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Foreword to the First Edition

The subject of latin squares is an old one and it abounds with unsolved
problems, many of them up to 200 years old. In the recent past one of the
classical problems, the famous conjecture of Euler, has been disproved by Bose,
Parker, and Shrikhande. It has hitherto been very difficult to collect all the
literature on any given problem since, of course, the papers are widely scattered.
This book is the first attempt at an exhaustive study of the subject. It contains
some new material due to the authors (in particular, in chapters 3 and 7) and
a very large number of the results appear in book form for the first time. Both
the combinatorial and the algebraic features of the subject are stressed and also
the applications to Statistics and Information Theory are emphasized. Thus, I
hope that the book will have an appeal to a very wide audience. Many unsolved
problems are stated, some classical, some due to the authors, and even some
proposed by the writer of this foreword. I hope that, as a result of the publication
of this book, some of the problems will become theorems of Mr. So and So.

PAUL ERDÖS
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Preface to the First Edition

The concept of the latin square probably originated with problems concerning
the movement and disposition of pieces on a chess board. However, the earliest
written reference to the use of such squares known to the authors concerned the
problem of placing the sixteen court cards of a pack of ordinary playing cards in
the form of a square so that no row, column, or diagonal should contain more
than one card of each suit and one card of each rank. An enumeration by type
of the solutions to this problem was published in 1723. The famous problem
of similar type concerning the arrangement of thirty-six officers of six different
ranks and regiments in a square phalanx was proposed by Euler in 1779, but
not until the beginning of the present century was it shown that no solution is
possible.

It is only comparatively recently that the subject of latin squares has at-
tracted the serious attention of mathematicians. The cause of the awakening of
this more serious interest was the realization of the relevance of the subject to
the algebra of generalized binary systems, and to the study of combinatorics,
in particular to that of the finite geometries. An additional stimulus has come
from practical applications relating to the formation of statistical designs and the
construction of error correcting codes. Over the past thirty years a great number
of papers concerned with the latin square have appeared in the mathematical
journals and the authors felt that the time was ripe for the publication in book
form of an account of the results which have been obtained and the problems
yet to be solved.

Let us analyse our subject a little further. We may regard the study of latin
squares as having two main emphases. On the one hand is the study of the
properties of single latin squares which has very close connections with the theory
of quasigroups and loops and, to a lesser extent, with the theory of graphs. On
the other is the study of sets of mutually orthogonal latin squares. It is the
latter which is most closely connected with the theory of finite projective planes
and with the construction of statistical designs. We have organized our book in
accordance with this general scheme. However, each of these two branches of the
subject has many links with the other, as we hope that the following pages will
clearly show.

We have tried to make the book reasonably self-contained. No prior knowl-
edge of finite geometries, loop theory, or experimental designs has been assumed
on the part of the reader, but an acquaintance with elementary group theory and
with the basic properties of finite fields has been taken for granted where such
knowledge is needed. Full proofs of several major results in the subject have been
included for the first time outside the original research papers. These include the

x
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Hall-Paige theorems (chapter 1), two major results due to R. H. Bruck (chapter
9) and the proof of the falsity of Euler’s conjecture (chapter 11).

We hope that the text will be found intelligible to any reader whose standard
of mathematical attainment is equivalent to that of a third year mathematics
undergraduate of a British or Hungarian University. Probably the deepest the-
orem given in the book is theorem 1.4.8 which unavoidably appears in the first
chapter. However, the reader’s understanding of the remainder of the book will
not be impaired if he skips the details of the proof of this theorem.

Part of the manuscript is based on lectures given by one of the authors at
the Loránd Eötvös University, Budapest.

The bibliography of publications on latin squares has been made as compre-
hensive as possible but bibliographical references on related subjects have been
confined to those works actually referred to in the text.

Decimal notation has been used for the numbering of sections, theorems,
diagrams, and so on. Thus, theorem 10.1.2 is the second theorem of section 10.1
and occurs in chapter 10. The diagram referred to as Fig. 1.2.3 is the third
diagram to be found in section 1.2. The use of lemmas has been deliberately
avoided as it seemed to at least one of the authors better for the purposes of
cross-reference to present a single numbering system for the results (theorems)
of each section.

A list of unsolved problems precedes the bibliography and each is followed
by a page reference to the relevant part of the text.

J. Dénes and A. D. Keedwell.
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Preface to the Second Edition

The original version of this book, although frequently cited as a source book
in current literature, has been out of print since 1976. In the intervening years, a
huge number of papers have been written and new results obtained so a second
edition was overdue.

In this revised edition, much of the original material has been retained but
all the chapters have been revised or re-written. However, in order that as many
as possible of the large number of citations of the original edition should be valid
for the new one, the overall layout of main topics and the order of the first seven
chapters has been retained.

Because of the extensive cross-referencing, it is not necessary to read the
chapters in the order that they are presented. Indeed, the reader new to the
subject may find it useful after he/she has read or glanced through the first
two chapters to look at the early sections of chapter 5 in which the concept of
orthogonality is introduced and its connection with the existence of transversals
explained.

As was the case in the original edition, the needs of the reader new to the
subject have been foremost in the author’s mind. He hopes that the second
edition, like the first, will take such a reader from the beginnings of the subject
to the frontiers of research. He also hopes that it will act as a reference book for
more knowledgeable readers to the present state of knowledge in the particular
topics of interest to them.

In order to keep the book of reasonable length, a few of the topics less cen-
tral to the subject as now developing which were included in the original book
have been omitted from this revised edition: in particular, the chapter on the
resolution of the Euler conjecture and part of the section on generalized direct
products. Discussion of several other topics has been condensed.

In this connection, we draw our readers’ attention to the more recent book
“Latin Squares: New Developments in the Theory and Applications” which was
edited and part-written by the late J. Dénes and the present author and was pub-
lished by North Holland, Amsterdam, in 1991. In the present work, we cite this
book as [DK2] and it has been our policy not to duplicate relevant results which
it contains; for example, on latin squares and codes, latin squares and geometry,
on row-complete latin squares and sequencings of groups, and on subsquares in
latin squares.

We have retained the narrative style which was much commended in com-
ments on the first edition.

Fortunately, few significant errors have been detected in the original book
except for various inconsistencies and mis-statements in the section on enumer-
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ation of latin squares in Chapter 4. These have been addressed in the revised
version.

The author is very grateful to Ian Wanless for assisting the author in four
very significant ways. Firstly, he helped very considerably with the re-writing
of several sections of the above chapter and of Chapter 1 in particular. The
new version of these sections is substantially his work though the present author
takes full responsibility for its final form. Secondly, he has carried out most of the
transcribing into LATEX of early versions of the first six chapters. (Without this
assistance, the author would not have had the courage to attempt a re-write.)
Thirdly, he has made a number of suggestions for improvement in these chapters,
most of which the author has adopted and, fourthly, he has promptly answered
many queries during the several years which the author has taken to complete
the work.

Further remarks.
In a few places, we have wanted to refer to the original edition of the book.

In such cases, it is cited as [DK1].
We have omitted the initials of authors cited in the body of the book except

in cases when two or more authors have the same surname, in which cases we
have included them.

Topics in the Subject Index which begin with a mathematical symbol (such
as “N∞-square”) are listed alphabetically in front of those beginning with the
letter “A”.

Because of the number of pages that it would require, it is no longer possi-
ble to provide a comprehensive bibliography of papers concerning latin squares.
(Mathematical Reviews has reviewed well over 2000 such papers.) In the present
work, only papers which are explicitly referred to in the text are included in
the Bibliography. Inevitably, the results of many excellent papers are not men-
tioned and do not appear in the Bibliography, for which omissions the author
apologizes.

When [DK1] was written, the idea of listing Unsolved Problems was a rela-
tively novel one. In this new edition, we have listed these 73 problems again and
for each of them given the present state of knowledge so far as we know it. We
have also listed a few new Unsolved Problems which we hope will spur progress
in the field.

A. D. Keedwell.

Acknowledgements.
The author would like to express special thanks to his departmental colleague

Gianne Derks and to Gavin Power of the Faculty Computer Department for help
in resolving the many technical computer problems which arose during the book
re-write.

Preface to the Second Edition



Chapter 1

Elementary properties

In this preliminary chapter, we introduce a number of important concepts
which will be used repeatedly throughout the book. In the first section, we
briefly describe the history of the latin square concept and its equivalence to
that of a quasigroup. Next, we explain how those latin squares which represent
group multiplication tables may be characterized. We mention briefly the work
of Ginzburg, Tamari and others on the reduced multiplication tables of finite
groups. In the third, fourth and fifth sections respectively, we introduce the im-
portant concepts of isotopy, parastrophy1 and complete mapping, and develop
their basic properties in some detail. In the final section of the chapter we discuss
the interrelated notions of subquasigroup and latin subsquare.

1.1 The multiplication table of a quasigroup

As we remarked in the preface to the first edition, the concept of the latin
square is of very long standing and indeed arose very much earlier than the date of
1723 mentioned there. For details, see Wilson and Watkins(2013) and especially
Chapter 6 thereof (written by L.D. Andersen). However, so far as the present
author is aware, the topic was first systematically developed by Euler. A latin
square was regarded by Euler as a square matrix with n2 entries using n different
elements, none of them occurring twice within any row or column of the matrix.
The integer n is called the order of the latin square. (We shall, when convenient,
assume the elements of the latin square to be the integers 0, 1, . . . , n − 1 or,
alternatively, 1, 2, . . . , n, and this will entail no loss of generality.)

Much later, it was shown by Cayley, who investigated the multiplication
tables of groups, that a multiplication table of a group is in fact an appropriately
bordered special latin square. [See Cayley(1877/8) and (1878a).] A multiplication
table of a group is called its Cayley table.

Later still, in the 1930s, latin squares arose once again in the guise of multi-
plication tables when the theory of quasigroups and loops began to be developed
as a generalization of the group concept. A set S is called a quasigroup if there
is a binary operation (·) defined in S and if, when any two elements a, b of S are
given, the equations ax = b and ya = b each have exactly one solution.2 A loop

1Also called conjugacy but not with the same meaning as in group theory.
2Throughout this book, we shall, when convenient, write ax instead of the more formal a ·x

when the binary operation is (·). Similarly, we may write a(bc) or a · bc instead of a · (b · c).
Also, when the quasigroup operation is not stated, it is assumed to be (·).

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50001-5
Copyright © 2015 A. Donald Keedwell. Published by Elsevier B.V. All rights reserved.
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L is a quasigroup with an identity element: that is, a quasigroup in which there
exists an element e of L with the property that ex = xe = x for every x of L.

However, the concept of quasigroup had actually been considered in some
detail much earlier than the 1930s by Schroeder who, between 1873 and 1890,
wrote a number of papers on “formal arithmetics”: that is, on algebraic systems
with a binary operation such that both the left and right inverse operations could
be uniquely defined. Such a system is evidently a quasigroup. A list of Schroeder’s
papers and a discussion of their significance3 can be found in Ibragimov(1967).

In 1935, Ruth Moufang published a paper [Moufang(1935)] in which she
pointed out the close connection between non-desarguesian projective planes
and non-associative quasigroups.

The results of Euler, Cayley and Moufang made it possible to character-
ize latin squares both from the algebraic and the combinatorial points of view.
A number of other authors have studied the close relationship that exists be-
tween the algebraic and combinatorial results when dealing with latin squares.
Discussion of such relationships may be found in Barra and Guérin(1963a),
Dénes(1962), Dénes and Pásztor(1963), Fog(1934), Schönhardt(1930) and
Wielandt(1962).

Particularly in practical applications it is important to be able to exhibit
results in the theory of quasigroups and groups as properties of the Cayley tables
of these systems and of the corresponding latin squares. This becomes clear when
we prove:

Theorem 1.1.1 Every multiplication table of a quasigroup is a latin square and
conversely, any bordered latin square is the multiplication table of a quasigroup.

Proof. Let a1, a2, . . . , an be the elements of the quasigroup and let its multi-
plication table be as shown in Figure 1.1.1, where the entry ars which occurs in
the r-th row of the s-th column is the product aras of the elements ar and as. If
the same entry occurred twice in the r-th row, say in the s-th and t-th columns
so that ars = art = b say, we would have two solutions to the equation arx = b
in contradiction to the quasigroup axioms. Similarly, if the same entry occurred
twice in the s-th column, we would have two solutions to the equation yas = c
for some c. We conclude that each element of the quasigroup occurs exactly once
in each row and once in each column, and so the unbordered multiplication table
(which is a square array of n rows and n columns) is a latin square. ⊓⊔

In fact, a quasigroup has more than one multiplication table because it is al-
ways possible to permute the rows and/or columns, together with their bordering
elements (an example is given in Figure 1.3.2). So, a given quasigroup defines
a number of different (although closely related4) latin squares. Conversely, a

3It is interesting to note that this author was also the first to consider generalized identities.
(These are defined and discussed in Section 2.2.)

Chapter 1
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a1 a2 · · · ar · · · as · · · an
a1 a11

...
...

a2
...

......
...

...
ar · · · · · · · · · · ars

......

...
an · · · · · · · · · · · · · · ann

Fig. 1.1.1.

given latin square defines a multiplication table for more than one quasigroup4

depending upon the order in which its elements are attached to form the borders.
As a simple example of a finite quasigroup, consider the set of integers modulo

3 with respect to the operation defined by a ∗ b = 2a + b + 1. A multiplication
table for this quasigroup is shown in Figure 1.1.2 and we see at once that it is a
latin square.

(∗) 0 1 2

0 1 2 0
1 0 1 2
2 2 0 1

Fig. 1.1.2.

More generally, the operation a ∗ b = ha+ kb + l, where addition is modulo
n and h, k and l are fixed integers with h and k relatively prime to n, defines a
quasigroup on the set Q = {0, 1, . . . , n− 1}.

As a special case of this, the operation a ∗ b = 2a − b defines a quasigroup
for which a ∗ a = a. Quasigroups for which a ∗ a = a for all elements a are called
idempotent (see Section 2.1).

Let us draw attention here to another useful concept.

Definition. A latin square is said to be reduced or to be in standard form if, in
its first row and column, the symbols occur in natural order.

For example, the latin square of Figure 1.1.2 takes reduced form if its first
two rows are interchanged.

We end this preliminary section by drawing the reader’s attention to the fact
that quasigroups, loops and groups are all examples of the primitive mathemat-
ical structure called a groupoid.

Definition. A set S forms a groupoid (S, ·) with respect to a binary operation
(·) if, with each ordered pair of elements a, b of S is associated a uniquely
determined element a · b of S called their product. If a product is defined for only

4In each case the relationship is that of isotopy, which will be discussed in Section 1.3.
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a subset of the pairs a, b of elements of S, the system is sometimes called a half-
groupoid. [See, for example, Bruck(1958).] A groupoid whose binary operation is
associative is called a semigroup.

Theorem 1.1.1 shows that a multiplication table of a groupoid is a latin square
if and only if the groupoid is a quasigroup. Thus, in particular, a multiplication
table for a semigroup is not a latin square unless the semigroup is a group.

1.2 The Cayley table of a group

Next, we take a closer look at the internal structure of the multiplication
table of a group.

Theorem 1.2.1 Any Cayley table of a finite group G (with its bordering ele-
ments deleted) has the following properties:

(1) It is a latin square, in other words a square matrix ‖aik‖ in which each row
and each column is a permutation of the elements of G.

(2) The quadrangle criterion holds. This means that, for any indices i, j, k, l
and i′, j′, k′, l′, it follows from the equations aik = ai′k′ , ail = ai′l′ and
ajk = aj′k′ , that ajl = aj′l′ .

Conversely, any matrix satisfying properties (1) and (2) can be bordered in such
a way that it becomes the Cayley table of a group.

Proof. Property (1) is an immediate consequence of Theorem 1.1.1. Property
(2) is implied by the group axioms, since by definition aik = aiak and hence,
using the conditions given, we have

ajl = ajal = aj(aka
−1
k )(a−1

i ai)al = (ajak)(aiak)
−1(aial) = ajka

−1
ik ail

= aj′k′a
−1
i′k′ai′l′ = (aj′ak′)(ai′ak′)

−1(ai′al′) = aj′al′ = aj′l′

To prove the converse, a bordering procedure has to be found which will show
that the Cayley table thus obtained is, in fact, a multiplication table for a group.
If we use as borders the first row and the first column of the latin square, the
invertibility of the multiplication defined by the Cayley table thus obtained is
easy to show and is indeed a consequence merely of property (1). For, in the first
place, when the border is so chosen, the leading element of the matrix acts as an
identity element, e. In the second place, since this element occurs exactly once
in each row and column of the matrix, the equations arx = e and yas = e are
soluble for every choice of ar and as.

Now, only the associativity has to be proved. Let us consider arbitrary el-
ements a, b and c. If one of them is identical with e, it follows directly that
(ab)c = a(bc). If, on the other hand, each of the elements a, b and c differs from

Chapter 1
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e, then the submatrix determined by the rows e and a and by the columns b and
bc of the multiplication table is

b bc
ab a(bc)

while the submatrix determined by the rows b and ab and by the columns e and
c is

b bc
ab (ab)c

Hence, a(bc) = (ab)c because of property (2), and we have associativity. ⊓⊔

Corollary. If a1, a2, . . . , an are distinct elements of a group of order n, and if
b is any fixed element of the group, then the sets of products {ba1, ba2, . . . , ban}
and {a1b, a2b, . . . , anb} each comprise all of the n group elements in some order.

Property (2) was first observed by Frolov(1890a) who remarked that it is valid
for any regular latin square (as defined below). Later Brandt(1927) showed that it
was sufficient to postulate the quadrangle criterion to hold only for quadruples in
which one of the four elements is the identity element. Textbooks on the theory of
finite groups [see for example Speiser(1927)] adopted the criterion established by
Brandt. Aczél(1969) and Bondesen(1969) have both published papers in which
they have rediscovered the quadrangle criterion. Also, Hammel(1968) has sug-
gested some ways in which testing the validity of the quadrangle criterion may
in practice be simplified when it is required to test the multiplication tables of
finite quasigroups of small orders for associativity.

Definition. We say that a latin square is group-based if the quadrangle crite-
rion holds for it. That is, a latin square is group-based if, when appropriately
bordered, it becomes a Cayley table for a finite group.

A condition quite different to the quadrangle criterion, for testing whether a
latin square is group-based, was given by Suschkewitsch(1929) [see also Siu(1991)].
It is very closely related to Cayley’s classic proof that every group of order n
is isomorphic to a subgroup of the symmetric group Sn and can be stated as
follows:

Theorem 1.2.2 Let γ be any fixed column of a latin square L with symbol set
Q of cardinality n. For i = 1, 2, . . . , n let σi : Q → Q be the permutation which
maps γ to the i-th column of L. Then L is group-based if and only if the set
Σ = {σi : i = 1, 2, . . . n} is closed under the usual composition operation for
permutations. If the latter is the case then Σ forms a group isomorphic to the
group on which L is based.

Proof. Without loss of generality, we can assume that the columns of L have
been permuted so as to make γ the first column and that the symbols of L have
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been replaced by the symbols of the set {1, 2, ..., n} = Q∗, say, in such a way
that γ has these entries in natural order. If we then border L by its own first
row and first column (which is γ), we get the Cayley table of a loop (Q∗, .) with
identity element 1. The bth column of L is the permutation σb : x→ xb(= xRb)
of the first column γ. If Σ is closed under composition of permutations then and
only then, for each pair b, c ∈ Q∗, we have RbRc = Rd for some d ∈ Q∗. So
xRbRc = xRd for all x ∈ Q∗. That is, (xb)c = xd. In particular, this is true when
x = 1. So bc = d and we have (xb)c = x(bc) for all x, b, c ∈ Q∗. Thus, (Q∗, .) is a
group and L is group-based. Moreover, in this case, RbRc = Rbc for all b, c ∈ Q∗

and so the group formed by σ under composition of permutations is isomorphic
to (Q∗, .). ⊓⊔

To use the above theorem to test whether a latin square L is group-based it
is often convenient to permute either the rows or symbols of L so that the entries
in γ are in natural order (assuming the symbols of L are 1, 2, . . . , n). Then the
elements of Σ can be read directly from the columns of L. Of course, the same
test will work if rows instead of columns are used throughout.

A third condition for a latin square to be group-based arises from a concept
also due to Frolov (1890a,b), who called a reduced latin square “regular” if it
has the following property: The squares obtained by raising each row in turn to
the top and then re-arranging first the columns and then the remaining rows so
that the square is again reduced are all the same.

We shall show (in Theorem 1.2.3 and as a corollary to Theorem 2.4.1 of
the next chapter) that a latin square is regular in this sense if and only if it is
group-based, though it seems that Frolov did not realize this.5

Theorem 1.2.3 A reduced latin square is group-based if and only if it is regular.

Proof. Let us border the square with its own first row and column so as to
form the Cayley table of a loop with identity element 1. We show that, if and only
if the square is regular, the quadrangle criterion must hold for all quadrangles
which include 1 as one member. (This is sufficient, as we remarked earlier.) Let
us choose arbitrarily a quadrangle which contains the element 1 in row h and
column k say and suppose that the remaining cells of this quadrangle which are
in row h and column k are b (in column v) and a (in row u) respectively. Then
the fourth member of the quadrangle is in the cell (u, v). We move row h to row 1
and re-arrange the columns (to make the new first row coincide with the border)
so that the k-th column becomes column 1 and so that the element b is in row
1 and column b. Also, the element a is now in column 1. After re-arranging the
rows to make the new square reduced, a will be in row a of column 1. So the

5Frolov commented, without giving an explicit proof, that every regular latin square satisfies
the quadrangle criterion but he did not relate either property to that of being group-based.
He gave the cyclic latin square as an example of a regular latin square and stated erroneously
that every regular latin square is symmetric.
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fourth member of the quadrangle will be the entry in the cell (a, b) of the reduced
square. But, if and only if the square is regular, this is always the same whatever
the initial choices of cells containing 1 and the selected elements a and b. ⊓⊔
Note. If we wish to test whether a latin square is group-based using the Suschke-
witsch method, we require n2 tests since there are n2 pairs of permutations in
the set Σ. If we use the method which Frolov used to test whether a latin square
is regular, we need at most n tests. In fact, we shall show in the next chapter
that at most n/p tests are needed, where p is the smallest prime which divides
the order n of the latin square.

Parker(1959a) proposed an algorithm for deciding whether a loop is a group
but that author later found an error in his paper and his method turned out to
give only a necessary condition, not a sufficient one.

Wagner(1962) proved that to test whether a finite quasigroup Q of order n
is a group it is sufficient to test only about 3n3/8 appropriately chosen ordered
triples of elements for associativity. However, if a minimal set of generators of Q
is known, then it is sufficient to test the validity of at most n2 log2(2n) associative
statements provided that these are appropriately selected.

Wagner also showed in the same paper that every triassociative quasigroup
Q (that is, every quasigroup whose elements satisfy xy · z = x · yz whenever x,
y, z are distinct) is a group, and the same result has been proved independently
by D.A.Norton(1960).

These results lead us to ask the question “What is the maximum number of
associative triples which a quasigroup may have and yet not be a group?”

Farago(1953) proved that the validity of any of the following identities in a
loop guarantees both its associativity and commutativity:

(i) (ab)c = a(cb), (ii) (ab)c = b(ac), (iii) (ab)c = b(ca),
(iv) a(bc) = b(ca), (v) a(bc) = c(ab), (vi) a(bc) = c(ba),
(vii) (ab)c = (ac)b, (viii) (ab)c = (bc)a, (ix) (ab)c = (ca)b.

In fact, as Sade(1962) has pointed out, the identities (iv) and (v) are equiv-
alent and so also are (viii) and (ix). For example, if we permute the elements
a, b, c in (v) it becomes b(ca) = a(bc), which is (iv).

More recently, it has been shown with computer aid that there are just four
identities of length at most six (if we exclude mirror images and re-labellings)
which force a quasigroup to be a group: namely, (A) a·bc = ab·c, (B) a·bc = ac·b,
(C) a · bc = ca · b and (D) a · bc = b · ca . Moreover, all but the first of these forces
the group to be abelian. See Fiala(2007) and Keedwell(2009a,b).

In fact, (i) is equivalent to (B) and (ii) to the mirror image of (B), (iii) to
(C) and to its mirror image, (iv) and (v) to (D) and (viii) and (ix) to the mirror
image of (D). (vi) and (vii) do not force a quasigroup to have an identity element.

Theorem 1.2.4 A finite quasigroup is commutative if and only if its multiplica-
tion table (with row and column borders taken in the same order) has the property
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that products located symmetrically with respect to the main diagonal represent
the same element (i.e. the table is symmetric in the usual matrix sense).

Proof. By the commutative law, ab = ba = c for any arbitrary pair of elements
a, b and so the cells in the a-th row and b-th column and in the b-th row and
a-th column are both occupied by c. If this were not the case for some choice of
a and b, we would have ab 6= ba and the commutativity would be contradicted.

⊓⊔

A Cayley table of a group is called normal if every element of its main diagonal
(from the top left-hand corner to the bottom right-hand corner) is the identity
element of the group [see page 4 of Zassenhaus(1958)].

If the notation of Theorem 1.1.1 is used, it follows as a consequence of the
definition that a normal multiplication table ‖aij‖ of a group has to be bordered
in such a way that aij = aia

−1
j holds. Thus, if the element bordering the i-th

row is ai, the element bordering the j-th column must be a−1
j .

Obviously, the following further conditions are satisfied: (i) aijajk = aik
(since aia

−1
j aja

−1
k = aia

−1
k ); and (ii) a−1

ji = aij (since (aja
−1
i )−1 = aia

−1
j ). For

example, the normal multiplication table of the cyclic group of order 6, written
in additive notation, is shown in Figure 1.2.1.

(+) 0 5 4 3 2 1

0 0 5 4 3 2 1
1 1 0 5 4 3 2
2 2 1 0 5 4 3
3 3 2 1 0 5 4
4 4 3 2 1 0 5
5 5 4 3 2 1 0

Fig. 1.2.1.

(+) 0 5 4 2

0 0 5 4 2
1 1 0 5 3
2 2 1 0 4
4 4 3 2 0

Fig. 1.2.2.

As was first suggested by an example which appeared in Zassenhaus’ book
on Group Theory [Zassenhaus(1958), page 168, Example 1], the normal multi-
plication table of a finite group has a certain amount of redundancy since every
product aia

−1
j can be found n times in the table, where n is the order of the

group. In fact, aia
−1
j = aij = aikakj for k = 0, 1, . . . , n − 1. Consequently, it is

relevant to seek smaller tables that give the same information. A multiplication
table having this property is called a generalized normal multiplication table if it
has been obtained from a normal multiplication table by the deletion of a number
of columns and corresponding rows. The idea of such generalized normal mul-
tiplication tables was first mentioned by Tamari(1949), who subsequently gave
some illustrative examples in Tamari(1951) but without proof. As one of his ex-
amples, he stated that the table given in Figure 1.2.2 is a generalized normal
multiplication table of the cyclic group of order 6, obtained from the complete
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table displayed in Figure 1.2.1 by deleting the rows bordered by 3 and 5 and the
columns bordered by 3−1 = 3 and 5−1 = 1.

The same idea was mentioned again by Ginzburg(1964), who gave a reduced
multiplication table for the quaternion group of order 8. Later, in Ginzburg(1967),
he developed the concept in much more detail and gave full proofs of his results.
This paper contains, among other things, a complete list of the minimal gener-
alized normal multiplication tables for all groups of orders up to 15 inclusive.

It will be clear to the reader that of special importance to the theory is the de-
termination of the minimal number of rows and columns of a generalized normal
multiplication table. If r denotes the minimal number of rows (or columns), then
Erdős and Ginzburg(1963) proved that r < C(n2 logn)1/3 (where C is a suffi-
ciently large absolute constant) while Ginzburg(1967) showed that, in general,
r > n2/3 and that, for the cyclic group Cn of order n, r < (6n2)1/3.

For further generalizations of the concept of a generalized normal multipli-
cation table and for discussion of some of the mathematical ideas relevant to
it, the reader should consult Ginzburg(1960), Ginzburg and Tamari(1969a,b),
Tamari(1960) and Specnicciati(1966).

The perceptive reader will realize that these ideas may have application in
coding and cryptography.

1.3 Isotopy

Let (G, ·) and (H, ∗) be two quasigroups. An ordered triple (θ, φ, ψ) of one-to-
one mappings θ, φ, ψ of the set G onto the set H is called an isotopy or isotopism
of (G, ·) upon (H, ∗) if (xθ) ∗ (yφ) = (x · y)ψ for all x, y in G. The quasigroups
(G, ·) and (H, ∗) are then said to be isotopic. (It is worth remarking that the
same definition holds for any two groupoids.) There is an equivalent notion for
latin squares. An isotopism of a latin square L permutes the rows of L, permutes
the columns of L and permutes the symbols of L. The result is another latin
square which is said to be isotopic to L.

The concept of isotopy seems to be very old. In the study of latin squares
the concept is so natural as to creep in unnoticed and latin squares are simply
multiplication tables for finite quasigroups. For example, the concept has already
arisen in connection with our comments on Theorem 1.1.1. Also, each latin square
is isotopic to a reduced latin square (see page 3) obtained by suitably permuting
its rows and columns. The concept was consciously applied by Schönhardt(1930),
Baer(1939,1940) and independently by Albert(1943,1944). Albert had earlier
borrowed the concept from topology for application to linear algebras; and it
had subsequently been virtually forgotten except for applications to the theory
of projective planes.

A latin square becomes a multiplication table as soon as it has been suitably
bordered. For example the latin square on the left in Figure 1.3.1 becomes a
Cayley table of the cyclic group of order 4 if its first row and column are taken
as bordering elements as shown on the right in the same figure.
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1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4

1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

Fig. 1.3.1.

Of the permutations θ, φ, ψ introduced in the definition of isotopy, ψ oper-
ates on the elements of the latin square which forms the Cayley table of the
quasigroup, while θ and φ operate on the borders.

Let us suppose, for example, that the elements, row border and column border
respectively of the Cayley table exhibited in Figure 1.3.1 are transformed in the
manner prescribed by the following permutations

ψ =

(

1 2 3 4
2 1 4 3

)

, θ =

(

1 2 3 4
3 2 4 1

)

, φ =

(

1 2 3 4
2 4 3 1

)

.

Then the Cayley table in Figure 1.3.1 is transformed into that of an isotopic
quasigroup given on the left in Figure 1.3.2. We may re-write the table so that
the borders are in natural order as shown on the right in the same Figure. The
latin squares in these two Cayley tables are isotopic.

2 4 3 1

3 2 1 4 3
2 1 4 3 2
4 4 3 2 1
1 3 2 1 4

1 2 3 4

1 4 3 1 2
2 2 1 3 4
3 3 2 4 1
4 1 4 2 3

Fig. 1.3.2.

If an isotopism is such that θ = φ = ψ then it is an isomorphism. For latin
squares in which the rows and columns are indexed by the symbols we say that
an isomorphism is an isotopism which applies the same permutation to the rows,
columns and symbols. For example, the latin square exhibited in Figure 1.3.3

is isomorphic to that shown in Figure 1.3.1 with θ = φ = ψ =

(

1 2 3 4
4 2 1 3

)

so that row 1 becomes row 4, row 3 become row 1, row 4 becomes row 3; then
column 1 becomes column 4, column 3 becomes column 1, column 4 becomes
column 3; and finally symbol 1 becomes symbol 4, etc.

It is easy to see that isotopism and isomorphism are both equivalence relations
between quasigroups (or between groupoids) and between latin squares.

Definition. An isotopy class of latin squares is an equivalence class for the
isotopy relation. That is, it is a maximal set of latin squares every pair of which
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4 3 2 1
3 1 4 2
2 4 1 3
1 2 3 4

Fig. 1.3.3.

is isotopic. Similarly, an isomorphism class is a maximal set of latin squares every
pair of which is isomorphic.

Geometrically speaking, as we shall show, isotopic quasigroups are quasi-
groups which co-ordinatize the same 3-net. We shall discuss this aspect of iso-
topy in detail in Section 8.1. Let us notice at this point that there may also exist
isotopisms of a quasigroup onto itself. Such isotopisms are called autotopisms
and will be discussed in Section 4.1.

The foregoing remarks should make it clear that the concept of isotopy is
fundamental to our subject and so we shall need to develop some of its basic
properties for future application.

Theorem 1.3.1 Every groupoid that is isotopic to a quasigroup is itself a quasi-
group.

Proof. Let (G, ·) be a quasigroup and (H, ∗) a groupoid isotopic to (G, ·) with
(xθ) ∗ (yφ) = (x · y)ψ for all x, y ∈ G.

Let a, b be arbitrary elements in H. We require to show that there exists a
unique x in H such that a∗x = b. Since aθ−1 and bψ−1 belong to G and (G, ·) is
a quasigroup, the equation aθ−1 · y = bψ−1 has a unique solution c in G. Write
x = cφ. Then, a∗x = a∗cφ = (aθ−1)θ ∗ (cφ) = (aθ−1 ·c)ψ = (bψ−1)ψ = b, so the
equation a ∗ x = b is soluble. Further, if a ∗ x′ = b we have (aθ−1 · x′φ−1)ψ = b
or equivalently, aθ−1 · x′φ−1 = bψ−1. Since the equation aθ−1 · y = bψ−1 has a
unique solution, x′φ−1 = c whence x′ = cφ = x. Thus, the equation a ∗ x = b is
uniquely soluble in H. By a similar argument, we may show that the equation
z ∗ a = b is uniquely soluble for z. This proves the theorem. ⊓⊔

As an alternative to the formal proof above one can see that Theorem 1.3.1
is simply saying that isotopy re-arranges the rows and columns and permutes
the elements of a latin square and that the result of applying such operations to
a latin square is a latin square again.

Definition. If (G, ·) is a given quasigroup (or groupoid) and σ, τ are one-to-one
mappings of G onto G, then the isotope (G,⊗) defined by x⊗ y = (xσ) · (yτ) is
called a principal isotope of (G, ·).

The mappings θ, φ, ψ of the general definition are here replaced by σ−1, τ−1

and the identity mapping respectively.

Theorem 1.3.2 Every isotope (H, ∗) of a quasigroup (G, ·) is isomorphic to a
principal isotope of the quasigroup.
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Proof. Let θ, φ, ψ be one-to-one mappings of G onto H which define the iso-
topism between (G, ·) and (H, ∗) so that (xθ) ∗ (yφ) = (x · y)ψ for all x, y in Q.
Then ψθ−1 and ψφ−1 are one-to-one mappings of G onto G, so the operation ⊗
given by x⊗ y = (xψθ−1) · (yψφ−1) defines a principal isotope (G,⊗) of G.

Also (xψ) ∗ (yψ) = (xψθ−1)θ ∗ (yψφ−1)φ = [(xψθ−1) · (yψφ−1)]ψ = (x⊗ y)ψ
so (H, ∗) and (G,⊗) are isomorphic under the mapping ψ : G→ H. ⊓⊔

Theorem 1.3.3 Among the principal isotopes of a quasigroup (G, ·) there always
exist loops. [Such loops are called LP-isotopes (loop-principal isotopes) of (G, ·).]
Proof. Define mappings σ, τ of G onto G by xσ−1 = x · v, xτ−1 = u · x,
where u and v are fixed elements of G, and write e = u · v. Then (G,⊗), where
x⊗ y = (xσ) · (yτ), is a loop with e as identity element. For, let a be in G. Since
(G, ·) is a quasigroup, a = u · a′ and a = a′′ · v for some elements a′, a′′ in G.
Then

e⊗ a = (u · v)⊗ (u · a′) = uσ−1 ⊗ a′τ−1 = u · a′ = a,

and
a⊗ e = (a′′ · v)⊗ (u · v) = a′′σ−1 ⊗ vτ−1 = a′′ · v = a.

Conversely, every LP-isotope of (G, ·) is obtained by mappings σ, τ of the
type defined above. For, if (G,⊗) is an LP-isotope of (G, ·) and has identity
element e then x⊗ y = xσ · yτ , so xσ−1 = xσ−1 ⊗ e = x · eτ = x · v say, where
v = eτ . Also xτ−1 = e⊗ xτ−1 = eσ · x = u · x say, where u = eσ. ⊓⊔

The proof of the above theorem can be formulated in terms of latin squares.
It is equivalent to the statement that any latin square can be bordered in such
a way that the borders are identical to one of the rows and one of the columns
of the latin square.

An unsolved problem is that of finding necessary and sufficient conditions
on a loop G in order that every loop isotopic to G be isomorphic to G. [See
Bruck(1958), page 57.] Associativity is sufficient, as our next theorem will show,
but is not necessary.

LP-isotopes of a quasigroup have been further investigated by Bryant and
Schneider(1966).

The preceding three theorems will be found in Albert’s paper(1943) on “Quasi-
groups”. The following theorem is due to Bruck(1946) and, independently, N.J.S.
Hughes(1957).

Theorem 1.3.4 If a groupoid (S, ·) with an identity element e is isotopic to
a semigroup, then the groupoid and semigroup are isomorphic and so both are
associative and both have an identity element.

Proof. Let (H, ∗) be the semigroup and let the isotopism be defined by map-
pings θ, φ, ψ from G onto H such that (xθ) ∗ (yφ) = (x · y)ψ. Since (H, ∗) is a
semigroup, we have (a′ ∗ b′) ∗ c′ = a′ ∗ (b′ ∗ c′) for all a′, b′, c′ ∈ H, which implies

[(a′θ−1 · b′φ−1)ψθ−1 · c′φ−1]ψ = [a′θ−1 · (b′θ−1 · c′φ−1)ψφ−1]ψ.

Chapter 1



13

Thus,

(a′θ−1 · b′φ−1)ψθ−1 · c′φ−1 = a′θ−1 · (b′θ−1 · c′φ−1)ψφ−1 (1.1)

for all a′, b′, c′ ∈ H. In particular, when a′θ−1 = e and c′φ−1 = e we get

b′φ−1ψθ−1 = b′θ−1ψφ−1 (1.2)

and this must hold for all b′ ∈ H.
Now put a′θ−1 = e in (1.1). We get

b′φ−1ψθ−1 · c′φ−1 = (b′θ−1 · c′φ−1)ψφ−1.

Using (1.2),
b′θ−1ψφ−1 · c′φ−1 = (b′θ−1 · c′φ−1)ψφ−1.

Therefore,
bψφ−1 · c = (b · c)ψφ−1 (1.3)

for all b, c ∈ G.

Next put c′φ−1 = e in (1.1). We get

(a′θ−1 · b′φ−1)ψθ−1 = a′θ−1 · b′θ−1ψφ−1.

Using (1.2),
(a′θ−1 · b′φ−1)ψθ−1 = a′θ−1 · b′φ−1ψθ−1.

Therefore,
(a · b)ψθ−1 = a · bψθ−1 (1.4)

for all a, b ∈ G. Thence,

(a′ ∗ b′)φ−1ψθ−1 = (a′θ−1 · b′φ−1)ψφ−1ψθ−1

= (a′θ−1ψφ−1 · b′φ−1)ψθ−1 using (1.3),
= (a′θ−1ψφ−1 · b′φ−1ψθ−1) using (1.4),
= (a′φ−1ψθ−1 · b′φ−1ψθ−1) using (1.2).

Thus, (a′ ∗ b′)σ−1 = (a′σ−1 · b′σ−1) where σ−1 = φ−1ψθ−1, so σ is a one-to-one
mapping of G onto H such that (a · b) = (aσ ∗ bσ)σ−1 for all a, b in G. That is,
σ maps G isomorphically onto H. In particular,

(a · b) · c = [(aσ ∗ bσ)σ−1σ ∗ cσ]σ−1 = [(aσ ∗ bσ) ∗ cσ]σ−1.

Similarly, a · (b · c) = [aσ ∗ (bσ ∗ cσ)]σ−1, whence (ab)c = a(bc). ⊓⊔

Corollary 1. If a loop is isotopic to a group then the loop is a group isomorphic
to the given group.

 Elementary properties



14

Corollary 2. If groups are isotopic, they are isomorphic as well.

The first corollary is a consequence of the facts that a quasigroup with identity
is a loop and that any isotope of a quasigroup is also a quasigroup as shown in
Theorem 1.3.1. It was first proved by Albert(1943). The second corollary follows
immediately from the first.

Certain non-invariants of principal isotopy may be illustrated in terms of
the two loops (G, ·) and (G, ∗) shown in Figure 1.3.4, as was pointed out by
Bruck(1958). [See page 58 of that book. The two loops are related by x ∗ y =
xR−1

3 · yL−1
6 , where Ra : x→ xa, La : x→ ax as before.]

(·) 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 3 4 5
3 3 4 5 2 6 1
4 4 5 1 6 2 3
5 5 6 4 1 3 2
6 6 3 2 5 1 4

(∗) 2 3 4 5 6 1

2 2 3 4 5 6 1
3 3 2 6 4 1 5
4 4 6 2 1 5 3
5 5 4 1 2 3 6
6 6 1 5 3 2 4
1 1 5 3 6 4 2

Fig. 1.3.4.

(1) Commutativity: (G, ∗) is commutative but (G, ·) is not.
(2) Number of generating elements: (G, ·) can be generated by any one

of the elements 3, 4, 5, or 6. On the other hand, no single element generates
(G, ∗) but any two of 3, 4, 5, 6, 1 will generate it.

(3) Automorphism group: The automorphism group of (G, ·) has order 4
and is generated by the permutation (3 4 5 6). In contrast, that of (G, ∗)
has order 20 and is generated by the two permutations (3 4 5 6 1) and
(3 4 6 5).

1.4 Conjugacy and parastrophy

The usual representation of a latin square as a matrix has an unfortunate
side-effect in that it disguises the symmetry between the rows, columns and
symbols. One way to avoid this difficulty is to think instead of a latin square as
a set of (row, column, symbol) triples. If A = ‖aij‖ is a latin square of order n
the corresponding n2 triples are

TA =
{

(i, j, aij) : i, j = 1, 2, . . . , n
}

.

We refer to the entry occurring in a specific position in a triple as a co-ordinate.
The latin property of A translates into the observation that no two distinct
triples in TA agree in more than one co-ordinate. The closely related idea of an
orthogonal array will be discussed in Section 5.6.

Chapter 1



15

In the previous section we met the concept of isotopy, which applies permu-
tations to each of the three co-ordinates. There is another operation called paras-
trophy or conjugacy, which permutes the co-ordinates themselves. Since there are
three co-ordinates in a triple there are 6 = 3! parastrophes of each square. Each
parastrophe can be designated by the permutation which is applied to produce
it. For example, the (2,1,3)-parastrophe of a latin square is the transpose of that
square because it is produced by switching the roles of the first two co-ordinates,
namely the rows and columns. Similarly, the (1,3,2)-parastrophe is obtained by
switching columns and symbols while the (3,2,1)-parastrophe is found by switch-
ing rows and symbols. The (1,2,3)-parastrophe of a square is the square itself,
which is therefore included whenever we refer to the parastrophes of a square.
An example of a latin square L and its six parastrophes is given in Figure 1.4.1.
In fact, in the context of latin squares, the word “conjugate” has, until recently,
been used much more frequently than “parastrophe, see below.

L =







3 1 4 2
2 3 1 4
1 4 2 3
4 2 3 1













3 2 1 4
1 3 4 2
4 1 2 3
2 4 3 1













2 4 1 3
3 1 2 4
1 3 4 2
4 2 3 1







(1,2,3)-parastrophe of L (2,1,3)-parastrophe of L (1,3,2)-parastrophe of L







2 3 1 4
4 1 3 2
1 2 4 3
3 4 2 1













3 2 1 4
1 4 2 3
2 3 4 1
4 1 3 2













3 1 2 4
2 4 3 1
1 2 4 3
4 3 1 2







(3,1,2)-parastrophe of L (2,3,1)-parastrophe of L (3,2,1)-parastrophe of L

Fig. 1.4.1.

An easy way to find the (1,3,2)-parastrophe is to consider each row as a per-
mutation from natural order and to replace it by its inverse permutation. For this
reason the (1,3,2)-parastrophe is sometimes called the row inverse; see for exam-
ple Kolesova et al (1990) and Wanless(1999). Similarly the (3,2,1)-parastrophe
can be found by replacing each column by its inverse permutation and hence can
be called the column inverse.

Parastrophy (conjugacy) of latin squares extends naturally to quasigroups.
Every quasigroup (Q, ·) has associated with it five other parastrophic quasigroups
on the same set Q, obtained by taking parastrophes of the Cayley table for the
operation (·). Stein(1956,1957), Sade(1959a) and Belousov(1965) were among
the first to study parastrophic quasigroups.

As mentioned above, most writers on quasigroups use the terminology “paras-
trophe” (following Sade) and “parastrophy” rather than “conjugate” and “con-
jugacy”. Indeed, the author of the present book considers it essential to do so in
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order to avoid confusion with the concept of conjugacy between subquasigroups
of a quasigroup (Q, ·) [which are of course represented by latin subsquares in the
Cayley table of (Q, ·)]. However, as already remarked, the term “conjugate” has
been used extensively when discussing latin squares, especially in North America.

The adjective “parastrophic” seems to have been used first by Shaw(1915)
while “conjugate” was probably first used by Stein in his papers of the 1950’s. In
his very well-known book, page 18, Belousov(1967b) used the term “obratnyh
operacii” for parastrophic operations (meaning “reverse”, “inverse”, “recipro-
cal”). However, in later papers, he too adopted the name parastrophic.

Definition. A parastrophy class (conjugacy class) is a maximal set of latin
squares each pair of which are parastrophes.

We have stated above that each square has six parastrophes including itself,
but it need not be the case that these six parastrophes are distinct. A square
may have some symmetry which makes two or more of the parastrophes coincide.
For example, if it is symmetric in the usual matrix sense then the (1, 2, 3) and
(2, 1, 3)-parastrophes coincide. In this case it will also follow that the (1, 3, 2)
and (2, 3, 1)-parastrophes coincide and, separately, that the (3, 1, 2) and (3, 2, 1)-
parastrophes coincide. More generally we have:

Theorem 1.4.1 The number of latin squares in a parastrophy class is always 1,
2, 3 or 6.

Proof. According to their definition, the parastrophes of a square L are pro-
duced by the action of the group S3 on the triples of L. It follows that the distinct
parastrophes must be in the orbit of some subgroup of S3. The only subgroups
of S3 have orders 6, 3, 2 or 1 and indices 1, 2, 3 or 6 respectively, from which
the theorem follows. ⊓⊔

Note that all four of the feasible values given in Theorem 1.4.1 are achieved.
We have seen an example with six different parastrophes in Figure 1.4.1 and we
shall meet examples of the other types in Chapter 2.

Definition. The set of all parastrophes of the squares in an isotopy class is
called a main class.6 A map which combines an isotopy with the taking of a
parastrophe is called a main class isomorphism or paratopy.7

Other names for the ideas which we have introduced in this and the previous
section were used in the early literature by Fisher, Yates, Norton and Finney. The
name transformation set was used instead of isotopy class and species was used
in the place of main class. Also, adjugacy set was used instead of parastrophy
class.

6The relationships between parastrophy, isotopy classes and main classes will be studied
further in Chapter 4.

7The name “paratopy” was introduced by Sade(1959a) and has the virtue of brevity. Be-
lousov(1967a), on the other hand, used “isostrophy” for this concept. More recently, the term
“autostrophy” has been used for an isotopism from a quasigroup to one of its parastrophes.
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It should also be noted that main class isomorphisms are not the same thing
as the isomorphisms defined in Section 1.3. The problem is that the latter no-
tion is the established one for groups and hence the natural one when talking
about quasigroups. However, in many problems which deal with latin squares
the idea of a main class isomorphism is more natural. This has led authors such
as Brown(1968) to call these simply “isomorphisms”, which latter then becomes
a further source of confusion.

A property which, for each class C, either holds for all members of C or for
no member of C is said to be a class invariant. Many important properties of
latin squares turn out to be main class invariants. A main class is in some deep
sense a set of latin squares with the same structure (and is a maximal set with
this property). Main class invariants will be found throughout this book. See,
for example, Theorems 1.5.5 and 1.6.2 and the Corollary to Theorem 4.2.3.

1.5 Transversals and complete mappings

A transversal of a latin square of order n is a set of n cells, one in each row,
one in each column, and such that no two of the cells contain the same symbol.
This concept has very close connections with the theory and construction of
orthogonal latin squares and will be referred to in that connection in Chapter 5.

A complete mapping of a group, loop, or quasigroup (G,⊗) is a bijective
mapping x → θ(x) of G upon G such that the mapping x → η(x) defined by
η(x) = x⊗ θ(x) is again a bijective mapping of G upon G.

The associated mapping η(x) is called an orthomorphism, a name first used
by Johnson, Dulmage and Mendelsohn(1961).

Theorem 1.5.1 If Q is a quasigroup which possesses a complete mapping, then
its multiplication table is a latin square with a transversal. Conversely, if L is a
latin square having a transversal, then at least one of the quasigroups which have
L as multiplication table has a complete mapping.

Proof. Let us suppose that Q has a complete mapping, say

θ =

(

1 2 . . . n
a1 a2 . . . an

)

, η =

(

1 2 . . . n
b1 b2 . . . bn

)

(1.5)

then its multiplication table has at least one transversal since

1⊗ a1 = b1

2⊗ a2 = b2 (1.6)

...

n⊗ an = bn

implying that the cell of the i-th row and ai-th column has bi as entry, for
i = 1, 2, . . . n, and these entries are all distinct.
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Conversely, if L is a latin square having a transversal comprising the elements
b1, b2, . . . , bn occupying the cells (1, a1), (2, a2), . . . , (n, an), then there exists a
quasigroup (Q,⊗) having L as its multiplication table for which (1.6) holds.
This quasigroup Q has a complete mapping, characterized by mappings θ and η
defined as in (1.5). ⊓⊔

The notion of a transversal was first introduced by Euler(1779) under the
title formule directrix. The concept was used extensively by H.W.Norton(1939)
under the name of directrix. It was called a 1-permutation by Singer(1960) and
it was given the name diagonal by Dénes and Pásztor(1963). Modern usage
strongly favours the name “transversal”, as pioneered by Johnson, Dulmage and
Mendelsohn(1961) and Parker(1963), among others.

The concept of complete mapping was introduced by Mann(1942).
In the rest of this section we shall give some of the results concerning these

concepts which are contained in these and other papers.

Theorem 1.5.2 If L is a latin square of order n which satisfies the quadrangle
criterion and possesses at least one transversal, then L has a decomposition into
n disjoint transversals.

Proof. By Theorem 1.2.1, L can be written as a multiplication table for some
group G.

If L has a transversal formed by taking the symbol c1 from the first row, c2
from the second row, . . ., cn from the n-th row, then it follows easily from the
group axioms that another transversal can be obtained by taking c1g from the
first row, c2g from the second row, . . ., cng from the n-th row, where g is any
fixed element of the group. As g varies through the n elements of the group, we
shall thus obtain n disjoint transversals.

To see this, suppose that ci = gigj(i) where the sequences c1, c2, . . . , cn and
g1, g2, . . . , gn both represent orderings of the elements of G, the latter corre-
sponding to the ordering of the rows and columns of L in the multiplication
table of G. In other words, ci is the element to be found in the cell which occurs
in the i-th row and j-th column of L. Also, since the ci form a transversal, the
integer j is a function of i such that j(i1) 6= j(i2) if i1 6= i2. Then, because G is
a group,

cig = (gigj(i))g = gi(gj(i)g) = gigk(i)

where, as gj varies through the elements of G, so does gk. Consequently, ci1g and
ci2g are always in distinct columns and so the cig form a transversal. Moreover,
gj(i) 6= gk(i) for any value of i and so the transversal formed by the ci’s is disjoint
from that formed by the cig’s. Similarly, the transversals corresponding to two
different choices of the element g are disjoint. ⊓⊔

Note that the validity of the associative law is an essential requirement for
the proof.

The converse of Theorem 1.5.2 is not true. We shall exhibit a latin square
of order 10 as a counter-example. For the labelled elements in Figure 1.5.1 the
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quadrangle criterion does not hold, but the square has a decomposition into n
disjoint transversals.

0 4 1 7 2 9 8 3 6 5
8 1 5 2 7 3 9 4 0 6
9 8 2 6 3 7 4 5 1 0
5 9 8 3 0 4 7 6 2 1
7 6 9 8 4 1 5 0 3 2
6 7 0 9 8 5 2 1 4 3
3 0 7 1 9 8 6 2 5 4
1 2 3 4 5 6 0 7 8 9
2 3 4 5 6 0 7 8 9 7
4 5 6 0 1 2 3 9 7 8

Fig. 1.5.1.

It is also worthwhile to point out that there are many examples of latin
squares which have no transversals and which do not satisfy the quadrangle
criterion. One of order 6 is shown later in Figure 1.5.2.

Theorem 1.5.3 If G is a group of odd order 2n − 1, then G has a complete
mapping.

Proof. If G is a group of odd order, it is well known that every element of
G has a unique square root in G. To prove this, let g ∈ G be an element of
(necessarily odd) order 2r − 1. Then h = gr satisfies h2 = g2r = g and so h is
a square root of g. Further, if k ∈ G satisfies k2 = g, we have h2 = k2 and so
h2n = k2n. That is, h = k since h2n−1 = e = k2n−1 (where e is the identity
element of G) so h is the unique square root of g.

It follows that, in a group G of odd order, g2i = g2j only if i = j. Consequently,

the mapping η(gi) = g2i for i = 1, 2, . . . , n is a bijective mapping of G upon G.
Thus, the identity mapping θ(gi) = gi satisfies the definition of a complete
mapping of G. ⊓⊔

In the notation of Theorem 1.5.2, the entries g2i = gigi for i = 1, 2, . . . , n of
the leading diagonal of a multiplication table L of G form a transversal of L.

Corollary. Every finite group of odd order is isotopic to an idempotent quasi-
group.

Proof. The proof is due to Bruck(1944), whose argument is as follows. Define
a new operation (∗) on G by the equation gi ∗ gj = σ(gigj) where σ is the
permutation of G which maps g2 onto g for every g ∈ G. Then (G, ∗) is an
idempotent quasigroup isotopic to the group (G, ·). ⊓⊔
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We observe that the proof of Theorem 1.5.3 is solely dependent on the fact
that every element of a group of odd order has a unique square root. A quasi-
group with the property that every element has an exact square root was called
diagonal by Sade(1960a). He showed in Sade(1963) that the necessary and suffi-
cient condition for a commutative quasigroup to be diagonal is that it be of odd
order, by a variant of the following simple argument.

Theorem 1.5.4 The entries on the main diagonal of a symmetric latin square
are all distinct if and only if the square has odd order.

Proof. Suppose L is a symmetric latin square of order n. The entries not
on the main diagonal of L can be partitioned into symmetrically placed pairs
containing the same symbol. Since each symbol must occur exactly n times in L
it follows that the number of occurrences of each symbol on the main diagonal
is n− 2k for some k > 0. If n is even, this means that any symbol on the main
diagonal must occur at least twice on that diagonal. On the other hand, if n is
odd it means that every symbol must occur on the main diagonal at least once.
Since there are only just as many places as there are symbols, no symbol can be
duplicated in this case. ⊓⊔

Sade’s result is a corollary of Theorem 1.5.4, since a commutative quasigroup
has a symmetric Cayley table (when the same order is chosen for the row and
column borders) in which the entries on the main diagonal represent the squares
of the elements. Thus, Theorem 1.5.3 holds for all commutative quasigroups of
odd order. Certain types of non-commutative quasigroups are also known to be
diagonal.

A loop is called a Bruck loop if it satisfies the identities [(xy)z]y = x[(yz)y]
and (xy)−1 = x−1y−1. It is called Moufang if it satisfies any one of the identities
[(xy)z]y = x[y(zy)], (xy)(zx) = [x(yz)]x or x[y(xz)] = [(xy)x]z. Such a loop
satisfies the identity (xy)−1 = y−1x−1. Every commutative Moufang loop is a
Bruck loop but a non-commutative Moufang loop is not a Bruck loop.

For the justification of the latter statements, see Bruck(1958, 1963b).
It follows from the results of Robinson(1966) and Glaubermann(1964, 1968)

that every element of a Moufang loop of odd order or of a Bruck loop of odd
order has a unique square root. Consequently, Theorem 1.5.3 remains true for
such loops.

In fact, Robinson’s results imply that, even in Bol loops (that is, loops sat-
isfying the identity [(xy)z]y = x[(yz)y] alone) of odd order, every element has a
unique square root and so Theorem 1.5.3 holds. This follows from the facts that
such loops are power associative (see definition below) and satisfy a weak form
of Lagrange’s theorem (namely, that the order of every element divides the order
of the loop).8 The class of Bol loops includes all Moufang loops and all Bruck

8It has been proved recently by Grishkov and Zavarnitsine(2005) and independently by
Gagola and Hall(2005) that, for Moufang loops, the order of any subloop divides the order of
the loop. In fact, finite Moufang loops (and therefore also finite extra loops, defined on page 43)
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loops.
Also, conjugacy-closed loops (see definition below) satisfy the strong form of

Lagrange’s theorem [see Kinyon, Kunen and Philips(2004)] so those which are of
odd order and power associative9 satisfy Theorem 1.5.3. For more information
concerning various types of loop and quasigroup, see Section 2.1.

Definition. A loop (or quasigroup) (Q, ·) is power associative if a(aa) = (aa)a
for all a ∈ Q. It is conjugacy closed if both its right mappings Ra and its left
mappings La (where bRa = ba and bLa = ab) are closed under conjugacy. See
Kunen(2000).

Ryser(1967) posed the question of whether there exist any quasigroups of
odd order which do not possess a complete mapping. Certainly there exist quasi-
groups of even order which have no complete mappings. In particular, Mann
has proved that if a quasigroup Q of order 4k + 2 has a subquasigroup of or-
der 2k + 1, then each multiplication table of Q is without transversals. (For the
proof, see Theorem 5.1.5.) An example of such a quasigroup of order 6 is given
in Figure 1.5.2.

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 1 5 6 4

3 3 1 2 6 4 5

4 4 5 6 1 2 3

5 6 4 5 2 3 1

6 5 6 4 3 1 2

Fig. 1.5.2.

In this connection it is relevant to point out that if Q is a quasigroup which
has a complete mapping, then any isotopic quasigroup has one also. In fact:

Theorem 1.5.5 The number of transversals of a latin square is a main class
invariant.

Proof. The definition of a transversal is symmetric between rows, columns
and symbols and does not depend on the order or labelling chosen for any of
these objects. Hence, it is clear that a paratopy maps each transversal to an-
other transversal. Since such a mapping is invertible, it cannot send two distinct
transversals to the same transversal and therefore must preserve the number of
transversals. ⊓⊔
have even stronger properties: namely, for such loops, the Sylow properties hold. Kinyon and
Kunen(2004) proved this result for extra loops and Gagola(2011) proved it for Moufang loops.

9It was shown by Goodaire and Robinson(1990) that there exist CC loops of odd order
which are not power associative.
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Belousov(1967b) proved the weaker result that if a quasigroup Q has a com-
plete mapping then so do all the parastrophes of Q.

The deep question of which quasigroups possess complete mappings seems
a long way from being solved. Even for groups the complete answer has only
recently been obtained. For the details, see Section 2.5.

Prolongation

Let (Q, ·) be a given quasigroup of order n which possesses a complete map-
ping θ. By a process which Belousov(1967b) has called prolongation we shall show
how, starting from (Q, ·), a quasigroup (Q′, ∗) of order n+1 can be constructed,
where the set Q′ is obtained from Q by the adjunction of one additional element.

Before presenting a formal algebraic definition of a prolongation, we shall
explain how the construction may be carried out in practice. We suppose that
the elements of Q are 1, 2, . . . , n as usual and let L be the latin square formed
by a multiplication table of the quasigroup (Q, ·). Since (Q, ·) has a complete
mapping, L possesses at least one transversal (Theorem 1.5.1). We replace the
elements in all the cells of this transversal by the additional element n+ 1 and
then, without changing their order, adjoin the elements of the transversal to the
resulting square as its (n+1)-th row and (n+1)-th column. Finally, to complete
the enlarged square L′, we adjoin the element n+1 as the entry of the cell which
lies at the intersection of the (n+ 1)-th row and (n+ 1)-th column. The square
L′ is then latin (see Figure 1.5.3 for an example) and defines a multiplication
table for a quasigroup (Q′, ∗) of order one greater than that of (Q, ·).

(·) 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

(∗) 1 2 3 4

1 1 2 4 3
2 4 3 1 2
3 3 4 2 1
4 2 1 3 4

Fig. 1.5.3.

In the example illustrated in Figure 1.5.3, (Q, ·) is the cyclic group of order
3 and its prolongation (Q′, ∗) is a quasigroup of order 4.

If L has a second transversal, disjoint from the first, then the process can be
repeated; since then the cells of this second transversal of L, together with the
cell of the (n+ 1)-th row and column of L′, form a transversal of L′.

Algebraically, we may specify a prolongation by defining the products x ∗ y
of all the pairs of elements x, y of Q′. If x · θ(x) = η(x) we get the following:
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x ∗ y =



















x · y if x, y ∈ Q, y 6= θ(x)
n+ 1 if x, y ∈ Q, y = θ(x)
η(x) if x ∈ Q, y = n+ 1
η
(

θ−1(y)
)

if y ∈ Q, x = n+ 1
n+ 1 if x = y = n+ 1.

In our example (Figure 1.5.3) we have

θ(1) = 3, η(1) = 3,
θ(2) = 1, η(2) = 2,
θ(3) = 2, η(3) = 1.

The construction of prolongation was first studied by Bruck(1944) who dis-
cussed only the case in which (Q, ·) is an idempotent quasigroup. The construc-
tion for arbitrary quasigroups has been defined by Osborn(1961) and by Dénes
and Pásztor (1963). We shall make use of the construction in Section 1.6 and
again in Section 6.1. Yamamoto(1961) has used the same concept, under the
name 1-extension, in connection with the construction of pairs of mutually or-
thogonal latin squares. He has also defined the inverse construction and called it
a 1-contraction. We shall mention his work again in Section 9.3.

We mention two further properties of prolongation without proof.

(1) The necessary and sufficient condition that a group G be a prolongation
of some quasigroup is that G is an elementary abelian 2-group; that is, a
direct sum of cyclic groups each of order two.

(2) Let G be a group which has at least one element of order greater than two.
If G possesses two complete mappings θ1 and θ2 then the prolongations of
G constructed by means of θ1 and θ2 are isotopic if and only if θ1 and θ2
are themselves isotopic.10

The reader will find the proofs lacking here and further results of similar type
in Belousov(1967b,c), Belousov and Belyavskaya(1968) and Belyavskaya(1969).

Further constructions related to the concept of prolongation will be found in
Belyavskaya(1969,1970a,b,c,d) and Elspas, Minnick and Short(1963).

In particular, in the fourth and fifth of Belyavskaya’s papers on this topic, the
inverse of a prolongation (which had earlier been defined by Yamamoto under the
name 1-contraction, as we have already mentioned above) has been re-introduced
under the title of compression. Thus, by means of a compression one can obtain
a latin square of order n− 1 from a given latin square of order n.

More recent papers on this topic are Deriyenko and Dudek(2008,2013) and
Derienko and Derienko(2009). In the first of these papers, the authors show,
among other things, that prolongation is still possible when the quasigroup/ latin
square (of order n) has only a partial transversal of length n− 1. We give their
construction below. In the second paper, they give an in-depth investigation of
the situations in which a contraction/compression of a latin square is possible.

10In [DK1], the result was stated as “if and only if θ1 = θ2”. Derienko(2011) has shown by
counter-example that this is false.

 Elementary properties



24

The third paper discusses the circumstances in which two prolongations of a
quasigroup yield isotopic quasigroups.

A long-standing conjecture of Brualdi is that every latin square of order n
has a partial transversal of length at least n − 1. If this proves to be correct
(though some recent evidence is to the contrary, see Section 3.5, but no actual
counter-example is known), then it would follow that every latin square can be
prolonged.

Finally, Elspas et al have introduced a generalization of the notion of pro-
longation for latin hypercubes (the latter concept will be defined later in Sec-
tion 5.6).

The construction of Deriyenko and Dudek

Suppose that the latin square L of order n has a partial transversal P of
length n − 1. Then the elements of P occupy n − 1 rows and n− 1 columns of
L and are all distinct. Let u be the element which is missing from P and let the
element in the cell (R,C), where R and C are respectively the row and column
of L which do not contain any element of P , be v.

We leave the element v in cell (R,C) unaltered. We replace the entries in the
cells of P by a new element w and adjoin a new (n+1)th row and column to L.
In row ri of this new column, we place the element which was in row ri of P for
each ri except ri = R. In row R of the new column we put w and in row n+ 1
of the new column, we put u. In column ci of the new (n + 1)th row, we place
the element which was in column ci of P for each ci except ci = C. In column
C of the new row, we put w. Finally, we observe that we have already put u in
column n+ 1 of the new row.

We illustrate the construction in Figure 1.5.4. In that figure, the elements of
P are in boxes. Also, u = 2, v = 5 and w = 7.

(·) 1 2 3 4 5 6

1 1 3 4 2 5 6
2 2 4 5 3 6 1
3 4 6 1 5 2 3
4 5 1 2 6 3 4
5 6 2 3 1 4 5
6 3 5 6 4 1 2

(∗) 1 2 3 4 5 6 7

1 1 7 4 2 5 6 3
2 2 4 7 3 6 1 5
3 4 6 1 5 2 3 7
4 5 1 2 6 3 7 4
5 7 2 3 1 4 5 6
6 3 5 6 4 7 2 1
7 6 3 5 7 1 4 2

Fig. 1.5.4.

To close this section we use prolongation to prove a result which we will need
for later constructions.

Theorem 1.5.6 There exists an idempotent quasigroup of order m if and only
if m 6= 2.
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Proof. It follows from Theorems 1.5.3 and 1.5.2 that for every odd n, there
exists an idempotent group of order n which has a multiplication table composed
of disjoint transversals. If n 6= 1 then by prolongation using a transversal other
than the main diagonal, one can obtain from this an idempotent quasigroup of
order n+ 1. It is easy to check that no quasigroup of order two is idempotent.⊓⊔

1.6 Latin subsquares and subquasigroups

The concepts of subquasigroup and latin subsquare are closely connected.

Definition. Let the square matrix A shown in Figure 1.6.1 be a latin square.
Then, if the square submatrix B shown in the same figure (where 1 ≤ i, j, . . . , l ≤
n and 1 ≤ p, q, . . . , s ≤ n) is again a latin square, B is called a latin subsquare of
A. If B has order 1 or the same order as A then it is said to be trivial, otherwise
it is proper.

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann









B =









aip aiq · · · ais
ajp ajq · · · ajs
...

...
. . .

...
alp alq · · · als









Fig. 1.6.1.

Thus, the latin square corresponding to a Cayley table of a subquasigroup
Q′ of any quasigroup Q is a latin subsquare of the latin square defined by a
Cayley table of Q. Conversely, any latin subsquare of a latin square derived
from a Cayley table of a quasigroup Q becomes, when bordered appropriately, a
Cayley table for a subquasigroup of a quasigroup isotopic to Q. (The reason for
it being not the same as Q but only isotopic to it is that the bordering elements
contained in the rows and columns defining the latin subsquare may be different
from those of the latin subsquare itself.)

In Figure 1.6.2, the Cayley table of a quasigroup of order 10 is shown which
has a subquasigroup of order 4 (consisting of the elements 1, 2, 3, 4) and also one
of order 5 (with elements 3, 4, 5, 6, 7) the intersection of which is a subquasigroup
of order 2 (with elements 3, 4). There are also four circled entries which form a
latin subsquare on the elements 2 and 4. This is an example of a latin subsquare
which is not a subquasigroup because the bordering elements (6 and 0 on the
rows and 8 and 6 on the columns) do not coincide with the elements in the latin
subsquare. Note that this example also shows that the entries forming a latin
subsquare need not be contiguous.

We come now to our first theorem of this section:

Theorem 1.6.1 Let S1 and S2 be latin subsquares of a Latin square L and let
I be the intersection of S1 and S2. If I is not empty then it is itself a (possibly
trivial) latin subsquare of S1, S2 and L.
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1 9 2 8 0 6 7 4 5 3

8 2 1 0 9 7 5 3 4 6

2 1 0 9 8 5 6 7 3 4

0 8 9 1 2 3 4 6 7 5

9 0 8 2 1 4 3 5 6 7

5 6 7 3 4 1 2 0 8 9

6 7 5 4 3 2 1 8 9 0

7 4 3 5 6 0 9 1 2 8

3 5 4 6 7 8 0 9 1 2

4 3 6 7 5 9 8 2 0 1

0 8 9 1 2 3 4 5 6 7

5

6

7

3

4

1

2

0

8

9

Fig. 1.6.2.

Proof. Suppose that the entries of I are in a subset R of the rows of L and
let S be the set of symbols that occur in I. Take any r ∈ R and s ∈ S. Since
s is among the symbols used in S1 we know that in row r it occurs within S1.
Similarly, it occurs within S2 in row r. But s occurs only once in any given row
of L so in row r it must occur in S1∩S2 = I. As r and s were general elements it
follows that every symbol in I occurs in every row of I. By a similar argument,
every symbol in I occurs in every column of I. Consequently, I is a latin square.

⊓⊔
This result shows that it is no coincidence that the intersection of the sub-

quasigroups in Figure 1.6.2 is a latin subsquare. However, it does not guarantee
that the intersection is a subquasigroup (although it is in this case). But note
that if, say, the column labels 1 and 3 were interchanged then we would have an
intersection of subquasigroups which is not a subquasigroup.

H.W.Norton(1939) introduced the name intercalate for a latin subsquare of
order 2, such as that formed by the circled entries in Figure 1.6.2. He made use
of intercalates in connection with the enumeration of latin squares of order 7 (see
Section 4.3). The reason why subsquares are useful in enumeration problems is
explained by the following result.

Theorem 1.6.2 For each k, the number of latin subsquares of order k is a main
class invariant.

Proof. If we define a latin subsquare by means of ordered triples as in Sec-
tion 1.4 then it is apparent from the definitions that a paratopy maps each latin
subsquare to another latin subsquare of the same order. Since the paratopy is
invertible this process must preserve the number of subsquares of each order. ⊓⊔

Our next theorem restricts the possible sizes of latin subsquares and, cor-
respondingly, of subquasigroups. The first proof of the theorem was published
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by T.Evans(1960). Later, an alternative proof using prolongation was given by
Dénes and Pásztor (1963). See also Dénes (1967b). In fact, the theorem is a
special case of Theorem 3.1.2 which we prove later so we shall appeal to the
latter for our proof. (The proof using prolongation was given in [DK1].)

Theorem 1.6.3 Let Lk be an arbitrary latin square of order k. Then, if n ≥ 2k
there exists at least one latin square Ln of order n such that Lk is a proper latin
subsquare of Ln. On the other hand, if n < 2k there is no such Ln.

Corollary. Let Qk be an arbitrary quasigroup of order k. Then, if n ≥ 2k
there exists at least one quasigroup Qn of order n such that Qk is a proper
subquasigroup of Qn. On the other hand, if n < 2k there is no such Qn.

Proof. For Lk to be a proper latin subsquare of Ln there must be at least
one symbol of Ln which does not occur in Lk. By Theorem 3.1.2 it is necessary
and sufficient for Lk to be extendible to Ln that each symbol of Ln occurs at
least 2k − n times in Lk. Since some symbols of Ln do not occur at all in Lk,
this happens if and only if 2k − n ≤ 0. Moreover, the same theorem says that,
provided this condition is satisfied, we can extend Lk to a Latin square of order
n.

As regards the corollary, if Lk is a latin subsquare of a latin square Ln we can
always border Ln using a row and a column of Ln each of which intersects Lk.
This will produce a multiplication table for a quasigroup in which Lk corresponds
to a subquasigroup. ⊓⊔

In contrast to the above theorem, Hilton(1977) conjectured that, for all suffi-
ciently large n, there exist latin squares of order n which contain no proper latin
subsquares. His conjecture is now known to be true when n is not of the form
2a3b. In the first edition of this book, Hilton’s conjecture was mis-reported. For
more details of the present situation, see Problem 1.7 in The Present State of
the Problems and also Chapter 4 of [DK2].

We can say a great deal about the latin subsquares in group-based latin
squares. Firstly, we have:

Theorem 1.6.4 Let L be a Cayley table for a finite group G. Let a, b be two
fixed elements of G and let H be a subgroup of G. The intersection of the rows
bordered by elements of the left coset aH and columns bordered by elements of the
right coset Hb is a latin subsquare of L of order |H|. Moreover, every subsquare
of L can be expressed in this form for some suitable choice of a, b and H.

Proof. Let I be the set of entries in the intersection specified in the theorem.
Clearly I is a square submatrix of order |H|. Also, by construction every element
in I belongs to the two sided coset aHb = aHHb. But aHb contains exactly |H|
entries which is the number of entries in each row and column of I. Since L is
latin, I contains no duplicated symbols within any row or column so it must be
a subsquare on the elements of aHb.
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To prove the last assertion of the theorem, we suppose that S is any latin
subsquare of L of order, say, s. Let R and C be the bordering elements of the
rows and columns (respectively) of L which intersect to form S, so that each
sij ∈ S is a product ricj , where ri ∈ R and cj ∈ C. Choose any r ∈ R and c ∈ C
and consider the intersection I of the rows bordered by elements of r−1R and
columns bordered by elements of Cc−1. Since |R| = |C| = |RC| = s it follows
that |r−1R| = |Cc−1| = |r−1RCc−1| = s. Also r−1R contains the identity of G
so Cc−1 ⊆ r−1RCc−1. As these two sets have the same cardinality we must have
Cc−1 = r−1RCc−1 = H say. By a similar argument r−1R = r−1RCc−1 = H.
Thus, HH = H and so H is a subgroup of G. Also, rHHc = rr−1RCc−1c = RC
so S is the intersection of the rows bordered by rH and the columns bordered
by Hc. ⊓⊔

From Lagrange’s theorem, which states that the order of any subgroup divides
the order of the group, we get an immediate corollary:

Corollary. If S is a latin subsquare of order s in a group-based latin square of
order n then s divides n.

Theorem 1.6.4 gives us a neat characterization of the latin subsquares which
occur in group-based latin squares. In particular, we note that a latin square of
odd order which satisfies the quadrangle criterion cannot contain any intercalates.

At a conference held in Prague in 2003 Aleš Drápal asked whether this result
could be extended to Moufang loops. That is, how can the latin subsquares which
occur in the Cayley tables of Moufang loops be characterized? [It is now known
that Moufang loops satisfy Lagrange’s theorem. See Gagola(2011).] We may ask
the same question with regard to other classes of loops: for example Bruck loops
or Bol loops.

Contrasting with the above is a question raised by Fuchs as to whether,
given an arbitrary positive integer n, there always exists a latin square of order
n (not necessarily group-based) which contains latin subsquares of every order
m such that m ≤ n/2. This question was answered by Heinrich(1977) in the
negative except for small values of m. (See Problem 1.8 in The Present State of
the Problems).

For the case of group-based latin squares, the question has been answered
completely by Hobby, Rumsey and Weichsel(1960) as follows: A finite group G
of order n contains elements of every order m which is a proper divisor of n if
and only if one of the following conditions is satisfied:

(i) G is cyclic;

(ii) G is a p-group and contains a cyclic subgroup of index p;

(iii) G has order n = pαq for distinct primes p and q and it contains precisely
one Sylow q-subgroup which is the commutator subgroup G′ of G. Further,
if S is any Sylow p-subgroup of G, then S is cyclic, say S = 〈g〉, and gp is
in the centre of G.
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Let H be a subgroup of index k in a finite group G. Let a1, a2, . . . , ak be a
set of left coset representatives for H and b1, b2, . . . , bk be a set of right coset
representatives for H. Suppose that we order the bordering elements for the
rows of a Cayley table for G by writing down first the elements of a1H, then
the elements of a2H, then the elements of a3H and so on, finishing with the
elements of akH. We choose a similar order for the bordering elements of the
columns, writing down first the elements of Hb1, then the elements of Hb2, then
the elements of Hb3 and so on, finishing with the elements of Hbk. This gives
us a Cayley table for G which has quite a striking structure in terms of its latin
subsquares.

Theorem 1.6.5 Let L be the Cayley table just described. If we partition the
rows of L into k sets, each consisting of H consecutive rows, and partition the
columns similarly, then we get k2 blocks each of which is a latin subsquare of
order |H|. If H is a normal subgroup then the k2 subsquares consist of k latin
subsquares whose elements are those of a1H, k latin subsquares whose elements
are those of a2H, . . ., and k latin subsquares whose elements are those of akH.

Proof The fact that each block is a latin subsquare follows immediately from
Theorem 1.6.4. A general block will contain the elements of some two sided coset
aiHbj . If H is normal then aiHbj = amH for some m so, in that case, each of
our subsquares contains the elements of a left coset. There are exactly k distinct
left cosets. Also, there are k blocks which intersect each row and these blocks
must contain disjoint sets of elements, so one of them must correspond to each
left coset. The result now follows. ✷

Latin subsquares can be used to characterize simple groups. We remind the
reader that a group G is simple if and only if it has no non-trivial normal sub-
group. By Theorem 1.6.5, if G has a subgroup of order h and index k then it
decomposes into k2 disjoint blocks, each of which is a latin subsquare of order
h. The subgroup is normal if and only if, among the sets of symbols which occur
in these k2 blocks, there are only k different sets of symbols.

As an example, consider the dihedral group D3 = 〈a, b : a3 = b2 = e, ab =
ba−1〉 of order 6 and its subgroups H = {e, b} and N = {e, a, a2}, the second
of which is normal. The result of Theorem 1.6.5 for this case is exhibited in
Figure 1.6.3.

Suppose that N is a normal subgroup of G and consider the latin subsquares
in the Cayley table ofG identified in Theorem 1.6.5 as corresponding to left cosets
of N . If for i = 1, 2, . . . , k each of the subsquares corresponding to aiN is replaced
by the coset representative ai then the result is a Cayley table for a group which
is isomorphic to the factor group G/N . For full details see Baumgartner(1921).

We note that the same construction was used by Šik(1951) in connection with
the generalization of the Jordan-Hölder theorem and by Dénes and Pásztor
(1963) for the purpose of disproving Wall’s conjecture. (We shall discuss the
latter below.)
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e a a2 b ab a2b
e e a a2 b ba2 ba
a a a2 e ba2 ba b
a2 a2 e a ba b ba2

b b ba ba2 e a2 a
ba ba ba2 b a2 a e
ba2 ba2 b ba a e a2

e b a ba a2 ba2

e e b a ba a2 ba2

b b e ba a ba2 a2

a a ba2 a2 b e ba
ab ba2 a b a2 ba e
a2 a2 ba e ba2 a b
a2b ba a2 ba2 e b a

Fig. 1.6.3.

The construction mentioned above was also utilized by Zassenhaus(1958) for
the purpose of characterizing the normal Cayley tables of nonsimple groups and
by Bruck(1946, page 335) in the construction of an example of a loop L which
has a characteristic subloop which is not normal in L.

In Wall(1957), that author suggested a full investigation of the following
problem: If a quasigroup Q of order n contains m subquasigroups each of order
s and defined on disjoint subsets of Q, what conditions must Q satisfy if the
inequality n ≥ (m + 1)s is to hold? Wall showed that if m = 2, the inequality
holds for any quasigroup Q, but also pointed out some cases in which it is false
with m > 2. Later, Dénes and Pásztor (1963) proved the following result:

Theorem 1.6.6 If m > 2 is a divisor of a given integer n then there exists a
quasigroup (Q, ·) of order n that contains m subquasigroups which are all of the
same order s = n/m and are defined on disjoint subsets of Q.

Proof. Let Q be an idempotent quasigroup of order m. (We have shown exis-
tence of such a quasigroup in Theorem 1.5.6.) Let each element ai of a multipli-
cation table of Q be replaced by a latin square Li of order s, where if i 6= j, the
latin squares Li and Lj are defined over disjoint sets of elements. One thus ob-
tains a latin square which, when bordered by a row consisting of the first rows of
the latin squares L1, L2, . . . , Lm which appear along its main left-to-right diago-
nal taken in order and by a column consisting of the entries in the first columns
of these squares taken in order, becomes a multiplication table of a quasigroup
of order ms which is a union of m disjoint subquasigroups. ⊓⊔

Note that the restriction m > 2 in Theorem 1.6.6 is crucial. Not only is there
no idempotent quasigroup of order 2, but there is no quasigroup which is the
union of two disjoint quasigroups. An independent proof of this latter result was
published by Wall(1957). For the special case of group-based latin squares the
result was also proved by Haber and Rosenfeld(1959).

Next, we mention a theorem concerning transversals in quasigroups which
have subquasigroups defined on disjoint sets of elements.

Theorem 1.6.7 Let Q be a quasigroup of order n and let Q1, Q2, . . . , Qr be
subquasigroups of Q of orders n1, n2, . . . , nr respectively such that the sets Qk
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are disjoint and Q is their set theoretical union. If Qk has a complete mapping
for each k = 1, 2, . . . , r then Q has one too.

Proof. Without loss of generality11 one can suppose that a multiplication
table of Q has the following form

Q1

Q2

. . .

Qr

Since Q1, Q2, . . . , Qr have transversals, Q has at least one too. ⊓⊔
For further results similar to that of Theorem 1.6.7 see Dénes and Pásztor

(1963), Haber and Rosenfeld(1959).

Haber and Rosenfeld(1959) have obtained several results concerning groups
which are unions of proper subgroups.

Let us observe first that it is evident that any group G which is not cyclic
is expressible as a set-theoretical union of (not necessarily disjoint) proper sub-
groups because, for example, such a group G is the union of its cyclic subgroups
which, by hypothesis, are all proper. In Haber and Rosenfeld(1959) the problem
of determining the minimum number of proper subgroups into which a group
can be decomposed is discussed. Two of the main results obtained are as follows:

(1) Let G be a finite group of order n, and let p be the smallest prime which
divides n. Then G is not the union of p or fewer of its proper subgroups.

(2) A group G is the union of three proper subgroups if and only if Klein’s
four-group is a homomorphic image of G.

The latter result is not new. It was first obtained by Scorza(1926) for the
case of finite groups and was later discovered again by Bruckenheimer, Bryan
and Muir(1970).

In Greco(1951,1953), necessary and sufficient conditions that a finite group G
be expressible as the union of precisely four and precisely five proper subgroups
are given and, in Greco(1956), some extensions of these results to the case of
infinite groups are discussed.

The following interesting result is due to McWorter(1964), although Mann(1952)
had earlier proved the same result for the case when Q is a group.

Theorem 1.6.8 Let Q be a quasigroup and let A and B be two subsets of Q
such that not every element of Q has the form ab, with a ∈ A and b ∈ B. Then
|Q| ≥ |A|+ |B|, where |X| denotes the cardinality of a set X.

11To obtain this form, it is sufficient to arrange the row and column borders of Q so that
the elements of Q1 come first, then the elements of Q2, and so on.
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Proof. If Q is infinite, the result is obvious. Suppose therefore that Q is finite
and has multiplication tableM . We may re-arrange the rows ofM in such a way
that the bordering elements for the first |A| rows consist of the elements of A
and re-arrange the columns of M so that the bordering elements for the first |B|
columns are the elements of B. Then M has four submatrices C, X , Y and Z as
follows:

C Y

X Z

where C is an |A| × |B| submatrix of M . Let N(x) denote the number of times
that the element x ∈ Q occurs in C. Now x occurs |A| times in the |A| rows of
C ∪Y and at most |Q| − |B| of these occurrences are in the |Q| − |B| columns of
Y so N(x) ≥ |A| − (|Q| − |B|) for every x ∈ Q. But, by construction, the entries
of C consist precisely of the elements of the form ab, with a ∈ A and b ∈ B. By
assumption there is at least one element x of Q which is not of this form and for
which N(x) = 0. Consequently, 0 ≥ |A|+ |B| − |Q|. This completes the proof. ⊓⊔

We use this same argument again in Theorem 3.1.2. It is the condition that C
is a proper subrectangle of M . We may also use it to prove the following result:

Theorem 1.6.9 A k× k submatrix of a Cayley table of a quasigroup of order n
contains every quasigroup element at least once if k ≥ 1

2(n+ 1).

Proof. Theorem 1.6.8 implies that, when |Q| < |A|+ |B| holds, then for every
c ∈ Q there exists an element a ∈ A and an element b ∈ B such that ab = c.

Since n < 1
2 (n+1)+ 1

2 (n+1), the validity of Theorem 1.6.9 is immediate. ⊓⊔
We end this preliminary chapter with brief mentions of subsquare com-

plete and subsquare avoiding latin squares. The former concept is due to Kill-
grove(1964,1974) and Hiner and Killgrove(1970) and we have the following defi-
nitions.

Definition. A latin square L is subsquare complete if for each two distinct
cells of L which contain equal elements, there is a proper latin subsquare of L
which includes these two cells. We say that L is α, β, γ, . . . subsquare complete
if it is subsquare complete relative to subsquares whose orders lie in the set
{α, β, γ, . . .}.

We stress that this definition implies that an α-subsquare complete square is
also α, β, γ, . . . subsquare complete for arbitrary choice of the integers β, γ, . . ..

It is easy to check, for example, that the latin square given in Figure 1.6.4 is
a 3-subsquare complete latin square. This square arose in an investigation con-
cerning finite projective planes made by the present author [see Keedwell(1965)].

The following theorem was proved by Hiner and Killgrove(19**).

Theorem 1.6.10 A multiplication table of any finite non-cyclic group defines
a subsquare complete latin square. If the elements of the group have orders
α, β, γ, . . . then the latin square is α, β, γ, . . . subsquare complete.
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Proof. Let L be a Cayley table for a finite non-cyclic group G with identity
ε. Suppose that the two cells (a, b) and (c, d) of L both contain the same element
g ∈ G (that is, ab = g = cd). Let H be the subgroup of G generated by the
element db−1. Let S be the subsquare of L formed by the rows bordered by
elements of aH and columns bordered by elements of Hb, as in Theorem 1.6.4.
As G is assumed not to be cyclic H must be a proper subgroup, so S is a proper
latin subsquare. Also, by definition, S contains the cells (aε, εb) = (a, b) and
(aε, db−1b) = (a, d). But then S contains the symbol g and meets the column d,
so it must also include the cell (c, d) by the properties of latin subsquares. Thus
the two arbitrary cells (a, b) and (c, d) containing the same symbol are included
in the proper subsquare S. As S has order equal to the order of a group element,

namely db
−1

, this completes the proof. ⊓⊔



















































































































1 2 3 4 5 6 7 8 9 1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 1′′ 2′′ 3′′ 4′′ 5′′ 6′′ 7′′ 8′′ 9′′

1′ 2′ 3′ 6′ 4′ 5′ 8′′ 9′′ 7′′ 1′′ 2′′ 3′′ 6′′ 4′′ 5′′ 8 9 7 1 2 3 6 4 5 8′ 9′ 7′

1′′ 2′′ 3′′ 5′′ 6′′ 4′′ 9′ 7′ 8′ 1 2 3 5 6 4 9′′ 7′′ 8′′ 1′ 2′ 3′ 5′ 6′ 4′ 9 7 8

2 3 1 5 6 4 8 9 7 2′ 3′ 1′ 5′ 6′ 4′ 8′ 9′ 7′ 2′′ 3′′ 1′′ 5′′ 6′′ 4′′ 8′′ 9′′ 7′′

2′ 3′ 1′ 4′ 5′ 6′ 9′′ 7′′ 8′′ 2′′ 3′′ 1′′ 4′′ 5′′ 6′′ 9 7 8 2 3 1 4 5 6 9′ 7′ 8′

2′′ 3′′ 1′′ 6′′ 4′′ 5′′ 7′ 8′ 9′ 2 3 1 6 4 5 7′′ 8′′ 9′′ 2′ 3′ 1′ 6′ 4′ 5′ 7 8 9

3 1 2 6 4 5 9 7 8 3′ 1′ 2′ 6′ 4′ 5′ 9′ 7′ 8′ 3′′ 1′′ 2′′ 6′′ 4′′ 5′′ 9′′ 7′′ 8′′

3′ 1′ 2′ 5′ 6′ 4′ 7′′ 8′′ 9′′ 3′′ 1′′ 2′′ 5′′ 6′′ 4′′ 7 8 9 3 1 2 5 6 4 7′ 8′ 9′

3′′ 1′′ 2′′ 4′′ 5′′ 6′′ 8′ 9′ 7′ 3 1 2 4 5 6 8′′ 9′′ 7′′ 3′ 1′ 2′ 4′ 5′ 6′ 8 9 7

4 5′ 6′′ 7 8′ 9′′ 1 2′ 3′′ 4′ 5′′ 6 7′ 8′′ 9 1′ 2′′ 3 4′′ 5 6′ 7′′ 8 9′ 1′′ 2 3′

5 6′ 4′′ 9 7′ 8′′ 1′′ 2 3′ 5′ 6′′ 4 9′ 7′′ 8 1 2′ 3′′ 5′′ 6 4′ 9′′ 7 8′ 1′ 2′′ 3
6 4′ 5′′ 8 9′ 7′′ 1′ 2′′ 3 6′ 4′′ 5 8′ 9′′ 7 1′′ 2 3′ 6′′ 4 5′ 8′′ 9 7′ 1 2′ 3′′

7 8′′ 9′ 1 2′′ 3′ 4 5′′ 6′ 7′ 8 9′′ 1′ 2 3′′ 4′ 5 6′′ 7′′ 8′ 9 1′′ 2′ 3 4′′ 5′ 6
8 9′′ 7′ 3 1′′ 2′ 4′′ 5′ 6 8′ 9 7′′ 3′ 1 2′′ 4 5′′ 6′ 8′′ 9′ 7 3′′ 1′ 2 4′ 5 6′′

9 7′′ 8′ 2 3′′ 1′ 4′ 5 6′′ 9′ 7 8′′ 2′ 3 1′′ 4′′ 5′ 6 9′′ 7′ 8 2′′ 3′ 1 4 5′′ 6′

4′ 5′′ 6 8′ 9′′ 7 3 1′ 2′′ 4′′ 5 6′ 8′′ 9 7′ 3′ 1′′ 2 4 5′ 6′′ 8 9′ 7′′ 3′′ 1 2′

5′ 6′′ 4 7′ 8′′ 9 3′′ 1 2′ 5′′ 6 4′ 7′′ 8 9′ 3 1′ 2′′ 5 6′ 4′′ 7 8′ 9′′ 3′ 1′′ 2
6′ 4′′ 5 9′ 7′′ 8 3′ 1′′ 2 6′′ 4 5′ 9′′ 7 8′ 3′′ 1 2′ 6 4′ 5′′ 9 7′ 8′′ 3 1′ 2′′

7′ 8 9′′ 3′ 1 2′′ 5′′ 6′ 4 7′′ 8′ 9 3′′ 1′ 2 5 6′′ 4′ 7 8′′ 9′ 3 1′′ 2′ 5′ 6 4′′

8′ 9 7′′ 2′ 3 1′′ 5′ 6 4′′ 8′′ 9′ 7 2′′ 3′ 1 5′′ 6′ 4 8 9′′ 7′ 2 3′′ 1′ 5 6′′ 4′

9′ 7 8′′ 1′ 2 3′′ 5 6′′ 4′ 9′′ 7′ 8 1′′ 2′ 3 5′ 6 4′′ 9 7′′ 8′ 1 2′′ 3′ 5′′ 6′ 4

4′′ 5 6′ 9′′ 7 8′ 2 3′ 1′′ 4 5′ 6′′ 9 7′ 8′′ 2′ 3′′ 1 4′ 5′′ 6 9′ 7′′ 8 2′′ 3 1′

5′′ 6 4′ 8′′ 9 7′ 2′′ 3 1′ 5 6′ 4′′ 8 9′ 7′′ 2 3′ 1′′ 5′ 6′′ 4 8′ 9′′ 7 2′ 3′′ 1
6′′ 4 5′ 7′′ 8 9′ 2′ 3′′ 1 6 4′ 5′′ 7 8′ 9′′ 2′′ 3 1′ 6′ 4′′ 5 7′ 8′′ 9 2 3′ 1′′

7′′ 8′ 9 2′′ 3′ 1 6′ 4 5′′ 7 8′′ 9′ 2 3′′ 1′ 6′′ 4′ 5 7′ 8 9′′ 2′ 3 1′′ 6 4′′ 5′

8′′ 9′ 7 1′′ 2′ 3 6 4′′ 5′ 8 9′′ 7′ 1 2′′ 3′ 6′ 4 5′′ 8′ 9 7′′ 1′ 2 3′′ 6′′ 4′ 5
9′′ 7′ 8 3′′ 1′ 2 6′′ 4′ 5 9 7′′ 8′ 3 1′′ 2′ 6 4′′ 5′ 9′ 7 8′′ 3′ 1 2′′ 6′ 4 5′′



















































































































Fig. 1.6.4.
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Thus, for example, the square exhibited in Figure 1.6.5, which represents a
multiplication table of the dihedral group D3 of six elements, is 2,3-subsquare
complete. In a group-based subsquare complete latin square every subsquare will
have order dividing the order of the square (see the Corollary to Theorem 1.6.4).
This need not be the case in non group-based examples, as can be seen from the
2,3-subsquare complete latin square of order 7 shown in Figure 1.6.6.

1 2 3 4 5 6
2 3 1 6 4 5
3 1 2 5 6 4
4 5 6 1 2 3
5 6 4 3 1 2
6 4 5 2 3 1

Fig. 1.6.5.

Hiner and Killgrove(19**) also proved that every 2-subsquare complete latin
square is a multiplication table of an elementary abelian 2-group. The same
result was obtained independently by Heinrich and Wallis(1981). However, the
corresponding result for 3-subsquare complete squares is false, as already shown
by the non group-based example in Figure 1.6.4.

Hiner has made use of the principle of 1-extension and 1-contraction intro-
duced by Yamamoto [see Section 1.5 and Section 9.3, and also Yamamoto(1960/61,
1961)] to give algorithms for obtaining 2,3-subsquare complete latin squares of
orders 2α − 1 and 3β + 1 for α > 2 and β > 1. These are as follows:

Algorithm A. Take the latin square representing a multiplication table of the
elementary abelian 2-group of order 2α (α > 2) and replace the element aii by
the element ain for i = 1, 2, . . . , n − 1, where n = 2α. Then delete the last row
and column of the amended square.

Algorithm B. Take the latin square representing a multiplication table of the
elementary abelian 3-group of order 3β (β > 1) and adjoin to it a new row and
column such that am+1,i = ai,m+1 = aii for i = 1, 2, . . . ,m where m = 3β . In the
enlarged square replace each element aii (for i = 1, 2, . . . ,m+ 1) of the leading
diagonal by a new element m+ 1.

Algorithm A amounts to effecting a 1-contraction of the latin square which
represents a multiplication table of the elementary abelian group of order 2α,
while algorithm B amounts to effecting a 1-extension (prolongation) of the latin
square which represents a multiplication table of the elementary abelian group
of order 3β . For proofs that these algorithms both yield 2,3-subsquare complete
squares, the reader is referred to Hiner and Killgrove(19**). Examples of latin
squares of orders 7 and 10 constructed by means of these algorithms are given
in Figure 1.6.6 and Figure 1.6.7. (The left-hand squares are those used for the
constructions.)
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1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1

8 2 3 4 5 6 7
2 7 4 3 6 5 8
3 4 6 2 7 8 5
4 3 2 5 8 7 6
5 6 7 8 4 2 3
6 5 8 7 2 3 4
7 8 5 6 3 4 2

Fig. 1.6.6.

1 2 3 4 5 6 7 8 9
2 3 1 5 6 4 8 9 7
3 1 2 6 4 5 9 7 8
4 5 6 7 8 9 1 2 3
5 6 4 8 9 7 2 3 1
6 4 5 9 7 8 3 1 2
7 8 9 1 2 3 4 5 6
8 9 7 2 3 1 5 6 4
9 7 8 3 1 2 6 4 5

0 2 3 4 5 6 7 8 9 1
2 0 1 5 6 4 8 9 7 3
3 1 0 6 4 5 9 7 8 2
4 5 6 0 8 9 1 2 3 7
5 6 4 8 0 7 2 3 1 9
6 4 5 9 7 0 3 1 2 8
7 8 9 1 2 3 0 5 6 4
8 9 7 2 3 1 5 0 4 6
9 7 8 3 1 2 6 4 0 5
1 3 2 7 9 8 4 6 5 0

Fig. 1.6.7.

The algorithms can also be applied in the cases α = 2 and β = 1 but in
these cases the 2,3-subsquare complete latin squares which they yield are also
3-subsquare complete or 2-subsquare complete respectively.

In the same joint preprint, Hiner and Killgrove have shown that the 2,3-
subsquare complete latin squares constructed by Hiner’s algorithm A (for α > 2)
are characterized by the fact that these and only these among the universe of
2,3-subsquare complete squares have the property that, in each two rows, all but
three pairs of cells which contain equal elements belong to proper subsquares
of order 2. [A proof of this result also appears in Heinrich and Wallis(1981).]
In Figure 1.6.6 for example, taking the second and third rows, we find that the
only pairs of cells which contain equal elements but do not belong to proper
subsquares of order 2 are the pairs (2,2) and (3,5), (2,3) and (3,2), (2,5) and
(3,3).

The particular interest in 2,3-subsquare complete latin squares first arose as
a consequence of their significance in connection with a hypothesis concerning
non-Desarguesian and singly-generated projective planes. For the details, see
Killgrove(1964,1974). The results given in Hiner and Killgrove’s preprint referred
to above show that, up to isomorphism, there is a unique 2,3-subsquare complete
latin square for each of the orders 4, 5, 7, 8, 9, and 10 (those of orders 4 and
8 being also 2-subsquare complete and that of order 9 being also 3-subsquare
complete) but that there are (for example) at least two 2,3-subsquare complete
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latin squares of order 12 and at least three of order 27 (each of the latter being
also 3-subsquare complete). Later, in Killgrove(1974), it was shown that there
are exactly three subsquare complete latin squares of order 12.

Definition. Let S and L be latin squares of orders s and n (s < n) respectively
defined on the same set Σ. Suppose that S can be superimposed on L in such a
way that no cell of S contains the same member of Σ as does the cell of L onto
which it is superimposed. Then we say that L avoids the subsquare S.

As an example, the latin square L1 given in Figure 1.6.8 avoids the cyclic
subsquare of order 3 as shown.

L1 =

21 12 43 3
12 23 31 4
43 31 12 2
3 4 2 1

L2 =

1 2 3 4 5 6 7 8 9 0
2 1 4 3 8 9 0 5 6 7
3 4 1 2 9 0 8 7 5 6
4 3 2 1 0 8 9 6 7 5
5 8 9 0 1 7 6 2 3 4
6 9 0 8 7 1 5 4 2 3
7 0 8 9 6 5 1 3 4 2
8 5 7 6 2 4 3 1 0 9
9 6 5 7 3 2 4 0 1 8
0 7 6 5 4 3 2 9 8 1

Fig. 1.6.8.

We might ask: “What is the largest number of s × s subsquares for fixed
s (1 < s < n) which can be avoided by a given n × n latin square L? Does
this number depend on the structure of L: for example, whether L is group-
based? Also, we could ask the same question when s is allowed to take all values
(1 < s < n).

A related, but different question, is to ask which partial latin squares can
be avoided by some completed latin square. The latter question has been ad-
dressed by Chetwynd and Rhodes(1997), by Cavenagh(2010) and by Kuhl and
Denley(2012).

Let us complete our discussion of latin subsquares and subquasigroups by
drawing the reader’s attention to a particularly interesting latin square L2 shown
in Figure 1.6.8 discovered by D.A. Norton(1952b). It has the following properties:

(1) it is 2,3-subsquare complete;
(2) when bordered by its own first row and column it represents a multipli-

cation table of a commutative loop in which (i) every two independent elements
generate a subgroup of order 4, but (ii) no three independent elements associate
in any order.
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Chapter 2

Special types of latin square

In view of the intimate connection between latin squares and quasigroups
which the previous chapter has already made clear, a discussion of special types
of latin square automatically entails a discussion of special types of quasigroup.

We begin by observing how the type of identity satisfied by a quasigroup is
reflected in the structure of the corresponding latin square. We go on to dis-
cuss the concept of parastrophy (conjugacy) which we introduced in Section 1.4.
In particular, in the second section of the chapter we consider in some detail
the parastrophy invariant properties of mediality, idempotency, two-sided self-
distributivity and total symmetry. We prove that a medial quasigroup is always
isotopic to an abelian group and introduce the concept of generalized identities.
The third section is concerned with Steiner and other types of triple system.
We give a brief history of Steiner triple systems, pointing out that they predate
Steiner himself. We show that a finite idempotent totally symmetric quasigroup
is equivalent to a Steiner triple system. We mention Mendelsohn triple systems
and Mendelsohn quasigroups and we discuss when and when not a directed triple
system is equivalent to a quasigroup.

The next two sections are concerned with a more-detailed account of how to
determine whether a latin square is regular and hence group-based and with a
more in-depth account of complete mappings in group-based squares.

The last section of the chapter is devoted to the subject of complete latin
squares. Squares of this type first became of interest to statisticians in the late
1940s and a number of papers on the subject were subsequently published in
journals of chemistry and psychology as well as in more mathematical journals.
Consequently, as we point out, several of the constructions have been rediscov-
ered two or three times. We give a detailed account of the work of Gordon and
summarize later developments, many of which are dealt with in detail in [DK2].

2.1 Quasigroup identities and latin squares

Two papers are known to the authors which are devoted to a detailed account
of quasigroup identities; namely Belousov(1965) and Sade(1957). The aim of the
first author was to obtain a description, as complete as possible, of systems of
quasigroups which satisfy certain fundamental identities: that is, to determine
the structure of quasigroups satisfying a given system of identities by reducing
the system to a simpler form. Sade’s intention on the other hand, was to give
as complete a list as possible of those identities which had been investigated up

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50002-7
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to the time of publication of his paper. In compiling our own list (given below)
we have made extensive use of that of Sade. However we have renamed some of
the identities in accordance with current usage and have added a few additional
ones.

Two identities are said to be dual or to be mirror images if one is obtained
from the other by a reversal of the order both of the symbols which occur in it
and also of the bracketing. Thus, for example, the identities (36) and (37) in our
list below are dual to each other. Certain identities such as (8) and (43) below
are self-dual. For completeness we have usually included both members of each
pair of dual identities. Identities for which the dual is not given are marked with
a dagger (†).

(A) Identities which involve one element

(1) aa = a for all a ∈ Q the idempotent law

(B) Identities which involve two elements (each identity must be valid for all
a, b ∈ Q)

(2) aa = bb the unipotent law
(3) ab = ba the commutative law
(4) (ab)b = a Sade’s right “keys” law
(5) b(ba) = a Sade’s left “keys” law
(6) (ab)b = a(bb) the right alternative law0

(7) b(ba) = (bb)a the left alternative law0

(8) a(ba) = (ab)a the medial alternative law1

(9) a(ba) = b the law of right semi-symmetry0

(10) (ab)a = b the law of left semi-symmetry0

(11) a(ab) = ba Stein’s first law (or the Stein identity)†

(12) a(ba) = (ba)b Stein’s second law†

(13) a(ab) = (ab)b Schröder’s first law
(14) (ab)(ba) = a Schröder’s second law
(15) (ab)(ba) = b Stein’s third law

The following two identities, although not quasigroup identities (because
they contradict the axioms for a quasigroup) are listed here because they
will play a role in the next chapter. (See page 89.)

(16) ab = a Sade’s right translation law
(17) ab = b Sade’s left translation law

(C) Identities which involve three elements (each identity must be valid for all
a, b, c ∈ Q)

0By some authors, the adjectives “left” and “right” have been applied to these identities in
reverse order.

1Also called the law of elasticity or flexible law.
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(18) (ab)c = a(bc) the associative law
(19) a(bc) = c(ab) the law of cyclic associativity†

(20) (ab)c = (ac)b the law of right permutability
(21) a(bc) = b(ac) the law of left permutability
(22) a(bc) = c(ba) Abel-Grassmann’s law

(23) (ab)c = a(cb) the commuting product2

(24) c(ba) = (bc)a dual of (23)
(25) (ab)(bc) = ac Stein’s fourth law
(26) (ba)(ca) = bc the law of right transitivity
(27) (ab)(ac) = bc the law of left transitivity3

(28) (ab)(ac) = cb Schweitzer’s law
(29) (ba)(ca) = cb dual of (28)
(30) (ab)c = (ac)(bc) the law of right self-distributivity
(31) c(ba) = (cb)(ca) the law of left self-distributivity
(32) (ab)c = (ca)(bc) the law of right abelian distributivity
(33) c(ba) = (ca)(bc) the law of left abelian distributivity
(34) (ab)(ca) = [a(bc)]a the Bruck-Moufang identity
(35) (ab)(ca) = a[(bc)a] dual of (34)
(36) [(ab)c]b = a[b(cb)]
(37) [(bc)b]a = b[c(ba)]

}

the Moufang identities

(38) [(ab)c]b = a[(bc)b] the Bol identity
(39) [b(cb)]a = b[c(ba)] dual of (38)
(40) [(ab)c]a = a[b(ca)] the extra loop law
(41) a[b(ca)] = cb Tarski’s law†

(42) a[(bc)(ba)] = c Neumann’s law†

(43) (ab)(ca) = (ac)(ba) the specialized medial law

(D) Identities which involve four elements (each identity must be valid for all
a, b, c, d ∈ Q)

(44) (ab)(cd) = (ad)(cb) the first rectangle rule†

(45) (ab)(ac) = (db)(dc) the second rectangle rule†

(46) (ab)(cd) = (ac)(bd) the medial law4

By means of a succession of remarks, we shall point out the structural im-
plications of a number of the above identities in the study of the latin squares
which represent multiplication tables of the appropriate types of quasigroups.
We shall assume that, in the multiplication tables we are discussing here, the
row and column borders are ordered in the same way.

Any latin square which is a multiplication table of a quasigroup satisfying
the identity (1) necessarily has a transversal since the cells which contain the
products aa, bb, cc, . . ., form a transversal. See also the corollary to Theorem 1.5.3
and the discussion which follows it.

2Called the “Eingewandtes Produkt” by Sade(1957).
3Called Stein’s fifth law by Sade.
4Many other names have been used for this identity, see page 48.
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If the row and column borders of the Cayley table of a quasigroup which
satisfies the identity (2) are both ordered in the same way, then all the elements
of the leading diagonal of the resulting latin square are the same. Since, by a re-
ordering of its rows, any latin square can be transformed to one in which all the
elements of the leading diagonal are the same, it follows that every quasigroup
is isotopic to a unipotent quasigroup.

The Cayley table of any quasigroup satisfying identity (3) is symmetric in
the usual matrix sense (see Theorem 1.2.4).

A quasigroup which satisfies the identities (1) and (3) (that is, one which is
idempotent and symmetric) is necessarily of odd order as we proved in Theo-
rem 1.5.4. On the other hand, one which satisfies the identities (2) and (3) (that
is, one which is unipotent and symmetric) is necessarily of even order. We state
this as a theorem.

Theorem 2.1.1 The entries on the main diagonal of a symmetric latin square
are all the same only if the square has even order.

Proof. Suppose that L is a symmetric latin square of order n defined on the
symbols 0, 1, 2, . . . , n− 1 and that the symbol which occurs n times on the main
diagonal is 0. Since the square is symmetric, each other symbol occurs an even
number of times. Consequently, n must be even. ⊓⊔

The above theorem was first stated by Elspas, Minnick and Short(1963).
Note that, unlike Theorem 1.5.4, the converse of this theorm is false. There exist
commutative quasigroups of even order which are not unipotent. For an example,
see Figure 2.1.1.

0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 4 5 3 1
3 3 4 5 2 1 0
4 4 5 3 1 0 2
5 5 3 1 0 2 4

Fig. 2.1.1.

If xy = z in a quasigroup Q which satisfies identity (4) then the configuration
shown in Figure 2.1.2 exists in the Cayley table of Q.

If the identities (4) and (5) both hold in a quasigroup Q then Figure 2.1.2 can
be completed to the configuration shown in Figure 2.1.3(a), where xy = z. But
then, because xz = y, we get Figure 2.1.3(b) by interchanging symbols y and z.
Combining this with Figure 2.1.3(a), we have that yz = x = zy. Consequently we
can deduce a result due to Sade(1953b) that the identities (4) and (5) together
imply (3). An alternative algebraic proof is given on page 54.
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y
...

x . . . . . . . . . . . . . . . z
...

z . . . . . . . . . . . . . . . x
...

Fig. 2.1.2.

y z
...

...
x . . . . . . . z . . . . . . . y

...
...

z . . . . . . . x . . . . . . . . .
...

...

z y
...

...
x . . . . . . . y . . . . . . . z

...
...

y . . . . . . . x . . . . . . . . .
...

...

Fig. 2.1.3. (a) and (b)

Among quasigroups which satisfy the identities (6), (7) and (8) are the im-
portant class of loops known as Moufang loops which we mention again below.

A groupoid or quasigroup which satisfies the identity (9) has been called demi-
symétrique by Sade. We have translated this as “semi-symmetric” although Sade
himself preferred the translation “halfsymmetric”. In fact, every semi-symmetric
groupoid is necessarily a semi-symmetric quasigroup, as was shown by Ethering-
ton(1962/63) and Sade(1965a).

c a
...

...
b . . . . . . . . . . . . . . . . . . c

...
...

a . . . . . . . b . . . . . . . . .
...

...

Fig. 2.1.4.

In Figure 2.1.4, the product ba is denoted by c whence, by virtue of the
identity (9), ac = b. It then follows that (ac)a = c so the validity of (9) implies
also identity (10) and justifies the name semi-symmetric.

If (Q, ·) is a given quasigroup and a new operation (∗) is defined on the set
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Q by the relation z ∗ x = y ⇔ x · y = z, then (Q, ∗) is again a quasigroup which
is said to be a parastrophe (or conjugate) of (Q, ·), see Section 1.4, and which
we shall call the first translate of (Q, ·). (Confusingly, it has also been called
the transpose of (Q, ·) by Etherington and Sade, but this terminology should be
avoided since it does not agree with the usual matrix notion of transposition.)
The second translate of (Q, ·) is defined as being the first translate of (Q, ∗):
that is, the quasigroup (Q,⊗) such that y ⊗ z = x ⇔ z ∗ x = y ⇔ x · y = z.
The first translate of this quasigroup (Q,⊗) is (Q, ·) again. We can, if we wish,
give an alternative definition of a semi-symmetric quasigroup as being one which
coincides with both its translates [cf. Sade(1965a)].

There is a connection between semi-symmetric quasigroups and balanced in-
complete block designs (to be defined in Section 11.4), as has been pointed out by
Sade(1965a). The same author has made a very extensive study of other proper-
ties and constructions for semi-symmetric quasigroups in his papers Sade(1964/65;
1965a,b; 1967a,b,c; 1968a). Among the many interesting results which he ob-
tained we single out the following two from Sade(1964/65) as being of particular
interest.

Sade proved that if a quasigroup (Q, ·) can be mapped isomorphically onto its
first translate by a permutation α of its elements (meaning that ab = c implies
(cα)(aα) = bα) and if α has order 3k with k not divisible by 3, then Q is iso-
topic to a semi-symmetric quasigroup. He also gave an example of a quasigroup
that he claimed was of the lowest possible order having the properties of being
isotopic to its first translate but not isotopic to any semi-symmetric quasigroup.
This example, which has order 10, was reproduced on page 63 of[DK1]. However,
Wanless(2003) has pointed out that Sade’s original claim is false since there are
11 main classes of latin squares of order 9 which, when bordered appropriately,
become the Cayley tables of quasigroups with the desired property. One exam-
ple, (Q, ·), of such a quasigroup is given in Figure 2.1.5. It is isotopic to its first
translate (Q, ∗) since x∗y = (x ·y)τ for all x, y ∈ Q, where τ denotes the permu-
tation (456)(789). It also has an automorphism (τ, τ, τ). These two symmetries
generate an autoparatopy group5 of order 9.

The significance of the identity (11) is that a quasigroup which satisfies it has
an orthogonal complement or orthogonal mate. For the definition of this concept
and proof of the last statement, see Section 5.4.

If a quasigroup Q which satisfies identity (11) has an identity element we find,
on putting b equal to this identity element, that a2 = a for every a ∈ Q. Thus
Q cannot be a group. We may similarly show that a quasigroup which satisfies
any one of the identities (12), (13), (14) or (15) cannot be a group.

A quasigroup which satisfies the identity (14) is called a Schroeder quasigroup,
see Lindner, Mendelsohn and Sun(1980).

An element x of a quasigroup (Q, ·) such that, for all a, c ∈ Q, a, x and c sat-
isfy both the identity (19) and its dual [that is, a(xc) = c(ax) and (cx)a = (xa)c]

5Also called a group of autostrophies, see page 16
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(·) 1 2 3 4 5 6 7 8 9

1 2 1 3 5 6 4 9 7 8
2 1 3 2 6 4 5 8 9 7
3 3 2 1 7 8 9 5 6 4
4 5 4 8 2 7 1 6 3 9
5 6 5 9 1 2 8 7 4 3
6 4 6 7 9 1 2 3 8 5
7 7 8 6 4 9 3 1 5 2
8 8 9 4 3 5 7 2 1 6
9 9 7 5 8 3 6 4 2 1

Fig. 2.1.5.

is called a centre-associative element. Quasigroups containing such elements were
studied by Guha and Hoo(1965). These authors proved that a quasigroup con-
taining centre-associative elements must be a loop, but not a group unless all its
elements are centre-associative. In the latter case it is an abelian group. In any
event, the number of centre-associative elements always divides the order of Q.

If a quasigroup has a two-sided identity element (that is, is a loop) and also
satisfies any one of the identities (34), (35), (36) or (37) then it satisfies all
four identities and is called a Moufang loop. It has recently been shown that a
Moufang loop not only satisfies Lagrange’s theorem and Cauchy’s theorem but
also has the Sylow properties. See page 20 for the details. Consequently, the
orders of all its elements and subloops divide the order of the loop and this
has obvious implications in regard to the structure of the latin square which
represents the Cayley table of such a loop. A loop which satisfies identity (38) is
called a Bol loop and such a loop satisfies the weak form of Lagrange’s theorem
[see Robinson(1966) and also page 20] so again the orders of its elements divide
the order of the loop. The same is true for a loop which satisfies the identity (39).6

There exist Bol loops which are not Moufang, as we remarked in Section 1.5.
However, every Moufang loop is also a Bol loop. To see this, notice that if a is
put equal to the identity element in the identity (37) we get the identity (8) and
this, together with the identity (36) implies the Bol identity (38).

A loop which satisfies the identity (40) is called an extra loop. It is clear that
identity (18) implies identity (40) and hence that every group is an extra loop.
The concept of an extra loop was introduced by Fenyves(1968), who showed
that every extra loop is a Moufang loop, while every commutative extra loop is
an abelian group. Since there exist extra loops which are not groups and also
commutative Moufang loops which are not groups, we infer that the class of
extra loops lies properly between the class of groups and the class of Moufang
loops. Fenyves also showed that isotopic extra loops are isomorphic. (Compare

6A loop which satisfies the identity (38) is sometimes called a right Bol loop, one which
satisfies the identity (39) a left Bol loop.
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Corollary 2 of Theorem 1.3.4.)
The reader will have noted that each of the identities (34) to (40) has the

following form: both sides of the identity contain the same three symbols taken
in the same order but one of them occurs twice on each side. Such an identity
is said to be of Bol-Moufang type. Fenyves(1969) listed all possible identities of
Bol-Moufang type and studied their interconnections.

More recently, Kunen(2006a,b) has determined which laws (identities) of Bol-
Moufang type force a quasigroup to be a loop or group (cf. page 7 and the work
of Farago, Fiala and the present author).

Definition. A loop is called a C-loop (central loop) if its elements satisfy the
identity (yx · x)z = y(x · xz). It is called an LC-loop if its elements satisfy any
one of the three equivalent identities xx · yz = (x · xy)z, (x · xy)z = x(x · yz),
(xx · y)z = x(x · yz). It is called an RC-loop if its elements satisfy any one of the
duals of these three identities.

group ✲ extra loop ✑
✑

✑✸

◗
◗

◗s

Moufang loop

C-loop

✏✏✏✶
PPPq

left Bol loop

right Bol loop

✏✏✏✶
PPPq

LC-loop

RC-loop

Fig. 2.1.6.

Fenyves showed that LC-loops and RC-loops are both power associative and
that a loop is a C-loop if and only if it is both an LC-loop and an RC-loop. He
also showed the validity of the implications shown in Figure 2.1.6, each of which
is irreversible. For example, we display in Figure 2.1.7 a multiplication table of
an LC-loop of six elements which is neither a C-loop nor a left Bol loop. In
Figure 2.1.8 we give a multiplication table of a C-loop of ten elements which is
not a Moufang loop. Both of these examples are taken from Fenyves(1969).

The significance of many of the identities given in Sade’s list (and the present
work) is best seen in the context of parastrophy of quasigroups, as defined in
Section 1.4. We remind the reader that every quasigroup (Q,⊗) has six paras-
trophes associated with it. If a ⊗ b = c is a typical product in the quasigroup,
then the corresponding products in the other parastrophes, and the notation we
prefer to use for the parastrophic operations7 can be summarized as follows:

7A table of notations used by various authors before 1958 can be found on page 76 of
Sade(1959a).
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0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 5 4 3 2
2 2 4 0 5 1 3
3 3 2 1 0 5 4
4 4 5 3 2 0 1
5 5 3 4 1 2 0

Fig. 2.1.7.

0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 0 4 9 2 7 8 5 6 3
2 2 4 0 6 1 9 3 8 7 5
3 3 9 6 0 7 8 2 4 5 1
4 4 2 1 7 0 6 5 3 9 8
5 5 7 9 8 6 0 4 1 3 2
6 6 8 3 2 5 4 0 9 1 7
7 7 5 8 4 3 1 9 0 2 6
8 8 6 7 5 9 3 1 2 0 4
9 9 3 5 1 8 2 7 6 4 0

Fig. 2.1.8.

Parastrophe Name Notation
Typical
product

(1, 2, 3) itself (Q,⊗) a⊗ b = c
(2, 1, 3) transpose (Q,⊗(12)) b⊗(12) a = c
(1, 3, 2) row inverse (Q,⊗(23)) a⊗(23) c = b

(3, 2, 1) column inverse (Q,⊗(13)) c⊗(13) b = a
(3, 1, 2) first translate (Q,⊗(123)) c⊗(123) a = b
(2, 3, 1) second translate (Q,⊗(132)) b⊗(132) c = a

The first parastrophe is the quasigroup itself, with product ⊗. We use ⊗(12)

to denote the operation obtained by switching the roles of rows and columns in
the Cayley table (transposition). Similarly, we use ⊗(23) to denote the operation
obtained by switching the roles of columns and elements (called row inverse, see
page 15) and ⊗(13) to denote the operation obtained by switching the roles of
rows and elements (column inverse). The remaining two parastrophes are the
translates which we encountered on page 42.

In Belousov’s classic text [Belousov(1967b)] and in the first edition of this
book, the above operations were denoted by ⊗, ⊗∗, −1⊗, ⊗−1, −1(⊗−1) and
(−1⊗)−1 respectively and consequently this notation is widely used, especially
in Eastern Europe. However, like the many notations used earlier, it has the big
drawback that it is not easy to memorize nor does it make obvious that, for
example, the operation which we have called the first translate can be denoted
by −1(⊗−1) or −1(⊗∗) or (⊗−1)∗. But, in the notation which we have chosen to
adopt, the equalities

⊗(123) = (⊗(12))(13) = (⊗(23))(12) = (⊗(13))(23)

and
⊗(132) = (⊗(13))(12) = (⊗(12))(23) = (⊗(23))(13)

become obvious when the superscripts are multiplied as permutations.
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The notation we have chosen to use is in fairly common use, particularly
in the variant which writes A(13)(z, y) = x, etc., for the parastrophes of the
quasigroup (Q,A) in which a typical product is written A(x, y) = z.

When the quasigroup operation is (·), a simpler notation for the row and
column inverses is commonly used: namely, a · b = c⇒ a\c = b and c/b = a.

If the quasigroup (Q,⊗) satisfies a given identity then in general each of
its parastrophes will satisfy a different parastrophic identity. Thus, for example,
validity of the identity (18) in (Q,⊗) may be expressed by the statement that
a ⊗ b = x, x ⊗ c = y and b ⊗ c = z together imply that a ⊗ z = y. From
this statement we deduce that the relations a ⊗(23) x = b, x ⊗(23) y = c and
b ⊗(23) z = c together imply a ⊗(23) y = z. Hence, substituting for b, z and c
in the equation b ⊗(23) z = c we get (a ⊗(23) x) ⊗(23) (a ⊗(23) y) = x ⊗(23) y.
In other words, the parastrophe (Q,⊗(23)) satisfies the identity (27) whenever
(Q,⊗) satisfies the identity (18).

Since a quasigroup which satisfies the identity (18) is a group, it is in some
sense true that the theory of groups is equivalent to the theory of quasigroups
which satisfy the identity (27), as was remarked by Stein(1957).

The concept of parastrophic identities seems to go back well into the nine-
teenth century and many other names were used by early writers. For further
details, see page 16 and, as we remarked in an earlier footnote, Sade(1959a). In
that paper, Sade gave some general rules for determining the identities satisfied
by the parastrophes of a quasigroup which satisfies a given identity. Among other
results, he proved the following:

(i) If a quasigroup (Q,⊗) satisfies an identity I then the quasigroup (Q,⊗(12))
satisfies the identity obtained from I by interchanging the pairs of opera-
tions (⊗,⊗(12)), (⊗(13),⊗(123)) and (⊗(23),⊗(132)) throughout.

(ii) If a quasigroup (Q,⊗) satisfies an identity I then the quasigroup (Q,⊗(13))
satisfies the identity obtained from I by interchanging the pairs of opera-
tions (⊗,⊗(13)), (⊗(12),⊗(132)) and (⊗(23),⊗(123)) throughout.

Sade also gave a number of rules for simplifying an identity which involves
more than one parastrophic operation.

In Stein(1957), that author listed the parastrophic identities for a number
of well-known identities. A similar but slightly more extensive list was given by
Belousov(1965), and we reproduce it here in Figure 2.1.9. The occurrence of the
symbol ⊗ in the body of the table indicates that the identity in question is the
same with respect to the parastrophic operation.

It will be noted that the identities (46), (1) and (30), (31) taken jointly,
appear to have a special significance in that they are parastrophy invariant. In
this connection it is worthwhile to point out, following Stein(1957), that if the
identities (46) and (1) both hold so also do the identities (30) and (31); that
is, an idempotent medial quasigroup is both left and right self-distributive. We
have cb · ca = cc · ba = c · ba by (46) and (1), so (31) holds. Similarly, we may
show that (30) holds.
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Medial8 and idempotent quasigroups play a special role in the theory of latin
squares. In the first place, every loop-principal isotope9 of a medial quasigroup
is an abelian group, as was first shown by Murdoch(1941). Consequently, every
medial quasigroup is isotopic to some abelian group. That is to say, medial
quasigroups arise quite naturally as a consequence of relabelling the elements
and re-arranging the rows and columns of the latin square defined by the Cayley
table of any abelian group. Moreover, Bruck(1944) has given a general method
by which any medial quasigroup may be constructed from the abelian group to
which it is isotopic. See Theorem 2.2.2.

Idempotent quasigroups give rise to latin squares which always possess at
least one transversal (see page 39). Also, the class of finite totally symmetric
(defined on page 53) idempotent quasigroups (which is a parastrophy invariant
class) is coextensive with the class of designs known as Steiner triple systems.
This will be shown in Section 2.3.

We end this discussion of identities by drawing attention to a remarkable the-
orem due to Belousov. We say that an identityW1 =W2 defined on a quasigroup
Q is balanced if the same variables occur in W1 as occur in W2 and if no variable
occurs more than once in W1 or in W2. This definition is due to Sade(1959c).

The reader can easily check that in our list given at the beginning of this
chapter the following identities are balanced: (3), (18), (19), (20), (21), (22),
(23), (24), (44), (46).

An identityW1 =W2 is called reducible [see Belousov(1966)] if either (i) each
of W1 and W2 contains a “free element” x so that W1 is of the form U1 · x or
x · V1 and W2 likewise is of the form U2 · x or x · V2 (where the Ui and Vi are
subwords of the Wi) or (ii) W1 has the product xy of two free elements x and
y as a subword and W2 has one of the products xy or yx as a subword, or the
dual of this statement.

An identity which is not reducible is called irreducible.
For example, the identity w(x ·yz) = (xy ·z)w is reducible because each of the

two words composing it has w as a free element, the identity xy ·uv = (u ·yx)v is
reducible because the left hand side has xy as a subword and the right hand side
has yx as a subword. Of the balanced identities listed above, only the identity
(3) is reducible. The remaining identities are irreducible.

In Belousov(1966), that author proved the following very significant theorem,
using ideas outside the scope of the present book:

Theorem 2.1.2 A quasigroup Q which satisfies any irreducible balanced identity
is isotopic to a group10

8By other authors these quasigroups have been called abelian quasigroups [Mur-
doch(1939,1941)], alternation quasigroups [Sholander(1949)] and entropic quasigroups [Ether-
ington (1964/65)]. The medial law has been called the symmetric law [Frink(1955)] or the
bisymmetric law [Aczél(1964,1965)]

9For the definition of this concept, see Section 1.3
10For some other results concerning the conditions under which a quasigroup is isotopic to

a group, see T. Evans(1950) and Falconer(1971).
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Later, M.A.Taylor(1978) gave a considerably more elementary proof and one
which is applicable to a wider class of quasigroups. Then Belousov(1983) himself
published an alternative elementary proof by means of reduction to the equation
of generalized associativity. (The latter is defined in the next Section.)

We shall explain Taylor’s theorem.

Definition. LetW be a word in which the variables x and y occur. We say that
x and y are separated in W if neither xy nor yx occurs in W : that is, at least
one bracket lies between x and y.

Theorem 2.1.3 Let W1 = W2 be a balanced identity such that W1 contains xy
as a subword and x and y are separated in W2. Then every quasigroup (Q, ·)
which satisfies this identity is isotopic to a group.

Proof. We shall show that (Q, ·) satisfies the quadrangle criterion

x1y2 = x2y1, x1y4 = x2y3, x4y1 = x3y2 =⇒ x3y4 = x4y3

(see Theorem 1.2.1).
Since x and y are separated in W2, there must be a subword S of W2 of

length at least two in which only one of x or y occurs. We suppose without loss
of generality11 that S contains x and that y occurs to the right of S so that

W2 = ∼ S ∼ y ∼,

where ∼ denotes a (possibly empty) string of subwords and brackets. We shall
write W1(x, y, u) = W2(x, y, u), where x, y are as just described and u is some
third variable which occurs in S so that W2 = ∼ S(x, u) ∼ y ∼.

By the hypothesis of the quadrangle criterion, x1y2 = x2y1, x1y4 = x2y3
and x4y1 = x3y2. So W1(x1, y2, u) =W1(x2, y1, u), W1(x1, y4, u) =W1(x2, y3, u)
and W1(x4, y1, u) = W1(x3, y2, u). Since, W1(x, y, u) = W2(x, y, u), these same
equalities hold for W2. That is,

∼ S(x1, u) ∼ y2 ∼ = ∼ S(x2, u) ∼ y1 ∼ (2.1)

∼ S(x1, u) ∼ y4 ∼ = ∼ S(x2, u) ∼ y3 ∼ (2.2)

∼ S(x4, u) ∼ y1 ∼ = ∼ S(x3, u) ∼ y2 ∼ (2.3)

By use of the unique solubility of equations in a quasigroup, we can choose
u1, u2 ∈ Q such that S(x1, u1) = S(x3, u2). Then,

∼ S(x1, u1) ∼ y2 ∼ = ∼ S(x3, u2) ∼ y2 ∼

and so, from (2.1) and (2.3),

11By “without loss of generality” here and later in the proof, we mean that we can construct
an exactly similar proof if we make the contrary supposition.
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∼ S(x2, u1) ∼ y1 ∼ = ∼ S(x4, u2) ∼ y1 ∼ .

Therefore, S(x2, u1) = S(x4, u2). Hence, putting u = u1 in (2.2), we get

∼ S(x1, u1) ∼ y4 ∼ = ∼ S(x2, u1) ∼ y3 ∼ .

.
Since S(x1, u1) = S(x3, u2) and S(x2, u1) = S(x4, u2), this implies that

∼ S(x3, u2) ∼ y4 ∼ = ∼ S(x4, u2) ∼ y3 ∼ .

We have W2(x, y, u) = W1(x, y, u), where W1 takes the form ∼ xy ∼ u ∼
or ∼ u ∼ xy ∼. Assuming the former again without loss of generality, we get
∼ x3y4 ∼ u2 ∼ = ∼ x4y3 ∼ u2 ∼. Since the ∼s on each side do not involve
x3, x4, y3, y4 or u2 because the identity W1 = W2 is balanced, it follows that
x3y4 = x4y3 and that the quadrangle criterion holds in (Q, ·). Therefore (Q, ·) is
isotopic to a group. ⊓⊔

Example. A quasigroup which satisfies either of the reducible identities w(x.yz) =
(xy.z)w or (xy)(uv) = (u.yx)v is isotopic to a group.

For a further discussion of the topic of balanced identities, see Krapez̆ and
M.A.Taylor(1991).

2.2 Quasigroups of some special types and the concept of generalized
associativity

Theorem 2.2.1 Every LP-isotope of a medial quasigroup (Q, ·) is an abelian
group.

Proof. We begin by noting that if a medial quasigroup (Q, ·) possesses a two-
sided identity element e, then it is an abelian group. For, on putting a = d = e
in the medial law ab · cd = ac · bd we get bc = cb and so (Q, ·) is commutative.
Then putting c = e, we get ab · d = a · bd and so (Q, ·) is associative. The result
follows.

Next, let (Q, ·) be a given medial quasigroup, and let a new operation ⊗ be
defined on the elements of Q by a⊗ b = aσ · b where aσ−1 = av. Then we shall
show that (Q,⊗) is a medial quasigroup with v as unique right identity element.
It is convenient to denote by Rv the unique one-to-one mapping of the set Q
onto itself which is defined by aRv = av for all a in Q. Then a ⊗ b = aR−1

v · b
and it is evident that either of the relations a⊗ b = a⊗ c or b⊗a = c⊗a implies
b = c, so that (Q,⊗) is a quasigroup. Also

a⊗ v = aR−1
v · v = aR−1

v Rv = a

so v is the unique right identity element of (Q,⊗). To show that (Q,⊗) is medial,
let s be the unique solution of the equation sv = v. By the medial law in (Q, ·),
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ab·v = ab·sv = as·bv for all a, b in Q. That is, (ab)Rv = aRs ·bRv. Replacing a by
aR−1

s and b by bR−1
v , we get (aR−1

s ·bR−1
v )Rv = ab and so (ab)R−1

v = aR−1
s ·bR−1

v

for all a, b in Q. Using this relation, we have

(a⊗ b)⊗ (c⊗ d) = (aR−1
v · b)⊗ (cR−1

v · d) = (aR−1
v · b)R−1

v · (cR−1
v · d)

= (aR−1
v R−1

s · bR−1
v ) · (cR−1

v · d)

and similarly

(a⊗ c)⊗ (b⊗ d) = (aR−1
v R−1

s · cR−1
v ) · (bR−1

v · d).

The medial law of (Q, ·) shows that these are equal, and so the medial law holds
in (Q,⊗). Thus, (Q,⊗) is medial and has a unique right identity element, as
stated.

By a similar argument, we may show that if (Q, ·) is a given medial quasigroup
and a new operation ⊕ is defined on the elements of Q by a ⊕ b = a · bτ , where
bτ−1 = ub then Q,⊕ is a medial quasigroup with u as unique left identity.

Now, suppose that (Q, ·) is a given medial quasigroup. Any LP-isotope (Q, ∗)
of (Q, ·) is obtainable from it by a relation of the form a ∗ b = aσ · bτ , where
σ, τ are one-to-one mappings of Q onto itself such that aσ−1 = av and bτ−1 =
ub for suitable fixed elements v, u of Q (see Theorem 1.3.3). Also, again by
Theorem 1.3.3, the loop (Q, ∗) then has e = uv as identity element. Now let
a ⊗ b = aσ · b as above. Then a ∗ b = aσ · bτ = a ⊗ bτ . Since (Q, ·) is a medial
quasigroup, (Q,⊗) is medial, as already proved. Also because (Q,⊗) is medial,
so is the quasigroup (Q, ∗) defined by a ∗ b = a⊗ bτ and it has uv as a two-sided
identity element, as already stated. [By way of confirmation of this, let us note
that bτ−1 = ub = (uv) ⊗ b whence, regarding (Q, ∗) as derived from (Q,⊗) by
the definition a ∗ b = a ⊗ bτ , it follows from our earlier analysis that uv is the
unique left identity of (Q, ∗). Symmetry considerations show that it is also the
unique right identity.] But a medial quasigroup with a two-sided identity is an
abelian group, so every LP-isotope of a medial quasigroup (Q, ·) is an abelian
group, as required. ⊓⊔

We next give Bruck’s method (mentioned in the previous section) for con-
structing a medial quasigroup from the abelian group to which it is isotopic. This
is embodied in the following theorem:

Theorem 2.2.2 Every medial quasigroup which is isotopic to a given abelian
group (G, ·) is isomorphic to some quasigroup (G, ∗) obtained by a relation of the
form a ∗ b = w · aσ · bτ , where σ, τ are commuting automorphisms of (G, ·) and
w is a fixed element of G.

Proof. We observe first that if the relation (∗) is defined as in the statement
of the theorem, then

(a ∗ b) ∗ (c ∗ d) = (w · aσ · bτ ) ∗ (w · cσ · dτ) = w · (w · aσ · bτ)σ · (w · cσ · dτ)τ
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= w · wσ · wτ · aσ2 · dτ2 · bτσ · cστ

and similarly

(a ∗ c) ∗ (b ∗ d) = w · wσ · wτ · aσ2 · dτ2 · cτσ · bστ.

Since τσ = στ , these two expressions are equal and so every relation of the
form given defines a medial quasigroup.

Conversely, let (G, ∗) be any principal isotope of (G, ·) defined by a∗b = aµ·bν
where µ, ν are one-to-one mappings of G onto itself. Since every isotope of (G, ·)
is isomorphic to a principal isotope (Theorem 1.3.2), it is sufficient to confine
our attention to the latter. If (G, ∗) is a medial quasigroup, then

(aµ−1 ∗ b) ∗ (c ∗ dν−1) = (aµ−1 ∗ c) ∗ (b ∗ aν−1).

This is equivalent to

(a · bν)µ · (cµ · d)ν = (a · cν)µ · (bµ · d)ν

for all a, b, c, d in G. Let e be the identity element of (G, ·) and define the (fixed)
elements u, v, w by u = eµ, v = eν, w = uv. Also let λ be the one-to-one mapping
of G onto itself which maps each element a of G onto its inverse a−1 = aλ in
(G, ·). Putting c = e in the relation just obtained, we have

(a · bν)µ · (ud)ν = (av)µ · (bµ · d)ν.

On multiplying both sides of this by (ud)νλ · (av)µλ, we get

(a · bν)µ · (av)µλ = (bµ · d)ν · (ud)νλ.

Since this must hold for all a, b, d and, since the right-hand side is independent
of a, the left-hand side must be also. Similarly, the right-hand side must be
independent of d. Therefore, the left-hand side is equal to its expression with
a = e and the right-hand side is equal to its expression with d = e, whence

(a · bν)µ · (av)µλ = bνµ · vµλ and (bµ · d)ν · (ud)νλ = bµν · uνλ.

These expresions can be re-written as

(ab)µ = vµλ · (av)µ · bµ and (ba)ν = uνλ · (ua)ν · bν,

where we have postmultiplied the expressions by (av)µ and (ud)ν respectively
and then replaced bν by b in the first expression, bµ and d by b and a respectively
in the second expression.

Since (G, ·) is commutative, (ab)µ = (ba)µ or vµλ·(av)µ·bµ = uµλ·(bv)µ·aµ,
whence (av)µ · bµ = (bv)µ · aµ. Also, (ab)ν = (ba)ν whence (ua)νbν = (ub)ν ·
aν. We can re-write these expressions in the forms (av)µ · aµλ = (bv)µ · bµλ
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and (ua)ν · aνλ = (ub)ν · bνλ. Hence, observing that their left-hand sides are
independent of a and can be equated to their expressions with a = e, we get
(av)µ · aµλ = vµ · uλ and (ua)ν · aνλ = uν · vλ. Therefore, (av)µ = aµ · vµ · uλ
and (ua)ν = uν ·aν ·vλ. On substituting these formulae for (av)µ and (ua)ν into
our earlier expressions for (ab)µ and (ba)ν we get

(ab)µ = vµλ · aµ · vµ · uλ · bµ = aµ · bµ · uλ

and similarly (ab)ν = (ba)ν = aν · bν · vλ. In other words,

(ab)µ · uλ = aµ · uλ · bµ · uλ and (ab)ν · vλ = aν · vλ · bν · vλ.

So if we define aσ = aµ · uλ and aτ = aν · vλ we have that

(ab)σ = aσ · bσ and (ab)τ = aτ · bτ

showing that σ and τ are both automorphisms of (G, ·). Thus, we have shown
that there exist automorphisms σ and τ of (G, ·) such that

a ∗ b = aµ · bν = aσ · u · bτ · v = w · aσ · bτ.

Because (G, ∗) is required to satisfy the medial law, we must have

w · wσ · wτ · aσ2 · dτ2 · bτσ · cστ = w · wσ · wτ · aσ2 · dτ2 · cτσ · bστ

for all a, b, c, d ∈ G as in the first part of the theorem, and so

bτσ · bστλ = cτσ · cστλ.

Thus, the left-hand side is independent of b and is equal to its expression with
b = e. That is,

bτσ · bστλ = (v · vλ)σ · (u · uλ)τλ = eσ · eτλ = e · eλ = e,

or bτσ = bστ , so τσ = στ is necessary. This completes the proof of the theorem.
⊓⊔

Definition. A quasigroup (Q, ·) is said to be totally symmetric if it is commu-
tative and also semi-symmetric.

This implies that all its parastrophes coincide and so each of the equalities
bc = a, ca = b, ab = c, cb = a, ac = b, ba = c implies the other five. Any mul-
tiplication table of such a quasigroup defines a latin square which is unaffected
when the roles of row, column, and element number are permuted in any way.
An example of such a multiplication table is given in Figure 2.2.1

Medial quasigroups which are also totally symmetric play a role in the ge-
ometry of plane cubic curves. For the details of this application, see Ethering-
ton(1964/65). It is shown in the same paper that the construction of a medial
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1 2 3 4 5 6 7

1 1 3 2 5 4 7 6
2 3 2 1 6 7 4 5
3 2 1 3 7 6 5 4
4 5 6 7 4 1 2 3
5 4 7 6 1 5 3 2
6 7 4 5 2 3 6 1
7 6 5 4 3 2 1 7

Fig. 2.2.1.

quasigroup from the abelian group (G,+) to which it is isotopic which was given
in Theorem 2.2.2 can be simplified considerably in the case that the quasigroup
is totally symmetric as well as medial.

In any totally symmetric quasigroup, the identities (4) and (5) given at the
beginning of this chapter are valid. Their validity follows from the facts that
ab = c implies cb = a and bc = a as well as ba = c, whence (ab)b = a and
b(ba) = a as required. Moreover, it is easy to show that a quasigroup in which
the two relations ab · b = a and b · ba = a hold for all a and b is commutative and
hence totally symmetric (c.f. page 40). We have

ab = [(ba) · (ba)a]b = [(ba · b]b = ba,

so if ab = c, we have ba = c and hence cb = a, bc = a. Also, from ba · a = b and
a ·ab = b, we get ca = b and ac = b. In fact, a totally symmetric quasigroup may
be defined as a groupoid obeying any two of the identities ab = ba, ab · b = a,
and b · ba = a.

The finite idempotent totally symmetric quasigroups are co-extensive with
the class of design known as Steiner triple systems, as already mentioned and as
we shall see in Section 2.3, where we shall give a brief account of these designs
before demonstrating the equivalence of the two concepts.

The identities so far referred to have all been characterized by the fact that
only one operation is involved in each. We say that such identities are of rank 1.
More generally, by the rank of an identity W1 =W2, we understand the number
of different binary operations that occur in the expressions W1 and W2. By the
length of an expressionWi we understand the number of elements which occur in
Wi. Thus, for example, the expression a[b(cb)] has length 4. Evidently, the rank
of the identity W1 =W2 cannot exceed the number l = l1 + l2 − 2, where l1 and
l2 are the lengths ofW1 andW2 respectively. For given values of l1 and l2 we call
an identity of highest possible rank a general identity. Thus, in a general identity,
the number of operations is fixed. In place of the term “general identity”, Sade
often used the term identité démosienne (generalized identity) as for example,
in Sade(1957,1960b).

The following are examples of general identities:
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(1) (a ❡1 b) ❡2 c = a ❡3 (b ❡4 c) the general associative law
(2) (a ❡1 b) ❡3 (c ❡2 d) = (a ❡4 c) ❡6 (b ❡5 d) the general medial law
(3) (b ❡1 a) ❡3 (c ❡2 a) = b ❡4 c the general law of right transitivity
(4) a ❡1 (b ❡2 c) = (a ❡3 b) ❡4 (a ❡5 c) the general left distributive law
(5) a ❡1 (a ❡2 b) = b the general (left) keys law
(6) a ❡1 b = b ❡2 a the general commutative law

The idea of a general identity is due to Schauffler who introduced the con-
cept in connection with problems of coding theory. For the details, see Schauf-
fler(1956,1957). Some very comprehensive survey papers on the subject of gen-
eralized identities have been written. We refer the reader particularly to Be-
lousov(1958,1965) and Sade(1960b).

As an example of the kind of result that has been obtained, we mention that if
the general medial law (identity (2) above) holds with respect to six quasigroups
(G, ❡1 ), (G, ❡2 ), (G, ❡3 ), (G, ❡4 ), (G, ❡5 ) and (G, ❡6 ) all defined on the same set
G, then all six of them are isotopic to one and the same abelian group. [A more
general form of this result applicable to the case of multigroupoids has been
given by Sade(1959c).] We shall not give the proof here. Instead, we should like
to end the present section by giving two theorems which have relevance to the
topic of coding theory.

Theorem 2.2.3 If four quasigroups (Q, ❡1 ), (Q, ❡2 ), (Q, ❡3 ), (Q, ❡4 ), defined on
the same set Q, are connected by the general associative law, then they are all
isotopic to one and the same group.

Proof. Let k be a fixed element of Q and let ❡i stand for any one of the four
quasigroup operations ❡1 , ❡2 , ❡3 , ❡4 . Let us define mappings Li and Ri of the set
Q onto itself by the statements xLi = k ❡i x and xRi = x ❡i k. [These mappings
are translations by k on the four quasigroups; xLi is a left translation and xRi a
right translation of (Q, ❡i ).)] In the equality (a ❡1 b) ❡2 c = a ❡3 (b ❡4 c) we put, in
turn a = c = k, a = k, b = k and c = k, to get

(k ❡1 b) ❡2 k = k ❡3 (b ❡4 k),

(k ❡1 b) ❡2 c = k ❡3 (b ❡4 c),

(a ❡1 k) ❡2 c = a ❡3 (k ❡4 c),

(a ❡1 b) ❡2 k = a ❡3 (b ❡4 k).

The above equations are equivalent to

bL1R2 = bR4L3 (2.4)

bL1
❡2 c = (b ❡4 c)L3 (2.5)

aR1
❡2 c = a ❡3 cL4 (2.6)

(a ❡1 b)R2 = a ❡3 bR4 (2.7)

and the last three of these relations show that the quasigroups (Q, ❡i ) are isotopic
to each other; in particular, they are all isotopic to (Q, ❡2 ).
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We define a further isotope (Q, ·) of (Q, ❡2 ) by a · b = aR−1
2

❡2 bL−1
3 L−1

4 . It
then follows that all four of the quasigroups (Q, ❡i ) are isotopic to (Q, ·). Indeed,
we have

a ❡1 b = (aR1R2 · bR4L3)R
−1
2 (2.8)

a ❡2 b = aR2 · bL4L3 (2.9)

a ❡3 b = aR1R2 · bL3 (2.10)

a ❡4 b = (aL1R2 · bL4L3)L
−1
3 (2.11)

Equation (2.9) follows from the definition of the operation (·). Then, from
equation (2.6) we get a ❡3 b = aR1

❡2 bL−1
4 and, using (2.9), this gives equa-

tion (2.10). From equation (2.5) we get a ❡4 b = (aL1
❡2 b)L−1

3 and, again using
(2.9), this gives equation (2.11). Finally, from equation (2.7) we get a ❡1 b =
(a ❡3 bR4)R

−1
2 and, using (2.10), this gives equation (2.8).

Substituting the expressions for a ❡i b so obtained in the general identity of
associativity, we get

[(aR1R2 · bR4L3)R
−1
2 ]R2 · cL4L3 = aR1R2 · (bL1R2 · cL4L3)L

−1
3 L3.

That is
(aR1R2 · bR4L3) · cL4L3 = aR1R2 · (bL1R2 · cL4L3).

But, bR4L3 = bL1R2 by equation (2.4), so (uv)w = u(vw), where u = aR1R2,
v = bR4L3 = bL1R2 and w = cL4L3.

Since u, v, w may be arbitrary elements in Q, we conclude that (Q, ·) is a
group, and the equations (2.8), (2.9), (2.10), (2.11) show that all the (Q, ❡i ) are
isotopic to this group. This proves the theorem. ⊓⊔

The above theorem was first formulated by Belousov in a lecture given at an
algebra conference held at Moscow University in February, 1958. It was subse-
quently published by Belousov(1958) but without proof. Then in Hosszú(1959),
that author re-proved the theorem and pointed out some of its applications. Two
years later, Belousov’s paper [Belousov(1961)] appeared and this also contained
a proof of the theorem. A generalized form of the theorem has been proved by
Sade [see Sade(1961), page 334] and he has also extended the theorem to cover
the case of multigroupoids in Sade(1959b). See also Milić(1971).

Many authors have considered special cases of the generalized associative
law, see, for example, Devidé(1955), T.Evans(1950), Ford(1970), and Suschke-
witsch(1929).

Definition. A set Ωn of quasigroups of order n, defined on the same set Q of
elements, is called an associative system [see Schauffler(1957)] if, corresponding
to every two arbitrarily chosen quasigroups (Q, ❡1 ), (Q, ❡2 ) of Ωn, there exist
further quasigroups (Q, ❡3 ), (Q, ❡4 ) in Ωn of such a kind that, for any three
elements a, b, c ∈ Q, the general associative law is satisfied.
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It follows from Theorem 2.2.3 that all the quasigroups contained in such a
set Ωn are isotopic to the same group.

In Schauffler(1957), that author raised the following question with regard
to such a system. “Under what circumstances does an associative system Ωn
comprise the set of all quasigroups defined on a given set of cardinality n?” The
answer he found was this:

Theorem 2.2.4 The set Ωn of all quasigroups of order n is an associative sys-
tem if and only if n ≤ 3.

Proof. It is easy to show by direct enumeration that all quasigroups of order
2 and of order 3 are isotopic to the cyclic groups of order 2 and 3 respectively.
In other words Ω2 and Ω3 are associative systems.

Also, by Theorem 2.2.3 we know that all quasigroups belonging to Ωn are
isotopic to one and the same group.

On the other hand Theorem 1.6.3 taken in conjunction with Lagrange’s the-
orem for groups implies that for any n > 4, n 6= 6, there exists at least one
quasigroup which is not isotopic to any group. For n = 4 all quasigroups are
isotopic either to the cyclic group C4 or else to C2×C2 but these groups are not
themselves isotopic (see Section 4.2), while for n = 6, the fact that there exist
quasigroups which are not isotopic to any group is shown also in Section 4.2. ⊓⊔

For further information on the subject matter of this section, the reader
should consult Belousov(1965) and Sade(1957) and the bibliographies contained
therein.

For the general theory of quasigroups, he should consult Aczél(1964,1965), Al-
bert(1943,1944), Belousov(1967a,b), Bruck(1958), Kertész(1964) and Pflugfelder
(1990a), each of which contains an extensive bibliography of further papers, and
also the papers of Sade.

2.3 Triple systems and quasigroups

We first consider Steiner triple systems and totally symmetric quasigroups.
A Steiner triple system of order n is a family of 3-element subsets (called

triples or blocks) of a set V of cardinality n, such that for every pair of distinct
elements of V , there is exactly one triple which contains that pair.

If we consider just the triples which contain a particular v ∈ V , we see that
the other n− 1 elements of V must occur exactly once among these triples and
that two other elements occur together with v in each triple. It follows that v
must occur in exactly r = 1

2
(n − 1) triples which implies that n must be odd

and also that the number r of triples which contain v is independent of v. So, if
t is the total number of triples, we have nr = 3t, since each side of this equality
represents the total number of elements occurring in all the triples. We deduce
that 3 divides r or n. If 3 divides r then n− 1 is a multiple of 6, say n = 6m+1.
If 3 divides n then n is three times an odd number, say n = 3(2m+1) = 6m+3.
Thus, if n is the order of a Steiner triple system, we necessarily have n ≡ 1 or 3
modulo 6.
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Before explaining the connections between such systems and quasigroups, we
give an outline of their history.

It was in the year 1853 that Steiner(1852/53) posed the problem as to whether
the necessary condition n ≡ 1 or 3 mod 6, was sufficient for the existence of a
triple system having n different elements and of the type described above which
now bears his name. The question was answered affirmatively by Reiss(1858/59)
in 1859. However, neither of these writers seems to have been aware that the
problem had been both posed and solved some twelve years earlier by Kirk-
man(1847) in an article in the Cambridge and Dublin Mathematical Journal.
Indeed, three years after that, in “The Lady’s and Gentleman’s Diary” of 1850,
Kirkman had gone on to pose a more difficult but related problem which is
known to this day as Kirkman’s schoolgirl problem. This problem requires the
construction of Steiner triple systems on n = 6m+ 3 elements which can be re-
solved into r = (n−1)/2 subsystems each containing every element exactly once.
The general case of the latter problem was not solved until 1971. A complete
solution will be found in Ray-Chaudhuri and Wilson(1970,1971,1973).

Two systems are isomorphic if one can be transformed into the other by
a permutation of the n symbols. Netto(1893) showed that for n = 3, 7 and
9 there is, up to isomorphism, just one Steiner triple system. In the same year,
Moore(1893) proved that for all n > 13 (n ≡ 1 or 3 mod 6), there are at least two
non-isomorphic such systems. See also Hilton(1972). This result was strengthened
by Netto(1901) to include the case n = 13. It turns out that, for n = 13,
there are just two Steiner triple systems, up to isomorphism. Cole, White and
Cummings(1925) found that there are 80 isomorphically distinct Steiner triple
systems on 15 elements. This number was later verified by Hall and Swift(1955)
using a computer. Computers were indispensable in settling the next case, that of
19 elements. Kaski, Österg̊ard, Pottonen and Kiviluoto(2009) showed that there
are an astonishing 11 084 874 829 systems of that order. Some upper and lower
bounds on the number of Steiner triple systems of a given order were obtained by
Doyen(1970a,b). Some further results on the same subject will be found in Doyen
and Valette(1971), Rokovska(1971,1972), R.M.Wilson(1973/74), Alekseev(1974)
and Rosa(1975).

For more information on Steiner triple systems and Kirkman’s schoolgirl
problem, the interested reader is referred to the book of M.Hall(1967) and to
Doyen and Rosa(1973,1978,1980). Also, much additional interesting information
on Kirkman’s schoolgirl problem and its history will be found in chapter 10 of
Ball(1939) and in chapter 10 of R.J.Wilson and Watkins(2013). For a detailed
survey of the current state of knowledge on Steiner triple systems and their
generalizations, the reader should consult the more recent book of Colbourn and
Rosa(1999).

The next two theorems explain how Steiner triple systems are connected with
quasigroups and latin squares.
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Theorem 2.3.1 There exists a one-to-one correspondence between finite idem-
potent totally symmetric quasigroups12 and Steiner triple systems.

Proof. Let Q = {a, b, c, . . .} be the set of elements of a Steiner triple system.
For a and b distinct, define c = a · b to be the third element of the unique
triple of the system which contains a and b. Also, define a · a = a. Then (Q, ·)
is an idempotent totally symmetric quasigroup. (The multiplication table of the
idempotent totally symmetric quasigroup given in Figure 2.2.1 was obtained in
this way.)

Conversely, let (Q, ·) be a finite idempotent totally symmetric quasigroup.
Since a · b = c implies b · c = a, c · a = b, b · a = c, c · b = a, a · c = b, the
operation (·) separates Q into triples, and these form a Steiner triple system
because each pair a, b of distinct elements of Q is associated with a unique third
element c = a · b, which is distinct from both a and b. ⊓⊔

Notice that the above correspondence implies that the number of elements
in a finite idempotent totally symmetric quasigroup is necessarily an integer
congruent to one or three, modulo six. The relation between these quasigroups
and the Steiner triple systems was first pointed out by Sade [in Sade(1950, page
4, and Sade (1957), page 159]. It was demonstrated again by Bruck(1963b).

The latter author [in Bruck(1958), page 58, and in Bruck(1963b)] also pointed
out that a similar relationship exists between totally symmetric loops and Steiner
triple systems as follows:

Theorem 2.3.2 There exists a one-to-one correspondence between finite totally
symmetric loops and Steiner triple systems.

Proof. If (G, ·) is a totally symmetric loop with identity element e then ae =
a = ea for each element a ∈ G. Now, because of the totally symmetric property,
this implies that a2 = e: that is, each element of (G, ·) has order two. IfG contains
n+1 elements, the set G\{e} forms a Steiner triple system of n elements whose
triples are given by the statement that the unique triple which contains the pair
of elements a, b has c = ab as its third element.

Conversely, let Q be a set of n elements forming a Steiner triple system. We
can make Q into a totally symmetric loop by adjoining an additional element e
and defining the loop operation (·) by the three rules (i) if a 6= e, b 6= e, then ab
is the third element of the unique triple which contains a and b, (ii) ae = a = ea
for all a ∈ Q, and (iii) a2 = e2 = e for all a ∈ Q. ⊓⊔

The above two theorems have recently been put into the more general setting
of generalized cubic curves by Buekenhout(2001). [cf. Etherington(1964/65).]

We showed on page 54 that a totally symmetric quasigroup is a groupoid
which satisfies any two of the identities (laws) ab = ba, (ab)b = a, b(ba) = a.
The laws (ab)b = a and b(ba) = a are Sade’s right and left Keys laws. In the

12Such quasigroups are sometimes called Steiner quasigroups. See, for example, Lind-
ner(1971c) or Colbourn and Rosa(1999).
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presence of the commutative law, they imply the laws of left and right semi-
symmetry: namely, (ba)b = a and b(ab) = a . The latter two laws taken together
imply that the law of elasticity or flexible law (ba)b = b(ab) also holds. Thus, a
Steiner quasigroup is idempotent, commutative, semi-symmetric and flexible but
is completely defined by aa = a and any two of ab = ba, (ab)b = a, b(ba) = a.

Two other kinds of triple system exist which have connections with quasi-
groups and latin squares: namely, Mendlesohn triple systems and directed triple
systems.

The first of these has its origins in a paper of N.S.Mendelsohn(1971a) who
discussed systems of triples (x y z) which are regarded as being ordered cyclically
so that (b c a) and (c a b) are regarded as the same triple as (a b c) and such
that each of the adjacent (directed) pairs (a b), (b c) and (c a) occurs just once
in the triples of the system. If we use notation similar to that used above for
Steiner triple systems and consider the triples which contain a particular element
v ∈ V , we see that the other n− 1 elements of V must occur twice among these
triples; once to the left of v and once to its right. Since each triple in which v
occurs contains two ordered pairs which include v, it follows that v must occur
in r = n − 1 of the triples. If t is the total number of triples, nr = 3t (as for
Steiner triple systems) so 3 divides n or r(= n− 1) and so n ≡ 0 or 1 mod 3.

An idempotent quasigroup can be constructed from a Mendelsohn triple sys-
tem by defining a · b = c if c is the third member of the triple which contains
the ordered pair (a b) when a 6= b. In this case, a · b = c ⇒ b · a 6= c unless both
of the triples (a b c) and (c b a) occur in the system so the resulting quasigroup
is not in general commutative. [Note: a system T such that, for all triples in T ,
(a b c) ∈ T ⇒ (c b a) 6∈ T is called pure.] Since a · b = c⇒ b · c = a and c · a = b,
the quasigroup satisfies the laws b(ab) = a and (ab)a = b so it is semi-symmetric.
It is also flexible because b(ab) = a and (ba)b = a together imply (ba)b = b(ab).
We may call it a Mendelsohn quasigroup. Conversely, a Mendelsohn quasigroup
defines a Mendelsohn triple system. Such systems exist for n ≡ 0 or 1 mod 3
except when n = 6. We can also define Mendelsohn loops. For more details, see
N.S.Mendelsohn(1971a) and Grannel, Griggs and Quinn(1999,2009).

The third type of triple system we might consider is one in which each triple
(a b c) is regarded as consisting of the three ordered pairs (a b), (b c) and (a c)
each of which is required to occur exactly once in the triples of the system.
Systems of this kind were introduced by Hung and Mendelsohn(1973) and are
called directed triple systems. Again, a necessary condition for existence of such
a system T is n ≡ 0 or 1 mod 3. See, for example, Colbourn and Rosa(1992).

If we attempt to define a quasigroup in the same way as before, we find that
we are successful if and only if (x y z) ∈ T ⇒ (w y x) ∈ T for some w ∈ V
as we shall show. When this condition holds, we say that the system is a latin
directed triple system. When such a system exists, the corresponding quasigroup
may or may not satisfy the flexible law. Investigation of such systems is quite
recent. For more details than we have space to give here, see Drápal, Kozlik and
Griggs(2012); also (later) Drápal, Griggs and Kozlik(2014,2015).
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Theorem 2.3.3 Let D = (V, T ) be a directed triple system on a set V of n
elements. Denote by Sa,b the set of ordered pairs (x, y) in positions a and b
respectively of the triples T of D. Then D is a latin directed triple system if and
only if S1,2 = S3,2, S2,3 = S2,1 and S1,3 = S3,1.

Proof. Suppose that (x y z) ∈ T . Then y · z = x, x · z = y and x · y = z.
Since the ordered pair y, x occurs in some triple, there exists w ∈ T such that
y · x = w and then one of (y x w), (y w x), (w y x) occurs. If either of the first
two of these occurs, we have y ·w = x. But, since (x y z) ∈ T , y · z = x implying
that w = z and that (y x z) or (y z x) is a triple of D. However, the ordered
pair y, z already occurs in the triple (x y z), so this is impossible. Therefore,
(x y z) ∈ T ⇒ (w y x) ∈ T (where w = z is possible). From this implication, it
follows that S1,2 ⊆ S3,2.

Again, since the ordered pair z, y occurs in some triple, there exists v ∈ T
such that z · y = v and then one of (z v y). (v z y), (z y v) occurs. If either of
the first two of these occurs, we have v · y = z. But, since (x y z) ∈ T , x · y = z
implying that v = x and that (z x y) or (x z y) is a triple of D. However,
the ordered pair x, y already occurs in the triple (x y z), so this is impossible.
Therefore, (x y z) ∈ T ⇒ (z y v) ∈ T (where v = x is possible). From this
implication, it follows that S3,2 ⊆ S1,2.

Since S1,2 ⊆ S3,2 and S3,2 ⊆ S1,2, we have S1,2 = S3,2. Then also S2,1 = S2,3

since the sets of all pairs in positions 2,1 and 2,3 are the same as those of all
pairs in positions 1,2 and 3,2 respectively but oppositely ordered.

However, S1,2 ∪ S2,3 ∪ S1,3 = S2,1 ∪ S3,2 ∪ S3,1 because each of these is equal
to the set of all ordered pairs taken from V . So, S1,3 = S3,1. This completes the
proof of necessity.

Conversely, we wish to show that, when S1,2 = S3,2, S2,3 = S2,1 and S1,3 =
S3,1, (V, ·) is a quasigroup.

Suppose that (x y z) ∈ T . Then x · y = z. We require that each of the
equations α · y = z, x · β = z and x · y = γ has a unique solution.

Firstly, we have γ = z since x · y = γ ⇒ one of (γ x y), (x γ y), (x y γ) is in
T . But (γ x y), (x γ y) are not in T because the ordered pair x, y is in only one
triple of T . Therefore, (x y γ) ∈ T which implies that γ = z.

Secondly, x·β = z ⇒ one of (x z β), (z x β), (x β z) is in T . Since the ordered
pair x, z occurs in only one triple of T and (x y z) ∈ T , (x z β) cannot occur. If
(z x β) is in T then, because S2,1 = S2,3, some triple (u x z) also is in T . But
the ordered pair x, z already occurs in (x y z). Hence, x · β = z ⇒ (x β z) ∈ T
and so β = y.

Finally, α · y = z ⇒ one of (z α y), (α z y), (α y z) is in T . If (z α y) is in T ,
then because S1,3 = S3,1, some triple (y s z) also is in T . Similarly, if (α z y) is
in T then because S3,2 = S1,2, some triple (y z t) also is in T . But the ordered
pair y, z already occurs in (x y z) so α · y = z ⇒ (α y z) ∈ T and hence α = x.

We may apply similar arguments to each of the equations x·z = y and y·z = x
(which also hold when (x y z) ∈ T ) to show that, when any two of the variables
are given, the third is uniquely determined. Hence (V, ·) is a quasigroup. ⊓⊔
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Theorem 2.3.4 Let D = (V, T ) be a directed triple system on a set V of n
elements. Then D is a latin directed triple system if and only if (x y z) ∈ T ⇒
(w y x) ∈ T for some w ∈ V .

Proof. The stated requirement is that S1,2 ⊆ S3,2. The previous theorem has
shown that this is necessary. We have to show that it is also sufficient.

Since the number of ordered pairs x, y ∈ V × V , x 6= y, is the same as the
number of ordered pairs y, x, there is an exact match between the triples (x y z)
and (w y x) as x and y vary. Thus, S1,2 = S3,2. Then, as shown in the previous
theorem, the equalities S2,1 = S2,3 and S1,3 = S3,1 hold also and these equalities
together force (V, ·) to be a quasigroup. ⊓⊔

For more information about recent work on the three kinds of triple system,
the reader is recommended to consult Griggs(2011).

2.4 Group-based latin squares and nuclei of loops

In Section 1.2, we gave three ways of checking whether a given latin square
L (which can be assumed to be in reduced form) is group-based: namely, the
quadrangle criterion, Suschkewitsch’s test and Frolov’s regularity test. To be
certain that L is group-based using the quadrangle criterion, it is necessary either
to check every pair of quadrangles which agree in three corresponding places or
else to border the square with its own first row and column so as to form the
Cayley table of a loop and then check the subset of all such pairs of quadrangles
which have the identity of the loop as top left member. [See Brandt(1927)].
Thus, the number of tests required is of order at least n3. If Suschkewitsch’s
test is used, it is necessary to check every pair of row (or column) permutations.
(See Theorem 1.2.2.) This requires n2 tests. If Frolov’s test for regularity is used,
it follows from Theorem 1.2.3 that at most n tests are required. However,by
treating L as the Cayley table of a loop and making use of the concept of loop
nuclei, we show in this section that in fact at most n/2 tests are necessary and
this only when the square is idempotent and of even order.

We shall require two definitions and a theorem:

Definition. The left nucleus Nl of a loop (Q, .) comprises all elements x ∈ Q
such that x(bc) = (xb)c for all b, c ∈ Q. The middle nucleus Nm comprises all
elements y ∈ Q such that a(yc) = (ay)c for all a, c ∈ Q and the right nucleus Nr
comprises all elements z ∈ Q such that a(bz) = (ab)z for all b, c ∈ Q. The set
Nl ∩Nm ∩Nr is called the nucleus N .

Definition. The hth row(column) of the Cayley table of a loop (Q, ·) is said to
have the Frolov property if, when the columns(rows) of the latin square formed
by the body of the table are re-ordered in such a way that the elements of the
hth row(column) are in the same order as that of the row(column) border, each
row(column) of the re-ordered square coincides with some row(column) of the
body of the original Cayley table.
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We note that, if every column (or row) of a latin square has the Frolov
property, this is equivalent to saying that the latin square is regular. See page 5.

Theorem 2.4.1 Suppose that the cell (i, j) of the Cayley table T of the loop
(Q, ·) contains the entry aibj for i, j = 0, 1, . . . , n − 1, a0 = b0 = e, where e is
the identity element. Then a necessary and sufficient condition that the element
bk belong to the middle nucleus of the loop is that the column of T indexed by bk
has the Frolov property. A necessary and sufficient condition that the element ah
belong to the middle nucleus of the loop is that the row of T indexed by ah has
the Frolov property.

Proof. As in Theorem 1.2.2, we may suppose without loss of generality that
the symbols used for the loop (Q, .) are 1, 2, . . . , n, that 1 is the identity element
and that the Cayley table is in reduced form: that is, with the elements of the
first row and column in natural order.

Let us suppose that the mapping θ permutes the rows so that the elements
1b, 2b, . . . , xb, . . . , nb of the column headed by the element b are in the order
of the first column: that is, in natural order. Then, (xθ)b = x for x = 1, 2, . . . ,n.
(The columns may be re-arranged if we wish so that the new square becomes
reduced.)

The elements of the column headed by the element u are xu for x = 1, 2,
. . . , n. These become (xθ)u for x = 1, 2, . . . , n. (See Figure 2.4.1.) Suppose that
this is another column of T for each u ∈ Q. Then, for each u ∈ Q, there exists
an element w ∈ Q such that (xθ)u = xw for all x ∈ Q, where (xθ)b = x. Thus,
xθ = xR−1

b and so (xR−1
b )u = xw. Putting x = b, we get u = bw or w = uL−1

b

so (xR−1
b )u = x(uL−1

b ) for all x, u ∈ Q, or, equivalently, (xR−1
b )(bw) = xw for

all x,w ∈ Q. If we put x = yb, this becomes y(bw) = (yb)w for all y, w ∈ Q.
Thus, b lies in the middle nucleus of the loop.

To prove the second statement, we need only remark that the loop whose
rows are the columns of (Q, .) has middle nucleus the same as that of (Q, .). ⊓⊔

(·) 1 · · b · · u ·
1θ 1θ · · (1θ)b = 1 · · (1θ)u ·
2θ 2θ · · (2θ)b = 2 · · (2θ)u ·
· · · · · · · · ·
· · · · · · · · ·
xθ xθ · · (xθ)b = x · · (xθ)u ·
· · · · · · · · ·
· · · · · · · · ·
nθ nθ · · (nθ)b = n · · (nθ)u ·

Fig. 2.4.1. Loop table T after re-arranging rows so that the symbols in column
b are in natural order.
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Theorem 1.2.3 is an immmediate corollary to Theorem 2.4.1 since, if and only
if all rows(columns) have the Frolov property, the middle nucleus is the whole of
Q and so (Q, .) is a group.

However, it is well-known that the order of each of the nuclei of a loop divides
the order of the loop. [See, for example, Pflugfelder(1990a) for a proof.] So,if p is
the smallest prime which divides the order |Q| of a loop (Q, .) (or reduced latin
square L formed by its Cayley table) and if |Q|/p rows, excluding the first, of L
have the Frolov property, this is sufficient to ensure that L is group-based since
it ensures that at least 1 + (|Q|/p) elements of Q are in the middle nucleus of
(Q, .) whereas the maximum size of the middle nucleus is |Q|/p if it is not the
whole loop.

(Note that, in particular, for a latin square of odd order, it is sufficient that
at most a third of the rows have the Frolov property to be sure that the square
is group-based. For a square of prime order, just one row is sufficient. Thus, for
use by hand, our third test for a latin square to be group-based is considerably
more economic than its two predecessors.)

But it is also well-known [again see Pflugfelder(1990a)] that each of the nuclei
is a group and so all the powers of an element of the middle nucleus and likewise
the product of each pair of its elements are themselves members. By exploiting
these facts, we may reduce further the number of columns (or rows) which we
need to test for the Frolov property to ensure that a given latin square is group-
based. (When the square is idempotent, no further reduction is possible.)

In Keedwell(2005), the reader intersted in loop theory will find analogues of
Theorem 2.4.1 for testing for elements of the left and right nuclei and will also
find examples of loops of small order which have such (proper) nuclei.

2.5 Transversals in group-based latin squares

As we remarked earlier, a latin square L is called group-based if it satisfies
the quadrangle criterion (or the other criteria mentiond in the previous section)
and so can be bordered in such a way that it becomes the multiplication table
of a finite group G. For such squares, quite a lot is known about the existence of
transversals. As we explained in Section 1.5, L has a transversal if and only if G
has a complete mapping.

Theorem 2.5.1 A necessary condition for a finite group (G, ·) to have a com-
plete mapping is that the product of all its elements in some order is equal to the
identity element e of G.

Proof. Let x→ θ(x) be the complete mapping and x→ φ(x) = xθ(x) be the
corresponding orthomorphism. Let us write φ(x) as a product of cycles
φ = (g11 g12 . . . g1s1)(g21 g22 . . . g2s2) . . . (gh1 gh2 . . . ghsh) . . . (gr1 gr2 . . . grsr) .
Then gh k+1 = φ(ghk) = ghk · θ(ghk) for all choices of h = 1, 2, . . . , r and k 6= sh.
Also gh1 = φ(gh sh) = gh sh · θ(gh sh). It follows that θ(ghk) = g−1

hk gh k+1 for all
choices of h and k 6= sh and that θ(gh sh) = g−1

h sh
gh1. Therefore, the product

θ(gh1)θ(gh2) . . . θ(gh sh) = g−1
h1 gh2 · g−1

h2 gh3 . . . g
−1
h sh

gh1 = e
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for each h = 1, 2, . . . , r. Since the complete mapping θ effects a permutation of
G, the elements θ(ghk) for k = 1, 2, . . . , sh and h = 1, 2, . . . , r comprise all the
elements of G each counted once. The result of the theorem follows. ⊓⊔

Theorem 2.5.1 was first proved by Paige(1951). In the case of abelian groups,
the above necessary condition is also sufficient. This also was proved by Paige
[see Paige(1947)] and follows as a corollary from Theorem 2.5.3 below. The same
author, in Paige(1951), gave a sufficient condition for a finite non-abelian group
to have a complete mapping as follows:

Theorem 2.5.2 A sufficient condition for a finite group (G, ·) of order n to
have a complete mapping is that there exist an ordering a1, a2, . . . , an−1 of the
non-identity elements of G such that the partial products b1 = a1, b2 = a1a2,
b3 = a1a2a3, . . . , bn−2 = a1a2 . . . an−2 are all distinct and such that the complete
product bn−1 = a1a2 . . . an−1 is equal to the identity element e of G.

Proof. Let c be the element which does not occur among the above par-
tial products. We may define a permutation φ of G in cycle form as follows:
φ = (c)(b1 b2 b3 . . . bn−1). We easily see that φ is an orthomorphism of G with
corresponding complete mapping θ, where θ(bi) = ai+1 for i = 1, 2, . . . , n − 2,
θ(bn−1) = a1 and θ(c) = e. We have cθ(c) = c = φ(c), biθ(bi) = biai+1 = bi+1 =
φ(bi) for i = 1, 2, . . . , n− 2 and bn−1θ(bn−1) = ea1 = b1 = φ(bn−1) by definition
of bi+1 and φ(bi). ⊓⊔

It is clear that this sufficient condition is not necessary because it requires
the existence of an orthomorphism which has a single cycle of length n − 1.
There exist many groups which have orthomorphisms which consist of several
(shorter) cycles. For example, the dihedral group D4 = {a, b : a4 = b2 = e, ab =
ba−1} of order 8 has an orthomorphism with cycles of lengths 5 and 2.as follows:

φ = (e ba2 ba
2
a2 b ba3 a

3
b ba ba)(a a a

2
a3)(ba

3
e).

Definition. A group G which satisfies the above sufficient condition is said to
be R-sequenceable.

Theorem 2.5.3 Let θ be an arbitrary permutation of the elements x1, x2, . . . , xn
of a finite abelian group (G, ·) of order n. Then it is always possible to construct
from θ another permutation θ′ such that at least n−1 of the elements xiθ

′(xi) =
φ′(xi) are distinct.

Proof. If n− 1 of the elements φ(xi) = xiθ(xi) are distinct, there is nothing
to prove, so suppose that only the r elements S = {φ(x1), φ(x2), . . . , φ(xr)},
r < n− 1, are distinct.

Case 1. If ∃h, k > r such that xhθ(xk) 6∈ S, put θ′(xh) = θ(xk), θ
′(xk) = θ(xh)

and θ′(xi) = θ(xi) for i 6= h, k. Define φ′(xh) = xhθ
′(xh) = xhθ(xk) 6∈ S and

φ′(xi) = φ(xi) for i = 1, 2, . . . , r. Then φ′ has at least r + 1 members.

If Case 1 does not hold for any h, k > r, we argue as follows:

By hypothesis, φ(xr+1) = φ(xu) for some u ≤ r.
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Case 2a. If xuθ(xr+2) 6∈ S, put θ′(xu) = θ(xr+2), θ
′(xr+2) = θ(xu) and

θ′(xi) = θ(xi) for i 6= u, r + 2. Then φ′(xu) = xuθ
′(xu) = xuθ(xr+2) 6∈ S and

φ′(xr+1) = xr+1θ
′(xr+1) = xr+1θ(xr+1) = φ(xr+1) = φ(xu) so φ′ has at least

r + 1 members.

Case 2b. If Case 2a does not hold, we have xuθ(xr+2) = φ(xv) ∈ S for some
v ≤ r. Then xvθ(xu) 6= φ(xu), φ(xv) since v 6= u. (Note that v = u would imply
that θ(xr+2) = θ(xu) but θ is a permutation.)

If xvθ(xu) 6∈ S, we can put θ′(xu) = θ(xr+2), θ
′(xv) = θ(xu), θ

′(xr+2) = θ(xr)
and θ′(xi) = θ(xi) for i 6= u, v, r + 2.

Then φ′(xv) = xvθ
′(xv) = xvθ(xu) 6∈ S, φ′(xu) = xuθ

′(xu) = xuθ(xr+2) =
φ(xv) and φ

′(xr+1) = xr+1θ
′(xr+1) = xr+1θ(xr+1) = φ(xr+1) = φ(xu) so again

φ′ has at least r + 1 distinct maembers.
If none of the previous cases applies, we shall have

Case 2c. xuθ(xr+2) = φ(xv) and xvθ(xu) = φ(w), u, v, w ≤ r.
We may suppose the notation chosen so that u = 1, v = 2, w = 3. Then

x1θ(xr+2) = φ(x2) and x2θ(x1) = φ(x3).
By repetition of this construction procedure, we can enlarge S unless or

until we reach a point at which x1θ(xr+2) = φ(x2) and xi+1θ(xi) = φ(xi+2) for
i = 1, 2, . . . , k, where k ≤ r − 2.

We omit the rest of the proof (which uses a not-very-obvious induction ar-
gument) because of its length and complexity but the above part of the proof is
sufficient to show its flavour.

Corollary. If (G, ·) is a finite abelian group of order n and if the product of
all the elements of G is the identity element e, then G has a complete mapping.

Proof. By Theorem 2.5.3 we can assume that we can construct a permu-
tation θ of G such that the elements φ(xi) = xiθ(xi) are distinct for i =
1, 2, . . . , n − 1. Let c be the element of G which does not occur in the set
S = {φ(x1), φ(x2), . . . , φ(xn−1)}. Then c

∏n−1
i=1 φ(xi) = e. Since also

∏n
i=1 xi = e

and
∏n
i=1 θ(xi) = e, we have
(
∏n−1
i=1 xiθ(xi)

)(

xnθ(xn)
)

= e. That is,
(
∏n−1
i=1 φ(xi)

)(

xnθ(xn)
)

= e
so xnθ(xn) = c 6∈ S. This proves that φ(xn) 6∈ S and so φ is a permutation of S
and θ is a complete mapping. ⊓⊔

Theorem 2.5.4 The product of all the elements of a finite abelian group (G, ·)
is the identity element e unless G contains exactly one element of order two. In
this latter case, the product is equal to the unique element of order two.

Proof. Consider first the product P of the elements of order greater than
two. Since the group is abelian, this product can be re-arranged so that each
element is followed by its inverse. So P is equal to e. The remaining non-identity
elements form a subgroup (H, ·) of G. (H consists of e and all the elements of
order two.) Let a1, a2, . . . , ar be a set of generating elements of H. Then each
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element h ∈ H can be written in the form h = aǫ11 a
ǫ2
2 . . . aǫrr , where ǫi is 0 or 1.

Consider the elements which contain ai. There are 2
r−1 such elements since there

are two choices of each ǫj , j 6= i, according as aj does or does not occur in h.
Consequently, when we multiply all these elements together, the 2r−1 occurrences
of ai cancel out except when r = 1 and there is only one element of order 2.
Hence, the product of all the elements of H is equal to e or to h if H has only
one element h of order two. ⊓⊔

Corollary. The Cayley table of an abelian group has a transversal except when
that group has exactly one element of order 2.

Theorem 2.5.4 has been proved by many authors including Miller(1903),
Paige(1947), Ramanathan(1947) and M.Hall(1952). See also Remark 2 on page
8 of [DK2]. The corollary has also been proved by Carlitz(1953b).

When a finite group G (assumed non-abelian) has a complete mapping, the
product of its elements in some particular order is equal to the identity element
e by Theorem 2.5.1. It follows that the product of these elements in any order is
equal to an element of the commutator subgroup of G. (We shall use this fact in
the proof of Theorem 2.5.5.)

More generally, let G be a finite group of order n and let G′ be its commu-
tator subgroup. Since the elements of G commute mod G′, every product of the
n distinct elements of G belongs to the same coset mod G′. Fuchs suggested the
study of groups G for which it is true, conversely, that every element of this coset
can be represented as a product of n distinct elements. Dénes and Török(1970)
called groups which have the latter property P -groups. Rhemtulla(1969) proved
that every finite soluble group is a P -group and later Dénes and Hermann(1982)
proved that every finite group is a P -group. Keedwell(1983b,1984a) has intro-
duced the concept of a super P -group. For details of the latter, see [DK2], page
75.

The problem of finding conditions under which a finite group has a com-
plete mapping has been further investigated in M.Hall and Paige(1955). In that
paper, these authors proved that for soluble groups13 the necessary and suffi-
cient, and for groups of even order the necessary, condition for the existence of a
transversal in the Cayley table of the group is that its Sylow 2-subgroups should
be non-cyclic.They conjectured further that the condition is also sufficient for
non-soluble groups. Their main theorems are as follows but, because the proofs
require reasonably advanced knowledge of group-theory, we only give outline
proofs. The beginning student may prefer to defer reading the proofs until later
and the more advanced student can consult the original paper.

Theorem 2.5.5 A finite group of order n which has a cyclic Sylow 2-subgroup
does not possess a complete mapping.

13It is known that every group of odd order is soluble, see Feit and Thompson(1963).
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Proof. Let S be a cyclic Sylow 2-subgroup of G. We shall show first that S
is in the centre of its normalizer N(S).

If S is cyclic of order 2m, its automorphism group is a 2-group of order 2m−1.
[See page 146 of Zassenhaus(1958).] Let Z be the centre of N(S). If Z = N(S)
then S lies in the centre of its normalizer and so the claim is true in this case. We
may suppose that Z 6= N(S) and, if this is the case, we may choose an arbitrary
element u ∈ N(S) and write u = vw = wv where v, w are some powers of u
and so belong to N(S) and the order of v is a power of 2 (and so v ∈ S) while
the order of w is prime to 2. To prove our claim in this case, it is sufficient to
show that if w ∈ N(S), where the order of w is r say and r is prime to 2, then
waw−1 = a for every a ∈ S. Since wSw−1 = S, the mapping φ : a → waw−1 is
an automorphism of S. The order of the automorphism group of S is 2m−1 and
hence w2m−1

aw−2m−1

= a for every a ∈ S. Since r is prime to 2, there exists an
integer z such that (w2m−1

)z = w and this implies that waw−1 = a for every
a ∈ S as required.

By a theorem of Burnside [see page 203 of M.Hall(1959) for a proof], if a
Sylow p-subgroup P of a finite group G is in the centre of its normalizer, then G
has a normal subgroupH which has the elements of P as its coset representatives.
Thus, in the present case, our group G has a normal subgroup H which has the
elements of S as its coset representatives. If G = H ∪ Hs2 ∪ . . . ∪ Hst, each
g ∈ G can be written in the form g = hsi for some h ∈ H and si ∈ S where

t = ord(G/H) = ord S and ord H is odd. Hence,
∏

g∈G g = h∗
∏t
i=1(si)

ordH

where h∗ is some element of H. Here, we have used the facts that G/H ∼= S is
abelian and that exactly ord H elements of G occur in each coset. Since S is
abelian and has a unique element of order 2,

∏t
i=1 si is this element of order 2 and

so
∏t
i=1(si)

ordH 6∈ H. But, because G/H is abelian, the commutator subgroup
G′ of G is contained in H. Thus,

∏

g∈G g 6∈ G′ and so, by the remark following
the corollary to Theorem 2.5.4, G does not possess a complete mapping. ⊓⊔

Corollary. If G is an arbitrary group of order n = 4k + 2, then G has no
complete mapping. In particular, the symmetric group on three elements has no
complete mapping.

The result of the corollary can be deduced from an earlier theorem of Mann
(see Theorem 5.1.5) as we shall explain in Section 5.1. Also, it can be obtained
as a special case of a more general result due to Bruck(1951) which we discussed
in detail in Section 9.2 of [DK1] and which is as follows:

Let G be a finite group of order n. If G contains a normal subloop H of odd
order such that the quotient loop G/H is a cyclic group of even order, then the
latin square LG representing the multiplication table of G does not possess a
transversal (and consequently LG has no orthogonal mate).

Theorem 2.5.6 A finite soluble group G whose Sylow 2-subgroups are non-
cyclic has a complete mapping.
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Proof. The proof is obtained in a number of steps. In the first place, Hall
and Paige have shown that every non-cyclic 2-group has a complete mapping.
They have also shown that if a group G can be written in the form G = AB
where A and B are subgroups such that A ∩ B = {e} and if A and B both
have complete mappings, so does G. But, by a theorem of P. Hall(1928), if A is
a Sylow 2-subgroup of a soluble group, then A has a 2-complement B and we
then have G = AB and A∩B = {e} as desired. Also, B has odd order and so it
has a complete mapping (as shown in Theorem 1.5.3) and A, being a non-cyclic
2-group, has a complete mapping also. Hence the result of the theorem follows.

⊓⊔

Hall and Paige have proved further that all finite alternating groups have
complete mappings and that, for order n > 3, the symmetric group Sn has a
complete mapping. As follows from the corollary to Theorem 2.5.5, the sym-
metric group S3 has no complete mapping and so we may deduce from the last
result that the property of having a complete mapping is not invariant under
homomorphisms.

It was conjectured by Hall and Paige that every finite group whose Sylow
2-subgroups are non-cyclic, soluble or not, has a complete mapping and, after
some 60 years of proving the conjecture true for various classes of non-soluble
groups one-by-one, it is now known to be true for all groups. For details, see
A.B.Evans(2009) and Wilcox(2009). A good summary of the history of the steps
which have led to the resolution is contained in the reviews of these two papers
in Mathematical Reviews.

From Theorem 2.5.5, Theorem 2.5.6 and a result due to Dénes and Keed-
well(1989), we can deduce that the condition that the product of the elements
in some order of a group G should be equal to the identity element (call this
Condition P) is an alternative sufficient condition for any group, abelian or not,
to have a complete mapping. Firstly, it follows from the proof of Theorem 2.5.5
that, if G has a cyclic Sylow 2-subgroup, then the product of its elements in some
order (and so in all orders) is not in the commutator subgroup and consequently
Condition P is not satisfied. Secondly, it is easy to deduce from Theorem 2.5.6
and Theorem 2.5.1 that Condition P is satisfied for soluble groups whose Sylow 2-
subgroups are non-cyclic. Thirdly, Dénes and Keedwell(1989) have given a short
direct proof that Condition P holds for all non-soluble groups and have pointed
out that all such groups have non-cyclic Sylow 2-subgroups. Consequently, see
the remarks which follow Theorem 2.5.6 above, all such groups have complete
mappings. For a more recent direct proof, see Vaughan-Lee and Wanless(2003).

In Dénes and Keedwell(1991) two new conjectures related to complete map-
pings were made. These authors observed that the square of any permutation
consists of cycles of odd length (possibly none) and of an even number of cycles
of even length (again possibly none). Thus, any permutation of the latter kind
has at least one square root. They showed further that each of the permutations
representing the rows of the Cayley table L of a non-soluble group has a square
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root. These square roots define the rows of a square root square (not necessarily
latin) which we shall denote by

√
L.

Conjecture 1. If L is the multiplication table of a non-soluble group then, not
only does L have at least one, and possibly many, square roots

√
L, but at least

of these square roots is a latin square.

Conjecture 2. A necessary and sufficient condition for a latin square A to have an
orthogonal mate is that either A2 is a latin square or that A can be represented
as the product A = BC of two not-necessarily-distinct latin squares B and C.14

In Wanless(2001), that author has shown that Conjecture 2 is true without
the necessity of the option that A2 is a latin square. He has also commentd on
the difficulty of deciding whether Conjecture 1 is true, so that conjecture remains
open.

It has been proved by Bateman(1950) that all infinite groups possess complete
mappings.

2.6 Complete latin squares

As is explained more fully in Chapter 10 of [DK2], latin squares are used in
the branch of statistics known as the design of experiments. In an agricultural
experiment, for example, adjacent cells of a latin square may represent adja-
cent plots of land which are to receive different treatments, the object of the
experiment being to determine the relative efficiency of the various treatments.
Treatments applied to adjacent plots might interact and so the problem arose as
to whether latin squares exist in which each pair of distinct entries (representing
distinct treatments) occur in adjacent cells just once (and necessarily only once)
in some row. Such a latin square is called row complete or horizontally complete.
A latin square with the corresponding property when columns are used in place
of rows, is said to be column complete or vertically complete.

Precisely, a latin square with elements 1, 2, . . . , n is called row complete if
for any ordered pair of distinct elements α, β there exists a row of the latin
square in which α and β appear as adjacent elements: that is, if cst denotes
the element at the intersection of the s-th row and t-th column of the square,
there exist integers s and t such that cst = α and cs,t+1 = β. Similarly, a latin
square is column complete if for any distinct α and β, there exist integers u and
v such that cuv = α and cu+1,v = β. A latin square that is both row and column
complete is called a complete latin square.

An example of a complete latin square of order 4 is given in Figure 2.6.1.
Notice that in this square, the digits 2, 3 and 4 each occur just once in an
adjacent position to the left of the digit 1, just once to its right, just once above
it, and just once below it. A similar property holds with respect to each other
digit.

14The product of two latin squares is defined in Section 10.2.
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1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

Fig. 2.6.1.

Row complete latin squares may also be used advantageously in experiments
in which a single subject (experimental unit) is to receive a number of treatments
successively, since the effect of each treatment on the subject is likely to be
affected both by its immediate predecessor and also by the number of treatments
which the subject has previously received.

In an experiment on farm animals, for example, it may be desirable to apply
a number of different dietary treatments to each given animal in succession. The
effect of a given treatment on an animal may be affected both by the number
of treatments which that animal has already received and also by the nature
of the immediately preceding treatment. (As another example, in a sequence of
psychological experiments on a human being, fatigue after several preceding ex-
periments is likely to influence the reaction of the subject to later experiments.
Also, the reaction to a given experiment may be affected by the outcome of the
preceding experiment.) If several animals are available for treatment, the first
possibility can be allowed for statistically if it can be arranged that the number
n of animals to be treated is equal to the number of treatments and if the order
in which the treatments are to be applied to these animals is allowed to be de-
termined by the order of entries in the n rows of an n × n latin square (whose
n distinct elements denote the n treatments). Then any particular experiment
has a different number of predecessors for each of the n different animals, since
a given element of the latin square is preceded by a different number of other
elements in each of the n rows of the square. The possibility of interaction be-
tween one experiment and the immediately preceding one can also be allowed
for if the latin square chosen is row complete. The resulting experiment is then
said to be statistically “balanced” both with respect to the effect of the imme-
diately preceding experiment and also with respect to the number of preceding
experiments.

So far as the authors are aware, the first people to investigate the existence of
row complete latin squares were Bugelski(1949) and E.J.Williams(1949). Both
authors were interested in designing balanced experiments of the second type
described above: that is, experiments in which a number of different treatments
are applied successively to the same experimental unit. Bugelski gave a row
complete square of order six. In the same year, Williams published a much more
comprehensive paper in which he gave a very simple method for constructing
row complete latin squares of any even order, as follows:15

15The graph-theoretical equivalent of this theorem was proved by Beineke(1964).
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Theorem 2.6.1 Let n = 2m be any even positive integer. The n×n latin square
whose first row is 0, 1, 2m − 1, 2, 2m − 2, 3, 2m − 3, . . . , m + 1, m and whose
subsequent rows obey the rule that each element is one greater (modulo n) than
the corresponding element of the preceding row, is a row complete latin square.

Proof. Since the differences between the n − 1 pairs of adjacent elements in
the first row are all different modulo n, it follows that the same is true in each
row. Every element occurs just once in each column, so no two successors of a
given element differ from it by the same amount. Consequently these successors
are all different. ⊓⊔

It is easy to see from the method of construction just described that, if the
rows of our latin square are now re-ordered in such a way that the order of
elements in the first column becomes the same as their order in the first row,
then the result will be a symmetric latin square. Consequently the amended
square will be column complete as well as row complete.

In the first edition of this book, the question was raised as to whether any row
complete latin square exists which cannot be made column complete as well by
a suitable permutation of its rows. For group-based squares, the answer is “No”.
This was proved by Keedwell [See Keedwell(1975,1976b) or Theorem 1.2 on page
45 of [DK2]] and the result is mentioned as a footnote on page 83 of [DK1].16

Shortly afterwards, Owens(1976) proved that the overall answer is “Yes”. He
devised a construction for an infinite class of row complete latin squares which
cannot be made column complete by any permutation of their rows. Much later,
Cohen and Etzion(1991) gave an alternative construction for squares with this
property.

Theorem 2.6.1 was rediscovered by Dénes and Török(1970) and these authors
and others have given an alternative ordering of the elements 0, . . . , 2m − 1
which may be used as the first row in the construction. The alternative ordering,
which was first described by Bradley(1958), is 0, 2m − 1, 1, 2m − 2, 2, 2m −
3, . . . , m− 1,m. A generalized form of Theorem 2.6.1, which includes both the
above orderings as special cases and is due to Houston(1966), will be given in
Theorem 3.1.3. Also, we show there a connection with graph theory and with
the Children’s Round-dance Problem discussed much earlier by Lucas(1883).

Williams was unable to construct any row complete latin square of odd order
n but instead gave a balanced solution to his statistical problem with the aid of
a pair of n×n latin squares, so that for odd n he required 2n experimental units
(corresponding to the 2n rows) for an experiment involving only n successive
treatments. For the case n = 5, for example, he gave the solution exhibited in
Figure 2.6.2, where each of the n treatments is succeeded by every other exactly
twice. Much later, Houston(1966) proved the validity of another very similar
construction using a pair of latin squares.

16It was claimed therein that the result is also true for an inverse property loop which satisfies
the identity (gh)(h−1k) = (gk) but Belousov later pointed out that any such loop is a group.
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0 1 3 4 2
1 2 4 0 3
2 3 0 1 4
3 4 1 2 0
4 0 2 3 1

0 2 1 4 3
1 3 2 0 4
2 4 3 1 0
3 0 4 2 1
4 1 0 3 2

Fig. 2.6.2.

Williams(1949,1950) went on to discuss the design of balanced experiments
in which not only the interaction between a treatment and its immediate pre-
decessor is to be allowed for, but also the interaction between a treatment and
that which was applied two steps earlier. He then distinguished between cases
in which any interaction between these two predecessors themselves could be
ignored in assessing their effect on the current treatment and others in which
this effect too was allowed for. The former type of experiment requires that each
treatment be preceded by each other treatment an equal number of times among
the set of sequences applied to the experimental units (represented by the rows
of the latin squares providing the solution) and also that the same be true for
the next to immediate predecessors. The latter type of experiment requires that
every ordered triad of treatments occurs exactly once. Thus, the set of three
latin squares of order four given in Figure 2.6.3 provides a balanced experiment
of the first kind in that, for example, the treatment 0 is preceded by every other
exactly three times among the rows and also has every other treatment as a next
to immediate predecessor exactly twice. However, of the 24 ordered triads of
treatments six occur twice, twelve occur once and six occur not at all among the
rows of the squares, so this experiment does not fulfil the conditions necessary
for it to be of the second kind.

0 1 3 2
1 2 0 3
2 3 1 0
3 0 2 1

0 3 2 1
1 2 3 0
2 0 1 3
3 1 0 2

0 2 1 3
1 0 3 2
2 3 0 1
3 1 2 0

Fig. 2.6.3.

As regards balanced experiments of the second kind, Williams first found
a solution for all prime n. That is, he gave a construction for a set of n − 1
latin squares of order n in which each ordered triad of elements occurs exactly
once among the rows of the set. His construction made use of the complete set
of mutually orthogonal latin squares (which we define and consider in detail in
Chapter 5) of the same prime order n. He also gave a construction which worked
for the smallest prime powers: namely, n = 4, 8 and 9. He conjectured that
the problem was soluble for every prime power order and this was subsequently
confirmed by Niederreiter(1993).

 Special types of latin square



74

Much later than the paper by Williams, Alimena(1962) discussed the more
general situation of an experiment in which the interactions of any number of
preceding treatments are allowed for. For an experiment involving 2k treatments,
he gave a construction for a 2k × 2k latin square which would counterbal-
ance not only immediate sequential effects but all remote ones as well, valid
whenever 2k + 1 is prime: in particular, therefore, for experiments involving
2, 4, 6, 10, 12, 16, 18, 22 etc. treatments. Later the same problem for more general
values of k was discussed by Gilbert(1965). Gilbert also gave a construction for
complete latin squares of each even order which is effectively the same as that
of Williams and of Gordon(1961), in that it is based on the cyclic group of that
order. We describe the work of the latter author next.

Theorem 2.6.2 A sufficient condition for the existence of a complete latin square
L of order n is that there exist a finite group G of order n with the property that
its elements can be arranged into a sequence a1, a2, . . . , an in such a way that the
partial products a1, a1a2, a1a2a3, . . ., a1a2 · · · an are all distinct.

Proof. Let b1 = a1, b2 = a1a2, b3 = a1a2a3, . . ., bn = a1a2 · · · an. Then we
shall show that the n × n matrix ‖cst‖ where cst = b−1

s bt is a complete latin
square.

By hypothesis, the bi’s are all distinct and so cst 6= csu if t 6= u. Thus, each
row of the matrix contains each element of G exactly once. Similarly, the same
is true of the columns, so the matrix is a latin square.

To show that it is row complete we must show that for any ordered pair of
distinct elements α and β it is possible to determine s and t uniquely so that
b−1
s bt = α and b−1

s bt+1 = β. By definition of bt and bt+1 we have αat+1 = β.
This equation determines at+1, and hence t, uniquely. (We have t > 0 since the
identity element of G is necessarily a1 if the bi are all distinct and so t = 0
would imply α = β.) When t has been determined, s is uniquely defined by the
equation b−1

s bt = α. Thus, L is row complete.
Finally, we require unique solutions for s and t of the equations b−1

s bt = α
and b−1

s+1bt = β. When these hold, α−1as+1 = β−1 which determines s and then
the equation b−1

s bt = α determines t. Thus, L is also column complete. ⊓⊔

The above result is due to Gordon(1961), who called a group sequenceable if
it has the property stated in the theorem.17 We shall say that a complete latin
square obtained from a sequenceable group G in this way is based on the group
G. In the same paper, Gordon proved the following important condition for a
finite abelian group to be sequenceable.

Theorem 2.6.3 A finite abelian group G is sequenceable if and only if it is the
direct product of two groups A and B such that A is a cyclic group of order 2k,
where k ≥ 1, and B is of odd order.

17Very much later in the development of the subject, the elements b1, b2, . . . , bn were said to
form a directed terrace corresponding to the sequencing a1, a2, . . . , an. See [DK2] for details.
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Proof. To see the necessity of the condition, suppose that G is sequenceable
and let b1 = a1, b2 = a1a2, b3 = a1a2a3, . . ., bn = a1a2 · · · an be an ordering of
the elements of G such that the bi are all distinct. Then, as above, we necessarily
have b1 = a1 = e, the identity element of G. Therefore bn 6= e. But as we showed
in Theorem 2.5.4, an abelian group G in which the product of all the elements is
not equal to the identity has a unique element of order two and so has the form
given in the statement of the theorem.

To prove the sufficiency of the condition, suppose that G = A × B with A
and B as in the statement of the theorem. We show that G is sequenceable by
constructing an ordering a1, a2, . . . , an of its elements which has distinct partial
products. From the general theory of abelian groups it is known that G has a
basis of the form c0, c1, . . . , cm, where c0 is of order 2k and where the orders
δ1, δ2, . . . , δm of c1, c2, . . . , cm are odd positive integers each of which divides the
next. If j is any positive integer, we shall show that there exist unique positive
integers j0, j1, . . . , jm such that

0 ≤ ji < δi for each i, (2.12)

j ≡ j0 mod δ1δ2 · · · δm, (2.13)

j0 = j1 + j2δ1 + j3δ1δ2 + · · ·+ jmδ1δ2 · · · δm−1. (2.14)

Firstly, let j0 be the remainder of j on division by δ1δ2 · · · δm. Then 0 ≤ j0 <
δ1δ2 · · · δm. Next by division of j0 by δ1, we get j0 = j1+ j

′
1δ1 where 0 ≤ j1 < δ1.

Then, by division of j′1 by δ2 we get j′1 = j2 + j′2δ2 where 0 ≤ j2 < δ2 and hence
j0 = j1 + j2δ1 + j′2δ1δ2. By successive divisions in accordance with this pattern
we eventually get

j0 = j1 + j2δ1 + j3δ1δ2 + · · ·+ j′m−1δ1δ2 · · · δm−1.

where j1, j2, . . . jm−1 satisfy the inequalities given in (2.12). Now, since 0 ≤ j0 <
δ1δ2 · · · δm we must have 0 ≤ j′m−1 < δm, so we can put jm = j′m−1 to satisfy
(2.12) and (2.14).

We are now in a position to define the desired sequencing ofG. It is convenient
to start by defining the bi. For each j in the range 0 ≤ j < 1

2
n we define

b2j+1 = c−j0 c−j11 c−j22 · · · c−jmm

b2j+2 = cj+1
0 cj1+1

1 cj2+1
2 · · · cjm+1

m ,

where j1, j2, . . . , jm satisfy (2.12)–(2.14). The elements b1, b2, . . . , bn thus defined
are distinct. For, if bs = bt for some s = 2u+ 1 and t = 2v + 1, then

u ≡ v mod 2k (2.15)

u1 ≡ v1 mod δ1
...

um ≡ vm mod δm

where the ui and vi are generated from u and v respectively by the algorithm
above which generated the ji from j.
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It follows from the inequalities in (2.12) that u1 = v1, u2 = v2, . . . , um = vm
and hence u0 = v0 and u ≡ v mod δ1δ2 · · · δm. When combined with (2.15) this
gives u ≡ v mod n and hence u = v. A similar argument shows that b2u+2 =
b2v+2 implies u = v, so that the “even” b’s are distinct. Next suppose that
b2u+1 = b2v+2. Then

−u ≡ v + 1 mod 2k, (2.16)

−u1 ≡ v1 + 1 mod δ1,
...

−um ≡ vm + 1 mod δm.

Since 0 < u1 + v1 + 1 ≤ 2(δ1 − 1) + 1 < 2δ1, we must have u1 + v1 + 1 = δ1.
Reasoning similarly, we obtain

u1 + v1 + 1 = δ1,
u2 + v2 + 1 = δ2,

...
um + vm + 1 = δm.

Multiplying the (i+1)-th equation of this system by δ1δ2 · · · δi for 1 ≤ i < m
and adding the results, we get u0 + v0 + 1 = δ1δ2 · · · δm. Combining this with
(2.16), we find that u+ v + 1 ≡ 0 mod n, which is impossible on account of the
inequality 0 < u+ v + 1 < n. Hence, b1, b2, . . . , bn are all distinct.

Next we calculate a1, a2, . . . , an. If i = 2j + 2, where 0 ≤ j < 1
2
n, then

ai = b−1
i−1bi = c2j+1

0 c2j1+1
1 · · · c2jm+1

m .

These are all distinct by the same argument as above. If i = 2j + 1 and j1 6= 0,
then

ai = a2j+1 = b−1
2j b2j+1 = (cj0c

j1
1 c

j2+1
2 · · · cjm+1

m )−1(c−j0 c−j11 c−j22 · · · c−jmm )

= c−2j
0 c−2j1

1 c−2j2−1
2 · · · c−2jm−1

m .

since, when j is reduced by 1, so also j0 and j1 are reduced by 1 provided that
j1 6= 0. If j1 = 0 and j2 6= 0, then j2 is reduced by 1. Hence, if i = 2j + 1 and
j1 = 0 but j2 6= 0 then

ai = c−2j
0 c−2j2

2 c−2j3−1
3 · · · c−2jm−1

m ,

while if i = 2j + 1 and j1 = j2 = 0 but j3 6= 0, then

ai = c−2j
0 c−2j3

3 c−2j4−1
4 · · · c−2jm−1

m ,

and so on. These ai’s are obviously distinct from each other by the same reasoning
as before. Because of the exponent of c0 they are also distinct from the ai with
i even. ⊓⊔
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Let us note here that Gordon’s paper [Gordon(1961)] predates that of Gilbert
by four years and that Gordon’s construction of complete latin squares includes
that of Gilbert as a special case.

The concept of sequenceable groups has given rise to a number of interest-
ing questions some of which were raised by Gordon himself and were posed as
“Problems” in the first edition of this book. In particular, he asked

(i) Does any complete latin square of odd order exist?
(ii) What is the necessary and sufficient condition that a non-abelian group

be sequenceable?
Also, Rényi(1966) raised the question as to whether all complete latin squares

satisfy the quadrangle criterion (that is, are group-based).
Before we discuss these questions in detail, we give some general criteria for a

group to be sequenceable following the line of investigation of Dénes and Török
(1970). The first two of them are almost direct consequences of Theorem 2.6.2.

Theorem 2.6.4 A finite group is sequenceable if and only if there exists a per-
mutation a1, a2, . . . , an of its elements such that a1 = e (the identity of the
group) and such that the product ai+1ai+2 · · · ai+j 6= e for any choice of i and j
satisfying 1 < i < i+ j < n.

Proof. Define bh = a1a2 · · · ah for each positive integer h ≤ n. Then, since
ai+1ai+2 · · · ai+j = b−1

i bi+j , the given condition says that bi 6= bi+j for each
choice of i and j such that 1 < i < i+ j < n. Thus if and only if the condition
holds the products bh for h = 1, 2, . . . , n are all distinct and the given ordering
of the elements of the group then provides a sequencing. ⊓⊔

Theorem 2.6.5 A finite group is sequenceable if and only if there exists a per-
mutation b1, b2, . . . , bn of its elements such that the equation b−1

i−1bi = b−1
j−1bj

holds only when i = j.

Proof. Suppose first that the group G is sequenceable and that the ordering
a1, a2, . . . , an of its elements is a sequencing. If the elements bh are defined as in
the previous proof, then b−1

i−1bi = ai and the equation ai = aj clearly holds only
when i = j.

Conversely, suppose that the equation b−1
i−1bi = b−1

j−1bj holds only when i =

j. Define ai = b−1
i−1bi for 2 ≤ i ≤ n and let a1 = e, the identity element.

Then the ai are certainly all distinct and a1a2 · · · ah = b−1
1 bh for 1 ≤ h ≤

n. Since b1, b2, . . . , bh are the elements of G they are all distinct and so also
are the elements b−1

1 b1, b
−1
1 b2, . . . , b

−1
1 bn. Thus the ordering a1, a2, . . . , an of the

elements of G provides a sequencing as required. ⊓⊔

Theorem 2.6.6 Let G be a group of order n with identity element e and let
Sk denote the set of all ordered sequences of k distinct elements of G \ {e}. We
define a subset Ek of Sk as follows. The sequence a1, a2, . . . , ak is a member
of Ek if the partial product ahah+1 · · · ak is equal to e for some h in the range
1 ≤ h ≤ k and if aiai+1 · · · aj 6= e whenever 1 ≤ i ≤ j < k. In this way, we

 Special types of latin square



78

define sets E1, E2, . . . , En−1 where E1 is empty, E2 comprises all products of the
form apa

−1
p where ap 6= e, E3 comprises all products of the form apaqa

−1
q and

apaqar where aq 6= a−1
p and ar = (apaq)

−1, and so on. The cardinality of the set
Ek will be denoted by ǫk. Then the group G is sequenceable if and only if

ǫ2(n− 3)! + ǫ3(n− 4)! + · · ·+ ǫn−21! + ǫn−10! < (n− 1)!.

Proof. Let us consider the set G\{e} and call an arrangement a1, a2, . . . , an−1

of the distinct elements of G\{e} wrong if there exist integers 1 ≤ h < k ≤ n−1
such that ahah+1 · · · ak = e.

The total number of distinct arrangements of the set G \ {e} is (n− 1)! and
by Theorem 2.6.4 the group is sequenceable if and only if the number of wrong
arrangements is less than (n− 1)!.

Let the ordered sequence a1, a2, . . . , ak belong to Ek, then this sequence can
be completed to a permutation of all the elements of G \ {e} in (n − 1 − k)!
different ways and all of these permutations are different wrong arrangements.
Thus there exist ǫk(n − 1 − k)! permutations of the n − 1 distinct elements of
G\{e} for which the subsequence formed by their first k elements is a member of
Ek. Moreover, given any wrong arrangement a1, a2, . . . , an−1, there exists exactly
one positive integer k such that a1, a2, . . . , ak ∈ Ek: for, if a1, a2, . . . , an−1 is a
wrong arrangement then ahah+1 · · · ak = e for some integers 1 ≤ h < k ≤ n− 1.
Let us choose the pair h, k for which k is minimal. Then a1, a2, . . . , ak ∈ Ek
but a1, a2, . . . , al 6∈ El for l > k since the condition aiai+1 · · · aj 6= e whenever
1 ≤ i ≤ j < l is violated. Also, since k is minimal, a1, a2, . . . , al 6∈ El for l < k.
Hence, the total number of wrong arrangements is ǫ2(n− 3)! + ǫ3(n− 4)! + · · ·+
ǫn−21! + ǫn−10! < (n − 1)! and both the necessity and the sufficiency of our
condition follow. ⊓⊔

This theorem was used by Dénes and Török(1970) to find a number of se-
quencings for the dihedral groups Dm for 5 ≤ m ≤ 8. Recall that Dm is the
non-commutative group of order 2m generated by two elements a and b with
defining relations am = b2 = e and ab = ba−1. They also thought that they had
showed that there are no other non-abelian sequenceable groups of order less
than or equal to 14. However, there was an error in their computations because
it was proved later that both non-abelian groups of order twelve are sequence-
able. For the details, see Chapter 3 of [DK2]. In addition, they found a large
number of sequencings for the non-commutative group of order 21 generated by
two elements a and b with the defining relations a7 = b3 = e and ab = ba2.

Mendelsohn(1968) was the first to publish a sequencing for this latter group
and thereby disprove an earlier conjecture according to which no latin square
of odd order is complete. The author of the present book found that it is not
difficult to obtain such sequencings by trial and error, once their existence was
known. The sequencings of Mendelsohn and Keedwell are given in Figures 2.6.5
and 2.6.6 respectively (at the end of this chapter) and the complete latin square
which corresponds to the fourth of the five sequencings obtained by Mendelsohn
is exhibited in Figure 2.6.4.

Chapter 2



79

Complete latin squares also have some connections with graph theory as we
shall explain in Section 3.1.

An interesting dichotomy follows from Theorem 2.6.3 and Theorem 2.5.2.
That is, the finite abelian groups can be classified into two mutually exclusive
kinds: namely, sequenceable groups and groups whose Cayley tables possess a
transversal (a group being of the former type if it has a unique element of order
two and of the latter type otherwise).

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

04 03 05 21 11 14 02 09 13 07 18 16 19 08 20 01 06 10 17 12 15

07 09 19 03 06 12 14 21 20 17 08 05 16 01 10 18 15 13 04 02 11

18 14 09 07 19 15 17 01 21 13 06 02 20 12 11 05 04 08 16 10 03

19 04 12 08 21 07 20 02 18 01 16 13 03 11 09 14 05 15 10 06 17

05 17 14 18 09 04 13 12 01 08 19 10 21 15 03 02 16 06 20 11 07

12 10 07 16 02 19 18 06 14 11 03 15 08 17 04 20 13 05 09 21 01

17 21 16 09 15 02 12 03 10 04 01 19 05 18 13 08 11 20 07 14 06

08 12 21 17 16 11 04 18 03 20 15 14 10 02 06 19 07 01 05 13 09

16 07 02 01 03 17 10 14 08 18 05 20 09 06 21 12 19 11 13 15 04

02 13 17 05 14 16 08 15 12 06 09 11 01 04 07 10 20 19 21 03 18

21 05 11 15 18 08 03 13 19 02 10 01 17 09 12 04 14 07 06 16 20

11 06 08 10 13 21 19 16 04 09 17 07 15 20 05 03 01 14 12 18 02

10 08 13 02 17 20 06 04 15 19 14 03 12 16 18 11 21 09 01 07 05

14 20 04 19 12 05 01 11 02 15 21 06 18 07 17 13 10 16 03 09 08

03 19 06 11 08 01 09 20 16 14 13 18 04 21 02 07 12 17 15 05 10

20 18 10 12 07 13 11 17 06 05 02 21 14 19 01 15 09 03 08 04 16

06 15 01 13 20 03 16 05 07 21 04 17 11 10 19 09 18 12 02 08 14

13 01 20 14 04 10 15 07 11 16 12 09 02 05 08 06 03 21 18 17 19

09 16 15 06 01 18 21 10 05 12 20 08 07 03 14 17 02 04 11 19 13

15 11 18 20 10 09 05 19 17 03 07 04 06 13 16 21 08 02 14 01 12

Fig. 2.6.4.

However, no similar result holds for non-abelian groups. On the one hand,
the symmetric group S3 is neither sequenceable nor contains a transversal in
its Cayley table, as was pointed out by Gordon himself. On the other hand, the
non-abelian group of order 21 (as we remarked above) and the non-abelian group
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of order 27 on two generators are both sequenceable and both have complete
mappings (as is shown by Theorem 1.5.3).

Since the first edition of this book was written, the study of sequenceable
groups and of row and/or column complete latin squares has made great progress.
The situation as it was in 1990 is described in detail in Chapter 3 of [DK2]. That
book also discusses the related concept of R-sequenceability and the more general
concepts of quasi-sequencing and quasi-row-complete latin square. A more recent
survey is that of Ollis(2002).

We may summarize the present situation with regard to sequencing as follows:
(1) The non-abelian groups D3, D4, Q4 of orders 6, 8 and 8 respectively are

not sequenceable but it was conjectured by Keedwell(1983c) that all non-abelian
groups of orders greater than 8 are sequenceable. The truth of this conjecture
has been verified by B.A.Anderson(1987a) for all orders up to 32 inclusive.

(2) In particular, it has been proved that all dihedral groups exceptD3 andD4

are sequenceable [see Isbell(1990) and Li(1997)] and likewise all dicyclic groups
except Q4. (See [DK2] for details of the proof of the latter result.)

(3) Also, except for Q4, all finite groups with a unique element of order two18

which are either soluble or have the alternating group A5 as their only non-
abelian composition factor are sequenceable. For details of the first statement,
see B.A.Anderson and Ihrig(1993a) and, for the latter, see Ollis(2002).

(4) However, so far as the present author is aware, there are only two infinite
classes of non-abelian groups of odd order for which sequenceability has been
proved: namely, (i) the groups of order pn for n > 2 which contain an element of
order pn−1 [C.Wang(2002)]; and (ii) the groups of order pq when p < q and 2 is
a primitive root modulo p [Keedwell(1981a)] and in some cases when the latter
requirement is not satisfied [C.Wang(2002)]. But see also Ollis(2014).

(5) In B.A.Anderson and Ihrig(1993a,b), the existence and application of
symmetric sequencings has been discussed. (A sequencing of a group G of even
order 2m and with a unique element z of order two is called symmetric if it
takes the form e, a1, a2, . . . , am−1, z, a

−1
m−1, a

−1
m−2, . . . , a

−1
1 .) A detailed account of

earlier results concerning such sequencings can be found on pages 84 to 98 of
[DK2].

As regards complete latin squares, Owens(1976) has given a construction for
complete latin squares which are not group-based, thus answering the question
raised earlier by Rényi (see above), and Higham(1997,1998) has constructed row
complete latin squares of every odd composite order except 9. Since row complete
latin squares of order 9 and of every even order had previously been constructed,
this proves that such squares of every composite order exist. For more details,
see “The Present State of the Problems” at the end of this book.

As we remarked in Section 2, Chapter 3 of [DK2], Freeman(1979a,b) intro-
duced the concept of a quasi-row-complete latin square as one for which the
n(n − 1) pairs of adjacent elements which occur in the rows include each un-

18Such groups are called binary groups in Ollis(2002).
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ordered pair of distinct elements exactly twice. Also, Bailey(1984) showed that
a necessary and sufficient condition that the multiplication table of a group can
be written in the form of a quasi-row-complete latin square is that the group
has a terrace, while B.A.Anderson(1987b) called (effectively) the same concept
a 2-sequencing.

Definition. If b0, b1, . . . , bn−1 is a terrace: that is, a sequence comprising all the
elements of a group G of order n such that the sequence a0 = e, a1 = b−1

0 b1,
a2 = b−1

1 b2,. . . , an−1 = b−1
n−2bn−1 includes one occurrence of each element of

order 2 in G and, for every other element x of G, includes one occurrence of
each of x and x−1, or two occurrences of x, or two occurrences of x−1, then the
sequence a0, a1, . . . , an−1 is a 2-sequencing of G.

Shortly after [DK2] was published, B.A.Anderson and Ihrig(1992) proved that
all groups of odd order have 2-sequencings. Since that date, a number of papers
concerned with the construction of terraces (and especially so-called invertible
terraces) for groups of even order have been published. See, in particular, Ollis
and Spiga(1995), Ollis and Whitaker(2007), Ollis(2005,2012), Ollis and Will-
mott(2011). Also, a series of papers concerned with constructing special kinds
of terrace for cyclic groups of mainly odd orders by Anderson and Preece have
appeared. We cite I.Anderson and Preece(2006,2008a,2008b,2010) as examples of
the latter. In Preece(2008), the construction of orthogonal terraces is considered.

Finally, we mention a concept which is related to sequenceability and R-
sequenceability.

Definition. A group G of order n is harmonious if its elements can be arranged
in a sequence a1, a2, . . . , an such that the elements a1a2, a2a3, . . . , an−1an, ana1
are all distinct.

A necessary condition for a group to be harmonious is that it should have a
complete mapping. Beals, Gallian, Headley and Jungreis(1991) showed, among
other things, that all groups of odd order are harmonious. Further results can
be found in C.D.Wang(1993) and C.D.Wang and Leonard(1994,1995).
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Chapter 3

Partial latin squares and partial transversals

The kinds of partial latin square which we discuss in this chapter are latin
rectangles, row latin squares and various kinds of incomplete latin square.

3.1 Latin rectangles and row latin squares

A latin rectangle of r rows and n ≥ r columns is an r× n array of n symbols
such that each row contains all the symbols and no column contains any symbol
more than once. Any latin rectangle can be extended to a latin square, as we
show in Theorem 3.1.1 below. The number of ways in which this can be done is
discussed in Chapter 4.

Our first two theorems both make use of Hall’s theorem on representatives of
subsets, namely: The necessary and sufficient condition that a system of distinct
representatives, one for each member of a set {T1, T2, . . . , Tm} of subsets of a
given set S, can be chosen simultaneously is that, for each k = 1, 2, . . . ,m,
any selection of k of the subsets shall contain between them at least k distinct
elements of S. [See P.Hall(1935) for the proof.]

Theorem 3.1.1 Every r×n latin rectangle can be extended to a latin square of
order n.

Proof. Let R be a r × n latin rectangle. For each j = 1, 2, . . . , n let us form
a set Sj consisting of those n − r symbols which occur in R but which do not
occur in the j-th column of R. Since each symbol occurs once in each of the r
rows of R and no symbol occurs twice in any column, each symbol must occur
exactly n− r times among the Sj .

Any selection of k of the Sj will contain k(n− r) occurrences of symbols and
these must involve at least k distinct symbols since each symbol occurs n − r
times among the Sj . Thus, the requirements of Hall’s theorem are satisfied and
distinct representatives a1, a2, . . . , an can be chosen so that aj ∈ Sj . By definition
of the sets Sj, these n distinct representatives may be used to form an (r+1)-th
row of R by placing aj in column j for j = 1, 2, . . . , n, and thereby yield an
(r + 1)× n latin rectangle.

By repetition of the process n− r times, we eventually obtain an n× n latin
square. ⊓⊔

The above theorem will be found in M.Hall(1945). The following extension
of it is due to Ryser(1951).

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50003-9
Copyright © 2015 A. Donald Keedwell. Published by Elsevier B.V. All rights reserved.
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Theorem 3.1.2 An r×c rectangular matrixM can be extended to a latin square
based on a set Σ of n symbols if and only if M contains no symbols other than
those in Σ, no symbol appears twice in any row or column of M and the number
N(i) of times that any symbol i ∈ Σ appears in M is at least r + c− n.

Proof. The necessity of the conditions is easy to see. If we want to extend
M to an r × n latin rectangle then we shall have, in the latter, r occurrences of
every symbol. But in the additional n−c columns we cannot include any symbol
more than n− c times, and so it must already appear r − (n− c) times in M .

As regards the sufficiency, each of the proofs known to the present authors
requires a preceding lemma. [The proof of sufficiency given in the first edition of
this book was incorrect because the induction step was not valid.] The original
proof given by Ryser(1951), used a lemma concerning matrices of zeros and
ones. In the proof given by Lindner on page 222 of [DK2], the lemma used is an
extended form of P. Hall’s theorem on distinct representatives of subsets.

Here we give a proof which uses graphical ideas. The lemma which we use
concerns edge-colouring of a bipartite graph. It was originally proved with the
aid of P. Hall’s theorem on distinct representatives of subsets. [See, for example,
page 94 of Berge(1962).] However, the elementary proof which we give here is
due to Hilton(1977). The proof of the theorem itself which we give can be found
on page 95 of Berge’s book but may date from earlier than this.

Lemma. If G is a bipartite graph whose maximum degree1 is ∆, then G can be
edge-coloured2 with ∆ colours.

Proof. We suppose that the two vertex sets of the bipartite graph G are
U = {u1, u2, . . . , ur} and V = {v1, v2, . . . , vs}.

We colour the edges one by one until we reach an edge for which no suitable
colour is available. Suppose that [ui, vj ] is such an edge. Since at most ∆− 1 of
the ∆ (or less) edges which are incident at ui have been coloured, there exists
at least one colour α which has not been used to colour any edge incident with
ui. Likewise, there exists at least one colour β which has not been used to colour
any edge incident with vj . If β = α or if β has not been used to colour any edge
incident with ui, there is nothing to prove because this colour is then available to
colour the edge [ui, vj ]. In the contrary case, there exists a chain of one or more
edges [ui, vh], [vh, uk], [uk, vl], . . . , which are alternately coloured β, α, β, α, β, . . ..
This chain cannot pass through vj since, if so, an edge ending at vj would have
colour β, in contradiction to our choice of β. Nor can it return to ui, by our choice
of α. Consequently, we can re-colour the edges of this chain using α, β, α, β, α, . . .,
in place of β, α, β, α, β, . . .. Then edge [ui, vj ] can be coloured with β.

By repetition of this process a sufficient number of times, we obtain a com-
plete edge-colouring of G. ⊓⊔

1Sometimes called “valency”.
2An edge-colouring of a graph requires that no two edges which are incident with the same

vertex have the same colour.
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We can now prove the sufficiency part of Theorem 3.1.2. Let ρ1, ρ2, . . . , ρr
denote the rows of M and let σ1, σ2, . . . , σn denote the n symbols. We form a
bipartite graph G whose vertex sets are {ρ1, ρ2, . . . , ρr} and {σ1, σ2, . . . , σn}. We
join vertex ρi to vertex σj if and only if the symbol σj does not occur in row ρi
of M .

Since exactly c symbols occur in each row of M , each vertex ρi of G has
degree n − c. Since the symbol σj occurs N(j) times in M , it does not occur
in r − N(j) of the rows of M . Therefore, the degree of the vertex σj in G is
r −N(j) ≤ n− c, because −N(j) ≤ n− r − c. It follows that each vertex of the
graph G has degree at most n − c. Consequently, G can be edge-coloured with
at most n− c colours k1, k2, . . . , kn−c. We may use these colours to represent the
n − c columns which must be adjoined to M to form an r × n latin rectangle.
If the edge joining vertex ρi to vertex σj of G has colour ks, then we put the
symbol σj in the ρi-th row of column ks. Hence, we can extend M to an r × n
latin rectangle. This in turn can be extended to a latin square by Theorem 3.1.1.

⊓⊔

Note that Theorem 1.6.3 is an immediate corollary of Theorem 3.1.2. From
Theorem 3.1.2, one can also deduce that an incomplete latin square of order t ≥ 4
with n different elements (that is, a square of order t such that a subset of its
t2 cells are occupied by elements of {1, 2, . . . , n} and no element occurs twice in
the same row or column) can be embedded in a latin square of order n provided
that n ≥ 2t. This result can be found in T.Evans(1960) and again in Dénes and
Pásztor(1963) where the proof is formulated in terms of the transversals of a
latin square (cf. Theorem 1.6.3).

A result in a similar spirit to that of Evans was proved by Treash(1971),
who showed that any finite incomplete loop which is also totally symmetric
can be embedded in a finite complete totally symmetric loop. The definition of
an incomplete loop is given in Section 3.4, where a number of further results
concerning the embedding of incomplete latin squares and quasigroups will be
found.

A modification of Theorem 3.1.2 obtained by Hilton and Johnson(1988) re-
places the requirement that the number N(i) of times that any symbol i ∈ Σ
appears in M is at least r+ c−n by the requirement that

∑n
i=1 tE(i) = n2 − rs,

where tE(i) is the largest size of any i-transversal outside M , defined as follows:
Let L be an n× n matrix which contains the given r × c rectangular matrix M
in its top left corner and such that the cells of E = L −M are all empty. For
each symbol i, an i-transversal outside M is a set S of cells of E such that no
two cells of S are in the same row or column and no cell of S is in the same row
or column as any cell of M which contains i. For the proof of this result, see
Hilton and Johnson’s paper.3

3A similar condition for a partial Sudoku square (see Section 3.2) to be completable has
been obtained by Cameron, Hilton and Vaughan(2012).
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In Section 2.6 we defined the concepts of row complete and complete latin
square. Analogously, an r×n latin rectangle, r ≤ n/2, is said to be row complete
if the unordered pairs of adjacent elements appearing in its rows are all distinct.
If we replace “row” by “column” in the preceding definition, it becomes that
of a column complete latin rectangle. A latin rectangle which is both row and
column complete is called complete. The following theorem was first proved by
Houston(1966) and has already been referred to in Section 2.6. We include it
here because of its relevance to latin rectangles (see Theorem 3.1.4 below).

Theorem 3.1.3 If there exists a permutation of the integers 0, 1, 2, . . . , n − 1
with the property that the differences (taken modulo n) between pairs of adjacent
integers are all distinct, then there exists a row complete latin square of order n.

The proof is the same as that of Theorem 2.6.1 and will be omitted.

The complete latin square L constructed by the method of Theorem 3.1.3 is a
Cayley table for the cyclic group of order n. However, by Theorem 2.6.3, complete
latin squares based on abelian groups of odd order do not exist. It follows that
a permutation of the integers 0, 1, 2, . . . , n− 1 to satisfy Theorem 3.1.3 does not
exist when n is odd.

From Theorem 3.1.3 we deduce that, in particular, a latin square of order
n = 2m whose first row is 0, 1, 2m − 1, 2, 2m − 2, . . . , k, 2m − k, . . . ,m + 1,m
and whose i-th row is obtained from the first by adding i − 1 modulo n is a
row complete latin square. When we construct this latin square, we find that its
last m rows are the same as the first but in reverse order. (See Figure 3.1.1.)
It follows that the first m rows form a row complete m × 2m latin rectangle.
Consequently, we have:

Theorem 3.1.4 Row complete m × 2m latin rectangles exist for every positive
integer m.

0 1 2m− 1 2 2m− 2 . . . . . . m+ 2 m− 1 m+ 1 m
1 2 0 3 2m− 1 . . . . . . m+ 3 m m+ 2 m+ 1
· · · · · . . . . . . · · · ·

m− 1 m m2 m+ 1 m− 3 . . . . . . 1 2m− 2 0 2m− 1
m m+ 1 m− 1 m+ 2 m− 2 . . . . . . 2 2m− 1 1 0
· · · · · . . . . . . · · · ·

2m− 1 0 2m− 2 1 2m− 3 . . . . . . m+ 1 m− 2 m m− 1

Fig. 3.1.1.

We note that each such latin rectangle R defines a decomposition of the
complete undirected graph K2m on 2m vertices into m disjoint Hamiltonian
paths. If the vertices of K2m are labelled by the digits 0, 1, . . . , 2m− 1, then the
rows of R define the Hamiltonian paths.
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There are further connections between Theorem 3.1.4 and graph decomposi-
tions. If we adjoin an additional digit 2m to each row of R to obtain anm×2m+1
rectangle R′ and then read the rows of R′ cyclically, they define a decomposition
of the complete undirected graph on 2m+ 1 vertices into Hamiltonian cycles. If
instead of reading these rows cyclically, we read them successively from left to
right with the last row followed by the first, they define an Eulerian circuit of
the latter graph. [See Figure 3.1.2 and Keedwell(1974).]

0 1 2m− 1 2 2m− 2 . . . . . . m+ 2 m− 1 m+ 1 m 2m
1 2 0 3 2m− 1 . . . . . . m+ 3 m m+ 2 m+ 1 2m
· · · · · . . . . . . · · · ·
· · · · · . . . . . . · · · ·

m− 2 m− 1 m− 3 m m− 4 . . . . . . 0 2m− 3 2m− 1 2m− 2 2m
m− 1 m m− 2 m+ 1 m− 3 . . . . . . 1 2m− 2 0 2m− 1 2m

Fig. 3.1.2.

There is another interesting application of the augmented rectangle R′. In
his book on Recreational Mathematics, Lucas(1883) discussed the problem of
devising a performance of successive children’s dances in each of which every child
would hold hands with his/her two immediate neighbours so that the participants
would together form a closed circle. All the children were to take part in every
dance and it was required to arrange them in successive dances in such a way that
each child would be neighbour to every other exactly once during the complete
performance. Evidently the number n of children participating would have to
be odd because any particular child would be neighbour to two others in each
dance and so would dance with, say 2m, other children all together. The number
of dances is then m and the total number of children is 2m+ 1.

It is easy to see that, if the children are named 0, 1, . . . , 2m, then the Hamilto-
nian cycles described above provide a solution to the problem. Lucas attributes
this solution to C.Walecki though that gentleman obtained his solution by a
different method. The Walecki solution has prompted Preece(1994) to remark
that the Williams’ sequencing which we described in Theorem 2.6.1 had been
obtained much earlier.

For more recent work on this topic and its application to Statistical designs,
see Bailey, Ollis and Preece(2003).

Before changing the topic, we should like to pose two problems connected
with complete latin rectangles:

(1) if n is a given odd integer, what is the maximum value of mn such that
a complete latin rectangle of size mn × n exists?

(2) for which values of kn is it true that an arbitrary complete latin rectangle
of size kn × n can be completed to a complete latin square of order n?
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Next, we mention the concept of an (n, d)-complete rectangle.

Definition. An array is called an (n, d)-complete rectangle if it contains n dif-
ferent symbols each of which appears exactly d times in the array, and such that
no symbol is repeated in any row or column.

As an example, we note that the 6 × 6 rectangle shown in Figure 3.1.3 is
(9,4)-complete.

1 2 3 4 5 6
2 6 7 5 9 1
3 7 5 6 1 8
4 5 9 7 8 3
8 9 1 2 3 4
6 4 8 9 7 2

Fig. 3.1.3.

Up to the present, interest seems to have centred on the case d = 1. In
particular, one of the authors of [DK1] has proved the following theorem, in
which a rectangle is considered to be trivial if it consists of a single row or a
single column:

Theorem 3.1.5 If L is the latin square representing a multiplication table of a
group G of order n, where n is a composite number, then L can be split into a
set of n non-trivial rectangles each of which is (n, 1)-complete.

Proof. If n is a composite number, G has at least one proper subgroup A0,
of order h say. By Lagrange’s theorem, G splits into disjoint cosets of A0, say
A0, A1, . . . , Ak−1, where n = hk.

By selecting one element from each of these k cosets, we get a set of coset
representatives of G relative to A0. It is evident that one can select (in many
ways) h such sets of coset representatives which are pairwise disjoint and which
together cover G. Call these sets of coset representatives R1, R2, . . . , Rh.

Now let a multiplication table for G be formed by taking as row border
the elements of the cosets A0, A1, . . . , Ak−1 in order and as column border the
elements of the sets of coset representatives R1, R2, . . . , Rh in order. By the
properties of coset representatives, the rectangle whose row border comprises
the elements of the coset Ai and whose column border comprises the elements
of the set Rj contains each element of G exactly once and is an (n, 1)-rectangle.
Hence the multiplication table of G is the union of n such (n, 1)-rectangles. ⊓⊔

As an example, we show in Figure 3.1.4 the result of carrying out the construc-
tion for the cyclic group of order 8 when regarded as the additive group of integers
modulo 8, with the subgroup {0, 2, 4, 6} as A0. We have A1 = {1, 3, 5, 7} and we
may take (for example) R1 = {0, 1}, R2 = {2, 5}, R3 = {4, 3}, R4 = {6, 7}.

The converse of Theorem 3.1.5 is false as is shown by the latin square of order
27 given in Figure 1.6.4. This latter latin square represents a multiplication table
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(+) 0 1 2 5 4 3 6 7
0 0 1 2 5 4 3 6 7
2 2 3 4 7 6 5 0 1
4 4 5 6 1 0 7 2 3
6 6 7 0 3 2 1 4 5
1 1 2 3 6 5 4 7 0
3 3 4 5 0 7 6 1 2
5 5 6 7 2 1 0 3 4
7 7 0 1 4 3 2 5 6

Fig. 3.1.4.

for a quasigroup which is not a group but, despite this, it can be split into 27
(27,1)-rectangles.

We turn now to another generalization of the latin square concept which
D.A.Norton(1952a) called a row latin square.

A row latin square is a square matrix of order n say, each of whose rows is a
permutation of the same n elements. A column latin square is similarly defined.
These concepts are related to that of a latin rectangle by the fact that a union
of latin rectangles each having n columns (and such that the total number of
rows is n) is obviously a row latin square. However, a row latin square cannot
necessarily be separated into latin rectangles except in a trivial way.

It is clear that a square matrix which is both a row latin square and a column
latin square is a latin square.

Let R be a groupoid satisfying Sade’s left translation law [identity (17) of
Section 2.1] then clearly the multiplication table of R is a row latin square. Simi-
larly, the multiplication table of a groupoid R′ satisfying Sade’s right translation
law is a column latin square.

Let R be a row latin square bordered by its elements taken in natural or-
der. Then the i-th row of the square determines a permutation Pi of the top
border and the square is completely determined by giving the permutations
P1, P2, . . . , Pn. The product of two row latin squares A and B, which are repre-
sented by the permutations P1, P2, . . . , Pn and Q1, Q2, . . . , Qn may be defined as
the square matrix C = AB = (P1Q1, P2Q2, . . . , PnQn) whose i-th row is given
by the product permutation PiQi. Then C is again a row latin square.

Such a representation seems likely to be very useful for quasigroups since,
as Suschkewitsch(1929) observed, there are quasigroups whose right (or left)
representation forms a group. Such a quasigroup is isomorphic to a quasigroup
(G, ·) obtained from an appropriate group (G, ◦) by a relation of the form x ·y =
(xα−1 ◦ y)α, where α is an arbitrary fixed permutation of G. If both the right
and left representations of a quasigroup form groups, the quasigroup is a group.

We shall give an example of a quasigroup Q whose right representation is a
group but whose left representation is not a group.

Take Q to be the quasigroup of order four whose multiplication table is
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given by Figure 3.1.5. Then clearly the right representation of Q consists of the
permutations (1)(2)(3)(4), (1 4)(2 3), (1 2)(3 4), (1 3)(2 4) and these form a
group. However, the left representation of Q is not a group since it contains an
element (1)(2 4 3) which is of order three. We constructed Q from the Klein
group of order four using the rule of Suschkewitsch and by taking

α =

(

1 2 3 4
2 3 1 4

)

.

1 2 3 4

1 1 4 2 3
2 2 3 1 4
3 3 2 4 1
4 4 1 3 2

Fig. 3.1.5.

The representation of a quasigroup by means of the permutations defined by
the corresponding latin square has been found useful by the present author in
work on finite projective planes.

Some of the results published by Norton(1952a) will now be stated without
proof.

The set of all row latin squares of order n forms a group of order (n!)n under
the product operation defined above. This group is isomorphic to the direct
product of n symmetric groups of degree n.

Let p〈n〉 be given inductively by p〈1〉 = 1, p〈2〉 = 2, and p〈n〉 = p〈n−1〉+(n−
1)p〈n− 2〉 for n > 2. The number of row latin squares L of order n which have
the property that every row of L2 is represented by the identity permutation,
that is,

L2 =

1 2 · · · n
1 2 · · · n
...

...
. . .

...
1 2 · · · n

,

is [p〈n〉]n. The number of normalized row latin squares which have this same
property is [p〈n− 2〉]n−1.

In Norton(1952a), it has been shown that the existence of sets of mutually
orthogonal latin squares (see Chapter 5 for the definition of this concept) is de-
pendent upon the parallel problem for row latin squares. Consequently, existence
problems concerning sets of the former squares may be studied in terms of the
latter.

Theorem 3.1.6 A row (respectively column) latin square which satisfies the
quadrangle criterion and is such that at least one among its elements occurs
in one of the cells of every column (resp. row) is necessarily a latin square.
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Proof. This result is a consequence of the well-known theorem that an asso-
ciative groupoid must be a group if it has a left identity element and each of its
elements has a left inverse.

In the present case, we take the element which occurs in every column as the
left identity element (by bordering the square appropriately) and we easily see
that then every element has a left inverse with respect to this identity. ⊓⊔

3.2 Critical sets and Sudoku puzzles

In Nelder(1977), in a very short note, that author asked a question about
partially completed latin squares which appears deceptively simple to resolve
and which we shall now discuss. (He has informed the present writer that he
had no particular application in mind but thought the problem interesting.) Let
us look at the 3 × 3 partially filled arrays in Figure 3.2.1. We observe that (i)
each array is completable to a unique latin square on the three symbols 0, 1, 2
but that (ii) if any one entry is deleted from either array, that array is no longer
uniquely completable to such a latin square. Nelder called a set of entries with
these two properties a critical set. He asked, for a given latin square of order
n, what is the size (number of entries) of a smallest critical set and what is the
size of a largest critical set? He denoted these two numbers by scs(n) and lcs(n)
respectively.

0 • •
• • •
• • 1

0 1 •
1 • •
• • •

Fig. 3.2.1.

The first surprise is that critcal sets of different sizes exist for the same latin
square; the second is that different latin square of the same order n have smallest
critical sets of different sizes. These remarks are illustrated in Figure 3.2.2 and
Figure 3.2.3. The critical sets A and B both complete uniquely to the same latin
square L1 but have different sizes. The critical set C completes uniquely to the
latin square L2. A is a smallest critical set for L1 and C is a smallest critical
set for L2 but C is larger in size (five entries) than A (four entries). We justify
below that A and C are smallest.

A =

0 1 • •
1 • • •
• • • •
• • • 2

B =

0 1 2 •
1 2 • •
2 • • •
• • • •

C =

• 1 • •
1 • • 2
• • 0 •
3 • • •

Fig. 3.2.2.
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L1 =

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

L2 =

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

L3 =

0 1 2 3
1 0 3 2
2 3 1 0
3 2 0 1

Fig. 3.2.3.

However, a smallest critical set for the square L3 (which differs from L2 in
just one intercalate) has only four entries. In fact, the latin squares L1 and L3

are both isotopes of the cyclic group Z4 (and so have smallest critical sets of the
same size) whereas L2 is isotopic to the 2-group Z2 × Z2.

Let us now explain why A,C are respectively smallest critical sets for L1, L2.
In any Cayley table of the cyclic group, each element belongs to exactly one
intercalate. There are four intercalates all together and no two of them have
any cell in common. If the cells of a critical set did not include at least one cell
of each intercalate, it would be possible to obtain two completions of that set,
one to L1 and one to a latin square which differs from L1 in having the two
distinct symbols of the “uncovered” intercalate interchanged. Since there are
four non-overlapping intercalates, there must be at least four cells in a critical
set.

The latin square L2 has a different arrangement of intercalates. Each cell lies
in three different intercalates of L2. Since there are 16 cells altogether but each
intercalate has four cells, the total number of intercalates is (16 × 3)/4 = 12.
The cells of a critical set must contain at least one cell of each of these twelve
intercalates. This can be achieved by means of a transversal of the square. The
cells of L2 which are shown in bold in Figure 3.2.3 form such a transversal.
However, these cells alone (or those of any other transversal) are not sufficient
for unique completion of L2. Figure 3.2.4 shows two different ways in which
the remaining twelve cells can be filled, so we need at least one further cell in
our critical set. It is easy to check that one appropriately chosen further cell is
sufficient to ensure unique completion.

02 • 23 30
10 03 31 •
21 32 • 13
• 20 12 01

Fig. 3.2.4.

Figure 3.2.4 is an example of a concept which is now called a latin bitrade.
(In the early days of this subject, several other terms were used, see later.) This
consists of two (juxtaposed) partial latin squares P1 and P2 such that (i) the same
cells are filled in each; (ii) no cell has the same entry in P1 as it does in P2; (iii)
the same entries occur in each particular row of P1 as occur in the corresponding
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row of P2; and (iv) the same entries occur in each particular column of P1 as
occur in the corresponding column of P2.

Each of P1 and P2 is called a latin trade. (In earlier papers, the term latin
trade was often used for the pair P1, P2.)

Suppose that a given latin square L contains P1 as a part. Then, if the entries
of P1 are deleted, the remaining partial square H can be completed in two ways
according as the entries of P1 or the entries of P2 are placed in the empty cells
of H. It follows that a critical set for L must include at least one cell of every
latin bitrade that has its P1 (or P2) part included in L. Thus, the study of latin
bitrades plays a crucial role in the investigation of critical sets. An intercalate is
just the P1 part of a 2× 2 latin bitrade.

Before proceeding further, we need a few formal definitions. It is convenient
for this purpose to think of a latin square of order n as consisting of n2 ordered
triples (row, column, symbol) as we did in Section 1.4. Usually, we shall use
0, 1, . . . , n − 1 as our symbols so that rows and columns will be labelled from 0
to n− 1.

A uniquely completable set (UC set) U of triples is such that it charac-
terizes only one latin square. That is, there is a unique latin square of as-
signed order n which has U as a subset of its triples. Such a set U of triples
is said to be a critical set if no subset of U is uniquely completable. Thus, as
we showed above, the sets U1 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (3, 3, 2)} and U2 =
{(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (2, 0, 2)} are both critical sets for the
Cayley table K of the cyclic group C4 and U1 is a minimal critical set for K.

In the process of completing a UC set U to the latin square L which it
characterizes, we say that adjunction of a triple t = (r, c, s) is forced in the
process of completion of a set T of triples (|T | < n2, U ⊆ T ⊂ L) to the complete
set of triples which represents L (and which we also write as L), if either

(i) ∀r′ 6= r,∃z 6= c such that (r′, z, s) ∈ T or ∃z 6= s such that (r′, c, z) ∈ T
(that is, in the partial completion F of L, where F is the partial latin square
formed by the triples of T , each cell of column c except that in row r is either
in a row of F which already contains the symbol s or else is already filled with
an element z distinct from s), or

(ii) ∀c′ 6= c,∃z 6= r such that (z, c′, s) ∈ T or ∃z 6= s such that (r, c′, z) ∈ T
such that (r, c, z)eT (that is, in the partial completion F of L, each cell of row
r except that in column c is either in a column of F which already contains the
symbol s or else is already filled with an element z distinct from s), or

(iii) ∀s′ 6= s, ∃z 6= r such that (z, c, s′) ∈ T or ∃z 6= c such that (r, z, s′) ∈ T
(that is, in the partial completion F of L, every symbol except s already occurs
either in column c or else in row r of F ).

A UC set U is called strong if we can define a sequence of sets of triples
U = F1 ⊂ F2 ⊂ . . . ,⊂ Fr = L such that each triple t ∈ Fv+1 − Fv is forced in
Fv. It is super strong if the adjunction of each triple is forced by virtue of (iii)
alone.

A UC set which is not strong is called weak. In particular, a critical set may
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be weak or strong. A recent refinement of the latter concept is to say that a
critical set is totally weak if there is no triple whose adjunction is forced initially
rather than only at a later stage of the completion to a unique latin square. See
Adams and Khodkar(2001).

Clearly, if the subset U of cells of a latin square L form a UC set for L then
those cells of any latin square L′ isotopic to L onto which the cells of U are
mapped form a set U ′ which is UC for L′ and is of the same type relative to
L′ as U is relative to L: that is, weak or strong, critical or minimal critical or
neither. We shall regard the sets U and U ′ as equivalent.

In order to determine whether a given set S of triples is UC for a given latin
square L, we need to check that the triples of S include at least one cell/triple
of every latin trade which L contains. Thus, the study of latin trades plays a
crucial role in the investigation of UC and/or critical sets as we have already
remarked. An intercalate is a latin trade of smallest possible size.

Let us mention here that among earlier names used for a latin trade were
critical partial latin square and latin interchange. The latter was used by Drápal
[see Drápal and Kepka(1985), for example] and the former in several papers of
the present author.

In our further discussion of this topic, we shall look first at critical sets in
group-based latin squares.

Very early in the development of the subject of critical sets, in a private letter
to Jennifer Seberry, Nelder(1979) conjectured that, for a latin square based on
the cyclic group (Zn,+), a set consisting of two appropriately sized triangles in
the top left and bottom right corners of the square would be a smallest critical
set. For n odd, these two triangles would each have (n2 − 1)/8 cells; for n even,
one would have (n2+2n)/8 cells and the other (n2−2n)/8 cells. (See Figure 3.2.5
for an illustration.) Thus, the size of a smallest critical set based on the cyclic
group would be ⌊n2/4⌋.

0 1 2 • • •
1 2 • • • •
2 • • • • •
• • • • • •
• • • • • 3
• • • • 3 4

0 1 2 • • • •
1 2 • • • • •
2 • • • • • •
• • • • • • •
• • • • • • 3
• • • • • 3 4
• • • • 3 4 5

Fig. 3.2.5.

Also, Nelder conjectured that a set of n(n−1)/2 cells consisting of the upper
left triangular portion of the square but excluding its main right-to-left diagonal
(as in the square of Figure 3.2.6) would be a largest critical set. It has been
proved that the first conjecture is correct for cyclic latin squares of even order
and for strongly completable critical sets in cyclic latin squares of odd order.
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This conclusion is arrived at as follows:
The critical sets suggested by Nelder are strongly completable and it was

proved by Bate and Van Rees(1999) that the sizes of strongly completable critical
sets are bounded below by ⌊n2/4⌋. Also, Curran and Van Rees(1979) had proved
much earlier that, when n is even, a critical set must have size at least n2/4
(in order to cover all the intercalates) and that the set comprising triangles
of sizes (n2 + 2n)/8 and (n2 − 2n)/8 is critical. Then, Cooper, Donovan and
Seberry(1991) proved that, when n is odd, the set consisting of two triangles
each of size (n2 − 1)/8 is likewise critical.

The possibility remains that, for a cyclic latin square of odd order, a weakly
completable critical set of size less than ⌊n2/4⌋ might exist.

0 1 2 3 4 •
1 2 3 4 • •
2 3 4 • • •
3 4 • • • •
4 • • • • •
• • • • • •

Fig. 3.2.6.

In a long paper involving the use of many latin trades, Donovan and Cooper
(1996) succeeded in showing that Nelder’s candidate for a largest critical set
in a cyclic latin square is indeed critical though it is still not known whether
it is of largest size for such a square. However it is known and had been shown
much earlier by Stinson and van Rees(1982) that this critical set is not in general
largest for a given size of latin square. In particular, there exist latin squares of
orders 6, 7, 8 with critical sets of sizes at least 18, 24, 37 respectively. Questions
regarding the sizes of largest critical sets are mostly open.

To summarize, Nelder’s construction for a smallest strongly completable crit-
ical set in a cyclic latin square is a construction valid for all orders n.

However, attempts to provide similar constructions of minimal critical sets
for other classes of latin square have, so far as the present author is aware, been
unsuccessful. Constructions which give critical sets of latin squares based on the
dihedral and dicyclic groups have been obtained but these are not minimal for
general values of n. For details, see Keedwell(2004).

Next, we turn to the problem of weakly completable critical sets.

A problem which until recently seemed particularly difficult to solve was that
of finding, and finding the minimal sizes of, weakly completable critical sets. In
Keedwell(1999), it was shown by exhaustive argument that weakly completable
critical sets do not exist in the latin squares of orders three and four. Later,
by computer [see Bedford and Johnson(2000)], it was also shown that they do
not exist in the isotopy class of latin squares based on the cyclic group of order
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five. On the other hand, they do exist in the only other isotopy class of latin
squares of order five. Examples were found by Burgess(2000) who also showed
how to construct, for any chosen order, a latin square which contains a weakly
completable critical set.

More recently, Bedford and Johnson(2000,2001) showed that all latin squares
based on cyclic groups of orders greater than five have weakly completable crit-
ical sets, thus disproving a conjecture of the present author [see page 237 of
Keedwell(1996)]. Also, in the first paper, they proved the much stronger result
that a weak uniquely completable set exists in every group-based latin square
of order greater than five. Clearly, by successive deletion of unnecessary entries,
such a uniquely completable set can be reduced to a critical set which is weakly
completable. However, the initial steps in the completion of such a critical set
to the unique latin square which it defines may then be forced. Observation of
this fact led Adams and Khodkar(2001) to introduce the notion of a totally weak
critical set that is, one for which initially no empty cell has its entry forced.

For further details of the work of Adams and Khodkar, see Keedwell(2004)
and the relevant papers cited therein.

In or about 1979, the freelance puzzle-maker Howard Garns invented a new
puzzle originally called “Number Place” for Dell Magazine of New York. This
consisted of a 9×9 square in the form of nine 3×3 subsquares and in which a sub-
set of the 81 cells were already filled with numbers from the set S = {1, 2, . . . , 9}.
The puzzle-solver was required to fill the remaining cells with numbers from the
set S in such a way that the completed square would be a latin square L and
so that each of the nine 3× 3 subsquares would contain each of the numbers in
the set S just once. In our language, the given filled cells formed a UC set for
L which was intended to be strongly completable. Two examples of such puz-
zles are given in Figure 3.2.7. Later, the puzzle became very popular in Japan
and later still, it was promoted under the Japanese name of “Sudoku” to “The
Times” newspaper in Great Britain by a New Zealander by the name of Wayne
Gould (who had come across the puzzle on a visit to Japan). An initial example
of this “Sudoku puzzle” was published in “The Times” in November 2004.

Subsequently, many versions of the puzzle have appeared in many publica-
tions throughout the World. In particular, the size of the puzzle square has been
generalized to n2 × n2 and such a square is separated into n n × n subsquares.
(Usually, n = 3, 4 or 5.) When all the cells of such a square have been filled, it
becomes an example of a latin square of order n2 separated into n2 subsquares
of order n each of which is (n2, 1)-complete. We shall call such a square a Sudoku
latin square and such squares will arise again in Section 5.3 and Section 6.3.

Sudoku latin squares which are group-based can be constructed by the method
of Theorem 3.1.5. However, squares obtained in this way are too regular to be
used in Sudoku puzzles.

A key question for mathematicians is “What is the size of a minimal critical
set for a Sudoku latin square L whether group-based or not?” For the original 9×9
puzzle, it is believed that 17 given entries is minimal. Recently, McGuire(2012)

Chapter 3



97

· · 9 · · 1 · 5 ·
· 4 1 · 7 5 · · ·
2 · · 4 · · · · 3
· · 6 9 · · 3 · ·
3 · · 2 · 7 · · 1
· 7 · · · 3 8 · 6
4 · 5 · · 2 · · 8
· · · 8 · 4 9 6 ·
· 9 · 5 · · 7 · ·

· · · · · · 1 · 3
9 · · · 5 · · · ·
· · · · · · 8 · ·
· 6 · · 2 · · 7 ·
· · 1 · · · · · ·
· · · 3 · · · · ·
· · · · · 1 4 6 ·
7 2 · · · · · 5 ·
· · · 8 · · · · ·

Fig. 3.2.7.

has claimed that he has proved by exhaustive enumeration of cases with the aid
of a computer that this is so but, so far as the present author is aware, that claim
has not been independently checked. In most published puzzles, the given filled
cells form a strongly completable UC set which is neither minimal nor critical.
In Figure 3.2.7, the first example is of a typical puzzle square while the second
is one of many obtained by computer or otherwise which has just 17 filled cells.
We give the following hint for commencing the completion of the latter. The
cell (3, 9) must contain 5 because 5 cannot occur in the second row or eighth
column but must occur in the subsquare (1, 3). Also, the cell (8, 9) must contain
1 because 1 cannot go elsewhere in the eighth row. [Note that 1 already occurs
in the subsquare (3, 2).] Observe that completion would be impossible without
the extra requirements for the completed square to be a Sudoku square.

In the 1990’s, Sudoku latin squares with the additional property that both
main diagonals contain each symbol just once were introduced and studied (un-
der the name of perfect latin squares) outside the Sudoku puzzle environment
in connection with the electronic storage and retrieval of n2 × n2 arrays (e.g.
pictures). If such an array is to be stored using only n2 memory modules, then
retrieval of a particular set of items (e.g. pixels) is said to be “conflict free” if
the required data can be accessed without the necessity to collect more than one
item from any particular memory module. It is usually particularly important
that retrieval of the items which form a row, column, diagonal or subsquare of
the array should be conflict free. This can be achieved by using the symbols of a
perfect latin square to specify for each location in the array into which memory
module it should be put.

Full details of this application can be found in Kim and Prasanna Ku-
mar(1993) and in Heinrich, Kim and Prasanna Kumar(1992). Prasanna Kumar
et al devised a fairly complicated method for constructing perfect latin squares
but a somewhat simpler one was given later in Keedwell(2007) although at that
time the latter author was unaware of the application just described.

Let us return to the general topic of critical sets and latin bitrades.
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A lot of work has been done on trying to determine for which sizes critical
sets exist in particular kinds of latin square. In Donovan(1999), that author gave
a reference list of known results (up to the date of her paper) on the possible
sizes of critical sets for various types of latin square. Later, in a joint paper,
Donovan and Howse(2000) gave constructions by means of which they showed
that, in suitable latin squares of order n, critical sets exist of all sizes between
⌊n2/4⌋ and (n2 −n)/2. [See also Donovan and Bean(2000) for a missing case.] A
number of questions remain open in regard to this topic. In particular, what is
the largest size which a critical set in a latin square may have? For more details,
see Keedwell(2004).

A related question is to find the spectrum for the sizes and types (or shapes) of
latin bitrades. (By the size of a latin trade, we mean the number of its filled cells.
By its shape, we mean the way in which these filled cells are arranged.) In addi-
tion, there may be several kinds of latin trade of the same size and type/shape.4

For example, in Figure 3.2.8 we exhibit four kinds of latin bitrade of the same
size and type. (Three of these have the same shape.) An early attempt to resolve
this question was made by the present author [see Keedwell(1994)] who set out
to enumerate first the possible types and then the possible kinds of each type for
sizes m up to m = 10. However, there were a few omissions in the latter listing
which were later filled by Donovan, Howse and Adams(1997). In fact, the same
question had been investigated from a quite different point of view much earlier
by Drápal and Kepka(1983,1985). These authors had treated a latin trade and its
mate as a pair of partial groupoids. Again we refer the reader to Keedwell(2004)
for more details.

12 21 • •
21 12 • •
• • 12 21
• • 21 12

12 21 • •
21 12 • •
• • 13 31
• • 31 13

12 21 • •
21 12 • •
• • 34 43
• • 43 34

12 21 • •
• 12 21 •
• • 12 21
21 • • 12

Fig. 3.2.8.

A considerable amount of work has been done on finding upper and lower
bounds for the minimal size gdist(n) of a latin trade in a group-based latin
square of order n. For an integer n ≥ 2, let gdist(n) denote the minimum distance
between two groupoids (Q, ◦) and (Q, ·) as (Q, ◦) varies through all quasigroups of
order n and (Q, ·) varies through all groups of order n. It is immediate to see that
gdist(n) is the quantity whose bounds we are seeking. Drápal and Kepka(1989)
obtained the result gdist(n) ≥ 3 + e loge p for n equal to the prime p (which
implies that the latin square is cyclic) and, later, Cavenagh(2003) obtained the
almost identical result gdist(n) ≥ ⌈2 + e loge p⌉ by a simpler and more direct
method. Again, we refer the reader to Keedwell(2004) for details.

4For the precise definition of type, see Keedwell(1994,2004).
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More recent work on latin trades and/or bitrades has focussed on the geomet-
rical and topological representation of the latter. This work also was initiated by
Drápal(1991,2001) who conceived the idea of representing a latin bitrade by an
orientable surface5 and hence giving it a genus.

In order to introduce the idea, we shall think of a latin square in its guise as
the multiplication table of a quasigroup. Let (Q, ⋆) and (Q, ◦) be two quasigroups
of order n defined on the same set Q and putM = {(a, b) ∈ Q×Q, a⋆ b 6= a◦ b}.
That is, the elements of M are the entries in the cells of the latin bitrade that
transforms (Q, ⋆) to (Q, ◦) and conversely. This is made clear by Figure 3.2.9
wherein, for example, the elements (2, 0) and (0, 2) of M arise from the second
row of the latin bitrade. Thus,M is the size of the latin bitrade as defined earlier.

We define a set ∆(⋆, ◦) of triangles such that their vertices are elements of M
and each triangle has vertices of the form (a, b), (c, b), (a, d), where a⋆ b = c◦ b =
a ◦ d. We define a row permutation ρ by (a, b)ρ = (a, d), where a ⋆ b = a ◦ d, and
a column permutation µ by (a, b)µ = (c, b), where a ⋆ b = c ◦ b. Lastly, we define
an element permutation γ by γ = ρ−1µ.

The following facts are easily proved:
(1) If (a, d) ∈M and (a, d)γ = (c, b), then c ◦ b = a ◦ d.

[ (a, d)γ = (c, b) ⇒ (a, d)ρ−1 = (c, b)µ−1 and (a, d) ∈ M implies that there
is an element b ∈ Q such that a ◦ d = a ⋆ b (b 6= d) Then (a, d)ρ−1 = (a, b). It
follows that (c, b)µ−1 = (a, b) so c ◦ b = a ◦ d.]
(2) For every triangle ∆ ∈ ∆(⋆, ◦), there is exactly one ordered pair l ∈M such
that ∆ = {l, lµ, lρ}, where l = (a, b) say.

Hence, there is exactly one triangle of ∆(⋆, ◦) with vertices {l, lµ, lρ} or
{m,mρ−1,mγ} where m = lρ, or {n, nγ−1, nµ−1} where n = lµ.

It follows that each vertex m ∈M occurs in at most three triangles of ∆(⋆, ◦)
and that these triangles when they exist and are distinct are {m,mµ,mρ},
{m,mρ−1,mγ} and {m,mγ−1,mµ−1}.

It is easy to show that, for a fixed m, no two of these triangles coincide.

Theorem 3.2.1 All connected components of the polyhedron induced by ∆(⋆, ◦)
are orientable surfaces.

Proof. We orient each triangle in the order (m,mµ,mρ). Then we define
the faces of the polyhedron to be these triangles and also the orbits of the
permutations ρ−1, µ and γ−1 (where cycles of length 2 are represented as “faces”
with two edges). Each edge is then a side of exactly one triangle {m,mµ,mρ}
and exactly one orbit and adjacent faces are oriented in the same way (clockwise
or anti-clockwise). ⊓⊔

Since three triangles and three orbits meet at each vertex, the vertices have
valency six. There are |M | vertices, so the number of triangles is |M | and the
number of edges is 3|M |. Since each cycle of an orbit of ρ, µ−1 and γ defines a

5Most of the papers published in the present century have concerned themselves with latin
bitrades rather than with the original concept of critical sets for latin squares.
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face of the polyhedron, the total number of faces (including those formed by the
triangles) is |M |+ω(ρ) +ω(µ) +ω(γ), where ω(θ) denotes the number of cycles
of the permutation θ.

(⋆◦) c1 c2 c3 c4
b1 00 11 22 33
b2 11 20 33 02
b3 23 32 01 10
b4 32 03 10 21

(⋆◦) c1 c2 c3 c4
b1 • • • •
b2 • 20 • 02
b3 23 32 01 10
b4 32 03 10 21

Fig. 3.2.9.

Example. Let Q = {0, 1, 2, 3} and the quasigroups (Q, ⋆) and (Q, ◦) be defined
as shown in the left-hand diagram of Figure 3.2.9.

We find that the triangles are

m → mµ → mρ
(1) b2 ⋆ c2 = 2 = b3 ◦ c2 = b2 ◦ c4
(2) b2 ⋆ c4 = 0 = b3 ◦ c4 = b2 ◦ c2
(3) b3 ⋆ c1 = 2 = b4 ◦ c1 = b3 ◦ c2
(4) b3 ⋆ c2 = 3 = b4 ◦ c2 = b3 ◦ c1
(5) b3 ⋆ c3 = 0 = b4 ◦ c3 = b3 ◦ c4
(6) b3 ⋆ c4 = 1 = b4 ◦ c4 = b3 ◦ c3
(7) b4 ⋆ c1 = 3 = b3 ◦ c1 = b4 ◦ c2
(8) b4 ⋆ c2 = 0 = b2 ◦ c2 = b4 ◦ c3
(9) b4 ⋆ c3 = 1 = b3 ◦ c3 = b4 ◦ c4
(10) b4⋆c4 = 2 = b2 ◦ c4 = b4 ◦ c1

The permutations are
(a) row orbits (ρ):

(b2, c2) → (b2, c4) → (b2, c2)
(b3, c1) → (b3, c2) → (b3, c1)
(b3, c3) → (b3, c4) → (b3, c3)
(b4, c1) → (b4, c2) → (b4, c3) → (b4, c4) → (b4, c1)

(b)column orbits (µ):
(b2, c2) → (b3, c2) → (b4, c2) → (b2, c2)
(b2, c4) → (b3, c4) → (b4, c4) → (b2, c4)
(b3, c1) → (b4, c1) → (b3, c1)
(b3, c3) → (b4, c3) → (b3, c3)

(c) element orbits (γ) in (Q, ◦):
(b2, c2) → (b3, c4) → (b4, c3) → (b2, c2)
(b2, c4) → (b3, c2) → (b4, c1) → (b2, c4)
(b3, c1) → (b4, c2) → (b3, c1)
(b3, c3) → (b4, c4) → (b3, c3)
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Hence we obtain the polyhedron shown in Figure 3.2.10.

In general, if g is the genus of a surface, then v − e+ f = 2− 2g. We have
v = |M |, e = 3|M |, f = |M |+ ω(ρ) + ω(µ) + ω(γ).

Thence, 2g = 2− v + e− f = 2 + |M | − ω(ρ)− ω(µ)− ω(γ).
If ω(ρ) ≥ 1 + |M |/3, ω(µ) ≥ 1 + |M |/3 and ω(γ) ≥ 1 + |M |/3, then g < 0 so

at least one of one of ω(ρ), ω(µ), ω(γ) is less than 1 + |M |/3.
If ω(ρ), ω(µ) and ω(γ) are all less than |M |/3, then g ≥ 1.
In the case when g = 0, ω(θ) ≥ |M |/3 for at least one θ (θ = ρ, µ or γ) so at

least one cycle has length 2 (since θ acts on |M | symbols): that is, mθ2 = m for
some m ∈M . This fact is illustrated by Figure 3.2.10.

In Drápal(2003) and in subsequent publications, that author has pointed out
that any latin bitrade can be replaced by a canonical latin bitrade (called a
separated latin trade by Drápal) in which the rows, columns and symbols are
in one-to-one correspondence with the cycles. For example, the latin bitrade in
Figure 3.2.9 can be replaced by one in which the second row is replaced by
two rows, one having the entries 23 and 32 in the first two columns and the
other 01 and 10 in the last two columns. The column and symbol maps which
involve more than one cycle can be separated in the latin bitrade in a similar
manner. This is illustrated by Figure 3.2.11 in which, reading from left to right,
the diagrams show firstly the original latin bitrade, secondly the same bitrade
“element separated”6, thirdly “element and row separated”, and finally “fully
separated”.

For any separated latin bitrade, we have the interesting result that the sum
of the numbers of rows, columns and symbols is less than |M |+ 3 (since g ≥ 0).
Moreover, the numbers of rows, columns and symbols in a separated latin bitrade
are equal to ω(ρ), ω(µ), ω(γ) respectively, so it is not necessary to construct the
corresponding polyhedron in order to calculate the genus of such a bitrade.

Let us note also that the concept of genus only makes sense if the latin bitrade
is connected or indecomposable or primary (all three terms have been used): that
is, only if the latin bitrade cannot be decomposed into two or more latin bitrades
of smaller size.

Two interesting questions arise. Firstly, what is the size of the smallest latin
bitrade which has genus greater than zero; and, secondly, how can we characterize
those latin trades which have a particular genus?

The answer to the first question is “size 9 if the bitrade is itself a latin square
or size 12 otherwise”. The author is not sure who first observed these facts but
Figure 3.2.12 provides examples of such bitrades.

As regards the second question, it had been conjectured for some while that
the two component trades of every latin bitrade whose genus is zero could be

6The cycles corresponding to the element 0 are (b1, c3) → (b4, c1) → (b1, c3) and (b3, c4) →
(b5, c2) → (b3, c4).
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Fig. 3.2.10.
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(⋆◦) c1 c2 c3 c4 c5
b1 02 • 20 • •
b2 • 34 43 • •
b3 24 02 • 40 •
b4 30 43 02 14 21
b5 43 20 34 01 12

02 • 20 • •
• 34 43 • •
24 52 • 45 •
30 43 02 14 21
43 25 34 51 12

02 • 20 • •
• 34 43 • •
24 52 • 45 •
30 43 02 14 21
43 • 34 • •
• 25 • 51 12

02 • • 20 • • •
• 34 • • 43 • •
24 • 52 • • 45 •
30 43 • 02 • 14 21
43 • • • 34 • •
• • 25 • • 51 12

Fig. 3.2.11.

02 • 24 • 40 •
• • • • • •
24 • 40 • 02 •
• • • • • •
40 • 02 • 24 •

• 12 23 31
13 01 30 •
21 • 02 10
32 20 • 03

Fig. 3.2.12.

embedded in abelian groups (as distinct from merely being embeddable in quasi-
groups) and the truth of this conjecture was proved almost simultaneously by
Cavenagh and Wanless(2009) and by Drápal, Hämäläinen and Vitězslav(2010)
but using different methods. Later, it was further shown by Blackburn and Mc-
Court(2013) that, for a bitrade L = (T, T ′) of genus zero, the abelian groups
into which T and T ′ embed are isotopic. So far as the present author is aware, it
is not known whether latin bitrades of genus one or any other genus g > 0 can
be characterized in some similar way.

There are a number of facts which are easy to check:
(i) For T (and T ′) to be embeddable in the Cayley table of an abelian group,

it is sufficient that L = (T, T ′) has genus zero but is certainly not necessary.
(ii) Some latin trades can be embedded in the Cayley table of more than one

group (none or several of which may be abelian).
(iii) There exist latin bitrades L = (T, T ′) of genus g > 0 either only one or

neither of whose components T and T ′ can be embedded in groups.
(iv) If L = (T, T ′) has genus g > 0, T ′ and T may be embeddable in different

groups but, if T and T ′ are isotopic, they can certainly be embedded in isotopes
of the same group.

Cavenagh and Wanless(2009) have obtained the smallest connected and sep-
arable latin bitrade L = (T, T ′) with the property that neither T nor T ′ embed
in any group since both fail the quadrangle criterion (defined on page 4). We
exhibit L in Figure 3.2.13. It is easy to see that the quadrangles whose cells
are (b2, c1), (b2, c2), (b3, c1), (b3, c2) and (b1, c2), (b1, c3), (b2, c2), (b2, c3) fail the
quadrangle criterion in both T and T ′. These authors have also obtained the
smallest (which has size 14) connected and separated bitrade in which T embeds
in a group but not in any abelian group. They have given examples of other
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interesting situations. Drápal, Hämäläinen and Vitězslav(2010) have given an
example of a latin trade of genus one and size 18 which does not itself fail the
quadrangle criterion but nonetheless does not embed in any group.

(⋆) c1 c2 c3 c4
b1 0 1 2 3
b2 1 2 3 0
b3 2 0 1 •

(◦) c1 c2 c3 c4
b1 1 2 3 0
b2 2 0 1 3
b3 0 1 2 •

Fig. 3.2.13.

The above remarks raise two further questions. First, the reader will observe
that the latin bitrade exhibited in Figure 3.2.14 can be regarded as having been
obtained as the union (in some sense) of the latin bitrade shown in the left-hand

diagram of Figure 3.2.12 and the intercalate
43 34
34 43

by coalescing the cells which

contain 24 and 43 in the respective bitrades to give an amended cell 23.

02 • 24 • 40 •
• • • • • •
24 • 40 • 02 •
• • • • • •
40 • 02 • 23 34
• • • • 34 43

Fig. 3.2.14.

This idea of combining (or “adding”) latin bitrades has been generalized in
several different ways. See, in particular, Donovan and Mahmoodian(2002,2003),
Drápal(2003) and Cavenagh, Donovan and Drápal(2004).

Secondly, the latin square (group table) of smallest order into which the
component T of the latin trade of Figure 3.2.14 can be embedded is cyclic of
order six. We may thence ask the general question: “What is the minimal order
of a latin square into which a given separated (or non-separated) latin trade T
of size h may be embedded?”

A latin bitrade is called minimal if it contains no latin bitrade of smaller size.
Lefevre, Donovan, Cavenagh and Drápal(2007) have investigated the minimum
size h of a latin bitrade of genus g and, in particular, they have shown that a
minimal latin bitrade of genus g and size 8g + 8 exists for each non-negative
integer g.

A latin bitrade is called k-homogeneous if it has the same number k of rows,
columns and symbols. The latin bitrades exhibited in Figure 3.2.12 are both
3-homogeneous. Because a derangement of three objects necessarily consists of
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a single cycle, every connected 3-homogeneous latin bitrade has genus one (and
also is necessarily in separated form).

Cavenagh, Donovan and Drápal(2005a) have enumerated all 3-homogeneous
latin bitrades. [See also Cavenagh(2006).] The latter paper contains another in-
teresting result: namely that every 3-homogeneous latin trade can be partitioned
into three disjoint transversals. This fact has subsequently been re-proved several
times.

For results concerning 4-homogeneous latin bitrades, see Cavenagh, Dono-
van and Drápal(2005b) and for more general results concerning k-homogeneous
latin bitrades, see Bean, Bidkhori, Kosravi and Mahmoodian(2005) and Behrooz
Bagheri and Mahmoodian(2011).

More generally, a latin bitrade has been called (r, c, s)-homogeneous if each
row has r entries, each column has c entries and each symbol occurs s times. In
Drápal and Griggs(2010), these authors have proved that (r, c, s)-homogeneous
latin bitrades of genus one exist only when (r, c, s) = (3,3,3), (4,4,2) or (6,3,2).

There are many further papers on latin bitrades. A fairly comprehensive list of
those published up to 2007 is given in a survey paper written by Cavenagh(2008).
Also, there exist alternative ways of representing latin bitrades topologically and
so obtaining their genus. The simplest of these is as follows:

For the connected and separated latin bitrade L = (T, T ′) with rows b1, b2, . . . ,
bu, columns c1, c2, . . . , cv and symbols s1, s2, . . . , sw, construct a triangulated
pseudo-surface as follows. The vertices are the “names” of the rows, columns
and symbols, so there are V = u + v + w vertices. Corresponding to each oc-
cupied cell (bi, cj) of T , construct a triangle with vertices bi, cj , sk, where sk
is the symbol in the cell (bi, cj), and with edges [bi, cj ], [cj , sk], [sk, bi] oriented
in that order. We call them “black” triangles. Corresponding to each cell of T ′,
we construct a “white” triangle according to the same rule. Since each symbol
which occurs in row bi of T also occurs in row bi of T

′ and since the same state-
ment is true for the columns, each edge is a side of two triangles, one black
and one white, so the total number E of edges is one half of three times the
number of triangles. The total number F of triangles (faces) is 2|M |, where |M |
is the size of T (or T ′). Hence, the genus g satisfies 2g = 2 − (V − E + F ) =
2− (u+ v+w− 3|M |+2|M |) = 2+ |M | −ω(ρ)−ω(µ)−ω(γ) which is the same
as we obtained for the earlier representation.

The black and white triangle representation of a latin bitrade has been, for
example, used by Blackburn and McCourt(2013) in their paper mentioned above.

We might ask: “Are there other combinatorial structures which can be rep-
resented topologically and hence assigned a genus?”

In the first part of this section, we discussed uniquely completable and critical
sets for assigned latin squares. Cameron(1994) has solved a different but related
question: “How few positions (cells) in an n×n array have the property that any
latin square of order n is uniquely determined by its entries in these particular
cells?”

For example, the six cells (1,1), (1,2), (1,3), (2,1), (2,2), (3,1) of a 4 × 4
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array do not satisfy the Cameron requirement because, although the left-hand
latin square of Figure 3.2.15 is completely determined by its entries in these
particular cells (they form a critical set for it), neither of the remaining two
squares of Figure 3.2.15, is uniquely determined by its entries in these six cells
since the same entries occur in both.

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

Fig. 3.2.15.

Cameron has given a structural characterization for such a set of cells valid
for all n ≥ 3 and has shown that the minimum number of cells in such a set is
n(n− 2) except when n = 4. For n = 2, 3, 4, the numbers of cells required are 1,
3, 7 respectively.

In Bartlett(2013), yet another problem concerning completion of partial latin
squares has been considered. A partial latin square of order n is ǫ-dense if each
row and column contains at most ǫn filled cells and each symbol occurs at most
ǫn times. It is conjectured that every 1

4 -dense partial latin square is completable.
(cf. Section 3.4.)

In the next section of this chapter, we consider, for the case of latin squares
which are isotopic to group tables, the largest number of randomly chosen ele-
ments which we may delete without the resulting partial square losing the prop-
erty of being uniquely completable.

3.3 Fuchs’ problems

In his book Fuchs(1958), that author raised the following problem: “Let k
elements be deleted at random in the Cayley table of a finite Abelian group G
of order n. Determine the greatest k = k(n) for which

(a) the rest of the table always determines G up to isomorphism;
(b) the table can be reconstructed uniquely from its remaining part.
The first author of [DK1] gave a solution to problem (b) without the restric-

tion that the group is abelian [see Dénes(1962)]. His result should have been that,
for any given group of order n 6= 4 or 6, we have k(n) = 2n − 1. (In fact, there
was an error in his proof and he omitted to exclude n = 6 from the statement,
see Theorem 3.3.1 below.)

Thus, unexpectedly, k(n) does not depend on the structure of the group but
depends only on its order. For the case n = 4, he obtained the value k(n) = 3.

For the proof, let us begin by pointing out that an abstract group is com-
pletely known when each of its elements has been represented by a symbol and
the product of any two symbols in each order has been exhibited.
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For a finite group, the products may be exhibited conveniently by means of
the Cayley table of the group and we may represent the elements of the group
by means of the natural numbers 1, 2, . . . , n. Moreover, as proved in Section 1.1,
a matrix ‖aik‖ whose entries are the natural numbers 1, 2, . . . , n will represent
the Cayley table of such a group if and only if (1) it is a latin square and (2) the
quadrangle criterion holds, that is, for all subscripts i, j, . . ., the equalities

aik = ai1k1 , ail = ai1l1 , ajk = aj1k1 imply ajl = aj1l1 .

Further, we may choose an arbitrary row and column of the unbordered
Cayley table, say the j-th row and l-th column, and consider them as being the
products of the elements by the group identity from the left and from the right
respectively by bordering the table with this row and column. Then ajl will be
the identity of the system Gjl thus arising, and necessarily ailajk = aik. Now
(1) ensures that Gjl is a loop and (2) implies associativity, thus Gjl is a group.
Clearly, every group with the same Cayley table arises in this way.

All these Gjl are isomorphic, for a transition from Gjl to Grs means simply
that we take three permutations θ, φ, ψ such that ab = c in Grs if and only if
aθ ·bφ = cψ in Gjl: that is, Gjl and Grs are isotopic and hence, by Theorem 1.3.4,
isomorphic groups.

Note that different multiplication tables of a group can be transformed into
one another by row and column interchanges.

Definition. If ‖aik‖ and ‖bik‖ are two matrices of the same dimensions, then we
call the i-th rows corresponding rows, the k-th columns corresponding columns,
and aik and bik corresponding elements. Also, we define the distance between
‖aik‖ and ‖bik‖, denoted by d(‖aik‖, ‖bik‖), to be equal to the number of cells
in which the corresponding elements aik and bik are not equal.

The distance so defined is a generalization of the original notion of Hamming
distance between vectors having binary components which is used in coding the-
ory. See Section 11.4. The above notion of distance was introduced by Lee(1958).

Any permutation may be written as a product of disjoint cycles. If all these
cycles have the same length, the permutation is called regular. If, for the per-
mutations σ, τ we have aσ 6= aτ for exactly k symbols a, then we say that they
differ in k places.

We shall need the following lemma concerning permutations.

Lemma. Two regular permutations which differ in exactly two places must be of
the form (i1 i2 · · · in) and (i1 i2 · · · in/2)(i(n/2)+1 i(n/2)+2 · · · in).

Proof. Suppose that the permutations ρ and σ differ from each other by a
transposition τ = (ia ib) so that σ = ρτ and ρ = στ . Without loss of generality
we may assume that the number of cycles in ρ is no more than the number of
cycles in σ. Then ρ necessarily has a cycle containing both ia and ib and this
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cycle gets split into two by the action of τ . It follows from the regularity that ρ
must consist of a single cycle, say

(i1 i2 . . . ia . . . ib . . . in)

and hence that σ = ρτ consists of two cycles

(i1 i2 . . . ia−1 ib ib+1 . . . in)(ia ia+1 . . . ib−1).

Since σ is a regular permutation, b − a = n − (b − a) so b − a = n/2 and this,
after appropriate re-labelling, proves the lemma. ⊓⊔

Theorem 3.3.1 Two different Cayley tables, A and A′, for the (not necessarily
distinct) groups G and G′ of order n 6∈ {4, 6}, differ from each other in at least
2n places.

[The authors are grateful to Frisch for pointing out the fact that Theorems
3.2.1 and 3.2.2 as stated in Dénes (1962) and in the first edition of this book
were not correct and should be replaced by the one above.]

Proof. Suppose firstly that A and A′ do not have any pair of corresponding
rows equal. Then, each pair of corresponding rows differ in at least two places,
so in this case A and A′ differ in at least 2n places altogether. Thus, without loss
of generality, we may suppose that the x-th row of A is equal to the x-th row of
A′ and, by a similar argument, that the y-th column of A is equal to the y-th
column of A′. The rows of A (likewise those of A′) are permutations of the x-th
row of A (or A′) and these permutations form regular permutation groups P and
P ′ isomorphic to G and G′ respectively. (This is a variant of the classical result
of group theory known as Cayley’s theorem.) Every element of P ∩P ′ represents
one of the equal rows in A and A′. It follows that the number s of rows that are
the same in A and A′ is equal to the order of the subgroup H = P ∩ P ′ and so
either s = n/2 or s ≤ n/3 (by Lagrange’s theorem for groups).

Case 1. No pair of corresponding permutations in A and A′ has the form
described in the lemma: namely,

ρ = (i1 i2 . . . in) and σ = (i1 i2 . . . in/2)(i(n/2)+1 i(n/2)+2 . . . in).

(This means that every pair of distinct corresponding permutations differ in at
least three places.)

Case 1.1. s ≤ n/3. (When n is odd, only this case can occur.)
In this case, d(A,A′) ≥ 3(n− n/3) = 2n since there are at least n− n/3

pairs of corresponding rows each pair of which differ in at least three places.
Case 1.2. s = n/2. (This case occurs only when n is even.)

We shall show that two regular permutations φ and ψ (of degree n) which
differ in exactly three places must have one of the two forms below. We use ξ to
denote the cycles which φ and ψ have in common. Then either,
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(a) φ = (i1 i2 . . . ih ih+1 . . . ih+j ih+j+1 . . . ih+j+k)ξ,
ψ = φ(i1 ih+1 ih+j+1)
= (i1 i2 . . . ih ih+j+1 ih+j+2 . . . ih+j+k ih+1 ih+2 . . . ih+j)ξ

where h, j, k ≥ 1, or

(b) φ = (i1 i2 . . . in/3 i(n/3)+1 . . . i2n/3 i(2n/3)+1 . . . in),
ψ = φ(i1 i(2n/3)+1 i(n/3)+1)
= (i1 i2 . . . in/3)(i(n/3)+1 i(n/3)+2 . . . i2n/3)(i(2n/3)+1 i(2n/3)+2 . . . in).

To see this, assume that ψ = φθ where θ consists of a single 3-cycle. We
first observe that, if φ is regular and the three elements re-arranged by θ come
from two or more different cycles of φ then ψ is not regular. If they come from
three different cycles in φ then they lie in the same cycle of ψ and in this case
we interchange the roles of φ and ψ. So henceforth we may suppose that they
come from the same cycle. We can also suppose without loss of generality that
the labelling of the symbols is chosen so that

φ = (i1 i2 . . . ih ih+1 . . . ih+j ih+j+1 . . . ih+j+k)ξ

and the three elements re-arranged by θ are i1, ih+1 and ih+j+1. There are two
cases to consider; either θ = (i1 ih+1 ih+j+1) or θ = (i1 ih+j+1 ih+1). The first
case leads directly to the form (a) above. In the second case,

ψ = (i1 i2 . . . ih)(ih+1 ih+2 . . . ih+j)(ih+j+1 ih+j+2 . . . ih+j+k)ξ,

which can only be regular if h = j = k. Then, because both ψ and φ are regular,
we find that ξ must be trivial and this gives us the form (b).

Next, we shall show that, if n > 6, neither of the forms (a) or (b) is possible.
Since, in both cases, [P : H] = [P ′ : H] = 2, both φ2 and ψ2 lie in H (since the
square of every element of P or P ′ must lie in H if the index is 2). Hence also
φ2ψ−2 ∈ H and so is regular.

Now, if n > 6 and case (b) holds, we have i1φ
2ψ−2 = i3ψ

−2 = i1 and,
because P and P ′ consist of regular permutations, we must therefore have φ2ψ−2

equal to the identity. But in/3φ
2ψ−2 = i(n/3)+2ψ

−2 = i2n/3 6= in/3 which is a
contradiction. (If n = 6, i1φ

2ψ−2 = i3ψ
−2 = i3 so φ2ψ−2 is not equal to the

identity and no contradiction arises.)
If case (a) holds, φ and ψ must consist of only one cycle since otherwise

φ2ψ−2 ∈ H would fix some symbols and, being regular, would then be equal
to the identity whereas ihφ

2ψ−2 = ih+2ψ
−2 = ih+j+k. If n > 6, then one of

h, j, k is ≥ 3. Let us suppose that h ≥ 3. Then i1φ
2ψ−2 = i3ψ

−2 = i1 whereas
ihφ

2ψ−2 = ih+2ψ
−2 = ih+j+k 6= ih which is contradictory. (Again, if n = 6, no

contradiction arises.) If j ≥ 3, ih+1φ
2ψ−2 = ih+1 whereas ih+jφ

2ψ−2 = ih. If
k ≥ 3, ih+j+1φ

2ψ−2 = ih+j+1 whereas ih+j+kφ
2ψ−2 = ih+j .

Thus, when n > 6 and Case 1.2 holds, two different corresponding per-
mutations must differ from each other in at least 4 places and so d(A,A′) ≥
4(n− n/2) = 2n.
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When n = 6 and Case 1.2 holds, it is shown in Note 1 below that a minimum
distance of 9 is possible.

Case 2. There exist two corresponding permutations ρ = (i1 i2 . . . in) ∈ P
and σ = (i1 i2 . . . in/2)(i(n/2)+1 i(n/2)+2 . . . in) ∈ P ′ as in the lemma. (This
case occurs only when n is even.)

Then P = 〈ρ〉 and [P ′ : 〈σ〉] = 2. Also, using ǫ to denote the identity
element of H, we have P ∩ 〈σ〉 = 〈ǫ〉 because i(n/2)−1ρ

k = i(n/2)+k−1 and so
each cycle of a non-trivial power of ρ contains elements with suffices ≤ n/2 and
> n/2. Consequently, H ∩ 〈σ〉 = 〈ǫ〉 and so all products of the form σkγ (where
γ ∈ H and 0 ≤ k < n/2) are different. These products all lie in P ′; whence
(n/2)|H| ≤ |P ′| = n. Therefore, |H| ≤ 2. With the exception of the pairs (ρ, σ)
and (ρ−1, σ−1), there is no other pair of permutations ρk = (j1 j2 . . . jn) ∈
〈ρ〉 = P and τ = (j1 j2 . . . jn/2)(j(n/2)+1 j(n/2)+2 . . . jn) ∈ P ′. For suppose

there were such a pair (ρk, τ). Then each cycle of τ would contain elements iu,
iv with u ≤ n/2 and v > n/2 and consequently the non-identity elements of 〈τ〉
would all be distinct from the non-identity elements of 〈σ〉. Because σ, τ ∈ P ′,
the order of P ′ would be at least (n/2)2. Since ord P ′ ≤ n, this cannot happen
except when n = 4.

Also, it is clear that it is only possible for there to be another pair of permuta-
tions θ = (j1 j2 . . . jn/2)(j(n/2)+1 j(n/2)+2 . . . jn) ∈ P and η = (j1 j2 . . . jn) ∈
P ′ if both A and A′ are cyclic (because (i1 i2 . . . in) ∈ P implies that P , and
so A, is cyclic and similarly (j1 j2 . . . jn) ∈ P ′ implies that P ′, and so A′, is
cyclic). When such a pair of permutations θ, η, does exist, at most four pairs of
corresponding rows of A and A′ have distance two: namely, those corresponding
to the pairs (ρ, σ), (ρ−1, σ−1), (θ, η), and (θ−1, η−1). In all other cases, at most
two pairs of corresponding rows of A and A′ have distance two.

Thus, remembering that |H| ≤ 2, we see that at most two corresponding pairs
of rows are the same and at most four pairs of corresponding rows differ in only
two places and so d(A,A′) ≥ 3(n− 6) + 4.2 = 3n− 10 if both groups are cyclic
and d(A,A′) ≥ 3(n − 4) + 2.2 = 3n − 8 otherwise. We note that 3n − 10 ≥ 2n
when n ≥ 10 and that 3n−8 ≥ 2n when n ≥ 8. However, one can check that two
different tables of the cyclic group Z8 can have at most two pairs of corresponding
rows which are at distance two. (See Note 3 below.) Consequently, d(A,A′) ≥ 2n
for all n ≥ 8.

When n = 6, the minimal distance d(A,A′) = 3n− 10 = 8 and this distance
can be achieved as the following example shows (but only for two tables of Z6

as is shown in Note 2 below):

1 2 3 4 5 6
2 1 4 3 6 5
3 4 6 5 1 2
4 3 5 6 2 1
5 6 1 2 4 3
6 5 2 1 3 4

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3
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When n = 4, any pair of group tables with one pair of corresponding rows and
one pair of corresponding columns equal (in all other cases, the tables differ in at
least 8 places) can be transformed to standard form using the isotopy operation
without changing their distance apart.

The four tables in standard form are as follows:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

Of these, the first is the multiplication table of Z2×Z2 and the other three are
multiplication tables of Z4. The tables of the two different groups differ in four
places and the different tables of Z4 differ in seven places, so d(A,A′) < 2n = 8.
This completes the proof of the theorem. ⊓⊔
REMARK. In Drápal(2004), that author has given an alternative proof of this
theorem and has dedicated it to the memory of József Dénes. Drápal’s proof
makes use of work on the Hamming distance between group tables developed
by himself and others: for example, in Drápal(1992,2001) and Donovan, Oates-
Williams and Praeger(1997). There is also some connection with Problem 1.1 of
[DK1].

In her Ph.D. thesis “Lateinische Quadrate” (Vienna, 1988), Frisch has made
the following additional comments [see also Frisch(1997]:

Note 1. Distance 9 between two Cayley tables of the cyclic group Z6 can be
attained as shown:

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 5 6 2 3 1
5 6 4 3 1 2
6 4 5 1 2 3

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

In this example, both (163524) ∈ P , (162435) ∈ P ′ and (142536) ∈ P ,
(14)(25)(36) ∈ P ′ are pairs of corresponding permutations so both of the forms
(a) and (b) of Case 1.2 occur.

However, Case 1.2 with d(A,A′) < 12 can only occur between two different ta-
bles of the cyclic group Z6. If G ∼= D3, G

′ ∼= Z6 and |H| = 3 (as required by Case
1.2) so that P = 〈ǫ, (1 2 3)(4 5 6), (1 3 2)(4 6 5), (1 4)(2 6)(3 5), (1 5)(2 4)(3 6),
(1 6)(2 5)(3 4)〉, then the only possibilities for P ′ are 〈(1 4 2 5 3 6)〉, 〈(1 5 2 6 3 4)〉
and 〈(1 6 2 4 3 5)〉. One can check that, in each of these cases, every pair of cor-
responding permutations outside H differ in at least 4 places.
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Note 2. Case 2 for n = 6 with d(A,A′) < 12 can only occur between two different
tables of the cyclic group Z6. For, suppose, if possible, that Case 2 holds with
G ∼= Z6, G

′ ∼= D3. Then |H| ≤ 2 and we may suppose without loss of generality
that Z6 = 〈(1 2 3 4 5 6)〉 and that (1 2 3)(4 5 6) ∈ D3. In that case, D3 cannot
contain (1 4)(2 5)(3 6) because (1 2 3)(4 5 6)·(1 4)(2 5)(3 6) = (1 5 3 4 2 6) 6∈ D3.
Therefore, |H| = 1 and so d(A,A′) ≤ 3(n− 3) + 2 · 2 = 13.

Note 3. If, in two different tables for Z8, (1 2 3 4 5 6 7 8) ∈ P and (1 2 3 4)(5 6 7 8)
∈ P ′ form a pair of corresponding permutations which differ in two places, then
each of the possible cycles of length 8 which can generate P ′ contains at most two
integers in a sequence of consecutive even integers and at most two integers in a
sequence of consecutive odd integers. (An example is the cycle (1 6 2 7 3 8 4 5).)
However, the elements of order 4 in P are (1 3 5 7)(2 4 6 8) and (1 7 5 3)(2 8 6 4).
It follows from the lemma that any 8-cycle which differs from one of these in only
two places must contain sequences of more than two consecutive even integers
and more than two consecutive odd integers.

To summarize, if A, A′ are distinct Cayley tables of groups of order n, we
have d(A,A′) ≥ 2n in all cases except the following:

d(A,A′) ≥ 4 if the tables are those of the distinct groups Z2 × Z2 and Z4;
d(A,A′) ≥ 7 if the tables are both tables of the group Z4;
d(A,A′) ≥ 8 if the tables are both tables of the group Z6 and Case 2 holds;
d(A,A′) ≥ 9 if the tables are both tables of the group Z6 and Case 1.2 holds.

Theorem 3.3.2 For a group of order n (n 6= 4 or 6), we have k(n) = 2n − 1
[where k(n) is defined as at the beginning of this Section].

Proof. Let us delete 2n − 1 arbitrary elements in a Cayley table A of the
group G of order n (n 6= 4 or 6). Suppose that there is a Cayley table A′ 6= A of
G having the property that the rest of A may be completed to A′. Then, clearly,
A and A′ differ in 2n− 1 places, which is impossible, by Theorem 3.3.1.

We have to prove further that we can delete 2n elements of a Cayley table A
of a group G of order n in such a way that the rest of the table may be completed
to a Cayley table A′ different from A. If we interchange two arbitrary symbols,
a and b, throughout A, then we shall obtain a new Cayley table differing from
A in exactly 2n places and which still satisfies the quadrangle criterion. So the
proof of our statement is completed. ⊓⊔

Theorem 3.3.3 An arbitrary Cayley table of the cyclic group of order 4 differs
in at least four places from an arbitrary Cayley table of Klein’s 4-group.

Proof. This has already been shown as part of the revised proof of Theo-
rem 3.3.1. ⊓⊔

The result of Theorem 3.3.1 remains the same if we restrict the class of
groups to any one of the following classes of finite groups: (i) soluble groups;
(ii) nilpotent groups; (iii) abelian groups; (iv) cyclic groups.
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It seems to be natural to raise the following problem:
What is the maximum number of squares which a set of latin squares satis-

fying the quadrangle criterion and all of the same order n can contain if each
pair of squares in the set are to differ from each other in at most m places?

At the beginning of this section, we stated the problem of Fuchs as a problem
concerning groups. The analogous result for quasigroups, which was first proved
by Dénes and Pásztor(1963), may be deduced as a corollary to the theorem which
follows. For this, we need to remember the fact that the multiplication table of
an arbitrary quasigroup is a latin square (proved in Theorem 1.1.1).

Theorem 3.3.4 For n = 2 and n ≥ 4 there exist two latin squares of order n
which differ in precisely four entries.

Proof. Given two different symbols a and b there are two possible latin squares
that can be formed using those symbols, namely,

a b
b a

and b a
a b

.

These two squares are clearly at distance four from each other, settling the case
n = 2. Moreover, from Theorem 1.6.3 it follows that for all n ≥ 4 there exists a
latin square Ln of order n having a latin subsquare Un of order 2. Let us form
L′
n from Ln by replacing Un by the other possible subsquare on the same two

symbols. Then d(Ln, L
′
n) = 4 as desired. ⊓⊔

For an analogous result concerning semigroups, see Dénes(1967a).
As regards problem (a) of Fuchs, Frisch(1997) has proved that the Cayley

tables of non-isomorphic groups always differ in strictly more than 2n places.

3.4 Incomplete latin squares and partial quasigroups

A latin rectangle of size r × s is called incomplete or partial if less than rs
of its cells are occupied. An incomplete or partial latin square is analogously
defined. Precisely, we have:

Definition. An n× n incomplete or partial latin square defined on a set S of n
symbols is an n× n array such that in some subset of the n2 cells of the array
each of the cells is occupied by an element from the set S and such that no
element from the set S occurs more than once in any row or column.

In Section 3.2 and Section 3.3, we investigated incomplete latin squares whose
elements were not arbitrarily assigned but had been obtained by deleting el-
ements from a given latin square. The example of an incomplete latin square
shown in Figure 3.4.2 will make the distinction clear.

In this section we shall consider incomplete latin squares and rectangles more
generally and investigate the question of when and whether they can be com-
pleted to a latin square or latin rectangle.
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1 · · ·
· 2 3 4

Fig. 3.4.1.

Figure 3.4.1 shows an incomplete latin rectangle of size 2 × 4 which cannot
be completed to a latin rectangle of the same size. By generalizing, it is easy
to see that, for any n ≥ 2, there exists an incomplete latin rectangle with 2n
cells occupied which cannot be completed to an n× 2n latin rectangle7. On the
other hand, Lindner(1970a) proved that an incomplete n × 2n latin rectangle
with 2n− 1 cells occupied can always be completed to an n× 2n latin rectangle.

In T.Evans(1960), the following problem was posed:
“What conditions suffice to enable an incomplete n×n latin square to be embed-
deded in a fully completed8 latin square of order n? In particular, can an n× n
incomplete latin square which has n− 1 or less places occupied be completed to
a latin square of order n?”

Exactly the same problem was posed by Klarner on page 1167 of Erdös, Rényi
and Sös(1970) and independently by Dénes in a lecture given in the late 1960s
at the University of Surrey.

It is easy to see that there do exist incomplete latin squares with n cells oc-
cupied which cannot be so completed, as Figure 3.4.1 and Figure 3.4.2 illustrate.

a
a

a
·

·
·
a

a
b

Fig. 3.4.2.

The general case of Evans’ problem had not been solved when the first edition
([DK1]) of this book was published but it is now known that his conjecture that
any n × n incomplete latin square which has n − 1 or less places occupied can
be completed to a latin square of order n is true. Two proofs of this fact are

7An example is the rectangle whose only filled cells are (1,1), (2,2), . . . ,(n, n) and (n, n+ r)
for r = 1, 2, . . . n and in which these cells have distinct entries.

8The temptation is to use the adjective “complete” to emphasize that a latin square has all
of its entries filled in. This is best avoided because the term “complete latin square” is widely
used with a different meaning as described in Section 2.6.
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discussed in detail in Chapter 8, Section 10, of [DK2]. We merely remark here
that the simplest proof is that of Smetaniuk(1981).

In [DK1], the next pages of this section were devoted to the discussion of
partial solutions to Evans’ conjecture and to related embedding problems. Since
a much more up-to-date account of this topic is available in [DK2], we refer the
reader to that book for more recent results. However, some of the earlier results
are not mentioned in [DK2].

Firstly, Marica and Schönheim(1969) proved that an incomplete latin square
containing n− 1 arbitrarily chosen elements can be completed to a latin square
of order n provided that the chosen elements are in different rows and columns.

Secondly, in Lindner(1970b), that author (using the same technique as Marica
and Schönheim) proved that an incomplete latin square containing n−1 distinct
elements can be completed to a latin square of order n provided that the chosen
elements are either in different rows or in different columns.

Thirdly, Lindner(1970a) also proved the following theorem: Let L be an n×n
incomplete latin square with n−1 cells occupied. Let r and s denote respectively
the number of rows and the number of columns in which occupied cells occur.
Then, if r ≤ ⌊n/2⌋ or c ≤ ⌊n/2⌋, L can be completed to a latin square of order
n.

In the same connection, one can ask for the solution of the following problem:
“How many elements of a latin square of order n and which satisfies the quad-
rangle criterion can be located arbitrarily subject only to the condition that no
row or column shall contain any element more than once?” Since a latin square
of odd order which satisfies the quadrangle criterion cannot contain a latin sub-
square of order two (see the Corollary to Theorem 1.6.4), it is easy to see that,
for n odd, this number is at most three. Thus, for example, no completion of the
partial latin square shown in Figure 3.4.3 can satisfy the quadrangle criterion,
since it is of odd order.

· · · · ·
· · 1 2 ·
· · · · ·
· · 2 1 ·
· · · · ·

Fig. 3.4.3.

Moreover, not even two arbitrary elements can be arbitrarily placed in a
symmetric latin square of odd order: for Theorem 1.5.4 implies that no element
can appear more than once in the main diagonal of such a square.

Csima(1972) has translated Evans’ problem of finding under what conditions
a partial latin square can be embedded in a fully completed latin square into
a problem about a combinatorial structure which he has called a pattern. For
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details, the reader is referred to Csima’s paper.
In his paper T.Evans(1960), already referred to, that author posed the fol-

lowing further question: “Can a pair of n×n incomplete latin squares which are
orthogonal (insofar as the condition for orthogonality applies to the incomplete
squares) be respectively embedded in a pair of t × t orthogonal latin squares;
and, if so, what is the smallest value of t for each value of n?” The first part
of this question has been answered in the affirmative by Lindner(1976) but the
smallest value of t for a given value of n remains unknown so far as the present
author is aware.

Somewhat related to this question is an interesting result proved by Lind-
ner(1971b): namely, any finite collection of mutually orthogonal n × n partial
latin squares can be embedded in a complete set of mutually orthogonal infinite
latin squares.

By an infinite latin square we mean a countably infinite array of rows and
columns such that each positive integer occurs exactly once in each row and
exactly once in each column. If P is a finite (partial) latin square, we shall
denote by Cp the set of all the cells which are occupied in P . If P and Q are
finite (partial) latin squares of the same size, we say that P and Q are orthogonal
if the cardinalities of the sets Cp∩Cq and {(pij , qij) : (i, j) ∈ Cp∩Cq} are equal. If
P and Q are infinite latin squares, we say that P and Q are orthogonal provided
that the set {(pij , qij) : (i, j) ∈ Cp∩Cq} has the same cardinality as the Cartesian
product Z+ × Z

+ (where Z
+ denotes the set of positive integers) and that each

pair of cells in different rows and columns is occupied by the same symbol in
at most one of P and Q. If {Pi}i∈I is a collection of mutually orthogonal latin
squares of the same size, we say that this collection is a complete set of mutually
orthogonal latin squares provided that each pair of cells in different rows and
columns is occupied by the same symbol in exactly one member of the collection.
If the latin squares in the collection are finite of order n, the set I has cardinality
n− 1, while, if they are infinite, I has cardinality equal to that of the set Z+.

The reader new to the subject is advised that he will find the above concepts
easier to understand if he first reads Section 5.1 and Section 5.2.

For the proof of his result stated above, Lindner used the geometrical con-
cepts of projective plane and partial projective plane. (The connection between
orthogonal latin squares and projective planes is explained in Section 5.2.)

Definition. An n × n partial idempotent latin square is an n × n partial latin
square with the additional property that, for each i = 1, 2, . . . , n, the cell (i, i)
is either empty or else is occupied by the integer i. An n× n partial symmetric
latin square is an n× n partial latin square with the additional property that, if
the cell (i, j) is occupied by the symbol k so also is the cell (j, i).

In a series of papers, Lindner solved a number of embedding problems con-
cerning square of these kinds. In particular,

(1) Any finite partial idempotent latin square can be embedded in a finite
idempotent latin square [Lindner(1971a)].
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(2) Any finite partial symmetric latin square can be embedded in a finite sym-
metric latin square [Lindner(1972a,1976)].

(3) Any finite partial idempotent and symmetric latin square can be embedded
in a finite idempotent and symmetric latin square [Lindner(1972a)].

Subsequently, these results were made more precise and these and other re-
sults were proved by more elegant methods by Cruse, Hilton, Lindner and oth-
ers. A more up-to-date account and more details are given in Sections 4 and 5
of [DK2], chapter 8. Also, in Sections 6 and 7 of that chapter, an account of
embedding theorems for partial quasigroups is given.

By a partial quasigroup is meant a half-groupoid G such that, if the equations
ax = b and/or ya = b have solutions for x and y in G, then these solutions are
unique. A partial loop is a partial quasigroup with an identity element such that
the product of this element with each element a of the loop is defined and is
equal to a. [By other authors, partial quasigroups have been called incomplete
quasigroups or half-quasigroups, see Bruck(1958) and T.Evans(1960).]

In Brandt(1927), that author introduced a special kind of partial groupoid B
(which has subsequently been called a Brandt groupoid) satisfying the following
postulates:

(1) If any three elements a, b, c satisfy an equation ab = c then each of the
three elements is uniquely determined by the other two.

(2) If ab and bc both exist, then (ab)c and a(bc) also exist; if ab and (ab)c both
exist, then bc and a(bc) also exist; if bc and a(bc) both exist, then ab and
(ab)c also exist; and, in all of these cases, the equation (ab)c = a(bc) is
valid and consequently the expression abc has an unambiguous meaning.

(3) To any given element a there corresponds a unique right identity element
e such that ae = a, a unique left identity element e′ such that e′a = a and
a left inverse ā of a such that āa = e.

(4) If e and e′ are any two members of the set of one-sided identity elements,
there exists an element a such that e and e′ are respectively right and left
identities with respect to a.

Postulate (1) implies that the multiplication table of a Brandt groupoid is
an incomplete latin square and we shall devote the remainder of this section to
mentioning some results and conjectures concerning such multiplication tables.

Theorem 3.4.1 The multiplication table of a Brandt groupoid is an incomplete
latin square satisfying the quadrangle criterion.

Proof. As we have just remarked, postulate (1) implies that the multiplication
table of a Brandt groupoid is an incomplete latin square and it then follows im-
mediately from postulate (2) that the multiplication table of a Brandt groupoid
satisfies the quadrangle criterion. ⊓⊔

We should like to point out by means of an example that incomplete latin
squares exist which satisfy the quadrangle criterion but which can be completed
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to latin squares in which the quadrangle criterion does not hold. The incomplete
latin square exhibited in the left-hand square of Figure 3.4.4 has these properties,
as is indicated by the right-hand square.

3 4 2 1 •
1 2 • 3 4
• • 1 2 •
• • 3 4 •
• • • • •

3 4 2 1 5
1 2 5 3 4
4 5 1 2 3
5 1 3 4 2
2 3 4 5 1

Fig. 3.4.4.

On the other hand, the authors conjecture that every Brandt groupoid can be
embedded in a quasigroup Q which is group isotopic. The conjecture is certainly
valid, for example, for the Brandt groupoid (B, ◦) given as follows.

The elements of (B, ◦) are all binary triplets and we shall denote them as
follows:

1 = (000) 2 = (100) 3 = (010) 4 = (110)
5 = (001) 6 = (011) 7 = (101) 8 = (111)

If (H,+) denotes the cyclic group of order two with elements 0, 1, the product
of two triplets (a b c) and (d e f) is defined to be the triplet (a b+ e f) if c = d
and is not defined otherwise.

Then Figure 3.4.5 shows that the multiplication table of (B, ◦) can be em-
bedded in the multiplication table of a quasigroup Q which is isotopic to the
generalized Klein group of order 8. (In the diagram, the products which are
defined in (B, ◦) are enclosed in squares.)

(◦) 1 2 3 4 5 6 7 8

1 1 7 3 8 5 6 4 2
2 2 5 4 6 7 8 3 1
3 3 8 1 7 6 5 2 4
4 4 6 2 5 8 7 1 3
5 7 1 8 3 4 2 5 6
6 8 3 7 1 2 4 6 5
7 5 2 6 4 3 1 7 8
8 6 4 5 2 1 3 8 7

Fig. 3.4.5.

Let us remark that it is well-known that an arbitrary Brandt groupoid B
can be embedded in a semigroup S with one additional element 0 such that
a0 = 0a = 00 = 0 for all a ∈ B and such that ab = 0 in S if a, b are in B and ab
is not defined in B. [See, for example, page 35 of Bruck(1958).] This fact leads
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the authors of this book to propose the alternative conjecture that in fact any
Brandt groupoid can be embedded in a group.

3.5 Partial transversals and generalized transversals

As has been shown earlier, many latin squares do not have any transversals.
For example, see Theorem 2.5.1 and Theorem 2.5.4. This fact led Koksma(1969)
to ask “What is the largest number of cells of an arbitrarily chosen latin square
(or rectangle) of given order which can be contained in a single partial transver-
sal?”

Definition. By a partial transversal of a latin square or rectangle is meant a
collection of cells taken from different rows and different columns and containing
different entries. The number of cells in the collection is called the length of the
partial transversal.

Koksma proved that an arbitrary latin square of order n (n ≥ 7) has at least
one partial transversal of length t ≥ (2n+1)/3. We outlined his proof in [DK1].
However, this lower bound has subsequently been much improved. An account
of more recent work on the question up to 1990 has been given in [DK2] so we
shall not repeat it here. However, so far as the present author is aware, the best
lower bounds for t so far obtained are those in Hatami and Shor(2008) and Fu,
Lim and Fu(2002) which both give bounds of the form t ≥ n−O(log n)2.

Of course, neither of these bounds is anywhere near the bound t ≥ n − 1
conjectured by Brualdi (see Section 1.5) and independently by Stein(1975) nor to
the bound t = n for latin squares of odd order conjectured by Ryser. However, in
Wanless and Webb(2006), evidence is offered to suggest that the latter conjecture
may be false: namely, these authors have proved that, for every order n > 3, there
exists a latin square which contains a cell that is not included in any transversal.
[In fact, stronger results have been obtained. See Egan andWanless(2012) or page
408 of Wanless(2011).] For even order, this result was shown by the corollary to
Theorem 2.5.4. It follows that, for every order n > 3, there exist latin squares
with no orthogonal mate. [See Section 5.1 for the definition of this concept. Such
squares were called bachelor squares by Van Rees(1990).] Because the proof (for
squares of odd order) is short and elegant, we give it here.

Before doing so, it is useful to have the following definition.

Definition. In a latin square of order n, a collection of n cells, one from each
row and one from each column is called a chain. The entries in the cells of a
chain are its elements and the number of these which are distinct is the rank of
the chain.9

The number of chains of rank i in a particular latin square L is denoted by
ti.

9In Wanless(2011), that author has called this concept a diagonal but that conflicts with
the normal usage of that term as, for example, in diagonal latin squares which we discuss in
Section 6.1 so we shall follow Belyavskaya (see [DK2], page 177) and call the concept a chain.
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Lemma. Let L be a latin square of order n with rows and columns indexed by the
set Z+

n
= {0, 1, . . . , n−1} and with symbols also from Z+

n
. Let s denote the symbol

in row r and column c and let T be a transversal of L. Then
∑

(r,c,s)∈T (r+c−s) ≡
0 or n/2 mod n according as n is odd or even.10

Theorem 3.5.1 For every odd order n = 2m + 1, there exists a latin square
which contains a cell that is not contained in any transversal.

Proof. By definition of a transversal, each symbol of Z+
n

occurs once in each
of
∑

r,
∑

c and
∑

s and so
∑

(r,c,s)∈T (r + c− s) = (n− 1)n/2

= m(2m+ 1) ≡ 0 if n = 2m+ 1 or = (2m− 1)m ≡ n/2 if n = 2m. ⊓⊔
Let us now consider the latin square L = (lij) which is a slight modification

of the cyclic latin square of order n = 2m+ 1 and is defined as follows:

lij =























1 if (i, j) = (0, 0) or (1, n− 1)
0 if (i, j) = (1, 0) or (2, n− 1)

j + 2 if i = 0 and j = {1, 3, 5, . . . , n− 2}
j if i = 2 and j = {1, 3, 5, . . . , n− 2}

i+ j otherwise

Then the entry 0 in the cell (1, 0) is not in any transversal because r+c−s = 1
for this cell while r + c − s = −2 for each of the modified cells in row 0 except
the cell (0, 0) and r + c − s = 2 for each of the modified cells in row 2 while
r + c − s = 0 for all other cells and so

∑

(r + c − s) = 0 is impossible if the
summation is over the cells of a chain. ⊓⊔

We exhibit this modified cyclic square in the left hand square of Figure 3.5.1
for the case n = 7.

1 3 2 5 4 0 6
0 2 3 4 5 6 1
2 1 4 3 6 5 0
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

0 2 3 4 5 6 1
5 3 4 2 6 1 0
1 4 2 3 0 5 6
2 5 6 1 3 0 4
4 0 5 6 1 3 2
3 6 1 0 2 4 5
6 1 0 5 4 2 3

Fig. 3.5.1.

In fact, four different proofs of the above result exist. The above proof is
taken from Egan(2011). Alternative proofs are in A.B.Evans(2006), Wanless and
Webb(2006), Egan and Wanless(2012).

10This has been called the Delta lemma by Wanless.
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If the entries in the cells of a chain are all different, we have a transversal. If
not, the cells whose entries are all different form a partial transversal as defined
above.

It has been shown in Cameron and Wanless(2005) that every latin square
possesses a chain in which no symbol occurs more than twice.

Another question which we may ask is “What is the shortest length of a non-
extendible partial transversal?” (The longest length of such a partial transversal
is covered by the conjectures of Brualdi-Stein and Ryser.)

The shortest length is not less than n/2 because otherwise there would not
be sufficient symbols used in the partial transversal to fill the subsquare formed
by the rows and columns not containing cells of the partial transversal. On the
other hand, for all n > 4, non-extendible partial transversals of length ⌈n/2⌉ do
exist since latin squares of order n which contain a subsquare S of order ⌊n/2⌋
and a partial transversal containing the symbols of S but not involving any of
the rows and columns of S can easily be constructed. See the right hand square
of Figure 3.5.1 for an example. These observations are in Wanless(2011).

In contrast to this result, Cavenagh, Hämäläinen and Nelson(2009) have
proved that, for any prime p, every partial transversal of length 3 in the Cayley
table of the cyclic group of order p can be extended to a transversal of length p.

In [DK2], we discussed several generalizations of the concept of a transversal.
Of these, the one which has been investigated most fully in recent years is the
k-plex.

Definition. A k-plex in a latin square of order n is a set of nk cells, k from
each row, k from each column and including k occurrences of each symbol. When
convenient, we shall call such a k-plex a plex of order k.

Such objects for the case k = 2 were first studied by Finney(1945) and
Freeman(1985) who called them duplexes (from which epithet came the name
k-plex when the concept was generalized). Duplexes have statistical applications
because, for example, although the cells of a 6 × 6 cyclic latin square cannot
be partitioned into six disjoint transversals, they can be partitioned into three
disjoint duplexes.

A conjecture which has been attributed to Rodney [see Vaughan-Lee and
Wanless(2003)] is that every latin square contains a duplex. It follows from
the truth of the Hall-Paige conjecture that Rodney’s conjecture is true for all
group-based latin squares, as is shown in Vaughan-Lee and Wanless(2003). In
Wanless(2002), that author has shown that, for latin squares based on soluble
groups, a more general result is true: namely, that such squares have a 2c-plex
for each posible integer c. He has obtained several other related results in the
same paper.

We note that the entries not in a k-plex of a latin square form an (n−k)-plex.
More generally, it may be possible to partition the cells of a latin square L of
order n into a set of plexes of orders k1, k2, . . . , ks, where

∑s
i=1 ki = n. When this
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is possible, we shall say that L has a (k1, k2, . . . , ks)-plex partition. Of particular
interest is the case when all the plexes have the same order k (necessarily a
divisor of n). For example, the cyclic latin square Z6 of order 6 is the union
of three duplexes as shown in the left-hand square of Figure 3.5.2. Thus, Z6

has a duplex partition. More generally, we shall call a (k, k, . . . , k)-partition a
k-plex partition. For example, the right-hand square of Figure 3.5.2, given in
Wanless(2011), has a 3-plex partition. In particular, if L has a 1-plex partition,
then it has an orthogonal mate. (See Section 5.1 for the latter concept.)

0a 1a 2b 3b 4 5
1 2a 3a 4b 5b 0
2 3 4a 5a 0b 1b
3b 4 5 0a 1a 2b
4b 5b 0 1 2a 3a
5a 0b 1b 2 3 4a

0a 1 2 3a 4 5a
1a 0 3 2a 5a 4
2 4a 0 5 1a 3a
3 5 1a 4 2a 0a
4a 3a 5a 1 0 2
5 2a 4a 0a 3 1

Fig. 3.5.2.

The union of an h-plex and an l-plex is an (h + l)-plex. However, it is not
always possible to split an (h+ l)-plex into an h-plex and an l-plex. If a k-plex
contains no h-plex for 0 < h < k, we say that it is indivisible. For example, since
the cyclic latin square of order six has no transversals (that is, no 1-plexes), then
clearly the duplexes shown in Figure 3.5.2 are indivisible.

It has been shown that, for every k ≥ 2 and m ≥ 2, there exists a latin square
of order mk with an indivisible k-plex partition. Also, if n = 2k + 1 ≥ 5, there
is a latin square of order n with an indivisible (k, k, 1)-plex partition and an
indivisible (k, k + 1)-partition. See Bryant, Egan, Maenhaut and Wanless(2009)
and Egan and Wanless(2011) for the details.

As regards the question “For which integers k and n is there a latin square
of order n which contains an indivisible k-plex?”, it has been shown in the first
of the two papers just cited that, if 5k ≤ n, such an indivisible k-plex always
exists.

The reader will have observed that, in each of the first three chapters of
this book, we have devoted whole sections to the topic of transversals and their
generalizations. (We discuss their enumeration in Chapter 4 and they also play
a prominent role in [DK2].) It would be easy to devote our whole book to this
topic. Instead, we refer the reader to Chapters 2, 3 and 6 of [DK2] and to a recent
survey paper by Wanless(2011) which we have already cited several times.
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Chapter 4

Classification and enumeration of latin squares
and latin rectangles

This chapter is devoted to the classification and enumeration of latin squares
and latin rectangles. We begin by giving an introductory account of the notion of
autotopism, which plays an important role in obtaining results on the subject of
this chapter. Many of our results first appeared in Schönhardt(1930). However,
the terminology of that paper is very antiquated and so we have reformulated
the results using present day terms.

The second section of the chapter is on classification. It includes a table which
classifies the reduced latin squares of all orders up to and including six into their
main, isotopism and isomorphism classes. The third section, on enumeration,
contains a historical account of the development of the subject of classification
and enumeration over the last two centuries.

The fourth section of the chapter is devoted to the enumeration of latin
rectangles, covering both exact enumerations and asymptotic formulae.

The final sections are on enumeration of transversals and subsquares of latin
squares.

4.1 The autotopism group of a quasigroup

We begin by reminding the reader that the concepts of isotopism and au-
totopism for quasigroups were defined in Section 1.3. These concepts may be
applied more generally to groupoids.

Theorem 4.1.1 The set of isotopisms of a groupoid of order n form a group In
of order (n!)3.

Proof. An isotopism of a groupoid, which latter we defined at the end of
Section 1.1, can be characterized by three permutations of degree n exactly as
for quasigroups. Since each of the permutations may be chosen arbitrarily from
the n! possibilities, the number of isotopisms is (n!)3.

An operation on a pair of the isotopisms, which we call their product, can be
defined by stating that the product of the isotopisms (α, β, γ) and (α′, β′, γ′) is
(αα′, ββ′, γγ′). It is obvious that the product so defined is again an isotopism.
Moreover, it is easy to check that the remaining group axioms are valid. Con-
sequently, the isotopisms of a groupoid of order n form a group In under this
product operation. ⊓⊔

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50004-0
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Corollary 1. In ∼= Sn × Sn × Sn where Sn denotes the symmetric group of
degree n.

Corollary 2. The set of all isotopisms of a quasigroup of order n form a group
of order (n!)3.

Definition. If (α, β, γ) is an isotopism of a groupoid Q onto a groupoid Q∗

and if Q∗ = Q then the isotopism (α, β, γ) is called an autotopism of Q.

Theorem 4.1.2 The set AQ of all autotopisms of a groupoid Q of order n form
a group which is a subgroup of In.

Proof. The identity element of In is clearly an autotopism of Q. Hence the
autotopisms of Q are a non-empty subset of the finite group In. To show that
they form a subgroup using the product operation inherited from In, it suffices
to prove closure. Namely, we must establish that the product of two autotopisms
will be an autotopism again, but this is obvious from the definition. ⊓⊔

Corollary. The order of AQ is a divisor of (n!)3.

By analogy with the concept of principal isotopism (see Section 1.3) one
can define a principal autotopism as an autotopism (α, β, γ) such that γ is the
identity permutation.

It is an immediate consequence of Theorem 4.1.2 that the principal auto-
topisms of a groupoid of order n form a group which is a subgroup of the group
formed by the principal isotopisms contained in In.

Definition. An autotopism (α, β, γ) is called an automorphism if α = β = γ.

The following results follow almost immediately from this definition:

(i) The group of automorphisms and the group of principal autotopisms are
contained in the group of autotopisms.

(ii) The group of principal autotopisms is a normal subgroup of the group of
autotopisms.

(iii) The group of principal autotopisms and the group of automorphisms have
no common elements other than the identity autotopism.

Theorem 4.1.3 If Q1 and Q2 are two isotopic groupoids then AQ1

∼= AQ2
.

Proof. Suppose that (α, β, γ) is an isotopism mapping Q1 onto Q2. It follows
that if (ρ, σ, τ) ∈ AQ1

, then (ρ, σ, τ)(α, β, γ) = (ρα, σβ, τγ) also maps Q1 onto
Q2 and hence (α−1, β−1, γ−1)(ρ, σ, τ)(α, β, γ) is an autotopism of AQ2

. It follows
immediately that

(α−1, β−1, γ−1)AQ1
(α, β, γ) ⊆ AQ2

.

Since (α−1, β−1, γ−1) = (α, β, γ)−1 is an isotopism mapping Q2 onto Q1, a
similar argument with the roles of Q1 and Q2 interchanged gives
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(α, β, γ)AQ2
(α−1, β−1, γ−1) ⊆ AQ1

and so
AQ2

⊆ (α−1, β−1, γ−1)AQ1
(α, β, γ).

The equality AQ2
= (α−1, β−1, γ−1)AQ1

(α, β, γ) is an immediate conse-
quence of the above statements and implies that AQ1

∼= AQ2
. ⊓⊔

Theorem 4.1.4 Two components of an autotopism of a quasigroup determine
the third one uniquely.

Proof. Let L be the latin square which represents the multiplication table of
the quasigroup Q. Let (α1, β1, γ1) and (α2, β2, γ2) be autotopisms of Q. Then

(α1, β1, γ1)(α2, β2, γ2)
−1 = (α1α

−1
2 , β1β

−1
2 , γ1γ

−1
2 ) (4.1)

is also an autotopism of Q. The components of an autotopism rearrange the row
border, the column border, and the elements of L respectively. It is clear that if
one of these items is altered but not the other two, then the new multiplication
table cannot represent Q. Thus, if two of the three components in (4.1) are the
identity, then so is the third. That is, any two of the equalities α1 = α2, β1 = β2
and γ1 = γ2 implies the other one. ⊓⊔

Corollary 1. The order of the group of autotopisms of a quasigroup of order
n cannot exceed (n!)2.

Corollary 2. Any one of the non-identity components of a principal auto-
topism of a quasigroup determines the autotopism uniquely.

Corollary 3. The order of the group of principal autotopisms of a quasigroup
of order n cannot exceed n!.1

A detailed study of the autotopism groups of quasigroups has been made
by Sade(1968b). He has shown, for example, that the upper bound given in
Corollary 1 to Theorem 4.1.4 can be improved to n(n!). This follows from the
fact that each autotopism of a quasigroup Q can be represented as the product of
a so-called fundamental autotopism [see page 6 of Sade(1968b)], of which there
can be at most n2, and an automorphism of a loop L isotopic to Q. Such a loop
evidently has at most (n − 1)! distinct automorphisms and so the order of the
automorphism group of Q, which is equal to that of L by Theorem 4.1.3, is at
most n2(n− 1)! = n(n!).

A number of further results on the autotopism groups of particular kinds of
quasigroup will be found in Belousov(1967b). For an investigation of the prop-
erties of the autotopism group of a group, see also Sade(1967d).

1This upper bound has been improved to nO(log n) in Browning, Stones and Wanless(2013).
These authors have shown further that this bound is achieved infinitely often.
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4.2 Classification of latin squares

For the purposes of enumeration it is desirable to separate the set Ωn of all
latin squares of order n into smaller classes. The equivalence relations induced
by isomorphism and isotopy (defined in Section 1.3) and paratopy (defined in
Section 1.4) provide the natural way to do this. As mentioned in Section 1.4,
they separate Ωn into isomorphism, isotopism and main classes respectively.
The relation between these is hierarchical as summarized by our first theorem.

Theorem 4.2.1 For each n, the set Ωn is the union of one or more disjoint main
classes. Each main class is the union of one or more disjoint isotopy classes.
Each isotopy class is the union of one or more disjoint isomorphism classes.

Proof. Every isomorphism is an isotopy and every isotopy is a paratopy so
the result follows. ⊓⊔

The following definition (which we first gave in Section 1.1) can be applied to
any latin square for which there is a natural order on the symbols. In particular,
it applies whenever the symbols are integers.

Definition. A latin square is said to be reduced or to be in standard form if in
the first row and column these symbols occur in natural order.

It follows from the definition of isotopism that each main or isotopy class
contains one or more reduced latin squares belonging to that class and so it is
always possible to choose one such square as a class representative. In contrast,
not all isomorphism classes contain reduced latin squares. For example, only one
of the five isomorphism classes in Ω3 discussed on page 134 contains a reduced
square.

Further, we remind the reader that in Section 1.4 and Section 2.1 we showed
that, with any quasigroup (Q,⊗) are associated six parastrophes (or conjugates),
the first of which is the quasigroup itself. The other five parastrophes we denoted
by (Q,⊗(12)), (Q,⊗(23)), (Q,⊗(13)), (Q,⊗(123)) and (Q,⊗(132)). The six paras-
trophic quasigroups define six parastrophic latin squares and we now consider
the relationships between these squares.

Definition. A loop (Q,⊗) is said to have the inverse property [see Bruck(1958)]
if each element a ∈ Q has a two-sided inverse a−1 such that a−1 ⊗ (a ⊗ b) = b
and (b ⊗ a) ⊗ a−1 = b for all b ∈ Q. In such a loop, the mapping J defined by
aJ = a−1 for all a ∈ Q is a one-to-one mapping of Q onto itself.

Theorem 4.2.2 If (Q,⊗) is a group or a loop with the inverse property, then
all six parastrophes of (Q,⊗) are isotopic to each other.

Proof. If a⊗b = c in a loop (Q,⊗) with the inverse property, then b = a−1⊗c
and a = c ⊗ b−1. That is, (aJ) ⊗ c = b and c ⊗ (bJ) = a. Thus, the isotopisms
(J, I, I) and (I, J, I) where I denotes the identity permutation on the set Q,
map (Q,⊗) onto its parastrophes (Q,⊗(23)) and (Q,⊗(13)) respectively. (We
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have a⊗ b = c⇔ a⊗(23) c = b and c⊗(13) b = a, by definition of the operations
⊗(23) and ⊗(13).)

Further, the transpose (Q,⊗(12)) is isomorphic to (Q,⊗) since a ⊗ b = c ⇒
b = a−1 ⊗ c ⇒ b ⊗ c−1 = a−1 ⇒ c−1 = b−1 ⊗ a−1 ⇒ (bJ) ⊗ (aJ) = cJ showing
that the isotopism (J, J, J) maps (Q,⊗) onto (Q,⊗(12)).

Similarly, the transposes (Q,⊗(123)) and (Q,⊗(132)) of, respectively, (Q,⊗(23))
and (Q,⊗(13)) are isomorphic to these loops. Since the product of an isotopism
and an isomorphism is again an isotopism, this completes the proof. ⊓⊔

From Theorem 4.1.3 it is obvious that two latin squares contained in the
same isotopy class have autotopism groups of the same order. In fact, a stronger
result than this is true, as we show next.

Theorem 4.2.3 The autotopism groups of parastrophic quasigroups are isomor-
phic and so have equal orders.

Proof. Let (Q,⊗) be a given quasigroup and let us consider for example the
parastrophe (Q,⊗(13)). If σ = (α, β, γ) is an autotopism of (Q,⊗), then a⊗ b =
c⇔ (aα)⊗(bβ) = cγ. But a⊗b = c if and only if c⊗(13)b = a and (aα)⊗(bβ) = cγ
if and only if (cγ)⊗(13) (bβ) = aα. Therefore, c⊗(13) b = a⇔ (cγ)⊗(13) (bβ) = aα
and this implies that σ(13) = (γ, β, α) is an autotopism of (Q,⊗(13)).

In the same way it can be shown that σ(23) = (α, γ, β) is an autotopism of
(Q,⊗(23)), σ(12) = (β, α, γ) is an autotopism of (Q,⊗(12)), σ(123) = (γ, α, β) is an
autotopism of (Q,⊗(123)) and σ(132) = (β, γ, α) is an autotopism of (Q,⊗(132)).

Suppose that σ = (α, β, γ) and τ = (α′, β′, γ′) are autotopisms of (Q,⊗).
As just shown, they correspond one-to-one to autotopisms σ(13) = (γ, β, α)
and τ (13) = (γ′, β′, α′) of (Q,⊗(13)). Also, in this correspondence, the prod-
uct στ = (αα′, ββ′, γγ′) corresponds to the product σ(13)τ (13) = (γγ′, ββ′, αα′).
That is, σ(13)τ (13) = (στ )(13) and so the correspondence defines an isomorphism
between the autotopism groups of (Q,⊗) and (Q,⊗(13)). It is clear that similar
correspondences can be established between the autotopism group of (Q,⊗) and
those of (Q,⊗(23)), (Q,⊗(12)), (Q,⊗(132)) and (Q,⊗(123)). ⊓⊔

Corollary. Latin squares contained in the same main class have autotopism
groups of the same order.

We note that it follows from Theorem 4.2.2 that, if a main class of latin
squares contains a latin square satisfying the quadrangle criterion, then the main
class comprises a single isotopy class. In fact we can prove an even stronger result:

Theorem 4.2.4 If a main class contains a latin square which satisfies the quad-
rangle criterion then the reduced latin squares in it are contained in a single
isomorphism class.

Proof. Suppose that a main class M contains a latin square G satisfying the
quadrangle criterion. By Theorem 4.2.2, M consists of a single isotopy class.
Hence every loop in M is isotopic to G, which is enough, by Corollary 1 to
Theorem 1.3.4, to show that every loop in M is isomorphic to G. ⊓⊔
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We shall next give the classification of reduced latin squares of all orders up
to and including six into their main, isotopy and isomorphism classes.

We shall give a reduced form class representative of each class and shall use
decimal notation to denote the various classes. A quadruple j.k.l.m of integers
will denote a reduced latin square of order j belonging to the k-th main class
Mk, l-th isotopy class Il of Mk, and m-th isomorphism class of Il.

The list given on the following pages is a modified version of that given
by Schönhardt(1930). It is followed by a number of explanatory remarks which
the reader may find helpful to look at first. In particular, we emphasize that
isomorphism classes that contain no reduced latin squares are excluded from our
list. Also, as an illustration of the fact that a main, isotopy or isomorphism class
may contain more than one reduced latin square, let us note that there exist two
reduced latin squares of order 4 in addition to those given in our classification
list below but that these both belong to the class labelled 4.2.1.1 in that list.

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

Fig. 4.2.1.

The two squares in question are displayed in Figure 4.2.1 and can be mapped
onto the square exhibited as representative of the class 4.2.1.1 by the isomor-
phisms

(

(34), (34), (34)
)

and
(

(23), (23), (23)
)

respectively.

Classification list for reduced latin squares of orders 2 to 6.

1 2
2 1

1 2 3
2 3 1
3 1 2

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

2.1.1.1 3.1.1.1 4.1.1.1 4.2.1.1
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1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

1 2 3 4 5
2 1 5 3 4
3 4 2 5 1
4 5 1 2 3
5 3 4 1 2

5.1.1.1 5.2.1.1 5.2.1.2

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

1 2 3 4 5
2 1 4 5 3
3 4 5 2 1
4 5 1 3 2
5 3 2 1 4

1 2 3 4 5
2 3 4 5 1
3 5 2 1 4
4 1 5 3 2
5 4 1 2 3

5.2.1.3 5.2.1.4 5.2.1.5

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

1 2 3 4 5 6
2 1 5 6 3 4
3 6 1 5 4 2
4 5 6 1 2 3
5 4 2 3 6 1
6 3 4 2 1 5

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 2 1 3
5 4 6 3 2 1
6 5 4 1 3 2

6.1.1.1 6.2.1.1 6.3.1.1

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 4 3
6 5 2 1 3 4

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 2 1 4 3
6 5 1 2 3 4

6.4.1.1 6.4.1.2

1 2 3 4 5 6
2 1 5 6 3 4
3 6 2 5 4 1
4 5 6 2 1 3
5 4 1 3 6 2
6 3 4 1 2 5

1 2 3 4 5 6
2 1 4 5 6 3
3 5 1 6 2 4
4 6 5 1 3 2
5 3 6 2 4 1
6 4 2 3 1 5

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 2 4
4 6 2 5 1 3
5 3 6 2 4 1
6 4 5 1 3 2

6.5.1.1 6.5.1.2 6.5.1.3
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1 2 3 4 5 6
2 1 5 6 3 4
3 4 1 2 6 5
4 3 6 5 1 2
5 6 4 3 2 1
6 5 2 1 4 3

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 2 5 3 1
5 3 6 1 2 4
6 4 5 2 1 3

6.5.1.4 6.5.1.5

1 2 3 4 5 6
2 1 4 5 6 3
3 6 2 1 4 5
4 5 6 2 3 1
5 3 1 6 2 4
6 4 5 3 1 2

1 2 3 4 5 6
2 1 4 5 6 3
3 4 2 6 1 5
4 6 5 3 2 1
5 3 6 1 4 2
6 5 1 2 3 4

1 2 3 4 5 6
2 3 4 1 6 5
3 6 2 5 1 4
4 5 6 2 3 1
5 4 1 6 2 3
6 1 5 3 4 2

6.6.1.1 6.6.1.2 6.6.1.3

1 2 3 4 5 6
2 1 4 5 6 3
3 4 5 6 2 1
4 6 1 2 3 5
5 3 6 1 4 2
6 5 2 3 1 4

1 2 3 4 5 6
2 1 4 6 3 5
3 4 5 1 6 2
4 5 6 2 1 3
5 6 2 3 4 1
6 3 1 5 2 4

1 2 3 4 5 6
2 5 4 6 3 1
3 1 5 2 6 4
4 6 2 3 1 5
5 4 6 1 2 3
6 3 1 5 4 2

6.6.1.4 6.6.1.5 6.6.1.6

1 2 3 4 5 6
2 5 1 6 4 3
3 4 5 2 6 1
4 6 2 3 1 5
5 3 6 1 2 4
6 1 4 5 3 2

1 2 3 4 5 6
2 3 4 5 6 1
3 6 5 2 1 4
4 1 2 6 3 5
5 4 6 1 2 3
6 5 1 3 4 2

1 2 3 4 5 6
2 3 6 1 4 5
3 4 5 2 6 1
4 5 2 6 1 3
5 6 1 3 2 4
6 1 4 5 3 2

6.6.1.7 6.6.1.8 6.6.1.9

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 1 2 3
5 3 6 2 1 4
6 4 2 5 3 1

1 2 3 4 5 6
2 1 4 3 6 5
3 5 2 6 4 1
4 6 5 2 1 3
5 3 6 1 2 4
6 4 1 5 3 2

1 2 3 4 5 6
2 1 5 6 3 4
3 6 4 5 1 2
4 5 6 3 2 1
5 4 1 2 6 3
6 3 2 1 4 5

6.7.1.1 6.7.1.2 6.7.1.3
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1 2 3 4 5 6
2 1 6 5 4 3
3 5 4 6 1 2
4 6 5 3 2 1
5 3 1 2 6 4
6 4 2 1 3 5

1 2 3 4 5 6
2 1 5 6 4 3
3 4 1 5 6 2
4 3 6 2 1 5
5 6 4 3 2 1
6 5 2 1 3 4

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 2 3 1
5 4 6 1 2 3
6 3 2 5 1 4

6.7.1.4 6.7.1.5 6.7.1.6

1 2 3 4 5 6
2 1 4 5 6 3
3 5 2 6 1 4
4 6 5 3 2 1
5 3 6 1 4 2
6 4 1 2 3 5

1 2 3 4 5 6
2 1 5 6 3 4
3 4 2 5 6 1
4 5 6 3 1 2
5 6 1 2 4 3
6 3 4 1 2 5

1 2 3 4 5 6
2 5 6 1 4 3
3 4 5 2 6 1
4 6 2 3 1 5
5 3 1 6 2 4
6 1 4 5 3 2

6.7.1.7 6.7.1.8 6.7.1.9

1 2 3 4 5 6
2 5 4 6 3 1
3 6 5 2 1 4
4 1 2 3 6 5
5 4 6 1 2 3
6 3 1 5 4 2

1 2 3 4 5 6
2 1 6 5 3 4
3 6 1 2 4 5
4 3 5 6 2 1
5 4 2 1 6 3
6 5 4 3 1 2

1 2 3 4 5 6
2 1 5 3 6 4
3 6 2 5 4 1
4 3 6 2 1 5
5 4 1 6 3 2
6 5 4 1 2 3

6.7.1.10 6.7.1.11 6.7.1.12

1 2 3 4 5 6
2 1 6 5 3 4
3 6 1 2 4 5
4 5 2 1 6 3
5 3 4 6 1 2
6 4 5 3 2 1

1 2 3 4 5 6
2 1 5 6 4 3
3 6 4 5 1 2
4 5 6 3 2 1
5 3 2 1 6 4
6 4 1 2 3 5

6.8.1.1 6.8.1.2

Isomorphism class 6.8.2.1 is obtained by taking the (1, 3, 2)-parastrophe of
the square labelled 6.8.1.1 above, then reordering the rows to get a reduced
square. Then isomorphism class 6.8.3.1 is obtained by taking the transpose of
the representative of 6.8.2.1. Isomorphism classes 6.8.2.2 and 6.8.3.2 are derived
from 6.8.1.2 in exactly the same way. (Thus, in main class 6.8 the total number of
isomorphism classes which contain reduced squares is six.) Indeed, for each of the
24 remaining isomorphism classes which we list below, there are two parastrophic
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isomorphism classes which we have not listed but which can easily be found in
the way just outlined.

1 2 3 4 5 6
2 3 1 6 4 5
3 1 2 5 6 4
4 6 5 1 2 3
5 4 6 2 3 1
6 5 4 3 1 2

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 1 2 3
5 4 6 3 1 2
6 5 4 2 3 1

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 2 3 1
5 4 6 1 2 3
6 5 4 3 1 2

6.9.1.1 6.9.1.2 6.9.1.3

1 2 3 4 5 6
2 1 6 5 4 3
3 5 1 2 6 4
4 6 2 1 3 5
5 3 4 6 2 1
6 4 5 3 1 2

1 2 3 4 5 6
2 1 5 6 3 4
3 6 4 5 1 2
4 5 6 3 2 1
5 4 2 1 6 3
6 3 1 2 4 5

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 2 3 1
5 3 6 1 2 4
6 4 2 5 1 3

6.10.1.1 6.10.1.2 6.10.1.3

1 2 3 4 5 6
2 1 5 6 3 4
3 6 2 5 4 1
4 5 6 3 1 2
5 4 1 2 6 3
6 3 4 1 2 5

1 2 3 4 5 6
2 1 4 5 6 3
3 4 2 6 1 5
4 5 6 2 3 1
5 6 1 3 2 4
6 3 5 1 4 2

1 2 3 4 5 6
2 1 4 5 6 3
3 6 5 2 4 1
4 3 1 6 2 5
5 4 6 1 3 2
6 5 2 3 1 4

6.10.1.4 6.11.1.1 6.11.1.2

1 2 3 4 5 6
2 1 6 5 3 4
3 6 1 2 4 5
4 5 2 1 6 3
5 3 4 6 2 1
6 4 5 3 1 2

1 2 3 4 5 6
2 1 5 6 4 3
3 6 4 5 1 2
4 5 6 3 2 1
5 3 1 2 6 4
6 4 2 1 3 5

1 2 3 4 5 6
2 1 5 6 4 3
3 6 2 5 1 4
4 5 6 3 2 1
5 3 4 1 6 2
6 4 1 2 3 5

6.11.1.3 6.11.1.4 6.11.1.5
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1 2 3 4 5 6
2 5 6 1 4 3
3 1 5 2 6 4
4 6 2 3 1 5
5 3 4 6 2 1
6 4 1 5 3 2

1 2 3 4 5 6
2 5 1 6 3 4
3 6 5 2 4 1
4 1 2 3 6 5
5 4 6 1 2 3
6 3 4 5 1 2

1 2 3 4 5 6
2 1 5 6 4 3
3 5 4 2 6 1
4 6 2 3 1 5
5 4 6 1 3 2
6 3 1 5 2 4

6.11.1.6 6.11.1.7 6.12.1.1

1 2 3 4 5 6
2 1 5 6 4 3
3 6 2 5 1 4
4 5 6 2 3 1
5 3 4 1 6 2
6 4 1 3 2 5

1 2 3 4 5 6
2 1 5 3 6 4
3 4 1 6 2 5
4 6 2 5 1 3
5 3 6 2 4 1
6 5 4 1 3 2

1 2 3 4 5 6
2 1 5 3 6 4
3 5 2 6 4 1
4 3 6 2 1 5
5 6 4 1 3 2
6 4 1 5 2 3

6.12.1.2 6.12.1.3 6.12.1.4

1 2 3 4 5 6
2 1 4 6 3 5
3 4 5 1 6 2
4 6 2 5 1 3
5 3 6 2 4 1
6 5 1 3 2 4

1 2 3 4 5 6
2 3 4 5 6 1
3 5 2 6 1 4
4 6 1 2 3 5
5 4 6 1 2 3
6 1 5 3 4 2

1 2 3 4 5 6
2 5 6 1 4 3
3 6 5 2 1 4
4 1 2 3 6 5
5 3 4 6 2 1
6 4 1 5 3 2

6.12.1.5 6.12.1.6 6.12.1.7

1 2 3 4 5 6
2 5 6 1 3 4
3 6 5 2 4 1
4 1 2 3 6 5
5 4 1 6 2 3
6 3 4 5 1 2

1 2 3 4 5 6
2 3 1 5 6 4
3 6 5 2 4 1
4 1 2 6 3 5
5 4 6 1 2 3
6 5 4 3 1 2

1 2 3 4 5 6
2 3 6 1 4 5
3 1 5 2 6 4
4 5 2 6 1 3
5 6 4 3 2 1
6 4 1 5 3 2

6.12.1.8 6.12.1.9 6.12.1.10

Further to our comments on page 132, we emphasize that, for each isomor-
phism class 6.x.1.y given above, where x ∈ {8, 9, 10, 11, 12} and y is any of the
applicable values, there are two other isomorphism classes for which we have not
given representatives. A representative of the class 6.x.2.y can be obtained from
the representative of 6.x.1.y by taking the row-inverse and permuting the rows
to get a reduced square. A representative of the class 6.x.3.y can be obtained by
taking the transpose of the representative of 6.x.2.y.

Let us observe that the latin square which corresponds to the Cayley table
of the cyclic group of order 2 serves as class representative of the single main
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class of latin squares of order 2 and that Ω3 again consists of a single main
class which is represented by the Cayley table of the cyclic group of order 3. In
both cases, the single main class is also the sole isotopy class (by Theorem 4.2.2)
and consequently, by virtue of Theorem 4.2.4, there is only one isomorphism
class containing reduced squares. In fact, Ω3 splits into five isomorphism classes
containing 1, 2, 3, 3, 3 members. The single reduced latin square of order 3
belongs to one of the isomorphism classes which contains three members.

We note that, by definition of isomorphism, any isomorph of an idempotent
latin square is again idempotent. Since only one idempotent latin square of order
3 exists, this square forms an isomorphism class of one member. Also, if a.a 6= a
for all elements a of a quasigroup, then this statement remains true for each
isomorph. There exist just two latin squares (quasigroups) of order 3 with this
property and they form an isomorphism class of two members.

Turning next to the order 4 squares, we observe that Ω4 splits into two
main classes both of which are represented by latin squares which satisfy the
quadrangle criterion. The main class 4.1.1.1 is represented by the Cayley table
of the Klein group and the main class 4.2.1.1 by that of the cyclic group of order 4.
Once again, each main class consists of a single isotopy class (by Theorem 4.2.2)
and consequently (by Theorem 4.2.4), it contains only one isomorphism class
which includes reduced latin squares.

For n = 5, there are two main classes but only the first of these is represented
by a latin square satisfying the quadrangle criterion, namely the square 5.1.1.1.
Each main class again comprises a single isotopy class.

For n = 6, two of the 12 main classes, namely those represented by the squares
6.1.1.1 and 6.2.1.1, contain latin squares satisfying the quadrangle criterion. Main
class 6.1 contains the Cayley table of the cyclic group of order 6, while main class
6.2 can be represented by the Cayley table of the dihedral group of order 6. We
note also that this is the smallest value of n for which some of the main classes
consist of more than one isotopy class. The first seven main classes that we
have listed contain a single isotopy class, which implies that every square in
them is isotopic to all of its parastrophes. However, each of the squares in main
classes 6.8 to 6.12 is isotopic to only one of its parastrophes other than itself.
Consequently, each of these main classes contains three isotopy classes. The
representatives listed for 6.8.1.1, 6.9.1.1, 6.11.1.1 and 6.12.1.1 are all symmetric
squares. By contrast, main class 6.10 does not include any square for which two
of its parastrophes are isotopic. However, the listed representative of 6.10.1.1 is
isomorphic to its transpose by the isomorphism

(

(56), (56), (56)
)

.
To assist the reader to determine to which main class a given latin square

belongs, we provide various data concerning these main classes in Figure 4.2.2.
In particular, we give the numbers of transversals, intercalates and subsquares of
order 3 and also the order of the autotopism group. Note that by Theorem 1.5.5
and Theorem 1.6.2 and the corollary to Theorem 4.2.3, all of these quantities
are main class invariants.

Sade(1970/71) made use of techniques previously developed by him in his
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Main
Class

Number of
Transversals

Number of
Intercalates

Number of
Order 3

Subsquares

Size of
Autotopism

Group

6.1 0 9 4 72
6.2 0 27 4 216
6.3 0 0 4 108
6.4 32 9 0 24
6.5 0 19 0 8
6.6 8 4 0 4
6.7 8 11 0 4
6.8 24 15 0 120
6.9 0 9 4 36
6.10 0 15 0 12
6.11 8 7 0 8
6.12 8 5 0 4

Fig. 4.2.2.

papers Sade(1958a,1962,1968b) to provide a systematic tabulation of all quasi-
groups of orders 2 to 6 inclusive by means of reduced form representatives for
each main class (somewhat similar to that of Schönhardt given above) and then
went on to summarize the main properties of each of these loop representatives of
the main classes. Thus, for example, he stated for each the orders of its automor-
phism and autotopism groups, whether or not it is isotopic to some or all of its
parastrophes (conjugates), the number of distinct loops in the main class which
contains it, the number of isomorphically distinct semi-symmetric quasigroups
(see Section 2.1) which are isotopic to it and whether it is (a) commutative, (b)
isomorphic to its transpose, or (c) neither. For the orders n = 2, 3 and 4 he
explored the whole universe of quasigroups and listed a number of interesting
properties possessed by these quasigroups. In this way, he has provided a valu-
able compendium of results which previously could only be found by searching
among his many earlier papers on the subject of quasigroups.

Cayley(1889) listed class representatives, for n ≤ 12, of all the main classes
of Ωn for which the quadrangle criterion holds.

A general account of the historical development of the classification problem
will be found in the next section.

4.3 History of the classification and enumeration of latin squares

In the first part of this section we give a short historical account of the
many contributions which have been made to the problem of classifying and
enumerating latin squares.

The problem of the enumeration of latin squares was first discussed by Eu-
ler(1779). He showed that the number of distinct reduced latin squares of order
n (that is, latin squares with first row and first column in natural order) is 1 if
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n = 2 or 3, 4 if n = 4, and 56 if n = 5. He also discussed latin squares of order
6, but did not succeed in enumerating these.

The next authors to write on the subject were Cayley(1890) and Frolov(1890a),
both of whom published papers in 1890. Cayley stated that if the first row of a
latin square is in natural order then the number of possible second rows is

n!

(

1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)

(4.2)

but that to calculate the total number of possibilities for the second and third
rows when considered jointly is considerably more difficult, since the number of
choices for the third row varies with the particular choice of the second. He then
discussed the determination of the number of distinct reduced latin squares for
values of n up to 5 and obtained the same values as had been given earlier by
Euler. Frolov, writing independently and undaunted by the difficulties mentioned
by Cayley, attempted an enumeration of all reduced latin squares of orders 6 and
7. He obtained 9408 reduced squares of order 6 and 221 276 160 reduced squares
of order 7. The former value is correct and was confirmed later by a number of
authors, but the number 221 276 160 was seriously in error. However, this did
not become apparent until much later on.

Frolov [see Frolov(1890b), page 30] also stated two remarkable formulae2.
The first is a recurrence relation for Rn, the number of reduced latin squares of
order n. Frolov claimed that

Rn
Rn−1

=

(

Rn−1

Rn−2

)2

− Rn−1

2
. (4.3)

With the initial conditions of Rn = 1 for n ≤ 3 and R4 = 4, this formula gives
the correct value for n = 5 and 6. Frolov was under the impression that it was
also valid for n = 7, where it gives R7 = 221 276 160. Curiously, (4.3) does not
even define an infinite sequence since it gives R12 = 0 and hence it cannot be
used to define Rn for n ≥ 14.

Frolov’s second formula purported to give the total number Un of latin squares
of order n as a function of Rn and the number Cn of reduced “regular” latin
squares of order n. The reader will recall that we showed in Theorem 1.2.3 and
Theorem 2.4.1 that a latin square is “regular” in this sense if and only if it is
group-based though it is unlikely that Frolov was aware of this latter fact.

The formula was

Un = (n!)2(Rn − Cn) + n!(n− 1)!Cn = (n!)2
(

Rn − n− 1

n
Cn

)

.

This formula is incorrect for all n > 4. For n ≤ 4 every latin square is group-
based so Cn = Rn and in this special case Frolov’s formula is correct and agrees
with that obtained later by MacMahon (see below).

2In the original paper, Frolov used Tn for the number of reduced squares and Rn for the
number of regular squares. However, we prefer to use Rn for the number of reduced squares
for the sake of consistency with later parts of this chapter.
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About the year 1899, Tarry became interested in Euler’s conjecture (see Sec-
tion 5.1) and, by separating the reduced latin squares of order 6 into 17 basic
“families”, he was able to show that no latin square of order 6 has an orthog-
onal mate. In other words, the problem of the thirty-six officers (described in
Section 5.1) is insoluble. Of the 17 basic “families” obtained by Tarry, 12 were
isotopy classes and the remaining 5 were unions of pairs of isotopy classes, the
squares of one class of each pair being mirror images in the main left-to-right di-
agonal of the other. For further details of this work, see Tarry(1899,1900a,b,c,d).

We should mention here that H.W.Norton(1939) and Sade(1951b) state that
reports exist of enumerations of latin squares having been attempted much earlier
in the nineteenth century, but none of this earlier work seems to have survived.
In particular, both Norton and Sade remark that, from the evidence of a letter
mentioned by Gunther(1876a), it seems likely that Clausen, an assistant of the
German astronomer Schumacher, had correctly enumerated the 6×6 latin squares
as early as 1842 and had also shown the impossibility of any of them having an
orthogonal mate.

About the same time (1899) as Tarry was enumerating the latin squares of
order 6, MacMahon published a complete algebraic solution to the problem of
enumerating latin squares of finite order n. He expressed this algebraic solution
in two different forms [see MacMahon(1898,1900)] both of which involve the ac-
tion of differential operators on an expanded operand. If his algebraic apparatus
is actually put into operation it will be found that different terms are written
down corresponding to all the different ways in which each row of the square
could conceivably be filled up, that those arrangements which conflict with the
requirements for the formation of a latin square are ultimately eliminated and
that those which conform to these requirements survive the final operation and
each contribute unity to the result. The manipulation of the algebraic expression,
therefore, is considerably more laborious than the systematic enumeration of the
squares by a simple backtracking algorithm. It is probably this fact which has
forced most other authors to abandon this line of investigation, although an at-
tempt to simplify MacMahon’s procedure was later made by Saxena(1950,1951).

Using his own method, MacMahon again obtained the values 1, 1, 1, 4 for
the numbers of reduced latin squares of orders 1, 2, 3, 4 respectively, but for the
number of reduced squares of order 5 he obtained the value 52. The falsity of
this value was subsequently pointed out to MacMahon by Fisher. As a result,
MacMahon detected an error in his calculation and the corrected value of 56 was
incorporated into later editions of MacMahon(1915).

In Jacob(1930), that author carried out an enumeration of 3 × n latin rect-
angles and in the latter part of his article he also attempted an enumeration of
the 5×5 and 6×6 reduced latin squares. For this purpose, he first separated the
squares into families according to the nature of the permutation which trans-
forms the first row into the second. He obtained the correct value of 56 for the
number of 5 × 5 reduced latin squares but found only 8192 reduced 6 × 6 latin
squares. Later, Sade(1948a) explained the error of Jacob which had led him to
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obtain the latter incorrect result.
In the same year, Schönhardt(1930) wrote a very comprehensive article on

the subject of latin squares and loops. This included a detailed investigation of
latin squares of orders 5 and 6. Schönhardt showed correctly that there exist 2
isotopy classes of 5×5 latin squares and 22 isotopy classes of 6×6 latin squares.
He showed that there are 6 isomorphism classes of reduced 5×5 squares and 109
isomorphism classes of reduced 6× 6 squares: further, that the total numbers of
reduced squares of orders 5 and 6 are 56 and 9408 respectively. All these results
are correct.

The next two papers on the subject of enumeration were those of Fisher
and Yates(1934) and H.W.Norton(1939). These two papers seem to be the ones
best known to, and most often quoted by, statisticians. Both papers made use
of the same basic idea: namely, to make a preliminary classification of latin
squares of given order according to the nature of their main diagonal. [See also,
Fisher(1942a) for a later development of the same idea.] They also introduced
some new terminology.

An intramutation of a reduced latin square L which has the integers 1, 2, . . . , n
as its elements is obtained by permuting the symbols 2, 3, . . . , n and then re-
arranging the rows and columns so as to put the new square back into reduced
form. Such a transformation preserves a certain property (called the “type”) of
the main diagonal.

The concepts of isotopy class and main class were respectively called trans-
formation set and species by Fisher, Yates and Norton. The six parastrophes of
a latin square were said to form an adjugacy set by the latter author, who also
introduced the name intercalate for a 2 × 2 latin subsquare (see Section 1.6).
Interchange of the two elements in an intercalate of a latin square transforms it
into another latin square, usually (but not always) from a different main class.
[For examples where any such interchange produces a square in the same main
class, see Wanless(2004a).] Note also that the number of intercalates is a main
class invariant by Theorem 1.6.2, which in many cases provides a quick means
of distinguishing main classes.

Using the above ideas, Fisher and Yates showed that there are 9408 reduced
latin squares of order 6 which can be arranged into 22 isotopy classes or 12 main
classes (species). Of the 22 isotopy classes, 10 can be arranged into pairs such
that one member of each of these pairs is obtained from the other by interchange
of rows and columns (that is, by transposition). If the squares of each such pair
of isotopy classes are regarded as forming a single “family”, the total number of
families is 17, a result previously obtained both by Tarry and by Schönhardt.

Norton classified the main classes of 7×7 squares according to their numbers
of intercalates and the numbers of isotopy classes and of adjugacy sets contained
in each. He found 146 distinct species (main classes) of 7 × 7 latin squares and
a total of 16 927 968 reduced latin squares of that order, although he admitted
the possibility that his enumeration might be incomplete.
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Somewhat later, in 1948, Sade(1948b) carried out an independent enumer-
ation of reduced 7 × 7 latin squares which avoided the necessity of separating
them into species and he obtained 16 942 080 such squares. Three years later,
in Sade(1951a,b), he gave an explanation of the discrepancy between this result
and that of Norton, which was due to the fact that one species had been over-
looked by the latter author. [See also Wanless(2004a) for an analysis of Norton’s
method.] Thus, the correct number of species is 147. Sade also pointed out that
this confirmed an earlier conjecture of Ghurye(1948).

Sade’s method was to calculate successively for k = 1, 2, . . . , l, where l is a
definite integer less than or equal to 7, a complete set of reduced k × 7 latin
rectangles inequivalent under any combination of permutations of rows, permu-
tations of columns, and permutations of symbols, keeping track in so doing of
the number of different rectangles in each equivalence class. The (k + 1)-rowed
rectangles were formed from the k-rowed rectangles by adding a row to each
k-rowed rectangle in all possible ways, eliminating equivalent rectangles as they
appeared. Sade pointed out that it was not necessary, or efficient to continue the
process until k = 7. When k reached the value 4 (being the first value which is
at least half the order of the square), Sade summed the products of the number
of rectangles in an equivalence class and the number of ways a representative of
that class could be completed to a square, thus obtaining the total number of
reduced 7× 7 squares.

Let us illustrate Sade’s method by applying it to the enumeration of 4 × 4
reduced latin squares and taking l = 2. There are two equivalence classes of 2×4
latin rectangles. The rectangles L1 and L2 given in Figure 4.3.1 belong to one
class and L3 to the other. L2 may be obtained from L1 by first interchanging
the symbols 3 and 4 and then interchanging the third and fourth columns.

L1 = 1 2 3 4
2 3 4 1

L2 = 1 2 3 4
2 4 1 3

L3 = 1 2 3 4
2 1 4 3

L′
1 =

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

L′
3 =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

L′′
3 =

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

Fig. 4.3.1.

L1 can be completed to a reduced 4 × 4 latin square in only one way, since
the entry in the first column of row three must be 3 and then the entry in the
second column of this row must be 4. (Correspondingly, L2 can be completed in
only one way because the entry in the first column of row four must be 4 and
then the entry in the second column of this row must be 3). L3 can be completed
to a reduced 4×4 latin square in either of two ways, as shown. Thus, there exist
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2× 1 + 1× 2 = 4 reduced latin squares of order 4.
Shortly after the publication of Sade’s paper, Yamamoto(1952) showed how,

using the Erdős and Kaplansky formula [given in Erdős and Kaplansky(1946)]
for the number of ways of extending a latin rectangle by one row and by a
more detailed classification of the k× 7 latin rectangles, Sade’s method could be
made self checking. This check confirmed the accuracy of Sade’s calculations but
revealed a few minor errors.

Later, Brant and Mullen(1985) used a computer to determine the number of
isomorphism classes of reduced latin squares of order 7.

In Wells(1967), that author used an adaptation of Sade’s method suitable
for computer calculation and, after confirming Sade’s result for the number of
reduced 7×7 latin squares, used it to calculate the number of reduced 8×8 latin
squares. He obtained 535 281 401 856 as the number of such squares, thereby con-
firming Sade’s earlier conjecture [see Sade(1948b)] that the number lay between
45 × 1010 and 6 × 1011. He also estimated that the number of main classes of
order 8 must be more than a quarter of a million.

Using a method which is substantially equivalent to that of Schönhardt,
Brown(1968) computed (incorrectly) that the number of isotopy classes of latin
squares of order 8 is 1 676 257. He also stated that there are 563 isotopy classes
of latin squares of order 7; an error which was incorporated in many subsequent
works including [DK1]. This is despite the correct value of 564 having been
published by Preece(1966) prior to Brown’s paper. Also, Arlazarov et al.(1978)
computed (incorrectly) that there are 283 640 main classes of latin squares of or-
der 8. Kolesova, Lam and Thiel(1990) corrected the results for order 8 squares,
finding that there are 1 676 267 isotopy classes and 283 657 main classes. These
numbers have been independently confirmed by a number of people including,
in particular, Wanless. The paper of Kolesova et al. also gives a breakdown of
the order 8 squares according to the size of their autotopy and paratopy groups.

The number of reduced latin squares of order 9 was first calculated by Bam-
mel and Rothstein(1975). There are 377 597 570 964 258 816 such squares. Work-
ing independently but reporting their results jointly, McKay and Rogoyski(1995)
counted the latin squares of order 10. They found that there are
7 580 721 483 160 132 811 489 280 reduced squares of that order. They also con-
firmed the numbers computed by Wells and Bammel and Rothstein [as had
Mullen and Purdy(1993) slightly earlier] and used sampling to obtain estimates
for the number of reduced Latin squares for orders in the range 11 ≤ n ≤ 15.
Their prediction for n = 11 was confirmed by McKay and Wanless(2005) who
established that there are 5 363 937 773 277 371 298 119 673 540 771 840 reduced
latin squares of order 11.

More recently, McKay, Meynert and Myrvold(2007) studied the main class
automorphisms of the latin squares up to order 10 in order to obtain counts of
various categories of squares. As well as counting main and isotopy classes and
reduced squares, they also counted the number of quasigroups (up to isomor-
phism) and the number of loops (again, up to isomorphism). These results are
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summarized in Figure 4.3.2. The number of reduced latin squares of each order
up to 11 is given later in this chapter, in Figure 4.4.3 and Figure 4.4.4.

In Hulpke, Kaski and Österg̊ard(2011), these authors obtained counts for the
numbers of main and isotopy classes of latin squares of order 11. Their results
are in agreement with those of McKay and Wanless obtained earlier.

Since a reduced latin square is one which has its first row and column in
natural order, any such latin square is the multiplication table of a loop and so the
enumeration of loops (without taking account of isomorphisms) of a given order is
equivalent to enumerating the reduced latin squares of that order. From this point
of view, two further papers should be mentioned as having a place in the above
history of the subject: namely Albert(1944) and Bryant and Schneider(1966).

In the first of these papers, and probably unaware of Schönhardt’s earlier
work, Albert initiated a general discussion on the enumeration of loops. He
pointed out first that it is easy to check that the only loops of orders 2, 3 and
4 are the groups of those orders. He went on to give a complete enumeration of
the loops of order 5 and showed that there are just six isomorphism classes of
loops of order 5. Multiplication tables for representatives of the six classes can
be obtained by bordering the latin squares of order 5 given on page 129 by their
first row and column (although these representatives differ from those chosen by
Albert). Albert proved that every loop of order five is either isomorphic to the
cyclic group of order 5 or belongs to the isotopy class we have labelled 5.2.1.
Furthermore, he showed that, with the exception of 5.2.1.3 and 5.2.1.4 which
are anti-isomorphic (meaning that each is isomorphic3 to the transpose of the
other), no other pair of isomorphism classes is anti-isomorphic.

Albert went on to discuss the enumeration of loops of order 6 but he did not
attempt to do this exhaustively. Instead, he first showed the existence of simple
loops of order 6 (that is, loops with no proper subloops) and then confined his
further investigations to the subclass of loops of order 6 which contain one or
more subloops of order 3. He was able to establish, in particular, that every loop
of order 6 with a subloop of order 3 has only a single subloop of that order. This
work was published in 1944.

Later, in 1966, Bryant and Schneider carried out a complete computer aided
enumeration of loops of order 6 and showed that there exist 109 isomorphism
classes of loops of order 6. This confirmed Schönhardt’s result. Their method
was first to develop theorems (of a similar nature to those given in Section 4.1)
which described successively the principal classes, the isotopy classes, and the
isomorphism classes until they had developed the theory to a point at which a
computer could be employed effectively.

To complete this historical account, we should mention the paper of Sade(1970
/71), already referred to in the previous section, in which he summarized his own

3For the representatives that we have chosen this isomorphism is actually the identity. That
is, one square is the transpose of the other. The squares chosen by Albert are exhibited on
page 145 of [DK1].
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enumerative work for quasigroups of all orders up to 6 inclusive and also tabu-
lated many interesting properties of particular quasigroups of these orders.

Most of the remaining part of this section will be devoted to enumeration
results concerning groups. However, before pursuing this subject, we make two
further general remarks.

If the number of reduced latin squares of order n is denoted by Rn and the
total number of latin squares of order n by Un then Un = n!(n−1)!Rn. This was
pointed out by MacMahon [see page 248 of MacMahon(1915)] and by a number
of later authors and is a special case of Theorem 4.4.1, which we shall prove
in the next section. M.Hall(1948) showed that Un ≥ n! (n − 1)! · · · 2! 1! and so
Rn ≥ (n− 2)! (n− 3)! · · · 2! 1! for all n.

Despite the fact that the aim of the present book is to describe properties of
latin squares of finite order, we think it worthwhile to give the following result
of Mano(1960) as a curiosity. Mano proved that the number of latin squares of
infinite order is equal to the cardinal number of the continuum. We remark in
passing that very few authors have studied latin squares of infinite order.

The number of non-isomorphic abelian groups of order n = pα1

1 pα2

2 · · · pαr
r

is well known and will be found, for example, in Fuchs(1958), page 53. The
number of such groups is

∏r
i=1 P (αi) where the pi are distinct primes, the αi

are positive integers and P (αi) denotes the number of distinct partitions of the
integer αi into positive integers. For asymptotic results on the same subject, the
reader is referred to Erdős and Szekeres(1934/35), Kendall and Rankin(1947)
and Krätzel(1970).

A remarkable result of Rédei(1947) can be formulated as follows: If and only
if n = p1p2 · · · puq21q22 · · · q2v , where p1, p2, . . . , pu and q1, q2, . . . , qv are distinct
primes each of which is relatively prime to

u
∏

i=1

(pi − 1)

v
∏

j=1

(q2j − 1),

then all groups of order n are abelian.
A general formula for the number of non-abelian groups of order n is not yet

known. However, a table giving the number of groups for each order up to 100
was published by Miller(1930). This was extended to 162 (except the order 128)
by Senior and Lunn(1934) and later to 215 (except the order 192). [See also Hall
and Senior(1964) and Sloane’s Online Encyclopaedia of Integer Sequences(2012),
sequence number A060689.]

In Figure 4.3.3, we give the number of non-abelian groups of each order
n ≤ 32. The structure of these groups is described by Thomas and Wood(1980).
The generating relations for the groups of orders n < 32 can be found in Coxeter
and Moser(1965).

Szele(1947) showed that a necessary and sufficient condition that the only
group of a given order n is the cyclic group of that order is that n is relatively
prime to φ(n), where φ denotes Euler’s function.
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Order

Number
of non-
abelian
groups

1 0
2 0
3 0
4 0
5 0
6 1
7 0
8 2

Order

Number
of non-
abelian
groups

9 0
10 1
11 0
12 3
13 0
14 1
15 0
16 9

Order

Number
of non-
abelian
groups

17 0
18 3
19 0
20 3
21 1
22 1
23 0
24 12

Order

Number
of non-
abelian
groups

25 0
26 1
27 2
28 2
29 0
30 3
31 0
32 44

Fig. 4.3.3.

A detailed description of all groups up to order 64 inclusive has been given
by Hall and Senior(1964). The numbers of groups of orders 16, 32 and 64 were
found to be 14, 51 and 267, respectively. The number 267 [which was confirmed
later by Thomas and Wood(1980), among others] conflicts with the count of 294
obtained earlier by Miller(1930).

It has been shown by Gallagher(1967) that, if M(n) denotes the number of
non-isomorphic finite groups (abelian and non-abelian) of order n then M(n) ≤
ncn

2/3 log
2
n, where c = 2/(1 − 2−2/3). A result of Higman(1960) shows that,

for the special case of soluble groups, the above estimate of Gallagher is “best
possible”. An exact method of enumeration for soluble groups has been given by
Lunn and Senior(1934).

Greenberg and Newman(1970) considered a related question concerning the
number and distribution of soluble groups generated by elements of specified odd
orders a1, a2, . . . , ar. They proved the following result:

For each positive integer n, define the value of the function s(n) to be 1 if
a soluble group of order n exists generated by a set of elements x1, x2, . . . , xr
of orders a1, a2, . . . , ar respectively, and 0 otherwise. Let S(x) =

∑

n≤x s(n).

Then S(x) = O
(

x(log x)−1/(2h)
)

, where h = φ(a1, a2, . . . , ar) and φ is Euler’s
function. Consequently, limx→∞ S(x)/x = 0. Soon after the work of Greenberg
and Newman was pubished, a slight improvement in the power of log x in the
bound on S(x) was obtained by Indlekofer(1973).

For some results concerning the enumeration of p-groups, see Davies(1962)
and Sims(1965).

In Gilbert(1965), that author found a formula for the number of latin squares
of order n which are multiplication tables of quasigroups isotopic to the cyclic
group of order n. Such latin squares were called addition squares by Gilbert.
The number of addition squares of order n is n!

(

(n− 1)!
)

2/φ(n), where φ(n) is
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Euler’s function. In the same paper, Gilbert found a formula for the number of
addition squares of order n which are complete latin squares. (For the definition
of a complete latin square, see Section 2.6).

His result is as follows: Let Qn denote the number of permutations a1, a2, . . . , an
of the integers 1, 2, . . . , n which are such that the differences a2−a1, a3−a2, . . . , an−
an−1 are all distinct modulo n. Then there are exactly n!Q2

n/
(

n2φ(n)
)

complete
addition squares of order n.

Finally, we mention some enumerative results concerning special kinds of
latin square.

Phelps(1980) obtained a lower bound for the number of symmetric latin
squares of a particular order. Gross, Mullen and Wallis(1973) obtained a lower
bound for the number ν(r) of pairwise perpendicular symmetric idempotent latin
squares of order r, where r is a prime power: namely, ν(pk) ≥ ⌊(t−1)/2n−1⌋+1.
Graham and Roberts(2006) enumerated the self-orthogonal latin squares up to
order 9. See also Burger, Kidd and van Vuuren(2010) for some further enumer-
ative results for such squares.

4.4 Enumeration of latin rectangles

Since most of the methods for enumerating latin squares are dependent on
the enumeration of k × n latin rectangles we devote this section to that topic.
We first discuss exact enumeration and then the known asymptotic results.

To determine L(k, n), the number of k × n latin rectangles, for k ≤ n it is
most practical to enumerate some canonical subset of the latin rectangles in such
a way that the total number of rectangles can be determined from this partial
enumeration. The choice of which canonical subset to use has varied from author
to author, as we shall see in the following pages. We collect the definitions here
at the outset for the sake of clarity and to facilitate comparisons between them.

Definition. A k × n latin rectangle is said to be normalized if the n symbols
of its first row are in ascending order.4 It is said to be semi-reduced if its first
row and column are in ascending order. It is said to be reduced if its first row
and column are in ascending order and consist of consecutive symbols (usually
integers). We denote the numbers of normalized, semi-reduced and reduced k×n
latin rectangles by K(k, n), S(k, n) and R(k, n) respectively. We shall sometimes
refer to the k×n latin rectangles counted by L(k, n) as unrestricted to emphasize
that they are not necessarily normalized, semi-reduced or reduced.

Note that semi-reduced rectangles may seem to be the obvious generalization
of reduced squares as defined on page 126. However, it is the reduced latin rect-
angles which can most easily be extended to reduced latin squares by appending
(as opposed to inserting) rows. We should also warn the reader that there is
no consistency in the literature concerning the terms we have just defined. For

4We assume that we are using a set of symbols which can be ordered such as 0, 1, 2, . . . , n−1
or 1, 2, 3, . . . , n.
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example, Riordan(1946,1952), Yamamoto(1949) and others call our normalized
rectangles “reduced”, while McKay and Rogoyski(1995) call our reduced rect-
angles “normalized”. To make matters worse, some authors state our definition
of “semi-reduced” when they actually mean to define reduced latin rectangles.
The distinction is demonstrated by the semi-reduced latin rectangle L3 in Fig-
ure 4.4.1 below. Its first column is in natural order, however the entries are not
consecutive integers, so the rectangle is not reduced.

We next consider the relationship between the numbers L(k, n), K(k, n),
S(k, n) and R(k, n). It is easy to see that the columns of an unrestricted latin
rectangle may be permuted in a unique way to obtain a normalized latin rectan-
gle. Conversely, the columns of a normalized latin rectangle may be permuted in
n! ways to obtain an unrestricted latin rectangle. Hence L(k, n) = n!K(k, n). By
a similar argument, but permuting the rows (except the first row) rather than
permuting the columns, we see that K(k, n) = (k − 1)!S(k, n).

Example. Let L1 be defined as in Figure 4.4.1. We may transform L1 to a
normalized latin rectangle L2 by re-arranging its columns so that its first row
becomes 1 2 3 4. We can then convert L2 into a semi-reduced rectangle L3 by
re-arranging the rows, excluding the first, so that the elements of the first column
form an increasing sequence as shown. L1 → L2 → L3 (Figure 4.4.1).

L1 =
2 4 1 3
3 1 4 2
4 2 3 1

L2 =
1 2 3 4
4 3 2 1
3 4 1 2

L3 =
1 2 3 4
3 4 1 2
4 3 2 1

Fig. 4.4.1.

Note that an alternative way to transform L1 to reduced form is by first per-
muting its symbols so that its first row becomes 1 2 3 4 and then re-arranging
the rows, excluding the first, as before. L1 → L′

2 → L′
3 (Figure 4.4.2). The iso-

topism (α1, β1, γ1) which effects the first transformation has α1 = (2 3), β1 =
(1 2 4 3), γ1 = ǫ. That which effects the second transformation has α2 =
(2 3), β2 = ǫ, γ2 = (2 1 3 4).

Either one of these two transformation methods separates the universe of
3× 4 latin rectanges into L(3, 4)/[4!(3− 1)!] families of rectangles such that the
members of a family all reduce to the same semi-reduced form but the families
are different in the two cases.

L1 =
2 4 1 3
3 1 4 2
4 2 3 1

L′
2 =

1 2 3 4
4 3 2 1
2 1 4 3

L′
3 =

1 2 3 4
2 1 4 3
4 3 2 1

Fig. 4.4.2.
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As regards reduced rectangles, there is only one general way in which to
transform a given k × n latin rectangle L to reduced form. We have to ensure
that the symbols used for the first column are 1 2 . . . k so we must first transform
the symbols a1, a2, . . . , ak used in the first column of L to 1, 2, . . . , k respectively.
Secondly, we have to re-order the remaining n− 1 columns so that the first row
is normalized. The required isotopism (α, β, γ) is such that γ maps a1, a2, . . . , ak
to 1, 2, . . . , k respectively, α = ǫ and β permutes the last n− 1 columns.

Conversely, there exist (n−1)! permutations of 1, 2, . . . , n which fix the symbol
1. Let β be one of these. Also, let γ be an injection from the set 1, 2, . . . , k into
the set 1, 2, . . . , n. There are n(n − 1)(n − 2) . . . (n − k + 1) = n!/(n − k)! such
injections. Let R be a reduced k × n latin rectangle. We may first permute its
columns by means of β and, secondly, we may replace the symbols 1 to k by
those specified by γ to obtain an unrestricted k × n latin rectangle Rβγ. Each
unrestricted k×n latin rectangle L can be written in the form Rβγ for a unique
pair of permutations βγ since there is only one β which could produce the first
column of L and then only one γ which could produce the first row. Therefore,
L(k, n) = [n!/(n− k)!](n− 1)!R(k, n).5 Thus, we have proved:

Theorem 4.4.1 Any one of the numbers L(k, n), K(k, n), S(k, n) and R(k, n)
(representing the numbers of unrestricted, normalized, semi-reduced and reduced
k × n latin rectangles respectively) determines the others by the relationship:

L(k, n) = n!K(k, n) = n! (k − 1)!S(k, n) =
n! (n− 1)!

(n− k)!
R(k, n).

It is clear from the definitions that every reduced rectangle is semi-reduced
and every semi-reduced rectangle is normalized. Hence, of the options we have
considered above, the most efficient way to determine L(k, n) is to count the re-
duced rectangles because there are fewest of them. In practice the computer enu-
merations of latin squares by Wells(1967), Bammel and Rothstein(1975), McKay
and Rogoysky(1995) and McKay and Wanless(2005) have made use of a further
observation: namely that the number of possible extensions to a given latin rect-
angle depends only on the symbols which occur in each particular column, not
on the order of those symbols within the column. This idea leads to a way of ex-
pressing the enumeration problem for latin rectangles in graph theoretic terms.
See the above-mentioned papers for further details.

Among the earliest writers on the subject of enumerating latin rectangles after
Cayley and MacMahon (see the previous section) was Jacob(1930). This author
attempted an enumeration of 3 × n normalized rectangles and tabulated the
results for values of n ≤ 15. The first five of Jacob’s results are in agreement with
those obtained later by Kerewala(1941) and Riordan(1946) and are as follows:

5This modification of the author’s original proof was suggested by Brendan McKay to
answer an objection raised by another expert in this topic.
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n 3 4 5 6 7

K(3, n) 2 24 552 21280 1073760

These values can be compared, using Theorem 4.4.1, with the values for
R(k, n) computed by McKay and Rogoyski(1995), whose results are reproduced
in Figure 4.4.3. The values of R(k, n) for k < n = 8 were published by Mullen
and Purdy(1993). The values of R(k, 11) were computed by McKay and Wan-
less(2005) and are quoted in Figure 4.4.4. These authors noted that as k grows,
R(k, n) seems to be divisible by an increasing power of each small prime. The
effect, which was subsequently explained in Stones and Wanless(2010), is particu-
larly striking with powers of 2, as can be seen in Figure 4.4.4. Similar observations
had been made earlier by Alter(1975) and by Mullen(1978).

More recently, Stones(2010) has computed R(5, n) for n ≤ 28 and R(6, n) for
n ≤ 13 using about two months of computer time.

A latin rectangle with only two rows defines a permutation displacing all sym-
bols. Such a permutation is traditionally called a derangement and the number of
derangements is given by formula (4.2) on page 136. Alternatively, the two rows
can be thought of as two separate permutations from natural order. Two such
permutations have the property that they are discordant [see Riordan(1944)]:
that is, they do not agree in any position. The enumeration of permutations
discordant with a given permutation is the famous problème des rencontres. The
enumeration of permutations discordant with each of two permutations, one of
which is obtained from the other by a cyclic permutation of the symbols of the
form (2 3 4 · · · n 1) is known as the reduced problème des ménages. The lat-
ter problem was considered by Kaplansky(1943), Riordan(1944), Kaplansky and
Riordan(1946), and Touchard(1934,1953). See also Moser(1982).

The next case in this hierarchy, the enumeration of permutations discordant
with three permutations of the form given in Figure 4.4.5, has been examined by
Riordan(1954). More generally, we can consider the number M(k, n) of permu-
tations discordant with a k × n latin rectangle whose first row is 1 2 . . . n and
each subsequent row is obtained from its predecessor by applying the permuta-
tion (2 3 4 · · · n 1). This number M(k, n) was called the generalized ménage
number6 by Godsil and McKay(1990) and will be discussed later in this section.

Generalizing in a different direction, Riordan(1954) found the numbers Nn,k
of permutations which have exactly n− k places in which they disagree with all
three permutations of Figure 4.4.5. His results are reproduced in Figure 4.4.6
which gives the values of Nn,k for small values of n and k. When k = 0, the
numbers

Nn,0 =

n
∑

k=1

(−1)k(n− k)! rk

enumerate the permutations discordant with the permutations in Figure 4.4.5,
that is, they countM(3, n). Here rk is the number of ways of putting k elements in

6The phrase “generalized ménage number” was used in a different sense by Nech-
vatal(1981a).
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n k R(k, n) n k R(k, n) n k R(k, n)

1 1 1 7 1 1 9 1 1

2 1 1 2 309 2 16687

2 1 3 35792 3 103443808

3 1 1 4 1293216 4 207624560256

2 1 5 11270400 5 112681643083776

3 1 6 16942080 6 12952605404381184

4 1 1 7 16942080 7 224382967916691456

2 3 8 377597570964258816

3 4 8 1 1 9 377597570964258816

4 4 2 2119

5 1 1 3 1673792 10 1 1

2 11 4 420909504 2 148329

3 46 5 27206658048 3 8154999232

4 56 6 335390189568 4 147174521059584

5 56 7 535281401856 5 746988383076286464

6 1 1 8 535281401856 6 870735405591003709440

2 53 7 177144296983054185922560

3 1064 8 4292039421591854273003520

4 6552 9 7580721483160132811489280

5 9408 10 7580721483160132811489280

6 9408

Fig. 4.4.3.

forbidden positions, subject to the compatibility conditions that no two elements
may be in the same position and no two positions have the same element.

A recurrence relation for the number of three-line normalized latin rectangles
was obtained by Riordan(1952). If we define the sequence {kn} by k0 = 1 and
kn = −nkn−1 − (n− 1)2n. Then Riordan’s recurrence is

K(3, n) = n2K(3, n−1)+n(n−1)K(3, n−2)+2n(n−1)(n−2)K(3, n−3)+kn

Formulae for L(3, n) were given by Dulmage and McMaster(1975), Bogart and
Longyear(1976) and Gessel(1985). The later author expressed the number of
reduced 3 × n latin rectangles in terms of the coeficients of a power series in
an indeterminant x. Athreya, Pranesachar and Singhi(1980) also derived a for-
mula for L(3, n) and went on to give a complicated expression for L(4, n). A
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n k Factorisation of R(k, n)

11 1 1

2 1 468 457

3 27 · 13 · 23 · 20851549
4 210 · 32 · 1823 · 8569184461
5 213 · 32 · 29 · 168293 · 20936295857
6 217 · 32 · 5 · 31 · 2334139 · 225638611943
7 221 · 32 · 5 · 9437 · 269623520098467133
8 228 · 32 · 5 · 97 · 73488673152815765447
9 232 · 33 · 5 · 61 · 7487 · 260951 · 42053669617

10 235 · 34 · 5 · 2801 · 2206499 · 62368028479
11 235 · 34 · 5 · 2801 · 2206499 · 62368028479

Fig. 4.4.4.

1 2 · · · n− 1 n
2 3 · · · n 1
3 4 · · · 1 2

Fig. 4.4.5.

direct, though fairly complicated, method for enumerating K(4, n) was given by
Light(1973).

In Riordan(1952), that author showed that K(3, n + p) ≡ 2K(3, n) mod p,
where p is any prime greater than two. Carlitz(1953a) extended this result to
show that for arbitrary m, K(3, n+m) ≡ 2mK(3, n) mod m.

k \ n 3 4 5 6 7 8 9 10
0 0 1 2 20 144 1265 12072 125655
1 0 0 15 72 609 4960 46188 471660
2 0 6 20 180 1106 9292 82980 831545
3 6 8 40 176 1421 10352 93114 912920
4 9 30 180 980 8326 70272 695690
5 13 72 595 4096 39078 379760
6 20 154 1676 14292 155690
7 31 304 4230 43880
8 49 576 9905
9 78 1060
10 125

Fig. 4.4.6.
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Recently, a more far-reaching congruence relation expressed in terms ofR(k, n)
has been obtained by Stones and Wanless(2010): namely,

R(k, n+ d) ≡ (−1)k−1(k − 1)!R(k, n)R(k, d) mod d
for all k ≤ n and positive integers d.

Formulae giving the values of both M(3, n) and M(4, n) are known7. The
first,

M(3, n) =
n
∑

i=0

(−1)i
2n

2n− i

(

2n− i

i

)

(n− i)! for n ≥ 3,

was obtained by Kaplansky(1943). The second is due to Moser(1967) who showed
that

M(4, n) =
n
∑

i=0

(−1)ig(n, 3, i)(n− i)! for n ≥ 4,

where

g(n, 3, i) =

⌊i/2⌋
∑

α=0

m
∑

β=0

n

n− i

(

n+ α− i− 1

α

)(

n− i

β

)

2β
(

n− α− 1

i− 2α− β

)

for 0 ≤ i < n, where m = min(n− i, i− 2α), and

g(n, 3, n) = 3 +

⌊n/2⌋
∑

α=1

n

α

(

n− α− 1

α− 1

)

.

A complicated formula for L(k, n), valid for all k, was obtained by Nech-
vatal(1981b) and another similar one by Gessel(1987).

However, exact enumeration of L(k, n) (or, for that matter, R(k, n), K(k, n),
S(k, n) or M(k, n)) for larger values of k and n seems very difficult. Besides,
judging from the known formulae such as those just mentioned, any results are
likely to become increasingly cumbersome as k grows. An alternative to exact
enumeration is to study the asymptotic growth of these functions.

Using two different methods Riordan(1944,1946) obtained the asymptotic re-
sult K(3, n) ∼ (n!)2e−3. An asymptotic formula for the number of latin rectan-
gles was obtained by Erdős and Kaplansky(1946). Kerewala(1947a,b) also pub-
lished some results on this subject. For confirmation of the results given in Kere-
wala(1947a), see Yamamoto(1949,1953). Some further interesting results con-
nected with the enumeration of latin rectangles will be found in Yamamoto(1956)
and Riordan(1958).

7In the derivation of these results both Kaplansky and Moser used the term “very reduced”
for a latin rectangle whose rows, other than the first, are the same as those of Figure 4.4.5 but
in reverse order (so that the leading diagonal consists entirely of 1’s). This nomenclature is
not ideal since any latin rectangle can be “reduced” by an appropriate isotopism to a reduced
rectangle (see page 126) but “very reduced rectangles” lack any similar useful property.
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The asymptotic relation obtained by Erdős and Kaplansky for the total
number L(k, n) of k × n latin rectangles is

L(k, n) ∼ (n!)k exp

(−k(k − 1)

2

)

(4.4)

and they showed that this relation is valid as n→ ∞ not only for fixed k but also
for any k < (log n)(3/2)−ǫ, where ǫ is an arbitrarily small positive constant. They
conjectured that (4.4) is valid for values of k up to nearly n1/3. This conjecture
was confirmed by Yamamoto(1951) who showed the validity of (4.4) whenever
k = o(n1/3) and who later [in Yamamoto(1969)] showed that

L(k, n) ∼ (n!)k exp

(−k(k − 1)

2
− k3

6n

)

(4.5)

when k = O(n(5/12)−ǫ) for a fixed ǫ > 0. C.M.Stein(1978) extended Yamamoto’s
result by proving (4.5) for k = o(n1/2). Then Godsil and McKay(1990) proved
that

L(k, n) ∼ (n!)k

(

n(n− 1)(n− 2) · · · (n− k + 1)

nk

)n
(

1− k
n

)−n/2

e−k/2 (4.6)

for k = o(n6/7) as n → ∞. The latter authors conjecture that (4.6) is valid for
k = O(n1−δ) for any arbitrary constant δ > 0.

For a fairly recent, well-written and comprehensive survey of methods and
results in the enumeration of latin rectangles, see Stones(2010).

4.5 Enumeration of transversals

Firstly, we remind the reader that some latin squares have no transversals
at all. For example, it follows from Theorem 2.5.1 and Theorem 2.5.4 that the
Cayley tables of abelian groups which have a unique elemnet of order two have
no transversals. Also, it follows from Theorem 2.5.5 that the same is true for the
Cayley tables of all groups which have cyclic Sylow 2-subgroups (including those
just mentioned) and, in particular, for groups of orders n ≡ 2 mod 4.

A more general class of latin squares of even order which have no transversals
are those which Maillet(1894b) called latin squares of q-step type.

Definition. A latin square L of order n = mq is said to be of q-step type if it
can be represented by a matrix C of the form shown in Figure 4.5.1 where, for

each fixed choice of k, the A
(k)
ij are latin subsquares of L all of which contain the

same q elements.

For example, the latin square shown in Figure 4.5.2 is of 2-step type while
both the squares shown in Figure 4.5.3 are of 3-step type.
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C =

A
(0)
00 A

(1)
01 A

(2)
02 . . . . . . A

(m−2)
0,m−2 A

(m−1)
0,m−1

A
(1)
10 A

(2)
11 A

(3)
12 . . . . . . A

(m−1)
1,m−2 A

(0)
1,m−1

A
(2)
20 A

(3)
21 A

(4)
22 . . . . . . A

(0)
2,m−2 A

(1)
2,m−1

· · · . . . . . . · ·
· · · . . . . . . · ·
· · · . . . . . . · ·

A
(m−1)
m−1,0 A

(0)
m−1,1 A

(1)
m−1,2 . . . . . . A

(m−3)
m−1,m−2 A

(m−2)
m−1,m−1

Fig. 4.5.1.

As early as 1779, Euler was able to prove that a cyclic latin square of even
order cannot have any transversals and so has no orthogonal mate.8 In the same
paper [Euler(1779)], he showed that the same is true for latin squares of order 6
or 12 which are of 3-step type and that it is also true for all latin squares of order
2q and of q-step type when q is odd. In Maillet(1894b), that author noted that
a cyclic latin square is a square of 1-step type and that all the above mentioned
results of Euler are special cases of the following general theorem.

0 1 2 3 4 5
1 0 3 2 5 4
2 3 5 4 1 0
3 2 4 5 0 1
4 5 0 1 2 3
5 4 1 0 3 2

Fig. 4.5.2.

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 4 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

0 1 2 3 4 5
1 2 0 5 3 4
2 0 1 4 5 3
3 5 4 0 2 1
4 3 5 2 1 0
5 4 3 1 0 2

Fig. 4.5.3.

Theorem 4.5.1 A latin square L of order n = mq and of q-step type has no
transversals if m is even and q is odd.

Proof. Our proof substantially follows that of Maillet. Since L is of q-step
type we may represent it by means of the matrix C given in Figure 4.5.1, where

8Much later, Hedayat and Federer(1969) claimed this as a new result.

 Classification and enumeration of latin squares and latin rectangles



154

each A
(k)
ij represents a q× q latin subsquare of L. If we take the elements of L to

be the integers 0, 1, 2, . . . , n− 1, there will be no loss of generality in supposing
that (by a change of labelling if necessary) all the subsquares which correspond
to the same fixed value of k contain the same q elements kq+ b, where k has this
fixed value and 0 ≤ b ≤ q− 1: for every one of the integers 0, 1, 2, . . . , n− 1 has a
unique representation in the form aq + b with 0 ≤ a ≤ m− 1 and 0 ≤ b ≤ q − 1.
Let us note for use later that, for each latin subsquare A of the matrix C, k is
determined by the relation k ≡ i+ j mod m.

Let us suppose that the theorem is false and that τ is a transversal of
L. Then τ will contain just q cells belonging to the set of latin subsquares
A00, A10, . . . , Am−1,0 which form the first column of the matrix C. This is be-
cause the first column of matrix C represents the first q columns of L and each
of these columns contains exactly one cell of τ . Let the entries in these q cells be
the integers a00q + b00, a10q + b10, . . . aq−1,0q + bq−1,0 and suppose that the cells
belong to the latin subsquares Ac000, Ac100, . . . , Acq−1,0, respectively, the integers
c00, c10, . . . , cq−1,0 being not necessarily all distinct.

The transversal τ will also contain just q cells belonging to the latin sub-
squares of the jth column of the matrix C for the same reason as before. (This is
true for each fixed j in the range 0 ≤ j ≤ m−1.) Let the entries in these q cells be
the integers a0jq+ b0j , a1jq+ b1j , . . . , aq−1,jq+ bq−1,j and suppose that the cells
belong to the latin subsquares Ac0jj , Ac1jj , . . . , Acq−1,j ,j , respectively, the inte-
gers c0j , c1j , . . . , cq−1,j being again not necessarily all distinct. Since aijq + bij ,
is an element of Acijj , we have aij ≡ cij+ j mod m in consequence of the special
choice of labelling which we established at the beginning.

The entries in the n cells of the transversal τ are equal in some order to
the n integers 0, 1, . . . . , n− 1. When these n integers are expressed in the form
aijq+bij , there exist just q of them which have the same fixed value of aij in the
range 0 ≤ aij ≤ m − 1 but have different values of bij since bij varies through
the integers 0, 1, . . . , q − 1. Hence,

∑

τ aij = q(0 + 1 + . . .+m− 1) = qm(m− 1)/2
where the summation is over the entries in all the cells of τ . Also,

∑

τ aij ≡
∑

τ (cij + j) mod m. The right-hand side of this congruence is equal to
∑

τ cij +
q(0 + 1 + . . . + m − 1) since j varies between 0 and m − 1 and takes each of
these values for exactly q of the cells of τ : namely, it takes the value j for all
the cells occurring in the q columns of L which are included in the latin sub-
squares of the jth column of the matrix C. Further, since τ has exactly one
cell in each row of L, it has exactly q cells belonging to the set of latin sub-
squares Ah0, Ah1, . . . , Ah,m−1, which form the hth row of the matrix C. For
each of these cells, cij = h. Hence, as h varies between 0 and m − 1, cij
takes each of these values q times, and so

∑

τ cij = q(0 + 1 + . . . + m − 1)
where the summation is over the entries in all the cells of τ as before. Hence,

∑

τ (cij + j) = qm(m− 1)/2 + qm(m− 1)/2 = qm(m− 1).
It follows that

∑

τ aij ≡ 0 mod m. But, we have shown already that
∑

τ aij =
qm(m− 1)/2. These conditions are not consistent unless q(m− 1) is divisible by
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2, so no transversal exists if q is odd and m is even. ⊓⊔

Maillet’s theorem was re-discovered by Hedayat and Federer(1969) and by
Parker(1971). Astute eaders will notice that Theorem 5.1.5, described on page 162,
is a special case of this theorem although it was obtained much later. A shorter
(but more sophisticated) proof of the theorem due to Drake(1977)and using the
concept of a k-net is given on pages 26-28 of [DK2].

Let tn denote the number of transversals that exist in the reduced latin
square Kn which represents the multiplication table of the cyclic group of order
n. Then Singer(1960) noted that tn = 0 if n is even (see above) and he obtained
the following values for small odd values of n: t1 = 1, t3 = 3, t5 = 15, t7 = 133,
t9 = 2025, and t11 = 37851. He also showed that tn ≡ 0 mod n for all values of
n. Later, Belyavskaya(1971) described a computer algorithm for finding all the
transversals of a latin square which she used to confirm the value of t7 obtained
by Singer. Over the intervening three decades faster computers and better algo-
rithms have revealed more terms of the sequence {tn}. At the time of writing
it had been calculated up to t23 by Shieh, Hsiang and Hsu(2000). The sequence
is number A006717 in Sloane’s encyclopedia of integer sequences(1973,1994).
Not much is known about the asymptotic growth rate of {tn}, although McKay,
McLeod and Wanless(2006) have shown that tn = o(0.62nn!) (and also that tn
is always odd when n is odd). See also Cavenagh and Wanless(2010).

The result tn ≡ 0 mod n is valid for a wider class of latin squares than that
discussed by Singer. In particular, it is valid for all latin squares which satisfy the
quadrangle criterion. More generally, Belyavskaya and Russu(1975) have proved
that the number tn of transversals of an arbitrary standard form latin square
Ln of order n is congruent to zero modulo the number of elements in the left
nucleus Nλ (or the right nucleus Nµ) of the loop of which Ln (bordered by its
own first row and column) is the multiplication table. For the proof, see Section
3, Chapter 2, of [DK2]. (When G is a group, Nλ coincides with G and then the
latin square Ln satisfies the quadrangle criterion.)

Since any latin square is isotopic to one in standard form which represents the
multiplication table of a loop G and since the orders of its left and right nuclei
are divisors of the order of G, then the number of transversals of such a square
L is congruent to zero modulo a divisor of its order. Balasubramanian(1990)
has shown further that, if L has even order then the number of its transversals
is even. However, the corresponding statement for odd order is false since there
exist (non-cyclic) latin squares of odd order with an even number of transversals.

Later, Glynn(2011) gave a very short proof of Balasubramanian’s result using
a new concept which he called a latin array.

More recently, there has been interest in counting the number of transversals
and, more generally, chains for group-based latin squares of small order.

We defined the concept of a chain and its rank in Section 3.4. For clarity, we

shall denote the number of chains of rank i in a latin square L of order n by t
(i)
n .
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In Belyavskaya(1979), that author computed the number of chains in each
of the two non-abelian groups of order 8. For the dihedral group, she obtained

t
(1)
8 = 8, t

(2)
8 = 296, t

(3)
8 = 1568, t

(4)
8 = 8368, t

(5)
8 = 16640, t

(6)
8 = 12544,

t
(7)
8 = 512 and t

(8)
8 = 384. For the group 〈a, b : a4 = e, a2 = b2, ab = ba3〉, she

obtained t
(1)
8 = 8, t

(2)
8 = 104, t

(3)
8 = 2208, t

(4)
8 = 7408, t

(5)
8 = 17408, t

(6)
8 = 12288,

t
(7)
8 = 512 and t

(8)
8 = 384.

Surprisingly, both t
(7)
8 and t

(8)
8 are the same for both groups so, in partic-

ular, both groups have the same number t
(8)
8 of transversals. Later, Bedford

and Whitaker(1999) offered an explanation for the remarkable fact that all four
non-cyclic groups of order 8 have 384 transversals.

In Bedford(1993), that author enumerated the left neofields of all orders up to
9 inclusive. Since, for each group G of order n, the number of left neofields which
have G as multiplicative group is equal to the number of complete mappings
and near-complete mappings (equivalent to chains of rank n− 1) of that group,
see Section 7.6 or Hsu and Keedwell(1984), it follows that the enumeration of
left neofields provides an enumeration of transversals (complete mappings) and
chains of rank n− 1 of G. Thus, in effect, Bedford gave an enumeration of these
items for groups of orders 2 to 9. This list was reproduced in the first edition of
the CRC Handbook of Combinatorial Designs [Eds. Colbourn and Dinitz (1996)].
Also, as much as 20 years earlier, Zhang and Dai(1964) and Zhang, Xiang and
Dai(1964) had obtained the numbers of orthomorphisms possessed by all groups
of orders less than 15.

More recently, the number of transversals in all groups of orders n ≤ 23 have
been computed. See Wanless(2011) for the details.

Also, some work on counting the number of transversals in general latin
squares of small order has been done. Let t(n) and T (n) denote respectively
the minimum and maximum number of transversals among the latin squares of
order n. In McKay, McLeod and Wanless(2006), an exhaustive computation of
the number of transversals in all latin squares of orders up to 9 has been carried
out. The values of t(n) and T (n) for these orders are given in Wanless(2011).

There has also been work done on counting sets of disjoint transversals. Fol-
lowing Wanless(2011), we describe such a set as maximal if it is not contained in
a larger set of disjoint transversals. Let Λ(L) be the largest cardinality of any set
of disjoint transversals in the latin square L and let α(L) be the smallest cardi-
nality of any maximal set of disjoint transversals of L. Then 0 ≤ α ≤ Λ ≤ n. In
Egan and Wanless(2011) both Λ and α have been computed for all main classes
of latin squares of order 9 and Λ has been counted for all latin squares of orders
less than 9. Tables giving the results are in Wanless(2011).

In contrast to this, Clark and Lewis(1997) were interested in counting so-
called double transversals: that is transversals of the (left) cyclic latin square
which are also transversals of an alternative version of this square which they
called (for reasons unclear to the present author) the right cyclic latin square.

Two further results relating to enumeration of transversals are (i) if G is a
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group of order n 6≡ 1 mod 3, then the number of transversals in the Cayley
table of G is divisible by 3 [McKay, McLeod and Wanless(2006)]; and (ii) for
all even n ≥ 10, there exists a latin square of order n which has transversals
but in which every transversal coincides on one particular cell [Egan and Wan-
less(2012)]. (Contrast this with the fact that, for all odd m ≥ 3, there exists a
latin square L of order 3m which contains an (m − 1) ×m latin sub-rectangle
none of whose entries is in any transversal of L [Egan and Wanless(2012)]. This
generalizes a statement made in Section 3.5.)

A result obtained by Hedayat(1972) which is related to property (ii) is that
the number of transversals of an arbitrary latin square of order n which have
exactly one cell in common cannot exceed n− 2 and he has given examples for
which this bound is attained.

Questions concerning numbers of transversals remain a fruitful topic for new
research.

Let Kn denote the standard form latin square which represents the multipli-
cation table of the cyclic group of order n as before. In the first edition of this
book, the authors conjectured that for odd n no two distinct sets of n disjoint
transversals of Kn have a transversal in common. This is true for n ≤ 5 but for
larger n it is a long way from the truth. In fact, a more likely conjecture is that
for odd n ≥ 7 every transversal of Kn can be extended in at least two distinct
ways to a decomposition of Kn into transversals (cf. Theorem 1.5.2). This has
been confirmed for n = 7, n = 9 and n = 11 by Wanless (unpublished).

In Figure 4.5.4 we display three latin squares each of which is orthogonal
to K7. The three squares have the symbols 1, 2 and 3 occurring in identical
positions, demonstrating that K7 has 3 distinct decompositions into transversals
which share three common transversals between them.

Also, in Figure 4.5.5 we give two latin squares which are orthogonal to K9

and which differ only in the six entries shown in bold. From these we deduce
that K9 has two decompositions into disjoint transversals which share seven of
their nine transversals!

1 2 3 4 5 6 7
4 1 7 6 3 2 5
6 5 2 1 4 7 3
2 7 5 3 6 1 4
3 4 1 2 7 5 6
7 6 4 5 2 3 1
5 3 6 7 1 4 2

1 2 3 4 5 6 7
6 1 5 7 3 2 4
4 7 2 1 6 5 3
2 6 4 3 7 1 5
3 5 1 2 4 7 6
7 4 6 5 2 3 1
5 3 7 6 1 4 2

1 2 3 4 5 6 7
5 1 7 6 3 2 4
7 6 2 1 4 5 3
2 4 5 3 7 1 6
3 7 1 2 6 4 5
4 5 6 7 2 3 1
6 3 4 5 1 7 2

Fig. 4.5.4.
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1 2 3 4 5 6 7 8 9
3 1 2 6 7 5 9 4 8
2 5 1 3 6 7 8 9 4
7 9 8 1 2 3 4 5 6
8 4 9 5 1 2 6 7 3
9 8 4 2 3 1 5 6 7
4 3 6 7 8 9 1 2 5
6 7 5 9 4 8 3 1 2
5 6 7 8 9 4 2 3 1

1 2 3 4 5 6 7 8 9
3 1 2 6 7 5 9 4 8
2 5 1 3 6 7 8 9 4
7 9 8 1 2 3 4 5 6
8 4 9 5 1 2 6 7 3
9 8 4 2 3 1 5 6 7
4 3 6 7 9 8 1 2 5
6 7 5 8 4 9 3 1 2
5 6 7 9 8 4 2 3 1

Fig. 4.5.5.

4.6 Enumeration of subsquares

Most of the work done on this topic has concerned enumeration of inter-
calates. In Heinrich and Wallis(1981), these authors showed that the maximum
number of intercalates that any latin square of order n can contain is n2(n−1)/4
if n is even and n(n−1)(n−3)/4 if n is odd. They showed that these bounds are
attained if and only if n = 2h in the first case or n = 2h − 1 in the second case.
They also investigated lower bounds for the number of intercalates which latin
squares of specified orders can contain. More recently, in Browning, Cameron and
Wanless(2014), these authors have obtained the value 1

8 (n − 1)(n − 3)(n − 15)
for this lower bound.

A number of authors have dealt with the question of constructing latin
squares which have no intercalates. We discussed this topic in [DK2] and mention
it again in Section 9.2.

In McKay and Wanless(1999), the number of intercalates in a randomly cho-
sen k × n latin rectangle R is investigated and it is proved that, for most latin
squares of order n, N(R) ≥ n3/2−ǫ where ǫ > 0.

Van Rees(1990) proved that the maximum number of 3×3 subsquares which
any latin square of order n can contain is 1

18n
2(n− 1) and conjectured that this

bound is attained only if n = 3h.
Let L be an n × n latin square. In Browning, Stones and Wanless(2013),

bounds on the maximum number Ik(L) of k × k latin subsquares which L can
contain are obtained including exact values for I2(L) and I3(L) when n ≤ 9.
The authors also investigate the same question for the numbers of subsquares of
orders between k and 2k − 1 (inclusive) and between 1 and n (inclusive) which
L can contain. In Browning, Cameron and Wanless(2014), asymptotic values for
Ik(L) are obtained for k = 2, 3 and 5.
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Chapter 5

The concept of orthogonality

In this chapter, we introduce the concept of orthogonality between latin
squares. First, we consider the case of latin squares which represent the mul-
tiplication tables of groups and then we go on to give a historical account of the
famous Euler conjecture and its eventual resolution. We show that the maximum
possible number of latin squares of order n in a mutually orthogonal set is n− 1
and that any such complete mutually orthogonal set represents a finite projective
plane.

Next, we show how the concept of orthogonality between latin squares leads
on to that of orthogonality between quasigroups, groupoids and triple systems.
We end the chapter with a short discussion of various extensions of the idea of
orthogonality to other related structures: notably to latin rectangles, latin cubes
and permutation cubes, and we also introduce orthogonal arrays.

5.1 Existence questions for incomplete sets of orthogonal latin squares

We begin with the definition of orthogonality. Two latin squares L1 = ||aij ||
and L2 = ||bij || on n symbols are said to be orthogonal if every ordered pair of
symbols occurs exactly once among the n2 pairs (aij , bij), i, j = 1, 2, . . . , n.

It is easy to see by trial that the smallest value of n for which two orthogonal
squares exist is three. A pair of orthogonal squares of this order is shown in Fig-
ure 5.1.1 and the corresponding ordered pairs (aij , bij) are exhibited alongside.

L1 =
2 3 1
1 2 3
3 1 2

L2 =
2 1 3
1 3 2
3 2 1

2, 2 3, 1 1, 3
1, 1 2, 3 3, 2
3, 3 1, 2 2, 1

Fig. 5.1.1.

As another example, the reader will find a pair of orthogonal latin squares of
order ten displayed in Figure 5.1.2.

If we consider the n cells of the latin square L2 all of which contain the same
fixed entry h say, then the entries in the corresponding cells of L1 must all be
different, otherwise the squares would not be orthogonal. Since the symbol h
occurs exactly once in each row and once in each column of L2, we see that
the n entries of L1 corresponding to the entry h in L2 form a transversal of L1

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50005-2
Copyright © 2015 A. Donald Keedwell. Published by Elsevier B.V. All rights reserved.
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(which we defined in Section 1.5). In Figure 5.1.1, the elements of a transversal
are shown enclosed in boxes.

It is immediately obvious from these remarks that

Theorem 5.1.1 A latin square of order n possesses an orthogonal mate1 if and
only if it has n disjoint transversals.

As well as searching for pairs of orthogonal latin squares we can consider
the problem of constructing sets of more than two latin squares (of the same
order) with the property that each pair of the set is an orthogonal pair. Such
a set is called a set of mutually orthogonal latin squares, often abbreviated in
the literature to MOLS. The name pairwise orthogonal latin squares (POLS) has
also been used. See, for example, Heinrich(1979) and Owens(1992).

It is worthwhile to comment at this point on the effect of applying isotopisms,
which we defined in Section 1.3, to the squares of a set of MOLS. Firstly, or-
thogonality of the set is unaffected by relabelling the symbols in any or all of the
squares. This is because the definition of orthogonality does not depend on the
symbols used, only on their positions. But, while it is legitimate to permute the
symbols, reordering the rows or columns of one square in a set of MOLS will usu-
ally destroy the orthogonality property. However, orthogonality will be preserved
if the same isotopism is applied to all the squares simultaneously. For, when any
one square is superimposed on any other, each ordered pair of symbols occurs
exactly once if the squares are orthogonal, and these ordered pairs are preserved
by the simultaneous reordering of the rows or columns. Thus, by changing the
symbols in each of the squares separately to 1, 2, ... , n in suitable order, we can
make the first row of each square take natural order of these integers. Then, by
re-arranging the rows (other than the first) in all the squares simultaneously, we
can arrange that the first column of one of the squares is also in natural order
1, 2, . . . , n.

Hence, we have:

Definition. A set of MOLS is said to be a standardized set [see Bose and
Nair(1941)] when, in the first rows of all the squares, the symbols are in natural
order, and when, in addition, the symbols of the first column of one of the squares
are in natural order. A single latin square is said to be in standard form or to be
reduced when the symbols of both its first row and its first column are in natural
order, as we have already mentioned in Section 1.1.

As an example, we may standardize the squares of Figure 5.1.1 in the follow-
ing way: Rename the symbols 2, 3, 1 of L1 as 1, 2, 3 respectively and also rename
the symbols 2, 1, 3 of L2 as 1, 2, 3 respectively. This gives a standardized set with
the square L2 in standard form. If it is desired to have the square L1 in standard
form, interchange the second and third rows of both the squares simultaneously.

1The descriptive term orthogonal mate for a latin square L2 which is orthogonal to a given
latin square L1 was first used by Parker(1963).
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A natural question to ask is how large a set of MOLS can be. We can answer
this as follows:

Theorem 5.1.2 Not more than n−1 mutually orthogonal latin squares of order
n exist.

Proof. Each of the squares may have its symbols renamed without affecting
the orthogonality of the set. By such renamings, we may arrange that the symbols
which occur in the first rows of all the squares are 1, 2, . . . , n in natural order as
above. [See also Mann(1942).] The symbols in the first cells of the second rows
of the squares must then all be different: for suppose two of them were the same,
both containing the symbol r, say. Then the ordered pair (r, r) would occur in
both the (1, r)-th position and the (2, 1)-th position in the two squares and the
squares could not be orthogonal. None of the squares can have the symbol 1 as
the entry in the first cell of the second row, otherwise this symbol would occur
twice in the first column of that square. Thus, at most n−1 mutually orthogonal
squares can exist corresponding to the n − 1 different symbols distinct from 1
which can appear in the first cells of their respective second rows.2 ⊓⊔

Since no larger set is possible, a set of MOLS achieving the bound in The-
orem 5.1.2 is said to be complete, see Bose and Nair(1941). We study complete
sets of MOLS in the next section.

If a latin square is the multiplication table of a group then we know more
about its structure and hence we can strengthen Theorem 5.1.1. In that case,
the existence of a single transversal is sufficient, by Theorem 1.5.2, to guarantee
existence of an orthogonal mate.

Theorem 5.1.3 Let L be a Latin square based on a finite group G. The following
statements are equivalent.

(i) G has a complete mapping (as defined in Section 1.5),

(ii) L has a transversal,

(iii) L can be decomposed into disjoint transversals,

(iv) There exists a Latin square orthogonal to L.

Moreover, in the Cayley table of a group of odd order, the entries of the
leading diagonal always form a transversal if the row and column borders are
ordered in the same way by Theorem 1.5.3, so we have:

Theorem 5.1.4 The multiplication table of any group of odd order forms a latin
square which possesses an orthogonal mate.

Corollary. There exist pairs of orthogonal latin squares of every odd order.

A result due to Mann(1944) which applies to all quasigroups, not only to
groups, and which is in contrast to this is the following:

2An interesting alternative proof of this theorem is in Liang(201?).
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Theorem 5.1.5 If a latin square L of order 4k + 2 represents the Cayley table
of a quasigroup which contains a subquasigroup of order 2k + 1 then L has no
orthogonal mate.

Proof. This is just a special case of Theorem 4.5.1 because such a square is
of 2-step type. ⊓⊔

However, Mann’s theorem of 1944, which we give next, was a refinement of
Theorem 5.1.5 and contained results applicable to both even and odd orders.

Theorem 5.1.6 (a) Let L be a latin square of order 4n + 2 whose entries are
the symbols 1, 2, . . . , 4n+ 2. Then if L contains a (2n+ 1)× (2n+ 1) submatrix
A such that less than n+1 of its cells contain elements distinct from the symbols
1, 2, . . . , 2n+ 1, L has no orthogonal mate.

(b) Let L be a latin square of order 4n + 1 whose entries are the symbols
1, 2, . . . , 4n + 1. Then, if L contains a 2n × 2n submatrix A such that less than
n/2 of its cells contain elements distinct from the symbols 1, 2, . . . , 2n, L has no
orthogonal mate.

Proof. (a) We may suppose that the rows and columns of L have been re-
arranged so that the submatrix A occurs in the first 2n+ 1 rows and columns.

Let L =

(

A B
C D

)

, where each of A,B,C,D is a (2n+ 1)× (2n+ 1) submatrix.

Suppose that the symbol x occurs r times in the submatrix A. In that case,
since x must appear exactly once in each of the first 2n + 1 rows of L, it must
appear (2n + 1) − r times in the submatrix B. But then, since x must appear
exactly once in each of the last 2n+1 columns of L, it must appear r times in the
submatrix D. Thus, each symbol of L appears as many times in the submatrix
D as it does in the submatrix A and an even number of times among the cells
of A and D combined.

Let k (< n + 1) be the number of cells of A which contain entries different
from the symbols 1, 2, . . . , 2n + 1. From what we have just said, it follows that
there must be just k cells of D also which contain entries distinct from the
symbols 1, 2, . . . , 2n+ 1. (Each “foreign” symbol which occurs in A occurs in D
an equal number of times.) Since each of the symbols 1, 2, . . . , 2n+1 occurs in L
altogether 4n+2 times and since A and D combined contain (2n+1)× (4n+2)
cells, there exist exactly 2k cells not in A or D whose entries are among the
subset of symbols 1, 2, . . . , 2n+ 1. Now let us suppose that L has an orthogonal
mate L∗ and consequently has 4n+ 2 disjoint transversals. Then the preceding
remarks imply that at least 4n+2−2k transversals have the 2n+1 of their cells
which contain the symbols 1, 2, . . . , 2n + 1 included among the cells of A or D.
Also, since only 2k of the cells of A and D combined contain symbols distinct
from 1, 2, . . . , 2n+ 1, at most 2k transversals of L have cells containing symbols
other than 1, 2, . . . , 2n+1 in A or D. Therefore, not less than (4n+2− 2k)− 2k
transversals have the 2n+1 of their cells which contain the symbols 1, 2, . . . , 2n+1
included among the cells of A and D and have no other cells in A or D. For
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k < n + 1, this number of transversals is at least two and is even. The cells of
L∗ which correspond to the cells of such a transversal of L all contain the same
symbol w, say. So, in L∗, w occurs 2n + 1 times (that is, an odd number of
times) among the cells of A∗ and D∗ combined. (We suppose that L∗ has been
partitioned in the same way as L.) But, as shown above for L, this is impossible.
This contradiction shows that no orthogonal mate L∗ can exist for L if k < n+1.

(b) As before, we may suppose that the rows and columns of L have been
re-arranged so that the submatrix A occurs in the first 2n rows and columns. Let

L =

(

A B
C D

)

, where A, B, C, D are submatrices of sizes 2n× 2n, 2n× (2n+1),

(2n+1)×2n, (2n+1)× (2n+1) respectively. Suppose that the symbol x occurs
r times in the submatrix A. In that case, by an argument similar to that of (a),
it must occur 2n− r times in the submatrix B and (2n+ 1)− (2n− r) = r + 1
times in the submatrix D. That is, any symbol occurs an odd number of times
among the cells of A and D combined. In particular, a symbol x that does not
occur in the submatrix A at all occurs exactly once in the submatrix D.

Let k (< n/2) be the number of cells of A which contain entries distinct from
the symbols 1, 2, . . . , 2n. If these entries are all the same, equal to the symbol x
say, the symbol x occurs k+1 times in D and the (4n+1)−2n−1 symbols of L
which do not occur at all in A, each occur just once inD, so there exist (k+1)+2n
cells of D which contain symbols distinct from 1, 2, . . . , 2n and 2k+ 1+ 2n cells
of A and D combined which contain such symbols. If, on the other hand, the
k cells of A which contain entries distinct from 1, 2, . . . , 2n all contain different
symbols, say the symbols x1, x2, . . . , xk, then each of these symbols occurs twice
in D and D also has (4n+1)−2n−k further cells which contain symbols distinct
from 1, 2, . . . , 2n, equal to the number of symbols of L which do not occur at all
in A. Thus, in this case, there exist k + 2k + [(4n+ 1) − 2n− k] = 2n+ 2k + 1
cells of A and D combined which contain entries distinct from 1, 2, . . . , 2n. If the
symbols in the k cells of A under discussion are some different and some the
same, we shall still get the number 2n + 2k + 1 of cells of A and D combined
which contain symbols distinct from 1, 2, . . . , 2n.

Since each of the symbols 1, 2, . . . , 2n occurs 4n + 1 times in L and since A
and D have (2n)2 + (2n + 1)2 cells all together of which at most 2n + 2k + 1
contain symbols distinct from this subset, there exist at most (4n + 1)2n −
[(2n)2 + (2n + 1)2 − (2n + 2k + 1)] = 2k cells not in A or D whose entries are
among the subset of symbols 1, 2, . . . , 2n. If L had an orthogonal mate L∗, it
would have 4n + 1 disjoint transversals. Of these, at least (4n + 1) − 2k would
have the 2n of their cells which contain the symbols 1, 2, . . . , 2n included among
the cells of A and D. Also, at most 2n + 2k + 1 transversals could have cells
containing symbols other than 1, 2, . . . , 2n included among the cells of A or D
and so at least (4n + 1) − 2k − (2n + 2k + 1) = 2n − 4k of the transversals
would have the 2n of their cells which contain the symbols 1, 2, . . . , 2n included
among the cells of A and D and have no other cells in A or D. For k < n/2,
this number of transversals is at least two [= 2n − 4(n/2 − 1/2)]. The cells of
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L∗ which correspond to the cells of such a transversal of L all contain the same
symbol x. So, in L∗, x occurs 2n times (that is, an even number of times) among
the cells of A∗ and B∗, which (compare part (a)) gives us a contradiction. ⊓⊔

M.Hall(1967) contains an interesting alternative proof of the above theorem,
using orthogonal arrays.

It has been shown by Ostrowski and Van Duren(1962) that Mann’s result (a)
is “best possible”. With the aid of a computer, these authors have constructed
a pair of orthogonal latin squares L and L∗ of order 10 such that one square
L of the pair contains a 5 × 5 submatrix A with only 3 entries distinct from
the symbols 1, 2, 3, 4, 5, thus showing that for a square L with n = 2 and
k = n + 1 = 3, an orthogonal mate can exist. The squares are as exhibited in
Figure 5.1.2

A result similar to that just proved but applicable to MOLS of order 4k + 3
has been given by Drake(1977) and is proved on page 30 of [DK2].

1 2 3 4 5 6 7 8 9 0
4 5 1 2 3 8 0 9 7 6
5 4 2 3 1 0 8 7 6 9
2 3 5 1 8 9 6 4 0 7
3 1 4 8 6 7 9 0 5 2
6 8 7 0 9 4 5 2 3 1
9 0 8 6 7 2 3 1 4 5
7 6 0 9 2 5 4 3 1 8
0 9 6 7 4 1 2 5 8 3
8 7 9 5 0 3 1 6 2 4

1 2 0 3 4 9 5 7 6 8
7 8 9 0 6 3 4 2 1 5
0 4 8 5 7 6 9 3 2 1
4 9 3 6 5 8 0 1 7 2
2 5 6 1 8 4 7 0 9 3
3 6 7 2 0 5 1 9 8 4
5 1 2 4 9 7 3 8 0 6
6 7 5 9 1 2 8 4 3 0
9 3 1 8 2 0 6 5 4 7
8 0 4 7 3 1 2 6 5 9

Fig. 5.1.2.

Also, Parker(1962b) proved the following interesting theorem:

Theorem 5.1.7 If a set of t MOLS of order n has a set of t mutually orthogonal
latin subsquares of order u (u ≤ n), then n ≥ (t+1)u. Moreover, if a latin square

orthogonal to all t squares exists, then u ≤ n−u
t+1 + ⌊u2

n ⌋.
In the next section, we explain a deduction from this theorem which has a

close connection with a well-known result of Bruck concerning projective planes.
Let us remark here that a latin square which has no orthogonal mate has been

called a bachelor square. Such squares are discussed in more detail in Section 9.1.
Notice that the result of Theorem 5.1.5 alone ensures that the Cayley table of

a group of order 4k+2 cannot possess a transversal, because such a group always
has a subgroup of order 2k + 1 as we may easily see by considering the regular
permutation representation of the group. For, certainly the group has elements of
order two. These are represented by products of 2k+1 transpositions; that is, by
odd permutations. The product of two odd permutations is even, so the regular
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representation contains both odd and even permutations. But, in a permutation
group which contains both odd and even permutations, the even permutations
form a subgroup of index two.

The question of which group-based latin squares possess an orthogonal mate
has only recently been answered completely. Existence of a complete mapping in
the group is sufficient (and necessary) as already remarked and it is known that
such mappings exist if and only if the group has non-cyclic Sylow 2-subgroups.
See Section 2.5 for details.

It seems that the basic result given in the statement of Theorem 5.1.5 itself
was known to Euler. Euler(1779) had successfully constructed pairs of orthogonal
latin squares of odd order and also had a construction for pairs of order equal to
any multiple of four. However, he had failed to find a construction which would
yield pairs of order an odd multiple of two: in particular, of orders six and ten.
He therefore posed the following problem.

“Thirty-six officers of six different ranks and taken from six different regi-
ments, one of each rank in each regiment, are to be arranged, if possible, in a
solid square formation of six by six, so that each row and each column contains
one and only one officer of each rank and one and only one officer from each
regiment.”3

As will readily be seen, the problem is soluble if and only if there exists a
pair of orthogonal latin squares of order six. When no solution was forthcoming,
Euler made (in 1782) the bold conjecture that no pairs of MOLS exist of any
order n which is an odd multiple of two.

In 1900, by systematic enumeration of cases, Tarry(1900a,b,c,d) proved that
no pair of MOLS of order six can exist. In more recent years, several much shorter
proofs of the same result have been published. See Fisher and Yates(1934), Ya-
mamoto(1954), Rybnikov and Rybnikova(1966), McCarthy(1976), Betten(1983,
1984), Stinson(1984), Dougherty(1994) and Appa, Magos and Mourtos(2004).

It was almost 180 years before the original conjecture made by Euler was
finally resolved although fallacious proofs of the truth of his conjecture were
published by several authors: notably by Petersen(1902), Wernicke(1910) and
MacNeish(1922). [See also Fleischer(1934).] An explanation of the error in Wer-
nicke’s proof was given by MacNeish(1921) and also by Witt(1939). [Further
details of the early history of the problem will be found in H.W.Norton(1939).]

The reader may also be interested to look at a series of notes concerning the
problem which were published in the Intermédiaire des Mathématiciens in the
1890s. These are, in date order, as follows: Loriga(1894), Maillet(1894a,1895),
Akar(1895), Laugel(1896), Brocard(1896), Heffter(1896), Barbette(1898), Del-
lanoy and Barbette(1898), Tarry(1899), and Lemoine(1899,1900).

The first step in the resolution came in 1958 when Bose and Shrikhande(1959)

3For a generalization of the problem of the 36 officers, see Rao(1961).
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managed to construct an orthogonal mate for a certain latin square of order 22.4

Shortly afterwards, Parker(1959a,b) used a different construction to obtain an
orthogonal mate for a square of order 10. Then, in a combined paper, Bose,
Shrikhande and Parker(1960) proved that the Euler conjecture is false for all
odd multiples of two except the values n = 2 and n = 6. All these results were
obtained with the aid of statistical designs and we gave a full account of them
in [DK1].

5.2 Complete sets of orthogonal latin squares and projective planes

The question, for which values of n do sets of n−1 mutually orthogonal latin
squares exist, is still an open one. However, three important facts bearing upon
this question are known. In the first place, a set of n−1 mutually orthogonal latin
squares of order n exists if and only if there exists a finite projective plane of order
n. More precisely, every finite projective plane of order n defines and is defined
by such a set of squares. This result was first proved by Bose(1938). Alternative
proofs will be found in Mann(1944), Keedwell(1966) and Martin(1968). Secondly,
it is well known that a finite projective plane of order n exists whenever n is a
prime power but, up to the present, no finite projective plane of non-prime power
order has been discovered. Thirdly, Bruck and Ryser(1949) have shown that, for
a certain infinite set of values of n, there cannot exist any projective plane of
order n. The proofs of these three results appear in theorems 5.2.2, 5.2.3 and
5.2.6 below.

As regards the non-existence of projective planes, MacInnes(1907) proved by
direct combinatorial arguments that no finite projective plane of order 6 could
exist though in fact, of course, this result was already implicit in Tarry’s proof of
seven years earlier that no orthogonal pair of latin squares of order 6 exists. The
non-existence of a plane of order 6 was also implicit in a paper of Safford(1907),
published in the same year, and an elementary proof of the non-existence has
been given by Rybnikova and Rybnikov(1966).

Safford’s paper gave a proof that the following problem, proposed by Veblen
and arising from an earlier problem of diophantine analysis, had no solutions.
The problem was that of arranging, if possible, 43 distinct objects in 43 sets of
seven each in such a way that every pair of objects should lie in one and only one
set of seven. It would then follow that each two of the sets of seven would have
in common one and only one object. In effect Veblen was asking for a projective
plane of order 6 since such a plane would necessarily have 43 lines with seven
points on each line.

No further results concerning non-existence were obtained until 1949. In that
year, Bruck and Ryser(1949) showed that, when n is congruent to 1 or 2 modulo
4 and the square free part of n contains at least one prime factor of the form
4k + 3, there does not exist a finite projective plane of order n. This result

4In Bose and Shrikhande(1960), the original counter-example for n = 22 was generalized to
give pairs of MOLS of all orders n of the form 36m+ 22.
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excludes the possibility of the existence of a complete set of latin squares for
the orders n = 6, 14, 21, 22, 30 and so on. The only other non-existence result
known at the present time is the non-existence of a projective plane of order 10.
The reader is referred to Chapter 11 of [DK2] for a discussion of this result, and
other results on existence and non-existence of planes of small orders. But see
also page 174 of this section.

We remind the reader that a projective plane comprises a set of elements called
points and a set of elements called lines (which may conveniently be thought of
as subsets of the points) with a relation called incidence connecting them such
that each two points are incident with (belong to) exactly one line, and each
two lines are incident with (have in common) exactly one point. The plane is
non-degenerate if there are at least four points no three of which belong to the
same line: that is, if the plane contains a proper quadrangle. It will be assumed
from now on that all projective planes to be discussed are non-degenerate. If
a non-degenerate plane has a finite number of points on one line, it is called a
finite projective plane.

Theorem 5.2.1 A finite projective plane π necessarily has the same number
n + 1 of points on every line, has n + 1 lines through every point, and has
n2 + n+ 1 points and n2 + n+ 1 lines altogether.

Fig. 5.2.1.

Proof. Since π is a finite projective plane it has some line L containing a
finite number, say n+ 1, of points. Let M be any other line (Figure 5.2.1) and
P a point not on L or M. (Such a point exists because π contains a proper
quadrangle.) The lines joining P to the n+ 1 points of L intersect M in n+ 1
distinct points. M cannot contain further points otherwise there would be more
than n+1 lines through P and they would not all meet L. Since every point of π
is on one of the n+1 lines through P (because there is a unique line joining any
two points) and since each such line contains n points other than P , there are
n(n+1)+ 1 points all together. Since there are n+1 lines through the point P ,
repetition of the argument with the roles of point and line interchanged shows

 The concept of orthogonality



168

that there are n+1 lines through every point and n(n+1)+1 lines all together.
⊓⊔

Definition. A finite projective plane having n + 1 points on every line is said
to be of order n.

It may seem perverse not to define the order of the plane to be the number n
of points on each line but the definition just given is more natural in consequence
of our next result.

Theorem 5.2.2 Every finite projective plane of order n defines at least one
complete set of MOLS of order n; and conversely a complete set of MOLS of
order n defines a finite projective plane.

Fig. 5.2.2.

Proof. Let G be a finite projective plane with n+ 1 points on every line. We
pick5 any line L of G and call it the line at infinity. Let A, E, B1, B2, . . . , Bn−1

be the points of L = l∞. Through each of these points there pass n lines other
than l∞. We label these lines as follows: a1, a2, . . . , an are the lines through A;
e1, e2, . . . , en are the lines through E; bj1, bj2, . . . , bjn are the lines through Bj .
Every finite point P (h, i) can then be identified with a set of n + 1 numbers
(h, i, k1, k2, . . . , kn−1) describing n + 1 lines eh, ai, b1k1 , b2k2 , . . . , bn−1,kn−1

with
which it is incident, one through each point of l∞. A complete set of orthogonal
latin squares can now be formed in the following way: in the j-th square, put

5The ambiguity in this choice is one reason why a projective plane may possibly define more
than one set of MOLS up to equivalence. See below for the definition of equivalence.
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kj in the (h, i)-th place. Each square is latin since, as h varies with i fixed, so
does kj and, as i varies with h fixed, so does kj . Each two squares Lp and Lq are
orthogonal: for suppose that k were to appear in the (h1, i1)-th place of Lp and
also in the (h2, i2)-th place and that l were to appear in the corresponding places
of Lq. This would imply that the lines bpk and bql both passed through the two
points (h1, i1) and (h2, i2) in contradiction to the axioms of G. This construction
is depicted in Figure 5.2.2.

Conversely, we may show that a complete set of mutually orthogonal latin
squares of order n defines a plane of order n. From the given complete set of
latin squares, we may define a set of n2 “finite” points (h, i), h = 1, 2, . . . , n;
i = 1, 2, . . . , n; where the point (h, i) is to be identified with the (n + 1)-tuple
(h, i, k1, k2, . . . , kn−1), kj being the entry in the h-th row and i-th column of
the j-th latin square Lj . We form n2 + n lines bjk, j = −1, 0, 1, 2, . . . , n − 1;
k = 1, 2, . . . , n; where bjk is the set of all points whose (j + 2)-th entry is k and
b−1k ≡ ek, b0k ≡ ak. Thus, we obtain n + 1 sets of n parallel6 lines. From the
orthogonality of the latin squares, it follows that two non-parallel lines intersect
in one and only one point.

We adjoin one point to each set of parallels and let this additional point lie
on every line of the set. These additional points E,A,B1, B2, . . . , Bn−1 form the
line at infinity. Two lines then intersect in one and only one point. From this,
and the fact that n+1 lines pass through every point, it follows that two points
have at least one line in common. For, suppose on the contrary that the points
Q,R have no line in common. Each of the n + 1 lines through Q meets each of
the n+ 1 lines through R in a point. This gives a total of (n+ 1)2 > n2 + n+ 1
points all together, no two of which can coincide, otherwise two lines through Q
would have a second intersection. This contradiction shows that two points have
at least one line in common. It follows at once that they have exactly one line in
common.

Thus, we obtain a finite projective plane with n+ 1 points on every line. ⊓⊔
As an example, a complete set of MOLS of order 4 and the corresponding

projective plane of order 4 are shown in Figure 5.2.3. The following 21 sets of 5
collinear points are the lines of this plane:

a2 a3 b1 c1 d1
a3 a1 b2 c2 d2
a1 a2 b3 c3 d3
b1 b2 b3 v w
c1 c2 c3 w u
d1 d2 d3 u v

a1 b1 e1 f1 u
a2 b2 e2 f2 u
a3 b3 e3 f3 u
a1 c1 e3 f2 v
a2 c2 e1 f3 v
a3 c3 e2 f1 v
a1 d1 e2 f3 w
a2 d2 e3 f1 w
a3 d3 e1 f2 w

b1 c2 d3 e2 e3
b2 c3 d1 e3 e1
b3 c1 d2 e1 e2
b1 c3 d2 f2 f3
b2 c1 d3 f3 f1
b3 c2 d1 f1 f2

6We call two lines parallel if they have no finite point in common.
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Fig. 5.2.3.
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Before proceeding further, we need to say what we mean by equivalence of
sets of MOLS.

Definition. Two latin squares are called equivalent if one can be obtained
from the other by re-naming the symbols and/or reordering the rows and/or
the columns: that is, if they (and the quasigroups whose multiplication tables
they represent) are isotopic (see Section 1.3). Two sets of MOLS of the same
order are equivalent if the numbers of squares in the two sets are the same and if
one set of squares can be obtained from the other by applying one permutation
to the rows of each square, a second to the columns of each square, and then
permuting the symbols in each square separately.

Theorem 5.2.3 For every integer n that is a power of a prime number, there
exists at least one projective plane of order n (and consequently at least one
complete set of MOLS of order n).

Proof. It is well known that, corresponding to each integer n which is a prime
power n = pr, there exists a Galois field F = GF [pr], unique up to isomor-
phism, which has pr elements. For the points of our projective plane π, we take
the totality of homogeneous co-ordinate vector triples x = (x0, x1, x2) where
x0, x1, x2 are any three elements of F , not all zero, and where the triples x and
λx represent the same point for all λ 6= 0 in F . We define the line joining the
points Y (y0, y1, y2) and Z(z0, z1, z2) as consisting of the set of all points whose
co-ordinate vectors λy+ µz are linear combinations of those of Y and Z, where
λ and µ are in F . It is then easy to check that if W is a point of the line Y Z,
the lines WZ and Y Z are the same. That is to say, a line is a well-defined con-
cept. Since each point of the line Y Z except Z itself includes among its possible
co-ordinate vectors one of the form y+ νz and since ν takes pr values, each line
contains pr + 1 points.

Since each of x0, x1, x2 may take any of pr values, except that the vector
(0, 0, 0) is to be excluded, and since each point can be represented by pr − 1
different vectors, corresponding to the pr − 1 possible non-zero choices of λ,
there are a total of

p3r − 1

pr − 1
= p2r + pr + 1 = n2 + n+ 1

points all together.
The line Y Z consists of the totality of points whose co-ordinate vectors

(x0, x1, x2) satisfy the relation
∣

∣

∣

∣

∣

∣

x0 x1 x2
y0 y1 y2
z0 z1 z2

∣

∣

∣

∣

∣

∣

= 0

since they are linear combinations of the co-ordinate vectors of Y and Z. We say
that
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l0x0 + l1x1 + l2x2 = 0, where li =

∣

∣

∣

∣

yj yk
zj zk

∣

∣

∣

∣

and i, j, k are a cyclic rearrangement of 0, 1, 2 is the equation of the line and
that [l0, l1, l2] are its line co-ordinates. The sets of line co-ordinates [l0, l1, l2] and
[λl0, λl1, λl2] represent the same line for all non-zero λ in F and hence, by the
same argument as for points, there exists a total of n2 + n+ 1 lines in π.

It is an immediate consequence of the definition of a line that any two points
of π are incident with exactly one line and also, since just one set of ratios
x0 : x1 : x2 satisfies the equations of two distinct lines simultaneously, each two
lines of π are incident with exactly one point. Moreover, it is easy to see that,
even when F = GF [2], there exist at least four points no three of which are on
the same line. Thus, π is a projective plane of order n = pr. ⊓⊔

Definition. A projective plane which is constructed in the manner just de-
scribed is called a Galois plane.

For example, the plane of order 4 exhibited in Figure 5.2.3 is a Galois plane
and the co-ordinates of its 21 points are as follows (where α satisfies the equation
α2 = α+ 1 and addition is modulo 2):

a1 = (1, 0, 0)
a2 = (0, 1, 0)
a3 = (0, 0, 1)
b1 = (0, 1, 1)
b2 = (1, 0, 1)
b3 = (1, 1, 0)

c1 = (0, 1, α)
c2 = (α, 0, 1)
c3 = (1, α, 0)
d1 = (0, α, 1)
d2 = (1, 0, α)
d3 = (α, 1, 0)

e1 = (α, 1, 1)
e2 = (1, α, 1)
e3 = (1, 1, α)
f1 = (α2, 1, 1)
f2 = (1, α2, 1)
f3 = (1, 1, α2)

u = (1, 1, 1)
v = (1, α, α2)
w = (1, α2, α)

It follows from Theorem 5.2.2 and Theorem 5.2.3 that, if p is a prime number
and r any integer, a set of pr − 1 MOLS of order pr can always be constructed.
Bose(1938) and Stevens(1939) independently gave methods of construction for
any given case but it has come to light in more recent years that Moore(1896)
had obtained a similar construction nearly 40 years earlier. These constructions
are equivalent to the following:

Theorem 5.2.4 Let the elements of the Galois field GF [pr] be denoted by α0 =
0, α1 = 1, α2 = x, α3 = x2, . . . , αpr−1 = xp

r−2, where x is a generating element
of the multiplicative group of GF [pr]. For k = 1, 2, . . . , pr − 1 define a latin
square Lk in which, for i, j = 0, 1, . . . , pr − 1, the entry in row i and column j is
αi + αkαj. Then the Lk form a complete set of MOLS of order pr.

Proof. It is evident that no two elements of the j-th column of Lk can be the
same. If two elements of the i-th row were the same we would have αkαj1 = αkαj2
for some j1 6= j2. Since αk 6= 0 it has an inverse so αj1 = αj2 , which is a
contradiction. Thus each square Lk is latin.

Next, suppose that two distinct squares La and Lb are not orthogonal. There
must be two places, say the (s, t)-th and (u, v)-th places, in which the same
entry occurs in both squares. We have αs +αaαt = αu + αaαv and αs +αbαt =
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αu + αbαv. By subtraction, this leads to (αa − αb)(αt − αv) = 0. This implies
that t = v and hence also s = u, since by hypothesis a 6= b. Thus the positions
(s, t) and (u, v) are not distinct and the supposition that two of the squares are
not orthogonal is untenable. ⊓⊔

An important property of the MOLS just constructed is stated in the next
theorem.

Theorem 5.2.5 Let L1, L2, . . . , Lpr−1 be the MOLS constructed in Theorem 5.2.4.
Then all the squares have the same first column and their remaining columns are
cyclic permutations of those of L1.

Proof. The entry in row i and column 0 of Lk is αi + αkα0 = αi, because
α0 = 0. Therefore, the first column of each square is in natural order 0, 1, ...
, pr − 1 of the suffices i. Moreover, the entry in row 0 and column j of L1 is
α0 + α1αj = αj so this too is in natural order of the suffices. Thus, the MOLS
are a standardized set (relative to columns).

Also, αa = xa−1 for a 6= 0, where x is a generating element of the multiplica-
tive group of GF [pr] and so, for j 6= 0 and k 6= 0, we have αkαj = xk−1+j−1 = αt
where t ≡ j + k − 1 mod pr − 1, and 1 ≤ t ≤ pr − 1. It follows that the j-th
column of Lk, which is

α0 + αkαj , α1 + αkαj , α2 + αkαj , . . . , αpr−1 + αkαj ,

is the same as the t-th column

α0 + αt, α1 + αt, α2 + αt, . . . , αpr−1 + αt

of L1 In other words, the columns of L2, L3, . . . , Lpr−1 are obtained by permuting
the columns of L1 as claimed. ⊓⊔

It is relevant to consider at this point whether other sets of pr − 1 MOLS
of order pr exist which are mathematically distinct from the set which we have
constructed above; for example, a set in which the columns of L2, L3, . . . , Lpr−1

cannot be obtained by cyclically permuting the columns of L1.
In consequence of Theorem 5.2.2, the question of whether there exist complete

sets of MOLS other than those of Theorem 5.2.4 is related to the question of
whether there exist finite projective planes of order pr which are isomorphically
distinct from the Galois plane of that order. However, the former question also
involves some subtleties concerning equivalent sets of MOLS which were explored
by Owens and Preece(1995,1997). In the first of these papers they showed that
up to equivalence, under the definition given on page 171, there are precisely
19 different complete sets of MOLS of order nine. This is despite the fact that
there are, up to isomorphism, only four projective planes of order nine7. When
we look at the construction described in the proof of Theorem 5.2.2, we see that

7For more details, see below.
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the pivotal decisions are the choice of the line at infinity and of the points A
and E on that line; different choices of l∞, A or E can lead to non-equivalent
sets of MOLS. Owens(1992) had earlier discovered five transformations which
together are capable of converting any complete set of MOLS associated with a
projective plane into any other complete set of MOLS associated with either the
same plane or its dual. These transformations are described in more detail on
page 367 of [DK2].

It is known that for each of the prime power orders up to and including eight,
no plane other than the Galois plane of that order exists. For the orders 2, 3
and 4, this was first shown by Veblen and Wedderburn(1907); for the order 5, by
MacInnes(1907) by a somewhat laborious enumeration of cases. A short proof
was later given by Mann(1944).

Bose and Nair(1941) deduced the non-existence of projective planes of order
7, other than the Galois plane of that order, from an examination of the (incom-
plete) list of 7×7 latin squares in H.W.Norton(1939). As explained in Section 4.3,
the list was later completed by Sade(1951a,b), but this did not affect the result.
A properly geometrical proof was not given until 1953 (corrected in 1954) and
was due to the combined efforts of Pierce(1953) and M.Hall(1953,1954).

Computers were indispensable in settling the number of different projective
planes of orders 8, 9 and 10. The uniqueness of the projective plane of order 8 was
shown by M.Hall, Swift and Walker(1956). The method adopted by these authors
again made use of the list of 7 × 7 squares compiled by Norton and completed
by Sade. There are exactly four isomorphically distinct planes of order 9, as was
shown by Lam, Kolesova and Thiel(1991). For more details of these planes, see
Section 8.2. The non-existence of a projective plane of order 10 was shown by
Lam, Thiel and Swiercz(1989). A popular account of the proof can be found in
Lam(1991). For more details, see pages 377-380 of [DK2].

Also, it is known that at least two isomorphically distinct planes exist for
all orders pr, p odd and r ≥ 2, and for all orders 2r, r ≥ 4 [see chapter 12 of
M.Hall(1967)]. Certain of these planes are represented by complete sets of latin
squares in which the rows (columns) of L2, L3, . . . , Lpr−1 are not a reordering of
those of L1. That is, there exist complete sets of MOLS in which the squares are
not all isotopic to each other.

We shall make further mention of these matters in later chapters of this book,
but for detailed information concerning the theory of finite projective planes the
reader is referred in particular to Hirschfeld(1998), Hughes and Piper(1973) and
Kárteszi(1966,1972,1976).

It is relevant at this point to mention two unsolved problems. Since every
known finite projective plane has order n = pr, p prime, and can be represented
as a set of n − 1 MOLS of order n based on the elementary abelian group of
order n, we may ask:

(i) Is it true that there do not exist sets of n− 1 MOLS of order n based on
a cyclic group unless n is prime?
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(ii) If m(n) denotes the maximum number of MOLS of order n, none of which
satisfies the quadrangle criterion, what is the value of m(n)?

At this point in the first edition, [DK1], of this book a conjecture of Schönheim
relating to (ii) was stated. The conjecture was that m(n) < n−1 for every n ≥ 3.
However, this is disproved by Figure 8.4.3 of [DK1] which purported to represent
the eight MOLS of the Hughes plane of order 9. In fact, these MOLS represent
the dual translation plane of that order. See Section 8.2.

We end the present discussion of finite planes by proving the important The-
orem 5.2.6, known as the Bruck-Ryser theorem [see Bruck and Ryser(1949)].

Before doing so, we draw attention to the promised similarity between the
well-known result due to Bruck(1955) that “If a finite projective plane of order
n contains a projective subplane of order r, with r < n, then n ≥ r2; if n > r2,
then n ≥ r2 + r” and the following deduction from Theorem 5.1.7. “If a set of
r−1 MOLS of order n has a set of r−1 mutually orthogonal latin subsquares of
order r (r < n), then n ≥ r2; If n > r2, a necessary condition that there exists a
further latin square of order n orthogonal to all those given is that n ≥ r2 + r.”
The latter result is obtained by putting t = r − 1 and u = r in Theorem 5.1.7.

Theorem 5.2.6 If n is a positive integer congruent to 1 or 2 modulo 4, there
cannot exist any finite projective plane of order n unless n can be expressed as
a sum of two integer squares, n = a2 + b2. Equivalently, if n ≡ 1 or 2 modulo
4 and if the square-free part of n contains at least one prime factor p which is
congruent to 3 modulo 4, there does not exist a finite projective plane of order n.

Proof. We shall need two theorems from number theory concerning the rep-
resentation of an integer as a sum of squares.

Theorem A. A positive integer is expressible as a sum of two integer squares if
and only if each of its prime factors of the form 4k+3 occurs as a factor an even
number of times. In particular, every prime of the form 4k + 1 is representable
as a sum of two squares.

Theorem B. Every natural number is representable as the sum of (at most) four
integer squares.

Proofs of these two theorems will be found, for example, in chapter 5 of
Davenport(2008). The equivalence of the two statements of Theorem 5.2.6 follows
immediately from theorem A.

To prove Theorem B it suffices to prove the result for primes and then invoke
the identity

(a2+ b2 + c2 + d2)(A2 +B2 + C2 +D2)

= (aA+ bB + cC + dD)2 + (aB − bA− cD + dC)2 + (5.1)

(aC − bD − cA− dB)2 + (aD − bC + cB − dA)2.

For the proof of Theorem 5.2.6, we observe that the number of points and
lines of a projective plane π of order n are each equal to N = n2 +n+1 (as was
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shown in Theorem 5.2.1). For i = 1 to N let xi be a variable over the rational
numbers associated with the point Pi of π and let the lines of π be denoted by
Lj , for j = 1 to N . We define incidence numbers aij as follows: aij = 1 if Pi and
Lj are incident and aij = 0 otherwise. The N × N matrix A = ||aij || is then
called the incidence matrix of the plane π, and it is easy to show that

AAT = ATA = nI + J (5.2)

where the superscript T denotes transpose, I is the N×N identity matrix and J
is an N ×N matrix consisting entirely of 1’s. However, for the present proof it is
more convenient to express the content of the identity (5.2) in terms of quadratic
forms.

With the line Lj we associate the linear form

Lj =

N
∑

i=1

aijxi,

which we may also denote by Lj without confusion. Here the aij and xi are
defined as above. Then

N
∑

i=1

L2
i = (n+ 1)

N
∑

i=1

x2i + 2
∑

r 6=s

xrxs = n

N
∑

i=1

x2i +
(

N
∑

i=1

xi

)2

. (5.3)

To see this we observe that in the set of the Lj each xr occurs with a coefficient
1 exactly n+1 times, since each point Pr is incident with n+1 lines. Also, each
cross-product 2xrxs occurs in L2

1 + L2
2 + · · · + L2

N exactly once, since there is
exactly one line containing both Pr and Ps. We may rewrite (5.3) as

N
∑

i=1

L2
i = n

N
∑

i=2

(xi + x1/n)
2 +

(

N
∑

i=2

xi

)2

= y21 + ny22 + ny23 + · · ·+ ny2N

where y1 = x2 + x3 + · · ·+ xN and yi = xi+ x1/n for i ≥ 2. Note that after this
change of variables, the yi are rational since the xi are.

Next suppose that n ≡ 1 or 2 modulo 4 and note that N = n2 + n + 1 ≡
3 mod 4 in both cases. We now use Theorem B to write n = c21 + c22 + c23 + c24,
where each ci is an integer. Next we employ (5.1) to see that for any i ≤ N − 3

n(y2i + y2i+1 + y2i+2 + y2i+3) = (c21 + c22 + c23 + c24)(y
2
i + y2i+1 + y2i+2 + y2i+3)

= z2i + z2i+1 + z2i+2 + z2i+3

for some rational variables zi, zi+1, zi+2 and zi+3. Taking i = 2, 6, 10, . . . , N − 5
successively, and remembering that N ≡ 3 (mod 4), we get

N
∑

i=1

L2
i = y21 + z22 + z23 + · · ·+ z2N−2 + ny2N−1 + ny2N .
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For convenience, define z1 = y1, zN−1 = yN−1 and zN = yN , so that

N
∑

i=1

L2
i = z21 + z22 + z23 + · · ·+ z2N−2 + n(z2N−1 + z2N ). (5.4)

At this point we look back through the derivation of this equation and claim
that each xj is a rational linear combination of the zi, and hence, since L1 =
∑N
i=1 ai1xi, there exist rational numbers b1, b2, . . . , bN such that L1 = b1z1 +

b2z2 + · · ·+ bNzN . Now (5.4) is an identity, so it remains true if we specialize to
particular values of the zi. If b1 6= 1 we choose z1 so that

(b1 − 1)z1 + b2z2 + · · ·+ bNzN = 0,

while if b1 = 1, we choose z1 so that

(b1 + 1)z1 + b2z2 + · · ·+ bNzN = 0.

In the first case L1 = z1 and in the second L1 = −z1. So in either case L2
1 = z21

and (5.4) reduces to

N
∑

i=2

L2
i = z22 + z23 + · · ·+ z2N−2 + n(z2N−1 + z2N ).

Continuing in this way we may choose z2 so that L2
2 = z22 , z3 so that L2

3 = z23 ,
and so on until, for these special choices of z1, z2, . . . , zN−2, the identity (5.4)
reduces to

L2
N−1 + L2

N = n(z2N−1 + z2N ). (5.5)

Now each of LN−1, LN , zN−1 and zN is rational so (5.5) implies that there are
integers i1, i2, . . . , i8 such that

n =
(i1/i2)

2 + (i3/i4)
2

(i5/i6)2 + (i7/i8)2
=

(i1i4i6i8)
2 + (i3i2i6i8)

2

(i5i2i4i8)2 + (i7i2i4i6)2
=
r

s

say, where each prime factor of the form 4k+ 3 occurs an even number of times
in the integer r and in the integer s by Theorem A. Hence, the integer n has the
same property and so it also is the sum of two integer squares. This proves the
theorem. ⊓⊔

5.3 Sets of MOLS of maximum and minimum size

Many papers have been published which attempt to determine lower or upper
bounds for the function N(n) defined as follows:
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Definition. The largest possible number of n× n latin squares which can exist
in a single mutually orthogonal set is denoted by N(n).

For example, Theorem 5.2.3 shows that N(pr) = pr−1 for every prime p and
integer r. Also we have noted that Bose, Shrikhande and Parker(1960) showed
that N(n) ≥ 2 for all n ≥ 3 except n = 6. N(2) = 1 is obvious and N(6) = 1 was
proved by Tarry(1900a). Guérin(1966a,b) proved that N(n) ≥ 4 for all n ≥ 53,
Hanani(1970) proved that N(n) ≥ 5 for all n ≥ 63 and R.M.Wilson(1974) proved
that N(n) ≥ 6 for all n ≥ 90. However these results have since been improved.
Another general result is that of MacNeish.

Using a product construction8 for obtaining a latin square of order n1n2 from
latin squares of orders n1 and n2, MacNeish(1922) deduced from Theorem 5.2.3
that N(pr11 p

r2
2 . . . prss ) ≥ mini(p

ri
i − 1). In view of Euler’s conjecture and such

other evidence as was available at that time, he further conjectured that this
lower bound is also an upper bound.

One of the earlier results for a case when n is not a prime power (other
than those of Tarry, MacNeish and the several people involved in the disproof of
Euler’s conjecture) was an explicit construction showing that N(12) ≥ 5. We give
more details of this in Section 7.1. (The reader will notice that it immediately
disproves MacNeish’s conjecture. See also Section 11.1.)

Many other constructions yielding results for individual values of n have
been published. Probably the most important of these were N(14) ≥ 3 obtained
by Todorov(1985), N(15) ≥ 4 obtained by Schellenberg, van Rees and Van-
stone(1978) and N(18) ≥ 3 obtained by X.Zhang and H.Zhang(1997). These
results and others have enabled the values obtained by Guérin, Hanani and Wil-
son to be improved to N(n) ≥ 4 for all n ≥ 23 and N(n) ≥ 6 for all n ≥ 76. See
Colbourn and Dinitz(1996,2006) for a table giving these values and others. It is
still not known whether N(10) > 2 despite many attempts by computer or oth-
erwise to resolve the problem: notably by Parker(1959c,1961,1962a,1963), Keed-
well(1966,1980,1984b), Hedayat, Parker and Federer(1970), Brown and Parker
(1985), Acketa and Matić-Kekić(1995) and, more recently, by Appa(2003) and
McKay, Meynert, and Myrvold(2007).

A slight refinement of the problem is to ask how many latin squares, all
of which are idempotent, can exist in a mutually orthogonal set. In the cases
n = 10, 14 and 18, the answer so far obtained is the same as without this extra
requirement. Again see Colbourn and Dinitz(1996,2006) for more details.

We list here results for individual values of n additional to those already
mentioned. To save space, the relevant papers are not in the bibliography of this
book. Instead, each result is followed by its Mathematical Reviews reference.
N(n) ≥ 4 for n = 20 (90c:05041); N(n) ≥ 4 for n = 24 (88b:05032); N(n) ≥ 4
for n = 20, 30, 38, 44 (94g:05020); N(n) ≥ 4 for n = 28, 52 (92i:05047); N(n) ≥ 5
for n = 21 [MR(1991)11728733]; N(n) ≥ 5 for n = 24 (93d:05027); N(n) ≥ 5
for n = 24, 40 (96a:05028); N(n) ≥ 5 for n = 36, 40, 48 (96c:05026); N(n) ≥ 6

8See Section 11.2 for more details.
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for n = 24, 55 and N(n) ≥ 7 for n = 48 (2000m:05045); N(n) ≥ 6 for n = 69
(86d:05022); N(n) ≥ 7 for n = 24, 75 and N(n) ≥ 8 for n = 36 (2004m:05046);
N(n) ≥ 8 for n = 48 and for specified larger values (2007m:05039); N(n) ≥ 3
idempotent squares for n = 22, 26 (97b:05030).

Several of these results were obtained with the aid of orthogonal orthomor-
phisms. A result relevant to this is that of Quinn(1999).

Further information concerning methods by which some of the above lower
bounds for N(n) were obtained can be found in Chapter 5 of [DK2] and in
Section 11.1 and Section 11.2 of the present book.

In Wallis(1986), that author gave a fairly concise proof of the fact that
N(n) ≥ 3 for all values of n except 2, 3, 6 and possibly 10 and 14.9 The proof is
described in terms of transversal designs and is worth reading.

In Bedford(1993), that author has shown that several (and probably many)
of the constructions of the past twenty years which yield improved lower bounds
for N(n) implicitly employ a procedure which can be described as construction
by means of left neofields (see Section 4.5) as the author explains.

In Bedford andWhitaker(2000a), these authors discuss maximal sets of MOLS
of order n (that is, sets of MOLS which cannot be enlarged) which are constructed
from orthogonal orthomorphisms of a group. In particular, they report existence
of such maximal sets containing just three squares for n = 15, 16 and just four
squares for n = 12, 16, 24, 28.

Jungnickel(1996) has given a survey of results on this topic obtained prior to
that date while Drake, van Rees and Wallis(1999) have proved some more general
results. For example, the latter authors have shown the existence of maximal 3-
sets of MOLS of order v = 8t+1 whenever 6t+1 is a prime power and t 6= 3 or 5.
Some other interesting results are in A.B.Evans(1991,1992). More recent papers
on this topic are Jungnickel and Storme(2003), Govaerts, Jungnickel, Storme and
Thas(2003) and Drake and Myrvold(2004). For a discussion of maximal 1-sets,
see also Section 9.1. Also relevant to this topic is Theorem 5.1.7.

In contrast to the results on maximal sets of MOLS, Shrikhande(1961) proved
the very important fact that every set of n − 3 MOLS can be extended to a
complete set of n− 1 MOLS. See L-Q. Zhang(1963) for a weaker result.

A number of authors have obtained asymptotic results for N(n) as n → ∞.

The best of these so far obtained is N(n) ≥ n
10
143 − 2 for all sufficiently large n

obtained by Lu(1985) which is a marginal improvement on N(n) ≥ n
5
74 for all

sufficiently large n obtained by Beth(1983) two years earlier.
Finally, let us mention upper bounds for N(n). We showed in Theorem 5.1.2

that N(n) ≤ n−1 for all positive integers n. For the special case of Sudoku latin
squares (of order n2), we shall show that the upper bound becomes n2 − n and
that, for n2 equal to a prime power, this upper bound can be attained.

9Todorov’s result that N(14) ≥ 3 was not known at the time Wallis wrote his paper.
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Theorem 5.3.1 Not more than n2−n mutually orthogonal Sudoku latin squares
of order n2 exist.

Proof. As in the proof of Theorem 5.1.2, each of the squares may have its
symbols renamed without affecting the orthogonality of the set. By such re-
namings, we may arrange that the symbols which occur in the first rows of all
the squares are 1, 2, . . . , n2 in natural order. The symbols in the first cells of
the second rows of the squares must then all be different, again as in the proof
of Theorem 5.1.2. But we have the additional requirement that no symbol may
occur twice in the leading n× n subsquare of any of the squares and so none of
the entries 1, 2, 3, . . . , n of the first row of this subsquare can occur in its second
row. Thus, the maximum number of different entries which can occur in the first
(or any other) cell of this second row is n2 − n. Consequently, the number of
mutually orthogonal squares is bounded above by this number. ⊓⊔

Next, we explain how the Moore/Bose/Stevens construction (described in
Theorem 5.2.4) may be modified to give a complete set of mutually orthogonal
Sudoku squares. We shall require a preliminary lemma.

Lemma. If c, d are in the same coset h+F of F and x ∈ K−F , where F and K
are defined as in the following Theorem 5.3.2, then cx, dx are in different cosets
of F .

Proof. Suppose on the contrary that cx, dx are in the same coset l+F . Then
cx = l+ f1, dx = l+ f2 so cx− dx = f1 − f2. That is (c− d)x ∈ F . Since c, d are
in the same coset h+F , then c = h+ f3, d = h+ f4 so c− d = f3 − f4 ∈ F . But
then x ∈ F , a contradiction. ⊓⊔

Theorem 5.3.2 Complete sets of mutually orthogonal Sudoku latin squares exist
of all prime power orders p2s. Moreover, it is possible to construct such sets in
which each of the squares is a diagonal latin square.10

Proof. Let F be the Galois field of order q = ps (p prime) with elements
u0 = 0, u1 = 1, u2, . . . , uw, where w = q − 1 and let K be the Galois field of
order q2 with a as a generating element of its multiplicative group. Then K can
be regarded as a quadratic extension of F and each non-zero element of K can
be expressed either as a power of a or in the form uia + uj , ui, uj ∈ F . For a
fixed element ui, the elements uia + uj for j = 0, 1, . . . , q − 1 form a coset of F
in K. Also, the elements 0, 1 = a(q−1)(q+1), aq+1, a2(q+1), . . . , a(q−2)(q+1) are the
elements of F expressed as powers of a.

We construct the Cayley table for the additive group of K with the elements
of the row and column borders arranged into cosets of F as follows:

10That is, the elements along each of the main diagonals are all different. For more informa-
tion about such squares, see the next chapter.
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0, 1, u2, . . . , uw|a, a+ 1, a+ u2, . . . , a+ uw| . . .
. . . |uia, uia+ 1, uia+ u2, . . . , uia+ uw| . . . .

This Cayley table L0, which we display in Figure 5.3.2, is a latin square which
can be regarded as partitioned into q × q subsquares by the cosets.

Next, we re-arrange the rows of L0 by replacing the row labelled by uia+ uj
by the row labelled by (uia+ uj)a

r for each ar 6∈ F to obtain new latin squares
Lr (one for each suffix r) as shown in Figure 5.3.1.

Each pair of these latin squares, say Lr and Ls, are orthogonal. (To see this
observe that the element in the (j, k)th cell of Lr is araj + ak, where aj + ak is
the element in the corresponding cell of the Cayley table of the addition group of
K. Then no two cells (j, k) and (l,m) of the juxtaposed pair of Sudoku squares
Lr, Ls can contain the same ordered pair of elements since araj+ak = aral+am
and asaj+ak = asal+am imply that j = l and k = m, whence it follows that Lr
and Ls are orthogonal. (This is effectively the Moore/Bose/Stevens construction
for q2−1 mutually orthogonal latin squares.) Moreover, when ar 6∈ F , each of the
q× q subsquares into which Lr is separated contains each element of K once (as
follows from the lemma above because the elements of each row of a subsquare
come from the same coset but elements from different rows come from distinct
cosets) so Lr is a Sudoku latin square and it has the left semi-diagonal property
as is illustrated in Figure 5.3.1. Thus, we get q2− q mutually orthogonal Sudoku
latin squares all of which are left semi-diagonal.

Next, we show that we can order the elements of F in such a way that these
squares all have the right semi-diagonal property as well. To do so, we need
to observe that the latin square L0 (which we exhibit in Figure 5.3.2) has the
entries of its main right-to-left diagonal all equal provided that the elements
of F are ordered in such a way that ut + uw−t = uw for t = 0, 1, . . . , w/2 or
(w− 1)/2 according as q is odd or even11. It is not a Sudoku latin square but is
orthogonal to each of the q2 − q Sudoku latin squares. Consequently, provided
that the elements of F have been correctly ordered before the squares Lr are
constructed, each of the latter has the elements of its main right-to-left diagonal
all different. Thus, all the Sudoku latin squares can be made diagonal latin
squares and so, for all prime power orders p2s, there do exist complete sets of
mutually orthogonal diagonal Sudoku latin squares as we claimed. ⊓⊔

The above modification of the Moore/Bose/Stevens construction is due to
Pedersen and Vis(2009) while the observation that the squares can all be made
diagonal is due to Keedwell(2010,2011a) and Hilton who suggested that looking
at those of the squares Lr which are not Sudoku might lead to a proof that
the squares could be made to have the right semi-diagonal property. See also
Lorch(2009,2011).

11There are many such orderings, one for each choice of the element uw.
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5.4 Orthogonal quasigroups, groupoids and triple systems

In view of the fact that any bordered latin square represents the multiplica-
tion table of a quasigroup (Theorem 1.1.1), the concept of orthogonality between
two latin squares leads naturally to the concept of orthogonality between two
quasigroups.

Definition. Two finite quasigroups (G, ·) and (G, ∗) defined on the same set G
are said to be orthogonal if the pair of equations x · y = a and x ∗ y = b (where a
and b are any two given elements of G) are satisfied by a unique pair of elements
x and y from G.

It is clear that when (G, ·) and (G, ∗) are orthogonal quasigroups the latin
squares defined by their multiplication tables are also orthogonal.

The above definition may be expressed in another way. We may say that (G, ·)
and (G, ∗) are orthogonal if x · y = z · t and x ∗ y = z ∗ t together imply x = z
and y = t. The definition can then be generalized. On the one hand, we can say
that two binary operations (·) and (∗) defined on the same set G are orthogonal
operations if the equations x · y = z · t and x ∗ y = z ∗ t together imply x = z
and y = t, as was done by Sade(1958c) and Belousov(1965). In a later paper,
Belousov(1968) discussed in detail the connections between such orthogonal oper-
ations and systems of orthogonal quasigroups. On the other hand, we can extend
the above definition of orthogonality between quasigroups to the case of infinite
quasigroups and also to general groupoids as was done by S.K.Stein(1957), who
made the following definition:

Definition. Two finite or infinite groupoids (G, ·) and (G, ∗) defined on the same
set G are called orthogonal if the mapping σ of the cartesian product G× G to
itself defined by (x, y)

σ→(x·y, x∗y) is an equivalence mapping. (If G is a finite set,
this implies that σ is a one-to-one mapping of G×G onto itself.) The groupoid
(G, ∗) is said to be an orthogonal complement of the groupoid (G, ·).

The following results also come from S.K.Stein(1957).

Theorem 5.4.1 A finite commutative groupoid (G, ·) is a quasigroup if and only
if it is orthogonal to the groupoid (G, ∗) whose multiplication is given by x ∗ y =
x · xy.
Proof. Firstly, let (G, ·) be a quasigroup and let a and b belong to G. Then
there is an element x in G such that xa = b and an element y in G such that
xy = a. Hence x ∗ y = x · xy = xa = b and so the simultaneous equations xy = a
and x ∗ y = b have a solution for x and y, which is necessarily unique since (G, ·)
is a quasigroup. That is, the groupoids (G, ·) and (G, ∗) are orthogonal.

Secondly, let (G, ·) and (G, ∗) be orthogonal groupoids where x ∗ y = x · xy.
Suppose, if possible, that the equation au = c has two solutions for u, say u = y
and u = z. Then a · ay = a · az = ac and so a ∗ y = a ∗ z. But, by definition
of orthogonality, the equations ay = az and a ∗ y = a ∗ z imply y = z. So the
equation au = b is uniquely soluble in (G, ·). Since (G, ·) is commutative, it is a
quasigroup. ⊓⊔

 The concept of orthogonality



184

Corollary. Every quasigroup possesses an orthogonal complement (which is
not necessarily a quasigroup).

Proof. If (G, ·) is the given quasigroup, we define a groupoid (G, ∗) by x∗y =
x · xy. Then (G, ∗) is orthogonal to (G, ·) by the first part of the proof of the
theorem. ⊓⊔

Theorem 5.4.2 A quasigroup (G, ·) which satisfies the constraint y · yx =
z · zx⇒ y = z possesses an orthogonal complement which is a quasigroup.

Proof. Define a groupoid (G, ∗) by x∗y = x·xy. Then the equation x∗y = x∗z
is equivalent to x ·xy = x ·xz and implies y = z since (G, ·) is a quasigroup. The
equation y ∗ x = z ∗ x is equivalent to y · yx = z · zx and implies y = z by the
hypothesis of the theorem. It follows that (G, ∗) is a quasigroup and, by the first
part of the proof of Theorem 5.4.1, it is orthogonal to (G, ·). ⊓⊔

Corollary. A quasigroup (G, ·) which satisfies the constraint y · yx = xy has
an orthogonal complement which is a quasigroup.

Proof. Such a quasigroup clearly satisfies the condition y · yx = z · zx⇒ y =
z. ⊓⊔

Let L be a latin square with transpose LT and let (G, ·) and (G, ∗) be the
quasigroups whose Cayley tables are obtained by bordering L and LT with the
first row and column of L. Then, by Theorem 5.4.2, (G, ·) and (G, ∗) are orthogo-
nal quasigroups if x∗y = yx = x ·xy. So, when the quasigroup (G, ·) satisfies the
identity yx = x · xy, the latin square L will be orthogonal to its own transpose.

This identity was called the Stein identity by Belousov (see Section 2.1) and he
called a quasigroup which satisfies it a Stein quasigroup [see Belousov(1965), page
102] while Sade(1960a) called such a quasigroup anti-abelian. As Stein pointed
out, quasigroups which satisfy this identity are idempotent (we have x · xx = xx
and so, by left cancellation, xx = x) and distinct elements do not commute. We
discuss such quasigroups and their associated latin squares in the next section.

Stein hoped that the above theorems might enable him to construct counter-
examples to the Euler conjecture about orthogonal latin squares. However, in
this connection he was only able to prove the following:

Theorem 5.4.3 For all orders n ≡ 0, 1 or 3 (mod 4) there exist quasigroups
(G, ·) satisfying the constraint y · yx = z · zx⇒ y = z.

Proof. Let us denote by A[GF (2k), α, β] the groupoid constructed from the
Galois field GF (2k) by the multiplication x ⊗ y = αx + βy, where α and β are
fixed elements of GF (2k).

If αβ(1 + β) 6= 0 and k ≥ 2, the groupoid A[GF (2k), α, β] satisfies the con-
straint and is a quasigroup because x ⊗ y = x ⊗ z implies αx + βy = αx + βz,
whence y = z if β 6= 0, and y⊗x = z⊗x implies αy+βx = αz+βx, whence y = z
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if α 6= 0. As regards satisfaction of the constraint, we have x⊗(x⊗z) = y⊗(y⊗z)
implies αx+β(αx+βz) = αy+β(αy+βz). That is, α(1+β)(x− y) = 0, giving
x = y if α(1 + β) 6= 0. The order of this quasigroup is 2k, which is congruent to
zero modulo 4 if k ≥ 2.

By forming the direct product of a system of this type with an abelian group
of odd order, it is possible to construct systems satisfying the constraint whose
orders n are congruent to 1 or 3 modulo 4. (In a group of odd order, yy = zz
implies y = z, as was proved in Theorem 1.5.3, so y · yx = z · zx implies y = z.)
The elements of the direct product will be ordered pairs (bi, ci), bi ∈ GF (2k),
ci ∈ (H, ·) where (H, ·) is a group of odd order. The law of composition (∗) will
be defined by (bi, ci) ∗ (bj , cj) = (bi ⊗ bj , cicj). ⊓⊔

Stein gave the following examples of anti-abelian quasigroups.

(1) The quasigroup of order 4 with multiplication table as shown in Fig-
ure 5.4.1.

1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Fig. 5.4.1.

(2) The groupoid A[GF (pk), α, β] when 5(p
k−1)/2 ≡ 1 mod pk.

(3) The groupoid A(Cn, p, q) constructed from the cyclic group Cn of order n
by the multiplication x⊗y = xpyq, where p and q are fixed integers, in the
case when p = q2, (2q + 1)2 ≡ 5 mod n and n is odd. (Such systems exist
only when 5 is a quadratic residue of n.)

The following interesting result was proved by Belousov and Gvaramiya(1966):
namely that, if a Stein quasigroup is isotopic to a group G, then the commutator
subgroup of G is in the centre of G.

In a paper published several years later than that discussed in the preceding
pages, S.K.Stein(1965) himself showed (i) that if a quasigroup (Q, ·) of order
n has a transitive set of n automorphisms, then there is a quasigroup (Q, ∗)
orthogonal to it (cf. Theorem 7.2.1) and (ii) that no quasigroup of order 4k+2 has
a transitive automorphism group. It follows from (ii) that no counter-examples
to the Euler conjecture can be constructed by means of (i).

The properties of systems of orthogonal quasigroups have been investigated
by Belousov(1962). Also, Sade(1958c) obtained a number of interesting and use-
ful results concerning orthogonal groupoids, their parastrophes (conjugates) and
their isotopes. In a later paper [Sade(1960a)], which we shall discuss in Sec-
tion 11.2, the same author achieved the goal of Stein: namely, to construct
counter-examples to the Euler conjecture. He used a particular type of direct
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L1 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

0 4 3 2 1
0 0 1 2 3 4
4 4 0 1 2 3
3 3 4 0 1 2
2 2 3 4 0 1
1 1 2 3 4 0

L2 =

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

0 4 3 2 1
0 0 1 2 3 4
4 3 4 0 1 2
3 1 2 3 4 0
2 4 0 1 2 3
1 2 3 4 0 1

L3 =

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

0 4 3 2 1
0 0 3 1 4 2
4 1 4 2 0 3
3 2 0 3 1 4
2 3 1 4 2 0
1 4 2 0 3 1

L4 =

0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0 4 3 2 1
0 0 2 4 1 3
4 2 4 1 3 0
3 4 1 3 0 2
2 1 3 0 2 4
1 3 0 2 4 1

Fig. 5.4.2.

product of quasigroups which he called “produit direct singulier” and which pre-
serves orthogonality.

The idea of forming new quasigroups as singular direct products came to Sade
as a consequence of his investigations of the related concept of singular divisors
of quasigroups introduced by him earlier in Sade(1950) and discussed further in
Sade(1953a,1957). In the opinion of the authors, this concept is a fruitful one
but did not at the time receive the attention it deserved.

We end this discussion of orthogonal quasigroups with a theorem of Barra(1963)
which we shall use on several occasions later in connection with constructions of
pairs of orthogonal latin squares.

Theorem 5.4.4 From a given set of t ≤ n− 1 mutually orthogonal quasigroups
of order n, a set of t mutually orthogonal quasigroups of the same order n (but
usually different from those of the original set) can be constructed of which t− 1
are idempotent quasigroups.
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Proof. Let the multiplication tables of the quasigroups be given by the mutu-
ally orthogonal latin squares L1, L2, . . . , Lt all of which are bordered in the same
way. We first rearrange the rows of all the latin squares simultaneously in such
a way that the entries of the leading diagonal of one square, say the square L1,
are all equal. Since the rearranged squares L2, L3, . . . , Lt are all orthogonal to
L1, the entries of the leading diagonal of each of them must form a transversal:
that is, be all different. A relabelling of all the entries in any one of the squares
does not affect its orthogonality to the remainder, so we may suppose that the
squares L3, L4, . . . , Lt are relabelled in such a way that the entries of the leading
diagonal of each become the same as those of L2. If now each of the squares
is bordered by its elements in the order in which these elements appear in the
leading diagonal of L2, the resulting Cayley tables define mutually orthogonal
quasigroups Q1, Q2, . . . , Qt of which all but the first are idempotent. ⊓⊔

An example of the process described in the proof of Theorem 5.4.4 is given
in Figure 5.4.2.

A similar theorem was proved by N.S.Mendelsohn(1971c) who pointed out
that, when n is a prime power, it is always possible to construct sets of n − 2
mutually orthogonal idempotent latin squares.

We mention here a curiousity: In Norton and Stein(1956), with each idempo-
tent latin square of order n an integer N associated with that square has been
introduced whose value is dependent on the disposition of the off-diagonal ele-
ments of the square (that is, those not on the main left-to-right diagonal). It has
been proved that the relation N ≡ n(n− 1)/2 modulo 2 always holds whatever
the explicit value of N .

Orthogonal triple systems

We showed in Section 2.3 that Steiner and Mendelsohn triple systems can
both be represented as quasigroups. If the quasigroups which correspond to two
triple systems of the same kind and size are orthogonal [or, more correctly, per-
pendicular in the case of Steiner triple systems (see later)], we say that the triple
systems are orthogonal. In the case of Steiner triple systems, the quasigroups are
totally symmetric and idempotent and so an equivalent statement is that two
Steiner triple systems of the same order and defined on the same set of elements
are orthogonal if (i) the systems have no triples in common and if (ii) when two
pairs of elements appear with the same third element in one system, then they
appear with distinct third elements in the other system. As an illustration, we
give the following two orthogonal Steiner triple systems of order 7:

S1 =
{

(1 2 6), (2 3 7), (3 4 1), (4 5 2), (5 6 3), (6 7 4), (7 1 5)
}

S2 =
{

(1 2 4), (2 3 5), (3 4 6), (4 5 7), (5 6 1), (6 7 2), (7 1 3)
}

In the case of Mendelsohn triple systems, the corresponding quasigroups are
semi-symmetric and idempotent: that is, each satisfies the identities x(yx) =
y and xx = x. It turns out that the conditions for two such systems to be
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orthogonal are the same as those for Steiner triple systems. We remind the
reader that we showed in Section 2.1 that x(yx) = y ⇔ (xy)x = y.

At the time of writing, the question of whether and when directed triple
systems are orthogonal had not been considered. We recall from Section 2.3 that
when such a system can be represented by a quasigroup, it is called a latin
directed triple system.

In O’Shaughnessy(1968), that author gave a construction for Room squares12

which employed a pair of orthogonal Steiner triple systems. For this purpose, he
successfully constructed orthogonal pairs of orders 7, 13 and 19 but was not able
to construct a pair of order 9. This led him to conjecture that orthogonal pairs
exist of all orders v ≡ 1 mod 6 but that they do not exist for orders v ≡ 3 mod
6. Mullin and Németh(1969b) proved that orthogonal pairs exist when v ≡ 1
mod 6 is a prime power and in Mullin and Németh(1970a) that they do not
exist when v = 9. See also N.S.Mendelsohn(1970) for some earlier results. Then
Rosa(1974) constructed an orthogonal pair of order v = 27, thus disproving the
O’Shaughnessy conjecture. After many partially successful attempts to resolve
the existence question, it was finally proved in a joint paper by Colbourne, Gib-
bons, Mathon, Mullin and Rosa(1994) that orthogonal pairs of Steiner triple
systems exist for all v ≡ 1 or 3 mod 6 and v ≥ 7 except v = 9. The method used
by these authors in their construction requires a generalization of the notion
of orthogonality to group divisible designs and also the concept of parastrophic
orthogonal quasigroups which we introduce in the next section.

As regards the corresponding question for pairs of Mendelsohn triple systems,
it was shown by Bennett and Zhu(1992), who again made use of parastrophic or-
thogonal quasigroups, that self-orthogonal (which we define below) Mendelsohn
triple systems exist of all orders v ≡ 1 mod 3 except v = 10. Later, in Bennett,
Zhang and Zhu(1996), those authors showed that such systems also exist of all
orders v ≥ 15 and v ≡ 0 mod 3 except possibly v = 18. This answers the question
of existence in the affirmative for all v ≡ 0 or 1 except v = 3, 6, 10 (which had
earlier been ruled out) and possibly v = 12 and 18.

5.5 Self-orthogonal and other parastrophic orthogonal latin squares
and quasigroups

We showed in Section 1.4 that every latin square is associated with six paras-
trophes (also called conjugates) including itself of which 1, 2, 3 or all 6 may be
distinct. For particular latin squares, it may happen that some or all of these
parstrophes are orthogonal. A considerable number of papers have been pub-
lished which investigate this situation. In particular, every latin square which is
not symmetric has a transpose distinct from itself. A latin square which is or-
thogonal to its own transpose has been mis-called self-orthogonal. It is believed

12We define Room squares and explain O’Shaughnessy’s construction in Section 6.4.
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that Németh was the first to use this name in his Ph.D. thesis. Shortly after-
wards, the name was adopted by N.S.Mendelsohn(1969,1971b). The name has
stuck and so we shall follow convention and adopt it.

The first to write about self-orthogonal latin squares were S.K.Stein(1957)
and Sade(1960a). However, both writers considered instead the closely related
topic of anti-abelian quasigroups, pointing out that an anti-abelian quasigroup
has a multiplication table whose body is a self-orthogonal latin square. We have
already described some of their results in the preceding section. Both authors
and later also Mendelsohn(1971b) obtained results equivalent to the following:

Theorem 5.5.1 If a, b, a+ b and a− b are integers prime to h in the ring Zh of
residue classes modulo h, then the law of composition x · y = ax+ by+ c defines
an anti-abelian quasigroup (Zh, ·) on the set Z.

Proof. The quasigroup (Zh, ·) will be orthogonal to its own transpose provided
that, for all x, y, z, t, xy = zt ⇒ yx 6= tz. So suppose on the contrary that
xy = zt and yx = tz. These conditions become ax + by ≡ az + bt (mod h)
and ay + bx ≡ at + bz (mod h). Therefore, a(x − z) ≡ b(t − y) (mod h) and
b(x− z) ≡ a(t− y). From the first equality, ab(x− z) ≡ b2(t− y) and, from the
second, ab(x− z) ≡ a2(t− y). Thence, (a− b)(a+ b)(t− y) ≡ 0 (mod h), and so
y = t whence also x = z. ⊓⊔

Since a, b, a + b and a − b are all to be prime to h, we find that h has to be
prime to 6 since, if a and b are both odd, then a + b is even and so h must be
prime to 2; if neither a nor b is a multiple of 3 then either a + b or a − b is a
multiple of 3 whence h must also be prime to 3. For all such integers h, anti-
abeian quasigroups and consequently pairs of orthogonal latin squares of order
h such that one is the transpose of the other, actually exist. Sade takes as an
example, a = 2 and b = −1, from which we see that the operation x · y = 2x− y
gives an anti-abeian (and idempotent) quasigroup whenever h is an integer prime
to 6.

Theorem 5.5.2 In any Galois field GF (pn), every quasigroup defined on the
elements of the field by a law of composition of the form x · y = ax + by + c,
where a and b are non-zero elements of the field such that a2 − b2 6= 0, is anti-
abelian. Moreover, such quasigroups exist in all finite fields except GF (2) and
GF (3).

Proof. Exactly as in Theorem 5.5.1, the conditions xy = zt and yx = tz
together imply (a2 − b2)(t− y) = 0 if a and b are non-zero. Then, provided that
a2 − b2 6= 0, we have y = t and x = z, so xy = zt ⇒ yx 6= tz as required for an
anti-abelian quasigroup. In any field except GF (2) and GF (3) non-zero elements
a and b with distinct squares exist. For example, we can take a = 1 and b any
element of the field distinct from 0, 1,−1. ⊓⊔

In the early 1970s, several papers were devoted to providing constructions for
self-orthogonal latin squares of order n for isolated values of n and for various
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infinite classes of n. These are listed in the bibliography of Brayton, Coppersmith
and Hoffman(1976). The problems of existence and construction were brought
to the attention of the latter authors by a question concerning a particular type
of mixed-doubles tennis tournament (which was christened “spouse-avoiding”)
because these authors discovered that such tournaments involving n married
couples can be constructed when and only when a self-orthogonal latin square
of order n exists. Full details can be found in the aforementioned paper, in a
summary paper of Brayton, Coppersmith and Hoffman(1974), and also in Keed-
well(2000). Brayton et al were able to prove that self-orthogonal latin squares
exist of all orders n except n = 2, 3 and 6.

In T.Evans(1973), that author considered a generalization of self-orthogonality
to latin cubes (which latter we define later in this chapter).

Next, the more general question of existence of latin squares which are or-
thogonal to any one or more of their parastrophes was considered. Phelps(1978)
showed that, if there exists a latin square of order n which is orthogonal to its
(2, 3, 1)-parastrophe, then we can construct from it a latin square of the same
order which is orthogonal to its (3, 1, 2)-parastrophe and conversely. An exactly
similar statement can be made about the (3, 2, 1)- and (1, 3, 2)-parastrophes.
Phelps proved existence of, and gave constructions for, latin squares orthogonal
to their (2, 3, 1)-parastrophe for all orders n except 2 and 6. He also obtained
a similar result for latin squares orthogonal to their (3, 2, 1)-parastrophe except
that, in the latter case, he was not able to guarantee existence for the orders
n = 14 and 26.

Belousov(1983b,2005) and, independently, Bennett and Zhu(1992) considered
the related question of which quasigroup identities would ensure that the quasi-
groups defined by such identities would be orthogonal to one or more of their
parastrophes. This latter question had earlier been considered by T.Evans(1975)
and by Lindner and N.S.Mendelsohn(1973).

Belousov began by considering identities in an algebra Q(Σ), where Σ is
some system of quasigroup operations (quasigroups) defined on a set Q (cf. Sec-
tion 2.2). He showed that a non-trivial quasigroup identity must be of minimum
length five and must involve two different free variables, one appearing twice and
the other three times (as for example in the Stein identity x·xy = yx). It is conve-
nient for the following discussion if we use A,B,C, etc. to denote quasigroup op-
erations so that, for example, we write A(x,B(x, y)) = y instead of x ·(x◦y) = y,
where A,B are respectively the binary operations (·) and (◦) operating on a set
Q of elements.13 Belousov proved that any non-trivial minimal identity defined
in (Q,Σ) can be written in the form A(x,B(x,C(x, y))) = y, where A,B,C rep-
resent three operations possibly all different. For example, he showed that the
identity A(B(x, y), C(x, y)) = x can be re-written as A(13)(x,C(x, y)) = B(x, y)
and thence as A(13)(x,C(x,B(23)(x, z))) = z, where z = B(x, y). He defined
a special binary operation E (not a quasigroup operation) by E(x, y) = y.

13See Section 2.1 for an earlier discussion of notation for parastrophes.
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Then, for brevity, he abbreviated the minimal identity A(x,B(x,C(x, y))) = y to
ABC = E and remarked that it is easy to see that a quasigroup which satisfies
this minimal identity also satisfies the minimal identities BCA = E, CAB = E,
CrBrAr = E, BrArCr = E and ArCrBr = E, where r denotes the permutation
(2 3). Next, he proved

Belousov Lemma. Let A,B be quasigroup operations. Then A,B are orthogonal
operations if and only if there is a quasigroup operation K such that
K(x,B(x, (A(23)(x, y))) = E(x, y).

T.Evans(1975) had earlier and independently proved an equivalent lemma for
the special case of parastrophic operations: namely,

Evans Lemma. Let A,B be parastrophic (or conjugate) operations on a quasi-
group. Then A,B are orthogonal operations if and only if there is a further
operation L such that L(A(x, y), B(x, y)) = x.

Evans called an identity of the type just described a short conjugate-orthogonal
identity. Belousov, on the other hand, called a quasigroup Q(A) which satisfies
an identity of the form Aα(x,Aβ(x,Aγ(x, y))) = y, where Aα, Aβ , Aγ are paras-
trophic operations (that is, operations from the set P = {A,A(12), A(13), A(23),
A(123), A(132)} as defined in Section 2.1), a Π-quasigroup of type [α, β, γ].

By writing the minimal identity ABC = E in the form ABCrr = E, it follows
directly from Belousov’s lemma that the quasigroup operation B is orthogonal
to the operation C(2 3) (which we shall write as B⊥Cr) and so also C⊥Ar and
A⊥Br.

It follows from this that, if Q(A) is of type [α, β, γ], then Aβ⊥Aγr, Aγ⊥Aαr
and Aα⊥Aβr.

Since (as we remarked above) a quasigroup which satisfies the minimal iden-
tity ABC = E also satisfies other minimal identities of this canonical form, we
may expect that a Π-quasigroup Q(A) of type [α, β, γ] will also be of other types
as well. (For example, it will be of type [β, γ, α].) The types [α, β, γ)] and [β, γ, α]
are said to be parastrophically equivalent.

Belousov showed that there are just seven parastrophically inequivalent types
of minimal identity such that a quasigroup which satisfies one of these identities
is orthogonal to one or more of its parastrophes.

We list these in Figure 5.5.1 which is taken from Table 1 in Belousov(2005).
In that table, r represents the permutation (2 3) as before and l represents
the permutation (1 3). However, we treat permutations as right-hand mappings
whereas Belousov treats them as left-hand mappings, so the table below differs
from that in Belousov(2005). We give identities (3) and (6) from the table as
examples.

Consider the identity No. 3. x(x(y/x)) = y.

Let y/x = z. Then y = zx. So A(z, x) = y, whence A(13)(y, x) = z.

Then A(13)(12)(x, y) = z.
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No. Type Identity Derived form Note

1. T1 = [1, 1, 1] x(x · xy) = y x(x · xy) = y

2. T2 = [1, 1, l] x(x(x/y)) = y x(y · yx) = y

3. T4 = [1, 1, rl]] x(x(y/x)) = y x · xy = yx Stein’s 1st law

4. T6 = [1, l, rl] x(x/(y/x)) = y xy · x = y · xy Stein’s 2nd law

5. T10 = [1, lr, l] (x/xy)/x = y xy · yx = y Stein’s 3rd law

6. T8 = [1, lr, rl] x((y/x)\x) = y xy · y = x · xy Schröder’s 1st law

7. T11 = [1, rl, lr] x((y\x)/x) = y yx · xy = y Schröder’s 2nd law

Fig. 5.5.1.

Now, (1 3)(1 2) = (1 3 2) = (2 3)(1 3) = rl. So, Arl(x, y) = z.

Therefore, y/x = z ⇔ Arl(x, y) = z and so the above identity can be written as
A(x,A(x,Arl(x, y))) = y or as [1, 1, rl].

Consider the identity No. 6. x((y/x)\x) = y.

Let y/x = z as before [so that Arl(x, y) = z] and let v = z\x.
Then zv = x or, equivalently, A(123)(x, z) = v where the identity (6) is xv = y
or A(x,A(123)(x, z)) = y. Since (1 2 3) = (1 3)(2 3) = lr, the identity (6) is
A(x,Alr(x,Arl(x, y))) = y or [1, lr, rl].

As an example of how the table may be used, consider the Π-quasigroup
which satisfies the identity [1, 1, rl]. Since rl = (2 3)(1 3) = (2 1 3), this is the
identity

A(x,A(x,A(2 1 3)(x, y))) = y.
Let A(2 1 3)(x, y) = z.14 Then z ·x = y so the identity becomes x ·xz = zx which
is Stein’s first law. From above, we find that A⊥Arlr, Arl⊥Ar and A⊥Ar. Thus,
in particular, Q(A) is orthogonal to its parastrophes Q(A(1 2)) and Q(A(2 3)).
The first of these implies that Q(A) is self-orthogonal.

A full list of orthogonalities between parastrophic operations in Π-quasigroups
is given in Belousov’s paper.

Working independently, Bennett and Zhu(1992) obtained the same result.
However, the list of seven inequivalent quasigroup identities obtained by the lat-
ter authors differed slightly from that obtained by Belousov in that the identities
T1 and T6 were replaced by their duals and T2 was replaced by the dual of Be-
lousov’s T5 = [1, 1, s], where s = (1 2), which is parastrophically equivalent to
T2.

For further details of this topic, the reader should refer to the very extensive
and detailed papers of Belousov(1983b,2005) and Bennett and Zhu(1992).

14If A(u, v) = w, then Ar(u,w) = v and so Arl(v, w) = u. Thus, Arl(x, y) = z ⇒ A(z, x) = y.
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In some more recent work on self-orthogonal latin squares by Graham and
Roberts(1991,2002), these authors have considered maximal sets of pairwise or-
thogonal self-orthogonal latin squares, say {A1, A

T
1 , A2, A

T
2 , . . . , Am, A

T
m} of or-

der n. They have shown that, when n = pk, p prime, this maximal number is
(2k − 2)/2 when p = 2 and is (pk − 3)/2 otherwise. [cf. Theorem 5.1.2 and
Theorem 5.3.1.] They have given constructions for such sets using an affine
plane and/or a left nearfield. In a later paper, Graham and Roberts(2007), the
same authors have established a relationship between complete sets of orthog-
onal self-orthogonal latin squares and projective planes analogous to that of
Theorem 5.2.2.

5.6 Orthogonality in other structures related to latin squares

In this section we consider how the orthogonality concept may be generalized
to apply to a number of structures related to latin squares. We consider in turn
latin rectangles, permutation cubes, latin cubes and hypercubes and orthogonal
arrays.

Latin rectangles were defined in Section 3.1. We say that two latin rectangles
of the same size are orthogonal if, when one is superimposed on the other, each
ordered pair of symbols (r, s) occurs in at most one cell of the superimposed
pair. Also, a set of n− 1 mutually orthogonal latin rectangles of size m×n, with
m ≤ n is a complete set.

It is easy to see that the definition of orthogonality for latin squares is in-
cluded as a special case of this more general definition and, by the method of
Theorem 5.1.2, that one cannot have more than n−1 mutually orthogonal m×n
latin rectangles if 2 ≤ m ≤ n.

The following result was proved by Quattrocchi(1968).

Theorem 5.6.1 For every prime p and integer q such that q has no prime di-
visor less than p there exists at least one complete set of mutually orthogonal
p× pq latin rectangles.

Proof. Throughout this proof equivalences will be modulo pq. For each k =
1, 2, . . . , pq − 1, we define a p × pq matrix Rk = ||αij ||, i = 0, 1, . . . , p − 1;
j = 0, 1, . . . , pq − 1, by αij ≡ ik + j and 0 ≤ αij ≤ pq − 1.

It is immediate that each of the integers 0, 1, . . . , pq − 1 occurs exactly once
in each row of Rk and at most once in each column. Consequently, Rk is a p×pq
latin rectangle.

Let us consider two rectangles Rk1 and Rk2 . Suppose that when they are
placed in juxtaposition the ordered pair (s, t) appears both in the cell in row i1
and column j1 and in the cell in row i2 and column j2. Without loss of generality
we may assume that i1 > i2. Then by the definition of the Rk we have

i1k1 + j1 ≡ s, i1k2 + j1 ≡ t,

and
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i2k1 + j2 ≡ s, i2k2 + j2 ≡ t.

These relations imply that

(i1 − i2)k1 + (j1 − j2) ≡ 0 ≡ (i1 − i2)k2 + (j1 − j2) (5.6)

and so
(i1 − i2)(k1 − k2) ≡ 0. (5.7)

Now recall that q has no prime divisor less than p and 0 ≤ i1 < i2 ≤ p−1. Hence
i1 − i2 is relatively prime to pq, so (5.7) implies k1 ≡ k2 which implies that we
did not start with distinct rectangles. This is sufficient to show that the pq − 1
rectangles are pairwise orthogonal. ⊓⊔

Quattrocchi made use of this theorem in a construction of generalized affine
spaces (equivalent to a certain type of balanced incomplete block design) from
similar spaces of smaller order. The latin rectangles were used to define the inci-
dence relation between point and line in the synthesized structure. Much later,
Mullen and Shiue(1991) used Quattrocchi’s construction to build orthogonal
latin rectangles of more general sizes than those constructed by Theorem 5.6.1.

Horák, Rosa and Širáň(1997) considered pairs of what they called maximal
orthogonal rectangles, which are orthogonal r × n latin rectangles which cannot
be extended to (r+1)×n latin rectangles. They conjectured that for sufficiently
large n such pairs exist for precisely those r which satisfy n/3 < r ≤ n, and they
proved some results in that direction.

We remark here that Wanless(2001) has given a construction for four mutu-
ally orthogonal 9 × 10 latin rectangles and, moreover, these form a latin power
set as defined in Section 10.2.15

Finally, Asplund and Keranen(2011) have introduced what they call equitable
latin rectangles and have shown how to construct mutually orthogonal sets of
these.

A latin square is a two-dimensional object and the latin rectangle is a gener-
alization of it in the sense that the “size” of one of these dimensions is allowed
to be different from the other. A different generalization is obtained if, while
retaining a fixed size, we allow the number of dimensions to be increased. If we
increase the number of dimensions to three, we obtain what should properly be
called a latin cube; an object having n2 rows, n2 columns and n2 files such that
each of a set of n elements occurs once in each row, once in each column and
once in each file.

An illustrative example for the case n = 3 is given in Figure 5.6.1. If the
number of dimensions increases still further to m say, we obtain an object which
could reasonably be called anm-dimensional latin hypercube. Unfortunately, the
terms latin cube and latin hypercube have been used by statisticians to denote

15It is interesting to compare this result with Brouwer’s construction of four almost-
orthogonal 10× 10 latin squares mentioned on pages 147, 149 and elsewhere in [DK2].
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Fig. 5.6.1.

another kind of combinatorial object which we shall describe later in this section.
In view of this we shall follow the lead given by Heppes and Révész(1956) and
call the objects just introduced permutation cubes.

We make the following formal definition:

Definition. An m-dimensional n×n×· · ·×n matrix the elements of which are
the integers 0, 1, 2, . . . , n−1 will be called an m-dimensional permutation cube of
order n if every column (that is, every sequence of elements parallel to an edge of
the cube) of the matrix contains a permutation of the integers 0, 1, 2, . . . , n− 1.
In particular, a two-dimensional permutation cube is simply a latin square of
order n.

The appropriate generalization of a pair of orthogonal latin squares is an
m-tuple of “orthogonal” m-dimensional permutation cubes which Heppes and
Révész have called a variational cube. They have made the following definition.16

Definition. The m-dimensional permutation cubes c1, c2, . . . , cm constitute a
variational m-tuple of cubes or, more briefly, a variational cube if, among the
nm m-tuples of elements chosen from corresponding cells of the m cubes, every
distinct ordered m-tuple involving the integers 0, 1, 2, . . . , n − 1 occurs exactly
once.

As an example, the three 3-dimensional permutation cubes of order 3 shown
in Figure 5.6.2 form a variational cube. Each ordered triple of the integers 0,1,2
occurs exactly once. The triple (0, 0, 1), for example, is given by the cell in the
second place of the file of the second row and first column. The triple (2, 1, 0) is
given by the cell in the third place from the front of the same file.

A set of MOLS is a set such that each pair of its squares forms a graeco-latin
square. In just the same way we define a variational set (mutually orthogonal
set) of k (where k ≥ m) m-dimensional permutation cubes of order n to be

16A quite different definition of orthogonality for permutation cubes has been introduced in
Höhler(1970) and yet another in Warrington(1973).
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Fig. 5.6.2.

a set having the property that each subset of m cubes is a variational cube.
The four 3-dimensional permutation cubes of order 3 shown in Figure 5.6.1 and
Figure 5.6.2 together form such a variational set.

In Heppes and Révész(1956), the following two theorems giving a lower bound
for k were proved.

Theorem 5.6.2 If p is a prime and m ≤ p − 1 then a system of p − 1 m-
dimensional permutation cubes on p elements 0, 1, . . . , p − 1 can be constructed
each m of which form a variational m-tuple of cubes.

Proof. We prove our result by an actual construction. Let the k-thm-dimensional
cube of the system be denoted by Ck, k = 1, 2, . . . , p− 1. Let the element of Ck
whose co-ordinates are (x1, x2, . . . , xm), 0 ≤ xi ≤ p−1, be defined as the residue
modulo p of the integer

∑m
j=1 xjk

j−1. Then the difference between the elements
in the h-th and the i-th places of that column of Ck which is given by varying
xl and keeping all the other co-ordinates fixed is (h − i)kl−1 if xl = h in the
h-th place and xl = i in the i-th place. Since p is a prime and h − i and k are
both integers less than p we know that (h− i)kl−1 6≡ 0 mod p. Consequently, the
elements of this typical column are all different, so Ck is a permutation cube.

Next, let m cubes Ck1 , Ck2 , . . . , Ckm be chosen arbitrarily from the system.
We require to show that these cubes form a variationalm-tuple of cubes. That is,
we require to show that the pm m-tuples formed by cells of Ck1 , Ck2 , . . . , Ckm re-
spectively having the same co-ordinates are all distinct. Suppose, on the contrary,
that those corresponding to the sets of cells having co-ordinates (x1, x2, . . . , xm)
and (x′1, x

′
2, . . . , x

′
m) were the same. Then we would have

∑m
j=1 xjk

j−1
i ≡

∑m
j=1 x

′
jk
j−1
i mod p, for i = 1, 2, . . . ,m.

That is,
∑m
j=1(xj − x′j)k

j−1
i ≡ 0 mod p, for i = 1, 2, . . . ,m.

We may regard these equations as being m homogeneous linear equations in
m quantities (xj − x′j) not all of which are simultaneously zero by hypothesis.
The equations are consistent only if
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= 0.

The left hand side of this equation is an alternant and can only be zero if two of
the ki are equal. Since the m-tuple of cubes under consideration are distinct by
hypothesis, the equations above cannot be simultaneously satisfied and so the
cubes form a variational set, as required. ⊓⊔

Theorem 5.6.3 If n = pα1

1 pα2

2 · · · pαr
r , where the pi are primes and the αi are

positive integers, then a system of u = mini(p
αi
i −1) m-dimensional permutation

cubes on n elements can be constructed each m of which form a variational m-
tuple of cubes provided that m ≤ u.

Proof. As before, we prove the result by giving a construction for the set
of cubes. Let Fi ≡ GF [pαi

i ], i = 1, 2, . . . , r, denote the Galois field with pαi
i

elements. Let γh = (fh1, fh2, . . . , fhr) where fhi ∈ Fi for i = 1, 2, . . . , r and h =
0, 1, . . . , n−1. Under the operations γg+γh = (fg1+fh1, fg2+fh2, . . . , fgr+fhr)
and γgγh = (fg1fh1, fg2fh2, . . . , fgrfhr), the r-tuples γh form a ring R with a unit
element γ1 = (f11, f12, . . . , f1r) where f1i is the unit element of Fi. R contains
divisors of zero, but every divisor of zero in R is a vector γh which has at least one
zero component. The remaining elements of R have inverses in the ring. We take
the n elements γ0, γ1, . . . , γn−1 as the elements of our permutation cubes. We
may also label the cells of each cube by means of co-ordinates (x1, x2, . . . , xm)
with xi ∈ R for i = 1, 2, . . . ,m.

We may suppose without loss of generality that u = mini(p
αi
i − 1) = pα1

1 − 1.
Assuming this, we select a set U containing u elements of R as follows:

γ̃1 = (f11, f12, . . . , f1r)
γ̃2 = (f21, f22, . . . , f2r)

...
γ̃u = (fu1, fu2, . . . , fur)

where f11, f21, . . . , fu1 are the complete set of non-zero elements of the Galois
field F1 and where f1i, f2i, . . . , fui are u distinct non-zero elements of the Galois
field Fi, i = 2, 3, . . . , r. Then none of the elements of U is a divisor of zero and
neither is any difference γ̃l − γ̃m if γ̃l and γ̃m are both elements of U .

We are now able to construct the u m-dimensional permutation cubes C1, C2,
. . . , Cu whose existence is claimed in the theorem by defining the element of the
cube Ck whose co-ordinates are (x1, x2, . . . , xm), with xi ∈ R, to be the element
∑m
j=1 xj γ̃

j−1
k for k = 1, 2, . . . , u and γ̃k ∈ U .

As in the previous theorem, we show easily from the fact that (γ̃h− γ̃i)γ̃k = 0
implies h = i that each of our cubes has the entries in each of its columns all

 The concept of orthogonality



198

different and so is a permutation cube. Also, as in the previous theorem, the set
of m simultaneous equations

m
∑

j=1

(xj − x′j)γ̃
j−1
k = 0, k = k1, k2, . . . , km,

where γ̃k1 , γ̃k2 , . . . , γ̃km arem distinct elements of the set U , cannot be consistent
if the set of m quantities xj − x′j are not simultaneously all zero unless the
determinant
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is zero.
This is not the case because none of the quantities γ̃kl − γ̃km is either equal

to zero or is a divisor of zero in R. Consequently every subset of m of the u
permutation cubes forms a variational set. ⊓⊔

The reader should compare Theorem 5.6.3 with MacNeish’s theorem men-
tioned in Section 5.3. As in the case of MacNeish’s theorem, the lower bounds
given by Theorems 5.6.2 and 5.6.3 can be exceeded. Our four cubes given in
Figures 5.6.1 and 5.6.2 show that the bound given in Theorem 5.6.2 can be ex-
ceeded. As regards Theorem 5.6.3, Arkin(1973a) has constructed a variational
set of three 3-dimensional permutation cubes on ten elements (that is a varia-
tional cube of order 10). Here m = 2× 5 and u = mini(p

αi
i − 1) = 1 so the lower

bound of 1 is certainly exceeded. Arkin’s method makes use of the existence of
pairs of orthogonal latin squares of order 10. See also Arkin(1973b,1974) and
Arkin and Strauss(1974).

An unsolved problem of considerable difficulty is that of finding, for given
values of m and n, the maximum number πm(n) of permutation cubes in a
variational set. The corresponding problem for latin squares (m = 2) has already
been mentioned in Section 5.2 and is discussed in greater detail in later chapters
of this book and also in Chapter 5 of [DK2]. However, as in the case of latin
squares, it is not difficult to find an upper bound for πm(n). We have the following
theorem, which was first proved by Humblot(1971).

Theorem 5.6.4 If πm(n) denotes the maximum number of m-dimensional per-
mutation cubes of order n in a variational set, then πm(n) ≤ (m− 1)(n− 1).

Proof. The argument is similar to that of Theorem 5.1.2 (which proves the
result for the case m = 2) and could be used to provide an alternative proof of
that theorem. We shall denote the cells of each m-dimensional permutation cube
by means of m-tuples of co-ordinates (x1, x2, . . . , xm), where each xi takes the
values 1, 2, . . . , n.
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We may rename the symbols in all the cells of any one permutation cube
simultaneously without affecting the orthogonality. By such renamings we may
arrange that the symbol occurring in the cell with co-ordinates (i, 1, 1, . . . , 1) is
the symbol i−1 and is the same in all the permutation cubes, for i = 1, 2, . . . , n.
Assuming this has been done, it now follows that the symbol 0 can occur in the
cell (x1, 2, 1, 1, . . . , 1) for the same value of x1(x1 6= 1) in at most m − 1 of the
permutation cubes in the variational set: for if it occurred in the same place in
m of the cubes, these m cubes would not form a variational cube. This is true
for each of the n − 1 possible values of x1 (namely, x1 = 2, 3, . . . , n). However,
the symbol 0 must occur in some cell of the row x2 = 2 in every permutation
cube of the variational set so the total number of permutation cubes in the set
cannot exceed (m− 1)(n− 1). ⊓⊔

Next let us introduce the concepts of latin cube and latin hypercube as used
by statisticians.

Definition. An n × n × n three-dimensional matrix comprising n layers each
having n rows and n columns is called a latin cube if it has n distinct elements
each repeated n2 times and so arranged that, in each slice parallel to a face of
the cube, all the n distinct elements appear and each is repeated exactly n times.
[See Fisher(1966), page 85 and Kishen(1950), page 21.] A latin hypercube is the
analogous concept in more than three dimensions.

This concept differs from that of a permutation cube in that, in the statis-
tician’s latin cube, there may exist rows, columns or files in which some of the
elements do not occur and others are repeated. Preece, Pearce and Kerr(1973)
distinguished the various possibilities by calling a latin cube regular (or 3-regular)
if every row, column and file contains each element exactly once (implying that
a regular latin cube is the same concept as a permutation cube). Latin cubes
can then be called 0-regular, 1-regular or 2-regular according to how many of the
three directions (row, column and file) in which they are regular. So for example,
the first latin cube in Figure 5.6.3 has each element exactly once in every row
and column, though not in the files, so it is 2-regular.

Latin cubes and hypercubes were first introduced by Kishen(1942) and in-
dependently by Fisher(1945). Latin hypercubes of a slightly different kind were
also introduced in the following year by Rao(1946). Both concepts find a use in
connection with the design of statistical experiments. For a description of such
applications, see Kerr, Pearce and Preece(1973).

Both Kishen and Fisher also defined orthogonality of latin cubes, as follows.

Definition. Two latin cubes of order n are orthogonal if, among the n3 pairs of
elements chosen from corresponding cells of the two cubes, each distinct ordered
pair of elements occurs exactly n times.

The maximum number of latin cubes in a set of pairwise orthogonal ones is
n2+n−2. This was first proved by Plackett and Burman(1943-1946), who actu-
ally obtained a more general result of which this is a special case, see page 203.
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A construction for orthogonal sets of latin cubes and hypercubes of prime
order was described by Brownlee and Loraine(1948). Their method employs the
elementary abelian group of type (p, p, . . . , p). Later, a more comprehensive paper
on the subject was written by Kishen(1950) of which we shall give more details
below, but first we give some examples to illustrate the concepts just introduced.

In Figure 5.6.3 we exhibit a pair of orthogonal latin cubes of order 3. A set
of ten (which is the maximum possible number) pairwise orthogonal ones of the
same order is given in Figure 5.6.4.

Fig. 5.6.3.

Kishen’s paper [Kishen(1950)] on latin cubes and hypercubes was a very de-
tailed one. In the first place, Kishen gave a general formula for the maximum
number of m-dimensional latin hypercubes of order n in a set of pairwise orthog-
onal ones. This number is

nm − 1

n− 1
−m.

He also showed how a complete set of pairwise orthogonal latin cubes or hy-
percubes can be constructed from a finite projective space of the appropriate
dimension. His method is a generalization of that given in Theorem 5.2.2 for the
construction of a complete set of MOLS from a finite projective plane. In the
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second place, Kishen made further generalizations of the concepts both of latin
hypercube and of orthogonality between pairs of these objects.

Fig. 5.6.5.

He defined an m-dimensional latin hypercube of order n and of the r-th class
to be an n × n × · · · × n m-dimensional matrix having nr distinct elements,
each repeated nm−r times, and such that each element occurs exactly nm−r−1

times in each of its m sets of n parallel (m − 1)-dimensional linear subspaces
(or “layers”). Two such latin hypercubes of the same order n and class r with
the property that, when one is superimposed on the other, every element of the
one occurs exactly nm−2r times with every element of the other, are said to be
orthogonal. Thus the latin cubes which we have discussed above are all of the
first class. An example of a 3× 3× 3 latin cube of the second class is exhibited
in Figure 5.6.5. Latin cubes of the second class were discussed by Saxena(1960)
who gave some methods for their construction additional to those of Kishen.

In Laywine, Mullen and Whittle(1995), these authors proved that the max-
imum number of mutually orthogonal hypercubes of order n ≥ 2, dimension
m ≥ 2, and fixed class j with 0 ≤ j ≤ m− 1 is bounded above by

1
n−1

(

nm − 1−
(

m
1

)

(n− 1)−
(

m
2

)

(n− 1)2 − . . .−
(

m
j

)

(n− 1)j
)

.

They also proved that them-dimensional versions of both Euler’s and MacNeish’s
conjectures (see Section 5.1 and Section 5.3) are false for m > 2 whenever they
are false for m = 2.

The significance of latin cubes and hypercubes is more easily understood if
we regard them as special cases of another design which arises by generalizing
the concept of a set of orthogonal latin squares in a different way.

Let L1, L2, . . . , Lk−2 be a set of k − 2 MOLS of order n whose elements are
the integers 1, 2, . . . , n and let a k × n2 matrix M be formed in the following
way. The first row of M has as its elements the integer 1 repeated n times,
the integer 2 repeated n times, and so on until finally the integer n is repeated
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M =









1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2
1 2 3 3 1 2 2 3 1









1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

Fig. 5.6.6.

n times. The second row of M comprises the sequence of integers 1, 2, . . . , n

repeated n times. If Lh = (a
(h)
ij ), the (h + 2)-th row of M has a

(h)
ij as the entry

in the
[

(i − 1)n+ j
]

-th column: namely, the column whose first two entries are
i and j. A simple example is given in Figure 5.6.6. In general, the matrix M
so constructed has the property that each ordered pair of elements appears just
once as a column in any two-rowed submatrix by virtue of the facts that the
squares L1, L2, . . . , Lk−2 are all latin and are also pairwise orthogonal. We say
that it is an orthogonal array of k constraints and n levels having strength 2
and index 1. (See also Section 11.1.) More generally, we may make the following
definition.

Definition. An orthogonal array of size N with k constraints, n levels, strength
t and index λ is a k × N matrix M having n different elements and with the
property that each different ordered t-tuple of elements occurs exactly λ times
as a column in any t-rowed submatrix of M .

It is immediate from the definition that N = λnt. It is also clear from the
construction given above that any orthogonal array of k constraints, n levels,
strength 2 and index 1 is equivalent to a set of k − 2 MOLS of order n. We
shall defer a formal proof of this fact until Section 11.1. From Theorem 5.1.2,
we may deduce that, if M is an orthogonal array with t = 2 and λ = 1 then
k ≤ n+1. [See also Rao(1949).] The investigation of upper bounds for the number
of constraints in other cases has been the subject of numerous papers. See, in
particular, Rao(1946,1947), Bose and Bush(1952), Bush(1952a,b) and Seiden
and Zemach(1966). Also, we refer the reader to a more recent monograph by
Hedayat, Sloane and Stufken(1999), and to the bibliography therein, for a fairly
comprehensive treatment of the subject which, however, puts its main emphasis
on the application to coding and to statistical design of experiments.

The connection between these orthogonal arrays and latin cubes and hyper-
cubes is given by the statements: (i) a latin cube of order n is equivalent to an
orthogonal array of 4 constraints and n levels having strength 2 and index n;
(ii) a set of k − 3 mutually orthogonal latin cubes of order n is equivalent to
an orthogonal array of k constraints and n levels having strength 2 and index
n; (iii) a set of k − m mutually orthogonal m-dimensional latin hypercubes of
order n is equivalent to an orthogonal array of k constraints and n levels having
strength 2 and index nm−2.

As an illustration of statement (ii), we give in Figure 5.6.7 the orthogonal
array M corresponding to the two orthogonal latin cubes shown in Figure 5.6.3.
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M =













0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2 2 2 2 0 0 0 1 1 1 1 1 1 2 2 2 0 0 0
0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1













Fig. 5.6.7.

Here the first, second and third rows of M give the row, column and file respec-
tively of the cell of the latin cube whose entry appears below them in the fourth
or fifth row of M according to which of the two latin cubes is being considered.

Plackett and Burman(1943-1946) proved that the maximum number of con-
straints k for an orthogonal array of n levels having strength 2 and index λ satis-
fies the inequality k ≤ (λn2− 1)/(n− 1). An alternative proof of the same result
was later given by Bose and Bush(1952). If we put λ = n, we get k ≤ n2 +n+1
for this case and it follows that the maximum number of latin cubes in a pairwise
orthogonal set is n2 + n− 2, as stated earlier.
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Chapter 6

Connections between latin squares and magic
squares

The close link that exists between magic squares and latin squares has been
recognized by mathematicians ever since the by-now famous investigation of
magic squares by Euler(1776,1779) more than two centuries ago. Consequently,
no further justification for devoting the first three sections of the present chapter
to this subject seems necessary.

In the fourth section of the chapter, we give a historical account of research
into the construction of Room squares, since these designs may be regarded as
magic squares of a sort and because investigations have shown that they also are
inter-connected with latin squares.

6.1 Diagonal (or magic) latin squares

A magic square of order n is an arrangement of n2 integers (usually, but not
necessarily, consecutive and usually, but not necessarily, distinct) in a square
such that the sums of each row, each column and each of the main diagonals are
the same.

Magic squares were known in ancient times in China and India and were often
engraved on metal or stone. Even to this day they are worn as amulets. For more
details, see L.D.Andersen(2013). The first known European writer on the sub-
ject was Moschopoulos, a Greek of Constantinople (c. A.D. 1300). Later, Agrippa
(1486-1535) constructed magic squares of orders 3 to 9. A magic square of order
4 is shown in Dürer’s picture “Melancholy”. Further general information and
historical details on the subject of magic squares may be found in Ahrens(1901),
Andrews(1917), Armstrong(1955), Bachet(1612), Ball(1939), Dénes(1961), van
Driel(1936,1939), Dudeney(1917), Euler(1776), Frolov(1884), Gunther(1876b),
Kraitchik(1930,1942), Lucas(1882), Maillet(1906), Postnikov(1964), Schubert(1898)
and on the website of C. Boyer among other places. Also, a number of results on
the connection between magic squares and latin squares are given in the above
books and expository papers.

In this first section we shall discuss the more unusual type of magic square in
which only n of the n2 integers are distinct and each is repeated n times. Among
the magic squares of this type are the so-called “diagonal latin squares”.

Definition. In this chapter, the diagonal formed by the elements a11, a22, . . . , ann
of a latin square A = ||aij || will be called the main left-to-right diagonal while
the diagonal formed by the elements a1,n, a2,n−1, . . . , an,1 will be called the main

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50006-4
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right-to-left diagonal. A latin square is called left semi-diagonal1 if the elements
on its main left-to-right diagonal are distinct. Similarly, if the elements on the
main right-to-left diagonal are distinct, the latin square is called right semi-
diagonal. A latin square is called diagonal if it is both left and right semi-diagonal
simultaneously and, of course, every such latin square is also a magic square ac-
cording to our definition.

Theorem 6.1.1 For each positive integer n 6= 2 there exists at least one left
semi-diagonal latin square of order n and at least one right semi-diagonal latin
square of order n.

Proof. For any given n 6= 2 there exists an idempotent quasigroup of order n
(see Theorem 1.5.6) and the multiplication table of an idempotent quasigroup is
a left semi-diagonal latin square. By reversing the order of the columns of a left
semi-diagonal latin square one will obtain a right semi-diagonal latin square. ⊓⊔

0 α 2α · · · (n− 1)α
β β + α β + 2α · · · β + (n− 1)α
2β 2β + α 2β + 2α · · · 2β + (n− 1)α
...

...
...

. . .
...

(n− 1)β (n− 1)β + α (n− 1)β + 2α · · · (n− 1)β + (n− 1)α

Fig. 6.1.1.

Theorem 6.1.2 If n is any odd integer which is not a multiple of three there
exists at least one diagonal latin square of order n.

Proof. We first show that if α and β are positive integers such that α, β,
α + β and α − β are all relatively prime to n then the latin square exhibited in
Figure 6.1.1 (where the elements are taken modulo n) is a diagonal latin square.
To see this, we observe that the main left-to-right diagonal contains the elements

0, β + α, 2(β + α), . . . , (n− 1)(β + α)

and the other main diagonal contains the elements

(n− 1)α, β + (n− 2)α, 2β + (n− 3)α, . . . , (n− 1)β.

The latter elements are respectively equal to

(n− 1)α, (n− 1)α− (α− β), (n− 1)α− 2(α− β), . . . , (n− 1)α− (n− 1)(α− β).

Since α + β and α − β are both relatively prime to n, the elements i(α + β)
for i = 0, 1, . . . , n − 1, are all distinct and so also are the elements i(α − β).
Consequently, the displayed latin square is diagonal.

1These definitions are given in Margossian(1931) but probably date from much earlier. See,
for example, Tarry(1904) where diagonal latin squares are mentioned.
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Now let us choose α = 2 and β = 1. Then α − β = 1 and α + β = 3, so
it is immediately obvious that if n > 1 is odd and not a multiple of three, the
integers α, β, α − β and α + β are all relatively prime to n. The existence of a
diagonal latin square of order n follows. ⊓⊔

The above construction fails when n is even, but our next two results will
deal with specific subcases of this situation.

Theorem 6.1.3 If n = 2k for an integer k ≥ 0 then there exists at least one
diagonal latin square of order n if and only if k 6= 1.

Proof. Existence for k = 0 and non-existence for k = 1 are trivial to see and
the cases k = 2 and k = 3 are settled by Figure 6.1.2, which shows that diagonal
latin squares of orders 4 and 8 exist.

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4 5 6 7 8
2 3 5 6 7 8 4 1
8 6 4 1 2 5 3 7
6 7 8 5 3 2 1 4
4 8 7 2 6 1 5 3
3 4 6 8 1 7 2 5
5 1 2 7 4 3 8 6
7 5 1 3 8 4 6 2

Fig. 6.1.2.

For k > 3 we proceed by an induction argument. Let k = r, so that n = 2r,
and take as induction hypothesis that there exists at least one diagonal latin
square of every order n = 2k for which 1 < k < r.

Since 2r = 4 · 2r−2, it follows from the induction hypothesis that 2r can be
written as the product n1n2 of two integers n1, n2 such that diagonal latin squares
exist both of order n1 and of order n2. Let us suppose now that A is a diagonal
latin square of order n1 and that B0, B1, . . . , Bn1−1 are isomorphic diagonal latin
squares of order n2 such that Bi is defined on the set {in2, in2+1, . . . , in2+n2−1}
for i = 0, 1, . . . , n1 − 1. If the elements 0, 1, . . . , n1 − 1 of A are replaced by
B0, B1, . . . , Bn1−1 respectively, it is easy to see that we shall obtain a diagonal
latin square of order n1n2 = 2r. The proof can now be completed by induction
on the integer k. ⊓⊔

Theorem 6.1.4 If n is any integral multiple of 4, there exists at least one diag-
onal latin square of order n.

Proof. We show first that if n is even and n = n1n2, where n1, n2 are integers
such that there exists at least one left semi-diagonal latin square of order n1,
and also at least one diagonal latin square of order n2, and if, further, n2 is even,
then a diagonal latin square of order n can be constructed. The construction is
similar to that used in the proof of Theorem 6.1.3 and is as follows.
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Let A be a diagonal latin square of order n2. Let the elements 0, 1, . . . , n2−1
of A, excluding those which appear in the main right-to-left diagonal, be replaced
respectively by B0, B1, . . . , Bn2−1 where Bi, for i = 0, 1, 2, . . . , n2 − 1, is a left
semi-diagonal latin square of order n1 defined on the set {in1, in1 +1, . . . , in1 +
n1 − 1}. Further, let those elements of A which are contained in the main right-
to-left diagonal be replaced successively by B∗

0 , B
∗
1 , . . . , B

∗
n2−1 where, for each i,

B∗
i is defined on the same set as Bi and has the same order, but is right instead of

left semi-diagonal. Then, it is easy to see that, provided n2 is even, the resulting
square of order n1n2 is a diagonal latin square.

We now take the special case when n2 = 4, corresponding to the case when
n = 4n1 is an integral multiple of 4. By Theorem 6.1.3, there exists a diagonal
latin square of order 4 and, by Theorem 6.1.1, there exist both left and right semi-
diagonal latin squares of order n1 so the conditions required for our construction
hold. This proves the theorem. ⊓⊔

It is easy to see that the constructions of Theorem 6.1.2, Theorem 6.1.3 and
Theorem 6.1.4 do not provide the only ways of producing diagonal latin squares
since none of the above methods is applicable if n = 6, 9 or 10 and yet diagonal
squares of these orders certainly exist, as is shown by Figure 6.1.3. However, it
is easy to prove that no diagonal latin square of order 3 can exist.

Theorem 6.1.5 Diagonal latin squares of order 3 do not exist.

Proof. Suppose that ||aij || is a diagonal latin square of order 3. By the di-
agonal property, the elements a11, a22, a33 are all different and the same is true
for the elements a13, a22, a31. This necessarily implies that either a11 = a13 or
a11 = a31. However, neither equality is compatible with ||aij || being a latin
square. ⊓⊔

Some examples of diagonal latin squares of orders 5 and 7 as well as 6, 9,
and 10, are given in Figure 6.1.3. Examples of orders 4 and 8 have already been
given in Figure 6.1.2.

In a lecture at the University of Surrey, one of the authors of the present book
(first edition) conjectured that diagonal latin squares exist for all orders n > 3.
The truth of this conjecture has since been shown independently by a number
of different people. First to give a proof was Hilton(1973), who made use of so-
called cross latin squares: that is, latin squares such that all the elements of the
main left-to-right diagonal are equal and all the elements of the main right-to-
left diagonal are equal. (The definition has to be modified slightly for squares of
odd order.) Shortly afterwards, Lindner(1974) found a somewhat simpler proof
which made use of prolongations.2 Later, a proof more elementary than either
of those just mentioned was obtained by Gergely(1974a). We shall now explain
Gergely’s proof, which depends essentially on the following result.

2Both Hilton and Lindner used the term diagonal latin square to mean a left semi-diagonal
latin square and the term doubly diagonal latin square to mean a diagonal latin square.
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1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

1 2 3 4 5 6
6 5 4 3 2 1
2 4 6 1 3 5
3 1 5 2 6 4
5 3 1 6 4 2
4 6 2 5 1 3

1 2 3 4 5 6 7
7 3 4 5 6 1 2
6 1 2 7 3 4 5
5 7 1 6 4 2 3
4 6 5 2 7 3 1
3 4 7 1 2 5 6
2 5 6 3 1 7 4

1 2 3 4 5 6 7 8 9
6 3 2 8 7 5 9 1 4
7 9 8 5 6 4 3 2 1
5 7 6 9 1 8 4 3 2
9 8 5 7 4 1 2 6 3
8 1 9 6 3 2 5 4 7
3 4 7 1 2 9 6 5 8
4 5 1 2 9 3 8 7 6
2 6 4 3 8 7 1 9 5

1 2 3 4 5 6 7 8 9 10
4 10 8 7 6 9 5 3 1 2
10 8 2 6 7 5 1 4 3 9
9 4 10 8 1 3 2 7 6 5
2 9 6 1 3 8 4 5 10 7
3 5 1 10 9 7 6 2 4 8
5 6 7 3 2 4 9 10 8 1
7 1 5 9 4 10 8 6 2 3
8 7 4 2 10 1 3 9 5 6
6 3 9 5 8 2 10 1 7 4

Fig. 6.1.3.

Theorem 6.1.6 For every n ≥ 3, there exist left semi-diagonal latin squares of
order n which possess at least one transversal disjoint from the main left-to-right
diagonal.

Proof. Gergely’s original proof of Theorem 6.1.6 made use of prolongations of
cyclic group tables, but we can deduce the result very simply as follows. It follows
from the results of Bose, Shrikhande and Parker(1960) described in Chapter 5
that, for all orders n except 2 and 6, there exist latin squares of order n which have
n disjoint transversals. By rearranging the rows, we may easily arrange that one
of the transversals lies along the main left-to-right diagonal. For the case n = 6,
the truth of the theorem is shown by the example in Figure 6.1.4 which actually
has three transversals disjoint from each other and from the main left-to-right
diagonal. [Four disjoint transversals is the maximum number possible for a latin
square of order 6. See Wanless(2007).] ⊓⊔

1 2 3b 4c 5 6d
4 6 5c 1 3d 2b
5d 3c 2 6 1b 4
6b 5 4d 3 2 1c
2c 1d 6 5b 4 3
3 4b 1 2d 6c 5

Fig. 6.1.4.
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We are now able to prove our main result.

Theorem 6.1.7 For n ≥ 4, there exists at least one diagonal latin square of
order n.

Proof. The cases n = 4 and n = 5 are settled by the examples given in
Figure 6.1.2 and Figure 6.1.3 respectively, so we may assume that n ≥ 6.

We suppose first that n is even. We first construct a left semi-diagonal latin
square D1 of order k = n/2 on the symbols 0, 1, 2, . . . , k− 1 having the property
described in Theorem 6.1.6. We construct a second latin square D2 of order k
by reversing the order of the columns of D1 and then adding k to each of its
elements.

With the aid of the squares D1 and D2, we construct a latin square L of
order n of the form

L = D1 D2

D4 D3

where the subsquares D3 and D4 are yet to be defined.
Let τ1 denote the off-diagonal transversal of D1 whose existence is guaranteed

by Theorem 6.1.6, and let τ2 denote the corresponding transversal of D2. We
choose the elements of the main left-to-right diagonal of D3 to be the elements
of the transversal τ2 which occur in the corresponding columns of D2. Similarly,
we choose the elements of the main right-to-left diagonal ofD4 to be the elements
of the transversal τ1 which occur in the corresponding columns of D1. Now, for

i ∈ {1, 3} let d
(i)
11 d

(i)
22 · · · d(i)kk denote the elements of the main left-to-right diagonal

of Di.
We define a permutation πL of the symbols of D1 by

πL =

(

d
(1)
11 · · · d

(1)
jj · · · d

(1)
kk

d
(3)
11 − k · · · d

(3)
jj − k · · · d

(3)
kk − k

)

Similarly, we define a permutation πR of the symbols of D2 by

πR =

(

d
(2)
1k · · · d

(2)
j,k+1−j · · · d

(2)
k1

d
(4)
1k + k · · · d

(4)
j,k+1−j + k · · · d

(4)
k1 + k

)

where in this case the permutation is expressed in terms of the elements of the
main right-to-left diagonals of D2 and D4.

Each element of D3 not on the main left-to-right diagonal is defined to be
the transform of the corresponding element of D1 by the permutation πL. Each
element ofD4 not on the main right-to-left diagonal is defined to be the transform
of the corresponding element of D2 by the permutation πR. Finally, to make the
square L into a latin square, we increase each of the elements of the transversal τ1
of D1 by k and at the same time reduce each of the elements of the transversal τ2
of D2 by k. Then L is of order n and is the diagonal latin square whose existence
was to be shown. We note further that the elements in the cells of the transversal
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τ1 in D1 together with the elements in the corresponding positions in D3 form
an off-diagonal transversal of L.

Using this fact, it is easy to construct from L a diagonal latin square L∗ of
order n + 1, where n + 1 is odd. (We illustrate the procedure below.) We can
thereby construct squares of the odd orders required to complete the proof. ⊓⊔

To illustrate the construction of L∗ from L, we shall give it in detail for the
special case n = 10.

D1 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

D2 =

9 8 7 6 5
5 9 8 7 6
6 5 9 8 7
7 6 5 9 8
8 7 6 5 9

πL =

(

0 2 4 1 3
7− 5 5− 5 8− 5 6− 5 9− 5

)

=

(

0 1 2 3 4
2 1 0 4 3

)

πR =

(

5 7 9 6 8
2 + 5 0 + 5 3 + 5 1 + 5 4 + 5

)

=

(

5 6 7 8 9
7 6 5 9 8

)

L =

0 6 2 3 4 9 8 7 1 5
1 2 8 4 0 5 9 3 7 6
2 3 4 5 1 6 0 9 8 7
3 4 0 1 7 2 6 5 9 8
9 0 1 2 3 8 7 6 5 4
8 9 5 6 2 7 1 0 4 3
7 8 9 0 6 1 5 4 3 2
6 7 3 9 5 0 4 8 2 1
5 1 7 8 9 4 3 2 6 0
4 5 6 7 8 3 2 1 0 9

L∗ =

0 α 2 3 4 6 9 8 7 1 5
1 2 α 4 0 8 5 9 3 7 6
2 3 4 α 1 5 6 0 9 8 7
3 4 0 1 α 7 2 6 5 9 8
α 0 1 2 3 9 8 7 6 5 4
9 6 8 5 7 α 3 1 4 2 0
8 9 5 6 2 1 7 α 0 4 3
7 8 9 0 6 4 1 5 α 3 2
6 7 3 9 5 2 0 4 8 α 1
5 1 7 8 9 0 4 3 2 6 α
4 5 6 7 8 3 α 2 1 0 9

W.Taylor(1972) discussed the analogue of a diagonal latin square in higher
dimensions. He also remarked that he and Faber had devised yet another proof
of Theorem 6.1.7.

As we remarked at the beginning of this section, all diagonal latin squares
are magic squares. However, the more usual type of magic square contains n2

different integers, and usually these are required to be consecutive integers. In
the next section, we explain how to construct the latter type of magic square
with the aid of pairs of orthogonal latin squares.
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6.2 Construction of magic squares with the aid of orthogonal latin
squares.

For our first construction, we shall need to consider only pairs of orthogonal
latin squares which are isotopic to the square which represents the multiplication
table of the cyclic group Cn. The method which we shall describe is effective for
all odd integers n. Our procedure is substantially equivalent to that of De la
Hire3 but the technique of our proof involves the use of latin squares.

0 1 2 · · · 1
2(n− 3) 1

2(n− 1) · · · n− 2 n− 1

1 2 3 · · · 1
2
(n− 1) 1

2
(n+ 1) · · · n− 1 0

...
...

...
. . .

...
...

. . .
...

...

n− 1 0 1 · · · 1
2
(n− 5) 1

2
(n− 3) · · · n− 3 n− 2

Fig. 6.2.1.

Let L∗ denote the latin square exhibited in Figure 6.2.1, which is the un-
bordered Cayley table of the cyclic group Cn, for odd n, when represented as
an additive group. By interchanging the elements n − 1 and 1

2(n − 1) in each
of the rows of L∗, we can transform it into a latin square L whose row, column
and diagonal sums are each equal to 1

2n(n − 1) and which can be character-
ized as follows. The main left-to-right diagonal forms a transversal of L (so L
is left semi-diagonal) and each broken diagonal parallel to the main left-to-right
diagonal also forms a transversal. The main right-to-left diagonal contains the
element 1

2 (n − 1) duplicated n times and each broken diagonal parallel to the
main right-to-left diagonal has all its elements equal.

A latin square L′ orthogonal to L can be obtained from L by reversing the
order of its columns. The orthogonality follows from the fact that all the elements
of each broken diagonal parallel to the main left-to-right diagonal of L′ are the
same, whereas in L they are all different. Also, the elements of each broken
diagonal parallel to the main right-to-left diagonal of L′ form a transversal,
whereas in L they are all the same.

We illustrate the above construction in Figure 6.2.2 by exhibiting the squares
L∗, L and L′ for the case n = 5.

We can express our result in the form of a theorem as follows:

Theorem 6.2.1 Let Cn denote the cyclic group of an odd order n, with elements
represented by the integers 0, 1, . . . , n − 1 under addition modulo n and let its

3The work of the French mathematician, astronomer, physicist, naturalist and painter
Philippe de la Hire (1640–1718) is frequently quoted, without giving an explicit reference,
in the literature on magic squares.
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L∗ =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

L =

0 1 4 3 2
1 4 3 2 0
4 3 2 0 1
3 2 0 1 4
2 0 1 4 3

L′ =

2 3 4 1 0
0 2 3 4 1
1 0 2 3 4
4 1 0 2 3
3 4 1 0 2

Fig. 6.2.2.

isotope under the isotopism ρ = (α, β, γ) be denoted by ρ(Cn). Let ρ1 = (ǫ, ǫ, γ)
and ρ2 = (ǫ, β, γ) where ǫ is the identity permutation,

β =

(

0 1 · · · 1
2
(n− 3) 1

2
(n− 1) · · · n− 1

n− 1 n− 2 · · · 1
2
(n+ 1) 1

2
(n− 1) · · · 0

)

and γ simply transposes 1
2(n−1) and n−1. Then the latin squares which represent

the unbordered multiplication tables of ρ1(Cn) and ρ2(Cn) are orthogonal and
have the structure described above.

We can use this result to build magic squares, as follows:

Theorem 6.2.2 Let L = ||aij || and L′ = ||bij || be two orthogonal latin squares
of odd order n formed in the manner described in Theorem 6.2.1 and having
as their elements the integers 0, 1, . . . , n − 1. Let a square matrix M = ||cij ||
be constructed from L and L′ by putting cij = naij + bij. Then the sum of the
elements of each row, column, and diagonal of M is equal to 1

2n(n
2 − 1) and the

elements of M are the consecutive integers 0, 1, . . . , n2 − 1.

Proof. In order to show that the row, column, and diagonal sums are each
equal to 1

2n(n
2−1), we derive the following equalities directly from the structure

of the latin squares L and L′ as described in Theorem 6.2.1. For each fixed i,

∑

j

cij =
∑

j

(naij + bij) = n
∑

j

aij +
∑

j

bij = (n+1)
[

1
2n(n− 1)

]

= 1
2n(n

2− 1),

and, for each fixed j,

∑

i

cij = n
∑

i

aij +
∑

i

bij = (n+ 1)
[

1
2n(n− 1)

]

= 1
2n(n

2 − 1).

Similar calculations applied to the main diagonals show that

∑

i

cii =
1
2
n(n2 − 1) =

∑

i

ci,n+1−i.

To complete the proof, we have to show that no two elements of M are equal
and that 0 ≤ cij ≤ n2 − 1 for all values of i, j. Suppose first that two distinct
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elements cij and ckl of M were equal. This would imply that n(aij−akl)+(bij−
bkl) = 0. Since the elements of L′ are all less than n, the latter equation could
only hold if aij = akl and then, since L is a latin square, we would necessarily
have i 6= k and j 6= l. It would follow that aij and akl were in the same broken
diagonal parallel to the main right-to-left diagonal. However, in L′ the elements
of each such diagonal are all different, so bij 6= bkl. It follows that cij 6= ckl.
Finally, since 0 ≤ aij ≤ n− 1 and 0 ≤ bij ≤ n− 1, the largest value that cij can
take is n(n− 1) + n− 1 = n2 − 1, so 0 ≤ cij ≤ n2 − 1 as required. ⊓⊔

We demonstrate the above procedure in Figure 6.2.3, where we give the final
step of the construction for the example exhibited in Figure 6.2.2.

nL =

0 5 20 15 10
5 20 15 10 0
20 15 10 0 5
15 10 0 5 20
10 0 5 20 15

L′ =

2 3 4 1 0
0 2 3 4 1
1 0 2 3 4
4 1 0 2 3
3 4 1 0 2

M = nL+ L′ =

2 8 24 16 10
5 22 18 14 1
21 15 12 3 9
19 11 0 7 23
13 4 6 20 17

Fig. 6.2.3.

In the following theorem, we give another construction which uses orthogonal
latin squares.

Theorem 6.2.3 If n is any integer for which an orthogonal pair of diagonal
latin squares of order n exists, then an n×n magic square whose entries are the
consecutive integers 0 to n2 − 1 can be constructed.

Proof. We first write the two squares in juxtaposed form, as for example in
Figure 6.2.6. Since the sums of the elements of each row, column, and main diag-
onal are all equal for each of the two squares, the same is true in the juxtaposed
form. Moreover, this is true regardless of the number base selected. If we take
the number base as the integer n we get a magic square M whose entries are
the integers 0 to n2 − 1 as required. Thus, to get the matrix M exhibited in
Figure 6.2.6 the number base 4 has been selected.

We may express the construction in another way by saying that M is related
to L1 and L2 by the matrix equation M = nL1 + L2. (Compare the proof of
Theorem 6.2.2.) ⊓⊔

The construction of magic squares by means of orthogonal pairs of diagonal
latin squares or by means of orthogonal pairs of latin squares of the type given by
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Theorem 6.2.1 have been known and used for more than two centuries. See, for ex-
ample, Euler(1779), Maillet(1894a) and Maillet(1894c) or (1896) [Maillet(1894c)
and Maillet(1896) are two publications of the same paper], Barbette(1896),
Tarry(1904,1905), Kraichik(1942,1953) and Ball(1939). These constructions are
very useful but they are not the only methods available. For example, neither
of these constructions can be used to obtain a magic square of order 6 and yet
magic squares of this order certainly exist, as is demonstrated by Figure 6.2.4.

35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 24 12 14 16
4 36 29 13 18 11

Fig. 6.2.4.

Because of their importance in connection with the construction of magic
squares, many authors have tried to answer the question: “For which orders n
distinct from 2, 3 and 6 do there exist orthogonal pairs of diagonal latin squares?”

That such pairs exist for the case n = 4 has been known at least since
1723, as has been pointed out by Ball(1939), page 190. The fact that a solution
exists whenever n is odd and not a multiple of three (see Theorem 6.2.4) has
also been known at least since the nineteenth century. Using both these results,
Tarry(1905) proved at the beginning of the twentieth century that orthogonal
pairs of diagonal latin squares exist for every order n which is a multiple of 4.
Moreover, he proved in Tarry(1904) that if n = 8m, where m is not a multiple of
two or three, then the method of Theorem 6.2.3 can be used to obtain a magic
square with the additional property that the sums of the squares of the elements
in each row, column and main diagonal are equal. A magic square with the latter
property is called bimagic. We discuss such squares further in the next section.

The complete resolution of the existence question was not achieved until 1993.
We shall now explain the main steps.

Theorem 6.2.4 There exist orthogonal pairs of diagonal latin squares of every
odd order which is not a multiple of 3.

Proof. It follows directly from Theorem 6.1.2 that, if α = 2 and β = 1, the
latin square exhibited in Figure 6.1.1 is a diagonal latin square provided that n
is odd and not divisible by 3. Its transpose is also a diagonal latin square and
we shall show that the two squares so obtained are orthogonal, again under the
condition that n is not divisible by 3.

Let us denote the square obtained from Figure 6.1.1 when α = 2 and β = 1
by L1 and its transpose by L2 (the squares L1 and L2 for the special case when
n = 5 are exhibited in Figure 6.2.5). We shall show first that the contents of the
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cells of L1 which correspond to the cells containing the element 0 in L2 are all
different.

L1 =

0 2 4 1 3
1 3 0 2 4
2 4 1 3 0
3 0 2 4 1
4 1 3 0 2

L2 =

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

Fig. 6.2.5.

Rows and columns will be indexed with the set {0, 1, . . . , n − 1} and all
calculations will be performed modulo n. In the r-th row of L2, the element 0
appears in the (n − 2r)-th column. In the cell of the r-th row and (n − 2r)-th
column of L1, the element r + 2(n − 2r) appears. To see this, observe that the
entry in the cell of the r-th row and 0-th column of the square L1 is r and that for
each step taken to the right along this row, the cell entry is increased by 2. Since
r + 2(n− 2r) ≡ −3r mod n and since −3 is relatively prime to n, the elements
−3r are all different modulo n as r varies through the set {0, 1, 2, . . . , n − 1}.
This proves the result.

By a similar argument, we could show that the contents of the cells of L1

which correspond to the cells containing the element i in L2 are all different and
that this is true for each choice of i in the range 0 ≤ i ≤ n − 1. It follows that
L1 and L2 are orthogonal diagonal latin squares. ⊓⊔

It is an obvious consequence of Theorem 6.1.5 that orthogonal pairs of di-
agonal latin squares of order 3 do not exist. However, our next theorem, which
comes from Ball(1939), gives a further set of values of n for which orthogonal
pairs of diagonal latin squares exist.

Theorem 6.2.5 Orthogonal pairs of diagonal latin squares of order n can be
constructed whenever n is odd or a multiple of 4 except, possibly, when n is a
multiple of 3 but not of 9.

Proof. We first point out that there exist orthogonal pairs of diagonal latin
squares of orders 4, 8, 9 and 27. Examples of such pairs corresponding to the
first three of these values of n are exhibited in Figure 6.2.6, Figure 6.2.7 and
Figure 6.2.8 respectively and a construction which gives a pair of order 27 is
described by Ball(1939), page 192. (In Figure 6.2.6 the diagonal squares L1 and
L2 are first shown separately and then in juxtaposition. In the remaining cases,
only the juxtaposed form is shown.)

Then, making use of Theorem 6.2.4 and of the construction described in the
proof of Theorem 6.1.3, it is easy to deduce the truth of the present theorem
which comes from Ball(1939), page 192. ⊓⊔
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L1 =

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

L2 =

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

00 13 21 32
22 31 03 10
33 20 12 01
11 02 30 23

M =

0 7 9 14
10 13 3 4
15 8 6 1
5 2 12 11

Fig. 6.2.6.

17 50 43 04 32 75 66 21
31 76 65 22 14 53 40 07
00 47 54 13 25 62 71 36
26 61 72 35 03 44 57 10
45 02 11 56 60 27 34 73
63 24 37 70 46 01 12 55
52 15 06 41 77 30 23 64
74 33 20 67 51 16 05 42

Fig. 6.2.7.

The preceding two theorems left the cases when n is an odd multiple of two
or three unresolved. Proof of existence for these cases was finally completed by
the combined efforts of six authors after a lapse of more than three-quarters of a
century. For full details, see Brown, Cherry, Most, Most, Parker and Wallis(1993)
but we shall now describe some of the steps along the way.

Lindner(1973) made an attempt to solve the problem by means of a con-
struction which used the singular direct product of Sade. (The latter concept is
defined in Section 11.2.) His main result is as follows: “If there are t mutually

76 82 64 15 27 00 41 53 38
11 23 08 46 52 34 75 87 60
45 57 30 71 83 68 16 22 04
62 74 86 07 10 25 33 48 51
03 18 21 32 44 56 67 70 85
37 40 55 63 78 81 02 14 26
84 66 72 20 05 17 58 31 43
28 01 13 54 36 42 80 65 77
50 35 47 88 61 73 24 06 12

Fig. 6.2.8.
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orthogonal diagonal latin squares of order v = 2m, t mutually orthogonal left
semi-diagonal latin squares of order q each containing a diagonal latin square of
order p in its top left-hand corner, and t mutually orthogonal right semi-diagonal
latin squares of order q − p, then there are t mutually orthogonal diagonal latin
squares of order v(q − p) + p.” Taking t = 2, v = 8, p = 1 and q = 5, Lindner
deduced that there is a pair of orthogonal diagonal latin squares of order 33,
which number is a multiple of 3 but not of 9. Similarly, taking t = 6, v = 8,
p = 1 and q = 17, he deduced that there are at least six mutually orthogonal
diagonal latin squares of order 129. By means of the direct product construction,
it is easy to show from these results that pairs of mutually orthogonal diagonal
latin squares exist for infinitely many orders which are multiples of 3 but not of
9. (Contrast Theorem 6.2.5.)

By methods quite similar to those used by Lindner, Hilton and Scott(1974)
showed that pairs of orthogonal diagonal latin squares exist for some orders n
which are multiples of 2 but not of 4. The smallest such order for which their
construction works is n = 50. They also exhibited a pair of orthogonal diagonal
latin squares of order 21. Later, Hilton(1975b) showed that it is possible to obtain
a set of at least four mutually orthogonal diagonal latin squares of order 50.

Wallis and Zhu(1981,1982,1983) obtained a set of four mutually orthogo-
nal diagonal latin squares of order 12 and disposed of some of the remaining
outstanding cases. See also Du(1991) who considered the existence of triples.
Meanwhile, Heinrich and Hilton(1983) used various constructions to show exis-
tence of pairs for all remaining orders (at the time their paper was submitted)
except 10, 12, 14, 15, 18 and 26. Zhu(1984a) dealt with order 14. The last case
of all to be resolved was order 10 in the paper of Brown, Cherry et al (1993).

As regards the maximum possible number ND(n) of diagonal latin squares
in a pairwise orthogonal set of squares of order n = pα1

1 pα2

2 . . . pαr
r (where the pi

are distinct primes), Gergely(1974b) proved that

ND(n) ≥ α(n)− 3

if n is odd, and

ND(n) ≥ α(n)− 2

if n is even, where α(n) = min1≤i≤r p
αi
i (cf. MacNeish’s theorem, page 178).

Gergely also pointed out that ND(n) ≤ n− 3 if n ≥ 3 is odd and ND(n) ≤ n− 2
if n is even (cf. Theorem 5.1.2).

Hilton(1974,1975a) showed that ND(n) → ∞ as n → ∞ [cf. Chowla, Erdös
and Straus(1960) who proved the same result for N(n)].

Let dr be the least integer such that for all n > dr there exist r pair-
wise orthogonal diagonal latin squares of order n. Wallis and Zhu(1984a) and
Du(1993) have given bounds on some of the dr. Also, considerable work has
been done on constructing parastrophic orthogonal diagonal latin squares. See
Du(1996a,1996b,1998) and Bennett, Du and Zhang(1997, 1998, 2001).
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6.3 Additional results on magic squares

A magic square is called pandiagonal if the sets of elements in each of its
broken diagonals have the same sum and this sum is the same as the sum of the
elements of each row, column, and the two main diagonals.4

McClintock(1897) investigated pandiagonal squares, combining some of the
results of De la Hire and extending them further. It is well known and easy to
check that, if α and β are integers which satisfy the conditions of Theorem 6.1.2,
then the latin square exhibited in Figure 6.1.1 is a pandiagonal magic square.
[See also Ball(1939) and McClintock(1897).] In fact, this square has the property
that the elements in each of its broken diagonals (parallel to the main left-to-
right and right-to-left diagonals) are all different. Such a square is called a totally
diagonal latin square or a Knut Vik design. The latter name arose because such
squares have been used in the statistical design of experiments. (For details, see
[DK2].) Consequently, Theorem 6.1.2 can be reformulated as follows.

Theorem 6.3.1 For every odd integer n which is not a multiple of 3 there exists
at least one totally diagonal latin square of size n× n.

Hedayat and Federer(1975) and Hedayat(1977) have proved that n×n Knut
Vik designs (totally diagonal latin squares) exist if and only if n is not a multiple
of 2 or 3.5 Hedayat has also proved the following theorem.

Theorem 6.3.2 If n is not a multiple of 2 or 3, then orthogonal pairs of totally
diagonal latin squares exist.

Proof. This result follows from Theorem 6.3.3 below. ⊓⊔
By exactly the same argument and construction that we used in Theo-

rem 6.2.2, it is easy to see that we can use such a pair of totally diagonal
latin squares to build a pandiagonal magic square. This fact is illustrated in
Figure 6.3.1. (To obtain a pandiagonal magic square using the integers 1 to 49,
it is only necessary to increase each of the entries in the square shown by one. If
this is done, the sum of the elements of each of the rows, columns and diagonals
becomes 175.) In Xu and Lu(1995), these authors have shown that, for many
orders n, it is possible to use self-orthogonal pandiagonal latin squares for the
same purpose.

An interesting question to ask is “What is the largest number of totally
diagonal latin squares of order n that can exist in a pairwise orthogonal set?”

Hedayat(1977) showed that such a set can contain at most t = n− 3 squares
by the following simple argument. Suppose that the set contains t squares. Each
member of the set is orthogonal to each of the latin squares ||aij || and ||bij ||,
where aij = i+ j mod n and bij = i− j mod n. Moreover, the latter two squares
are themselves orthogonal when n is odd. But, as we showed in Theorem 5.1.2,

4For a detailed account of the history of such squares, see Problem 6.2 of [DK1] on page 344
of this book.

5A much earlier proof of this is attributed to Euler(1779).
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0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3

0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4

0 8 16 24 32 40 48
23 31 39 47 6 7 15
46 5 13 14 22 30 38
20 21 29 37 45 4 12
36 44 3 11 19 27 28
10 18 26 34 35 43 2
33 41 42 1 9 17 25

Fig. 6.3.1.

there are at most n − 1 latin squares in a complete set of mutually orthogonal
squares so t+ 2 ≤ n− 1.

In the same paper, Hedayat also proved

Theorem 6.3.3 If n is a prime, there are n− 3 pairwise orthogonal Knut Vik
designs. If n is not a prime and is not divisible by 2 or 3, there is at least a pair
of orthogonal Knut Vik designs.

Proof. The proof is carried out in two steps. (i) Let A = ||aij ||, where aij =
λi+j mod n. Then A is a Knut Vik design provided that λ−1, λ and λ+1 are all
relatively prime to n; and (ii) B = ||bij || and C = ||cij ||, where bij = λ1i+j mod
n and cij = λ2i+ j mod n are orthogonal latin squares provided that λ1 − λ2 is
prime to n.
Proof (i). It is easy to see that aij = aik ⇒ j = k. Also, ahj = aij ⇒ λ(h− i) ≡ 0
mod n so h = i if λ is prime to n. Thus A is a latin square if λ is prime to n.
Next, aij = ai+r,j+r ⇒ λi+ j ≡ λ(i+ r) + (j + r) ⇒ (λ+ 1)r ≡ 0 mod n so the
elements of each broken left-to-right diagonal are distinct provided that λ+ 1 is
prime to n. Similarly, aij = ai+r,j−r ⇒ (λ − 1)r ≡ 0 mod n so the elements of
each broken right-to-left diagonal are distinct provided that λ− 1 is prime to n.
Proof (ii). If B and C were not orthogonal, there would exist distinct cells (i, j)
and (u, v) such that aij = auv and bij = buv. By subtraction of the expressions
for these quantities, this would imply that (λ1 − λ2)i = (λ1 − λ2)u. If λ1 − λ2 is
prime to n, the latter equality is impossible unles i = u and then j = v, so the
squares are orthogonal when λ1 − λ2 is prime to n.

Finally, we observe that λ − 1, λ and λ + 1 are all relatively prime to n for
all non-zero choices of λ except 1 and n − 1 when n is prime and that, in that
case, λ1 − λ2 is prime to n for all choices of λ1 and λ2. When n is not prime but
is not divisible by 2 or 3, the choices λ1 = 3 and λ2 = 2 ensure that λ1 − 1, λ1,
λ1 + 1, λ2 − 1, λ2, λ2 + 1 and λ1 − λ2 are all prime to n so there is at least one
pair of orthogonal Knut Vik designs for all permissible orders n. ⊓⊔

The squares used in Figure 6.3.1 were constructed by Hedayat’s method.

The existence question regarding orthogonal sets has been further investi-
gated in Stoffel(1976), Afsarinejad(1986,1987) and Ishihara(2006).

It is a property of pandiagonal magic squares, long known and easily recog-
nized, that a row or column which forms one of the four edges of the square can
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be moved to the opposite side of the square without destroying the magic and
pandiagonal attributes of the square6. By reason of this remarkable property,
pandiagonal squares have been given by some authors, beginning with De la
Hire, the name perfect and by others, beginning with Lucas, the name diabolic.

Addition-multiplication magic squares.

Horner(1952,1955) investigated a method of constructing magic squares in
which not only the sum but also the product of the elements in each row, column
or main diagonal is a constant. Such a square is called an addition-multiplication
magic square. In Horner(1952), that author showed how to construct addition-
multiplication magic squares of any odd order and in Horner(1955) he obtained
addition-multiplication magic squares of orders 8 and 16. Both papers make use
of latin squares. In Figure 6.3.2 and Figure 6.3.3 we give examples of addition-
multiplication magic squares of orders 8 and 9 respectively, obtained by Horner’s
methods.

162 207 51 26 133 120 116 25
105 152 100 29 138 243 39 34
92 27 91 136 45 38 150 261
57 30 174 225 108 23 119 104
58 75 171 90 17 52 216 161
13 68 184 189 50 87 135 114
200 203 15 76 117 102 46 81
153 78 54 69 232 175 19 60

Fig. 6.3.2.

The magic sum (that is, the sum of the elements of each row, column or
diagonal) of the addition-multiplication magic square exhibited in Figure 6.3.2
is 840 and its magic product is 2 058 068 231 856 000. In our second example
(Figure 6.3.3) the magic sum is 848 and the magic product 5 804 807 833 440 000.

For details of recent work on this topic, see Boyer(2012).

Multimagic squares.

As we remarked earlier (see page 215), it is possible to construct magic squares
of certain orders for which not only are the sums of the elements in each row,
column and main diagonal all equal but also the squares of those elements have
the same properties. Such squares are bimagic. More generally, we may make the
following definition.

Definition. An n × n matrix whose entries are the integers 0, 1, . . . , n2 − 1
(or, alternatively, 1, 2, . . . , n2) is called m-multimagic if the sums of the elements
in each row, column and main diagonal are all equal and if the same is true

6Hence, any cyclic permutation of the rows and/or columns also preserves these properties.
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200 87 95 42 99 1 46 108 170
14 44 10 184 81 85 150 261 19
138 243 17 50 116 190 56 33 5
57 125 232 9 7 66 68 230 54
4 70 22 51 115 216 171 25 174

153 23 162 76 250 58 3 35 88
145 152 75 11 6 63 270 34 92
110 2 28 135 136 69 29 114 225
27 102 207 290 38 100 55 8 21

Fig. 6.3.3.

when the elements are replaced by their squares, or their cubes, ... , or their mth
powers.

In Tarry(1906), that author gave a method of constructing bimagic squares of
all sizes p2×p2 where p is a prime. He also gave a similar method for constructing
trimagic squares of size p3 × p3 and claimed, without giving a proof, that m-
multimagic squares exist for all positive integers m. The truth of the latter claim
has been shown by Derkson, Eggermont and van den Essen(2007).

Tarry’s method for constructing bimagic and trimagic squares is too lengthy
to be given here but is described in detail in Cazalas((1934)) and, for the case
of bimagic squares only, in an expository paper by the present author [Keed-
well(2011b)].

Just as orthogonal diagonal latin squares can be used to construct magic
squares (see Theorem 6.2.3) so orthogonal diagonal Sudoku latin squares can
be used to construct bimagic squares. (Existence of the former was shown in
Section 5.6.) The latter observation was first made by Boyer(2006) when studying
Tarry’s construction methods (which do not use Sudoku squares explictly). It has
been exploited by the present author to give a construction of p2 × p2 bimagic
squares valid for all primes p except p = 5. [See Keedwell(2011c).] It is likely that,
by using a structurally different pair of orthogonal diagonal Sudoku squares, the
restriction p 6= 5 can be removed or replaced by a similar but different restriction.

The constructions used in the proofs of Theorem 6.1.2, Theorem 6.2.1 and
Theorem 6.2.3 suggest the importance of orthogonal pairs of diagonal latin
squares which satisfy the quadrangle criterion. Since such squares play an im-
portant role in the construction of magic squares it is interesting to ask the
question: “What is the largest number of elements which can be deleted from
the two members of an orthogonal pair of diagonal latin squares both of which
satisfy the quadrangle criterion, in such a way that the pair can be reconstructed
uniquely from the remainder?” This problem is solved in Theorem 6.3.4 which
does not require the two squares to be diagonal.

Theorem 6.3.4 Let A = ||aij || and B = ||bij || be two orthogonal latin squares
of order n 6= 4, both of which satisfy the quadrangle criterion, and let the matrix
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of ordered pairs (aij , bij) be denoted by C. Let U(C) be the maximum number
of entries which can be deleted from C in such a way that C can always be
uniquely constructed from those left, regardless of which entries are removed.
Then U(C) = 2n− 1.

Proof. It follows from Theorem 3.3.2 that 2n − 1 arbitrary elements can be
deleted from C without jeopardising the unique reconstructibility. Hence U(C) ≥
2n− 1, so it suffices to show that U(C) < 2n.

Choose any two distinct symbols k and l from A and form a new latin square
A′ by interchanging these two symbols throughout A. Note that A′ satisfies the
quadrangle criterion and is orthogonal to B. Let C′ be obtained by juxtaposing
A′ and B. Then C′ differs from C in exactly 2n places, which shows that U(C) <
2n. ⊓⊔

As an illustration of the above argument, take the orthogonal pair of latin
squares in Figure 6.2.5 to be C and let k = 0 and l = 1. The resulting matrices
C and C ′ are exhibited in Figure 6.3.4.

00 21 42 13 34
12 33 04 20 41
24 40 11 32 03
31 02 23 44 10
43 14 30 01 22

10 21 42 03 34
02 33 14 20 41
24 40 01 32 13
31 12 23 44 00
43 04 30 11 22

Fig. 6.3.4.

We note, as Dénes did in Dénes(1961), that the proof of Theorem 6.3.4 shows
that U(C) < 2n for any matrix C formed by the juxtaposition of two orthogonal
latin squares of order n. However, without the restriction of the quadrangle
criterion, U(C) can be very much smaller than 2n as the next theorem shows.

Theorem 6.3.5 For every n ≥ 9 there is a matrix C formed by the juxtaposition
of two orthogonal latin squares of order n for which U(C) ≤ 5.

Proof. Wallis and Zhu(1984b) have shown that for all n ≥ 9 there exists a
pair of orthogonal squares of order n containing orthogonal latin subsquares of
order 3. We can simply apply Theorem 6.3.4 to the subsquares, since all latin
squares of order 3 satisfy the quadrangle criterion. ⊓⊔

In Keedwell(2006a), the present author has initiated an investigation of the
sizes of uniquely completable partial magic squares (cf. Section 3.2). He has made
the following dfinition.

Definition. A defining set for a magic square is a set of entries of an n × n
matrix, fixed in orientation, which determines the remaining entries so as to
form a unique n× n magic square.

For a 3 × 3 magic square, the size of a minimal defining set is two. Since,
up to equivalence, there is only one such square, this is easy to show. However,
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in the case of 4 × 4 magic squares, even when variations of a square obtained
by rotation and reflection are not counted, there are 880 such squares and, in
the case of 5× 5 magic squares, there are more than 275 million. In Berlekamp,
Conway and Guy(2004), the 4 × 4 squares have been separated into 12 classes,
of which 304 are of type CH (central horizontal). Keedwell has shown that there
exist squares of the latter type which have critical sets (cf. Section 3.2) of at
most four elements. This result does not rule out the possibility that there exist
4 × 4 magic squares with critical sets of smaller size either in this class or in
one of the others. The author conjectures that no 4 × 4 magic square can have
a critical set of less than three entries but he has no convincing proof that such
is the case. Many questions regarding this topic remain to be answered.

Another question considered by Gridgeman(1972), by the present author [in
Keedwell(2006b)] and, later also by Lorch(2012), is that of constructing n2 × n2

Sudoku latin squares (see Section 3.2) each of whose n×n subsquares is a magic
square. The present author has shown that it is easy to construct a 16×16 Sudoku
latin square all of whose 4× 4 subsquares are magic (to be called magic Sudoku
latin squares) and indeed that they can all be versions of the same pandiagonal
magic square. [See also Gridgeman(1972) for another example.] He has raised
the question whether it is possible to construct an n2 × n2 Sudoku latin square
(n ≥ 4) all of whose n × n subsquares are magic squares of which no two are
equivalent. He conjectures that the answer is in the affirmative for all sufficiently
large n and that a construction may be possible for the case n = 4.

Lorch(2012) has given a construction for orthogonal magic Sudoku latin
squares.

We end this section by pointing out that magic squares should not be regarded
solely as a mathematical amusement because they also play an important role
in practical applications such as the design of experiments and the construction
of error detecting and correcting codes.

Samoilenko(1965) illustrated how generalized magic squares can be utilized
for error correction. He used latin squares to obtain his generalized magic squares
and then constructed variable parameter codes with the aid of the latter. For
more information about error correcting codes see Section 11.4. A typical ap-
plication of variable parameter codes is in the transmission of data between
computers.

Phillips(1964) showed how magic squares can be applied to statistics. The
magic squares which he used were obtained by means of latin squares and or-
thogonal pairs of latin squares.

6.4 Room squares: their construction and uses

Under the title “A new type of magic square”, Room(1955) introduced what
was believed at the time to be a new kind of combinatorial structure and which
has subsequently become known as a Room square or Room design. As in the
case of magic squares, many of these designs can be constructed with the aid of
latin squares.
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A Room design of order 2n comprises a square array having 2n−1 cells in each
row and column and such that each cell is either empty or contains an unordered
pair of symbols chosen from a set of 2n elements. Without loss of generality, we
can take these elements as the numbers 1, 2, . . . , 2n−1,∞. Each row and column
of the design contains n−1 empty cells and n cells each of which contains a pair
of symbols. Each row and column contains each of the 2n symbols exactly once,
and, further, each of the n(2n− 1) possible distinct pairs of symbols is required
to occur exactly once in a cell of the square. As illustrations of the concept, we
exhibit two Room designs of order 8 in Figure 6.4.1.

∞, 1 6, 2 5, 7 3, 4

4, 5 ∞, 2 7, 3 6, 1

7, 2 5, 6 ∞, 3 1, 4

1, 3 6, 7 ∞, 4 2, 5

3, 6 2, 4 7, 1 ∞, 5

4, 7 3, 5 1, 2 ∞, 6

5, 1 4, 6 2, 3 ∞, 7

∞, 1 5, 6 2, 4 3, 7

∞, 2 6, 7 3, 5 4, 1

∞, 3 7, 1 4, 6 5, 2

6, 3 ∞, 4 1, 2 5, 7

7, 4 ∞, 5 2, 3 6, 1

7, 2 1, 5 ∞, 6 3, 4

4, 5 1, 3 2, 6 ∞, 7

Fig. 6.4.1.

A Room square of side 2n − 1 is synonymous with a Room design of order
2n.

Room came across structures of this kind in connection with a study of
Clifford matrices, a concept from algebraic geometry. However, what was not
realised until 1970 is that such designs had begun to be studied some fifty years
earlier in connection with the design of tournaments for the card game known
as “Bridge”.

The purpose of a Duplicate Bridge tournament is to establish comparisons
between every pair of players taking part. In each separate game, two pairs of
players compete. We may designate each pair of players by a single symbol and,
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if there are 2n pairs, we may take the symbols denoting these to be the numbers
1, 2, . . . , 2n − 1,∞ as above. The tournament consists of 2n − 1 rounds and all
the players take part in every round. During the course of the tournament each
pair of players is required to play each other pair exactly once and also each pair
of players is required to play at each of a number of different tables exactly once.
The arrangements of the cards at a particular table are the same for each set of
players who play at that table (but are not disclosed to any pair of players until
they reach that table). In this way, the desired comparisons between the play of
the different pairs is effected. All these requirements can be met if and only if
there exists a Room design of order 2n, where 2n is the number of Bridge pairs.

To see this, let us regard the rows of the Room square as giving the rounds
and the columns as giving the tables. There are 2n − 1 of the latter, but in
any particular round only n of them are in use. If the cell which lies at the
intersection of the r-th row and s-th column of the Room square is occupied,
the two numbers which appear in it indicate the two pairs of players who should
play the s-th table in the r-th round of the tournament.

The existence of such designs for use in Bridge tournaments was first inves-
tigated in 1897 by Howell, then Professor of Mathematics at the Massachusetts
Institute of Technology. According to N.S. Mendelsohn, to whom the authors of
[DK1] are indebted for pointing out the foregoing application of Room designs
to Bridge Tournaments, Howell constructed designs for all values of n from 4 up
to and including 15. In books giving instructions for the organization of Bridge
tournaments, these designs are known as Howell master sheets. In Beynon(1943),
for example, master sheets for n = 4, 5 and 7 are listed and, in Beynon(1944),
master sheets for n = 6 and 8 as well. In Gruenther(1933), master sheets for
all values of n from 4 to 15 inclusive are given. In Figure 6.4.1, we exhibit two
master sheets (Room designs) of order 8 (that is, n = 4) attributed by Beynon
to Ach and Kennedy of Cincinnati and to McKennedy and Baldwin (of whom
further details are lacking) respectively.

It will be noted that each of the designs shown in Figure 6.4.1 is completely
determined by its first row in the sense that each successive pair along a broken
left-to-right diagonal of the square is obtained from the preceding pair in that
diagonal by addition of 1 modulo 7 (or modulo 2n − 1 in the general case) to
each member of that pair. Such a Room design is called cyclic. Non-cyclic Room
designs also exist. An example of order 8 is given in Figure 6.4.2.

We return to the post-1950 history of Room designs. In his paper Room(1955),
the author pointed out the non-existence of Room designs for n = 2 and 3 and
gave an example of a non-cyclic design for n = 4 which we reproduce in Fig-
ure 6.4.2. Here, the digits 1, 2, . . . , 7 and 8 are used, as the eighth symbol is no
longer specially treated.

The next authors to write on this subject were Archbold and Johnson(1958),
who gave a geometrical construction of cyclic Room designs for all values of n
of the form 4m and made use of Singer’s theorem [Singer(1938)] to enable them
to express the designs they obtained in a canonical form. These authors also
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1, 2 3, 4 5, 6 7, 8

3, 7 2, 5 4, 8 1, 6

4, 7 1, 5 3, 8 2, 6

6, 8 1, 4 5, 7 2, 3

5, 8 6, 7 2, 4 1, 3

4, 6 1, 8 3, 5 2, 7

3, 6 2, 8 1, 7 4, 5

Fig. 6.4.2.

showed how Room designs might be used as statistical designs for a suitable
kind of experiment. (More information on the subject of statistical designs is
given in Section 11.4.) Later, Archbold(1960) published a further paper in which
he gave another construction for Room squares, based on difference sets, which
yielded designs of orders 8, 12, 20 and 24 (n = 4, 6, 10 and 12). Both these
kinds of design were cyclic and it is interesting to note that the design obtained
for n = 6 is exactly the same as that published in Beynon(1944) sixteen years
earlier. A more detailed investigation of the effectiveness of Room squares for
use in statistical designs has been carried out by Shah(1970).

In Bruck(1963b), that author showed an interesting connection between Room
designs and idempotent quasigroups, as follows:

Theorem 6.4.1 A Room design of order 2n is equivalent to a pair of commu-
tative idempotent quasigroups, say (Q, r) and (Q, c), each of order 2n − 1 and
satisfying the following two orthogonality conditions:

(i) if a, x, y ∈ Q are such that xry = a = xcy then x = y = a; and

(ii) if a and b are distinct elements of Q, then there exists at most one unordered
pair of elements x, y of Q such that xry = a and xcy = b.

Proof. To see the equivalence, we suppose that the given Room design has
symbols 1, 2, . . . , 2n − 1,∞ and we permute its rows and then its columns in
such a way that the ordered pair (∞, i) occurs at the intersection of the i-th
row and the i-th column. The quasigroups (Q, r) and (Q, c) are now defined
by the statements that they are idempotent and that, for x 6= y, xry and xcy
are respectively equal to the numbers of the row and column in which the cell
containing the unordered pair x, y appears in the normalized Room square. ⊓⊔

As an example, the square due to Room exhibited in Figure 6.4.2 takes the
form shown in Figure 6.4.3 if we carry out the above rearrangements of rows and
columns after replacing the symbol 8 by the symbol ∞.

Following Bruck, we shall call this the normalized form of the design.
Also shown in Figure 6.4.3 are the multiplication tables of the quasigroups

(Q, r) and (Q, c) which are thus defined by this square.
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∞, 1 4, 6 2, 7 3, 5

∞, 2 3, 6 1, 7 4, 5

1, 5 ∞, 3 2, 6 4, 7

2, 5 3, 7 ∞, 4 1, 6

6, 7 1, 3 ∞, 5 2, 4

1, 4 5, 7 ∞, 6 2, 3

3, 4 5, 6 1, 2 ∞, 7

(r) 1 2 3 4 5 6 7

1 1 7 5 6 3 4 2
2 7 2 6 5 4 3 1
3 5 6 3 7 1 2 4
4 6 5 7 4 2 1 3
5 3 4 1 2 5 7 6
6 4 3 2 1 7 6 5
7 2 1 4 3 6 5 7

(c) 1 2 3 4 5 6 7

1 1 5 4 3 2 7 6
2 5 2 7 6 1 4 3
3 4 7 3 1 6 5 2
4 3 6 1 4 7 2 5
5 2 1 6 7 5 3 4
6 7 4 5 2 3 6 1
7 6 3 2 5 4 1 7

Fig. 6.4.3.

The reader should note that the orthogonality conditions given in Theo-
rem 6.4.1 do not imply that the quasigroups are orthogonal in the sense de-
fined in Section 5.4. (Since both quasigroups are commutative, the equations
xry = a and xcy = b are not soluble simultaneously for all choices of a and b.)
They provide our second example of a pair of perpendicular commutative quasi-
groups, further details of which are given in connection with quasi-orthogonal
latin squares in Section 10.1.

Using Theorem 6.4.1, Bruck(1963b) simplified the construction of Archbold
and Johnson for a Room design of order 22m+1. Let Q comprise the 22m+1 − 1
non-zero elements of the Galois field GF [22m+1] and define two quasigroups
(Q, r) and (Q, c) on the set Q by the statements xrx = x = xcx, xry = x + y
and xcy = (x−1 + y−1)−1 for all x, y ∈ Q. Then, using the properties of the
finite field, it is easy to check that the orthogonality conditions described above
are satisfied for these quasigroups and so a Room design of order 22m+1 can be
constructed. (That is, n = 4m.)

Definition. A pair of idempotent quasigroups (Q, r) and (Q, c) which are
commutative and satisfy the orthogonality conditions of Theorem 6.4.1 are called
a Room pair of quasigroups.

Bruck asserted that it was easy to see that the direct product of two Room
pairs of quasigroups was itself a Room pair of quasigroups. Let (Q1, r1 ), (Q1, c1 )
be one Room pair and (Q2, r2 ), (Q2, c2 ) another. The direct product is defined as
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the pair (Q, r), (Q, c) where Q = Q1×Q2 and (q1, q2)r(q
′
1, q

′
2) = (q1r1 q

′
1, q2r2 q

′
2),

(q1, q2)c(q
′
1, q

′
2) = (q1c1 q

′
1, q2c2 q

′
2). Later, Mullin and Németh(1969a) pointed out

that such a direct product need not satisfy the second orthogonality condition
and used Bruck’s own construction of Room pairs of quasigroups of order 22m+1−
1 to give an explicit counter-example. Had Bruck’s assertion been true, it would
have implied that from two Room designs of orders 2m and 2n respectively, a
Room design of order (2m − 1)(2n − 1) + 1 could be constructed. Stanton and
Horton(1970,1972) have shown that, although Bruck’s proof of it was fallacious,
the statement just made is true. We shall now give their proof.

Theorem 6.4.2 If Room squares of sides 2m−1 and 2n−1 exist, then one can
construct a Room square of side (2m− 1)(2n− 1).

Proof. Let R and S be Room squares of sides r = 2m−1 and s = 2n−1 whose
entries are the symbols 0, 1, 2, . . . , r and 0, 1, 2, . . . , s respectively. Let L1 and L2

be a pair of (arbitrarily chosen) orthogonal latin squares of order r = 2m − 1
whose entries are the symbols 1, 2, . . . , r. To construct our Room square T of
side rs = (2m − 1)(2n− 1), we regard T as an s × s square each of whose cells
is an r × r subsquare, and we prescribe these subsquares by the following rules:

(a) If the cell (i, j) of the Room square S is empty, then the r × r subsquare
tij in the corresponding cell of T is to consist entirely of empty cells.

(b) If the cell (i, j) of S is occupied by the pair (0, k), then the r× r subsquare
tij in the corresponding cell of T is to be the Room square obtained from
R by adding kr to each of its non-zero symbols. (The zero symbol is to be
left unchanged.)

(c) If the cell (i, j) of S is occupied by the pair (h, k), with h 6= 0 and k 6= 0,
then the r × r subsquare tij in the corresponding cell of T is to be the
square with every cell occupied by an ordered pair of symbols and which
is constructed from the latin squares L1 and L2 in the following manner.
First add hr to each of the symbols of L1 to form a new latin square L∗

1.
Similarly form a new latin square L∗

2 by adding kr to each of the symbols
in L2. Finally, juxtapose L

∗
1 and L∗

2 so as to form a square tij = (L∗
1, L

∗
2)

whose entries are ordered pairs of symbols (l1, l2) with l1 ∈ {1 + hr, 2 +
hr, . . . , r + hr} and l2 ∈ {1 + kr, 2 + kr, . . . , r + kr}.

The square T so constructed has

{0, 1 + r, 2 + r, . . . , r + r, 1 + 2r, 2 + 2r, . . . , r + sr}
as its set of symbols. Also, by the method of construction, each of these symbols
occurs just once in each row and once in each column of T . For, we have that
each of the symbols 1, 2, . . . , r occurs just once in a row of R and once in a row
of L1 and L2. Since each of the symbols 1, 2, . . . , s occurs just once in a row of
S, each of the symbols x+ yr, 1 ≤ x ≤ r, 1 ≤ y ≤ s occurs just once in a row of
T . Since the symbol 0 occurs just once in a row of S, it occurs just once in a row
of T . The preceding statements are also valid with “row” replaced by “column”
throughout.
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Moreover, in each subsquare tij no unordered pair of symbols occurs more
than once (an immediate consequence of the mode of formation of these sub-
squares), and no two subsquares tij and tuv have any pair in common. For,
suppose that the pair (x1 + y1r, x2 + y2r) with x1 6= 0 and x2 6= 0 were common
to tij and tuv. If y1 6= y2, it would follow that (y1, y2) occurred in each of the
cells (i, j) and (u, v) of S, a contradiction. If y1 = y2 = y, it would follow that
(0, y) occurred in each of the cells (i, j) and (u, v) of S. Finally, if (0, x+yr) were
common to tij and tuv it would again follow that (0, y) occurred in each of the
cells (i, j) and (u, v) of S.

We conclude that T is a Room square, as desired. ⊓⊔

Stanton and Mullin(1968), with the aid of a computer, investigated the pos-
sibility of the existence of cyclic Room squares of side 2m + 1 whose first row
contains the unordered pairs

(∞, 0), (1, 2m), (2, 2m− 1), . . . , (m,m+ 1),

not necessarily in this order. They called such squares patterned Room squares,
and the unordered pairs just listed were said to form a starter for such a square.
They were able to construct such patterned Room squares of all odd orders
2m+ 1 from 7 to 49 except 9. For the latter order, patterned Room squares do
not exist. However, a cyclic Room square of this order (n = 5 in our previous
notation) had previously been obtained by Weisner(1964) and, of course, Room
designs of this order had also been constructed much earlier for use as Howell
master sheets. The construction by Stanton and Mullin was later generalized
by Mullin and Németh(1969b). Also, Byleen(1970) proved that patterned Room
squares of side p exist for all primes p not of the form 1 + 2s.

Next it was shown that there exist Room designs, not necessarily all cyclic,
for all values of n except those for which 2n− 1 has a Fermat prime of the form
22

r

+1 as an unrepeated factor. This result is a consequence of Theorem 6.4.2 and
a construction described by Mullin and Németh(1969c) which uses a generalized
form of patterned Room squares and which gives Room squares of side 2n− 1,
where 2n − 1 is any odd prime power which is not a Fermat prime of the form
22

r

+ 1.
In the early 1970s, the existence problem for Room designs was finally settled,

the conclusion being that these designs exist for every even order 2n except when
n = 2 or 3. That is to say, there do not exist Room squares of side 3 or 5 but,
for every other odd integer 2n − 1, Room squares of side 2n − 1 do exist. A
good survey of the results which led to this conclusion was given by Mullin and
Wallis(1975) who with the benefit of hindsight were also able to condense the
proof.

We mentioned at the beginning of this section that Room designs can be con-
structed with the aid of latin squares. The following theorem is due to Byleen and
Crowe(1971). See also Mullin and Németh(1970b), Mullin and Stanton(1971).
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Theorem 6.4.3 Let L be a latin square of odd order 2n−1 which is orthogonal to
its transpose LT , which has elements 1, 2, . . . , 2n− 1, and which is standardized
in such a way that these elements occur along its main left-to-right diagonal
in natural order. Let the entries of the main left-to-right diagonal of LT be all
replaced by the symbol ∞ and let M denote the matrix of ordered pairs formed
when L and the modified square LT are juxtaposed. Then a Room design may
be obtained from M by deletion of a selected set of n of its left-to-right broken
diagonals provided that the n diagonals to be deleted can be chosen so that

(i) in each row of M , every element of L appears exactly once among the
remaining pairs, and

(ii) if the diagonal which contains the cell m1j ofM is deleted then the diagonal
which contains the cell mj1 is not deleted.

Proof. It is an immediate consequence of the fact that L and LT are trans-
poses that if the cell mik of M , for i 6= k, contains the ordered pair (a, b), then
the cell mki of M contains the ordered pair (b, a). Also, since L and LT are
orthogonal, every ordered pair of distinct elements a, b occurs just once in a cell
of M . Hence, if n diagonals of M are deleted, which are chosen so that (ii) is
satisfied, the remaining cells of M will contain each unordered pair of distinct
elements a, b chosen from the set {1, 2, . . . , 2n−1} just once. Moreover, the pairs
(∞, 1), (∞, 2), . . . , (∞, 2n− 1) will occur along the main left-to-right diagonal of
M .

It follows easily that if in addition, condition (i) is satisfied, then the equiva-
lent condition for columns will also hold, so that the structure will form a Room
square. ⊓⊔

Byleen and Crowe showed how to construct a latin square L and correspond-
ing matrixM for which the requirements of Theorem 6.4.3 are satisfied whenever
2n− 1 is an odd prime power not of the form 1+2s. We give an example for the
case 2n− 1 = 7 in Figure 6.4.4.

We discuss the general problem of constructing latin squares which are or-
thogonal to their own transposes in Section 5.5.

Finally, we should like to mention a construction of Room designs with
the aid of a pair of orthogonal Steiner triple systems which was first given by
O’Shaughnessy(1968). We remind the reader that orthogonal Steiner triple sys-
tems were defined in Section 5.4. O’Shaughnessy’s theorem is as follows:

Theorem 6.4.4 Let S and S′ be two orthogonal Steiner triple systems of the
same order v (necessarily congruent to 1 or 3 modulo 6, as shown in Section 2.3)
and defined on the same set {1, 2, . . . , v}. Then, a Room square of side v may be
constructed by means of S and S′ by putting the unordered pair of elements (i, j)
in the cell of the k-th row and k′-th column of the square, where k is the third
element of the triple of S which contains i and j, while k′ is similarly defined by
S′. The square is completed by putting the ordered pair (∞, h) in the cell of the
h-th row and h-th column, for h = 1, 2, . . . , v.
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L =

1 7 6 5 4 3 2
3 2 1 7 6 5 4
5 4 3 2 1 7 6
7 6 5 4 3 2 1
2 1 7 6 5 4 3
4 3 2 1 7 6 5
6 5 4 3 2 1 7

1,∞ 7, 3 6, 5 4, 2

2,∞ 1, 4 7, 6 5, 3

3,∞ 2, 5 1, 7 6, 4

7, 5 4,∞ 3, 6 2, 1

1, 6 5,∞ 4, 7 3, 2

4, 3 2, 7 6,∞ 5, 1

6, 2 5, 4 3, 1 7,∞

Fig. 6.4.4.

Proof. The square constructed by the method just described clearly contains
all unordered pairs of distinct elements obtainable from the set {1, 2, . . . , v,∞}.
Since i occurs with k in exactly one triple of S, i occurs exactly once in the k-th
row of the square. This is true for every i and every k. Similarly, i occurs exactly
once in the k′-th column of the square, and again this is true for every i and
every k′. Hence, the proof is complete. ⊓⊔

In O’Shaughnessy(1968), the author used his method to construct Room
designs of order 14 (v = 13) and order 20 (v = 19). For the interest of the
reader, we give the two Steiner triple systems, S1 and S2 which generate the first
of these designs and also the first row of the design itself (which is cyclic).

S1 has triples (1+i, 4+i, 5+i) and (1+i, 6+i, 12+i), for i = 0, 1, 2, . . . , 12, all
addition being modulo 13. S2 has triples (1+i, 2+i, 5+i) and (1+i, 7+i, 12+ i).
The Room design has first row:

(∞, 1), (7, 9),−, (6, 12),−,−,−, (4, 5), (10, 0), (3, 8),−, (2, 11),−.

We note that the pair of Room quasigroups which correspond to a Room
square constructed by O’Shaughnessy’s method are the Steiner quasgroups pro-
duced by the two triple systems and so they are totally symmetric as well as
perpendicular.

In Keedwell(1978), the present author showed that O’Shaughnessy’s con-
struction can be generalized to give a similar construction using perpendicular
uniform P -circuit designs. Such a design separates the edges of the complete
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undirected graph Kv into circuits of length h. The special case h = 3 is the case
of Steiner triple systems. Examples when h = 5, v = 31 and when h = 7, v = 29
are given in the paper. We discuss P -circuit designs in more detail in Section 8.3.

We end this section with a question. Two Room designs R1 and R2 of the
same order 2n and defined on the same set S of symbols are isomorphic if R2

can be obtained from R1 by any sequence of permuting rows, permuting columns
and permuting the symbols of S. [See Lindner(1972c.] They are equivalent if they
are isomorphic or if R2 is isomorphic to the transpose of R1. We may ask “How
many non-isomorphic and non-equivalent Room designs of order 2n exist?” So
far as the authors are aware, the answers are only known for n = 4 and 5. We
give them in the table below.

n = 2 3 4 5
Non-isomorphic 0 0 10 511562
Inequivalent 0 0 6 257630

For a comprehensive account of earlier results concerning Room squares, the
reader should consult Mullin and Wallis(1975) and also part two of Wallis, Street
and Wallis(1972) and the bibliographies therein.

In the early 1970s, Horton introduced an analogue of Room designs for more
than two dimensions and he also pointed out an interesting connection between
Room designs of order 2n and one-factorizations of the complete graph on 2n
vertices which he attributed to Németh.

A fairly recent survey on the topic of Room squares and the above gener-
alization to higher dimensions is in Dinitz and Stinson(1992). Also, a summary
of results up to the publication date(s) of their handbook is in Colbourn and
Dinitz(1996,2006). The topic of skew Room squares is mentioned in Section 10.1
of this book in connection with quasi-orthogonal latin squares.

Another, more recent, design related to Room squares is the so-called ref-
eree square which first arose in an attempt to solve a problem concerning the
scheduling of the game of rugby.

For an account of this and of the application of latin squares to designing
tournaments for further games and sports other than the card game of Bridge
(such as whist, tennis and football), see Section 11.4 and also Keedwell(2000)
and the references therein.
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Chapter 7

Constructions of orthogonal latin squares which
involve rearrangement of rows and columns

The many known methods of constructing two or more mutually orthogonal
latin squares of an assigned order n can all be put into one of two categories.
On the one hand, we have methods which involve obtaining all the squares by
rearrangements of the rows or columns of a single one of the set, the square
in question being usually referred to as the basis square1; and, on the other
hand, we have methods which entail the use of previously determined sets of
mutually orthogonal latin squares of smaller order, the squares of these sets
being then modified or adjoined one to another in various ways to form squares
of the order required. In the present chapter, we shall give an account of all those
constructions which can be assigned to the first category, reserving our discussion
of the second kind until Section 11.1 and Section 11.2. We may remark at this
point that the construction of Bose, Shrikhande and Parker(1960) by means of
which the Euler conjecture was disproved is of the second kind.

Although not strictly relevant to its title, we end the chapter by showing
the close connection which exists between complete mappings of groups and left
neofields.

7.1 Generalized Bose construction: constructions based on abelian
groups

It has been shown in Keedwell(1966,1967) that all the known constructions
of the first category can be regarded as special cases of a generalization of the
construction which was described in Theorem 5.2.4. We may formulate this gen-
eralization as follows:

Theorem 7.1.1 Let S0 = I, S1, S2, . . . , Sr−1 be the permutations represent-
ing the rows of an r × r latin square L1 as permutations of its first row and
M1 ≡ I,M2,M3, . . . ,Mh, h ≤ r − 1, be permutations keeping one symbol of
L1 fixed. Then the squares L∗

i whose rows are represented by the permutations
MiS0,MiS1,MiS2, . . . ,MiSr−1 for i = 1, 2, . . . , h are certainly all latin and will
be mutually orthogonal if, for every choice of i, j ≤ h, the set of permutations

S−1
0 M−1

i MjS0, S
−1
1 M−1

i MjS1, . . . , S
−1
r−1M

−1
i MjSr−1

is exactly simply transitive (sharply transitive) on the symbols of L1.

1Each of the squares of the set is isotopic to the basis square.
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Proof. Let us remark first that, since each column of L1 contains each symbol
exactly once, the permutations S0, S1, S2, . . . , Sr−1 must form a sharply transi-
tive set and that then the set of permutations MiS0,MiS1, . . .MiSr−1 will also
be sharply transitive. Consequently, the columns (and, of course, the rows) of
L∗
i will contain each symbol exactly once, so L∗

i will be latin.
Secondly, if U0, U1, . . . , Ur−1 are permutations representing the rows of one

latin square L∗
i as permutations of 1, 2, . . . , n and if V0, V1, . . . , Vr−1 are the

similarly defined permutations representing the rows of another latin square L∗
j ,

then the permutations U−1
0 V0, U

−1
1 V1, . . . , U

−1
r−1Vr−1 map the first, second,. . . ,

rth rows of L∗
i respectively onto the first second,. . . , rth rows of L∗

j . When, and
only when, these squares are orthogonal, each symbol of the square L∗

i must map
exactly once onto each symbol of the square L∗

j since each symbol of L∗
i occurs

in positions corresponding to those of a transversal of L∗
j . Thus, when and only

when L∗
i and L∗

j are orthogonal, the permutations U−1
0 V0, U

−1
1 V1, . . . , U

−1
r−1Vr−1

are a sharply transitive set. ⊓⊔

The representation of a latin square by means of permutations was introduced
originally by Schönhardt(1930), but the above two properties seem to have been
observed first by Mann(1942).

The requirement in the above construction that the permutationsM1,M2, . . . ,
Mh be permutations keeping one symbol of L1 fixed is equivalent to requiring
that the mutually orthogonal latin squares L1, L

∗
2, L

∗
3, . . . , L

∗
h be standardized in

such a way that one column is the same for all the squares and, as we have shown
in Section 5.1, such a requirement does not lead to any loss of generality. [This
fact was first pointed out by Mann(1942)]. Notice also that the columns of any
square L∗

i will always be a rearrangement of the columns of the basis square L1

and this rearrangement will be that defined by the corresponding permutation
Mi. (Mi reorders the symbols before the permutations S0, S1, S2, . . . , Sr−1 act.)

Now let us take the special case when the square L1 is the addition table
of an abelian group G. In this case, the Si are the permutations of the Cayley
representation of G and the Mi are one-to-one mappings of G onto itself. The
entry in the cell of the xth row and yth column of the square L∗

i will be xMiSy =
xMi + y, where x and y belong to G and G is written in additive notation. If G
is the additive group of a Galois field F and the Mi effect the multiplications of
F so that xMi = xxi for every x in G, then the construction of Theorem 7.1.1
becomes precisely the same as that described in Theorem 5.2.4.

We shall consider a number of other possibilities.

First we mention two other constructions which are applicable to the case
when L1 is the addition table of an abelian group.

(i) The construction of D.M. Johnson, A.G. Dulmage and N.S. Mendelsohn.

If we again take the case when the square L1 is the addition table of an
abelian group G and the Si are the permutations of the Cayley representation
of G, then the square L∗

i will be orthogonal to the square L1 if the permutations
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S−1
y MiSy, where y ranges through G, form a sharply transitive set. That is, if

and only if
wS−1

y MiSy = wS−1
z MiSz

implies y = z for any w in G. That is, if and only if
(w − y)Mi + y = (w − z)Mi + z

implies y = z. Subtracting w from each side and writing w−y = u, w−z = v, we
have that L∗

i will be orthogonal to L1 if and only if uMi − u = vMi − v implies
u = v.

A mappingMi of the abelian groupG onto itself which has the latter property
was called an orthomorphism by Johnson, Dulmage and N.S.Mendelsohn(1961)
who were the first authors to use this term.2

Moreover, repetition of the argument leads at once to the fact that squares
L∗
i and L∗

j will be orthogonal if M−1
i Mj is also an orthomorphism, as the above

authors have shown. They have pointed out further that a one-to-one corre-
spondence between orthomorphisms of G and transversals of the latin square
representing the Cayley table of G can be established (cf. Section 1.5).

The entries in the cells (x1, y1), (x2, y2), ..., (xr, yr), where (xk, yk) denotes the
cell of the xkth row and ykth column, will form a transversal if and only if the
mapping Mi defined by xkMi = −yk for k = 1, 2, . . . , r− 1 is an orthomorphism
of G. For suppose that we define −yk = xkMi for each k so that the entry in
the (xk, yk)th cell is xk − xkMi. Then these entries will be all distinct and form
a transversal if and only if xh − xhMi = xk − xkMi implies xh = xk; that is, if
and only if Mi is an orthomorphism.

In their paper already referred to above, Johnson and her co-authors devised
an algorithm for constructing orthomorphisms which is suitable for a computer
search and with its aid they found a set of four non-identity orthomorphisms
of the group C6 × C2 of order 12 suitable for the construction of five mutually
orthogonal latin squares of that order. They thus established that N(12) ≥ 5, a
result which has not been bettered up to the present.

(ii) The construction of R.C. Bose, I.M. Chakravarti and D.E. Knuth.

The necessary and sufficient condition
uM−1

i Mj − u = vM−1
i Mj − v ⇒ u = v

that the squares L∗
i and L∗

j defined above be orthogonal may be re written in
the form

wMj − wMi = xMj − xMi ⇒ w = x,
where w = uM−1

i and x = vM−1
i . In other words, the squares L∗

i and L∗
j will

be orthogonal if and only if the equation xMj − xMi = t is uniquely soluble for
x. In Bose, Chakravarti and Knuth(1960,1961,1978), these authors have shown
how mappings Mi having this property may be computed for abelian groups G
of order 4t (with 4t − 1 a prime power) and have thus obtained further sets of
five mutually orthogonal latin squares of order 12. These authors called such
mappings Mi orthogonal mappings.

2Their usage is consistent with the definition we gave in Section 1.5.
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7.2 The automorphism method of H.B. Mann

The latin squares L1, L
∗
2, L

∗
3, . . . , L

∗
h of the construction described in Theo-

rem 7.1.1 can be modified by the definition Li = L∗
iM

−1
i for i = 2, 3, . . . , h. That

is to say, the xth row of the latin square Li will be represented by the permu-
tation MiSxM

−1
i . This permutation, being conjugate to the permutation Sx, is

very easy to calculate when the permutation Sx is known. We note also that
the squares L1, L2, . . . , Lh will be mutually orthogonal whenever the squares
L1, L

∗
2, L

∗
3, . . . , L

∗
h are so, and that each of the squares L1, L2, . . . , Lh has the

identity permutation as first row. Thus, these squares3 are a standardized set as
defined in Section 5.2.

This modified form of the construction described in Theorem 7.1.1 we shall
call the K-construction and we shall refer to it several times in the present
chapter. Let the square L1 be the addition table of a group (written in ad-
ditive notation, but not necessarily abelian) and let the mappings M−1

i , for
i = 1, 2, . . . , h, represent automorphisms τi of G. Let the elements of G be de-
noted by a, b, c, . . .. Then the rows of the square L1 are represented by the permu-
tations S0 ≡ I, Sa, Sb, Sc and so on. The sth row of the square Li is represented
by the permutation

MiSsM
−1
i =

(

aτi bτi . . .
a b . . .

)(

a b . . .
a+ s b+ s . . .

)(

a . . . a+ s . . .
aτi . . . (a+ s)τi . . .

)

=

(

. . . aτi . . .

. . . (a+ s)τi . . .

)

=

(

. . . t . . .

. . . t+ sτi . . .

)

= Ssτi

since τi is an automorphism of G. The squares Li and Lj will be orthogonal if
I, S−1

aτiSaτj , S
−1
bτi
Sbτj , . . . is a sharply transitive set of permutations. Since G is a

group, and τi is an automorphism,

S−1
aτiSaτj = S−aτiSaτj = S−aτi+aτj .

Thus, the squares will be orthogonal provided that −sτi + sτj 6= −tτi + tτj
for distinct elements s and t of G. That is, provided that tτi − sτi 6= tτj − sτj .

On writing t− s = u, we have that the squares Li, and Lj will be orthogonal
provided that the automorphisms τi and τj have the property uτi 6= uτj for any
element u other than the identity in G. Hence we may state:

Theorem 7.2.1 Let G be a group and suppose that there exist w automorphisms
τ1, τ2, . . . , τw of G every pair of which possesses the property that uτi 6= uτj for
any element u ∈ G except the identity element. Then we shall be able to construct
w mutually orthogonal latin squares based on the group G.

3The squares L1, L
∗

2, L
∗

3 , . . . , L
∗

h
also form a standardized set, all of them having the same

first column but differing first rows.
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Theorem 7.2.1 was first proved by Mann(1942) and, in the same paper, the
author obtained an upper bound for w in terms of the number of conjugacy
classes of G. See the next theorem.

Theorem 7.2.2 Let L be a latin square based on a group G (that is, L represents
the multiplication table of the group G) and let cq be the number of conjugacy
classes of elements with the property that all the elements of each class are el-
ements of order q in the given group G. Let v = min cq when q ranges through
the factors of the order of G. Then not more than v mutually orthogonal latin
squares containing L can be constructed from G by the automorphism method.

Proof. We have just shown that the squares Li and Lj will be orthogonal
provided that the automorphisms τi and τj have the property uτi 6= uτj for
any element u other than the identity in G, so suppose that w is the largest
number of automorphisms of G each pair of which has this property and denote
the members of such a set by τ1, τ2, . . . , τw. This requires that uτiτ

−1
j 6= u for

u 6= e; in other words, that each of the automorphisms σij = τiτ
−1
j , i and

j = 1, 2, . . . , w, i 6= j, leaves no element other than the identity e of G fixed. We
shall show that such an automorphism σij of G maps each element of G into
an element of a different conjugacy class. That is, for each i and j, gσij and g
are in different conjugacy classes, where g ∈ G. It follows that gτi = gσijτj and
gτj are in different conjugacy classes for each two automorphisms τi and τj of
the set τ1, τ2, . . . , τw. Consequently, w cannot exceed the number of conjugacy
classes whose elements have orders equal to that of g. Since this is true for each
element g ∈ G, the result of the theorem will follow.

Let σ be an automorphism of G which leaves no element other than the
identity e of G fixed. If gi and gj are distinct elements of G, then g−1

i (giσ) 6=
g−1
j (gjσ) since equality would imply (giσ)(gjσ)

−1 = gig
−1
j and so (gig

−1
j )σ =

gig
−1
j , whence gig

−1
j = e and gi, gj would not be distinct. It follows that, as gi

ranges through the elements of G, so does g−1
i (giσ). Now let a be an element of G

of order q. Then the element aσ is likewise of order q. Suppose, if possible, that a
and aσ are in the same conjugacy class so that aσ = h−1ah for some element h in
G. We can represent h in the form g−1(gσ) for some g in G. Then gh = gσ and so

(gag−1)σ = gσ.aσ.(gσ)−1 = gh.h−1ah.h−1g−1 = gag−1

implying gag−1 = e and a = e. Thus, a and aσ must be in different conjugacy
classes as claimed above. This completes the proof. ⊓⊔

Corollary. If n = pr11 p
r2
2 . . . prss , where p1, p2, . . . , ps are distinct primes, then

not more than t = min(prii − 1) MOLS of order n can be constructed from any
group G by the automorphism method.

Proof. Since the Sylow pi-subgroups of G are all conjugate (for fixed i), each
conjugacy class of elements whose orders are powers of pi has a representative
element in each Sylow pi-subgroup. Since the number of elements in a Sylow
pi-subgroup is prii , cq cannot exceed prii − 1 when q is equal to pi. (At least
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one element of G has order pi by Cauchy’s theorem.) Hence, v = min cq eannot
exceed min(prii − 1). ⊓⊔

7.3 The construction of pairs of orthogonal latin squares of order ten

The original construction by Parker(1959b) of a pair of orthogonal latin
squares of order 10 involved the use of orthogonal latin squares of order three.
However, Lyamzin (1963) and Weisner (1963) subsequently produced a pair in
which the columns of one square are a rearrangement of the columns of the other.
Although the two authors worked independently, the pairs of squares which they
obtained are equivalent. In both pairs, one of the two squares is symmetric. Un-
fortunately, neither author has given a proper account of the means by which
his squares were obtained.

Using the K-construction described above, the present author more recently
tried unsuccessfully to extend the Ljamzin-Weisner squares to a set of three
mutually orthogonal squares. [For the details, see Keedwell(1966).]

It is appropriate to point out at this point that, although the squares of
the generalized set L1, L

∗
2, L

∗
3, . . . , L

∗
h have the property that the columns of any

square L∗
i are a rearrangement of the columns of the square L1, this is no longer

necessarily true of either the rows or the columns of the set L1, L2, . . . , Lh. We
have the following theorem.

Theorem 7.3.1 The necessary and sufficient condition that the squares L1, L2,
. . . , Lh of the K-construction have the property that the rows of any one square
Li are the same as those of any other square Lj of the set, except that they occur
in a different order, is that the operation (·) defined by the relation aMx = ax
for each of M1,M2, . . . ,Mh, be right distributive over the operation (+) defined
by aSx = a+ x.

Proof. It is necessary and sufficient to show that the permutations represent-
ing the rows of each square Lk are a reordering of the permutations represent-
ing the rows of the square L1. That is, it is necessary and sufficient to have
MkSpM

−1
k = Sq for some q, or M−1

k SqMk = Sp. Since S0 ≡ I and M1 ≡ I, 0
and 1 are respective identities for (+) and (·). Thus

M−1
k SqMk = Sp =

(

0 . . . k . . . xk . . .
0 . . . 1 . . . x . . .

)(

0 . . . x . . .
q . . . x+ q . . .

)

×

×
(

0 1 . . . q . . . x+ q . . .
0 k . . . qk . . . (x+ q)k . . .

)

=

(

0 . . . xk . . .
qk . . . (x+ q)k . . .

)

.

Therefore, M−1
k SqMk = Sp if and only if p = qk, and then

Sp =

(

0 . . . xk . . .
qk . . . xk + qk . . .

)

; so (x+ q)k = xk + qk

for all x (and evidently also for all q and k); x, q = 1, 2, . . . , r−1; k = 1, 2, . . . , h.
⊓⊔

Corollary. When the conditions of the theorem are fulfilled, the permutation
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M−1
k represents the rearrangement of the rows of L1 which is required to turn it

into the square Lk.

Proof. Suppose that the pth row of the square Lk is the same as the qth row
of the square L1. Then MkSpM

−1
k = Sq and so p = qk. That is, Mk maps q into

p. Thus the mapping M−1
k =

(

0 . . . p . . .
0 . . . q . . .

)

represents replacement of the pth

row of L1 by its qth row; that is, it rearranges the rows of L1 in such a way that
they become the rows of Lk. ⊓⊔

For the squares of Ljamzin mentioned above, the row permutations are as
follows:

L1 = {S0, S1, S2, . . . , S8, S9}
L2 = {S0, S2, S3, . . . , S9, S1}

where

S0 = I
S1 = (0 1)(2 5)(3 8 6 7 9 4)
S2 = (0 2)(3 6)(4 9 7 8 1 5)
S3 = (0 3)(4 7)(5 1 8 9 2 6)
S4 = (0 4)(5 8)(6 2 9 1 3 7)
S5 = (0 5)(6 9)(7 3 1 2 4 8)
S6 = (0 6)(7 1)(8 4 2 3 5 9)
S7 = (0 7)(8 2)(9 5 3 4 6 1)
S8 = (0 8)(9 3)(1 6 4 5 7 2)
S9 = (0 9)(1 4)(2 7 5 6 8 3)

The mappingM2 ≡Mx is the permutation (0)(9 8 7 6 5 4 3 2 1) and we have,
for example, (7 + 5)x = 3x = 2 = 6+ 4 = 7x+5x. That is, 7S5Mx = 7MxS5Mx

.
So, the right-distributive law holds. Moreover, the rows of the square L2 are
obtained from the rows of the square L1 by carrying out the permutation M−1

2

on those rows.
For the squares constructed by the automorphism method the row permuta-

tions are as follows:

L1 = {Sa, Sb, Sc, . . .}; Li = {Saτi , Sbτi , Scτi , . . .}

for i = 2, 3, . . . , h; and the mapping Mi is such that xMi = xτ−1
i . Since τi is an

automorphism, it is clear that the right-distributive law (x+y)τ−1
i = xτ−1

i +yτ−1
i

holds; and, moreover, the xth row of the square Li is the xτith row of the square
L1, so the permutation M−1

i rearranges the rows of L1 in such a way that they
become the rows of Li.

Another illustration of the theorem is provided, for example, by the com-
plete sets of mutually orthogonal latin squares which correspond to the Veblen-
Wedderburn-Hall translation planes. (See Section 8.2.)
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We notice further that, when the square L1 is the addition table of a group G
and the conditions of Theorem 7.3.1 are satisfied, each permutationMx defines an
automorphism ofG: for the validity of the right-distributive law (a+b)x = ax+bx
implies that the mapping a→ ax is an automorphism of G.

Although it is not strictly relevant to the subject matter of this chapter,
we end this section by remarking that, as well as the orthogonal pair of 10 ×
10 latin squares described above, Weisner(1963) constructed two other pairs of
orthogonal latin squares of order ten. The second of these pairs which we display
in Figure 7.3.1 [Figure 3 in Weisner(1963)] has the following two remarkable
properties: if x, y is the entry in the cell of the ith row and jth column, then
(1) i, j is the entry in the cell of the xth row and yth column; and (2) the pair
of squares obtained by putting y, j in the xth row and ith column consists of
a square and its (orthogonal) transpose: that is, each of the latter squares is
self-orthogonal according to the definition given in Section 5.5.
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Fig. 7.3.1.

Weisner called the first property the involutary property. More recently, Mendel-
sohn called it the Weisner property. In N.S.Mendelsohn(1979), the latter author
proved that pairs of orthogonal latin squares exist which are both self-orthogonal
and have the involutary property for all orders n ≡ 0 or 1 (mod 4) except 5 and
possibly also 12 and 21.

Let A be a latin square which is orthogonal to its transpose AT . If the pair
A,AT has the involutary property, then Bennett, Du and Zhang(1998) have
called the square A self-conjugate self-orthogonal thus giving yet another meaning
to the overworked word “conjugate” and adding to the confusion that multiple
meanings for the same word cause.

For the connection between the 10× 10 orthogonal latin squares of Weisner
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and Ljamzin and two of the cyclic neofields of order 10, see page 36 of Bed-
ford(1993).

7.4 The column method

This method, which is described in Keedwell(1966) and in [DK1], is another
specialization of the K-construction in which once again the latin square L1 is
taken to be the multiplication table of a (not-necessarily-abelian) group. The
method was originally used by its author to construct (for the first time) a triad
of mutually orthogonal latin squares of order fifteen and also a pair of orthogonal
latin squares based on the dihedral group of order 8. However, it has subsequently
been shown that N(15) ≥ 4. See Section 5.3.

7.5 The diagonal method

For this construction it is not necessary that the latin square L1 be the mul-
tiplication table of a group and, mainly for this reason, the method is effective
in obtaining either two or a complete set of mutually orthogonal latin squares
(according as r is not or is a prime power) for every order r except one, two and
six up to at least the value r = 20.4 It is therefore of considerable interest to
see why the method fails when r = 6 so as to obtain some explanation for the
peculiarity of that integer in regard to the theory. In order to motivate the con-
struction, let us look at the set-up given by the K-construction in the case when
we have a set of mutually orthogonal latin squares based on a Galois field GF (r).
In that case, the multiplications are effected by the elements 1, x, x2, . . . , xr−2 of
a cyclic group of order r− 1 and the corresponding multiplication permutations
are M1 ≡ I, Mx = (0)(1 x x2 . . . xr−2), M2

x , M
3
x ,. . . ,M

r−2
x . The addition per-

mutations are S0 ≡ I, S1, Sx, . . . , Sxr−2 and, because the latin squares L1 and
Lx are orthogonal, the permutations

Mx = (0)(1 x x2 . . . xr−2)
S−1
xr−2MxSxr−2 = (xr−2)(1 + xr−2 x+ xr−2 . . . xr−2 + xr−2)
S−1
xr−3MxSxr−3 = (xr−3)(1 + xr−3 x+ xr−3 . . . xr−2 + xr−3)
. . . . . . = . . . . . . . . . . . . . . . . . .
. . . . . . = . . . . . . . . . . . . . . . . . .
S−1
x MxSx = (x)(1 + x x+ x . . . xr−2 + x)
S−1
1 MxS1 = (1)(1 + 1 x+ 1 . . . xr−2 + 1)

are a sharply transitive set.
We note that, if the first row and column are disregarded, the quotients of

the elements in corresponding places of any two adjacent secondary5 diagonals

4The author conjectures that the foregoing statement is true for all positive integers r > 6
but this is still unproved.

5By a secondary diagonal of an m×m matrix A = ‖ars‖, where r, s = 0, 1, . . . , (m− 1), is
meant a set of elements a0 p, a1 p−1, . . . , ap 0, ap+1m−1, ap+2m−2, . . . am−1 p+1. The secondary
diagonal given by p = m− 1 will be called the main secondary diagonal.
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are constant. Moreover, in each such diagonal, the element of the pth row and
qth column is x times the element of the (p + 1)th row and (q − 1)th column.
In consequence of this fact and the Galois field relationship between addition
and multiplication, it is clear that each of the elements 1, x, x2, . . . , xr−2 occurs
exactly once in each secondary diagonal. These properties will be exploited in
the method of construction we are about to explain.

We shall suppose that all elements except 0 are expressed as powers of x
and write indices only. We shall write r − 1 in place of the element 0. Let the
indices (natural numbers) 0, 1, 2, . . . , r − 3 be ordered in such a way that the
differences between adjacent numbers are all different, taken modulo r − 1, and
so that no difference is equal to 1. As an example, take the case r = 8. Then
a solution is 4 0 2 1 5 3, the differences being 3, 2, 6, 4, 5. We set up an array
whose main secondary diagonal consists entirely of 7s and such that all other
secondary diagonals consist of the indices 0, 1, 2, ... , 6 in descending order,
columns being taken cyclically, column 0 = column 7, and so on. The result is
shown in Figure 7.5.1

4 0 2 1 5 3 7
6 1 0 4 2 7 3
0 6 3 1 7 2 5
5 2 0 7 1 4 6
1 6 7 0 3 5 4
5 7 6 2 4 3 0
7 5 1 3 2 6 4

Fig. 7.5.1.

It is clear from the method of construction that, if the entries of the first
column of this array are all different, so are the entries of each other column. We
seek arrays A∗

8 such that this is the case. Figure 7.5.2, with first row and column
deleted, provides an example of such an array. In fact, Figure 7.5.2 is derived
from the array A∗

8 by bordering the array with a 0th row and 0th column whose
entries are those missing from the appropriate column or row of the array A∗

8.
Thus, the complete square shown in Figure 7.5.2 is a latin square.

Since the differences between adjacent entries of the first row of the array A∗
8

are all different, the same is true of each other row provided that each such row
is regarded as starting and ending at the entry 7. Moreover, the disposition of
the 7s is such that every other integer follows and precedes an entry 7 exactly
once. Thus, Figure 7.5.2 provides a sharply transitive set of permutations from
which we can derive permutations

So = I, S1 = Sxo , Sx1 , Sx2 , . . . , Sx6

representing the rows of a latin square L1 and with the property that the latin
square Lx derived from L1 by means of the multiplication permutation Mx will
be orthogonal to L1.
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M = (7)(0 1 2 3 4 5 6)
S−1
x6 MxSx6 = (6)(2 5 0 4 3 1 7)
S−1
x5 MxSx5 = (5)(4 6 3 2 0 7 1)
S−1
x4 MxSx4 = (4)(5 2 1 6 7 0 3)
S−1
x4 MxSx4 = (3)(1 0 5 7 6 2 4)
S−1
x4 MxSx4 = (2)(6 4 7 5 1 3 0)
S−1
x4 MxSx4 = (1)(3 7 4 0 2 6 5)
S−1
x4 MxSx4 = (0)(7 3 6 1 5 4 2)

Fig. 7.5.2.

In fact, the sharply transitive set of permutations shown in Figure 7.5.2 arises
from the Galois field GF(8): for, in this field, x8 − x = 0 and a primitive root
x satisfies x3 + x + 1 = 0 [or x3 = x + 1, since −1 = 1 in GF(8)]. So, if
Mx = (0)(1 x x2 x3 x4 x5 x6), we have

S−1
x6 MxSx6 = (x6)(1 + x6 x+ x6 . . . x5 + x6 x6 + x6)

= (x6)(x2 x5 1 x4 x3 x 0),

which is equivalent to the expression given in Figure 7.5.2. However, arrays of
type A∗

r exist when r is not a prime power. For example, when r = 10, we get just
two possible arrays A∗

10. One of these is shown (bordered by the appropriate 0th
row and 0th column) in Figure 7.5.3 and leads to one of the pairs of orthogonal
latin squares of order 10 obtained by Weisner and displayed in Fig. 2 of his paper
Weisner(1963).

(9)(0 1 2 3 4 5 6 7 8)
(8)(5 3 0 2 7 6 1 4 9)
(7)(2 8 1 6 5 0 3 9 4)
(6)(7 0 5 4 8 2 9 3 1)
(5)(8 4 3 7 1 9 2 0 6)
(4)(3 2 6 0 9 1 8 5 7)
(3)(1 5 8 9 0 7 4 6 2)
(2)(4 7 9 8 6 3 5 1 0)
(1)(6 9 7 5 2 4 0 8 3)
(0)(9 6 4 1 3 8 7 2 5)

Fig. 7.5.3.

The discussion above may be summarized into the following theorem:

Theorem 7.5.1 If r is an integer for which an array A∗
r exists, then there exist

at least two mutually orthogonal latin squares of order r. When r is a power of a
prime, there exists at least one array A∗

r which can be used to generate a complete
set of mutually orthogonal latin squares of order r, representing the desarguesian
projective plane of that order.
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Following Keedwell(1966), we shall now give two simple criteria for the exis-
tence of an array A∗

r corresponding to a given integer r.

Theorem 7.5.2 A necessary and sufficient condition that an array A∗
r exists

for a given integer r is that the residues 2, 3, . . . , (r − 2), modulo (r − 1), can
be arranged in a row array Pr in such a way that the partial sums of the first
one, two ,. . . , (r− 3) are all distinct and non-zero modulo (r− 1) and so that, in
addition, when each element of the array is reduced by 1, the new array P ′

r has
the same property.

Proof. Suppose firstly that an array A∗
r, such as is given in Figure 7.5.2, exists.

The differences between successive entries of the first row of A∗
r , excluding the

last element (r−1), form an array Pr of the type specified in the theorem, since,
if this were not the case, the entries of that first row would not be all distinct.

Moreover, if we write

A∗
r =

a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
. . . . . . . . . . . .

we have aij = ai−1,j+1 − 1. Consequently,
a21 − a11 = (a12 − 1)− a11 = (a12 − a11)− 1,
a31 − a21 = (a22 − 1)− a21 = (a22 − a21)− 1 = (a13 − a12)− 1, and generally,
ai+1,1 − ai1 = (ai2 − 1)− ai1 = (ai2 − ai1)− 1 = (a1,i+1 − a1i)− 1,

so that the differences between successive entries of the first column of A∗
r , ex-

cluding the last element (r−1), form an array of the type specified in the theorem,
with each element reduced by one from the corresponding element of Pr: for, if
this were not the case, the entries of the first column of A∗

r would not be all
distinct.

Conversely, suppose that the residues 2, 3, . . . , (r−2), modulo (r−1), can be
arranged in the manner described in the theorem. Then an array A∗

r exists. We
shall find it easiest to illustrate this by means of an example. We take the case
r = 8.

P8 = 3, 2, 4, 6, 5; P ′
8 = 2, 1, 3, 5, 4.

Here, 3=3, 3+2=5, 3+2+4=2, 3+2+4+6= 1, 3+2+4+6+5 = 6, so the entries
of the first row of A∗

8 are
x, x+ 3, x+ 5, x+ 2, x+ 1, x+ 6, r − 1=7

Since the entry r−2 = 6 is not to appear in the first row, we must have x+4 = 6:
that is, x = 2. Then A∗

8 is as shown in Figure 7.5.2, the entries in the first row
and column being all distinct in virtue of the properties of the row array P8. ⊓⊔

Corollary 1. With each array A∗
r occurs a dual array A

(d)
r obtained from A∗

r by
replacing each entry q in the corresponding row arrays Pr, P

′
r, by its complement

(r − 1) − q taken modulo (r − 1) to obtain a dual row array P
(d)
r and hence a

dual array A
(d)
r .
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Proof. If Pr and P ′
r are transformed in the manner specified, the entries of

the tranform of P ′
r become one greater than the corresponding entries of the

transform of Pr. It is easy to see, therefore, that the transform of P ′
r must have

the same properties as Pr. ⊓⊔

For example, if P8 is as given in the theorem above, we have

P
(d)
8 = 5, 6, 4, 2, 3 and P

′(d)
8 = 4, 5, 3, 1, 2.

Corollary 2. With each array A∗
r occurs a mirror image array A

(m)
r (which

may coincide with A
(d)
r ), obtained from A∗

r by first constructing Pr, reversing

the order of its entries to obtain a row array P
(m)
r , and then constructing the

corresponding array A
(m)
r in the manner described in the theorem.

Proof. We have only to show that the row array obtained by reversing the
order of the entries of the row array Pr has the same properties as Pr. Let

Pr = d1, . . . , dr−3; P
′
r = d1 − 1, d2 − 1, . . . , dr−3 − 1.

The property possessed by Pr is that
e1 = d1, e2 = d1 + d2, . . . , er−3 =

∑i=r−3
i=1 di

are all distinct and non-zero modulo r − 1. Writing

P
(m)
r = dr−3, dr−4, . . . , d2, d1,

we have

dr−3 = er−3 − er−4, dr−3 + dr−4 = er−3 − er−5, . . . ,
∑i=2
i=r−3 di = er−3 − e1,

∑i=1
i=r−3 di = er−3 − 0,

and these are evidently all distinct and non-zero, since er−3, er−4, . . . , e2, e1, 0
are all distinct, and er−3 6= 0.

Consequently, P
(m)
r has the same property as Pr. The same argument applied

to P ′
r shows that P

′(m)
r has the same property. Thus, P

(m)
r has all the same

properties as Pr, as required.

For our second criterion for the existence of an array A∗
r of the type described

above, we shall need the concept of a neofield.

Definition. A set J = {a, b, c, . . .} on which are defined two binary operations
(+) and (·) such that J is a loop with respect to the operation (+) with identity
element 0 say, J−0 is a group with respect to the operation (·) and the distribu-
tive laws a(b+ c) = ab+ ac and (b+ c)a = ba+ ca hold, is called a neofield. The
neofield is commutative if the loop (J,+) is commutative.

Neofields were first introduced by Paige(1949), and he derived a number of
their principal properties in that paper. They had not subsequently been used
until the following theorem was proved by the present author in Keedwell(1966):

Theorem 7.5.3 A necessary and sufficient condition that an array A∗
r exists for

a given integer r is that there exists a neofield of r elements whose multiplicative
group is cyclic of order r − 1 and which possesses the property that
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(1 + xt)/(1 + xt−1) = (1 + xu)/(1 + xu−1) ⇒ t = u,
where x is any generating element of the multiplicative group.

Proof. Suppose first that such a neofield of order r exists. There exists a
unique element xs of the additive loop such that 1 + xs = 0.6

Then xt + xs+t = 0 for all integers t. The addition table of the neofield will
consequently be of the form shown in Figure 7.5.4. Here, if the 0th row and 0th
column be disregarded, the main secondary diagonal consists entirely of zeros.
The remaining secondary diagonals comprise elements which can be represented
as powers of x in descending natural order.

Moreover, the differences between the indices of adjacent elements of the first
row of the addition table are all distinct and non-zero modulo r − 1: for

(xr−2 + xs+p)/(xr−2 + xs+p−1) = (xr−2 + xs+q)/(xr−2 + xs+q−1)
would imply

(1 + xs+p+1)/(1 + xs+p) = (1 + xs+q+1)/(1 + xs+q)
with p 6= q, contrary to hypothesis.7 Likewise, the differences between the indices
of adjacent elements of the first column of the addition table are all distinct and
non-zero modulo r − 1: for

(xr−p + xs)/(xr−p+1 + xs) = (xr−q + xs)/(xr−q+1 + xs)
would imply

(1 + xs+p−1)/(1 + xs+p−2) = (1 + xs+q−1)/(1 + xs+q−2)
with p 6= q, contrary to hypothesis. Consequently, if we replace the nonzero
elements of the addition table by their indices when represented as powers of x,
and the zeros by r − 1, we shall obtain an array A∗

r .

(+) xs xs+1 . . . xr−2 1 . . . xs−2 xs−1

xr−2 xr−2 + xs xr−2 + xs+1 . . . xr−2 + xr−2 xr−2 + 1 . . . xr−2 + xs−2 0
xr−3 xr−3 + xs xr−3 + xs+1 . . . xr−3 + xr−2 xr−3 + 1 . . . 0 xr−3 + xs−1

⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
x x+ xs 0 . . . x+ xr−2 x+ 1 . . . x+ xs−2 x+ xs−1

1 0 1 + xs+1 . . . 1 + xr−2 1 + 1 . . . 1 + xs−2 1 + xs−1

Fig. 7.5.4.

Conversely, suppose that an array A∗
r is given. We border the array with a

0th row and 0th column in such a way that the bordered array forms an r × r
latin square. Upon replacing each element t 6= r−1 by xt and each element r−1
by zero, and then identifying the square with that given in Figure 7.5.4 for a

6Note that the property (1+xt)/(1+ xt−1) = (1+ xu)/(1+ xu−1) ⇒ t = u certainly holds
if one of t, t− 1, u, u− 1 is equal to s.

7Moreover, no index is 1 since (1 + xt)/(1 + xt−1) = x would imply 1 + xt = x+ xt which
is impossible for a loop.
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suitable choice of s (determined by the position of the 1 in the 0th row), we shall
define the addition table of a neofield of the type specified in the theorem. ⊓⊔

The property that (1 + xt)/(1 + xt−1) = (1 + xu)/(1 + xu−1) holds if and
only if t = u in a neofield with a cyclic multiplicative group has been called the
divisibility property and a neofield of the kind specified in Theorem 7.5.3 has
been called a neofield with property D or, more briefly, a D-neofield.

In Keedwell(1966), the author has shown by a consideration of the addition

table that aD-neofield is commutative if and only if the row arrays P
(d)
r and P

(m)
r

associated with it, and defined as in the corollaries to Theorem 7.5.2, coincide.
A quite different proof of this result will be found in Keedwell(1967). In

the latter paper, the conditions under which two D-neofields of a given order
are isomorphic or anti-isomorphic have been analysed and, with the aid of a
computer, all isomorphically distinct D-neofields of orders less than or equal to
17 have been catalogued. Some examples of such neofields have also been given
for the orders 18, 19 and 20. It appears clear from the results that the number of
D-neofields of an assigned order r increases rapidly with r and it is conjectured
by the author that D-neofields exist for all orders r except 6. (We note at this
point that, in particular, every Galois field is a D-neofield.)

As regards the explanation for the non-existence of a D-neofield of order 6
(and consequent non-existence of a pair of orthogonal latin squares of that order
constructible by the above method), we easily see that, when r = 6, a row array
Pr having the properties of Theorem 7.5.2 cannot exist: for the integers 2, 3, 4
and 2 − 1, 3 − 1, 4 − 1 cannot be simultaneously reordered so that their partial
sums taken modulo 5 are all distinct and non-zero. Essentially, this is due to the
fact that the integers 2, 3 occur in each triad and must occur consecutively in
one or the other. This observation suggests that the non-existence of orthogonal
latin squares of order 6 may be a consequence of nothing more profound than
the paucity of combinatorial rearrangements of the integers 0 to 4.

A number of unsolved problems concerning D-neofields have been listed in
Keedwell(1970) and these also appear as Problems 7.3, 7.4 and 7.5 in [DK1].

7.6 Left neofields and orthomorphisms of groups

The reader will recall from Section 5.1 that, if a group has an orthomorphism
(or, equivalently, a complete mapping) then its Cayley table has an orthogonal
mate. There is a very close connection between orthomorphisms and left ne-
ofields. A left neofield (N,⊕, ·) differs from a neofield as defined in the preceding
section in having only one distributive law: namely, a(b⊕ c) = ab⊕ ac so multi-
plication may not distribute over addition from the right. A left neofield whose
multiplicative group is (G, ·) is said to be based on that group.

We recall that an orthomorphism φ of a finite group (G, ·) is a one-to-one
mapping g → φ(g) of G onto itself such that the mapping g → θ(g), where
θ(g) = g−1φ(g) is again a one-to-one mapping of G onto itself. θ is the complete
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mapping of G onto itself which corresponds to the orthomorphism φ. φ is in
canonical form if φ(1) = 1, where 1 is the identity element of G.

An orthomorphism in canonical form may be regarded as a permutation
φ = (1)(g11 g12 . . . g1k1)(g21 g22 . . . g2k2) . . . (gs1 gs2 . . . gsks)

of G such that the elements g−1
ij gi,j+1 (where i = 1, 2, . . . , s and the second suffix

j is added modulo ki) comprise the non-identity elements of G each counted once.
Then φ(gij) = gi,j+1 and θ(gij) = g−1

ij gi,j+1. The mapping θ is the complete
mapping associated with the orthomorphism φ.

If we express an orthomorphism in cycle form as above, we see that
∏

g∈G g =
∏

θ(gij) =
∏

(g−1
ij gi,j+1) = 1. That is, the product of all the elements of G in

some appropriate order is equal to the identity element (as already proved in
Theorem 2.5.1).

The concept of an orthomorphism and also that of a near orthomorphism
(defined below) is important in the study of neofields because, in particular, the
mapping defined by 1 → 1 and w → 1⊕ w (for w 6= 1) is an orthomorphism of
the multiplicative group of every left neofield for which 1⊕ 1 = 0.

Suppose now that the elements of the finite group (G, ·) can be arranged
in the form of a sequence [g′1 g′2 g′3 . . . g′h] followed by s cyclic sequences
(g11 g12 . . . g1k1), (g21 g22 . . . g2k2), . . . , (gs1 gs2 . . . gsks) such that the elements
g′j

−1g′j+1 and g−1
ij gi,j+1 together with the elements g−1

iki
gi1 comprise the non-

identity elements of G each counted once. Then the mapping θ of G−{g′h} onto
G− {1} given by θ(g′j) = g′j

−1g′j+1 for j = 1, 2, . . . , h− 1 and θ(gij) = g−1
ij gi,j+1

(where arithmetic of second suffices is modulo ki) is called a near complete map-
ping of G. The associated mapping φ : g → gθ(g) of G − {g′h} onto G− {g′1} is
called a near orthomorphism of G. It is said to be in canonical form if g′1 = 1,
where 1 is the identity element of G.

We shall represent a near orthomorphism in the following way:
φ = [g′1 g

′
2 g

′
3 . . . g

′
h](g11 g12 . . . g1k1)(g21 g22 . . . g2k2) . . . (gs1 gs2 . . . gsks)

When the near orthomorphism is in canonical form so that g′1 = 1, we shall
denote the element which has no image under the mapping by η and call it the
ex-domain element.

It is immediate to see from the definition of θ that

η = (
∏j=h−1

j=1 θ(g′j))(
∏i=s

i=1

∏j=ks
j=1 θ(gij))

That is, η is the product of all the elements of G in some appropriate order.
A special case of this arises when the group (G, ·) is sequenceable. In that

case, φ = [e b1 b2 . . . bn−1] is a near orthomorphism of the group, where
bi = ea1a2 . . . ai for i = 1, 2, . . . , n−1 if the elements of G are e, a1, a2, . . . , an−1.
See Chapter 3 of [DK2] and Section 2.6 of this book.

The connection between left neofields and orthomorphisms and near ortho-
morphisms of a group is given by the following theorem:

Theorem 7.6.1 Let (N,⊕, ·) be a finite left neofield with multiplicative group
(G, ·), where G = N−{0}. Then, if 1⊕1 = 0 in N , N defines an orthomorphism

Chapter 7



251

(and corresponding complete mapping) of (G, ·), which is in canonical form. If
1⊕1 6= 0 but 1⊕η = 0, N defines a near orthomorphism of G in canonical form
and with η as ex-domain element.

Conversely, let (G, ·) be a finite group with identity element 1 which possesses
an orthomorphism φ (in canonical form). Let 0 be a symbol not in the set G and
define N = G ∪ {0}. Then (N,⊕, ·) is a left neofield, where we define ψ(w) =
1 ⊕ w = φ(w) for all w 6= 0, 1 and ψ(O) = 1 ⊕ 0 = 1, ψ(1) = 1 ⊕ 1 = 0. Also,
we define x⊕ y = x(1⊕ x−1y) for x 6= 0, 0⊕ y = y and 0 · x = 0 = x · 0 for all
x ∈ N .

Alternatively, let (G, ·) possess a near orthomorphism φ in canonical form.
Then, with N defined as before, (N,⊕, ·) is a left neofield, where we define ψ(w) =
1 ⊕ w = φ(w) for all w 6= 0, η, where η is the ex-domain element of φ and
ψ(0) = 1 ⊕ 0 = 1, ψ(η) = 1 ⊕ η = 0. Also, as before, x ⊕ y = x(1 ⊕ x−1y) for
x 6= 0, 0⊕ y = y and 0 · x = 0 = x · 0 for all x ∈ N .

Proof. Part 1: neofield given.

Case when 1⊕ 1 = 0.
In N − {0}, define φ(w) = 1 ⊕ w for w 6= 1 and φ(1) = 1. Since (N,⊕) is a

loop, the equation φ(w) = 1 ⊕ w = z has a unique solution for w and w 6= 1 if
z 6= 0, so φ is a one-to-one mapping of G = N − {0} onto itself.

Then θ(w) = w−1φ(w) = w−1 ⊕ 1 if w 6= 1, and θ(1) = 1. Since (N,⊕) is a
loop, the equation θ(w) = w−1 ⊕ 1 = z has a unique solution for w and w 6= 1 if
z 6= 0, so θ is a one-to-one mapping of G = N − {0} onto itself.

It follows that φ is an orthomorphism in canonical form of G = N −{0} with
θ as corresponding complete mapping.

Case when 1⊕ 1 6= 0 and 1⊕ η = 0.

In N−{0}, define φ(w) = 1⊕w for w 6= η. Since (N,⊕) is a loop, the equation
φ(w) = 1⊕ w = z has a unique solution for w with w 6= 0, η when z ∈ G− {1},
where G = N − {0}. Thus, φ is a one-to-one mapping from G− {η} to G− {1}.

Then θ(w) = w−1φ(w) = w−1 ⊕ 1 if w 6= 0, η. Since (N,⊕) is a loop, the
equation θ(w) = w−1 ⊕ 1 = z has a unique solution for w with w 6= 0, η when
z ∈ G− {1}. So θ is a one-to-one mapping from G− {η} to G− {1}. [Note that
η−1 ⊕ 1 = 0 in (N,⊕, ·).]

It follows that φ is a near orthomorphism in canonical form mapping G−{η}
onto G−{1} with θ as corresponding near complete mapping. Since the identity
element 1 of G has no pre-image, the near orthomorphism is in canonical form.

Proof. Part 2: mapping of group given.
We require to show that (N,⊕) is a loop with identity element 0 and that

multiplication is left-distributive over addition.
We have tu ⊕ tv = tu(1 ⊕ (tu)−1tv) = tu(1 ⊕ u−1v) = t(u ⊕ v) from the

definition x⊕ y = x(1⊕ x−1y), so the left distributive law holds.
Also, in the case when φ is an orthomorphism,

ψ(w) = 1⊕ w = φ(w) for w 6= 0, 1;
ψ(1) = 1⊕ 1 = 0;
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ψ(0) = 1⊕ 0 = 1. [Note that φ(1) = 1 since φ is in canonical form.]
Therefore, the elements a⊕ y = a(1⊕a−1y) = aψ(a−1y) are distinct as y varies.

When x 6= 0, a; x ⊕ a = x(1 ⊕ x−1a) = xφ(x−1a) = x · x−1aθ(x−1a) =
aθ(x−1a). These are all different as x varies and none is equal to 0 or a. Also,
a⊕a = a(1⊕ 1) = 0 and 0⊕ a = a. Therefore, the elements x⊕a are all distinct
as x varies.

In the case when φ is a near orthomorphism,
ψ(w) = 1⊕ w = φ(w) when w 6= 0, η;
ψ(η) = 1⊕ η = 0;
ψ(0) = 1⊕ 0 = 1. [Note that φ(η) is not defined since η is ex-domain

element and that φ(w) 6= 1 for w ∈ G since φ is in canonical form.]
Therefore, the elements a⊕ y = a(1⊕a−1y) = aψ(a−1y) are distinct as y varies.

When x−1a 6= 0, η; x ⊕ a = x(1 ⊕ x−1a) = xφ(x−1a) = x · x−1aθ(x−1a) =
aθ(x−1a). These are all different as x varies and none is equal to 0 or a. Further-
more, x−1a = η ⇒ x = aη−1 and aη−1 ⊕ a = aη−1(1⊕ η) = 0. Also, 0⊕ a = a.
Therefore, the elements x⊕ a are all distinct as x varies.

We conclude that (N,⊕) is a loop with 0 as two-sided identity. ⊓⊔
Note. The mapping ψ : z ⇒ 1 ⊕ z is called the presentation function of the
left neofield because it determines the complete addition table of the neofield by
virtue of the fact that x⊕ y = x(1⊕ x−1y).

A left neofield becomes a neofield if the right distributive law holds. It was
shown in Hsu and Keedwell(1984) that necessary and sufficient conditions for
this are that the complete mapping (in the case when 1 ⊕ 1 = 0) or the near
complete mapping (in the case when 1 ⊕ η = 0, η 6= 1) of the group G which
defines the neofield maps conjugacy classes to conjugacy classes and additionally
in the latter case that η is in the centre of G.

Most useful in practice are cyclic neofields: that is, neofields whose multi-
plication group is cyclic. Such neofields have been investigated in considerable
detail in a book by Hsu(1980).

In Keedwell(2001), the present author has investigated the properties that an
orthomorphism or near orthomorphism of a cyclic group must have to enable it
to define a finite field rather than just a cyclic neofield. (As remarked earlier in
this book, for abelian groups the existence of orthomorphisms or near orthomor-
phisms are mutually exclusive according as the group has not or has a unique
element of order two.)
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Chapter 8

Connections with geometry and graph theory

In this chapter we shall show firstly that there is a very intimate connection
between latin squares and geometric nets and, as already noted in Section 5.2,
between complete sets of MOLS and projective planes. As a consequence, a
number of problems concerning the former may more easily be dealt with in the
guise of geometry.

In the first section, we show that, with each bordered latin square or quasi-
group, there is associated a corresponding geometric 3-net and that the geomet-
rical properties of the 3-net reflect the algebraic properties of the quasigroup;
while, as shown in Chapter 2, these in turn influence the structure of the latin
square. Conversely, with each given 3-net, there is associated a class of isotopic
quasigroups and related latin squares.

We go on to show that a k-net, for k > 3, is correspondingly associated with
a set (or sets) of k−2 MOLS. In particular, when k = n+1, the k-net becomes a
projective plane and the n−1 MOLS are then a complete set of MOLS. We point
out that non-isomorphic projective planes exist for some orders n and explain
how this leads to the existence of structurally distinct complete sets of MOLS of
those orders.

In the third section, we discuss various connections between latin squares and
graphs and indicate how these connections help in the solution of latin square
problems and vice versa.

8.1 Quasigroups and 3-nets

The concept of a 3-net arises naturally in connection with the problem of
assigning co-ordinates to the points and lines of an affine or projective plane.
Historically, the concept arose also in the study of certain topological problems
of differential geometry. Among early papers on the subject are Baer(1939,1940),
Blaschke(1928), Blaschke and Bol(1938), Bol(1937), Reidemeister(1929) and Thom-
sen(1930). Later papers concerning the connections between quasigroups, ge-
ometric nets and projective planes are Bruck(1951), Ostrom(1968) and Pick-
ert(1954). Extensive bibliographies of papers on the subject will be found in
Aczél, Pickert and Radó(1960), in Aczél’s survey paper (1964) or (1965), in
Bruck(1958), Pickert(1955) and Chapter 11 of Belousov(1967b). Two books de-
voted to the connection between nets and quasigroups are Belousov (1971,1972).

More recently, the subject has been treated in Chapter 2 of Pflugfelder(1990)
(where it is shown in particular that the representation of a quasigroup by
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a geometric net leads naturally to the concepts of parastrophy and isostro-
phy(paratopy). Also, several chapters of Chien, Pflugfelder and Smith(1990)
treat different aspects of the subject. (In the latter books, the word web is used in
place of net.) The subject is also treated in various sections of the CRC Handbook
of Combinatorial Designs [Colbourn and Dinitz(1996,2006)] where, in particu-
lar, the fact that a geometric net and a transversal design are geometrically dual
concepts is pointed out.

Let us begin by giving a general definition of a net as used in geometry. We
should mention here that the “lines” of our definition may be curves of the real
plane in the applications to differential geometry or to nomograms.

Definition. A geometric net is a set of objects called “points” together with
certain designated subsets called “lines”. The lines occur in classes called “par-
allel classes” such that (a) each point belongs to exactly one line of each parallel
class; (b) if l1 and l2 are lines of different parallel classes, then l1 and l2 have
exactly one point in common; (c) there are at least three parallel classes and at
least two points on a line. A net possessing k parallel classes is called a k-net.
(If the number of parallel classes is one or two and the remaining conditions are
fulfilled, the system may be called a trivial net.)

If the net is finite, then it is characterized by a parameter n, called the order
of the net, such that (i) each line contains exactly n points; (ii) each parallel
class consists of exactly n lines; and (iii) the total number of points is n2.

Statements (i) and (ii) follow at once from conditions (a) and (b) of the
definition of a net as soon as we postulate that one line of one parallel class
has n points or that one parallel class has n lines. Then, since the lines of any
one of the parallel classes contain all the points and since each of the n lines of
this class has n points, statement (iii) follows. (Note that the number of parallel
classes may be more or less than n.)

Definition. An affine plane π∗ comprises a set of objects called “points” to-
gether with certain distinguished subsets called “lines” such that (a) two distinct
points belong to (are incident with) exactly one line; (b) every point exterior to a
given line l of π∗ is incident with exactly one line which has no point in common
with l; and (c) there are at least three points not all incident with one line.

The connection between affine planes and geometric nets follows immediately
from the statement that:

Theorem 8.1.1 An affine plane is a geometric net in which each pair of points
is incident with a line. (Equivalently, we may say that an affine plane of order
n is a net of order n with n+ 1 parallel classes.)

Proof. Let l be a line of the net containing n points and let P be a point not
on l. Then there are exactly n+ 1 lines through P if each pair of points of the
net is connected by a line: for the joins of P to the points of l give n lines and
there is also one line through P belonging to the parallel class of l. These n+ 1
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lines through P necessarily belong to distinct parallel classes, so there are n+ 1
parallel classes. ⊓⊔

For the purpose of introducing co-ordinates for the points of a geometric net
or an affine plane, we may assign arbitrary symbols to the lines of just two of
its parallel classes, C1 and C2, and then assign the co-ordinate pair (x, y) to the
point through which pass the line x of class C1 and the line y of class C2. There
will be no loss of generality in using symbols from the same set Q (of cardinal
n) for each of the two parallel classes C1 and C2. If the same set Q of symbols is
used to label the lines of a third parallel class C3 and if the line w of this class
is incident with the point (x, y), then we can define a binary operation (∗) on
the set Q by the statement x ∗ y = w. The properties of the geometric net then
ensure that each equation x ∗ y = w is uniquely soluble for x, y or w in Q when
the other two variables are specified, and so (Q, ∗) is a quasigroup.

Conversely, we may prove:

Theorem 8.1.2 If a bordered latin square of order n is given representing the
multiplication table of a quasigroup (Q, ∗), then there can be associated with it a
geometric net of order n having exactly three parallel classes and such that the
lines x, y of the parallel classes C1 and C2 are incident with the line w of the
parallel class C3 if and only if x ∗ y = w.

Proof. As the n2 points of our 3-net, we take the n2 ordered pairs (x, y) of
our quasigroup (Q, ∗). For each fixed choice of x, the n points (X, y), y ∈ Q,

form a line l
(1)
X of the parallel class C1. For each fixed choice of y, the n points

(x, Y ), x ∈ Q, form a line l
(2)
Y of the parallel class C2. For each fixed choice of

w, the set of all points (x, y) such that x ∗ y =W form a line l
(3)
W of the parallel

class C3. Since the multiplication table of (Q, ∗) is a latin square, each line of C3

has exactly n points.
It is immediate from the definitions that no two lines of C1 or C2 or C3 have a

point in common and that each point belongs to exactly one line of each parallel
class. Also, two lines belonging to distinct parallel classes have exactly one point

in common. The lines l
(1)
X and l

(2)
Y have the point (X,Y ) in common. The lines

l
(1)
X and l

(3)
W have the point (X, ȳ) in common. where ȳ is the unique solution of

the equation X ∗ ȳ =W . The lines l
(2)
Y and l

(3)
W have the point (x̄, Y ) in common.

where x̄ is the unique solution of the equation x̄ ∗ Y = W . This completes the
proof. ⊓⊔

As an example, we give in Figure 8.1.1 below a quasigroup of order 4 and its
associated 3-net N .

We shall show shortly that the algebraic properties of the quasigroup (Q.∗)
are reflected in the geometrical properties of its associated 3-net.

There is a close connection between an affine plane and a projective plane
which latter we defined in Section 5.2. Indeed, the former may be regarded simply
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Fig. 8.1.1.

as a projective plane from which one line has been deleted. Precisely, we may
make the following statement:

A projective plane of order n is an affine plane to which one extra line l∞
has been adjoined, each of the n + 1 points of l∞ being a point of concurrence
(point at infinity) for the n + 1 lines of a parallel class. (Such a point on l∞ is
sometimes called the vertex of the parallel class.) Thus, a projective plane has a
total of n2 + n + 1 lines and n2 + n + 1 points. When one line and the points
on it are deleted, we get a geometric net of order n having n+1 parallel classes.
That is, we get an affine plane.

In co-ordinatizing an affine (or projective) plane, it is usual to introduce two
binary operations denoted by (+) and (·) respectively, the first being associated
with a 3-net whose three “parallel” classes have their vertices A,B,E collinear
on the special line l∞ (that is, the lines of each parallel class are “parallel” in the
sense used with reference to an affine plane), and the second being associated
with a 3-net such that two of its “parallel” classes coincide with two of those
of the addition net and have vertices on l∞ while the third one comprises the
pencil of lines through a finite point O say. The finite point (vertex of the parallel
class) is regarded as having been deleted when treating the system as a net. More
details are given in the next section of this chapter.

In the case of the real affine plane, these binary operations coincide with
addition and multiplication of real numbers if the four parallel classes in question
comprise the lines parallel to the x-axis, the lines parallel to the y-axis, the lines
of gradient 1 and the lines through the origin O of cartesian co-ordinates.

Let us consider further the relation between latin squares and geometric 3-
nets. In the first place, let us observe that if a 3-net is given, the choice of
co-ordinatizing set Q and the procedure for assigning its elements one-to-one to
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the lines of each parallel class are not unique. Indeed, it is easy to see that change
of the co-ordinatizing set of a 3-net N corresponds to a change of symbols in the
associated latin square L, while changes of the order in assigning the elements
of a given set of symbols to the lines of the parallel classes correspond to re-
orderings of (i) the row labels, (ii) the column labels, and (iii) the symbols in
the body of the associated (bordered) latin square.

Equivalently, we may state:

Theorem 8.1.3 Isotopic quasigroups1 are associated with the same geometric
3-net and correspond to changes in the labelling set.

Proof. To see this, let (G, ·) and (H, ∗) be two quasigroups. These quasigroups
are isotopic if there exists an ordered triple (θ, φ, ψ) of one-to-one mappings θ, φ,
ψ of G onto H such that (xθ)∗(yφ) = (x ·y)ψ for all x, y in G. Geometrically, the
mapping θ effects a replacement of the symbols of the set G which are assigned
to the lines of one parallel class C1 of a geometric net by symbols of the set H.
The mappings φ and ψ respectively effect similar re-labellings of the lines of the
parallel classes C2 and C3. In the re-labelled set, the lines of the classes C1 and C2

labelled xθ and yφ are incident with the line (x ·y)ψ when (xθ)∗ (yφ) = (x ·y)ψ:
that is, when the lines of the classes C1 and C2 which were originally labelled
x and y are incident with the line of C3 which was originally labelled x · y. The
latter lines are the same as the former. ⊓⊔

Corollary. Isotopisms of a quasigroup (G, ·) onto itself correspond to changes
of order in the labelling set G of the associated 3-net.

Proof. The mappings θ, φ, ψ are now mappings of the set G onto itself. That
is, they represent permutations of the labelling set. ⊓⊔

In Chapter 1, we proved that every isotope (H, ∗) of a quasigroup (G, ·) is
isomorphic to a principal isotope of the quasigroup (Theorem 1.3.2) and that,
among the principal isotopes of a quasigroup (G, ·), there always exist loops
(Theorem 1.3.3). These facts imply the truth of the following theorem:

Theorem 8.1.4 If (G, ·) is a quasigroup associated with a given 3-net, then there
are as many isomorphically distinct quasigroups associated with that net as there
are principal isotopes of (G, ·). Moreover, among these quasigroups there always
exist loops. Consequently any 3-net has loops among its co-ordinate systems.

We can interpret Theorem 1.3.3 of Chapter 1 geometrically as follows:
In the 3-net whose parallel classes are the lines through the points X,Y,W , we
may select the particular lines of the (X) and (Y ) parallel classes which carry
the labels u, v of (G, ·) as the ones to be re-labelled as the identity lines e for the
principal isotope (G,⊗). The point of intersection U of these particular lines will

1The concept of isotopy between quasigroups was introduced in Section 1.3.
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Fig. 8.1.2.

be called unit point. We now re-label the lines of the parallel classes (X) and (Y )
in such a way that if wi is any line of the parallel class (W ) other than the line
WU , then the line of the parallel class (X) through the point wi ∩ Y U will be
labelled wi and the line of the parallel class (Y ) through the point wi ∩XU will
also be labelled wi. In the quasigroup (G,⊗) thus defined, e⊗wi = wi = wi⊗ e.
Moreover, if we now consider how we should re-label the line WU , we see that
it should carry the same label e as XU and Y U . So, the identity element e of
(G,⊗) is the element uv of (G, ·) as in Theorem 1.3.3. (See Figure 8.1.2.)

Let us now show as promised how the two most important properties of a
quasigroup are reflected in the geometrical properties of its associated 3-net.

Before doing so, it is desirable to mention again that, in plane projective
geometry, two distinct types of 3-net arise, affine nets and triangular nets.
In the first, the points A,B,E of l∞ take the roles of X,Y,W and the parallel
classes are the pencils with the collinear vertices A,B,E. For such nets, the
quasigroup is usually written additively. Lines through E have “equations” of
the form y = x+ a. For triangular nets on the other hand, the vertices A,B,O
of a proper triangle are the vertices of three pencils of lines representing the
“parallel classes” (the lines of the pencil with vertex O being no longer parallel
in the geometrical sense), and, for such nets, the associated quasigroup is usually
written multiplicatively. Lines through O have “equations” of the form y = xm.
(See Figure 8.1.3.) If the elements of either the additive or the multiplicative
quasigroup satisfy some algebraic identity, this corresponds to closure of a certain
geometrical configuration.
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Fig. 8.1.3.

Let us consider first the algebraic effect of requiring closure of the Pappus con-
figuration in a triangular or affine 3-net. The assertion that the Pappus configura-
tion has incidence closure is usually called Pappus’ theorem. This may be stated
as follows: if P1, P2, P3 and Q1, Q2, Q3 are two triads of collinear points, then the
triad of points R1, R2, R3, where Ri = PjQk ∩ PkQj(i, j, k = 1, 2, 3; i 6= j 6= k),
are collinear. We have

Theorem 8.1.5 If the parallel classes of the net comprise the lines through the
points X,Y,W and if the lines through X are denoted by x1, x2, ... and the lines
through Y are denoted by y1, y2, ... , then Pappus’ theorem implies the algebraic
relation

x1y2 = x2y1 and x1y3 = x3y1 ⇒ x2y3 = x3y2

for the quasigroup (G, ·), where the xi and yi are the symbols of G and where we
identify the points Pi, Qi, Ri with the points shown in Figure 8.1.4.

Proof. If we label the various lines of the configuration as in Figure 8.1.4,
the result becomes obvious since x1y2 = x2y1 implies that the points P2, Q3 are
collinear with W and x1y3 = x3y1 implies that the points P3, Q2 are collinear
with W . ⊓⊔

To interpret the above result in terms of latin squares, let (G, ·) be a quasi-
group associated with a 3-net in which the Pappus configuration has incidence
closure and let a and a′ be fixed elements of the set G = {a, b1, b2, . . .}. Then,
for bi ∈ G, bia

′ = hi for some hi ∈ G and there exists an element b′i ∈ G such
that ab′i = hi. Thus, to each bi ∈ G, there corresponds another element b′i ∈ G
such that bia

′ = ab′i. Moreover, when bi = a, then b′i = a′ since aa′ = aa′ is
a tautological statement. Therefore, G = {a′, b′1, b′2, . . .}. Then, if the Pappus
configuration closes in the associated net, we shall have bib

′
j = bjb

′
i for i, j = 1,

2, 3, ... ; i 6= j. This follows from the fact that ab′i = bia
′ and ab′j = bja

′ together
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Fig. 8.1.4.

imply bib
′
j = bjb

′
i. Thus, the multiplication table of (G, ·) will be a bordered latin

square of the form shown in Figure 8.1.5.

(·) a′ b′1 b′2 b′3 . . .

a · u v w . . .
b1 u · x y . . .
b2 v x · z . . .
b3 w y z · . . .
· · · · · ·
· · · · · ·

Fig. 8.1.5.

If, instead of a triangular net with vertices X,Y,W (or say A,B,O in the
application to the co-ordinatization of a projective plane discussed later), we
have to deal with an affine net whose parallel classes have collinear vertices A,
B and E, then the whole of the above discussion remains valid if the Pappus
configuration is replaced by the Thomsen configuration [see Thomsen(1930)]
which is illustrated in Figure 8.1.6. This may be regarded as the configuration
obtained from the Pappus configuration when O → E on l∞. The assertion
that the Thomsen configuration has incidence closure is often called the axial
minor theorem of Pappus. This may be stated as follows: If P1, P2, P3, Q2,
Q3 are five given points such that P1, P2, P3 are collinear and if R1 is the point

Chapter 8



261

P2Q3∩P3Q2 and P1R1 meets Q2Q3 at Q1, then the points R1, R2 ≡ P1Q3∩P3Q1

and R3 ≡ P1Q2 ∩ P2Q1 are collinear.

Fig. 8.1.6.

We consider next the algebraic consequence for a triangular net of requiring
closure of the large Reidemeister configuration [see Reidemeister(1929)]. This
asserts that, if the quadrangles P1P2P3P4 and P ′

1P
′
2P

′
3P

′
4 have the joins of ver-

tices P1P2, P3P4, P
′
1P

′
2, P

′
3P

′
4 concurrent in a point B, P2P3, P1P4, P

′
2P

′
3, P

′
1P

′
4

concurrent in a point A and P1P
′
1, P2P

′
2, P3P

′
3, concurrent in a point O, then the

join P4P
′
4 passes through the same point O (see the left-hand diagram in Fig-

ure 8.1.7). In Argunov(1950), this configurational proposition has been denoted
by the symbol mA(11, 11, 12).

We have the following important result.

Theorem 8.1.6 If the lines through the point A have symbols x1, x2, ... , and
the lines through the point B have symbols y1, y2, ... , then closure of the large
Reidemeister configuration implies satisfaction of the algebraic relation

x1y2 = x2y1, x1y4 = x2y3 and x3y2 = x4y1 ⇒ x3y4 = x4y3

in the quasigroup (G, ·) associated with the net whose parallel classes are the
pencils of lines through the points A, B and O.
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Fig. 8.1.7.

Proof. If we label the various lines of the configuration as in the left-hand
diagram of Figure 8.1.7, the result becomes obvious since the first three equalities
in the implication statement respectively imply that the pairs of points P2, P

′
2;

P3, P
′
3; and P1, P

′
1 are collinear with the point O. ⊓⊔

Let us observe that the algebraic relation given in Theorem 8.1.6 is precisely
the quadrangle criterion which was first introduced in Theorem 1.2.1. This ob-
servation makes it clear that our next result is only to be expected.

Theorem 8.1.7 Closure of the large Reidemeister configuration in the triangu-
lar 3-net associated with the quasigroup (G, ·) implies that all loops isotopic to
(G, ·) are groups.

Proof. Let x⊗y = (xσ)·(yτ ), where xσ−1 = xy1 and yτ
−1 = x1y. Then (G,⊗)

is a loop-principal isotope (LP-isotope) of (G, ·) with identity element x1y1 by
Theorem 1.3.3. Let p, q, r be arbitrarily chosen in G. Then, for fixed choices
of x1 and y1, there exist elements x2, y2, x3 and y3 of G such that p = x3y1,
q = x1y2 = x2y1 and r = x1y3. For x2, y2, x3 and y3 so defined, there are elements
x4 and y4 in G such that x1y4 = x2y3 and x4y1 = x3y2. By the hypothesis of
the theorem, we then have x3y4 = x4y3. Also,

(p⊗ q)⊗ r = [(x3y1)⊗ (x1y2)]⊗ r = (x3σ
−1 ⊗ y2τ

−1)⊗ r = (x3y2)⊗ r
= (x4y1)⊗ (x1y3) = x4σ

−1 ⊗ y3τ
−1 = x4y3;

and
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p⊗ (q ⊗ r) = p⊗ [(x2y1)⊗ (x1y3)] = p⊗ (x2σ
−1 ⊗ y3τ

−1) = p⊗ (x2y3)
= (x3y1)⊗ (x1y4) = x3σ

−1 ⊗ y4τ
−1 = x3y4.

Therefore, (p ⊗ q) ⊗ r = p ⊗ (q ⊗ r) and every LP-isotope of (G, ·) is associa-
tive. Since every loop isotopic to (G, ·) is isomorphic to a principal isotope, the
statement of the theorem follows. ⊓⊔

The following result is both interesting and important.

Theorem 8.1.8 If all the loop-principal isotopes of the quasigroup (G, ·) are
commutative, they are all associative too.

Proof. Let a, b, c be arbitrary elements of the quasigroup (G, ·) and let u, v
be fixed elements of (G, ·). Then there exist elements s, t such that a = us and
b = ut. Also, there exists an element w such that c = wv.

Let x⊗ y = (xσ) · (yτ), where xσ−1 = xv and yτ−1 = uy (so that sτ−1 = a
and tτ−1 = b). Then (G,⊗) is an LP-isotope of (G, ·) with identity element uv as
in the previous theorem. Also, let x⊕ y = (xσ) · (yθ), where yθ−1 = wy (whence
vθ−1 = wv = c). Then (G,⊕) is another loop-principal isotope of (G, ·) with
identity element wv = c.

Thence, h⊗ b = (hσ) · (bτ ) = (hσ) · t = h⊕ (tθ−1) = h⊕ (wt) = h⊕ (wσ−1 ⊗
tτ−1) = h⊕ [(wv)⊗ (ut)] = h⊕ (c⊗ b).

In particular, putting h = (c⊗ a), we get
(c⊗ a)⊗ b = (c⊗ a)⊕ (c⊗ b) for arbitrary elements a, b, c ∈ G.

Similarly, h⊗a = (hσ) ·(aτ) = (hσ) ·s = h⊕sθ−1) = h⊕(ws) = h⊕(wσ−1⊗
sτ−1) = h ⊕ [(wv) ⊗ (us)] = h ⊕ (c ⊗ a). In particular, putting h = (c ⊗ b), we
get

(c⊗ b)⊗ a = (c⊗ b)⊕ (c⊗ a)
Since ⊕ is commutative by hypothesis2, we deduce that (c⊗a)⊗b = (c⊗b)⊗a

and thence, since ⊗ also is commutative, (a⊗ c)⊗ b = a⊗ (c⊗ b) and so (G,⊗)
satisfies the associative law, as claimed. ⊓⊔

Corollary 1. Under the hypotheses of the theorem (that is, in a net for which
Pappus’ theorem is satisfied relative to the parallel classes with vertices A,B,O),
every loop isotopic to (G, ·) is an abelian group.

Proof. As every isotope of a quasigroup is isomorphic to a principal isotope
by Theorem 1.3.2, it follows that every loop isotopic to (G, ·) is isomorphic to
an LP-isotope. The latter are commutative and associative, so they are abelian
groups. ⊓⊔

Corollary 2. If Pappus’ theorem holds relative to the vertices A,B,O for all
choices of lines with one line fixed through O, then it holds for all choices of lines
through O.

2If c is kept fixed as here, then w is as before and so the loop (G,⊕) is unaltered.
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Proof. In the argument above, the mapping σ is kept fixed as the LP-isotope
varies. Geometrically, this corresponds to using the same line y = xv through O
throughout. ⊓⊔

In the first corollary to Theorem 8.1.8 above, we showed that, in a trian-
gular net for which Pappus’ theorem is satisfied relative to the parallel classes
with vertices A, B and O, every co-ordinatizing loop is an abelian group. This
means, a fortiori, that every such loop is associative and so the large Reidemeis-
ter configuration closes (since (p⊗q)⊗r = p⊗(q⊗r) implies that x4y3 = x3y4 in
Theorem 8.1.8). Thus, the geometric equivalent of Theorem 8.1.8 is the following:

Theorem 8.1.9 Closure of the Pappus configuration relative to the parallel classes
with vertices A, B and O in a projective plane implies closure of the large Rei-
demeister configuration relative to these same parallel classes.

A wholly geometrical proof of this result is possible. See Hessenburg(1905)
and Klingenberg(1952,1955).

When O → E (a point on AB), our triangular net is replaced by an affine
net and the large Reidemeister configuration is replaced by the small Reidemeis-
ter configuration, denoted by the symbol aA(10; 11, 13) in Argunov(1950)3 and
illustrated in the right-hand diagram of Figure 8.1.7.

In the application to co-ordinatizing a projective plane, closure of the lat-
ter configuration is the geometrical condition that the additive loop of the co-
ordinate system of the projective plane is associative. The geometrical equivalent
of Theorem 8.1.8 for such an affine net is

Theorem 8.1.10 Closure of the Thomsen configuration (or validity of the axial
minor theorem of Pappus) relative to the parallel classes with vertices A, E and
B in a projective plane implies closure of the configuration aA(10; 11, 13) relative
to those same parallel classes.

A purely geometrical proof of this result has been given in Keedwell(1964).

Among the further infinite number of configurational propositions whose al-
gebraic interpretations relative to a given 3-net we might consider, the so-called
Bol configurations [first introduced by Bol(1937)], the central minor theorem
of Pappus and the hexagon configuration have shown themselves to be of most
importance.4

3In Argunov’s notation, which makes some attempt to be systematic, the leading lower
case letter m or a stands for “multiplication” or “addition”, the capital letter A stands for
“associativity” and the three numbers following, say (R;P,L) are respectively the rank, the
number of points, and the number of lines of the configuration. The rank R is defined by the
formula R = 2(P + L)− I, where I is the number of incidences in the unclosed configuration.

4The configuration of Desargues is of crucial importance in the theory of affine and projective
planes but not so much so in the theory of 3-nets.
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However, it would be inappropriate in the present text to discuss the algebraic
implications of each of these configurations in full detail and so we shall content
ourselves with a summary of the most important results5.

The Bol configurations arise from the Reidemeister configurations when P1

lies on P3P
′
3 (see Figure 8.1.8) and are denoted bymA(10; 11, 11) and aA(9; 11, 12)

respectively in Argunov’s notation.

Fig. 8.1.8.

From the manner of the derivation of these configurations from the Reide-
meister configurations, it is immediately clear that the roles of the vertices A,
B, O are no longer interchangeable. (It can be shown that closure of the Pappus
and Reidemeister configurations relative to the parallel classes with vertices A,
B, O taken in any one order implies their closure relative to these parallel classes
taken in any other order. In particular, the following re-labelling of the points
in the left-hand diagram of Figure 8.1.7 shows that the roles of O and B are
interchangeable for the large Reidemeister configuration. Let

P ′
2P2P3P

′
3 → Q1Q2Q3Q4 and P ′

1P1P4P
′
4 → Q′

1Q
′
2Q

′
3Q

′
4.

5For a detailed and comprehensive account of the subject of the inter-relations between
geometrical configurations and quasigroup identities treated from the geometrical point of
view, the reader is referred to Argunov’s paper(1950) and to Pickert’s book(1955) on projective
planes. Among other sources of information are Aczél’s paper(1964) [or (1965)], Belousov(1971)
and chapter 8 of Belousov(1967b).
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This shows us that, when the Reidemeister configuration has incidence closure
with respect to the quadrangles P1P2P3P4 and P ′

1P
′
2P

′
3P

′
4, it also has incidence

closure with respect to the quadrangles Q1Q2Q3Q4 and Q′
1Q

′
2Q

′
3Q

′
4 and, for the

latter quadrangles, the roles of the vertices O and B are interchanged)

If the vertices A, O, B are as in Figure 8.1.8, closure of the configuration
mA(10; 11, 11) implies the condition

x1y2 = x2y1 and x1y4 = x2y3 = x3y2 = x4y1 ⇒ x3y4 = x4y3 (condition B3).

IfO and A are interchanged and the lines are suitably labelled (P2P
′
2, P1P

′
1, P4P

′
4

as x1, x2, x4 and P ′
3P

′
4, P

′
1P

′
2, P3P4, P1P2 as y1, y2, y3, y4 respectively), then clo-

sure of the configuration implies the condition

x1y2 = x2y1, x1y4 = x2y3 and x3y2 = x4y1 ⇒ x2y4 = x4y3 (condition B1).

.
Finally, if O and B are interchanged instead and the lines are suitably la-

belled, then closure of the configuration implies the condition

x1y2 = x2y1, x1y4 = x2y2 and x3y2 = x4y1 ⇒ x3y4 = x4y2 (condition B2).

.
J. Aczél [in (1964) or its English equivalent (1965)] has shown algebraically

that conditions B1 and B2 together imply condition B3 [a result originally proved
in Bol(1937)] and he has also demonstrated the following results:

(1) condition B1 implies that all the LP-isotopes of the quasigroup (G, ·) are
M1-loops: that is, loops with the property y(z · yx) = (y · zy)x for all x, y, z in
the loop;

(2) condition B2 implies that all the LP-isotopes of the quasigroup (G, ·) are
M2-loops: that is, loops with the property (xy · z)y = x(yz · y) for all x, y, z in
the loop;

(3) if a loop is an M1-loop and an M2-loop, then it is a Moufang loop: that
is, it has the property (xy · z)y = x(y · zy);

(4) if a loop is an M1-loop, its associated net satisfies condition B1; if a loop
is an M2-loop, its associated net satisfies condition B2; if a loop is Moufang, its
associated net satisfies all of the conditions B1, B2, B3.

An equivalent set of results has also been given by Bruck(1963b). One impli-
cation of these results is that the multiplicative loop of any co-ordinate system
of a projective plane that is based on the co-ordinatizing points A,B,O,E will
be Moufang if and only if the configuration mA(10; 11, 11) has incidence closure
relative to the “parallel” classes with vertices A,B and O.

The central minor theorem of Pappus is the geometric dual of the axial minor
theorem of Pappus discussed earlier. It is illustrated in the left-hand diagram of
Figure 8.1.9. For a triangular net, its closure implies the condition

x1y2 = x2y1 and x1y3 = x2y2 = x3y1 ⇒ x2y3 = x3y2 (condition H).
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For an affine net, the same condition is implied by the third minor theorem
of Pappus: that is, by closure of the hexagon configuration which arises from the
central minor theorem when O → E on AB. The third minor theorem of Pappus
may be stated as follows: if P1, P2, Q1, Q2 are four points which form a proper
quadrangle and if R3 is the point P1Q2∩P2Q1, S is the point P1P2∩Q1Q2, R3S
intersects P1Q1 at R1 and P2R1∩Q1Q2 ≡ Q3, Q2R1∩P1P2 ≡ P3, then the point
R2 ≡ P1Q3 ∩ P3Q1 lies on R1R3 (see the right-hand diagram of Figure 8.1.9).

Fig. 8.1.9.

The following facts are well-known:
(5) Condition H implies and is implied by the statement that all loops isotopic

to (G, ·) are power associative.
(6) Condition H implies and is implied by the statement that, in each loop

isotopic to (G, ·), each element has a two-sided inverse.
With the aid of the results (5) and (6), it is quite easy to prove the following

important result:

Theorem 8.1.11 If all loops isotopic to the quasigroup (G, ·) are power asso-
ciative, then they are all strongly power associative too. That is, if in any loop
isotope (G,⊗) of (G, ·) we define xn by x0 = e and xn = x ⊗ xn−1 for n > 0,
x−1 by x−1 ⊗ x = e and xn = (x−1)−n for n < 0, then xm ⊗ xn = xm+n for all
integers m and n.

The interested reader will find proofs of all these results in Aczél(1964,1965).
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We may summarize the results of this section by saying that every quasigroup
(G, ·) (that is, every bordered latin square) determines a 3-net of a particular
geometrical type which it co-ordinatizes. Conversely, to each such particular
3-net there corresponds a family of isotopic quasigroups any one of which co-
ordinatizes it and this family includes loops. An identity such as (p ⊗ p) ⊗ p =
p⊗(p⊗p) (validity of power associativity) which is valid in all loops isotopic to the
quasigroup (G, ·) corresponds to closure of a certain geometrical configuration in
the associated 3-net. This leads to the following definition:

Definition. An identity in a loop (G,⊗) is called universal if it is satisfied in
every loop isotopic to (G,⊗).

Belousov and Ryzkov(1966) have given an algorithm for constructing the
closure figure corresponding to a given universal identity and, as an illustration,
have applied it to the Moufang identity x⊗ [y ⊗ (x⊗ z)] = [(x⊗ y)⊗ x]⊗ z.

Some further discussion of connections between quasigroups and geometric
nets will be found in Neumann(1960,1962), Sade(1958b) and Belousov(1967d).

This topic has recently undergone a renascence by the study of 3-nets whose
points and lines are those of a projective plane. See Urzúa(2010), Blokhuis, Ko-
rchmáros and Mazzocca(2011). Korchmáros, Nagy and Pace(2014).

8.2 Orthogonal latin squares, k-nets and introduction of co-ordinates

In the previous Section, we defined a k-net and showed that every 3-net N
defines a class of corresponding latin squares (representing the multiplication
tables of a set of isotopic quasigroups QN ) and that the geometrical properties
of the 3-net are reflected in the algebraic properties of the quasigroups associated
with these squares. Also, in Section 5.2, we showed that each (n+1)-net of order
n (that is to say, each affine plane) defines a set of mutually orthogonal latin
squares and conversely. Both of these results are special cases of the general
statement that each geometric k-net N of order n defines and is defined by a
corresponding set of k − 2 MOLS of order n.

Moreover, the discussion of the previous section makes it evident that the al-
gebraic properties of the quasigroups whose multiplication tables are represented
by these latin squares reflect geometrical properties of the various corresponding
sub-3-nets of the net N .

A slight modification of the argument of Theorem 8.1.2 is all that is necessary
to show that our general statement is true.

In view of its importance, we formulate it as a theorem:

Theorem 8.2.1 Each geometric k-net N of order n defines, and is defined by,
a corresponding set of k − 2 MOLS of order n.

Proof. We designate the various parallel classes of the k-net N by calligraphic
letters A, E ,B1,B2, ... , Bk−2. Let the lines of these parallel classes be labelled as
follows: a1, a2, ... , an are the lines of the class A; e1, e2, ... , en are the lines of
the class E ; bj1, bj2, ... , bjn are the lines of the class Bj . Every point P (h, i) of
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N can then be identified with a set of k numbers (h, i, l1, l2, ... , lk−2) describing
the k lines eh, ai, b1l1 , b2l2 , ... , bk−2 lk−2

with which it is incident, one from each
of the k parallel classes, and a set of k− 2 MOLS can be formed in the following
way: In the jth square, put lj in the (h, i)th place. Each square is latin since, as
h varies with i fixed, so does lj ; and, as i varies with h fixed, so does lj . Each two
squares Lp and Lq are orthogonal: for, if not, we would have two lines belonging
to distinct parallel classes with more than one point in common.

Conversely, from a given set of k − 2 MOLS, we may construct a k-net N .
We define a set of n2 points (h, i), h = 1, 2, ... , n; i = 1, 2, ... , n; where the
point (h, i) is to be identified with the k-tuple of numbers (h, i, l1, l2, ... , lk−2),
lj being the entry in the hth row and ith column of the jth latin square Lj . We
form kn lines bjl, j = −1, 0, 1, 2, ... , k− 2; l = 1, 2, ... , n; where bjl is the set of
all points whose (j + 2)th entry is l and b−1l ≡ el, b0l ≡ al. Thus, we obtain k
sets of n parallel lines. (Two lines are parallel if they have no point in common.)
Also, from the orthogonality of the latin squares, it follows that any two lines
from distinct parallel classes intersect in one and only one point, so we have a
k-net. ⊓⊔

Bruck(1951) has used the representation of a set of k− 2 MOLS by means of
a k-net to obtain an interesting criterion for such a set of squares to have a com-
mon transversal and hence has obtained a simple necessary (but not sufficient)
condition for such a set of squares to be extendible to a larger set (of the same
order). In a subsequent paper, Bruck(1963a), and again using the net represen-
tation, he has obtained a sufficient condition in terms of the relative sizes of k
and n for a set of MOLS to be extendible to a complete set. We gave a detailed
account of these results in Chapter 9 of [DK1]. However, Bruck’s results have
more recently been improved by Metsch(1991). See the next section.

In his well-known paper M.Hall(1943), that author has shown that co-ordinates
may be introduced into an arbitrary projective plane (or k-net) in the following
way:

We select any two points A,B in the given projective plane π. If from π we
remove the line l∞ joining A,B and the points on l∞, the remaining plane π∗

is an affine plane. We use A and B as centres of perspectivities to introduce co-
ordinates for the points of π∗. No ambiguity will arise if, as we shall sometimes
find convenient, we speak of π and π∗ as the same plane as long as l∞ is fixed.

Let the lines of the pencil through A in π∗ be denoted by x = x0, x = x1, . . . ,
x = xr−1, where r is their cardinal number and x0, x1, . . . , xr−1 are r different
symbols. Similarly, denote the lines of the pencil through B by y = y0, y = y1,
. . . , y = yr−1. (The cardinal number of the y’s is necessarily the same as that
of the x’s.) Through every point P of π∗, there is exactly one line x = xi and
one line y = yj . Denote P by (xi, yj). On an arbitrary line L of π∗, not through
A or B, there are points (xi, yj) where each x and each y occurs exactly once.
Henceforward, suppose that the symbols x0, x1, . . . , xr−1 are the same as y0, y1,
. . . , yr−1, though not necessarily in the same order. Then, an arbitrary line L,
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not through A or B, is associated with the permutation

(

. . . xi . . .

. . . yi . . .

)

, where the

(xi, yi) are the points of L. This expresses the fact that L determines a one-to-
one correspondence between the lines of the pencil through A and the lines of

the pencil through B. Without confusion we may write L =

(

. . . xi . . .

. . . yi . . .

)

since

distinct lines contain at most one point in common and hence are associated
with distinct permutations.

It is evident that the same method of co-ordinatization may be used for a
k-net of order r.

We now choose two particular points O and I which are joined by a line
but are not collinear with A or B and assign them the co-ordinates (0, 0) and
(1, 1) respectively. (In the case of a projective plane, every two points are joined
by a line and so the choice of O and I is entirely arbitrary.) This assignment
of co-ordinates is equivalent to assigning the labels 0, 1 to two of the symbols
x0, x1, . . . , xr−1, say x0 = 0, x1 = 1.

Let OI meet AB at E and let the remaining points of AB be denoted by
B2, B3, . . . , Bk−2, k ≤ r + 1. If the line OBm meets the line AI at the point
(1,m), denote the point Bm by the symbol (m). In particular, denote the point
E(≡ B1) by the symbol (1). We are now able to define operations (+) and
(⋆) on the symbols x0, x1, . . . , xr−1 by means of which the lines of the pencils
with vertices E and O may be assigned equations. Each line through E has a

permutation representation of the form

(

0 . . . xi . . .
a . . . yi . . .

)

. We define xi+a = yi for

i = 0, 1, 2, . . . , r − 1 and say that the line has equation y = x + a. This defines
the result of the operation (+) on every ordered pair of the r symbols. Each line

through O has a permutation representation of the form

(

0 1 . . . xi . . .
0 m . . . yi . . .

)

. We

define xi ⋆ m = yi for i = 0, 1, 2, . . . , r − 1 and say that the line has equation
y = x ⋆m. This defines the result of the operation (⋆) for all choices of x and for
k − 1 finite values of m.

We can provide equations for the remaining lines of the plane with the aid of a
ternary operation defined on the set of symbols x0, x1, . . . , xr−1 in the following
way. If x,m, a are any three of the symbols, but with m restricted to k− 1 finite
values in the case of a k-net, we define T (x,m, a) = y, where y is the second
co-ordinate of the point on the line joining the points (m) and (0, a) whose first
co-ordinate is x. We can then say that y = T (x,m, a) is the “equation” of the line
joining the points (m) and (0, a). The connection between this ternary operation
on the symbols x0, x1, . . . , xr−1 and the binary operations (+) and (⋆) previously
introduced is given by the relations a + b = T (a, 1, b) and a ⋆ b = T (a, b, 0). We
may also observe that, both in the case of a complete projective plane and in
the case of a k-net with k < r+ 1, the lines which pass through the point E are
those which are represented in the permutation representation by permutations
which displace all symbols and by the identity permutation. We shall denote this
subset of the set S of permutations representing the lines by the symbol S̄.
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Since each finite projective plane of order n defines, and is defined by, a com-
plete set of n−1 mutually orthogonal latin squares of order n (see Theorem 5.2.2),
it is evident that the answer to the question “How many non-equivalent complete
sets of mutually orthogonal latin squares of order n exist?” is closely related to
the question6 “How many geometrically distinct projective planes of order n ex-
ist?”. We have already shown that there exists a Galois or desarguesian7 plane of
every positive integral order n that is a power of a prime number (Theorem 5.2.3)
and we wish now to demonstrate the existence of non-desarguesian planes.

The simplest type of non-desarguesian projective planes to describe are the
so-called translation planes.

We may specify such a plane by the nature of its co-ordinate system. We sup-
pose co-ordinates to have been introduced into the plane in the manner described
above, so that there is a special line AB = l∞ whose points are represented by
symbols (m), there are two special points (0,0) and (1,1), and so that all other
points are represented by co-ordinate pairs (x, y), where m,x, y belong to a co-
ordinate set Σ. Also lines through A have equations of the type x = xr, lines
through B have equations of the form y = yr and all other lines have equations
of the form y = T (x,m, a), where T is a ternary operation on the set Σ. Further,
by means of T , binary operations (+) and (⋆) may be defined on Σ. If then the
algebraic system (Σ,+, ⋆) has the properties (i) (Σ,+) is an abelian group with
0 as its identity element, (ii) (Σ − 0, ⋆) is a loop with 1 as its identity element,
(iii) (a + b) ⋆ m = (a ⋆ m) + (b ⋆ m) for all a, b,m in Σ, and (iv) if r 6= s, the
equation x ⋆ r = (x ⋆ s) + t has a unique solution x in Σ when r, s, t are in Σ,
we say that it is a VeblenWedderburn system or a right quasifield. If, further, the
ternary operation T on Σ satisfies the condition T (a,m, b) = a ⋆ m+ b, then we
may easily verify as below that the axioms for a projective plane are satisfied
and we call the resulting plane a translation plane. (It is easy to check that the
condition T (a,m, b) = a ⋆ m + b is consistent with the relations describing the
binary operations (+) and (⋆) in terms of T previously given.)

Proof. In the first place, we have to check that there is a unique line joining
two given points (xr, yr) and (xs, ys). If xr = xs, the required unique line is that
with equation x = xr. Tf yr = ys the required line is y = ys. Jf xr 6= xs and
yr 6= ys, the required line is that with equation y = x ⋆ m + b where m and b
satisfy the equations xr ⋆ m + b = yr and xs ⋆ m + b = ys: that is, m is the
unique solution of the equation (xr −xs) ⋆m = yr − ys and b is then determined
uniquely by the requirement that xr ⋆m+ b = yr. In the second place, there is a
unique point common to each two lines. The lines x = xr, x = xs have the point
A in common. Similarly, the lines y = yr, y = ys have the point B in common.
The lines x = xr, y = ys have the point (xr, ys) in common. The lines x = xr

6The questions are not the same because different choices of l∞ in a particular plane may
yield inequivalent sets of latin squares. See later in this section.

7A Galois plane is called a desarguesian plane because in such a plane the well-known
configurational theorem of Desargues concerning perspective triangles is universally valid. (It
is conjectured that every plane of prime order is desarguesian.)
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and y = x ⋆ m+ b have the point (xr, xr ⋆ m+ b) in common. The lines y = ys,
y = x⋆m+ b have the point (xs, ys) in common, where xs is the unique solution
of the equation xs ⋆ m = ys − b.

Finally, the lines y = x⋆m1+b1 and y = x⋆m2+b2 intersect in the point whose
x co-ordinate is the unique solution of the equation x ⋆ m1 = x ⋆ m2 + (b2 − b1)
and whose y co-ordinate can then be obtained from either one of the equations
of the two lines. ⊓⊔

It is easy to see that, in particular, every Galois field is a right quasifield.
Moreover, in the case when the right quasifield is a Galois field, homogeneous co-
ordinates can be introduced in a manner analogous to that used in elementary
geometry and it is then quite simple to show that the plane is isomorphic to
the Galois plane of the same order. For the details, the reader is referred to
books on projective planes. [See, for example, Pickert(1955).] We deduce that
the existence of finite translation planes which are geometrically distinct from
the Galois planes is dependent upon the existence of finite right quasifields which
are not fields.

M.Hall(1943) gave one method for constructing such quasifields but many
methods for obtaining translation planes are now known and many papers on
the subject have been published.

When the complete set of mutually orthogonal latin squares which are defined
by a desarguesian plane, by a translation plane, or by the dual of a translation
plane, are constructed and put into standardized form (see Section 5.1), it is
found that the rows of any one square Lk of the set are the same as those of
any other square Lh of the set, except that they occur in a different order. That
this is necessarily so was proved for the case of desarguesian planes by Bose and
Nair(1941). However, there exist other types of projective plane for which the
squares do not have this property as the same authors pointed out, among them
being a class of planes constructed by D.R.Hughes(1957) and called the Hughes
planes.8

From the point of view of the theory of latin squares it is therefore important
to have a criterion for distinguishing the two cases. Such a necessary and sufficient
condition has been given by Hughes himself [see Hughes(1955)], who has shown
that linearity of the ternary operation is the required criterion, and in a more
geometrical form by the present author, who has given a direct proof of the
equivalent geometrical criterion: namely,

Theorem 8.2.2 A necessary and sufficient condition that, in a standardized
complete set of mutually orthogonal latin squares, the rows of the square Lk
be the same as those of the square Lh, except that they occur in a different
order is that the squares represent the incidence structure of a projective plane

8In fact, the Hughes plane of order 9 was first constructed by Veblen and Wedderburn(1907).
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in which the first minor theorem of Desargues9holds affinely with E as a vertex of
perspective and A,Bh, Bk as meets of corresponding sides of the two triangles.10

(The notation is that used earlier in this section.)

In Figure 8.4.3 of [DK1], a complete set of MOLS of order 9 was displayed
[taken from Paige andWexler(1953)] which it was claimed represented the Hughes
plane of that order but in fact they represent the dual of the unique translation
plane of order 9 as has been proved by Owens(1992). For more details of how
this came to light, see Section 6 of Chapter 11 in [DK2]. Since that book was
published, Owens and Preece(1995,1997) have carried out a complete analysis
of the possible non-equivalent sets11 of MOLS of order 9 and, for each, which
plane it represents. They found that there are 19 non-equivalent sets. We also
draw the reader’s attention to the facts that it is now known that there are just
four different planes of order 9 (namely, the Desarguesian plane, one translation
plane, its dual, and the Hughes plane) and that no projective plane of order 10
exists. It has not, so far as the author is aware been decided whether a triple
of MOLS of order 10 exists though recent work, in particular that of McKay,
Meynert and Myrvold(2007), makes it extremely unlikely.

For more recent work on “Latin Squares and Geometry” which supercedes
and includes much of that in [DK1] other than that included here, the reader is
recommended to read Chapter 11 of [DK2].

We end this section by re-presenting a problem mentioned in [DK1] but which
remains unsolved.

A finite projective plane Π is said to be with characteristic h when a positive
integer h exists such that, in any co-ordinatization of the plane by means of a Hall
ternary ring (described earlier in this section), all elements of the loop formed by
the co-ordinate symbols under the operation (+) have the same order h. In the
case when h is a prime this is equivalent to requiring that each proper quadrangle
(set of four points no three of which are collinear) of the plane generates a
subplane of order h. Thus, for example, every desarguesian plane of order pn, p
prime, has characteristic p.

Two questions arise:
Firstly, as to what can be said about the orders of such planes and, secondly,
whether non-desarguesian planes with characteristic can exist. As regards the
case when h = 2, it has been shown by Gleason(1956) that every finite projective
plane of characteristic two is desarguesian and consequently that it has order

9The first minor theorem of Desargues is the special case of Desargues’ theorem in which
the vertex of perspectivity of the two triangles lies on the axis of perspectivity. It is said to be
satisfied affinely when this axis is the special line l∞.

10Theorem 6.3 on page 368 of [DK2] is a strengthened form of this theorem due to
Owens(1992).

11Two complete sets of latin squares are said to be equivalent if one set can be obtained from
the other by a combination of the following operations: (i) simultaneously permuting the rows
of all the squares; (ii) simultaneously permuting the columns of all the squares; and (iii) (for
each independently) permuting the symbols of any of the squares.
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equal to a power of two. For the case h = 3, it has been shown in Keedwell(1963)
that, under an additional restriction, the order must be a power of three. More
recently, the same author has shown that, if h = p, p prime, then, under the
same restriction, the order of the plane is a power of p. [See Keedwell(1971).]
In the author’s attempt to deal with the second question for the case h = 3, it
proved effective to use the latin square representation [see Keedwell(1965)] and
two orthogonal latin squares suitable for the construction of a non-desarguesian
projective plane in which affine quadrangles would generate subplanes of order
three were quite easily constructed. However, the question as to the existence or
non-existence of such planes remains unanswered to this day.

8.3 Latin squares and graphs

There are several ways of representing a latin square as an edge (or vertex)
coloured graph. See Keedwell(1996)12 for three of these. See also Shee(1970).
Such representations enable latin square problems to be translated into graph
theory questions or vice versa. One which has proved particulaly useful is as
follows:

Let L be a latin square of order n. We denote the complete (undirected)
bipartite graph with 2n vertices by Kn,n. Let one partite set {c1, c2, . . . , cn}
denote the columns of L and let the second partite set {s1, s2, . . . , sn} denote
the symbols. If, in row ri, symbol sk occurs in column cj , colour the edge [cj , sk]
with colour ri. This defines a proper n-colouring of the edges of Kn,n in which
the edges coloured with a particular colour form a 1-factor of Kn,n.

If we regard L as a collection of n2 triples (see page 14), we easily see that
the roles of row, column and symbol can be permuted in this representation and
so each latin square L defines six ways of colouring Kn,n of which up to three
may be distinct.

We may use this representation to re-interpret the problem of finding par-
tial latin squares which are uniquely completable to L (see Section 3.2) into
that of finding partial edge-colourings of Kn,n which can be completed uniquely
to a proper colouring of all the edges of Kn,n. For more details of this and of
the general concepts of uniquely completable and critical partial colourings of
the vertices or edges of a graph, see Keedwell(1994,1996); also Mahmoodian,
Naserasr and Zaker(1997), who re-introduced the same idea without acknowl-
edgement, Mahmoodian and Mahdian(1997) and Hajiabolhassan, Mehrabadi,
Tusserkani and Zaker(1999), Burgess and Keedwell(2001),

Harary(1960) has pointed out that, in the above representation, a 1-factor of
Kn,n whose edges have distinct colours corresponds to existence of a transversal
in L. So, if no such 1-factor exists, L is without transversals and is consequently
a bachelor square as defined in Section 9.1.

12Cayley(1878b) was the first to propose a way of representing a group both graphically and
as a latin square.
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The above representation has also been used by Wanless in his investigation
of so-called atomic latin squares (see Section 9.4). For that purpose, he needed 1-
factorizations of Kn,n with the property that the union of every pair of 1-factors
defines a Hamiltonian circuit of Kn,n. Such 1-factorizations are called perfect.

The similar property for 1-factorizations of the complete directed and undi-
rected graphs K∗

n and Kn is closely connected to the existence of latin squares
and rectangles which are row complete. (See Section 2.6 for the definition.) We
explained in Section 3.1 the connections between row complete latin rectangles
and decompositions of Kn into Hamiltonian paths and cycles and also decom-
positions into Eulerian cycles. There are analogous connections between latin
squares which are row complete and decompositions of K∗

n. We have:

Theorem 8.3.1 If a row complete latin square of order n exists, then (i) the
complete directed graph on n vertices can be separated into disjoint Hamiltonian
paths, and (ii) the complete directed graph on n+1 vertices can be separated into
n disjoint Hamiltonian circuits.

Proof. For (i), we associate a directed graph with the given row complete
latin square in such a way that the vertices of the graph correspond to the n
distinct elements of the latin square and that an edge of the graph directed from
the vertex x to the vertex y exists when and only when the elements x and y
appear as an ordered pair of adjacent elements in some row of the latin square.
Then, because the latin square is row complete, the graph obtained will be the
complete directed graph on n vertices. Moreover, it is immediate to see that the
rows of the latin square define n disjoint Hamiltonian paths into which the graph
can be decomposed.

For (ii) we adjoin an extra column to the given row complete latin square
L, the elements of which are equal but distinct from the n elements of the latin
square. We associate a directed graph with the n × (n + 1) matrix so formed
in the same way as before but this time treating each row cyclically so that if
the rth row ends with the element x and begins with the element y then the
associated graph has an edge directed from the vertex labelled x to the vertex
labelled y. Because each element of L appears just once in its last column and
just once in its first column, the directed graph on n+1 vertices which we obtain
is complete. Also, the rows of the n × (n + 1) matrix define n disjoint circuits
into which it can be decomposed. ⊓⊔

The relationship described in Theorem 8.3.1(i) has been pointed out in Dénes
and Török(1970) and also in Mendelsohn(1968). That described in Theorem 8.3.1
(ii) does not seem to have been noticed until it was mentioned in [DK1].

Illustrative examples of these decompositions are given in Figure 8.3.1 and
Figure 8.3.2. Figure 8.3.1 shows the decomposition of the complete directed
graph with four vertices into disjoint Hamiltonian paths with the aid of the
4× 4 complete latin square displayed earlier in Figure 2.6.1. Figure 8.3.2 shows
the decomposition of the complete directed graph with five vertices into disjoint
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circuits of length five with the aid of the 4 × 5 matrix obtained by augmenting
this same 4× 4 complete latin square in the way described in Theorem 8.3.1.

Fig. 8.3.1.

Fig. 8.3.2.

By virtue of Theorem 2.6.1, decompositions of the above kind always exist
when n is even. Also, as noted in Section 3.1, when the decomposition is effected
with the aid of a row complete latin square formed in the manner described in
Theorem 2.6.1, one half of the paths obtained are the same as the other half but
described in the opposite direction.

K.O. Strauss posed the question whether a complete directed graph with an
odd number n of vertices can likewise be separated into n disjoint Hamiltonian
paths. By virtue of the fact that row complete latin squares of every composite
order exist [see Higham(1998) and Section 2.6], the question is answered in the
affirmative for non-prime odd orders but it remains unanswered for prime values
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of n.

Another graph problem of a similar kind to that just discussed and which
has been shown by Kotzig to have connections with a particular type of latin
square concerns the more general problem of the decomposition of a complete
undirected graph into a set of disjoint circuits of arbitrary lengths.

In Kotzig(1970), that author gave the name P -groupoid (partition groupoid)
to a groupoid (V, ·) which has the following properties: (i) a ·a = a for all a ∈ V ;
(ii) a 6= b implies a 6= a · b 6= b for all a, b ∈ V ; (iii) a · b = c implies and is implied
by c · b = a for all a, b, c ∈ V .

Fig. 8.3.3.

He showed that there exists a one-to-one correspondence between P -groupoids
of n elements and decompositions of complete undirected graphs of n vertices
into disjoint circuits. This correspondence is established by labelling the vertices
of the graph with the elements of the P -groupoid and prescribing that the edges
[a, b] and [b, c] shall belong to the same closed path of the graph if and only if
a · b = c, a 6= b. We illustrate this relationship in Figure 8.3.3 and from it we
easily deduce:

Theorem 8.3.2 In any P -groupoid (V, ·) we have (i) the number of elements is
necessarily odd, and (ii) the equation x · b = c is uniquely soluble for x.

Proof. The result (i) is deduced by using the correspondence between P -
groupoids and graphs just described. Since for a complete undirected graph which
separates into disjoint circuits the number of edges which pass through each
vertex must clearly be even, any such complete undirected graph must have an
odd number of vertices all together. This is because each vertex has to be joined
to an even number of others. The number of elements of a P -groupoid is equal
to the number of vertices in its associated graph.

The result (ii) is a consequence of the definition of a groupoid and the fact
that x · b = c implies c · b = x. ⊓⊔.
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Corollary. The multiplication table of a P-groupoid is a column latin square.

(See Section 3.1 for the definition of the latter concept.)
The example given in Figure 8.3.3 illustrates the fact that there exist P -

groupoids which are not quasigroups. This observation leads us to make the
following definition:

Definition. A P -groupoid which is also a quasigroup will be called a P -quasigroup.

Theorem 8.3.3 Let (V, ·) be a P -quasigroup and let a groupoid (V, ⋆) be defined
by the statement that a · (a ⋆ b) = b holds for all a, b ∈ V . Then (V, ⋆) is an
idempotent and commutative quasigroup. Moreover, with any given idempotent
commutative quasigroup (V, ⋆) there is associated a P -quasigroup (V, ·) related to
(V, ⋆) by the correspondence a · b = c⇔ a ⋆ c = b.

Proof. In a P -quasigroup, the equation a · x = b is uniquely soluble for x,
so the binary operation (⋆) is well-defined. Also, a · x = b implies b · x = a so
b⋆a = a⋆b; that is (V, ⋆) is commutative. The equation a ·x = a has the solution
x = a, so a ⋆ a = a and (V, ⋆) is idempotent. If the equation a ⋆ y = c or the
equation y ⋆ a = c had two solutions for y, the groupoid property of (V, ·) would
be contradicted13. Hence, (V, ⋆) is a quasigroup.

The second statement of the theorem may be justified similarly by defining
the operation (·) in terms of the operation (⋆) by the statement that a⋆(a ·b) = b
for all a, b ∈ V . ⊓⊔

The multiplication table of the quasigroup (V, ⋆) is an idempotent symmetric
latin square. Thus, a consequence of Theorem 8.3.2 and Theorem 8.3.3 above is
another proof that idempotent symmetric latin squares exist only for odd orders
n, a result which we may contrast with the fact that unipotent symmetric latin
squares exist only when n is even. (See also Theorem 1.5.4 and Theorem 2.1.1.)

It also follows from Theorem 8.3.3 that each idempotent symmetric latin
square of (necessarily odd) order n defines a P -quasigroup of order n and hence
a decomposition of the complete undirected graph on n vertices into disjoint
circuits.

Kotzig has pointed out that each idempotent symmetric latin square of order
n also defines a partition of the complete undirected graph on n vertices into
n nearly linear factors. By a nearly linear factor is meant a set F of (n − 1)/2
edges such that each vertex of the graph is incident with at most one edge of F .
It is immediately clear that exactly one vertex of the graph is isolated relative
to a given nearly linear factor F .

As an illustration of this concept, let us point out that the three edges [1,
2], [3, 7], [4, 6] of the complete undirected graph on seven vertices 1, 2, . . . , 7
form a nearly linear factor F5. Likewise, the three edges [1, 3], [4, 7], [5, 6] form
another nearly linear factor F6 of the same graph. (See also Figure 8.3.4.) We
shall formulate this result of Kotzig’s as a theorem:

13a ⋆ y1 = c and a ⋆ y2 = c ⇒ a · c = yi for i = 1, 2.
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Theorem 8.3.4 To each idempotent symmetric latin square of order n there
corresponds a partition of the complete undirected graph on n vertices into n
nearly linear factors, and conversely.

Proof. The correspondence is established as follows. Let k be a fixed element
of the idempotent commutative quasigroup (V, ⋆) defined by the given symmetric
latin square. Then there exist (n − 1)/2 unordered pairs (ai, bi) of elements
of V such that ai ⋆ bi = k(= bi ⋆ ai). These (n − 1)/2 pairs define the (n −
1)/2 edges [ai, bi] of a nearly linear factor of the complete undirected graph Kn

whose n vertices are labelled by the elements of V . The truth of this statement
follows immediately from the fact that (V, ⋆) is an idempotent and commutative
quasigroup and that the element k consequently occurs (n− 1)/2 times in that
part of its multiplication table which lies above the main left-to-right diagonal
and at most once in each row and at most once in each column.

The converse is established by defining a quasigroup (V, ⋆) by means of a
given decomposition of Kn into nearly linear factors according to the following
rules: (i) if [ai, bi] is an edge of the nearly linear factor whose isolated vertex is
labelled k, then ai ⋆ bi = k = bi ⋆ ai and (ii) for each symbol k ∈ V , k ⋆ k = k. ⊓⊔

Kotzig has asserted further that if n = 2k−1 and either n or k is prime then
there exists a partition of the corresponding complete graph on n vertices into
n nearly linear factors with the property that the union of every two of them
is a Hamiltonian path of the graph and has suggested that a partition of the
same kind may exist for all odd values of n. [See Kotzig(1970).] For more recent
results, see the comment on Problem 9.1 of [DK1] later on in this book.

As an example of the above situation we give in Figure 8.3.4 an idempotent
and commutative quasigroup (V, ⋆) of order 7 which defines a decomposition of
the complete graph K7 on seven vertices into nearly linear factors whose unions
in pairs are Hamiltonian paths of K7.

Fig. 8.3.4.

In Figure 8.3.5 we give the P -quasigroup (V, ·) which defines and is defined

 Connections with geometry and graph theory



280

by the idempotent commutative quasigroup (V, ⋆) of Figure 8.3.4 and show the
associated partitions of the graph K7 into circuits.

Fig. 8.3.5.

It is also easy to see that each idempotent symmetric latin square (and
consequently each corresponding P -quasigroup) of order 2m − 1 defines a 1-
factorization of K2m. Let an additional vertex 0 be adjoined to K2m−1 in The-
orem 8.3.4. Then each nearly linear factor Fh of K2m−1 defines a 1-factor of
K2m whose additional edge is [0, h]. However, as shown by a counter-example in
Keedwell(1978), the correspondence between P -quasigroups of order 2m−1 and
1-factorizations of K2m is certainly not always one-to-one.

We showed in Theorem 6.4.1 that a Room design of order 2m is equivalent
to a pair of perpendicular commutative idempotent quasigroups each of order
2m− 1. It follows that such a design is also equivalent to a pair of perpendicular
P -quasigroups where

Definition. Two P -quasigroups (Q,⊙) and (Q,⊗) are perpendicular if (i) for
a, x, y ∈ Q, the equations x ⊙ a = y and x ⊗ a = y both hold if and only if
x = y = a; and (ii) for a, b ∈ Q, there is at most one pair of elements x, y ∈ Q
such that x⊙ a = y and x⊗ b = y.

In fact, given a Room square R of side 2m − 1, we may define the (not
necessarily unique) associated pair of perpendicular P -quasigroups of order 2m−
1 directly as follows: We may assume that the Room square is defined on the
symbols {∞, 1, 2, . . . , 2m − 1}. We first permute the rows and subsequently the
columns of R so as to obtain it in standard form R⋆ with the pair (∞, i) in the
cell (i, i). If (b1, b

′
1), (b2, b

′
2), . . . , (bm−1, b

′
m−1) are the pairs distinct from (∞, i)

which are to be found in the ith row [column] of R⋆ then the ith column in the
multiplication table of the P -quasigroup (Q,⊙) [(Q,⊗)] which is associated with
the rows [columns] of R⋆ is obtained by applying the permutation whose cycle
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form is (i)(b1, b
′
1)(b2, b

′
2) . . . (bm−1, b

′
m−1) to the column border of (Q,⊙) [(Q,⊗)],

where Q is the set {1, 2, . . . , 2m− 1}.
In Keedwell(1978), the set of edge-disjoint circuits into which a P -quasigroup

of order 2m − 1 separates the edges of the complete graph K2m−1 were said to
form a P -circuit design and the separate circuits were called linked blocks of that
design. The P -circuit design was called uniform if all its blocks were of the same
size and none contained repeated vertices (elements).

Concepts of perpendicularity, skew-perpendicularity, and of being cyclic were
introduced and it was shown that P -quasigroups with these special properties
could be used to construct Room squares with the corresponding properties.

Steiner triple systems provide particular examples of uniform P -circuit de-
signs and so the above results generalize Theorem 6.4.4.

In his paper of 1970, Kotzig raised the further question: “For what orders
n does a P -quasigroup exist which defines a partition of G into an Eulerian
circuit?”

Subsequently, the present author proved in Keedwell(1975) that P -quasigroups
of the above kind exist whenever n is an integer of the form 4r + 3 such that
r 6≡ 2 mod 5 and r 6≡ 1 mod 6. They also exist when n = 4r + 3 and 0 ≤ r ≤ 7.
In a subsequent paper with Hilton, the two authors together proved that such
P -quasigroups exist for all n = 4r + 3 except possibly when r ≡ 127 mod 595
and they also showed existence for many values of n = 4r + 1. [See Hilton and
Keedwell(1976).] The problem was solved completely by Korovima(1984) who
showed existence for all odd n 6= 5.

Some further connections between special kinds of latin square, P -quasigroups
and graph decompositions are mentioned in Keedwell(1976a,1976b,1982) and in
[DK1], pages 308-311.

As already mentioned earlier in this chapter, Bruck(1963a) used the concepts
of both k-nets and graphs to obtain conditions under which a given set of MOLS
may be extended to a larger set. His main result was as follows:

Let S be a set of k− 2 MOLS of order n and let d = (n− 1)− (k− 2), which
is the deficiency from being a complete set. Then, (1) whenever n > (d− 1)2, if
S can be completed to a complete set of MOLS at all, it can be so completed
in only one way; (2) a sufficient (but not necessary) condition that such a set
S can be augmented to a complete set of MOLS in at least one way is that
n > 1

2(d− 1)4 + (d− 1)3 + (d− 1)2 + 3
2 (d− 1).

However, more recently this result has been improved and superceded by one
due to Metsch(1991):

Let S be a set of k − 2 MOLS of order n. and let d = n − k + 1, be the
deficiency from being a complete set as before. Then, S can be extended to a
complete set if n > 8

3
d3 − 6d2 + 8

3
d+ 4

3
.

In Jungnickel(1996), that author gave a survey of results on this topic so
we refer the reader to that paper for further information. However, a paper by
Bose(1963) introducing the concept of a partial geometry (or partial geometric
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net) and relating it to strongly regular graphs deserves special mention because
it generalizes some of the results of Bruck mentioned above.

We end this section by mentioning a connection between latin squares and
graphs which is somewhat indirect. In a series of papers, Choudhuri(1948,1949,1957),
that author has devised a means of defining an ordering relation on any quasi-
group Q and with the aid of this definition has associated a directed graph Γ
with Q. The properties of Γ serve to illuminate those of Q.
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Latin squares with particular properties

In Section 2.1, we discussed quasigroups of some special types and their asso-
ciated latin squares. Also, in Section 2.6, we introduced complete latin squares.
Here, we discuss latin squares with various other special properties most of which
had not been thought of when [DK1] was published.

9.1 Bachelor squares

The name bachelor square for a latin square which has no orthogonal mate
was introduced by Van Rees(1990) who drew attention to Mann’s theorem of
1944 on this subject (which applies to squares of orders 4m+ 1 and 4m+ 2 [see
Theorem 5.1.6]) and who proved for the case of latin squares of order 4m + 3
that (i) such a square can be in a set of at most 2m + 2 MOLS if it contains a
latin subsquare of order 2m + 1; and (ii) that there exist latin squares of such
orders which cannot be in a set of three MOLS. Statement (i) had earlier been
proved by Drake(1977). See Theorem 5.2 of Chapter 2 in [DK2].

Clearly, a latin square which has no transversals is a bachelor square so,
in particular, cyclic squares of even order and latin squares of q-step type are
bachelor squares. (See Section 4.5.)

It follows as a corollary to Mann’s theorem that if a latin square L is of order
4m+2 and contains a latin subsquare of order 2m+1 or if it is of order 4m+1
and contains a latin subsquare of order 2m then L is a bachelor square. However,
this leaves completely open the question for which orders n ≡ 3 mod 4 (other
than 3 itself) bachelor squares exist.

The general question “For which orders do bachelor squares exist?” was solved
almost simultaneously by Wanless and Webb(2006) and by A.B.Evans(2006)
using a similar method: namely, to modify a certain latin square by exchanging
the elements in particular cells. However, the proof given by the first two authors
has the virtue of elegance and of being applicable to latin squares of all orders,
not just those of form 4m+3. These authors showed that, for every order n > 3,
there exists a latin square which contains a cell that is not included in any
transversal. We gave their proof in Section 3.5. Since a latin square which has an
orthogonal mate has a decomposition into disjoint transversals of which precisely
one must pass through every cell, it follows at once that bachelor squares exist
of every order except three.

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50009-X
Copyright © 2015 A. Donald Keedwell. Published by Elsevier B.V. All rights reserved.
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9.2 Homogeneous latin squares

Definition. A latin square is said to be h-homogeneous if each of its cells lies
in exactly h intercalates.

For example, a cyclic latin square of order 4 is 1-homogeneous whereas a latin
square of order 4 based on Klein’s Viergruppe Z2 × Z2 is 3-homogeneous.

A latin square which is 0-homogeneous has also been called an N2-square.
(In this notation, a latin square which has no latin subsquares of any size is an
N∞-square. We discuss these in Section 9.4.) By combining the results obtained
in a series of papers, it was proved in the late 1970s that N2-squares exist for all
orders n except n = 2 and 4. Details of the proof are given on pages 113-116 of
[DK2].

To return to h-homogeneous latin squares, it is easy to see that 1-homogeneous
latin squares exist only of even orders and that (n−2)-homogeneous latin squares
of order n do not exist since any such square must in fact be (n−1)-homogeneous.
Also, (n − 1)-homogeneous latin squares exist if and only if n is a power of 2.
See Heinrich and Wallis(1981). It was shown in Hobbs, Kotzig and Zacs(1982)
that (n− 3)-homogeneous latin squares exist if and only if n ∈ {3, 4, 6, 8, 12, 16}.
Killgrove(2001) called a 1-homogeneous latin square two-tiled and he proved:

Killgrove’s lemma. A group-based latin square is two-tiled if and only if the
group has a unique element of order two.

Proof. Suppose without loss of generality that the latin square is in reduced
form and is bordered by its own first row and column so as to form the Cayley
table of a group.

If the square is 2-tiled, the identity element e in the cell (e, e) belongs to
a unique intercalate whose remaining cells are (h, h), (e, h) and (h, e) for some
element h. But then h2 = e, since the cell (h, h) must contain e. Thus, the group
has an element of order two. If there were a second element k of order two, then
the cells (e, e), (k, k), (e, k) and (k, e) would form an intercalate overlapping the
first, which is a contradiction. Therefore, the element h of order two must be
unique.

Conversely, suppose that there is a unique element h of order two. Any inner
automorphism fixes h since g−1hg also has order two, so h is in the centre of
the group. Consider any cell (i, j). This cell, and also the cell (ih, hj), contains
the element ij. Similarly, the cells (ih, j) and (i, hj) both contain the element
ihj so the three cells (ih, hj), (ih, j) and (i, hj) form an intercalate with the
cell (i, j). Suppose, if possible, that the cells (r, s), (r, j) and (i, s) also form an
intercalate with the cell (i, j). Then rs = ij and is = rj. Thus, r−1i = sj−1 and
r−1i = js−1 whence sj−1 = js−1 or (sj−1)2 = e. That is, sj−1 = h. Therefore,
s = hj and r = ih. This proves that the cell (i, j) lies in only one intercalate, so
the square is 2-tiled. ⊓⊔

In two unpublished papers by D’Angelo and Turgeon and by Abrham and
Kotzig, these authors obtained some further results; in particular, the latter
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authors show that 4-homogeneous latin squares do not exist if n < 8 but that
they do exist of all orders n = 8k. (This leaves open the question whether and/or
for which other orders such squares exist.) The former authors mention and/or
prove several results: (i) There are 2-homogeneous latin squares of all orders
divisible by 4 except 4 itself; (ii) If n = 4k and k ≥ 1, there is an (n − k)- or
(n− k + 1)-homogeneous latin square of order n according as k is odd or even;
(iii) If A is an h-homogeneous latin square of order m and B is a k-homogeneous
latin square of order n, then A×B is an (hk+ h+ k)-homogeneous latin square
of order mn (where A×B denotes the direct product of the quasigroups whose
Cayley tables are defined by A and B); (iv) The Cayley table of a group G is
an h-homogeneous latin square, where h is the number of elements of order 2
in G (cf. Killgrove’s lemma above). From (iv) it follows that, for each positive
integer h ≥ 2, there is an h-homogeneous or (h+1)-homogeneous latin square of
order 2h according as h is odd or even. This last result makes use of the dihedral
groups and had already been proved earlier in Heinrich and Wallis(1981) and in
Hobbs, Kotzig and Zaks(1982).

So far as the present author is aware, the complete spectrum of integers h
for which h-homogeneous latin squares exist is still an open question. But Hobbs
and Kotzig(1983) contains a summary of results which were known at the time
that paper was written regarding squares of orders up to 26. Another interesting
question is: For which integers h do orthogonal h-homogeneous latin squares
exist or, alternatively, can it be proved that they do not exist for some values
of h? This question is partly answered by remark (iv) above. We notice, for
example, that the three mutually orthogonal latin squares which are based on
Klein’s Viergruppe are all 3-homogeneous.

9.3 Diagonally cyclic latin squares and Parker squares

A latin square of order n is said to be diagonally cyclic (or sometimes, and
more accurately, left diagonally cyclic) if each of its left-to-right broken diagonals
contains each of its n symbols and each is a cyclic permutation of the main left-
to-right diagonal. If the same statement is true for the right-to-left diagonals also,
the square is called totally diagonal or to be a Knut Vik design, see page 219.
Two examples of the latter type of square are given in Figure 6.3.1.

The term “diagonally cyclic” is due to Franklin(1984a,b) who was probably
the first to discuss construction of such squares explicitly. He also used what he
called “bordered cyclic latin squares” (obtained by a prolongation of a diagonally
cyclic latin square) to construct orthogonal latin squares and, in particular, pairs
of MOLS of order 10. However, Franklin was certainly not the first to conceive
and make use of the latter idea.

In the papers already referred to, Franklin frequently abbreviated “diagonally
cyclic” to “cyclic”. However, not all left diagonally cyclic latin squares are cyclic
in the sense used elsewhere in this book: that is, isotopic to a multiplication
group of the cyclic group of the same order. A smallest counter-example, kindly
supplied by Ian Wanless, is given in Figure 9.3.1. Wanless remarks that this is
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the multiplication table of a Steiner quasigroup of order 7 and that it cannot be
isotopic to (Z7,+) because it has too many subsquares, also that it is smallest
because (see Theorem 9.3.1) all orthomorphisms of (Zn,+) for n ≤ 5 are linear1

and so define cyclic groups.

0 3 6 1 5 4 2
3 1 4 0 2 6 5
6 4 2 5 1 3 0
1 0 5 3 6 2 4
5 2 1 6 4 0 3
4 6 3 2 0 5 1
2 5 0 4 3 1 6

Fig. 9.3.1.

A left diagonally cyclic latin square A = ‖aij‖ is completely determined by
its first row (or column) and by the order of the symbols in the main left-to-right
diagonal. To see this, suppose that the latter order is ao, a1, . . . , an−1. We regard
the square as a collection of ordered triples, say (i, j, aij), as we did on page 14.
Then, if (i, j, ak) is a triple, so is (i+ 1, j + 1, ak+1) where arithmetic is modulo
n.

In Bedford(1995), that author showed that:

Theorem 9.3.1 A diagonally cyclic latin square of order n exists if and only if
the group (Zn,+) has an orthomorphism.

Proof. Suppose that A = ‖aij‖ is diagonally cyclic and based on the integers
0, 1, . . . , n − 1. Define a bijection φ of Zn by the statement that φ(j) = a0j for
j = 0, 1, . . . , n−1. Since A is diagonally cyclic, ai,t+i = a0t+ i, where arithmetic
is modulo n, so au−t,u = a0t + (u − t) = φ(t) + (u − t). But au−t,u 6= a0u since
A is a latin square. That is, φ(t) + (u− t) 6= φ(u) or φ(t) − t 6= φ(u)− u for all
t, u ∈ Zn. Thus, the mapping φ is an orthomorphism of (Zn,+).

Conversely, let φ be an orthomorphism of (Zn,+). We construct an n × n
matrix A = ‖aij‖ in which a0j = φ(j) for j = 0, 1, . . . , n − 1 and put ai,t+i =
a0t+ i = φ(t) + i mod n so that each left-to-right diagonal is cyclic. Then, aij =
φ(j−i)+i so aij 6= aik because φ is a permutation of Zn and so φ(j−i) 6= φ(k−i).

Also, ahj 6= aij otherwise φ(j − h) + h = φ(j − i) + i which would imply
that φ(j − h)− (j − h) = φ(j − i)− (j − i) and contradict the fact that φ is an
orthomorphism. Thus, A is a latin square as well as being diagonally cyclic. ⊓⊔

Corollary. A left diagonally cyclic latin square of order n exists if and only if
n is odd.

1A linear orthomorphism is a map that sends x to ax + b for some constants a, b. All
diagonally cyclic squares based on linear orthomorphisms are isotopic to cyclic groups.
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Proof. Since cyclic groups of even order have no orthomorphisms, this follows
immediately from the theorem. ⊓⊔

Later, Bedford [see Bedford(1998b)] used the fact that a diagonally cyclic
latin square A can be constructed by putting aij = φ(j − i) + i to obtain his
example of a non-cyclic latin square of order 15 with property P as defined in
Section 9.4. The orthomorphism of (Z15,+) which he used was

φ = (0)(1 2)(3 9 13)(4 11 7)(5 8 10)(6 14 12).
Since each broken diagonal of a left diagonally cyclic latin square of order n

is a transversal, such a square can be n times prolonged and this fact has been
exploited by very many authors including Parker(1959b) who used it (though not
explicitly as he described his construction in the language of orthogonal arrays)
to disprove Euler’s conjecture by constructing for the first time a pair of MOLS
of order 10 and, more generally, a pair of MOLS of order (3q−2)/2, where q is any
prime power congruent to 3 modulo 4. Yamamoto(1961) and, later, Hedayat and
Seiden(1971,1974) under the title of sum composition used the idea of multiple
prolongation2 to construct t MOLS of order n + m from t + 1 MOLS of order
n and t MOLS of order m (n > 2m). The required procedure is described in
detail on pages 436-442 of [DK1]. The method has been generalized and also
re-presented in a more easily understood form by Guérin(1966b) and this author
has christened it “Yamamoto’s method”. For some related constructions and for
a proof that, as t → ∞, the number of non-equivalent pairs of MOLS of order
t also tends to infinity, the reader is referred to chapter 6 of Guérin(1966b) and
also to Barra and Guérin(1963a,b) and Guérin(1963a,b,1964,1966a).

In Wanless(2004b), that author has made the following definition: We ad-
join b infinity symbols to the cyclic group Zm to obtain the set Zm,b = Zm ∪
{∞1,∞2, . . .∞b} and we define z+ for z ∈ Zm,b by z

+ = z+1 mod m if z ∈ Zm
and z+ = z otherwise.Then a bordered diagonally cyclic latin square (hencefor-
ward to be called a Parker square, see below) with rows, columns and symbols
indexed by Zm,b is one for which the presence of any triple (i, j, aij) implies that
the triple (i+, j+, a+ij) also occurs in the square. We say that this Parker square
is of Bb-type if it is based on Zm,b in the above way for m ≥ 1 or if its symbols
can be mapped bijectively to Zm,b in such a way that the resulting square has
the above properties.

It was because of the important role which squares of Bb-type played in
the disproof of Euler’s conjecture that Wanless christened them Parker squares.
In fact, the pair of MOLS of order 10 obtained by Parker and illustrated in
Figure 9.3.2 is of B3-type. Here, the integers 7, 8, 9 play the roles of ∞1,∞2,∞3.
This pair of squares could have been constructed directly by sum composition
from a triple of MOLS of order 7 of which the first has constant left-to-right

2Yamamoto used the term extension instead of prolongation and he called the inverse opera-
tion contraction as already mentioned in Section 1.5. The term prolongation is due to Belousov,
as stated in the same section. These two authors worked independently neither being aware of
the other’s work.
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diagonals and the remaining two are diagonally cyclic (shown in Figure 9.3.3)
and a pair of MOLS of order 3.3

0 4 1 7 2 9 8 3 6 5
8 1 5 2 7 3 9 4 0 6
9 8 2 6 3 7 4 5 1 0
5 9 8 3 0 4 7 6 2 1
7 6 9 8 4 1 5 0 3 2
6 7 0 9 8 5 2 1 4 3
3 0 7 1 9 8 6 2 5 4

1 2 3 4 5 6 0 7 8 9
4 5 6 0 1 2 3 8 9 7
2 3 4 5 6 0 1 9 7 8

0 7 8 6 9 3 5 4 1 2
6 1 7 8 0 9 4 5 2 3
5 0 2 7 8 1 9 6 3 4
9 6 1 3 7 8 2 0 4 5
3 9 0 2 4 7 8 1 5 6
8 4 9 1 3 5 7 2 6 0
7 8 5 9 2 4 6 3 0 1

4 5 6 0 1 2 3 7 8 9
2 3 4 5 6 0 1 9 7 8
1 2 3 4 5 6 0 8 9 7

Fig. 9.3.2.

0 1 2 3 4 5 6
6 0 1 2 3 4 5
5 6 0 1 2 3 4
4 5 6 0 1 2 3
3 4 5 6 0 1 2
2 3 4 5 6 0 1
1 2 3 4 5 6 0

0 4 1 5 2 6 3
4 1 5 2 6 3 0
1 5 2 6 3 0 4
5 2 6 3 0 4 1
2 6 3 0 4 1 5
6 3 0 4 1 5 2
3 0 4 1 5 2 6

0 2 4 6 1 3 5
6 1 3 5 0 2 4
5 0 2 4 6 1 3
4 6 1 3 5 0 2
3 5 0 2 4 6 1
2 4 6 1 3 5 0
1 3 5 0 2 4 6

Fig. 9.3.3.

In his paper of 2004, Wanless has extended Theorem 9.3.1 to provide neces-
sary and sufficient conditions for a Parker square of any given Bi-type to exist
by introducing the idea of a partial orthomorphism of (Zm,+). (In the case of
a B1-type Parker square, this is the same as a near orthomorphism. See Sec-
tion 7.6.)

In the same paper, he has given an example of a B1-type square and a B2-
type square which are quasigroup isomorphic: that is, there exists an isotopism
which transforms one square to the other and which re-labels the rows, columns
and symbols in the same way. Thus, Parker squares of different types may lie in
the same isomorphism class and, a fortiori, in the same isotopism or main class
of latin squares. Also, the B2-type Parker square given by Wanless illustrates
the fact that not all Parker squares can be contracted to diagonally cyclic latin

3But, in order to achieve orthogonality, the order of the last three rows and columns is
important so the procedure described by Yamamoto(1961) must be followed.
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squares.
We note that the diagonally cyclic latin squares in Figure 9.3.3 are orthogonal.

A number of authors (including Franklin) have discussed the conditions for a
diagonally cyclic latin square to have one or more orthogonal mates which are
also diagonally cyclic. Since each such square is orthogonal to the latin square
with the property that all the cells of each broken left-to-right diagonal contain
the same fixed element, the maximum number of left diagonally cyclic squares
of order n which are mutually orthogonal cannot exceed n−2 by Theorem 5.1.2.
Wanless(2004b) has shown more generally that, given arbitrary integers n and b,
there cannot be more than n−1 if b = 1 or min[N(b), (n− b/b] if b > 1 mutually
orthogonal Bb-type latin squares of order n. He has further shown that both
these bounds can be attained.

The Wanless paper of 2004 contains many further results concerning Parker
squares and also it lists a surprisingly large number of papers whose authors had
made use of such squares for their constructions up to the time when that paper
was published. For example, Owens and Preece(1996) constructed their non-
cyclic latin squares of prime order p ≥ 11 with property P (see Section 9.4) by
modifying a Parker square of B1-type. In particular, Wanless himself, in collab-
oration with Bryant and Maenhaut [see Bryant, Maenhaut and Wanless(2006)]
has used such squares to construct infinite families of atomic latin squares (again
see Section 9.4 for the definition) which are of B1-type.

A number of the papers cited by Wanless had also been mentioned earlier
in Bedford(1993) and in the latter paper the close connection between left diag-
onally cyclic latin squares and neofields had been shown: namely, the addition
table for a cyclic neofield of even order can always be obtained by the prolonga-
tion of an appropriate left diagonally cyclic latin square taking its main diagonal
as the transversal.

Parker squares continue to be valuable as a means of obtaining new results.
Finally, let us mention a paper [Cavenagh and Wanless(2010)] in which the

authors show that the number of transversals in Cayley tables of cyclic groups
of odd order increases exponentially with the order and they remark that, by
virtue of Theorem 9.3.1, the number of diagonally cyclic latin squares likewise
increases exponentially with the order of the square.

9.4 Non-cyclic latin squares with cyclic properties

One of the rare occasions when the authors of the first edition of the present
book were in serious disagreement was when the question arose in the late 1980s
(in connection with their research) as to whether a given latin square of prime
order p with the property that each of its rows was a cyclic permutation of
the first row would necessarily be isotopic to the cyclic group of order p. Dénes
was strongly of the opinion that it would while Keedwell was equally strongly
of the opinion that it would not. The issue was resolved when the two authors
constructed counter-examples in Dénes and Keedwell(1988) for latin squares not
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only of prime orders but for all orders n ≥ 7. Shortly afterwards, a simpler
construction of counter-examples was given in Keedwell(1991).

Next, in the development of the idea of constructing non-cyclic latin squares
with cyclic properties, Owens and Preece(1996) constructed, for all prime orders
p ≥ 11, a latin square with the stronger property P that the permutation from
row i to row j is cyclic for all i and j, j 6= i. The earlier construction only
gave a square which had property P for the permutation from row 0 to row j,
1 ≤ j ≤ n− 1 (in the case of a latin square of order n). Let us remark here that
every cyclic latin square of prime order has property P and also has the similar
property for columns. On the other hand, no latin square of composite order
based on a group has property P . (See below.) Despite this, Bedford(1998b),
in an unpublished paper (see Section 9.3), gave an example of a latin square of
order 15 which has property P .

The next step came when Wanless(1999) observed that every latin square L
of order n defines a 1-factorization of the complete bipartite graph Kn,n (and
in several ways, see Section 8.3). He also observed that a latin square L having
property P would not contain any proper latin subsquare M because, if rows i
and j of L both contained rows of such a subsquare M , then the permutation
from row i to row j of L would include one or more sub-cycles involving only
the elements of M . That is, any latin square with property P is an N∞-square
and conversely.

Let L be as above and let one partite set {c1, c2, . . . , cn} of vertices of Kn,n

denote the columns of L and let the second partite set {s1, s2, . . . , sn} denote
the symbols. Then each row of L defines a 1-factor as follows: if the symbol sk
occurs in column cj of row rh, join cj to sk. Since no two entries in rh are the
same, these edges form a 1-factor which corresponds to the permutation

σh =

(

c1 c2 . . . cn
s1h s2h . . . snh

)

defining row rh as a permutation from natural order. Also, the 1-factors asso-
ciated with different rows are disjoint since each column contains each symbol
only once. The permutation which maps row rh to row ri is then σ−1

h σi. Each
of σh, σi defines a 1-factor of Kn,n and σ−1

h σi defines a means of traversing the
edges of the graph: slh → cl → sli → etc. If property P holds, then σ−1

h σi is
a full length cycle and all edges of the graph are traversed by the union of the
1-factors corresponding to σh, σi. This led Wanless to say that a latin square (or
rectangle) with property P is pan-Hamiltonian because of the connection with
Hamiltonian decompositions of the complete bipartite graph just described.

For example, in Figure 9.4.1 the 1-factors which define the first three rows of
L4 are F1, F2, F3. The unions F1 ∪ F2 and F1 ∪ F3 form Hamiltonian circuits in
Kn,n while F2 ∪ F3 does not. As illustration, the union F1 ∪ F3 gives s3 → c1 →
s1 → c2 → s4 → c3 → s2 → c4 → s3. The latin rectangles which are given by
the first two rows or the first and third rows are pan-Hamiltonian and so contain
no sub-rectangles.
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L4 =

3 1 4 2
2 3 1 4
1 4 2 3
4 2 3 1

F1 ((1, 3), (2, 1), (3, 4), (4, 2)
F2 (1, 2), (2, 3), (3, 1), (4, 4)
F3 (1, 1), (2, 4), (3, 2), (4, 3)

Fig. 9.4.1.

Later, Wanless refined the name to row-panHamiltonian since the roles of
rows, columns and symbols can be permuted to give parastrophes of L which
may be column-panHamiltonian or symbol-panHamiltonian.

In his paper of 1999, Wanless also proved the following three lemmas:

Lemma A. If a k× n latin rectangle R is pan-Hamiltonian, then either n is odd
or k = 2.

Proof. Suppose that n is even and that rh and ri are two rows of R. Then
σ−1
h σi is a cycle of length n on an even number of symbols so it is an odd

permutation. Consequently, σh and σi must be of opposite parity. As this must
be true for any two rows of R, there cannot be more than two rows. ⊓⊔

This lemma and with the same proof had earlier been given as a closing
remark in the paper of Owens and Preece(1996).

Lemma B. If a latin square L is pan-Hamiltonian, then so is any square isotopic
to L and so is the row inverse L(2 3) of L.

Proof. Isotopies involve re-arranging rows, symbols and/or columns. The first
of these does not affect the row cycles σ1, σ2, . . . , σn but only their order so, if
σ−1
h σi was a single cycle, that property is not affected. Also, that property is not

affected if the symbols are permuted. Thirdly, if the entries in two rows of L are
permuted in the same way by a re-arrangement of columns, this does not affect
the permutation which transforms one to the other.

The latin square L = (ahk) can be represented as a set of n2 triples (h, k, ahk)

so the permutation σh which defines the hth row of L is

(

. . . k . . .

. . . ahk . . .

)

. The

triples of the row inverse L(2 3) take the form (h, ahk, k) so the permutation

which defines the hth row is σ−1
h =

(

. . . ahk . . .

. . . k . . .

)

. If σ−1
h σi is a full length cycle

for all choices of h and i, h 6= i, then so is (σ−1
h )−1σ−1

i = σhσ
−1
i because σhσ

−1
i =

σi(σ
−1
i σh)σ

−1
i = σi(σ

−1
h σi)

−1σ−1
i and both conjugate and inverse permutations

have the same cycle structure.4 ⊓⊔

4The proof of the last result given in Wanless(1999) is incorrect.
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Lemma C. If a latin square L is pan-Hamiltonian, let ν(L) denote the number
of its parastrophes (including itself) which are also pan-Hamiltonian. If L is
isotopic to its transpose L(1 2) then ν(L) = 4 or 6. If L is isotopic to its row
inverse L(2 3) then ν(L) = 2 or 6.

Proof. Let A ∼ B denote that both A and B are pan-Hamiltonian or that
neither is. Then, by Lemma B, L ∼ L(2 3), L(1 2) ∼ L(1 2)(2 3) = L(1 3 2) and
L(1 3) ∼ L(1 3)(2 3) = L(1 2 3).

If L is isotopic to L(1 2) then, from Lemma B again, it follows that L ∼ L(1 2)

and so L ∼ L(2 3) ∼ L(1 2) ∼ L(1 3 2). If also one of L(1 3) or L(1 2 3) is pan-
Hamiltonian, then both are. Thus, ν(L) ∈ {4, 6}.

If L is isotopic to L(2 3), then their transposes L(1 2) and L(2 3)(1 2) = L(1 2 3)

also are isotopic and so are L(1 3) and L(2 3)(1 3) = L(1 3 2) so L(1 2) ∼ L(1 2 3) and
L(1 3) ∼ L(1 3 2). But L ∼ L(2 3), L(1 2) ∼ L(1 3 2), L(1 3) ∼ L(1 2 3) so L(1 2 3) ∼
L(1 2) ∼ L(1 3 2) ∼ L(1 3). If any one of these is pan-Hamiltonian, they all are and
so ν(L) ∈ {2, 6}. ⊓⊔

Wanless called a latin square atomic if all six of its parastrophes are pan-
Hamiltonian. A latin square is atomic if and only if none of its parastrophes has
a proper latin sub-rectangle.

To test whether a given latin square L is atomic, it suffices to check that L,
its transpose L(1 2) and the transpose of its row inverse L(2 3)(1 2) = L(1 2 3) are
atomic. This follows from the first statement in the proof of Lemma C.

By Theorem 4.2.2, if a latin square L is the Cayley table of a group or of a
loop with the inverse property, then all five of its parastrophes are isotopic to it.
It follows from Lemma B above that in that case, if L is pan-Hamiltonian then it
is in fact atomic. In the Cayley table of a group of order n (which we may assume
to be in reduced form), the rows are represented by regular permutations with
cycle lengths which divide n and so when and only when5 n is prime and the
group is cyclic, it is pan-Hamiltonian. Thus, the only group-based square which
is atomic is that of the cyclic group Cp.

Wanless(1999) used a connection between perfect 1-factorizations of the com-
plete graph Kn+1 and perfect 1-factorizations of Kn,n which we next describe
to obtain two non-isomorphic perfect 1-factorizations of Kp,p and hence the fol-
lowing result:

“Let p ≥ 11 be a prime. If 2 is a primitive root modulo p, then there exists an
atomic square of order p outside the main class of latin squares which contains
Cp.”

In a subsequent paper [see Bryant, Maenhaut and Wanless(2006)], these au-
thors used similar ideas to construct five different main classesM!,M2,M3,M4,M5

of latin squares of prime order which sometimes or always contain atomic latin

5If n is not prime and p is a prime which divides n, then, by Cauchy’s theorem, at least one
row is represented by a permutation whose cycles have length p < n.
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squares. The squares in M1 include Cp and so are atomic always. The squares
in M3 include those constructed by Owens and Preece(1996) who showed that
they too are atomic. The squares inM2 include that constructed by Wanless and
referred to in the preceding paragraph. These squares are atomic when p is such
that it has 2 as primitive root and so also are the squares in M4 and M5.

In Maenhaut and Wanless(2004), a complete enumeration of atomic latin
squares of order 11 (which is the smallest order for which there are examples
distinct from isotopes of Cp) is given. They belong to seven main classes.

Suppose that the complete graphKn+1 has a perfect 1-factorization F1, F2, . . . ,
Fn. We label the vertices of Kn+1 by v1, v2, . . . , vn, v∞. We denote the 1-factor
which contains the edge (vh, v∞) by Fh. Let the remaining edges of Fh be
. . . , (vx, vy), . . ., etc. LetKn,n have partite sets {c1, c2, . . . , cn} and {s1, s2, . . . , sn}.
We use Fh to construct a 1-factor F

′
h ofKn,n whose edges are . . . , (ch, sh), (cx, sy),

(cy, sx), . . . , etc. and thence construct a latin square L whose hth row is given
by the involutary permutation σh = (h)(x y) . . . .. If the union of Fh and Fi is
a Hamiltonian circuit in Kn+1, then the union of F ′

h and F ′
i is a Hamiltonian

circuit of Kn,n, since the sequence of vertices → va → vb → vd → ve → vf →,
where (va, vb), (vd, ve), . . . ∈ Fh and (vb, vd), (ve, vf ), . . . ∈ Fi, is replaced by the
sequences → ca → sb → cd → se → cf → and → sa → cb → sd → ce → sf →
in Kn,n and the sequence → vh → v∞ → vi → by the sequences → ch → sh →
and → si → ci →. This construction had earlier been noted and used for vari-
ous purposes by several authors, in particular see Keedwell(1978), Laufer(1980),
Wanless and Ihrig(2005) and page 116 of [DK2]. Note that n + 1 must be even
for such a 1-factorization to exist.

F1 ((v1, v∞), (v2, v3), (v4, v5)
F2 ((v2, v∞), (v3, v5), (v1, v4)
F3 ((v3, v∞), (v2, v4), (v1, v5)
F4 ((v4, v∞), (v1, v3), (v2, v5)
F5 ((v5, v∞), (v1, v2), (v3, v4)

F ′
1 (c1, s1) (c2, s3), (c3, s2), (c4, s5), (c5, c4)
F ′
2 (c2, s2) (c3, s5), (c5, s3), (c1, s4), (c4, c1)
F ′
3 (c3, s3) (c2, s4), (c4, s2), (c1, s5), (c5, c1)
F ′
4 (c4, s4) (c1, s3), (c3, s1), (c2, s5), (c5, c2)
F ′
5 (c5, s5) (c1, s2), (c2, s1), (c3, s4), (c4, c3)

F1 ∪ F2 v3 → v5 → v4 → v1 → v∞ → v2 → v3

F ′
1 ∪ F ′

2 s3 → c5 → s4 → c1 → s1 → c4 → s5 → c3 → s2 → c2 → s3

Fig. 9.4.2.

As illustration, Figure 9.4.2 gives a perfect 1-factorization of K6 and the
corresponding perfect 1-factorization of K5,5 and Figure 9.4.3 shows the pan-
Hamiltonian latin square L5 thereby defined. The method of construction shows
that this square will always be idempotent and involutary. That is, each row
permutation σh is equal to its own inverse and so L = L(2 3). By Lemma C, it
follows that ν(L) = 2 or 6 for such a square. If rows and symbols are interchanged
to obtain the parastroph L∗

5 = L(1 3), the latter will be symmetric, idempotent
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L5 =

1 3 2 5 4
4 2 5 1 3
5 4 3 2 1
3 5 1 4 2
2 1 4 3 5

L∗
5 =

1 5 4 2 3
5 2 1 3 4
4 1 3 5 2
2 3 5 4 1
3 4 2 1 5

Fig. 9.4.3.

and symbol-panHamiltonian.
Using the above ideas, Wanless(1999) was able to construct an atomic latin

square not in the main class which contains Cp for each prime p ≥ 11 for which 2
is a primitive root (as we stated earlier). Wanless also claimed that, by applying
his construction procedure to a particular perfect 1-factorization of K28, he had
obtained an atomic latin square of order 27.

In Wanless(2005), the same author used cyclotomic orthomorphisms in finite
fields to construct atomic latin squares of other prime power orders but, so far as
the present author is aware, no atomic latin square of composite but non-prime-
power order has yet been found.

We end this section with a brief discussion of N∞-squares. Such squares need
not be atomic. Andersen and E.Mendelsohn(1982) showed that N∞-squares exist
of all orders n 6= 2a3b. We outlined their proof in Chapter 4, Section 2 of [DK2].
A further construction of N∞-squares was devised by Elliott and Gibbons(1992)
who obtained subsquare-free latin squares of orders 16 and 18. Later, Maenhaut,
Wanless and Webb(2007) showed that if n is odd and divisible by 3, then an N∞-
square of order n exists. (See the bibliography of that paper for some papers on
this topic not mentioned here.) Combining this with the earlier paper of Andersen
and E.Mendelsohn, we are able to conclude that N∞-squares exist of all odd
orders. However, so far as the present author is aware, the situation regarding
even orders is still not completely determined.
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Chapter 10

Alternative versions of orthogonality

Very many modifications of the concept of orthogonality have been studied
over the years such as perpendicularity of symmetric latin squares. Here we define
and discuss a number of these. We also introduce the concept of a power set of
orthogonal latin squares.

10.1 Variants of orthogonality

(a) r-orthogonal latin squares

Such squares were discussed in detail in Chapter 6 of [DK2] so here we only
remind the reader of the definition. Two latin squares of the same order n and
defined on the same set Q are called r-orthogonal if, when they are juxtaposed,
exactly r different ordered pairs of the set Q × Q occur among the n2 ordered
pairs of cells.

(b) Near-orthogonal latin squares

A pair of latin squares of order n is said to be near-orthogonal if the two
squares are orthogonal except that they have a common 2 × 2 subsquare. In
consequence of work by Yamamoto(1954), Horton(1974) and Heinrich(1977), it
is known that such a pair exists for all n ≥ 6. Details are in [DK2], Theorem
4.7 of Chapter 4, where Heinrich denotes such a pair by IPOLS(n; 2). The
connection with r-orthogonality is discussed on pages 170 and 190 of [DK2].
In Brouwer(1984), four pairwise near-orthogonal latin squares of order 10 were
constructed.

(c) Nearly orthogonal latin squares

Two latin squares of the same order n and based on the elements 0, 1, . . . , n−1
have been called nearly orthogonal if, when they are juxtaposed, every ordered
pair (a, b) of distinct elements except those for which b−a ≡ n/2 (mod n) occurs
exactly once and each ordered pair for which b− a ≡ n/2 (mod n) occurs twice
but pairs (a, a) do not occur. This concept was first introduced in connection
with the design of statistical experiments by Raghavarao(1971). Since, in the
definition, n/2 must be an integer, the concept is only defined for squares of even
order. An example for n = 4 is given in Figure 10.1.1. Note that the squares in
this example are cyclic.
In Raghavarao, S.S.Shrikhande and M.S.Shrikhande(2002), these authors showed
that, for any such integer n = 2m, a pair of nearly orthogonal latin squares exists.

Latin Squares and their Applications. http://dx.doi.org/10.1016/B978-0-444-63555-6.50010-6
Copyright © 2015 A. Donald Keedwell. Published by Elsevier B.V. All rights reserved.
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01 12 23 30
13 20 31 02
20 31 02 13
32 03 10 21

Fig. 10.1.1.

They also proved that if t is the maximum number of squares of order 2m which
could exist in a mutually nearly orthogonal set then t ≤ m+1 whenm is odd and
t ≤ m when m is even. They constructed a set of three mutually nearly orthog-
onal latin squares (MNOLS) of order 6. Shortly after this, Burns Pasles made
the topic the subject of her PhD thesis. In Burns Pasles and Raghavarao(2004),
the two authors showed that no set of four MNOLS of order 6 exists and so the
upper bound cannot be attained for this order. Later, in Li and van Rees(2007),
the latter authors obtained two recursive constructions for MNOLS and were
thence able to prove that a set of at least three MNOLS exists for all orders
n ≥ 358.

(d) k-plex orthogonality of latin squares

This is a relatively recent concept due to Liang(2012) and is a natural gen-
eralization of orthogonality because it reduces to the latter when k = 1 and the
k-plex becomes a transversal (see Section 3.5). The present author anticipates
that the concept will be developed much further in future years.

Definition. Let L1 and L2 be two latin squares of order n, based on sets S1

and S2 respectively, and let k be a divisor of n. Then L1 and L2 are called k-plex
orthogonal if the following two conditions are satisfied: (i) there is a partition of
the set S1 into blocks B1, B2, . . . , Br (r = n/k) of k elements each such that the
cells of L2 which correspond to the cells of L1 that contain elements of Bi form
a k-plex in L2 for each choice of i; and (ii) there is likewise a partition of the set
S2 into blocks B⋆1 , B

⋆
2 , . . . , B

⋆
r of k elements each such that the cells of L1 which

correspond to the cells of L2 that contain elements of B⋆i form a k-plex in L1 for
each choice of i.

The k-plex orthogonality of L1, L2 is unaffected if the symbols of S1 or S2

are permuted or if the rows and/or columns of both squares are permuted si-
multaneously. It is possible to have several latin squares which are pairwise (or
mutually) k-plex orthogonal.

In contrast to these facts, it is important to note that pairs of latin squares
exist which satisfy condition (i) but not condition (ii) or vice versa. For example,
the squares L1 and l2 of order 6 exhibited in Figure 10.1.2 are 3-plex orthogonal
relative to the partitions B1 = {1, 5, 6}, B2 = {2, 3, 4} and B⋆1 = {1, 2, 5},
B⋆2 = {3, 4, 6} respectively of S = {1, 2, . . . , 6}. In Figure 10.1.2, the cells of L2

marked with a prime form a 3-plex of L2 and correspond to the cells of L1 which
contain 1, 5 or 6. The cells of L1 marked with a prime form a 3-plex of L1 and
correspond to the cells of L2 which contain 1, 2 or 5. The unprimed entries in L2
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and L1 also form 3-plexes and correspond in the same way to the blocks B2 and
B⋆2 respectively. On the other hand, the squares L1 and L3 satisfy the condition
(ii) relative to the blocks B⋆1 and B⋆2 but do not satisfy condition (i) relative to
any partition of S into two equally sized blocks. The proof of the latter statement
requires checking each of the 20 possible partitions as follows.

Let Ti denote the set of all cells which have i as entry in L1. Then the left-
hand and right-hand tables in Figure 10.1.3 indicate the number of cells of Ti
which contain j as entry in L2 and L3 respectively. In the left-hand table, it is
easy to check that T1 ∪ T5 ∪ T6 contains each element of S exactly thrice and so
the cells of L1 which contain the elements 1, 5 and 6 define a 3-plex of L2. The
remaining cells of L1 define a second 3-plex of L2. However, in the right-hand
table, none of the unions of three of the Ti contains each element of S thrice
and so L3 is not 3-plex orthogonal to L1. (In fact, the required union can only
contain the symbol 3 if it is T2∪T4∪T5 or includes T3 but none of the foregoing.
The union can only contain the symbol 5 if it is T1 ∪ T2 ∪ T5 or includes T3 but
again none of the foregoing. This is contradictory.)

L1 =

1′ 2′ 3 4 5′ 6
2 3′ 6 1′ 4 5′

3′ 6′ 2 5 1 4′

4′ 5 1′ 2 6′ 3
5 1 4′ 6′ 3 2′

6 4 5′ 3′ 2′ 1

L2 =

1′ 2 3 4 5′ 6′

3 1 4′ 2′ 6 5′

2 5′ 6 3′ 4′ 1
5 3′ 1′ 6 2′ 4
4′ 6′ 5 1′ 3 2
6′ 4 2′ 5 1 3′

L3 =

1 2 3 4 5 6
3 5 4 2 6 1
5 1 6 3 4 2
2 4 5 6 1 3
4 6 2 1 3 5
6 3 1 5 2 4

Fig. 10.1.2.

j = 1 2 3 4 5 6
T1 2 1 1 1 0 1
T2 1 2 1 0 0 2
T3 1 1 2 1 1 0
T4 1 0 0 2 2 1
T5 0 1 2 1 2 0
T6 1 1 0 1 1 2

j = 1 2 3 4 5 6
T1 1 1 0 2 1 1
T2 0 2 1 0 1 2
T3 0 0 3 0 3 0
T4 0 3 1 1 0 1
T5 2 0 1 2 1 0
T6 3 0 0 1 0 2

Fig. 10.1.3.
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Lemma. If n = 2m is even, any two nearly orthogonal latin squares of order n
are 2-plex orthogonal.

Proof. If S1 = S2 = {0, 1, . . . , 2m − 1}, we choose the 2-block partition of S
so that two integers in S are in the same block if and only if their difference is
m. ⊓⊔

Lemma. Two latin squares of order n which are k-plex orthogonal are also ks-plex
orthogonal for any integer s such that ks divides n.

Proof. This follows from the fact that s disjoint k-plexes of a latin square L
together form a ks-plex of L. ⊓⊔

Because Raghavarao et al (2002) had earlier shown that a pair of nearly or-
thogonal latin squares exists for any even integer n, it follows from the preceding
lemma that there exists a pair of k-plex orthogonal latin squares of order n = 2m
for any even integer k such that k|n.

Liang(2012) has proved the stronger result that “for any integers k and n
such that k|n, there exists a pair of k-plex orthogonal latin squares of order n
except when n = 2 or 6 and k = 1”. This generalizes the equivalent statement for
orthogonal squares proved by Bose, S.S. Shrikhande and Parker, see Section 5.1.

Liang has also proved appropriate generalizations for well-known theorems
about existence of orthogonal pairs of latin squares due to Maillet, MacNeish
and Mann. For full details, see the original paper.

(e) Quasi-orthogonal latin squares

This concept was introduced by Bedford(1998a) and is as follows:

Definition. Two latin squares of order n defined on the same symbol set are
quasi-orthogonal if, when the two squares are juxtaposed, each unordered pair
(u, v) of distinct elements occurs exactly twice and each pair (u, u) occurs exactly
once.

We illustrate this definition by means of the triple of mutually quasi-orthogonal
latin squares (MQOLS) of order four shown in Figure 10.1.4.

It is well-known that a group based latin square has an orthogonal mate if
and only if the group possesses a complete mapping or orthomorphism. Similarly,
a group based latin square has a quasi-orthogonal mate if and only if the group
possesses a quasi-complete mapping (defined below).

A group which has no complete mappings may nonetheless have quasi-complete
mappings. This fact also is demonstrated by the triple of mutually quasi-orthogonal
latin squares of order four based on the cyclic group of order four (which has no
complete mappings) and shown in Figure 10.1.4. They were first given in Bedford
and Whitaker(2000b,2003). Because there exist statistical experiments for which
a pair of quasi-orthogonal latin squares may serve as well as an orthogonal pair,
the former concept may be practically useful. In that connection, Bedford has
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shown (see below) that quasi-orthogonal latin squares of order six exist, although
these are not group based.

In order to introduce the concept of quasi-complete mapping, we shall need
the following definition.

Definition. Let G be a finite group of order n with identity element e. A listing
a1, a2, . . . , an of some of the elements of G (with repetitions allowed) is called
a quasi-ordering of G if and only if (i) the list contains the identity element
and each element of order two exactly once and, (ii) for every element g ∈ G
such that g2 6= e, the list contains two occurrences of g and none of g−1 or one
occurrence of each of g and g−1 or two occurrences of g−1 and none of g.

Hence we get:

Definition. Let G be a finite group of order n with G = {g1, g2, . . . , gn}. A
mapping θ of G into G is a quasi-complete mapping if the mapping φ defined by
φ(x) = xθ(x) is a permutation of G and θ is such that θ(g1), θ(g2), . . . , θ(gn) is
a quasi-ordering of G. The permutation φ is then a quasi-orthomorphism of G.

Bedford(1998a) gave the following example of a quasi-complete mapping of
the group (Z4,+) and the corresponding quasi-orthomorphism.

θ =

(

0 1 2 3
0 2 3 3

)

φ =

(

0 1 2 3
0 3 1 2

)

Thus, for example, φ(3) = 3 + θ(3) = 3 + 3 ≡ 2 mod 4.
If ψ1 and ψ2 are permutations of a group (G, ·), where G = {g1, g2, . . . , gn},

such that ψ1(g1)
−1ψ2(g1), ψ1(g2)

−1ψ2(g2), . . . , ψ1(gn)
−1ψ2(gn) is a quasi-ordering

of G, then ψ1 and ψ2 will be called quasi-orthogonal permutations of G. (If, on
the other hand, the above sequence is an ordering of G, then ψ1 and ψ2 are
orthogonal permutations of G.)

Using this concept, Bedford proved the following theorem and corollary.

Theorem 10.1.1 Let L be the Cayley table of the finite group (G, ·) and let φ1

and φ2 be permutations of G. Let Lφ1
and Lφ2

be obtained from L by permuting
its columns according to φ1 and φ2 respectively. Then, if φ1 and φ2 are quasi-
orthogonal, Lφ1

and Lφ2
are quasi-orthogonal.

Proof. Let A = (Lφ1
, lφ2

) denote the array obtained by juxtaposing Lφ1
and

Lφ2
. Then the (i, j)th cell of A contains the ordered pair [giφ1(gj), giφ2(gj)].

For any ordered pair (u, v) of elements of G, let d = u−1v denote the difference
between u and v. Then the jth column of A contains all the ordered pairs whose
difference is φ1(gj)

−1φ2(gj). For a particular ordered pair (u, v) of elements of
G, there are two possibilities:
(i) if d2 = e then, since φ1 and φ2 are quasi-orthogonal, there exists a unique
element gk in G such that φ1(gk)

−1φ2(gk) = d. So the kth column of A contains
all ordered pairs whose difference is d and these include both (u, v) and (v, u)
since d = d−1.
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(ii) if d2 6= e, then there are exactly two distinct elements gk and gl of G such
that φ1(gk)

−1φ2(gk) and φ1(gl)
−1φ2(gl) are either both equal to d, both equal

to d−1 or one equal to d and the other equal to d−1.
In the first case of (ii), because u occurs once in the kth column of Lφ1

and
also once in the lth column of Lφ1

, the ordered pair (u, v) occurs both in the kth
column and in the lth column of A. In the second case, because u occurs once in
the kth column of Lφ2

and also once in the lth column of Lφ2
, the ordered pair

(v, u) occurs both in the kth column and in the lth column of A. From these
arguments, it is easy to see that, in the third case, the ordered pairs (u, v) and
(v, u) each occur just once, one in the kth column of A and the other in the lth
column of A.

It follows that Lφ1
, Lφ2

are quasi-orthogonal. Moreover, if φ1 and φ2 are
orthogonal permutations, only the third possibility occurs and so Lφ1

and Lφ2

are orthogonal in that case. ⊓⊔

Corollary. If (G, ·) is a finite group which possesses a quasi-complete map-
ping θ with corresponding quasi-orthomorphism φ, then L and Lφ are quasi-
orthogonal.

Proof. We need to show that the identity permutation I on G and φ are quasi-
orthogonal. However, this is indeed the case since I(x)−1φ(x) = x−1φ(x) = θ(x)
and we know that θ(g1), θ(g2), . . . , θ(gn) is a quasi-ordering of G by definition of
θ. ⊓⊔

Bedford(1998a) observed that the following two quasi-orthomorphisms of
(Z4,+) are quasi-orthogonal.

φ1 =

(

0 1 2 3
0 3 1 2

)

φ2 =

(

0 1 2 3
0 2 3 1

)

Hence, from the above theorem and corollary, the latin squares L,Lφ1
, Lφ2

shown in Figure 10.1.4 are a set of MQOLS.

L =

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Lφ1
=

0 3 1 2
1 0 2 3
2 1 3 0
3 2 0 1

Lφ2
=

0 2 3 1
1 3 0 2
2 0 1 3
3 1 2 0

Fig. 10.1.4.

REMARKS.
(i) The argument of the above theorem remains valid when φ1 and φ2 are nei-

ther quasi-orthomorphisms nor orthomorphisms but, in that case, the corollary
no longer applies.

(ii) When φ1 and φ2 are both orthomorphisms (rather than quasi-orthomorphisms),
the latin squares Lφ1

, Lφ2
and L are mutually orthogonal.

Chapter 10 



301

We illustrate these remarks by means of Figure 10.1.5. In that figure, ψ1, ψ2

are orthogonal permutations but ψ1 is neither an orthomorphism nor a quasi-
orthomorphism of Z2×Z2 = 〈a, b : a2 = b2 = (ab)2 = e〉 so L is not orthogonal or
quasi-orthogonal to Lψ1

. (In fact, those ordered pairs which appear when L and
Lψ1

are juxtaposed all appear four times.) However, ψ2 is an orthomorphism with

corresponding complete mapping θ2 =

(

e a b ab
a b e ab

)

and ψ1, ψ2 are orthogonal

permutations so each of L,Lψ2
and Lψ1

, Lψ2
are orthogonal pairs of latin squares.

ψ1 =

(

e a b ab
a e ab b

)

ψ2 =

(

e a b ab
a ab b e

)

(L,Lψ1
) =

ea ae bab abb
ae ea abb bab
bab abb ea ae
abb bab ae ea

(L,Lψ2
) =

ea aab bb abe
ae eb abab ba
bab aba ee ab
abb be aa eab

(Lψ1
, Lψ2

) =

aa eab abb be
ee ab bab aba
abab ba ae eb
bb abe ea aab

Fig. 10.1.5.

0 1 2 3 4 5
1 0 5 4 3 2
2 3 0 5 1 4
3 2 4 0 5 1
4 5 3 1 2 0
5 4 1 2 0 3

5 1 3 0 2 4
0 4 1 3 5 2
4 0 2 5 3 1
1 3 4 2 0 5
3 2 5 4 1 0
2 5 0 1 4 3

4 1 0 2 5 3
0 5 2 1 3 4
1 2 3 5 4 0
5 0 4 3 1 2
3 4 1 0 2 5
2 3 5 4 0 1

Fig. 10.1.6.

In Bedford and Whitaker(2000b), these authors used a computer and the
connection with equidistant permutation arrays to help them find all sets of
MQOLS of largest size for orders n ≤ 6. In particular, they obtained sets of
three MQOLS for each of the orders 4 and 6. In the case of the latter order, the
squares are not group-based. One triple of order 4 is that given in Figure 10.1.4
and one of order 6 is shown in Figure 10.1.6. This raises the question “What
is the upper bound Nq(n) on the number of squares in a set of MQOLS of
order n?”. It is well-known that the upper bound for a set of MOLS is n − 1
(see Theorem 5.1.2) but no similar argument can be used for MQOLS because
a permutation of symbols in any one member of the set may, and often does,
destroy its property of being quasi-orthogonal to the remaining members of the
set. In Bedford and Whitaker(2001), the authors reported their own efforts to
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solve this problem and also mentioned the very weak boundNq(n) ≤ (n−1)(n−2)
obtained earlier by Wild(1997). In particular, it is not known whether, for some
n, n > 6, Nq(n) > n− 1.

In a further paper, Bedford and Whitaker(2003), these authors discuss con-
nections between quasi-orthogonal latin squres and various other combinato-
rial designs. In particular, they consider connections with orthogonal Steiner
triple systems (see Section 2.3 and Section 5.4) and with Room squares (see
Section 6.4).

First, they point out and prove that there exists a skew Room square of side n
if and only if there exists a pair of quasi-orthogonal, symmetric and idempotent
latin squares of order n.

Definition. A Room square in normalized form is said to be skew if, when cell
(a, b) of the square is filled, cell (b, a) is empty.

In the construction of a Room square from a pair of Room quasigroups which
we described in Section 6.4, the multiplication tables of the quasigroups have the
properties of being symmetric and idempotent and if, when they are juxtaposed,
the ordered pair a, b occurs in row u and column v (and in row v and column u by
the symmetry), then the unordered pair u, v occurs as the entry in the cell (a, b)
of the Room square. When the juxtaposed squares are quasi-orthogonal, the
ordered pair b, a cannot occur because the ordered pair a, b has already occurred
twice and, consequently, when cell (a, b) of the square is filled, cell (b, a) is empty
as required.

Bedford andWhitaker define two Steiner triple systems to be quasi-orthogonal
if the Cayley tables of their associated Steiner quasigroups are quasi-orthogonal.
O’Shaugnessy’s construction of Room squares from orthogonal Steiner triple
systems is just a special case of the construction discussed above in which the
Room pair of quasigroups are both Steiner quasigroups and so are totally sym-
metric. Consequently, when the Steiner quasigroups are quasi-orthogonal, the
Room square is skew. In that case, the orthogonal Steiner triple systems, say S
and S′, have the additional property that when (a, b, u) and (c, d, v) both occur in
S and (a, b, v) and (c, d, w) occur in S′, then w 6= u. The above authors point out
that Dukes and E.Mendelsohn(1999) have introduced such pairs of Steiner triple
systems independently and have called them skew-orthogonal rather than quasi-
orthogonal. The latter authors have investigated for which orders such pairs of
systems exist (or, equivalently, for which orders pairs of quasi-orthogonal totally
symmetric idempotent latin squares exist).

Quite recently, Liang(201?) has studied standardized (defined as first row in
natural order) quasi-orthogonal latin squares and has shown that some classical
results of Parker, MacNeish and Sade can be modified to apply to such squares.

Since the pairs of latin squares which we have just been considering have all
been perpendicular pairs, this seems a convenient point at which to discuss such
squares more generally.
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If a symmetric latin square is of odd order, the elements of its main diag-
onal are necessarily all different (see Theorem 1.5.4) and so it can be made
idempotent. If a second idempotent square of the same odd order 2m + 1 is
juxtaposed, the number of distinct ordered pairs then arising can be (1 + 2 +
. . . + 2m) + (2m + 1) = (m + 1)(2m + 1) but not more. When the latter num-
ber is achieved, the squares are perpendicular. Symmetric squares of even order
cannot be made idempotent so the same definition is not valid. In Gross, Mullin
and Wallis(1973a,b), the maximum number ν(r) of idempotent symmetric latin
squares which can occur in a pairwise perpendicular set has been investigated.
The procedure used by these authors makes use of the connection with Room
squares mentioned above and in Section 6.4. See also Section 4.3.

Steiner quasigroups (defined in Section 2.3) also have multiplication tables
which are idempotent symmetric latin squares. Consequently, orthogonal Steiner
triple systems and their associated perpendicular Steiner quasigroups provide ex-
amples of perpendicular idempotent latin squares. Perpendicular commutative
quasigroups have been investigated from this point of view in O’Shaughnessy(1968),
N.S.Mendelsohn(1970), Lindner and N.S.Mendelsohn(1973), Mullin and Németh
(1969), Radó(1974) and Steedley(1974). (See also Section 5.4.)

(f) Mutually orthogonal partial latin squares

Two partial latin squares (not necessarily distinct) are orthogonal if, when
they are juxtaposed, no ordered pair of elements appears more than once. A
collection of partial latin squares is called r-compatible if each has r occupied
cells and these occupied cells are in corresponding positions.

It follows that, in particular, a partial latin square of order n which has only
n of its cells occupied is orthogonal to and n-compatible with itself. Thus, most
interest is in partial n×n latin squares which have more than n cells filled. This
concept, which is due to Abdel-Ghaffar(1996), arose in connection with coding
theory: namely, in minimizing the retrieval time for items belonging to a large
file of data stored on several disks.

LetMn(r) denote the maximum number of pairwise orthogonal r-compatible
partial Latin squares. For the above application, Abdel-Ghaffar was interested
in finding bounds for Mn(r) when r > n. He showed that, for n+ 1 ≤ r ≤ n2,

Mn(r) ≤ ⌊ r(r−1)
⌊r/n⌋(2r−n−n⌊r/n⌋)⌋ − 2

.
Note that this result implies in particular that Mn(n

2) ≤ n− 1. Abdel-Ghaffar
showed further that, for n + 1 ≤ r ≤ 2n, Mn(r) = ⌊r(r − 1)/2(r − n)⌋ − 2 and
he constructed squares which meet the latter bound.

In the coding theory application mentioned earlier, the above bounds on
Mn(r) give bounds on the best possible retrieval time.
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10.2 Power sets of latin squares

A set of MOLS is called a power set if the squares can be expressed in the
form L,L2, L3, . . . , Lr, where, if L1 = (α1, α2, . . . αn) and L2 = (β1, β2, . . . βn)
are two latin squares of order n with rows represented as permutations from
natural order of the symbols by αi and βi respectively (for i = 1, 2, . . . , n), we
define their product L1L2 to be the square (α1β1, α2β2, . . . αnβn).

This notion of multiplication was originally introduced by D.A.Norton(1952a)
in connection with row latin squares. In the same paper, Norton observed that
the members of a latin power set are mutually orthogonal latin squares.

Later, Dénes became intrigued by this concept. In Dénes(1997) he pointed
out that, if a group G is Rh-sequenceable (see[DK2] or Keedwell(1983a) for the
definition) then a latin power set of h members exists based on G. In the same
note and in an earlier joint paper published in 1994, he had conjectured that
a latin power set of at least two members exists for all orders n ≥ 4 except
n = 2 or 6. This was proved by Damm(2011) who also verified an earlier result
of Wanless(2001) to the effect that no latin power set of squares of order 10
containing more than two members exists. In the latter paper, Wanless also
disproved several other conjectures which had been proposed earlier in joint
papers involving Dénes.

In Dénes, Mullen and Suchower(1994), these authors proved that (i) if n is a
prime, there is a latin power set of n− 1 squares; (ii) if n is not a prime, then no
complete latin power set containing n− 1 squares based on a group exists; (iii)
if n ≥ 7 and n ≡ 0 or 1 (mod 3), then there exists a latin power set containing
at least two squares. They also made the conjecture mentioned above.

In Dénes and Owens(1999), examples of two special types of latin power set
were constructed. A latin square L = (α1, α2, . . . αn) is of D-type if each of the
permutations αi representing its rows has cycle type (1, n− 1). It is of C-type if
the permutation α1 representing its first row is the identity [that is, of type (1n)]
and if α2, α3, . . . , αn are all single cycles [that is, of type (n)]. Dénes and Owens
conjectured that, for all orders n ≥ 7, there exists a D-type latin square L not
based on a group such that L2 is also a latin square and they made a similar
conjecture for a C-type latin square. In his paper already mentioned, Wanless
(with computer aid) showed that the first conjecture is false for n = 7, 8 and 10
and the second for n = 7, 8, 9 and 10 despite the fact that Dénes and Owens had
constructed such a square of order 11. This leaves open the question as to what
happens in the case of larger values of n.

Finally, let us mention that Belyavskaya(2002) translated the concept of latin
power set into the equivalent concept for quasigroups which she called a quasi-
group power set. She was able to construct such sets, in particular one of three
members of order 21, using pairwise balanced designs and what she called com-
plete S-systems of quasigroups.
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Miscellaneous topics

The first two sections of this final chapter are devoted to the important sub-
jects of orthogonal arrays and direct products, both of which can be used to
construct sets of orthogonal latin squares of larger order from ones of smaller
orders. In the third section of the chapter, we explain the Kézdy-Snevily con-
jecture and the fact that its truth would imply the truth of both Brualdi’s and
Ryser’s conjectures. The next topics considered are the practical applications of
latin squares to coding, experimental designs and games tournaments. Lastly, we
introduce latin triangles and also we comment on the use of computers in the
solution of latin square problems.

11.1 Orthogonal arrays and latin squares

We mentioned in Section 5.6 that a set of h − 2 orthogonal latin squares is
equivalent to the existence of a particular type of orthogonal array. Our main
task in the present section is to confirm the validity of the last result by formally
demonstrating the equivalence between a set of h− 2 mutually orthogonal latin
squares of order n and an orthogonal array of h rows (or constraints), n2 columns
(n levels), strength 2, and index unity.

We shall begin with a definition.

Definition. Let A = ||aij || and B = ||bij || be two r × s matrices whose entries
are the numbers 1, 2, . . . , n, where r and s are integers such that rs = n2. The
matrices A and B are said to be n2-orthogonal (cf. Chapter 6 of [DK2]) if, for
every ordered pair (a, b) of the integers 1, 2, . . . , n, there is (exactly) one pair of
indices i, j such that aij = a and bij = b.

For example, the two n × n matrices R and C given in Figure 11.1.1 are
clearly n2-orthogonal.

R =













1 1 . . . 1
2 2 . . . 2
· · . . . ·
· · . . . ·
n n . . . n













C =













1 2 . . . n
1 2 . . . n
· · . . . ·
· · . . . ·
1 2 . . . n













Fig. 11.1.1.

Likewise, the two 1× n2 matrices
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R∗ = (1 1 . . . 1 2 2 . . . 2 3 3 . . . 3 . . . . . . . . . n n . . . n)
and

C∗ = (1 2 . . . n 1 2 . . . n 1 2 . . . n . . . . . . . . . 1 2 . . . n)
obtained from R and C respectively by writing their rows consecutively are n2-
orthogonal. Evidently, two n2-orthogonal n × n matrices which are such that
each of 1, 2, . . . , n occurs exactly once in each row and once in each column are
orthogonal latin squares.

Theorem 11.1.1 The existence of k − 2 mutually orthogonal latin squares of
order n implies and is implied by the existence of k mutually n2-orthogonal n×n
matrices whose entries are the numbers 1, 2, . . . , n.

Proof. It is clear from the definition that the n2-orthogonallty of two matrices
is unaffected by any permutation of the n2 cells of all the matrices simultaneously
or by relabelling all of the symbols 1, 2, . . . , n simultaneously as, say 1′, 2′, . . . , n′,
where 1′, 2′, . . . , n′ is some permutation of the symbols 1, 2, . . . , n.

Now suppose that k mutually n2-orthogonal matrices A1, A2, . . . , Ak are
given. SinceA1 andA2 are n

2-orthogonal, every ordered pair (i, j), i = 1, 2, . . . , n,
j = 1, 2, . . . , n, occurs just once among the n2 cells of these matrices. Conse-
quently, by a suitable permutation of these n2 cells, the two matrices can be
transformed simultaneously into the matrices R and C. If this rearrangement
of cells is carried out on all the matrices simultaneously, their n2-orthogonality
is not affected thereby, but the transforms of the matrices A3, A4, . . . , Ak are
necessarily latin squares: for, since the entries in each row of R are all the same,
the entries in each row of any matrix which is n2-orthogonal to R must be all
different. Likewise, since the entries in each column of C are all the same, the
entries in each column of any matrix which is n2-orthogonal to C must be all
different. Thus, the transforms of the matrices A3, A4, . . . , Ak are a set of k − 2
mutually orthogonal latin squares.

Conversely, suppose that a set L1, L2, . . . , Lk−2 of k − 2 mutually orthogo-
nal latin squares is given. Since the entries in each row of the square Li (i =
1, 2, . . . , k − 2) are all different, Li is an n× n matrix which is n2-orthogonal to
the matrix R. Similarly, since the entries in each column of Li are all different,
Li is n

2-orthogonal to the matrix C. Thus, R,C,L1, L2, . . . , Lk−2 are a set of k
mutually n2-orthogonal n× n matrices. ⊓⊔

Corollary. The existence of k − 2 mutually orthogonal latin squares of order
n implies and is implied by the existence of a k × n2 matrix S whose entries
are the numbers 1, 2, . . . , n and such that each two rows of S are n2-orthogonal
submatrices.

Proof. The corollary follows by observing that, if the rows of each of a set of
k mutually n2-orthogonal n×n matrices are written consecutively so as to form
a 1× n2 row matrix (as, for example, when the matrix R is transformed to R∗),
the set of matrices, say R,C,L1, L2, . . . , Lk−2 becomes equivalent to a k × n2

matrix of the kind described, with R∗ and C∗ as its first two rows. ⊓⊔
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Definition. A k × n2 matrix S of the type described in the corollary is called
an orthogonal array of k constraints, n levels, strength 2, and index 1, as al-
ready mentioned in Section 5.6. In the present section, we shall denote such an
orthogonal array by the symbol OA(n, k).

Theorem 11.1.2 If there exists both an OA(n1, s) and an OA(n2, s) then an
OA(n1n2, s) can be constructed.

Proof. The proof we give here provides an actual construction for anOA(n1n2,
s) whose entries are the integers 1, 2, . . . , n1n2 from an OA(n1, s) with entries
1, 2, . . . , n1 and an OA(n2, s) with entries 1, 2, . . . , n2. Let OA(n1, s) be the ma-
trix A = ||aij ||, i = l, 2, . . . , s, j = 1, 2, . . . , n2

1, and let OA(n2, s) be the matrix
B = ||bij ||, i = l, 2, . . . , s, j = 1, 2, . . . , n22. Form a new matrix C = ||cir||, where,
for r = p + n2

1(q − 1) with 1 ≤ p ≤ n2
1, 1 ≤ q ≤ n2

2, cir = aip + n1(biq − 1). We
shall show that C is an OA(n1n2, s).

In the first place, since 1 ≤ aip ≤ n1 and 0 ≤ biq − 1 ≤ n2 − 1, each cir is
one of the integers 1, 2, . . . , n1n2. Secondly, we easily show that, for any choice
of k and l, the kth and lth rows of C are (n1n2)

2-orthogonal matrices. Let u
and v be any two integers between 1 and n1n2. Then u = u1 + n1(u2 − 1) and
v = v1 + n1(v2 − 1) for suitable integers u1, v1 between 1 and n1 and u2, v2
between 1 and n2. Since the kth and lth rows of A are n2

1-orthogonal matrices,
there exists one column, say the pth, whose entries akp and alp are respectively
equal to u1 and v1. Similarly, for a suitable integer q, we have bkq = u2 and
blq = v2. But then, ckr = u and cir = v, where r = p+ n2

1(q− 1), and so the kth
and lth rows of C are (n1n2)

2-orthogonal. This completes the proof. ⊓⊔

Corollary. If there exists a set of t MOLS of order n1 and a set of t MOLS
of order n2, then there exists a set of t MOLS of order n1n2.

Proof. The corollary is an immediate consequence of the fact that the exis-
tence of a set of t MOLS of order n implies and is implied by the existence of an
OA(n, t+ 2). ⊓⊔

As an example, we shall outline the construction of a pair of orthogonal latin
squares of order 15 (or equivalently, an OA(15, 4)) from the pairs of orthogonal
latin squares of orders 3 and 5 given in Figure 11.1.2, using the method given in
our proof above.

We first form sets of four 32-orthogonal 3×3 matrices and 52-orthogonal 5×5
matrices by appending the matrices R and C of appropriate size to the squares
given. Then, writing the rows of each matrix in a single row, we get an OA(3, 4)
and an OA(5, 4) as in Figure 11.1.3.

From these, we derive an OA(15, 4) of 255 columns, and, of these columns,
we exhibit only the 1st to the 18th and the 37th to 54th in Figure 11.1.4.

We reorder these 225 columns in such a way that the first two rows of the
matrix represent the rows, written consecutively, of two 15×15 matrices R and C
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1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

1 2 3 4 5
4 3 1 5 2
5 1 4 2 3
2 4 5 3 1
3 5 2 1 4

1 2 3 4 5
3 5 2 1 4
2 4 5 3 1
5 1 4 2 3
4 3 1 5 2

Fig. 11.1.2.

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2
1 2 3 3 1 2 2 3 1

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 2 3 4 5 4 3 1 5 2 5 1 4 2 3 2 4 5 3 1 3 5 2 1 4
1 2 3 4 5 3 5 2 1 4 2 4 5 3 1 5 1 4 2 3 4 3 1 5 2

Fig. 11.1.3.

and the remaining two rows then represent, in order, the rows of the two desired
orthogonal latin squares of order 15. Hence the latter can be written down.

The result stated in Theorem 11.1.2 has probably been more used than any
other in constructions of sets of MOLS. In particular, it leads at once to a
property of the function N(n) which was first pointed out by MacNeish(1922):
namely, N(pr11 p

r2
2 . . . prss ) ≥ mini(p

ri
i − 1)

The theorem asserts that there exist at least t = min(prii −1) MOLS of order
n = pr11 p

r2
2 . . . prss . Since we know by Theorem 5.2.3 that there are at least prii −1

MOLS of order prii for each i, i = 1, 2, . . . , r, the result follows by repeated

1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 . . . . . .
1 2 3 1 2 3 1 2 3 4 5 6 4 5 6 4 5 6 . . . . . .
1 2 3 2 3 1 3 1 2 4 5 6 5 6 4 6 4 5 . . . . . .
1 2 3 3 1 2 2 3 1 4 5 6 6 4 5 5 6 4 . . . . . .

. . . . . . 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 . . . . . .

. . . . . . 13 14 15 13 14 15 13 14 15 1 2 3 1 2 3 1 2 3 . . . . . .

. . . . . . 13 14 15 14 15 13 15 13 14 10 11 12 11 12 10 12 10 11 . . . . . .

. . . . . . 13 14 15 15 13 14 14 15 13 7 8 9 9 7 8 8 9 7 . . . . . .

Fig. 11.1.4.
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application of the corollary to Theorem 11.1.2. For an alternative proof, see
Section 11.2.

MacNeish’s theorem gives a lower bound for N(n). As already mentioned in
Section 5.3, MacNeish himself conjectured that this was also an upper bound
because, for example, this is certainly the case when n itself is a prime power.
Further evidence for this conjecture seemed to have been provided when, some
twenty years later, Mann(1942) proved Theorem 7.2.2.

The MacNeish conjecture was not disproved until 1959 when Parker showed
(as a counter-example) that there exists a set of at least four mutually orthogonal
latin squares of order 21. See Section 5.3 for the further history of this topic.

We end this brief section by mentioning that J.W.Brown(1972) has used the
medium of orthogonal arrays to describe an extension of Theorem 5.1.6 to the
special case of a triple of MOLS of order ten.

11.2 The direct product and singular direct product of quasigroups

A much-used means of obtaining pairs (or larger sets) of orthogonal latin
squares from given sets of MOLS of smaller orders is by constructing the direct
product or generalized direct product of the quasigroups which are defined by
the squares of the given orders. We have already mentioned this approach earlier
in this book. For example, MacNeish’s theorem (Section 5.3 and Section 11.1)
may be translated into the language of quasigroups by means of the concept of
direct product.

We have the following theorem:

Theorem 11.2.1 Let (G, ·) and (G,⊙), (H,+) and (H,⊕) be pairs of orthogonal
quasigroups (Section 5.3) and let us define the operations (×) and (⊗) on the
cartesian product F = G×H by the statements (x1, y1)×(x2, y2) = (x1·x2, y1+y2)
and (x1, y1) ⊗ (x2, y2) = (x1 ⊙ x2, y1 ⊕ y2), where x1, x2 ∈ G and y1, y2 ∈ H.
Then the groupoids (F,×) and (F,⊗) are quasigroups and are orthogonal.

Proof. Let us show first that the groupoid (F,×) is a quasigroup. The proof
that (F,⊗) is also a quasigroup is similar.

Note firstly that the equation (x1, y1) × (x2, y2) = (x1, y1) × (x3, y3) can be
written (x1 · x2, y1 + y2) = (x1 · x3, y1 + y3) and is equivalent to the equations
x1 · x2 = x1 · x3 and y1 + y2 = y1 + y3, which imply x2 = x3 and y2 = y3, since
(G, ·) and (H,+) are quasigroups. Therefore, (x2, y2) = (x3, y3) from which we
conclude that the equation (x1, y1) × (x2, y2) = (X,Y ) is uniquely soluble for
(x2, y2). It is equally easy to show that it is uniquely soluble for (x1, y1) and so
(F,×) is a quasigroup.

To show the orthogonality of (F,×) and (F,⊗) it is necessary and sufficient
to show that (x1, y1) × (x2, y2) = (x3, y3) × (x4, y4) and (x1, y1) ⊗ (x2, y2) =
(x3, y3) ⊗ (x4, y4) together imply (x1, y1) = (x3, y3) and (x2, y2) = (x4, y4). The
equations can be written (x1 ·x2, y1+y2) = (x3 ·x4, y3+y4) and (x1⊙x2, y1⊕y2) =
(x3 ⊙x4, y3 ⊕ y4). That is, x1 · x2 = x3 · x4, x1 ⊙x2 = x3 ⊙ x4, y1 + y2 = y3 + y4,
y1 ⊕ y2 = y3 ⊕ y4. The first two of the latter equations imply x1 = x3 and
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x2 = x4 by the orthogonality of the quasigroups (G, ·) and (G,⊙) and the last
two similarly imply y1 = y3 and y2 = y4. The result now follows. ⊓⊔

If G has n1 elements and H has n2 elements, then F has n1n2 elements.
If there exist N(n) mutually orthogonal latin squares of order n, then there
exist N(n) mutually orthogonal quasigroups of that order. Hence, by form-
ing the direct products of min[N(n1), N(n2)] pairs of quasigroups of orders
n1 and n2 (those of the same order n1 or n2 being orthogonal), we can ob-
tain an equal number of mutually orthogonal quasigroups of order n1n2. Thus,
N(n) ≥ min[N(n1), N(n2)], as we obtained in Section 11.1 by an argument in

terms of orthogonal arrays. In particular, if n =
∏r
i=1 p

αi

i where the pi are dis-

tinct primes, we have N(n) ≥ minri=1(p
αi

i − 1), which is MacNeish’s theorem.

By use of a generalized form of the above direct product method which he
called “produit direct singulier”, Sade has shown how a latin square of order
m + lk may be constructed from given latin squares Lg, Lr and Lh, where Lg
is a latin square of order m + l which contains a latin subsquare of order m
and Lr, Lh have orders l, k respectively. Taking advantage of the fact that the
direct product of two (or more) pairs of orthogonal quasigroups is again a pair
of orthogonal quasigroups, as proved above, he has thence been able to obtain
sets of orthogonal latin squares of order m+ lk in cases when the values of the
integers m, l, k are suitable. In particular, the method provides counter-examples
to the Euler conjecture. For the details, see Sade(1960a). We shall give only a
summary of Sade’s results.

Let (G, ·) be a quasigroup of order n = m+ l which contains a subquasigroup
(Q, ·) of order m and let (R,⊗) be a quasigroup of order l defined on the set
R = G − Q. Let (H,⊕) be an idempotent quasigroup of order k. The set T =
Q∪ (R×H) is then of order m+ lk and we define an operation (◦) on it in such
a way that the structure (T, ◦) is a quasigroup, called by Sade the singular direct
product of the four given quasigroups. [Note that T consists of elements qu ∈ Q
and ordered pairs (rv, hw) ∈ (R ×H).]

The operation (◦) is defined by the following five statements:
(i) for all q1, q2 ∈ Q, q1 ◦ q2 = q1q2;
(ii) for all q ∈ Q, r ∈ R, h ∈ H, q ◦ (r, h) = (qr, h) and (r, h) ◦ q = (rq, h);
(iii) for r1, r2 ∈ R, h1, h2 ∈ H, h1 6= h2, (r1, h1) ◦ (r2, h2) = (r1 ⊗ r2, h1 ⊕ h2);
(iv) for r1, r2 ∈ R with r1r2 ∈ R, and for h ∈ H (r1, h) ◦ (r2, h) = (r1r2, h);
(v) for r1, r2 ∈ R with r1r2 ∈ Q, and for h ∈ H, (r1, h) ◦ (r2, h) = r1r2.

By way of explanation of these definitions, let us remark firstly that, whereas
r1 ⊗ r2 ∈ R for all choices of r1, r2 ∈ R, we cannot make the same statement
about the products r1r2. We have r1r2 ∈ G but, in general, some of the products
will be in Q. However, as may clearly be seen from Figure 11.2.1, we always have
qr ∈ R and rq ∈ R whatever the choices of q ∈ Q and r ∈ R: for, since Q is a
quasigroup and since each element of Q is to occur exactly once in each row and
each column of the multiplication table of G, no element of Q can occur in either
of the subsquares A or B shown in Figure 11.2.1. Again from Figure 11.2.1, we
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(·) q1 q2 . . . qm r1 r2 . . . rl
q1 · · . . . · · · . . . ·
q2 · · . . . · · · . . . ·
· · · . . . · · · . . . ·
· · · Q · · · A ·
· · · . . . · · · . . . ·
qm · · . . . · · · . . . ·
r1 · · . . . · · · . . . ·
r2 · · . . . · · · . . . ·
· · · . . . · · · . . . ·
· · · B · · · C ·
· · · . . . · · · . . . ·
rl · · . . . · · · . . . ·

Fig. 11.2.1.

see that the ordered pairs (qri, h) and (rri, h) for values of r such that rri ∈ R
just cover the set R×{h} as q and r vary through the sets Q and R respectively
with ri ∈ R kept fixed. [We have qri /∈ Q for all q ∈ Q. But gri for g ∈ G covers
G, so the products qri (with q ∈ Q) together with the products rri for which
rri /∈ Q together cover G−Q = R.] The same is true of the ordered pairs (riq, h)
and (rir, h).

We are now able to prove, as in Sade(1960a),

Theorem 11.2.2 The groupoid (T, ◦) defined above is a quasigroup.

Theorem 11.2.3 Let (G, ·) and (G,⊙) be orthogonal quasigroups defined on
the set G of n = m + l elements and suppose that these quasigroups contain
subquasigroups (Q, ·) and (Q,⊙) respectively of order m which are themselves
orthogonal. Let (R,×) and (R,⊗) be orthogonal quasigroups of order l defined
on the set R = G − Q and let (H,+) and (H,⊕) be orthogonal idempotent
quasigroups of order k. Then, if T = Q ∪ (R × H), the singular direct product
quasigroups (T, ◦) and (T, •) (where • stands for the operation ◦ circled) are
themselves orthogonal.

The proofs of both the theorems just stated involve consideration of many
cases and Sade does not give detailed proofs. From them, we may deduce the
following one.

Theorem 11.2.4 If r mutually orthogonal latin squares of order n = m + l,
each containing a latin subsquare of order m such that the r latin subsquares
are also mutually orthogonal, are given and if there exist s mutually orthogonal
latin squares of order l and t mutually orthogonal latin squares of order k, then
there exist at least u = min(r, s, t− 1) mutually orthogonal latin squares of order
m+ lk.
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Proof. Each of the r latin squares may be used to define the multiplication
table of a quasigroup (G, ·) of order n which contains a subquasigroup (Q, ·) of
order m, and each of the s latin squares of order l may be used to specify the
multiplication table of a quasigroup (R,⊗) defined on the set R = G−Q. Also,
by Theorem 5.4.4, the t mutually orthogonal latin squares of order k give rise
to t − 1 idempotent quasigroups of order k, all defined on the same subset H.
Thence, using Theorem 11.2.2 and Theorem 11.2.3, we can construct u mutually
orthogonal quasigroups (and latin squares) of order m + lk on the set T =
Q ∪ (R ×H). ⊓⊔

By putting m = 1 in the above theorem, we may deduce that
N(1 + lk) ≥ min[N(1 + l), N(l), N(k)− 1].

It follows that
N(22) = N(1 + 3.7) ≥ min[N(4), N (3), N(7)− 1] = min(3, 2, 5) = 2,

so there exist at least two orthogonal latin squares of order 22 which is a counter-
example to Euler’s conjecture. (See Section 5.1.)

Lindner has made use of the singular direct product to obtain a number of
interesting results, and he has also generalized the construction in several ways.
In his earliest paper on the subject, Lindner(1971d), he has proved that the
singular direct product preserves the Stein identity x(xy) = yx [identity (11) of
Section 2.1]. As was pointed out on page 184, quasigroups which satisfy the Stein
identity (called Stein quasigroups) are orthogonal to their own transposes (that
is, they are anti-abelian) and, using this fact, Lindner has constructed several
new classes of quasigroups having this property. In Lindner(1971g,1972a,b), he
has investigated the general question of what kinds of quasigroup identity are
preserved by the singular direct product. In two further papers, Lindner(1971e,f),
he has generalized the singular direct product in two different ways. For more
details, see [DK1] or the original papers. In another paper, Lindner(1971c), he
has used a third generalization of the singular direct product which combines the
two generalizations just mentioned to construct a large number of latin squares
each of which is orthogonal to a given latin square L and no two of which are
isomorphic.

Yamamoto’s construction, mentioned on page 287, may also be regarded as
a generalized direct product.

Versions of the singular direct product have been used for (i) constructing
pairs of perpendicular Steiner quasigroups [Lindner and N.S.Mendelsohn(1973)];
(ii) constructing so-called self-orthogonal latin squares (see Section 5.5) [Crampin
and Hilton(1975a,b)]; (iii) constructing sets of orthogonal diagonal latin squares
(see Section 6.1) [Lindner(1973), Crampin and Hilton(1975b), Hilton(1975b,c),
Heinrich and Hilton(1983)]; (iv) constructing skew Room squares [Mullin(1980)].

In more recent years, analogues of the singular direct product have been
derived for Steiner triple systems [Ling, Colbourn, Grannell and Griggs(2000),
Dinitz and Stinson(2002)] and Steiner quadruple systems [Hartman(1981), Ji and
Zhu(2003)]. Also, quite recently Liang(201?) has extended the original singular
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direct product construction of Sade to make it apply to standardized quasi-
orthogonal latin squares.

11.3 The Kézdy-Snevily conjecture

A conjecture (which we shall call the K-S conjecture, see below) concerning
covering of the elements of a metric space by spheres would, if true, prove both
the conjecture that every latin square of odd order has a transversal (attributed
to Ryser) and the conjecture that every latin square of order n has a partial
transversal of length at least n− 1 (attributed to Brualdi).

Let Sn denote the symmetric group formed by the n! permutations of n
elements, say 1, 2, . . . , n. Regard these as the vertices of a metric space where
the distance between any two permutations is their Hamming distance: that is,
the number of places in which they differ.

If a subset T of permutations of Sn is given, its covering radius cr(T ) is the
smallest r such that Sn is covered by the spheres of radius r whose centres are
the permutations of T .

Suppose that T is a sharply transitive subset of permutations of Sn. Then
|T | = n since exactly one member of T maps a selected integer i to the inte-
ger j for each j ∈ {1, 2, . . . , n}. The permutations which define the rows of a
latin square L as re-arrangements from natural order form such a subset T and,
conversely, every such sharply transitive subset defines a latin square L.

Suppose further that ρ ∈ Sn has distance n − 1 from every member of T .
Then, for each i ∈ {1, 2, . . . , n}, there is exactly one member τ ∈ T such that
iτ = iρ = k say, because τ and ρ agree in only one place. Also, because T is
sharply transitive, i is different for each τ ∈ T . Each i defines a column of L and
each k defines an entry in that column. These entries form a transversal of L
because they are all different and are in different rows and columns of L.

Example. In Figure 11.3.1, let the permutations which define the rows of L be
denoted by τh for h = 1, 2, 3, 4. Each of the permutations ρ and ρ′ has distance
three from the permutations of T and defines a transversal of L of which the
elements are indicated by suffices a and b respectively.

L =

1a 2 3 4b
2 1b 4 3a
3b 4a 1 2
4 3 2ab 1

ρ =

(

1 2 3 4
1 4 2 3

)

ρ′ =

(

1 2 3 4
3 1 2 4

)

Fig. 11.3.1.

In Cameron and Wanless(2005), the following theorem is proved.
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Theorem 11.3.1 Let T be a sharply transitive subset of Sn. Then T has cov-
ering radius at most n − 1 with equality if and only if the corresponding latin
square has a transversal.

Proof. For any position i, any permutation of Sn must agree at i with some
member of T , so the covering radius cannot exceed n−1. If equality holds, let ρ be
a permutation at distnce n−1 from every permutation of T .1 Such a permutation
defines a transversal of L as explained above. Conversely, a transversal of L gives
rise to a permutation at distance n− 1 from the permutations of T . ⊓⊔

Corollary. Let T be a sharply transitive subset of Sn such that the correspond-
ing latin square has no transversal. Then every permutation of Sn has distance
less than n− 1 from some member of T and so cr(T ) < n− 1.

Let f(n, s) denote the smallest cardinal for which there is a subset T of
permutations of Sn such that the spheres with centres at the members of T and
radius n− s cover Sn. For example, f(n, n) = n! since each sphere of zero radius
covers only the permutation which is its centre. Because each two permutations
of Sn differ in at least two places, each sphere of radius one likewise covers only
the permutation which is its centre, so we also have f(n, n− 1) = n!. Since any
permutation of Sn differs in at most n places from a given permutation ρ, a
single sphere of radius n and centre at ρ covers Sn: that is, f(n, 0) = 1.

Cameron and Wanless(2005) have shown that f(n, 1) = ⌊n/2⌋ + 1 though
they attribute this result to A.E. Kézdy and H.S. Snevily. The value of f(n, 2) is
not known but the authors just mentioned have conjectured that f(n, 2) > n if
n is odd and f(n, 2) = n if n is even. For more information about this function
and the Kézdy-Snevily conjecture, see Cameron and Wanless(2005) and Wanless
and Zhang(2013).

Suppose that the conjecture f(n, 2) > n when n is odd turns out to be true.
Then, for every set of n spheres of radius n− 2 in the metric space Sn, there is
at least one permutation ρ which is uncovered. So ρ has distance n−1 or greater
from the centres of all the spheres. In the case when the centres of the spheres are
the permutations which define the rows of a latin square L, they form a sharply
transitive set T and so no permutation has distance more than n− 1 from any
one of them. So there exists a permutation ρ whose distance is exactly n − 1
from each of the n permutations of L. Hence, ρ defines a transversal of L. Thus,
validity of the K-S conjecture when n is odd would prove Ryser’s conjecture.

Validity of the same conjecture would also prove Brualdi’s conjecture.

Proof. Suppose on the contrary that that there is an n × n latin square L
which has no partial transversal of n− 1 cells and suppose that its rows, when
regarded as a sharply transitive set of permutations, form a subset T of Sn as
before. Then, any permutation of Sn intersects at most n− 2 of the rows of L in

1If none exists, every permutation of Sn has distance less than n− 1 from some member of
T and so the covering radius can be reduced.
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exactly one cell. Such a permutation intersects one of the remaining rows thrice
and the other not at all or else intersects both of the remaining rows twice.

To see this, consider the following two examples.
In the first example (Figure 11.3.2), the latin square shown has a partial

transversal (indicated by the entries with suffix a) of length five which cannot
be extended. The missing entry u in the permutation ρ is necessarily 1 and so ρ
intersects the second row of L twice (2 → 3, 6 → 1) and the last row not at all.

L =

1 2 3 4a 5 6
2 3a 4 5 6 1
3 4 5a 6 1 2
4 5 6 1 2a 3
5 6 1 2 3 4
6a 1 2 3 4 5

ρ =

(

1 2 3 4 5 6
6 3 5 4 2 u

)

Fig. 11.3.2.

In the second example (Figure 11.3.3), the latin square shown has a partial
transversal (indicated by the entries with suffix b) of length four which cannot
be extended. The missing entries u and v in the permutation ρ are necessarily 1
and 2 and so ρ intersects the third and sixth rows of L twice if u = 1 and v = 2
(2 → 1, 3 → 2) or the first and second rows twice if u = 2 and v = 1 (2 → 2,
3 → 1) and the remaining rows not at all. Clearly, there may also be examples
in which ρ intersects one row thrice and another not at all.

L =

1 2 3 4b 5 6
2 3 1 5 6b 4
6 4 2 3 1 5b
4 5 6 1 2 3
5 6 4 2 3 1
3b 1 5 6 4 2

ρ =

(

1 2 3 4 5 6
3 u v 4 6 5

)

Fig. 11.3.3.

We return to our proof.
Let us now append an additional symbol, say the symbol n + 1, to each of

the rows of L to give an n× (n+1) rectangle L′ whose rows may be regarded as
forming a set T ′ of cardinal n of permutations of Sn+1. We shall show that every

 Miscellaneous topics



316

permutation σ′ ∈ Sn+1 intersects at least one member of T ′ twice (or more) and
so has distance at most (n+ 1)− 2 = n− 1 from some member of T ′.

Suppose that the conjecture f(n+ 1, 2) ≥ n+ 1 (for n either odd or even) is
true. Then there is no subset T ∗ of permutations of Sn+1 of cardinal n such that
the spheres with centres at the permutations of T ∗ and radius (n+ 1)− 2 cover
Sn+1. But this contradicts the fact (about to be proved) that every permutation
σ′ ∈ Sn+1 has distance at most n − 1 from some member of T ′. Consequently,
no latin square of order n has a partial transversal which cannot be extended to
one of n− 1 cells.

If (n+1)σ′ = n+1, then certainly σ′ intersects some member of T ′ twice since
every permutation of Sn intersects some row of L at least once (in view of the
fact that the rows of L form a sharply transitive subset of Sn). Suppose therefore
that (n+1)σ′ = s < n+1 and that tσ′ = n+1. Let σ be the permutation of Sn
such that wσ = wσ′ for all w 6= t and tσ = s.

If σ intersects some row of L in three or more places, then σ′ intersects some
row of L′ in two or more places as we wished to prove. If not, then σ intersects
each of two rows of L (say the rows r1 and r2 represented by the permutations
ρ1 and ρ2) in two places. But tρi = s for at most one of i = 1, 2, say i = 2. Then
σ′ intersects the row r1 of L′ in two places, which completes the proof.

Remark concerning the first example for the KS-conjecture.
Since any permutation which intersects a particular row just once defines a

partial transversal which includes the entry intersected, any permutation of S6

other than ρ must intersect at most five rows just once. In that case, It would
also intersect the remaining row just once and L would have a transversal. We
conclude that no permutation can inersect more than four (= n−2) rows exactly
once.

11.4 Practical applications of latin squares

(a) Latin squares and coding

Orthogonal latin squares have been used in coding theory for a number of
different purposes: among others for designing error-detecting and correcting
codes and in authentication. Early work on this topic, in particular that of Ham-
ming(1950) and Golomb and Posner(1964), was described in [DK1]. Also Chapter
9 of [DK2] gave an account of developments in which latin squares play a role
up to 1990. The many aspects of both coding theory and cryptography have
now become the subject matter of several books so it seemed inappropriate to
attempt a further update here. Instead, the reader is invited to look at Chapter
3 of Joyner and Kim(2011) for some unsolved problems.

(b) Latin squares as experimental designs

Since the 1930s, when the idea of doing so was pioneered by R.A. Fisher,
latin squares and other related designs have been much used in the design of
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statistical experiments whose subsequent interpretation is to be effected with
the aid of the procedure known as the “analysis of variance”.2 We have already
referred to such statistical applications in several earlier chapters of the present
book: notably in Section 2.6, Section 5.6 and Section 6.4, where the uses of
complete latin squares, of latin cubes and hypercubes, and of Room designs for
this purpose were mentioned. By means of an example, we shall explain next the
use of orthogonal latin squares for the same purpose.

Suppose that it is required to test the effect of five different treatments on
yarn. Five looms are available for spinning the yarn and it is believed that both
the loom used and the operator employed may affect the final texture of the spun
yarn. If time were of no account, it would be desirable ideally to test the effect
of every treatment with every operator and on every loom. However, by making
use of the statistical technique of analysis of variance, a satisfactory test result
can be obtained provided that each type of treated yarn is spun once on each
loom and also once by each operator. If five operators are employed, the neces-
sary set of twenty-five experiments can be specified by means of the 5× 5 latin
square illustrated in the left-hand diagram of Figure 11.4.1. Here, the columns
01, 02, 03, 04, 05 specify the operator and the rows L1, L2, L3, L4, L5 specify which
loom is to be used for the particular experiment. The entries Y0, Y1, Y2, Y3, Y4 in
the body of the square indicate which type of treated yarn is to be used. (Usu-
ally, one sample of yarn, called the control, is left untreated and the suffix 0
is used for this type of treatment.) Thus, in the first experiment, yarn Y1 is to
be spun by operator 01, on loom L1. In another experiment, yarn Y3 is to be
spun by operator 02 on loom L4. If it were also the case that the efficiency of
the loom operators varied with the day of the week (five weekdays), this extra
source of variation could be allowed for by using a 5× 5 latin square which was
orthogonal to the first to specify the day of the week on which each experiment
was to be performed. Thus, in the right-hand square illustrated in Figure 11.4.1,
the integers 0, 1, 2, 3, 4 are used to specify the five days of a week. Then each
loom, each operator, and each type of treated yarn are associated with each day
of the week just once.

O1 O2 O3 O4 O5

L1 Y1 Y4 Y0 Y2 Y3
L2 Y3 Y1 Y2 Y4 Y0
L3 Y2 Y0 Y1 Y3 Y4
L4 Y0 Y3 Y4 Y1 Y2
L5 Y4 Y2 Y3 Y0 Y1

1 2 4 3 0
3 4 1 0 2
2 3 0 4 1
0 1 3 2 4
4 0 2 1 3

Fig. 11.4.1.

The use of a latin square design for an experiment of the above kind is

2A few much earlier examples of this use exist but systematic use dates from the publication
of the first edition of Fisher(1966).
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somewhat restrictive. It might happen, for example, that only four operators
were available. This situation could be accommodated by using the same latin
square with its last column deleted. It would still be the case that each type of
yarn would be spun by each of the four remaining operators but now only four of
the five different yarns would be spun on any one of the looms. A development of
this observation gives rise to the concept of a balanced incomplete block design.

Definition. A balanced incomplete block design comprises a set of v varieties
(or treatments) arranged in b blocks (or rows) in such a way that (i) each block
has the same number k of treatments (k < v), no treatment occurring twice in
the same block; (ii) each treatment occurs in exactly r (= λ1) blocks; (iii) each
pair of treatments occur together in exactly λ(= λ2) blocks.

Balanced incomplete block designs were first introduced by F. Yates in Yates
(1936). An example of such a design is given by the latin square used above when
the last column is deleted. This has parameters b = 5, v = 5, k = 4, r = 4, λ = 3.

A design for which property (iii) is satisfied is called pairwise balanced. More
generally, if each set of t treatments occurs in exactly λt blocks, the design is
called t-wise balanced or, more briefly, a t-design. A very well-known result is the
following:

Theorem 11.4.1 The parameters b, v, r, k, λ of a (pairwise) balanced incomplete
block design (usually written briefly as a BIBD) satisfy the relations bk = vr,
λ(v − 1) = r(k − 1), r > λ, b ≥ v.

Proof. Each side of the first relation is an expression for the total number
of treatments to be found in all the blocks. Each side of the second relation is
an expression for the total number of treatments (other than vi) which occur
in the various blocks which contain an assigned treatment vi. Next, if r > λ
were untrue, then with any given treatment every other treatment would occur
in every block, contradicting k < v. Finally, to show that b ≥ v it is easiest to
make use of the incidence matrix of the design. Let a BIBD with parameters
b, v, r, k, λ be given and let nij = 1 or 0 according as the ith treatment vi does
or does not occur in the jth block. The v× b matrix so obtained is the incidence
matrix of the design. Clearly,

∑b
j=1 n

2
ij = r and

∑b
j=1 nijnhj = λ (h 6= i)

by definition of r and λ. If possible, let b < v and consider the v × v matrix

N =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n11 n12 . . . n1b 0 0 . . . 0
n21 n22 . . . n2b 0 0 . . . 0
· · . . . · . . . · . . . ·
· · . . . · . . . · . . . ·
nv1 nv2 . . . nvb 0 0 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where the last v− b columns consist of zeros. It follows from the relations above
that
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NNT =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r λ λ . . . λ
λ r λ . . . λ
· · · . . . ·
· · · . . . ·
λ λ λ . . . r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and so

det(NNT ) = [r + λ(v − 1)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
λ r λ . . . λ
· · · . . . ·
· · · . . . ·
λ λ λ . . . r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

by addition of rows. Then, subtracting the first column from each other one, we
get

det(NNT ) = [r + λ(v − 1)](r − λ)v−1 = kr(r − λ)v−1

since λ(v − 1) = r(k − 1). But det(NNT ) = (detN)(detNT ) = 0 which implies
that r = λ. This contradiction shows that the supposition k < v is impossible.
Therefore, b ≥ v as required. ⊓⊔

A BIBD for which b = v and consequently r = k is said to be symmetric
and such a design may also be referred to as a (v, k, λ)-design.

Two obvious problems concerning BIBD’s are to provide methods of con-
structing them and to determine for what values of the parameters such designs
exist. The second problem is not completely solved. As regards the first, many
methods have been devised. Here, we mention that a symmetric BIBD is a finite
projective plane or a complete set of MOLS. (See Section 5.2.) Also, a BIBD
with k = 3 and λ = 1 is a Steiner triple system. (See Section 2.3.)

Chapter 10 of [DK2] is devoted to a quite detailed explanation of the appro-
priateness of the use of latin squares and other block designs in the design of
experiments of various kinds and to an account of the analysis of the results, so
we shall not repeat that account here.

An earlier account of the same topic is that of Hedayat and Shrikhande(1971).

(c) Designing games tounaments with the aid of latin squares

In Chapter 6, we discussed Room squares and their use for scheduling Bridge
tournaments and we mentioned the related concept of a referee square first used
for scheduling Rugby, which we shall now elaborate.

Such squares were first discussed by I. Anderson, Hamilton and Hilton in an
unpublished manuscript.

Suppose that n = 2m+ 1 ≥ 3 teams wish to compete in a league, each team
playing every other team exactly once. The m(2m+1) games required are to be
scheduled for 2m+ 1 days with m games on each day. Each team will have just
one free day if it plays only once a day. It will be convenient if the schedule is
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such that the ith team has the ith day as its free day. Suppose further that each
team selects/nominates a referee from among its own members or elsewhere.

If we number the days, the teams and the referees by 1, 2, . . . , 2m+1 (so that
referee i is the one selected by team i), is it possible to arrange the fixtures in
such a way that (i) each referee referees each other team exactly once; (ii) no
referee referees his own team; (iii) no referee has to referee two games on the
same day; and (iv) the referee’s team plays on days when he is free to watch?
Conditions (i) and (ii) imply that each referee referees m games.

In papers by Liaw(1998) and Dinitz and Ling(2001), it is proved that the
answer is YES for all m > 0 except m = 2 and the solution given by these
authors is such that referee i is always in action on his team’s rest day: that
is, on day i. A solution of the latter kind gives rise to the concept of a referee
square.

Definition. A referee square of order 2m+ 1 is a (2m+ 1)× (2m+ 1) array R
using symbols from the set S = {1, 2, . . . , 2m+ 1} such that
(1) each cell is either empty or contains an unordered pair of distinct symbols
from S;
(2) each i ∈ S occurs precisely once in each row except the ith and precisely
once in each column except the ith and does not occur in the ith row or the ith
column;
(3) each unordered pair of distinct elements from S occurs in exactly one cell of
R; and
(4) the main diagonal cells are non-empty.

Such a square provides a solution to our scheduling problem when teams a
and b play with referee i on day j if and only if {a, b} occurs in cell (i, j). An
example for m = 3 taken from Liaw(1998) is given in Figure 11.4.2.

6, 7 4, 5 2, 3

3, 5 7, 1 4, 6

5, 6 2, 7 1, 4

3, 6 1, 2 5, 7

4, 7 1, 3 2, 6

2, 4 3, 7 1, 5

1, 6 2, 5 3, 4

Fig. 11.4.2.

Liaw’s main result is that such a square exists whenever 2m+1 is composite.
To obtain that result, he proved among other things that (i) if a Room square of
side n exists, then referee squares of orders 3n and 5n exist; and (ii) if a Room
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square of side s, a referee square of side t and two MOLS of order t exist, then
a referee square of side st can be constructed. Dinitz and Ling completed the
proof of existence for all odd orders except five by using Liaw’s results and also
several other combinatorial structures not discussed in the present book.

It is surprising how many games tournament requirments can be met with the
aid of constructions using latin squares. In a survey paper of the present author,
Keedwell(2000), solutions are provided for Round robin tournaments, Tennis on
unequal courts, Home and away football, Balance in carry-over effects from one
game in a tournament to the next, Mixed doubles tournaments, Spouse-avoiding
mixed doubles, and Duplicate bridge and Whist. To save space, we shall not
repeat the contents of that paper here but we shall draw attention to several
papers not mentioned in it.

The first of these, Bedford, Ollis and Whittaker(2001), concerns balancing
carry-over effects in a bipartite tournament between two teams of equal size
where each player has to compete against each of the members of the opposing
team and the solution makes use of a certain kind of directed terrace. (See
Section 2.6 for the definition of the latter.)

The second, due to Preece and Phillips(2002), concerns the problem of schedul-
ing bowls tournaments. A bowls team consists of 4n players, n ≥ 4, n playing
lead position, n playing second position, n playing third position and n playing
skip position. The problem is to assign the players to n rinks in n successive
games in such a way that each rink contains one player for each position and no
two players appear together more than once in any given rink. Solving this prob-
lem is equivalent to finding three mutually orthogonal Latin squares of order n.
Adding the restriction that each player appears exactly once in each rink yields
an enhanced problem that is equivalent to finding four mutually orthogonal Latin
squares of order n.

The third paper, Berman and Smith(2012), discusses what the authors call
a Mitchell tournament which is a variant of the famous type of tournament
known as a spouse-avoiding mixed doubles round robin tennis tournament. The
conditions for a Mitchell tournament differ from those for the type just mentioned
only in the fact that a tournament of the latter type is not spouse-avoiding. For
the construction, the authors use one square A which is column-latin and a
second square B which is row-latin and such that A and B are orthogonal.

Finally, it is worth mentioning that scheduling a Round robin tournament
for 2m teams or players is equivalent to finding a 1-factorization(see Section 8.3
for the definition) of the complete graph K2m as has been pointed out in Gelling
and Odeh(1974). The teams are the vertices of K2m, the games are the edges,
the rounds are the 1-factors.

The topic of devising games tournaments is still an active one so the above
situations are not the only ones. In particular, I.Anderson(1997) has written a
book on the subject and Berman has written several relevant papers on tour-
naments in addition to that mentioned above. [See, for example, Berman and
Smith(2013) and D.R.Berman’s computer home page.]
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11.5 Latin triangles

There have been several attempts to define a latin triangle. The most nat-
ural and appropriate of these in the opinion of the present author is that of
Halberstam, Hoffman and Richter(1986) who gave a definition equivalent to the
following:

A triangle of order n is an array in the shape of an equilateral triangle having
n rows in each of the directions parallel to a side of the triangle with row i
(1 ≤ i ≤ n) having n + 1 − i entries. The horizontal rows are called a-rows.
The rows in the \-direction are called b-rows and the rows in the /-direction are
called c-rows.

For the definition of a latin triangle of order n, or LT (n) for brevity, we need
to distinguish between the cases n odd and n even. Let x ∈ {a, b, c}. For odd
positive integers n, the line given by x = i for 2 ≤ i ≤ (n+ 1)/2 is the union of
the x-rows x = i and x = n+ 2 − i. For even positive integers n, the line given
by x = i for 1 ≤ i ≤ n/2 is the union of the x-rows x = i and x = n+ 1− i.

A triangle is latin if and only if each of its a-lines, b-lines and c-lines contains
each of a set S of distinct symbols exactly once. For an LT (2m) and for an
LT (2m+ 1), we need 2m+ 1 symbols.

For instance, every LT (5) is equivalent to that shown in the left-hand array
of Figure 11.5.1 and, in the right-hand array of Figure 11.5.1, we give an example
of an LT (8).

w
v x

y w u
x u y v

u v w x y

9
4 5

5 9 4
6 4 5 3

7 8 9 1 2
2 3 1 8 6 7

3 1 2 9 7 8 6
1 2 3 4 5 6 7 8

Fig. 11.5.1.

Halberstam et al have constructed examples of latin triangles of all orders
n ≤ 11 except n = 4, 6, 10 and have shown non-existence for the latter orders.
They have also given a general construction valid for all orders n = 3m and
n = 3m − 1.

In Halberstam and Richter(1989), examples of an LT (12), LT (13) and LT (15)
have been obtained.

In a later paper by Alves, Gurganus, McLaurin and Smith(1991), these au-
thors have obtained an LT (14) and have provided a construction of latin triangles
of all odd orders n such that n+2 is prime. They have thus obtained an LT (17)
and an LT (21). They have also discussed how to define orthogonality of latin
triangles. Halberstam et al had earlier proposed the definition that two latin tri-
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angles of the same odd order are orthogonal if, when they are superimposed, each
unordered pair of symbols appears just once. (For even orders, their requirement
is that each unordered pair of distinct symbols appears just once.) However, this
property is not preserved if the symbols in one of the squares are permuted and
it distinguishes between odd and even orders n, so Alves et al have proposed
instead:

Definition. Two latin triangles are orthogonal if, when they are superimposed,
no ordered pair of symbols occurs more than once.

This definition includes the former one, does not distinguish beween odd
and even orders and is unaffected by permutations of symbols. Alves et al have
constructed a set of three latin triangles of order 7 which are mutually orthogonal
with respect to the latter definition.

Many questions about this topic remain to be answered:

Do latin triangles exist of all odd orders and of all even orders except 4, 6 and
10? Alternatively, is there an integer n0 such that, for all n > n0, an LT (n)
exists?

For a given order n, how many different LT (n)’s exist? In this context, how
should we define “different”?

What is the maximum number of mutually orthogonal LT (n)’s that can exist?

11.6 Latin squares and computers

When the first edition of this book was published, digital computers had
been available for academic use to a limited extent for about 15 years and the
idea of applying them in Algebra and Combinatorics was still quite novel. A first
conference to discuss such applications had been held in Oxford in 1967 under
the auspices of the Atlas Computing Laboratory, see Leech(1970). So the final
chapter of [DK1] was devoted to describing the use of such computers as a new
aid to the solution of latin square problems. In particular, techniques such as
the back-track method for enumeration of latin squares and for the construction
of sequencings of groups were described3. Also, the use of computers by Donald
Knuth (later, the inventor of TEX) to enumerate all isomorphically distinct
division rings of 32 elements and by one of the present authors to enumerate all
D-neofields up to order 17, and a sample of order 18, was reported. To provide
present-day readers with the flavour of that Chapter and because the problem
raised remains unsolved, we reproduce the following short extract.

“Computers have been used as an aid in essentially two kinds of orthogonal
latin square problems. In the first place, they have been used in searching for sets
of mutually orthogonal latin squares of an assigned order n which shall contain as
many squares as possible. In the second place, they have been used in attempts

3A search for sequencings had been carried out by the original first author of this book in
conjunction with É. Török.
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to construct new non-desargusian finite projective planes and hence complete
sets of mutually orthogonal latin squares which would be non-equivalent to any
previously known set.”

“The earliest search of the first kind known to the authors was that of Paige
and Tomkins(1960).4 These authors attempted to find a counter-example to the
Euler conjecture by finding a pair of orthogonal latin squares of order 10, ten
being the smallest integer greater than two and six which is an odd multiple of
2.”

“The first method they contemplated was to take a randomly generated
10 × 10 latin square and to use their SWAC computer to search directly for
an orthogonal mate where, without loss of generality, the first rows of the two
squares could be assumed to be the same. They estimated from trial runs that
such a complete search would take of the order of 4.8× 1011 machine hours for
each initially selected square and they pointed out the difficulties of devising
a method which would reject equivalent pairs of orthogonal squares and hence
eliminate duplication of trials. They called two pairs equivalent if by rearranging
rows, rearranging columns, or renaming the symbols of both squares of one pair
simultaneously it would become either formally identical to the second pair or
would differ from the second pair only in having its two squares oppositely or-
dered. (In the latter case, if L1 and L2 were the squares of one orthogonal pair,
L2 and L1 would be those of the other.)”

“They then discussed a method by which only pairs of squares having a
combinatorial pattern of such a kind that orthogonality would be possible would
be constructed. This method involved identifying some of the symbols used in
each latin square and is said to have been originally proposed by E. Seiden and
W. Munro. Let us suppose that the symbols used in a given 10× 10 latin square
are the digits 0 to 9, and let each of the digits 0 to 4 be replaced by α and each
of the digits 5 to 9 be replaced by β. In the resulting square, the symbols α and
β each occur five times in each row and five times in each column. If there exists
a second latin square orthogonal to the first which is similarly treated and if the
two squares are then placed in juxtaposition, we shall get a 10×10 square matrix
each element of which is one of the ordered pairs of symbols (or digraphs) αα, αβ,
βα, or ββ, and with the following properties. Each of the four digraphs will occur
all together 25 times in the matrix and in each row of the matrix there will be
five digraphs whose first member is α and five whose first member is β, likewise
five digraphs whose second member is α and five whose second member is β. The
same statements will be true for the columns of the matrix. Such a square matrix
was called admissible by Paige and Tomkins. They obtained further conditions
which would have to be satisfied by a matrix constructed from two orthogonal
latin squares in this way. The essentials of their computational procedure were
first to compute an admissible 10 × 10 matrix and then to reverse the process

4However, see S. Cairns(1954) for a comment on an attempted computer investigation car-
ried out in the early 1950s.
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just described by replacing the first member of each digraph by one of the digits
0 to 9 so as to get a latin square (α being replaced by one of the digits 0 to 4
and β by one of the digits 5 to 9) and subsequently to use the computer again to
assign digits to all the cells of the partially specified orthogonal mate. That is,
to enter one of the digits 0 to 4 in each α-cell and one of the digits 5 to 9 in each
β-cell until one of the orthogonality conditions was violated. When a violation
occurred, the programme backtracked in the usual manner to an earlier cell.”

“Unfortunately neither this nor the previous method was successful in pro-
ducing an orthogonal pair of 10 × 10 latin squares despite the fact that more
than 100 hours of computing time was used and, shortly afterwards, indeed even
before the publication of Paige and Tomkins paper, the Euler conjecture was
disproved by theoretical means. (See Chapter 11.5)”

“Almost immediately after the first counter-example to the Euler conjecture
was obtained, E.T. Parker found a pair of orthogonal latin squares of order 10
by a construction which made use of statistical designs, and this sequence of
events was regarded by many as a triumph for mathematical theory over com-
puter search. However, not long afterwards, E.T. Parker himself initiated a new
computer search for latin squares of order 10 which have orthogonal mates using
a faster computer and a more sophisticated computer programme. The essential
refinement was to generate and store all the transversals of a given 10× 10 latin
square and to search for disjoint sets of ten transversals (equivalent to finding
an orthogonal mate) rather than to attempt to fill the cells of a partial orthog-
onal mate individually. E.T. Parker has given a full description of his method
and results in Parker(1962a,1963). He discovered that 10× 10 latin squares with
orthogonal mates are not, in fact, particularly scarce and he also showed that
there exist such squares with a large number of alternative orthogonal mates. His
most striking result concerns the square displayed in Fig. 13.2.16 which has 5504
transversals and an estimated one million alternative orthogonal mates (that is,
sets of 10 disjoint transversals). However, Parker was able to show by a partly
theoretical argument that no two of these alternative orthogonal mates are them-
selves orthogonal and so, much to his own disappointment, he was not able to
obtain a triad of mutually orthogonal 10 × 10 latin squares. The existence or
non-existence of such triads remains an open question.”

It is remarkable that, 40 years later, this is still an open question though
recent work, especially that in McKay, Meynert and Myrvold(2007), has made
existence of such triads very unlikely.

5of [DK1].
6of [DK1]. This square is also exhibited on page 15 of [DK2].
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Comment on the Problems

The original edition of this book ended with a section labelled “Problems”. In this revised

edition, we list these same problems but after each one we state the present situation so far as

we know it. If the problem has been solved, we indicate where the solution may be found or,

if not, we give a summary of what (to the best of our knowledge) is currently known about it.

The statement “unsolved” means that we are not aware of any solution having been published.

In certain of the cited references, a letter such as a, b, c, etc. appears after the publication date.

For example, in Problem 1.4, A.D.Keedwell(1983c) is cited. This is to provide consistency with

the bibliography of the present book and/or with [DK2]. We hope that this convention will be

helpful to readers of both [DK2] and the present book.

Chapter 1

Problem 1.1. 〈What is the maximum number of associative triples which a
quasigroup may have but still not be a group? (page 20)〉

The earliest results relevant to this question were those of D.A. Norton(1960),
A. Wagner(1962) and A.K. Austin(1966). Norton proved: (1) If (Q, ·) is a tri-
associative quasigroup [that is, for every triple of distinct elements x, y, z of Q,
x(yz) = (xy)z] such that both Q and Q2 = {q2 : q ∈ Q} contain at least 17
elements, then (Q, ·) is diassociative [that is, for every pair of distinct elements
x, y of Q, x(xy) = (xx)y]; (2) If (Q, ·) is a diassociative quasigroup, then (Q, .)
is mono-associative (also called “power associative”). Thus, every triassociative
quasigroup with sufficient elements is a group. Wagner proved the same result
independently without restriction on the number of elements. More precisely, he
proved: (1) If (Q, ·) is a finite or infinite triassociative quasigroup, then (Q, ·) is
a group. (He showed also that the result remains true if the axiom concerning
unique solubility of equations is weakened to the requirement that they have at
least one solution.); (2) If (Q, ·) is a finite quasigroup of order n, it is sufficient to
test approximately 3n3/8 appropriately chosen associative statements to ensure
that Q is a group. Austin proved: (1) A quasigroup which contains an associative
element is a loop. [An element a is an associative element of the loop (L, ·) if,
for all elements x, y, z ∈ L such that x(yz) = a, we have (xy)z = a.] (2) If a loop
contains an associative element, then its left, middle and right nuclei coincide.
(Not all loops contain associative elements.)

Most of the papers concerned with problem 1.1 have expressed it in the form:
What is the minimal possible number σ(n) of non-associative triples of elements
in a non-associative quasigroup of order n?

A. Drápal(1983) has proved that, if n is an even integer, then σ(n) = 16n−64
for n ≥ 168, that 3n2/32 ≤ σ(n) ≤ 16n−64 for 6 ≤ n ≤ 166 and that σ(4) = 32.
These results provide a partial solution to the problem for the case when the order
of the quasigroup is even. To obtain his partial solution, Drápal first proved the
following results:

LetGi = (G,⊗i) be a group and letQ = (G, ◦) be a quasigroup defined on the
same set G of order n. Let dist(Gi, Q) denote the number of pairs (x, y) ∈ G×G
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such that x ⊗i y 6= x ◦ y and let t = min dist(Gi, Q) as Gi runs through all
groups defined on the set G. Let s = s(Q) denote the number of non- associative
triples in the quasigroup (Q, ◦). Then σ(n) is the minimum value of s as Q
runs through all non-associative quasigroups of order n. Drápal showed that
4tn− 2t2 − 24t ≤ s ≤ 4tn. Also, if 1 ≤ s < 3n2/32, then 3tn < s holds as well.

The following results contribute further to the problem:
In T.Kepka(1981b), the author proved that a non-associative commutative

Moufang loop of order n has at most 313n3/729 associative triples of elements.
In T.Kepka(1981a), the author proved that the number a(n) of associative

triples in a non-associative commutative quasigroup isotopic to a group of order
n satisfies the inequalities n2 ≤ a(n) for n odd or n ≡ 0 (mod 4), n2 + 2n ≤
a(n) for n ≡ 2 (mod 4) and a(n) ≤ n3 − 4n2 + 6n provided that n ≥ 3 is
odd, a(n) ≤ n3 − 4n2 + 8n provided that n is even. Further, in A. Drápal and
T.Kepka(1981) the authors showed that the number a(n) of associative triples in
a non-associative and possibly non-commutative quasigroup isotopic to a group
of order n again satisfies the inequalities a(n) ≤ n3 − 4n2 + 6n provided that
n ≥ 3 is odd and a(n) ≤ n3 − 4n2 +8n provided that n is even. In A.Kotzig and
C.Reischer(1983), these latter authors called a(n) the associativity index of the
quasigroup and studied its bounds in more detail for various particular types of
quasigroup.

In a more recent paper, J. Jez̆ek and A. Drápal(1990) denoted the number
of associative triples in any finite quasigroup (Q, ·) of order n by a(n) and the
number of non-associative triples by b(n) so that a(n)+(b(n) = n3. They denoted
by amax(n) the maximum and by amin(n) the minimum of the numbers a(Q)
for Q running over all the non-associative quasigroups of order n ≥ 3 and they
defined the numbers bmax(n) and bmin(n) similarly so that bmax(n) = n3 −
amin(n) and bmin(n) = n3 − amax(n). They obtained precise values for these
numbers when n = 3, 4, 5 and 6 and they also proved the following: bmin(n) ≤
16n− 64 and so amax(n) ≥ n3 − 16n+ 64 for n even and ≥ 6. Also, bmax(n) ≥
n3 − n2 for n ≥ 3 and not singly even (that is, n 6= 4k + 2); bmax(n) ≥ n3 − 2n2

for n singly even and ≥ 6. Using results obtained by Drápal, in particular in
A.Drápal(1983), and known properties of the function gdist(n) which we defined
in Section 3.2 they derived a number of further results. For example, let n be
even and 6 ≤ n ≤ 166, then 3n2/32 ≤ bmin(n).

Further relevant papers are A. Drápal and T. Kepka(1983, 1985, 1989),
W.D. Frazer(1973), C.-M. Fu, H.-L. Fu. and S.-H. Guo(1991) and M. Niemen-
maa(1988).

[Austin A.K.
(1966) A note on loops. Pacific J. Math. 18, 209-212.

Drápal A.
(1983) On quasigroups rich in associative triples. Discrete Math. 44, 251-255.

Drápal A. and Kepka T.
(1981) A note on the number of associative triples in quasigroups isotopic to

groups. Comment. Math. Univ. Carolinae 22, 735-743.
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(1983) Group modifications of some partial groupoids. In Proc. Internat.
Conf. on Combinatorial Geometries and their Applications, Ann. Discrete Math.
18, pp. 319-332.

(1985) Group distances of latin squares. Comment. Math, Univ. Carolinae
26, 275-283.

(1989) On a distance of groups and latin squares. Comment. Math. Univ.
Carolinae 30, 621-626.
Frazer W.D.

(1973) On testing a binary relation for associativity. In “Combinatorial Al-
gorithms” (Courant Comput. Sci. Sympos., No. 9, 1972), pp. 77-90. Algorithmic
Press, New York.
Fu C.-M., Fu H.-L. and Guo S.-H.

(1991) The intersections of commutative latin squares. Ars Combinatoria 32,
77-96.
Jez̆ek J. and Drápal A.

(1990) Notes on the number of associative triples. Acta Universitatis Caroli-
nae 31, 15-19.
Kepka T.

(1981a) Notes on associative triples of elements in commutative groupoids.
Acta Univ. Carolinae Math. Phys. 22, 39-47.

(1981b) A note on the number of associative triples in finite commutative
Moufang loops. Comment. Math. Univ. Carolinae 22, 745-753.
Kotzig A. and Reischer C.

(1983) Associativity index of finite quasigroups. Glasnik Math. 18, 243-253.
Niemenmaa M.

(1988) Upper bounds on the distance between groups and quasigroups. Europ.
J. Combin. 9, 391-393.
Norton D.A.

(1960) A note on associativity. Pacific J. Math. 10, 591-595.
Wagner A.

(1962) On the associative law of groups. Rend. Mat. e Appl. 21, 60-76.]

Problem 1.2. 〈Find necessary and sufficient conditions on a loop G in order
that every loop isotopic to G be isomorphic to G. (page 25)〉

UNSOLVED. By Corollary 2 of Theorem 1.3.4, associativity is sufficient.
Also, Fenyves has shown that isotopic extra loops are isomorphic. See page 44
of the present book.

Problem 1.3. 〈Do there exist quasigroups of odd order which have no complete
mappings? (page 32)〉

UNSOLVED. H.J. Ryser(1967) conjectured that the answer is No and gave
a proof that this is the case when the quasigroup is commutative. He also noted
that all quasigroups of order 5 have complete mappings. Since all quasigroups
of order 5 are isotopic either to the cyclic group of order 5 or to one of the five
loops listed on page 145 of [DK1], this is easy to check. In fact, A. Sade(1960)
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had pointed out much earlier than 1967 that the identity mapping is a complete
mapping for every commutative quasigroup of odd order. It was pointed out by
D.A. Robinso(1966) that the same is true for Bol loops of odd order. See also
Section 1.5 of the present book.

More recently, it has been shown (with the aid of a computer) that all latin
squares of odd order up to and including order 9 have transversals (and hence
complete mappings). See B.D. McKay, J.C. McLeod and I.M. Wanless(2006).

[McKay B.D., McLeod J.C. and Wanless I.M.
(2006) The number of transversals in a latin square. Designs, Codes Crytogr.

40, 269-284.
Robinson D.A.

(1966) Bol loops. Trans. Amer. Math. Soc. 123, 341-354.
Ryser H.J.

(1967) Neuere Probleme der Kombinatorik, Vortrage uber Kombinatorik Ober-
wolfach, 24-29 Juli 1967. Mathematisches Forschungsinstitut Oberwolfach.
Sade A.

(1960) Produit direct-singulier de quasigroupes orthogonaux et anti-abeliens.
Ann. Soc. Sci. Bruxelles, Ser,I, 74, 91-99.]

Problem 1.4. 〈Do there exist any finite groups which are not P-groups? (page
35)〉

The answer is “NO”. For the complete solution, see J. Dénes and P. Her-
mann(1982). Note that their proof makes use of the Feit-Thompson theorem.

A related problem asks Which finite groups are super P-groups? For infor-
mation on this question, see A.D. Keedwell(1983c,1984a).

Some further problems connected with this topic are listed in J. Dénes and
P. Yff(1992). This paper also outlines the history of the original problem.

[Dénes J. and Hermann P.
(1982) On the product of all the elements of a finite group. Annals of Discrete

Math. 15, 105-109.
Dénes J. and Yff P.

(1992) Some research problems on finite groups. PUMA A3, 109-115.
Keedwell A.D.

(1983c) On the existence of super P-groups. J. Combin. Theory A35, 89-97.
(1984a) More super P-groups. Discrete Math. 49, 205-207.]

Problem 1.5. 〈Do there exist non-soluble groups whose Sylow 2-subgroups are
non-cyclic and such that, despite this, the groups have no complete mappings?
(pages 36, 37)〉

SOLVED. All finite non-soluble groups have non-cyclic Sylow 2-subgroups
and have complete mappings. See Section 2.5 of the present book.

Problem 1.6. 〈Is the necessary condition given in Theorem 1.4.5 for the exis-
tence of a complete mapping also sufficient? (page 38)〉
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The answer is “YES”. See Section 2.5 of this book for the details.

Problem 1.7. 〈Is it true that, for all sufficiently large n, there exist quasigroups
of order n which contain no proper sub-quasigroups? (page 44)〉

The problem as stated is trivial: there exist quasigroups of all orders n ≥ 3
which have no proper sub-quasigroups. [Since idempotent quasigroups exist for
all n ≥ 3, latin squares in which the main diagonal is a transversal exist for all
n ≥ 3. If the rows and columns of the square are arranged so that this diagonal
is 2, 3, . . . , n, 1, then the square can be bordered so as to be the Cayley table
of a quasigroup (Q,⊗) for which i ⊗ i = i + 1 and n ⊗ n = 1. It then follows
that every element generates the whole subgroup. This was pointed out to the
authors of [DK1] in a letter from N.S. Mendelsohn dated 12/10/87.]

The problem should have read “Is it true that, for all sufficiently large n,
there exist latin squares of order n which contain no proper latin subsquares?”
The problem was originally posed in this form by A.J.W. Hilton and appeared
in print in Hilton(1977b).

Such squares are called N∞-squares and we state what is presently known
about such squares at the end of Section 9.4 of this book.

As regards the original problem about quasigroups, T. Kepka(1978) has
proved that every countable quasigroup with at least three elements is isotopic
to a quasigroup without proper sub-quasigroups.

[Andersen L.D. and Mendelsohn E.
(1982) A direct construction for latin squares without proper subsquares. An-

nals of Discrete Math, 15, 27-53,
Elliott J.R. and Gibbons P.B.

(1992) The construction of subsquare-free latin squares by simulated anneal-
ing. Australs. I Combin. 5, 209-228.
Heinrich K.

(1980) Latin squares with no proper subsquares. J. Combin. Theory A29,
346-353.
Hilton A.J.W.

(1977b) On the Szamkolowicz-Doyen classification of Steiner triple systems.
Proc. London Math. Soc. 34, 102-116.
Kepka T.

(1978) A note on simple quasigroups. Acta Univ. Carolinae Math. Phys. 19,
59-60.
Maenhaut B.M., Wanless I.M. and Webb B.S.

(2007) Subsquare-free Latin squares of odd order. Europ. J. Combin. 28, 322-
336.]

Problem 1.8. 〈Given an arbitrary integer n, does there always exist a latin
square of order n which contains a latin subsquare of every order m such that
m ≤ n/2? (page 55)〉

The answer is “NO”. For the complete solution, see K. Heinrich(1977d) who
has proved that a latin square of order n with latin subsquares of every order
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m such that m ≤ n/2 exists only if 1 ≤ n ≤ 7 or if n = 9, 11 or 13. For a full
discussion of this problem and the similar problem concerning quasigroups, see
Section 3 of Chapter 4 in [DK2].

[Heinrich K.
(1977d) Subsquares in latin squares. Proc. Eighth S.E. Conf. on Combina-

torics, Graph Theory and Computing, 1977. Congressus Numerantium 19, 329-
344.]

Problem 1.9. 〈If n is any positive integer and n = n1 + n2 + . . . + nk any
fixed partition of n, is it possible to find a quasigroup Qn, of order n which con-
tains subquasigroups Q1, Q2, . . . , Qk of orders n1, n2, . . . , nk respectively whose
set theoretical union is Qn? (page 56)〉

A partial solution has been obtained, the main results being those of K.
Heinrich(1977c,1982). For a full discussion of the problem and the results so far
obtained, see Section 3 of Chapter 4 in [DK2].

[Heinrich K.
(1977c) Latin squares composed of four disjoint subsquares. In “Combina-

torial Math. V” (Proc. Fifth Austral. Conf., Melbourne, 1976), pp. 118-127.
Lecture Notes in Math. No.622, Springer Verlag, Berlin.

(1982) Disjoint subquasigroups. Proc. London Math. Soc. (3)45, 547-563.]

Problem 1.10. 〈The same question as in problem 1.9 but this time Qn is required
to satisfy the condition for every partition of n. (page 56)〉

UNSOLVED. A solution to this problem pre-supposes a complete solution to
problem 1.9.

Chapter 2

Problem 2.1. 〈Do there exist row-complete latin squares which cannot be made
column-complete by permutation of their rows? (page 83)〉

The answer is “YES”. See P.J. Owens(1976) for a general construction for
such squares. However, for latin squares which are the Cayley tables of groups,
the answer is “NO”. See A.D. Keedwell(1975,1976c) or page 45 of [DK2] for the
proof. More recently, a construction alternative to that of P.J. Owens has been
given by D. Cohen and T. Etzion(1991).

[Cohen D. and Etzion T.
(1991) Row complete latin squares which are not column complete. Ars Com-

bin. 32, 193-201.
Keedwell A.D.

(1975) Row complete squares and a problem of A. Kotzig concerning P-
qausigroups and Eulerian circuits. J. Combin. Theory A18, 291-304.

(1976c) Latin squares, P-quasigroups and graph decompositions. (Symposium
on Quasigroups and Functional Equations, Belgrade, 1974.) Recueil des Travaux
de lInstitute Mathematique, Belgrade, N.S. 1(9), 41-48.
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Owens P.J.
(1976) Solutions to two problems of Dénes and Keedwell. J. Combin. Theory

A21, 299-308.]

Problem 2.2. 〈For which integers n do there exist sets of n− 1 latin squares in
which each ordered triad of distinct elements occurs just once in a row of some
member of the set? (page 84)〉

It has been shown in H. Niederreiter(1993) that such sets exist whenever n
is a prime power and, moreover, that the latin squares are mutually orthogonal.

[Niederreiter H.
(1993) Proof of Williams conjecture on experimental designs balanced for

pairs of interacting residual effects. Europ. J. Combin. 14, 55-58.]

Problem 2.3. 〈For which odd integers n do complete latin squares exist? (page
89)〉

UNSOLVED. For odd values of n for which non-abelian groups exist, it is
probably true that complete latin squares exist (see the conjecture mentioned
under problem 2.4). For other odd values of n which are not prime, it has been
proved by J. Higham(1998) that row complete latin squares exist. As regards
prime values of n, it is known that no complete or row-complete latin squares
of orders 3, 5 or 7 exist but, for other prime orders, the question is completely
open. For more details, see page 48 of [DK2] and the Introduction to J. Higham’s
paper.

[Higham J.
(1998) Row-complete latin squares of every composite order exist. J. Combin.

Designs 6, 63-77.]

Problem 2.4. 〈What are the necessary and sufficient conditions that a non-
abelian group be sequenceable? (page 89)〉

The present conjecture is that all non-abelian groups of orders greater than
8 are sequenceable. In support of this conjecture, it has been shown that all non-
abelian groups except the dihedral groups D3, D4 and the quaternion group Q of
orders up to and including 32 are sequenceable [B.A. Anderson(1987a,c)]. Also,
all soluble groups with a unique element of order 2 have symmetric sequencings
except the quaternion group Q [B.A. Anderson and E.C. Ihrig(1993a)]. As re-
gards non-soluble groups with a unique element of order 2, B.A. Anderson and
E.C. Ihrig (1993b) have shown that whether or not they have symmetric sequenc-
ings is dependent on whether or not the groups A7 (alternating), PSL(2, q) and
PGL(2, q), where q > 3 is an odd power, have 2-sequencings.

See Section 2.6 of the present book for further classes of non-abelian groups
which are sequenceable.

[Anderson B.A.
(1987a) A fast method for sequencing low order non-abelian groups. Annals

of Discrete Math. 34, 27-42.
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(1987b) Sequencings of dicyclic groups. Ars Combinatoria 23, 131-142.
(1987c) S5, A5 and all non-abelian groups of order 32 are sequenceable. Con-

gressus Numerantium 58, 53-68.
(1988) Sequencings of dicyclic groups II. J. Combin. Math. and Combin.

Comput. 3, 5-27.
(1990) All dicyclic groups of order at least 12 have symmetric sequencings.

Contemporary Math. (AMS) 111, 5-21.
Anderson B.A, and Ihrig E.C.

(1993a) Every finite solvable group with a unique element of order two, except
the quaternion group, has a symmetric sequencing. J. Combin. Designs 1, 3-14.

(1993b) Symmetric sequencings of non-solvable groups. Congressus Numer-
antium 93, 73-82.
Isbell J.

(1990) Sequencing certain dihedral groups. Discrete Math. 85, 323-328.
Keedwell A.D.

(1981a) On the sequenceability of non-abelian groups of order pq. Discrete
Math. 37, 203-216.
Li P.

(1997) Sequencing the dihedral groups D4h. Discrete Math. 175, 271-276.
Wang C.

(2002) Complete latin squares of order pn exist for odd primes p and n > 2.
Discrete Math. 252, 189-201. ]

Problem 2.5. 〈Do all complete latin squares satisfy the quadrangle criterion?
(page 89)〉

The answer is “NO”. P.J. Owens(1976) has constructed counter-examples.

[Owens P.J.
(1976) Solutions to two problems of Dénes and Keedwell. J. Combin. Theory

A21, 299-308.]

Problem 2.6. 〈Is it true that every finite non-abelian group of odd order on two
generators is sequenceable? (page 89)〉

It is conjectured that the answer is “YES”. See the comments on Problem
2.4 and also Section 2.6 of this book.

Chapter 3

Problem 3.1. 〈If n is a given odd integer, what is the maximum value of mn

such that a complete latin rectangle of mn rows and n columns exists? (page 98)〉
UNSOLVED. The corresponding problem for a row-complete latin rectangle

is partly solved. (See also problem 2.3.) In particular, H. Taylor (1991) has
obtained partial solutions to the more general problem of finding mn in the
case when each ordered pair of elements is required to occur t-apart (not just
1-apart) exactly once in the rows. He has noted that, in this case, mp ≥ p − 1
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and mp−1 = p−1 for all primes p > 2 (also shown earlier by S.W. Golomb), that
m8 = 7 (proved by S. Alquaddoomi using a computer search) and that m9 ≥ 4.

[Taylor H.
(1991) Florentine rows or left-right shifted permutation matrices with cross-

correlation values ≤ 1. Discrete Math. 93, 247-260.]

Problem 3.2. 〈For which values of kn is it true that an arbitrary complete latin
rectangle of kn rows and n columns (kn < n) can be completed to a complete
latin square of order n? (page 98)〉

UNSOLVED. The corresponding problem for a row-complete latin rectangle
is partly solved. See problems 2.1 and 2.3.

Problem 3.3. 〈What is the largest number of cells of an arbitrarily chosen latin
rectangle of given size which can be contained in a single partial transversal?
(page 99)〉

If we suppose that the latin rectangle has h rows and k columns and is defined
on n symbols, then clearly the answer is min(h, k) if h and k are small compared
with n. When h and k are close to n, the results of Koksma, Drake, Wang,
Brouwer et al , Woolbright and Shor (see also Problem 3.4) become relevant.
The problem remains unsolved.

Problem 3.4. 〈Is it true that every latin square of order n has a partial transver-
sal containing at least n− 1 cells? (page 103)〉

This is known as Brualdi’s conjecture. See the main text of this book.
It is strongly believed that the answer is “YES” for all latin squares which

are isotopic to the multiplication tables of groups and conjectured that it is
“YES” for all latin squares. The answer is certainly “YES” for all latin squares
which represent quasigroups possessing a complete or near-complete mapping.
[A quasigroup Q is said to have a near-complete mapping θ if there exists a one-
to one mapping θ from Q− {a} to Q− {b} such that the mapping φ(g) = gθ(g)
has the same property. See Section 7.6.]

Every abelian group with a unique element of order 2 is sequenceable (The-
orem 2.6.3 of this book) and so has a near-complete mapping. All other abelian
groups have

∏

g = e and so they have complete mappings. [See Theorem 2.5.3
of this book or L.J. Paige(1947).]

As regards non-abelian groups, it is conjectured that all such groups except
the dihedral groups D3, D4 and the quaternion group Q are sequenceable (see
the comments on Problem 2.4) and so they have near-complete mappings. D4

and Q both have complete mappings. D3 has the near-complete mapping (see
Section 7.6) whose corresponding near-orthomorphism is φ = [b a2](e a ba2 ba).

For a discussion of quasigroups which have complete mappings, see Sec-
tion 1.5.

Chapter 6 of B. Smetaniuk’s Ph.D. thesis (Univ. of Sydney, 1983) contains
additional evidence to support the belief that the answer to the problem is YES.
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A number of authors have obtained lower bounds for the length of (that
is, number of cells in) a partial transversal of a latin square of order n. Those
obtained prior to 1991 are discussed in detail in Section 2 of Chapter 2 of [DK2].
For more recent results, see Section 3.5 and Section 11.3 of the present book.

Some generalizations of the problem are discussed in S. Stein(1975). Also, see
P. Erdös, D.R. Hickerson et al (1988), P.J. Cameron and I.M. Wanless(2005),
I.M. Wanless(2011), I.M. Wanless and X. Zhang(2013).

[Cameron P.J. and Wanless I.M.
(2005) Covering radius for sets of permutations. Discrete Math. 293, 91-109.

Erdös P., Hickerson D.R., Norton D.A., and Stein S.K.
(1988) Has every latin square of order n a partial latin transversal of size

n− 1? Amer. Math. Monthly 95, 428-430.
Stein S.K.

(1975) Transversals of latin squares and their generalizations. Pacific J,
Math. 59, 567-575.
Wanless I.M.

(2011) Transversals in Latin squares: a survey. Surveys in combinatorics
2011, 403-437, London Math. Soc. Lecture Note Ser. No. 392, Cambridge Univ.
Press.
Wanless I.M. and Zhang X.

(2013) Transversals of Latin squares and covering radius of sets of permuta-
tions. European J. Combin. 34 , no. 7, 1130-1143.]

Problem 3.5. 〈If k elements are deleted at random from the Cayley table of a
finite abelian group G of order n, what is the greatest value which k may have in
order that the remaining part of the table still determines G up to isomorphism?
(page 106)〉

PARTIALLY SOLVED, A. Drápal(1992) has proved that groups of order n
are isomorphic if their Hamming distance apart is ≤ n2/9.

Two papers which consider problems closely related to problem 3.5 are A.
Drápal and T. Kepka(1989) and P. Vojtěchovský and I.M. Wanless(2012). Also,
the problem is related to that of finding so-ca1led critical sets in latin squares
which we discuss in Section 3.2 of this book. See, for example, A.D. Keed-
well(1996,2004) and J.A. Bate and G.H.J. van Rees(1999). In particular, for
the Cayley table of a cyclic group, k is bounded above by 3n2/4.

[Bate J.A. and van Rees G.H.J.
(1999) The size of the smallest strong critical set in a latin square. Are Com-

binatoria 53, 73-83.
Drápal A.

(1992) How far apart can the group multiplication tables be? European J.
Combin. 13, 335-343.
Drápal A. and Kepka T.

(1989) On a distance of groups and Latin squares. Comment. Math. Univ.
Carolin. 30, 621-626.
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Keedwell A.D.
(1996) Critical sets for latin squares, graphs and block designs: a survey.

Congressus Numerantium 113, 231-245.
(2004) Critical sets in latin squares and related matters: an update. Utilitas

Math. 65, 97-131.
Vojtěchovský P. and Wanless I.M.

(2012) Closest multiplication tables of groups. J. Algebra 353, 261-285.]

Problem 3.6. 〈What is the maximum number h of squares which a set of latin
squares satisfying the quadrangle criterion and all of the same order n can con-
tain if each pair of squares in the set are to differ from each other in at most m
places? (page 111)〉

UNSOLVED. This problem has some connections with Problem 1.1. See the
papers of Drápal and Kepka listed there. Also, the results in the paper of P.
Vojtěchovský and I. M. Wanless(2012) show when h ≥ 2 for given values of m.

Problem 3.7. 〈Is it possible to place n−1 elements chosen from the set {0, 1, 2, . . . ,
n− 1} in an n×n matrix in such a way that no two elements of any row or col-
umn of the matrix are equal and so that, despite this condition, it is not possible
to complete the matrix to an n× n latin square? (page 115)〉

The answer is “NO”, (as was originally conjectured by T. Evans(1960)). In
R.Häggkvist(1978), that author gave a proof for all n ≥ 1111. Subsequently,
two complete solutions have been given: one by L.B. Andersen and A.J.W.
Hilton(1983), which is very lengthy, and the other by B. Smetaniuk(1981). For a
detailed discussion of these and an explanation of the delayed publication of the
former one, see Section 10 of Chapter 8 in [DK2] and Section 3.4 of this book.

[Andersen L.D. and Hilton A.J.W.
(1983) Thank Evans. Proc. London Math. Soc. (3) 47, 507-522.

Evans T.
(1960) Embedding incomplete latin squares. Amer. Math. Monthly 67, 958-

961.
Häggkvist T.

(1978) A solution of the Evans conjecture for latin squares of large size. In
“Combinatorics” Colloq. Math. Soc. Janos Bolyai, Vol.18; edited by A. Hajnal
and V.T. Sós, pp. 495-514. North Holland, Amsterdam.
Smetaniuk B.

(1981) A new construction on latin squares I. A proof of the Evans conjecture.
Ars Combinatoria 11, 155-172.]

Problem 3.8. 〈How many elements of a latin square of even order n and which
satisfies the quadrangle criterion can be located arbitrarily subject only to the
condition that no row or column shall contain any element more than once?
(page 115)〉

This problem has some connections with Problem 1.1; more particularly with
the results of A. Drápal and T. Kepka(1981) and A. Drápal(1983) mentioned
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there. In a recent communication, Wanless(2015) claims to have solved the prob-
lem and he has given the number h of elements which can be located arbitrarily
in a latin square of order n which satisfies the quadrangle criterion as follows:
for n = 1 and 2, h = 1; for n = 3, h = 2; for n = 4 or n > 3 and odd, h = 3; for
n = 6 or n ≡ 2 or 4 mod 6 and > 4, h = 5; for n ≡ 0 mod 6 and > 6, h = 6.

[Wanless I.M.
(2015) Private communication to the author and a later preprint with B.S.

Webb.]

Problem 3.9. 〈Can a pair of n×n incomplete latin squares which are orthogonal
(insofar as the condition for orthogonality applies to the incomplete squares) be
respectively embedded in a pair of t× t orthogonal latin squares; and, if so, what
is the smallest value of t for each value of n? (page 116)〉

As long ago as 1976, C.C. Lindner proved that a finite embedding is possible
but, not until 2014, was it proved that a polynomial size embedding is obtainable.
The latter result was achieved by joint work of D. Donovan and E.Ş. Yazici. The
main theorem of these authors is that two orthogonal partial latin squares of
order n and of the same size and shape can be embedded in a pair of orthogonal
latin squares of order at most 16n4. A partial latin square is said to be of size
h if h of its cells are filled and the shape of such a square is determined by the
configuration of its filled cells.

Note. The term “size” dates back at least as far as Nelder(1977) and has been
used by many authors since then. Much later, Mahmoodian introduced the term
“volume” to denote the same concept. As well as causing confusion (perpetuated
by Donovan and Yazici, who use the latter term), the term “volume” to describe
a subset of a two-dimensional array is, in the opinion of the present author,
wholly inappropriate.

[Donovan D. and Yazici E.Ş.
(2014) A polynomial embedding of pairs of partial orthogonal partial latin

squares. J. Combin. Theory A126, 24-34.
Lindner C.C.

(1976) Embedding orthogonal partial latin squares. Proc. Amer. Math. Soc.
59, 184-186.]

Problem 3.10. 〈Can every Brandt groupoid B be embedded in a quasigroup Q
which is group-isotopic? Alternatively, can every Brandt groupoid be embedded
in a group? (pages 119, 120)〉

UNSOLVED.

Chapter 4

Problem 4.1. 〈Is it true that no two distinct sets of n disjoint transversals of a
latin square of odd order have any transversal in common? (page 149)〉

FALSE. See Figure 4.5.4 and Figure 4.5.5 of this book for counter-examples.
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Problem 4.2. 〈What is the widest class of latin squares of order n with the
property that their number of transversals is a multiple of n? (page 149)〉

UNSOLVED. It follows from a theorem due to G.B. Belyavskaya and A.F.
Russu(1975) that the number of transversals of a latin square L in reduced form is
congruent to zero modulo the number of elements in the left (or right) nucleus of
the loop of which L is the multiplication table. So, in particular, if a quasigroup
is isotopic to an admissible group of order n, its number of transversals is a
multiple of n. For more information, see Section 3 of Chapter 2 in [DK2] and
Section 4.5 of this book.

[Belyavskaya G.B. and Russu A.F.
(1975) On the admissibility of quasigroups. (Russian) Mat. Issled. 10, No.1

(35), 45- 57.]

Problem 4.3. 〈Find formulae for the numbers R(5, n) and V (5, n) of 5 × n
reduced and very reduced latin rectangles. (page 152)〉

UNSOLVED. Numerical values for R(k, n) for n ≤ 11 have been obtained
and are listed in Figure 4.4.3 and Figure 4.4.4 of this book. Also, D.S. Stones
has computed R(5, n) for n ≤ 28 and R(6, n) for n ≤ 13. For more details, see
Section 4.4.

Chapter 5

Problem 5.1. 〈Do there exist complete sets of mutually orthogonal latin squares
of non-prime power order? (page 160)〉

UNSOLVED. It is conjectured that the answer is “NO”. However, the only
general class of non-prime powers for which existence is ruled out remains those
excluded by the Bruck-Ryser theorem (Theorem 5.2.5). It has been shown with
the aid of very extensive computer power that there is no projective plane of
order 10 (the smallest positive integer not ruled out by the Bruck-Ryser theorem)
which proves non-existence for this order. For the details, see C.W.H. Lam, L.
Thiel and S. Swiercz(1989) and C.W.H. Lam(1991) or [DK2], pages 377-378. A
summary of what is known is in Section 5.2 of this book.

[Lam C.W.H.
(1991) The search for a finite projective plane of order 10. Amer. Math.

Monthly 98, 305-318.
Lam C.W.H., Thiel L. and Swiercz S.

(1989) The non-existence of finite projective planes of order 10. Canad. J.
Math. 41, 1117-1123.]

Problem 5.2. 〈Is it true that there do not exist sets of n−1 mutually orthogonal
latin squares based on a cyclic group of order n unless n is prime? (page 170)〉

UNSOLVED except when n is even and for a few sporadic odd values of n. In
the former case the answer is “YES” because a cyclic group of even order has no
complete mappings. The Bruck-Ryser theorem implies that the answer is “YES”
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for certain odd values of n (see Section 5.2 in the main text of this book) and
some results due to W. De Launey(1984) and reported in T. Evans(1992) imply
that the answer is “YES” for some further odd values: namely ones for which a
so-called generalized Hadamard matrix does not exist.

[De Launey W.
(1984) On the nonexistence of generalised Hadamard matrices. J. Statist.

Plann. Inference 10, 385-396.
Evans A.B.

(1992) Orthomorphism graphs of groups. Lecture Notes in Mathematics, No.1535.
(Springer-Verlag, Berlin.) viii+114 pp. ISBN: 3-540-56351-2.]

Problem 5.3. 〈If Λ(n) denotes the maximum number of mutually orthogonal
n×n latin squares none of which satisfies the quadrangle criterion, what are the
values of Λ(n)? (page 170)〉

UNSOLVED. It is obvious that Λ(1) = Λ(2) = Λ(3) = Λ(4) = 0 and that
Λ(6) = 1. Also, Λ(9) = 8 as is shown by Figure 8.4.3 on page 285 of [DK1].7 (The
squares listed in Fig. 8.4.3 represent the dual translation plane, not the Hughes
plane.) Λ(10) ≥ 2, Λ(14) ≥ 3, and Λ(20) ≥ 4. The last three results follow from
the work of D.F. Hsu and A.D. Keedwell(1984) and D. Bedford (1993) which
shows that the squares constructed by L. Weisner(1963), A.I. Lyamzin(1963), and
D.T. Todorov(1985,1989) all implicitly make use of the left neofield construction
(as defined by Bedford). In fact, it is true that the additive loop of a cyclic left
neofield of even order cannot be group-isotopic unless its order is a power of two.
[In a cyclic left neofield (N,+, ·) of even order, we have 1+1 = 0, see Section 7.6
of this book or A.D. Keedwell(1983e), so it follows from the left distributive law
that every non-zero element of N has additive order 2. Thus, (N,+) cannot be
group isotopic unless its order is a power of 2.] So far as the authors are aware,
little else is known except that Λ(5) ≥ 1 and Λ(7) ≥ 2. The latter fact is shown
by the following pair of orthogonal latin squares constructed by D. Bedford(1993)
using presentation function number 3′ for the cyclic group C6 in Table 1 of his
paper.

6 0 1 2 3 4 5
1 5 2 4 0 6 3
2 4 0 3 5 1 6
3 6 5 1 4 0 2
4 3 6 0 2 5 1
5 2 4 6 1 3 0
0 1 3 5 6 2 4

6 1 2 3 4 5 0
0 5 4 6 3 2 1
1 2 0 5 6 4 3
2 4 3 1 0 6 5
3 0 5 4 2 1 6
4 6 1 0 5 3 2
5 3 6 2 1 0 4

7Schönheim had earlier conjectured (in an oral communication to J. Dénes) that Λ(n) < n−1
for n > 2.
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[Bedford D.
(1993) Construction of orthogonal latin squares using left neofields. Discrete

Math.115, 17-38.
Hsu D.F and Keedwell A.D.

(1984) Generalized complete mappings, neofields, sequenceable groups and
block designs I. Pacific J. Math 111, 317-332.
Keedwell A.D.

(1983e) The existence of pathological left neofields. Ars Combinatoria 16B,
161-170.
Lyamzin A.I.

(1963) An example of a pair of orthogonal latin squares of order ten. (Rus-
sian) Uspehi Mat. Nauk. 18, 173-174.
Todorov D.T.

(1985) Three mutually orthogonal latin squares of order 14. Ars Combin. 20,
45-48.

(1989) Four mutually orthogonal latin squares of order 20. Ars Combin. 27A,
63-65.
Weisner L.

(1963) Special orthogonal latin squares of order 10. Canad. Math. Bull. 6,
61-63.]

Problem 5.4. 〈Do there exist triples of mutually orthogonal latin squares of
order 10? What is the value of N(10)? (page 173)〉

UNSOLVED. Many orthogonal pairs of such squares have been constructed,
but no pairwise orthogonal triple. E.T. Parker(1978) found one latin square of
order 10 with 5504 transversals and he estimated it to have about one million
orthogonal mates. [Much later, it was proved that the actual number of or-
thogonal mates is 12,265,168. See B.M. Maenhaut and I.M. Wanless(2004).] A.
Brouwer(1984) constructed four pairwise almost orthogonal squares. The four
squares share a common 2 × 2 latin subsquare and so each pair is (n2 − 2)-
orthogonal. A.D. Keedwell(1980) had earlier constructed an (n2−4)-orthogona1
triple.

In a forthcoming paper, J. Egan and I.M. Wanless exhibit two MOLS of order
10 which have seven common transversals.

There have been many other attempts to solve this problem. More details
are given in Section 5.3 of this book. However, as a consequence of a massive
computer search reported in B.D. McKay, A. Meynert and W. Myrvold(2007),
it seems very unlikely that triples exist.

[Brouwer A.E.
(1984) Four MOLS of order 10 with a hole of order 2. J. Statist. Planning

and Inf. 10, 203-205.
Brown J.W. and Parker E.T.

(1985) An attempt to construct three MOLS of order 10 with a common
transversal. Proc. Conf. on groups and geometry, Part A (Madison, Wis., 1985).
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Algebras Groups Geom. 2, 258-262.
Egan J. and Wanless I.M.

(201?) Enumeration of MOLS of small order. Math. Comp. To appear.
Keedwell A.D.

(1980) Concerning the existence of triples of pairwise almost orthogonal lO×
10 latin squares. Ars Combin. 9, 3-10.
McKay B.D., Meynert A. and Myrvold W.

(2007) Small latin squares, quasigroups and loops. J. Combin. Designs 15,
98-119.
Maenhaut B.M. and Wanless I.M.

(004) Atomic latin squares of order eleven. J. Combin. Designs. 12, 12-24.
Parker E.T.

(1978) A collapsed image of a completion of a “turn-square” J. Combin.
Theory. A24, 128-129.]

Problem 5.5. 〈For each order n which is not a prime power, what is the
maximum number T (n) of latin squares in a set with the property that all the
squares in the set have a transversal in common? (page 173)〉

Clearly, T (pr) ≥ pr − 2. Can it exceed this bound? Another obvious remark
to make is that, if there exists a quasigroup of order n which has a complete
mapping, then T (n) ≥ 1. The author is not aware that any work has been done
on this problem.

Problem 5.6. 〈Can a complete classification of Stein quasigroups be given? (page
177)〉

The author is not aware that any work has been done on this problem.

Problem 5.7. 〈What is the maximum number of m-dimensional permutation
cubes of order n in a variational set? (page 186)〉

The problem has been considered in terms of multiquasigroups in paragraphs
2.1 and 2.2 of a paper by G. Čupona, V. Stojakoviv́ and J. Uśan(1981).

[Čupona G., Stojakoviv́ V. and Uśan J.
(1981) On finite multiquasigroups. Publ. de l’Institut Math. (Belgrade) 29(43),

53-59.]

Problem 5.8. 〈What is the maximum number k of constraints possible in an
orthogonal array of n levels, strength t and index λ? (page 191)〉

The author does not know whether this problem has been solved.

Problem 5.9. 〈Is it true that orthogonal Steiner triple systems exist for all orders
v congruent to 1 modulo 6? (page 192)〉

The problem has been solved completely, see C.J. Colbourn et al (1994).
where it is shown that such systems exist for all orders v ≡ 1 or 3 (mod 6) with
v ≥ 7 except v = 9.

Previously, it was known that the answer is “YES” for all except 29 values
of v ≡ 1 mod 6. For the latter values, the problem remained unsolved. It was
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also known that orthogonal Steiner triple systems exist for orders v ≡ 3 mod 6
such that v > 27363 and for all except at most 918 values of v ≡ 3 mod 6 with
v ≤ 27363. For the latter values, existence had remained in doubt. For more
details, see D.R. Stinson and L. Zhu(1991) and the papers cited therein.

[Colbourn C.J., Gibbons P.B., Mathon B., Mullin R.C. and Rosa A.
(1994) The spectrum of orthogonal Steiner triple systems. Canad. J. Math.46,

239-252.
Stinson D.R. and Zhu L.

(1991) Orthogonal Steiner triple systems of order 6m + 3. Ars Combin. 31,
33-63.]

Chapter 6

Problem 6.1. 〈Do there exist orthogonal pairs of diagonal latin squares of every
order n distinct from 2, 3, and 6? (page 212)〉

The answer is “YES”. For the complete solution, see J.W. Brown, F. Cherry,
L. Most, M. Most, E.T. Parker and W.D. Wallis(1992). In B. Du(1991), a
stronger result has been obtained: namely, for all integers n except 2, 3, 4, 5,
6 and possibly also 10, 14, 15, 18, 21, 22, 26, 30, 33, 34 and 46, there exist at
least three pairwise orthogonal diagonal latin squares of order n. Moreover, in
B. Du(1992) it is shown that, with the possible further exceptions of n = 20, 24,
28, 35, 36, 38, 39, 42, 44, 45, 48, 52, 54, 55, 62, 66, 68 and 69, there exist at least
four pairwise orthogonal diagonal latin squares of order n.

It is known also that, for all integers n except 2, 3, 4, 6 and possibly also 10,
18, and 26, there exist at least three pairwise orthogonal idempotent (that is,
left semi-diagonal) latin squares of order n. See R.J.R. Abel, X. Zhang and H.
Zhang(1996), F.E. Bennett, K.T. Phelps, C.A. Rodger, and L. Zhu(1992) and
X. Zhang and H. Zhang(1997). It is worth noting that, in this topic particularly,
order of publication has not coincided with order of discovery.

In more recent papers, the existence of self-orthogonal and parastrophic or-
thogonal diagonal latin squares has been investigated. See, for example, K.J.
Danhof, N.C.K. Phillips and W.D. Wallis(1990), F.E. Bennett, B. Du and H.
Zhang(2001), H. Cao and W. Li(2011) and Y. Zhang, K. Chien, N. Cao and H.
Zhang(2014).

[Abel R.J.R., Zhang X. and Zhang H.
(1996) Three mutually orthogonal idempotent Latin squares of orders 22 and

26. Shanghai Conference Issue on Designs, Codes, and Finite Geometries, Part
1 (Shanghai, 1993). J. Statist. Planning and Inference 51, 101-106.
Bennett F.E., Du B. and Zhang H.

(2001) Existence of (3,1,2)-conjugate orthogonal diagonal Latin squares. J.
Combin. Des. 9, 297-308.
Bennett F.E., Phelps K.T., Rodger C.A. and Zhu L.

(1992) Constructions of perfect Mendelsohn designs. Discrete Math. 103,
139-151.
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Brown J. W, Cherry F, Most L., Most M., Parker E. T and Wallis W. D.
(1992) Completion of the spectrum of orthogonal diagonal latin squares. In

Graphs, Matrices, and Designs, pp.43-49, Marcel Dekker, New York, 1992.
Cao H. and Li W.

(2011) Existence of strong symmetric self-orthogonal diagonal Latin squares.
Discrete Math. 311, 841-843.
Danhof K. J., Phillips N. C. K and Wallis W. D.

(1990) On self orthogonal diagonal latin squares. J. Combin. Math. and Com-
bin. Comput. 8, 3-8.
Du B.

(1991) Some constructions of pairwise orthogonal diagonal latin squares. J.
Combin. Math. and Combin. Comput. 9, 97-106.

(1992) Four pairwise orthogonal diagonal latin squares. Utilitas Math. 42,
247-254.
Zhang Y., Chen K., Cao N. and Zhang H.

(2014) Strongly symmetric self-orthogonal diagonal Latin squares and Yang
Hui type magic squares. Discrete Math. 328, 79-87.
Zhang X. and Zhang H.

(1997) Three mutually orthogonal idempotent latin squares of order 18. Ars
Combin. 45, 257-261.]

Problem 6.2. 〈For what orders n do pandiagonal magic squares whose n2 entries
are consecutive integers exist? (page 214)〉

The earliest papers in which the theory of pandiagonal magic squares is dis-
cussed are those of A.H. Frost(1866, 1867, 1878). (This fact was drawn to the
attention of the author by N. Biggs.) Frost called them “Nasik” squares after the
town in Hindustan where he first encountered such squares (of order 4), There
are no Nasik squares of order 3 but there are 48 distinct ones of order 4.

B. Lucas(1882) proposed to call these squares “diaboliques”, see the preface
of that journal, page xvii. The term pandiagonal was introduced by E.M. Mc-
Clintock(1897), page 99. The latter author discussed such squares in detail and,
in particular, proved that no pandiagonal magic squares of singly-even order
(n = 4m − 2) exist. The same result was proved again by C. Planck(1919), G.
Tarry(1903) showed that, if n/3 is an odd integer not divisible by 3, there exists
a pandiagonal magic square of order n.

Further details of the early history of this topic will be found in “Encyclopédie
des Sciences mathematiques”, Gauthier Villars, Paris,1906.

M. Kraitchik(1930) gave a method, which he attributed to Margossian, for
constructing pandiagonal magic squares of any doubly-even order (n = 4m) or
any order which is an odd multiple of 3 (except 3 itself) using a row-latin square
and a column-latin square which are mutually orthogonal. [For the details, see
M. Kraitchik(1930), pages 148-452 or W.W.R. Ball(1939), pages 208-210,] A
construction valid for all orders relatively prime to 6 (that is, for all odd orders
which are not multiples of 3) has been described on pages 204-206 of W.W.R.
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Ball(1939) under the title “Generalization of De la Lobère’s Rule”. Together
these constructions solve the problem completely.

[It is assumed throughout the foregoing that the magic squares discussed
have entries which are consecutive integers. A construction of pandiagonal magic
squares of singly-even order in which this requirement is dropped has been given
by C. Planck(1919).]

The problem has also been discussed in great detail by B. Rosser and R. J.
Walker(1939) who used the adjective “diabolic” instead of “pandiagonal”. These
authors produced an algebraic theory for diabolic magic squares. They again
proved non-existence for n = 3 and n ≡ 2 mod 4 but showed existence for all
other orders. In particular, they showed that there are 28,800 different diabolic
magic squares of order 5 all of a type which they called “regular” and that the
number of regular squares of order p, p an odd prime, is (p!)2(p − 3)(p − 4). In
a supplement to their paper, they also established existence or non-existence of
a diabolic cube of any assigned order.

A more recent paper on the subject is that of R. Sun(1989) who claims that
a pandiagonal magic square of order n whose entries are consecutive integers
exists if and only if n = 2m+ 3 or n = 4m, where m is any integer greater than
zero. This contradicts the results given above in that pandiagonal magic squares
exist of all odd orders n ≡ 1 mod 2 as well as all orders n ≡ 3 mod 2 (except
n = 3).

For the most up-to-date information, see the website [www.multimagie.com]
of C. Boyer.

[Ball W.W.R.
(1939) Mathematical recreations and essays. Macmillan, New York, Eleventh

Ed. Revised by H. S. M. Coxeter.
Frost A.H.

(1866) Invention of magic cubes and construction of magic squares possessing
additional properties. Quart. J. Pure Appl. Math.7, 92-102.

(1867) Supplementary note on Nasik cubes. Quart. J. Pure Appl. Math. 8,
74.

(1878) On the general properties of Nasik squares. Quart. J. Pure Appl. Math.
15, 34-49.

(1878) On the general properties of Nasik cubes. Quart. J. Pure Appl. Math.
15, 93-123.
Kraitchik M.

(1930) “Le Matématique des Jeux” (Brussels).
Lucas E.

(1882) “Récréations Math 1” (Paris).
McClintock E.

(1897) On the most perfect forms of magic squares, with methods for their
production. Amer. J. Math. 19, 99-120.
Planck C.

(1919) “The Monist”(Chicago) 19, 307-316.
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Rosser B. and Walker R.J.
(1939) The algebraic theory of diabolic magic squares. [With an unpublished

supplement.] Duke Math. J. 5, 705-728. MR 1(1940), page 133.
Sun R.

(1989) On existence of pandiagonal magic squares. Ars Combin. 27, 56-60.
MR 90j:05026.
Tarry G.

(1903) Carrés panmagiques de base 3n. C. R. Assoc. Française Avance. Sci.
32, 130-140.]

Problem 6.3. 〈For what orders n do addition-multiplication magic squares exist?
(page 215)〉

Using the result of Problem 6.1 above, P. J. Liang., R. G. Sun, T. Ku and
L. Zhu(1992) have proved that an addition-multiplication magic square of order
n = rs exists for all choices of positive integers r, s such that r, s 6∈ {1, 2, 3, 6}.
This left the problem open for the orders 24, 27, 54, p, 2p, 3p and 6p, where p is a
prime integer, except that existence was known for n = 9, see Section 6.3 of this
book. More recently, existence has been shown for the order 27 by R. Sun(1993)
and for the order 18 by J. Zhu, R. Sun and M. Cheng(1993), Also, non-existence
for order 3 has been shown both by R. Sun(1993) and, independently, by Shi-De
Zhang(1993). For the most up-to-date information, again see the website of C.
Boyer [www.multimagie.com].

[In D. Borkovitz and F.K. Hwang(1983), the much simpler problem of con-
structing multiplicative magic squares is discussed and the problem of minimizing
the constant product is addessed.]

[Borkovitz D. and Hwang F.K.
(1983) Multiplicative magic squares. Discrete Math. 47, 1-11. MR 85a:05018.

Liang P, Sun R., Ku T and Zhu L.
(1992) A construction of addition-multiplication magic squares using orthogo-

nal diagonal latin squares. J. Combin. Math. and Combin. Comput. 11, 173-181.
MR1160074.
Sun R.

(1993) On the existence of addition-multiplication magic squares of order 27.
Unpublished.
Zhang S.-D.

(1993) On the non-existence of addition-multiplication magic squares of order
3. Unpublished.
Zhu J., Sun R. and Cheng M.

(1996) A construction of addition-multiplication magic squares of order 18.
J. Statist. Plann. Inference 51, 331-337. MR1397540.]

Problem 6.4. 〈For which orders do patterned Room squares not exist? (page
225)〉
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UNSOLVED. So far as the author has been able to discover, the most recent
relevant paper is that of Gross and Leonard(1975).

[Gross K.B. and Leonard P. A.
(1975) The existence of strong starters in cyclic groups. Utilitas Math. 7,

187-195.]

Problem 6.5. 〈How many non-equivalent Room designs of order 2n exist? (page
228)〉

UNSOLVED except for very small orders. See page 233 of the main text.

Problem 6.6. 〈How many non-isomorphic Room designs of order 2n exist? (page
228)〉

UNSOLVED except for very small orders. See page 233 of the main text.

Chapter 7

Problem 7.1. 〈What is the maximum number of latin squares of order 12 in a
pairwise orthogonal set? (page 233)〉

UNSOLVED. No set of pairwise orthogonal 12× 12 latin squares of cardinal
greater than 5 has been found. Considerable work has been done on trying to
show non-existence of a projective plane of order 12 (cf. Problem 13.1). For
details of the latter work, see Section 2 of Chapter 11 in [DK2].

Problem 7.2. 〈Do any triads of mutually orthogonal latin squares of order 10
constructed by the method described in A. D. Keedwell [4] exist? (pages 235,
478)〉

The problem8 is well within the capacity of present-day computers but until
recently no-one had attempted to resolve it. D. Bedford has stated in a private
communication to the author that he has completed the search and found that
the answer is “NO”.

Problem 7.3. 〈Do there exist property D neofields of all finite orders r except
6? (page 248)〉

UNSOLVED. So far as the author is aware, the only person who has worked
on the resolution of this and the following two problems in recent years is S.
Lacey(2014).

[Lacey S.
(2014) Unpublished work in connection with M.Sc.]

Problem 7.4. 〈Can it be proved that both commutative and non-commutative
D-neofields exist for all r > 14 and that the number of isomorphically distinct
D-neofields of assigned order r increases with r? (page 248)〉

UNSOLVED.

8A. D. Keedwell[4] is Keedwell(1966) in the bibliography of this book.
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Problem 7.5. 〈Do there exist planar D-neofields which are not fields? (page
248)〉

UNSOLVED.

Chapter 8

Problem 8.1a. 〈Are all projective planes of prime order isomorphic and conse-
quently Galois planes? (page 276)〉

UNSOLVED. There have been several attempts to tackle this problem but
these have been unsuccessful. For details, see Section 3 of Chapter 11 in [DK2].

Problem 8.1b. 〈If the answer to problem 8.1a is “NO”, how many inequivalent
sets of p − 1 mutually orthogonal latin squares exist of a given prime order p?
(page 276)〉

UNSOLVED.

Problem 8.2. 〈How many non-equivalent complete sets of mutually orthogonal
latin squares of order 9 exist? (page 280)〉

SOLVED COMPLETELY. P.J. Owens and D.A. Preece have shown that
there are 19 non-equivalent complete sets (which we will assume are based on the
first n natural numbers) where two complete sets S and S′ are called equivalent
if there are permutations θ and φ of the first n natural numbers such that the
following transformation converts S into S′: Permute the rows of every square
so that row i becomes row iθ, 1 ≤ i ≤ n. Permute the columns of every square
so that column j becomes column jφ, 1 ≤ j ≤ n. Then permute the symbols, in
each square separately, so that the new first rows are finally all in natural order.

[Owens P.J. and Preece D.A.
(1995) Complete sets of pairwise orthogonal latin squares of order 9. J. Com-

bin. Math. and Combin. Comput. 18, 83-96.]

Problem 8.3. 〈For what orders n do digraph complete sets of latin squares which
are not mutually orthogonal exist? That is, for what orders n do finite projective
planes which contain K-configurations exist? (page 295)〉

UNSOLVED. For the definition of “digraph complete”, see L.J. Paige and C.
Wexler(1953).

[Paige L.J. and Wexler C.
(1953) A canonical form for incidence matrices of finite projective planes and

their associated latin squares. Portugaliae Math. 12, 105-112.]

Problem 8.4. 〈For what orders n and for which values of k do k-nets which
contain K-configurations exist? (page 295)〉

UNSOLVED.

Problem 8.5. 〈Which types of finite and infinite projective planes contain K-
configurations? (page 295)〉
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As stated in [DK1], R.B. Killgrove (private communication to the author)
has shown that K-configurations exist in the Hughes plane of order 9 and also in
the Moulton plane but the present author is not aware of any more recent work
on this topic.

Problem 8.6. 〈Do all projective planes with characteristic p have p-power order?
(page 296)〉

PARTIALLY SOLVED. It seems that no work more recent than that of the
present author in 1970 has been done on this problem. He showed that planes
of characteristic p, p prime, which satisfy an additional condition do have prime
power order.

[Keedwell A.D.
(1971) A note on planes with characteristic, in “Atti del Convegno di Ge-

ometria Combinatoria e Sue Applicazioni”, Perugia, pages 307-318.]

Problem 8.7. 〈Do there exist non-desarguesian projective planes with charac-
teristic p? (page 296)〉

The conjecture that all projective planes which have characteristic p are de-
sarguesian dates from the 1950s and was probably originally proposed by L.
Lombardo-Radice. It remains UNSOLVED.

Chapter 9

Problem 9.0.9 〈Can a complete directed graph with an odd number n = 2m− 1
of vertices be separated into n disjoint Hamiltonian paths? (page 306)〉

This question, posed by E.G. Straus in the late 1960s [see page 1 of N.S.
Mendelsohn(1968)], is equivalent to asking whether the complete directed graph
on n + 1 = 2m vertices can be separated into n disjoint Hamiltonian cir-
cuits. Much later, the same question was posed again by J.C. Bermond and
V. Faber(1976). T.W. Tillson has answered both questions in the affirmative for
all m ≥ 4.

The question is also connected with that of the existence of row-complete
latin squares of odd order 2m− 1 (cf. the comments on Problem 2.3), since the
existence of such a square of a particular order implies an affirmative answer for
that order. See Section 3.1 of this book.

[Bermond J.C. and Faber V.
(1976) Decomposition of the complete directed graph into k-circuits. J. Combi.

Theory B21, 146-155.
Mendelsohn N.S.

(1968) Hamiltonian decomposition of the complete directed n-graph. In “The-
ory of Graphs”, Proc. Colloq. Tihany, 1966, pp. 237-241. Academic Press, New
York.

9This problem is mentioned in the text of [DK1] but was not listed among the problems.
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Tillson T.W.
(1980) A Hamiltonian decomposition of K∗

2m, 2m ≥ 8. J. Combin. Theory
B29, 68-74.]

Problem 9.1. 〈For which odd integers n do there exist decompositions of the
complete undirected graph Kn on n vertices into n nearly linear factors with the
property that the union of every two of them is a Hamiltonian path of Kn? (page
306)〉

This problem is closely connected with that of deciding for which even integers
2m the edges of the complete undirected graph K2m have a decomposition into a
so-called “perfect 1-factorization”. A 1-factorization ofK2m is said to be perfect if
the union of each pair of 1-factors is a Hamiltonian circuit of the graph. Suppose
that such a 1-factorization exists. Let us delete one vertex of the graph and all its
incident edges. We are left with the complete graph K2m−1. Also, each 1-factor
of K2m is replaced by a nearly linear factor of K2m−1. The union of every pair
of these is now a Hamiltonian path of K2m−1.

As regards values of m for which the edges of K2m have a decomposition
into a perfect 1-factorization, see E. Seah(1991) and D.G. Wagner(1992) for
information regarding what was known at that date and I.M. Wanless(2005) for
more up-to-date information. Also, such 1-factorizations have been counted for
K14 and they exist for m = 26 [see A.J. Wolfe(2009)].

[Dinitz J.H. and Garnick D.K.
(1996) There are 23 nonisomorphic perfect one-factorizations of K14. J.

Combin. Des. 4, 1-4.
Seah E.

(1991) Perfect one-factorizations of the complete graph: a survey. Bull. Inst.
Combin. Appl. 1, 59-70.
Wagner D.G.

(1992) On the perfect one-factorization conjecture. Discrete Math. 104, 211-
215.
Wanless I.M.

(2005) Atomic latin squares based on cyclotomic orthomorphisms. Electron.
J. Combin. 12, Research Paper 22, 23 pp.
Wolfe A.J.

(2009) A perfect one-factorization of K52. J. Combin. Designs 17, 190-196.]

Problem 9.2. 〈Determine the number of isomorphically distinct symmetric latin
squares of order 2m− 1 for arbitrary m > 4. (page 306)〉

This problem is equivalent to that of asking in how many ways can the edges
of the complete undirected graphK2m−1 be partitioned into nearly linear factors.
See Theorem 8.3.4 in the main text of this book. Alternatively, the problem is
equivalent to asking how many isomorphically distinct 1-factorizations F does
the complete graphK2m possess. To see this, delete one vertex v fromK2m. Then
the 1-factors of F become nearly linear factors of K2m − {v}. Let these nearly
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linear factors be denoted by F1, F2, . . . , F2m−1, where the labelling is chosen so
that Fh is the 1-factor which has [h, v] as an edge in K2m.

Now construct a (2m − 1) × (2m − 1) matrix by placing h in the cell (i, j)
if the edge [i, j] occurs in the nearly linear factor Fh. Also, place h in the cell
(h, h). The resulting matrix will be a symmetric latin square. In the first place,
h will appear both in the cell (i, j) and in the cell (j, i) so the square will be
symmetric. Also, h will appear just once in the ith row since only one edge of Fh
is incident with the vertex i. Likewise, h will appear just once in the jth column
since only one edge of Fh is incident with the vertex j. This proves the claim.

As regards the equivalent problem of finding the number Mm of isomorphi-
cally distinct 1-factorizations of K2m, this number has been counted/computed
for m ≤ 7. L.E. Dickson and F.H. Safford(1906) proved that M4 = 6;10 E.N.
Gelling and R.E. Odeh(1974) obtained M5 = 396; J.H. Dinitz, D.K. Garnick
and B.D. McKay(1994) obtained M6 = 526, 915, 620 and P. Kaski and P.R.J.
Österg̊ard(2008) obtained M7 = 1, 132, 835, 421, 602, 062, 347.

[Dickson L.E. and Safford F.H.
(1906) Solution to problem 8 (group theory). Amer. Math. Monthly 13, 150-

151.
Dinitz J.H., Garnick D.K. and McKay B.D.

(1994) There are 526,915,620 nonisomorphic one-factorizations of K12. J.
Combin. Designs. 2, 273-285.
Gelling E.N. and Odeh R.E.

(1974) On 1-factorizations of the complete graph and the relationship to round
robin schedules. Proc. Third Manitoba Conference on Numerical Mathematics
(Winnipeg, Man., 1973), pp.213-221. Utilitas Math., Winnipeg, Man., 1974.
Kaski P. and Österg̊ard P.R.J.

(2009) There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations
of K14. J. Combin. Designs 17, 147-159.]

Problem 9.3. 〈For what values of n does a P -quasigroup exist which defines a
partition of the complete undirected graph Gn into a single closed path? (page
307)〉

SOLVED COMPLETELY. N.P. Korovina(1984) has proved that a P -quasigroup
of order n defining an Eulerian cycle exists for every odd n except n = 5. Earlier,
it had been proved by Hilton and Keedwell that such decompositions exist for
all values of n ≡ 3 (mod 4), that is n = 4r + 3, except possibly when r ≡ 127
(mod 595) and for a considerable number of values of n ≡ 1 (mod 4) which are
less easy to specify. See also Section 8.3 of the present book.

[Hilton A.J.W. and Keedwell A.D.
(1976) Further results concerning P -quasigroups and complete graph decom-

positions. Discrete Math. l4, 311-318.

10On page 306 of [DK1], we mentioned that A. Kotzig obtained M4 = 7 but this value was
not correct.
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Keedwell A.D.
(1975) Row complete squares and a problem of A. Kotzig concerning P -

quasigroups and Eulerian circuits. J. Combinatorial Theory 18, 291-304.
Korovina N.P.

(1984) Complete solution of the Kotzig problem on the existence of an Euler
cycle in P-quasigroups. (Russian) Uspekhi Mat. Nauk 39, 163-164.]

Problem 9.4. 〈What are the distinguishing features of a P -quasigroup of the
type mentioned in problem 9.3? (page 307)〉

UNSOLVED so far as the author is aware, but see the paper of Korovina
mentioned above.

Problem 9.5. 〈What criteria must a colour graph satisfy if it is to be the Cayley
colour graph of a quasigroup? (page 315)〉

SOLVED COMPLETELY. W. Dörfler(1974) has proved that every regular
graph is a quasigroup graph.

[Dörfler W.
(1974) Every regular graph is a quasigroup graph. Discrete Math.10,181-183.]

Chapter 10

Problem 10.1. 〈For which values of q, n and d can the Joshibound be attained?
(page 356)〉

The author is not in touch with recent developments in this topic.

Problem 10.2. 〈What is the least number ρ(k, n) of elements which a covering
set of an abelian group G which is the direct sum of k cyclic groups each of order
n can contain? (page 362)〉

The author has no information about this question.

Problem 10.3. 〈Find a set, as large as possible, of k-digit binary code words such
that, for a given small positive integer m, every check sum of up to m different
code words is distinct from every other sum of m or fewer code words, and so
that each such check sum can be decomposed uniquely, apart from the order of
the words, into the m code words which were used to form that sum? (page 366)〉

The author understands that some information with regard to this problem
may be found in the book of W.W. Wu(1985).

[Wu W.W.
(1985) Elements of Digital Satellite Communication. Vol. 2. Computer Sci-

ence Press, New York. ]

Problem 10.4. 〈Can E. Knuth’s upper bounds be attained for non-prime values
of n? (pages 367, 368)〉

In E. Knuth(1967), that author discussed three problems concerning a set of
pairs of orthogonal latin squares which had arisen in connection with the design of
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telephone exchanges. Details are on pages 366-368 of [DK1]. The present author
is not aware of any more recent work having been done on these problems.

[Knuth E.
(1967) Egy ortogonális latin négyzetekkel kapesolatos problémáról. Közlemények

No. 2 (1967), 26-40. In Hungarian. [On a problem connected with orthogonal
latin squares.]]

Problem 10.5. 〈For what values of the parameters b, v, r, k, λ do balanced in-
complete block designs exist? (page 375)〉

The problem remains unsolved in general. For a fairly recent listing of all
known BIBDs with r < 42, see R. Mathon and A. Rosa(1990). This listing has
been updated in “The CRC Handbook of Combinatorial Designs” [Colbourn and
Dinitz(1966,2006)]

[Mathon R. and Rosa A.
(1990) Tables of parameters of BIBDs with r ≤ 41 including existence, enu-

meration and resolvability results: an update. Ars Combin. 30, 65-96.]

Chapter 11

Problem 11.1. 〈What are the exact values of vn, for n = 3, 4, 5, . . .? (page 425)〉
Hanani defined the integer vr as being the smallest positive integer with the

property that N(v) ≥ r for every v > vr. In particular, v2 = 6 and v3 ≤ 23.
The value v3 ≤ 46 was obtained by Wilson(1974) but this has subsequently been
improved to that just stated. For more information on this topic, see Section 5.3
of this book and “The CRC Handbook of Combinatorial Designs” [Colbourn and
Dinitz(1966,2006)].

[Wilson R.M.
(1974) Concerning the number of mutually orthogonal Latin squares. Discrete

Math. 9, 181-198.]

Problem 11.2. 〈What are the exact values of N(n) for n ≥ 15, n not a prime
power? (page 426)〉

UNSOLVED, but see Section 5.3 of this book for present knowledge on this
subject.

Chapter 12

Problem 12.1. 〈For what values of m and h are E. Barbette’s problems soluble?
Is it always possible to find solutions which consist of superimposing a row latin
square on its own transpose as in Fig. 12.5.2? (page 463)〉

In E. Barbette(1898), that author proposed a generalization of Euler’s 36
officer problem (see Section 5.1) and he provided solutions for some particular
cases. Details are in [DK1], pages 463-464. The specific questions stated in the
problem have not since been addressed.
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[Barbette E.
(1898) Sur le probléme d’Euler dit des 36 officiers. Généralisation. Interméd.

Math. 5, 83-85.]

Problem 12.2. 〈Which groups contain a latin square group as a subgroup? (page
466)〉

See problem 12.3 for information about this problem.

Problem 12.3. 〈How can the latin square groups be characterized? (page 466)〉
In J.J. Carroll et al (1973), these authors posed the question: “Given a per-

mutation group Gp acting transitively on the symbols N = {1, 2, . . . , n}, when
is it possible to find a subset of n permutations g1 = e, g2, . . . , gn such that, for
each i ∈ N , the symbols g1(i), g2(i), . . . , gn(i) are all distinct?” They called such
a sequence a driving sequence.

Suppose that a driving sequence exists. Then the n× n array whose (k, l)th
entry is gk(l) is a latin square whose rows are the permutations g1 = e, g2, . . . , gn
of the driving sequence.

Conversely, let L be a latin square of order n with first row in natural order.
Then the permutations which define the rows of L are a driving sequence of the
permutation group which they generate.

In particular, if L is the Cayley representation of a group G, then the rows
of L define a driving sequence and they generate G. If, on the other hand, L
is not group isotopic then its row permutations define a driving sequence for
the group of order greater than n which they generate. Evidently this group
is a subgroup of the symmetric group Sn. Carroll et al called such a group a
latin square group and they raised the question “Which groups are latin square
groups?” They stated further that, among others, there is a permutation group
K of order 12 on 6 symbols which does not contain a latin square subgroup. We
remark here that K cannot contain a subgroup of order 6 since the permutations
of such a subgroup would form a latin square so K must be isomorphic to the
alternating group A4. More generally, a sufficient (but not necessary) condition
for a permutation group on n symbols to be a latin square group is that it has
a subgroup of order n.

Problems 12.2 and 12.3 remain unsolved in general except for small and very
large orders. Carroll et al themselves investigated small orders. Also, A. Drápal
and T. Kepka(1989) have proved that, for n 6= 2, 4, 5, the alternating group An is
a latin square group. P.J. Cameron(1992) has proved that, “for almost all loops”,
the left multiplication group is symmetric or alternating. This is closely related
to the problem because a latin square becomes the multiplication table of a loop
when it is suitably bordered and the row permutations of a loop generate its left
multiplication group

[Cameron P.J.
(1992) Almost all quasigroups have rank 2. (A collection of contributions in

honour of Jack van Lint.) Discrete Math. 106/107, 111-115.
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Carroll J.J., Fisher G.A., Odlyzko A.M. and Sloane N.J.A.
(1973) Research Problems: What are the Latin Square Groups? Amer. Math.

Monthly 80, 1045-1046.
Drápal A. and Kepka T.

(1989) Alternating groups and Latin squares. European J. Combin 10, 175-
180.]

Chapter 13

Problem 13.1. 〈Do projective planes of orders 12 or 15 exist? (page 484)〉
UNSOLVED. There have been several attempts to tackle this problem by

considering, for example, what kind of collineation group such a plane would
have to possess but these attempts have so far been unsuccessful. For details, see
Section 2 of Chapter 11 in [DK2].

Problem 13.2. 〈How many right quasifields of order 16 with GF[2] as nucleus
exist? How many isomorphically distinct projective planes of order 16 do these
give rise to? (page 484)〉

The problem, so far as the author has been able to discover, is unsolved.
However, as a contribution towards its solution, it is known that there are just
eight isomorphically distinct translation planes of order 16 altogether and the
structure of these planes is described in U. Dempwolff and A. Reinfart(1983).
See also the earlier paper of these authors listed below.

[Dempwolff U. and Reinfart A.
(1982) Translation planes of order 16 admitting a Baer 4-group. J. Combin.

Theory Ser. A32, 119-124.
(1983) The classification of the translation planes of order 16. I. Geom. Ded-

icata 15, 137-153.]
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New Problems
Chapter 1.

1.1 How can the latin subsquares which occur in the Cayley tables of Bruck,
Bol and other classes of loops be characterized? (page 28).

1.2 What is the largest number of s × s subsquares for fixed s (1 < s < n)
which can be avoided by a given n×n latin square L? Does this number depend
on the structure of L: for example, whether L is group-based? Also, the same
question when s is allowed to take all values (1 < s < n). (page 36)

Chapter 2.
2.1. Which classes of groups other than those discussed on pages 75 to 78 of

[DK2] are super P -groups? (page 67)
2.2. Is it true that if L is the multiplication table of a non-soluble group then,

not only does L have at least one, and possibly many, square roots
√
L, but at

least one of these square roots is a latin square. (page 70).

Chapter 3.
3.1. Does there exist an odd integer n such that a weakly completable critical

set of size less than ⌊n2/4⌋ exists for the cyclic latin square of order n? (page 95)
3.2. What is the largest size (in terms of n) for a critical set in a cyclic latin

square of order n? (page 95)
3.3. What are the sizes of minimal critical sets for the various main classes

of non-cyclic latin squares? (page 95)
3.4. What is the size of a minimal critical set for a Sudoku latin square L

whether group-based or not? (page 96)
3.5. What is the largest size which a critical set in a latin square may have?

(page 98)
3.6. How can latin bitrades of genus 1 (or any other genus greater than zero)

be characterized? (page 103)
3.7. ‘What is the minimal order of a latin square into which a given separated

(or non-separated) latin trade T of size h may be embedded? (page 104)
3.8. Are there combinatorial structures other than latin bitrades which can

be represented topologically and hence assigned a genus? (page 105)
3.9. Is it true that every 1

4 ǫ-dense partial latin square is completable? (page 106)
3.10. Is Rodney’s conjecture that every latin square contains a duplex true?

(page 121)

Chapter 4.
4.1. Is it true that, for odd n ≥ 7, every transversal of Ln can be extended in

at least two distinct ways to a decomposition of Ln into transversals? (page 157)
4.2 Do there exist latin squares of orders n 6= 3h which contain as many as

1
18n

2(n− 1) 3× 3 subsquares? (page 158)

Chapter 5.
5.1. What are the conditions for two latin directed triple systems to be or-

thogonal? (page 188)



357

5.2. Can the concept of orthogonality be modified to cover the case of non-
latin directed triple systems? (page 188)

5.3. Do pairs of maximal orthogonal r×n latin rectangles exist for all integers
r such that n/3 < r < n when n is sufficiently large? (page 194)

Chapter 6.
6.1. What is the largest number of totally diagonal latin squares that can

exist in a pairwise orthogonal set? (page 219)
6.2. Can a 25 × 25 bimagic square be constructed by a modification of the

method described in Keedwell(2011c)? (page 222)
6.3. What is the size of a minimal critical set for a 4 × 4 magic square? Is

this the same for all such squares in the same class? Does it vary according to
which of the twelve classes a particular square belongs? (page 224)

6.4. Is it possible to construct an n2 × n2 Sudoku latin square (n ≥ 4) all
of whose n × n subsquares are magic squares of which no two are equivalent?
(page 224)

6.5. How many non-isomorphic and non-equivalent Room designs of order 2n
exist? (page 233)

Chapter 8.
8.1. Can a complete directed graph with a prime number p of vertices be

separated into p disjoint Hamiltonian paths? (page 277)

Chapter 9.
9.1. For which orders n not divisible by 8, if any, do 4-homogeneous latin

squares exist? (page 285)
9.2. Find the complete spectum of integers n−k for which (n−k)-homogeneous

latin squares exist. (page 285)
9.3. For which integers h do orthogonal h-homogeneous latin squares exist

or, alternatively, can it be proved that they do not exist for some values of h?
(page 285)

9.4. Do atomic latin squares of composite but non-prime-power orders exist?
(page 294)

9.5. For which even orders do N∞-squares exist? (page 294)

Chapter 10.
10.1. Can the bounds t ≤ m + 1 when m is odd and t ≤ m when m is even

for the number t of latin squares of order 2m in a mutually nearly orthogonal
set be attained when m 6= 3? (page 296)

10.2. What is the upper bound Nq(n) on the number of squares in a set of
MQOLS of order n? (page 301)

10.3. Is it true that, for some n, n > 6, Nq(n) > n− 1. (page 302)
10.4. For which orders n > 10 do D-type and/or C-type latin power sets of

at least two members exist? (page 304)

Chapter 11.
11.1. Do latin triangles exist of all odd orders and of all even orders except

4, 6 and 10? (page 323)
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11.2. Alternatively, is there an integer n0 such that, for all n > n0, an LT (n)
exists? (page 323)

11.3. For a given order n, how many different LT (n)’s exist? (page 323)
11.4. In this context, how should we define “different”? (page 323)
11.5. What is the maximum number of mutually orthogonal LT (n)’s that can

exist? (page 323)

New Problems
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po teorii kvazigrupp i eë pribliжeni�m, Suhumi. [On prolongations of
quasigroups. Thesis I. All- Union Symposium on the theory of quasigroups and
their applications, Suhumi, 1968.] Not reviewed in MR. [23]

[Belousov V.D. and Gvaramiya A.A.] Belousov V.D. i Gvarami� A.A.
(1966) O kvazigruppah Steina. Soobw. A. N. Gruz SSR, 44, 537-544.

[Stein quasigroups. Sakharth SSR. Mecn. Akad. Moombe 44(1966), 537-544.] MR

Bibliography



366

34(1967)#2758. [185]

[Belousov V.D. and Ryzkov V.V.] Belousov V.D. i Ryжkob V.V.
(1966) Ob odnom sposobe poluqeni� figur zamykani�. Mat.Issled

1,140-150. [On a method of obtaining closure figures. Mat. Issled 1(1966), No.
2., 140-150.] MR 36(1968)#6526. [268]

[Belyavskaya G. B.] Bel�vska� G.B.
(1969) O suжenii kvazigrupp. Des�tyi vseso�znyi algebraiqeskii

kollokvium. Novosibirsk. Rez�me dokladov. TOM 2, 106-107. [On con-
traction of quasigroups. Tenth All-Union Algebra Colloquium. Novosibirsk (1969).
Summaries of Reports. Vol. 2, 106-107.] Not reviewed in MR. [23]

(1970a) Tuepno-izotopnye kvazigruppy. Mat. Issled 5, No.2, 13-27.
[Chain-isotopic quasigroups. Mat. Issled. 5 (1970), No. 2, 13-27.] MR 44(1972)
#1757. [23]

(1970b) Obobwennoe prodolжenie kvazigrupp. Mat. Issled. 5, No.2,
28-48. [On generalized prolongation of quasigroups. Mat. Issled. 5(1970), No. 2.,
28-48.] MR 44(1972)#1758. [23]

(1970c) Sжatie kvazigrupp �. Izv. A. N. MSSR. No.1, 6-12. [Compres-
sions of quasigroups I. Izv. Akad. Nauk Moldav. SSR (1970), No.1, 6-12.] MR
43(1972)#4942. [23]

(1970d) Sжatie kvazigrupp ��. Izv. A. N. MSSR. No.3, 3-17. [Com-
pressions of quasigroups II. Izv. Akad. Nauk Moldav. SSR (1970), No.3, 3-17.]
MR 44(1972)#1756. [23]

(1971)Algoritmy rexeni� nekotoryh zadaq teorii kvazigrupp. “Vo-
prosy teorii kvazigrupp i lup.” Red V. D. Belusov. Akad.Nauk Mol-
davskoi SSR Kixinev, 20-30. [Algorithms for solving some problems in the
theory of quasigroups. From Questions in the theory of quasigroups and loops.
Edited by V. B. Belousov. Acad. Nauk Moldav. SSR. Kishinev, 1971, 20-30.] Not
reviewed in MR. [155]

(1979)Postroenie (n2−2)-ortogonalьnyh kvazigrupp qetnogo por�dka
n, gde n−1 6≡ 0 (mod 3). Kvazigruppy i lupy. Mat. Issled. [Construction
of (n2 − 2)-orthogonal quasigroups of even order n, where n − 1 6≡ 0 (mod 3).
Quasigroups and loops. Mat. Issled. No. 51 (1979), 23-26, 162.] MR 80m:20053.
[156]

(2002) Quasigroup power sets and cyclic S-systems. [in English] Quasigroups
Related Systems 9, 1-17. MR 2003j:20103. [304]

[Belyavskaya G.B. and Russu A.F.] Bel�vska� G.B. i Ruccu A.F.
(1975) O dopustimosti kvazigrupp. Mat. Issled 10, No.1(35), 45-57.

[On the admissibility of quasigroups. Mat. Issled 10, No.1(35), 45-57.] MR 52(1976)
#3407. 155]

Bennett F.E., Du B. and Zhang H.
(1997) Existence of conjugate orthogonal diagonal Latin squares. J. Combin.

Des. 5, 449-461. MR 98i:05026. [218]

Bibliography

 [



367

(1998) Existence of self-conjugate self-orthogonal diagonal Latin squares. J.
Combin. Des. 6, 51-62. MR 98m:05022. [218,242]

(2001) Existence of (3, 1, 2)-conjugate orthogonal diagonal Latin squares. J.
Combin. Des. 9, 297-308. MR 2002d:05031. [218]

Bennett F.E., Zhang H. and Zhu L.
(1996) Self-orthogonal Mendelsohn triple systems. J. Combin. Theory A73,

207-218. MR 97b:05020. [188]

Bennett F.E. and Zhu L.
(1992) Conjugate-orthogonal Latin squares and related structures. In “Con-

temporary design theory” (Wiley-Intersci. Ser. Discrete Math. Optim., Wiley,
New York), pp.41-96. MR1178500. [188,190,192]

Berge C.
(1962) The Theory of Graphs and its Applications. Translated by A. Doig.

(Methuen, London and J. Wiley, New York.) MR 24(1962)#A2381. [84]

Berlekamp E.R., Conway J.H. and Guy R.K.
(2004) Winning ways for your mathematical plays. Vol. 4. Second edition. A

K Peters, Ltd., Wellesley, MA. pp. i-xvi and 801-1004. ISBN: MR 2004m:91050.
[224]

Berman D.R. and Smith D.D.
(2012) Mitchell tournaments, Bull. ICA 65, 33-42. MR3052006. [321]
(2013) Balanced equitable mixed doubles round-robin tournaments. Bull. ICA

68, 90-101. MR3136866. [321]

Beth T.
(1983) Eine Bemerkung zur Abschätzung der Anzahl orthogonaler lateinis-

cher Quadrate mittels Siebverfahren. (German) [A remark on estimating the
number of orthogonal Latin squares using sieve methods] Abh. Math. Sem. Univ.
Hamburg 53, 284-288. MR 86f:05032. [179]

Betten D.
(1983) Zum Satz von Euler-Tarry. (German) Math. Nat. Unt. 36, 449-453.

Not reviewed in MR. [165]
(1984) Die 12 lateinischen Quadrate der Ordnung 6. (German) [The 12 Latin

squares of order 6] Mitt. Math. Sem. Giessen No. 163, 181-188. MR 86j:05038.
[165]

Beynon G.W.
(1943) Bridge Directors Manual. (Coffin Publishing Co., Massachusetts.) Not

reviewed in MR. [226]
(1944) Duplicate Bridge Direction. (Stuyvesant Press, New York.) Not re-

viewed in MR. [226,227]

Blackburn S.R. and McCourt T.A.
(2013) Triangulations of the sphere, bitrades and abelian groups. Combina-

torica, to appear. [103,105]

Bibliography



368

Blaschke W.
(1928) Topologisehe Fragen der Differentialgeometrie I. Thomsens Sechseck-

gewebe Zueinander diagonale Netze. Math. Z. 28, 150-157. [253]

Blaschke W. and Bol G.
(1938) Geometrie der Gewebe. Grundlehrung der Math. Wiss. 49, Berlin.

[253]
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(2006) Les ancêtres français du Sudoku. Pour la Science. No.344. June 2006,

8-11. [222]
(2012) Addition-Multiplication magic squares. http://www.multimagie.com/

English/AddMult1. [221]

Bradley J.V.
(1958) Complete counterbalancing of immediate sequential effects in a latin

square design. J. Amer. Statist. Assoc. 53, 525-528. Not reviewed in MR. [72]

Brandt H.
(1927) Verallgemeinierung des Gruppenbegriffs. Math. Ann. 96, 360-366. [62,117]

Brant L.J. and Mullen G.L.
(1985) A note on isomorphism classes of reduced Latin squares of order 7.

Utilitas Math. 27, 261-263. MR 87a:05037. [140]

Brayton R.K., Coppersmith D. and Hoffmann A.J.
(1974) Self-orthogonal Latin squares of all orders n 6= 2, 3, 6. Bull. Amer.

Math. Soc. 80, 116-118. MR 48#5886. [190]
(1976) Self-orthogonal Latin squares. (Italian summary) Colloq. Internaz.

sulle Teorie Combinatorie (Rome, 1973), Tomo II, pp. 509-517. (Atti dei Con-
vegni Lincei, No. 17, Accad. Naz. Lincei, Rome.) MR 57(1979)#16101. [190]

Brocard H.
(1896) Problème des 36 officiers (Deuxième réponse à la question numéro
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Mat.-Fiz. Astr. Ser. II. 10, 265-286. MR 18(1957), page 872. [56]

Dinitz J.H. and Ling A.C.H.
(2001) The existence of referee squares. Discrete Math. 232, 109-112. MR

2001k:05042. [320]

Dinitz, J.H. and Stinson, D.R.
(1992) Room squares and related designs. In “Contemporary design theory”,

pp. 137-204, (Wiley-Interscience. Ser. Discrete Math. Optim., Wiley, New York).
MR 94c:05001. [233]

(2002) A singular direct product for bicolorable Steiner triple systems. In
“Codes and designs” (Columbus, OH, 2000), pp.87-97. [Ohio State Univ. Math.
Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.] MR 2003m:05034. [312]

Donovan D.
(1999) Critical sets in latin squares of orders less than 11. J. Combin. Math.

Combin. Comput. 29, 223-240. MR 99k:05038. [98]

Donovan D. and Bean R.
(2000) Closing a gap in the spectrum of critical sets. Australas. J. Combin.

22, 191-200. MR 2000f:05030. [95]

Donovan D. and Cooper J.
(1996) Critical sets in back circulant latin squares. Aequationes Math. 52,

157-179. MR 97g:05032. [95]

Donovan D. and Howse A.
(2000) Towards the spectrum of critical sets. Australas. J. Combin. 21, 107-

130. MR 2000m:05041. [98]

Donovan D., Howse A. and Adams P.
(1997) A discussion of latin interchanges. J. Combin. Math. Combin. Comput.

23, 161-182. MR 98b:05019. [98]

Donovan D. and Mahmoodian E.S.
(2002) An algorithm for writing any latin interchange as a sum of intercalates.

Bull. Inst. Combin. Appl. 34(2002), 90-98. MR 2002j:05028. [104]
(2003) Correction to a paper on critical sets: “An algorithm for writing

any Latin interchange as a sum of intercalates” [Bull. Inst. Combin. Appl. 34
(2002), 90-98; MR1880972 (2002j:05028)]. Bull. Inst. Combin. Appl. 37, 44. MR
2003m:05039. [104]

Donovan D., Oates-Williams S. and Praeger Ch.E.
(1997) On the distance between distinct group latin squares. J. Combin.

Designs 5, 235-248. MR 98e:05017. [111]

Bibliography



377

Dougherty, S.T.
(1994) A coding-theoretic solution to the 36 officer problem. Designs Codes

Cryptogr. 4, 123-128. MR 95b:05037. [165]

Doyen J.
(1970a) On the number of non-isomorphic Steiner systems S(2,m, n). Combi-

natorial Structures and their Applications. (Proc. Calgary Internat. Conf., Cal-
gary, Alta., 1969), 63-64. (Gordon and Breach, New York). MR 43(1972)#4695.
[58]

(1970b) Sur la croissance du nombre de systèmes triples de Steiner non iso-
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Flessingue, Commentationes arithmeticae collectae (elogé St. Petersburg 1783),
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Rédei L.
(1947) Das schiefe Produkt in der Gruppentheorie mit Anwendung auf die

endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Unter-

Bibliography



408

gruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören.
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singulier. Ann. Soc. Sci. Bruxelles. Sér. I, 73, 231-234. MR 21(1960)#3502. [56]

(1959c) Entropie demosienne do multigroupöıdes et de quasigroupes. Ann.
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Bibliography



410

Ann. Soc. Sci. Bruxelles. Sér. I, 74, 91-99. MR 25(1963)#4017. [20,184,185,189,
310,311]

(1960b) Théorie des systèmes demosiens de groupöıdes. Pacific J. Math. 10,
625-660. MR 25(1963)#2019. [54,55]

(1961) Demosian systems of quasigroups. Amer. Math. Monthly 68, 329-337.
MR25(1963)#2020. [56]

(1962) Paratopie et autoparatopie des quasigroupes. Ann. Soc. Sci.Bruxelles.
Sér. 1, 76, 88-96. MR 27(1964)#2576. [7,135]
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Math. Nachr. 33, 177-188. MR 35 (1968) #5540. [42]

(1967d) Quasigroupes isotopes. Autotopies d’un groupe. Ann. Soc. Sci. Brux-
elles Sr. I, 81, 231-239. MR 38 (1969)#5978. [125]

(1968a) Quasigroupes parastrophiques. Groupe des automorphismes gauches.
Ann. Soc. Sci. Bruxelles Sér. I, 82, 73-78. MR 38(1969)#260. [42]

(1968b) Autotopies des quasigroupes et des systèmes associatifs. Arch. Math.
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Urzúa G.
(2010) On line arrangements with applications to 3-nets. (English summary)

Adv. Geom. 10, 287-310. MR 2011d:14097. [268]

van Rees G.H.J.
(1990) Subsquares and transversals in Latin squares. In Proc.Twelfth British

Combin. Conf. (Norwich, 1989). Ars Combin. 29B, 193-204. MR 97m:05047.
[119,158,283]

Vaughan-Lee M. and Wanless I.M.
(2003) Latin squares and the Hall-Paige conjecture. Bull. London Math.

Soc.35, 191-195. MR 2004h:05023. [69,121]

Veblen 0. and Wedderburn J.H.M.
(1907) Non-desarguesian and non-pascalian geometries. Trans. Amer. Math.

Soc. 8, 379-388. [174,272]

Wagner A.
(1962) On the associative law of groups. Rend. Mat. e AppI. (5) 21, 60-76.

MR 25(1963)#5120; erratum MR 26(1963), page 1543. [7]

Wall D.W.
(1957) Sub-quasigroups of finite quasigroups. Pacific J. Math. 7, 1711-1714.

MR 19(1958), page 1159. [30]

Wallis W.D.
(1986) Three orthogonal Latin squares. Adv. in Math. (Beijing) 15, 269-281.

MR 88e:05022. [179]

Bibliography



416

Wallis W.D, Street A.F. and Wallis J.S.
(1972) Combinatorics: Room squares, sum-free sets, Hadamard matrices. Lec-

ture Notes in Mathematics, Vol. 292. (Springer-Verlag, Berlin-New York). MR
52#13397. [233]

Wallis W.D. and Zhu L.
(1981) Existence of orthogonal diagonal latin squares. Ars Combin. 12, 51-68.

MR 83c:05026. [218]
(1982) Four pairwise orthogonal diagonal latin squares of side 12. Utilitas

Math. 21, 205-207. MR 84b:05033. [218]
(1983) Some new orthogonal diagonal latin squares. J. Austral. Math. Soc.

A34, 49-54. MR 84d:05049. [218]
(1984a) Some bounds for pairwise orthogonal diagonal latin squares. Ars

Combin. 17, 353-366. MR 85m:05025. [213]
(1984b) The existence of orthogonal Latin squares with small subsquares. J.

Combin. Inform. System Sci. 9, 1-13. MR 86i:05035. [223]

Wang C.D.
(1993) On the harmoniousness of dicyclic groups. Discrete Math. 120, 221-

225. MR 94d:20022. [82]
(2002) Complete latin squares of order pn exist for odd primes p and n > 2.

Discrete Math. 252, 189-201. MR 2003c:05043. [81]

Wang C.D. and Leonard P.A.
(1994) On R∗-sequenceability and symmetric harmoniousness of groups. J.

Combin. Designs 2, 71-78. MR 94j:20023. [82]
(1995) On R∗-sequenceability and symmetric harmoniousness of groups. II.

J. Combin. Designs 3, 313-320. MR 96c:20037. [82]

Wanless I.M.
(1999) Perfect factorizations of bipartite graphs and latin squares without

proper subrectangles. Electron. J. Combin. 6, Research Paper 9, 16 pp. MR
2000i:05153. [15,290,291,292,294]
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(n, d)-complete rectangle, 88
D-neofield, 249
K-construction, 238
N2-square, 284
N∞-square, 284, 290, 294, 331
P -circuit design, 232, 281

linked blocks of, 281
uniform, 281

P -quasigroups
perpendicular, 280

R-sequenceable, 65
k-net, 253

co-ordinatization of, 255
definition of, 254

k-plex, 121, 296
3-net, 253, 268

affine, 258
triangular, 258

adjugacy set, 16, 138
affine net, 258, 260
affine plane, 253

co-ordinatization of, 255
definition of, 254
real, 256

anti-abelian, 184
autostrophy, 16
autotopism, 11, 123

principal, 124

bachelor square, 119, 164, 283
balanced incomplete block design, 42, 318

symmetric, 319
bimagic, 221
Bol configurations, 265
Bol loop, 43
bowls tournament, 321
Brandt groupoid, 117
Brualdi’s conjecture, 24, 119, 313
Bruck-Ryser theorem, 175

Cayley table, 1
normal, 8

chain, 119, 121, 155, 156
rank of, 119

Clifford matrices, 225
coding theory, 202, 224, 303
column latin square, 89
complete mapping, 17, 64, 80, 165, 298

configuration
Bol, 264
Desargues, 264
hexagon, 264
Pappus, 259
rank of, 264
Thomsen, 260

configurational proposition, 261
conjugacy, 1, 15
covering radius, 313
critical partial latin square, 94
critical set

largest, 94
minimal, 93
size of, 91, 98
smallest, 94
totally weak, 96

cubic curve, 53, 59
cyclic group isotopes, 92

deficiency, 281
Delta lemma, 120
derangement, 148
designing tournaments, 190, 233, 321
differential geometry, 253, 254
directed terrace, 74, 321
discordant, 148
double transversals, 156
duplex, 121
Duplicate Bridge tournament, 225

Euler’s conjecture, 165, 287, 312
Eulerian cycle, 275
Evans’ conjecture, 114
extra loop, 21, 39, 43

formal arithmetics, 2
Frolov property, 62–64
Frolov’s regularity test, 62
Fuchs’ problems, 106

Galois plane, 172
generalized identities, 2, 54
generalized normal multiplication table, 8
geometric net, 253

definition of, 254
geometrical configuration, 258
graph

1-factorization, 275, 292, 321, 350
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bipartite, 274
complete, 275
decomposition of, 277
edge-colouring, 84
Eulerian circuit, 281
Hamiltonian path, 279
nearly linear factor of, 278
perfect 1-factorization, 275, 292, 350
valency, 84

group
R-sequenceable, 65
Rh-sequenceable, 304
2-sequencing, 81
autoparatopy, 42
complete mapping, 17, 64, 80, 165, 298
harmonious, 81
of autostrophies, 42
quasi-complete mapping, 299
quasi-ordering of, 299
quasi-orthomorphism, 299
quasi-sequencing, 80
sequenceable, 74, 250
symmetric sequencing, 80
terrace, 81

groupoid, 3, 123
autotopism, 124
semi-symmetric, 41

groupoids
orthogonal, 183

half groupoid, 4
Hall-Paige conjecture, 67, 69, 121
Hamiltonian circuit, 275
Hamiltonian path, 275
Hamming distance, 107, 111
hexagon configuration, 264, 267
Howell master sheets, 226
Hughes planes, 272

identities
balanced, 48
Bol, 39
Bol-Moufang type, 44
dual, 38
flexible law, 38, 60
general or generalized, 54
irreducible, 48
medial, 39
mirror images, 38
Moufang, 39
names of, 38
rank of, 54
reducible, 48

incidence closure, 260
incidence matrix, 318

intercalate, 26, 28, 92, 94, 158, 284
intramutation, 138
isomorphism, 10
isomorphism class, 11, 126
isostrophy(paratopy), 16, 21, 26, 254
isotopic quasigroups, 253, 257, 268
isotopism, 9

principal, 11
isotopy, 9
isotopy class, 10, 126, 138

Kézdy-Snevily conjecture, 313, 314
Kirkman’s schoolgirl problem, 58
Knut Vik design, 219, 285

Lagrange’s theorem, 20
latin array, 155
latin bitrade, 92

(r, c, s)-homogeneous, 105
genus, 99, 105
homogeneous, 104
minimal, 104
separated, 101

latin bitrades
addition of, 104
connected, 101
indecomposable, 101
primary, 101

latin cube, 194, 199
latin cubes

orthogonal, 199
latin hypercube, 24, 199
latin interchange, 94
latin power set

C-type, 304
D-type, 304

latin rectangle, 83
column complete, 86
complete, 86
incomplete or partial, 113
normalized, 145
reduced, 145
row complete, 86
semi-reduced, 145
very reduced, 151

latin rectangles, 193
enumeration of, 145
equitable, 194
orthogonal, 193

latin square, 1
k-plex, 121, 296
q-step type, 152
1-contraction, 23, 34
1-extension, 23, 34, 287
1-permutation, 18

Index



422

as ordered triples, 14, 93, 286
atomic, 292
bachelor, 119, 164, 283
basis square, 235
bordered cyclic, 285
column complete, 70
column inverse, 15, 45, 46
complete, 70
contraction, 34, 287
critical set, 91
diagonal, 18, 205, 206
diagonally cyclic, 285
directrix, 18
forced completion, 93
group-based, 5, 27, 34, 36, 62, 64, 74
homogeneous, 158, 284
horizontally complete, 70
idempotent symmetric, 40, 278, 303
incomplete or partial, 113
infinite, 116, 143
intramutation, 138
isomorphism, 10
left semi-diagonal, 206
magic Sudoku, 224
main class, 126
main diagonals, 205
minimal critical set, 93
odd order, 161
order of, 1
pan-Hamiltonian, 290
Parker square, 287
partial idempotent, 116
partial symmetric, 116
perfect, 97
prolongation, 22, 27, 34, 208, 209, 287,

289
quadrangle criterion, 19
quasi-complete, 80
reduced, 3, 9, 126, 160
regular, 6, 63
row complete, 70, 275
row inverse, 15, 45, 46, 291
self-conjugate self-orthogonal, 242
self-orthogonal, 184, 188
standard form, 3, 126, 160
strong completion, 93
subsquare avoiding, 32, 36
subsquare complete, 32
Sudoku, 96, 179, 222
super strong completion, 93
symmetric, 20, 145
totally diagonal, 219
totally weak completion, 94
transpose, 15
transversal, 17, 105, 159, 209

transversals, number of, 21
two-tiled, 284
type of main diagonal, 138
unipotent symmetric, 40, 278
uniquely completable, 91, 93
vertically complete, 70
weak completion, 93
without transversals, 152

latin squares
k-plex orthogonal, 296
n2-orthogonal, 305
r-orthogonal, 295
column method, 243
complete set, 161
diagonal method, 243
equivalent orthogonal, 324
equivalent sets of, 273
for games tournaments, 319
involutary property, 242
isotopic, 160
main class of, 16, 138
mutually orthogonal, 73, 160
nearly orthogonal, 295
orthogonal, 159
orthogonal diagonal, 214–216, 312
orthogonal sets, 166
pairwise orthogonal, 160
parastrophic orthogonal diagonal, 218
parastrophy class, 16
perpendicular, 145, 187, 228, 280, 302,

303
quasi-orthogonal, 298
self orthogonal, 312
standardized set, 160
sum composition, 287
use for experimental designs, 316
use in coding, 316
Weisner property, 242

latin subsquare, 25, 27
latin trade, 93

as transversals, 105
shape of, 98
size of, 98

latin triangles, 322
orthogonal, 322

line at infinity, 168
line co-ordinates, 172
loop, 1

Bol, 20, 43
Bruck, 20
central, 44
conjugacy closed, 21
enumeration, 140
extra, 21, 43
Frolov property, 63
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inverse property, 126
isotopic to a group, 13
Moufang, 20, 41, 43
nuclei of, 62, 155
power associative, 20, 21, 44, 267, 327
strongly power associative, 267

loop-principal isotope, 12, 266
LP-isotope, 12, 266

ménage number
generalized, 148

MacNeish’s fallacious proof, 165
MacNeish’s theorem, 178, 198, 218, 298,

308–310
magic square, 205

addition-multiplication, 221
bimagic, 215
diabolic(pandiagonal), 221, 345
Nasik(pandiagonal), 344
pandiagonal, 219
perfect, 221

main class invariant, 17, 26, 138
maximal orthogonal rectangles, 194
minor theorem of Pappus, 260
Moufang identity, 268
Moufang loop, 43, 266

near complete mapping, 250, 335
near orthomorphism, 250, 288, 335
neofield

cyclic, 243, 289
left, 156, 235, 249, 340
property D, 249

net
affine, 258
order of, 254
quasigroup associated with, 255
triangular, 258
trivial, 254

normal multiplication table, 8
Number Place, 96

orthogonal array, 14, 164, 193, 202, 287,
305, 307

orthogonal complement, 183, 184
orthogonal mappings, 237
orthogonal mate, 160
orthogonal operations, 183
orthogonal triple systems, 187
orthomorphism, 17, 64, 65, 156, 237, 286,

287, 298
linear, 286
near, 288
partial, 288

P-group, 67, 330

Pappus
central minor theorem of, 264
minor theorem of, 266, 267

parallel classes, 254
parastrophic quasigroups, 42
parastrophy, 15, 254
paratopy(isostrophy), 16, 21, 26, 254
Parker square, 287
Parker squares

quasigroup isomorphic, 288
partial geometry, 281
partial latin square

shape of, 338
size of, 338

partial loop, 117
partial orthomorphism, 288
partial quasigroup, 117
partition groupoid, 277
partition quasigroup, 278
pattern (of Csima), 115
perfect latin square, 97
permutation cubes, 195
permutations

orthogonal, 299
quasi-orthogonal, 299

presentation function, 252
principal autotopism, 124
principal isotope, 11
problème des ménages, 148
problème des rencontres, 148
projective plane, 166, 253

alternative definition of, 256
co-ordinatization of, 255
definition of, 167
finite, 167, 319
non-degenerate, 167
with characteristic, 273

projective planes
non-isomorphic, 253

quadrangle criterion, 4, 155, 262
quasi-complete mapping, 299
quasi-orthogonal, 298
quasi-orthomorphism, 299
quasigroup, 1, 253

anti-abelian, 184, 189, 312
associated with a net, 255
Cayley table of, 25
centre-associative element, 43
commutative, 20
complete mapping, 17, 22
diagonal, 20
first translate, 42, 45
flexible law, 38, 60
idempotent, 3, 19, 25, 38
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Mendelsohn, 60
orthogonal complement, 42
power associative, 267
Schroeder, 42
second translate, 42, 45
semi-symmetric, 41, 42
Stein, 184, 312
Steiner, 59, 286
totally symmetric, 53, 59
translation by k, 55
unipotent, 38, 40

quasigroups
associative system of, 56
direct product of, 309
enumeration, 140
general theory, 57
orthogonal, 183
parastrophic, 15, 44
parastrophically equivalent, 191
perpendicular commutative, 145, 187, 228,

280, 303
perpendicular Steiner, 312
Room pair of, 228
singular direct product of, 309, 310
totally symmetric, 57

referee square, 233, 320
Reidemeister configuration, 261

large, 261
right quasifield, 271
Rodney’s conjecture, 121
Room design, 224

cyclic, 226
normalized form, 227

Room pair of quasigroups, 228
Room square, 224

patterned, 230
skew, 302, 312
starter, 230

Room squares
equivalent, 233
isomorphic, 233

row array, 246
dual, 247
mirror, 247

row latin square, 89, 304
Ryser’s conjecture, 21, 119, 313

semi-symmetric, 42, 187
semigroup, 4
short conjugate-orthogonal identity, 191
singular direct product, 186, 217
species, 16, 138
spouse-avoiding tennis tournament, 190
statistical designs, 227

statistical experiments, 70–72, 199, 202, 219,
224, 295, 298

Stein identity, 184
Stein quasigroup, 184
Steiner quasigroup, 59, 286, 302
Steiner triple system, 57, 281, 302, 312, 319
Steiner triple systems

orthogonal, 187, 188, 231, 303
quasi-orthogonal, 302

subquasigroup, 25
subsquares:enumeration of, 158
Sudoku latin square, 96, 179, 222
Sudoku puzzle, 96
super P -group, 67

totally symmetric, 187
tournaments

bowls, 321
carry-over effects, 321
duplicate bridge, 225
spouse-avoiding, 190
tennis, 321

transformation set, 16, 138
translation plane, 271
transversal design, 179, 254
transversals

as complete mappings, 17
enumeration of, 152, 155, 156
in group-based latin squares, 64
in latin trades, 105
length of partial, 119
maximal sets of disjoint, 156
number of, 21

triangular net, 258
triple systems

directed, 60
history, 58
isomorphic, 58
latin directed, 60
Mendelsohn, 60
pure Mendelsohn, 60
Steiner, 57, 281, 302, 312, 319

uniquely completable, 91, 93, 96
Fuchs’ problem, 106

universal identity, 268

variational cube, 195
VeblenWedderburn system, 271

web(see net), 254

Yamamoto’s method, 287, 312
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