whose strength is the local layer width times the vorticity strength.

The problem of vortex layers with constant vorticity, also called vortex
patches, is of interest in itself. Accurate and robust numerical methods for
vortex-patch problems have been developed by Zabusky et al. (1979, 1983).



372 T. Y. Hou

They referred to their methods as 'contour dynamics'. It has led to some
interesting applications; see, for example, Dritschel (1989) for a review. The
mathematical theory of vortex patches has attracted a lot of interest in re-
cent years. The well-known result of Yudovich (1963) provides a theoretical
framework for the vortex-patch problem. In particular, it guarantees the
global existence of the flow. Yudovich's theory does not preclude the for-
mation of singularities in the boundaries of vortex patches. Majda (1986)
proposed the vortex-patch problem, in contour-dynamic form, as a model
for the inviscid, incompressible creation of small scales. Motivated by anal-
ogy with the stretching of vorticity in three dimensions and by a simple
model (1985, 1986), he suggested the possibility of finite-time singularities.
In other words, some smooth initial contours might, in finite time, lead to
loss of regularity such as infinite length, corners or cusps. This suggestion
has been the subject of some debate in the computational literature (Buttke,
1989; Dritschel and Mclntyre, 1990). Recently, Chemin (1993) proved that
smooth contours stay smooth for all times provided that the initial condi-
tion is in C1>a with a > 0. A simplified proof was given by Bertozzi and
Constantin (1993).

The set-up of the thin layer regularisation is as follows. Consider a peri-
odic vortex layer surrounded by two interfaces. At t = 0, these two interfaces
are symmetric with respect to the flat interface y = 0. The vortex layer is
assumed to have mean width H and vorticity —2U/H. The lower interface,
Fi, is parameterised as z\{a), and the upper interface, F2, as Z2(a), where
Zj(a) = Xj(a) + iyj(a). The thin layer is assumed to be 27r-periodic in the
z-direction. It can be shown that the velocity of the fluid at a point Zj(a, t)
on the jth interface (j = 1,2) is given by

xco« ) | l ( a ' , t ) d a' (4.14)

xcot

Note that the motion of vortex layers depends only upon information on the
boundaries.

There have been many numerical studies in developing accurate quadra-
ture rules for the boundary integrals in the above contour dynamic equa-
tions. Consider the case j = 1 as an example. The first integral in (4.14)
has a smooth, periodic integrand due to a compensating zero in the function
yi(a,t) — yi(a',t). Thus the standard trapezoidal rule over equally spaced
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collocation points gives spectral or infinite-order accuracy. Accuracy is then
limited by the approximation to dzi/da' at the collocation points. In Baker
and Shelly (1990), derivatives were approximated by periodic, quintic splines
with an accuracy of O(h6). The approximation to the second integral can
be derived similarly. It is even simpler in this case since the field point z\ (a)
does not sit on the boundary IV

The numerical study of Baker and Shelley (1990) indicates that the mo-
tion of the vortex layer leads to the formation of regions of high curvature,
and region's of rapid stretching in the bounding interfaces. To maintain res-
olution of the interfaces, the mesh was redistributed periodically to resolve
the high-curvature regions and collocation points were kept in the regions
of rapid stretching. The mesh redistribution was done through a smooth
reparameterisation of the interfaces.

The initial conditions for layer interfaces considered in Baker and Shelley
(1990) were given by

TT TT

zi(a,0) — a — i—(1 — a cos a),Z2(a,0) = a + i—(1 — a cos a),

with a < 1. The limit of the above initial data as H —> 0 corresponds to the
vortex-sheet initial data considered by Meiron, Baker and Orszag (1982) in
their study of the singularity structure of a vortex sheet. In particular, the
vortex sheet acquires a curvature singularity at a = TT.

The evolution of vortex layers with {7 = 1/2 and a = 1/2 was calcu-
lated for various mean thicknesses, H = 0.025,0.05,0.1 and 0.2. The case
H = 0.025 corresponds to an aspect ratio of 250 to 1. This was the small-
est value of H that Baker and Shelley (1990) could compute reliably. The
critical time of curvature singularity is about tc = 1.6 (Shelley, 1992). Fig-
ure 4a shows the location of the layer interfaces with H = 0.025 at various
times t = 0, t = 2.0 and t — 2.4. Figure 4b shows several sequences of
layer profiles for various thicknesses. Each column gives a sequence of lay-
ers at various times with H fixed, and goes as far as the computation is
reliable. For a fixed time beyond the critical time, the central region of the
layer does not show a converging pattern, but at different times one can
observe a similarity in the profiles. This non-uniformity behaviour makes it
very difficult to extrapolate the limiting behaviour from the profiles of the
layer.

A close examination reveals that the evolution generically occurs in three
phases: First, the vorticity advects to the centre (i.e. a = TT), causing a
further thickening near the centre. Second, the vorticity in the centre quickly
reforms into a roughly elliptical core with trailing arms, which subsequently
wrap around the core as it evolves. As the value of H becomes smaller, the
vorticity becomes more intense, which leads to faster roll-up. For thinner
layers the core structure becomes a smaller fraction of the total layer. The
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Fig. 4. (A) The location of the layer interfaces for H = 0.025 at various times.
From Baker and Shelley (1990). (B) Thin-vortex-layer-solutions. The core region
of the layer interfaces for various times and thicknesses. From Baker and Shelley
(1990).

core seems to collapse to a point with no circulation but infinite vortex-
sheet strength. Assuming such a limi t exists, it would converge to a weak
solution of the Euler equations described by DiPerna and Majda (1987a,b)
and Delort (1991). The cores with their trailing arms are very similar to
the structures observed by Zabusky et al. (1979) in their numerical study
of the vortex patches. The simulations also agree qualitatively with the
vortex-layer simulations done by Pozrikidis and Higdon (1985).

4-4- Vortex-in-cell method

Here we present the vortex-in-cell (VIC) method for computing vortex sheets
by Tryggvason (1989), and compare with the vortex-blob calculations by
Krasny (1986b). Usually the VIC method is used only as a device to speed up
the calculation of the velocities from the vorticity. However, the grid-particle
interpolations usually introduce some numerical smoothing. This smoothing
is generally regarded as an unpleasant property of the VIC method because
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it may suppress the small-scale interactions. On the other hand, one can
also regard the VIC method as a grid-based vortex method with the blob
size equal to the mesh size. It actually has regularisation properties similar
to the vortex-blob method.

We begin with the two-dimensional vortex method for the Euler equation
in the vorticity form:

^ 0 , V=ty = - w , VL = {dyil>,-dxrl>),  (4.16)

where u is the vorticity, tp is the stream function and

is the material derivative. In vortex methods, the vorticity field is approxi-
mated by a collection of discrete point vortices, each with circulation Fj. By
(4.16), the circulation of each vortex is conserved in time. The Lagrangian
particle positions can be found by integrating

dx;
— = u (x^ ).

To find the velocity from the vorticity, we need to solve the Poisson equation
for the stream function. Traditional vortex methods make use of the Biot-
Savart kernel, and the fact that the solution can be written as a sum over
the singular point sources:

where K is the Biot-Savart kernel

Due to the singularity of the Biot-Savart kernel, there has been concern
about the possibility of producing unbounded velocity as two neighbouring
particles approach each other. To alleviate this difficulty, Chorin (1973) and
Chorin and Bernard (1973) introduced a vortex-blob method in which the
singular Biot-Savart kernel is replaced by a desingularised kernel, that is,,

where <fo(x) = (f>(x./6)/62 is an approximate Delta function, and 0(x) is
its shape function. For example, we can take <j>  to be Gaussian. This
modification gives a computationally more stable method than the point-
vortex method. The method has been applied and extended to a variety of
fluid-dynamical situations (Leonard, 1980). For smooth vorticity fields, it
has been proved that the vortex-blob method converges provided that the
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smoothing blob 6 is much larger than the initial grid size h, see, for exam-
ple, Hald (1979), Beale and Majda (1982), Anderson and Greengard (1985)
and Cottet (1988) and the review paper (Hald 1991). For a long time, it
has been widely believed that the point-vortex method is numerically un-
stable without additional regularisation. In Goodman, Hou and Lowengrub
(1990), Hou and Lowengrub (1990) and Cottet, Goodman and Hou (1991),
we proved a surprising result. The point-vortex method is stable and con-
vergent with second-order accuracy for smooth vorticity fields in two and
three space dimensions.

An alternative to the direct summation methods just described are grid-
based methods, that work directly with the Poisson equation. The singular
point-vortex distribution is approximated by a smoother grid vorticity and
the elliptic equation in (4.16) is solved by a fast Poisson solver for difference
methods. The grid velocity is obtained by numerical differentiation of ip over
the grid and the velocity of the point vortices is found by interpolating from
the grid. Such grid-based methods are generally referred to as vortex-in-
cell (or cloud-in-cell) methods, which were first introduced by Christiansen
(1973). Since the velocity field is calculated from a smooth grid vorticity,
vortex-in-cell methods may be considered as a type of vortex-blob method
(Tryggvason, 1989). In 1987, Cottet presented a VIC method for which he
was able to show convergence under similar conditions to the blob methods.

In Christiansen's original VIC method, the vorticity of the point vortices
is assigned to the corners of the mesh block that each vortex is in by the so-
called area-weight rule. This corresponds to giving each vortex an effective
area of the order of one mesh block. Thus we may consider the VIC method
as a type of vortex-blob method with blob size of the same order as the mesh
size. However, since only the nearest four grid nodes are involved, vorticity
is not evenly distributed to the nearest four grid nodes. The resulting blob
is anisotropic, rather than symmetric, as the blobs in the vortex-blob meth-
ods. If the problem being simulated is sensitive to small-scale disturbances,
this anisotropy can trigger small-scale Kelvin-Helmholtz instability. This
small-scale instability has severely limited previous investigations of the ef-
fects of grid refinements (Baker, 1979). Tryggvason (1989) overcame this
difficulty by making the blob slightly larger and spreading the vorticity over
a larger area on the grid. By doing so, the small-scale anisotropy can be
made significantly smaller. The shape function Tryggvason used is the inter-
polation function suggested by Peskin (1977) in a slightly different context.
This conversion of the singular point vortex into a smooth grid vorticity can
be viewed as approximating the ^-function by a smoother function. The
smoother-shape function at the grid point (i, j) is expressed as a product of
two one-dimensional functions:

Sij(x, y) = d(x - ih)d(y - jh)
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where

, f (l/4/i)(l + cos(nr/2h), if \r\ < 2h
[r)~ I 0, i f | r |>2/ i,

where h is the mesh size, and the point vortex is located at (x, y). The var-
ious aspects of this approximation are discussed in detail by Peskin (1977).
Using this approximate Delta function, we approximate the vorticity field at
the grid" points from the vorticity field at the Lagrangian particle positions
(xk(t),yi(t))by

Conversely, we interpolate the velocity field from the grid points to the
Lagrangian particle positions by

u(xi(t), Vj(t)) = J2 d(xi(t) - kh)d(yj(t) - lh)u(kh,lh)h2.

This version of the VIC method has been used successfully by Tryggvason in
his numerical study of the Rayleigh-Taylor instability and the vortex-sheet
roll-up (Tryggvason, 1988, 1989).

In Figure 5, we present the computations of a vortex-sheet roll-up by
Tryggvason (1989) using the VIC method described above. The result is
compared with a similar calculation obtained using the vortex-blob method.
The VIC simulation in Figure 5a was on a grid with 32 meshes per wave-
length; the vortex-blob simulation in Figure 5b used 200 points and 6 = 0.2.
The vertical dimension of the computational box in the VIC simulation was
four times the horizontal one to keep the top and bottom boundaries well
away from the interface. The initial conditions were

Xi = \/N + 0.05 sin (-  ̂ J , Vi = -0.05 sin (-^ J ,

which are the same as those used by Krasny (1986) except that the amplitude
was five time larger. This larger amplitude was selected to allow comparisons
with runs made by the original four-point VIC code. It was found that the
original VIC method was very sensitive to small disturbances from the grid.
These disturbances can cause the interface to roll up into more than one
vortex.

In Figure 6 we demonstrate the numerical calculations (non-dimensional
time equal to 1) obtained using several different methods. Figure 6a and
6b was calculated by the original four-point VIC method. In (a) 16 meshes
per wavelength were used, and in (b) 32. Figure 6c and 6d was calculated
by the smoother VIC method. In (c) 32 meshes per wavelength were used,
and in (d) 64. Figure 6e and 6f was calculated by a vortex-blob method
using the modified kernel K$. In (e) 6 — 0.2, and in (f) 6 = 0.1. Both runs
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(A) (B)

Fig. 5. The roll-up of a vortex sheet. The dimensionless times are 0.0, 0.5, 1.0,
1.5 and 2.0. (A) Calculation with an isotropic vortex-in-cell method. The grid is
32 x 128. (B) Calculations with a vortex-blob method with 200 points and 8 = 0.2.
From Tryggvason (1989)

employed a sufficient number of points so that the results were independent
of the resolution (in (e) N = 200; in (f) N = 400). It is evident that the
smoother VIC method produces results very similar to those obtained by
the vortex-blob method.

We note that several fast algorithms have been developed which give a
much faster and accurate evaluation of the particle velocity in the vortex-
blob methods. These do not introduce the grid-particle interpolation errors
that are present in the VIC method. In (1986), Anderson introduced a fast
summation algorithm based on local corrections. It has the advantage of
reducing the computational cost of the direct summation without sacrific-
ing the high-order accuracy of the vortex method. The operation count is
approximately O(MlogM) + O(N), where M is a constant independent
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(A) (B)

(D)

(E) (F)

Fig. 6. The large-amplitude stage (at dimensionless time t = 1.0) calculated in
different ways. (A) Original VIC method on a 16 x 64 grid. (B) Same as (A) but
on a 32 x 128 grid. (C) Modified (isotropic) VIC method on a 32 x 128 grid. (D)
Same as (C) but on a 64 x 256 grid. (E) Vortex-blob method 200 points and 6 = 0.2.
(F) Same as (E) but with 400 points and 6 = 0.1. From Tryggvason (1989).

of the number of vortices. The fast multipole summation algorithm de-
veloped by Grenngard and Rokhlin (1989) has proved to be very useful.
It reduced the operation count from the O(N2) for direct summation to
O(M log M) + O(N), where M is a constant independent of the number of
vortices. A similar fast algorithm has been proposed independently by van
Dommelen and Rundensteiner (1989). A somewhat slower, but more flexible
version of the fast algorithm based on Taylor expansions has been proposed
recently by Draghicescu (1994). A well-vectorised version of the fast multi-
pole algorithm has allowed vortex-method calculations with a large number
of vortex particles. For example, in his study of flow past circular cylinders,
Koumoutsakos (1993) has used up to O(106) vortex particles by efficiently
implementing the fast multipole algorithm for vector computer architectures.
Fast algorithms have also been used in three-dimensional applications, see,
for example, the work of Almgren, Buttke and Colella (1994).

5. Effect of surface tension

The surface tension at an interface between two immiscible fluids arises from
the imbalance of their intermolecular cohesive forces. It is one of the most
commonly used physical regularisations for interfacial flows. It is believed
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that surface tension plays a central role in determining the length scales,
selection mechanics and large time behaviour of interface dynamics. The
understanding of the stabilising effect of surface tension will enhance our
understanding of fluid phenomena such as pattern formation in Hele-Shaw
cells, the motion of capillary waves on free surfaces, the formation of fluid
droplets and the propagation of sound waves in a porous medium.

Surface tension has been used as a physical regularisation for the Kelvin-
Helmholtz instability. With surface-tension regularisation, the interface
problem is locally well posed. Pullin (1982) was the first to study the stabil-
ising effect of surface tension for vortex sheets. Rangel and Sirignano (1988)
also studied the effect of surface tension and density ratio on the nonlinear
growth of the Kelvin-Helmholtz instability. Numerical calculations of fluid
interfaces with surface tension are more susceptible to numerical instabili-
ties since surface tension introduces high-order spatial derivatives into the
governing equations. As in the case of water waves without surface tension,
numerical stability requires a certain compatibility between the choice of
quadrature rule for the singular integral and the approximation of derivative
operators. Violation of this compatibility condition wil l lead to numerical
instability.

5.1. Spatial discretisation

Here we only describe the time-continuous discretisation for general two-
density interface problems. Similar discretisation applies to Hele-Shaw
flows. Recall that the equations of motion for general two-density fluid
interfaces are given by

dz _ 1 f j(a',t) ,
di ~ 2?ri 7 z(a,t) -z(a',t) **  '

Define the derivative operator D  ̂ as in the case of water waves; see (3.2).
Further, we discretise the singular integral by the alternating-point-trape-
zoidal rule. The numerical algorithm for which we can prove stability and
convergence is given by

(5.2)



NUMERICAL SOLUTIONS TO FREE BOUNDARY PROBLEMS 381

+2A R e I ̂  J2 k̂
P)sec2\Zj *"  1  {{z3)t - (zk)t)2h

/p) _ JP) '
yk

p sec2 ( -

(fe-j)odd

(5.3)
/ 2 \

_ 2LD0>) I _ _^ ) _ 2AgDip)
yi +  TD^K,, (5.4)

4 KD^Zi2)
*  ^ h 3 '

where

(5.5)

and x£ = p(kh)£k and x£ = q(kh)xk, where q(x) — ^(xp(x)).
The use of xq,yq in the curvature computation is to balance the aliasing

errors in the high modes due to the non-linearity of the curvature term. Its
use is determined by the discrete product rule

D{p\fz) = fD^z + {D{p)f)z<> + hAo(z) (5.6)

for any smooth function / . To illustrate the algorithm for a practical ex-
ample, we take the second-order finite-difference derivative operator as an
example. Note that p(x) = sin(z)/x and q(x) — cos(x) if D  ̂ corresponds
to the second-order centred difference derivative. It is easy to see that

( / / i - i ) , (5-7)

(5.9)

Thus, equations (5.8)-(5.9) imply that we should simply use every other
grid point when discretising the curvature.

In the presence of surface tension, a higher-order norm is used to estimate
the growth rate of the errors. This requires a better control of aliasing errors
introduced in the approximation of the singular integrals. For finite-order
derivative approximations,  ^ 0 in general, and so the natural filtering
associated with D£ is not strong enough to control the aliasing errors. We
will need to apply an additional filtering to achieve this result. In equations
(5.2)-(5.4), we need to replace D{

h
p) by D(

h
p\ where

D{p)
Xj = D^x'j and x% = s(kh)xk (5.10)

where s satisfies

\s(kh)-l\ < C(kh)r,s(kh) >0 and  = 0. (5.11)

The evaluation of the curvature remains unchanged. It is computed exactly
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the same as in equation (5.5). With these modifications, we can prove
the convergence of the algorithm defined by (5.1)-(5.5) (Beale, Hou and
Lowengrub, to appear).
T h e o r em 2 Conve rgence w i t h Sur face Tens ion Assume that z(-,t),
<f>(;t)  G Cm+3[0,27r] and -y(-,t) G Cm+2[0,27r] for t < T and m > 4. If Dh

corresponds to an rth-order derivative operator, with r > 4 and h < ho(T),
then

\\z.(t)-z{;t)\\Hi <C(T)hr, (5.12)

||7-(i) — 7(-,t)\\ 1/2 < C(T)hr~ , (5.13)

where

\\(f)\\2 1/2 = y ^ (1 + \k\p(kh))\4>k\2 a nd \\<t>\\  ii i = ||</>||22 + ||-D/i^>||;2. (5.14)
H. ^—J h

|fc|<Af/2

If Dfr corresponds to a spectral derivative approximation, the result is the
same with r replaced by m.

As we can see, there are many choices of quadrature rule and derivative
rule. Also, it is not clear which term needs to be smoothed, and which
term need not be smoothed. Our analysis indicates that the combination
of these choices must satisfy certain compatibility conditions in order to be
stable. These compatibility conditions can be determined by performing
linear stability analysis around the arbitrary smooth solution of the inter-
face. In principle, such analysis is non-trivial and could be very messy. By
studying the leading-order linear singular operators and projecting them
into the appropriate local coordinates, a simplified system can be derived
from which stability of the numerical method becomes apparent. We note
that with surface-tension regularisation, the interface is locally well-posed
(Craig, 1985; Beale, Hou and Lowengrub, 1993a). The sign of gravity plays
no role. The convergence result holds even if the fluid is unstably stratified.

The proof of Theorem 2 relies on an estimate of the linearised error in the
curvature. Let

kj — Kj — K((XJ). (5.15)

Using the discrete product rule and the fact that (fg)q = gfq + hAo(f) for
any smooth g, we can show that the linear part of kj is given by

-j—D{
h
p)x? + A0(x

T) + A0(x
N). (5.16)

We refer the reader to Beale, Hou and Lowengrub (to appear) for details.
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Performing a linear stability analysis similar to that for water waves, we
obtain

 ̂ (5.17)

(t), (5.18)

(5.19)

where a = l/sa and Ufi and A^ are defined as in (3.2) and (3.9). Here <j)

denotes a variant of D£ xT, ip denotes a variant of AhiN and f denotes a

variant of 7. Recall that the operator Â , is positive, that is, Dh
p  ̂= \k\p(kh).

In deriving equations (5.17)-(5.19), we have changed variables so that the
coupling between <j)  and ip changes from elliptic to hyperbolic. By doing this,
we have successfully put the term responsible for the Kelvin-Helmholtz in-
stability to the third equation. It appears as 72cr/4r that is added to — A/j.
The Ah term represents the dispersive effect of surface tension. We can see
that the dispersive regularisation dominates the destabilising term for those
wavenumbers k satisfying |fe| > maxQ{72cr/4T}. This observation leads to
our energy estimate and convergence proof. The details are given in Beale,
Hou and Lowengrub (to appear); see also Beale, Hou and Lowengrub (to
appear).

We remark that the numerical approximations discussed for two-density
interfaces can easily be generalised for Hele-Shaw flows and other multi-fluid
interfaces.

5.2. Removing the stiffness of surface tension for interfacial flows

It turns out that it is difficult to obtain a stable and efficient time inte-
gration scheme for fluid interfaces with surface tension. If an explicit time
discretisation is used, there is a severe time-step stability constraint. This
constraint arises because of the presence of surface tension, and is a ma-
jor obstacle to performing high-resolution, long-time numerical simulations.
In this section, we present a new approach that successfully removes the
high-order time-step constraint induced by surface tension. This approach
was developed in detail, and demonstrated through numerical simulations,
in Hou, Lowengrub, and Shelley (1994a). Using our method, it is possible to
perform accurate and large time integration of fluid interfaces with surface
tension. Many previously untenable problems now become possible using
our approach. The application of these methods has led to the discovery
of interesting new phenomena. For example, numerical calculations of the
vortex-sheet roll-up with surface tension, using up to 8192 points, reveal the
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late time self-intersection of the interface, which creates trapped bubbles of
fluid. This is very interesting. A collision of interfaces is a singularity in
the evolution, and is of a type that has not been observed previously for
such flows in 2-D. We wil l describe this further below. Our methods have
also been applied recently to problems of topological singularity formation
in Hele-Shaw flows (Goldstein, Pesci and Shelley 1993) and to studies of the
effect of anisotropy in quasi-static solidification (Almgren, Dai and Hakim,
1993).

By stiffness, we mean the presence of strict time-step stability constraints.
The stiffness is introduced by the curvature term in the Laplace-Young
boundary condition. For incompressible fluid interfaces, it is especially dif-
ficult to remove the stiffness of surface tension because the stiffness enters
non-linearly and non-locally. Straightforward implicit discretisation would
not work since it could be as expensive to solve for the implicit solution. By
performing the frozen coefficient Fourier analysis of the interface equations,
we can derive the dynamic stability constraint

At < C  {sah)3/2/r, (5.20)

where sa = minQsa. Therefore, the stability constraint is determined by
the minimum grid spacing in arclength (As « hsa), which is strongly time
dependent. Our experience is that the Lagrangian motion of the points can
lead to 'point clustering' and hence to very stiff systems, even for flows in
which the interface is smooth and the surface tension is small. For example,
in previous calculations of the motion of vortex sheets with surface tension,
a fourth-order (explicit) Runge-Kutta method was used to advance the sys-
tem. An adaptive time-stepping strategy was used to satisfy the stability
constraint. With N = 256, the time step had become as small as 10~6,
and soon thereafter the computation became too expensive to continue. For
Hele-Shaw flows the situation is even worse. A similar analysis gives the
constraint

At < C  {sahf/T. (5.21)

Our approach relies on two key observations. The first is to introduce, a
new set of variables for which curvature can be evaluated 'linearly' through
these new variables. The second observation is to factor out the leading-
order singular linear operators from the non-linear and non-local system.
This gives rise to a much simplified leading-order system to which stan-
dard implicit methods such as the Crank-Nicholson scheme can be trivially
applied. ,

Our new set of dynamical variables consists of the tangent angle, 9, and
arclength metric, sa, of the interface. This is strongly motivated by the
formula K — 9S — 0a/sa. Furthermore, we would like to impose a as an
arclength variable. This is equivalent to imposing sa is a function of time
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alone. By doing this, we need to reparameterise the interface dynamically,
which amounts to a change of frame in time by introducing a particular
tangential velocity T.

Given an equation of motion of a free interface,

(x(a,t),y(a,t))t = Un + TS,

where n and s are the unit local normal and tangential vectors, respectively
and U and T are the local normal and tangential components of the interface
velocity. Define the tangent angle 9 and the arclength metric sa as tan 9 =
Va/xa, Sa — Vxa + Va- I*  ls e a sv to derive an equivalent equation of motion
for 9 and sa

(sa)t = Ta- 9aU, (5.22)

9t = (—) (Ua + 9aT). (5.23)

For most interface problems of practical interest, the motion of the interface
is determined only by the normal velocity. The tangential velocity would de-
termine the frame or parameterisation of the interface, but it does not affect
the shape of the interface. We wil l exploit this degree of freedom in choos-
ing T to derive a simpler evolution equation for sa and 9. Ideally, we would
like to choose a frame such that the moving particles {(x(aj,t),y(otj,t)}j
are equally spaced at all times if they are so initially . This corresponds to
imposing sa to be independent of a, varying with time only. To achieve
this, we choose the tangential velocity T such that

1 f27T

Ta-9aU=— (Ta - 9aU)da.
2TT JO

Since T is periodic with respect to a, we get

T(a, t) = T(0, t) + I"  9a,Uda' - — [ * 9a,Uda'. (5.24)
Jo 2TT JO

This expresses T entirely in terms of 9 and U. The spatial constant T(0, t)
just gives an overall temporal shift in frame. With this choice of T, the
evolution equations for 9 and sa reduce to

1 r2n

(sa)t = -r- / 9aUda. (5.25)
2n Jo

9t = (—) (Ua + 9aT). (5.26)

This system should be solved, together with the evolution equations gov-
erning other dynamical variables, such as vortex-sheet strength, velocity
potential, etc. This is a complete reformulation of the evolution problem.
Once we obtain sa and 9 in time, we can recover the interface position (a;, y)
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by an integration (up to a constant of integration). This formulation of plane
curve motion is not new. See, for example, Strain (1989) in the context of
unstable solidification.

Next we would like to factor out the leading-order linear singular operators
in the evolution equations. To illustrate the idea, we take vortex sheets with
surface tension as an example. It is important to note that the time-step
stability constraint is a result of high-order derivative and singular operators.
They enter only at small spatial scales or high-frequency components of the
solution. Thus it is essential to single out the leading singular operators and
high-order derivative terms, and treat these terms implicitly. Although the
Birkhkoff-Rott equation is highly non-linear and non-local, its leading-order
approximation at small scales is extremely simple. It can be expressed in
terms of the Hilbert transform. With some manipulation, we find that for
a vortex-sheet flow with surface tension, the normal velocity U behaves at
small scales as

while for 7,

It  ~ TKa.

I t is worth noting that the Hilbert transform is diagonalisable under the
Fourier transform. Now we can recompose the equations of motion to a
form suitable for applying implicit time-integration methods. We will sepa-
rate the leading-order singular operators from the smoother and lower-order
operators. The leading-order terms dominate at small scales, and will be
treated implicitly . The smoother and lower-order terms are non-linear and
non-local. We wil l treat them explicitly. There is no stiffness in the equa-
tion for sa since only the space-averaged quantity enters the equation. The
stiffness of the system is in the coupling of the 9 and 7 equations. The
recomposed system for 9 and 7 is given by

It = (j^j 0aa + Q. (5.28)

The first term in each equation is the leading-order term, dominant at small
scales. P and Q represent the smoother and lower-order terms. They are
obtained by subtracting off the leading-order terms from the right-hand
sides of the 9 and 7 equations respectively. We term this form" of the
equations of evolution Small Scale Decomposition (SSD). It is the leading
terms that introduce the stiffness into the system. These leading terms
diagonalise under the Fourier transform, and can be treated implicitly
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very easily. A very similar, and simpler, recomposition can be found for
Hele-Shaw flows.

A stable second-order integration can be obtained by discretising the
leading-order stiff terms implicitly using a Crank-Nicholson discretisation,
and leap-frogging on the non-linear terms. To simplify the notation, we
denote 2TTSQ by L(t). It is the total arclength of the interface. In Fourier
space, this gives

en+l - en-1

(5.30)

Given Ln+1, 9n+1(k) and jn+1(k) can be found explicitly by inverting a 2 x 2
matrix. By using an explicit method to integrate L (a non-stiff ODE), Ln+1

is found before updating 0 and 7. At most, a first-order CFL condition
must be satisfied because of transport terms in the 6 and 7 evolutions. And
indeed, numerical simulations of the fully non-linear flow show no high-order
time-step constraint from the surface tension, but do reveal a first-order CFL
constraint. Further details on implementation are found in Hou, Lowengrub
and Shelley (1994). Recently, we have been able to prove convergence of
the above reformulated boundary-integral method for general two-density
interface problems with surface tension (Ciniceros and Hou, to appear).
This includes Hele-Shaw flows and water waves.
A fourth-order implicit discretisation
We can also design a fourth-order implicit multistep discretisation in time.
Motivated by the work of Ascher, Ruuth and Wetton (to appear), we propose
the following fourth-order implicit discretisation in time:

(25/12)#"+1 - 40" + 36P-1 - (4/3)/9"~2 + ( l /4)0"" 3

- 6

(25/12)7n+1 - 47
n + 37""1 - (4/3)7n" 2

+ 4Qn(k)

- 6 Qn~l{k) + ^Qn~2(k) - Qn~3{k)

We have tested this fourth-order version of implicit discretisation. It in-
deed gave a fourth-order convergence with a CFL stability constraint which
is about half of that in the second-order Crank-Nicholson discretisation
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(Hou, Lowengrub and Shelley, to appear). The improved order of accuracy
in time is very important for large time integration of free interfaces. And it
is especially useful in our study of the formation of topological singularities;
see; Hou, Lowengrub and Shelley (to appear).

We would like to emphasise that the equal arclength frame we described
above is one convenient choice. This choice leads to a constant coefficient
system to the leading order which makes the inversion explicit by using the
fast Fourier transform. But there are other situations where we may want to
choose a non-equal arclength frame that is adapted to the local property of
the interface. For example, we may want to cluster computational particles
near a singular region. This can be carried out in a similar way. In this
case, the implicit solutions become a variable coefficient problem, which can
be solved by some iterative methods such as the preconditioned conjugate
gradient method. We refer to Hou, Lowengrub and Shelley (1994; to appear)
for more discussions of the formulation and implementation issues.

5.3. Numerical examples

In this section, we present some very interesting numerical simulations that
serve to demonstrate the utilit y of the SSD. The numerical methods are
based on the Crank-Nicholson discretisation discussed above. This yields
a stable, second-order in time, infinite-order in space discretisation. We
are interested in understanding the competing effects of surface tension and
the Kelvin-Helmholtz instability on the motion of a vortex sheet. In our
calculation, r = 0.005, with the initial condition

xQ(a) = a + Q.Qlsin2na,yo(a) = -0.01 sin 2na,jo(a) = 1. (5.31)

This initial data was used by Krasny (1986a,b) in the absence of surface
tension to study singularity formation through the Kelvin-Helmholtz insta-
bility . In the case of zero surface tension, a curvature singularity was shown
to occur at the centre (a = 1/2) at t « 0.375. With r = 0.005, the linear
dispersion analysis gives approximately 16 linearly growing modes above
k — 0. Modes higher than 16 are all linearly stable and are dispersively
regularised by surface tension.

Figure 7 shows a sequence of interface positions, starting from the ini-
tial condition (Figure 7A). At early times, the interface steepens and be-
haves similarly to the zero-surface-tension case. However, it passes smoothly
through the r = 0 singularity time, and becomes vertical at the centre at
t « 0.45. At about this time, dispersive waves are generated at the centre
and propagate outwards. By t = 0.6 (Figure 7B) the interface has rolled
over and has begun to roll-up into a spiral. However, at later times (see
Figure 7C and D), sections of interface within the inner turns of the spiral
appear to be attracted towards one another, and in the process appear to
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Fig. 7. Point-vortex-method solution of vortex sheets with surface tension, r =
0.005, N = 1024, At = 1.25 x 10~4. (A) t = 0; (B) t = 0.6; (C) t = 0.8; (D) t = 1.2;
(E) t = 1.4; (F) close-up of top pinching region, t = 1.4. From Hou, Lowengrub
and Shelley (1994)

pinch off interior 'bubbles' of fluid (see Figure 7E). A close-up of the pinch
region is shown in Figure 7F.

These sections of interface in the pinching region appear to collide at a
finite time. Figure 8 shows the minimum distance between the two sections
of interface in the pinching region as a function of time for several spatial and
temporal resolutions. Figure 8B shows that the total energy is conserved up
to 6-digit accuracy very close to the time of pinching for N < 2048. This
figure suggests strongly that the pinching occurs at a finite time. Moreover,
the width apparently vanishes with infinite slope, which indicates that the
pinching rate intensifies as the width narrows.

We remark that this apparent singularity is of a completely different type
from that of the r = 0 singularity. This singularity is a topological sin-
gularity. Beyond the pinching singularity, change in the topology of the
flow may occur. More fundamentally, with T = 0 the singularity occurs
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x l O J (A ) Minimum distance to pinching

1.4 1.405 1.41 1.4251.415 1.42

T

(B) Number of accurate digits in energy

1.43

Fig. 8. Pinching in, and accuracy in the energy of, the inertial vortex sheet: (A)
minimum width of the top pinching region, r = 0.005, TV = 1024 with At =
2.5 x 10~4, TV = 2048 with At = 1.25 x UT4, TV = 4096 with At = 6.25 x 10~5,
TV = 8192 with At = 3.125 x 10~5; (B) number of accurate digits in the energy,
r 0.005, TV = 512, TV = 1024, TV = 2048 with At = 1.25 x 10"4, and TV = 1024 with
At = 3.125 x 10"5(1024ext). From Hou, Lowengrub and Shelley (1994).

through a rapid compression of vorticity along the sheet at a single iso-
lated point (Moore, 1979; Krasny, 1986; Baker and Shelley, 1990; Shelley,
1992). Here the singularity occurs through a rapid production of vortic-
ity that is associated with the surface tension. And indeed, the maximum
vortex-sheet strength appears to diverge at the singularity time, unlike the
T = 0 case. Further details, physical interpretation and modelling are given
in Hou, Lowengrub and Shelley (1994) and Hou, Lowengrub and Shelley (to
appear).

The second example we consider is the expanding bubble. This is a cal-
culation of a gas bubble expanding into a Hele-Shaw fluid; see Figure 9.
The dynamics of expanding bubbles in the radial geometry have .attracted a
great deal of attention due to the formation of striking patterns observed in
experiments. In our set-up, the viscosity inside the bubble is set to zero, but
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the viscosity outside the bubble is equal to 1. Therefore, there is a viscosity
contrast A  ̂ = 1. Thus the 7 equation now reads

7 = -2A^saU
T + TKa,

where UT is the tangential velocity component of the interface velocity (it, v).
In this case, 7 is defined implicitly through an integral relation. An iterative
scheme is needed to solve for 7. The initial condition is given by

(xo(a),yo(a)) = r(a)(cos a, sin a),

with r(a) = 1 + 0.1 sin 2a + 0.1 cos 3a.

See the innermost curve in Figure 9. This choice of initial condition is
to avoid particular symmetry in the initial interface. The value of surface
tension is r = 0.001, the time step is At = 0.001 and N = 4096. Figure 9
shows the expansion of this bubble from t = 0 to t = 20, printed at unit
intervals of time. We can see that the interface develops oscillations in the
moving front, and subsequently produces many fingers and pedals as time
evolves. These petals expand outwards and eventually tip-split into two
petals. This process repeats itself. In performing this calculation, we have
done a careful resolution study. This calculation agrees very well with lower-
resolution calculations. It is quite remarkable that we can now use such a
large time step At = 0.001 for N = 4096. Without the new formulation, the
time step would have been at least one thousand times smaller to achieve
stability for an explicit method.

5-4- A note on computing beyond the singularity time

Topological changes or formation of singularities in free interfaces occur in
many physical applications. For example , in crystal growth and thin-film
growth, an initial smooth front can develop cusps and crack-like singular-
ities, and isolated islands of film material can merge (Gray, Chisholm and
Kaplan, 1993; Sethian, 1985; Snyder et al., 1991; Spencer, Vorhees and
Davis, 1991). Computing beyond the singularity time using front tracking
methods is usually very difficult and complicated. Local grid surgery is re-
quired to reconnect the Lagrangian particles near the singularity region; see,
for example, Unverdi and Tryggvason (1992). Also, how we reconnect the
interfaces may affect the solution at later times. So it would be highly desir-
able to develop a more systematic framework for boundary-integral methods
to compute beyond the (topological) singularity time. In the next section,
we will discuss front capturing methods based on the level-set approach. But
here we would like to exploit further what we can do within the framework
of boundary-integral methods.

Here we propose a new approach to continue our boundary-integral cal-
culation beyond the topological singularity. This borrows ideas from the
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Time =0 to 20

Fig. 9. An expanding Hele-Shaw bubble. N = 4096, At = 0.001, r = 0.001,
t = 0,1,2,..., 20. From Hou, Lowengrub and Shelley (1994).

level-set approach (see the next section). The idea is to use curvature reg-
ularisation, as has been successfully used for the level-set approach. By
curvature regularisation, we mean that we add to the normal velocity com-
ponent a term proportional to the local mean curvature, that is, U' — U+en.
Here U is the normal component of the interface velocity, K is the (mean)
curvature and U' is the regularised normal velocity. We are interested in
studying the limiting solution as e —> 0+ , beyond the singularity time.

To illustrate the idea, we take the example of motion by mean curvature.
The normal velocity is given by U = 1 + CK, where K is local curvature.
In the limi t of e = 0, the equal arclength frame would choose a tangential
velocity T — 9. With this choice of T, our reformulated system of equations
for 9 and sa becomes a variant of the viscous Burgers equation:

(sa)t = 1 - e(9a)
2/sa, (5.32)

(5.33)
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In the limit of e = 0, the 9 equation becomes the inviscid Burgers equation,
and sa becomes constant (positive) in space. Now it is clear that a cusp
or topological singularity corresponds to a shock discontinuity in the tan-
gent angte. It is well known that an entropy condition is required to select
the physical weak solution beyond the time a shock discontinuity is formed.
For positive e, the curvature regularisation plays exactly the same role as
the viscosity regularisation. Thus using an upwinding scheme or high-order
Godonov scheme for computing 9 would give the correct continuation be-
yond the singularity. By applying curvature regularisation to a free surface
directly, we do not need to introduce one extra space dimension as in the
level-set approach. More accurate numerical methods can be designed since
we only deal with the free surface and don't have to differentiate across the
free surface. Also, the stiffness can be removed easily using our reformulated
system.

We have used our formulation to reproduce some of the calculations pre-
sented in Osher and Sethian (1988) using the level-set formulation. We
obtained the same results for computations of the cusp and corner singu-
larities. In Figure 10, we plot the evolution of a sinusoidal initial condition
propagating with unit normal velocity. The initial condition is given by
x(a,0) = a,y(a,Q) = —0.05sin(27ra). N — 128, and an upwinding scheme
was used to integrate the 0 equation in time. Since the curve propagates into
itself with unit normal velocity, a corner singularity is formed at later times.
It is clear that applying an upwinding scheme to our reformulated system
produced the entropy-satisfying continuation beyond the singularity time.

Merging of interfaces can also be handled similarly. We can determine
accurately the time of merging by monitoring the minimum distance be-
tween the two interfaces, as we did for the vortex-sheet calculation. At the
time of merging, we need to reparameterise the merged interface. This can
be done by combining the original parameterisation of the two interfaces.
For the merged interface, there is a jump discontinuity for 9 at the point of
contact. This will generate a cusp or corner singularity after the merging of
the two interfaces. But using the curvature regularisation described above,
the reformulated method can capture the cusp or corner singularities with
no additional effort. And the entropy condition is satisfied automatically..
Apparently, this idea can be applied to water waves, interaction of fluid bub-
bles and droplet formation. Detailed description and computational results
will be presented elsewhere (Hou and Osher, 1994). Generalisation of this
idea to three space dimensional problems is our active on-going research.

We would like to emphasise that curvature regularisation is a geometric
(or topological) regularisation. It is frame-independent, and consequently it
is an intrinsic regularisation. It has an important property of preserving the
index of a curve. As a consequence, a curve cannot cross itself under the
curvature regularisation. Of course, if we use curvature regularisation in the
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Fig. 10. Motion by mean curvature using reformulated front tracking method with
curvature regularisation. The normal velocity U = 1. The initial condition is
x = a,y = 0.05sin(27ra). N = 128. The upwinding scheme was used to integrate
in time. From Hou and Osher (1994)

original Lagrangian frame, the differential point clustering of particles will
result in a very stiff system to solve. So it is essential to apply curvature
regularisation to our reformulated system in which an equal arclength frame
is imposed dynamically. The curvature regularisation can also be used to
regularise ill-posed problems. Using the point-vortex method approximation
with curvature regularisation, we can compute beyond the Kelvin-Helmholtz
singularity, and obtain a roll-up solution of vortex sheets. But it is more
effective if a small vortex blob of the order of the mesh size is used. In Figure
11 A, we present our vortex-sheet calculation using the point-vortex method
and the curvature regularisation. The same initial condition as Krasny's
was used. The curvature regularisation coefficient is 0.01. The solution is
plotted at t = 1.24 with TV = 256. This clearly gives a vortex-sheet roll-up
solution. But it seems to require more resolutions to compute further in
time. In Figure 11B, we present the same vortex-sheet calculation using a
small blob. The blob size is equal to 0.01. The vortex-sheet positions at
three different times are shown in Fig. 11B, with N — 512. The solutions
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Fig. 11 A. Vortex-sheet roll-up calculation using the point-vortex method and the
curvature regularisation. The same initial condition as Krasny's was used. The
curvature regularisation coefficient is 0.01. The solution is plotted at t = 1.24.
JV = 256. From Hou and Osher (1994).

are very similar to those obtained by Krasny using vortex-blob calculations
with larger blobs. By using the curvature regularisation, it is possible to
study the limiting solution as the regularisation parameters tend to zero
simultaneously with the mesh size.

Curvature regularisation introduces a dissipative regularisation for the 6
equation with respect to the arclength variable. It is important that such
dissipative regularisation is with respect to the arclength variable. If we
naively add a dissipative regularisation in the original Lagrangian frame a,
the result is quite different. Such Lagrangian regularisation would allow
interface self-crossing, producing a non-physical continuation beyond the
Kelvin-Helmholtz singularity time (Hou and Osher, 1994).

6. The Level-Set Approach

The level-set approach is an effective front capturing method for computing
free surfaces. It was originally introduced by Osher and Sethian in 1988.
The basic idea is to consider the free surface as a zeroth-level set of some
smooth function which is denned in one higher space dimension than the
free surface. So advancing the free surface is reduced to advancing the level-
set function. Since only the zeroth-level set is physically relevant to the
free surface, there is a lot of freedom in advancing the level-set function
away from the zeroth-level set. Such freedom can be exploited to design a
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Fig. 11B. Vortex-sheet roll-up calculation using the curvature regularisation with a
small vortex blob. The same initial condition as Krasny's was used. The curvature
regularisation coefficient and the blob size are equal to 0.01. iV = 512. The
solutions are plotted at t = 1.0,1.2,1.4. The frame dimension of each plot is
0<x<l,-4<y<  0.4. From Hou and Osher (1994).

smooth level-set function throughout the numerical computation. Thus, a
free surface may develop a topological singularity such as a cusp, a corner
or merging of two surfaces; the level-set function remains relatively smooth
(the level-set function is Lipschitz continuous at the singularity of the in-
terface). Moreover, the level-set function satisfies a Hamilton-Jacobi-type
equation, and curvature regularisation corresponds to an entropy condition.
Therefore, high-order Godonov methods developed for hyperbolic conserva-
tion laws can be used to compute the level-set function. Unlike the front
tracking approach, no special effort is required at the interface singular-
ity. The interface is recovered at the end of the computation by locating
the zeroth-level set. Generalisation to three space dimensional problems
requires no additional effort.

In this section, we describe the level-set algorithm for propagating a curve
or union of curves T(t). We assume that the motions of these curves are
completely determined by the normal velocity, V. Let B be a fixed" domain
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which contains the union of curves in all times of interest. The main idea is
to construct a function <f>(x, t) denned on B, such that the level set {</> = 0}
corresponds to the moving curves T(t), that is,

T(t) = {x:<t>(x,t)  = 0}.

We now derive a partial differential equation for <j),  which holds onBx[0,T].
First, we need to construct a smooth extension of the normal velocity, V, of
the curves to the entire domain of B such that

F(x,t) = V(x,t) for xeT(t).

Now consider the motion of an arbitrary level set {</>(x, t) = C}. We will
follow the derivation of Osher and Sethian (1988). Let x(a, t) be the La-
grangian trajectory of this level-set. This implies that

0(x(Q,t),t) = C.

Differentiating the above relation with respect to time, we get
<9x

4 +

Note that V</> is normal to the level set {0(x, t) — C}, and ^  n = F,
where n = V0/|V0| is the unit normal vector to the level set cf> = C. This
consideration implies that the evolution equation for the level-set function
4> is given by

& + F|V0|=O, (6.1)
<t>{x,  0) = given. (6.2)

Equation (6.1) yields the motion of F(i) with normal velocity V on the level
set (f> = 0. We refer to equation (6.1) as the level-set 'Hamilton-Jacobi'
formulation.

One essential property of the level-set function is that it always remains a
function, even if the free surface (corresponding to 0 = 0) changes topology,
breaks, merges or forms sharp corners. Parameterisations of the boundary
become multivalued or singular in these cases. Furthermore, since the level-
set formulation is completely Eulerian, finite-difference approximations over
a fixed grid may be used to discretise the equation in space and time. Thus,
there is no need to explicitly track the free surface during a numerical cal-
culation. The free surface is recovered only at the end of the computation.

To illustrate, suppose we wish to follow an initial curve T(t — 0) propa-
gating with normal velocity V = 1 — CK, where K is the local curvature of the
boundary. The curvature of the level curve passing through a point (x,y,t)
is given by

\ _ 4>2y(t>XX ~ fe
) - 02)3/2
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The minus sign occurs because we have initialised the surface so that
points inwards and we want K to be positive for a circle. The smooth
extension of V to F is straightforward, and equation (6.1) becomes

4>(x,y,t = 0) = idistance from (x,y) to T(t = 0).

As shown in Sethian (1985), for e > 0, the parabolic right-hand side diffuses
sharp gradients and forces (f> to stay smooth for all time. This is not true
for e = 0 and F — 1. A corner singularity must develop in time.

Thus the goal is to produce approximations to the spatial derivative that
(1) do not smooth sharp corners artificially and (2) pick up the correct
entropy solution when singularities develop. The schemes are motivated by
the fact (Osher and Sethian 1988) that the entropy condition for propagating
boundaries is identical to the one for hyperbolic conservation laws, where
stable, consistent, entropy-satisfying algorithms have a rich history.

In discretising the term F|V</>|, we decompose F into two components:

F = FA + FG.

Here, FA is an advection term containing that part of the velocity that is
independent of the moving boundary, and FQ contains those terms that de-
pend on the geometric properties of the boundary, such as the curvature and
normal. We begin by splitting the influence of F, and rewrite the equation
for <fi as

In two space dimensions, one can easily devise an iterative type of scheme
based on dimension-by-dimension splitting (Osher and Sethian, 1988; Osher
and Shu, 1991):

; D + ^ , 0 ) ) 2 - &tFG\V<j>\.

Here we have not approximated the final term -FG|V</>|; one may use a
straightforward centred difference approximation to this term. This is the
first-order multi-dimensional algorithm described in Osher and Sethian
(1988). High-order schemes have also been derived, see Osher and Shu
(1991). In Figure 12 we show this technique applied to the case of a star
propagating outwards with speed F — 1, At = 0.01, and a mesh size of 50
points in each direction in a box. The cusp singularities were captured prop-
erly. The curve became circular as it evolved (Osher and Sethian-, 1988).
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Fig. 12. Expanding star, F(K) = 1, t - 0.0,0.7(0.01). N = 50. From Osher and
Sethian (1988).

6.1. Crystal growth and solidification

We have described the boundary-integral formulation in Subsection 2.4.
Here we describe how to extend the velocity V to a globally defined speed
function F. Such an extension is needed to use the level-set formulation.
What we will describe below is contained in the paper by Sethian and Strain
(1992).

The most natural extension makes direct use of the integral equation

f f K(x,x',t-t')V(x',t')dx'dt' = 0,
Jo Jr(t')

(6.3)

for x G F(£). Each term in (6.3) can be evaluated anywhere in B, once V
is known on T(t') for 0 < t' < t and <j>  is known on B. Thus, given the set
T(t), plus all its previous positions and velocities for 0 < t' < t, one could
first solve an integral equation to find the velocity V for all points on T(t)
and then find F(x, t) by solving the equation

eKK(x,t) + eyF(x,t)

+ U(x, t) + H [ [ K(x, x', t - t')V(x', t')dx'dt' = 0,
Jo Jr(t>)
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for F throughout B. The curvature away from T(t) is evaluated by

These expressions make sense everywhere in B. This defines the extension
of V away from F(t).

Furthermore, it was observed by Greengard and Strain (1990) that one
can decompose the single-layer potential into a history part SgV and a local
part SLV as follows:

SV(x,t) = f f K(x,x',t-t')V{x',t')dx'dt'
Jo Jr(t')

+ [ [ K(x,x',t-t')V(x',t')dx'dt'
Jt-s Jr(t')

= SSV + SLV.

Here 8 is a small regularisation parameter. Heuristically, we try to separate
the local part, which is causing the jump in the normal derivative of the
potential, from the history part, which is smooth and independent of current
velocity. It was shown (Sethian and Strain, 1992; Greengard and Strain,
1990) that the local part SLV can be approximated by

SLV(x, t) =

at point x on T(t). The history part Sg V depends only on values pf V
at times t' bounded away from the current time, t' < t — 6. This is a
smooth function. A fast summation method has been developed to evaluate
the history part efficiently, requiring only O(M2) calculations per time step.
Finite-difference approximations can also be used to obtain a fast evaluation
of the history part; see Brattkus and Meiron (1992). Now we can define the
extended velocity F explicitly through the history part of the single-layer
potential:

) + H y/6/ir

We have reduced the equation of motion, with an O(63/2) error, to a pair of
equations on fixed domain B:

<k + F\Vct>\ =  0,
F  = ^ l

Numerical approximation of these coupled equations gives rise to a robust
algorithm which can handle topological singularities, cusps, and corners.

In Figure 13, we plot a sequence of fingered growth under mesh refinement
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Fig. 13. Fingered crystal: effect of refining both grid size and time step, H — 1, A =
0, eK = 0.001, ev = 0.001, kA = 0: (A) 32 x 32 mesh, At = 0.005; (B) 48 x 48 mesh,
At = 0.005; (C) 96 x 96 mesh, At = 0.00125; (D) 128 x 128 mesh, At = 0.00125.
From Sethian and Strain (1992).

(Sethian and Strain, 1992). Here the physical parameters were specified as
follows: ey — 0.001, eK — 0.001, i f = 1. There was no anisotropy in the
coefficient, and the constant undercooling was set to be —1. In Figure 13A,
a 32 x 32 grid was used with At = 0.005. In Figure 13B, a 48 x 48 grid
was used with At = 0.005. In Figure 13C, a 96 x 96 grid was used with
At = 0.00125. In Figure 13D, a 128 x 128 grid was used with At = 0.00125.
On the coarsest mesh (32 x 32), only the gross features of the fingering and
tip-splitting process are seen. As the numerical parameters are refined, the
basic pattern emerges. It is clear that the resulting shapes are qualitatively
the same, and there is littl e qualitative difference between Figure 13c and
Figure 13d. We refer to Sethian and Strain (1992) for more details.

One disadvantage of this approach is that computing the normal veloc-
ity at each time step requires solving the boundary-integral problem. So
it is not a completely Eulerian formulation. Since the boundary-integral
problem is history dependent and the integration is non-local in space, it is
usually very expensive. Even using the fast algorithm for heat potentials
developed by Greengard and Strain (1990), numerical calculations by this
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approach are still slower compared with finite-difference approximations for
the heat equation. Recently, Osher and his co-workers (private communica-
tion) have developed a completely Eulerian level-set formulation to compute
solidification problems. The method is in principle as fast as standard finite-
difference methods for the heat equation. The preliminary results seem to
be very encouraging.

Numerical study of unstable solidification has been a very active research
area in the past decade. Other numerical studies of solidification prob-
lems include the works of Meiron (1986), Kessler and Levine (1986), Langer
(1980), Karma (1986), Voorhees et al. (1988), Almgren (1993), Bratkkus
and Meiron (1992), Greenbaum et al. (1993).

6.2. Level-set formulation for incompressible-fluid surfaces

We have described a number of boundary-integral methods for computing
fluid interfaces in previous sections. We can see that they are very effec-
tive as long as the interface stays smooth. However, when the interface
develops pinching singularity, as seen in Subsection 5.2, corners and topo-
logical changes, boundary-integral methods are difficult to compute beyond
time singularities. Here we would like to present a level-set formulation for
incompressible-fluid interfaces with discontinuous densities and viscosities.
Detailed derivation can be found in Chang et al. (to appear). Here we just
present the result in our reformulation.

The equations governing the motion of an unsteady, viscous, incompress-
ible, immiscible two-fluid system are the Navier-Stokes equations. In con-
servation form, the equations are /

p(ut + V  (uu)) = - V p + pg + V  (2/xD),

where u is velocity and p and // are discontinuous density and viscosity
fields respectively. D is the rate-of-deformation tensor whose components
are Dij  = ^{uij + ttj,i). The density and viscosity are purely convected by
the fluid velocity:

( ) + V

These equations are coupled to the incompressibility condition

V  u = 0.

Denote the stress tensor by cr(x), which is given by

a(x) = - pi + 2 /JD,



NUMERICAL SOLUTIONS TO FREE BOUNDARY PROBLEMS 403

where I is the identity matrix, D is the deformation tensor and p is the
pressure. We let F denote the fluid interface. The effect of surface tension
is to balance the jump of the normal stress along the fluid interface. This
gives rise to a free-boundary condition for the discontinuity of the normal
stress across F

[aijTij]  | r = TKUi, (6.4)

where [p] denotes the jump of p across the interface, K is the curvature of
F, r is the surface-tension coefficient and n is a unit outward normal vector
along F. Note that in the case of inviscid flows, the above jump condition
is reduced to

fa] |r= TK. (6.5)

In this case, the effect of surface tension is to introduce a discontinuity in
pressure across the interface proportional to the (mean) curvature.

Our level-set formulation is based on the following observation. The effect
of surface tension can be expressed in terms of a singular source function
that is defined by our level-set function. This is similar in spirit to Peskin's
formulation for the immersed boundary-value problem for blood flows
trfrough a heart valve (Peskin, 1977); see also Unverdi and Tryggvason
(1992). Let us denote by <f>  the level-set function. The fluid interface F
corresponds to the zero-level set of <fi. In Chang et al. (to appear), we
derived a completely Eulerian level-set formulation for multi-fluid interface
problems with surface tension. The evolution equations are given by

p(ut + V  uu) = - V p + pg + V  (2/iD) + TK(4>)V<t>6((/)), (6.6)

^ O, (6.7)

where 6{4>) is a one-dimensional Dirac Delta function and cfr is chosen in such
way that V</> is in the outward normal direction when evaluated on F. The
curvature K(</>) can be expressed by <f>  and its derivatives

, , < $l<i>xx ~ 1<t>x<t>y<t>xy  + <j>l<i>yy
Kim) = o .

Our level-set formulation was partially motivated by the work of Unverdi
and Tryggvason (1992). The work of Unverdi and Tryggvason was formu-
lated as a vortex-in-cell method. The free surface is tracked explicitly by
following the Lagrangian markers of the free surface. A fixed underlying grid
is used to invert the Poisson equation. The interface velocity is obtained by
grid/particle interpolation, in the same way as we described in the previ-
ous section on the VIC method. But in this semi-Lagrangian formulation,
the coupling between the Delta function source term and the momentum
equations is non-local. If x(s, t) is a parameterisation of the fluid inter-
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face F, with s being the arclength variable and t being the time variable,
and <5(x) is the two-dimensional Dirac Delta function, then the momentum
equations become

p(ut + V  (uu)) = - V p + pg + V  (2pX>)

T«(x(s, i )Wx-x(s, i ) )nds. (6.9)/
Jrr

Note that the singular source term is a 2-D Delta function and it is non-
local. This is in contrast with the local and 1-D Delta function source term.
In fact, equation (6.9) was not derived explicitly in Unverdi and Tryggvason
(1992). It was based on our derivation of the level-set reformulation that
we gave an independent derivation of (6.9). Also, consistency of equation
(6.9) with the original interface problem requires s to be an arclength vari-
able. Since x(s, t) is advected by the fluid velocity, s will not remain as an
arclength variable even if it is so chosen initially. Therefore, if a Lagrangian
variable a is used to parameterise the interface, that is, X(Q, t), then a factor
xQ| should be added on to the integration with respect to a. This point
was not clearly stated before, and it caused some confusion in the literature.

After the completion of our work on the level-set formulation, the work
of Brackbill, Kothe and Zemach (1992) was brought to our attention. They
have derived a continuum method for modelling surface tension for multi-
fluid flows which is almost the same as our formulation if we replace the
Dirac Delta function by a regularised one. Brackbill et al. used a 'colour'
function to describe the smoothed interface. The colour function changes
continuously in the transition region of finite thickness. Brackhill et a/.'s
derivation was based on a physical argument.

We now describe how to discretise the level-set formulation. Assume that
we have chosen the initial level-set function such that <f>  < 0 defines region 1
of the fluid, and (j>  > 0 defines region 2. Further, we assume that p\ and p2
are the constant densities in region 1 and region 2, respectively, and \i\ and
fi2 are the constant viscosities in region 1 and region 2 respectively. Then
we have p = p\ + (p2 — pi)H(4>), where H is the Heaviside function that
satisfies H(x) = 1 for x > 0 and H(x) — 0 for x < 0. Similarly, we have
// = n\ + (//2 — fJ-i)H((f>). In numerical computations, we approximate H by
a regularised Heaviside function, and approximate 6 by a regularised Delta
function, just as in Peskin (1977). The regularised Delta function S£(x) has
support in {\x\ < e}. Typically, we choose e = 4h in our calculations.

The evolution equations can be solved by a projection method. In its
most basic form, the projection method requires the solution of advection-
diffusion equations, which are then projected onto the space of divergence-
free vector fields. The projection uses the Hodge decomposition which states
that any vector V can be uniquely decomposed into a divergence-free field
Vd and a gradient field Vp, that is, V = V^ + Vp. Moreover V^ is or-
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thogonal to the gradient field. For more detailed descriptions of projection
methods and their applications, we refer to Chorin (1968) and Bell, Colella
and Glaz (1989) and the review paper by Gresho and Sani (1987). For our
problem, density is not a constant in the entire domain. A modification
of the standard projection method is required. A second-order projection
method for variable density has been introduced by Bell and Marcus (1992),
and it has been applied successfully to a number of interesting multi-fluid
interface problems.

From the evolution equations (6.7), we have ut — Lu — S/p/p. As in Bell
and Marcus (1992), we introduce a density-weighted inner product such that
we can decompose V into V^ and Vp/p. In the density-weighted norm, V^
is orthogonal to Vp. Given a vector V, we define our projection operator as
P<i(V) — Vrf. Since the Hodge decomposition is unique and ut is divergence
free, we have uj = P^(Lu). In order to compute the projection, we take the
divergence of both sides of the equation V = V^ + Vp/p to obtain

V  (-Vp\ = V  V.

The orthogonality condition implies the boundary condition dp/dn = 0 on
the boundary. Another way to compute the projection is to take the curl
of both sides of the equation V = V^ + Vp/p. This also gives a variable
elliptic problem for p with a different boundary condition. We refer to Bell
and Marcus (1992) for more detailed discussions.

The convection terms can be approximated by high-order ENO schemes
Harten et al. (1987) or by other high-order Godunov schemes. Appar-
ently, our level-set formulation works for both two-dimensional and three-
dimensional problems. There are no additional complications to extend the
method to three-dimensional problems.

To obtain an effective method, it is important to keep the level-set func-
tion as smooth as possible at all times. For this reason, it is desirable to
keep the level-set function as a signed distance function from the moving
surface. This also ensures that the regularised surface has a finite thickness
of order e for all time. However, even if we initialise the level-set function <j>
as a signed distance from the free surface, the level-set function in general
will not remain a distance function at later times. In Sussman, Smereka and
Osher (to appear), an iterative procedure was proposed to reinitialise the
level-set function at each time step so that the reinitialised level-set func-
tion remains a distance function from the front. Specifically, given a level-set
function, fa, at time t, solve for the steady-state solution of the equation

0(x,O) = 0o (x),
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Fig. 14. Fourth-order difference approximations for two-fluid bubbles with different
densities. The density ratio is 1:60:3600, with the bottom bubble being the lightest.
The viscosity is equal to 0.000125 in all fluids, t = 0.1,0.15,0.2 for the first row
(N = 256), and t = 0.275,0.325,0.35 for the second row (N = 512). From Chang
et al. (to appear).

where sgn is the sign function. The solution <\>  has the same zero-level set
as 4>o, and satisfies |V^| — 1, and so is a distance function for the front.
I t was found in Sussman, Smereka and Osher (to appear) that such reini-
tialisation is crucial in maintaining the accuracy of large-time integrations,
especially when the density ratio between the two fluids is large. In Sussman,
Smereka and Osher, the motion of bubbles in water and falling water drops
in air were studied numerically using our level-set formulation, together
with the reinitialisation procedure described above. The density ratio is 1 to
1000. The numerical results were in good agreement with some experimental
results.

In Figure 14, we illustrate the method by considering the interaction of
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two fluid bubbles with different densities using 256 x 256 grid points. The
density for the bubble on the top is 60, the density for the bubble on the
bottom is 1 and the background density is 3600. The initial interfaces of
the bubbles are elliptical in shape. A Bousinesqu approximation was used
in these calculations. We assume that viscosities are the same in all fluids
and are equal to 0.000 125. The problem is set up in such a way that both
bubbles rise in time and the bottom bubble rises the fastest. As the bottom
bubble rises in time, we see that the top portions of the bubble interfaces are
almost in contact. But they cannot merge into a single bubble in this case
because the densities are different for these two bubbles. In this calculation,
we labelled the two interfaces with two different level-set values. That is,
Fi corresponds to cj> = c\ and 1^ corresponds to (p = C2, with c\ ^ c^. In
the mean time, the bubble in the bottom develops a roll-up. We plot the
solutions at t = 0.1,0.15,0.2,0.275,0.325,0.35. We increase our numerical
resolutions to 512 x 512 for times larger than t = 0.2. Part of the interface
that has rolled up pinches off before t = 0.275; two smaller bubbles are
detached from the bottom bubble, and have their own dynamics. As the
region between the top portions of two bubbles becomes thinner and thinner
in time, they eventually pinch off at t = 0.325 and t — 0.35 respectively. In
the process, many small-scale structures are produced due to the unstable
stratification of the fluids.
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1. Introductio n

In the following chapters we will discuss particle methods for the numerical
simulation of rarefied gas flows.

We will mainly treat a billiard game, that is, our particles will be hard
spheres. But we will also touch upon cases where particles have internal
energies due to rotation or vibration, which they exchange in a collision,
and we will talk about chemical reactions happening during a collision.

Due to the limited size of this paper, we are only able to mention the
principles of these real-gas effects. On the other hand, the general concepts
of particle methods to be presented may be used for other kinds of kinetic
equations, such as the semiconductor device simulation. We leave this part
of the research to subsequent papers.

Finally, this paper is written by mathematicians. Missing physical in-
tuition needed to 'simulate the game of nature' (Bird, 1989), we have to
describe rarefied gas flows by a kinetic equation - this is the modelling part
- and then we have to solve this equation numerically.

In a first - a modelling - part we will describe how to get the 'correct'
kinetic equation. In a second part we shall describe our basic ideas for solving
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these equations. They lead to particle methods or - as we sometimes prefer
to call them in order to stress the principal similarity to finite differences or
finite elements - finite point set methods (FPM).

In Section 4 we shall talk about the practical aspects of a realization of
particle methods and the role of random numbers and give a comparison
between existing codes. In the last part we shall touch on several techniques
to improve particle codes, to accelerate the algorithm and to use particle
methods on massively parallel machines.

Finally we present some numerical results obtained with particle codes.

2. Collision Integrals for  the Boltzmann Equation

Our mathematical model wil l be a kinetic equation describing the time evo-
lution of a density in position-velocity space

t-> f(t,x,v), x eU,v eJR3,

which may depend on internal energies too. A kinetic equation has the form

dt ox ov

where E is an exterior or self-consistent force field and / ( / ) denotes the
collision term.

A prototypical kinetic equation is the Boltzmann equation stated in 1874
by Ludwig Boltzmann. The equation describes the microscopic behaviour of
a dilute gas undergoing binary collisions. For the rest of the paper we assume
that the force field E vanishes. Hence the main aspect in the modelling part
is the derivation of the collision integral.

2.1. Collision Integral

Bobylev (1993) gives a systematic derivation of / ( / ) from several quite sim-
ple postulates. We shall shortly review these results since they seem to
offer a new approach for collision modelling - the classical approach due to
Boltzmann or improved versions of it as given by Cercignani (1989) are well
known.

(a) We take into account only binary collisions - hence / is a quadratic,
time-independent operator

=  / ( /, f)(v) = j j K{v\ vl,v2)f(v1)f(v2) di>i dv2.
R3R3

Remark 1 This assumption fails if one has to consider recombination
in chemical reactions, where a third collision partner is needed as an
energy source.
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(b) The collision operator / is invariant under translation in the velocity
space: if

fa{v):=f(v + a),

then

/(/«) = Hf)a
Remark 2 This assumption is not true for semiconductor devices.

From (a) and (b) one gets

K(v | vi,v2) = Q(vi -v,v2- v)

and

Hf)(v) = / / Q(ui,u2)f(v + ui)f(v + u2) dui du2.
R3R3

(c) The collision operator / is invariant under rotations in v-space. Then

(d) The collision operator / can be decomposed into a gain and a loss term

Q = Q+ -Q- With Q  > 0

and I~(f) — 0 if / = 0: nothing can be lost, if there is nothing. Then

Q"(ui, u2) = - [g(\Ul\)6(Ul) + g(\u2\)6(Ul)},

where 5(|u|) is an arbitrary function.
With q denned by Q+{u\,u2) = 23q(2ui,2u2) we get

I(f)(v) = I Iq(u-u',u + u')f(v')f(w')du'dw
R3R3

-f(v)Jg(\u\)f(w)dw,
R3

where u = v — w, v' = v + ^(u' — u), w' = w — \{u' — u).
(e) We have conservation of mass (or particles):

R3

Then

J I(f)(v) dv = 0.

d(\u\) — q(u' — u,u' + u)du'
R3
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and with p(u' | u) — q(u — u',u + v!) (transition probability) we get

= J J [p(u' | u)f(v')f(w')-p(u | u')f(v)f{w)] du'dw.

(f) Microreversibility means p(—u' | — u) = p(u \ u'). If we include the
symmetry (c), we get

p(u | u') = p (\u\, \u'\, < u,u' >)

and

p(u' | u) — p(u | u1).

From (f) we get the /f-theorem

I(f)(v)lnf(v)dv<0.

R3

Remark 3 Assumption (b) implies also conservation of momentum

fvI(f)(v)dv = 0.
R3

(g) Conservation of energy implies p(u | v!) = 0 if \u\ ^ \u'\. Then

p(u | u') = 26 (\u'\)2 - \u\2\ a (\u\, <U't>)
v / V \u\ /

With v! = \u'\  rj  = \u\  rj, u = v — w we get finally

[f(v')f(w')-f(v)f(w)} dwdu,

where cr(|tt|, cos )̂ is now the only undetermined function, the differen-
tial cross section.

The differential cross section a is now to be chosen in such a way that we
are able to reproduce measurements. These measurements are mainly those
on transport coefficients - for example, the dependence of the kinematic
viscosity on temperature. The simplest idea for a is given by considering a
billiard gas (in the phenomenological derivation)

a( u , cos 6) = d- cos 6,

where d is a constant connected with the diameter of the molecules. But this
gives wrong macroscopic laws; for example, the viscosity r\ does not depend
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on T as experiments tell us, which is reflected in the Sutherland formula:

A better agreement can be achieved by changing a a bit, using the so-
called variable hard sphere (VHS) model

<T\\U
( OL \

, cos 9) = d 1 + -.—7x I cos 9.
\ WrJ

In this model, the diameter 'shrinks' if the relative velocity \u\ = \v — w\
is larger; this is not microscopically realistic, but reasonable in the sense of
modelling.

2.2. Real-Gas Effects

If one wants to include real-gas effects such as inelastic scattering or chem-
ical reactions, the model gets much more complicated. We wil l sketch the
approach to these phenomena.

Assume we have a mixture of molecules A2 and the corresponding atoms
A. There are essentially (neglecting ionization) five kinds of collision pro-
cesses that we have to take into account:

(0
0

(in)
(iv)

The equations (i)-(iii ) describe scattering processes, where (i) corresponds
to the classical Boltzmann case. The possibility of dissociation and recom-
bination is stated in (iv) and (v). Note that in the case of recombinations
we have to consider triple collisions in order to fulfi l energy and momentum
conservation.

In 1960 Ludwig and Heil formulated a system of generalized Boltzmann
equations describing the aforementioned collision processes. Following
Kuscer (1991) we reformulate these equations in terms of differential cross
sections.

Let f(v, i)and g(v,e,t) be the distribution functions for the components
A and A2 of the mixture, where e represents the internal energy of the
molecule. Then the Boltzmann (or 'Ludwig-Heil') equations for / (and g,
respectively) have collision terms representing these 5 collision processes.
The differential cross sections depend on the total energy E of the process
(instead of |it|) and on internal energies. As an example we show just one

A-\
A +

A2 +
A +

A2 +

-A
A2 ^
A2 ^
A2 ^
A2 -

A +
A +
A2-\
A +
A +

A,
A2,
-A2,
A +
A +

A,
A2.
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expression occurring in the description of the dissociation of molecules:

f / **

, e , ex -> £tr, w, e2)
tr

dv\ di>2 du{r]')

and it would take some time to explain all the terms here. Recombination is
^ ) / / l <72 and it is still an open question whether recombination

plays a significant role in real applications.
The undetermined part is again a; for the nonreactive part, where the

molecules and atoms are just scattered, one uses a generalization of the
so-called Larssen-Borgnakke model (Borgnakke-Larssen, 1975) that con-
sists essentially in dividing the differential cross section into three parts and
performing 'detailed balance'. For collisions among diatomic molecules the
model is as follows:

<7Sm{E, r?  rf, e', Vi: e[, Vj ->  e, Vk, ei, Vt) = (1 - a - 6)crsm,ei + aasm,ve + basm;m

with

= C(E)-(E-e-el-Vk-Ve)<T^(E),

where e is continuous rotational energy, V{ is discrete vibrational energy
with level index i and a  ̂ is total scattering cross section. Note that CT*^
depends on the collision energy E as in the VHS model.
In the generalized Larssen-Borgnakke model three kinds of scattering are
considered:

(i) completely elastic (<7Sm,ei)>
(ii) vibrationally elastic but maximally inelastic with respect to rotation

(iii ) completely inelastic (<7smiin).

The explicit form of the factor C(E) (depending on the vibrational model)
is somewhat lengthy and therefore not quoted here. The parameters a and
b are chosen to reproduce measured transport coefficients.

For the dissociation reaction we assume (since we do not have enough
measurements) for the differential cross section a uniform probability distri-
bution over the energy shell in phase space. This concept is widely used in
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high-energy physics and often successful in describing decay processes. The
differential cross sections for the dissociation reactions (iv) and (v) are the
following:

ada(E',rj',e' l

edm(E', 77', e', V-, e[,V- -> e, Vk, etr, u)

= Cvih(E)(E - e - Vk)
2a^(E', e', V(, e[, Vj)

with ('threshold cross section')

tot

where ^ B is the binding energy of the molecule and 6 is the Heaviside
function. The parameters a  ̂ and n have to be chosen to reproduce the
measured 'rate coefficient' in equilibrium. This means that averaging of

Jda(m over Maxwell-Boltzmann distributions should lead to a form of\u
the rate coefficient similar to the well known 'Arrhenius law':

KM-AT *„(=§£),
where KB is Boltzmann's constant and T is temperature. The modelling
becomes complicated, but is still possible to handle. We finally want to
mention that - besides recombination - ionization, radiative energy transfer
and soforth are not yet included and much work remains to be done. We
refer the reader to Kuscer (1991) and Baxwinkel and Wolters (1975).

3. Particle Methods for  the Boltzmann Equation

There are two aspects of particle methods for the Boltzmann equation: the
first one is the theoretical derivation of a particle method; the second the
practical aspects of implementing such a simulation scheme.

In this chapter we will discuss the first aspect starting with the definition
of particle approximations. The fundamental part in the time evolution of
particles is the collision integral; hence we first consider in Subsection 3.2
the homogeneous Boltzmann equation. Finally we explain how to derive
particle methods for the full inhomogeneous equation.

3.1. Particle Approximations

A particle is characterized by its position x, velocity v and mass (or charge)
Q. In order to simplify the notation we put p — (x, v). A particle ensemble
(or finite point set) is given by
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or - in another notation - by

N

1=1

We consider sequences of particle ensembles

or
N

Often pf* are taken from a sequence of pi,P2,  that is, more and more
particles are brought into the game; then

One can in general not expect as good results for sequences of velocities as
for sequences of ensembles.

Now, for a given density / € £+(R3) we say that 'S^N converges to / ' if

N

lim
N-

im JT a?<p(p?) = I f  (p dv dx for all ip G Cfc(R3 x R3).

This means that the discrete measure SUN weak*  converges to / dv dx.

Remark 4

(a) We may interpret this as an integration rule, where we integrate the
function ip with respect to the measure /dvdx. Knots and weights
depend on / , not on ip. Estimates should distinguish between a distance
between u  ̂ and / and a smoothness property of <p.

(b) We should be aware that if / does not have a bounded support, we are
not able to include unbounded cp such as \v\2 or \v\2v etc. So we do
not get the convergence of moments we need for physical reasons (as
temperature or heat transfer). This is a serious problem, which we see
also numerically, if we compute the heat transfer. Some improvements
in this direction may be found in Struckmeier (1994).

We would like to measure the distance between u  ̂ and / . This might
be done by any distance in measure spaces (such as the Prohorov metric or
bounded Lipschitz distance), but also - since the limit f dvdx is absolutely
continuous with respect to the Lebesgue measure - with the help of the
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'discrepancy'. Consider an axis-parallel 'rectangle' R C R3 x JR.3 and the
mass of LUft in R:

E N -v i N\ -j.i_ -v / r>\ f 1 if P 6 R,

 XR(Pi) with XR(P) := { n ,,1 nyri ' w 0 otherwise.
2 = 1 V

Compare it with the mass in R as given by /, that is, JRfdv. The largest
possible deviation, that is,

sup
R 1=1

— fdvdx
R

is called 'discrepancy'. It is a distance between wjy and / and we have

6^^f iff £>(*#,/) - 0 .

There are other similar definitions of discrepancy using the class of convex
sets and so forth instead of rectangles - but this does not change the situa-
tion.
There are two consequences of our definition - at least for equal weights

M

(a) The Koksma-Hlawka inequality:

cpfdvdx- —

We see that in fact 6^N —> / if D(u)$, /) —> 0 and that it goes linear
with D. The variation of (p, which we denote by Var [ip],  is for one-
dimensional v the usual total variation and might be substituted by
/ |^'(v)| dv, if ip is differentiable. In dimension 3 or higher it is the so-
called 'Hardy-Krause' variation, a quite lengthy concept based on the
Vitali variation. One realizes that the estimate separates the distance
D from the properties of the test function. For / we assume nothing
more than that it is a density.

(b) We are now able to discuss an optimal speed of convergence: How
fast does D(u^,f) converge to zero? Clearly, the speed depends on
the definition of D and we get mainly relative information. For / =
X]n \]k(v), the uniform distribution in the unit cube, there are very
strong number-theoretic results:

With D((jtf) = D{u^j, <V[o,i]fc) o ne gets that there exist constants Cfc,
C'k with

< Cfc -zj-— for some
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and

Since one can construct sequences of wjy, which have a convergence rate
given by In Nk~1/N, one may say that this is 'almost optimal' today
and not much can be gained in principle. The convergence is slow, but
faster than N~?, which would be the rate for random numbers. And
it grows relatively slowly with the dimension k - this is the reason why
particle methods are useful for higher dimensions! We shall see that for
us k will be typically 2 x3 + 2 = 8. We shall come back to the question
of how to construct this optimal convergence order in Section 4.

Remark 5

(a) Do we gain much by using weighted particles? We have more free
parameters, but realize: we want to improve D(u^, / ) , not | / fipdv —
'^Zaff{vi I)\i f° r a concrete <p\ The only answer that is yet known is
for a very simple case: Take k = 1 and / = ATOIII . Then the best
we can get without weights is ^ , and with weights ^W - but only if
YA=I

 af — w+i- The order of convergence is not changed in this case.

(b) If we construct u  ̂ using a sequence (J)J)J^N, by just adding a new
particle when moving from N to N + 1, we loose a bit of convergence
speed: Now

is the optimal order we can achieve.

3.2. The Homogeneous Boltzmann Equation

The spatially homogeneous Boltzmann equation is given by

ft(t,x,v) = /+(/) - / J jkf(t,w)du(r])dw.

We have to discretize this equation with respect to t, putting fj(v) =
f(jAt, v), and we may do that either by just a simple Euler step

fj+1 = (l-At[kfjduj(ri)dw\ fj + Atf kfj{v')fj{v/)du;^)dw (3.1)

or by integrating

^ = i+(fj)-fJkfJMv)dw (3.2)

over jAt < t < (j + l)At with fj as initial value.
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For the first idea we have as a price to pay a severe restriction on At - but
we pay it, since the second idea is computationally very expensive without
a restriction on At. There has been no investigation yet as to whether it
might be occasionally cheaper to combine both methods.

Anyhow, we proceed with the simple explicit discretization and use a
weak formulation, which we get by multiplying both sides by a bounded
continuous test function <p £ Cb and integrating over v (in principle, we
should realize that /(£, ) is a density of a measure and measures are quite
natural mathematical objects for dealing with mass or charge distributions
etc.; we could derive a measure formulation of any kinetic equation, which
would be a natural starting point for our particle approximations, but the
weak formulation is equivalent to a measure formulation). We get using
dv' dw' = dvdw, \v' — w'\ = \v — w\ and v — v' — TJ < v' — w', rj  >

J v{v)fj+ i{v)dv = f J(Kv,wip)fj(v)fj(w)dvdw (3.3)
E3R3

with

Kv,w<p = (l - At f k(\v - w\,9)dto(r])) <p(v)+At f k(\v-w\,0)tp(v'

Equation (3.1) is equivalent to (3.3), if we use J fj(v)dv = 1, which is
guaranteed by the conservation of mass. The 'transition kernel' KVfWip is
here independent of fj - this would be different for (3.2).

We need to transform Kv<wip into a form like

Kv,w<p = / ip(i>(v, w, x))x(x) dx (3.4)

with an auxiliary fc-dimensional variable x, since we then get

<p{i>(v,w,x))fj{v)fj(w)x(x)dxdvdw/

and we shall see that a point approximation of the (6+A;)-dimensional density
fj{v)fj(v)x{x) leads immediately to an approximation of fj+i-  Assuming
that we have such an approximation for fj, we have to construct one for
fj(v)fj(w)x(x) and get the approximation for the time evolution j —> j + 1.

The representation (3.4) is due to Babovsky (1989):
Let B be a ball in R2 of area 1 (radius -\=);  then we can construct a function

(t>v,w'- B -+ S+ such that

ip(v, w, x) = TVjW (cf>v,w(x))

and x is the characteristic function of B; here Tv>w(r])  is just v', that is,
TV:W(r])  = v — T] < v — w, r\ >. So (j> VjW(x) is nothing but another represen-
tation of the 'impact parameter r?'. But more is hidden: the formulation
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includes at the end 'dummy collisions', that is, collisions without effect - a
useful strategy (as we shall see) originally used by Nanbu (1980), Neunzert,
Gropengiesser and Struckmeier (1991) and Ivanov and Rogasinsky (1988).

We shall give the construction of 4>, since it is the basis of our simulation
code: We fix v, w and take v — w as polar axis in a polar coordinate system
(a, (3) for r), where a is the angle between 77 and v — w, that is, 9. We get

k(6) dr] = k(a) sin a da d(3.

Choose a function r(a) such that

dr
r(a)-r- = At  k(a) sin a.

da

Since 17 G S+, that is, 0 < a < f, the right-hand side is positive for a > 0
and r(a) is invertible with inverse a(r). The maximal value of r2(a) is

2

r
2( |) = 2Ai/A;(Q;)sinada.

0
Now the restriction for the Euler scheme comes into play. We have to

guarantee nonnegativity of fj+i if fj is nonnegative; this is achieved by

I- At I k{\v - w\,0) dcj(r/) > 0 for all v, w,

that is,

At I I k(a) sin a da df3 < 1
0 0

or
2

2At I k(a)sinada = 2 (^j <
0

: f k(a)i
o

This is a serious restriction on At\ With rmax = r ( |) we get

TT (Tmax

= / / <p{Tv,w{a{r),(5))rdrd(3
Jo Jo

if (frv,w(x) is just the mapping x ~ (r,/3) —> (a(r),/3) ((r,/3) are the polar
coordinates of the point x in the ball -Brmax with radius rm a x)-
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We have defined 4>v<w(x) for x G -Brmax C B\ this describes the case when
'real' collisions happen - v' is different from v. The other part - correspond-
ing to (1 — At J kdu:)tp(v) - reflects the probability that no collision occurs
and so we define (f>VjW(x) as follows.

If x = (rcos/3, rsin/3) ^ -Brmax, then

If a — | , v — w is orthogonal to rj  and w' = v\ Therefore, if x is in the
annulus rmax < r < -4= we have dummy collisions.

4>vtW is now defined for all x £ B and since

ip {TVtW{<f> v,w{x))) dx,

it does what it should do:

KV}Wip = I if {ip{v, w, x)) dx

B

with x(x) — 1 f° r a u x £ B.
What we have to solve numerically is

/ <p(v)fj+ i(v)dv= / / / ^('ip(v,w,x))fj(v)fj(w)dxdvdw. (3.5)
R3 R3R3 B

Assume that we have an approximation < v^(j),..., v^(j) \ of fj and we
want to construct an approximation of fj+i-

The right-hand side of (3.5) tells us what we have to do: The measure
over which we integrate is

fj{v)fj{w)XB{x) dv dw dx,

where XB is the characteristic function of B. We need therefore a 'finite
point set' that approximates fj(v)fj(w)XB(x), which is an 8-dimensional
density of total 'mass' 1/M2.

If we construct a set I (v^(*),w^(*),x^J ,..., (v§(*),w^(*),x^j \ (with

weights M/N) approximating this density, then
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approximates / (p(v)fj+i(v)dv and

is an approximation of
This gives the simulation procedure and a convergence criterion:
Given an approximation I v^(j),..., v$(j) > of fj, construct from that an

approximation

{ (< ( * ) , < ( * ) , * f ) , . . . , («#(*), «;#(*), x$) }
of fj{v)fj{w)XB{x). Then

approximates fj+i-
The main question remains: how do we get (v^(*), w^(*))? We have

only v^(j), i = 1 , . . ., N, but we have a lot of freedom - the only theoretical
condition is the convergence condition. We will come back to this question
in Subsection 4.1.

Practically speaking, we have more conditions - it is necessary to maintain
all conservation properties (mass, momentum, energy) even for the evolution
in the simulation process, which means for equal weights

2 = 1 1 =1

and

i= l i= l

Al l practical computations show the importance of the numerical conserva-
tion of these quantities (see also Greengard and Reyna (1992)).

3.3. Particle Methods for Inhomogeneous Problems

In the previous subsection we derived a particle method for the spatially
homogeneous Boltzmann equation. If we solve an inhomogeneous problem
we have to take into account the spatial location of a particle.

Concerning the discretization of the inhomogeneous equation we may use

f((j + l)A,x,v) = f(jAt,x-Atv,v),

— - i(F)ot ~ Uh

that is, there is a decoupling of the free flow of particles and the collisions
among them.
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/ \
\

/

Fig. 1. Adaptive regular grid structure

Given an approximation of f(jAt, x, v) by a finite point set we have no
problems with the first equation: we just move the particles over the time
increment At with the particle velocity and no spatial discretization is re-
quired.

The second equation is much more complicated. Remember that / de-
pends on x, which for finite point sets is the x-coordinate of the particle,
but the collision operator is local in space.

The easiest way to get rid of the difficulties - this approach is used by
nearly all methods - is

(a) to introduce a spatial cell structure, like that shown in Figure 1,
(b) to substitute / by a step function

f(t,x,v) = fc.(t,v) if xeQ

(c) and to consider in each cell the homogeneous Boltzmann equation and
use the algorithm presented in Subsection 3.2.

Hence, only particles that are located in the same cell can form a collision
pair.

Several important remarks have to be made here:

(a) One problem with this approach is that in every time step the particles
have to be resampled, after the free flow, from the cell structure. If the
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cell structure is like in classical FEM given by triangles or tetrahedral
cells this procedure requires an enormous computational effort. Hence
one uses regular meshes like the one shown in Figure 1.

(b) The size of a cell has to be smaller than the local mean free path, the
appropiate resolution scale. Now the local mean free path depends
strongly on the local macroscopic gas density. This quantity may vary
by orders of magnitude in different regions: in front of an obstacle the
density may increase by a factor of 10 whereas on the lee side the density
may decrease by the same factor. There are two ways to overcome this
problem. The first is to use an adaptive grid structure, like in Figure 1
the second is to use different particle weights in different regions (this
is discussed in Subsection 5.1).

(c) In the first part of the simulation process, the free flow of the particles,
some particles may hit the spatial boundary, leave the domain or enter
it . One has to take care of the corresponding boundary conditions:
 particles may leave the computational domain (absorption),
 particles may be re-emitted at a physical boundary (gas-surface in-

teraction) ,
 particles may be reflected because of symmetry,
 particles may enter the spatial domain at parts of the boundary.

The gas-surface-interaction part is the most important phenomenon.
The boundary condition is defined by a scattering kernel describing
the velocity (respectively internal energy) change of particles hitting
the surface. For monatomic gases the boundary condition is

\(v,n)\f(t,x,v)= J R{v' ^v;t,x)\{v',n)\f{t,x,v')dv'
(v',n)<0

for all times t G 1R+, x on the spatial boundary and (v, n) > 0.
The classical model (for monatomic gases) is the diffuse reflection

with complete thermal accommodation. Several other models, such
the as Maxwell model (Cercignani, 1989), Cercignani-Lampis model
(Lord, 1991) or Nocilla model (Nocilla, 1961), exist in the literature.

Different boundary models lead to different aerodynamic character-
istics, whence a concrete knowledge of the real interaction law is fun-
damental for the description of rarefied gas flows.

4. Practical Aspects of Particle Methods

In Section 3 a description of the main idea was given. But still particle meth-
ods have enormous demands of computational time and storage. Therefore
many minor tricks are needed to improve the efficiency and reliability of the
method. These tricks are the treasure different groups accumulate during
the development and the use of this code. In the following chapters we
describe some of the details of our code.
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1

f(w)l
/vN-

\ ^  v2

\

T r

vl v2 vN

Fig. 2. Approximation of the product /(0, v)  /(0, w)

^.i . Collision Selection and Conservation Quantities

The main part of the particle method given in the last chapter is the collision
procedure which may be described as follows: Given N particles (of equal
weights) at v i , . . ., ujv (we omit the indices which are not necessary), deter-
mine N pairs {(v*, wl),... (vpf, w^)} and 'impact parameters' x\,..., x*N

appropriately and get the new velocities by

ip (vl, w$,xl),...,rp (v*N, w*N, x*N).

There is no theoretical 'necessity' to form the pairs out of the set of particles
already given - but it is quite natural. Then we have N2 candidates for those
pairs:

Figure 2 gives a 1-dimensional impression. How do we select N pairs out of
TV2 possible ones in order to get an approximation of fj{v)fj(w)? Denote
the selected pairs by (v\,Vj^j ,..., (VN,VJ(N)J-

If we have the pair (vi, f j(,)), we find an impact parameter x\. {xi,..., x^}
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must approximate XB, that is, the uniform distribution in a ball, and they
may do that independently of (vi,Vj^)). This defines the new velocity

ip (vi,Vj(i),Xi). So, where do we put our cross in the ith column of the
(v,,i;j)-diagram, that is, what is j( i) ?

The first idea due to Nanbu (1980) was a stochastic one:
Select a random number r̂  from a uniform distribution in [0,1] and put

j(i)  = [Nri]  + 1; then j(i)  6 {1,...,N}, but it might happen that two
different i get the same partner j(i). We distribute the crosses randomly in
each column. We need to show that, for fixed velocities v, w and
Rv x Ryj — {(v, w) | v < v, w < w},

/ f(v)dv / f(w)dw.
Jv<v Jw<w

Using the central limi t theorem, Babovsky (1989) showed that this is true
for almost all sequences (rj)ie./v ,that is, the procedure converges with prob-
ability 1.

In principle we are through - but only in principle: There are many
necessary and possible improvements.

For example, in the Nanbu procedure described above, there is no con-
servation of total momentum or energy - this is true only 'on average'. The
practical consequences were such that Nanbu's method could not compete
with the so-called Direct Simulation Monte Carlo (DSMC) of Bird (1976),
which we shall describe in Subsection 4.3.

Babovsky gave an improvement that does not have this drawback.
Assume that N f= In. Then divide the set {v\,..., VN} randomly into two

subsets {v{,..., v\] and {vf,..., 2} , each containing half of the particles.
Now choose a permutation TT of { 1 , . . . , n}  at random (i.e. each permutation
has the same probability) and consider fv^t&^ ja s well as (vxU)ivi) ^
pairs: we make our crosses symmetric with respect to the main diagonal.
Finally, we choose the same impact parameter X{ for both pairs and get two
new velocities

This procedure keeps the idea of a binary collision and it conserves energy
and momentum, since they are conserved 'pairwise'

v\ + v^d) = i

and similarly for the energy ||u*||2 + 11^^ ||2.
So, symmetry guarantees these conservation laws - but only for equally

weighted particles. Babovsky has also shown convergence in probability for
this procedure.
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If we have different weights for approximating different species in a mix-
ture with great differences in the concentrations, then, in one cell, one might
have particles with different weights c .̂

Conservation of momentum and energy in a cell would mean

E / P(tiv)vdv = constant,

k

/ f3(t, v)\\v\\ dv — constant,
i=i J

where f3(t, v) designates the distribution of the j t h species, which is assumed
to have a total mass Mj.

Approximating f3 by MjajJ^idi^^i where ay is the weight of the j t h
species, we would get the discrete conservation of total momentum CM and
total energy CE

Y.Mjaj^vi = CM, (4.1)
j= i i=i

j^Mja^Uf = CE. (4.2)
j= i i=i

If we would now consider binary collisions and try to conserve momentum
and energy 'individually' in each of these binary collisions, we would fail if
two particles representing different species were involved:

and

are solvable only if â  = ay or if no collision happens.
However, it is possible to conserve momentum and energy with weighted

particles for the particle ensemble | (a}, v{),..., (a ,̂ v k̂) \ - not 'pairwise',
but by choosing the collision parameters x\ such that equations (4.1) and
(4.2) are fulfilled for the post-collision velocities [27].

4-2. Random Numbers and the Generation of Random Variates

We discuss now the question of how much stochasticity is necessary in a
particle code. What we need is to have

(a) a good approximation of the initial value fo(v) by a particle set;
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(b) a selection of TV pairs (vi, wi),..., (f AT, WN) out of iV2 candidates (v{, Vj)
such that they are a good approximation of f(v)f(w), if v\,... ,VN is
a good approximation of / ;

(c) N 2-dimensional points x\,..., XN approximating X& (x);
(d) for the case where there are stochastic boundary conditions (such as

diffuse reflection etc.) an approximation of the distribution of the fluxes
leaving the boundary.

One may use random number generators for all purposes, that is, one takes
a ID random number generator (for a uniform distribution in [0,1]), uses
sections of length k to get fc-dimensional points, which should be uniformly
distributed in [0, l] fc and transforms them to get a sample distributed with
the given density / - this is what we have to do for (a) and for (c). How
we use random number generators in (b) was described in the previous
pages.

The main question is: do we need the 'random property' of these genera-
tors and how should we define this property?

We give one version of stochasticity for uniformly distributed random
numbers on [0,1]:

If one has to construct a set of N points x\,..., XN approximating A^i ] (x)
in an optimal way, the best solution is simply the set

f l 3 2JV-1
\2N'2N''"' 2/V

The discrepancy is ^ and this is optimal, but certainly not very random.
We can see that by constructing 2D points from it, for example,

/ 1 3 \ /_3_ _5_\ /2/V - 3 2N-V
\2N' 27V) ' \2N' 2Nj '""" ' V 27V ' 2/V

all points are near the diagonal of the unit square [0,1]2 and therefore cer-
tainly not a good approximation of <-f[o,i]2.

The best discrepancy we can get (for the ID and 2D sets) is now of order
In N/N. The points x i , . . ., XJV seem now to be more stochastic - let's call
them stochastic of order 1. We may realize that it is only pseudo random
by looking at sections of length A;: (xi,...,x&), (x2, , £fc+i),  and con-
sidering them as points in [0, l] k. If they are still good approximations of
^[0,1]*' w e s ay they have stochasticity of order k — 1. A real random number
generator should have stochasticity of order oo - if we use it for Monte Carlo
methods in reactor physics, we need a stochasticity of very high order (the
dimension is proportional to the number of collisions a neutron has with a
nucleus).

In starting a simulation we should check how much stochasticity is needed
- and only then can we decide how to generate our particles. For problems
(a) and (c), we need just 3D or 2D approximations of f(v) or XB{X). We
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might do this by using sections of length 3 or 2 - or by other constructions,
called low-discrepancy methods, which we shall describe now.

For (b) we need - for our permutation method - a stochastic separation
of a 2n-set into two n-sets and then a sequence r\,.. .r  ̂ of [0,1] random
numbers. Since the convergence proof shows convergence in probability, we
need the independence of r\,.. . r/v, in our language stochasticity of order
N — 1. But this is only due to our method of selecting TV pairs out of TV2.
We could do that completely deterministically but haven't done it yet. Why
not select just one cross pattern (i,j(i)),  which represents a uniform distri-
bution of the crosses (one may play with introducing an index discrepancy
just defined on { 1 , . . . , iV} 2 and find an optimal j(i)), and apply it in each
collision process? It would fulfi l our convergence condition but would pre-
sumably insert a small but systematic error, which may accumulate during
the evolution. This is the only risk in using as littl e stochasticity as possible:
The fluctuations get smaller, but might be 'one-sided' and do not average
out in the evolution.

Such a problem may occur in treating boundary conditions (Missmahl
1990), where one gets one-sided errors, which lead to a 'numerical cooling'.
Changing the deterministic procedure just a bit, one may get rid of the effect
- but this has to be done carefully.

But for (a) and (c) one may easily use low-discrepancy methods exten-
sively described by H. Niederreiter (1992).

We want to construct point sequences (not ensemble sequences) xi , x2, ..
such that WAT = {%i,  ,%N} has a low discrepancy against <̂ [o,i]fc, that
is,

Xmk) = D(LON) = O \-jr)

, not — - as for < ;TT7>--->

(remember: sequences of ensembles could have O

For k = 1, we get as optimal order

2N — 11
——z— >, which is an ensemble sequence.

The starting point is an old idea by van der Corput, denning x\ as follows:
Take the dual representation of % = £i + £22

1 -\ h £.m2m'1, 4 = 0,1, and
put

Xi = cf>2(i) :=  l x 2 ~ l + i 2 2 ' 2 +  + e m 2 - m € [ 0 , 1 ] .

For it
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so it has optimal order. We can change the basis 2 and use any p-adic
representation of i as well; this was done by Hammersley and is denoted by
4>p(i).

To get A;-dimensional sequences, Halton proposed taking numbers p\,...,
Pk relatively prime and constructing

Xi = (<t>p1(i),---,<t> Pk{i)),  i € N .

Here again D(LJN) = O (ln  ̂ J, that is, is optimal.
Please realize that we do not construct fc-dimensional points by using

sections of ID sequences. Therefore we need only stochasticity 0.
There are several other methods of constructing fc-dimensional low-dis-

crepancy sequences, mainly by Faure (1982), Sobol (1969) and Niederreiter
(1992). They differ in the 0-constants, which depend on the dimension k -
and they may have especially low discrepancy for certain N. Since our k is
never higher than 10, we do not care about it too much. There are many
tests on the behaviour of different LD-sequences by G. Pages (1992).

From a practical point of view it is fundamental to have fast algorithms
for generating Xi - the algorithms should not be slower than the linear
congruential methods used in normal random number generators.

A fast algorithm for a special class of low-discrepancy sequences can be
found in Struckmeier (1993). It uses the p-adic Neumann-Kakutani trans-
formations Tp: [0,1] — [0,1], which might be written as Tp(x) = x © ^ with
a 'left addition ©' or as

with

and

Now Xi denned by Xi = Tp(xi-\), XQ € [0,1] arbitrary, is a low-discrepancy
sequence, called a generalized Halton sequence, and has the same optimal
behaviour.

The algorithm is clear: one generates tfj Vj € N and then iterates as
follows.

Given xn, we compute j(xn) and then xn+i = xn + t^/x\ (in practice it
is sufficient to compute only the first 32 points of $). In k dimension, we
use relatively prime numbers pi,... ,pk and define the mth component, xf1,
of Xi by

x? = TPm {xti), 1 < m < k.
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Table 1. CPU time in seconds to generate 106 numbers on [0,1]

Hardware g.H. (b=2) LC (F77) randQ (UNIX)

IBM 6000/530
HP 9000/835 SRX
HP 9000/710
nCUBE 2S 1 node

1.9
4.8
1.0
6.3

2.8
25.8
3.1
5.4

1.6
12.9
2.0
-

Table 2. Discrepancy and variation of different sequences

Sequence

Optimal
rand()
g.H. (b=2)
g.H. (b=3)
g.H. (b=5)

DN

1.72  10"2

1.30 10"1

3.97 10"2

3.50  10"2

3.43  10~2

N = 29

1.6
7.1
6.1
6.1

M

VM

 IO- 3

 io-5

5

5

= 20

DN

5.15
7.76
1.25
1.64
1.57

N =

IO-3

io-2

io-2

io-2

io-2

= 97

6.7
5.7
8.1
1.1

M

VM

 io-4

6

 io-6

 io -5

= 20

DN

2.89
6.40
9.71
8.99
9.63

N =

10"3

lO"2

10"3

lO"3

10"3

 1 7 3

3
8
3
2

0
1
6
3

M

VM

 io-4

 i o -7

6

6

= 20

This method works quite well in low dimensions, but not for very high
dimensions k: then pk becomes very large and Tp produces worse results for
very large p (the 0-constant depends on p and tends to oo exponentially
fast).

Here are some of the numerical results given in Struckmeier (1993): First
the time needed to generate 106 numbers on different machines is given
in Table 1. Then some discrepancies averaged over samples of size M -
we average the discrepancy and compute the variation VM - are given in
Table 2.

Further numerical examples are given in Subsection 5.5.
Up to now, all the effort has been put into the generation of uniformly

distributed sequences on [0, l] fc. But the densities in rarefied gas dynamics,
which we want to approximate, are never constant; typical densities are,
for example, Maxwellians. Therefore we have to transform uniformly dis-
tributed sequences into /-distributed ones, where / is a given density. This
is easy for Maxwellians: the densities factorize, so the problem may be re-
duced to ID problems. The ID case is simple - especially since one can use
the so-called Box-Muller algorithm.
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If the A;-dimensional density does not factorize, the problem is more com-
plicated. Hlawka and Muck (1972) have constructed a transformation T
whose inverse transforms uniformly distributed point sets into /-distributed
ones. The transformation T — (T\,..., Tk), which has to be inverted, has a
diagonal structure

This can be used for a numerical inversion - an extensive study on the
optimal numerical method was done by M. Hack (1993). The estimates for
the discrepancy are worse in this case (Hlawka and Muck, 1972)

D ( T - 1 ^ , f)<C-D, /) < C

but the computations show much better behaviour. Fortunately, the prob-
lems we have treated until now have not called for the construction of point
sets with low discrepancy against an arbitrary / (the simulation algorithm
did it).

4.3. Bird's DSMC Method

We shall now describe the DSMC version, originally developed by G. Bird,
and compare it with our method.

One main difference is that the original DSMC method does not con-
sider dummy collisions, that is, one checks whether a pair really performs a
collision (i.e. if x € -Brmax). If so then we call it a 'collision pair'.

To decide whether a given pair (vi, Vj) is a collision pair (cp), one uses an
acceptance—rejection method with a parameter Vmax, which is supposed to
be the maximum relative speed of all particles

VWx = max{||uj - VJ\\ I 1 < i,j < N} .

Then a pair is a cp if a [0,l]-uniformly distributed random number r is
larger than

\\Vi-Vj\\

Vmax

In this case an impact parameter is chosen and a collision is performed.
The computation of Vmax requires TV2 operations; therefore one starts with
a guess V of Vmax and updates it if one finds a larger \\vi — Vj\\. We get the
following procedure:
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(vi,...,vN) guess V

select

no

If cp(vi,wi) is selected, we determine a time increment

ATI = —-n - (C is a gas-dependent constant).
N\\vi-wi\\

We substitute (^,fj ) for (vi,Vj), that is, we update our particle ensemble
after ATI , and we repeat the process until we reach At, that is, until

A n H h Arfe > At.

(For our space-independent problem, At has lost its original meaning: our
time step is AT and it is chosen such that only one collision happens during
this interval; in this case, the time discretization is coupled with N - the
time step tends to zero as N goes to oo. In the finite point set method, N
may go to oo without At tending to 0. In a space-dependent problem, At
keeps its importance: we move the particles in space over At.)

For the correct procedure (with the real Vmax), Wagner (1992) has shown
convergence as a stochastic process, that is, in probability. In practice, the
results are sensitive to wrong initial guesses of V^ax-

The 'no time counter' version of Bird, mainly used today for computa-
tional reasons, seems similar: instead of changing time steps ATJ choose one
fixed AT, which is supposed to be the average time, in which one collision
happens

C

N-V

(i.e. V instead of ||v — w\\). V is updated at the end of At, not after AT.
The algorithm works quite well, again up to a sensitivity with respect to V.

To compare shortly our finite point set method with permutations, we
have just
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At , ,

, . . . , X J V

pairs (ui.twi) ,..., {vN,wN)

At is restricted by

1-At / k(\\v-w\\,d)dto{r]) >0

for all (possible) v, w\
Finally, we may also do updating during the collision process: We perform

each collision immediately, that is, substitute (v[, t>'-) for (vi,Vj) after At/N.
The difference is that we keep N collisions (including the dummy ones) and
work with the small timestep At/N, but do not need a guess of Vm&K.

The differences in computing time are less than 10 per cent, the results
are demonstrated by the examples given in Subsection 5.5.

5. Some Ideas on How to Improve and Extend the Code

In this last section we shall report on some ideas on how to improve the code,
to accelerate the algorithm and to extend it to more realistic situations.
These topics will be:

5.1 'Different weights for particles in different regions'.
This is different from 'different weights for different species' and does
not create the same problem of conserving energy and momentum when
particles of different weights collide. There is a detailed study of it by
Schreiner (1991).

5.2 'The use of symmetry in particle codes'.
If point sets are considered in a physical way - as representations of
real particle sets - it is not easy to take advantage of geometrical sym-
metries of the problem (and the solution). To do that we have to
exploit the idea of approximation by discrete measure; for example, if
the density has cylindrical symmetry, depending only on xi,v\, \\x\\,
\\v\\ and < x, v > (where x = (x2,x$), v = (v2,V3)), then our mea-
sures will be measures in this 5D (instead of 6D) space. One can
save a lot of computing time, as is shown by Struckmeier and Steiner
(1993).
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5.3 'Matching' of kinetic equations with diffusion or aerodynamic lim-
its.
This must be promising: each kinetic equation has some singular lim-
its ('Diffusion approximation', Euler or Navier-Stokes equation etc.),
which hold at least in some parts of position space. Solving these sim-
pler equations in these parts and matching the solutions with those of
the kinetic equations, which one gets in the 'kinetic rest' of the domain,
poses a new problem in domain decomposition. There have been at-
tempts in this direction - see, for example, Illner and Neunzert (1993),
Bourgat et al. (1994) and Klar (1994).

5.4 'Efficiency on massively parallel systems'.
During the past few years several authors have investigated the per-
formance of a particle method on massively parallel systems (see e.g.
Barteland Plimpton (1992), Dagum (1991), Struckmeier and Pfreundt
(1993) and Wong and Long (1992)). In this section we will follow the
approach given in Struckmeier and Pfreundt (1993).

5.1. Spatially Weighted Particles

'Different weights in different regions, but equal weights in each cell' is an
easily solvable weighting problem. In Schreiner (1991) the author describes
how to find an appropriate particle mass in each cell in position space and
how to change our particles (by splitting them or pasting them: Splipa) so
that each particle has this desired mass.

Clearly, this desired mass m* has to be small if the density in a cell is
small (e.g. behind a space vehicle) - and it has to be large if the density is
high (in the bow shock). In this way one may control the number of particles
in each cell. During the free flow, particles of different masses may enter
the same cell - but since we want to perform collisions only with particles
of the same mass, we have to homogenize them. We allow only integer
values for particle masses and we assume that m* is always of the form 2J;
therefore homogenization might be done by splitting particles of mass 2-7+fc

into 2k particles of mass m* or by pasting minor particles together (by first
splitting them into particles of minimal mass and then unifying them two at
a time again and again until they have grown enough). The only problem
here is that one should do this in such a way that mass, momentum and
energy are conserved in each Splipa procedure; in particular the velocities
after pasting have to be chosen carefully and there are only some signs to
be chosen freely.

One might save time by these ideas. For a 2D problem (flow around an
ellipse), Schreiner (1991) used 25 or 64 particles per cell in the beginning;
the simulation without any weighting is then called A25 or A64, and with 3
or 4 different weights we call it B25-3 or B25-4, respectively (see Table 3).
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Table 3. CPU times and number of particles in the stationary state

CPU Partnr

A64
A25

B25-3
B25-4

44
24
29
26

'41"
'52"
'13"
'17"

706,000
275,000
334,000
248,000

A64 —
A25 o

B25-3 *
B25-4 Q

2 3 4 5 6 7
Cells on the lee side

Fig. 3. Temperature along line in flow direction

The results differ - at least the temperature (it is a second moment) shows
big changes from A25 to B25-3 behind the vehicle (see Figure 3). So, it is
cheap and rewarding to use this weighting. But we want to recall that
weights for different species, where homogenization is not possible, create
much bigger problems.

5.2. Simulations with Axisymmetric Geometry

Symmetry reduces dimension in any numerical method, but normally not
for particle methods. The reason is the usual one: particles are considered
as physical quantities, not as approximations of densities.

Assume that we have cylindrical symmetry, that is, the boundary has a ro-
tational symmetry with respect to the z-axis. Introducing cylindrical coordi-
nates means to substitute (x, r, ip) for (x, y, z) and (vx, vr, vv) for (vx, vy, vz).



PARTICLE METHODS 445

Since vr, v  ̂ depend on ip, we get a more complicated free-streaming term
and have to transform / ( /) to cylindrical coordinates (which was done in
Niclot (1987)). A new collision strategy has to be defined - this way seems
to be too elaborate. We may use (x, r, ip) together with (vx, vy, vz) - things
wil l not fit  completely, but some important aspects remain unchanged. We
get

dF dF . .dF -sintpvy +cos tpvzdF
dt dx or r dip

I(F) is not changed here. Free streaming means solving x = vx, r =
(cos ipvy+sin ipvz), ip= (— sinipvy +cos ipvz)/r with initial values (xo,ro,(po).
The solution is

Tx(t,xo,ro,<po,v) = xo + tvx,

T r ( t , x 0 , r 0 , i p 0 , v ) = (% 2 t ( + ) + t2( + l)j

( ô sin tpo + tvz=  arctan
yro cos (po + tvy J

For / ( /) = 0 we get F(t, x, r, <p, v) = F0{T(-t, x, r, ip), v).
Now we define G = r~lF and consider the corresponding equation. If, for

example, F is a uniform distribution in position space with respect to the
Lebesgue measure (in polar coordinates rdrdipdx), then G can be regarded
as a uniform distribution with respect to the 'cartesian' measure dr dip dx,
since G r dr dip dx = F dr dtp dx.

To be more flexible, we consider

G(t, x, r, ip, v) = R(r)F(t, x, r, <p, v).

The equation for G is similar to that for F, but it has on the left-hand side
an additional term —(cos (pvy+sin ipvz)dr(ln R)g and instead of I(F) we have
R~1I(G). This additional term changes the solution of the free-streaming
part into

G(t,x,r,<p,v) =

and the factor R(Tr(—t))/R(r) may be handled as a weight: a particle, mov-
ing from Pi = (xi,ri,ipi,Vi) to Pi(Ai) = (T(At,Pi),Vi) changes its weight
in proportion to R(ri)/R(ri(At)). For the natural choice R(r) = r~l the
particles become heavier in moving away from the axis - the number of par-
ticles in a ring of thickness Ar remains unchanged (since the mass in a ring
(i — l)A r < r < iAr grows linearly with i, the weight of a particle has to
grow linearly with i too in order to keep the particle numbers constant).

But now we have particles of different weights in the same cells - some-
thing we wanted to avoid. Even in the beginning, R{r) — r~l would give
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Fig. 4. Geometry of the hyperboloid flare

different weights. Therefore R is chosen as a step function approximating
r" 1; but still differently weighted particles may enter a ring. Besides ho-
mogenization described under (b) one may follow a general idea by Bird: if
the weight changes by a factor a less than one, just keep the particle with
its old weight but with a survival probability of a. If a is larger than 1, say
a = m + a', m £ N, 0 < a' < 1, create m new particles of the same weight
and one other with probability a'. Again such a strategy does not work if
we have different species of gas, but is successful here. No rigorous proof is
yet available.

This reduces the computational costs drastically. Struckmeier and Steiner
(1993) have done a study for HERMES with a flap at the leading edge (see
Figure 4). Some results are shown in Table 4.

5.3. Domain Decomposition Techniques

We believe that the most promising prospect practically as well as theoreti-
cally is to use kinetic equations only where one is forced to use them - and
to use the appropriate limits wherever it is possible. This idea materializes
in two questions:

(a) The 'where' problem: What are the regions where the diffusion limit
or the Euler equation is valid, but in their complements the kinetic
equations are necessary.

(b) The other problem is the 'how' problem: how do we patch or match
the solution of the kinetic equation with those of the limits.

Kinetic equations deal with position-velocity densities and the limits with
macroscopic quantities, which can be interpreted as some moments of the
kinetic density: What kind of boundary conditions for the two types of
equations are the 'correct' ones? (Assuming the kinetic solution everywhere
is the truth, which boundary conditions at the transition give a 'combined
solution' as near as possible to the truth?) Until now, only the continuity
of the macroscopic quantities across the transition boundary has been tried
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Table 4. Numerical parameters and global surface quantities

Altitude[km]

120
110
100

Altitude [km]

120
110
100

Altitude [km]

120
110
100

Altitude [km]

120
110
100

Coefficient

Gas

N2

N2

N2

Partnr

570,000
925,000

2,000,000

Cd,o°

2.191
1.688
1.360

Cd,12°

2.304
1.785
1.461

Drag

Toc[K]

368
247
194

Cellnr

11,264
11,264
40,960

.890
1.048
1.170

C;,i2°

.941
1.109
1.246

Lif t

Ma

20
23
25

Part/Cell

64
64
36

(L/D)0o

.406

.621

.860

(L/D)12o

.408

.621

.853

Lift/Drag

TW[K)

1400
1400
1400

Timesteps

1000
1000
1000

Ch,o°

.868

.539

.313

.901

.557

.325

Heat

Aoo[m]

2.69
0.60
0.137

CPU[h]

1.5
2.5
4.0

Cm,0°

.882

.641

.490

Cm, 12°

.974

.727

.584

Pitching

to be realized; details are described in Lukshin, Neunzert and Struckmeier
(1992).

Since we focus on collisions, we just want to stress one comparing the
simulation of collisions with the solution of an Euler equation (we choose
Euler since it is - as a singular limi t - much better understood than Navier-
Stokes). The Boltzmann equation is solved by a particle code that moves
the particles in a free flow over At and then treats the collisions at the end of
the time step. The Euler equation can be solved by a very similar procedure:
move particles in a free flow over At, but then redistribute them according
to a Maxwellian distribution whose moments are given by particles at the
end of a time step. The Euler equation gives a time evolution that is a free
flow with a constraint: stay on the manifold given by { / : / ( / ) = 0} . The
ordinary free flow, starting at this manifold, moves away - so we have to
project back onto it; this is the redistribution (see figure 5). So, the difference
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free flow redistribution

Fig. 5. Redistribution of the kinetic density

Kf)

Kn
Equilibrium Free Molecular

Fig. 6. Influence of / ( /) in dependence on the Knudsen number

between the Boltzmann and Euler equations is the difference between the
collision procedure and the projection. The projection is numerically much
cheaper - so do projection whenever it is possible and collisions when it
is necessary. What we try to use here is the fact that / ( /) becomes small
when / becomes very rarefied - and, when / becomes very dense and near
to a Maxwellian, frequent collisions create an equilibrium distribution / for
which / ( /) = 0. The denser / is the more expensive the collision procedure
becomes - but at the same time, the smaller / ( /) becomes (see Figure 6).
To avoid this effect, we may use these projections. The key words here are
'kinetic schemes' and they may be converted into particle schemes for the
Euler equations - see Schreiner (1994).

Using kinetic schemes, matching of the two codes is a minor problem: just
do projection or collisions cellwise, but otherwise move freely without caring
where you are.
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5.4- Particle Methods on Parallel Computers

Still, realistic problems need enormous computational effort. Therefore it
is reasonable to investigate the performance of Boltzmann simulation codes
on massively parallel systems.

A parallelization of the code refers mainly to the grid structure on the
spatial domain; the cells are, for example, cubes with a length smaller than
the mean free path of the unperturbed gas. The collision process in a cell
is independent of those in other cells - and it is the most time consuming
part. One parallelizes the code by assigning a certain number of cells to
each processor. In general one would have much more cells than processors,
whence it is necessary to include a communication procedures.

In the first part of the time-iteration process particles may leave cells
and enter others - if these cells belong to different processors, this means
communication between processors.

The partition of cells has to be done such that this communication, that
is, the number of particles crossing processor boundaries, is minimized. But
a static partition, fixed at the beginning of the computation according to a
priori information about the flow fields (most of the particles move essen-
tially with the stream velocity), does not produce a good load balance of
the processors - particle numbers per processor change and result in a very
insufficient load balance; this reduces the speed-up factor as compared to
single processors.

To get an adaptive procedure, we put cells lying in a row with respect
to the main stream velocity together to form 'spatial sticks'. Several spa-
tial sticks are assigned to processors - and the adaption consists simply of
exchanging sticks from the minimally to the maximally loaded processors.
This exchange creates an iteration procedure until we get near to the par-
tition when the numbers of particles in the processor domains are near the
average number. The procedure creates partitions where the local character
of the stick-processor assignment is destroyed (see Table 5).

One may suspect that this gives rise to a high communication time; that
this is not the case is shown in Figure 7.

The speed-up factor is constant near 30 (here the factor 32 is - using 32
processors - optimal) if one compares different Knudsen numbers, that is,
different densities and therefore a different collision frequency (see Figure
8). A comparison of CPU times on the nCUBE2s with a VP100 shows that
the higher peak performance of the vector machine does not lead to lower
CPU time (Table 6).

5.5. Numerical Examples

First we come back to the comparison of the finite point set method and the
DSMC method of Bird (see Subsection 4.3).
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Table 5. Final state of the adaptive processor partition (zy-plane)

6
23
18
30
6
15
21
23
32
26
8
11
21
28
1
7
25
13
2
10
12
28
3
7

27
19
27
4
30
26
12
31
29
9
21
3
16
25
5
15
24
12
11
19
32
26
8
16

25
14
14
4
20
9
22
23
10
7
24
24
18
29
18
28
5
20
11
4
22
28
21
13

4
25
22
24
10
9
5
18
13
2
30
30
1
3
29
20
23
14
9
9
17
10
27
7

5
15
3
21
2
13
7
13
31
10
19
14
29
2

l—
i

28
16
6
8
29
1
12
27
17

8
2
29
22
24
16
30
7
23
9
7
12
15
5
11
17
8
19
1
3
20
11
16
26

2
17
4
14
3
8
30
22
21
24
15
25
1
19
26
17
17
16
29
7
15
11
24
11

11
8
8
16
23
27
6
10
14
29
30
4
20
20
20
14
10
14
25
25
5
15
19
19

18
32
24
10
8
1
23
12
18
1
12
25
13
23
32
6
21
30
5
18
22
15
23
32

4
27
29
9
21
7
26
3
26
16
13
22
4
2
21
5
9
20
9
1
19
6
20
13

3
2
16
11
29
30
6
29
13
17
6
31
28
28
28
28
17
31
30
10
30
27
12
27

18
5
22
15
26
3
2
27
14
18
12
6
26
32
22
25
4
17
30
30
30
19
30
24

We consider the flow around a hyperboloid flare (see Figure 4) at high
Mach number and an altitude around 100 km. Here one may use the ax-
isymmetric version of the particle codes described in Subsection 5.2. We
calculate 'global' quantities acting on the body such as the drag, lif t or
heat-transfer coefficient.

The main task is to investigate the sensitivity of the different approaches
to the number of particles used in the simulation.

Looking at Figures 9 and 10, we realize that, except for the DSMC time-
counter version, both methods, DSMC as well as the finite point set method,
show nearly the same behaviour with respect to the particle number. A lot
of more results can be found in Struckmeier and Steiner (1993).

The high degree of modelling necessary to describe real-gas effects requires
a validation of the models used in a particle method. The following example
has become a 'classic' test-case, mainly due to the establishment of the
European Hypersonic Data Base (EHDB).
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Fig. 7. Communication time vs. nodes at Kn = 0.5 and 45° angle of attack
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Fig. 8. Speed-up factor vs. Knudsen number at 45° angle of attack

We consider the flow of nitrogen gas around a 3D delta-wing at a high
Mach number. The measured quantities are global surface quantities like
the drag or the heat-transfer coefficient. Figure 11 shows the drag coefficient
versus the Knudsen number at Mach 20.2 and 45° angle of attack, Figure
12 the heat-transfer coefficient.
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Table 6. CPU times for a 3D computation with Kn — 0.5 and 45° angle of
attack

MFLOP CPU[s] ratio

nCUBE2s/8
nCUBE2s/16
nCUBE2s/32
Fujitsu VP100

35
70
140
285

579
297
156
1075

3.7
1.9
1.0
6.9

2.22

2.2

2.18

o

| 2.16

s
a

2.14

2.12

2.1

2.08
C

» /

50

/

100

DSMC, Time Counter
DSMC, No Time Counter

FPM, Permutation
FPM, Update

-—

150 200 250 300 350
Particle number/cell

-

—

-

-

-

400

Fig. 9. Drag coefficient versus particle number

The agreement between numerical results and measurements is quite con-
vincing; hence, the model for the exchange of different energy types like ro-
tational and vibrational energies (in this case the Larsen-Borgnakke model)
is accurate enough to reproduce the physical situation.

As a last example (see Figure 13) we compare the local pressure dis-
tribution along the surface line calculated by a particle method with the
prediction given by the modified Newton theory. We consider again the hy-
perboloid flare (Figure 4) with flap angle of 0° respectively 12° at Mach 25
and an altitude of 100 km. The given altitude corresponds to the 'small'
Knudsen number of 9-10~3; hence, one may expect that the modified Newton
theory gives reasonably accurate results.
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6. Final Remarks

We believe that particle methods have become a reliable instrument in rar-
efied gas dynamics. Using massively parallel systems one can treat realistic
problems with a reasonable effort. However, some physical effects like ioniza-
tion or recombination are still neglected (or handled in an unreliable way);
therefore further improvements are needed. The most promising ansatz is
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Fig. 13. Local pressure coefficient along the surface line

the combination of asymptotic analysis with numerical methods (as in many
fields!); we wil l solve the simpler 'singular limi t equations' whenever it is
possible - and the more complicated kinetic equations when it is necessary.

Why are particle methods not just finite difference methods or something
similar? Kinetic equations are high-dimensional. Approximations of densi-
ties by discrete measures are more robust with respect to dimensions. This
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might be the reason that competing methods until now have failed in treat-
ing 3D problems. Why are there still some stochastic elements and why is
there still a lot of 'Monte Carlo' ? The explanation for this may be given by
the theory of information-based complexity; there are many hints that this
theory provides ideas to answer the question of why Monte Carlo - correctly
applied - is advantageous.

There are still gaps between existence theory and numerics; but the theory
cannot provide us with uniqueness which is what we need to bridge the gap.
There is still a long and exciting way to go.
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1. Introductio n
Let us think about ways to find both eigenvalues and eigenvectors of tridi-
agonal matrices. An important special case is the computation of singular
values and singular vectors of bidiagonal matrices. The discussion is ad-
dressed both to specialists in matrix computation and to other scientists
whose main interests lie elsewhere. The reason for hoping to communicate
with two such diverse sets of readers at the same time is that the con-
tent of the survey, though of recent origin, is quite elementary and does
not demand familiarity with much beyond triangular factorization and the

*  The author is grateful for partial support under Contract ONR N00014-90-J-1372.



460 BERESFORD N. PARLETT

Gram-Schmidt process for orthogonalizing a set of vectors. For some read-
ers the survey wil l cover familiar territory but from a novel perspective. The
justification for presenting these ideas is that they lead to new variations of
current methods that run a lot faster while achieving greater accuracy.

Tridiagonal matrices have received a great deal of attention since the
1950s. The (i, j) entries of these matrices vanish if \i — j \ > 1 and the
interest in them stems from the fact that they include the most narrowly
banded representations of a matrix that can be obtained by a finite number
of similarity transformations using rational expressions in the matrix en-
tries together with square roots. This statement needs a littl e justification
because the rational canonical form (RCF) is, by construction, the matrix
with fewest nonzero entries that can be achieved by rational operations on
the data. For an n x n matrix the RCF has only n parameters while a
tridiagonal form has 3n — 2, but In — 1 when normalized, and so RCF seems
preferable.

The fact is that, apart from theorists doing exact computations, the RCF
is not used in eigenvalue computations. The main reason is that the rep-
resentation is too condensed for standard floating-point computation. The
coefficients of the characteristic polynomial have to be known to many, many
more decimal places than do the matrix entries in order to determine the
eigenvalues to the same accuracy.

Beyond that one might add that the RCF is a Hessenberg matrix (entry
(i, j) vanishes if z — j > 1) and, by design, there are no further useful
similarity transformations that can be applied to it. In contrast to the RCF
there are infinitely many tridiagonal matrices in a similarity class and so
there is hope of computing a sequence of them that converges to bidiagonal
or diagonal form. This is where our interest lies.

It should be mentioned that the tridiagonal form is probably also too
condensed for the most difficult cases, (see Parlett (1992)), but it is rich
enough to suffice for many applications and we shall stay with it here.

Our topic, the new qd algorithms, wil l be developed as the consequence
of two ideas.

The first concerns the representation of tridiagonal matrices and we men-
tion it briefly here. In the eigenvalue context there is no loss of generality
in supposing that our tridiagonals are normalized so that all entries in po-
sitions (i,i + l) are either 0 or 1. Zeros here make calculations easier so we
may assume that all these entries are 1. Such tridiagonals are denoted by
J. Most, but not all, such J permit triangular factorization

J = LU,

where the precise forms L and U are shown at the beginning of the next sec-
tion. It is clear that in the nxn case L and U together are defined by In — 1
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parameters; exactly the same degree of freedom as in J. Section 3 argues
that the pair L, U is preferable to J itself. Consequently all transformations
on tridiagonals should be re-examined in this representation.

The second idea relates to the LR algorithm (LR) discovered by H. Rutis-
hauser in 1957, (see Rutishauser (1958)), and presented in Section 5 here.
When LR is rewritten in the L, U representation one obtains the (progres-
sive) qd algorithm. The letters q and d are lower case because they do not
stand for matrices and the matrix-computation community tries to reserve
capital letters for matrices. Thus q here has nothing to do with the Q of
the QR factorization.

In the new representation the LR algorithm spends most of its time com-
puting the triangular factorization not of a single matrix, but of a product,
namely UL. It is not well enough appreciated that finding the LU factor-
ization of any product BC is equivalent to applying a generalized Gram-
Schmidt process to the rows of B and the columns of C so that B = LP*,
C = QU, and P*Q is diagonal. When this Gram-Schmidt process is applied
to UL in an efficient manner one obtains a little-known variant of qd, called
the differential qd algorithm (dqd), that requires a littl e more arithmetic
effort than qd itself. Rutishauser discovered dqd, (see Rutishauser (1958))
near the end of his life and never mentioned the shifted version dqds that K.
V. Fernando and I discovered, (see Fernando and Parlett (1994)), indepen-
dently of Rutishauser's work, in 1991, while trying to improve on the Dem-
mel and Kahan QR algorithm (Demmel and Kahan, 1990) for computing
singular values of bidiagonals. The connection of dqd with the generalized
Gram-Schmidt process on bidiagonals is new and constitutes the second
idea that underpins this survey.

The presentation here runs completely counter to history. The paper by
Fernando and Parlett (1994), develops dqds in the singular-value context,
gives historical comments and shows the connections with continued frac-
tions. However, none of that is necessary and it is simplicity we pursue
here.

This survey develops several qd algorithms (six in all) in a matrix context
in the most elementary way. It is not difficult to see several directions in
which these ideas may be generalized or modified to good effect.

The differential forms of qd algorithms are the right ones for parallel
computation.

A sceptic might say that since no one uses LR algorithms there is no point
in finding fancy versions of them. In the general case there is still much work
to be done in finding clever shift strategies that approach an eigenvalue in
a stable way. However, in the symmetric case even the current simple shift
strategies achieve high relative accuracy in all eigenvalues and are between
2 and 10 times faster than QR; see Fernando and Parlett (1994). Yet the



462 BERESFORD N. PARLETT

most powerful argument in favor of qd algorithms may turn out to be the
efficient computation of accurate eigenvectors.

The general plan of this survey is conveyed adequately by the table of
contents.

2. Bidiagonals versus Tridiagonals

Bidiagonal matrices of a special form will play a leading role in this es-
say. Whenever possible 6 x 6 matrices will be used to illustrate the general
pattern.

L =

1
h

h 1

h 1
k 1

u =

1

1
4 1

U5

L = bidiag

U — bidiag

To save space these matrices may be written as

1 1 1 1 1 1
li  I2 h h h
1 1 1 1 1

Ul U2 U3 U4 U5 UQ

The pair L, U determine two triangular matrices; first

1
i+u2 1

J = LU=
 Z^2 '- -

which may be written

I
J = tridiag \ ui h + I2U2

 1
 h + ue

 I5U5

and second

J' = UL =

U2I1 U2 + I2 1
U3I2 U3 + I3 1

U4/3 U4 +
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which may be written

/ 1 1  1
J1 — tridiag j u\ +1\ ui + I2  UQ

\ U2I1 U3/2  UQI^

Note that both tridiagonals have their superdiagonal entries, that is, entries
(j, j + 1), equal to 1. Also note that J' = L~XJL. The reader should note
the pattern of indices in J and J' because frequent reference will be made
to them throughout the survey.

The attractive feature here is that because the l's need not be represented
explicitly the factored form of J requires no more storage than J itself; there
are 2n — 1 parameters for n x n matrices in each case.

Advantages of the factored form

1 L, U determines the entries of J to greater than working-precision accu-
racy because the addition and multiplication of Vs and it's is implicit.
Thus Ju is given by Zj_i + u, implicitly but by //(Zj_i + ui) explic-
itly .

2 The mapping L, U —> J is naturally parallel; for example, / * u gives
the off-diagonal entries. In contrast the mapping J —> L,U, that is,
Gaussian elimination, is intrinsically sequential.

3 Singularity of J is detectable by inspection when L and U are given,
but only by calculation from J.

4 Solution of Jx = b takes half the time when L and U are avail-
able.

Disadvantages of the factored form

The mapping J —> L, U is not everywhere defined. Even when the factor-
ization exists it can happen that ||L|| and \\U\\ greatly exceed ||J||. This
is very bad for applying the LR algorithm but harmless when eigenvectors
are to be calculated. So we should be careful to consider the goal before
stigmatizing a process as unstable. Moreover in the eigenvalue context we
are free to replace J by J — a I — LU for some suitably chosen shift a that
gives acceptable L and U.

Frequently we make the nonzero assumption: ljUj  ^ 0, j = 1, . . ., n — 1.
If un — 0 then a glance at J' = UL shows that its last row is zero. However,
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i t is not valid to simply discard ln-\ along with un. In other words we do
not have a factored form of the leading (n — 1) x (n - 1) principal submatrix
of J' unless ln-\ is negligible compared to un-\. Similarly if u\ is zero we
must not ignore l\. In fact any zero values among {lj,  uy, j = 1 , . . ., n — 1}
are readily exploited.
Splitting: If lj  = 0, j < n, then the spectrum of J is the union of the spectra
of two smaller tridiagonals given in factored form by {k, uf, i = l,j}  and
{li,  uf, i = j + l , n } . Here /„  = 0.
Singularity: If Uj — 0, j < n, then zero is an eigenvalue. However, some
computation is necessary to deflate this eigenvalue and obtain L and U
factors of an (n — 1) x (n — 1) matrix. One pass of the qd algorithm (given
later) wil l suffice in exact arithmetic.

Any tridiagonal matrix that does not split, or its transpose, is diagonally
similar to a form with l's above the diagonal, that is, a J matrix. So for
eigenvalue hunting there is no loss of generality in using this normalization.
However, if the normalization is not convenient then there is an alterna-
tive factorization of tridiagonals that was considered by H. Rutishauser; see
Rutishauser (1990). Let

. . .. /I 1 1 1 1 1
iV = oiaiag I i i i i  -i

D . . .. / ei e2 e3 e  ̂ e5

B = oiaiaq
V 91 92 93 94 95 96

Then

/ ei e2  e$
NB — tridiag q\ ei + q2  ^5 + 96

\ 9i 92  95

and

i?JV = tridiag \ qi + ei 92 + 2̂  96
92 93  96

Note that, after we identify ê  = k, qi = Ui, for all i, J = DNBD~l and
J' = DBND^1 with D = diag(l,e\,e\e<i,... ,e\  es).

Since all the various qd algorithms relate naturally to J matrices we will
stay with the L, U factors rather than the N, B representation.

In the past most attention has been paid to the positive case: k > 0,
i = l , . . . ,n — 1, Uj > 0, j = l , . . . ,n. Note in passing the following
standard results.
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Lemma 1 If liUi  > 0, i = 1,... ,n — 1, then J is symmetrizable by a
diagonal similarity and the number of positive (negative) Ui is the number
of positive (negative) eigenvalues.

Lemma 2 If Uui+i  > 0, i = 1, . . ., n — 1, then J' is symmetrizable by a
diagonal similarity and the number of positive (negative) m is the number
of positive (negative) eigenvalues.

For a real symmetric or complex Hermitian matrix a preliminary reduction
to tridiagonal form has proved to be a stable and efficient step in computing
the eigenvalues. In the general case preliminary reduction to tridiagonal
form has been less successful. Stability is not guaranteed for any current
methods; see Parlett (1992). Sometimes users are lucky but as larger and
larger matrices are tried unsatisfactory experiences are more frequent. It
may well be that the tridiagonal form is too compact for the difficult cases.
The attentive reader will note in the following pages that some of the algo-
rithms can be extended to fatter forms, such as block tridiagonal, but such
ideas will not be pursued here.

3. Stationary qd Algorithm s

Triangular factors change in a complicated way under translation. Given L
and U of the form given in Section 2 the task here is to compute L and U
so that

J - al = LU - al = LU

for a given suitable shift a. Equating entries on each side shows that

li  + Ui+i  — <T = Zi + Uj+i, i = 0 , . .. ,n — 1, Zo = 0,

liU% = liUi,  i = l , . . . ,n — 1.

These relations yield the so called stationary qd algorithm:

stqd(a): u\ = u\ — a;
for  i — 1, n — 1

li  = liUi/Ui
Ui+i  = h + Ui+i  — a — k

end for.

Naturally it fails if Uj = 0 for some i < n.
At this point the sceptical reader might object that stqd(cr) is exactly the

same algorithm that would be obtained by forming J — al and performing
Gaussian elimination. Indeed if stqd(cr) is executed with the operations
proceeding from left to right, for example,

iii+1  = fl(fl(fl(h + m+i) -a)- It),
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then the two procedures are not just mathematically equivalent but also
computationally identical. However, it is not necessary to follow this left-
to-right ordering. For example, one could write

Ui+i  = (k - k -<T) + iit+ i

and, if the compiler respects parentheses, then stqd(<r) will quite often pro-
duce different output than Gaussian elimination on J — al. If k and k are
much larger than Uj+i then the second form is more accurate than the first.

The preceding thoughts lead to an alternative algorithm, easily missed,
for L and U. It involves more arithmetic effort and an auxiliary storage cell
but has some striking advantages in accuracy for finite-precision arithmetic.

To derive the algorithm define variables {U}  by

i+ i i+i  i i j + i = k — k - a.

Observe that

ti+i = li  — liUi/iii  — a

= k(ui — Ui)/v,i — a

= tili/ui  — a.

For reasons that are not clear Rutishauser called the associated algorithm
the differential form of stqd. We call it dstqd.

dstqd(cr): t\ = —a;
for i = l ,n — 1

Ui = Ui + ti
k = Ui(k/Ui)
U+i  = ti(k/ui) - a

end for
Un = Un -f- tn.

In practice the t-values may be written over each other in a single variable
t. If the common subexpression k/ui is recognized then only one division
is needed. Thus dstqd exchanges a subtraction for a multiplication so the
extra cost is not excessive.

At first sight stqd may not seem relevant to the eigenvalue problem but
if A is a very accurate approximation to an eigenvalue then dstqd (A) is
needed to approximate the associated eigenvector; see Section 12. In this
application huge values among the {ui}  are to be expected and do not have
deleterious effect on the computed eigenvector. In fact dstqd(cr) may be
used to find eigenvalues too by extracting a good approximate eigenvalue
from the t-values for a shift.
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4. Progressive qd Algorithm s

This section seeks the triangular factorization of J' — al, not J — al:

J' -<JI = UL-<JI = LU

for a suitable shift a. Equating entries on each side of the denning equation
gives the so-called rhombus rules of H. Rutishauser (see Rutishauser (1954),
in German and, in English, Henrici (1958)):

Ui+i  + Zj+i — a = k + ttj+i and kui+\ — kui.

These relations give the so-called progressive qd algorithm with shift which
we call qds(cr).

qds(a): u\ = u\ + l\ — a;
for  i = l , n - 1

Ui+\  = Ui+\  + li+i  — a —
end for.

The algorithm qds fails when Ui = 0 for some i < n. In contrast to the
stationary algorithm the mapping a,L,U — L, U is nontrivial even when
a = 0. When a = 0 we write simply qd, not qds.

At this point the skeptical reader might object that qds(<j) is exactly the
same algorithm that would be obtained by forming J' — al and performing
Gaussian elimination. Indeed if the operations are done proceeding from
left to right, for example,

ui+ i = fl(fl(fl(u i+1 + li+1) -a)- k),

then the two procedures are not just mathematically equivalent but also
computationally identical. However it is not necessary to follow this order-
ing. For example, one could write

and, if the compiler respects parentheses, then the output will quite often
be different.

There is an alternative implementation of qds that is easy to miss. In fact
Rutishauser never wrote it down. The new version is slightly slower than
qds but has compensating advantages. Here we derive it simply as a clever
observation leaving to later sections the task of making it independent of
qds.

As suggested in an earlier paragraph we might define an auxiliary variable

d-i+i  = Ui+\  — k — a (= Uj+i — k+i).
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Observe that

— a

= (ui+ idi/ui) - a.

Rutishauser seems to have discovered the unshifted version two or three
years before he died, perhaps 15 years after discovering qd, but he did not
make much use of it; see Rutishauser (1990). He called it the differential
qd algorithm (dqd for short) and so we call the new shifted algorithm dqds
(differential qd with shifts).

dqds(cr): d\ = U\ — a;
for i = 1, n — 1

Ui = di + k
k = li(ui+ i/ui)
dj+i = di(v,i+i/ui) - a

end for
un = dn.

By definition, dqd = dqds(0). In the positive case dqd requires no subtrac-
tions and enjoys very high relative stability; see Section 8. In practice each
dj+i may be written over its predecessor in a single variable d. Looking
ahead we mention that the quantity min \dj\ gives useful information on the
eigenvalue nearest 0.

5. The LR Algorithm for J Matrices
As mentioned in Section 1 our exposition reverses the historical process.
Rutishauser discovered LR by interpreting qd in terms of bidiagonal matri-
ces, a brilliant and fruitful insight. This is worth explaining. By definition,
the LR transform of J is J' and of J' is the matrix J" denned in two steps
by

J' = LU, J" = UL.

Now qd applied to L and U yields L and U and so defines J" implicitly.
There is no need to form J' or J".

When shifts are employed the situation is a littl e more complicated. It is
necessary to look at two successive steps with shifts o\ and G<I-

In shifted LR

J\ - °\I =
J2 =

J2 ~ o~2l = L2U2,

J3 = £72 2̂ +
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qds(cr2 - ax) qds(cr3 — 01)

Fig. 1. Relation of LR to qds

In other words, the shifts are restored so that J\, J2, J3 are similar. Note
that

T TT T \ ~- T T—If  T — T \ T i — T
J2 = U\L/\ T O\l =  \J\ — O\l)Li\  "T O\ 1

= L{ J\L\.

However, if J2 is not to be formed one cannot explicitly add a\ back to the
diagonal. On the other hand

J2 — (T2I = U\L\ — (02 ~ &il)  = i'2^2-

Thus to find L2 and U2 from L\ and U\ it is only necessary to apply
qds(«72 — cr\). In other words to get qds equivalent to LR with shifts {ai}^2zl

it is necessary to use the differences {a\ — CTJ_I) with qds. In LR the shifts
should converge to an eigenvalue of the original J or J'. In qds the shifts
should converge to 0 and un — 0, ln-\ —> 0 too and all shifts must be accu-
mulated. It is worth recording the relationship in a diagram in Figure 1.

In practice the LR algorithm avoids explicit calculation of the L's and
t/'s and the transformation J{ —> Jj+i is effected via a sequence of ele-
mentary similarity transformations. As implemented in the late 1950s and
early 1960s, LR proved insufficiently reliable and was displaced by the QR
algorithm in the mid 1960s. In one important class of applications both
LR and qds were accurate and efficient: the positive case k > 0, Ui > 0 for
alii .

For comparison purposes we present two implementations of LR: the ex-
plicit and the implicit shift versions. Let

1
J = tridiag

\
Oil

1
c

Pi

1
12 * *

Pi

let J — al = LU, J = UL + al and write J in the same notation as J. The
matrix L may be written as a product of lower-triangular plane transformers
Ni. So

N^(J-al), J =
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and the active part of Ni is I 1 1 , where the multiplier ej is in position
\ ei *- )

(i + 1, i). The following diagram shows a typical stage.

= (0j-i d3 1 \
I  0 0 dj+1 I '

dj + ej 1
ejdj+i  dj+i
ejPj+i  Pj+i

LR (explicit shift a): d\ = a\ — a\
for i = l ,n — 1

if dj = 0 then exit (fail)

i + a)
— (ei + a)

Pi = di+i  * ei
end for
Oin — dn + a.

In practice we write d and e for di and e,.
To derive the implicit shift version we note first that

a n d, of m o re i m p o r t a n c e, t h at t h e 2 x 2 s u b m a t r ix

has rank one in exact arithmetic. Thus the multiplier ej could be computed
from ej — PjBj-i/pj-i and then the shift a disappears from the inner loop.

The initial value e\ — P\/(a\ — a) is the only occasion on which a appears.
Indeed if a\ ^$> a then much of the information in a is irretrievably lost.

The algorithm is sometimes described as chasing the bulge Pjej-i in po-
sition (j + l,j — 1) down the matrix and off the bottom as j = 2 , 3 , . . ., n — 1
and n. We write 8 instead of d to emphasize that these quantities differ
from the corresponding ones in the explicit shift algorithm.

LR (implicit shift a): 8 = a\
if 8 = a then exit (fail)
e = pl/(8-a)
f o r i = l , n — 1

&i  — 6 + e

Pi = Pi - e * (&i  - oti+ i)
8 = Oj+i — e
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if /% = 0 then exit (fail)
e = e *  (3i+i/i3i

end for

The attraction of this algorithm is that it employs nothing but explicit
similarities on J.

6. Gram—Schmidt Factors

This section shows that dqd could have been discovered independently of qd.
To most people the Gram-Schmidt process is the standard way of pro-

ducing an orthonormal set of vectors q1; q2,  q  ̂from a linearly indepen-
dent set f i, f 2,-  ,fk- The defining property is that span(qi, q2,.  ,qj) =
span(f1, f2, , fj), for each j = 1,2,..., k. The matrix formulation of
this process is the QR factorization: F — QR, where F = [/1; / 2 , . . ., /&] ,
Q — [<Zi> 92>  i 9fc] anc^ -R is A; x fc and upper triangular.

The generalization of this process to a pair of vector sets  f 2 , . . . , /&}
and , g2, .., g^} is so natural that there can be littl e objection to keeping
the name Gram-Schmidt; the context determines immediately whether one
or two sets of vectors are involved. Denote by F* the conjugate transpose
of F.

Theorem 1 Let F and G be complex n x k matrices, n > k, such that
G*F permits triangular factorization:

G*F = LDR,

where L and R are unit triangular (left and right), respectively, and D is
diagonal. Then there there exist unique n x k matrices Q and P such that

F = QR, G = PL*, P*Q = D.

Remark. When G — F the traditional QR factorization is recovered with
an unconventional normalization: generally Q = QD~ll2. F*F  permits
triangular factorization when, and only when, the leading k — 1 columns of
F are linearly independent.
Remark. In practice, when n = k and D is invertible one can omit Q
and write F = p-l(DR), G = PL* and still call it the Gram-Schmidt
factorization. The important feature is the uniqueness of Q and P. The
columns of Q and rows of P* form a pair of dual bases for the space of
n-vectors (columns) and its dual (the row n-vectors). There is no notion
of orthogonality or inner product here; p*qj = 0 says that p* annihilates
Qj, i¥=j-

We omit the proof of the theorem to save space.
The Gram-Schmidt factorization leads directly to the differential qd al-

gorithms. Let us show how.
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Corollar y 1 Let bidiagonal matrices L and U be given as in Section 2. If
UL permits factorization

UL = LDR = LU,

where L and R are unit bidiagonal, then there exist unique matrices P and
Q such that

U = IP*,  L = QR, P*Q = D.

Remark. In words, apply Gram-Schmidt to the columns of L and the rows
of U, in the natural order, to obtain U and R. Then note that U = DR

Note that if Ui = 0, i < n, then UL does not permit triangular factor-
ization. However, the theorem allows un = 0. When un ^ 0 then U is
invertible and so is D. In this case we can rewrite the factorization as

KL = DR = U, UK~1 = L, K = DQ'1.

The matrix K is hidden when we just write UL = LU. However, the
identification of K with the Gram-Schmidt process goes only half way in the
derivation of the dqd algorithm. The nature of the Gram-Schmidt process
shows that P and Q are upper Hessenberg matrices. Fortunately Q and
P are special Hessenberg matrices that depend on only 2n parameters, not
n(n —1)/2. We are going to show that they may be written as the product of
(n — 1) simple matrices that are non-orthogonal analogues of plane rotations.
That means that L may be changed into U and U into L by a sequence of
simple transformations and neither K, Q nor P need appear explicitly.

Definitio n 1 A plane transformer, in plane (i,j), i ^ j , is an identity
matrix except for the entries (i,i), (i,j), (j, i) and (j, j). The 2x2 submatrix
they define must be invertible.

Let us describe the first minor step in mapping L —> U, U —> L. We seek
an invertible 2 x 2 matrix such that

x z \ / 1 0
-y w ) \ h l

0 U2 J \ y x

where det = xw + yz and * may be anything. A glance at the last column
of the top equation shows that z = w — 1. The 0 in the (2,1) entry on the
right shows that y = h and the 0 in the (1,2) entry in the second equation
shows that x = u\. Thus det = wx + yz = u\ + l\ = u\. ^From the (2,1)
entry of the second equation we learn that

U2/1 = U22/ = l\det = l\u\.
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1

Uk-1
0 1

Ik

0
1

1

1
1

h-x
0

dk

0
1

Wfc+l 1

Fig. 2. Active entries

Finally, and of most interest,

*  = U2x/det = U2Ui/u\.

This is the intermediate quantity d,2 in dqd and we see it here as something
that gets carried to the next minor step. If we write d\ = u\ we obtain the
start of the inner loop of dqd:

ui = di + h,

h = h(u2/ui),

d2 = di(u2/ui).

The typical minor step is similar. It is instructive to look at the matrices
part way through the transformation L —* U, U —> L as shown in Figure 2.

At minor step k the plane transformed is (k, k + 1) and the active part

of the plane transformer is I , .. I on the left and I , , 1 on the
V -h 1 / V h dk )

right, with det — Uk+i- Finally at the end of minor step (n — 1) the trailing
2 x 2 submatrices are

V I
If dn ^ 0 we simply multiply row n on the left by dn and divide column n
on the right by dn as a final similarity transformation. When dn — 0 the
matrices L and R remain invertible. Thus un — dnrnn = 0-1 = 0.

So we have derived the dqd algorithm without reference to qd. Of more
significance is the fact that the quantities d,, i = 1, . .. ,n, provide useful
information about UL that qd does not reveal and so dqd facilitates the
choice of shift.

7. The Meaning of di

Theorem 2 Consider L and U as described in Section 2. If U is invertible
then the quantities di, i = l,...,n, generated by the dqd algorithm applied
to L and U satisfy
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Proof. The algorithm may be considered as transforming L to U by premul-
tiplications and U to L by inverse multiplications on the right as described
in the previous section. At the end of the (k — l)th plane transformation
the situation is as indicated below:

1
1 0
h 1

1 0

'fc-i dk

0
= UGk-v

where

Gfe_i = $fc-i^fc-2  $1, $i transforms plane (i, i + 1), Go = /„ .

The striking fact is that row k of Gk-\L and column A; of UG X̂ are single-
tons. If ê  denotes column j of 7n then

ej; Gfc-iL = e{, ekdk = UG^ek, 1 < k < n.

Rearranging these equations yields, for A; = 1, 2, . . ., n,

]kk-

In the positive case (U > 0, Ui > 0), UL is diagonally similar to a
symmetric positive-definite matrix.

Corollar y 2 In the positive case,

<Xmin(UL)< mmdi.

Proof. For any matrix M that is diagonally similar to a positive-definite
symmetric matrix

Amax[M] < trace[M].

0, minj \di\ becomes an increasingly

Take M = (UL)~l. D

Even in the general case, as un

accurate approximation to |Amin|.

8. Incorporation of Shifts

The algorithms and theorems presented so far serve only as background.
LR, QR and qd algorithms are only as good as their shift strategies. In
practice one uses qds and dqds, the shifted versions of qd and dqd.
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The derivation of dqds(a) in terms of a Gram-Schmidt process is not obvi-
ous. Formally we write UL — al = (U — oL~l)L = LU and apply the Gram-
Schmidt process to the columns of L and the rows of U — aL~l to obtain

L = GR, U - aL~y = LF, FG = D.

Eliminating G yields

F-1U, U-aL~1 =

At first sight the new term —aL~l appears to spoil the derivation of F as
a product of plane transformers. However, it is not necessary to know all
the terms of L~l but only the (i + 1, i) entries immediately below the main
diagonal. The change from the unshifted case is small. The active parts of
the two transformations are given by

1 0
7 i I \ i i / ~~ \ n i ' ' " ° D ef ° r e>
't -1 / \ 'i  x / \ u -1

and the new relation

di 1 \ / 1 -1 \ / 1 0
i i j  J i — i 7 i i "  det.-a J \k di J yk di+1 J

The last row yields

det = di + k = iii,  as before,

li  det — liiii  — ali + (ui+i  — a)li = Ui+\li,  as before,

di+\  det = —ali +

This is dqds(cr).
If one looks at the two matrices part way through the transformations

L —> U, U — aL~l —> L, the singleton column in the second matrix (from
Theorem 2) has disappeared and the relation of di to (UL)'1 is more com-
plicated.

Theorem 3 Consider L and U as described in Section 2. If U is invertible
and UL — al permits triangular factorization, with a  ̂ 0, then the inter-
mediate quantities di, i = 1, . . ., n, generated by dqds(cr) applied to L and
U satisfy

l + a[(UUL)-%k  ̂ x

dfc + a

We omit the proof.

9. Accuracy

The differential qd algorithms dqd and dqds are new to the scene of matrix
computations. One feature that makes them attractive is that they seem
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to be more accurate than their rivals. In particular, in the positive case,
all eigenvalues can be found to high relative accuracy as long as the shifts
preserve positivity.

Let us begin with an extreme example.
Example 1. Take n = 64, u, = 1, i = 1 , . .. ,64, k = 216 = 65536,
i = 1 , . . ., 63. Although det(LU) = 1 the smallest eigenvalue is £>(1O~304).

In just 2 iterations dqd computed Am;n to full working precision. In con-
trast qd returns 0, a satisfactory answer relative to the matrix norm. Yet
dqd does preserve the determinant to working accuracy, provided underflow
and overflow are absent, while qd, LR and QR do not.

The reason for dqd's accuracy is that U64 = ^64 reaches the correct tiny
value through 63 multiplications and divisions. There are no subtractions.

A littl e extra notation is needed to describe the stability results compactly.
When there is no need to distinguish Z's from u's we follow Rutishauser and
speak of a qd array

Z = {ui,ll,U2,h,  Jn-l,Un}-

The right unit for discussing relative errors is the ulp (1 unit in the last place
held) since it avoids reference to the magnitudes of the numbers involved.
In Example 1 the error in the computed eigenvalue < ^ulp despite 2 x 63
divisions and multiplications.

Given Z the dqds algorithm in finite precision produces a representable
output Z. We write this Z — //(dqds)  Z. Now we introduce two ideal qd
arrays Z and Z such that, in exact arithmetic, dqds with shift a maps Z
into Z. Moreover Z is a tiny relative perturbation of Z, and Z is a tiny
relative perturbation of Z. See Figure 3.

The proof of the following result may be found in [2].

Theorem 4 In the absence of division by zero, underflow or overflow, the
Z diagram commutes and, for all k, Uk (h) differs from Uk (h) by 3 (1) ulps
at most, and u  ̂ (4) differs from Uk {h) by 2 (2) ulps, at most.

The proof is based on making small changes to Z and Z so that the computed
sequence of d's is exact for Z and Z. There is no requirement of positivity
so it is possible to have ||Z|| > >> ||-Z||. Some people call this a mixed
stability result because one had to perturb both input and output to get an
exact dqds mapping. For example, such mixed accuracy results are the best
that can be said about the trigonometric functions in computer systems; the
output is within an ulp of the exact trigonometric function of a value within
one ulp of the given argument.

Theorem 4 does not guarantee that dqds returns accurate eigenvalues in
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change each

lk by 1 ulp

Ufc by 3 ulps

change each

ilk and Ik by 2 ulps

exact

Fig. 3. Effects of roundoff

all cases, even when we only want errors to be small relative to
call such accuracy absolute rather than relative:

We

i — Aj| < e|| J|| versus |Aj — A,| < e max{|A;|, |Aj|} .

In Fernando and Parlett (1994) a corollary to Theorem 4 establishes high rel-
ative accuracy for all eigenvalues computed by dqds in the positive case. The
corollary is stated in terms of singular values but the algorithm computes the
squares of those singular values, that is, the eigenvalues of a positive-definite
matrix similar to a product LU.

Given these nice results it is natural to seek a conventional backward
error analysis that says that Z is the exact output of dqds applied to some

O O o
array Z, where either \\Z— Z \\ < Me\\Z\\ or, better, |UJ— Ui \ < Me\ui\,

~ o

\li  - k\ < Me\li\, for all i, which we write as \Z— Z | < Me\Z\. Here M is
some reasonable constant.

This was one task given to Yao Yang for his doctoral research here and
we quote here two of the results from his 1994 paper. Yang's first discovery
was an unpleasant surprise. Even in the positive case it is not always true

o

that \Z— Z | < Me\Z\. Here is an example.
Example 2. There is no small backward error for dqd.

n = 5, a = 0, single precision: 1 + 10
u = (1,1,1,1,1),

4104104104

1,

I = (104,104,104,104,0).
We omit tiny irrelevant terms in what follows.

u = (104 + l,104,104,104,HT16-l(T 20),

u exactly (104 + 1,104 + 1(T4,104 + 10"8,104 + 10"12,10"16 - 1(T20),

I = ( l - 10 -4 , l , l , l , 0 ) ,
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u = (0 ,1-HT4,1 ,1 ,1),

/ = (104 + 1,104,104,104,0).
o o

Thus u\ = 1 must be changed to u\= 0 in order to have dqd- Z= Z. The
o

last 3 steps in computing Z are instructive.
1. U2= M2- ?2 +*1 = 104 - 104 + (1 - l ( r 4) = 1 - 10-4

whereas the true «2 is 104 + 10~4 which would yield the ideal r*2= 1.

2. j 1 = ixux/ u2=  104/(l - 1(T4) = 104 + 1 instead of 104.

3. u i= t i i - h= (104 + 1) - (104 + 1) = 0 instead of 1.
oo

Note that u\ + l\=  ui + h exactly!

This result shows why there was no backward error analysis in Fernando
and Parlett (1994). Further investigation by Yang showed that the fault is
in the formulation of the task, not in the algorithm. Recall from Section 2
that associated with any qd array Z are matrices L, U and their products J
and J'.

Here is Yang's second result.

Theorem 5 If dqds(<r) maps Z into Z in finite-precision arithmetic obey-
ing (9.1) below and if both arrays are positive then there is a unique array
o o
Z such that in exact arithmetic dqds(<r) maps Z into Z. Moreover the

o o
tridiagonal matrices J and J associated with Z and Z satisfy

| J '- J'\ < 5e| J'|,

where e is the roundoff unit.

The inequality is interpreted element-by-element. This is a strong result
and consistent with Theorem 4. The amplification factor 5 is a worst-case
bound. Contemplation of the proof shows that in most cases the errors in
executing dqds(<r) in finite precision can be accounted for by perturbing J's
entries (not Z's) by 1 or 2 ulps.

The strength of the result comes from the simplicity of the proof and what
makes the proof simple is that, in exact arithmetic, dqds(a) is equivalent to

o

qds(a) and qds brings in no intermediate quantities. Thus we may define Z
by Z— qds"1  /Z(dqds)Z. Here / / denotes a result obtained with floating-
point arithmetic.

The diagram in Figure 4 illustrates the strategy.
The invertibility of qds(a) is proved by observing that if the output is

positive and given then qds(<r) statements may be used in reverse order
(n, n — 1 , . . ., 1) to recover the unique input.
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fl(dqds)

qds

Fig. 4. Definition of Z

The model of arithmetic assumes the presence of a guard digit so that
subtraction has the same relative accuracy as the other fundamental oper-
ations.

fl(anb) = (anb)(l + ri), (9.1)

where r\ < e, the roundoff unit (or arithmetic precision) which does not
depend on a, b or , and  = , * or /.

Proof of Theorem 5. First we write down the relationships satisfied by Z.
Subscripted variables 7,6 and e denote roundoff quantities as needed by the
model (9.1).

/?(dqds) : dx = / / («! - a) = (m - <r)(l + 7o);

for  i = l ,n — 1

t{ — fl{ui+\/ui) = tii+i( l + 6i)/v,i, U should stay in a register

k = fl(U * U) = UiH+iO-  + Si)(l + %)/ui
di+i = fl(di *u-a) = (di«i+i(l + 6i)(l + 7i)/«i - <r)(l  + id

end for
un = dn.

o

By definition qds- Z= Z, exactly, so with IQ = 0,

qds : for  i = 1, n — 1
O f

Ui = Ui -k-i+ U -a
o o

k = UUi+ i /Ui
end for

«n = Un —ln-1 - °~-

o o o o o o

Of course Z is determined in the order un, ln_i,un-i, ln-2,  ui, but that
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is irrelevant here. Next we eliminate Ui and li  using the two sets of equations
from /?(dqds,) and qds. In what follows we omit terms that are O(e2).

For i = 1

In the positive case Amin(J) < any 'pivot' in elimination, that is, a <
^min(J) < minj Uj. Thus, in the positive case

U\ + /l —U\ — <l 2e + he
i + h

<2e.

For 2 < i < n
o o
Ui + U = j_i + a

Now we can combine the terms involving Ui, noting that

So, omitting terms of O(e2), we have

Ui + U = Ui + li  +
i-i  + k-k-i

k- l

Now use repeated terms like <5j_i — ej_i to simplify the roundoff terms:

 i /c \
ui + li  = Ui + H + Ui(Oi-l — €i_lj

di-i + Zj_i i-i + /i-i

(9.2)

Thus, in the positive case, using a < Ui,
o ° ( di—\Ui "I

\ Ui + h-(ui + li)\ < Ui2e + Uie + /jC + max <  ;—,cr}2e
(di-i + li-i  J
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For the subdiagonal entries we have, almost immediately,

°liUi+i=  kui = kui+1(l + Si)(l + , (9.3)

so

<2e

in all cases, positive or not. This completes the proof.

In the course of the proof the general case has been covered. Backward
stability is guaranteed in neither a relative sense nor a norm sense. When
there is element growth, that is, when \di\ or |iij | or \U\ greatly exceeds |/ j|

or U{\, then locally (in position i) j ' differs strongly from J'.
To state the result in terms of arrays treat diag(M) as a linear array and

define

ones = (1,1,...,1),

I = (Oj i , . - -Jn- i ),
d = (di,...,dn).

Corollar y 3 In the general case, in the absence of under/overflow or divide

by zero, it is element growth that governs j ' — J'. Entry-by-entry,

\diag(j') - diag(J')\ < e{2\u\ + \a\\ones\ + \l\ + \u\ + 2|rf|},

\offdiag(j') - offdiag{J')\ < 2e\offdiag(J')\.

Proof. Relation (9.2) in the proof of Theorem 5 holds in the general case.
By omitting O(e2) terms we may undo the equation for di from /?(clqds,).

= (di + a - 7l
/_1di)(l - 6i-i - ji-i  + ej_i)

Similarly we undo the equation for /j_i :

di-i + k-i

Now we can rewrite (9.2) in terms of di, /j_i and in
O o

li  + Ui = Ui + k + Ui(6i-i  — €j_i) + (di +
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So
o o "

\ui + li  -(ui + k)\ < \ui\2e + \di\e + \a\e + \k-i\e
+\di\e + \ui\e,

omitting O(e2) terms, as claimed in the corollary. The off-diagonal entries of
o

J do enjoy backward stability in a relative sense since the product rhombus
rule is preserved to within 2 ulps as shown in (9.3) in the proof of Theorem 5.

10. Speed

Al l algorithms of LR type succeed or fail according to the sequence of shifts.
The basic algorithms, when all shifts are zero, are just too slow. On the
other hand zero is the natural shift when J is singular - unless it provokes
element growth.

In practice all these algorithms find one or two eigenvalues at a time,
deflate them from the matrix and proceed on the remaining submatrix. so
the task, at each step, is to pursue these somewhat contradictory goals.

P I . The shift should approximate an eigenvalue, preferably a small one.
The more accurate the better.

P 2. The shift should not cost too much to compute.
P 3. The shift should not lead to element growth in the transformation.

The positive case. Here P3 may be satisfied by always approximating the
smallest eigenvalue from below. In this way positivity is preserved and dqds
delivers high accuracy. Moreover the auxiliary quantities {di}  provide upper
bounds on Amin(J) that become very tight. In Theorem 3 the complicated
quantity [{UUL)~ l\k k-\ turns out to be positive and thus Amin[J] < dk + o~.
So,

With littl e extra expense dqds can return both the value of minj dj and the
last index k at which the minimum occurs.

When (7 = 0 The lower bound happens to be the Newton approximation to
Amin( J) from 0 for the characteristic polynomial of J. It is too expensive and
too pessimistic to be a frequent choice except at the start of the algorithm.

The index k is useful in the selection of a cheap and realistic estimate
of Ami n(J). We say that Z (and J) is in the asymptotic regime when
fc = n - 1 or fc = n. At this point we remind the reader that all the
algorithms we consider here may be run from the bottom of the matrix to
the top, and so we may assume that k > n/2. In the asymptotic regime
minj dj is an extremely good estimate of Amjn(J) but, of course, is a littl e
too large.
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A simple strategy that has satisfactory results in comparison with rival
methods is to select a small subarray of Z surrounding row k and com-
pute the Newton approximation to 0 for the polynomial associated with the
subarray. This approximation is essentially

i=k—p

for p = 2 or 3. This expression is modified appropriately when k is close to
n. In the current implementation both Z and Z are available at the end of a
transformation. Consequently, given dk, it is easy to recompute neighboring
di from di+\ = diUi+\/(di + k) — a going up or down.

Another strategy was proposed by Rutishauser (1960). If a shift a causes
qds (or dqds) to fail because un < 0 but all in > 0, i < n, then a +
un is an extremely good lower bound on Am;n(J), good to O(\a — Amin|

3)
asymptotically, see Fernando and Parlett (1994) for a new proof. So the bad
transform is rejected and dqds is applied with the good shift.

In order to show that these qd algorithms are worth attention we quote
some timing results from Fernando and Parlett (1994). On a test bed of
several challenging cases of orders 20 to 100 a dqds code with the above
shift strategy was between 4 and 11 times faster than LINPACK codes
besides being more accurate. In more recent comparisons with code used in
LAPACK (QR-based) routines the dqds program was, on the average, twice
as fast.

It is likely that the current shifts wil l be replaced by better ones soon.

The symmetric indefinite case. Given a T that is symmetric, tridiagonal,
but not positive definite we reduce it to the positive-definite case as follows.
First compute the lower Gershgorin bound by

bound — a\ — \(5\\
fo r  i — 2 ,n — 1

bound = min{bound, cti — |/?i-i| — |A|}
end for
bound = min{bound, an — |/?n_i|} .

Next factor T + bound  I = LU, with care, as follows:

u\ = ct\ + bound
for  i = 2, n

h-i = Pi/ui-i
Ui = (max{aj, bound} — h-i) + min{aj, bound}

end for.

I t is because both bound and li-\  are positive that we can use max and min
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to avoid computing (big + little) — big, the perennial danger when adding
three quantities.

Now dqds may be applied to the positive case. Note that the eigenvectors
are not altered by a shift. So, if eigenvectors are wanted, they may be
computed as shown in Section 12 and the eigenvalues of T found afterwards
by taking a Rayleigh quotient. This is to avoid subtracting bound from the
computed eigenvalues that are very close to bound.

The general case. There are several open problems. We should expect to
reject transforms from time to time when excessive element growth occurs.
It is also possible to compute a dstqd transform (the stationary algorithm)
at the same time as dqds for the same access to Z.

In other words, it is feasible to compute LU — LU—al and LU = UL—al
at the same time. If a is not too close to 0 then computation can proceed if
either of the pairs L, U and L, U avoids element growth. It is also possible
to apply dqds and dstqd to the reversal of Z, that is, (un,ln-i,un-i,...).
Our goal is to push minj \dj\ to the closest end of the array.

When excessive growth occurs in Z it is not hard to evaluate the recurrence
that governs the derivative of {pi}  with respect to the shift. Here pi is the
characteristic polynominal of the top i by i submatrix of J. Given p'j as well
as pj at a bad place one can calculate a new shift that will take the new pj
away from 0.

For each Z there is a bad set Bad(Z) in C consisting of values that should
not be used as shifts for qds. It would be useful to understand something of
how Bad(Z) changes under qds; that is, how does Bad(Z) relate to Bad(Z)?

An alternative approach is to develop block versions of these algorithms.

11. Parallel Implementation

The algorithms qds and stqd seem to be irrevocably sequential in nature.
In contrast the differential versions are less so.

Let us consider dqds from this point of view. The algorithm may be split
into two parts.

Part 1. Compute d = (d i , . . ., dn) via
d\ = u\ — o", dj+i = diUi+i/(di + li) — a, i = 1 , . . ., n.

Part 2. As vector operations on I, u and d compute
u = d + l, 1 = (li,...,ln-i,0),

I = I * d}/u,
where

d) = (d2,d3,...,dn,0).



THE NEW QD ALGORITHM 485

Part 2 is ideal for vector or parallel processors.
It is interesting that Part 1 may, in principle, be executed in O(log2 n) time

on a parallel processor but unfortunately the method seems to be unstable in
finite precision. See the interesting paper of Mathias (1994). The technique
is called 'parallel prefix' in computer science communities

The idea is to consider each di as a ratio Pi/qi and rewrite the recurrence
as

Pi+i  _

Qi+i  Pi + Qih
or

Note that each 2 x 2 matrix Mj is known a priori and we can start with
(Pi><7i) = (u\—(T,0). Consequently di is completely determined by column 1
of

N(i) = MtMi-i  M1.

The problem has been reduced to computing all the partial products indi-
cated above. There is an intriguing way to compute the TV's from the M's
in 2(log2 n) parallel steps.

The pattern is indicated in the following diagram in Figure 5. This com-
plicated algorithm can be written compactly in the following form.
Standard MATLA B notation is
[i  : j : k] = (i, i +j,i  + 2j,..., k); [i  : k] = [i  : 1 : k].
Let p = [log2 n].

Initialize N(i) — Mi, i = 1, 2 , . . ., n.
f o r j = 2l1:ri, i = [j  : j : n}; N(i) = N(i)* N(i-j/2);
for j = 2lP-1:-1:1] , i=[3*j/2:j:n];  N(i) = N(i) * N(i

When a = 0 the M's are all lower triangular and the task is simplified
significantly and is well suited to implementation on the CM2 and CM5
massively parallel computers.

The strong potential for parallel implementation lies, not here, but at a
coarser level in the computation of eigenvectors once the eigenvalues are
known accurately. This is the topic of the next section.

12. Eigenvectors

Suppose that Z (= L, U) is given along with an accurate approximation A
to an eigenvalue of J = LU. If A were exact then

(LU-XI)v = 0, \\v\\ = l (12.1)
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1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

Fig. 5. Parallel prefix

is the equation defining a wanted eigenvector v. By applying the stationary
qd algorithm dstqd(A) to Z we obtain, in the absence of breakdown, Z such
that

LU~XI = LU. (12.2)

Since L is unit triangular it is invertible and it remains to solve Uv = 0,
that is, UiVi + Wj+i = 0, i = 1,... ,n — 1. A littl e care must be exercised
to avoid unnecessary overflows and underflows. Let k be the index of a
maximal entry of v. Then

vk = 1, Vi = -Vi i, i = k - l , . . . , l , = -Vjiij,  j = k,..., n - 1.

Note that un is not used and this is appropriate since un must vanish in
exact arithmetic.

In practice there are two important changes to be made to the simple
algorithm given above. First note that the matrix of interest is often not J
but /3'1Jf3 for some diagonal f3. So (12.2) changes to

l -XI = (/3-1L(3)(/3-1Uf3) (12.3)

and

(3~lU/3 = biding
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where

0 = diag(l, Pi,(3if32, ,

So the bidiagonal system is

UiVi + fiiVi+i  = 0, i = l , . . . , n - l . (12-4)

The second observation is that, even for extremely accurate approximations
A, the final value un is far from vanishing and the output from (12.4) or
(12.3) is too often disappointing. Roundoff error spoils U.

There is a remedy which is not complicated and appears to be new. In
addition the new approach yields very good values for k, the index of a
maximal or nearly maximal component of v. At the heart of dstqd is the
i-recurrence:

=U*  h / ( ui + U ) - X (12.5)

with t\ = —A. Once the t-vector is known u = (ui,... ,un) and I —
( f i , . . . , ln-i, 0) may be found by vector operations: u = u + t, T = u* l/u.
The only thing that distinguishes a true eigenvalue A from a non eigenvalue
is that, in exact arithmetic, 0 — un = un + tn. This gives a final value
tn = —un and the 2-term recurrence may be solved in reverse order:

In exact arithmetic with an exact A the t-vectors from the forward and the
o

backward passes will be the same but we use U to denote the output of the
o

backward pass. In practice t and and t are not the same. We choose a A; to
satisfy

o o

\tk- tk =m in | t j- tj \.
— O O

Then we define t = ( i i , . .. ,tk,£fc+i, t n) , and compute an approximation
x to v from

xk = 1, Xi = -PiXi+ i/(U + Ui), i = k - l , . . . , l , (12.7)

xj+ i = -Xj(tj +Uj)/Pj,  j = k,..., n - 1. (12.8)

o

Note that i's are used going back from k, while t's are used going forwards.
An attractive feature of (12.7) and (12.8) is that huge values of U and

O

tj, including oo, do not impair the accuracy: Prom (12.6) U = oo implies
o o

Xi = 0 for i = k — 1 , . . . ,1, and i j+i = oo implies tj +Uj  = 0 implies
Xj+i  = 0, for j = k,... ,n — 1. Wherever Xi — 0 the adjacent x-values are
simply related by /3,_iXj_i + / ^ i + i = 0 when j3~1LU(3 is symmetric and
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by li-\Ui-\Xi-\l'fii-i  + faxi+i =  0, in general. So, in the symmetric case,
the full algorithm is: xk = 1,

/(3i, ifx i+i=0,
+ Ui), otherwise, i = k-l,...,l,

_ f -

X- = < o  J ' 1 / ^ : n " * j ~ " , . ^
3 \ —Xj(tj +Uj)//3j,  otherwise, j = k,..., n — 1.

With (12.9) small entries in x are found by multiplication and division, not
subtraction.

Let us now justify the choice of k. Suppose that all arithmetic operations
o

are exact but, because A is not an exact eigenvalue, the ^-recurrence is not
o

justified in using tn= —un. Consequently there is truncation error and x is
not an eigenvector. What can we say about x? If T = (3~lLU(3 is symmetric
then the residual

r = (T- XI)x

vanishes in every component except the A:th and at this position \rk\ =
o

\tk— tk I- It is this result that justifies our choice of k. The assumption of
symmetry is not essential but it simplifies the exposition. In what follows
recall that 0f = kui.

There are three cases. We consider r, and use (12.9).
j < k. (3j-iXj-i + (lj-i  + Uj - X)XJ + /:

— Xj \ "3 ~T"  Lj \ "y"  Uj A IX j

Now use (12.5):

[  tj-i  + Uj-i \tj-l  + Uj-_!
= Xj  0.

o

The case j > k is similar but with U replacing tj and we omit it.
j = k. /3fc_ixfc_i + (lk~i + uk- X)xk + /

{ 32 )

—-1- + k-i +uk-\-uk\ .

A littl e algebraic simplification together with (12.5) shows that

rk - \ ; A— tfe > = tk- tk
Roundoff errors make very littl e difference. More precisely it can be shown
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o

that with appropriately chosen 2 ulp perturbations to L,U,t,t,x, but not
to A, the equation corresponding to (T — \I)x = efc(tfc— tk) holds exactly.
Here ê  is column k of I.

The significance of this result is that when A is a very accurate approx-
imation the quantities tk and tk are quite often less than e||T|| and their
difference is even smaller. Here e is the precision of the arithmetic unit.
Thus we compute vectors x whose residual norms \\(T — A/)x||/||a;|| are sig-
nificantly less than e||T||. This never happens with standard inverse iteration
(i.e. TINVIT in the LINPACK package).

o

The cost for x from (12.9) appears to be 3n divisions (n for t, n for t,
n for x) but for vector calculations dstqd may be rewritten so that the n
divisions in (12.9) become n multiplications: k = fa/ili, U+\ = kkti — A,
Xi — —liXi-i. By way of comparison standard inverse iteration needs n calls
for random numbers plus 2n divisions for a vector. So the new method is
no slower than standard inverse iteration.

When two eigenvalues differ by about v^HLt/H the vectors x computed
by (12.9) need to be refined by another step of inverse iteration in order to
obtain eigenvectors orthogonal to working accuracy.

When m eigenvalues of T are very close (differing by n ulps, say) we can
take care to pick m different values of k in order to try to produce outputs
that are orthogonal. There is no need to perturb computed eigenvalues that
are equal to working precision. This careful choice of k suffices in many
but not all cases of clusters. Fortunately there is an extra modification
of the method that takes care of the difficult cases by using appropriate
submatrices of T. Since this modification is independent of qd algorithms
it will not be described here, but see Parlett (1994).

The method described in this section is 'embarrassingly' parallel. Each
processor is assigned a copy of Z and one or more eigenvalues. No commu-
nication is needed between processors.

13. Singular  Values of Bidiagonals

Let

B = bidiag( h h *  K~l

The goal is to find 5's singular values <7i,..., an. Since {of }  is the eigenvalue
set of BlB this is the eigenvalue problem of a positive-semidefinite symmetric
tridiagonal with the constraint that BlB is not to be formed explicitly. Note
that BlB is singular if, and only if, aj = 0 for one or more i values. In these
cases BlB is a direct sum of smaller tridiagonals and the 0 singular values
may be deflated by applying qd or dqd independently to the appropriate
submatrices as will be explained below. If some 6» = 0 the reduction to
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a direct sum is immediate and requires no arithmetic effort. Consequently
there is no loss of generality in concentrating on the generic case: a*  ^ 0,
i = 1 , . . ., n, bj ^ 0, j = 1 , . . ., n - 1.

We forsake symmetry and formally put BtB in the J-matrix format.
Define

A = d i a # ( l , 7 T i , 7 r i 7 T 2 , . . . , . . . , 7 ri n _ i ) , TT, = a ^ ,.

I t is readily verified that

AB*BA - 1 = J = LU,

where

r

, G2

and so we define Z, = bf, Ui = a?. Thus the singular-value problem leads to
the positive case and dqds may be used to find the of in increasing order.

One begins with dqd (not dqds) in order to capture any tiny singular
values and to make use of the lower and upper bounds in Corollary 2 to
Theorem 2.

The only blemish is that the original data have been squared and thus
the domain of application is smaller than for QR techniques since we must
avoid overflow and underflow. However, there is an algorithm oqd described
in Fernando and Parlett (1994) that has the same range as QR but the
advantages of qd. The price that oqd pays for the extended range is that it
must take a square root in the inner loop in the same way that QR techniques
do. The response to this choice is easy: If exponent range permits then
square up and use dqds, otherwise use oqd.

In order to find the right singular vector for o"? we apply the stationary
algorithm dstqds to L, U with shift a? to obtain L and U satisfying

LU - * f 1

whence

B*B - (7l

and the techniques of Section 12 may be envoked.
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