


Cochlear Mechanics





Hendrikus Duifhuis

Cochlear Mechanics

Introduction to a Time Domain Analysis
of the Nonlinear Cochlea

123



Dr. Hendrikus Duifhuis
Faculty of Mathematics and Natural Sciences
University of Groningen
Nijenborgh 9,
9749 AG Groningen

BCN-NeuroImaging Center
Antonius Deusinglaan 2,
9713 AW Groningen
H.Duifhuis@rug.nl

ISBN 978-1-4419-6116-7 e-ISBN 978-1-4419-6117-4
DOI 10.1007/978-1-4419-6117-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011944505

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Interest in cochlear mechanics (CM) and particularly in the role of nonlinear
cochlear processes expanded significantly during the 1970s. For me it was stim-
ulated particularly through contacts with Jont Allen—a contact that remained
important after his visit to Eindhoven—and Egbert de Boer, who was—amongst
others—active within the Dutch Auditory Biophysics community.

My move to the University of Groningen in 1980, in combination with in-
ternational developments, such as the discovery of otoacoustic emissions, led to
an immediate increase in interest in CM. We followed up a proposal by Peter
Johannesma [International Symposium on Hearing (ISH)—1980] stating that a Van
der Pol-oscillator might be a proper model for spontaneous emissions.

At the same time significant theoretical contributions were given by John
W. Matthews (1980) and Stephen T. Neely (1981) in their doctoral theses presented
at Washington University. They also contributed to the ISH-1980 conference
mentioned above. They started to explore nonlinear cochlea models in the frequency
and time domain.

As a result, 1980 became a pivotal point in this book!
This book strongly rests on work from the Groningen biophysics department,

which was largely performed by graduate students, both at master’s (Sietse van
Netten, Berk Hess, Johan Kruseman) and PhD levels (Marc van den Raadt, Peter
van Hengel) and by postdocs (in particular Peter van Hengel). In addition, national
(Max Viergever, Rob Diependaal: Delft University of Technology) and international
cooperations have been essential (Bastian Epp: Carl von Ossietzky University of
Oldenburg).

Within the University of Groningen we cooperated with mathematicians
(Hendrik Hoogstraten, Henk Broer) and with audiologists from the ENT-department
at the University Medical Center Groningen (Roel Ritsma, Hero Wit, Pim van Dijk).

Disputes and collaborations with the international community have quite effec-
tively been controlled through the international journals as well as through meetings
such as the Mechanics of Hearings conference series (started in 1984).
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vi Preface

After formal retirement from the University of Groningen faculty, I was in the
position to put our developments together in the underlying book format.1

The book is intended for use at the graduate or postgraduate level for students
with a background in (bio)physics, (electrical) engineering, applied mathematics,
or related specializations and multidisciplinary interest. It is somewhat related to
Dallos’s The Auditory Periphery (1973), but much narrower in scope, and updated
with respect to otoacoustic emission data and to nonlinear modeling.

The contents is divided in three parts. Part I contains a historical introduction and
deals with developments of linear CMs, up to approximately 1980. Part II presents a
selection of experimental nonlinear phenomena, and the time domain study of some
global nonlinear models. Part III presents results and open issues. Finally, Part IV
contains useful general tools and example results.

The introductory Chap. 1 relies heavily on input from Peter van Hengel. His role
in the development of the program and applications is also appreciated.

The final form of this book was significantly improved by the reviewers Bastian
Epp, Hero Wit, and in particular Michael Rapson.

Groningen Hendrikus Duifhuis
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ISI Inter-Spike Interval
ISO International Organization for Standardization

1A misnomer.

xi
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LCR Inductance, Capacitance and Resistance
LG Liouville, Green
LTI Linear Time-Invariant (system)
NL Nonlinear, Nonlinearity
OAE OtoAcoustic Emission
OC Corti’s Organ
ODE Ordinary Differential Equation
OHC Outer Hair Cell
OW oval window
PSTH Post Stimulus Time Histogram
PTPV Primary-Tone Phase Variation
RK4 Runge-Kutta 4 method
RW round window
SEM Scanning Electron Microscopy
SFOAE Stimulus Frequency Evoked OtoAcoustic Emission
SOAE Spontaneous OtoAcoustic Emission
SPL Sound Pressure Level
TEM Transmisson Electron Microscopy
TeM Tectorial Membrane
TM Tympanic Membrane
VDP Van der Pol-oscillator
WKB(J) Wentzel, Kramers, Brillouin (Jeffreys)
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List of Symbols

Symbol Description Value Units Dimensions

0 As subscript index: initial or
average value

ı Damping coefficient – 0
" NL-parameter – 0
� Dynamic viscosity Pa s L�1MT�1
� Ratio of heat capacities

(Cp=CV )
– 0

� Kinematic viscosity m2/s L2T�1
� Fluid density (water, lymph) 1,000 kg/m3 ML�3
˚ Heat source J L2MT�2
a As subscript: acoustic
a Acceleration m/s2 ML�2
A Area m2 L2

da Acoustic damping (resistance) Pa s/m3 ML�4T�1
e AC voltage V I�1L2MT�3
E Energy J L2MT�2
F Force N LMT�2
F T fs.t/g Fourier transform, operator [s.t/].T
F T �1fS.!/g inverse Fourier transform,

operator
[S (!)].T�1

g Gravitational acceleration m/s2 ML�2
i AC current A I
I Sound intensity W/m2 MT�3
J Sound-energy flux W L2MT�3
m Mass, general physical kg M
m.x/ Partition mass per area 0.5 kg/m2 ML�2
ma Acoustic mass (inductance) kg/m4 ML�4
p.x; t/ Sound pressure at x and t Pa L�1MT�2
q Heat flux density Pa L�1MT�2
s Specific entropy J/kg.K L2T�2‚�1
S Entropy J/K L2MT�2‚�1
sa Acoustic stiffness

(1/capacitance)
Pa /m3 ML�4T�2

s.x/ Partition stiffness per area Pa /m ML�2T�2
t Time s T
T Temperature K, (ıC) ‚

u.t/; v.t/;w.t/ x-,y-,z-velocity at t m/s LT�1
u Specific internal energy J/kg L2T�2
U Internal energy J L2MT�2
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List of Symbols (continued)

Symbol Description Value Units Dimensions

U.x; t/ volume velocity x�direction at t m3/s L3T�1
Ust.t/ volume velocity stapes at t

(positive: inward)
m3/s L3T�1

V; V0 volume m3 L3

x 3-D x-vector m L
x; y; z length, width, height m L
Z;Ze electrical impedance V=I � L2MT�3I�2
Zm mechanical impedance F=v N s/m MT�1
Za acoustic impedance p=U Pa s/m3 L�4MT�1
Zsa specific acoustic impedance p=v Pa s/m L�2MT�1





Part I
Anatomy and Function

of the Linear Cochlea

Part I starts with a short introduction into the historical development of today’s views
of anatomy and function of the cochlea, and its role as the “front end” in auditory
processing, or hearing.

It then presents results of some classical measurements of mechanical parame-
ters, and of dynamical cochlear responses to sound. The relevance of these responses
is illustrated with examples from classical auditory psychophysics.

The next step concerns the development of cochlear mechanics analysis and
modeling during the 20th century. The first steps appeared around 1925, but
the field expanded strongly after 1950. The mathematical—biophysical approach
remained mostly linear until the late 1970s, even though several nonlinear auditory
phenomena were well known.

The initial study of the linear cochlea is relevant because

• It gives a proper introduction to the mathematical and biophysical concepts that
are in use in the field

• Current insight in analysis of complex systems is largely based on tools from
linear signal analysis

• And finally, major developments started with the analysis of a linear cochlea.

In the mean time we have learned that linear cochleae only describe cases of severe
hearing loss, and that the healthy cochlea is strongly nonlinear. Those properties are
treated in Part II.



Chapter 1
Historical Introduction

Abstract After brief examples from Early Greek studies and from the Renaissance
of auditory research, developments during the nineteenth and the first half of the
twentieth centuries are addressed. This period covers the transition from careful
description to formal analysis, and provides the foundation of modern cochlear
mechanics, linking medical data to (bio)physical and mathematical concepts.

1.1 The Early Greeks

The history of anatomical research and hypotheses about the functioning of the
hearing system can be traced back at least as far as ancient Egypt. The Edwin
Smith Surgical Papyrus of 3,000–2,500 BCE includes descriptions of battle injuries
to temporal bones, and how they affected hearing. It is likely that the Egyptian
knowledge of the ear made its way to Greece as early as 1,000 BCE. The earliest
Greek texts on the subject, that we know of, are those of Empedocles, who was born
�500 BCE in Sicily.1

Unfortunately, only very few of the original texts of Empedocles have been
found, not including those on hearing. We only have the references to his works
made by others to try and piece together Empedocles’ theory on what was making
up the ear. The Doxographi Graeci is a compilation of quotations in ancient texts
attributed to various Greek philosophers and writers. It contains these fragments
quoting the work of Empedocles:

Hearing takes place by the impact of wind on the cartilage of the ear, which, [he says], is
hung up inside the ear so as to swing and be struck after the manner of a bell.

1Empedocles described the world and everything in it in terms of the four elements (he actually
never used the term elements, but the word roots).

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 1,
© Springer Science+Business Media, LLC 2012
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4 1 Historical Introduction

and

hearing is the result of noise coming from outside. For when (the air) is set in motion by a
sound, there is an echo within; for the hearing is as it were a bell echoing within, and the
ear [he calls] an offshoot of flesh 2 and the air when it is set in motion strikes on something
hard and makes an echo.

We can conclude from this that Empedocles’ idea about the process of hearing was
that the vibrations in the air somehow caused something inside the head to resonate,
and this resonance could be felt. Empedocles was a close friend of the Pythagoreans,
and is thought to be heavily influenced by their philosophy.3

Aristotle is most likely the first of the Greek scientists to recognize the cochlea
as the essential part of the hearing system. He gives the following description:

Of the ear one part is unnamed, the other part is called the “lobe”; and it is entirely
composed of gristle and flesh. The ear is constructed internally like the trumpet-shell, and
the innermost bone is like the ear itself, and into it at the end the sound makes its way, as
into the bottom of a jar. This receptacle does not communicate by any passage with the
brain, but does so with the palate, and a vein extends from the brain towards it.

In this text the reference to the trumpet shell appears to indicate the cochlea. The
description of the passage to the palate must refer to what we now know as the
Eustachian tube which ends in the middle ear. It is conceivable that Aristotle did not
differentiate the inner and middle ear, but is describing the two as one.

It is possible that Aristotle may have known what the inside of the mastoid
(temporal bone), in which both the middle and the inner ear are located, looked
like. The idea that the early Greek philosophers had little anatomical knowledge
is incorrect, as is shown by many detailed and highly accurate descriptions of other
internal organs in their works. However, the inaccessibility and high vulnerability of
the inner ear prevented detailed study with the tools that were available at the time.
The cochlea contains some of the most fragile and most sensitive tissues which
are encased in the hardest bone found in the human body. It is not surprising that
further insight into what made up our hearing organ would have to wait for the
development of new technologies. For centuries the best description of the hearing

2The term offshoot of flesh, as translated here, but given by Politzer as �o���o"�ı K�&� Ko�ı�o& has
given rise to the idea that Empedocles already recognized the inner structure of the inner ear and
the importance of this part to the process of hearing. The term �o���o"�ı K�& refers to �o��K�a&
meaning snail with a spiral shell, or to �o��� Ko& meaning screw.
3The Pythagoreans were a “cult” set up by the great mathematician Pythagoras. Unfortunately
Pythagoras himself did not believe in writing down any of his teachings, so we only have the texts
of some of his followers to get some ideas of the concepts of their philosophy. A central theme was
their belief that the world was truly mathematical. So not just was it possible to describe the world
using mathematics, but maths was the very fabric of nature. It is interesting to note that an important
subject to the Pythagoreans was music, and the harmonicity found in it. It is known that Pythagoras
studied sound, especially the relationship between the length of a string and its pitch. Alcmaeon, a
member of the Pythagorean colony and physician, is known to have dissected temporal bones and
came up with the theory that goats could breathe through their ears. This probably implies he had
found what is now known as the Eustachian tube, which connects the nasal cavity to the middle ear.
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process was that inside the mastoid was a void filled with air.4 Movement of air
outside—sound waves—would set the air inside this void in motion and that would
be sensed somehow.

The knowledge of hearing remained at this level until well into the Renaissance
period in Western Europe. Around 1,300 the first challenges to the Aristotlean view
of the world had started in the fields of mathematics and physics, and were creating
room for different views.

1.2 The Renaissance

In the sixteenth and seventeenth century the intricate accessibility of the inner ear no
longer stood in the way of progress. The Italian scientists began to dissect bodies and
study them meticulously. Andreas Vessalius (1514–1564) describes the malleus and
incus, and from the way he describes these we can infer that both were apparently
already known. In 1546, Vessalius’s student Philippus Ingrassia found the stapes,
the smallest bone in the human body (measuring only�mm across). Bartholomeus
Eustachius5 was the scientist who first described the cochlea, although he did not
name it. This was done later by Gabriel Falloppio.

In appreciating the contributions made by these early researchers of the ear, we
have to take into account, e.g., that the microscope was not invented until the early
1600s and there were no developed methods for fixation and staining of tissues.
Considering this it is remarkable what knowledge was collected in those days.6

In the seventeenth century the rest of Europe started to get involved in cochlear
anatomy, with Thomas Willis (1622–1675) positively identifying the cochlea as the
organ where sound was converted into a nerve signal. Antonio Valsalva (1666–
1723) discovered that the auditory nerve ended /started somewhere in the basilar
membrane, which is one of the structures separating the cochlea into channels over
its length. He proposed that the nerve endings were like strings of different lengths

4Aristotle claimed that the inner air was filled with “purified” air and that hearing problems were
due to contamination of this air.
5It is interesting to note that Eustachius discovered quite a few details about the cochlea, such as
the fact that the cochlea is divided into two channels—as we now know there are actually three,
and he was the first to describe the tensor tympani, which is part of the mechanism that protects the
cochlea from loud sounds. However, he did not discover the tube connecting the middle ear to the
nasal cavity which now bears his name. This connecting tube was already known in Greek times,
as we have seen in the texts from Aristotle.
6An interesting example is the experiment conducted by the anatomist P.F. Meckel. He set out
to demonstrate that Dominicus Cotunnius had been correct in claiming the cochlea was filled
with water, thereby implying that Aristotle’s assumption (filled with clean air) was false. For his
experiment Meckel froze an intact cadaver by leaving it outside on a very cold winter night, and
the next morning, when he broke open the ear, found it solidly packed with ice [see, e.g., Beyer
(1999), Lustig et al. (2003)].
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temporal bone

ear canal

TM /eardum

middle ear cavity 
(air filled)

Cochlea, a fluid filled
cavity in the temporal 
bone

auditory nerve

semi-circular canal

outer ear / 
external ear

ossicles (hammer, anvil, stirrup)

Eustachian tube

inner ear (fluid filled)

Fig. 1.1 Schematic drawing of the peripheral ear (current view). It is located within the very
hard temporal bone. This bone protrudes relatively far into the head. The ear canal and outer
ear provide acoustic coupling to the ear drum. The middle ear couples to the cochlea, but it also
connects to the environment through Eustachian tube and nasal cavity. This provides the average
pressure within the middle ear cavity. The net pressure resulting across the tympanic membrane, the
acoustic pressure, is transmitted to the cochlea fluid by the ossicles. The inner ear fluid is practically
incompressible; it slides back and force in response to the stimulus, and this requires connections
through oval window (stapes footplate) and round window—not indicated. The dashed–dotted line
indicates the beginning of the cochlear partition. One of the three semicircular canals is indicated
schematically as located on the top of the cochlear promontory or inner ear vestibule

stretching across the cochlea (Fig. 1.1). This laid the foundation for the later theories
of hearing of Duverney, Willis and later Helmholtz, which will be described in more
detail in Chap. 2.

1.2.1 Summarizing the Knowledge at 1800

At the end of the eighteenth century it was known that:

• Perceptible sound is a vibration of air which is channeled to the eardrum through
the ear canal.

• The middle ear delivers sound to the cochlea through the chain of middle ear
bones: malleus, incus and stapes, the first of which is connected to the ear drum,
the last to the cochlea.

• The cochlea is a cavity shaped as a trumpet shell in the temporal bone, the hardest
bone in the human body.

• The cochlea is divided over its length into separate channels, called scalae
vestibuli and scala tympani; the channels are separated by a structure called BM.

• Within the cochlea, somewhere near the BM, the transmitted vibration is
converted into a neural signal which exits the cochlea via the auditory nerve.
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INTERMEZZO: This book does not intend to present a scientific study of the
history of hearing. Only a few representative cases are presented. Several of
excellent treatises on the topic are available, some of which are now accessible
in electronic format. The three major categories of study material are (with
some subcategories):

1. books

• original studies, from single authors or groups
Aristotle: De Anima [Eng. transl. by J. A. Smith]

• historical review books
Lindsay (1972)7, Hunt (1978)

• developments after 1800
Beyer (1999)

2. parts or chapters of books
Rayleigh (1896)8, Wever (1949)9, Lustig et al. (2003)10, Finger (1994)11

3. (series of-) review articles
von Békésy and Rosenblith (1948), Gitter (1990a, 1990b, Hawkins and
Schacht: the series of 11 papers “Sketches of Otohistory” published
between 2004b and 2006. In 2008 this series was republished as a book,
under the same title.

1.3 The Period from 1800 to 1950

During the nineteenth century, scientists generally showed a broad interest, and
combinations of activities in arts—in particular music—, physical sciences, mathe-
matics, and medical sciences are frequently encountered.

A real breakthrough in the understanding of sound and hearing was caused by the
development of the Fourier-analysis for periodic signals (Fourier 1822). Although
presented as a tool for the analysis of temperature patterns, it was quickly picked
up by Ohm (1843), who proposed the application to sound as Ohm’s law: basically
stating that the ear can detect the spectral components of a periodic sound. The idea
caught on quickly and convinced most researchers in acoustics and hearing. There

7Chaps. 1–18: pre 1800; Chaps. 19–39: 1800–1900.
8post 1800.
9Chap. 1: pre 1800; Chaps. 2–5: 1800–1950.
10Chap. 1: 1800–1900.
11Chap. 8, all.
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was also opposition: Seebeck (well-known in physics from the Seebeck–effect)
proposed that the pitch12 of a periodic sound depends on the period (Seebeck 1841).
This led to a lively discussion in Poggendorfs Annalen.

THE MISSING FUNDAMENTAL Seebeck generated periodic click sounds, for
instance with a repetition interval of T D 5ms. The spectrum of such a sound
has a 200 Hz fundamental, and many harmonics of a slowly decaying strength
(depending on the shape of the click). Seebeck could formally suppress the
fundamental, by shifting every other click by 	T of say 1 ms, so that the
successive intervals became T C	T and T �	T . He noted that the pitch of
the signal did not change strongly (as long as 	T was small enough), but in
a direct comparison with the unaltered series revealed that a weak second
harmonic (corresponding to the interval 2T ) became audible. The octave
jump to 400 Hz was expected from Ohm’s law, but the unaltered �200 Hz
component was not. The experiment, although published, was not taken
very seriously and it took a century before Schouten (1938, 1940) carefully
repeated the experiments, and confirmed Seebeck’s observations. Claims that
the fundamental was generated by distortion could later be falsified. It was
clearly demonstrated that in case of frequency shifts the perceived pitch
did not follow the difference tone frequency, but some average “missing
fundamental” frequency (de Boer 1956; Schouten et al. 1962).

Further development of microscopes led to more detailed anatomical results, and
the developments in physics, in particular physical acoustics and electricity, led to
better insight in the functioning of the auditory system. Major contributions along
these lines have been provided by Von Békésy. The general increase in scientific
interest also led to new approaches in, and a significant expansion of hearing
research.

These developments are addressed in more detail in the following sections.

1.3.1 Development of Tools

Besides the mechanical tools that were used for development of surgical tools, as
tools for the controlled generation of acoustic stimuli, and high precision measuring
tools, also the optical techniques made considerable progress. Acoustics and optics
were understood in more detail, and that led to better tools. It is also important

12The auditory percept “pitch” denotes that subjective attribute of a sound that can be used to order
sounds on a scale from low to high. For tones with only one spectral component, i.e., for simple
tones, pitch depends primarily on the frequency of the component (ANSI S1 2005).
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to mention the development of the theory and experimental method of electricity
explicitly. This enabled the development of electrophysiology.

1.3.1.1 Light Microscopy

The light microscope had become available in the seventeenth century. Originally it
was a smart combination of two lenses—later more—, which led to a marked im-
provement of the optical resolution. Further development of physical optics led to re-
duction of optical aberrations, and additional improvements have been achieved up
to today, with advancement in lens production as well as in control of light sources.

1.3.1.2 Electron Microscopy

Electron microscopy became available in the 1930s. Both the transmission type
(TEM) and scanning type (SEM) electron microscopes were developed in Ger-
many during that period by Max Knoll. He moved to the Electrical Engineering
Department at the Princeton University in 1948, and returned to Munich (Technische
Hochschule) in 1956, from which position he retired in 1966.

The first prototype of a TEM was built by Max Knoll and Ernst Ruska in 1931,
and a resolution greater than achievable with light microscopy was obtained in 1933.
The first commercial TEM became available in 1939. During the course of this
development the same group also introduced the first SEM prototype. In 1935 they
obtained an image of silicon steel showing electron channeling contrast. The SEM
was further developed by several others, and the first appearance on the market came
a number of decades later in 1965.

The techniques found a quick application in auditory research, and the improved
resolution helped experimenters to develop new insights in anatomy and function of
the auditory system.

In 1986 Ruska was awarded with the Nobel Prize in Physics—with Gerd Binnig
and Heinrich Rohrer (for the scanning tunneling microscope)—for the development
of the electron microscope and of electron microscopy. He died in 1988.

1.3.2 Developments in Anatomy

As the Italians were the first to start anatomical research, it is only fair that one
of the greatest discoveries in cochlear anatomy should be made by one of their
countrymen. The marchese Alfonso Giacomo Gaspare Corti was the first to describe
the structure on the basilar membrane between scala media and scala tympani. This
structure holds the sensory cells which convert the mechanical energy into electrical
energy and make the initial neural encoding of sound. This complex of cells now
carries his name: the organ of Corti (abbreviated: OC).
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It was common for inquiring scientists to travel around between the European
universities or courts and to absorb and communicate knowledge. (Of course, budget
problems and scientific competition were also known.) Corti did his research in
Würzburg (Germany), he learned his craft in Vienna (Austria), picked up additional
skills in London and Paris, and was shown how to make his preparations in Utrecht
University (Netherlands). Finally, the instrument he used—the microscope—was
first developed in England and produced in Germany.

In 1851, just after publication of his famous paper “Recherches sur l’organe de
l’ouı̈e des mammifères,” describing his studies on over 200 cochleae (from cattle,
swine, sheep, cats, dogs, rabbits, moles, mice and man), Corti received word of his
father’s death. This forced him to return to Italy to divide his father’s legacy and, in
spite of many promises to do so, he never returned to the study of the ear, leaving
it to Otto Friedrich Deiters, Arthur Böttcher, Friedrich Matthias Claudius, Viktor
Hensen, and Magnus Gustav Retzius to identify and lend their names to the various
cell types in the organ of Corti [see, e.g., Wever (1949), Hawkins (2004a), for more
details on the life and works of Corti].

These investigators not only described the various cell types, they also performed
countless measurements quantifying the dimensions of various (sub)structures.
It was Hensen who wrote that the increase in BM width from the base to the apex
would probably be the cause of the frequency separation of tones in the cochlea,
following the initial idea of strings resonating posed by Valsalva. He also found
that the auditory nerve runs up to the hair cells, identifying them as the most likely
candidates for the conversion of the mechanical energy (movement of the cochlear
fluid) into electrical energy (the nerve signal). New techniques such as methylene
blue and silver staining exposed the innervations of the hair cells in greater detail.
Held found that one nerve fiber connects to multiple hair cells, and that one hair cell
is innervated by many nerve cells. Kolmer was the first to suggest (in 1926) that the
cochlea was not only innervated by afferent nerve fibers, leading the information of
sound up to the brain, but also by efferent fibers leading some sort of information
from higher brain regions back into the cochlea. This was confirmed by Rasmussen
who described the pathway of the olivocochlear bundle.

In 1831 Ernst Reissner found the membrane—now carrying his name—
separating the upper channel into two channels (scala vestibuli and scala media).
Guilbert Breschet (1784–1845) showed that scala media is filled with a different
fluid than the other two scalae: endolymph as opposed to perilymph, the difference
being the ionic content. He also found the helicotrema connecting scala vestibuli
and scala tympani at the far end—the apex—of the cochlea.

1.3.3 The Emergence of Auditory Neurophysiology

At the turn of the century the development of electric and electronic equipment
began to meet the requirements necessary for the measurement of electric responses
of the nerve.
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The first published paper on auditory nerve responses to sound (Buytendijk 1911)
in guinea pig and rabbit may have been missed originally by most colleagues. But
the publications by Forbes et al. (1927) in the American J. of Physiology, and a little
later by Wever and Bray (1930b) e.g., in Science and the PNAS, about two decades
later evoked a lively discussion. For example, Hallpike and Rawdon-Smith (1934)’s
paper started as follows:

In 1930, as is now well known, Wever and Bray [1930a,b] first described certain electrical
phenomena occurring in the trunk of the acoustic nerve during the reception of auditory
stimuli. This effect, which has since come to be known as the Wever and Bray phenomenon,
consists essentially of potentials alternating at a frequency accurately corresponding to that
of the stimulating sound. Thus, with suitable amplification, speech is clearly reproduced
and the voice of the speaker recognized. After excluding certain artifacts, Wever and Bray
satisfied themselves that the effect was a vital one, in that it was dependent upon the
functional integrity of the cochlea; and further, concluded that it was attributable to true
action potentials produced in the fibers of the auditory nerve.

The first electrodes were not suited for the recording of responses from single
nerve fibers, they picked up the combined electrical response from the nerve,
with a tip distance of a few mm. Whereas Buytendijk used a sensitive string-
galvanometer (sensitive down to �10 nA) and a photo camera, Wever and Bray
had better amplifiers and could use oscilloscopes and therefore had disposition of
more straightforward means of measuring currents and potentials.13 Initially there
was doubt that the measured potentials and currents represented nerve responses.
Derbyshire and Davis, e.g., first hypothesized that the responses showed recordings
which originated directly from the sensory hair cells and disputed the nerve source
interpretation (Derbyshire and Davis 1935).

Measurement techniques progressed with improved electronics, and the begin-
ning of the rise of computing power. In the 1940s Galambos and Davis (1943,
1944) published results from single auditory nerve fibers of the cat, using micro-
pipette electrodes. They reported response characteristics such as response areas
and inhibitory areas that set a standard for the decades to come. They also report
the adaptation of spike rate for a continuous stimulus, reaching a stable response in
“a few tenths of a second.” The summary of their 1943 paper ends with:

At constant frequency an increase in sound intensity causes an increase in rate of discharge
by the single fiber (Fig. 8). Most fibers reach a maximum of 450 discharges per second after
an intensity increase of about 30 db.

The frequency band capable of exciting a given fiber increases markedly as the intensity
level is raised (Fig. 5). At levels about 100 db above threshold tones as far away as 3 octaves
below and 1

2 octave above may be adequate.
The auditory-nerve fiber discharges in synchronism with a definite part of the stimulating

sound-wave cycle (Fig. 12).

13At this time the occurrence of aural combination tones (CTs) was also well known, but the origin
was not so clear (Wever and Bray 1938; Wever et al. 1940a). These studies (including Wever et al.
1940b) also used whole nerve electrical responses. The conclusion was that overtones are generated
“at a point beyond the stapes” and that CT generation may have a middle ear component, but that
the middle ear is not the sole seat of CT distortion, as proposed by Helmholtz.
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The results are held to support a place theory of hearing according to which pitch is a
function of where, and loudness a function of how much of, the BM is disturbed.

conclusions which appear to be quite up-to-date.14

Several of the studies mentioned above discuss the relevance of the findings for
the theory of hearing. In particular, the observation that temporal structures are
retained in neural responses up to a few kHz, has been proposed to be supportive
of the place theory for pitch perception. On the other hand, neural synchronization
also led to the Volley theory, with the interpretation that neural time coding would
allow central pitch recognition without a precise frequency map.

1.3.4 Studies of Auditory Function

Over the centuries, the link of anatomical data to auditory perception has led
several times to the hypothesis of a cochlear frequency-to-place map, although an
alternative hypothesis, viz. that sensory hair cells basically receive the complete
sound signal and the analysis occurs in the brain, persisted for a rather long time
(cf. Wever 1949). During the transition from the nineteenth to the twentieth century
the development on the European mainland was probably dominated by Hermann
Von Helmholtz. He was a German ENT specialist and a physicist, and author of the
influential book: Die Lehre von den Tonempfindungen, first published in 1863, which
was translated to: On the Sensation of Tones by A.J. Ellis. Helmholtz supported the
frequency-to-place map, and related the mechanism of the map to the systematical
change of the width of the basilar membrane.

Two years earlier he had described the function of the middle ear as a transformer
between the air outside the head and the fluid-filled cochlea. The difference in size
of the ear drum and the stapes footplate, the curvature of the ear drum and the
lever action of the ossicles, all combined to transform the sound waves in air (small
pressure variations, large volume displacements) into sound waves in fluid (large
pressure variations, small volume displacements).

Helmholtz based his description of the function of the cochlea largely on the
observations of Hensen, who had shown that the width of the basilar membrane
varied along the length of the cochlea. Combining this result with Ohm’s description
of sound as a combination of tones of different frequencies, led Helmholtz to
the view that the cochlea performed a sort of Fourier analysis of the incoming
sound waves. The physical process by which this Fourier analysis operated was
the resonance of BM fibers (across the membrane width) with different resonance
frequencies (varying with the lengths of the fibers). A sound wave would set all the
fibers of the BM in motion, but the ones which had resonance frequencies closest to
the frequencies present in the sound signal would respond maximally. This would
create a pattern over the length of the cochlea describing the frequency content of
the signal: the frequency map, or place coding.

14The dB had not yet made it to the standard abbreviation.
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In short, the theory of Helmholtz states that the BM fibers can be regarded
as strings, where the tension and the mass of the string cause it to resonate
at a certain frequency (see Sect. 8.5.1). Since the frequency of resonance of a
string is related to the string’s length, Helmholtz concluded that the variation
of the BM width—actually the variation in the length of the transverse BM
fibers—would lead to a systematic variation in the resonance frequency of
the fibers. A quantitative explanation and prediction of these properties is
necessary to evaluate the applicability to human (and in general: mammalian)
hearing. What are the string properties and how much will it vibrate for
frequencies close to and further away from the resonance frequency?

We start with simpler case: a mass attached to a spring. The string can
be “translated” to that problem. Assume a structure in which a certain
mass m (kg) is connected to a spring with a certain stiffness s (kg/s2).
The equation of motion for such a system driven by a sinusoidal force
F.t/ D F0 cos.! t/ is:

m
@2x

@t2
C d @x

@t
C sx D F0 cos.! t/ (1.1)

where d (kg/m) is a damping term, damping the oscillations, and x.t/ the
excitation or response to the driving force F.t/. It has a driving amplitude
F0 and (angular) frequency ! respectively. The solution to this equation is a
motion of the form:

x.t/ D F0

jZmj! sin.! t � 
/ (1.2)

where

Zm D d C i
h
!m � s

!

i
(1.3)

and


 D arctan
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1

d

�
!m � s

!

��
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The function Zm is called the mechanical impedance of the resonator (see
Sect. 8.3). The behavior of the resonator can be derived by considering this
function for different values of !.

It is clear that Zm is a complex function and that its size jZmj is minimal
when the imaginary part !m � s=! vanishes. This happens for the (angular)
frequency !0 D

p
s=m. This frequency is called the resonance frequency of

the resonator. At this frequency, the impedanceZm equals the damping d , and
the imaginary part is 0. For a lossless system (d D 0), the amplitude of the
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motion x.t/ would be infinity at resonance. For frequencies other than !0, the
amplitude behaves as 1=Œ1 � .!=!0/2�.

For d > 0 the amplitude of x.t/ depends on the frequency !, and shows
a maximum near the resonance frequency. When d is small, this maximum
occurs close to !0. For increasing d the maximum moves toward smaller
values of !. For ! D 0 the impedance Zm is undefined, but the product
jZmj!, which occurs in the denominator of (1.2) remains defined and the
response amplitude approaches F0=s. In order to determine whether a value
of d is small it needs to be compared to some reference. It seems natural
to compare the value of d to those of m and s and the combination

p
ms

has the correct dimension kg/s. The damping factor ı D d=
p

ms is used
to indicate whether d is relatively small or not, and therefore describes the
amplitude curve. A related, and widely used, way to describe the relative size
of the damping is by giving the so-called quality factor of the resonator:

Q3dB D
!0

	!
D
p

ms

d
D 1

ı
(1.5)

In this formula, 	! is the width of the amplitude curve. This width is
measured where the amplitude of the motion is 1=

p
2 times the peak value

of the amplitude curve. This definition is most commonly used for the quality
factorQ. Because a factor 1=

p
2 corresponds fairly closely to 3 dB, this value

is also referred to as Q3dB. In some cases, the width is measured at 1=
p
10

times the peak amplitude. In this case, the resulting quality factor is denoted
by Q10dB.

The frequency-to-place map is often characterized as a Place Theory. The
specific interpretation by Helmholtz is one of the subset of Resonance Theories,
which contained tuned elements, membrane resonance, or tube resonance. There
was also a number of Nonresonance or Wave Theories in the Place Theory category.
The opposing category—at the time—was the group of Frequency Theories either
with a nonanalytic (telephone) or analytic further specification. Or schematically:

Frequency-to-Place Map Theories around 1950

– Resonance Theories

� tuned elements
� membrane resonance
� tube resonance

– Frequency Theories

� analytic
� nonanalytic (e.g., telephone theory)

An excellent overview of these theories has been presented by Wever (1949).
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The alternatives to the Place Theory generally assumed traveling or standing
waves on the BM or even on Reissner’s membrane. In the standing wave theory,
the number of loops and/or nodes that would form on the BM is related to the
frequency of the signal and the total pattern of vibration of the organ of Corti would
be interpreted at some higher level in the brain. The Fourier analysis would thus not
take place in the cochlea but at some higher level. The hair cells would only serve
to encode the temporal signal (time coding).

Experimental support for the frequency mapping essential to the Place Theory
came from the experiments of Georg Von Békésy, in the late 1920s. After receiving
his doctorate in physics Von Békésy went to work for the Hungarian Telephone
Company and the University of Budapest. His first study concerned the effect of
nonlinear properties of iron in telephone receivers on the quality of reception. From
there, he turned to the study of the mechanics of the inner ear and developed
ingenious methods to observe the motion of the real basilar membrane, as well
as a sophisticated mechanical model of the cochlea which he used both for
demonstrations and for study.

Commenting on his first view of the organ of Corti, Von Békésy wrote:

I found the inner ear so beautiful under a stereoscopic microscope that I decided I would
just stay with that problem. It was the beauty and the pleasure of beauty that made me stick
to the ear.

His work on checking the telephone line quality for the Hungarian Telephone
company led him to look for the weakest part—in terms of reception quality—in
the system. After concluding it was the receiver, the next question was how much
it needed to be improved. After all, improving it beyond the perceptual limits of
human hearing was futile. This led Von Békésy to study the properties of the ear
drum and the middle ear and finally the inner ear.

Von Békésy decided to start with the study of a scale model of the human inner
ear, which he had to construct first. Unlike earlier attempts, Von Békésy was very
careful to properly scale the model, which means that he performed the necessary
scaling of all parameters, such as the density of the fluid. In his models he found
a behavior that he could not adjust to either of the two theories (von Helmholtz’s
bank of filters, and the standing wave model), but could not find any mistake in
his model. Thereupon, he decided to attempt something which had never been done
before: actually measure the motion of the BM in response to sound in an (almost)
intact cochlea. In his 1942 paper,15 he describes carefully shaving off the material
of the temporal bone of cadavers, and visualizing the basilar membrane with a
microscope. By using very high sound pressure levels (over 120 dB SPL) he was
able to elicit a motion of the membrane large enough to be measurable. The motion
patterns he described on the one hand supported the place theory of Helmholtz,
while simultaneously contradicting the resonator filterbank model.

15Von Békésy’s papers—English translations—are available in Experiments in Hearing, published
in 1960.
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Von Békésy observed and described a pattern of wave motion that started off
with a very small amplitude at the stapes. While the amplitude increased as the wave
moved along the length of the basilar membrane, its traveling speed decreased, until
the wave almost came to a halt, showed a maximum amplitude and then quickly
decreased in size and vanished before reaching the helicotrema.16 The location
where the wave reached its maximum clearly depended on the stimulus frequency.
High frequencies resulted in maxima near the stapes, low frequencies had their
maxima nearer the helicotrema, with a monotonic mapping of frequency to place
over the cochlear length. This mapping seemed to follow a roughly logarithmic
trend, in accordance with the logarithmic frequency scale, or octave scale known
from music. Such a mapping was in full support of the place coding of frequency
following from Helmholtz’s resonator filterbank theory. However, the wave nature
of the motion pattern was in clear contradiction with this. The resonators in
Helmholtz’s filterbank react to the sound pressure stimulus independently, and a
single oscillator can at most be 180ı out of phase with the stimulus.17 The wave
behavior described by Von Békésy implies that moving away from the stapes the
phase of the BM motion shows an increasing phase lag relative to the stimulus. This
phase lag accumulated to at least 1,080ı as three full cycles of the wave could be
seen on the BM.

The term “traveling wave” was proposed by Von Békésy himself to describe
he observations, and it has been a cause of controversy ever since. Right at the
publication of the English version of the manuscript objections were made against
the use of the term, as it suggested that a wave was traveling along the BM. For
instance, the experiments of Held and Kleinknecht had shown that lesions in the
basilar membrane only destroyed hearing at the frequencies corresponding to the
lesions, implying that the BM was in motion beyond the lesion. This would be
impossible if the wave traveled along the membrane (Held and Kleinknecht 1927).
Instead, it was argued, the motion of the basilar membrane actually was more like
a surface wave, reflecting motion of the fluid in the cochlear channels. Von Békésy
argued that he did not specify in which medium the traveling was done, and that
he used the term to describe the appearance of the motion pattern. So the name
persisted, as did the controversy. In 1954 Wever, Lawrence and Von Békésy jointly
agreed that the patterns of motion described by Von Békésy

can be referred to as . . . a traveling wave, provided that . . . nothing is implied about the
underlying causes (i.e. how any given segment of the BM gets the energy that makes it
vibrate)

Presently Wever and Lawrence’s note seems to be forgotten.

16Actually, Von Békésy could not visualize the entire cochlear length and he filled in the patterns
near the stapes and near the helicotrema based on the motion he observed in his models.
17Over the frequency range from ! D 0 to ! ! 1 the phase in the response of s single oscillator
drops by 180ı (or �). The phase range depends on the precise input and output properties. In the
given example, at ! D 0 the phase starts with a 90ı lead, reaching 0 at ! D !0 and a 90ı lag if
! ! 1.
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Fig. 1.2 Wegel and Lane’s Fig. 7b (1924), the first transmission line model of the cochlea. C1 and
C 0

1 represent elasticity at OW and RW; Li and L0

i represent fluid mass coupling in scala vestibuli
and tympani; li and Ci mass and elasticity parameters of the BM and coupled structures, and
the ammeters Ai represent the connection to nerve terminals. Reprinted figure with permission
from RL Wegel and CE Lane, Physical Review 23, p.266, 1924. Copyright 1924 by the American
Physical Society

In 1962 Von Békésy was awarded the Nobel Prize in physiology and medicine for
his work.

Another important development that had considerable impact on the study of
hearing—as well as on the study of other sensory modalities—was the quantification
of experimental psychology through the introduction of psychophysical methods.
The definition of subjective quantities along with the development of subjective
scales opened the possibility to quantify subjective measures as pitch and loudness
and relate those to the physical parameters frequency and amplitude or sound
pressure level (e.g. Stevens and Davis 1936; Stevens et al. 1937; Stevens 1951).
The methods developed by this group, at the time centered at Harvard, provided a
solid basis for reproducible measurements of absolute and differential thresholds.

During the same period (the 1920s), the interest in acoustics and hearing
increased in industry (telephone companies), as well as in the academic institutions:
academic hospitals, schools of science, and schools of engineering. It also led to
the establishment of new professional societies, where people from these different
backgrounds met. The Acoustical Society of America (ASA) was founded in 1929,
and the first volume of its journal appeared in the same year.

One of the key contributors to hearing was Harvey Fletcher (1884–1981). After
an academic education in physics, and a brief postdoctoral period in his home state
Utah, he took a position at the Western Electric Company in New York. From this
laboratory Wegel and Lane (1924) had just presented their tone-on-tone masking
results,18 and “its probable relation to the dynamics of the inner ear.” Figure 7b
from their paper (reprinted in Fig. 1.2) can be considered the precursor of the later

18These tone-on-tone masking data are discussed in Chap. 4, Sect. 4.2.1, Fig. 4.3.
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transmission line models. In that environment, Fletcher developed a now famous
audiometer and was also involved in the development of the early electronic hearing
aids. In the mid-1920s, when the Bell Telephone Laboratories where founded, he
was appointed director of auditory research (1928), and by 1935 he was promoted
to director of the Physical Research. His contributions to speech and hearing, many
of which came though the ASA, have been summarized and reviewed by Jont
B. Allen (1996).

Laboratories of the larger telephone—and electronics companies in Europe, such
as Philips and Siemens—joined the active interest in hearing research, as reflected
in contributions by Schouten (Philips) in his studies on the “Residue” (e.g., 1938,
1940), and by Trendelenburg (Siemens) in his studies on sound perception, sound
analysis, and sound transmission (1935).
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Chapter 2
Developments from 1950 to 1980

Abstract This chapter presents some details of technical and experimental progress
that was made during the period 1950–1980

2.1 Developments of Techniques and Tools for Vibration
Measurements

2.1.1 Electronics

The advancement of electronic equipment in the 1950–1980 period has been
overwhelming. Initially the improvement focused primarily on analogue equip-
ment. Signal generators as well as meters and analyzers were developed to more
demanding specifications, aiming at better controllable and reproducible experi-
ments. For instance, a high quality oscillator which tended to be somewhat sensitive
to temperature variation—and therefore providing a slightly shifting frequency
during warm-up—produced very little distortion or background noise. In contrast,
the first digital signal generator produced extremely stable frequencies, but it took
decades of additional developments to achieve the same precision in amplitude and
signal purity as had been available in the analogue equipment.

Analogue set-ups could already be automated using electronic control techniques
and analogue computing equipment. However, analogue control techniques began
to lose impact in the late 1960s and 1970s, when digital control started to take over.

High quality equipment became available in laboratories for biophysical, electro-
physiological, and psychophysical experiments, often with specialized fine-tuning
for specific tasks. The benefit of these developments was not limited to vibration
measurement. It was essential for all branches of hearing research. This also
applies to laboratory computers, which appeared around 1970, and rapidly became
indispensable, slightly after the step from slide rules to calculators.

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 2,
© Springer Science+Business Media, LLC 2012
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Miniaturization of electronic equipment started gradually with the invention and
application of transistors. These replaced vacuum tubes almost completely over a
short period, and further miniaturization of chips—including electrode arrays—has
not yet stopped.

2.1.2 The Mössbauer Technique

Innovative as the experiments of Von Békésy were, the excitation patterns he had
obtained were far too wide to be related to the frequency tuning observed in
psychophysics. In order to make the motion of the BM visible, Von Békésy had
to apply a driving force to the stapes which would correspond to sound levels
of up to 150 dB SPL, well above the pain threshold at approximately 120 dB. It
was therefore conceivable that his measurements destroyed part of the mechanical
processes which he attempted to measure. Moreover, the measurements were
performed on cadaver cochleae. If the mechanics of the intact cochlea would depend
on, e.g., blood supply this also would have been affected in his measurements.
Extrapolating his excitation profiles to lower levels and ultimately to the threshold
of hearing convinced Von Békésy and others that something was missing, because
the results indicated membrane motions less than 1 pm at the threshold of hearing
(at�20�Pa).

For the explanation of the problem of frequency selectivity, Von Békésy started
investigating the neural mechanisms of lateral inhibition, known from neurons in
the visual system. A different solution, which was proposed by Gold in 1948, might
solve both the problem of the frequency selectivity and the higher motion amplitudes
needed at the hearing threshold. With a background in electrical acoustics, Gold
proposed an active amplification mechanism which would counteract the damping
at low levels. He even suggested that such an amplification mechanism might
suffer from slight mistuning which would lead to a feedback loop producing sound
spontaneously [see, however, footnote 10 in Sect. 3.4 and comments in Sect. 7.3].

In 1967 another new technology was applied to hearing research by Johnstone
and Boyle: the Mössbauer technique. With this technique, data could be obtained at
significantly lower sound levels, viz. within the normal range of hearing–although,
at its upper end.

In 1957 Mössbauer discovered resonant and recoil-free emission and absorp-
tion of gamma rays in solids. This causes very narrow line widths in the
generated gamma spectrum and allows the measurement of a Doppler effect
when the source and detector move relative to one another. A small source
emitting narrow band gamma radiation is placed on the cochlear partition and
a detector is tuned to the radiated energy when the source is at rest. With this
configuration, the rate of detected photons becomes a function of the velocity
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of the source relative to the detector. Unfortunately, this function shows strong
compressive nonlinear behavior. This limits undistorted measurements of
velocities to a limited dynamic range.

Applying the technique to the cochlea is not straightforward. The gamma ray
sources have to be prepared and carefully placed in an intact, living cochlea, and
the measurement system must be accurately calibrated. But it allows much smaller
motions to be measured than can be achieved by light microscopy. Rhode perfected
the technique and in 1971 he was able to show measurements from cochleae of 20
squirrel monkeys at stimulus levels from 70 dB to 100 dB SPL. These measurements
were the first to show that the cochlea clearly behaved nonlinearly at these, still
relatively high, levels.

From 1971 on, several researchers started measuring the vibrations of the
cochlear partition using the Mössbauer technique, showing the motion of the
cochlear partition to be a nonlinear function of stimulus level. At first, attempts
to reproduce the measured nonlinearity, even by Rhode himself, failed to reproduce
the data. In hindsight, this was probably due to the vulnerability of the nonlinearity,
which, as we know now, rapidly decreases after death of the animal or any damage
to the structure of the cochlea.

2.1.3 Optical Techniques: Application of Lasers

The possibility to use (phase-) coherent light sources allowed a big step in the
improvement of optical resolution, both for still and moving pictures. The spatial
resolution was no longer limited to the order of magnitude of the wavelength of the
source, but became dependent on the accuracy with which the phase of the light
wave could be controlled and measured.

The principle of interference methods was recognized at the end of the 1950s, and
patented by Minsky in 1961, but application of laser interferometry and confocal
laser scanning techniques in biophysical experiments had to wait until the 1990s.

In laser interferometry, a laser bundle is split into two coherent beams. One
beam—the reference beam—is sent to a detector as directly as possible. The
other is focused on a moving reflector, the target, and the reflected light is
sent to the detector. By studying the pattern created by the interference of
the reference beam and the reflected beam, the velocity of the target can
be deduced. Applications to cochlear and lateral line hair cell research were
developed adjacently by Khanna (1986); Khanna et al. (1986) and van Netten
(1988).
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2.1.4 Pressure Measurement

Two lines of development of pressure measurements are important for cochlear
mechanics (CMs). The first involves the outer and middle ear, the second the
cochlea.

Middle ear pressure measurements are measurements of acoustic pressure (in air)
within the middle ear cavity. The employed microphones require proper coupling
to the middle ear structure. Basically, they are specializations of normal audio-
equipment (e.g., Puria et al. 1997). The most accurate microphones tend to be of
the condensor type. They have an impressive dynamical ranges, and a rather wide
spectral sensitivity. Both the low-level boundary and the frequency characteristic
improve with increasing microphone size. However, over the period 1950–1980
the common diameter of high-quality microphones reduced from 1 to 1

4
00 without

significant reduction of quality.
The intracochlear pressure is a basic experimental variable in cochlear me-

chanics, but experimental accessibility is demanding. Results of reliable pressure
measurements within the (cat) cochlear were first presented by Nedzelnitsky (1974,
1980). The measurements were difficult. Within the scala vestibuli (SV), data could
be obtained over a 40–105 dB SPL range (measured at the tympanic membrane); for
the scala tympani (ST), this range reduced to 75–105 dB SPL. The experimental
difficulty is probably one of the reasons that the method did not become very
popular, although it reappears from time to time, with slightly improved techniques.
Dancer and Franke presented guinea pig results in 1980. Like Nedzelnitsky, they
used a fluid filled thin probe connected to a sensitive sensor, in this case a
piezoresistive transducer. The outer tip diameter was 0.25–0.35 mm.

Pressure measurements are important components of reliable power flow mea-
surements, which require the independent measurement of, e.g., local pressure and
local volume velocity. The majority of techniques in current use focuses success-
fully on velocity measurements, and associated pressure data are usually lacking.
They might be estimated on the basis of a local impedance, but that assumes a
sufficiently valid linear analysis and associated data. The independent measurement
is more reliable. However, it also runs into the problem of measurements at the edge
of what is fundamentally possible, viz. the fundamental uncertainty principle. In the
present case the product�p�U is bounded (p D local pressure,U D local volume
velocity). But there is also uncertainty along the time dimension: energy and power
are not instantaneous quantities, but they imply averaging across some time window.
The points are addressed in more detail in Sect. 5.1.3.1.

2.1.5 Development of Computing Power

Around 1950 the slide rule and computation tables were still very much in use for
the analysis of numerical problems. These provided the only computation option
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for cases where the analytic approach or approximation was not feasible. Computer
centers started to develop, both in industrial and academic environments. Initially,
however, these were primarily tied to (applied) mathematics departments. It took
more than a decade before lab computers became available and another before
they became powerful enough to gradually become indispensable. Among the first
minicomputers used for data processing are the TX-0 and the LINC at MIT (e.g.,
Kiang et al. (1965), Sachs and Kiang (1968), and Goblick and Pfeiffer (1969)),
predecessors of the Digital Equipment Corporation (DEC) PDP-line. The PDP-1
was produced in 1963, and in 1965 the PDP-8 systems became one of the first
successful minicomputers. Around 1970 many PDP-4 and PDP-8 systems were used
in many auditory research laboratories. There was some competition from systems
from Honeywell (DDP), and Data General (Nova, Eclipse). Personally I have been
interested in this development using minicomputers since the early 1970s for simple
modeling (DDP, DEC, and Data General).

To conclude the period covered in this chapter: around 1980, the use of
minicomputers in auditory research labs had become common. They were employed
for experiment control, data processing, and simple modeling. It took another 15
years before these were replaced by still rather expensive workstations, and then by
the gradually more powerful, and economical, modern laptops and workstations.

At the same time, another line of computing power virtually disappeared. Based
on the properties of op-amps (operational amplifiers), economical analog computers
were developed and applied in signal analysis and control theory. The advantage of
these setups is that they operate using continuous time (no time sampling). However,
the amplitude range has natural upper and lower bounds, determined by power
supply and internal noise, respectively. Second order differential equations, as used
throughout this book, can be represented by a three op-amp circuit. (The interested
student should be able to find the relevant literature in electrical engineering
textbooks as referenced in the 2005 review paper by Lundberg).

2.2 Anatomical and Physiological Progress

2.2.1 Cochlea: Application of Electron Microscopy

In 1955 the TEM (see Sect. 1.3.1.2) was first introduced into the field of otology
(the study of the anatomy and physiology of the ear) by Engström. It meant a
marked improvement of the amount of detail that could be observed. Studies by,
e.g., Spoendlin and Flock now showed the structure of the hair bundles on top of
the hair cells and showed these to contain actin, leading to their official name of
stereovilli (from the Greek stereos D stiff and villi as the official term for actin-
filaments attached to a cell). Kimura showed in 1965 that the longest outer hair cell
stereovilli are firmly connected to the tectorial membrane by showing the imprints
left on the underside of the TM. The TEM technique operates on thin slices of tissue,
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and the high optical sensitivity of this microscope implies that it is very sensitive to
the slice preparation techniques. These have been improved and (semi-) automated
over time.

In 1969 the scanning electron microscope was used by Lim for a detailed study
of the structure of the organ of Corti (e.g., Lim and Melnick 1971). The greater
depth of view of the SEM pictures allowed a good representation of its complicated
3-dimensional structure. Although SEM works on surfaces instead of on slices, the
surfaces needed are too small to allow access in intact preparations, but structure
within a preparation can be conserved much better than for TEM. On the other
hand, in order to receive significant reflection from the surface, this has to reflect
electron beams, which requires proper coating of the surface. In other words, the
natural surface is potentially distorted both by properties of the coating, and by the
electron beam.

Nevertheless, both TEM and SEM have provided marvelous images of the static
structure.

2.2.2 Outer Hair Cells

One of the benefits of the introduction of EM into the lab was that they provided
convincing evidence that both inner and outer hair cells are directionally sensitive
(Flock et al. 1962; Engström et al. 1962). They confirmed that the structure of
the hair bundle, and its orientation are relevant, and Engström et al. reported that
mammalian cochlear hair cells no longer have a kinocillium but only a remaining
basal body.

Flock et al. confirmed that the hair bundle structure and the location of the
basal body of the kinocillium indicate the directional sensitivity. This was found for
guinea pig OHCs, and for vestibular hair cells. Up to 1956 microphonic potential
data from lateral line had been interpreted as indicators of bi-directional sensitivity
of cupular hair cells (e.g., Kuiper 1956), but now that hypothesis was replaced
by the notion that two sub-populations with opposite orientation can account for
the microphonic data—as long as there is a nonlinear stimulus–response relation,
because otherwise the microphonic response would disappear. These ideas were
confirmed and accepted almost immediately.

Up to 1970 the difference in function between IHCs and OHCs remained a matter
op speculation. The morphological differences had been established convincingly,
and also the results of the first extensive studies of the afferent (and also the efferent)
innervation had been presented (Spoendlin 1970). At the time there seemed to be
no relevant role for the OHCs, in particular because of the distribution of afferent
nerve fibers: Spoendlin estimated that at least 90% of the approximately 50.000
fibers innervate IHC and that 5–10% might innervate OHCs. At first, this was a
matter of serious dispute (e.g., Eldredge 1967), but later studies confirmed the basic
distinction and disproved the objections.
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During the 1970s and 1980s, it became clear that there was a correlation
between HC-damage caused by noise exposure and auditory nerve response. More
in particular: the amount of damage depended on exposure level and duration, and
damage started at the OHCs, beginning at the outer row, and finally reaches IHCs.
As long as IHCs are (almost) intact, the auditory nerve fibers do give a response, but
the tip of the tuning curve deteriorates with increasing damage level. IHC damage,
finally, leads to deterioration of the cell and of the nerve fibers. Active nerve fiber
labeling techniques have been used to confirm the nerve fiber—IHC connections
(e.g., Liberman 1984; Liberman and Dodds 1984a,b; Liberman and Kiang 1984).

This conclusion was reached at the time that the source(s) of cochlear nonlin-
earity and a cochlear amplifier were still unknown. Now the pieces of the puzzle
fell into place, and the role of intact OHCs appeared to become clear, or at least
to possibly fill the gap. Detailed study of the OHC cell body indicates that its
cytoskeleton is involved in electromotile responses of the cell (e.g., Santos-Sacchi
1992; Kalinec et al. 1992; Frank et al. 1999). Although this tells us in what direction
progress can be made, it has not yet provided answers to all open questions.

2.2.3 Auditory Nerve and Beyond

Progress in auditory neurophysiology over the 1950–1980 period was also im-
pressive. The basic techniques had just started (see Chap. 1), but biophysical
understanding of the basics of the neural action potentials is attributed to Hodgkin
et al. (1952); Hodgkin and Huxley (1952b,a,c) and did not develop before the early
1950s.

The primary auditory nerve fibers can be considered the output channels of the
cochlea, and in this view the nerve response is the relevant output response of the
cochlear system. However, the nerve response is not a simple analogue response,
but a spike (Dneural action potential) train, and the relation between stimulus
parameters and response characteristics is not trivial. Although the response remains
a deterministic, causal process, it becomes complicated enough to be characterized
more efficiently in stochastic terms. Details of the transform of the continuous
stimulus to discrete neural response can be avoided by using threshold detection
techniques and constant response techniques. With the threshold technique, which
requires the detection of a signal response in comparison to the background noise
(spontaneous activity) it was possible to measure tuning curves–band-filter transfer
functions—of single auditory nerve fibers (e.g., Kiang et al. 1965). It was imme-
diately clear that the results were much more in accordance with psychophysical
tuning than with the BM tuning observed by Von Békésy. The same group also
measured a large set of click responses, using positive and negative clicks, termed
condensations click with inward stapes motion and rarefaction for the opposite.
The Post Stimulus Time Histograms (PSTH) in response to clicks show a response
profile that is equivalent to a half-wave rectified impulse response; click potential
reversal evokes the other half-wave rectified part.
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Response strength increases with stimulus strength, but saturates at some spike
rate. The response area, used as a term for the CP range innervated by responding
nerve fibers, also increases with level. In other words, as the level increases,
the number of responding nerve fibers increases. This might seem a solution
to the limitation caused by the saturation of the responses in single fibers, but,
unfortunately, this only works for narrow band signals. The saturation properties
are not analyzed in detail; they are addressed briefly in Sect. 7.1.1.

At the same time, other groups were studying time domain properties of the
neural responses: in particular, the group of Rose and Hind focused on questions
of waveform representation in the precise timing of the spikes. They found—
for sufficiently low frequencies—a good synchronization to periodic stimulus
properties. For a single tone, the response follows the half-wave rectified sine
wave, both in synchronized period histograms (PSTH) and in interspike interval
histograms (ISI) (e.g., Rose et al. 1967).

But besides the interest in these linear properties, their was also increasing
interest in aspects that appeared to be in conflict with a linear interpretation. Without
aiming to be complete, we refer the broad interests in:

• Studies of 2-tone suppression, apparently a nonlinear 2-tone interaction rather
than an adapting feedback sharpening process (e.g., Nomoto et al. 1964; Sachs
and Kiang 1968; Hind et al. 1970; Arthur et al. 1971; Abbas and Sachs 1976);

• CT phenomena, where auditory nerve data gave the first strong indication that
the origin of the phenomenon had mechanical origin (i.e., prior to the nerve) in
the cochlea (e.g., Goldstein and Kiang 1968; Dallos 1969; Smoorenburg et al.
1976);

• Changes in shape of tuning curves and excitation patterns with level (e.g.,
Goblick and Pfeiffer 1969; Anderson et al. 1971; Kiang and Moxon 1974).

More limitations of the linear cochlea are listed in the next chapter in Sect. 3.8.
They are discussed in Chap. 4.

2.3 Auditory Perception

Auditory perception involves the entire auditory system. Here we focus on some
specific topics, which traditionally have been assumed to depend largely on primary
auditory system properties.

Firstly, this concerns studies of temporal and spectral sensitivity and selectivity,
such as the relation between critical bands and effective bandwidths of tuning
curves, between auditory masking patterns and cochlear excitation patterns, and the
time–frequency uncertainty relation �f�t � 1 in relation to sharpness of tuning
(Q3dB) and time resolution.

Although the tools and theories largely originate from linear systems analysis,
it had been clear from the beginning of masking studies that the data showed
unmistakable nonlinear effects. Wegel and Lane’s classical study clearly showed
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that the growth of masking with masker level is nonlinear, especially if probe
frequency and masker frequency are different (Wegel and Lane 1924). Moreover,
there was a difference in the masking behavior above and below the masker
frequency. In short, the masking pattern broadens significantly with increasing
masker level, in particular on the hf-side of the masker.

The shape of the masking pattern of a fixed, narrow band masker has the charac-
teristics of a band-filter. Its bandwidth became subject to several discussions. Several
definitions are used, and sometimes not clearly separated: the Q3dB and Q10dB
are defined as the ratio of the center frequency and the bandwidth determined at,
respectively, 3 dB and 10 dB below the peak; the ERB—the equivalent rectangular
bandwidth—is the width of the rectangular filter covering the same spectral areaR
H.f / df , using the same peak level.
The critical band, CB, was introduced as by Fletcher (1940) a subjective effective

bandwidth. It was introduced as the maximum bandwidth of a narrow band of noise
over which all noise power integrates when masking a tone. Later, it played an
important role in loudness computations (Zwicker). Some controversy remained
between European (CCanada) and US laboratories about the width of the CB, where
a difference by a factor of about 2.5 remains (Swets et al. 1962). The greater CB
made it to a standard for loudness computation (ISO R 532, 1975 [to be revised
status], in the US recently replaced by ANSI S3.4-2005).

Another line with a historical basis was picked up again in the 1960s, and
concerns the study of aural CTs (e.g., Plomp 1965; Goldstein 1967). Since the
description of the effect by the Italian violinist Tartini (1692–1770) in 1754—
although von Helmholtz (1863, Chap. VII) mentions that the earlier inventor (1745)
was the German organist Sorge—the phenomenon of the perception of combination
tones had been known in the musical environment. Both Sorge and Tartini reported
CTs at frequencies below the primaries or differential tones, Helmholtz also claims
to have perceived summational tones.

Meanwhile the perception of the lf intermodulation frequencies (i.e., fCT D
mf1 ˙ nf2, where f1 and f2 are the primary components, fCT � f1 � f2) has
been well documented and quantified. A difference has sometimes been reported
and claimed between even-order and odd order (m C n D even or odd) CTs. The
difference tone f2 � f1 is of the even-order type, the most common 2f1� f2 is odd.
Unfortunately, the latter is also often called a cubic difference tone, because a cubic
nonlinearity can generate this type of distortion component. Hence the suggestion
that there is a cubic nonlinearity in the system. However, there is ample evidence
that the nonlinearity cannot be cubic; in fact it appears to be much closer to a cubic
root, or a power of 1/3 rather than 3 (e.g., Smoorenburg 1972). The perception of
hf intermodulation products or overtones has not been confirmed. Aural CTs are
generated only if the primary components are within a certain proximity. The effect
is optimum at a primary frequency ratio of about 6/5.

A different line of research addressed psychophysical 2-tone suppression, which
appears to be related to neurophysiological 2-tone suppression. This phenomenon
was studied extensively during the 1970s. One of the breakthroughs was the
introduction of the “pulsation threshold” technique by Houtgast (1972). The basic
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result, similar in psychoacoustics and in neurophysiology, is that apparently a strong
enough tone can not only mask a tone, or generate a CT, but can also suppress the
response to an adjacent (in frequency) simultaneously presented tone.
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Chapter 3
Emerging Cochlear Mechanics

Abstract Cochlear mechanics is a field that relies strongly on fluid mechan-
ics, linear and nonlinear signal processing, and additional mathematical tools.
This is applied to a biological structure. A selection of useful—and possibly
superfluous—prerequisites is presented in Appendix 8. Throughout, terminology
and unit definitions follow the ANSI (2005) standard acoustical terminology.

3.1 1-D Cochlea, Long Wave vs. Short Wave

Although the notion of CMs was by no means new, the impact of a number of
papers presented at the Speech Communication Conference at M.I.T. (May 31–June
3, 1950), plus the paper by Peterson and Bogert that appeared earlier that year, laid
the foundation for modern CMs. The conference brought the latest experimental
results together, from psychophysics to neurophysiology, and from signal analysis
to speech communication proper. The Proceedings appeared in the November issue
(# 6) of the Journal of the Acoustical Society of that year. Of special interest for CMs
are the papers by Petersen and Bogert’s in issue # 3, and by Ranke and Zwislocki,
both in # 6. All three were well aware of Von Békésy’s results, and aimed to
optimally incorporate these results in their models.

Von Békésy, Ranke and Zwislocki all had been in the field for quite some
time. They started their research on the European mainland around 1930. Many
of their initial publications, which contain important details, appeared in German in
European journals. The 1950 papers by Ranke and Zwislocki are reviews of their
previous work, and remain primarily descriptive, whereas the more recent study by
Petersen and Bogert goes into detail. Although Ranke and Zwislocki describe a very
similar objective, their basic assumptions start to deviate almost from the beginning,
and they dispute each other’s hypotheses rather unmistakably.

We start with the points on which there was good agreement. All three papers
start with a 3-D cochlear structure. This structure consists of fluid-filled ducts within
the temporal bones. The auditory nerve is the output channel of the cochlea. It
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carries a neural code of the cochlear response to the brain. Fluid moves in 3-D ducts,
but its input stems from a 1-D stapes motion (at least almost 1-D at levels below
� 80 dB). There is also general agreement about boundary conditions at stapes,
round window, and helicotrema, and about the irrelevance (negligibleness) of the
curvature of the cochlea for the mechanical behavior.

Now we arrive at the intellectual bifurcation: Zwislocki assumes, and defends,
that the resulting acoustic wave in the cochlear fluid is a plain wave, moving
in the longitudinal direction, because its wavelength is always large compared
to the cochlear cross-sectional sizes (height and width, or radius of the ducts).
If this is true, then it would fulfill a sufficient condition for the plain wave
hypothesis. Peterson and Bogert follow the same practical line and also select the
1-D approximation for a plain wave within the ducts, but they leave more room for
modification, in particular at and beyond the point of resonance, where the wave
speed decreases noticeably, which implies a similar decrease of the wavelength
(f D c=�).

Ranke, on the other hand, considered the whole duct as a shallow water
case where the water is covered by the cochlear partition that has very different
parameters than the fluid. The fluid itself being practically incompressible, moves in
the direction of the partition, and that gives an effect similar to shallow water waves.
The classical analysis of surface waves in both deep shallow waters, however, had
been carried out on the more common water–air interface (Lamb 1895 Chap. 19,
and Rayleigh 1896 Sect. 353) and the effect of the fluid motion in one duct on the
motion in another duct, through the cochlear partition interface, is quite different
from the effects of the water–air surface tension. Hence, the direct comparison might
have been misleading, but the consideration that the fluid motion near the point of
maximum response at the partition has slowed down significantly, and, thus, its
wavelength must have decreased accordingly, remains highly relevant: it invalidates
the common long-wave assumption! This issue has been brought up again by Siebert
(1974) and by Lighthill (1981), and several investigators thereafter.

A general consequence of the above consideration is that a 1-D approximation
of both long wave and short wave analysis should be considered a “contradiction
in terminis.” For the long wave, approximation problems arise near resonance
where the resulting cochlear partition response requires a transpartition behavior,
and for the short wave, which would allow this transpartition effect, the problem
arises at the basal end, where the shallow water approach is too extreme.

3.2 Mechanical Properties of the Cochlear Structure
and the System Equations

Cochlear mechanics starts with a specification of the relevant fluid mechanics
parameters and the mechanical structure parameters of the cochlea. This regards
the cochlear fluids, the cochlear shape, and properties of the moving structures.
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Fig. 3.1 Box-model of the 3-D cochlea (partly transparent). The scala media is embedded within
the cochlear partition. The width of the basilar membrane is not indicated. Abbreviations o.w. and
r.w. represent the oval window and round window. The box is oriented in a Cartesian coordinate
system: length ) x, width ) y, and height ) z. The stiffness s of the partition is supposed to
depend on longitudinal position x: s D s.x/

In practice, several simplifying assumptions are made in order to make the system
mathematically tractable. A major simplification that has been used in all first stud-
ies [and remains to be used frequently] is the linear approximation of the system.
It comes with the very useful consequence that, insofar as this approximation is
correct, all tools from linear system analysis can be applied without any loss of
information. Therefore, the cochlear response can be analyzed using the stapedial
motion as the input parameter. The outer and middle ear interfaces can be treated as
linear black boxes which contain the correct filter–transformer information. It also
implies that it is not essential which of the stapes variables: deflection, volume
deflection, velocity, or volume velocity is employed, because all of these are simply
related. The stapedial volume velocityUst, which is taken positive when the velocity
is inward (i.e., in the positive x-direction), will be employed most frequently.

The acoustic parameters of the cochlear fluid are such that for almost the
entire frequency range the wavelength is large compared to the cochlea dimensions
(see Sect. 3.1, and Chap. 8). Therefore, details of the structure of the cochlear
ducts may be ignored. Most theoretical studies have investigated an unrolled model
cochlea, either as a box (as in Fig. 3.1) or as some sort of tube (e.g., Peterson
and Bogert 1950; de Boer 1980). Peterson and Bogert (1950) and Fletcher (1951)
did analyze the fluid compressibility and viscosity (Fletcher) in some detail, but
later studies tend to start with the approximating assumption of incompressibility of
an inviscid fluid. Obviously this implies that the sound velocity in that medium is
practically infinite.

As long as we realize that for the upper range of auditory frequencies only
(above �8 kHz) the above approximation may need significant corrections, we can
conclude that the approximation appears to be valid over an important range of
human hearing. A straightforward criterion for the overestimation of the sound
speed concerns the actual travel times of cochlear waves. The actual speed in
the cochlear fluid is �1;500m/s (similar to the speed in water), which implies a
wavelength of about 190 mm, or about five times the length of the human cochlea.
Phase differences computed with infinite speed are considered acceptable at this
point for the frequency range mentioned above.
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As indicated in Sect. 8.1, the mass conservation equation now reduces to (8.4),
or, when expressed in the velocity potential �.x/, to the Laplace equation:

r � v.x/ D r � r�.x/ D ��.x/ D 0: (3.1)

The cochlear walls are also taken to be solid (practically incompressible). Conse-
quently, the cochlear fluid velocity into the walls is zero. The cochlear partition,
however, has mechanical properties which enable it to move, but its volume is
also supposed to be constant: its structure is also assumed to be incompressible.
The apical connection between scale vestibuli and scale tympani also allows
fluid flow, but its dimensions imply some mechanical resistance. Acoustic effects
of endolymphatic and perilymphatic connections with the vestibular system and
beyond (endolymphatic sac) are assumed to be negligible.

Under these assumptions a volume influx at the stapes has to be equal to an
efflux at the RW, and this flux must be crossing the cochlear partition and/or the
helicotrema. These 3-D considerations simplify the transition to the 1-D approach.

An input stimulus delivers a sound-energy flux input J . The size of J is deter-
mined by the product of stapes-velocity ust and stapedial driving force pst �Ast,
or of volume velocity Ust and the stapedial pressure pst. The quotient of pst and
ust is the cochlear input impedance, or more specifically: the specific acoustic
input impedance. The quotient of pst and Ust defines the acoustic input impedance
(see Sect. 8.3). If the volume velocity is not associated with fluid compression, it
must imply fluid movement. In other words, the input impedance is determined by
the summed movement of the cochlear fluid. This consists of inertia effects (fluid
motion) in combination with the parallel effects of all responding cochlear partition
elements and the helicotrema. The oval and RW connections are assumed to be
almost lossless. This means that they are assumed to be elastic, with negligible mass
and damping.1

Under the specifications defined above it is useful to split the cochlear response
to the input stimulus into two separate components: a fast component which is
due to the (in)compressibility of the fluid, and a slow component which involves
interaction between fluid and cochlear partition. We first consider the fluid pressures
associated with these components. If the stapedial input pressure is pst.t/ and the
volume velocity Ust.t/, then the input sound-energy flux is

Jst D hpst.t/ � Ust.t/i (3.2)

where the brackets indicate time averaging over at least one cycle of the input signal.
The dot product represents the effect of the phase angle between p and U , and U

1The OW mass- and damping parameters can be incorporated in the stapes footplate properties. For
both OW and RW, the primary elastic properties regard attachment at the window edges. Usually,
they are included in a middle ear model (Sect. 5.3.2.2). In simpler models, the RW-stiffness is
neglected altogether (Sect. 5.3.2.1).
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is supposed to be perpendicular to the footplate—OW surface Ast, otherwise the
spatial input angle has to be accounted for as well.

If a stimulus is simply sinusoidal, and represented by the real part of the complex
exponential

pst.t/ D Opst<fe�i!tg and Ust.t/ D OUst<fe�i.!tC�/g

then the average dot product is 1
2
Opst OUst cos�, the absolute value of which maxi-

mizes for � D 0˙ n� and minimizes for � D �=2˙ n� .
Let the pressure in the total scala vestibuli be denoted as pv.x; t/ and the pressure

in the scala tympani as pt .x; t/. Then the fast pressure wave is defined as the
average, and the slow pressure wave as the difference:2

pf .t/ D pv.x; t/C pt .x; t/
2

(3.3a)

ps.x; t/ D pv.x; t/ � pt.x; t/
2

: (3.3b)

At x D 0, the force balance at the oval window implies pst.t/ D pf .t/Cps.0; t/ D
pv.0; t/, and if no acoustic energy leaves at the RW, then 0 D pf .t/ � ps.0; t/ D
pt .0; t/. The last condition (zero pressure across round window) leads to

ps.0; t/ D pf .t/ D 1

2
pst.t/: (3.4)

If we combine this result with that of the incompressibility, which leads to Ust.t/ D
Uv.0; t/ D �Ut.0; t/, we observe that the sound-energy influx following the slow
wave divides equally over the 2 scalae:

Jst D hpst.t/ � Ust.t/i D hpv.0; t/ � Uv.0; t/i C hpt .0; t/ � Ut.0; t/i
D ˝fpf .t/C ps.0; t/g � Ust.t/

˛C ˝fpf .t/ � ps.0; t/g � �Ust.t/
˛

D 2 hps.0; t/ � Ust.t/i : (3.5)

The fast wave, however, produces a sound-energy flux in the Cx-direction in the
scala vestibuli, simultaneously with an equal flux in the �x-direction in the scala
tympani. The net sound-energy flux distributed over the 2 scalae by the fast wave
is therefore equal to zero (except for transients), and the energy that is dissipated
within the cochlea is exclusively described by the slow wave (see, e.g., Peterson
and Bogert 1950; Lighthill 1981; Duifhuis 1988).

2Since the fast wave travels at a very high speed in the x-direction, we can drop—in first
approximation—the x-dependence in pf .t/.



38 3 Modeling I

Fig. 3.2 Cross-section through box model at x. The scala area A D b�h for both scalae. Volume
velocity in the scala vestibuli is Uv.x; t/ at point x in the x-direction. It equals the average particle
velocity (uv.x; t/, in the same direction) times the cross sectional area A

The effect on a partition element is analyzed further, starting from connecting
fluid slices in the scalae and taking �x for the slice thickness (Fig. 3.2). The input
volume flux in the scala vestibuli is Uv.x; t/ at x, and the output flux at x C �x is
Uv.x C �x; t/. The difference must be compensated by flow through the partition
section between x and x C �x, and/or an associated pressure change within the
slice if the fluid is compressible. In first approximation, the compressibility is
neglected and this pressure change is ignored. The transpartition volume velocity
is represented by the average point velocity w.x; t/, which is taken positive in the
direction from scala tympani to scala vestibuli. This gives:

w.x; t/ b �x D Uv.x C�x; t/ � Uv.x; t/; (3.6)

or, if �x ! 0

w.x; t/ b D @Uv.x; t/

@x
D Av

@uv.x; t/

@x
: (3.7)

For the scala vestibuli, the simplified form of Euler’s equation (8.5) for the 1-D
model is:

Av
@pv.x; t/

@x
D �� @Uv.x; t/

@t
or

@pv.x; t/

@x
D �� @uv.x; t/

@t
: (3.8)
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Next the mechanical properties of the cochlear partition are introduced. It should be
obvious that an implicit simplification has been introduced by describing the scala
media structure, including BM and organ of Corti (OC) with tectorial membrane
(TeM), as the cochlear partition (CP). The structure has elastic properties (proposed
by von Helmholtz and demonstrated by Von Békésy), also some mass, and a
sensory system also must pick up signal power, which implies that there also
must be a damping term. This can be combined in local second order mechanical
structure properties, where local should be taken as a macroscopic specification.
Micromechanical properties at single cell level—or smaller—are neglected insofar
as they do not arise in the macromechanics. Note that around 1950 CMs started
basically with the same parameters, but with a slightly different argumentation.

The force balance at the partition gives

pv.x; t/ � pt .x; t/ D 2 pv.x; t/ D �w.x; t/ ZCP.x/ (3.9)

where ZCP.x/ represents the local specific acoustic impedance of the partition
(Pa.s/m). This quantity is equivalent to the mechanical impedance (force / velocity)
per unit area (see Sect. 8.3). Usually properties of a partition slice�x are considered
to act as if coupled in series, which yields

w.x; t/ ZCP.x/ D m.x/ @w.x; t/

@t
C d.x/w.x; t/C s.x/

Z
w.x; t/ dt (3.10)

and where mass, damping and stiffness (m.x/, d.x/, and s.x/) are taken per unit
area.

Additional common simplifying approximations are

1. The partition mass per unit area is constant over x,
2. The cross-sectional areas of scala vestibuli and scala tympani are equal,
3. The cross-sectional areas change very slowly over the cochlea length (this was

used above in (3.7) when applying @Uv.x;t/

@x
D Av

@uv.x;t/

@x
, and the same for the

time derivative in (3.8)), and
4. Boundary layers due to fluid viscosity are neglected.

These equations can be combined to give local equations in either fluid
pressurep, fluid velocity u or volume velocityU , or partition velocity (or deflection,
or acceleration). We start with the pressure equation. Substituting (3.9) in (3.7)
allows elimination of the partition velocity w.x; t/. Next we take the time derivative
on both sides, to obtain:

� 2 b

ZCP.x/

@pv.x; t/

@t
D Av

@2uv.x; t/

@x@t
: (3.11)
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Then the u-term is eliminated using the spatial derivative of (3.8), and Av D bh is
applied, reducing the scala size parameters to a single h. This yields for pv.x; t/:

@2pv.x; t/

@x2
� 2 �

hZCP.x/

@pv.x; t/

@t
D 0 (3.12)

or, taking Fourier transforms3 and thereby replacing
@

@t
by i!:

@2pv.x; !/

@x2
� 2 i!�

hZCP.x; !/
pv.x; !/ D 0: (3.13)

Equation (3.9) gives a simple linear relation between p and w, because at a fixed
point x at the partition the impedance ZCP is assumed to be depending on ! only.
Since linear factors can be dropped after substitution, the same equation is obtained
for w:

@2w.x; !/

@x2
� 2 i!�

hZCP.x; !/
w.x; !/ D 0; (3.14)

and, similarly, also for u, as long as exchange of order of spatial and temporal
differentiation is allowed, a condition that has been assumed tacitly so far. Details
and proof are left to the reader.

Equations (3.13) and (3.14) would be rather simple if—and only if—the
parameters would be constant, i.e., independent of x. Dependency on ! would
still provide straightforward solution to monochromatic stimuli, or pure tones. Note
that a constant partition impedance ZCP would make (3.12) a diffusion equation.
However, the structure is more complicated, because relevant parameters do depend
on x. The equations do represent the behavior of the response at different positions
along the partition, and the complete system also needs the boundary conditions at
x D 0, the base, and at x D xapex.4 The condition at the base was discussed above
(3.2–3.5), the condition at the apex need more discussion, and will be continued in
Sect. 3.5, and again in more detail in Sect. 5.3.3. At this point, we remark that the
frequently used condition that the apex is a shortcut is questionable. We will follow
the alternative assumption, that was proposed by Dallos (1970, 1973), and later by
Lynch et al. (1982) and Puria and Allen (1991). It involves an estimate of the fluid
mass and resistance (due to viscosity), which would provide a better termination
than the shortcut.

Although the CM papers from the early 1950s gave an excellent start of this field,
they were hampered by the fact that the data on which they based the estimations

3The Fourier transform of the pressure pv.x; t/ is written as pv.x; !/. The rather common capital
notation for the transforms is not used because the capital symbols are reserved for other variables.
Although some duplications will be unavoidable, we try to minimize the occurrence, and use P
for power and U for volume velocity.
4In human the apex occurs at x � 35mm.
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of the parameter values were premature. Results were obtained at cadaver samples
and the stimulus levels that had to be used to provide detectable responses were
significantly above the hearing range. Therefore, although the data presented by
Von Békésy showed the proper global response behavior, the quantitative results
were not directly applicable to the normal human cochlea, a point that took a few
decades to be unraveled convincingly. Most of the early studies aimed at a low
frequency selectivity, which led to the growth of several hypothetical sharpening
mechanisms, and although Von Békésy’s original “lateral inhibition” hypothesis
had largely disappeared during the 1970s, several alternatives were still in serious
scientific competition around 1980.

As long as the local partition impedance is modeled as a simple second order
mechanical system, with mass, damping, and stiffness, it seems clear that one of
the objectives: understanding the cochlear frequency map, can be met readily. Local
tuning depends on local resonance, or primarily on the interaction of local mass and
stiffness. The BM stiffness was measured directly, and estimates of the mass could
be made and checked to fit the expected range from about 20 Hz to 20 kHz. However,
the resonance frequency depends on the ratio of stiffness and mass,5 not on the
individual values. That left sufficient room for uncertainty for quite some time.
Precise information about the phase of the response, or of the impulse response,
could have settled this point, but hardly did. The other parameter, damping, was
even more difficult to estimate.

Here we have reached a common problem in the development of theories:
should a theory be optimizing output results by “curve fitting” through param-
eter optimization, or should the theory describe the underlying biophysical
processes optimally and relying completely on parameter data, measured
independently as accurately as possible? If a system is very complex, i.e.,
if there are many parameters, then it can take a long time to obtain the
required estimates; if the number of free (unknown) parameters is too large,
then mathematical optimizing of estimations quickly becomes curve fitting,
because identical results can be obtained with different parameter sets.
Cochlear mechanics still has not reached the stage where the properties of
the elements of the structure have been determined completely. Our approach
to the analysis is to use available data as accurately as possible, and reduce the
number of remaining free parameters to a minimum number of representative
global parameters.

5The angular resonance frequency of a mechanical mass–spring system is !r D p
s=m, with mass

is m and the stiffness s.
It is commonly assumed that the CP-mass per unit area is constant, based on the observation

that the BM thickness hardly changes over x. However, the CP-structure size does change, and
the effective mass that includes (part of) the relevant boundary layer is also changing from base to
apex. Therefore, constant mass per area should be regarded as a first approximation.
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This approach was also taken in the early 1950s. In their original cochlear
mechanics study, Peterson and Bogert (1950) set up the basic equations without the
incompressibility assumption. The authors also discussed effects of viscosity, and
noted that the dynamic) viscosity measured by Von Békésy (� D 0:002Pa s) was
approximately 3 times the value of water at body temperature (� D 0:0007Pa s).
Viscosity effects had been studied by Zwislocki’s (e.g., 1948, 1950, 1953) and it was
also discussed extensively by Fletcher in 1951. A detailed study of compressibility
and viscosity was given by Dallos (1973) in his textbook. We present the effects of
fluid compressibility and viscosity quantitatively, following his analysis.

Dallos’ general equation for the FT of the pressure (his (4.82)) can be written in
the form

1

pv.x; !/

@2pv.x; !/

@x2
D 2 i!�

hZCP.x; !/

�
1C i! hZCP.x; !/

2 � c2

� �
1C R.x; !/

i!�

�

D 2 i!�

hZCP.x; !/
Œ1C compression correction� Œ1C viscosity correction�

(3.15)

where we use our parameter definitions. The first bracket term on the right represents
the effect of compressibility, and is completely equivalent to the term obtained by
Peterson and Bogert.6 The second one describes viscous effects. It contains a new
parameterR.x; !/ which is defined as:

R.x; !/ D p
4�	!=Av (3.16)

containing the dynamic viscosity 	. For a quantitative estimate, we employ both
the value for water (at 40ıC) and the value for perilymph reported by Von Békésy.
Note that the two correction terms depend on both frequency and place (! and x).
The compressibility term is even more complex because it contains the partition
impedance completely, which means that the frequency effect depends strongly on
place, due to the x-dependence of partition damping and stiffness. Estimates of the
corrections of the two terms are presented in Table 3.1 for the frequencies f D
100Hz and f D 1 kHz. The compressibility terms are computed at x D 5mm,
17.5 mm, and 30 mm.

The verification of the values presented in Table 3.1 is left to the readers as
a valuable training exercise. Dallos (1973) presents very useful explanations
and discussion points, as well as links to earlier studies.

6Peterson and Bogert (1950) use a differently definedZ, viz.Z.x; !/ D i!ZCP.x; !/ (their (14)),
and their “bracket term” 
2 (their (16–18)) looks different because they extracted !2=c2 instead
of 2 i!�=hZCP.x; !/. They did not find an analytical solution for this equation, but presented
numerical results.
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Table 3.1 Correction terms for the 1-D linear cochlea model

Compressibility factor
Frequency at xD (mm) Viscosity factor

# 5.0 17.5 30.0 Water Perilymph

�10�6 �10�6 �10�6

100 Hz 0:28� 465:7i 0:15� 13i 0:075� 0:13i �0:05i �0:09i
1 kHz 0:28� 461:3i 0:15� 8:6i 0:075C 4:2i �0:016i �0:03i

The table gives the computed fractions for compressibility and for viscosity at 100 Hz and at 1 kHz;
the compressibility terms are given at xD 5 mm, 17.5 mm, and 30 mm from the base. The cochlear
partition parameters are: m D 0:5 kg/m2, stiffness follows the corresponding Greenwood-map,
and the damping is chosen to provide a quality factor that is proportional to the square root of the
frequency. These values are discussed in Sects. 5.3.5.1 and 8.5.1

Checking the entries of the table we note that the correction for compressibility
appears to be less than 0.05% at the basal part of the cochlea and even less apically.
In general the imaginary part of the term dominates the real part, but the net effect on
the real 1-vector remains small. The viscosity factor is stronger, especially for low
frequencies but the imaginary terms of 5% for water or 9% for perilymph according
to Von Békésy are still significantly below 1, and since the effects are purely
imaginary, they will have relatively small phase effects (approximately 0.05 or
0.09 rad, respectively), and even smaller effects on the amplitudes of the responses.
These effects are considered sufficiently small compared to general consequences
of the 1-D approximation to justify the common neglect.

The box-model simplification that omits the tapered shape of the cochlea also
received attention in the first generation CM models. The anatomical structure
clearly shows a general decrease of the cross-sectional areas Av and At from base
to apex. Again several of the earlier studies addressed the point in one form or other
(e.g., Dallos 1973). The anatomical data are usually described with 1 parameter
(e.g., (4.92) in Dallos’ book proposes Av C At D 5:10�6 e�50x with x in m and S
in m2). For the 1-D linear model the impact of this parameter remains also small.
Note, however, that several bat families have very typical specializations of their
cochlear duct cross section profiles, in which also the shapes of Av andAt can differ
substantially.

The formulation given in (3.15) for the spectral profile of the pressure (pv.x; !/)
can readily be adapted to discard either compressibility or viscosity, simply by
dropping the relevant bracket term. Dropping both terms brings us back at the
solution that was obtained earlier: in that case the result is equal to (3.13), which
is equivalent to (14) in Zwislocki (1953), and also to (6.j) in de Boer (1980).
The solution to this equation is treated next.
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3.3 Solutions for the 1-D Linear Cochlea

Note: Equations in this subsection are solutions to the frequency domain represen-
tation of the cochlea equations. Time domain versions are obtained by inverse FT.
For a simple tone stimulus this can be obtained by taking the real part of ei!t , and
adjusting amplitude and phase.

The main differential equation (3.13) that describes the CMs variables p.x; !/,
u.x; !/, and w.x; !/ can be rewritten as

@2 .x; !/

@x2
D 2 i!�

hZCP.x; !/
 .x; !/

D �k2.x; !/ .x; !/; (3.17)

where  represents any of the variables p, u, or w. As indicated in the previous
section, the difficulty of the equation is that the term k.x; !/ is not a constant, but
does depend on x and !; it is a complex variable, and real and imaginary parts play
different roles in the wave propagation. Let those parts be defined as k.x; !/ D
kr.x; !/ C i ki.x; !/ where the indices “r” and “i” denote the real and imaginary
components.

For constant k, the general solution of (3.17)

 .x; !/ D C1 ei k x C C2 e�i k x (3.18)

 .x; !/ D C1 eCikr x e�ki x C C2 e�i kr x eCki x (3.19)

where two standard cases can be recognized. If the real part of k dominates
(kr � ki) then (3.17) is a simple wave equation, and kr represents the wavenumber
(see Sect. 8.2). If, on the other hand, the imaginary part dominates, and k2 D �k2i ,
then (3.17) becomes a standard Helmholtz equation with the general solution:

 .x; !/ D C11 eki x C C12 e�ki x (3.20)

where the additional first indices of C are meant to stress that the integration
constants in (3.20) differ from those used in (3.18) and (3.19).
In general, the integration constants Cin have to be adjusted to match the boundary
conditions at base and apex.

The difficulty of assessing the behavior of k originates from the quotient
! =ZCP.x; !/, in which the partition impedance reflects the x-dependencies
[ZCP.x; !/ was introduced in (3.9)]. It is useful to analyze three conditions for
the cochlear responses as special cases in more detail:

1. The high-frequency asymptote, effective where ! � !r.x/, or apically from xr ,
and where ZCP.x; !/) i!m;

2. The region around resonance, at xr D xr .!/, where ZCP.x; !/) d.x/;
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3. The low-frequency asymptote, effective where ! � !r.x/ or basalward from
xr , and ZCP.x; !/) s.x/=i!.

Case 1, the high-frequency asymptote, implies that k2 D �2�=.hm/. Consequently,
k D i ki, independent of x, and kr D 0. This leads to the solution presented above
(3.20). Both terms represent standing waves, the first with the amplitude factor
C11 growing with x, and the second term with the factor C12 has an exponentially
decreasing amplitude. The value of ki is 2.103 m�1, which amounts to a change by
a factor of about 1,000 over a 7 mm x-shift. Thus, the increasing term grows very
fast and would tend to explode. Therefore, the decreasing second term is assumed
to dominate the response; only for very low frequencies the increasing first term
cannot be ruled out completely.

Case 2, near resonance, where stiffness and mass terms are in balance. In that
case the damping component dominates the impedance, and the solution for k2

will be purely imaginary: k2 D 2i!�=fh d.x; !/g. The roots of k2 are complex
conjugates for which kr 	 ki, and either k D kr C iki, or k D �kr � iki. Note
that the last solution represents a decreasing amplitude with x, in combination with
propagation in apical direction. In order to evaluate the value (jkj) in more detail we
have to explore the damping term, which has not yet been specified. In many CM
studies, authors have selected a damping profile that produces tuning with a constant
quality factor Q D fr=�f . However, experimental data on auditory frequency
selectivity, from classical psychophysics, neurophysiology, and ultimately also from
CMs data, show that the selectivity at the high-frequency end is sharper than at the
low-frequency end. Further quantitative discussion is postponed to the end of this
section, after discussion of the full response. If the damping is low enough, the
cochlear partition response will show a maximum near the point of resonance; for
increasing damping the maximum will begin to shift basalward. In case of a very
high dampingQ� 1, the maximum disappears altogether.

Case 3, the low-frequency asymptotic behavior, characterizes the response if the
stimulus frequency is below the local resonance frequency. This occurs basal-wards
of the point of resonance. The cochlear partition impedance is now dominated by
the stiffness term, which means that k2 becomes a positive constant. This leads to
two real roots ˙kr, and it follows that now (3.17) is a lossless wave equation, with
the solution:

 .x; !/ D C31 ei kr x C C32 e�i kr x (3.21)

showing two waves traveling in opposite directions. Continuing the reasoning
above, and realizing that the solutions for k are supposed to change gradually from
one to the other, it follows that the second term, the apically traveling wave will
be the prominent solution. Boundary conditions may involve a second term. In that
case, please note that the sum of two waves traveling in opposite directions is equal
to the sum of a standing wave and a traveling wave. The latter reflects the excess
of the strongest of the initial components. Note also that only the traveling wave
transfers power along the CP. In a smooth linear cochlea, i.e., without any reflections



46 3 Modeling I

of the traveling wave, and without internal sources, the only source is the external
source driving (at) the stapes. This is consistent with the above conclusion that only
the wave traveling toward the apex (with amplitude C32) is relevant. The traveling
wave is not simple because kr is not a constant, but it depends on x and ! as follows:
kr.x; !/ D !

p
2�=fhs.x/g. The stiffness s.x/ decreases with increasing x, and

consequently k increases, and the wavelength � D 2�=k decreases. Hence, for a
constant stimulus frequency, the phase velocity (!=k) also decreases.

The x-dependence of the stiffness follows the Greenwood-map properties, based
on its estimate of the local resonance frequencies and the constant partition mass
(per unit area). Greenwood (1961, 1990) proposed the equation

!r.x/ D 2 � fr.x/ D 2 � 165:4
�
102:1�60x � kG

�
(3.22)

where x, in m, is the distance to the base.7 The value of the parameter kG is assumed
to be between 0.8 and 1. We will use kG D 0:85. This sets the most apical resonance
frequency to 24.81 Hz, which might be somewhat too low: the fact that the lower
frequency limit of hearing is at about 20 Hz does not necessarily require a cochlear
filter tuned to that frequency; it only implies that the most apical filters must respond
to that frequency.

The constant kG is significant at the apical end of the cochlea only. At the basal
end, the formula is approximated closely by the exponential form

!r.x/ D 2 � fr.x/ D !0 10�60x D !0 e�138:2 x (3.23)

where !0 D 130832 Hz. For the stiffness we obtain s.x/ D m!2.x/ or s.x/ D
s0 10

�120x D s0 e�276:4 x . Hence, the basal part of ZCP tends to s0 e�276:4 x=.i!/.
Rewriting the traveling wave equation for this condition one obtains:

@2 .x; !/

@x2
D �k2.x/  .x; !/ D �k20 e276:4 x  .x; !/ (3.24)

which is a differential equation of the Bessel family. The results are discussed in
detail in Dallos (1973) and de Boer (1980), and summarized in Sect. 3.3.1. They
provide the analytical, close approximations, to the solutions sufficiently basalward
from the resonance point xr . In this basal part of the cochlea, the waves propagate
practically lossless as plane waves in apical directions. As discussed above, the input
power is split into equal energy fluxes in the two scalae.8 The effect of damping is to
draw power toward the partition, where it is dissipated. The physics of this effect can
be analyzed realistically in 2-D or 3-D, and is discussed in more details in Sect. 3.6.

7Greenwood’s original formula uses the distance from the apex, which is replaced here by
.0:035� x/. The partition length of 0:035m generates the 102:1 term.
8Energy flux is a less common concept in acoustics. It is discussed in more detail in Sect. 3.6.1.
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Fig. 3.3 Response profiles for single tones (0.125–16 kHz) with level response in the top panel
(partition velocity in dB re stapes velocity) and related phases in the lower panel, presented from
base (0 mm) to apex (35 mm). The frequency map follows Greenwood’s formula (e.g., 1990).
Phase information is omitted where the response amplitudes vanishes. Note that we do not use a
constant Q3dB for the partition m-d-s systems, as has been done in many studies, but use a more
realistic changing selectivity, by taking Q3dB proportional to

p
f . Note also that the responses

differ markedly from the response of a second order system, although we have to use some caution:
for a direct comparison of the result with a filter characteristic, it is necessary to obtain the local
transfer characteristics at CP points. The result will look similar (e.g., de Boer 1980, Figs. 6.7 and
6.8). In particular, the apical slopes beyond the peaks are steeper. Also the total phase roll off would
be only � for a second order system, here it is obviously significantly more

Other properties of the solution that are tied to the changing partition properties
are the values of the stiffness and damping variables. Due to these changes,
the traveling wave velocity decreases as it approaches the point of resonance.
Initially (i.e., at the base) the slow down of propagation is much stronger than
the increase of dissipation in the partition damping. This means that the vibration
amplitude increases. Near the point of resonance dissipation exceeds propagation,
and the response decreases rather sharply. The maximum response is obtained
before (basalward of) the point of resonance. The precise location depends on the
damping. Examples for evoked response profiles for sinusoidal stimuli are shown
in Fig. 3.3.
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3.3.1 Application of the WKBJ Method

The difficulty of the Fourier transformed wave equation (3.17) is that the term
k2.x/ is not a constant. However, as long as k2.x/ varies slowly enough, an
analytical approximation is available, which was first developed in theoretical
physics. The method is named after its developers: Wentzel, Kramers, Brillouin,
and Jeffreys. The reference “J” for Jeffreys is sometimes missing. Therefore, the
interested reader should also check information on the WKB method. Note that
mathematicians denote the same method as the LG method, after Liouville and
Green, nineteenth-century.

Application to CMs was first proposed by Zweig et al. (1976) and followed up by
de Boer (1980). We follow de Boer’s approach.9 Starting from (3.17) and dropping
! from the notation:

@2 .x/

@x2
C k2.x/  .x/ D 0

we start from the asymptotic basal (Case 3) situation, where k2 is real and positive,
and varies relatively slowly over x. Assuming a nonzero solution

 .x/ D  0 exp

0
@

xZ

0

�.�/ d�

1
A (3.25)

one finds

@ .x/

@x
D  0 exp

0
@

xZ

0

�.�/ d�

1
A �.x/ D  .x/ �.x/

@2 .x/

@x2
D  .x/ �2.x/C  .x/ @�.x/

@x
or,

 .x/ �2.x/ C  .x/
@�.x/

@x
C k2.x/  .x/ D 0 and,

�2.x/ C @�.x/

@x
C k2.x/ D 0: (3.26)

This solution is developed further by iteration. The first approximation assumes that
the variation in �.x/ is small enough, or

�21.x/ D �k2.x/ or �1.x/ D ˙ ik.x/: (3.27)

9Note that De Boer’s function g.x/ is equal to our function k.x; !/.
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Choose the—sign solution, for the solution in the apical direction, and put this back
in (3.26) in the form:

�.x/ D
�
�k2.x/ � @�.x/

@x

�1=2
D �i

�
k2.x/C @�.x/

@x

�1=2
to obtain,

�2.x/ D �i

�
k2.x/C @�1.x/

@x

�1=2
D �i

�
k2.x/C @ik.x/

@x

�1=2
(3.28)

� �ik.x/ � 1

2k.x/

@k.x/

@x
(3.29)

where the square root is approximated by the first two terms of its series expansion,
assuming that j@k.x/=@xj � jk2.x/j. Substituting �2 in the assumed solution gives:

xZ

0

�.�/ d� D
xZ

0

�
�ik.�/ � 1

2k.�/

@k.�/

@x

�
d� (3.30)

D �i

xZ

0

k.�/d� � 1
2
Œlog .k.x// � log .k.0//� or,

 .x/ D  0
�
k.x/

k.0/

��1=2
exp

0
@�i

xZ

0

k.�/d�

1
A: (3.31)

The solution meets the accuracy condition, j@�.x/=@xj � j�2.x/j up to and
slightly over the point of maximum response. Beyond that point, the condition
“Case 1” applies. This implies that (a) there is no energy flux toward the apex and
(b) the remaining standing wave decays quickly. An impression of this behavior can
be obtained from Fig. 3.7, which shows a flow diagram for the upper duct (scala
vestibuli), but the figure shows the result for a 2-D cochlea model. The energy flux
pattern shows that the 1-D approximation of a plane wave is appropriate up to a few
millimeters before the point of resonance xr for the given stimulus.

3.4 Filterbank and Other Signal Analysis Issues

Since the original solutions to the cochlear wave equation could only be evaluated
analytically for asymptotic cases, the practical responses have mostly been evaluated
numerically. Also, the Fourier transformation has generally been used (time )
frequency) to remove the time derivative. These methods are suited to completely
describe the characteristic of a linear time invariant system (LTI), as long as one
realizes that the frequency domain variables are complex, or that both amplitude and
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Fig. 3.4 Panel A shows a click response at x D 17:5mm. A brief (50	s) click was presented at
the entrance of the ear canal at 80 dB SPL (peak level). Hence the response (solid line) includes
the transmission through the middle ear. Panel B shows the click response spectrum at the stapes,
and panel C show the cochlear transfer to point x, obtained by separating middle ear HME.!/

and cochlea H.x; !/. The dots give single points obtained from an alternative narrow-band (pure
tone) analysis. Finally, panel D gives the FT of the cochlear transfer function as the clean cochlear
impulse response

phase data are required for complete responses. For a linear cochlea, the response
behavior along the partition can be represented equally well by response profiles
in the frequency domain (transfer functions H.x; !/, as in the time domain by the
relevant impulse responses h.x; t/.

In Fig. 3.4, we show the transfer function and the impulse response for the point
halfway the cochlea, at x D 17:5mm from base and apex. The local resonance
frequency is 1.7 kHz. Panel A shows the response to 50	s click presented at the ear
canal; B gives the response amplitude spectrum at the stapes; C shows the transfer
function jH.!/j at this point. The drawn line represents the impulse response data,
and the dots are results of single tone tests. D is the inverse FT of C, and gives the
click response of the cochlea from stapes to x D 17:5mm. The minor deviations at
the edges have two different sources: at the lf-end the impulse response is not very
accurate because of limitation of the time window length (100 ms), and at the hf
end, we run into the limited dynamic range of the FT (computed with an FFT).

Note that the zero crossings of the click response are not equidistant: they
appear to converge toward 1=fR, but they start with greater values. The first cycle,
measured from the first +to- zero crossing, is about 0.848 ms, the subsequent
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five values are 0.676 ms, 0.641 ms, 0.624 ms, 0.614 ms, and 0.605 ms, which are
still greater than 1=fR D 0:588ms. Apparently, this phenomenon arises as the
consequence of the complexity of the linear system, and in itself is not an indicator
of nonlinear behavior. It was mentioned in the Fig. 3.3 caption that the phase roll
off of the cochlear response is relevant. For a simple linear system, the phase lag
is �=2 per order of the system. So in terms of systems analysis, it is clear that
the transfer function from stapes to a point on the CP represents a higher order
system than a single mass–spring resonator with damping would generate. This
is due to the fact that many of such CP elements are present, and that they are
coupled. In the case of the cochlea, the coupling of two adjacent oscillators depends
on structural mechanical properties within the partition, and on constraints of the
driving properties of the fluid environment. The 1-D transmission line models of
the cochlea, basically following Zwislocki and Peterson & Bogert, focus on the
fluid coupling. The transmission line interpretation of the coupling is presented
in Fig. 3.6. A force (or pressure) stimulus at the stapes “finds” an approximately
resistive input impedance, which means that the velocity response—and not the
displacement—follows the force immediately. The fluid mass movement is con-
strained by its inertia. Despite the incompressibility, which gives c )1, separate
points along the partition are limited in mechanically responding to the applied
force, because the conveying fluid can not move freely. The fluid mass conservation,
in combination with its inertia, provides complex constraints to the driven partition
elements. They are no longer representable by second order mechanical systems.
Therefore, Helmholtz’ theory of the frequency selectivity of the cochlea misses an
important point, and does not cover the data (see von Helmholtz 1863, Chap.VI
and App. XI, and Fig. 3.5 this Section). His interpretation that the radial fiber
structure within the BM dominates the longitudinal coupling remains. It stimulated
development of the theory of hearing considerably—but simultaneously suppressed
conflicting ideas for several decades.10

A general choice that has been made in the electrical analogues for the acoustic
network is that we have chosen to map pressure and volume velocity on voltage
(potential difference) and current. The product of p and U has the dimension of
power, just like the electrical11 e � i and the mechanical F � v products. The
selection of p and U implies that the network elements have the dimension of
acoustic impedance (Pa.s/m3). More specifically, the dimension of acoustic mass
is M L�4.

10It is noted in passing that the theoretical arguments proposed by Gold (1948) suffer from exactly
the same limitation: he also tries to model separate points of the partition as independent second
order systems. Moreover, he tries to match a selectivity strength characterized by a Q3dB between
60 and 250 for the frequency range from 1 kHz to 10 kHz, a value which is nowadays considered
unrealistic. Lastly, his constraints are based upon limitations of independently oscillating strings in
water, but it is very doubtful that they can move independently. (The limitations predicted by him
appear to match the values used in Fig. 3.3.) Although the BM properties play a significant role,
the total partition stiffness contains additional contributing elements.
11Here e is the AC-voltage and i the AC-current.
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Fig. 3.5 Network representation of a 1-D cochlea model as a filterbank, as proposed by Von
Helmholtz. Each section represents a filter element from the bank as an LRC line, with acoustic
partition mass given by the parallel inductance L.x/ ) mai , where the resistance represents
the acoustic damping term R.x/ ) dai , and the capacitance models the acoustic stiffness of
the section 1=C.x/ ) sai . All elements are directly linked to the stapes pressure, and the
stapes volume velocity is distributed over the branches as determined by the line impedances.
Ui represents transpartition volume velocity at branch i . The property characterizing the network
as filterbank is provided by the parallel wiring of all LRC-elements
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Fig. 3.6 Network representation of a 1-D cochlea model as a transmission line, following
Zwislocki, and Peterson and Bogert. Each section from the transmission line represents an acoustic
fluid mass, represented by the series inductance L.�x/ ) mi�1;i

a , and a partition section given
as an LRC line, with acoustic partition mass given by the parallel inductance L.x/ ) mai ,
where the acoustic resistance represents the damping term R.x/ ) dai , and the capacitance
models the acoustic stiffness of the section 1=C.x/ ) sai . Local pressure is then equivalent to
voltage and volume velocity to current. Volume velocities U i;j apply to the duct, Ui represents
trans partition volume velocity. Indicated pressures pi represent trans partition pressure at i .
The property characterizing the network as transmission line is provided by fluid mass coupling
between adjacent LRC-elements
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Summarizing this section, and thereby making use of some important properties
of linear signal analysis:

• Yes, a linear cochlea is fully equivalent to a filterbank where the individual
elements reflect all properties of cochlea sections plus the effects of the cochlear
fluid coupling. This filterbank will be termed the equivalent LTI cochlea filter-
bank, or shortly: ECFB.

• No, a cochlea cannot be modeled properly with any bank of independent second
order filters (or even fourth order).

• A gamma-tone filterbank (not discussed in detail 12) approximates an ECFB.

3.5 The Impedance Concept

In Sect. 3.2 we used the mechanical impedance Zm, and the specific acoustic
impedance Zsa. In Sect. 8.3 these terms are specified in detail, together with the
acoustic impedance Za. These concepts, which are part of the standard acoustics
domain, are comparable to the impedance concept defined in electricity:Ze D e=i ,
where it has been defined as quotient of electric potential (voltage) and current.

The use of the impedance concept relies strongly on the validity of the use of
(complex) spectral analysis. This means that time effects have to be analyzed using
the inverse FT.

The analogy between the acoustic impedances and electric impedance has been
used to apply electric network analysis results to CMs, both in theoretical analysis
and in hardware modeling. Hardware models imply discretization of the problem,
and a leading question then becomes: What is the minimum number of discrete
sections n that is required for a realistic description of the mechanical response
of the cochlea to sound?

A related question is: would there be an upper boundary to this number?
This last question is simpler: the anatomical structure itself is discretized by the
cellular constituting parts. Hair cell, supporting cells, and pillar cells, e.g., have a
longitudinal size of about 10	m. This is in reasonable accordance with a maximum
of about 3,200 elements. In practical implementations, smaller numbers are easier
to build in hardware, and to analyze in software (although this problem hardly exists
with today’s computing power, it was definitely a point before 1980, or even up to
2,000). The numbers reported in the studies up to 1980 are: Bogert (1951) used
n D 175 in a hardware model, and the same was used in software by Hall (1974).
Hubbard and Geisler (1972) based their model on the same parameters, but their
version was limited to n D 31. Numbers of around n D 100 have also been used by
Flanagan (1962).

12The gammatone filters were introduced by Aertsen and Johannesma (1980) and promoted as
elements of a practical auditory filterbank by Patterson et al. (e.g. 1991).
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For cochlea models that use global parameters, the combination of a number of
coupled cells is useful. This suggest n-values between 200 and 800. Hence, Bogert’s
choice remains noteworthy.

The value of n defines the CP step size, �x, which value is necessary to define
impedance values of sections of the structure.

3.6 Extension to 2-D and 3-D

Although even the 1-D cochlea models usually evolve from a 3-D starting point, not
many 3-D and only a few 2-D models have been analyzed during the 1950–1980
period. The major reason is that the analytical solution of the 3-D fluid mechanics
was practically impossible; even more important, the 3-D dynamics of the fine
structure of the OC was impossible because of lack of accurate data. Although
computer power was increasing, it took additional time to achieve a reasonable 3-D
computation of the fluid mechanics.

The short-wave—long-wave dispute originated from different opinions about
how to reduce the 3-D structure to a 1-D model description. Although details of
his model may be questionable, it seems to be justifiable to state that the first
2-D analysis had been proposed by Ranke (1950) (e.g., Siebert 1974). After a
numerical analysis of an improved 2-D model by Lesser and Berkley (1972) several
other studies followed during the 1970s (e.g., Lien 1973; Viergever 1977; Allen
1977; Allen and Sohndi 1979; Steele and Taber 1979a; de Boer 1979) and 1980s
(e.g. Holmes and Cole 1984; Chadwick 1985; Diependaal and Viergever 1989).

The 2-D approach already gives a better physical description of the flow moving
to the CP than can be obtained form the 1-D model. For the incompressible fluid
approximation, mass conservation in the x � z-domain is expressed by Laplace’s
equation (3.1), or

@2�.x; z/

@x2
C @2�.x; z/

@z2
D 0: (3.32)

where �, introduced in Sect. 3.2 represents the commonly used potential functions,
which relate the fluid particle velocity components (u in the x-direction, and w in
the z-direction) as:

u.x/ D @�.x; z/

@x
and w.z/ D @�.x; z/

@z
:x (3.33)

Now we have additional boundary condition for the z-dimension, viz., no fluid
flow through the (hard) walls. This means that w.z/ is 0 at the walls. (The similar
condition at the apex does apply to the 1-D case already.) Equation (3.32) also
applies directly to the pressure (consider the proof as an exercise):

@2p.x; z/

@x2
C @2p.x; z/

@z2
D 0: (3.34)
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Next, combine (3.34) with the CP wave equation (3.13) and use the function
k2.x; !/ defined in (3.17), to obtain:

@2p.x; z/

@x2
D �k2 p.x; z/ and, (3.35a)

@2p.x; z/

@z2
D k2 p.x; z/: (3.35b)

In general, k is complex, or k.x; !/ D kr.x; !/C iki.x; !/, as stated before.
The considerations given in Sect. 3.3 with regard to the different cases of k are

still applicable, but there is an additional boundary condition for the z-direction.
A real positive k2 is equivalent to real wave numbers in the x-direction, which
implies imaginary wave numbers, or attenuation or amplification13 in the z-direction
and vice versa.

The solution for the pressure wave in the z-direction at x D x1 is straightforward:

p.x1; z/ D Cx1;1ek.x1/z C Cx1;2e�k.x1/z (3.36)

The boundary condition at z D h, at the wall, must imply that at that point the
pressure gradient in the direction of the wall vanishes: @p.x; z! h/=@z D 0, and at
z D 0 the pressure at the CP is part of the trans-partition pressure. There is only 1
solution that meets the condition of the vanishing derivative. This is the solution

p.x1; z/ D Cx1;3 coshfk.x1/ .h � z/g (3.37)

in which case the derivative, which contains sinhfk.x1/ .h� z/g D 0 if its argument
approaches 0, or if z ! h, and Cx1;3 together with e.˙kh/ represent Cx1;1 and Cx1;2.
The remaining factor matches the condition at z D 0, or

p.x1; 0/ D Cx1;3 coshfk.x1/hg and Cx1;3 D
p.x1; 0/

coshfk.x1/hg : (3.38)

Given this profile we can also compute the average pressure over the height at
position x1:

p.x1; Nz/ D < p.x1; z/ >av(z)D 1

h

hZ

0

p.x1; z/ dz

D p.x1; 0/

coshfk.x1/hg
1

h

hZ

0

coshfk.x1/hg dz

D p.x1; 0/ tanhfk.x1/hg
fk.x1/hg D p.x1; 0/

˛.x/
: (3.39)

13The possibility of expanding solutions was discussed in Sect. 3.3, and can be neglected most of
the time.
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In a study that aimed to address nonlinear properties, Duifhuis (1988) introduced the
parameter ˛.x/ to insert a 2-D compensation term in the cochlear wave equation.
While still neglecting significant rotation effects it is possible to introduce a
correction factor in Euler’s equation (3.8) where the volume acceleration in the
x-direction is related to the pressure gradient in that direction. If there is not a pure
plane wave, i.e., if the pressure varies over z, then a first approximation of a better
solution is to use the average pressure value for the horizontal fluid, whereas for the
trans partition equation the pressure at z D 0 is relevant. For the plane wave these
are equal, in the 2-D approximation they differ by the factor ˛.x/ that was derived
above. Taking this into account in the wave equation just requires the modification
of k2 term to

k2.x/ D � 2i! � ˛.x/

hZCP.x/
: (3.40)

In the long-wave approximation the product k.x/h will be much less than 1, and
˛.x/ � 1. In the short-wave case, when k.x/h� 1 the tanh-function will approach
1, so that ˛.x/ � k.x/h. The combination of (3.40) and (3.39) leads to the following
equation for k.x/:

k.x/h tanhfk.x/hg D � 2i! � h

ZCP.x/
: (3.41)

This equation is equivalent to the eikonal equation in optics. It does not have an
analytic solution, but current tools in mathematical packages provide means for
efficiently finding numerical answers.14 It is used in the next section to compute
the energy flux through the cochlea.

The general solution for the pressure wave traveling in the positive x-direction is:

pv.x; z/ D p0 F.x/ coshfk.x/ .h � z/g exp

0
@�i

xZ

0

k.�/ d�

1
A: (3.42)

Note that z occurs only in the cosh term. The term F.x/ is relatively slowly
varying scaling factor. Finally, for a purely traveling wave, where k D kr represents
the wave number in the x-direction, the argument of the exponent reflects the phase
delay. The x-factor can be expressed in several equivalent forms, none of which
becomes very simple, e.g.,

F.x/ D k.0/h

tanh.k.0/h/

"
k.0/h=cosh2.k.0/h/C tanh.k.0/h/

k.x/h=cosh2.k.x/h/C tanh.k.x/h/

#1=2
1

cosh.k.x/h/
:

(3.43)

This solution is the WKB solution for the 2-D cochlea presented by Steele and Taber
(1979a) and by Viergever (1980).

14A simple Matlab c� script, named “eikonal.m” is available on the URL.
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In the 1-D long wave approximation k.x/ � 1 for all x, and in that case the
z-factor approaches 1, and F.x/ reduces to

p
k.0/=k.x/, which gives for the 1-D

long wave solution (3.31):

pv.x/ D p0
�
k.0/

k.x/

�1=2
exp

0
@�i

xZ

0

k.�/ d�

1
A: (3.44)

as was first shown by Zweig et al. (1976).
The 2-D approach is sometimes compared to the behavior of surface waves in

shallow water. The similarity is a relevant profile is apparent at a “surface,” and that
the scala wall has some similarity to the shallow bottom. Fundamental differences
are that the CP is not simply comparable to a water–air interface, and neither is the
CP impedance comparable to the water–air surface tension. A basic difference is
that the CP properties depend on place. Also, for CMs we usually neglect the effect
of gravity, which is crucial in surface waves. What remains is similarity in the fluid
motion. That is why a general application of the Navier–Stokes formulation remains
powerful, and the simplifications should be used with care.

One of the first 3-D studies, by Steele and Taber (1979b), presents a 3-D analysis
of the WKB approximation, but compares their results primarily to results of
hardware fluid mechanical models. Two conclusions of their parameter analysis are
that (1) the tapering of the scalae has little effect, and that (2) damping has also little
effect. Moreover, they can conclude from a comparison of 1-D, 2-D and 3-D results
that

the popular 1-D “long wavelength” mathematical model is virtually of no value for
quantitative investigation of cochlear function.

For the same parameters, the 3-D model gives a sharper peak. This is consistent
with the notion of the energy flux in the cochlea: for a narrow band signal, this flow
focuses at (or before) the point of resonance, and when it focuses more sharply in
the 3-D case—longitudinal and radial sharpening—it will generate a sharper peak.

3.6.1 Energy Flux and Dissipation

Before going into more detail about the flow of acoustic power or energy through
the cochlear fluid, we will take a closer look at these concepts. We start from the
well defined concepts of power P , expressed in W, the energy E, expressed in
Ws, J or Nm, and sound intensity I , expressed in W/m2. This is a good starting
point because power and energy are supposed to be common knowledge, and
acoustic intensity is presented in most acoustic textbooks. Much less common are
the acoustic definitions of sound energy and sound energy density, and of sound-
energy flux, sound-energy flux density and sound-power density. Proper definitions
are given in the acoustic standard ANSI S1.1-1994 (including 2005 erratum).
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Fig. 3.7 Energy flux profile in the upper scala computed for a 1750 Hz tone. The flow vectors
are scaled linearly, and matched to the horizontal and vertical length scales. The height scale is
expanded. Near the base (x D 0) the profile is that of a plane wave. At x D 10mm, it becomes
apparent that the flow near the CP begins to increase, and such at the cost of the flow at greater
heights. The associated change in direction becomes clear at 12 mm, and now the flow into the CP
(at z D 0) shows increasing dissipation. All power has vanished before it could reach x � res, the
1750 Hz resonance point, and no transport occurs beyond that point

The important characteristics are:

sound energy: amount of energy exclusively attributable to sound (J)
sound energy density: sound energy per volume unit (J/m3)
sound-energy flux: flow of sound energy per unit of time through a

specified area (W); symbol, J
sound-energy flux density: D sound intensity I (W/m2)
sound-power density: D sound intensity I (W/m2)

Even though a full 3-D analysis will give a more precise result, the somewhat
simpler 2-D analyses already provides a reasonable insight in the energy flux trough
the cochlea. The result of the analysis is, as mentioned in Sect. 3.2, that the energy
flux starts as a laminar scalar fluid flow, carried by a plane wave in apical direction.
As the point of resonance approaches, part of the flow tends to be directed toward
the CP, where it is dissipated. Figure 3.7 shows the energy flux profile, as computed
using (3.42) and (3.43), computed for a sinusoidal stimulus of 1750 Hz at the
arbitrary stapes pressure of 1 Pa. The pressure value is arbitrary because the system
is linear, and the response profile is scaled linearly to provide a reasonable flow
profile.

The energy flux in, e.g., the upper duct is J D J.x;w/ with the components:

J.x/ D < p.x; z/ � u.x; z/ >
J.w/ D < p.x; z/ � w.x; z/ > (3.45)
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where the � implies a dot product. The particle velocity at .x; z/ has the components
u in the x-direction and w in the z-direction. The particle velocity uv.x; t/ was given
in (3.8). Dropping the index for scala vestibuli, and taking the FT, we are left with

u.x/ D � 1

i!�

@p.x; z/

@x
; and (3.46)

w.z/ D � 1

i!�

@p.x; z/

@z
: (3.47)

We obtain the derivatives from (3.42), the WKB approximation for the pressure.
The z-derivative is simple because z occurs only in the cosh function; x, however,
occurs in the factor, and in k, which appears in two places.

With some effort, it should be possible to verify that

@p.x; z/

@x
D p.x; z/

�
F 0.x/
F x

� i k.x/C .h � z/
@k.x/

@x
tanhfk.x/.h � z/g

�

(3.48)

@p.x; z/

@z
D �p.x; z/ k.x/ tanhfk.x/.h � z/g (3.49)

which implies that the averaged pressure–velocity dot products (3.45) reduces to the
form < p � p c >, with the result 1

2 jp2j <fcg, or:

J.x/ D jp
2.x; z/j
2! �

<
�

i

�
F 0.x/
F.x/

� i k.x/C .h � z/
@k.x/

@x
tanhfk.x/.h � z/g

	�

J.w/ D jp
2.x; z/j
2! �

< Œ�ik.x/ tanhfk.x/.h � z/g� (3.50)

These results are used to generate Fig. 3.7.

3.7 Micromechanics

The CP contains the sensory cells (IHCs and OHCs) that transmit information to the
auditory neural network. One basic question regarding the microstructure concerns
the quantitative relation between information transmission and energy dissipation.
How much of the acoustic power that enters the cochlea is transmitted (converted)
to the brain or dissipated (and lost) in the transmission process, and how much is
lost in viscous and other (fluid-) mechanical losses.

Obviously, the microstructure of the cochlear partition must contain the infor-
mation that is necessary to answer the above questions. Over the last decades some
progress has been made into this direction, but almost all of the many studies in this
area remain in the initial phase of probing interesting ideas.
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The basic reason for this is that the structure is too complex. Selecting a few
parameters from the complete set tends to remain arbitrary. On the other hand, the
full set is too large. In that case, one is easily fooled by a simplistic model with too
many free parameters that cannot be based on proper independent information.

Over the last decades a significant amount of information has become available,
in particular, focused on hair cell properties. More detailed structural information
has been presented about the organ of Corti structure. Tests have been done
concerning the mechanical role of the tectorial membrane, or just a partial hair cell
fine-structure. Partial, because so far, all studies that consider the cross-sectional OC
and scalae seem to limit analysis of cell structure to connections within that plane,
disregarding, e.g., the spiral structure in the longitudinal direction (Corti’s tunnel).

In other words, to make progress, work needs to be done in order to be able to
estimate a sufficiently accurate structure based on verified data.15 The situation is
very similar to the one described by Holmes and Cole (1984), from the introduction
of which I take two quotes:

The problem is made more difficult by the current state of the experimental evidence that is
available.

and

It is with this rather unsettling state of affairs that we consider the three-dimensional
hydroelastic model of the cochlea that is outlined below.

Almost all modeling and analysis that has been done along this line used linear
analysis tools that are not very helpful for the further analysis of the fundamental
nonlinear properties.

3.8 Problems with the Linear Cochlea

Some nonlinear hearing phenomena had been know for centuries, but mostly
they tended to be seen as by-products of auditory processing. However, claims
emerged that they probably were more than just that. Moreover, additional nonlinear
phenomena were observed, all pointing to a cochlear source. In this section, we list
the most relevant phenomena that arose before 1980. They will be discussed in more
detail in Chap. 4

• Dynamic Range
The dynamic range of an intact human ear is between 100 dB and 120 dB.
Sensitivity along the scale is relative (�I=I is approximately constant). At the
output, the auditory nerve fibers, the dynamic range is probably between 30 dB
and 50 dB. The range is compressed by a factor between 2 and 4.

15During the 2008 International Workshop on Mechanics of Hearing about half of the contributions
related to microstructure or substructure properties.
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• CTs
Aural CTs, known to be audible for centuries, have now been proven to originate
within the intact cochlea. They clearly are (by)products of a nonlinear process.

• Emissions
Toward the end of the 1970s, the first data on evoked (Kemp 1978) and later
on spontaneous auditory emissions were presented (Kemp 1979). In particular,
the presence of spontaneous emissions suggests a cochlear source with nonlinear
properties.

• Linearization through OHC loss
A final important finding is that cochlear hearing loss reduces or even eliminates
otoacoustic emissions and CTs, and also linearizes the cochlea, thereby limiting
the input dynamic range to the output dynamic range. The hearing loss is
accompanied by the threshold increase.

3.9 Where to Go from Here?

All observed nonlinear phenomena, some quite old and some very new, indicate
at this point that a linear model of the cochlea will not be a reasonable model for
the normal mammalian cochlea. Some of the nonlinear effects, like CT generation,
and otoacoustic emission persist to very low levels, even below threshold. Hence,
modeling the nonlinearities as minor distortion effects of a basically linear system
is questionable. Apparently, we are unable to define below what level the system
becomes linear. It is not obvious if there is only one major source of nonlinear
behavior, or that more independent sources exist.

These considerations led us to a different approach to CMs modeling, viz.
to a time domain analysis of a nonlinear model. This approach comes with the
disadvantage that the tools for nonlinear system analysis are extremely limited, and
that the more common knowledge of linear analysis sometimes can put us on the
wrong track.

Part II will address these consequences. Selected implications are worked out in
Part III, together with some remaining open issues.
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Part II
Anatomy and Function

of the Nonlinear Cochlea

The second part of the book starts with a report of the experimental and theoretical
developments around 1980. It focuses on nonlinear phenomena, in particular on
oto-acoustic emissions. The interest in CT generation, and even more so in two-
tone inhibition or suppression, greatly diminished, although CTs interest soon came
back through DPOAEs.

The second chapter presents the core of this book: it proposes and develops
a time-domain model of the cochlea that can deal with the nonlinear problems
as elementary parts of an intact cochlea. The setup provides a working, and still
expandable, framework. Some of the first tests are mentioned in this part. Further
evaluation is postponed to Part III.



Chapter 4
Nonlinear Auditory Phenomena (I)
Knowledge Around 1980

Abstract This chapter describes characteristics of auditory phenomena that appear
to be attributable to a properly described nonlinear cochlea. In view of a reliable
quantification, the discussion is here largely limited to relatively recent experimental
data.

4.1 Aural Combination Tones

Aural CTs have been of interest to both musicians and scientists for a long time.
The scientist have presented detailed quantitative information and have developed
several hypotheses and theories, on the one hand based on mathematics and on
the other on anatomical and physiological knowledge. The following sections
will primarily address psychoacoustical, neurophysiological, and mathematical
developments. Distortion product otoacoustic emissions (DPOAEs) are addressed
in Sect. 4.4.

4.1.1 Psychoacoustics of Combination Tones

The term combination tone (CT) was introduced by Vieth in 1805 to denote a third,
lower tone that was perceived when two other tones were presented.

Weil es bequem ist, für ein einzelnes Phänomen ein einzelnes Wort zu haben, so sey es
mir erlaubt, diesen Ton, der aus der Combination der Schwingungen zweier anderer Töne
entsteht, Combinationston zu nennen.1

1Because it is useful to have a single term for a single phenomenon, I would like to be permitted
to designate this tone, which arises from the combination of the vibrations of two other tones, as
combination tone.

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 4,
© Springer Science+Business Media, LLC 2012
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Vieth reflects on the discussion amongst physicists and musicians, in particular in
the English journals of that time, and reports contradictory interpretations from
T. Young and J. Gough. Basically, Young proposes that the CT, because it sounds
very similar to the presented tones, is generated acoustically—proposing a similarity
with surface waves, which is disputed by Vieth—whereas Gough claims that it is
“mental and imaginary”. At the time, the frequencies of the CTs were marked by
musical notes, which are often not sufficiently accurate to characterize the CT as odd
(2f1�f2 family) or even (the difference tone f2�f1 and its overtones). Discussions
about the source remained overshadowed by the imprecision of the description of
the phenomenon for a long time. Helmholtz (1863), e.g., reports only the even order
difference tones (“differential tones” in Ellis’ 1877 translation) referring to those as
the first class, and he claims to have discovered himself a second class of summation
tones. He proposes that the source would be in the middle ear: eardrum and/or
ossicle joints, and that CT generation occurs only at high levels when the small
amplitude linear approximation of middle ear operation is no longer valid.

Accurate systematic studies of frequencies and strengths of the CTs were made
almost a century later, e.g., by Zwicker (1955) and Plomp (1965). The latter also
gave an extensive historical introduction. Starting with an analysis of available data,
Plomp arranges these in diagrams which are related to the groups of odd- and even-
order intermodulation products.

Combination Tone Terminology

The term combination tone originally just referred to an audible low pitched
third tone that becomes audible when a second tone is presented simultane-
ously to another tone.

From this point on, we will consider the primary tones to be purely
sinusoidal with frequencies f1 and f2, where f1 < f2. The tones have similar
amplitudes.

The audible CTs have frequenciesmf1�nf2, wherem and n are integers
and mf1 > nf2. The CTs belong to the even family if mC n (and therefore
also m � n) is even, and to the odd family otherwise.

In signal analysis, the family of components with frequenciesmf1 ˙ nf2
is called the family of intermodulation products, which arises with nonlinear
time-invariant systems (also called: systems with instantaneous nonlinearity).
Any such nonlinear function can be written as the sum of an even component
and an odd component (see Fig. 4.1).

It can be shown that an even nonlinearity only generates even order
intermodulation products, and an odd nonlinearity generates only odd-order
intermodulation products. Formally the overtones or harmonics also belong
to the family, but in those cases either m or n is equal to 0.

If the nonlinearity can be approximated by a power-law nonlinearity,
yD x� where � can be any real number, then the amplitudes of the intermod-
ulation products can be related analytically to the amplitudes of the f1 and



4.1 Aural Combination Tones 69

−2 0 2
−2

−1

0

1

2

−2
−2

−1

0

1

2

−2

−1

0

1

2

x

y

general: odd + even

−2 −20 2
x

even: y(x) = y(-x)

0 2
x

odd: y(-x)= - y(x)

Fig. 4.1 Schematic nonlinear functions. Left: a general arbitrary function can always be decom-
posed in odd and even parts. Middle: even function, output symmetric around vertical axis. Right:
odd function, output point symmetric with respect to origin

f2 components. This is straightforward for quadratic or cubic nonlinearities
(� D 2 or 3), but it can also be done for noninteger exponents. Of particular
interest for hearing is the case where � < 1. For that case the common Taylor-
expansion is rather useless (because of its very slow convergence), but the
related Bernstein-expansion is useful. The odd function shown in Fig. 4.1 is of
the type “compressive”, which means that the slope decreases with increasing
x. Similarly, the even function shown in the middle panel is of the type
“expansive”. But these relations were purely coincidental: both odd and even
functions can be either expansive or compressive.

The term CDT or cubic difference tone for 2f1�f2 (used, e.g., by Zwicker
1955, 1979 and Plomp 1965 any in many studies thereafter) is an unfortunate
misnomer, and should be avoided. It suggests, a.o., that 2f1 � f2 is (must be)
generated by a cubic nonlinearity (� D 3). The truth is that:

• Practically any odd nonlinearity generates 2f1 � f2, and other members of
the odd-order family.

• The auditory nonlinearity is not expanding whereas a cubic exponent is!

In addition, the pure cubic nonlinearity does not generate intermodulation
products beyond 2f1 ˙ f2, 2f2 ˙ f1, 3f1 and 3f2. So it misses distortion
products that are perceived, and overestimates others. A similar concern
applies to the use of the term quadratic for the difference tone, where even
order would be the appropriate alternative.

In line with the earliest reports (before 1800), only the CTs with fre-
quencies below the values of the primaries are perceptible. We show that
the other high-frequency CTs are also generated but not effectively fed back
into the cochlea; they remain masked below the excitation profile of the
primaries.
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Plomp’s diagrams provide numerical relations between the primary tone
frequencies and the CTs, covering intermodulation frequencies by straight lines.
All experimental points were on or close to the mf1 � nf2 lines. Most CTs occur
at m; n combinations for which the CT is lower than f1. Plomp also measured
the primary level thresholds that were required to elicit audible CTs, at the primary
frequencies 800 and 1,000, and 800 and 1,400. He concluded, a.o., that intra-subject
variability is large, that the predominant CTs occurred at f2 � f1, 2f1 � f2, and
3f1�2f2), and that CT thresholds were significantly lower for the smaller frequency
interval between the primaries. Plomp considered this to disprove the Helmholtz
hypothesis that CTs were generated in the middle ear.

Goldstein (1967) obtained estimates of the CT strength by two different tech-
niques: the loudness balance method, where the level of a presented single tone
is adjusted to match its loudness to that of the CT. Secondly, he proposed the
cancellation method, where the CT-percept is suppressed by adding a third tone
at the CT frequency and where phase and amplitude of the third tone are adjusted
to minimize the loudness level of the CT. The last method may seem cleaner at
first sight, but it should be noted that it involves three-tone interaction, which
complicates its analysis. The basic result, however, was very important: for equal
primary levels L1 D L2, the 2f1 � f2 CT was detectable down to threshold, and its
level changed linearly with the primary levels. This ruled out the low-level linearity,
and the cubic nonlinearity, because for a cubic nonlinearity the distortion product
amplitude should grow as A21 A2 (see Table 4.1), and therefore the level growth
should follow�LCT D 2�L1 C�L2.

The results were confirmed in an extensive study by Smoorenburg (1972a), who
varied levels and frequencies of the primaries systematically. An example of his
results is shown in Fig. 4.2. In a similar experiment, Zwicker (1979) measured
four to five points on the tops of such curves, over a range from 30 to 70 dB.
For f1 D 1;620 and f2 D 1;728Hz, i.e., with a smaller ratio f2=f1 D 1:067, he
finds somewhat largerLCT levels. Above 40 dB, the peaks grow practically linearly
with level. The decaying slopes for L2 > L1 tend to be steeper than �1 dB/dB
(estimate is based on two points per line), the increasing slopes cannot be estimated
reliably. Zwicker concludes:

Nonsimultaneous (Smoorenburg) as well as simultaneous (Zwicker) measurements on the
time and duration-dependence of the cubic difference tone have indicated that the nonlinear
characteristic involved works instantaneously, similar to the behavior of masking.

We will address the masking behavior in Sect. 4.2.1.
The point raised here is: are we dealing with an instantaneous nonlinearity, or

with a feedback system? A feedback system could be linear and still compress the
dynamic range, but it would not generate “instantaneous-like” distortion products.
On the other hand, if a feedback is extremely fast, it remains to be seen if it can
be distinguished from an instantaneous nonlinearity. This issue is of theoretical
interest, and was raised explicitly by Smoorenburg (op. cit.). On the basis of his
data, he allows for a feedback within 20 ms. [Nowadays a 20 ms feedback would be
well discernible from a 2 ms or faster feedback.] Others apparently just assumed an
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instantaneous nonlinearity. Goldstein (op. cit.) used the term essential, and before
that the primary question was not so much the timing, but the size and range of
occurrence of the level effects: distortion was generally assumed to take place at
(very) high levels, similar to what was known from many instruments. Zwicker and
Plomp found that the occurrence extended to much lower levels. In this context,
Smoorenburg proposed
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Assume that the nonlinearity can be described by a �th-law device described by the odd
transfer function f .x/ D x� if x > 0 and f .x/ D � jxj� if x < 0I � > 0; � ¤ 1.
A canceled CDT means that the Fourier component 2f1 � f2 at the output of the �th-law
device equals zero.

and continues with the implication that this type of nonlinearity compresses the
response amplitude but does not change the relative shape with level, as long as all
components change by the same amount (amplitude ratios constant). He concludes
the paper with the remark that both generation of combination tones and suppression
effects (see Sects. 4.1.4 and 4.3, in particular the reference to Engebretson and
Eldredge 1968) might be explained by a compressive nonlinearity as the �th-law
device with 0 < � < 1.

4.1.2 Neurophysiology of Combination Tones

The neurophysiology of CTs started with the analysis of whole nerve responses
around 1940 (see footnote 13 on page 11), the progress of which continued for
several decades (e.g., Dallos 1973, Chap. 6),2 until significant progress was made
with the recording and analysis of single nerve responses.

A crucial neurophysiological experiment was set up by Goldstein and Kiang
(1968). Action potential responses (spikes) in auditory nerve fibers were recorded
from cats. The stimulus contained f1 and f2, which could be complemented with a
third tone that was used for cancellation. Most stimuli were sufficiently of low-
frequency to provide phase locking spike responses. Hence, responses could be
synchronized to the primaries f1 and f2 and to the CTs, as 2f1 � f2 and 2f2 � f1.
Stimulus frequencies were adjusted to a fiber’s CF, such that 2f1 � f2 was close
to fCF. For relatively close primary frequencies (f2=f1 � 1), the response would
provide synchronization to the primaries (f1 and f2) and to 2f1 � f2 over a large
range of amplitudes, and possibly to 2f2 � f1 over a much smaller range. For a
somewhat larger difference between the primaries, several cases were reported here
the response to the primaries was lacking completely, and yet a response to 2f1�f2
was distinctly present. Their Fig. 5, from a fiber with a low spontaneous activity,
is particularly convincing, because it shows no response to f1 or f2, which had a
frequency ratio 3:4, and the response synchronized to the fundamental or difference
tone at 1�f0 [f2�f1 D .4�3/�f0, but in this case also 3f1�2f2 D .9�8/�f0]
shows synchronization to 2 � f0 [2f1 � f2 D .6 � 4/ � f0, and in this case also
2f2 � 2f1 D .8 � 6/ � f0]!

2The occurrence of subharmonics and fractional harmonics in cochlear potentials is an additional
nonlinear phenomenon (see e.g. Dallos 1973, Chap. 6 Sect. III for a review) which is not
explainable in terms of passive NL processes. However, these products can be generated by active
NL processes, which are discussed in Chap. 5.
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The response synchronized at the CT could be suppressed by adding a
cancellation tone, just like in the psychophysical experiments.

Goldstein and Kiang concluded, a.o., that

Neighboring spectral components f1 and f2 in the acoustical stimulus interact to produce
both physiological and psychophysical responses that are equivalent to responses produced
by a spectral component at the combination frequency 2f1 � f2, which is absent from the
original stimulus spectrum.

The equivalences found in the physiological experiments reported above are:

(a) synchrony between the neural responses and individual cycles of 2f1 � f2
(b) the stimulus tones can be chosen so that the fiber responds only to the CT (2f1 � f2)

when the stimulus tones (f1 and f2) are outside the fiber’s tuning curve, although the
fiber responds to all three tones when they are all within the tuning curve

(c) synchrony with 2f1 � f2 can be canceled without increasing the average response rate
of the fiber.

They also conclude that the cochlea must contain a nonlinear mechanism that
accounts for 2f1 � f2 generation, even though the nature of the nonlinearity
remained a puzzle, except for the following clear constraints: the nonlinearity
should be predominantly odd order, approximately level normalized, and frequency
dependent.

The results were generally supported by later studies, e.g., in a study of AVCN
responses by Smoorenburg et al. (1976) although Kim et al. (1974) report a faster
(than “linear”) decrease of CT responses at low levels, which leads them to the
conclusion that the AN response to a CT does not show an essential nonlinearity.

4.1.3 Mechanics of Combination Tones

Although the mechanical studies of BM responses after 1970 show nonlinear behav-
ior, it took approximately two decades before reliable and repeatable CT recordings
could be reported (Nuttall et al. 1990; Robles et al. 1990, 1991; Ruggero et al. 1992).
As suggested by Ruggero et al., this might have been due to

a combination of inadequate vibration-measurement technologies and the poor physiolog-
ical state of the experimental cochleae. During the last year mechanical CTs have finally
been measured, using laser interferometry, ...

Ruggero is cautious about the state of their own data, because the effect of primary
frequency separation was virtually insignificant, in contrast with physiological and
psychophysical data.

In most other experimental studies of CMs, the measurements focused on other
aspects of linear behavior, such as level dependence, as in Rhode’s (1971) classical
measurements.
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4.1.4 Mathematics of Combination Tones

Since the Taylor expansion is a common, and mostly very useful tool for the analysis
of arbitrary functions, it should be no surprise that it also has been used to describe
auditory nonlinearity. The series provides integer-power terms, so that the expansion
for y D y.x/ has the form:

y.x/ D
1X
nD0

an x
n where n-values are integer. (4.1)

Unfortunately, all terms with an exponent>1 are of the expansive type, although the
nonlinearity to be matched very often is compressive. The imperfect match implies
that the series converges slowly (requires a large number n-terms), and over a very
restricted range only (limits xmax). Compressive functions can be expanded more
efficiently with compressive basis functions. A good example is the �th-law device,
proposed by Smoorenburg (see Sect. 4.1). More information about the properties
are given in Sect. 9.1, which gives the responses of the �th-law device to single tone
and two-tone stimuli. Some amplitude factors obtained for the two-tone stimulus
are presented in Table 4.1. Note that the sum of the powers found in the amplitude
terms is always equal to the value of the power of the power-law device. This is
also the case for quadratic and cubic nonlinearities. This factor is corrected by the
modified Bennett function which plays the most important role in the range where
the amplitudes of the tones are comparable, and the nonlinear interaction becomes
prominent.

For comparison, Table 4.1 also gives the response amplitudes for quadratic
and cubic nonlinearity, which can be derived directly for the stimulus x.t/ D
A1 cos.!1 t C �1/C A2 cos.!2 t C �2/:

yq D A21 cos2.!1 t C �1/C 2A1A2 cos.!1 t C �1/ cos.!2 t C �2/C
CA22 cos2.!2 t C �2/; (4.2)

D 1

2
A21 f1C cos 2.!1 t C �1/g C A1 A2 cos..!1 C !2/t C �1 C �2/

CA1 A2 cos..!1 � !2/t C �1 � �2/C 1

2
A22 f1C cos 2.!2 t C �2/g; (4.3)

yc D A31 cos3.!1 t C �1/C 3A21A2 cos2.!1 t C �1/ cos.!2 t C �2/C
C3A1A22 cos.!1 t C �1/ cos2.!2 t C �2/CA32 cos3.!2 t C �2/; (4.4)
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Table 4.1 Amplitudes for lower order intermodulation components in two-tone responses of
quadratic, cubic, and �th D law devices

Odd �th-law device

Components Quadratic Cubic Case A1 > A2 Case A2 > A1

0 (DC)
1

2
.A21 C A22/ 0 0 0

f1 0
3

4
A31 C 3

2
A1A

2
2 2A�1B10 2A1A��1

2 B01

f2 0
3

4
A32 C 3

2
A21A2 2A��1

1 A2B01 2A�2B10

f2 � f1 A1A2 0 0 0

2f1
1

2
A21 0 0 0

2f2
1

2
A22 0 0 0

2f1 � f2 0
3

2
A21A2 2A��1

1 A2B21 2A21A
��2
2 B12

2f2 � f1 0
3

2
A22A1 2A��2

1 A22B12 2A1A��1
2 B21

3f1 0
1

4
A31 2A�1B30 2A31A

��3
2 B03

3f2 0
1

4
A32 2A��3

1 A32B03 2A�2B30

3f1 � 2f2 0 0 2A��2
1 A22B32 2A31A

��3
2 B23

3f2 � 2f1 0 0 2A��3
1 A32B23 2A21A

��2
2 B32

Note that the sums of the powers of the amplitudes or amplitude products correspond to the overall
device power

C cosf.2!1 � !2/t C 2�1 � �2/gg C

C3
4
A1A

2
2 fcosf.2!2 C !1/t C 2�2 C �1/g C

C cosf.2!2 � !1/t C 2�2 � �1/gg C

C
�
3

2
A21A2 C

3

4
A32

�
cos.!2 t C �2/C 1

4
A32 cosf3.!2 t C �2/g: (4.5)

It is noted in Sect. 9.1 that the sign of the Bennett function depends on the indices
and value of the power �. For instance, for 2f1 � f2 the sign flips if � changes
from above 1 to below 1, or from compressive to expansive. This is relevant for the
study of some observed phase conversions in the data. Some of the low-level CT
amplitude data (e.g., Smoorenburg 1972a; Zwicker 1979) indicate that at the lowest
levels, below 30 dB SPL, the growth of the CTs follows an underlying expansive
nonlinearity. This issue will come back at several points in this study.
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The primary strength of the general power-law nonlinearity is that over a
significant dynamic range the characteristics are approximated closely by a single
�th-law term.

4.2 Two-Tone Level effects

4.2.1 Masking

Some of the first accurate quantitative tone-on-tone masking experiments, where a
pure tone masker M masks a probe P , making it undetectable, were carried out by
Wegel and Lane (1924). This was half a century after Mayer (1876a,b) had reported
a distinct asymmetry in tone-on-tone masking: a low-frequency could mask a high-
frequency tone, but a high-frequency tone was unable to mask the low-frequency
probe tone. In Wegel and Lane’s systematic level study (half a century later, better
controllable equipment), the masker level required to mask a certain fixed probe tone
was studied for probes between 200 and 3,500 Hz, and maskers between 150 and
4,500 Hz, depending on the probe frequency. Two of their datasets are presented in
Fig. 4.3. As long as the masker frequency is above the probe3 frequency, the growth
of masking follows a slope <1; for greater masker frequencies fM > fP increases
to values above 1. Note that the scales are logarithmic amplitude scales: a factor of
10 corresponds to a 20 dB level difference.

Basically, later studies confirmed Wegel and Lane’s results. Better control of
signal quality over a large range of levels, in combination with techniques to avoid
difficulties of different detection criteria (cf., e.g., beating vs. “masking”) only
changed some minor details. The probably best known second study is that by
Egan and Hake (1950). They presented predominantly masking patterns (termed
“masking audiograms”) for fixed maskers (their Figs. 1, 2, 5–8) at 410 Hz, and
two masking growth figures, similar to Fig. 4.3, but only for masker frequencies
above the probe frequency. Maskers were either pure tones or narrow bands of noise
(3 dB bandwidth: 90 Hz). For fP ! fM the growth of masking tends to be linear,
although the linear range is possibly smaller for the tone masker (40–80 dB) than
for the noise-band (30–90 dB). More remote maskers show a steeper slope. The
“masking audiograms” show the effect in a different way: around the noise-band
masker the threshold growth linearly with masker level, for higher frequencies we
see “upward spread of masking.” This term denotes the effect that a tone or a narrow
band of noise easily mask a signal that is higher in frequency: the effect reported
by Mayer (see above). All data support that this hf-expansion increases with
level.

3In several older studies, the probe has been indicated as signal, and its frequency was denoted
by fS.
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Fig. 4.3 Two from the nine tone-on-tone masking graphs presented by Wegel and Lane in 1924
(their Fig. 3). The figures present the amount of masking that is produced at a fixed probe frequency
by maskers of different frequencies, as a function of masker level. Intersection points with a
horizontal line are equivalent to tuning “curves.” The curves are “corrected” representations of the
raw data, some of which are presented in their Fig. 2. Reprinted figure with permission from RL
Wegel and CE Lane, Physical Review 23, p.266, 1924. Copyright 1924 by the American Physical
Society

Small (1959) presented masker profiles for fixed probes, or masking tuning
curves, which puts steep and shallow masking slopes at different sides, but the
effect is the same. Asymmetry in masking, and an increment with level that is
approximately linear if fP� fM, growth more slowly for fP>fM, and faster if
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fP<fM, thereby broadening the masking tuning curve particularly towards lower
frequencies. Small’s results were confirmed, e.g., by Vogten (1978a,b) who also
showed Iso-LM curves, which look like horizontally flipped masked threshold (e.g.,
his Fig. 7 in 1978b).

The important point from these data is that:

• All data confirm the asymmetry of masking (the upward spread of masking) at
least at medium (�45 dB) or higher levels; at very low levels the asymmetry is
not obvious.

• The amount of masking is approx. linear if probe and masker frequencies are
similar (and beating is avoided), but it deviates strongly from linear behavior if
probe and masker frequencies are different.

The conviction that the cause of this effect is most likely of cochlear origin
is supported by the finding that after hearing impairment of known or suspected
cochlear origin, the growth of masking changes considerably (see, e.g., Steinberg
and Gardner 1937; Smits and Duifhuis 1982).

4.2.2 Two-Tone Suppression

Auditory two-tone suppression was first demonstrated in neurophysiological exper-
iments (Sect. 4.2.2.1). Originally these investigators referred to the phenomenon as
“two-tone inhibition,” but it did not take too long to ascertain that the phenomenon
was not comparable to known neural inhibition. Instead, it primarily reflected a
nonlinear cochlear process, which was also observable in other cochlear responses,
and was affected by cochlear damage.

4.2.2.1 Neurophysiology

During the 1960s, Nomoto et al. (1964) and Sachs and Kiang (1968) demonstrated
the first two-tone suppression data from auditory nerve fibers. Originally the term
“(lateral) inhibition” was used, and it remained to be used in the field until about
1975. Nomoto et al. measured inhibition effects in auditory nerve fibers of the
monkey. Sachs and Kiang confirmed the basic findings in the cat. They demonstrated
that the spike rate response to a tone could be reduced by the simultaneous
presentation of a second tone. Currently, the first tone is called the suppressee, the
second the suppressor. A tone can be active as a suppressor at frequencies and levels
where its own rate response is negligible. It was clearly demonstrated that response
reduction pertained during the interval that the suppressor was present, and as long
as the suppressor was in a certain frequency range around the suppressee, or probe
tone. Over the next decades many additional studies have been added.

A schematic picture of the two observed suppression areas is given in Fig. 4.4,
after their Fig. 11. The point at CTCF (Constant Tone at CF) indicates frequency
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and level of the suppressed tone (the suppressee), and the response area boundary
represents a standard tuning curve at CF. Generally, two separate inhibitory or
suppression areas can be found, partly outside but overlapping the response area.
These areas show asymmetry: at the steeper, hf-slope of the tuning curve the
suppression area remains rather narrow, and can extend down to (or even below) the
CTCF level; at the lf-side the slopes of the suppression area are shallower, especially
the lower boundary, and more remote from the CTCF point. The extension of the
lower suppression area over the frequency axis is greater, and over the level axis
shorter than at the hf side.

The high-frequency branch of the suppression areas was also observed in the
squirrel monkey by Rhode (1977). His measurements required relatively high SPLs,
and showed optimal suppression for fsuppressor=fCF � 1:14.

Later studies by (e.g. Geisler and Nuttall 1997) suggest a distinction to be made
between phasic and tonic suppression, in order to explain the different behavior
between high-frequency and low-frequency (re CF) suppression. We have not yet
fully accepted or checked that explanation, and consider it a topic for further study.

4.2.2.2 Psychophysics

A few years later, Houtgast (1972) successfully presented a psychophysical coun-
terpart of two-tone suppression, at that time also under the label “lateral inhibition.”
He developed the paradigm pulsation threshold to successfully measure the suppres-
sion of the perceived strength or loudness. In short: a tone that acts as suppressee
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(at f1) is suppressed (inhibited, partially masked) by a simultaneous suppressor
(at f2), for a duration of the order of 100 ms (in this experiment: 125 ms). This
two-tone complex was presented alternately with a probe tone at the suppressee
frequency, so that pitches of the two were equal. Phase discontinuities at the
transitions were avoided by using a single carrier. With a probe tone of the same
duration, he presented stimuli at a repetition rate of about 4 Hz. The idea was that
if the suppressor inhibits the response to the suppressee, then the amplitude would
go up and down at 125 ms intervals, generating a perceived loudness modulation
with a period of 250 ms. If the modulation depth would be more than about 1 dB, it
would be detectable as a 4 Hz amplitude modulation. Adjustment of the level of the
comparison tone then allows the observer to minimize this amplitude modulation.
At the point where the modulation is no longer audible, the observer has reached the
pulsation threshold level.

In addition, Houtgast also used a more standard forward masking technique.
Houtgast measured suppression for a fixed suppressor, e.g., at 1 kHz and 60 dB,

for variable suppressees at 40 dB. He found significant suppression for a suppressor
frequency above the suppressee, and no significant effect if the suppressee was
above the suppressor. This behavior is in agreement with the prediction from a
horizontal cross-section of Fig. 4.4 below the lf suppression area.

Duifhuis (1980) presented individual two-tone suppression data from three
subjects. His subjects measured vertical cross-sections of Fig. 4.4 for suppressees at
1 kHz, at several levels, and for a number of different suppressor frequencies, both
below and above 1 kHz. For S:HvC, a suppression area plot was drawn for three
“CTCF” levels (Fig. 4.5). The general shape is very similar to the auditory nerve
data from Sachs and Kiang. It was also shown that the suppression effect reduced,
or even disappeared, when the experiment was repeated against a sufficiently strong
white noise background.
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4.3 Theoretical Steps

Several ideas about the mechanism(s) underlying two-tone suppression and CT
generation have been developed during the seventies. They were inspired by the
successful experimental results on two-tone suppression, the revived interest in CTs
(in particular 2f1 � f2) and in nonlinear growth in masking. One of the major
problems with interpreting the results was, and still is, that although the knowledge
of linear system analysis and signal detection theory was at a more than adequate
level, the knowledge of nonlinear systems was and is not.

We will discuss some of the steps that were set during this decade. They were
useful in sharpening the tools. But awareness that nonlinear analysis had to restart
from the beginning did not really catch on. Solutions were sought for in small
modifications of proven linear tools.

We start with the introduction of a study by Pfeiffer (1970) who concluded that

the “inhibition” is easily explained by signal suppression inherent to bandpass
nonlinearities.

The paper introduced the BPNL (bandpass nonlinear) model into cochlear analysis.
Actually, it was a follow-up on a proposed analog model presented by Engebretson
and Eldredge (1968) to investigate cochlear microphonic responses to single tones
and two tones. The BPNL acronym was introduced somewhat later. The model
contains a single cube-root nonlinearity f .u/D k u1=3, sandwiched between two
bandpass filters (Fig. 4.6). The cochlea could then be modeled as a bank of
parallel BPNL systems. The NL element could be identical in all BPNLs of the
bank. The type of interpretation that uses two filters, led to—or supported—the
introduction of the term second filter. BPNL elements have in common with a
linear filterbank that they operate unidirectionally.4 A number of later studies has
used (M)BPNL filter-banks (with the additional M for multi) or similar networks
(e.g., Duifhuis 1976; Goldstein 1990).

Kim et al. (1973) presented a nonlinear model that looks somewhat like a larger
section from a cochlea model. A CP-point is modeled by ten linked nonlinear

s(t) r(t)
H1(ω) NL H2(ω)

Fig. 4.6 The BPNL structure: a time-invariant nonlinearity NL is placed between two bandpass
filters, H1.!/ and H2.!/. The first limits the input frequency band, the second reduced harmonic
distortion (overtones), but allows intermodulation within the passband

4Actually, in a linear system, any feedback from the system to a source is usually limited to proper
use of the input impedance. This works fine for stationary responses. For nonlinear systems, this
simplicity, unfortunately, breaks down completely, and unidirectional coupling is clearly incorrect,
because it does not allow distortion products to couple back into the system. The point will be
addressed in more detail in Sect. 5.1.3.2.
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oscillators, but with unidirectional coupling, and without fluid mass inertia involved.
This puts it in the category of nonlinear filterbank models, where each line is
a 20th order system. Nonlinearity was introduced in the damping term in each
2nd order section. Assuming a simple parabolic damping profile leads to an
output/input power-law relation with a power of 1/3, equal to the value proposed
by Pfeiffer. This leads to odd-order nonlinear behavior, with odd-order CTs. Kim
et al. emphasize nine different nonlinear phenomena that had been reported either
from basilar membrane data, cochlear microphonics or single nerve data, or in
combinations. The open points in their matrix have been filled up later, and some
items have been modified by newer data which showed that significant nonlinearity
was observable everywhere. Their major argument to explore the parabolic damping
nonlinearity was that this would provide nonlinear compression, decreasing Q with
level, and generation of odd-order CTs, as well as the other points from their list.5

The correlation hypothesis was not shared by everybody, others addressed different
phenomena separately.

Sachs and Abbas (1974, 1976), e.g., focused on the auditory nerve response
and assumed a strong effect of saturation (including a power �1.8) in addition to
a nonlinear term that would apply at levels above 73 dB. However, accumulating
data from related experiments, including more recent studies of CMs, favor the
interpretation that the effect is primarily of cochlear origin.

Hall (1974) made other combinations. He started from Peterson and Bogert’s
transmission line model, and knowing later developments at Bell Labs (e.g.,
Flanagan 1962, and Schroeder 1973) analyzed the properties of a 175 element
transmission line model. He started to model CT generation, and using similar
arguments as Kim et al., assumed that a major nonlinear contribution should be
attributable to the damping. Goldstein and Kiang’s data showed that the CTs must
be present within the cochlea. Hall compared both odd-order nonlinearity (with
a parabolic damping profile, similar to Kim et al.) and a combined version with
an additional linearly increasing damping term, which provides an even nonlinear
behavior. His basic conclusion was that both even-order and odd-order DPs are
probably generated within the cochlea. Later he used the same approach to analyze
two-tone suppression (Hall 1977).

Duifhuis (1976) also started with a (M)BPNL network where the nonlinearity
was implemented as a �th-law device, but with a power of about 0.6 rather than
the cube-root value proposed above. This value was also claimed to fit Houtgast’s
psychophysical two-tone suppression data (Sect. 4.2.2.2).

5In this chapter, we reduced the number of topics that appear in the literature as relevant and related.
Our primary argument is the conviction that through renewed insight some of the different relevant
studies reflect images, or sides, of the same phenomenon rather than different phenomena.
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4.3.1 Summarizing the Seventies

Theoretical studies converged at the notion that the cochlear nonlinearity is
compressive. The nonlinearity is apparent before the neural transduction process:
some of the nonlinear distortion products propagate along the cochlear partition.
This propagation is an unavoidable, natural spin-off of a transmission line model,
i.e., a model in which consecutive elements are coupled by the cochlear fluid.
Filterbank models, on the other hand, are traditionally conceived to be constructed
with unidirectionally coupled elements. Thereby they generate a number of
problems, some of which are reduced by the introduction of a second filter in
every band.

Although the discussion was shaken up by the additional otoacoustic emission
data, the development did not yet make the choice between the two options
sufficiently obvious to lead to a general choice. In a number of cases, the choice
for a filterbank model was primarily based on practical arguments for technical
applications. Unfortunately, this may have slowed down comprehension of the
underlying biophysics.

Next we have to go into the otoacoustic emissions in some detail, and analyze
where new elements have to be inserted in the cochlea models.

4.4 Auditory Emissions

Toward the end of the seventies Kemp presented the first evoked auditory emission
data (Kemp 1978), followed by reports of recordings of spontaneous auditory
emissions (Kemp 1979a,b). Kim et al. (1980) and Wit and Ritsma (1980) were
among the first to confirm Kemp’s results, with which they had been confronted
at the 1978–Workshop in Münster, organized by Hoke and De Boer (1979).
They also presented possible theoretical interpretations, somewhat different from
Kemp’s first ideas. Kemp focused on reflections from impedance transitions or
discontinuities within the cochlea, and did not directly imply nonlinear behavior. He
also recognized the active properties of the emissions, which he related to the ideas
presented by Gold in 1948 (see also footnote 10 in Chap. 3). Both Kim et al. and
Wit et al. suggested a cochlear mechanism with local negative damping, i.e., with a
net local power supply rather than power dissipation.6 In the first proposal activity
is limited to a specific area, basalward of the site of maximum excitation. In the
second proposal it is stabilized by the specific local damping profile. The papers
were presented at the 5th International Symposium on Hearing (Noordwijkerhout)
where Johannesma, one of the participants, suggested that a Van der Pol-oscillator
would be a good model for spontaneous emissions. It has negative damping for small

6Nowadays this property is usually denoted as cochlear activity, or active behavior.
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amplitudes (or velocities) only, and stabilizes rather quickly to a positive damping
value with the quadratic damping increase (with increasing velocity) (Johannesma
1980). This oscillator produces a stable limit cycle oscillation. In both cases, some
local activity is supposed to be present. Note that the damping nonlinearity is of
the same type as the compressive nonlinearity mentioned above. A parabolically
increasing damping can be shown to generate an input–output compression with
exponent 1/3, as had been proposed by Pfeiffer for the BPNL model (Sect. 4.3).

Cochlear emissions have become a popular research topic, which has suc-
cessfully provided clinical applications as it provides noninvasive tool for direct
measurement of certain properties of the cochlea. It provides valuable information
in cases that a behavioral response can hardly be obtained.

The growing interest has produced a wealth of scientific papers, including several
review papers, and, so far, about a dozen specific textbooks, often focusing on the
clinical relevance. An elaborate review has been given by Probst et al. (1991),
who distinguish four basic subcategories. Although their introduction as well as
some other interpretative remarks deserve a serious discussion, the overview is
very valuable, and the discussion of prominent subcategories of emissions in the
following sections largely matches their selection. And although their unlimited
support for application of otoacoustic emission measurements as noninvasive tech-
niques for the external measurement of inner ear properties deserves some credit,
the conclusion should be reduced to realistic constraints. Otoacoustic emission
measurements usually do not require invasive tools such as needles or knives.
However, experimental data acquisition or observation is fundamentally impossible
without interfering with the source. Complete noninvasiveness simply does not
exist; best experimental practice aims at minimizing the invasive interference. In the
case of acoustic emissions: auditory fields cannot be measured without the use of
a specific microphone, and placing a microphone in a sound field does affect the
sound field. This applies to spontaneous as well as evoked emissions. Microphones
can be used for sound detection as well as for sound generation. Their size is never
completely negligible in the sound field, so that their presence affects the field,
especially at high frequencies.

An additional problem with evoked emissions is that the applied stimulus affects
the physiological “set point” of the system. In practice: critical testing of probe
effects remains mandatory, and claims of 1 dB or better experimental accuracy
remain suspicious.

4.4.1 Spontaneous Otoacoustic Emissions: SOAE

From a theoretical point of view, the spontaneous otoacoustic emissions (SOAEs)
appear to provide the strongest evidence that cochlear power sources are actively
involved in sound processing. However, it took a relatively long time to unequivo-
cally distinguish SOAEs from (or alternatively: relate SOAEs to) phenomena that
so far had been considered a subgroup of tinnitus. Around 1970 this subgroup was
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Fig. 4.7 Sound pressure in the acoustic meatus is displayed as a function of frequency for three
values of constant volume velocity sound input. Note the linear amplitude scale; 200�Pa is at
20 dB SPL, 400�Pa is at 26 dB SPL, etc. At the time, the focus was on the change in response
at about 1.75 kHz, at the same point where auditory sensitivity was maximum, and where a
spontaneous emission was measured, at the time denoted as “spontaneous ear noise.” Currently, it
would be termed a SOAE at about 10 dB SPL. Reprinted with permission from DT Kemp, Archives
of Otolaryngology, 224: 37–45, 1979, Fig. 3. Copyright ©(1979) American Medical Association.
All rights reserved

specified as objective tinnitus by Glanville et al. (1971). The formal distinction
between objective and general tinnitus is that general tinnitus has been defined as
perceived by the subject, whereas detectable OAE, or objective tinnitus usually is
not. Note that the categorization did not imply an explanation of the phenomenon.
The term was used

again, for want of a better term that is still easily recognizable.

The authors concluded that:

The condition is believed to be harmless and due to venous abnormalities at the base of the
skull,

in other words, the phenomenon remained unexplained.
The older clinical reports concerned rather special cases with relatively high-

level emissions (Glanville et al. report examples up to 38 dB SPL in a 4-year old
subject). The development of special equipment for the measurement of evoked
emissions led to an increasing number of reports of SOAEs, at first, however,
primarily as byproducts (e.g., Kemp 1979a; Wilson 1980a; Wit and Ritsma 1983),
and originally not labeled with the term SOAE. For example, Kemp clearly shows
a spontaneous emission at �1.755 kHz in his Fig. 3, reproduced here in Fig. 4.7,
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which he describes as “spontaneous ear noise.” Zurek (1981) explicitly discusses
“Spontaneous narrowband acoustic signals emitted by human ears,” starting with a
review of related clinical reports from 1962 to 1975. Most of these reports did not
speculate about the possible emission source, but in one case a relation had been
proposed to streaming of blood over a fiber under tension. Zurek introduced the
term otoacoustic emission (OAE), which gradually replaced the older terminology.

Although in 1980 the cochlear origin of (S)OAEs was generally accepted,
debates about the details remained. Wilson (1980b), e.g., commenting Wit and
Ritsma (1980) and Rutten (1980b), states that (in particular in relation to evoked
emissions):

An active local mechanical feedback onto BM displacement appears to be (i) unlikely, (ii)
unsuitable as a sharpening mechanism, and (iii) unnecessary.

Of course these points were substantiated with arguments, but also disputed by
Rutten and Kemp on the subsequent papers, where Kemp advocates to keep an open
mind, at least “until the latter process7 is finally understood.”

Around the same time Bialek and Wit (1984) endeavored to proof that the
spontaneous emission signal was a (noisy) oscillation rather than narrowband
filtered noise. Theoretically, the amplitude distributions of the two signals are
fundamentally different. Filtered noise has a normal (Gaussian) distribution with
average 0 and a single maximum at Zero-amplitude, whereas a (noisy) oscillation
also will have the average at 0, but it will have two peaks close to ˙ the oscillation
amplitude, but convolved with a noise distribution if additional noise is present.

The method has two practical limits. First, if the noise amplitude is large
compared to the oscillation, then the double peak will disappear, and the distribution
of the oscillation will not be detectable. Secondly, if the duration of the signal is
not sufficiently long, the narrowband filtered noise will also show the double peak
distribution. This is the consequence of the f  ! T properties of narrowband
noise: the accuracy of an estimate of the amplitude distribution is proportional to
the sample duration, and a short sample can look very similar to a slightly disturbed
sinusoid.

The distinction is relevant for the role of nonlinearity in SOAEs. Filtered noise
can be generated by a linear process, whereas an active oscillator—even though
its response may appear to be linear—contains at least one essential nonlinear
element.8

Although Bialek and Wit’s conclusion was not immediately accepted by the audi-
tory community, the additional “circumstantial” evidence that the intact cochlea has
nonlinear properties anyway, has convinced a substantial fraction. Their conclusion
was corroborated by Talmadge et al. (1991) who reviewed several alternatives, and
addressed the issue directly.

7This refers to the transduction process(es) at the hair cell(s) level.
8This is one of the minimum requirements for a limit-cycle oscillator.
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Currently, the alternative hypothesis of coherent reflection at cochlear irregular-
ities, promoted by Shera and Zweig (1995) and very much in line with Kemp’s
original ideas, seems to be favored. The basic principles will be presented with an
alternative implementation in Sect. 5.3.5.5.

4.4.2 Click Evoked Otoacoustic Emissions:9 CEOAE

As mentioned above, Kemp’s first studies of emissions regarded evoked emissions,
at the time termed “evoked cochlear mechanical response” or ECMR (Kemp 1978).
The response in the earcanal to a click appeared to consist of more than just the
expected click response shape. It showed prolonged damped oscillations, originating
from imperfect impedance matching at the ear drum, and possibly from other points
in the middle ear, and from the cochlea input at the stapes–oval window interface.
However, based on estimates of the impedances involved, the conclusion that the
responding oscillations lasting over some tens of milliseconds could not originate
from the middle ear was inevitable. Kemp also established that the emissions had
nonlinear properties, and were inhibited by “damage to the sensory system such as
occurs in cochlea deafness” all in support of the conclusion that these emissions had
a cochlear origin, and he proposed that the phenomenon might be a byproduct of the
transduction process.

The travel-time of the response became an important issue, in connection with
the concept of the cochlear traveling wave. The emission was seen as a retrograde
traveling wave. However, here we have to be cautious. First, the forward traveling
wave does not travel as a wave on a string or a drum, but it originates as a resultant
effect of propagation through the cochlear fluid, with the fluid inertia, in tune to
the cochlear partition impedance (cf Fig. 3.7). The emitted wave builds up with
the responses to the incoming wave, and it will be generated over the entire range
where its dissipation is significant. This means that the net result will be the vector
summation, or integration, of all local contributions. Accurate prediction of the net
result of such a summation is nontrivial, in particular because of the dependence on
the precise local phase responses. This can be complicated further by unforeseen
nonlinear effects; unforeseen because our systems analysis expertise is usually
limited to linear systems.

The earcanal responses to a click are subject dependent (e.g., Kemp 1978, Fig. 2
A–D). The total response appears to reflect one or more oscillations with different
carrier frequencies. The high-frequency components appear first, low-frequency
parts appear later.

9An alternative term covering much of the same group of emissions is: transiently evoked
otoacoustic emissions, or TEOAEs.
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This phenomenon has received considerable attention in subsequent research of
evoked emissions, but its analysis and interpretation deserve further analysis and a
careful reassessment. The primary points are that:

1. The experimental definition of the delay is indirect, or it is valid for linear
systems.

2. The experimental definition of a response delay requires specification of a
threshold (a criterion) against the background noise; this implies a fundamental
low-level uncertainty.

3. Spectral analysis of signals with a varying carrier frequency—which applies to
most CEOAEs—requires more than common caution; amplitude spectra imply
averaging about some time window, and short time windows provide poor
spectral resolution, and instantaneous nonlinear effects tend to be smoothed.

For example, Rutten (1980a) refers the response to the click onset, and although
a rather narrow-band response can be recognized from the waveform (see his Fig. 1),
the precise onset of that response is not, and no threshold criterion was specified.
Qualitatively, there is no doubt that slower oscillatory parts of the earcanal responses
occurred later with respect to the click onset, but accurate quantitative estimates
appeared virtually impossible, and this uncertainty is stressed by uncertainty about
the precise estimates of the carrier frequencies (cf. Kemp’s Fig. 2 cited above).

This point will be addressed in the following section.

4.4.3 Stimulus Frequency Evoked Otoacoustic Emissions:
SFOAE

Since both objective tinnitus and CEOAEs showed band-limited responses, the step
to investigate the responses to narrow-band stimuli was a logical next one. Traces
E – G in Fig. 2 of Kemp (1978) present some examples, which clearly show that
short tonal stimuli can also evoke emissions in the earcanal, although the strength
of these emissions, the stimulus frequency evoked otoacoustic emissions (SFOAE)
varies with frequency.

One of the first quantitative techniques used by Kemp to estimate the delays of
the responses was the use of the group delay, �gr. Although already mentioned in
Kemp (1979b), the technique was used extensively in Kemp and Chum (1980), and
even more for DPOAEs (next section) than SFOAEs. The technique is described
in some detail in Sect. 8.2.1, where a note of sincere caution is added, because the
validity of the use of this linear frequency domain technique has not been validated
thoroughly for application to nonlinear systems. Kemp and Chum were well aware
of this type of problem, which motivated them not to compare the results of the
(continuous) tone evoked emissions with the very short click evoked emissions.
The authors developed a “vector subtraction technique which exploits the nonlinear
properties of the emission generator.” They assumed that at 80 dB SPL, the stimulus
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level was sufficiently high to justify negligence of the returned emission, so that the
measure earcanal pressure would be a proper estimate of the stimulus contribution
only. Scaling down to the lower levels employed for the emission measurements
then provides the stimulus only reference, and the emission amplitude and phase
follow from the vector subtraction of this signal from the stimulus C response
measurement.

The method relies on the observation that evoked emissions are relatively strong
for low-level stimuli.

The delay obtained in a frequency band around 1 kHz was around 10 ms (their
Fig. 5). This was the result of a spectral group delay analysis (8.40), thereby
implicitly assuming the validity of the linear approximation of this technique.

4.4.4 Distortion Product Otoacoustic Emissions

In hindsight, the phenomenon of DPOAE could—or even should—have been the
least surprising of the different emissions. Given that distortion products, which may
be perceived as CTs, are generated in any intact cochlea, and that they are observable
in mechanical responses within the cochlea, side-effects could have been expected.
The acoustic coupling from auricle and earcanal to the cochlear partition is not
unidirectional, and the set of differential equations that describes the transmission
of sound into the inner ear also prescribes how much of the distortion generated
within the cochlea remains there to be dissipated internally and what fraction leaves
the cochlea as acoustic radiation loss.

DPOAEs require a nonlinear element in the auditory system, but they do not
require additional power supply. Compressive nonlinearities, proposed as the best
predictors of physiological auditory nonlinearity (e.g. Engebretson and Eldredge
1968) or perceptible auditory distortion products (e.g., Smoorenburg 1972b) lead to
increased power loss rather than increased activation. Relevant details about aural
CTs have been discussed extensively in Sect. 4.1, and details about the prediction of
CT and DPOAE generation will be presented in Chap. 6.

An important but largely neglected aspect of CT generation is that the distortion
product is generated over a cochlear range with rapidly changing phases, which are
transmitted to a DP-phase profile that has a significant impact on the total integrated
response. Assumptions that one or even two sites characterize the major effect are
overly simplistic.

The relevance of DPOAE-data is that they provide fairly direct information about
the nonlinear properties of the cochlea. A linearized cochlea does not generate any
DPOAEs. This consideration has promoted the availability of specialized equipment
for its measurement, which enables assessment of normal cochlear nonlinearity
without requiring a subjective response.
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4.5 Linearization Through Outer Hair Cell Loss

An important finding is that cochlear hearing loss can reduce, or even eliminate,
otoacoustic emissions and CTs. Hearing loss can be correlated with a linearization
of the cochlea, thereby limiting the input dynamic range to the output dynamic
range. This type of hearing loss is accompanied by the threshold increase.

Of particular relevance to these effects are physiological and psychophysical data
concerning response growth functions, masking growth functions, loudness growth
functions (not discussed), suppression data in relation to cochlear hearing loss, as in
noise trauma and other cases of hair cell loss.

Linearization of growth of masking functions in ears with presumed cochlear
hearing loss was reported in several psychophysical studies (e.g. Smits and Duifhuis
1982; Nelson and Schroder 1997; Oxenham and Plack 1997).

Smoorenburg (1972b) was one of the first to compare CT generation in subjects
with normal hearing and one subject with a specific high-frequency hearing loss, and
he observed that CTs where significantly reduced if one of the primary frequencies
was within the loss region.

The result from DPOAEs in relation to hearing loss is more complicated.
Studies appear to agree that DPOAE thresholds increase with increasing loss, but
at sufficiently high primary levels DPs are still elicited (e.g., Probst et al. 1991;
Moulin et al. 1991).
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Chapter 5
Modeling the Nonlinear Cochlea

Abstract This chapter presents an introduction to nonlinear cochlear modeling. It
starts with some general definitions, goes to the basic DEs, and discusses tools to
solve these. The art of minimizing errors by not using signal analysis tools that are
only valid in linear systems is advocated. Starting with a circuit example, we move
on to the cochlea.

5.1 Nonlinear Systems

We start this chapter with the fundamental definition of nonlinearity of a functions
and (or) systems. This definition contains two essential components. Then we
explore tools for the analysis of simple nonlinear systems. Additional tools are
presented in Chap. 9.

5.1.1 Definition of NL-Functions and Systems

Definition 5.1. Let f define an operation on an input variable x, and let y be the
result of that operation, also termed the response or output variable, or:

y D f .x/ (5.1)

then the function f is defined to be linear if and only if:

1. For any constant (real or complex) factor ˛ applied to the input x, the result y
scales by exactly the same constant: f .˛ x/ � ˛ y.

2. For any combination of two different inputs x1 and x2, the response to the sum
of the inputs is identical to the sum of the responses to the separate inputs:
f .x1 C x2/ � f .x1/C f .x2/ and f is nonlinear otherwise.

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 5,
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The input variable can be multidimensional as well as time-dependent, as in: x D
x.t/. If so, then the operation of the function f applies to all the elements of x.t/,
and propagates to all elements of the response y.t/.

A well-known nonlinear example of a simple NL-function is the quadratic
function, which fails on both criteria. A less obvious case is a linear half-wave
rectifier, which meets criterion 1 but fails on criterion 2.

Input–output graphs usually provide a straightforward and fast tool for a linearity
check (criterion 1): any linear relation will show up as a straight line of slope 1 on
a dB–dB plot (at least if one has taken the effort to use equal scales). Of course, it
also would show up as a linear relation on linear scales, but for practical reasons
those are hardly used for acoustic signals. Any straight line that deviates from slope
1 dB/dB reflects a power-law relation y D x� with a power � that differs from 1.

The definition for linear and nonlinear systems is similar to the definition
for functions: systems can be considered a specific class of functions. More in
particular, in linear systems, the functional relation between input and output of
a system is usually expressed in terms of signal processing in the time domain
(convolution with the systems impulse response) or in the frequency domain
(multiplication of the input spectrum by the transfer function of the system), as:

y.t/ D h.t/ � x.t/; (5.2)

Y.!/ D H.!/X.!/; (5.3)

where
H.!/ D F T fh.t/g; (5.4)

[see Sect. 8.5, and (8.55)].
Representing the response of the system by its transfer function does imply (and

therefore requires!) linearity: ifH.!/ is a proper transfer function, i.e., independent
of the input variables, then by definition the response scales linearly with the input,
as follows from (5.3), and the second condition for linearity is met because of
commutativity of addition and multiplication:

H.!/ .X1.!/CX2.!// D H.!/X1.!/CH.!/X2.!/: (5.5)

5.1.2 Breakdown of the Linear Approach

For a linear system, i.e., a system that is described by a linear function, the classical
signal analysis approach is very efficient. The analysis is performed either in the
time domain or in the frequency domain.1

1Instead of the complex frequency domain, the related Laplace domain can be used. Nowadays
its use is somewhat less common in (applied) physics and mathematics, but it can be particularly
advantageous if causality issues are important, as in electrical engineering problems.
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Two points that require caution are:

1. In practice, the methods of signal analysis involve averaging over a chosen time
window, the shape and duration of which have to be specified.

2. The system transfer function is usually treated unidirectionally, incorrectly
suggesting that changes in properties further on have no effect on preceding steps.
For stationary stimuli such effects tend to be hidden: embedded in net amplitude
and phase adjustments.

A linear system cannot generate signal components that were not present in the
stimulus spectrum, but any nonlinear system will produce harmonic distortion
products in response to simple tonal stimuli, and more complex stimuli produce
more complex distortion product spectra.

There is, however, also a class of broadband stimuli which is hardly affected
by time-invariant nonlinearities. One specific example is a click or pulse shaped
signal. This shape is not modified by a stationary nonlinearity, only the input–output
amplitude ratio may be affected. Another example is noise. The response to white
noise will remain white noise, although its amplitude distribution can be modified,
an effect which may show up in the r.m.s.-amplitude of the noise. These properties of
broadband signals have been addressed in detail in a some classical signal analysis
textbooks, such as Middleton (1960).

5.1.3 Relevant Fundamentals

If we have to reconsider our general signal analysis tools for applications to
nonlinear systems, where do we start?

As long as we have to do with time-independent (time-invariant, instantaneous)
nonlinearities, the time domain approach remains appropriate. The frequency
domain analysis becomes immediately suspect, and should be used only as a
supporting tool that helps in evaluating a time domain solution. Time domain
analysis also remains applicable to systems in which parameters adapt over time,
as in regular feedback or feed-forward systems.

The natural way to start the time domain analysis is to setup all relevant system
equations completely in the time domain, using differentiation and integration
wherever appropriate.2

In practice, it is usually impossible to analyze the set of system equations
analytically, which leaves methods of numerical time domain analysis or of linear
approximation and perturbation techniques. These options are worked out in more
detail in the next subsections.

2Of course, the same considerations apply to the place–wavenumber relations that are used to
characterize traveling waves.
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But first we discuss another relevant issue, applicable to both linear and nonlinear
systems: the benefit of the use of conservation laws.

5.1.3.1 Conservation Laws

Since the introduction of Newtonian mechanics, conservation laws have played an
important part in what is now called “Classical Dynamics.” They also have been
used setting up the system equations for fluid mechanics. Conservation of energy
translates to the balance of sound-energy flux in CMs. The net input sound-energy
flux can be determined in the earcanal, e.g., at the eardrum, and all of that is
dissipated in the ear. The net input corrects for the sound emitted by the ear as
well as the additional energy that would be supplied by a cochlear amplifier.

The sound-energy flux carried by an acoustic traveling wave is defined as the
product of the sound intensity and surface area perpendicular to the propagation
direction, as was mentioned before (Sect. 3.2). The parameter values for the
propagation in air (earcanal) differ from those inside the cochlea, which involve
fluid and CP-properties. One of those relevant variables is the sound pressure.
Sound is carried by relatively small and fast variations of the total atmospheric
pressure.3 That justifies why the analysis of the physics of sound in most textbooks
immediately assumes linearity.

Although in many cases the analysis of the energy balance and the power balance
are very similar, there are also differences. Sound power is defined as the amount of
energy radiated by a source per unit of time (ANSI 2004, Definition 3.63). A simple
sound source is a source that radiates uniformly in all directions.4 Technically this
can not be realized by an acoustic point source, but beyond a realistic radius it
is equivalent to a spherical source (cf. Sect. 8.2). Many available sources do not
radiate in all directions. For those that do, computation of the sound energy radiated
uniformly from a simple source is straightforward: the transmission area at distance
r is simply 4�r2. This can be extended to plane waves by considering the spherical
wave at sufficiently large r , where effectively it has become independent of the
distance r . Ideal plane waves also have limitation in a physical environment: the
extension of the wave is limited, and edge effects modify the net energy content.
The idealized plane wave and spherical wave primarily have considerable theoretical
relevance.

Except for the specialists, scientists usually do not worry about the precise sound
source properties, such as: are we dealing with a pressure source or an intensity
source, what are the source limitations, what is the internal acoustic impedance, and
what are the acoustic properties of the environment into which the sound is emitted?
These consideration are rather similar to the electrical analog of a source connected

3To be verified by the reader. Compare sound pressure (Pa) in the range from 0 to 120 dB SPL to
a realistic atmospheric pressure.
4Formally: under free-field conditions.
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to a load. What are the source properties, and what are the properties of the load?
Together they determine how much power and energy the source can dissipate into
the load. For a linear system any incorrect initial estimate can be corrected by a
simple complex factor (amplitude and phase correction).

The situation becomes more complicated if the load (electrical or acoustical)
is nonlinear, because in that case the load becomes a new source—at least in
the classical terms—viz. it generates distortion products that were not present in
the stimulus. Since these internal second sources meet finite “impedances” in the
cochlear structure, some of this internally generated distortion will come back
toward the external source.

Even if auditory stimuli are presented to the ear in a controlled way, as by
earplugs, earphones, or loudspeakers, the acoustic input impedance is not trivial,
especially not at high frequencies (>4 kHz), and neither is the output impedance.
These properties have been studied quite extensively over recent decades5 and lf-
transmission through outer and middle ear is largely understood for the linear case.
All current studies of outer and middle ear do use frequency domain analysis at
some stage, tacitly assuming linear behavior.

In the selected time domain approach, the underlying characteristics of the
frequency domain representation, or of the equivalent network, are transformed
to time domain equations. These provide the relevant coupling elements between
cochlea and external sources and loads. We start the analysis of the cochlea with a
simplistic outer- and middle ear approximation that allows acoustic input and output
to the environment or to a plugged earcanal.

Back to the energy flow. Let us consider the sound intensity first. If we analyze
the motion of an average elementary air-particle,6 then the sound intensity it can
produce per second I is

I.x; r; t/ D 1

T

tZ

t�T
p.x; �/u.x; �/ d�: (5.6)

The transmitted sound-energy flux J (influx to the ear) becomes J D I �A, where
A is the relevant surface area.7 The parameter T indicates a time interval which for
harmonic (periodic) signals is an integral number of cycles, and which is not well
defined for nonperiodic signals. The parameter r denotes the propagation direction
of the flux, which is equal to the direction of velocity vector u, at least as long as
it is not modified by a gradient in the pressure profile. I is expressed in W/m2.
Integrated over the meatus area, it provides the sound-energy influx (J ) per second.

5Supported by a tri-annual series of symposia on Middle-Ear Mechanics in Research and Otology.
6Note that fluid mechanics is one of the areas of physics where the use of global properties and
global parameters is successful. This means that the minimum physical scale on which the analysis
applies is above the molecular size of the relevant molecules.
7Tentatively, we use A D ATM, the tympanic membrane area.
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s(t) x(t) y(t) r(t)
h1(t) NL h2(t)S L

Fig. 5.1 The time domain version of a simple BPNL structure: a nonlinear element NL is placed
between two linear elements with impulse responses, h1.t/ and h2.t/. The first has the properties
of a band-pass filter, the second is a simple low-pass element which reduces distortion product
harmonics (overtones). Stimulus source properties and load properties also play a role (Elaborated
in the text)

For a harmonic sound pressure source p. t/ D p0 cos.!t/, which in a linear
system generates a particle velocity u. t/ D u0 cos.!t C '/, the transmitted
intensity is ID 1

2p0 u0 cos.'/. For the plane wave, pressure and velocity are in phase
and the cos.'/-term vanishes. For the spherical wave the phase relation changes at
short distances. In general, the temporal fine-structure relations are important for
the full analysis.

Following the sound-energy flux into the auditory system is useful and can
be done accurately up to the point where unknown additional power sources
may appear. The measurement techniques for both velocity and pressure have
improved substantially over recent years. For instance, optical techniques such as
laser interferometry have been developed both for direct velocity measurements of
BM or CP structure, and indirect velocity measurements of condensor microphone
membranes. An example of application of the techniques can be found in the
experiments by Olson in the base of the gerbil cochlea (Olson 1998, 1999, 2001,
2004). Measurements were made over a wide range of stimulus frequencies, but—
as in other mammals—the explored base area is specialized for the high-frequency
part of that spectrum. Her addition of fluid mechanics is useful for the interpretation
of the results, but was limited to frequency domain details.

5.1.3.2 Time Domain Analysis

To elucidate the relevance and the relative ease of time domain analysis, we present
a simple example. A BPNL structure as presented in Fig. 4.6 is analyzed in the time
domain. The setup is adjusted to account for the consequences of the occurrence of
a nonlinear element, and coupling between blocks is now bidirectional Fig. 5.1.

For the analysis, we consider an electrical analog. The system parameters are
specified in more detail than might be expected to be required for the precise
differential equation setup: we cannot combine impedances in the usual (linear)
way. We will treat the elements successively, but note that the equations all have to
be solved simultaneously (or at least as parallel snapshots).

Assume that the source is an ideal oscillator that can be switched on with an onset
ramp of adjustable duration. This source is delivering a voltage of 10 Vr.m.s. when
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R0

Es

e1 e2 e3 e4
L1 C1 RNL L2 R2

i1 i2 i3

R1 C2 RL

Fig. 5.2 A simple circuit with a single nonlinear element, RNL. As in Fig. 5.1, the nonlinear
resistance is placed between two linear elements: an LCR-band-pass, with index 1, and an LRC-
low-pass, with index 2. The source is an Thevenin equivalent circuit of an AC voltage-source with
internal resistance R0

linked properly to an audio-network. This means that it deliversEs D 10Vr.m.s. over
600�. The frequency is set to 1 kHz. The ideal internal oscillator is assumed to
have a stable voltage amplitude.8

The current i1.t/ leaving the source is determined by both the internal source
properties and the total network load. Assume that the former is characterized by
a simple low resistance R0, which will be significantly less than 600�, and let the
remaining system be specified by a second-order band-pass, a single NL-resistive
element, a second-order low-pass, and a load resistance. The system is drawn in
Fig. 5.2 The system is described completely by the parameters e1.t/ � � � e4.t/ and
i1.t/ � � � i3.t/, specified by the following seven equations, where the stimulus signal
es.t/ D w.t/ Es

p
2 cos.2 � 1000/:

e1.t/ D es.t/� i1R0; (5.7)

e1.t/ � e2.t/ D 1

C1

Z
i1 dt C L1 @i1

@t
; (5.8)

e2 D .i1 � i2/R1; (5.9)

e2.t/ � e3.t/ D i2RNL.1C "i 22 / D i2R�
NL; (5.10)

e3.t/ � e4.t/ D L2
@i2

@t
C i2R2; (5.11)

e4.t/ D i3RL; (5.12)

e4.t/ D 1

C2

Z
.i2 � i3/ dt: (5.13)

8Note that this is only approximately realizable in practice.
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The onset-window w.t/ defines a smooth onset envelope of the stimulus (10 ms in
this example). These seven equations (5.7)–(5.13) can be reduced to three in i.t/
(step 1), but containing different time specifications: the time derivative of i.t/ and
its integral (step 2).

Step 1 involves three straightforward additions of these equations:

1. �(5.7)C(5.8)C(5.9) ) (5.14)
2. �(5.9)C(5.10)C(5.11)C(5.12) ) (5.15)
3. �(5.12)C(5.13) ) (5.16)

Step 2 involves the rewriting of
R
in dt D yn.t/, yielding the combined result

(dropping the time dependence notation):

1

L1
es C R1

L1
i2 � 1

L1C1
y1 � R0 CR1

L1
i1 D i1 0; (5.14)

�y1 C R1 CR2 CR�
NL

R1
y2 C L2

R1
i2 C RL

R1
y3 D 0; (5.15)

�y2 C y3 CRLC2i3 D 0: (5.16)

In (5.10), RNL is a constant parameter, and " the scaling and criterion factor for
the NL-effect: if "i 22 � 1, then the nonlinear effect is relatively small, and if
"i 22 � 1 then the nonlinear character dominates. Note that after step 2, the
remaining differential equations are (5.14–5.16) and @yn

@t
D in. These equations are

solved using the Runge–Kutta 4 method. Given the solutions for the currents, the
voltages follow straightforwardly.

An example of solutions is given in Fig. 5.3. They show that the nonlinearity is
already present in e1.t/ (although almost 90 dB down) and i1.t/ (at about 50 dB
down). It is pronounced more clearly in the amplitude spectra than in the time
waveforms (not shown), even though the effect is weak for relatively small "i 22 .
The spectra are computed from a response section obtained after the onset-duration.
The low-pass character of the second section leads to some reduction of the higher
harmonics.

The results are critically dependent on the value of " with respect to i 22 , as
indicated above. For the given parameters, the amplitude of i2.t/ is of the order
of 2 mA. For the given value of ", this creates a situation where the nonlinearity
begins to become important.

The most obvious nonlinear effect is the occurrence of odd overtones in the
spectra, i.e., components at 3, 5, 7. . . times the stimulus frequency. No significant
even-order products appear. This is due to the fact that the introduced nonlinearity is
of the odd type (cf. right-hand panel of Fig. 4.1), which is caused by the introduced
nonlinear damping property: R�

NL D RNL.1C "i 22 /. It should also be clear that the
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Fig. 5.3 Spectra of current and voltage responses of the simple nonlinear network in Fig. 5.2.
Dynamic ranges of the dB-scales are limited to 90 dB for each parameter. The results in this figure
were obtained for the following parameter settings: R0 D 10, R1 D 600, R2 D 60, RNL D 400,
RL D 100 �, C1 D 3=.4 �3 106/ F, C2 D 0:5C1 , L1 D 3=� H, L2 D 0:5L1 , and " D 106 A�2

sharpness of the peaks in the spectrum is limited by shape and duration of the time
window that was used to obtain the plot.9 Increasing " by a factor of 100 gives
a much more pronounced nonlinear effect, with significantly stronger overtones.

9In this example, the window was a 3,200 point Kaiser–Bessel window (parameter: 4:0=� or 4.0,
depending on software definition10) at 10�s steps, or a 320 ms duration.
10This difference by a factor of � may be confusing. I follow the definition by Harris (1978, Sect. I),
where the argument of the zero-order modified Bessel function I0 is �˛. In that case, the first side
lobe is 45 dB down for ˛ D 2, and more than 70 dB down for ˛ D 3. Packages like Matlab tend
to apply the parameter p D �˛, in which case a value 4.0 represents a sharp peak at the cost of a
not very selective sideband suppression.
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You might want to check this, either by writing your own analysis program or by
using the provided test routine. Note that numerical test routines are sensitive to
sufficiently high time sampling rate.

If the pass-band ranges of the band-pass element and the low-pass element
overlap, then the nonlinear intermodulation effects can be more pronounced than the
harmonics. Substituting the one-tone stimulus by a two-tone stimulus demonstrates
this phenomenon. It is a consequence of the reduced frequency separation of the
resulting components: for an odd-order nonlinearity the distortion products 2f1�f2
and 2f2� f1 are much closer to f1 than 3f1 or 3f2 are. A test of the simple network
response to a two-tone stimulus provided results where the intermodulation products
were smaller than the overtones. For power-law devices, the relation between the
strengths of overtones/harmonics and intermodulation products can be obtained
analytically (see Sect. 9.1). The power-law approximation for the current simple
example is � D 1=3.

If the right-hand part of the network in Fig. 5.2 would be tuned to higher
frequencies, then the response at the load resistance would reflect the harmonics
more strongly. We will not discuss this option further, because it does not appear
to be the one that mimics the cochlea most closely, where more apical elements are
found to be tuned to lower frequencies.

The proof of stability of the results of a numerical method such as RK4 partly
relies on analytical studies.11 An important other validating argument relies on the
correctness of the assumed hypotheses, i.e., the set of DEs to be solved, and on
practical expertise. An interesting, and rather simple, procedure that can be used
for an evaluation is to rewrite the system equation(s) in a set of first order DEs,
and assume solutions (for each DE) with terms e�i t . Then a region of convergence
for values of �i can be found, which depends on the numerical method that has
been used. The regions characterize the areas within which the products �dt give
stable solutions. The time step dt involved in this product is the step between two
successive numerical sampling points: dt D 1=fs . The stability area for the most
common RK4 method is presented in Fig. 5.4. Note that it has a reasonable behavior
along the imaginary axis, even with small extensions into the positive half plane.
The absolute value of this product, j�dt j apparently must not be greater than order
1, and occurs as a new sampling criterion for vibrations. Stable points along the
(negative) real axis represent an exponential decay. To operate reliably within the
audio frequency range, we propose to use sampling frequencies above 400 kHz, for
linear as well as for nonlinear models of auditory processing. In general, the RK4
method is suited to provide stable oscillatory solutions over a limited range along the
imaginary axis in the (complex) frequency plain, whereas most other algorithms do
not even reach this axis and are stable for solutions with a negative real component
only.

11It also depends on the exact specification of the Runge–Kutta 4 method. Different specifications
are used. We present additional discussion later in this Chapter, in particular in Sect. 5.3.4.
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Fig. 5.4 Region of stability
of the RK4 method.
Parameter is �idt . Deviation
from stable points is
minimum at the dark peaks.
The values of � are the roots
of the DE-matrix, dt is the
sampling interval: dt D 1=fs .
The area is symmetric for
positive and negative
imaginary values, only the
upper half is presented (see,
e.g., Butcher and Wanner
1996, Fig. 12)

5.1.3.3 Perturbation Theory Approach: Options and Limitations

The alternative to the numerical analysis in the time domain is the perturbation
theory approach. As long as it can be proved that the nonlinear effects are
relatively small byproducts, the behavior can be approximated by a linear set of
equations, which in first approximation can be solved either in frequency or in time
domain. Next, a number of iteration steps adjusts for the relatively small nonlinear
deviations.

In some cases where the deviation from linear is larger, the perturbation method
still works reasonably well. The approaches vary from advanced mathematical
analysis to rather classical applied approaches. The first category includes analytical
approaches used, e.g., by Guckenheimer and Holmes (1983). In Chap. 2, they treat
the Van der Pol oscillator, and study the stability conditions. Remember that the
Van der Pol oscillator was introduced as a possible cochlear partition element in the
late seventies (cf Sect. 4.4). We will present some common, well-known, results and
work out the application in CMs later in this chapter, and deal with the (applied)
properties of the nonlinear oscillators in more detail in Sect. 9.2.2.

The application of the Van der Pol-oscillator (VDP) will be treated later in
this chapter, but first we present some of its properties. Precise definitions are
given in Sect. 9.2.1, within a context of related definitions.

Basically the oscillator is described by an ordinary differential equation
(ODE) similar to one that describes a damped mass–spring system, but,
the damping term is an even nonlinear term, which has a negative value
for small amplitudes, which would make the oscillator unstable. At high
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amplitudes, the damping is positive again and monotonically increasing
(at least nondecreasing). With mass, damping and stiffness terms scaled to
unity, it takes the following form:

Rx C "�.x/ Px C x D s.t/ (5.17)

The term s.t/ represents a stimulus variable (can be 0), " is a crucial
VDP parameter which determines major characteristics of the response, and
�.x/ is the nonlinear term. It looks similar to RNL used in the previous
example, but note that for the Van der Pol it is negative for x D 0. The
transition from the classical response (positive linear damping term) to the
oscillatory response (negative linear damping term) marks a Hopf-bifurcation
(see Definition 9.19).

The original value used by Van der Pol was �.x/ D �1Cx2. The Van der
Pol oscillators converge to periodic solutions when undriven, which solutions
are called limit cycles. If " is sufficiently small (" � 1), then the limit cycle
is very close to a sinusoid, with a frequency close to that of the undamped
oscillator: in this case ! 	 1. If on the other hand " is>1, then the limit cycles
change shape dramatically and the oscillators become relaxation oscillators.

Some examples of responses are presented in Fig. 5.5. For three values of
", we show the evolving response for the same initial conditions (close to 0
amplitude and velocity). The following points are of particular relevance:

• " appears to have a significant effect on the stimulus onset duration.
• For low " the oscillator frequency is ! 	 1 so that the period is 	2� , for

high values, however, the period becomes much longer.
• The response for large ", the relaxation oscillator response, is markedly

deformed from a circle, and the period duration T depends on ".

More examples of the analysis of nonlinear oscillators are presented in
Chap. 9. The focus is on the Van der Pol- (and/or Rayleigh-) oscillators.

A somewhat similar approach, although applied to a different but related set of
DEs, is used by Eguı́liuz et al. (2000), Magnasco (2003) and Kern and Stoop (2003).
Starting with a harmonic approximation or “Ansatz” the solution is computed for
relatively small perturbations. Their approaches, which also focus on modeling the
cochlear partition response properly, is discussed in more detail in Sect. 7.3.

A different example is the use of the WKB or WKBJ method for the analysis
of a 2D fluid mechanics model of the cochlea, which was introduced in Sect. 3.3.1.
In that case, the difficulty of the wave equation was not the existence of nonlinear
terms, but the fact that the equation had a nonconstant parameter. The solution
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Fig. 5.5 Plot of the development of the solution of the Van der Pol equation for three values of
". For the lowest value, " D 0:1, the solution begins to approach a sinusoid, with an angular
frequency !0 D 1 or a period of 2� . For " D 10, the period has increased significantly and the
wave shape has altered too

changes from long-wave to short-wave approximation over a relatively short range.
The approximation is reasonably accurate from base to slightly over the point of
maximum response, as explained by Zweig et al. (1976) and de Boer (1980).

Less convincing applications have been presented as well: regular science
education generally teaches that a Taylor expansion is an always converging all-
purpose expansion. However, although convergence in the expansion does occur,
there is no independent criterion for its efficiency. It may require many steps before
a proper stable solution is approached, and limitation to a few steps can lead to
disastrous errors. This type of approach starts with a linear approximation of the
solution, using standard LTI tools, and then tries to improve the solution by using
iteration steps. At each step, the number of terms in the expansion is increased, up
to the point where the remaining error is deemed acceptable.

Many current studies of auditory nonlinearity use the last method and claim that
it does not make much difference, at least not for fitting the data. Unfortunately,
these claims are not always justified.
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5.2 Elements of a Model Cochlea

5.2.1 Parallel Oscillator Models

As mentioned in Sect. 1.3, Von Helmholtz has been a dominant promoter of cochlea
models where the BM tuning was completely attributed to mechanical properties of
the radial fibers within the membrane. Neither the fluid coupling12 nor an interactive
coupling (either longitudinal within the BM, or more complex coupling involving
the organ of Corti) played a crucial role—in fact those were believed to play at best
a secondary part.

The mechanical properties of a string at relatively small deflections was well
understood at the time, and the profile of the membrane width, from narrow at the
base up to broad near the helicotrema—even though counteracting the gradient of
the cochlear duct—could provide a reasonable frequency map.

This is also the type of model discussed by Gold (1948), who realized that radial
membrane fibers must be subject to damping, either within the membrane structure
or within the cochlear fluid, and from estimating the fluid damping he concluded
that cochlear tuning could not be sufficiently sharp.13

Anatomical studies showed that auditory systems in nonmammals often do not
have a BM equivalent—at least not with respect to all its properties. These systems
still have tuning, and also may have some frequency mapping.

Already bird ears have some rather different inner ears properties, but they also
have a frequency map. Moreover, the hair cells change more globally from “inner”
to “outer” than the “binary” change in mammals. But the fact that some birds can
mimic human speech implies that those systems can pick up—and recognize—at
least some relevant acoustic parameters that characterize speech properties.

Many other studies involve lizards and frogs. In lizards the origin of the
frequency map is not always completely understood, but hair bundle length may
be a candidate. In frogs there usually are two different populations of hair cells
in different physical environments (tectorial structure present or absent; also
differences in size of hair cells and structural type of hair cells).

Within the mammalian cochlea, some of these properties may also play a role.
From base to apex:

1. Hair cell length increases, in particular the OHC-body length
2. Hair bundle length increases
3. OC cross-sectional area increases
4. TM cross-sectional area increases
5. Cuticular plate angle (re BM) increases

12But the fluid was supposed to transmit the sound wave practically instantaneously, to provide
simultaneous input to all fibers.
13Note the discussions in footnote 10 in Chap. 3 and in Sect. 4.4. Gold postulated additional active
behavior to reduce the net damping.
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Both CM and auditory nerve data obtained since the seventies leave no room for a
global interpretation in terms of parallel second-order filters or harmonic oscillators.
This has led to an alternative of higher-order data matching, where the underlying
physics no longer was the important boundary condition. A rather successful
example is the gamma-tone filter bank mentioned before. Almost exclusively, the
filterbank models use linear system analysis techniques, and unidirectional coupling
of elements in the system. For this reason, the success for applications to nonlinear
behavior will remain limited.

5.3 Coupling the Elements

5.3.1 The System Equations

The system equations for the linear cochlea have been introduced in Chap. 3. They
have been setup such that the inclusion of nonlinear elements is a straightforward
step. We summarize the resulting set of equations and discuss the introduction of
nonlinear elements.

We start the analysis using a globalized cochlear partition model, which does not
cover the 3-D interactions within the OC in detail. This uses a longitudinal grid of
the order of 50 to 100 �m, or averages over 5 to 10 cross-structures.

It describes the movement of the cochlear partition in terms of local mass,
damping, and stiffness, and these are supposed to represent a first approximation
of the “integrated” effect over the 10�m sections.

In Chap. 3 where we dealt with a linear analysis (of an assumed linear system),
the impedance concept was introduced. This concept is invalid for the nonlinear
system. So starting from (3.9) we have to stick strictly to the time domain
formulation, but up to that point, no fundamental differences have occurred.14

Hence, the force balance equation at the partition can no longer use an impedance
definition, but it will be related directly to the mechanical properties of a section,
combining (3.9) and (3.10) and dropping the wZCP .x/ term.

The full 3D analysis requires detailed consideration of fluid behavior in the radial
(y-axis) and vertical (z-axis) directions (Fig. 3.2), as well as the interactions at the
cochlear partition. We will simplify the fluid motion by reducing it to laminar flow
approximations. Where appropriate, averages across a dimension are denoted by a
bar over the component axis. Ignoring details along the y-axis by integration or
averaging across the width and assuming a first-order vibration mode, we obtain

pv.x; Ny; 0; t/ � pt .x; Ny; 0; t/ D 2 pv.x; Ny; 0; t/

D �
�
m.x/

@w

@t
C d.x/wC s.x/

Z
w dt

�
; (5.18)

14Except, of course, for the point that the linear approach tends to consider unidirectional coupling.
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where w.x/ is the average across partition velocity at x. As in (3.9) and (3.10) it
follows the force balance law. If the fluid viscosity is still negligible, then the same
relation applies here:

w.x; Ny; 0; t/ b D @Uv.x; t/

@x
: (5.19)

Again Newton’s law couples the longitudinal pressure gradient to the longitudinal
acceleration (the time derivative of the volume velocity), or

b h
@pv.x; Ny; Nz; t/

@x
D �	 @Uv.x; t/

@t
: (5.20)

An important difference between the pressure terms in (5.18) and (5.20) is that
the first averages across y at z D 0, and the second averages across y and z. We
introduce the factor ˛.x/, which translates this effect into a 1D parameter, for the
laminar flow assumption:

˛.x/ D average pressure over partition .z D 0/ at x

average pressure over duct at x
(5.21)

D pv.x; Ny; 0; t/
pv.x; Ny; Nz; t/ : (5.22)

Putting this together, one obtains

@2

@x2

�
1

˛.x/

�
m.x/

@2w

@t2
C d.x/ @w

@t
C s.x/w

��
� 2	

h

@2w

@t2
D 0: (5.23)

It might be intuitively clear that the dependence of ˛ on x is related to the direction
of the fluid flow shown in Fig. 3.7. In the basal part of the cochlea, the fluid
flow in response to a narrow-band stimulus will remain prominently parallel and
laminar, and follow the long-wave approximation.15 When approaching the point of
resonance the flow will bend towards the partition, still without significant circular
motion other than required for the adjustment of the direction of propagation.
Here, we approach the short-wave area, but without reaching it: the input power
is dissipated before arriving at the point of resonance (see: Sect. 3.6.1).

It is useful to reconsider the physical meaning of the constituting terms in (5.23)
at this point. For themoment, the dependence on ˛ is neglected, which implies that

15However, one should note that this does not apply to the response at the extreme base, where the
stapedial volume influx has to find its way into the cochlea. The actual stapes entrance is to the side
of the duct, implying a different spatial response for the locally mapping high-frequencies than for
the low-frequencies that map apically.
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we use the long-wave approximation for this discussion. Rewriting (5.23), but using
subscripts to denote differentiation yields:

Œm.x/wt t C d.x/wt C s.x/w
xx �
2	

h
wt t D 0: (5.24)

The bracket term represents the across partition behavior. The full term is equal to
the time derivative of transpartition pressure pv.x; t/ � pt .x; t/, denoted as pi in
the equivalent circuit (Figs. 3.6 and 5.8). If one considers the pressure—or force
per unit area—to be a proper equivalent for the electrical potential e (V), then the
volume velocity U is a similar equivalent for the electrical current i (A). Note that
the product e:i represents (electrical) power P (W), as does the product of the
acoustic quantities16 p:U . Therefore, the equivalent electrical network is very useful
for the analysis of the acoustic quantities. This would also apply to a mechanicalF:v
(force–velocity) combination.

Henceforth we will frequently use the function ' for the time derivative of the
pressure, defined as

'.x; t/ D d

dt
.pv.x; t/ � pt .x; t// D dpi

dt
; (5.25)

which allows us to rewrite (5.24) as

'xx � 2	
h

wt t D 0: (5.26)

The volume velocity U appeared naturally for the fluid motion in the scalae. It
also compares in a simple way to the transpartition flow U , which represents the
product of the local area (dx � b) and the (average) membrane velocity wt which
is also written as v.x; t/ D wt.x; t/. In general, the canal flow will differ from the
transpartition flow. We will indicate the former by superscript indices and the latter
by subscripts (cf Fig. 5.8).

Details of the structure of the cochlea have effects on the precise profile of the
resulting cochlear frequency map, and also on the local properties of points along
the partition. Several studies have been made on the global profile of the cochlea;
some opposites are listed here:

1. Rectangular cochlear duct – Tapered duct
2. Straight cochlea – Rolled-up cochlea
3. Simple rectangular cross-section – More realistic rounded or

(semi-)circular cross-section
4. Inviscid lymph – Viscous lymph

16Note that the product p:v represents acoustic intensity I (W/m2).
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Although some of these points have been addressed for over about a century, so
far they have been solved partly at best. Several lucid biophysical studies have
addressed one or more of the points, such as the studies by Von Békésy, Zwislocki
(1965, 1974), Dallos (1973, Chap. 4), Inselberg (1978), and Puria and Allen (1991).
A complicating factor remains that all earlier studies focus on transfer function
behavior, using a linear system analysis approach, and insignificant attention is paid
to bidirectional information flow and power flow.

Ad 1: Towards the apex tapering of the duct can affect the transpartition pressure
difference, and hence the resulting local cross-partition volume flow, because the
tapering causes an additional gradient in the longitudinal direction. If the fluid is
loss-less, the associated power must be dissipated in the organ of Corti at the sensory
transduction mechanism. The factor is similar to adjusting overall cochlear partition
parameters (mass, damping, and stiffness) that would retain the resonance frequency
and increase dissipation or decrease theQ3dB . Tapering has been brought into view
already by Peterson and Bogert (1950), and by Zwislocki (1965), where the latter
proposes the following approximation (see also Dallos 1973):

Sv D St 	 2:5e�0:05x mm
2
; (5.27)

where parameter and constants are in mm-measures. The maximum factor is approx-
imately e�0:05�35 D e�1:75 D 0:174. Dallos analyzed a linear cochlea model around
1970, trying to match available data, and using both partial differential equations
(PDEs) and system analysis. He noticed that the function of tapering would be
more obvious if the cochlear perilymph and endolymph would have a nonnegligible
viscosity. The associate boundary layers would dissipate more acoustic energy,
thereby preventing possible reflections from the apical end, where proportionally
the boundary layer would be largest.

An other approach to the tapering of the cochlea is presented in studies that
consider the BM-traveling wave as a shallow water wave. Originally, those waves
were introduced for surface waves on the water–air interface, and the interface
properties play a fundamental role in the results. But instead of surface tension, the
cochlear partition—coupling to the other scala—provides an impedance of a com-
pletely different order of magnitude, and hence the coupling is incomparable with
the normal surface wave. Therefore, the approximation assumptions in the original
(Lamb 1895; Rayleigh 1894, 1896) analysis have to be adjusted, and the use of
common textbook formulas for these waves may be invalid.

Ad 2: The coiled cochlea was examined by Viergever (1978), where he concluded
(tentatively, but not updated as far as I know) that

the mechanical properties of the cochlea are only affected slightly by the spiral form, even
near the apex where the spiral is very tightly wound.

A similar conclusion was obtained in a local thesis study where a 3D finite element
method with flexible boundary conditions was used to estimate this effect by Berk
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Hess.17 But a more recent study by Cai et al. (2005) claims a significant effect of
the curvature on the shear gain at the apical part of cochlear partition. This gain
relates to hair bundle stimulation to cochlear partition/BM deflection. It relies more
on the change in shape of the CP across cochlear length than on a possible role
of viscosity and boundary layers. The paper also lists additional references, which
present conclusions more in line with those of Viergever.

Ad 3: Several investigators have examined the possible effect of the canal shape,
other than the tapering. A number of studies approximate the scala by semicircularly
or circularly shaped ducts. Some examples are Dallos (1973), Steele and Zais
(1985), and Kohllöffel (1990).

Here too, there is no evidence that the effect is very strong. In the basal area, the
power flow through the duct is parallel anyway, and near the point of resonance the
focus is on the partition and not on the wall.

Following experimental results, both psychophysical, BM, and AN-data, it
appears obvious that nonlinearity is probably dominant in the mechanical damping
term, it may also be present weakly in the stiffness term, and it is probably absent in
the mass term. The statement that a nonlinearity is present at a damping term limits
the possible sites to damping elements in the BM–OC structure, such as viscous
elements in fluid boundary layers, and power transition at the sensory elements.
Obviously, the loss of acoustic energy is not intended to warm up the system, which
suggest that natural optimization probably focuses to sensory transmission. But
changes in stiffness of the structure, either BM or OC (e.g., hair bundle stiffness),
also will have some effects. These points will be discussed later in more detail.

Ad 4: The study of the strength of the effect of fluid viscosity has gone through
several phases. Of course perilymph and endolymph do have a finite viscosity, but so
has water. The question is: does this lead to boundary layers that become significant
with respect to the sizes of the cochlear ducts (Sv and St ), or of the organ of Corti
or cochlear partition.

For several decades, the common opinion has been that the boundary layer is
sufficiently thin to exclude a strong friction effect, except probably at the apex, in
a tapered cochlea. Currently, there is a revived interest in the general relevance of
viscosity as determining the cochlear damping parameter.

My personal view disagrees with the latter: the ear supposedly has evolved as a
very sensitive auditory detector. Any detector has to pick up some power or energy
from the quantity it wants to detect. In other words, it is a fundamental property of a
detector to transform some incoming energy for further processing. If this detector
has to be very sensitive, it should loose as little power as possible heating up the
system, which is what a significant viscous component would do. In addition, a
spring or structural stiffness cannot be used as a detector, because it does not absorb
and transmit energy, it only can temporarily process onset and offset effects. Hence,
in terms of global parameters the detector is unlikely to be stiffness dominated.

17B. Hess. A mathematical model of the inner ear of a bat. Master’s thesis in Applied Mathematics,
Dept. Mathematics, University of Groningen, Dec. 1995.
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5.3.2 The Middle Ear As an Efficient Coupler

The middle ear is an essential interface between the acoustic environment and the
cochlea. If the auditory system were linear, we could state that the middle ear has
to provide a proper match between the acoustic impedance of air and the input
impedance of the cochlea. As noted before, a nonlinear cochlear model cannot
operate with a frequency domain property as impedance, so we have to convert
the properties established so far from the regular signal analysis description to the
underlying time domain equations.

We have planned to work with two different classes of interfaces: ME-0, a very
simplistic version, just matching the order of magnitude of power transmission
coupling within the mid-frequency range (around 2 kHz), and the more elaborate
version ME-1 after O’Connor and Puria (2008). In the latter case, we use their
detailed network and write down the corresponding differential equations rather than
using the common linear system analysis approach. An open end with this model
is that it starts with an earphone driver entry, thereby assuming a practically closed
auditory canal, excluding the possibly of an open coupling through the auricle. We
propose to consider the two different options, to be labeled as plugged or open canal
with the application of a simple approximation: treating plugged as a closed pipe and
open as a flanged pipe (e.g., Kinsler et al. 1982, Chap. 9). So far we have only been
able to check the simple interface ME-0 in any detail.

Several other middle ear models have been proposed over the recent decades, but
most of those either have not been matched to human data or are rather similar.

Middle ear coupler-studies tend to use the acoustic pressure–volume velocity
pair of parameters as the relevant combination. Acoustic parameters, such as the
acoustic impedances: acoustic mass, acoustic damping and acoustic stiffness, fit
within this category. However, one should realize that the transmitted acoustic
power depends on the pressure–particle velocity pairs (Sect. 3.6.1, 3.45), and that
the acoustic parameters involve the selection of global averages.

5.3.2.1 The Zero-Order Approximation, ME-0

In first approximation, the middle ear realizes efficient acoustic power transmission
from the open environment into the cochlea. In linear approximation, this means that
the specific acoustic impedance of air should match the specific input impedance of
the cochlea. The latter, by the way, is not determined by the compressibility of the
cochlear fluid, but by dynamical fluid mass displacement properties. But the former
does depend on the compressibility in air, which depends on the average density
(see Table 8.1) as well as on several other physical parameters.

For the cochlea, the power influx is the relevant quantity. It is determined by
the average pressure–volume velocity product. The ratio of these two quantities is
the acoustic impedance rather than the specific acoustic impedance. Thus, already
in the earcanal a proper match has to be made from the free-field condition to the
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Table 5.1 Parameter values for the simplest middle ear model, ME. It
provides a bandpass filter, centered (on a logarithmic scale) around 2 kHz,
with cut-offs at 0.7 and 5.7 kHz, and relates the acoustic properties of air
at the auditory entrance to those at the entrance of the cochlea, assuming
Za D Zsa=ATM. Independent variables: Zsa , nt, Q3dB;me, ATM, and Afp

Canal open Canal plugged

Zsa 415 Ns/m3 D Pa s/m 2 �Zsa Ns/m3

Za 6.92 � 106 Ns/m5 D Pa s/m3 14.0 � 106 Ns/m5

nt 30 – Same
mme 198 � 103 kg/m4 401 � 103 kg/m4

sme 3.13 � 1013 N/m5 6.33 � 1013 Nm
Q3dB;me 0.4 – Same
ATM 60 � 10�6 m2 Same
Afp 3.16 � 10�6 m2 Same

earcanal condition. In other words, we have to estimate the input power flow at the
auricle for a given external sound pressure or intensity. In this case, the acoustic
intensity I in W/m2 is the most directly related physical quantity. The power input
is the product of I and a reasonable estimate of the canal cross-sectional area
Aec 	 50 mm2. Note that the size of this area is close to the tympanic membrane
surface area (see Table 5.1). If necessary, an amplification factor 2 covers the
correction for the difference between open canal and flanged canal.18

The simplest approximation of the middle ear frequency characteristic is a
bandpass filter, centered around fc;me D 2 kHz, and with a low-frequency cut off
at fl;me D 0:7 kHz, and a high-frequency cut-off at fh;me D 5:7 kHz. This can be
represented by a second order system, which is described in terms of DE elements.
From bandwidth, center frequency, and resistance parameter Rme, we can derive an
estimate of the capacitance Cme and inductance Lme:

Q3dB D 2� fc;memme

dme
) Q3dB D 2� fc;me Lme

Rme
(5.28)

where we show the relation between the physical parameters and the equivalent
electrical network representations. Moreover,

fc;me D 1

2�

r
sme

mme
: (5.29)

To couple the external ear parameters to the cochlea parameters, we still have to
account for the cochlear transformer, which, going inward, increases the force and

18Kinsler et al. (1982, Chap. 9) give for the flanged pipe transmission coefficient T�
:D 2 .ka/2

(9.16b), for wavenumber k D 2�=� and pipe radius a � �, or ka � 1. The similarly derived
transmission coefficient for the unflanged open pipe is T�

:D .ka/2 (19.7b).
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Fig. 5.6 A very simple middle ear model that optimizes acoustic flow into the cochlea. It contains
the transformer ratio, a very crude band-pass filter, and uses the tympanic membrane area as an
estimate of the factor between the specific acoustic impedance of air and the acoustic impedance
of the area at the auricles20

pressure, and decreases the responding movement. Here this is characterized by the
factor nt D 30, which is an approximation of current data and models (Table 5.1).

The simple network representing this middle ear model is given in Fig. 5.6a. An
equivalent version where the transformer is omitted is shown in Fig. 5.6b. Note that
the input pressure amplitude now also has to be scaled by nt, the acoustic impedance
is scaled by n2t , but the global middle ear mass and stiffness parameters remain
unaltered.

For the closed earcanal, we use the simple approximation that the impedance
values are increased by a factor of 2, as indicated above. The parameters are listed
in Table 5.1. Tympanic membrane area and oval window / footplate area are also
listed, but functionally they are fully incorporated in nt.

Actually, besides fc;me the independent variables are Zsa, ATM, nt, and Q3dB;me.
Given this set,21 the other parameters follow from (5.28) and (5.29).

The transformer specifies the “volume velocity”–“pressure input” pair, and for a
steady- state signal it provides the parameters required to determine the power flow.
Local particle velocity inside the cochlea in the stapedial area can be obtained from
the volume velocity by multiplication of the latter with the stapes area Ast.

5.3.2.2 O’Connor and Puria’s 2008 Approximation, ME-1

The recent version of O’Connor and Puria’s middle ear model goes back to earlier
versions of Puria and Allen (1991, 1998), which—like many other models—had
been developed for the cat middle ear. These studies, however, did start at the auricle
entrance (pressure (pec and volume velocity Uec at the earcanal entrance), whereas
O’Connor and Puria begin their analysis at the tympanic membrane. In other words,

20See Sect. 8.3 for the definitions.
21Or any alternative set of independent variables.
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Fig. 5.7 A slightly modified version of the alternative middle ear model proposed by O’Connor
and Puria (2008) where the transformers have been “removed” such that all variable are represented
by their acoustic equivalents as seen from the right of all three transformers. Variables with an
attached “T” in their subscripts are redefined to follow this transformation. The redefinitions are
listed in Table 5.2, in combination with the original values

at the front end it needs an additional section to account for this difference. This
is discussed briefly in connection with their Fig. 5.1, but details are consciously
left open.

Similar to our proposal in the previous section, they also propose a version of
the model where the transformer factors are incorporated in the network. Again this
means that physical parameters are scaled. Figure 5.7 gives a representation of their
result. It is a close copy of their Fig. 2b, with the modification that we start the
scaling from the OW outward, as in Fig. 5.6b. The parameters are briefly indicated
in the figure caption, and a detailed list is given in Table 5.2, grouped by the blocks
that are indicated in the figure. The tympanic membrane is providing a delay term
of about 50�s and a damping term Z0tm, which is about 10�Za (cf Table 5.1), the
term that would complete the network with an external acoustic impedance.

5.3.3 One-Dimensional Approximation

Now that we have a first approximation to the coupling properties, we can setup the
1D equations and discuss the solution. The approach will be numerical, based on the
advise of our colleague H. W. Hoogstraten (Appl. Math., Univ. Groningen). After
some introductory discussions, he started with an analytical approach and provided
a first numerical solution in 1984, which at the time took considerable computation
power.22 At the time, proper scaling and rewriting of the ODEs representing the
transmission line network were essential to meet stability criteria. Presently the
scaling requirements are less tight because parameters can be represented in much
more detail, but the other conditions still apply. The original program was limited

22Of the order of 12 h on a lab computer for 20 ms stimulus time.



118 5 Modeling the Nonlinear Cochlea

Table 5.2 Parameter values middle ear model ME-1, with the formulas that apply to the
mechanical section has been transformed to acoustic equivalent

Parameter Data .n D 16/ Scaling

Name Units Mean Sem Formula Units

TM:
Ttm s 5.15 � 10�5 0.80 � 10�5

Z0 tm kg/s m4 13.8 � 107 3.6 � 107
Z0 tm A

2
tm N

2
LR

A2fp
kg/s m4

Atm m2 6.0 � 10�5 0

Malleus:
Mm .mm/ kg 4.52�106 0.89�106 mm N

2
LR=A

2
fp kg/m4

Km .sm/ kg/s2 530 71 sm N
2
LR=A

2
fp kg/m4 s2

Rm .dm/ kg/s 0.118 0.015 dm N
2
LR=A

2
fp kg/m4 s

NLR .n/ – 1.3 0

Im-joint:
Kimj .simj/ kg/s2 1.52�103 0.11�103 simj=A

2
fp kg/m4 s2

Rimj .dimj/ kg/s 2.66�10�2 0.43�10�2 dim=A
2
fp kg/m4 s

Incus:
Mi .mi/ kg 4.60�10�6 0.63�10�7 mi=A

2
fp kg/m4

Is-joint:
Kisj .sisj/ kg/s2 10.6 � 103 1.0�103 sisj=A

2
fp kg/m4 s2

Risj .disj/ kg/s 1.64�10�2 0.40�10�2 disj=A
2
fp kg/m4 s

Cochlea:

Afp m2 3.14 � s10�6 0
Ms .ms/ kg 3.55 � s105

Ksc .ssc/ kg/s2 1.21 � 1014 0.11 � 1014

Rsc .dsc/ kg/s 2.83 � 1010 0.19 � 1010

The mechanical data are given with the standard error of the mean (sem). The right-hand columns
provide the correction formulas and resulting units

to one text-page in F77. With some interfaces, and an upgrade to modern Fortran, it
expanded considerably. Both are available through the URL. The core of the original
program by Hoogstraten is also presented in a gray-box at the end of this chapter.
We have to admit that in 1983 we fell in the trap that we did not use a middle ear
interface, and drove the cochlea at the stapes.

The transmission line network is almost identical to that shown in Fig. 3.6, the
important difference is that implementation of NL elements in the system means
that the elements in the cross-partition equivalents can now be nonlinear. We treat
this problem in detail for the case of NL-damping, introducing a Van der Pol type
of damping term for dai , or Van der Pol oscillators for the CP-sections. The mass
terms will always be treated as linear, but for the stiffness we will allow variations
at a later stage.

The transmission line network is a numerical approximation of the cochlear
structure. The constituting equations, as long as they were linear, could represent
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a smooth, continuous system. It may be questionable if that is also true for the
real cochlea, which does have a grid structure along the length axis: the number of
cells that setup the organ of Corti is of the order of 3200. This is the quotient of
the BM-length up to the helicotrema, and the width of a pillar cell or a hair cell.
In other words, a discrete representation along that parameter may be more natural
than a continuous representation. Moreover, it set a limit to the maximum number
of points that might be useful for the analysis.

For the cochlear fluid, however, the discretization provides a limitation. There-
fore, we will start from (5.23) earlier in this chapter. We assume tentatively that
˛.x/ D 1, and use the subscript notation for differentiation. Finally, we follow the
common assumption that the acoustic mass, or the mass per unit area,m.x/ D m, a
constant. Application of these conditions modifies (5.24) slightly to

.mwt t C d.x/wt C s.x/w/xx �
2	

h
wt t D 0: (5.30)

Note that details of damping and stiffness functions are still unspecified in this
formula.

The first step that is set to solve this PDE properly is to transform it into two
coupled ODEs. Next the spatial differential equation is transformed to a difference
equation. The remaining ODEs in time are treated separately. The second-order
equations are rewritten as sets of first-order equations, which are solved with the
Runge–Kutta–method (RK4).

5.3.3.1 Separating Space and Time Differentiation

In Sect. 5.3.1 the full bracket term in (5.30) was defined as ' D '.x; t/. Here we
introduce an additional short-hand for the sum of the damping and stiffness terms23

as g D g.x; t/, or:

' D mwt t C d.x/wt C s.x/w; (5.31a)

g D d.x/wt C s.x/w: (5.31b)

The difference gives a new specification of the first term mwt t :

mwt t D ' � g: (5.32)

With these definitions (5.30) can be rewritten as

'xx � �' D ��g; (5.33)

23Actually, the function g introduced here represents the standard cross-partition force (or pressure)
term. The dimensions of g and ' are [M L�1T�2], and the units: Pa.
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where the constant � combines the remaining parameters: � D 2	

hm
. This equation is

an ordinary nonhomogeneous second-order spatial differential equation. At a single
point in time, the spatial part of (5.33) can be solved, and this solution yields all
required local differential equations in time. Introduction of the partition velocity
v D wt enables the rewriting of (5.31) into a set of two first-order equations:

wt D v; (5.34a)

vt D .' � g/=m; (5.34b)

where
g D d.x/ vC s.x/w (5.35)

and has to be updated, the function specifying the CP-properties which also must be
updated at each time step.

Equation (5.33) is solved using Gauss-elimination, and (5.34a,b) with RK4.

5.3.3.2 The Spatial Difference Equation

We go into more detail of this part of the procedure because the boundary conditions
for the spatial equation are important.

Let the discrete version of the transmission line have n regular sections, from
point 1 as the first point at the base, and up to point i D n representing the last
partition point before the apex. In other words, the apex is beyond point i D n

but directly connected in parallel, and point i D 0 represents the connection at the
cochlear entrance.

As will be shown below, the spatial differentiation can be represented as a
square matrix product on the vector '. In other words, the differential equation is
transformed into a .nC1/�.nC1/ matrix equation, where the boundary conditions
involve the points at 0 and at n. This equation is of the general shape

D f'g � �' D ��g; (5.36)

except at the boundaries.
The standard transform of the second-order spatial derivative to the difference

equation involves three adjacent terms:

'xx.i/ D 1

�2
.'.i � 1/� 2'.i/C '.i C 1// : (5.37)

� is the spatial discretization step size, which equals the relevant length along the
BM divided by the number of sections n. The second-order spatial difference is
symmetric around the point of interest, and therefore relatively insensitive to the
spatial discretization. On the edges, however, only two points are available, and



5.3 Coupling the Elements 121

more subtlety is useful. The three adjacent elements that represent the differentiation
generate a tridiagonal matrix, in which the � term can be incorporated. Next we
multiply all terms in (5.33) by �2, set � � �2 D ˇ, and replace �2 � ˇ by K .
Leaving the boundary conditions (A;B; Y;Z) open for the moment, we obtain:

0
BBBBBBBBBBBBBB@

A B 0 � � � 0 0

1 K 1 0 � � � 0

0 1 K 1

0 1 K
:::

:::
: : :

:::
:::

K 1 0

1 K 1 0

0 � � � 0 1 K 1

0 0 � � � 0 Y Z

1
CCCCCCCCCCCCCCA

' D �ˇgC

0
BBBBBBBBBBBBBBB@

s

0

0

0

0

0

0

0

apex

1
CCCCCCCCCCCCCCCA

; (5.38)

where ' and g are nC 1-dimensional vectors.
The equation at the cochlea base (top line in the matrix, index n D 0) must

involve the stapedial boundary condition, including a potential stimulus input. This
means that it is connected to the middle ear interface. This is represented in line
n D 0:

A:'.0/C B:'.1/ D �ˇ0g.0/C s.t/: (5.39)

To solve this line—and ultimately the full matrix—we must find the proper values
for A and B , and the stimulus term. The coupling terms g.i/, which determine the
fluid coupling, also have to be specified, so here we start analyzing g.0/.

If

'xx.0/ D 1

�2
.'.�1/� 2'.0/C '.1// (5.40)

and the first derivative / differential at x D 0 is

'x.0/ D 1

�
.'.0/ � '.�1//

then (5.40) can be rewritten as

'xx.0/ D 1

�2
.�'.0/C '.1// � 'x.0/

�
; (5.41)

which leaves us with the question of finding 'x.0/. This is the point where the
stimulus comes into play, through the middle ear interface. The physical reason for
this is that the quantity '.i/ represents the time derivative of the pressure at point i ,
or

'.i/ D dp.i/

dt
and '.0/ D dp.0/

dt
;

which couples directly to the OW-pressure stimulus.
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Additional adjustments must be made in the second matrix line (index n D 1)
if one takes the spatial differences between the footplate—BM coupling, and the
coupling between elements 1 and 2 along the CP into account. The former is
basically independent of the spatial sampling discretization along the BM (simply
distance between OW and BM), whereas the second is (BM-length / number of
points). This leads to the correction factor 0 in most of the terms. Because of the
tridiagonal matrix form, the second line still couples directly to the stimulus s.t/.

For the simple middle ear (ME-0) we can now specify the relevant coupling mass
in the input branch and with the results of this analysis we can rewrite the line at
n D 0 as (see Figs. 5.6 and 5.8 for more details):

� .1C 0�/'.0/C '.1/ D �0�g.0/ � 0�nme'e.t/; (5.42)

where

� D 	h

m
and 0 D m�0 b

mme h2

withm D m.x/, the partition mass in kg/m2, andmme the acoustic middle ear mass
in kg/m4. Hence, the product 0� is dimensionless. The solutions for unknowns A
and B are: A D K � 1 and B D 1. The remaining terms in row 0 involve g.0/
and nmepe.t/. The first involves the fluid mass coupling from oval window to CP
characterized by �0, which generally differs from the spatial discretization step �.

The general matrix row, i.e., from i D 1 to n, remains as discussed above,

'.i � 1/CK'.i/C '.i C 1/ D �ˇg.i/; (5.43)

where local BM properties are contained in g.i/. We also can specify the underlying
physical parameters of K and g.i/.

The acoustic fluid mass in a section i of x-length � over a scala cross-section is

mi
a D

	�

bh
kg/m4

per section. If we consider the motion in the scala vestibuli and scala tympani
together, as combined drivers of the CP this provides an additional factor 2:

mi
a D

2	�

b h
: (5.44)

We obtain the acoustic mass of a BM section in a similar way. Starting from the
given mass per surface area m.x/, the acoustic mass of a CP-section is:

mai D
m.x/

b �
: (5.45)

Finally, the conditions at the apex must be specified. A historical issue is that
many cochlea models have assumed an apical shortcut, and got away with it.
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Fig. 5.8 The same network representation of a 1D cochlea model as a transmission line as in
Fig. 3.6, with a slightly different—but equivalent—representation of the helicotrema. Moreover,
the elements of the cochlear partition are now considered to be potentially nonlinear second order
networks elements. The fluid mass coupling in the scalae is represented by the (mostly unlabeled,
except for mn

a) inductances in the horizontal branch. If the spatial discretization is uniform, then
the elements are equal, and for each element mi

a the mass is 	�xAsc , and the acoustic mass is
	�=Asc . Over the same �x the CP-mass is m.x/�xb, and the acoustic CP-mass for that section
is mai D m.x/=.�:b.x/. Note that the (fluid mass) / (partition mass) ratio is independent of �x.
The difference with Fig. 3.6 is that index n now refers to the most apical CP-section, and that all
acoustic fluid mass involved in the helicotrema flow is combined in mah

This goes back to the underlying assumption that cochlear response amplitudes to
narrow-band signals in the mid-frequency range have decayed by many orders of
magnitude once they reach the helicotrema. For stimuli in the low-frequency range,
however, this is not true, and interferences and reflections occur.

Insertion of apical boundary conditions involves the interaction with BM-points
n�1 and n. We follow the network as depicted in Fig. 5.8, and leave it to the reader
to proof that it is completely equivalent24 to Fig. 3.6. Line n in the matrix defines the
most important apical conditions: the unknowns Y;Z and the variable apex, which
appear in the equation that represents the final row

Y'.n� 1/CZ'.n/ D �ˇng.n/C apex (5.46)

have to be resolved. The analysis is based on the right-hand part of Fig. 5.8. The
volume velocity through section n is Un, and through the helicotrema Uh. The sum

24i.e., the one can be transformed into the other.
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of these passes through the scala section from n � 1 to n. Hence, the force balance
in x-direction is:

pn�1 � pn D mn
a

@U n�1;n

@t
D mn

a

@

@t
.Un C Uh/: (5.47)

For the apical point i D n, we have two branches: branch n representing the
partition and branch h representing the helicotrema coupling. The first appears to
follow the regular partition conditions, the second misses the spring term. However,
the remaining mass and damping term are quite different.25 We obtain:

pn D man

@Un

@t
CdanUnCsan

Z
Undt and pn D mah

@Uh

@t
CdahUh: (5.48)

Taking the time-derivative of (5.47) and replacing @pn=@t by 'n, and @Un=@t and
@Uh=@t by Vn and Vh gives:

'n�1 � 'n D mn
a

@

@t
.Vn C Vh/: (5.49)

The time derivatives of the two parts of (5.48) provide substitutions for the right-
hand side of this equation:

@Vn

@t
D 1

man

Œ'.n/ � g.n/
 and
@Vh

@t
D 1

mah

�
'.n/� dahVh

�
(5.50)

thereby finally providing

� mn
a

man

'n D �mn
a

@Vn

@t
� mn

a

man

g.n/; (5.51)

� m
n
a

mah

'n D �mn
a

@Vh

@t
� mn

a

mah

dahVh (5.52)

or

'n�1 � Œ1C mn
a

man

C mn
a

mah


'n D � m
n
a

man

g.n/ � mn
a

mah

dahVh: (5.53)

Note that the general expression for the ratio of fluid mass and partition mass is:

mi
a D

2 	�

b h
and mai D

m.x/

b �

25The mass term mah is estimated from a “semicircular pipe”, and the damping from the viscous
loss through the same. The estimates were refined by optimization of the resulting termination
impedance which minimizes apical reflections. This approach is a compromise between the use of
data and the assumption of optimum processing.
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or

mi
a

mai

D 2 	�2

m.x/ h
: (5.54)

In our model, the connection at the apex is specified to minimize reflections at the
helicotrema because we tacitly assume that this is a logical biological optimization.
We approximate it by an estimate of the characteristic impedance of the transmission
line at the apical end (obviously a linear approximation). The required parameters
involve a mass term and a resistance, which match the properties of fluid moving
back and forth through a tube. The properties at point n determine the amount of the
canal fluid mass through the helicotrema. More precisely, the requirements for mini-
mum reflection match the properties of the apical fluid mass and fluid flow damping.

Reflections at the end of a transmission line are suppressed by application
of the matching termination impedance. A common example is the 50 �
resistance for common coax-cables. For those transmission lines, the cable
properties are independent of x. The properties of the cochlea do change
over the length, but near the apex the gradient decreases. Hence, we will just
consider the properties at position i D n, and compare that to the helicotrema
properties.

The characteristic acoustic impedanceZa;0 is given by

Za;0 D
s
Zx;n

Yx;n
; (5.55)

where Zx;n is the longitudinal impedance per unit length, and Yx;n the
transversal admittance over the same step. From the analysis in this section
it should be clear that in the linear systems analysis approximation

Zx;n D 2i! 	

h b
and Yx;n D b

i! man C dan C san=i!
; (5.56)

so that;

Za;0 D
s
2 	man

h b2

�
san
man

� !2 C i!
dan
man

	
: (5.57)

The network specification of the apical termination impedance is

Zah D i! mah C dah; (5.58)

and it turns out to be possible to set Zah D Za;0, even though we have
three equations and at first glance only two free parameters. Squaring (5.57)
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and (5.58) and equalizing the results for all powers of ! gives a frequency
independent match for mah and dah . The “missing” parameter is “hidden”
in the local Q-value in branch i D n. The result implies that the value
Q3dB D 0:5 is a necessary ingredient for optimum termination.

The verifications that the involved fluid mass and “tube” resistance are of
the proper orders of magnitude are left to the interested reader.

At this point, we have solved the matrix elements Y and Z, the apical version of ˇ
and the term apex:

Y D 1; (5.59)

Z D �
�
1C mn

a

man

C mn
a

mah

�
; (5.60)

ˇn D mn
a

man

; (5.61)

apex D � m
n
a

mah

dahVh: (5.62)

Note that in fact ˇn is independent of position, because the ratio of the acoustic
masses is (5.54), but it does depend on the discretization grid size. The factor
mn
a=mah , however, generally is orders of magnitude smaller that g, because the

termination mass term is much greater thanmn
a orman . The most right-hand term in

(5.53) also contains the component dah , which is of a similar order of magnitude as
mah . Therefore, the fluid motion through the helicotrema is not simply negligible,
and will need proper treatment.

5.3.4 Solving the Matrix Equation and the Differential
Equations

Remember that the matrix equation represents the second order spatial difference
equation, which is coupled to second order differential equations in time. For one
step in time we have to solve the matrix equation, and with the new parameters we
estimate the next step in time for all points x.

The matrix equation of the type (5.38) is solved by a straightforward Gaussian
elimination technique. For the solution of a tridiagonal matrix it needs two runs.
In principle it does not matter where the procedure starts, in practice accuracy
is optimized by limiting propagation of results of computations based on small
numbers as much as possible.
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Details of the Gauss Elimination Procedure

The last three lines of matrix (5.38) were

0
@
0 1 K 1 0

0 0 � � � 0 1 K 1

0 0 0 � � � 0 1 Z

1
A' D �ˇgC

0
B@

0

0

Ap

1
CA

or, written out in detail:

'n�3 CK'n�2 C 'n�1 D �ˇg.n � 2/;
'n�2 CK'n�1 C 'n D �ˇg.n � 1/;

'n�1 CZ'n D �ˇg.n/C Ap:
Now set �ˇg.n/C Ap ) kn, and divide the last row by Z. This gives

1

Z
'n�1 C 'n D 1

Z
kn (5.63)

or: 'n�1 � bn'n D kn with bn D �Z: (5.64)

After subtraction of (5.63) from row n � 1, the 'n-term disappears:

'n�2 C .K � 1

Z
/'n�1 D �ˇg.n � 1/� kn

Z
D kn�1 (5.65)

or, rewritten in shorthand:

'n�2 � bn�1'n�1 D kn�1: (5.66)

The complete results so far can be written as

0
BBBBBBBBBBBBBB@

�b0 0 0 � � � 0 0

1 �b1 0 � � � 0

0 1 �b2
0 1

:::
:::

: : :
:::

:::

0 0

0 �bn�2 0 0

0 0 � � � 1 �bn�1 0

0 0 0 � � � 0 1 �bn

1
CCCCCCCCCCCCCCA

' D

0
BBBBBBBBBBBBBBB@

k0

k1

k2

k3

kn�3
kn�2
kn�1
kn

1
CCCCCCCCCCCCCCCA

(5.67)

with properly computed values for the b’s and k’s. The step to the final
solution for the vector ' continues with the downward steps:
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'0 D �k0=b0
'1 D �k1=b1 C '0=b1
::: D :::

'n D �kn=bn C 'n�1=bn: (5.68)

Solving the time steps, or the NL cochlea, ODEs involve the application of a
discrete approximation of the analytic solution for which we use the RK4 method.
In Sect. 5.1.3.2 this method was introduced as one of efficient and stable methods
for obtaining stable oscillating solutions. The efficiency was studied by Diependaal
et al. (1987) in a comparison with the Heun method and a modified Sielecki
method and the conclusions summarized in their TABLE II, which shows that for
equal computation time the Runge–Kutta method is much more accurate than the
alternatives. The stability properties of the RK4 method have been indicated in
Fig. 5.4, where points outside the grayed area are unstable, and the highest stability
is obtained at the two darkest areas, and their conjugates. The criterion for stability
is different from the Nyquist criterion, which applies to linear systems.

The RK4 method that is commonly used for the solution of second-order
differential equations begins with the step to transform all second-order differential
equations in sets of coupled first-order equations. This has been established in
(5.34a,b), where both deflection w and velocity v of the cochlear partition were used.

The program lines shown below are involved with one RK4 time step, including
the update of the matrix and Gauss elimination. The variable V represents v and Y
represents w. The method uses four sub-steps per step. Estimates for the next values
of Y use the latest value of V: dY D V dt , but estimates for the next values of V have
to be computed separately at all points i , and is renewed in the .nC 1/ � 4 matrix
M1234.0 W n; 1 W 4/. An example of the full program text is available on the URL.

do RK4step=1,4
select case (RK4step)
case (1)

F0=Stimulus(0)
Ytmp = Y
Vtmp = V

case (2)
F0=Stimulus(1)
Ytmp = Y + Vtmp * half_dt
Vtmp = V + M1234(0:n,1) / 2.d0

case (3)
Ytmp = Y + Vtmp * half_dt
Vtmp = V + M1234(0:n,2) / 2.d0

case (4)
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F0=Stimulus(2)
Ytmp = Y + Vtmp *dt
Vtmp = V + M1234(0:n,3)

end select

CALL Calculate_g

U_helicotrema = -stapesArea(parameterSet) * Vtmp(0) &
- SUM (Vtmp(1:n)) * dx * bm_width

k(n) = -Asq * g(n) - phi * U_helicotrema
DO i = n-1, 1, -1

k(i) = -Asq * g(i) + k(i+1) * b(i+1)
ENDDO
k(0) = -Asq0 * (p0x * F0 + g(0) + r_Xtr0 * Ytmp(0)) &

+ k(1) * b(1)
q(0) = -k(0) * b(0)
DO i = 1, n

q(i) = (q(i-1) - k(i)) * b(i)
ENDDO

M1234(0,RK4step) = m0_RK4 * (q(0) - g(0) - p0x * F0 &
- r_Xtr0 * Ytmp(0)) * dt

M1234(1:n,RK4step) = (q(1:n)-g(1:n)) * dt

enddo !RK4step

Y = Y + (V + (M1234(0:n,1)+ M1234(0:n,2)+ &
M1234(0:n,3)) / 6.d0) * dt

V = V + (M1234(0:n,1) + 2.d0 * (M1234(0:n,2)+ &
M1234(0:n,3)) + M1234(0:n,4)) / 6.d0

!END MAIN RK4 ROUTINE

This concludes the discussion of the method of the time domain analysis of a 1D
approximation of the cochlea model. This structure can address and analyze, and
model several different cochleae. It needs a proper set of parameters, and can be
used for different mammalian ears, insofar as data are available.

We have not (yet) gone into the fine structure of the CP, not because we would
want to suggest that it does not have a function, but because we choose to limit
the discretization grid to cover at least ten longitudinal cell “layers” in the Organ
of Corti (	100�m). Moreover, these layers are not as separate as some modelers
do want us to believe, there are several interesting longitudinal couplings. At the
moment we take a global view looking at combined effects, and more in particular:
stay away from a model with too many free parameters.

Even with this simplification, several relevant cochlea model properties can be
analyzed by specifying the g.i/ function. This is worked out in the following
section.
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Table 5.3 Minimum set of
parameters required for a
proper cochlea model
analysis

Model specification
Name Symbol Units

Frequency map
Frequency at base fG.0/ Hz (kHz)

�G 1/m
Apex correction Ap Hz

Middle ear
Stapes area Ast m2

Eardrum area ATM m2

ME resonance frequency fc;me Hz
ME quality factor Q3dB;me -no-
ME transformer ratio nt -no-
Damping coupler dme Ns/m5

Mass coupler mme kg/m4

Stiffness coupler sme kg/s2m4

The index G of f .0/ and � refers to the Greenwood-map, see
Sect. 5.3.5.1

5.3.5 Selection of a Specific Cochlea Model or Structure

A set of specific parameters that covers all necessary constants should be available
for any mammal for which computation are made. Table 5.3 gives a shortlist of a
minimum set.

Given these parameters, we can address the next interesting point: the selection
of the g-function, or of the CP damping and stiffness parameters along the cochlea.
We use the simplification that the relevant mass per unit area is constant.

The versions with the active NL damping option are the ones that can generate
spontaneous oscillations or otoacoustic emissions. All nonlinear versions will
generate distortion products, among which are DPOAEs. The damping point in
a standard passive system characterizes the point where energy is dissipated.
Formally, changing the sign of the damping term to negative transforms a dissipater
into an emitter. In other words, changing from passive to active involves changing
the sign of the damping term for small amplitudes. At larger amplitudes damping
has to become positive again, stabilizing the properties of the oscillator.
We will discuss several of the specification options following the column numbering
in Table 5.4.

5.3.5.1 Linear Model (#0)

The first column gives the combination for linear damping and linear stiffness,
although it also contains the option to introduce nonlinear stiffness. This linear
case is “identical” to the linear model in Chap. 3, and in particular the analysis in
Sects. 3.1–3.5 does apply.
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Table 5.4 A selection of
parameters for the g-function:
the damping C stiffness
terms in the transpartition
branches

Model # 0 1 2 3 4 5 6

Damping: L vdP NL1 NL2 NLG LZ NLZ
Passive p p p p
Active a a a * *

Stiffness: L L L L NLG LZ NLZ
NL

The “values” in the table indicate linear (L) or nonlinear (NL)
elements, and active vs. passive is denoted with a or p. Column
# 1 (vdP) refers to the classical Van der Pol oscillator with
parabolic damping term. NLG gives the option to select Furst
and Goldstein’s nonlinear model (Furst and Goldstein 1982), and
LZ or NLZ links to a rather different version following Zweig’s
specifications for local feedback (Zweig 1991)

One issue that is treated similarly for all model versions is the frequency map.
Presently fairly accurate data concerning the frequency map are available, both
from observations of BM-responses, and from HRP-labeled auditory nerve data.
Of course one has to be aware of the fact that if such data have been obtained from
almost intact preparations, then the cochlea would have been operating nonlinearly,
and the linear approximation should be regarded with proper caution!

One of the first generally accepted estimates of the map was the Greenwood map
Greenwood (1961, 1990), which uses three parameters: an initial value of fc at the
base (in Greenwoods original paper at the apex), the exponential decay towards the
apex, and the asymptotic apical term. In the formula the propositions imply:

fc.x/ D 165:4 .100:06.35�x/ � k/
D 20;822 .10�0:06x � k:10�2:1/

and for k D 0:8 or 0:85 W
fc.34/ D 57:6 or 49:3 Hz;

fc.35/ D 33:1 or 24:8 Hz: (5.69)

In the original equation, x was taken to increase from apex to base, just opposite
from the notation that we are using. In the current formulation, the apical limit has
become sensitive to the length of the cochlea in combination with the basal boundary
condition. The constants are fc.0/ D 165:4 � 102:1 D 20;822:6, the exponential
factor is 0.06 mm�1. The apical limit parameter originally had the value k D 1. In
the (1990) study, Greenwood suggest that this original value “may sometimes be
better replaced by a number from about 0.8 to 0.9” to obtain a lower frequency limit
at the apex. For the human cochlea, we will use his map, with k D 0:85 (see also
Sect. 3.3).

Note that the value of fc.0/ depends critically on the value 2.1, which is the
product of 0.06 and 35. For instance, for a small variation in cochlear length,
between 34.9 and 35.1 mm, the initial frequency changes from 20,537 to 21,112 Hz.
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The frequency map seems to provide rather direct information about the CP-
parameters. Local oscillators have local resonance frequencies, and it has been
tempting to link the one directly to the other and derive CP parameters from
insufficiently detailed information and intelligent interpretation. Figure 8.1 indicates
that only for the “symmetric” case (middle column), the resonance frequency of a
simple oscillator is independent of the damping. This is true for all band-pass filters
with symmetric input–output characteristic, independent of the order of the system.
However, as soon as the symmetry does not apply, the peak frequency starts to devi-
ate from the resonance frequency, depending on the damping, and correlated to the
phase behavior. This is indicated in the left-hand and right-hand columns in Fig. 8.1.

Summarizing this point: the map is very important for the estimation of the local
mass and stiffness ratio, but for the full values independent additional information
is required, either about the response phase properties or about one of the two
parameters: mass or damping (see also Sect. 8.5.1).

5.3.5.2 van der Pol Model (#1)

Model #1 uses the classical quadratic (parabolic) damping term. Small amplitude
negative damping specifies an oscillator that generates a limit cycle oscillation if
undriven and uncoupled. The relative scaling of the active part is characterized by
the parameter ".

Some Relevant Properties of the Parabolic Damping Term

Two important properties of a parabolic damping profile, as in the Van der
Pol oscillator, deserve specific attention.

The first is of theoretical nature and leads straightforwardly to an exponen-
tial power-law output–input relation, with the power 1=3. This follows from
the consideration that near resonance, the high-amplitude behavior is limited
by the damping term, which is of the family d:v. For large amplitude, and also
for large velocity v, the damping coefficient d is proportional to v2, and the
input s.t/–output v.t/ relation approaches:

s.t/ / v3.t/ or v.t/ / 3
p
s.t/; (5.70)

(where the Zero-phase cubic root term is considered).
The second is practical: an odd-order nonlinearity can only generate odd-

order harmonic and intermodulation distortion. This provides an accuracy
check on any applied method. By contrast, an even-order nonlinearity can
generate both even-order and odd-order products. This is the reason to limit
the analysis to odd-order nonlinearity. It does not imply that we assume that
the real system is completely odd order. Obviously, there are some even order
distortion products (e.g., difference tones) although they tend to be much
smaller than the odd-order components.
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The (un)coupling refers to the interaction with neighboring elements within
Corti’s organ. Specifications as well as results of the Model #1 have been presented
in Duifhuis et al. (1985). Their equation (1) equals26 (5.30). For both d.x/ was
specified as

d.x/ D �d1.x/C d2.x/w2t :

Note that the dimensions of d1.x/ and d2.x/ are quite different: the definition
is such that the product d2=d1:w3t is dimensionless. The fact that the parabolic
relation is in the velocity wt rather than in deflection w can be considered as
treating the system as a Rayleigh oscillator rather than a Van der Pol oscillator
(see Definitions 9.12 and 9.13). For a critical comparison with general Van der
Pol oscillators, as formulated in (5.31), it is useful to apply the following scaling
factors: first, divide all terms by m:

'

m
D wt t � d1

m
wt C d2

m
w3t C

s

m
w

and then scale the time by 1 /(angular resonance frequency), � D t
p
s=m, which

brings us at27

'

s
D w�� � d1p

sm
w� C d2

m

r
s

m
w3� C w;

which is of the form of the general Rayleigh equation (9.29). This can also be
written as

f .�/ D Rw � ".1 � ˛ Pw2/ PwC w (5.71)

with

" D d1p
sm

and ˛ D d2 s

d1 m
: (5.72)

Integration transforms the Rayleigh equation to a regular Van der Pol equation
( Pw D x), and then scaling by u D x

p
3˛ can alter the appearance of the NL

damping term28:

Rx C .3˛x2 � "/ Px C x D Pf ; (5.73)

RuC .u2 � "/PuC u D p3˛ Pf : (5.74)

26The only difference is the use of the symbol y instead of w for the transmembrane deflection.
27Note that the scaled time parameter � is dimensionless.
28This operation and the connected discussion originates from Broer and Takens (2009).
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The applied Broer–Takens transform moves the "-parameter from without to within
the bracket term, thereby modifying its role. The equation now has a Hopf-bifur-
cation at " D 0. For negative " all solutions converge to zero, for positive " the
resulting oscillator is an active Van der Pol oscillator.

Initially29 (Duifhuis et al. 1985) we started with a network model where all
branches were active with30 " D 0:05. The reason to start analyzing the Van der
Pol oscillator has primarily been that there was not a direct biophysical natural
source of spontaneous otoacoustic emissions. In general, a sensor must pick up
a tiny amount of energy in order to detect or measure (estimate) some parameter
accurately. Lossless detectors are unphysical. So at some point, a sensory system
has to dissipate some data-related energy, and it is quite surprising that the auditory
system appears to have a modification that also allows generation of energy. If this
amount of generated energy is large, then the ear would really be transformed from
a sound detector to a sound producing device. This line of thinking is consistent
with the idea that low-level damping is reduced in order to enhance the sensitivity
to weak sounds. Spontaneous emissions would arise at points where this reduction
is too strong. Apparently, this mechanism requires intact OHCs, but for the time
being, that is where our speculations pause.

The use of the constant " parameter, independent of x, presented us with the
surprising result that the undriven response of the cochlea showed chaotic behavior
(op cit., Figs. 1–3). Each point tries to oscillate at its own resonance frequency,
which implies that the resonances frequencies of adjacent points differ, so that
they cannot synchronize, at least not continuously (Fig. 5.9). The consequence of
the breaking of synchronization at irregular times is represented in the generated
unpredictable response. If a stimulus is presented to this model cochlea, then the
part(s) driven strongly enough will synchronize to the stimulus, and the chaotic
behavior disappears (op cit., Figs. 5 and 6, and Fig. 5.10, this section).

The characteristics of the classical (parabolic) damping profile of the Van der
Pol oscillator are important enough to readdress them in detail, including the point
of bifurcation, even though we have become aware of important limitations. For
instance, in (5.71) the parabolic damping term leads to a power of 1=3 in the
output–input ratio. If this power extends from the threshold to the upper range of
hearing (0–120 dB), then the internal range is nicely compressed to 40 dB, but the
characteristics of the responses in the frequency domain show too much overlap,
or decrease of selectivity. This result is apparent in the BM response profile as
a function of level (see Fig. 5.10). Therefore, we decided to go on investigating
modified Van der Pol oscillators, with a general even-order nondecreasing damping
term, i.e., with a function that grew more slowly than quadratic and might even
saturate. Some examples are given in the next subsection (Fig. 5.11).

29Actually, this study was preceded by an analytical approach by van Netten and Duifhuis (1983)
where the analysis focused on the properties of single driven Van der Pol oscillators, and the
application to CMs.
30Note that the definition of " (5.72) is similar to the definition of ı or 1=Q for a linear second
order system.
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Fig. 5.9 As an example, the
dot display showing the (lack
of) correlation between the
responses of two adjacent
branches of the cochlea
model is presented. Data
points are collected over
100 ms at the sampling
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weak correlation bands, but
the overall impression is that
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Duifhuis et al. (1985, Fig. 3b)

0 100 200 300 400
0

5

10

15

20

25

30

90 dB

70

50
20

Van der Pol-model results

BM position(400 pnts re 35 mm)

v 
pr

of
ile

 (
dB

 r
e 

1 
nm

/m
s)

stimulus frequency = 1.00 kHz

Fig. 5.10 BM excitation in a Van der Pol cochlea for a 1 kHz tone as a function of level. At the
apical end, the response remains chaotic for all levels, at the basal end the response synchronizes to
the stimulus as soon as the stimulus is present, even at a level below the background chaotic level.
The peak of the excitation profile moves basalward with level (indicated for some examples). Only
at the highest level (90 dB) an extension in apical direction starts to develop

5.3.5.3 Modified Models (#2 and 3)

This concerns model versions that contain NL oscillator elements, such as defined
and described in Sect. 9.2, and are able to generate spontaneous otoacoustic
emissions if modeled as Van der Pol oscillators. For that reason, we suggested to
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Fig. 5.11 Scaled damping profiles as a function of velocity. The standard VDP profile (1) and the
sinh.x/=x profile (2) continue to increase with increasing velocity; the more recently introduced
profiles (3,4) move from low values at low velocities to a saturation level, scaled to 1, at high
velocities. The values around 0 may be several orders of magnitude smaller. The Hopf-profile (7)
proposed by Duke and Jülicher can be considered as a version of the Van der Pol profile: scaled in
such a way that its limit value for small deflections is exactly zero. For this limit, they introduced
the term “critical oscillator”. They also allow either velocity or deflection as the independent
parameter

use a damping function that explicitly includes a dB-scale approximation over some
amplitude range:

d.x; v/ D d0.x/
�
�

sinh.˛v/

˛v
� 

coshˇ v

	
: (5.75)

In this equation, the positive part provides the output–input behavior, and the nega-
tive part accounts the active properties. The parameter d0.x/ scales the bracket part
to order 1, and carries the dimension of damping; the bracket term is dimensionless
(Fig. 5.12).

The hyperbolic sine function is constant for small amplitudes and increases
exponentially at large amplitudes. Over that large amplitude range, the output–input
ratio becomes logarithmic . The parameter ˛ determines where ˛ � v is of order
1, which is where the damping function changes from approximately constant to
exponentially increasing. This sin h.x/=x-function approaches 1 if the argument
(x) value goes to 0. The parameter � was introduced to allow adjustment of this
level. Generally, it is smaller than 1.

The additional term �= coshˇ v accounts for active behavior as long as it is
stronger than the sin h-damping part. Similarly to the way in which ˛ determined a
characteristic width of the positive damping term, ˇ defines the width of the active
damping section, or the velocity range over which negative damping can occur. But
this role of ˇ is strongly affected by the value of  .
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Fig. 5.12 BM excitation in a
NL cochlea with
sinh.˛v/=.˛v/ damping
(profile #2 in Fig. 5.11) for a
1 kHz tone as a function of
level (30–90 dB; passive
model version). The peak of
the excitation profile moves
basalward with level. The
extend of the relatively linear
low-level range depends on ˛,
and can be greater than for
the VDP model
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Fig. 5.13 BM excitation in a
NL cochlea with damping
profile #3 for a 1 kHz tone as
a function of level (30–90 dB,
passive model version). First,
the peak of the excitation
profile moves basalward with
level. At the top level, this
effect saturates. As in
Fig. 5.12, the extend of the
relatively linear low-level
range depends on ˛, and can
be greater than for the
VDP model

A Hopf-bifurcation arises at d.x; v/ D 0, and analyzing (5.71) it is clear that
this implies that the bifurcation appears at  ! �. As long as  
 �, spontaneous
oscillations will not be generated. The  -parameter, .x/, is a random vector (fixed
for each ear) of values between a specified ranged.

The damping function specified above (5.75) does have limitations around
velocity 0, but it does not approach a constant value at high SPLs. As indicated
in Fig. 5.10, the continuing increase of damping with level does not match the real
data. Instead, at high levels, the ear appears to linearize and approach a constant
damping value. This brings us to the current trend that assumes two specific extreme
values: one for low-level stimuli (low damping) and one for high-level stimuli (high
damping), connected by a transition range (Figs. 5.13 and 5.14).

The profile that covers the range from low damping to high damping, usually over
the mid-level range from about 30 to 60 dB, can be modeled in several ways. The
derivative of the output–input relation must be nonnegative over the entire range,
and low-level and high-level asymptotes approach 1.
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Fig. 5.14 As Fig. 5.13 but
for the active model version.
In this case there is again
some low-level noise. In the
basal end it disappears at high
stimulus levels due to NL
entrainment. At the lowest
levels, the system acquired an
enhanced sensitivity, and a
nonlinear peak response
(difference in vertical scale
accounts for much of the
“shape change”)

5.3.5.4 Furst and Goldstein Model (#4)

The nonlinear model proposed by Furst and Goldstein (1982) was also very suited
for time domain analysis. The g-function proposed by Furst and Goldstein (1982)
contains a nonlinear damping profile, similar to the van der Pol nonlinear profile, but
lacking its characteristic near-zero negativity. An additional nonlinear correction is
applied to the stiffness term. Together, these provide

gFG.x; t/ D d.x; t/ V .x; t/.1C a V.x; t/2/C Y.x; t/

C.x; t/ .1C jb V.x; t/jı/ : (5.76)

Values for the parameters a, b, and ı are presented by Furst and Golstein. The
values for d.x; t/ and C.x; t/ D 1=s.x; t/ are similar to the values proposed for the
previous model versions. The boundary values at base and apex have to be updated
to physically realistic values.

Furst and Lapid (1988) demonstrated that this model, with a proper middle-ear
coupling, will generate DPOAEs, but neither SOAEs nor CEOAEs. This had to
be expected because the bidirectional coupling is capable of reflecting the effects
of frequency change in the nonlinear transforms, but the system lacks sources
for generation of triggered responses. Moreover, it demonstrates an important
difference between narrow-band noise behavior (Furst and Lapid) and active
oscillator behavior.

5.3.5.5 Zweig’s Linear and Nonlinear Models (#5 and 6)

Both the linear and nonlinear versions of the cochlea models proposed by Zweig
(1991) have properties that can directly be implemented in a time domain model.
At a CP-point, a feedback loop is specified. Feedback delay is tuning-frequency
dependent, in other words, it is determined by the frequency map.
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Zweig introduces the feedback in the local stiffness, such that the local CP-
impedance (specific acoustic impedance) is:

Zsa;CP .x; !/ D i!mC d.x/C s.x/

i!



1C 	e�i!�.x/� : (5.77)

Obviously, 	 D 0 is the standard case, and 	 D 0:1416 follows Zweig’s adaptation.
In a practical implementation and analysis of Zweig’s proposal by Van Hengel
(1993), he found that he had to modify the proposed values at the boundaries at the
base and at the apex in order to avoid (too) strong reflections from those points.
Smooth transition from an active parameter set in the center to a passive set at
the boundaries was sufficient (see his Fig. 1, op. cit). van Hengel adapted Zweig’s
model parameters at base and apex accordingly.

The time domain representation of the g-function part of (5.77), i.e., the
damping-velocity and stiffness-deflection term is

gzw.x; t/ D d.x; t/ V .x; t/C s.x/ ŒY.x; t/C 	Y.x; t � �.x//
 : (5.78)

The nonlinear version of the model differs from the linear version (5.77) in
that both damping and stiffness terms in the CP “impedance” will saturate at high
levels.31

In collaboration with the ENT-group in Leiden32 (Schneider et al. 1999
Schneider 2004; de Kleine 2001), and later with the Medical Physics group
in Oldenburg (Mauermann et al. 1999a,b), Peter van Hengel analyzed model
predictions for DPOAE group delays, in particular for the model version with
Zweig’s nonlinear damping (and stiffness) parameters. The exact formulas and
parameter sets were adapted per occasion, where it should be noted that Schneider’s
data concerned measurements from guinea pigs, whereas Mauermann et al.s data
where from humans.

The general nonlinear extension of (5.78) is

gzw;nl D V.x; t/ d.x; t/
�
1C �1ˇjV.x; t/j

1C ˇjV.x; t/j
�

C s.x/
�
Y.x; t/C

�
	C �2ˇjV.x; t/j

1C ˇjV.x; t/j
	
Y.x; t � �.x//

�
(5.79)

31The quotes denote that the impedance concept is borrowed from linear signal analysis, and
formally only is approximately applicable in the nonlinear case.
32This collaboration was supported by NWO, the Netherlands Organization for Scientific Research,
from 1996–2001.
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with

�1 D �1.x; V .x; t// and �2 D �2.x; V .x; t//: (5.80)

The nonlinear extensions depending on �1 and �2 tend to vanish for large jV j. The
criterion is set by the parameter ˇ, a reciprocal velocity of the order of 0.01 ms/nm.
Parameters �1 and �2 depend on the other partition parameters and are related to
the formulation in Mauermann et al.’s equations (2a) and (2b).

A further discussion of model predictions and data is postponed to Chap. 6.
The order of presentation of the next subsection and sections is somewhat

arbitrary, e.g., because of the link between cochlear amplifier behavior and nonlinear
oscillator properties. Nevertheless, we first give a brief extension to 2- and 3-D
approaches of analysis of the cochlea.

5.3.6 Two- and Three-Dimensional Approximations

The introduction into 2D and 3D model cochlea’s has been given in Sect. 3.6.
The first successful 2D model that uses boundary conditions all around the 2D
structure is the model by Lesser and Berkley (1972). One important difference
between the original 2D setups and our current cochlea model is the behavior at
the stapes/oval window. In linear models, it has been customary to prescribe the
pressure as determined directly by a driving force. Now we would also want to take
the interaction with the entire system into account. Lesser and Berkley obtained a
solution of the boundary value problem using a Fourier series analysis, in which
they found a practical truncation limit after a certain number of terms.

The solution tends to approach the WKB(J) solution presented in Sect. 3.3.1. The
same result had been obtained by Steele and Taber (1979), and had been confirmed
by several others. Of these studies, several have addressed and estimated effects
of boundary conditions, such as solid walls, scalae curvature, smoothness of scalae
cross-section (irregular shapes in some bats), etc. However, very few have addressed
the properties of the nonlinear cochlea. One of the first explicit numerical studies
was the PhD-study by Diependaal (1988).

As several of the other 3D studies, he effectively reduces the 3D problem to a
lower degree model using the integral equation for the behavior at the center of the
BM. For the rectangular box model (Fig. 3.1), Diependaal derives the following set
of equations:

16	

�2b

LZ

0

ˇ.�/G3D.x; �/Ru1.�; t/d� �m.x/Ru1.x; t/ D g.x; t/C 8	As Rus.t/
�bh

.L � x/

(5.81)
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with

G3D.x; �/ D
1X
nD0

�
cos.n�b1.x/=b/C cos.n�b2.x/=b/

b2 � n2ˇ2.x/ Gn.x; xi/

�
; (5.82)

g.x; t/ D d.x; t/Pu1.x; t/C s.x; t/u1.x; t/; (5.83)

where the g-function is similar to the one used before. The box-width b consists
of three parts, the ridges b1.x/ and b2.x/, and the actual BM-width ˇ.x/ D b �
b1.x/ � b2.x/, and the function Gn follows from

Gn.x; �/ D �b
4 Œcos.n�b1.�/=b/C cos.n�b2.�/=b/


ınLŒb2 � n2ˇ2.x/


�
1X
kD0

�
coth.n;kh/

n;k
cosŒ.k C 1=2/�x=L
 cosŒ.k C 1=2/��=L


�
;

(5.84)

with

ın D
�
2; n D 0
1; n � 1

and

 2n;k D Œ.k C 1=2/�=L
2 C .n�=b/2: (5.85)

Nonlinear and/or active behavior is introduced in the damping and or stiffness term
in the g-function (5.83), as in the 1D model.

A software version of Diependaal’s time domain 3D model is available through
the URL. A major difference with the 1D model is that the matrix equation that
describes the longitudinal coupling between BM-sections (or CP-sections) is no
longer three-diagonal, but a completely filled N � N -array. This means that the
solution time increases dramatically. The program uses matrix solution tools from
standard libraries (IMSL). The ordinal program has been slightly modified and
updated from F77 to f90, but except for some input/output properties this should
not have changed the behavior.

Diependaal concludes

We have calculated responses on a pure tone and on a tone burst in a nonlinear, active
model, the modified van der Pol oscillators model (Duifhuis et al. 1985). In all these cases,
the 2D response is close to the 3D solution; the 1D solution deviates considerably from the
multidimensional solutions. However, from simulation studies in earlier, passive models
we learn that for realistic values of the parameters the 2D model response may deviate
significantly from the 3D response (Diependaal 1988). So the appropriate dimensionality
of the cochlea depends on how much information one wants to obtain from the simulation
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studies. If one is only interested in global behavior, a 1D approach is often satisfactory.
For a more detailed evaluation of the cochlear model, a 2D, sometimes a 3D, approach is
necessary.

The solution of the matrix equation also provides an error matrix, from which the
relative accuracy in each cell can be estimated. The errors maximize near stapes
and helicotrema. It is not yet clear to what extent this is due to the use of the at the
time common but physically incorrect boundary conditions: stapes velocity follows
the stimulus linearly and apical “termination” is a shortcut rather than minimal
reflection.

Tentatively, we conclude that the most prominent differences in response profiles
generated by 1D through 3D models is that the peak shape moves basalward and is
broader.

5.4 Cochlear Amplifier

The concept of a “cochlear amplifier” (CA) process was introduced in the same
year by Davis and by Neely (1983). Davis aimed to describe an active process
that below about 60 dB might provide additional energy to a narrow segment of
the basilar membrane, near the “apical foot” of the traveling wave envelope. This
would be particularly effective in the tip of the tuning curve. This argument might
seem similar to Gold’s (1948) argument favoring active processes in the cochlea, but
in fact Davis presented a significantly updated review with many new arguments.

Neely analyzed the power flow around the point of maximum excitation. To
model his findings, he promoted a negative damping element in an additional local
impedance term (see also Kim et al. 1980; Neely and Kim 1986), and argues that
“this negative damping provides a convenient means of modeling active mechanical
behavior [in a linear cochlea]”. Although I would dispute the end of the sentence—
which I placed in brackets—the major idea is not disputed. The discussions around
1980, such as at the 5th ISH (1980) where the option to use the van der Pol oscillator
surfaced, appear to have provided a fruitful basis for these developments. The use
of negative damping in one form or another has appeared in many studies since.

A recent follow-up discussion about the unequivocal experimental evidence of
cochlear amplification, at the 10th International Workshop on the Mechanics of
Hearing (Cooper and Kemp 2008), evaluated the progress of 25 years of further
development. It has not yet brought a complete consensus, but that is one of the
thrills that keeps scientific research exiting.

In the next subsection, references will be made to contributors to that discussion,
as well as to some of the original remarks from Davis. The transcripts of the
workshop are available in Cooper and Kemp (2008, pp. 467–476).
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5.4.1 Definitions of CA

The above discussion about the existence of a cochlear amplifier started with a
proper definition of the concept. At the occasion, it was proposed by Shera as:

I define it here as a process, so in other words it’s not a protein, it’s not prestin, it’s not
the transduction channel, it’s nothing like that. It is a process that provides cycle by cycle
amplification of the vibrational response in the normal hearing organ. This vibrational
response, in the mammalian pathway at least, might include, or definitely does include,
but certainly is not limited to the vibrational response of the BM.

Shera continues his introduction emphasizing that in his opinion:

• Nonlinearity in itself is no evidence for power amplification.
• Physiological vulnerability (of the intact system) is definitely no evidence for

power amplification.

Note that the definition does follow Davis’ original definition rather closely.
The lively discussion that follows leaves a few open ends. Santos-Sacchi brings

up Gold’s original argument, based on viscous damping of BM-radial fibers, a point
also addressed in footnote 10 in Chap. 3. Allen and Shera come back to Shera’s
definitions, Allen stating that not everybody is going to buy the power amplification
definition.

Apparently, Allen’s statement is based on controversies that played an important
role during the development of the topic. In addition to the points mentioned above
by Shera, it implies straightforward biophysical points of view, such as:

• A cochlear amplifier does not simply generate amplitude amplification (either
deflection, velocity, or pressure), but the properly integrated (averaged) combi-
nation of, e.g., pressure and volume velocity.

This means that measurements of deflection (or velocity, or pressure) alone do not
give sufficient information for an answer. Obviously, a proper combination provides
the required power measure rather than an amplitude measure only.

Most discussants appear to agree on the point that the occurrence of distortion
products in a nonlinear system are no proof of power amplification. This includes
DPOAEs.

How about SOAEs? How natural are these, and are they a valid proof for power
being emitted by the cochlea? The discussion does not appear to share the current
conviction that in young normal hearing listeners there always is a “fingerprint”
or specific individual SOAE pattern. With more sensitive measurement setups, in
particular using specialized probe microphones and connectors, the percentage of
normal hearing people showing emissions rapidly approaches 100.

If one considers the damping profiles that we have been testing in this chapter
(Fig. 5.11), it may be clear that profiles 1 and 2 (VdP and sin h.x/=x) are not
very helpful because frankly, they focus on different properties. Profiles 3 and 4,
however, are of the category that looks promising: there is an upper limit reached
at high levels (e.g., 80 dB) and a lower horizontal asymptote, on average at a 30 to



144 5 Modeling the Nonlinear Cochlea

50 dB lower damping value (0.001 is not distinguishable on the scale of Fig. 5.11).
Spontaneous emissions are modeled by adding an amount of jitter on the low-level
value. Whenever the net value of d.0/ < 0, we are dealing with a general Van
der Pol oscillator, with its limit cycle oscillation behavior and with the entrainment
property. The spontaneous emissions can disappear either if the dip-value in curves
3 and 4 retracts, and the damping reduction around v D 0 is less, or if the jitter
disappears.

5.4.2 Summarizing

The discussion about a cochlear amplifier, or even the cochlear amplifier, is
still continuing. Although some of the historically proposed arguments remain
disputable, I believe that it may be useful to interpret the mechanism that reduces the
high-level damping (normalized at 1 in Fig. 5.11) by a few of orders of magnitude as
an amplification mechanism, even though the amplification is indirect: the process
decreases the effective damping to a value near zero, aiming at enhancing the
system’s sensitivity. Strictly spoken, no net power has to be added to the signal,
but the net dissipation at the sensor decreased.

Allowing this definition, the use of a NL cochlea model with a Van der Pol type
damping profile can be considered to belong to the category of models that include
cochlear amplification.
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Part III
Results and Open Issues

Part III starts with a presentation of results obtained with the time domain analysis,
and with some suggestions for new experiments (Chap. 6). It focusses on three
groups of nonlinear effects: level effects, combination tones, and delay effects.

The final Chap. (7) contains 3 sections:

1. Presents applications where the use of NL time domain analysis is potentially
useful. This includes hearing aids and automatic speech recognition (ASR).

2. Discusses the link between Hopf-bifurcation and Van der Pol-oscillator.
3. The final section discusses some open issues, and concludes the book.



Chapter 6
Results

Abstract In this chapter, we present example results from the NL cochlea, analyzed
in the time domain. The examples cover three categories: level effects, combination
tones, and onset delay effects. The first two topics were originally addressed in a
project by Marc van den Raadt, the last two by Peter van Hengel.

6.1 Spontaneous Emissions: SOAE

The nonlinear model cochlea with the negative damping near zero velocity is one of
the few, general models of spontaneous oto-acoustic emissions. The emissions are
generated within the cochlea and leave the cochlea through the middle ear and outer
ear. Classical cochlea models used to define a stapedial input. This does not allow
emission feedback, neither spontaneous nor evoked. In addition, the specialized
coupling through closed or open ear canal entrance is relevant, as is the matching
impedance at the helicotrema.

By the end of the 1970s the Van der Pol oscillator was proposed as a candidate
descriptor of SOAE. Although the Van der Pol oscillator was well known as a single
oscillator, and had been described extensively in the applied mathematical literature
for more than half a century, the analysis of a few coupled oscillators turned out to be
a different matter. Two limit cycle oscillators of comparable strength and different
frequencies appear to be able to generate (quasi) chaotic responses. This implies
that some time after an onset time the response phases can no longer be estimated
reliably on the basis of the initial conditions. A fundamental reason of this property
is that any experimental measure has a limited accuracy. Different behavior is seen
if one oscillator is much stronger than a second, coupled oscillator. In that case,
the weaker one will be entrained by the stronger one. Usually there is a transition
region, where the response switches from one oscillator to the other in a (quasi)

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 6,
© Springer Science+Business Media, LLC 2012

149



150 6 Results

random way. We observed and reported this behavior in Duifhuis, Hoogstraten,
van Netten, Diependaal, and Bialek (1985, Sect.3) and van den Raadt and Duifhuis
(2011, Fig. 1b).1

The analysis of many coupled nonlinear processes lacks sufficient analytical
tools and has to be addressed numerically. Around 1980 the required computation
time was extremely demanding; nowadays, the computation demand is getting
closer to real time sound processing. The remaining factor for computation of the
mathematical core for a streaming stimulus is slightly over one order of magnitude
(Fortran 2003, Intel i7 processor).

The essential biophysical concept of SOAE is that acoustic power is emitted by
an ear that receives no net acoustic input from the external environment. Internal
contributions, sometimes summarized as body noise, are not completely absent.
Some of these can be (partly) controlled by well-trained subjects (e.g., timing
of breathing noise), whereas other internal processes, such as blood flow, remain
virtually uncontrollable.

Our practical way to model individual emission profiles is to define subject
related quasi-random damping profiles. In terms of Fig. 5.11 and (5.75), this applies
to the amount of negativity near v D 0. In this equation, the limit cycle amplitude is
controlled by � D �.x/. In other words, the practical model involves the definition
of subject- dependent �.x/ profiles.
Summarizing:

• Insofar as the cochlear amplifier only reduces the damping to a very low value, it
will not produce a limit cycle or a spontaneous emission.

• A nonlinear system with a negative damping term near zero (Van der Pol oscilla-
tor) generates a local emission, which propagates through the auditory system.

• Stability of a Van der Pol oscillator is guaranteed by a nonlinear damping term,
which reaches positive values at increasing velocities.2

• Negative damping in a linear system is unstable.
• Negative damping in a selection of coupled linear systems requires specifications

that depend on stimulus parameters and does not provide a general solution.
Moreover, the normal cochlea is nonlinear to begin with.

• The alternative hypothesis of coherent reflection requires at least a thermal noise
input to produce a coherent reflection with spontaneous emission properties.

Our current hypothesis is that a specific oscillator of the Van der Pol family is the
best candidate to represent the generation of spontaneous emissions.

1A general definition of chaos is still lacking, but a practical focus appears to involve three points.
Following Lynch (2010, Sect. 7.3.II) the responses are:

1. Long-term aperiodic (often: almost periodic)
2. Extremely sensitive to initial conditions, and/or
3. Often have a fractal structure

A similar definition was given by Wiggins (2003, Chap. 30), and a more theoretical one by Broer
and Takens (2009, their definition 2.12). We checked points 1 and 2 in particular. Point 1, e.g., is
shown in the phase plane plot (Fig. 1b) referred to above.
2More precisely, the Van der Pol oscillator has a parabolic deflection profile; the Rayleigh-
oscillator has a parabolic velocity profile. In both cases the NL-term is a damping term.
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6.2 Level Effects

6.2.1 The Nonlinear Residual Response Method3

The stimulus paradigm for the nonlinear residual response method was developed
by Brass and Kemp (1991) as a tool to measure ear canal responses to tonal stimuli.
It is one of the techniques in the field of stimulus frequency otoacoustic emissions
(SFOAE). The technique uses precise timing information which in practice allows
measurement of relatively weak nonlinear distortion effects even at the input
frequency. Stimulus constructs were specified such that linear processing produces
a zero output, whereas nonlinear processing leaves a distinct residue.

The paradigm requires accurate summation of a continuous background tone
(carrier) and a properly synchronized probe tone. This accurate summation was
realized in four exactly equal time intervals, labeled A, B, C, and D, of duration
(N C 1=2) cycles of a carrier frequency Tb D 1=fb. Hence, each interval contained
exactly the same odd number of semi-cycles of the background tone, and the
background waveforms appearing in successive intervals differed in sign (or a �
phase shift). In other words, the polarity of the carrier flips at each section transition,
and the phase rotates by � . The probe was presented only during the intervals C
and D. The probe shapes for C and D were identical (Table 6.1). The background
frequency fb was subject to the constraints specified above, the probe frequency fp

and both levels Lb and Lp were free.
The residual was obtained by addition and subtraction of ear canal pressure

measured during those four intervals as defined by the rule

Residual D A� B � CC D:

Hence, the duration of the residual is that of a single segment.
The residual of a linear system must be equal to zero. Experimentally, however,

the responses in the ear canal do not cancel completely: due to nonlinearity in the
system a small residual component remains (Brass and Kemp 1991).

Table 6.1 Temporal
structure of the ABCD
stimulus (time proceeds
downwards)

A CBackground ������!

B �Background
C CProbe Cbackground
D CProbe �background

t

Duration of the four blocks is identical:
Tblock D .N C 1=2/=fb

3Part of the contents of this section has been presented at the 6th International Symposium on the
Mechanics of Hearing (Duifhuis and van den Raadt 1997). Our analysis was initially prepared by
M.P.M.G. van den Raadt, and is updated with additional results by the author.
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6.2.1.1 Specification of the Analysis

For optimal comparison between model results and data, we aimed to stay close
to the stimulus parameters used by Brass and Kemp. Therefore, duration of a
single section was kept at approx. 40 ms. Obviously this limits the maximum
spectral resolution to (at best) 25 Hz. Originally, probe tones were shaped with
cosine-shaped onsets and offsets of 1 ms. Brass and Kemp claim that with this
duration of the window no significant high frequency components or other transients
are detectable in the residual. Their choice was motivated by the necessity to collect
an optimum set of data over a limited period.

In our recent analysis, the following arguments favored a few adjustments.

1. Low-frequency parts of transient responses extend over considerably longer
intervals than 40 ms.

2. Accurate computation does not require averaging.
3. Computation time is not an issue.

Therefore, section duration was an adjustable parameter, usually kept at 40 ms, but
extended for low-frequency studies. We set the probe onset and offset to 4 ms, and
placed the probe not in Sects. C and D (Brass and Kemp) but in B and C. This
changes the sign of the residue, but also prevents cut-offs from increment responses
over another section duration.4

The simulations presented have been obtained using a nonlinear or linear 1-D
time domain cochlea model that has been presented in Chap. 5. The advantage of
this model is that nonlinear (as well as linear-) parameters can be manipulated,
in stiffness as well as in damping, that interaction between elements is taken into
account, and that time effects (onset and offset transients) are computed properly.
The classical Runge–Kutta method was chosen as time integration method with a
time step of 2.5�s.

6.2.1.2 Relevant Cochlea Properties and Model Parameters

The analysis was performed for a 1-D model with N D 400 BM points. Several
nonlinear damping and stiffness parameters listed in Table 5.4 were tested, both
from the passive and active groups.

It should be obvious that the coupling properties at the ear canal/middle ear side
and at the helicotrema play a significant part, both in ear and in model. A simplified
middle ear and canal coupler are assumed to cover the basic physical properties.

The apical coupling is also more relevant than generally acknowledged. It
determines how fast the cochlea adapts to transients. Of course all transients

4The accuracy of the model computation was sufficient to obtain reliable results within a single run
(see Sect. 6.2.2.1). Onset effects in a run were minimized by addition of two introduction sections,
the response to which was discarded from further analysis.
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contain low-frequency components, and the amount affecting the cochlear response
depends strongly on the middle ear transmission properties. The cochlear reaction
to these components will be optimized, i.e., show minimum reflection, by finding
the optimum termination properties at the helicotrema. In other words, (in a
linear approximation)5 an optimum impedance match to the local characteristic
impedance—if the gradient is sufficiently small—would prevent reflections.

6.2.2 Results

6.2.2.1 The Residual of a Linear Cochlea Model

Several properties were studied, both for equal parameters for probe and background
(Lb D Lp, fb D fp), and for different values for probe and background. In the
linear case with N D 400 there is a clear low-frequency low-level component in
the residue (at approx. 100 Hz.). This was unexpected because theoretically, the
residual response should approach zero for the linear model. The observed low-
frequency component remains linearly related to stimulus level. This was checked
by measuring the residue in absence of the probe. Figure 6.1 shows an example
at Lb D 80 dB. An essential difference exists between our computation, based on
a single set of intervals A through D, and the experimental data, which involve
continuously repeated stimuli. In the first case, the transients are clipped at the end
of interval D; in the experiments, the transient responses are continuously taken into
account.

6.2.2.2 Nonlinear Damping

We present the results for two possible damping nonlinearities, viz. the power law
nonlinearity and the exponential nonlinearity. These two have been used frequently
in recent cochlear modeling. The comparison with other nonlinear models is left to
the reader.6

Examples of results in Figs. 6.2 and 6.3 show that the residual has three main
characteristics: an initial transient, a relatively stationary part, and a final transient
which continues until (or even beyond) the end of the frame. Furthermore, at
the start of the time section a much smaller transient can be present. In the
presented results this is clear in Fig. 6.3, but definitely not in Fig. 6.2. The two large
transients in the residue, especially for model #3, were not expected. They can vary
considerably with (relative) level, (relative) frequency, and nonlinear characteristics.
Apparently, this residue displays a strong contribution from the high-frequency

5The brackets reflect the limitation of linear analysis to nonlinear systems.
6The required tools are available through the URL.
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Fig. 6.1 The residue of the linear model shows a low frequency response at about 125 Hz. The
top row gives two time responses (left: Lb D Lp D 80 dB, right: Lb D 80; Lp D 0 dB), with the
probe envelope indicated at the bottom of the figures. The bottom row gives the related amplitude
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part of the cochlea. That is the part that responds fastest, and because of the
spectral sensitivity, provides strong transient responses. The cochlear response near
resonance grows more gradually, but in that range the phase gradient is larger and
vectorial summation can then lead to a weaker result. It is also the place where phase
behavior plays an important role. In the simple, straightforward model cochlea two
parameters are available to control the phase behavior, e.g., the gradients of Q.x/
and of s.x/ over the response range x.7

The results here are at a “typical” level, but it is noted that the profile can depend
rather strongly on level. This does particularly apply to the transient part of the
responses. The plateau response may help to distinguish between different models.

The BM-factor that scalesm, d , and s, without changing the frequency map, and
the d -term by itself, changing the quality factor and phase. One might expect the
Q-factor to present the following effects: A higher Q implies a greater frequency
selectivity, and, therefore, a slower but stronger response (�f � �t remains
constant). However, it also implies a faster phase transition at resonance, which
will reduce the net residual response. This may lead to opposite effects, a point that
deserves further exploration. For the results presented in this section, the value 2 has
been used.

Comparison of Figs. 6.2 and 6.3 might also lead to hypotheses about the
response delay. Many experimenters only consider the group delay, a property
that we will address in Sect. 6.4. But two other delays are relevant in signal
processing (Papoulis 1962) and also in auditory processing (e.g., Ruggero 1980),
namely the phase delay, and the signal-front delay. The definitions are presented
in Sect. 8.2.1.The signal-front delay may be the least well known, and its direct
measure does come with the experimental difficulty: how to measure the real front

7Obviously, any alternative independent set of two from m.x/, d.x/, s.x/, !.x/ and Q.x/ can be
used.
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delay, can you be absolutely sure that the onset is not hidden in the noise? For a
linear system, this delay can also be measured in the frequency domain. It is deter-
mined by the asymptotic behavior (! ! 1) of the phase vs. (angular) frequency
ratio (8.40), stressing that the high-frequency part determines the apparent onset
delay.

Brass and Kemp showed level effects (their Fig. 3(a)) of the residual phase
and residual level at background levels from 40–60 dB. The results are presented
against the probe level—background level (actually the latter is denoted as “stimulus
level”). We present only some level results for two different model types, both
passive, viz., the expanding NL model #2, and the saturating NL model #3. In
Fig. 6.4 we present results for models #2 and #3, and the 60 dB data from Brass and
Kemp. The Brass and Kemp’s data differ from both models. The difference with #2
is most obvious: the saturation at higher Lp � Lb is insufficient, and the response
around the 40 dB background dropped out of the figure, implying that the nonlinear
effect decreased considerably (actually, the upper limit of this set is just above the
�40 dB base line atLp�Lb D 15 dB). The results for model #3 do show saturation,
but start at a lower Lp � Lb-value, viz. at �5 dB instead of C5 dB. The order of
magnitude of the residual effect does fit.
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6.2.2.3 Nonlinear Stiffness

Because the question about the location of the source of auditory nonlinearity was
not completely solved, we also investigated the impact of a nonlinear stiffness,
both separately and in combination with a nonlinear damping function. We choose
functions similar to those proposed by Furst and Goldstein. At low levels the
discontinuity in the derivative at y D 0 Œy D partition displacement� can lead to
instability in the response. Stiffness nonlinearity does not seem to provide transients
above the average continuous response level.

An alternative nonlinear stiffness characteristic, quite different from the one
mentioned above is the term associated with the Duffing equation. It gives an odd
nonlinear stiffness element, instead of the symmetrical, even element mentioned
above. Tentative results indicate that it may produce larger onset “delays”.

Along this line we started to test the effect of an asymmetric nonlinear stiffness
term as assumed to be relevant for hair bundle motion. The primary effect appears
to be characterized by overall stiffness reduction, which leads to a basalward shift
of the characteristic frequency.

6.2.3 Discussion

We started the analysis of SFOAEs. The technique, introduced by Kemp and Souter
(1988) and expanded by Brass and Kemp, was simulated in a transmission-line
cochlea model. Brass and Kemp’s method opens the possibility to do temporal
measurements at the stimulus frequency.

A nonlinear model cochlea generates a reproducible residual result. A linear
cochlea model displays a low-frequency oscillatory response, because the apical
part of the cochlea, often beyond the region of resonance, is relatively slow, and it
is stimulated by transients in the stimulus. Part of this effect is exaggerated by the
use of a too simple middle ear; the appropriate match will reduce high-frequency as
well as low frequency transients.

With a straightforward specification of the acoustic coupler, it was possible to
predict the levels of the residue. Also, global frequency effects and level effects
follow the experimental data. In this macroscopic model, there is—so far—no
apparent need for a second filter.

For the nonlinearities tested, we have not yet been able to mimic every detail
of the experimental data. Open questions are source of strong initial and final
transients and for the “delay” of the residual. As mentioned above, both middle
ear properties and cochlear parameters involving the phase characteristics directly
affect this result. At least one of those has to be modified to explain the data. The
“delay” caused by the traveling wave is in fact the gradual onset profile of the
coupled cochlea elements, and thus formally there is no delay. The time necessary
for the residue to reach 50% of the stationary response can be used for a comparison,
physically it is determined by the onset properties at the sites where the nonlinearity
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is prominently present. Likewise, travel time through the fluid back to the ear canal
is negligible. Relevant envelope effects are determined by the same onset properties,
which incorporates the coupling with all elements in the system.

6.3 Time Effects

In Sect. 6.2 the attention was focused on Level Effects, but the applied technique
for measuring those effects also displayed some clear “time effects”. These were
mentioned briefly in Sect. 6.2.1.1 and are rather obvious in the onset and offset
phenomena displayed in Figs. 6.2 and 6.3. Although the delays were noted above,
they were not studied systematically. This point will be taken up here.

Most experimental studies that followed have concentrated on distortion product
otoacoustic emissions (DPOAEs), assuming that the measurement would be simpler,
and more reliable because the DPOAE(s) can be spectrally separated from the
input stimulus components, a technique that seems less demanding than the ABCD
technique.

In this section we want to stress the power of a straightforward time domain
analysis method. The primary-tone phase variation (PTPV) technique introduced
by Whitehead et al. (1996) will be used to demonstrate this point. We support
their view that this technique provides a valuable tool for reliable measurement and
interpretation of DPOAE delay.

6.3.1 DPOAE Delays Measured with Phase Rotation

We make the following assumptions for the cochlear nonlinearity:

• The net damping term is of the type: odd-order (following Sect. 5.4).
• Potential stiffness NL has not more than a weak effect on the overall behavior of

a section.

The real cochlea also generates even-order distortion products, in particular the
difference tone for a two-tone stimulus, but these are almost always significantly
weaker than the odd order components. It is very convenient to neglect the even
components for the moment, because it helps to validate the procedure. An odd order
nonlinearity does only generate odd harmonics and odd intermodulation products.
For instance, if the damping function would be modeled as

d D d0.1C ˛vC ˇv2/ (6.1)

then the ˇ-term generates the familymf1˙nf2 wheremCn D odd and f1 and f2
are the frequencies of the stimulus components. Similarly, the ˛-term generates this
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family withmCn D even8 containing the difference tone f2�f1. Since ˛ and ˇ are
independent parameters, so is the behavior for even and odd-order nonlinearities. It
will be useful to discern these two different families (the odd-order DPs and the
even-order DPs). The ˇ-term generates an odd NL family, the ˛-term generates the
even family of intermodulation products.

In Sect. 9.1 the Bennett function is introduced which provides a proper estimate
of amplitude and phase of the distortion product at the generation site. This is
presented in (9.13). The basic result is that for combination tones of the family
mf1 ˙ nf2, m > n the dependence of the DP-phase on the primary phases9 is
�DP D m�1˙n�2, except for a possible additional factor � , or sign change. Details
are discussed in Sect. 9.1.3.

The nonlinear relation described above is the velocity response to a local pressure
source. In several studies, this nonlinearity is approximated by a cubic conductance
term as the first odd order term after the linear one in the commonly employed
Taylor expansion. This remains unfortunate, and can lead to errors, in particular at
the high-level end, where the normal nonlinear behavior is compressive (saturating).
Compressive and expensive nonlinearities do predict opposite phases for 2f1 ˙ f2.
The behavior for other values of m and n is given in Fig. 9.3 for values of m and n
from 0–9.

On the other hand, a cubic damping asymptotes (at high levels) to the saturating
power 1=3, and is a member of the �th-law nonlinearities, which provides a more
efficient fit to compressive nonlinearities.

The ear canal measure of the returned “by-effect” of the DP-generation, or the
net DPOAE, is the summed result of all cochlear places involved in generation
and processing of the component. The academic discussion about the location of
this point has not yet reached a really scientific level: discussion has been limited
to the question whether the primary source is at the f1-place, f2-place, or the
2f1 � f2-place (e.g., Withnell et al. 2003). In fact all these approximations are
oversimplifications of the more likely full story stated above: the summed result
of all cochlear places involved.

With respect to intermodulation product generation site, the nonlinearity is
most effective in the area where the partition response to both stimulus tones is
approximately equal.10 A very important difference between a local effect and
the summed result seen in the ear canal is that a summation does not necessarily
enhance the response, it can also reduce the summed response, because the phases
of the generated DPs rotate rather quickly over the places of generation. If we
consider the phenomenon that the phase rotation (@�=@!) is maximum near the
point of resonance (see Fig. 8.1), and additionally that the maximum response is
reached before (basalward of) that point of resonance, it follows that the maximum

8Obviously, ifmCn D odd, thenm�n D odd as well, and similarly:mCn D even , m�n D
even. See also Sect. 4.1.
9Each primary component i; i 2 .1; 2/, is defined as yi .t/ D cos.!i t C �i /.
10Nonlinearity in the damping term implies that the relevant variable is the partition velocity.
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interaction11 occurs before the f1-place and near the f2-place.12 In this area all
intermodulation products and overtones are generated, at strengths that decay with
increasing distance from the primary frequencies. Although in principle all distor-
tion products might propagate in both cochlear “directions,” local “impedances”
are such that only the low-frequency intermodulation products propagate efficiently
to their own “places,” whereas the high-frequency components remain weaker –
and often much weaker– than the primaries, and are only traceable with sensitive
frequency analysis. At high levels only, the high frequency distortion components
may reach a perceptible level. Note also that the local source effects can be modified
significantly by phase effects when these lead to interference and reduce the net
contribution, which is the vector sum of all local cochlear contributions. High-
frequency-side distortion products match neither apical nor basal impedance, but
the basal mismatch will be smaller so that the basal component will be stronger.

The phase dependence of the response components, primaries as well as DPs,
was used by Whitehead et al. (1996) to design a method to measure the time profile
of the ear canal response precisely. The phases of the components are systematically
changed in steps ��1 and ��2 between tests in such a way that the phase of the
generated 2f1�f2 is constant in all cases, whereas the primaries could be modified.
The steps in the phases changes of the primaries ��1 and ��1 were selected to
null both the f1 and the f2 primary sums. These steps are efficiently noted in the
complex plane, and the complex representation of the sine wave. The step counter
is denoted by k, and N steps complete one or more times 2� .

s10.t/ D js1j ei.!1t��1/ and s20.t/ D js2j ei.!2t��2/; (6.2)

s1k.t/ D js1j ei.!1t��1Ck��1/ and s2k.t/ D js2j ei.!2t��2Ck��2/; (6.3)

s1k.t/ D s10.t/ e�ik��1 and s2k.t/ D s20.t/ e�ik��2: (6.4)

The steps in the primaries now have to fulfill the conditions

N�1X

kD0
e�i 2��1 D 0 and

N�1X

kD0
e�i��2 D 0 (6.5)

in such a way that the phase for the selected DP, here 2f1 � f2, does not rotate. The
phase of the fundamental of this DP is,

�2f1�f2 D ˙.2�1 � �2/ (6.6)

11Maximum nonlinear interaction occurs if both inputs to the nonlinearity have a similar strength;
otherwise, the nonlinear response is dominated by the strongest components, and the response to
the weak component follows the behavior presented in Table 4.1: linear for a weakA2 and quadratic
for a weak A1.
12Because of the asymmetric excitation patterns the area of optimum interaction will be closer to
the f2-place than to the f1-place.
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Fig. 6.5 Summation results of checked intermodulation products for N D 12. Initial phase
conditions for f1 and f2 are 0. The figure presents global results in a tabular format with mf1
along the horizontal axis and nf2 along the vertical axis. Gray scale code used: (0) white: net
intermodulation (harmonic) adds to zero, except for the marked blocks (*), where an mf1 C nf2
component can be present, depending on the initial phases; (1) light gray: irrelevant even
intermodulation combinations (do not appear in an odd NL system); (2) black: maximum response
to intermodulation product

and the variation by rotation step k:

k��2f1�f2 D ˙.2 k��1 � k��2/ D 0 (6.7)

must be zero for all k, or
2��1 D ��2: (6.8)

More generally, the ratio of the phase steps has to match the ration m=n, where the
counters define the intermodulation products. This condition can easily be matched.
For example, for 2f1 � f2 the combination of 12 steps (N D 12) of �=6 for f1
coupled to 12 steps of �=3 for f2 is appropriate to also rotate the phases of the
primaries such that these cancel. The verification that other relevant DPs are also
suppressed remains more elaborate, but is also rather straightforward (see Fig. 6.5).
The proof is left to the interested student.

6.3.2 DPOAE Analysis Details

In our numerical analysis the ˛-term from (6.1), which represents even-order DPs,
is omitted for two reasons:

1. The odd-order distortion products are the most prominent set.
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2. The omission provides an accuracy test of the analysis because an odd order
nonlinearity should produce no even-order distortion products. [Note that the
odd-order nonlinearity arises from an even damping term: the constant C the
quadratic elements in the bracket term in (6.1).]

Although it is clear that amplitudes and phases of the DPOAEs carry relevant
information, it is not immediately obvious how that is done, and what experimental
results can effectively be compared with the computed model results at this stage.
For instance, the psychophysical cancellation technique is not modeled at this point,
and, therefore, level data are not directly compatible.13 A similar problem applies to
AN data. At the stage of the auditory nerve more information processing is involved
than the CMs, processing that involves additional nonlinear behavior and adaptation.

The most direct comparisons not suffering from these additional effects are:

• Direct measurements of DPOAEs, both in human subjects and in animals.
• Direct measurements on the BM or cochlear partition, which are only available

from animal studies.

At relatively low primary levels (<40 dB SPL), the 2f1 � f2 DPOAE is 20–40 dB
below the primary level for the frequency ratio with maximum DP, which occurs at
about 1.15 for man. Wilson (1980) reports a reduction of approximately 55 dB at
the ratio 1.3 (for man).

Basilar membrane velocity studies (Nuttall et al. 1990; Robles et al. 1990;
Ruggero et al. 1992) match these numbers rather well. It is noted, however, that
the studies mentioned tend to be limited to the basal part of the cochlea.

An other observation is that the strength of the DP drops markedly with small
increases of the frequency ratio f2=f1.

In general, some phase uncertainty is introduced by the hardware. For low-pass
filters required before sampling (Nyquist criterion) the effect tends to be negligible
below 8 kHz. Use of bandpass filters leads to stronger effects. Also the use of FFT-
analysis usually involves phase shifts related to window shape, position, and signal
duration.

The method treated in this section avoids such phase uncertainties. It was
introduced by Whitehead et al. (1996).

The method is applicable for the reliable assessment of DPOAE travel times,
DPOAE levels, and DPOAE phases. The travel time assessment requires accurate
measurement of onset delay. This is by no means a trivial procedure because
the auditory system is locally band limited and frequency selective. In term of
CMs: the cochlea couples many band-limited sections, which follow the cochlear
frequency map and frequency selectivity properties. Hence, the impulse response
in such sections will build up in time with velocities related to the local resonance
frequencies. The overall impulse response seen reflected at the ear canal (CEOAE)
will contain contributions over the full frequency range, including very fast high-
frequency parts, and slow low-frequency ones.

13The cancellation stimulus consists of three components, where a third component is adjusted in
frequency, amplitude, and phase, to minimize the 2f1 � f2 DP. But this component plays a role in
a nonlinear process and will affect the nonlinear interactions.
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The PTPV method was introduced to operate on narrow band signals. For
such signals, it enables separation of spectral components in the response by
stimulus component preselection. The method has virtually no effect on the stimulus
envelope.14 Even so, the exact distinction between travel delay and rise time (for a
linear system, the convolution of the impulse response with the stimulus) remains
hard to establish experimentally because of measurement noise (or computation
noise). Choosing a practical threshold level, e.g., at a fixed percentage of the peak
response value and above the noise, provides a number, and such a number can be
used in a verifiable comparison with reasonable model predictions. Here we use
primarily the 50% from the peak height onset envelope criterion. In exceptional
cases the peak and the 90% match may fall after the displayed 40 ms window.

On similar grounds, Whitehead et al. used a different optimum criterion, based
on correlation between the expected waveform and the measured result. For the
long term response, it is usually straightforward to determine the amplitude and
phase response. After matching this part to a continuous signal of the same
amplitude and phase, the correlation between response and match is computed, and
then the response delay was determined based on three different criteria: fit by eye,
fit at a correlation criterion, and fit at the normalized RMS (envelope) response. The
correlation criterion was set at 75%, the envelope (amplitude) criterion at 63%. In
addition, the stimulus onset was shaped to suppress splatter, but whereas we used a
sinusoidal shape with a 5 ms half-height delay, Whitehead et al. used 0.7 ms. This
causes more splatter, and a difference in expected delay of about 4 ms. This point
will be addressed in the discussion.

Different cochlea models, and different stimulus levels, produce different effects
on the DPOAE onset shape, and thus on the definition and assessment of delay.
Some of these are explored next.

Ear canal responses have been computed for several frequency combinations,
e.g., for f1 D 1 and f2 D 1:2 kHz. Figures 6.6 and 6.7 show results for 30 dB
(SPL) and 80 dB (SPL) stimuli, respectively. The upper part of the figures show a
single trace of the total response for �1 and �2 equal to zero, the lower trace shows
the PTPV response optimized for 2f1 � f2.

The sinusoidal stimulus onset with overall rise time of 10 ms is clearly present
in the top panel. Analyzing the 2f1 � f2 response (lower panel) it is clear that
stimulus onset shape and response onset shapes are not identical. At best they are
quite similar in shape, but onset delay of the response may vary from somewhat
shorter to significantly longer than the original 10 ms. In other cases, however,
the shape may be much more “deformed” and envelope variations in the response
continue over more then 100 ms. Similar differences in experimental results have
been reported by Whitehead et al. They investigated human and rabbit responses
and found significantly shorter delays for rabbits than for humans. In this section we

14The critical reader might want to know how well the envelope of the two-tone stimulus represents
the power flow into the cochlea. The waveform shape depends on the primary phases, and the
relative phases change over the conditions. Here we neglect any possible small effect due to these
variations.
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Fig. 6.6 Stimulus f1 C f2 and PTPV response for model #4 with linear stiffness. Stimulus
parameters: f1 D 1 kHz, f2 D 1:2 kHz, L1 DL2 D 30 dB. Time plots over the first 40 ms. The
response onset is delayed by approx. 8.5 ms at 50% of the response peak amplitude. Note the
overshoot in the response onset and a smaller peak around 28 ms. Whereas the envelope of the
stimulus is smooth (half a circle of a sinusoid), the envelope of the response consists of simple
straight lines. The 50% point of the stimulus slope is by definition at 5 ms; the reading of the
indicated 50% point from the response gives the delay C 5 ms. As before, stimulus and response
parameters refer to a plugged ear canal point just after the plug

focus on human parameter model data, in Sect. 6.4 guinea pig data are addressed,
which also turn out to have somewhat shorter delays.

We will first consider examples where stimulus and response onset shape
are rather similar.15 We allow, however, for a difference in onset slope. This

15Note that we distinguish here stimulus and response. In fact the stimulus is derived from the
recording of a single track at stimulus onset. Hence, it also will contain any reflections, but these
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Fig. 6.7 As Fig. 6.6 but at stimulus level of 80 dB. Note that the delay is much shorter. Moreover,
the onset shape is no longer smoothly sinuoidal

occurrence appeared to be dependent on stimulus level and on model version/type.
For the time being, we focus on the delay at half height, and leave the additional
points, low (10%), and high (90%) levels, as additional information for the reader.
It is clear that the information is a quantitative measure of the shape change.

The first step is to map the response onset envelope (shape) on the stimulus onset,
or vice versa, and make the comparison (optimum time shift). At 30 dB (SPL) the
match occurs at a delay of approx. 8.6 ms. Note that at this low stimulus level, the
DP response is very weak: more than 100 dB below the primary level. At the higher

are supposed to be at a low level. In general they are not visible in the time record, but they might
shows some low-frequency low-level peaks in the spectrum. The PTPV response of the DP, on the
other hand, only contains components that come back from the cochlea.
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level (80 dB SPL), the DP level is close to 35 dB (SPL), or 45 dB below the primary
level. But more relevant for this section is the dramatic decrease in delay. Because of
the change in response rise time the definition of delay is problematic, as indicated
above. The value of approximately 0.3 ms (or even shorter) follows from a threshold
taken at the top.

The reason to display at least 40 ms of the responses is the occasional irregular
behavior between 25 and 40 ms after stimulus onset. The 30 dB response shows
two somewhat unexpected peaks, the first at �17 and the second at �28 ms after
onset. Additional results for several other conditions are presented in the appendix
to this chapter, in Chap. 10, together with the response spectra. These spectra are
computed over an interval of either 40 or 50 ms, starting 10 ms after stimulus onset,
and after down-sampling the original signals by a factor of 4. Given a starting
sampling frequency of 400 kHz, this left us with 100 kHz, or a dtD 0:01ms. The
total time interval of 5,000 points has a duration T D 40 or 50 ms, so that the
frequency resolution is df D 1=T D 25 or 20 Hz. The signal edges of the samples
were suppressed using a Kaiser–Bessel window (ˇD 3:5). Computing the FFT
in double precision provided a maximum accuracy of 180 dB or more below the
highest primary peak level. Since the levels of the distortion products are lower than
the primary levels, the noise floor was higher for the DPOAE estimates, but usually
this did not affect the results in any significant way.16

Figure 6.8 shows the relation between DPOAE delay and primary levels over the
range from 30 to 80 dB (SPL), or more, for several models. A selection was made
that limits the presentation to the 2C 2.4 kHz cases. The differences between model
(4) versions d and d C s remained rather constant from 0 to 50 dB, but disappeared
at higher levels. The differences between (3) d and d C s are hardly significant.
At high levels, there are clear differences in behavior of models with and without
nonlinear stiffness. Nonlinear stiffness produces significantly more distortion and
irregular behavior than linear stiffness. The reason that nonlinear stiffness primarily
affects the high-frequency part of the related spectra is that the properties of the
basal part of the cochlea (basalward with respect to the resonance point) are stiffness
dependent, and cover the high-frequency mapped part of the cochlea.

In addition, there is a change in the phase of the DPOAE component with level,
as shown in Fig. 6.10. At levels below 60 dB (SPL), the phase is relatively constant,
whereas above 60 dB (SPL) there can be a marked increase with level.

6.3.3 Discussion

DPOAEs have occupied many auditory researchers over the last three decades,
and one of the major topics has been the DP delay. Most studies focused on the

16The computation noise is best observed and checked in a linear model version, when distortion
products should be absent.
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Fig. 6.8 Delays at half-height vs. level for several models. The numbered labels refer to Table 5.4
and the presence of the letters d and/or s indicate that in all cases nonlinear damping functions
were used, and two cases also include nonlinear stiffness. At high levels the inclusion of stiffness
nonlinearity can dramatically affect the behavior. At the low levels (10–20 dB) there is a significant
difference between the G.4/ d&s version whereas from about 30–60 dB three models score 2 ms
lower than the remaining 2; from 60–80 dB the differences are not significant, and above 80 dB the
computations are less accurate

group delay, based on measurement of @�=@! (e.g., Moulin and Kemp 1996;
Schneider et al. 2000). However, the biophysical interpretation of the data remains
problematic. The major problem with this method is that the common interpretations
rely on system conditions (linearity) which appear not to be fulfilled. We come back
to this approach in Sect. 6.4.

Therefore, a direct method such as the PTPV method of the response delay as
proposed by Whitehead et al. (1996) is to be preferred if one is interested in the
actual response delay, and a proper model analysis helps the interpretation of the
underlying mechanisms.

Measurement of amplitude and phase of a distortion product can be estimated
efficiently (Whitehead et al. 1996) by eye by mapping the DPOAE signal to a
comparison tone as well as by analyzing the PTPV result.

The DPOAE is not generated at one or two points, but it is generated over a
cochlea range, i.e., at many points. At these points, levels and phases depend on
sites of generation and, also, because of the nonlinearity, on overall level. Obviously,
intermodulation can be generated only at sites where both primary components
are:

1. Present
2. Subject to the local nonlinearity
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Fig. 6.9 Delays at half-height vs. 2f1 � f2-frequencies for several models. The numbered labels
refer to Table 5.4 and the presence of the letters d and/or s indicate that in all cases nonlinear
damping functions were used, and two cases also include nonlinear stiffness. Average level: 45
to 50 dB. Obviously, some models produce more variation than others. Almost all models show
a decrease of delay with increasing frequency. The model (3) with additional label a represents
results for an active version of the model. The results do show that the difference between active
and passive damping is marginal at this level. A few additional points for this model attained
negative delays, which are excluded for the logarithmic plot. The heavier gray line represents
average group delay date measured in guinea pig (Schneider et al. 1999). One should keep in mind
that the front delay or even its equivalent at 50% is different from the linear group delay measure

This is in the range where nonlinear damping is relevant. The extent of the range
increases with level, primarily so in the basal direction. This increase is the primary
reason for the decrease of DP delay with level. The precise interpretation is
complicated by the fact that the integrated summation of many contributions with
different phases must deal with phase interference. The net result in the ear canal
is the strong dependence of phase on level (Fig. 6.10). This type of phase change
does not occur at a single point nonlinearity for which the phase can be determined
precisely (Duifhuis 1989). Therefore, the basis for the observed phase change is that
it is derived from an integrated contribution of many adjacent points.

At a single point, the generation of two-tone intermodulation distortion products
results from cross terms of the primaries (see Sect. 9.1). They arise as product
terms that can be decomposed into the intermodulation products, or sum terms.
This leads to the result that 2f1�f2 and 2f1Cf2 are generated at the same strength,
which does not apply to 2f1�f2 and 2f2�f1. The components 2f2�f1 and 2f2Cf1
form a different pair, with a different amplitude factor. At the site of generation,
only low-frequency side components (relative to the local tuning frequency) feed
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Fig. 6.10 Phases of 2f1 � f2 for several models with respect to the primary phases as a function
of primary levels. Model references as before. At low levels (<40-dB) the phases are independent
of level, and we recognize two populations that differ by approx. � . At higher levels the Zweig
model (6) remains constant. All other models show some changes in the mid-level range, tending
again to constant phases at levels above 60 dB. The two NL-d only models [D:(3)d and G:(4)d]
predict a phase increase over the full range (except 100 dB). Note that a reliable determination of
the increase may require a finer sampling (smaller level steps), in order to exclude 2�-ambiguities

back effectively into the system. The high-frequency side components meet with an
input impedance mismatch (strictly speaking, the term impedance applies to linear
systems only). The mismatch increases with frequency distance. This partly explains
why the 2f1 � f2 component is much stronger than the other components, except
at very high levels where the impedance matched range of the 2f2 � f1 component
begins to overlap the expanding excitation site. The other factor follows directly
from the generation formulas (9.14)–(9.17).

Low-frequency DPs propagate to their corresponding tuning sites. Since these
sites also have nonlinear properties they also generate distortion products. At low
levels this concerns primarily generation of overtones, thereby slightly modifying
the input levels. That effect is of the order of the effect generated by a single tone
stimulus, and its contribution to the ear canal pressure is relatively weak (about 40
dB down), as can be concluded from the data from Brass and Kemp (1991) in an
experiment that has some similarity with PTPV: a linear addition and subtraction
of stimuli at different phases (Sect. 6.2.1). At high levels the generation of second
order intermodulation products (e.g., between f1 and 2f1 � f2) will complicate the
situation.

The delay values presented in the model results, partly summarized in Figs. 6.8
and 6.9 agree fairly well with the results from Whitehead et al. This may be most
obvious when comparing their Fig. 6 to Fig. 6.9. Note that their data (single subject)
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are presented at linear scales, whereas we use log scales. The difference in onset
shape may have introduced some additional differences: splatter generates more
high frequency during the onset and thereby a shorter decay. But here it seems to be
within the uncertainty range. Only the “extremely” low delay at low frequencies for
model (4), nonlinear stiffness case, appears to fall beyond the acceptable range.

Another point that we have not discussed in detail, but which is relevant in the
comparison with the results from Whitehead et al., is their observation of local
minima in the DPOAE level vs. frequency plots in Fig. 9 for the human subject,
and in Fig. 11 for rabbits. These plots show similar local minima of �5 to �10 dB.
Those dips are probably related to similar dips in the excitation profile that we have
reported for single spontaneous acoustic emissions (van Hengel et al. 1996, Fig. 6).
The latter study explains that the minima arise from the “impedance” mismatch at
the cochlea–middle ear transition. This causes a reflection of the outgoing wave,
which leads to an interference pattern. The reason that such interference is not
observed for external sources, or in general, waves traveling in apical direction,
is that most of these waves are completely dissipated before they reach a source of
significant reflection. Those are only expected at the helicotrema, where optimum
termination for the power flow cannot be matched over the complete frequency
range (Duifhuis 2000).17 Very low frequencies (below �100 Hz) will generate
additional apical reflections. In both cases, viz., the input side (stapes, oval window
C the parallel RW) and the apical end (helicotrema) even a small “impedance”
mismatch causes measurable reflections. Optimization of the matches minimizes
these reflections, but optimization is limited to a limited part of the frequency range,
and for nonlinear systems: also for a limited part of the level range.

6.3.3.1 In Conclusion

Time domain methods of analysis are superior in accuracy both in experiments
(Brass and Kemp 1991; Whitehead et al. 1996), and in modeling (e.g., Duifhuis
and van den Raadt 1997; van Hengel and Duifhuis 2000) because the impact on the
signals is minimum. The results appear to be sufficiently accurate to claim that the
main effects of DPOAE generation are covered. This means, among other things,
that a global definition of cochlear partition parameters appears to be sufficient.
The differences between rather different models remain small, and do no require an
analysis on a smaller scale, which would imply detailed involvement of the CP fine
structure.

The disadvantage of the PTPV measurement mentioned by Whitehead et al., viz.,

that it requires the subject to be very still and quiet during measurements because complete
removal of the primary tones depends critically on cancellation, which is sensitive to very
small variations of signal phase and amplitude

17Details were presented at the 3rd European Bioph. Congress, Munich 2009.
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is an important experimental problem. But it plays no role in modeling. There, one
just has to be certain that the accuracy is sufficient. One practical example: the
algorithm that steps in time can drift away if the next value is computed by addition
of a (fixed: floating point with bounded accuracy) increment. This is remedied by
using the integer step numbers and computing the resulting time as the product of
the (accurate) number of steps and the (constant) step size.

Spectral analysis requires averaging over a time window. Bandpass filtering
techniques also affect the waveform; at best, it is only smoothed marginally through
convolution with the filters impulse response. The time analysis approach involves
repetition in time and averaging, operations that can be performed very precisely.
These operations do not have to affect details of the waveform, and therefore are
suited to investigate the time course of nonlinear properties of the cochlea.

6.4 DPOAE Group Delay Measurements

Our involvement in group delay measurements resulted from a cooperation with the
group at the University of Leiden around 1990, when Sandra Schneider and Peter
van Hengel cooperated on the project. Experimental studies took place in Leiden,
model studies in Groningen. Biophysically, the guinea pig model is very similar
to the human model, except for the model parameters. We decided to set up the
model in such a way that easy transformation from one to the other set is possible
by changing just one single parameter. As yet, parameter sets for human ears and
for guinea pig have been implemented, other extensions are still open. Details are
presented on the program codes on the URL, including these parameter sets.

As explained in Sect. 8.2.1, the group delay concept is defined in linear signal
analysis, and its applicability to nonlinear systems is unclear. This question is
hardly discussed seriously, because the linear approach appears to match the data
reasonably well. To obtain the group delay for the DPOAEs one has to measure
phases over some frequency range. Most commonly, one of the primary frequencies
is fixed, and the other is varied (swept) over a certain range, including the range
where the DP amplitude is maximum. At that point, the stability of the phase vs.
DP-frequency slope is checked, and measured, and that slope is �	gr. Interestingly,
the f1-sweeps and the f2-sweeps tend to give different results.

In this case, the model analysis procedure was very similar to the experimental
one. Computations of amplitudes and phases had to be done for every sweep point
and then the optimum slope for the set was determined (Fig. 6.11).

Note that the group delay measured for the guinea pig on average is shorter than
the predicted (model) values for human, except for the Zweig model. Note that the
slopes also differ; in particular, the slope of the guinea pig data is shallower than
that of Zweig’s models and of a linear constant Q cochlea model. Model results for
the variable Q case follow the data slope more closely, but the difference in size is
still a factor of 2.
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6.5 Summary

6.1 Spontaneous Emissions:
We hypothesize that an oscillator from the Van der Pol family is still the best
candidate to represent the generation of spontaneous emissions.

6.2 Level Effects:
Although some major effects can be reproduced by the proposed nonlinear
model cochlea, not every detail of the experimental data is covered. This may
be due, at least in part, to the use of a very simple middle ear model.

6.3 Time Effects:
Time effect are most accurately measured in the time domain, experimentally
as well as in models. These methods typically do not require averaging over
a time window. For auditory data processing, the front delay is probably more
important than the group delay.

6.4 Group Delay Measurements:
Although the group delay is widely used, its possible limitations in a nonlinear
environment deserve further analysis. See also the previous point.

The discussion of applications and perspective is continued in Chap. 7.
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Chapter 7
Applications and Perspective

Abstract In this chapter we present examples of areas where an efficient NL time
domain cochlea model is potentially useful. This includes the front-end application
for auditory brain processing, ASR models, and hearing aids. Next we address the
relation between Hopf bifurcation models and Van der Pol models for CMs. We
conclude with our general conclusions.

7.1 Modeling Level Effects

The study of perceptual level effects is a relatively simple and straightforward
example of potential application of a better understanding of the operation of the
auditory front end.

7.1.1 Pure-Tone Masking Level Effects

The classical nonlinear pure-tone masking level effect, published by Wegel and Lane
(1924), still provides an important set of data that cannot be accounted for by linear
models.

Potentially, there is more than one possible source of nonlinearity. First, the CP
response to a tone is nonlinear, as has been shown in BM responses and detailed
OC responses. This has been a main issue of the present book. Next, the response in
the nervous system deals with nonlinear coding of signal strength. Finally, it is not
unequivocally clear how the processing across all channels may affect the overall
behavior.

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 7,
© Springer Science+Business Media, LLC 2012
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The first full quantitative analysis of this problem originated in the CBG1 at the
MIT during the 1960s. Elements appear in several theses, but the first publication
in a journal was by Siebert (1965) and a more complete story was presented in the
conference paper Siebert (1968). He starts with a linear filterbank model of CMs,
that does not deviate significantly from the later gamma-tone filterbank models. It
is followed by separate transduction channels that model the transformation from
BM response to AN response. That step includes a compressive nonlinearity, neural
adaptation effects, and it uses a Poisson process as a model for spike generation.
In a later study, Siebert also discussed the time information that is available in the
precise synchronization of the neural spikes to the stimulating waveform, at least
for sufficiently low frequencies. In this study (Siebert 1970), he concludes that there
is enough information in the rate coding, so it is unlikely that the additional time
coding, which may appear to be more precise, is also used.

Treating the nerve responses in the different channels as stochastically indepen-
dent with respect to the involved neural noise, Siebert estimated the psychophysical
thresholds of frequency discrimination and amplitude discrimination, assuming that
processing beyond the auditory nerve is optimum. If that is the case, then some
interesting theorems from system analysis apply (e.g., the Cramér–Rao inequality).

During the last two decades the technique was picked up again, updating some of
the original assumptions and providing a biophysical alternative for the gamma-tone
filterbank that had become popular among experimental psychologists.

As noted above, the front end of Siebert’s model did not deviate significantly
from the gamma-tone filterbank. Siebert starts in the frequency domain with filter
shapes that match the tip of the neural tuning curves, whereas the gamma-tone
filters start in the time domain format with impulse responses. We note that an
approximate relation between those two forms had been analyzed and presented
already by Goldstein et al. (1971).

A revival of Siebert’s approach was promoted by Heinz, Colburn, and Carney in
two detailed new papers on the limits of auditory performance (Heinz et al. 2001a,b).

We advocated the use of the time domain method, with proper nonlinear
properties, as the front end, thereby basically substituting the linear filterbank with
a nonlinear cochlear model. A good start would be the analysis of (global) level
effects response for pure tones, and combine these results to estimate pure tone
masking data. This might be a successful approach to obtain convincing estimates
for Wegel and Lane’s data. It is clear that their results from almost a century ago
always have been confirmed: asymmetry, different behavior above vs below masker
frequency, but also that so far no nonlinear mechanism has achieved the status of
“explanatory proof without any doubt.”

The CMs study presented in this book does not provide an analytical formulation,
or model, of the stimulation of the IHC’s, the sensory cells driving the auditory
nerve fibers. It fact it does not even address details of the 3-D coupling in detail.

1The Communications Biophysics Group at the Electrical Engineering Dept., headed by W. M.
Siebert.
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The brief sidetrack in that direction addresses the canal fluid motion; the 3-D fine
structure in the OC remains unaddressed, primarily because the number of relevant
free parameters still exceeds the available reproducible data. This point will be
mentioned in more detail in the final summary.

Detailed incorporation of all properties of the CMs, including 3-D local mechan-
ical coupling interactions and mechanisms like cellular adaptation, can give a better
understanding of these steps. Some of these I have employed before treating the
nonlinear CM behavior into account, and that did not help to understand nonlinear
masking aspects (Duifhuis 1973, App. A).

7.1.2 Conclusion

The interested student should be able to address this topic in more detail and work
it out to an interesting model of level representation and amplitude discrimination.

7.2 Applications

Auditory processing techniques are used in numerous applications in information
technology and in biomedical engineering. The first category contains technical
speech processing as used in the early days of telephone communication and in
ASR, the second involves developments for auditory diagnosis and supporting
devices as hearing aids and auditory implants.

Some of these techniques go back to the time that Van der Pol started in
electronics, the spectral analysis revived at the second half of the previous century,
with a revival of the Fourier analysis, and the even earlier FFT algorithm (often cited
to Cooley and Tukey 1965), but going back even farther than Fourier, viz. to Gauss
around 1805 (referenced by Heideman et al. 1984).

Real-time analysis (i.e., only with a continuous time window delay) became
available in hardware and software at the seventies, as long as the number of bits
representing the amplitude remained limited, and the bandwidth (time sampling)
remained between a few hundred and a few thousand Hertz (sampling frequency
about 8 kHz, or slightly higher).

For some practical applications, (quasi) real-time streaming is essential—
as in hearing aids; for others, focusing on more detailed analysis might
be more appropriate and the real-time condition might be dropped. For a long
time, the time windows used for FFT analysis of audio signals, in particular of
speech, were between 20 and 40 ms, providing spectral resolutions from 50 to
25 Hz (slightly broader due to proper windowing). This delay is just audible: it
is equivalent to the delay of sound in air over a distance of the order of 10 m, a
distance over which many normal hearing observers have no problems combining
audio- and visual speaker information.
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The disadvantage of using amplitude spectra only, which is common practice, is
that part of the sensitive timing information is averaged away over the FFT window.
Its envelope smoothens the underlying fine structure.

Moreover, the basic theory of signal analysis is a theory of linear signal analysis.
Its (common) properties rely on the system to be linear.

Obviously, a nonlinear system does not meet this criterion, so that we have to
be suspicious about any result of linear analysis. Our choice was to go to back to a
sufficiently accurate time analysis and check its accuracy and reliability, and using
additional spectral analysis only in case of reasonably stationary signal–response
situations.

So far applications have found their way in the following projects:

• van Hengel (1996), “Emission from Cochlear modeling.” Besides the construc-
tion of the 1-D cochlea, it addresses spatial periodicity, 2nd filter, and phase
behavior in the cochlea. Later on, phase data are compared to experimental
DPOAE group delay data from Sandra Schneider. Finally Van Hengel addresses
some issues of the numerical 3-D approach. As an example, the cupula motion in
lateral line is modeled successfully. Suggestions were made for additional steps
toward a 3-D mammalian cochlea analysis.

• Andringa (2002), “Continuity Preserving Signal Processing.” This study focuses
on cochlear processing as a front end for speech processing by studying the
cochleogram. In this case the cochleogram is not a filterbank approximation but
the output of a realistic cochlea model.

• The time domain model has been used by S Verhulst at the Technical University
of Denmark for her model studies (Verhulst 2010). This study focuses on
CEOAEs responses.

• The time domain model is being used by B Epp (Univ. Oldenburg) in a more
general approach of auditory processing, with specific interest in nonlinear
cochlea dynamics, e.g., in CTs and related OAEs (Epp 2011; Epp et al. 2010).

For details, in particular of the last two studies, the interested reader is referred
to the presentation by the investigators. Some investigators used the software in
a UNIX/Linux environment, others in Windows, for which we have developed
a specific GUI. [The graphics structure for the UNIX/Linux environment differs
substantially form the Windows version.]

7.3 The Hopf Bifurcation

In Chap. 5 we introduced a brief reference to the Hopf bifurcation that might
be considered an alternative to the Van der Pol oscillator model of spontaneous
otoacoustic emissions.2 References were given to studies by Magnasco (2003) and

2Note that the Hopf bifurcation alternative did surface about 20 years after the first proposals of
the Van der Pol oscillator.
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Fig. 7.1 As an example, results from experiments Tinevez et al. (2007, 2009) are presented. These
concern measurement of hair bundle deflection in response to forces applied with a flexible glass
fiber. The left column shows a transition in force response data for a small negative displacement;
the middle column shows spontaneous oscillations at �12 Hz, and the right-hand column has a
positive transition. The middle column depicts the negative stiffness around zero, where the force–
displacement curve has a negative slope. Reprinted from Biophysical Journal, Vol. 93, J-Y Tinevez,
P Martin and F Jülicher, Unifying the Various Incarnations of Active Hair-Bundle Motility by the
Vertebrate Hair Cell, 4053–4067, Copyright (2007), with permission from Elsevier

Kern and Stoop (2003). These represented an example of studies with roots in
Hudspeth laboratory,3 and later expansions in several European laboratories, in
particular in France, Germany, and the United Kingdom. In addition a Swiss branch
developed somewhat independently from the others. Some of this work will be
discussed in the following section. Claims and results will be related to our studies.
The interested student should find the open ends, and may find them intriguing
enough to try to find the proper answer(s).

Technically a Hopf bifurcation is a feature of a much wider class of nonlinear
functions, but the cochlear models that have been implemented and called Hopf
bifurcation models are the same as the Van der Pol oscillator models, as will be
shown in this section (see Theorem 7.1 on page 183).

The basic idea starts almost simultaneously with the discovery of nonlinear
behavior in hair bundle stiffness behavior, which has been confirmed for both
mammalian and nonmammalian vertebrates. For “large” driving forces the re-
sponding deflection behaves linearly, indicating a constant stiffness, except that
the asymptotes do not go through zero. Instead, around zero there is a nonlinear
transition from one asymptote to the other that can be accompanied by a low or
even negative stiffness (e.g., Hudspeth (Fig. 5, 2008), Tinevez et al. (Figs. 2 and 3,
2009), examples of which are shown in Fig. 7.1).

3Howard Hughes Medical Institute and Laboratory of Neuroscience, The Rockefeller University,
New York.
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Originally the phenomenon was introduced as a possible alternative for OHC
body motility (Martin and Hudspeth 1999), a feature that is available in mammalian
cochleae but lacking in nonmammals. Since nonmammals do show spontaneous
emissions, another source was supposed to be available. Martin and Hudspeth
“report physiological evidence that amplification can stem from active movement
in the hair bundle” formally leaving room for other options. In practice, alternative
options were not taken seriously.

The first proposals with the Hopf bifurcation were presented a little later
(Eguı́liuz et al. 2000; Martin et al. 2001) by the same group. Eguı́liuz, Ospeck, Choe,
Hudspeth, and Magnasco return to the use of the term essential nonlinearity that had
been introduced about 30 years before, to describe the CT data: at low levels, CTs
appeared to decrease linearly rather than disappearing completely.4 They provide
the basis for subsequent work, the details of which will be given in Sect. 7.3.1.
Somewhat later, Magnasco (2003) presented the Hopf-bifurcation as a mathematical
tool in a biophysical context aiming at the shape of cochlear tuning curves. Although
some of his specifications remain uncertain he does pay attention to the energy
flow and dissipation. Mathematically, he starts from the results of Eguı́liuz et al.,
referring to a (local) responseR which occurs as the output of an input F . This will
be discussed in more detail in Sect. 7.3.1. The two papers are still cautious about the
biophysical interpretation of the required source of nonlinearity, but the option that
nonlinear hair bundle stiffness fulfills this role is presented in some detail.

After�2003, the developments converged toward nonlinear stiffness in line with
the hair bundle stiffness results.

A very important point in the arguments used by all investigators in this group
is the assumption that energy loss within the cochlea is basically accounted for by
viscous loss. This loss would occur either only in the cochlear fluid and its boundary
layers, or possibly also in additional viscous elements in cochlear partition. This
appears to be one of the implicit points going back to the 1948 study by Gold.

The explicit point that is promoted in many of the papers dealing with the
topic concerns the occurrence of active behavior. This reference relies on their
interpretation of Gold’s (1948) paper, probably without carefully analyzing his
arguments (e.g., Martin and Hudspeth 1999; Eguı́liuz et al. 2000; Martin et al. 2001;
Martin and Hudspeth 2001; Magnasco 2003; Duke and Jülicher 2003; Kern and
Stoop 2003; Chan and Hudspeth 2005; Martignoli et al. 2007; Kern et al. 2008;
Hudspeth 2008; Hudspeth et al. 2010; Maoiléidigh and Jülicher 2010, and many
others).

Basically, Gold excluded the possibility of sharp cochlear tuning on the basis of
viscous damping of the BM radial fibers. The role of viscosity was just one of the
three major points that prevented his success during the fifties. Obviously Gold was
a very talented scientist, who had positioned himself in the auditory science field in
a very short time, but his ideas about the cochlea where to a large extent based on
incorrect starting points:

4Unfortunately, Eguı́liuz et al. assumed a cubic distortion generator for the 2f1 � f2 component.
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1. Gold concludes on the basis of psychophysical data that the frequency selectivity
of a point in the cochlea should be more than an order of magnitude greater
than expected to be achievable. This assumption contains two underlying points:
(a) he overestimated the psychophysical frequency selectivity probably by an
order of magnitude, (b) he underestimated the possibility of cochlear frequency
resolution because of data so far were based on dead cochleae. One might argue
that the last point is exactly what his statement wanted to promote, but I am not
so sure. Let us consider the next point:

2. Gold effectively assumes the cochlea to be modeled properly by the Helmholtz-
type model. This implies parallel 2nd order filters, which are much too simple
to model the cochlea. This was about 25 years after Wegel and Lane (1924)
had published a transmission line model with fluid coupling, and many auditory
scientists had switched or began to switch from the Helmholtz type to the newer
ideas, which do produce a type of tuning not considered by Gold.

3. Finally, the limitation of the Helmholtz model at the time was assumed to be
due to viscous drag of radial BMy fibers in viscous cochlear fluid. The current
conviction is that viscous losses at that point are negligible, one reason being that
the membrane fibers do not vibrate independently in the cochlear fluid. Many
current studies neglect the fluid viscosity completely, possibly except at some
specific boundaries.

The argument misses one very important point, elementary in physics, biophysics,
and engineering.

The cochlea is a fundamental element in a biological measuring device that is
able to do much more than auditory signal detection. Any measuring device needs
to consume some input energy.5 The optimum sensory device minimizes the loss of
input power. Just like the visual system is able to detect optical photons, the auditory
system can detect stimuli at the Brownian noise background level (de Vries 1948,
1952). This implies that a sensitive ear will be optimized to pick up the acoustic
energy, thereby involving the hair cell, but at the same time minimizing viscous
losses.

Scientific history may give the answer to the question if the share that Gold
received in the recognition for the experimental discovery of SOAE and other OAEs
by Kemp and co-workers is justified. In this context, the recent chapter from Kemp
(2008, Chap. 1) is illuminating.

7.3.1 Details of the Hopf Bifurcation

Eguı́liuz et al. (2000) present the following generic equation to describe a useful
Hopf bifurcation:

Pz D .�C i!0/z � jzj2z; (7.1)

5An equivalent argument is that the quantities involved are bounded by the uncertainty relation,
rewritten in the proper dimensions.
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where z D z.t/ is a complex variable in time, and !0 the natural frequency of oscil-
lation.6;7 As noted below, we must assume that the parameters are dimensionless.
A related mechanical equation would be either

d PwC s0.1� �1w2/w D 0; w 2 < (7.2)

with d and s0 representing damping and stiffness per unit area and w the across
partition deflection (neglecting the inertia term!), or

PvC d0.1 � �2v2/v D 0; v 2 < (7.3)

with d0 is the damping per unit area, v the across partition deflection, and where the
stiffness term is neglected.8 Obviously (7.2) places the nonlinearity in the stiffness,
whereas (7.3) implies a nonlinear damping term. The occurrence of the term i!0z in
the right hand side of (7.1) suggest a close connection to linear systems analysis. In
nonlinear analysis the use is only by approximation, and can be avoided.

Let us consider the solutions described by the authors. Equation (7.1) has
characteristic solutions for the different parameter settings. First, the exact solution
z D 0 is stable because it implies that Pz D 0. For small deviations from zero, stability
of the solution depends on the sign of �. This follows from the consideration that
for small values of z, with jzj3 � 1, the cubic term can be neglected, yielding the
solution: z.t/ D z0e�tCi!0t . This solution expands for positive �, whereas it is stable
for a negative value (Eguı́liuz et al. 2000).

As is a common approach in the analysis of (non)linear dynamical systems, one
tries to find periodic solutions by subjecting the system to an oscillatory force.
A trial solution of the form z.t/ D Rei.!tC�/ gives

Pz D i!ei.!tC�/ D i!z (7.4)

D .�C i!0/z �R2zC F ei!t (7.5)

where R D jzj (as already implied in the trial solution) and where a stimulus
term F ei!t has been added. After inserting the trial solution z.t/, multiplication
by e�i.!tC�/, and some reshuffling this yields:

�F e�i� D �R �R3 C i.!0 � !/R:

6Note that the dimensions of these parameters are puzzling. Obviously, the dimension of jzj2 must
equal that of T�1, and the same applies to the dimension of �. This leaves T�1=2 as dimension for
z. This is a dimension that can not be associated with a biophysical quantity, in particular not to
either damping [M T�1] or stiffness [M T�2 ]. In other words, the formula can only be meaningful
if it represents properly scaled dimensionless quantities.
7A slightly different formula was presented later by Martignoli et al. (2007) in an application study.
Basically it is limited to the same insufficient initial and boundary conditions.
8The simplifications that discard either inertia or stiffness imply that neither (7.2) nor (7.3) is a
good cochlea model.
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The quadratic modules of both sides give their equation (1):

F 2 D R6 � 2�R4 C Œ�2 C .! � !0/2�R2; (7.6)

which at the bifurcation point (� D 0) simplifies to

F 2 D R6 C .! � !0/2R2: (7.7)

Eguı́liuz et al. (2000) argue that near resonance the response to stimulus relation
is close to a cubic root, whereas at sufficient distance form resonance the linear
relation will become dominant (their Fig. 2).

These results were placed in more specific contexts of biophysical properties of
the ear in later studies. Magnasco (2003) discussed the relevance for cochlear tuning
curves, and Duke and Jülicher (2003) aimed to derive a proper wave equation for the
cochlea. A substantial part of their analysis is carried out in the frequency domain,
which, unfortunately, may not be considered as valid for nonlinear systems analysis
(see our example in Sect. 5.1.3.2). Magnasco’s cochlea model appears to be of the
Helmholtz type, where the effect of fluid coupling between adjacent points in the
cochlea is lacking. In this sense, his analysis also is of the gamma-tone filterbank
type (see Sect. 3.4).

Further points of agreement and disagreement will be summarized after the
discussion of the direct link between Van der Pol oscillators and Hopf bifurcations.

7.3.2 Relation Between Hopf Bifurcation and Van Der Pol
Oscillator

Let us start with the one end of the discussion, presenting the conclusion as a
theorem:

Theorem 7.1. There is no formal distinction between a properly defined Hopf
bifurcation cochlea model and a general Van der Pol oscillator.

Proof. The proof of this theorem was presented by Broer and Takens (2009)
in their Sect. 1.3.1 A Hopf bifurcation in the Van der Pol equation.9 We follow
their arguments. Just like the mathematicians quoted in Sect. 7.3.1, they use a
somewhat loose formulation of the differential equations, scaling from physical
to dimensionless quantities with relevant values around 1. The physical Van der
Pol/Rayleigh equation, already partly modified by a scaled time differentiation

9See also: Bronshtein et al. (2003), Handbook of Mathematics, p. 831.
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(5.71), where the link with the original parameters is added in (5.72), is reduced to
the dimensionless form (5.73) or (5.74). They consider the special case with " D 1:

Rx D �x � Px.x2 � 1/: (7.8)

The equation is recognized to describe a damped harmonic oscillator, where the
damping coefficient is represented by the term .x2 � 1/. The damping term is
negative for jxj < 1, increasing the energy, whereas for jxj > 1 one encounters
the common positive damping. Broer and Takens define the energy of a solution
x.t/ by

E.t/ D 1

2

�
x.t/2 C Px.t/2�:

If the damping term is zero, then the energy term describes the conserved sum of
potential and kinetic energy. For the Van der Pol oscillator, a similar conservation is
present, which follows from considering the derivative ofE.t/. After differentiation
and some reshuffling, one obtains

PE D �. Px/2.x2 � 1/:

If the damping term, d.x/ is zero, one would just be dealing with a harmonic
oscillator. But this damping term d.x/ D x2�1 is (a) nonlinear and (b) characterizes
a limit cycle amplitude and period.10

For the comparison with the Hopf bifurcation, the damping term is modified to
.x2 � �/, modifying the differential equation to11

Rx D �x � Px.x2 � �/: (7.9)

Now the value of � determines where the damping is negative. For � > 0, this is
the interval given by jxj < p�.

The behavior of the solutions is:

• For � � 0 (7.9) has no periodic solutions; all solutions converge to zero.
• For � > 0 all solutions of (7.9) -except for the zero solution- converge to a fixed

point solution, the amplitude of which depends on �.

The transition of the behavior at � D 0 marks the bifurcation point. ut
The bifurcation point occurs if the shape of the damping profile is allowed

be shifted along the damping axis (vertical axis in Fig. 5.11). It differs from the
original "-parameter description, which quantifies a relative shift of the profile only.

10An estimate of the period is given in (9.33); for the case under consideration, " D 1, the angular
resonance frequency is still close to 1, and the maximum amplitude close to 2 (see Fig. 5.5).
11See Definition 9.16 and (9.31). In contrast to (7.8), (7.9) can be transformed to the general format
with the "-parameter. Actually, " � �, but the x-parameter will be scaled by a factor

p
�.
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The extension proposed by Broer and Takens is appropriate for CMs because it
allows careful consideration of the distribution of the bifurcation parameter over the
cochlea.

In terms of (applied) mathematics it is straightforward to rewrite a 2nd order
mechanical PDE into coupled first order equations, which are even more similar to
the equations proposed as the Hopf bifurcation equation. However, it is noted that
the background (bio-)physics is quite different. This is made clear in the following
theorem:

Theorem 7.2. The 2nd-order ODE’s describing the uncoupled elements in a simple
Van der Pol equation are—around the point of resonance—equivalent to the simple
Hopf-bifurcation equation.

Proof. The proof is most simply given for the Rayleigh equation, which is directly
related to the Van der Pol equation (see Definitions 9.12 and 9.13).
Let the simple version of the Rayleigh equation be given in by

Rx � "
�
1 � 1

3
. Px/2

�
Px C x D s.t/:

This notation follows the Definition 9.12 but adds the driving component s.t/.
The general interpretation is that the Px-parameter in this equation represents

the velocity, whereas in the regular Van der Pol equation the nonlinear damping
term contains a deflection or displacement parameter. The above equation can be
decomposed into the following coupled 1st-order equations12:

Px D �y; (7.10)

Py D "

�
y � 1

3
y3

�
C x � s.t/: (7.11)

Application of the Broer–Takens transform: u D p" x and v D p" y yields a
regular driven Van der Pol–Rayleigh set:

Pu D �v; (7.12)

Pv D "v� 1
3

v3 C u � s1.t/: (7.13)

We compare this result to the hypothesized form by Eguı́liuz et al. and find

Pz D �z � jzj2zC i!0zC F ei!t (7.14)

and recognize practically complete correspondence between the terms. A minor
difference arises at the nonlinear term, but that difference is virtual because the Van
der Pol–Rayleigh set contains real elements only, and the above bifurcation equation

12Addition of this second dimension makes it possible to represent oscillatory solutions as 2-D
rotations.
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has been defined for a complex z; the additional factor of 1
3

is a simple scaling factor.
A more substantial difference appears within the next right-hand term, where v is
compared to i!0z. If the analysis was linear, then

u D �
Z

vdt D � v

i!
D iv

!
(7.15)

and we see an essential difference between a factor of 1=! in the one case, versus
!0 in the other case. The minor part of the difference is the constant appearing in
the numerator,13 the more serious difference is the occurrence of the !-parameter in
the other denominator only. In other words, around

! � !0 � 1

the similarity is complete; for deviating values the systems will behave differently.
ut

7.3.2.1 Comparison of Activation Patterns

A direct comparison of the activation patterns generated by cochlea models
following the Van der Pol model and the Hopf bifurcation models is discussed
briefly. It has been presented to the 11th MoH symposium in 2011. It indicates
some practical differences, and also leads to a number of practical questions.

In terms of the set of differential equations, the differences between the Hopf
bifurcation and the Van der Pol model focus on the damping term.14 For the
Van der Pol model, the damping at 0-velocity is negative—causing a limit cycle
response if undriven. In the Hopf bifurcation, the damping is reduced to zero. In
both simple15 shapes, damping increases quadratically. In the Van der Pol model
version in Sect. 5.3.5.2, we actually used the Rayleigh version

d.x; t/ D �d1.x/C d2.x/w2t D d1.x/
�
a v.x; t/2 � 1� : (7.16)

A fundamental difference between the oscillators and the specified Hopf bifurcation
is that all oscillators have negative damping at zero velocity. This makes the (close
to) zero solution unstable. That is why the oscillators find an equilibrium at the
limit cycle, quite far from zero, and at a point where the dependence of d on v is

13It is noted that Martignoli et al. (2007) modified or scaled (7.14) by putting !0 before all terms
on the right hand side. This reduces the difference.
14The model version of the Hopf-bifurcation model by Duke and Jülicher (2003) was modified to
obtain reasonable middle ear coupling and proper apical termination.
15The more general damping form of the Van der Pol-model or Hopf-bifurcation does not have to
follow the original parabola. However, it remains an even order function with a minimum at zero.
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considerable. For a zero or positive location of the bifurcation point, the above effect
does not play a role. Around v D 0 a linear solution of an undamped oscillator arises,
which is determined by the initial conditions. For larger values of v, the damping
nonlinearity follows the same profile as for the Rayleigh oscillator.

For the undriven Van der Pol- and Rayleigh model, the limit-cycle amplitude
of the response for the small "-case is independent of the actual average damping
as well as of the resonance frequency. It is completely determined by the bracket
term in (7.16):

p
av.x; t/ D 2. This means that the factor a must be considered

the scaling factor that determines the limit cycle amplitude value. For the Rayleigh
equation, its dimension has to match the dimension of v.x; t/: the product

p
av.x; t/

is dimensionless.16

Although there are good arguments to let the a-parameter depend on x, we have
used constant values so far. These are meant to approximate the mid-frequency
range (1–2 kHz) values reasonably. But choice of profiles can significantly affect
the longitudinal interactions, and thereby modify the activation patterns. Note that
the choice of a constant factor for the velocity implies a frequency dependent factor
for the deflection and vice-versa. More specifically, if we want to use similar factors
for the common Van der Pol version with the quadratic displacement term and for
the Rayleigh format with the velocity term we should introduce a scaling difference
of the order !20.x/ D .2 � f0.x//

2. This follows from the linear approximation of
the time derivative by i!. This scaling factor does depend on the frequency-place
map, which demonstrates the problem. It it starts with a constant Van der Pol-a-
factor, then the Rayleigh-a-factor will depend on x, and vice-versa.

The d1.x/ profile was usually optimized to obtain equal limit cycle velocity
responses. Remember that its value is related to " (5.72a): d1 D "psm.

7.3.3 Summary: Questions and Conclusions

1. Mathematically, there is overwhelming similarity between the Hopf bifurcation
model and the Van der Pol model of cochlear nonlinearity. The bifurcation
parameter� simply equals the Van der Pol "-parameter. This similarity involves
scaled representations of the underlying (bio-)physical system. The involved
issues are listed separately. The relation between the two has been presented
in several text books (e.g., Guckenheimer and Holmes 1983; Broer and Takens
2009). This early awareness makes it puzzling why the development of the
recent bifurcation models made no connections to the Van der Pol applications.

2. In physics as well as in applied mathematics, the Van der Pol oscillator is most
often interpreted as a 2nd order mechanical system—even though its origin lies
in electronics. Nonlinearity appears in the damping factor, where a parabolic
factor multiplies the standard damping term. The parabolic factor .1 � x2/ can

16For the Van der Pol-equation the proper the link is to w.x; t/ rather than to v.x; t/.
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either involve the displacement directly, in which case one speaks of a Van
der Pol-oscillator), or x represents the velocity, in which case one refers to the
Rayleigh equation. In both cases, the nonlinear term is the damping term.

3. The nonlinearity leads to a compression of the output .r/ dynamics compared
to the input .s/ range: for the standard traditional shapes with the parabolic
factor the output-to-input relation converges to

r D s1=3:

This is in line with early predictions of the nonlinear relation required to model
CT amplitudes properly (e.g., Smoorenburg 1972a,b).

4. The Hopf bifurcation equation first proposed by Eguı́liuz et al. but taken over by
many others is usually interpreted as representing a 1st order system, usually
one that involves a linear damping and a nonlinear stiffness only (7.2). This
equation lacks one of the essential mass elements in the system. It would also
imply that a “dead” cochlea cannot have a frequency map, which contradicts
Von Békésy’s classical observations.

5. In connection with the previous point, the proposed bifurcation model poses
the cochlear damping completely in viscous loss. None of it is employed
for information processing. This is (bio-)physically incompatible with stable
information processing systems.

6. Both the single (i.e., uncoupled) Van der Pol oscillators and the proposed
Hopf bifurcations miss the difference between the classical Helmholtz model
(parallel 2nd order filters) and modern cochlea models, by ignoring the fluid
inertia in the scalae. The essential role of this fluid coupling was introduced
by and Wegel and Lane and rapidly accepted in subsequent models (except
by Gold) who treated the coupling as an essential part of CMs (see Chaps. 1
and 3). The present study follows that line. As mentioned in Sect. 3.4, for
a linear cochlea only, there always exists a reversible transform from the
transmission line model to the quasi-independent filterbank model, but the
linear transmission line can not be mapped to a bank of parallel 2nd order filters.

For the nonlinear transmission line, a reversible filterbank equivalent simply
does not exist. It misses the possibility to properly transmit internally gen-
erated distortion products and other byproducts, amongst which onset/offset
phenomena.

7. Any mathematical analysis can benefit from proper scaling to dimensionless
quantities. The interpretation of the results of the behavior of the mathematical
bare bones back to the underlying system needs proper definition and book-
keeping of all these steps. One of the strong tools to be used in applied physics
is the check of agreement of dimensions in all equations. This has not been
done consistently with the published data.

8. There is little doubt that around zero deflection of the hair bundle its stiffness
shows a remarkable behavior, which is best understood as a nonlinear term in
the mechanical stiffness of the hair cell. However, in terms of energy balance
the stiffness plays only a marginal role. Increase of sensitivity of the cochlea
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can be obtained by an effective reduction of energy loss, a loss caused by
damping. Local energy supply, able to account for SOAEs, requires a local
negative damping—equivalent to locally active behavior.

9. It may well be possible that the cochlea deals with both a stiffness and a
damping nonlinearity. This was first suggested by Kim et al. (1973) in a model
study; they mentioned that the effect of the Duffing-equation part would be
to increase frequency selectivity at higher levels, and do not report further
exploration. Furst and Goldstein (1982), Furst et al. (1988) and Furst and Lapid
(1988) have explored the effect of nonlinear stiffness in more detail, and obtain
proper results if the stiffness nonlinearity does not appear to dominate the
behavior.

Usually, we have treated the damping term as the prominent one, primarily
because it helped us to check accuracy of the simulation. Strong stiffness
nonlinearity appears to lead to much more high-frequency distortion than has
been observed experimentally.

10. In Zweig’s model, where the distinction between stiffness term and damping
term is less clear, the two become inseparable. This is also true in our
implementation of his models, both in the linear and nonlinear version. The
most puzzling result is the stability of the DPOAE phase as a function of
level (Fig. 6.10); other characteristics so far did not seem to generate different
behavior.

7.4 General Summary and Discussion

We conclude by discussing the major objectives and achievements of this book,
basically following the order of presentation. The structure is summarized in the
following list that also highlights some intriguing open questions.

7.4.1 Time Domain Analysis

The major goal is to show that the analysis of the healthy, nonlinear cochlea requires
an approach that differs essentially from linear systems analysis. We assume that
essential nonlinearity of the healthy cochlea is a given, well established fact over
the last decades. Proper tools to analyze such systems are not well known, primarily
because they do not appear in undergraduate signal analysis textbooks. However,
there exists also a wealth of advanced nonlinear studies, in fields such as Dynamical
Systems and Chaos theory, as well as in certain specializations of fluid mechanics.
One of the strongest approaches of these problems, after discovery that full solutions
do not exist, is the application of sufficiently accurate numerical analysis in the time
domain. This way essential properties such as causality and power balance are easily
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kept under control. The results presented, e.g., in Chap. 10, show that the proposed
technique works properly.

The model properly produces the family of OAEs, which most alternative cochlea
models are unable to do at this moment.

7.4.2 Cochlea Parameters and Experimental Data

Obviously, the cochlea itself is a coiled 3-D fluid mechanics structure, and the OC
(CP) also is a rather complicated anatomical structure. It is more elaborate than
described in common 3-D models that just assume slices orthogonal to the length
direction, whereas in fact the structure contains several different longitudinal
connections such as the pillar cells stair case, Hensen’s cell’s, OHC top–bottom
connection, and angles in the TeM radial fiber structure. In terms of a proper
mechanical description, this leaves us for the time being with too many free
parameters. This becomes apparent in a comparison of a number of nonlinear
cochlea models (e.g., in Sect. 6.3.1 and Chap. 10), where significant differences
might have been expected, but only marginal differences occur. More precise data
are required along many lines of the CMs, and those data that are available should be
used carefully within the experimental context for which they have been designed
and optimized. This must reduce the number of free parameters and leave us with a
solvable problem.

One point that needs direct improvement is the middle ear coupling, from ear
canal to oval window. As indicated in Sect. 5.3.2, we have been using a crude
approximation, which allows us to get reasonable quantitative results within a
small frequency range. For a better representation of the high-frequency behavior,
and across frequency interactions (time effects) a more comprehensive coupling
is necessary. An initial impetus was presented in Sect. 5.3.2.2 as a promising
expansion, but the implementation still needs to be done.

7.4.3 Comparison Across Mammals

The analysis in the text may appear to focus on the human cochlea, but much of
the analysis is directly applicable to other mammals. For several mammals, the
required parameters from outer ear up to the cochlea are equally well known as
for humans. Presently our numerical analysis also contains a set of parameters for
the guinea pig. It is expandable with data from other mammals, at least insofar as
they have similar specifications. For instance, many bat families have a differently
specialized cochlear structure, where part of the cochlea appears to be optimized for
echo location. The outer and middle ears are specifically shaped to optimize hearing
over the relevant input range, i.e., limited by boundary conditions of shape and size.
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The comparison across mammals is very useful to underpin the general validity
of assumptions that have been made on the basis of a very limited number of species.

7.4.4 Nonlinear Damping and/or Nonlinear Stiffness?

Since the analysis by Kim et al. (1973), and several related studies, no serious doubts
about the primary source of cochlear nonlinearity appears to have arisen. They
suggested a predominant damping nonlinearity. The question was addressed again
by Furst and Goldstein (1982). A relatively weak stiffness nonlinearity term tends
to have a positive effect on the cochlear response; a strong stiffness nonlinearity
generates significantly more high-frequency distortion than has been observed so
far (cf. Chap. 4). Stiffness nonlinearity can induce oscillation (Duffing oscillator);
however, stiffness is not suited for power dissipation, nor for power generation.

7.4.5 Active Emission Sources or Filtered Noise?

1. DPOAEs do not require active cochlear sources. They are also generated by
completely passive compressive nonlinear systems.

2. SFOAEs do not require active cochlear sources. Same argument as for DPOAEs.
3. CEOAEs do not require active cochlear sources. The energy splatter over the

broad spectral range implies that coupling mismatches are bound to occur at
certain frequencies. These mismatches are sources for reflection.

4. The cochlear amplifier does not require active sources (but does not exclude it
either). It requires a nonlinear transition from high-level damping to low-level
damping, the latter being significantly less than the former. The reduction is
correlated to an intact cochlea, in particular to intact OHCs.

5. SOAEs do require active cochlear sources. The alternative hypotheses of passive
filtering of thermal noise or of correlated reflections may not have been ruled out
completely, but have been excluded largely. The validity of the choice between
filtered noise and oscillator, proposed by Bialek and Wit (1984), strongly depends
on stability and length of the analyzed time intervals. But although the first
analyses may have used marginally sufficient data, the conclusion was confirmed
in later, more extensive controls.

One of the colleagues who kept us awake on the active–passive issue is JB
Allen, who over and over posed the question about the proof for active behavior
in the cochlea. The discussion reports from the Mechanics of Hearing workshops
are illuminating, without giving all the answers. These reports illustrate that several
other colleagues are actively involved.17

17Presently the most recent MoH workshop was the 11th, which was held Summer 2011 in
Williamstown, Massachusetts.
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7.5 The End

Back to the beginning of this chapter:
The answer to the still open question of the proper explanation of the masking
asymmetry which was reported by Wegel and Lane in 1924, should be found within
the next decade, or at least before 2024! We assume that time domain analysis of
the nonlinear cochlea will play a role.
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Part IV
Basic Linear and Nonlinear Tools and a

PTPV Response Collection

Part IV consist of three additional, supporting Chapters:
Chapter 8 describes Basic Linear Tools, from a number of subdisciplines that are

useful in linear CMs.
Chapter 9 describes some of the tools available for the analysis of nonlinear

systems. It consists of two main parts.

• The first presents information about Bennett’s series expansions for compressive
nonlinearities, where Taylor’s expansion is very inefficient.

• The second connects to the field of applied nonlinear dynamical systems and
chaos.

Chapter 10 contains a collection of PTPV responses, computed for different
parameters of the Groningen NL time domain model. It is an addition to Sect. 6.3.



Chapter 8
Basic Linear Tools

Abstract This chapter presents some elementary tools which are used to analyze
physical properties of (some of the constituents of) the cochlea.

Acoustic signals depend strongly on the properties of the sound carrying
medium. Vacuum, or an incompressible nonabsorbing wall, blocks propagation. Up
to the middle ear the medium is air, with propagation properties that depend on
temperature and humidity. The cochlea (and the connected vestibular system) are
fluid filled with perilymph or endolymph, the acoustic properties of which approach
those of water. In water, we can distinguish bulk waves and surface waves (in which
the compressibility of the medium is essential), from fluid displacement waves
(which depend on the mobility of the fluid but do not require compressibility). In
the latter case, the mobility is primarily constrained by properties at the boundaries
and fluid inertia.

The displacement waves will turn out to dominate acoustic fluid motion in the
cochlea. This can be deduced from the comparison of properties of sound waves
in water and the dimensions of the cochlear ducts. It turns out that the velocity of
sound in the fluid is so high,�1:5 km/s—and consequently its wavelength is so large
with respect to the cochlear dimensions—that for most mammals the cochlear fluid
can be considered as incompressible. This implies that the velocity of sound within
the cochlear fluid is practically infinite. For frequencies above about 10 kHz, this
approximation needs to be refined. Then propagation begins to become noticeable.
For larger cochleas than the human case, the frequency boundary will be shifted
downward, for tinier cochleas it will be higher. Note that some bat species have a
high-frequency limit of their echo location frequencies range that extends beyond
100 kHz, and in such cases the phase effects due to compressibility have to be taken
into account.

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 8,
© Springer Science+Business Media, LLC 2012
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8.1 Fluid Mechanics

First, it should be noted that fluid mechanics treats a fluid (liquid or gas) as a
continuous medium. This means that even the smallest volumes or points in a
fluid(theoretically infinitely small) contain many molecules. This means that points
in the fluid only can be very small compared to the sizes of the object under
consideration, as long as they are be well above the molecular sizes.

The basic formulas for the motion of fluid particles are derived from three
conservation laws: conservation of mass, conservation of mechanical momentum,
and conservation of energy. The last case, obviously, must include all additional
internal sources as well as all losses: primarily viscous and other damping losses
and sensory power dissipation.

Conservation of fluid mass in a volume V0 is expressed in an equation that
equalizes the net influx of fluid to the associated increase of mass m (Ddensity
� volume), or mC�m D .�C��/V0:

@

@t

Z
� dV D �

I
�v � dA: (8.1)

The left-hand integral, which represents the total mass, is a 3-D volume integral;
the right-hand shows the related 2-D surface integral, and represents the net influx.
Using a Green’s formula to convert the surface integral to a volume integral leads
(after some rewriting) to the equivalent differential equation:

@�

@t
Cr � .�v/ D 0; (8.2a)

or:
@�

@t
C �r � vC v � r� D 0: (8.2b)

Note that the second term in (8.2a) is nonlinear, because both density and velocity
are acoustic parameters. For many practical cases, the acoustic variations in pressure
are small compared to the atmospheric pressure. Therefore, the nonlinear term is
usually dropped, so that a linearized version of the equation can be applied. Writing
the total density � as �tot D �0C �a D �0.1C �/ where �a=�0 D � � 1, we obtain
@�=@t D �0@�=@t and r � .�v/ � �0r � v and (8.2) becomes, after division by �0:

@�

@t
Cr � v D 0: (8.3)

For an incompressible fluid, the density is constant and the mass conservation
condition simplifies to

r � v D 0; (8.4)

the form of which has been used most frequently in cochlear modeling.
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8.1.1 Conservation of Momentum

Next we turn to the conservation of momentum, or the fluid equivalent of Newton’s
law: force D mass � acceleration. The fluid version, called Euler’s equation, and
presented by him in 1755, is of the form:

@v
@t
C .v � r/v D �rp

�
: (8.5)

In this equation, v represents (as before) the particle velocity (at position x, y, z,
and time t), p is the pressure at the same point, and � is the fluid density at that
point. The difference with Newton’s law occurs primarily in the second left-hand
term, which represents internal motion within an accelerating mass.

If the fluid is in a gravitational field, then the gravitational acceleration term must
be added:

@v
@t
C .v � r/v D �rp

�
C g:

The internal friction in the fluid is characterized by the fluid viscosity. If we assume
a constant dynamic viscosity �,1 then adding the viscous loss terms leads to the well
known Navier-Stokes equation:

@v
@t
C .v � r/v D �rp

�
C �

�
�vC 1

�

�
� C 1

3
�

�
r.r � v/C g: (8.6)

The term � represents the so-called second or bulk viscosity. This equation becomes
simpler if the compressibility of the fluid can be neglected (see 8.4), in which caser�
v � 0 so that the second viscous term can be dropped. Even with this simplification
the equation remains quite complex, in particular because the quadratic term in v
makes it nonlinear. Fortunately, for the normal sound parameters in air, the general
consideration .v �r/v� @v=@t applies, and the second left-hand term, representing
convective acceleration, can be dropped (cf. Sects. 3.6 and 5.3.6).

8.1.2 Conservation of Energy

The last conservation law regards conservation of energy, or balance of power.2

Besides the mechanical potential and kinetic energy terms it covers the contributions
of all additional local energy sinks and sources, except possible chemical terms

1In general the viscosity depends on temperature. Hence, a constant viscosity implies the
assumption that temperature gradient effects are neglected.
2Obviously there is a fundamental difference between power P , expressed in W, and energy E ,
expressed in Ws or J. Balance of power (˙P D 0) implies conservation of energy (˙E D
constant).
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which will be omitted from the present study. We will still be dealing with six
different energy terms. These apply to a specific volume and its surface area.
The analysis involves volume and surface integrals, or it is expressed as the analysis
of variations of small parts, now expressed in differential equations. We follow the
second approach and analyze energy conservation for a unit of mass. We follow the
convention that thermodynamical quantities considered per unit of mass are written
in lower case symbols and also called specific quantities, whereas the related regular
quantities appear in standard upper case notation. However, the difference between
regular volume and specific volume will be indicated by V and 1=�, respectively.

The combination of the following terms determines if energy conservation holds.
If the summed variation remains in balance, then conservation applies, else it is
broken. The terms are:

1. Changes in kinetic energy and internal energy; a term relevant only for nonsta-
tionary movement, because changes are zero for stationary movement.

2. Net flux of kinetic and internal energy in the unit of mass.
3. Work done per unit of time by forces on the mass (e.g., gravity).
4. Work done per unit of time by surface forces (involving surface tension).
5. Net (external) heat flow into the unit of mass.
6. Effect of an internal heat source within a unit of mass.

We briefly consider some specific examples.

8.1.2.1 The Adiabatic Case

For the adiabatic case the sum of terms 1, 2, and 3 must be conserved. In this case,
it includes 4 insofar as no irreversible losses are concerned. It assumes independent
conservation in 5 and 6. The energy referred to in the first term is

1

2
�v2 C �u

containing a kinetic energy term and an internal energy term. The change in kinetic
energy is

@

@t

�
1

2
�v2

�
D 1

2
v2
@�

@t
C �v � @v

@t
(8.7)

and the change in internal energy follows from one of the thermodynamic relations
(in this case, the important “first law”):

du D T ds � p d
1

�
D T ds C p

�2
d�: (8.8)

In a unit volume, the change in density in (8.7) will have thermodynamical
consequences, in this case, characterized by the enthalpy equation

dh D T ds C .1=�/dp: (8.9)
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In both s is the specific entropy. With some additional steps which involves fairly
straightforward equations of continuity and motion, the kinetic energy change can
be written as

@

@t

�
1

2
�v2

�
D �1

2
v2r � .�v/� �v � r

�
1

2
v2 C h

�
C �T v � rs; (8.10)

and the internal energy term becomes

@.�u/

@t
D �hr � .�v/ � �T v � rs: (8.11)

Combining the two gives

@

@t

�
1

2
�v2 C �u

�
D �

�
1

2
v2 C h

�
r � .�v/ � �v � r

�
1

2
v2 C h

�

or
@

@t

�
1

2
�v2 C �u

�
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�
�v

�
1

2
v2 C h

��
: (8.12)

(see Landau and Lifshitz (2004, Chap. I)).

8.1.2.2 The General Case

In the general case all terms are relevant, and all may interact. Important additions
are terms 5 and 6 from the list, which deal with viscosity and with heat flux and/or
sources.

In a fluid, viscosity is a major cause of internal dissipation. External dissipation
can be due to loss in a moving structure or to a heat flux. Such effects lead to a
change in entropy S , and are expressed, e.g., in the first law of thermodynamics,
which states that the change in internal energy or enthalpy U is equal to the sum
of the work done on a system and the heat supplied to the system. The formula
describing the system with volume V is:

dU D T dS � pdV; (8.13)

where T dS represents the supplied heat and pdV the work done. This relation
is frequently presented in so-called specific values, as shown in the above section
in (8.8).

Dropping all terms that are already covered by mass and momentum conserva-
tion, one is left with the conservation of the heat function or enthalpy terms

H D U C pV (8.14)
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or
dH D T dS C V dp; (8.15)

which appeared above in specific units (8.9).
Rearranging and multiplying by � give per unit of mass, �T ds D �dh� dp and

taking the variation in time, one can obtain3

�T
ds

dt
D �r � qC ˚ C .� 0 � r/ � v; (8.16)

which states that the entropy at a “point” can be changed by a heat flux (r � q), by
a heat source (˚), and by viscous effects in the last term.4 The last term reflects the
viscous effects through the stress tensor � 0 which contains the dynamic viscosity
and the relevant internal fluid velocities.

On a millisecond scale, the heat exchange between nearby points in air is rather
slow. This implies that for the mid- and high-frequency ranges one may assume
that sound waves are adiabatic. Only for very low frequencies can significant
equalization take place. Thus, the general sound pressure wave is associated with
an adiabatic temperature wave. We will show later that this temperature wave is
rather small (compared to the environmental temperature of�300K). In practice, it
is so small that highly specialized detectors are required for its measurement.

When we apply fluid mechanics to the cochlea we will make plausible that
additional practical considerations lead to simplifications of the basic formulas.

Proper combination of the continuity equations leads to the wave equation.
This point is addressed in Sect. 8.2 after a first description of the applicable
boundary conditions: the mechanical properties of the cochlea.

For a thorough discussion of the fundamentals, we refer to textbooks on fluid
mechanics or fundamental acoustics, such as Morse and Feshbach (1953), Landau
and Lifshitz (2004), Kinsler et al. (1982), and Beranek (1986), or one of the real
classical studies as Lamb’s “Hydrodynamics” (1895) and Rayleigh’s “Theory of
Sound” (1894, 1896).

8.2 Wave Equation, Traveling, and Standing Wave Solutions

Application of the equations for conservation of mass and momentum leads to the
acoustic wave equations. We consider both waves in air and waves in a water-
like medium. The first is necessary to understand common external sound and the
properties of outer ear and middle ear, the last is relevant for the analysis of the

3Alternative formulae have been proposed, and differences may be very subtle, if they have been
worked out at all.
4The vector q denotes the heat flux density due to thermal conduction. It is related to temperature
variations across the fluid, and can be expressed as q D ��rT , where � in this context denotes
the thermal conductivity (e.g. Landau and Lifshitz 2004, Chap. V).
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Table 8.1 Acoustic properties of some liquids and gases. The top three rows (or less) give the
common descriptions for each column. It is followed by the SI units for the data, and the last row
in the header lists the standard symbols. Values are given in the body of the table. Humidity effects
are computed after Davis (1992)

Specific Coefficient
Bulk Ratio of acoustic of shear

Temp. Density modulus specific Speed imped. viscosity
ıC kg/m3 Pa heats m/s Pa s/m Pa s

Liquids T �0 B 	 c Zsa D �0c �

�109 �106
Water 20 998 2.18 1.004 1,481 1.48 0.001
Seawater 13 1,026 2.28 1.010 1,500 1.54 0.001
Ethanol 20 790 1,150 0.91 0.0012
Glycerin 20 1,260 1,980 1.11 1.2

Relative
humidity

Gases %

Air 0 1.293 0 1.402 331.3 428 0.000017
Air 10 1.247 0 1.402 337.3 420 0.000017
Air 20 1.204 0 1.402 343.3 413 0.000018
Air 20 1,199 50 1.402 344.0 412
Air 20 1,194 100 1.402 344.6 411
Air 30 1.165 0 1.402 349.1 406 0.000018
Oxygen 0 1.430 1.40 317.2 453 0.000020
Hydrogen 0 0.090 1.41 1,269.5 114 0.000009

cochlea. It is useful and necessary to separate the two media because they allow
very different simplification steps in the analysis. Obvious differences are specific
mass, or density, and compressibility, whereas air is highly compressible, water is
almost incompressible. Some medium parameters are listed in Table 8.1.

Oscillatory motions in a compressible fluid are called sound waves as long as the
amplitudes remain small enough. An additional constraint regards the oscillation
frequencies: sound should be within the audio frequency range, or between 20 Hz
and 20 kHz. Ultrasound applies to frequencies above that range, and infra-sound to
lower frequencies.

Since the oscillation amplitudes are small, the velocities also remain small. If that
is the case, then the quadratic term in Euler’s equation (8.5) can be neglected. To
quantify this statement, consider the sound pressure of a loud sound, for example,
a sinusoidal signal, or pure tone, at 1 kHz presented at 100 dB sound pressure
level (SPL). This is 100 dB above the standard reference SPL value p0 D 20
Pa
which means that the effective amplitude value5 at the 100 dB level corresponds to
p D 105 � 20:10�6 D 2Pa. The atmospheric pressure of 1 atmosphere (historical

5For the effective amplitude we take the r.m.s.-value of the oscillation. For a sinusoid this is
p
2

below the peak value of the oscillation.
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units) corresponds to 101:3250�103 Pa, so that the pressure amplitude of the 100 dB
tone is still �50;000 times smaller than the atmospheric pressure, and also much
smaller than the commonly reported atmospheric pressure variations.

The velocity amplitude follows from the relation

Zsa D p

v
Pa s/m. (8.17)

as will be shown below. Values of Zsa are listed in Table 8.1. Application of these
values gives vair D 2=340 � 5:9 � 10�3 m/s, and vwater D 2=1:5 � 106 � 1:3 �
10�6 m/s at the 100 dB SPL. These results also imply that density variations due to
the acoustic oscillations are small.

It is useful to reconsider pressure and density, and separate the average values
from the acoustic variations. Let the total pressure, which is the pressure used so far,
be written as ptot, and the average atmospheric pressure (averaged over a couple of
minutes) be patm. Then the acoustic pressure pa is defined as the difference between
total and atmospheric pressure:

pa D ptot � patm: (8.18)

In a similar way, we can separate an acoustic density fluctuation from the total
density by subtracting the average value �0:

�a D �tot � �0 (8.19)

Note that variations in ptot and �tot are identical to the variations in the acoustic
values pa and �a. Insofar as the effects of the averages are prominent, the total
values can be replaced by the constant averages. This modifies Euler’s equation
(8.5) to

@v
@t
C rpa

�0
D 0 (8.20)

and the mass conservation equation (8.2) to

@�a

@t
C �0r � v D 0: (8.21)

Equations (8.21) and (8.20) contain the unknown functions v, pa, and �a. By
combining the two equations, we can eliminate one, and moreover the variations
in pressure and density are closely linked, especially for small variations. For small
adiabatic fluid motion, we have

ptot � V 	 / ptot �
�
1

�tot

�	
D constant: (8.22)

Taking the derivative, we obtain:

@ptot

�
1

�tot

�	
C ptot @

�
1

�tot

�	
D 0 (8.23)
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or

@ptot

�
1

�tot

�	
� ptot 	 @�tot

�
1

�tot

�	C1
D 0: (8.24)

Applying:

@ptot D @pa; @�tot D @�a; ptot � patm and �tot � �0 (8.25)

yields, after division by the common term .1=�tot/
	 , the small amplitude approxi-

mation:

@pa D @�a

�
	 patm

�0

�
: (8.26)

This additional constraint allows us to combine (8.20) and (8.21) to one equation.
Taking the time derivative of (8.21) and the spatial gradient of (8.20), we arrive at:

@2�a

@t2
C �0 @r � v

@t
D �0

	 patm

@2pa

@t2
C �0 r � @v

@t

D �0

	 patm

@2pa

@t2
� r � r pa D 0 (8.27)

or
@2pa

@t2
� c2�pa D 0 where c2 D 	 patm

�0
: (8.28)

This is the acoustic wave equation, which is applicable under the conditions
discussed, such as small amplitude, and adiabatic waves.

Basically, the same equation can be derived for all related primary acoustic
parameters: particle amplitude and velocity, and temperature. This is clearly true
for the scalar quantities pa and Ta, but for the vectors the analysis is a bit more
complicated. That is a good reason to introduce an additional scalar parameter,
the potential field �a.x; y; z; t/, the gradient of which will be equal to the particle
velocity. The general wave equation is then

@2�a
@t2
� c2��a D 0: (8.29)

The solutions of the wave equation are acoustic wave functions of the form:

�a.x; t/ D f1.x � c t/C f2.xC c t/: (8.30)

The two components, f1 and f2, are practically independent as long as there are no
precise boundary conditions and/or initial conditions: the only relation is that f1 and
f2 travel in opposite directions. A sound wave requires a source, and the boundary
conditions play an essential role in shaping the details of the wave. The constant c2
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in (8.29) reflects the velocity of sound, i.e., the speed with which the wave travels
through the medium. Note that, although the speed of sound is a scalar quantity,
it occurs as a vector in (8.30), thereby indicating the propagation direction. The
magnitude depends on the specific heats of the medium 	 D cp=cv, the density
�0 kg/m3 of the medium and the atmospheric pressure patm Pa. Note also that the
suggestion that might arise from the formula, viz. that c is proportional to the square
root of atmospheric pressure, is false. This is so because �0 also depends on patm.
The term patm=�0 equals rT , where r is the gas constant for air (D 287:068 J/kg/K)
so that the dependency is completely characterized by the dependency on T . Hence,
for the adiabatic condition a net dependency on p does remain, whereas for the
isothermal condition the relation on p disappears completely.

From this point on, we will drop the use of the index “a” which so far specified the
acoustic signals: because we will only deal with acoustic signals anyway. For one
dimensional plane waves, a vectorial analysis is superfluous. Hence, we limit the
analysis to behavior along that dimension. Choosing the x-direction as the direction
of propagation of the acoustic wave, we obtain the following simplifications for
the wave equation and its solution (particle velocity and amplitude are described
completely by the scalar value of the x-components):

@2�.x/

@t2
� c2��.x/ D 0: (8.31)

The solutions of the wave equation are acoustic wave functions of the form:

�.x; t/ D f1.x � c t/C f2.x C c t/; (8.32)

where f1 and f2 again are arbitrary functions in x and t , and where c is the
magnitude of the speed of sound and now a scalar. Since audio signals by definition
have a frequency spectrum that must be within the 20 Hz–20 kHz range, they can
be considered as composed of elementary spectral components. Therefore, it is
also useful to consider the solution for a single sinusoidal component of angular
frequency !. Such a component is also called a monochromatic wave, and can be
written as:

�1.x; t/ D <f�1.0/ e�iŒ!.t�x=c/C'1�g (8.33a)

�2.x; t/ D <f�2.0/ e�iŒ!.tCx=c/C'2�g: (8.33b)

As before, �1 and �2 go in opposite directions. The complex notion of the oscillation
will be used because it is parsimonious. The physical relevant part of the solution
is always the real part, as indicated explicitly here (at times that specification may
be dropped). The constant phase angles '1 and '2 are as yet arbitrary constants,
depending on initial and boundary conditions. Let us check that �1 is a solution of
(8.31). We obtain (for the complex version):
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@2�1.x; t/

@t2
D .�i!/2 �1.0/ e�iŒ!.t�x=c/C'1� D �!2�1.0/ e�iŒ!.t�x=c/C'1�;

@2�1.x; t/

@x2
D

��i!

c

�2
�1.0/ e�iŒ!.t�x=c/C'1� D �

�!
c

�2
�1.0/ e�iŒ!.t�x=c/C'1�

and this meets the condition of (8.31):

@2�1.x; t/

@t2
� c2 @

2�1.x; t/

@x2
D 0

because the Laplace operator is now equal to the second derivative in x. This is
independent of the sign of i!t or i!x=c, so that �2.x; t/ also provides a valid
solution.

It should be obvious that for a given frequency ! the time period of the wave is
equal to 2=!. Similar spatial parameters are the wavenumber k D !=c and the
wavelength � D 2=k, which depend both on frequency and on the speed of sound
in the medium. Using the wavenumber, (8.33a) can be written as

�1.x; t/ D <f�1.0/ e�i.!t�kxC'1/g (8.34)

The wavenumber is also defined for the 3-D case. Replacement of the product
kx by the vectorial in-product k � x gives a plane wave solution for that case.

The wave equations are identical for pressure, temperature, and vector
potential, from which vector solutions for particle velocity and displacement
can be derived. For a plane wave, the relation between velocity and pressure
is even more straightforward, because they are related through the specific
acoustic impedanceZsa.

Starting with the plane wave solution for acoustic pressure

p.x; t/ D A cos.!t � kx C '/;
we obtain for its spatial derivative

@p.x; t/

@x
D kA sin.!t � kx C '/:

Application of (8.20) gives as solution for @v=@t :

@v.x; t/

@t
D � �0 kA sin.!t � kx C '/

and integration over time (discarding the possible DC term) gives for the
velocity
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v.x; t/ D 1

!
�0 kA cos.!t � kx C '/ D �0 cA cos.!t � kx C '/:

The displacement d is obtained by another integration over time:

d.x; t/ D �0 c

!
A sin.!t � kx C '/:

These equations provide the proof that for plane waves Zsa, which was
defined in (8.17), is equal to �0 c.

Finally, the acoustic temperature wave is derived from the adiabatic gas
law p1�	 :T 	 D constant. This implies that

ıT D T

patm
� 	 � 1

	
ıp;

which gives a factor ıT=ıp D 0:00083 K/Pa at 101.325 kPa and 20 ıC.

A NOTE ON TRAVELING AND STANDING WAVES. The general monochro-
matic solution of the 1-D wave equation for the acoustic pressure (8.31 where
p replaces �) is in complex form:

p.x; t/ D p1.x; t/C p2.x; t/ D p0;1 e�i.!t�kxC'1/ C p0;2 e�i.!tCkxC'2/:

The complex form is used because it simplifies the following analysis.
The order of the wave equation (2nd in this case) determines the number
of solutions that can exist independently, unless they are constrained by
the boundary conditions. The two solutions represent waves that travel in
opposite directions:p1.x; t/ in theCx-direction,p2.x; t/ in the�x-direction.
A special case arises when the (peak-) amplitudes of the two waves are equal,
i.e., when p0;1 D p0;2. Let us denote this amplitude by A. Now we use
common trigonometrics to analyze the interaction of the waves, to obtain:

p.x; t/ D Ae�i!t
�
ei kx�i'1 C e�i kx�i'2	

D Ae
�i

'1C'2

2 e�i!t

0
@ei kxe

�i
'1�'2

2 C e�i kxe
Ci '1�'2

2

1
A

D 2A e�i'av e�i!t cos.kx � 'diff/
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Note that the time and place solutions are no longer coupled, so there is no
longer a traveling wave. The result is now termed standing wave because all x-
points oscillate in phase, with a cosine-shaped spatial envelope. The location
of zeros in the envelope is affected by the difference of the phases of p1.x; t/
and p2.x; t/, the phase of the oscillation or carrier is affected by the average
of p1.x; t/ and p2.x; t/.

Also note that any sum of two such traveling waves results in the sum
of a standing wave and one remaining traveling wave. Hence, the observer
will never perceive two traveling waves moving in opposite directions, but
the sum of a standing wave and one traveling wave in the direction of the
strongest of the constituents. Although mathematically a standing wave is
indistinguishable from the sum of two waves with equal amplitude traveling in
opposite directions, physically the term traveling wave has become meaning-
less as long as it describes (part of) a standing wave. This conclusion applies
in particular to monochromatic waves which are analyzed using spectral
amplitude analysis. Temporal analysis of click responses can still retrace
underlying propagation behavior. With the proper tools, these traces may also
be detectable in onset and offset responses of otherwise narrow band signals.

Finally, note that so far this discussion concerned only the behavior of
waves traveling in an acoustic medium. As yet it is independent of any
boundary conditions or initial conditions.

Another straightforward solution of the general 3-D wave equation is obtained for
the sound field generated by a perfect spherical sound source. Note that an acoustic
point source is physically unrealizable, but a spherical source behaves similarly
(outside of the sphere). We leave the solution to the reader. It has been worked
out in most acoustic textbooks. The reader should verify that at large distances the
plain wave and the wave from the “point” source become indistinguishable. Near the
source, however, you might find some unexpected behavior. Note that this acoustic
problem, because of its specific symmetry is most efficiently solved in a spherical
coordinate system.

8.2.1 Wave Velocity and Delay

The velocity of a sound wave, or the speed of sound, c in an acoustic medium
that has been derived in Sect. 8.2 more precisely is called the phase speed, cph. In
the solutions to the general wave equation (8.29), this speed relates the x and t
dependance, as in (8.30). Let us consider the forward travelling wave in more detail
(the discussion of the backward travelling wave is analogous and is left to the
reader). Without too much loss of generality we consider the 1-D case (8.32):

�.x; t/ D f .x � cph t/: (8.35)
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For a simple, uniform, constant, and linear medium, cph is constant, and the shape of
the wave �.x; t/ does never change. However, in reality the variables that define
cph, as in (8.28) for gasses, do depend on other physical parameters of the fluid, like
temperature, humidity, and viscosity. Some of these parameters are also frequency
dependent: e.g., at high frequencies heat exchange between maxima and minima in
the pressure wave is negligible, yielding an adiabatic behavior, but at sufficiently low
frequencies the heat exchange will be fast enough to generate isothermic behavior,
and 	 drops from the equation.

When waves propagate through different media or through different mechanical
structures, one has to analyze the relevant physical properties of these media or
structures. For now, we will focus on the relation between velocity and frequency.

The narrowband version of (8.35), or the wave component at angular frequency
!, can be written as

�.x; t I!/ D f
��1
k
.! t � k x/

�
D g.! t � k x/; (8.36)

where ! and k, the wavenumber, replace the velocity c. Now we have two variables
which are directly linked to c, but note that this formulation does not imply that
all frequency dependence is accounted for by !, because the wavenumber does not
have to be a constant.

The formulation in (8.36) is useful as a basis for the classical definition of the
group velocity or group speed cgr and the phase velocity or phase speed cph of the
wave:

cph D
!

k
D ! �

2
; (8.37)

cgr D d!

dk
D cph C k

dcph

dk
D cph � �

dcph

d�
; (8.38)

where � D 2 =k. As long as the relation between ! and k is linear, group and
phase velocities will be equal, but whenever the relation between ! and k becomes
more complex, differences between the two will become apparent. In such a case,
the shape of a wave will change during propagation. This phenomenon is known as
dispersion.

If a wave propagates through a mechanical structure, then the behavior through
this structure is similar to the response of a more general system to its input, as
long as that system is characterized by the proper system parameters. Assume that
the wave at x D x1 defines the input to the system, and let the transfer function of
the system byH.!/, associated with an impulse response h.t/. Now the travel time
through the system is usually described by a delay, and one deals with a group delay
and a phase delay, which are related to the group speed an phase speed. In general,
H.!/ is a complex quantity, which can be decomposed into a real amplitude part
and a phase part, as

H.!/ D A.!/ e�i'.!/: (8.39)
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The amplitude term does not affect the delay: all delay generated by the system
originates from the phase term. For the system H.!/ three delays, viz., the phase
delay �ph, the group delay �gr, and the signal-front delay �fr are defined by:

�ph D
'.!/

!
�gr D d'.!/

d!
�fr D lim

!!1
'.!/

!
(8.40)

(e.g. Papoulis 1962, p. 134). In principle, the group and phase delays are functions
of !, but the signal front delay is not: it rather is the asymptotic behavior for large!.
Its value might be of particular interest for response delays measured in the ear
canal.6

Although there are striking similarities between the definitions of phase and
group speed an the one hand, and phase and group delay on the other, there also
some important differences. Phase and group velocities follow from the setup of
the wave equation. They rely on basic differential equations, without restrictions
concerning linearity, or constancy.

However, a system which is described by a complex transfer function implicitly
assumes linearity of that system, and it assumes one-way traffic through the system,
from input to output. This is very useful for the analysis of static responses of linear
systems, but it requires a more careful application for the analysis of time domain
responses, as is required for click or impulse responses and for stimulus onset and
offset responses. Moreover, the definition does not cover the behavior of nonlinear
systems (or system elements), thereby leading to unpredictable behavior for such
cases. Unfortunately as well as interestingly, the intact auditory system is distinctly
nonlinear over most of its input range. Therefore, the use of quantities that have been
defined in linear systems analysis is suspect, as long as a full proof of validation of
that use is lacking. This also applies to the rather common circular reasoning, which,
starting from a linear approximation attempts to converge to the solution by making
small corrections. Such an approach can easily end at a suboptimal solution.

In the current context, this is directly relevant to the signal analysis definitions
for time delays �ph, �gr, and �fr. These quantities are not defined for nonlinear
systems. Nevertheless, e.g., the group delay is commonly used, because the quantity
d '.!/=d! is relatively easily measurable.

An indicator of the problem, the presence of a nonlinearity, is the dependence of
� on level.

Currently, the only valid alternative to the frequency domain approach is to
just measure delay in the time domain and specify the onset thresholds in proper
(in relation to the attained level of accuracy) detail. Two techniques that have
been developed along this line are the ABCD technique, developed by Brass and
Kemp (1991) and the primary tone phase variation (PTPV) technique, introduced
by Whitehead et al. (1996). Both rely on the use of phase effects, in particular
the effect of cancellation that occurs if tones of opposite phases, or systematically

6The application of the signal-front delay in the analysis of peripheral auditory processing has been
promoted by Ruggero (1980), who used it in a discussion of common errors in estimates of BM
travel times.
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rotating phases, are summed. They are discussed in some detail in Chap. 6, the
ABCD technique in Sect. 6.2.1, and the PTPV technique in Sect. 6.3.1.

In other words, although the signal front delay can be of utmost relevance, ex-
perimentally one will have to deal with the best achievable time domain alternative.
In particular, one should be aware of the fact that the response slope can be steeper
than the stimulus onset slope, as well as equal or even shallower. And the onset
delay can be anywhere between shorter and longer than the 50% delay.7

Apparently, this is an example of a point where the analysis of nonlinear systems
is open to improvements.

8.3 Additional Acoustic Standards

In Sect. 8.1 we introduced the primary acoustic variables, pressure, velocity, deflec-
tion and temperature. We mentioned in passing the SPL, and the reference pressure
at 0 dB SPL, which is 20
Pa. This value is specified in an international standard:
ISO-1683 and also in ANSI-S1.1. The general definition of sound pressure, or
effective sound pressure, is the root-mean-square instantaneous sound pressure
at a point, during a given time interval. A related definition concerns the peak
sound pressure: greatest absolute instantaneous sound pressure within a specified
time interval. Formally, there is an open end in the specification of duration and
time interval. This does not lead to any problems with periodic sounds, where
a time window that covers n periods should give a precise result independent of
the number of periods. For very short signals, caution is advised. For nonperiodic
signals, such as noises, the result will be a stochastic quantity, with a standard
deviation depending on the bandwidth of the noise and of the duration of the applied
time interval. For a sinusoidal signal, the effective sound pressure is exactly equal
to the peak value divided by

p
2, because the average of a squared sinusoid (over 1

cycle) with amplitude 1 is 0.5.
A similar problem can arise for the secondary parameters sound intensity (I )

(also termed: sound-energy flux density or sound-power density) and sound power
(P or W ). The latter is in particular relevant for sound sources (or dissipaters).
Intensity is the average rate of sound energy transmitted in a specified direction at
a point through a unit area normal to this direction at this point. The unit is W/m2.
For a plane wave, the intensity in the direction of the wave propagation is given by

I D 1

T

TZ

0

pv dt; (8.41)

where T is an averaging window duration, which should be long compared to the
reciprocal of the lowest frequency of interest; p is the instantaneous sound pressure;

7This is the delay between the 50% point in the probe onset envelope to the 50% point in the
response onset envelope. Unfortunately, in practice the shape of the response onset can be rather
different, in which case this estimate is somewhat arbitrary.
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v particle velocity in the specified direction; t , finally, is the running time. For plane
waves p and v are in phase, and using the specific acoustic impedance, Zsa D � c

the result can be expressed as

I D p2

Zsa
D v2Zsa: (8.42)

The large dynamic range of the auditory amplitude scale, in combination with the
observation that perceived strength appears to vary more closely with the amplitude
ratio than with absolute values, have led to the introduction of the logarithmic
measure of the strength, now termed sound level, a dimensionless quantity, but
nevertheless expressed in dB (decibel). Sound levels are defined for all acoustic
variables, but we only give the two most important ones, the SPL Lp and the sound
intensity level LI. These are defined as

Lp D 20 � log10
p

p0
where p0 D 20 
Pa, (8.43)

LI D 10 � log10
I

I0
where I0 D 1 pW/m2. (8.44)

Historically, the decibel was based on an older definition of the Bel, and 1 Bel was
10 dB. This explains the factor 10 in the definition of LI. The additional factor 2
for the SPL formula has its root in the fact that for a homogeneous plane wave the
values Lp and LI are almost equal, because (8.43) implies that

Lp D 10 � log10

�
p

p0

�2
D 10 � log10

p2=Zsa

p20=Zsa
(8.45a)

D 10 � log10
I

p20=Zsa
(8.45b)

and

I0 D 10�12 � 400:10�12

412
D p20
Zsa

W/m2. (8.46)

The difference for the presented value for Zsa is only 0,13 dB, or negligible in
common practice. In other words, the decibel values of Lp and LI are indiscernible
(at least for plane waves).

Three different impedance definitions are commonly used, and standardized, in
acoustics, and listed below:

• Specific acoustic impedance:

Zsa D p

v
D local pressure

resulting particle velocity
Pa s/m [ML�2T�1]. (8.47)
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• Acoustic impedance:

Za D p

U
D local pressure

resulting volume velocity
Pa s/m3 [ML�4T�1]. (8.48)

• Mechanical impedance:

Zm D F

v
D local force

resulting velocity
N s/m [ML�2T�1]. (8.49)

The specific acoustic impedance has been used above in a few other definitions.
These definitions are similar to the probably more common definition of

electrical impedance:

Ze D e

i
D voltage

current
� [M L2T�3I�2]. (8.50)

8.4 Vibrations in Strings, Bars, and Plates

Although the cochlea is distinctly fluid filled, certain elements of the embedded
cochlear partition, in particular of BM and organ of Corti, can have, and show,
properties that are more closely related to those of solid structures. Therefore we
will give a short description of acoustic properties of these structures.

The best known vibrations of strings are the transversal motions that can be
elicited in a string that is under longitudinal stress. In practice, it is more convenient
to consider the longitudinal force than the stress, because then we can omit the cross
sectional specifications. We assume that the string is very thin in comparison to its
length. The longitudinal force in the string is called the tension T . The string can
only be kept under a constant T if the ends are clamped, as over the bridges or
nuts in a violin or piano. If T is large enough, then effects of gravity on the string
motion can be neglected. Otherwise g and the orientation of the string with respect
to the direction of g have to be taken into consideration. Using the parameter x
along the string length direction and y for the transversal direction, it is a good
exercise to derive the wave equation that describes the behavior of the string for
small amplitudes. Two additional string parameters are required to obtain practical
solutions, viz. its length l , and its mass per unit of lengthml . You should arrive at:

@2y

@t2
� c2 @

2y

@x2
D 0 where c2 D T=ml . (8.51)

The solutions of the wave equation are the same as before, but now we have
clear boundary conditions: y.0; t/ D 0 and y.l; t/ D 0. This will limit the
stationary solution to a periodic standing wave. The pattern allows a fundamental
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frequency !1D =l
p
T=ml and all its harmonics; the associated wavelength for

the fundamental is � D 2 l . The actual spectral composition of y.x; t/ depends on
the initial condition.

The power associated to the string vibration is also worth further consideration.
Conservation of power implies, e.g., for a violin, that the amount of energy that is
administered must be equal to the sum of the radiated acoustic energy and the losses
(damping, friction, viscosity in instrument, air, and room).

For further details, the interested reader is referred to textbooks. An exten-
sive treatment of string acoustics is given in Chap. 2 of Kinsler, Frey, Coppens,
and Sanders (1982). A very short string approaches a bar. The cross-section
parameters are no longer negligible with respect to the length. Additional ma-
terial properties and cross-section structures become relevant. Static longitudinal
tension is less prominent—if present—than in strings. Both longitudinal waves
and transversal waves are important, and the transversal waves are no longer
characterized by the common wave equation. Combination of Hooke’s law, which
relates longitudinal strain and stress, and Newton’s law gives again a wave equation
for the longitudinal component:

ıl

l
D @�

@x
D F

EA
Hooke’s law, (8.52a)

dF D �A dx
@2�

@t2
Newton, (8.52b)

@2�

@t2
� c2 @

2�

@x2
D 0 with c2 D E=�. (8.52c)

Parameters: ıl (m) is elongation of a bar of length l (m) caused by a pulling force
F (N); the bar has a cross-sectional area A (m2); E denotes Young’s modulus
(Pa, or N/m2); @� describes the stretch over the length @x.

Solutions are similar to those of the general wave equation. The velocity of sound
is usually one order of magnitude greater than that in gases. But an additional
difficulty arises. The transversal wave will no longer follow a common wave
equation, but will develop differently, as will be shown below. And then the internal
coupling of transversal and longitudinal waves will mix the two to some degree, and
also the longitudinal component will be affected by the deviating properties of the
transversal wave.

For the bar, the transversal wave involves bending moments and shear forces.
These lead to a wave equation with a fourth spatial derivative:

@2y

@t2
� c2 Im

A

@4y

@x4
D 0 where Im is the moment of area. (8.53)

The c-value is the same an above: c2 D E=�, but the bending moment of area,
and the area of the cross-section also play a role. A general solution can be found
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by separation of parameters method, or by solving the equation in the frequency
domain and transfer the solution back into the time domain. The general form is:

y.x; t/ D cos.!t C '/
h
y1 cosh

!x

v
C y2 sinh

!x

v
C y3 cos

!x

v
C y4 sin

!x

v

i
:

(8.54)

Although (8.54) contains a place-independent oscillation term, it does describe
traveling waves because the travel speed of the y3 and y4 terms depend on frequency,

since v depends on frequency: v2=! D cp
Im=A, or v D

q
!c

p
Im=A. This means

that wave shapes will change with place. This effect is termed dispersion. A detailed
description of vibration in bars is given in Chap. 3 of Kinsler et al. (1982).

Plates and membranes are—in good approximation—2-D structures, because the
thickness remains small compared to the length sizes. For the often encountered
circular shapes, analysis in circular coordinates is most efficient. Membranes and
plates often have homogeneous parameters, which leads to circular symmetry.
Nonhomogeneous parameters, however, are also possible, in particular in plates.

Transversal vibrations in very thin plates or membranes are described by the
regular wave equation, with c2 D p

T=�A, with tension T in N/m, and �A the mass
per surface area. Vibration modes are determined by the boundary conditions, e.g.,
the size and shape of the plates, and the value of the surface tension.

Valid vibration modes depend on the shapes of the plates: circular symmetry or
antisymmetry for circular plates, and rectangular modes for rectangular plates.

8.5 Theoretical Tools

Many mathematical tools that are used in advanced signal processing and
systems analysis are also relevant for the theoretical study of the linear cochlea.
The interested investigator should not only be able to use these tools but also have
a thorough knowledge of their foundation.

For linear systems, transfer functions H.!/ are extremely useful, as are their
Fourier transform (FT) and the impulse responses h.t/ of these systems. Efficient
application of these functions requires knowledge of practical constraints. Impulse
responses, e.g., have to be limited in length if we want to compute their effects. This
applies both in the time domain when computing a convolution, and in the frequency
domain when using a complex spectrum multiplication and a time response is
obtained from a final inverse FT.

A general point of consideration regards the uncertainty relation, which is a
fundamental property from the FT. It is properly most clearly demonstrated in
Fourier’s integral transform. But we start with a simpler elucidation. This goes
back to the definitions of the terms frequency and time: the frequency of a signal
(or signal component) is the number of cycles, or periods per time unit. In other
words, in this context “time” refers to an interval of a non-zero duration, and not
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just a time point. The problem then is that the accuracy with which the count can
be determined depends on the length of the time interval over which the cycles are
measured. Definition and measurement break down if this interval is shorter than
one cycle. Next we give a short mathematical specification
Consider a Gaussian window

w.t/ D 1=
q
2�2t e�t 2=.2�2t / with area 1, or:

Z 1

�1
w.t/ dt D 1:

The Gaussian function is an eigenfunction of the FT, which means that the FT of
w.t/, W.w/, also is a Gaussian. For the FT of this w.t/:

FTfw.t/g D W.!/ D
1Z

�1
w.t/ e�i!tdt; (8.55)

we obtain

W.!/ D e
�i!2�2t

2 D e
�i!2

2�2! (8.56)

or �! D 1=�t and �! � �t D 1. In other words, frequency resolution can improve
only at the cost of a decreasing time resolution and vice versa.8

8.5.1 Properties of Simple Damped Oscillators

The damped oscillator, which plays an essential role in Helmholtz’s filterbank
cochlea model, was briefly introduced in Chap. 1. Some additional information is
provided in this section. An excellent treatment of the mechanical and electrical
oscillator is presented in Marion and Thornton (1995, their Chap. 3). The full
solution of the driven mechanical oscillator equation (1.1), rewritten here in the
dot time derivative notation:

m Rx C d Px C sx D F0 cos.!t/; (8.57)

which is equivalent to

Rx C 2ı Px C !20x D
F0

m
cos.!t/; (8.58)

where 2ıDd=m and !20Ds=m. Marion and Thornton address both the complemen-
tary and the particular solution of the equation. The latter gives the stationary driven

8The general relation is: �! � �t � 1. The minimum is obtained for windows from the Gaussian
family, which includes Hermite polynomials.
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Fig. 8.1 Three different LRC networks with identical input impedances but different transfer
functions H.!/, as indicated. Z D i!L C R C 1=.i!C/. Resonance occurs at ! D 1. Note
the differences, in amplitude shape of jH j, and in the phase shifts of =2 between the adjacent
circuits

response, the first is a decaying transient response that meets the initial conditions.
Note that the driven response (1.2)

x.t/ D F0

jZmj! sin.! t � �/ D F0

jZmj! cos.! t � '/; (8.59)

where ' D 

2
� �

has its maximum amplitude at

@x.t/

@!

ˇ̌
ˇ̌
!D!R

D 0: (8.60)



References 219

This gives for the resonance frequency of driven oscillations (left column in Fig. 8.1)

!2R D !20 � 2ı2 and !R < !0: (8.61)

The transfer from force F to response R is characterized by the transfer function,
defined in the frequency domain: R.!/ D H.!/F.!/. Obviously, it depends on
what is defined as the response. Above it is tacitly assumed that the resulting
deflection x is the requested response, but it can also be the resulting velocity or
acceleration. In those cases there is an additional term i!, or time derivative in the
time domain, in the transfer function, and also the location of the wanted !R with
respect to !0 changes. This is demonstrated in the electrical analog in Fig. 8.1. In all
cases, the input is v.t/, the LCR network has the same impedance; in the left circuit,
the output voltage is measured over the condenser, in the right circuit, over the
resistor. For the middle column, one obtains !R D !0, independent of the damping,
and for the right column, the shift of !R is in the opposite direction.

In the text, we used a practical definition for the Q-value of the filter, viz.
!0=�! or f0=�f , where the bandwidth �! is often measure at 1=

p
2 below

the peak, or at close to 3 dB below the peak on a dB scale. This Q-value bears the
simplest relation to mass, damping and stiffness. Other definitions relate to the ratio
of the driven resonance frequency !R and �! , which for highQ-values makes no
difference, but for Q < 3 begins to show. This value is also related to the ratio of
the total amount of power in the system and the fraction that is dissipated.
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Chapter 9
Nonlinear Tools

Abstract This chapter presents tools that are available for the analysis of nonlinear
properties of (some of the constituents of) the cochlea. It starts with a reference
to properties of power law devices. In the next section it discusses properties of
nonlinear oscillators in more detail than was done in Chap. 5.

9.1 Properties of Power Law Nonlinearities

Power series expansions are useful for the numerical approximation of functions.
Probably the most familiar series in this category is the Taylor Series, which is
defined both for real and for complex variables. We discuss some general properties
of power series along the real x-axis, starting from the Taylor Series. We adjust
(shift) the x variable such that we are interested in the development around x D 0.
In that case, the series is termed the Maclaurin Series, which for the function f .x/
has the form

f .x/ D f .0/C x

1Š
f 0.0/C x2

2Š
f 00.0/C � � � C xn

nŠ
f .n/.0/C � � � (9.1)

with the remainder

R.n/ D f .x/ �†n D x.nC1/

.nC 1/Šf
.nC1/."x/ .0 < " < 1/; (9.2)

where †n is the partial sum from 0 up to (and including) n. The series converges if
Rn tends to zero if n!1. This series belongs to the standard power series

1X
nD0

anx
n D a0 C a1x C a2x2 C � � � C anxn C � � � (9.3)

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 9,
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Unfortunately, all terms with n > 1 are of the expansive type: they grow faster
than linearly. If we want to approximate a compressive1 function, such as a square
root, or a hyperbolic tangent, then the radius of convergence of the power series is a
very small, limiting the region of convergence to a small range around the point of
focus. It also means that the convergence is slow, because it requires many terms in
the series before the remainder is negligible.

Compressive functions can be expanded more efficiently with compressive basis
functions. A good example is the �th-law device, proposed by Engebretson and
Eldredge, and by Smoorenburg (see Sect. 4.1.1). A series expansion in �th-law
elements has also been developed in mathematics, but remained less familiar:

f .x/ D a0 C a1x�1 C a2x�2 C � � � C anx�n where 0 < �1 < �2 � � � < �n: (9.4)

It was published in 1922 by Bernstein, who proved that an infinite series of �th-
law terms also provides a precise approximation of any smooth function (Bernstein
1922). In other words, Taylors expansion with only integer exponents might be
considered a special case of Bernstein’s.

The properties of �th-law elements that are used in the Bernstein expansion have
received considerable attention in electrical engineering, e.g., for the analysis of
responses of vacuum tubes and transistors to narrow band signals (e.g. Bennett 1933;
Rice 1945; Middleton 1948, 1960; Sternberg and Kaufman 1953; Sternberg et al.
1955; Feuerstein 1957). The expansion is generally given for a half-wave power
device

y.x/ D y C .x/ D
�
c .x � b/� x > 0; b � 0; � > 0
0 x � b: (9.5)

The general response to the time signal

x.t/ D
NX
iD0

Ai cos.!i t C �i/ (9.6)

can be written as

yC.x/ D A�0
1X
n0D0
� � �

1X
nND0

1

2
A.�/
n0n1:::nN

.h; k1; k2; : : : kN /

NY
iD0

"i cos ni .!i t C �i /;
(9.7)

where " is the so-called Neumann factor: "0 D 1, "i D 2; 8i � 1. In this formula,
A0 represents the maximum amplitude:A0 D Amax D maxi fA0;A1; : : : ; AN g. The
factors ki D Ai =Amax, the normalized amplitudes of the components are less than
or equal to 1, and b=Amax is the normalized bias. Sternberg et al. introduced the
term “Bennett function” for the amplitude factors A, which represent the amplitude

1The general compressive function has a positive first and a negative second derivative.
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factors from multiple Fourier series. The Bennett functions have been expressed in
term of contour integrals (Rice and Bennett) and in hypergeometric functions (e.g.
Middleton 1960).

This overview is limited to the analysis of a nonlinearity without bias, b D 0, and
the arbitrary constant c is set equal to 1. The responses to 1- and 2-tone stimuli will
be addressed. It is noted in passing that the 1-tone case has been treated in detail by
Davenport and Root (1958, Chap. 13).

Duifhuis (1989) proposed to employ the “Modified Bennett function” B aiming
at decomposing much of the amplitude behavior from the interaction term:

A.�/
n0n1:::nN

.h; k1; k2; : : : kN / D B.�/n0n1:::nN .h; k1; k2; : : : kN /
NY
iD1

k
ni
i : (9.8)

B is asymptotically constant if 8i; ki ! 0.

9.1.1 Response to a Single Tone

The response to the single tone x.t/ D A cos.! t C �/ is

yC.x/ D 1

2
A�

1X
nD0

"n B.�/n cos n.! t C �/ (9.9)

as follows directly from (9.7) and (9.8). The responses for the full-wave even and
odd nonlinearities follow directly from the proper combination of two half-wave
rectifier responses. This yields:

yodd.x/ D 2A�
1X
nD0

B.�/2nC1 cos f.2nC 1/.! t C �/g; (9.10)

which contains odd harmonics (overtones) only, and

yeven.x/ D A�
1X
nD0

"2n B.�/2n cos f.2n/.! t C �/g; (9.11)

which contains only even harmonics.
The amplitude factor B equals (cf. Duifhuis 1989):

B.�/n D
�.� C 1/

2� �.1C �Cn
2
/ �.1C ��n

2
/
; (9.12)

where �.x/ is the gamma function.
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Fig. 9.1 The gamma
function over the interval �5
to C5. Note the different
signs for the different
negative branches of the
gamma function. For positive
integer values of x D n,
�.nC 1/ D nŠ

The second gamma function in the denominator is of particular interest, because
its argument f1 C .� � n/=2g will be negative for sufficiently large values of n.
Figure 9.1 indicates the behavior of the function for arguments below zero. If the
argument approaches a nonpositive integer, the value approaches ˙1, which here
implies that the Bennett function will go to zero. This can occur only for integer
values of �, with the consequence that higher harmonics will not be present. For
noninteger �, however, the sign of this term switches every two increments in n,
which means that the phase of the distortion product changes accordingly. We come
back to the point with the 2-tone stimulus.

Minimum values for j�.x/j occur approximately at x D 1:5 and x D �0:5 � n,
with n � 0. Since the increments in the argument are 0.5 at a step 1 in n, these points
will not appear in full-wave rectifiers, for the reason given above. Nevertheless the
values can serve to establish boundaries. The DC response for the even nonlinearity
is equal to the average response of the absolute value of the odd nonlinearity jyoddj:

< jyoddj >avD< yeven >avD A�B.�/0 D
1

�
A� B

�
1

2
;
1

2
C �=2

�
; (9.13)

where B is the beta function.

9.1.2 Response to Two Tones

For a two-tone stimulus, a product of series of intermodulation terms is obtained.
For the stimulus x.t/ D A1 cos.!1 t C �1/C A2 cos.!2 t C �2/, the response is
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y+.x/ D 1

2
A�1

1X
mD0

1X
nD0

kn"m "nB.�/mn.k/ cos m.!1 t C �1/ cos n.!2 t C �2/:
(9.14)

The Bennett function for the 2-tone case is

B.�/mn.k/ D
2���.1C �/ 2F1

�
1

2
.mC n � �/; 1

2
.�mC n � �/InC 1I k2

�

nŠ �

�
1 � 1

2
.mC n � �/

�
�

�
1 � 1

2
.�mC n � �/

� (9.15)

where j k2j � 1:

2F1 is the hypergeometric function. If j k2j approaches the boundaries 0 or 1, we
have the special cases2:

j k2j ! 0 2F1fa; bI cI 0g D 1; (9.16a)

j k2j ! 1 2F1fa; bI cI 1g D �.c/�.c � a � b/
�.c � a/�.c � b/ ; (9.16b)

where a, b, and c meet the criteria for convergence.
For k D 1 it can be shown that B.�/mn.1/ � B.�/nm.1/;8m; n; and �; for k D 0, the

sign of 2F1 can change, because one of the gamma functions can obtain a negative
argument. In such a case, the sign of B will change at least once if k increases from
0 to 1. In practice, this will not occur for the lowest harmonics and intermodulation
products.3

Note also that B.�/n0 .0/ D B.�/n .
The response of the full-wave odd nonlinearity follows from (9.14) and is

yodd.x/ D 4A�1
1X
mD0

1X
nD0

kn B.�/m n.k/ cos m.!1 t C �1/ cos n.!2 t C �2/; (9.17)

wheremC n must be odd, and k D A2=A1 < 1.
The Bennett function has the amplitude ratio k as variable, in addition to the

power parameter � and the indices m and n. As long as k � 1, the dependence of
B on k is rather small. Near k D 1, however, its effect can be significant. Examples
of the functions are given in Fig. 9.2 for indicesm; n up to 4.

As follows rather directly from the expansions, the phases of the components
follow the frequency interactions. In other words, the phase of the 2f1 � f2 DP
follows directly as �CT D 2�1 � �2, except for one important point: the sign of
B.�/mn.k/.

2See, e.g., Abramowitz and Stegun, 1968 Chap. 15.
3Your proof of the above statements is a valuable test of your understanding of the gamma function
and the hypergeometric function.
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Fig. 9.2 The modified Bennett function for the lowest indices and for � D 1=3 as a function of
the amplitude ratio k D Amin=Amax. The value for the CT 2f1 � f2 is negative, 3f1 � 2f2 is
positive, etc (not shown beyond 4,3)

9.1.3 The Sign of the Bennett Function

The arguments for the gamma functions and the hypergeometric function are all
real, hence the resulting values will be real, but they still can be either positive
or negative. This is the basis for an important property of the Bennett functions: its
sign. The lower part of Fig. 9.2 shows some negative values, and the lines 3,0 and 4,1
cross zero. Some of these phases flip if � crosses an integer value. For instance, if �
changes from less than 1 to greater than 1, the phase of 2f1�f2 flips. Details of this
property are presented in Fig. 9.3 for the odd order nonlinearity (even combinations
are set to gray). Positive sign is indicated as white, negative sign as black.
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Fig. 9.3 Phase effects (˙ sign only) of the modified Bennett functions for the indices up to 9 and
for a value of � below 1 (compressive nonlinearity) and for a value above 1 (expansive)

9.2 Properties of Nonlinear Oscillations

Nonlinear differential equations that represent relatively simple physical problems
have been known for a long time, even though complete solutions of the equations
might have been lacking. A simple one is the description of the pendulum with
a fixed but massless bar connection to the rotation point. Another one is the Van
der Pol oscillator, now well known because of its introduction by Van der Pol in
1920 for the theoretical description of the behavior of a triode. However, several
decades earlier the same DE had been obtained by Rayleigh who analyzed a bowed
violin string. Before dealing with the specific equations, some of the common tools
are mentioned. For more information, the interested student is referred to textbooks
such as Stoker (1950), Nayfeh and Mook (1979), Guckenheimer and Holmes (1983)
and Broer and Takens (2009). The former two have a theoretical physics setup, with
many equation examples recognizable from physics. The later two more strictly
emphasize the mathematical terminology, and the links with physical examples is
less trivial.

9.2.1 Terminology

This section starts with a numbered list of definitions of terms that are used in
the field. As yet, several of the definitions lack exclusivity, and where possible
alternatives are given. In particular the difference in use in different areas of science
can be confusing. The current list will not solve the problem, but aims to be of some
assistance.
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Definition 9.1. An ODE or ordinary differential equation4 is an equation in one
independent unknown which also contains at least one derivative (of possibly more
at several orders) of the unknown.

The general shape is

Px � f .x; t/ D 0 (9.18)

because any higher order ODE can be transformed to a first-order by increasing the
dimension of the independent unknown(s).

This also applies to the second order oscillation equation.

Definition 9.2. A homogeneous ODE is of the form (9.18).

Definition 9.3. A nonhomogeneous ODE is of the form Px � f .x; t/ D F.t/.
Definition 9.4. An autonomous system of ODEs does not contain the independent
variable t in the equation.

[If the timederivative also depends on time the system is called nonautonomous.]

Definition 9.5. A conservative system is a system that follows conservation laws.
Work can be done by an exerted force. The work is independent of a followed path
and matches differences in the energy balance from starting point to end point.
The interaction between internal energy (potential C kinetic) and work done is
completely reversible.

Definition 9.6. Dynamical systems are time-dependent deterministic systems that
can be described by differential equations Px D f.x/ that originate from the laws of
motion. The description is completed by the specification of the appropriate initial
conditions. Many examples exist, e.g., in mechanics and fluid mechanics.

[Related definitions: autonomous systems, and conservative systems.]

In current mathematical texts, the relation with the underlying physics may appear
to be scaled away (mass, and stiffness, or equivalents, are scaled to unity).

In the following definitions, we drop the vector notation for x and f , even though
in general multidimensional situations are implied.

Definition 9.7. Free oscillations are solutions to undriven (and undamped) second
order differential equations. The mechanical form of the ODE is:

m Ry C s y D 0; (9.19)

the abstract scaled version:

Rx C x D 0: (9.20)

4The term “differential equation” goes back to Leibniz, 1676 (EOMlist 2002, Differential equation,
ordinary).
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Definition 9.8. Forced oscillations are solutions to driven (and possibly damped)
second order differential equations. A mechanical form of the ODE is (see e.g.,
Sect. 8.5.1):

m Ry C d. Py/C s y D f .!; t; '/; (9.21)

the abstract scaled version:

Rx C ı. Px/C x D F.!; t; '/: (9.22)

Note that Definition 9.7 and Definition 9.8 are 2nd order derivative equivalents of
Definition 9.2 and Definition 9.3.

Definition 9.9. Relaxation oscillations are nonlinear oscillations that follow a limit
cycle path in the phase plane. The limit cycle period is no longer determined by the
linear approximation of the resonance frequency, but it is strongly dependent on the
extend of the nonlinearity.

9.2.1.1 Additional Definitions for 2nd Order ODEs

Since most of the applications in this book concern dynamical system properties of
CMs we are specifically interested in some specific terminology that is in use in this
field of mathematics.

Definition 9.10. The linear mechanical ODE describing vibrations is

m Ry C d Py C s y D f .!; t; '/; (9.23)

which contains only constant coefficients representing mass m, damping d , and
stiffness s. Solutions to this equation have been presented in Sect. 8.5.1.

An additional property of this equation is of interest for the undamped case,
d D 0. Dividing by m, putting s=m D !20 , and considering the driving force to be
periodic 1

m
f .!; t; '/ D F cos.!t/ gives

Ry C !20 y D F cos.!t/ (9.24)

for which the solution has an undriven, free component and a driven component.
The first depends on the initial conditions y.0/; Py.0/, the second on the driving
force. Stoker (1950) showed that for Py.0/ D 0 the solution can be written as

y.t/ D
�
y.0/C F

!2 � !20

�
cos.!0t/ � F

!2 � !20
cos.!t/; (9.25)

which gives periodic solutions if and only if n!0 D m!, and the integers (m; n)
are not 0 or both equal to 1. Of particular interest are the cases were m and n are
relatively small integers. The solutions form D 1 and n > 1 are called subharmonic
oscillations. In this case, the oscillation frequency is a subharmonic of the stimulus
frequency.
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The solutions for n D 1 and m > 1 have been called ultraharmonic oscillations
by Stoker; Nayfeh and Mook use the term super-harmonic. In this case the
oscillation frequency is a harmonic (overtone) of the stimulus frequency.

Definition 9.11. The general form of the nonlinear mechanical ODE describing
vibrations is

m Ry C d. Py/C s.y/ D f .!; t; '/; (9.26)

which, besides the constant mass coefficient contains in general nonlinear functions
in Py and y.

Some special examples are (scaled, or normalized):

• Equations in which the function d. Py/ is nonlinear in Py (or y), and s.y/ is linear
in y are termed Rayleigh or Van der Pol equations.

• Equations in which d. Py/ is linear in Py (or y) and s.y/ is nonlinear in y are termed
Duffing equations.

We will primarily consider the Rayleigh or Van der Pol equations, which are
closely related and readily transposed by differentiation or integration.
For the free (undriven) case, common specific version are given below.

Definition 9.12. A common version of the Rayleigh equation is:

Ry � "
�
Py � 1

3
Py3

�
C y D 0: (9.27)

Definition 9.13. A common version of the Van der Pol equation is:

Rx � " .1 � x2/ Px C x D 0: (9.28)

After differentiation of (9.27), the replacement of Py by x gives (9.28).
Nayfeh and Mook (1979, p.106) describe a physical basis for the Rayleigh

equation in terms of a block (mass) on a rough, rolling belt, where the mass
movement is limited by a string attachment to a fixed point. They state (without
reference) that Rayleigh used similar arguments to explain the movement of a bowed
violin string.

The origin of Van der Pol’s equation is clearer. It started as the mathematical
description of a simple triode network in 1920. Developments have been published
extensively, and an extensive review has been presented in Van der Pol (1934).

Definition 9.14. The phase space is the 2-D plane5 in which the oscillation velocity
is presented against the deflection. Solutions to the oscillation ODEs follow a
trajectory in this plane.

5The 2-D plane applies to the 1-D oscillation. If x is n-dimensional, then the phase space is 2n-D
dimensional.
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The trajectories, also called evolution or flow, start at the points representing the
initial conditions, and progress with time. The solutions of an oscillator converge to
a stable periodic solution or limit cycle.6

It is worth noting that the phase plane plots for the “identical” Van der Pol and
Rayleigh equations can have a very different appearance.

The shapes if the limit cycles depend strongly on the “strength” of the nonlinear-
ity, or the value of ".

A more general definition of the Rayleigh equation, given by Rozov in the
EOMlist (2002), is (for the undriven case) does not limit the damping term to a
quadratic factor of Py in (9.27). It follows the next definition:

Definition 9.15. A more general version of the Rayleigh equation is:

Rx C F. Px/C x D 0; where Px D dx

dt
(9.29)

and where F.u/ satisfies the conditions

1

u
F.u/ < 0; 8juj < ı or juj # 0; (9.30a)

1

u
F.u/ > 0; 8juj > � or juj ! 1 (9.30b)

with a similar definition for the Van der Pol equation (not shown).
For applications in CMs, a more interesting definition has been given by Broer
and Takens (2009), who scaled the linear part in the damping separately from the
nonlinear part.

Definition 9.16. The equation

Rx C .x2 � �/ Px C x D 0 (9.31)

is a regular Van der Pol equation as long as � > 0, whereas for � � 0 all solutions
converge to the zero solution.

The parameter � is at a Hopf bifurcation at � D 0 (cf. Definition 9.19).
Although the above form may seem different from (9.28), it can be obtained by
direct transformation. Substituting x D p" u, where � D ", one goes back to

RuC ".u2 � 1/PuC u D 0:
We repeat that this formulation of the Van der Pol oscillator is very similar to

our more recent use of this oscillator in CMs, where we use local variation of the
strength of the maximum negative damping.

For completeness, we also mention the Duffing equation, which primarily
concerns nonlinearity in the stiffness term of the (mechanical) oscillator.

6For a more rigorous mathematical definition see Broer and Takens (2009, Sect. 1.2).
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Definition 9.17. The Duffing equation contains a linear negative stiffness term plus
a positive nonlinear component. A driven form is

Rx C ˛ Px � x C x3 D ˇ cos.!t/: (9.32)

As yet, we interpret the data to indicate that cochlear nonlinear is in first approxi-
mation best interpreted as a damping (friction) nonlinearity.

Definition 9.18. If the phase plane trajectory of a solution converges to a periodic
and stable path, then that path is termed limit cycle.

Definition 9.19. The term bifurcation is used in certain areas of mathematics to
indicate a point � on a parameter profile where the properties of a system that
depends on the parameter � changes radically for very small changes of �.

As indicated above in Definition 9.16, the Van der Pol equation (9.31) contains a
Hopf-bifurcation at the point � D 0, where the solutions change abruptly.

9.2.2 Solutions to the Van Der Pol Equation

The Van der Pol equation was introduced in Sect. 5.1.3.3 as (5.17):

Rx C "�.x/ Px C x D s.t/;

where �.x/ D x2�1. As mentioned above, this equation can simply by transformed
to the Rayleigh equation (9.27), with a transformed stimulus term:

Ry � "
�
Py � 1

3
Py3

�
C y D S.t/:

How do we interpret the difference in terms of physics? Two different answers can
be given.

Answer 1: In the above forms, the nonlinearity in the Van der Pol equation is an even
function in x (in the classical case a simple parabola). In the Rayleigh equation, the
parabola is not a function of y, but of Py. In other words, in the Rayleigh nonlinearity
depends on the velocity, whereas in the Van der Pol it depends on displacement.

Answer 2: Assuming the Van der Pol equation to represent the physics most closely
implies to interpret x as a displacement, Px as a velocity and Rx as an acceleration. If
we consider the transformability between the two equations as the link to the other
equation, then the y-term in the Rayleigh equation would represent a

R
xdt term,

for which we do not have a direct physical terminology. An alternative hypothesis
would by to interpret the x-term in the VDP as a velocity, and the higher derivatives
accordingly.
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Solutions to the Van der Pol equation have been around at least since Van der
Pol himself, alone or with coworkers, and originally as conservator of Teyler’s
Museum in Haarlem, the Netherlands. He proposed an approximation technique,
which is still similar to some of the modern approaches. There is a number
of parameters that characterizes the behavior of the oscillator. For the undriven
oscillator, the primary parameter is ". Three important ranges for varepsilon are:
a) "� 1, b) " � 1, and c) "	 1. These conditions lead to quite different response
behaviors.

Although theoretically the response could be locked at x D 0, this is not a stable
solution. Any deviation from the zero initial condition brings the solution to a limit
cycle, the form of which as well as the period duration depend on the parameter ".
For small ", the limit cycle approaches a circle, and with the resonance frequency
!0 D 1 the period becomes T0 D 2�=! D 2� . For values of " around 1, the shape is
already distorted, and it gets more distorted with increasing ". Moreover, the period
T0 begins to depend on ". A numerical approximation is7:

T0 D 1:137 "C 7:0143 "�1=3 � 1
3
"�1 log " � 1:3246 "�1CO."�4=3/: (9.33)

The following section follows a standard approach of dealing with the small "-
case. Usually the large "-case is treated separately (e.g., Guckenheimer and Holmes
1983).

9.2.2.1 Solutions for Small "

Now we rewrite this equation, breaking it up in two first order DEs, and introducing

˚.x/ D �x C x3=3 D
Z
�.x/dx:

or, because dx D Pxdt :

d˚.x/

dt
D d

dt

�
�x C x3

3

�
D �Px C x2 Px D �.x/ Px: (9.34)

Finally, this leads to:

Px D y � "˚.x/; (9.35a)

Py D �x C s.t/: (9.35b)

7This approximation is presented by Nayfeh and Mook (1979, p.146), with references to the
sources.
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For the undriven case, s.t/ D 0, and very small ", the first approximation involves
dropping the rightmost terms in (9.35a) and (9.35b) so that the solution of x and y
becomes the rotation at ! D 1, which can be frozen in the rotating coordinates u; v,
defined as: �

u
v

�
D

�
cos t � sin t
� sin t � cos t

� �
x

y

�
: (9.36)

The complete system will yield slowly varying functions u and v. Averaging of the
solution over a cycle (or number of cycles) is then justified because Pu and Pv are
sufficiently small. It produces

Pu D "u

2

�
1 � .u

2 C v2/

4

�
; (9.37a)

Pv D "v

2

�
1 � .u

2 C v2/

4

�
; (9.37b)

which shows that the condition for small Pu; Pv is met either by sufficiently small "
and/or u; v, or around the limit cycle amplitude

p
u2 C v2 D 2, in which case the

bracket term vanishes. Hence, this limit cycle is an attractor for stable solutions of
the form

x.t/ D r.t/ cos.t C '.t// (9.38)

with an almost constant r.t/ D pu2 C v2 and '.t/. The latter is determined by the
initial conditions.

In his third Auditory Physics paper, de Boer (1991) extends this analysis
somewhat further. He also follows Guckenheimer and Holmes (1983, Chap. 2)
closely. One of the important points that he addresses is the phenomenon of
entrainment, which occurs for stimuli within a certain parameter range: as long
as the stimulus frequency is not too far from the limit cycle frequency, and the
amplitude not too large compared to ", the solutions are entrained, or drawn to the
limit cycle. For large values of ", the behavior is very different, and the response is a
relaxation oscillation, the fundamental frequency of which is no longer independent
of ".
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Chapter 10
A PTPV Response Collection

Abstract The responses to several PTPV stimulus sets have been obtained with the
Groningen NL-time domain model. In most cases we analyzed passive rather than
active models because negative damping supposedly would effect the behavior at
low stimulus levels only. A nonlinear damping change in the approx. 40 – 60 dB
(SPL) interval is present in the NL model versions, however, as demonstrated in
Fig. 5.11, and also can be interpreted as “active behavior”.

The results to be presented are listed in the Table 10.1. Time plots and spectra are
presented at adjacent pages (Figs. 10.3-10.20). But we start with the presentation of
the spectra of the responses shown in Figs. 6.6 and 6.7.

All these points were analyzed at primary levels from 30 to 80 dB (SPL),
often extended from 0 to 100 dB. Some of those results will be mentioned in the
discussion. All results, presented or not, can be easily recomputed from the model.

Table 10.1 List of presented
model results in response to
PTPV stimulus sets. Presence
of d and/or s in the second
column indicates a NL
version of damping and/or
stiffness. The frequencies
given in the third group of
columns are the f1
frequencies.

frequencies (kHz)

model d and s 1 2 5

0 s C
3a d C
3b d; s C
4a d C C C
4b d; s C
6 d; s C
Hopf d C

H. Duifhuis, Cochlear Mechanics: Introduction to a Time Domain Analysis
of the Nonlinear Cochlea, DOI 10.1007/978-1-4419-6117-4 10,
© Springer Science+Business Media, LLC 2012
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Fig. 10.1 Amplitude spectra of the f1 Cf2-stimulus and PTPV response for model #4 with linear
stiffness. Parameters as in Fig. 6.6. The skirts of the peaks represent the time window used for the
analysis. At this level 2f1 � f2 is hardly visible in the overall spectrum, and 2f1 C f2 practically
disappears in the computation noise. The PTPV result for the DP does show the 2f1 � f2 peaks in
detail at � �25 dB. Note that the high-frequency part of the spectrum remains clean.
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Fig. 10.2 As Fig. 10.1 but at stimulus level of 80 dB. Note that the high-frequency part of the
2f1 � f2 response contains many harmonics.
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Fig. 10.3 Model 0, linear damping, nonlinear stiffness. Stimulus f1 and f2 optimized for the
PTPV response to 2f1 � f2 for model #0 with nonlinear stiffness. Stimulus parameters: f1 D
2 kHz, f2 D 2:4 kHz, L1 D L2 D 80 dB. Time plots over the first 40 ms. The meaning of
the response onset delay at 50% (approx. 9.4 ms) is debatable. The asymptotic behavior shows
amplitude modulation, or significant spectral sidebands. This is consistent with the actual spectral
data.
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Fig. 10.4 Model 0, linear damping, nonlinear stiffness. Spectrum of the response to the signals
shown in Fig. 10.3. The compound spectrum show expected lf-intermodulation and much weaker
hf-components. There is fair amount of high-frequency noise, which disappears for the case with
a linear stiffness. Note that the NL stiffness generate may intermodulation products, and harmonic
in the upper figure, whereas the PTPV response to 2f1 � f2 shows harmonics as well as amplitude
modulation components as a primary result.
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Fig. 10.5 Model 3, nonlinear damping, linear stiffness. Stimulus f1 and f2 optimized for the
PTPV response to 2f1 � f2 for model #3 with nonlinear damping. Stimulus parameters: f1 D
2 kHz, f2 D 2:4 kHz, L1 D L2 D 50 dB. Time plots over the first 40 ms. The the response onset
shape is clearly deformed, which makes the its relevance unclear. The long term behavior, however,
is smooth, again consistent with the actual spectral data.
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Fig. 10.6 Model 3, nonlinear damping, linear stiffness. Spectrum of the response to the signals
shown in Fig. 10.5. The onset effect does not show because the first 10 ms of the response are
discarded for the computation of the spectrum. The 2f1 � f2 response is rather clean, with its 3rd

harmonic more than 60 dB down.
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Fig. 10.7 Model 3, nonlinear damping, nonlinear stiffness. Stimulus f1 and f2 optimized for
the PTPV response to 2f1 � f2 for model #3 with nonlinear damping and stiffness. Stimulus
parameters: f1 D 2 kHz, f2 D 2:4 kHz, L1 D L2 D 50 dB. Time plots over the first 40 ms.
The the response onset shape is smooth, but the fine structure of the wave shows multiple peaks,
making it impossible for our simple envelope follower to decide the definition of envelope. The
long term behavior, however, is stable.
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Fig. 10.8 Model 3, nonlinear damping, nonlinear stiffness. Spectrum of the response to the signals
shown in Fig. 10.7. The intermodulation products are now symmetrically distributed around the
primaries and their 3rd harmonics. Onset effect does not show because the first 10 ms of the
response are discarded for the computation of the spectrum. The 2f1 � f2 response is still rather
clean, but its 3rd harmonic is now about 40 dB down. The smaller peak at 6.4 kHz is suspect
because it is an even harmonics of the DP. Since it occurs in the overall spectrum as a proper
intermodulation product, it might be possible that the occurrence in the PTPV response is due to
the PTPV-parameter settings.
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Fig. 10.9 Model 4, nonlinear damping, linear stiffness. Stimulus f1 and f2 optimized for the
PTPV response to 2f1 � f2 for model #3 with nonlinear damping and stiffness. Stimulus
parameters: f1 D 1 kHz, f2 D 1:2 kHz, L1 D L2 D 45 dB. The the 2f1 � f2-response is
smooth over the entire interval. There is a small overshoot in the response onset.
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Fig. 10.10 Model 4, nonlinear damping, linear stiffness. Spectrum of the response to the signals
shown in Fig. 10.9. The smooth DP time domain response is consistent with the very smooth
2f1 � f2-spectrum.



248 10 PTPV Response Collection

−15

−10

−5

0

5

10

15

 p
E

C
 ( 

μ 
P

a)

2f1 - f2 response in EC, τ50 = 1.91 ms

0.00 0.01 0.02 0.03 0.04
−10

−5

0

5

10

time (s)

0.00 0.01 0.02 0.03 0.04
time (s)

 p
E

C
( m

P
a)

 
f1 (2000 Hz) + f2 (2400 Hz), at 50 dB

Fig. 10.11 Model 4, nonlinear damping, linear stiffness. Stimulus f1 and f2 optimized for
the PTPV response to 2f1 � f2 for model #3 with nonlinear damping and stiffness. Stimulus
parameters: f1 D 2 kHz, f2 D 2:4 kHz, L1 D L2 D 50 dB. The the 2f1 � f2-response is again
smooth over the entire interval. There is no significant overshoot in the response onset.
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Fig. 10.12 Model 4, nonlinear damping, linear stiffness. Spectrum of the response to the signals
shown in Fig. 10.11. The smooth overall spectrum shows lf intermodulation products, the DP
response shows significant, but relatively small, odd harmonics: the spectrum shows both even and
odd harmonics of 2f1 � f2. The even harmonics (at 3.2 and 6.4 kHz) were not expected. See note
at Fig. 10.8.
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Fig. 10.13 Model 4, nonlinear damping, linear stiffness. Stimulus f1 and f2 optimized for
the PTPV response to 2f1 � f2 for model #3 with nonlinear damping and stiffness. Stimulus
parameters: f1 D 5 kHz, f2 D 6 kHz, L1 D L2 D 45 dB. The the 2f1 � f2-response, although
smooth, comes with a new surprise: after a minor overshoot at the end of the first part of the onset
(just after 10 ms) there is a significant second step at around 25 ms. Apparently we see interaction
over a broader frequency range.
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Fig. 10.14 Model 4, nonlinear damping, linear stiffness. Spectrum of the response to the signals
shown in Fig. 10.13. The noted special behavior in the time domain only shows in the detailed
profile of the main DP component. But harmonics remain below threshold. See note at Fig. 10.8.
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Fig. 10.15 Model 4, nonlinear damping, nonlinear stiffness. Stimulus f1 and f2 optimized for
the PTPV response to 2f1 � f2 for model #3 with nonlinear damping and stiffness. Stimulus
parameters: f1 D 2 kHz, f2 D 2:4 kHz, L1 D L2 D 50 dB. The the 2f1 � f2-response is smooth
over the entire interval but appears to have a shallower slope than seen so far. There is no significant
overshoot in the response onset.
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Fig. 10.16 Model 4, nonlinear damping, nonlinear stiffness. Spectrum of the response to the
signals shown in Fig. 10.15. The smooth overall spectrum shows lf intermodulation products, the
DP response shows significant, but relatively small, odd harmonics: the spectrum shows both even
and odd harmonics of 2f1 � f2. The even harmonics (at 3.2 and 6.4 kHz) were not expected.
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Fig. 10.17 Model 6, nonlinear damping and nonlinear stiffness for Zweig’s feedback model.
Stimulus f1 and f2 optimized for the PTPV response to 2f1 � f2 for model #3 with nonlinear
damping and stiffness. Stimulus parameters: f1 D 2 kHz, f2 D 2:4 kHz, L1 D L2 D 50 dB. The
the 2f1 � f2-response is smooth over the entire interval but appears to have a shallower slope than
seen so far. There is no significant overshoot in the response onset.
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Fig. 10.18 Model 6, nonlinear damping, nonlinear stiffness for Zweig’s feedback model. Spec-
trum of the response to the signals shown in Fig. 10.17. The smooth overall spectrum shows lf
intermodulation products, the DP response shows significant, but relatively small, odd harmonics:
the spectrum shows both even and odd harmonics of 2f1 � f2. The even harmonics (at 3.2 and 6.4
kHz) were not expected.
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Fig. 10.19 The stimulus and 2f1 � f2 response for Hopf-bifurcation model. It is equivalent to the
Van der Pol model but with the difference that the damping does not become negative, but goes
to 0 as v approaches zero. Again, the PTPV-responses are rather similar to the responses of most
other models. The major characteristics are the steep rise time, causing �10 � �50 � �90, and the
small overshoot at the onset.
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Fig. 10.20 The stimulus and 2f1 � f2 response for Hopf-bifurcation model. Spectra of the
responses shown in Fig. 10.19. Again the lf-intermodulation products are stronger than the hf
counter parts. Odd harmonic of the primaries are about 80 dB down.
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10.1 Some General Conclusions

• NL stiffness only (i.e., with linear damping) generates at high levels (80 dB) an
unnatural dose of distortion products (Fig. 10.4). Also the waveform of the 2f1�
f2-response could be termed: aberrant (Fig. 10.3).

• NL stiffness increases the total NL response (Model 3 at 50 dB). This seems
most apparent in the spectra (Fig. 10.8 vs Fig. 10.6), but the amplitude results are
also interesting. The peak value in the case of linear stiffness is twice the value
obtained for the nonlinear situation. At the same time the DPOAE amplitude
increases by a factor of 4 (Figs. 10.5 and 10.7).

• A limited amount of NL stiffness, in combination with NL damping has limited
effects on the 2f1 � f2 distortion product response at 50 dB (Figs. 10.8, 10.16,
10.18).

• The differences in responses of Models 4 and 6 are “marginal” except for the
difference in even harmonics in the 2f1 � f2 response.

• The total time response envelope closely follows the stimulus envelope. The
PTPV responses to the DPOAEs can be distorted. The only general trend is that
the response is delayed.
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