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About This Book

As confirmed by a series of experimental data, there are two different cognitive
systems relating to mathematical skills. The first system is not based on symbols,
and it is approximative; it is based on the estimation of quantities; and it involves
both a simple process of comparison and a series of basic arithmetical operations
like addition and subtraction. The second system is based on symbols, and it is
language- and culture-dependent; it is typical of adults; and it is founded on the
ability of counting, therefore on a numerical system and on all arithmetical
operations.

Therefore, to explain the acquisition of mathematical concepts, we must answer
the two following questions. How can the concepts of approximate numerosity
become an object of thought that is so accessible to our consciousness? How are
these concepts refined and specified in such a way as to become numbers?
Unfortunately, starting from these experimental results, there is currently no model
that can truly demonstrate the role of language in the development of numerical
skills starting from approximate pre-verbal skills. The aim of this book is to answer
these difficult questions by turning to the dual process theories. This theoretical
approach is widely used by theorists focusing on reasoning, decision making, social
cognition, consciousness, etc. In this book, for the first time this theoretical
approach is applied to the studies on mathematical knowledge with the aim of
detailing the results brought about by psychological and neuroscientific studies
conducted on numerical cognition by a few neuroscientists and laying the foun-
dations of a new potential philosophical explanation on mathematical knowledge.
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Chapter 1
Introduction

Using numbers to trade, classify, and sort goods and items may seem an easy,
convenient, and almost ordinary task. This fact in itself could seem surprising, since
numbers are—as Adam Smith famously said,—“among the most abstract ideas
which the human mind is capable of forming”. If it were to be true, then, using
numbers would require a long and difficult training. Nevertheless, anyone can count
and perform simple arithmetic calculations.

We are hence inclined to ask ourselves: what is a number? How are numbers
represented in our mind? How can we perform more and less complex mental
calculations?

This book will try to answer these questions from a cognitive point of view,
meaning that it will not simply focus on the definitions of mathematical concepts
and their axioms, but it will rather dwell upon how these concepts and axioms can
be understood. In other words, it will try to account for the ideas and cognitive
mechanisms underlying computation and the possibility of establishing axioms.

So, while the philosophers of mathematics try to define the meaning of theorems
and establish how important axioms are, cognitive scientists look for the cognitive
mechanisms that allow for the understanding of theorems or the production of
mathematically true or false propositions.

The label “cognitive sciences” applies to a field of study where the multidisci-
plinary research activity on cognitive processes converges. Cognitive sciences
embrace researchers coming from different disciplines, such as philosophy, neu-
roscience, psychology, evolutionary biology, linguistics, AI (only to mention those
that contributed the most to the research in the field). The collection of disciplines
involved is so broad and heterogeneous that it is necessary to talk about “cognitive
sciences”, emphasis on the plural form. This fact has its pros and cons: on the one
hand, despite their different background, all researchers share a profound interest
for the analysis of cognition; while on the other hand, according to their specific
field of study, this analysis is carried out using methods that can strongly differ.
This methodological pluralism is seen by many authors as a positive factor that
fosters exchange, dialogue, and agreement, while others see it as a source of
confusion and concern.
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Another fact that raises some concerns is that some researchers might even argue
that a research activity should not have the aim of studying the “cognitive structure
of mathematics”, since this endeavour runs the risk of becoming too vague or faced
with too many difficulties (just think about the question “which mechanisms in the
human brain and mind allow humans to conceive mathematical ideas and develop
reasoning processes that follow mathematical criteria?”) or, even worse, leading to
false statements (“Is mathematics really based only on mind-brain mechanisms?
What about Platonic mathematics? Does it not belong to mathematics?”).

Yet, despite all these constraints, cognitive researchers are convinced that their
work is of paramount importance, since the beauty and depth of mathematics can
often seem inaccessible (particularly to non-mathematicians) because of the lack of
a description of the cognitive structure of mathematics or because of the lack of a
description of the brain and mind mechanisms that allow humans to conceive
mathematical ideas and reason according to mathematical criteria.

Besides, beyond the epistemological problems of cognitive sciences (and its
methodologies) and the doubts raised by foundationalist-platonic schools, the thesis
of the embedded character of mathematics (in the broad meaning of mind used by
cognitive sciences) is anything but new. As a matter of fact, going back to Aristotle
and Greek arithmetic (and to the pebbles that gave birth to computation tasks), the
whole empirical tradition focusses on a specific idea: mathematics starts with the
questions and problems related to the combinatory and symbolic aspects of human
experience. Starting from this acknowledgment, the argument develops into a
deductive analysis of a huge number of formal structures that are strongly different,
but mutually bonded.

Even a hard-line supporter of formalism such as the contemporary philosopher of
mathematics Saunders MacLane claims that:

we conclude that mathematics started from various human activities which suggest objects
and operations (addition, multiplication, comparison of size) and thus lead to concepts
(prime number, transformation) which are then embedded in formal axiomatic systems
(Peano arithmetic, Euclidean geometry, the real number system, field theory, etc.). These
systems codify deeper and non-obvious properties of the various originating human
activities (Mac Lane 1981, p. 463).

Following the same rationale, Reuben Hersh (1997) tried to debunk the myths of
mathematics (unit, universality, certainty, and objectivity), in order to replace them
with ideas such as the human nature of mathematics, its fallibility, etc. According to
Hersh, mathematical objects were not created arbitrarily by humans, but they were
rather established starting from the activities that could be performed with
pre-existing mathematical objects and the needs related to their current scientific
activities and daily life.

So, starting from the agreed fact that mathematics is the product of the abilities
of mankind (a point only the Platonists disagree with) and therefore its mental
skills, it is fair to believe that the analysis should focus on this assumption and
therefore on the cognitive mechanisms (possibly cerebral) underlying mathematical
skills.
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As it is well known, one of the earliest “modern” cognitive theories on the
genesis of the concept of number was postulated by Jean Piaget (1952), who
claimed that there is an unbreakable bond between the structure of general intel-
ligence and the development of numerical competence.

Contrary to Piaget’s claims, the cognitive studies carried out over the last decade
of the 20th century showed that children have abilities of numerical cognition
already at birth.

Despite the fact that children acquire the majority of their numerical knowledge
through language, this does not seem to hinder the learning of natural numbers as it
could be expected. The likeliest reason for this fact is that humans have two
numerical representation systems at their disposal: one is “inborn-approximative”,
while the other is influenced by culture, “language-dependent” and at the basis of
exact knowledge (Dehaene 1997). This assumption has been supported by abundant
experimental data that highlight the existence of a sound numerical knowledge well
ahead of the onset of the linguistic stage. Several tests showed that young children
—so young as not to have any knowledge of numbers or computational methods as
established by their cultures—are able to make mental representations of several
numbers and have procedures that allow them to process these numerical repre-
sentations in order to obtain more information (Xu and Carey 1996; Dehaene 1997).
Children placed in front of advanced devices that offer the solution to simple
problems of addition and subtraction react with surprise when the result seems
“false” to them (Wynn 1990).

These inborn abilities are incredibly simple and do not include abstract mathe-
matics, which can often even be associated to fear, but this does not mean that these
skills are not as important as others. In inborn knowledge, a prominent role is
played by the computational abilities related to the representation of the first three
positive integer numbers, i.e. “one”, “two”, and “three”. Dehaene claims that
humans do not enumerate these numbers, but that they rather immediately perceive
their presence because they relate to quantities that our brain perceives effortlessly
and without resorting to enumeration. The technical term used for this process is
subitizing, a term stemming from the Latin word subitus, which indicates a swift
and precise recognition process related to the numerosity of sets composed of a
maximum of 6 items.

Even today the debate on how subitizing works is still in progress. Yet, what is
now clear is that children have the inborn ability—even before the emergence of a
verbal enumeration procedure that is shown by the representation of a cardinal
value for a set of objects—to make a representation of the transformation of a set
(addition and subtraction) and to understand the relations between two numerosi-
ties. The experimental data collected through several experiments have indeed
shown that young children (and some animals) have preverbal numerical skills that
allow them to learn from the events taking place in their environment (the first part
of this book will focus on these experiments). Nevertheless, the outcomes of several
experiments do not prove that children always make good use of these skills, nor
that they have an infallible numerical competence. On the contrary, the data
highlight that children (as well as adults in particular circumstances) are more
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inclined to use perceptive indexes or heuristic techniques that are less precise, but
much less energy-demanding from a cognitive perspective.

Unfortunately, what is still unclear is how children are able to use precise
numerical representations starting from non-verbal approximative representations.
In other words, children have indeed access to this wide range of representations of
approximative numerical quantities, but they are not aware of it. Now, it seems
clear that the concept of number must be accessible to consciousness, since the
children that have acquired it are able to use numbers to distinguish the elements
belonging to a set of objects.

Therefore, accounting for the learning process of mathematical concepts requires
clear answers to two questions. Question 1: how can the concepts of approximative
numerosity become an object of thought and become consciously accessible?
Question 2: How can these concepts be enhanced and specified in order to become
discrete numbers?

Up to now, despite the effort and work of several authors (summed up in Chap. 5),
these questions remain unanswered and there is no model that can fully account for
the development of exact numerical competences starting from preverbal approx-
imative skills.

The ideas put forward by cognitivist researchers seem indeed more focussed on
the concept of numerosity, a term that normally refers to the sense of number and in
particular to the sense of the size of a set and not the size of numbers. The core of
the issue is that, in order to acquire the concept of number, what is needed is a word
or a symbol that refers to that concept. The complexity of mathematics is indeed
due to the potential role that several cognitive functions can play in relation to
computation, functions such as attention, symbolic representation, oral and written
language, visual and spatial abilities, perception, motivation, will, and other
abilities.

However, referring to all these mental functions at once implies claiming that the
establishment, transmission, and development of mathematical knowledge should
be explained through the study of the “mind”. The description of the nature of our
mind and the knowledge of the mechanisms underlying the cognitive processes that
allow us to perceive spatial, temporal, numerical measurements and sizes, know the
world and act in it, can help us understand what defines the Sapiens as a species and
makes it structurally and functionally different to other animal species.
Nevertheless, in order to do so, we need a representation of our mental life that is
less idealised and abstract, and more realistic and in line with real human (and non
human) abilities. From this point of view, more than four decades of research and
experiments on the cognitive mechanisms hidden behind our daily thinking and
acting have shown that human intelligence is not made up by a single system, but
rather that it works through two peculiar agents: System 1 and System 2.

System 1 is intuitive, impulsive, automatic, unconscious, fast, and sustainable
from an ecological and economical (in terms of mental energy) point of view. It
allows us to seamlessly detect the fear on the face of another person. System 2
instead works consciously, deliberatively, slowly, reflectively, and is costly from an
energy perspective. Nevertheless, this system allows us to multiply (even with some

4 1 Introduction



effort) 18 � 190. Each system works in its competence domain. When System 2 is
passive, a “psychodrama” unfolds (a term coined by cognitive psychologist Daniel
Kahneman), where what is false seems true, illusions take the upper hand, and
mistakes become the rule rather than the exception.

Of course, not all study fields of mathematics deal with exact numbers and,
therefore, with System 2. Beyond the linguistic and conceptual aspects of mathe-
matics, there is also the inborn and biologically based form of mathematics that
cognitive scientists so elegantly describe; a form of mathematics perfectly framed in
the natural adaptation process related to the surrounding environment. This fact
should not come as a surprise: humans are social, linguistic, and culturally deter-
mined animals, but they are still animals. On the one hand, their animal nature is
due to biological factors while, on the other hand, their human nature depends on
their culture. Humans are therefore the only species with a “second nature”, the
cultural one. It seems completely logical, but it can be easily forgotten.
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Chapter 2
The System 1

Abstract This chapter is devoted to the discovery of the core abilities underlying
human numerical cognition. Neuroscientists hypothesises that human beings are
born with a “number sense” that they share with other animals and that this instinct
is the expression of the functioning of a “mental organ”, a set of brain circuits that
exist also in other species. According to neuroscientist Stanislas Dehaene, this
“mental organ” works as an accumulator, namely a kind of approximate counting
device that allows us to perceive, store, and compare numerical quantities.

Keywords Numerical cognition � Innate knowledge � Accumulator
Number sense

2.1 Numerical Cognition in Animals

The search for the biological foundations of human knowledge has always been one
of the main issues addressed by comparative psychology, with the twofold ambition
of identifying, on the one hand, the cognitive skills on which evolutionary adap-
tations are based, and on the other hand understanding how knowledge has evolved
in animal species (especially primates) and mankind. From this point of view, there
is at least one good reason to study the knowledge related to the estimation of
“quantities” in animals and the role it plays in their daily lives.

The ability to quickly assess numerical quantities is indeed useful in
food-searching behaviours, for example to estimate the energy content provided by
a specific quantity of fruit hanging on a tree. Being able to estimate the number of
branches available to build a nest represents an advantage in terms of time con-
sumption, movement, and general efficiency. These skills may be beneficial also in
social situations, for example in the case of fights or clashes among members of the
same group (something that usually happens among primates and superior verte-
brates), where a precise estimation of the number of opponents or allies can
drastically affect the final outcome.
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Another good reason to dwell upon numerical cognition in animals from a
comparative point of view is the search for the limits of these skills in animals. This
exercise may provide useful insights into the specificity of human numerical cog-
nition and, above all, help identify the conditions that have led to its development in
humans. At the same time, this may lead to the explanation of human numerical
skills in evolutionary terms. As a matter of facts, humans master a system that allow
them to process quantities and, because of their animal nature, it is sensible to
believe that the animals closest to the human evolutionary chain are endowed at
least with a rudimentary version of the same system.

Nevertheless, things are not as simple as they might seem.
Cognitive and cognitivist approaches to numerical knowledge have been

developed only over the last two decades and even cognitive science still focusses
on a multi-disciplinary approach to the matter, representing still a “collection of
different disciplines” that change according to the authors involved. This limitation
is reflected in particular in the supremacy of some disciplines, such as the studies
related to the functioning of the nervous system at molecular and neuronal level or
to the functioning of the human brain at an abstract and reasoning level (language,
logic, philosophy). The importance given to these subjects seems to overshadow the
role played by other disciplines (such as ethology) that are simply considered a
natural enlargement to widen the research on the issues addressed by harder dis-
ciplines. Furthermore, by identifying cognitive science as a “collection of different
disciplines” and labelling it as “cognitive sciences”, two major problems arise.

Firstly, it leads to the consideration that cognition is an exclusive human skill, an
idea that has been supported for years and clearly based on an anthropocentric
approach. Secondly, it does not allow to bridge the old theoretical and method-
ological gap between neuroscience and neurobiology on the one side, and psy-
chology on the other.

The success enjoyed by brain imaging technologies overshadowed the fact that
even the most advanced imaging techniques—as well as other methodologies that
aim at explaining the complex links between brain and behaviour—have in their
theoretical toolbox a series of methods borrowed from psychology and have the
goal of explaining observable data and curbing the possible multiplication of
explanations of the phenomena considered.

This fact is of paramount importance, as behavioural models are applied to the
interpretation of neurophysiological data. To overcome these issues, it is useful to
make full use of the inquiries that aim at explaining identical phenomena at different
levels of integration (e.g. from the simplest to the most complex), as well as
presenting an evolutionary paradigm. As a matter of fact, the “great chain of being”
(Scala naturae) is based on a presumed complexity of the structure of living
creatures, especially at the level of the nervous system. Humans are placed at the
top of this chain because of the complexity of their brain.

Nevertheless, despite standing at the top of the chain, even humans are a mere
evolutionary “product”, questioning once again the assumption that cognition is an
exclusive human skill. As other knowledge-building processes, also numerical
representation has been biologically developed through selection pressures that, in
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the framework of an evolutionary process, have rewarded the individuals that could
make the most advantageous choices in settings where their mathematical skills
allowed them to solve specific problems.

This book will present naturalistic observations that emphasize the ecological
importance of mastering calculation skills, as well as laboratory studies that, on the
contrary, systematically investigate the limits and potential of these skills. In par-
ticular, we will focus on studies that used rigid training techniques, as well as those
based on the observation of spontaneous preferences in an environment with
controlled numerical variables.

2.1.1 From Anecdotes to Early Experiments

A number of tales describe the skills of amazing animals that could perform real
mathematical wonders. One of them dates back to the 18th century and recounts the
abilities of a crow that could count up to five, and of a farmer that decided to kill
him to defend his crop from the dangerous ravishes of the animal. Nevertheless,
every time that the farmer tried to approach the crow’s nest built on top of a tower,
the crow flew away, returning only when the farmer had left. To catch the animal,
the farmer asked the help of his neighbour and they decided to ambush the crow in
the tower together. After a while, one of them left the tower, but the animal did not
fell into their trap and came back to his nest only after he saw that the second farmer
had left the building. The farmer, then, asked two other men to join them, and then
three. They kept failing, though, because before returning to his nest, the crow
always waited for the last man to leave the tower. Finally, when six men got
involved, the farmer won his battle: the animal waited for the exit of five men and
then confidently returned to his nest where he got killed by the sixth man, who was
waiting for him.

Nevertheless, the most famous example of this kind of tales is the story of Hans,
a male Arabian horse of Russian lineage that was bought for few pennies by his
master, baron Wilhem von Osten, because of a small physical defect. At the
beginning of the 20th century in Berlin, baron von Osten stated that, after ten years
of hard training, he had taught arithmetic to his horse. The news spread all over
Germany and both Hans and his master became real stars. But what was Hans
capable of? When Von Osten wrote two on a blackboard, Hans tapped his hoof
twice on the ground. When the number was three, Hans did it for three times and so
on, up to the number of ten.

Encouraged by Hans’ achievements, his master tried to teach him more difficult
assignments, such as additions and subtractions, square roots, and finally fractions.
Unfortunately for von Osten, the sceptical German academics ordered an inquiry on
the issue, despite representing a minority compared to the majority of their
easy-to-fool fellow citizens. The Hans Commission was established with the
involvement of two zoologists, the psychologist Carl Stumpf, and a famous horse
tamer, who were to establish whether something had been fixed. After several tests,

2.1 Numerical Cognition in Animals 11



in 1904, the commission came to the conclusion that there were no tricks and that
the intelligence and skills of the horse were genuine. Nevertheless, this conclusion
did not satisfy Oskar Pfungst, a pupil of Stumpf, who insistently demanded Hans to
be subject to a new series of tests. Pfungst focussed in particular on two cases. In
the first one, Pfungst asked the person that formulated the arithmetical question to
Hans to step back from the horse, noticing immediately a drastic reduction in the
number of correct answers given by the animal. In the second case, he asked that
the person formulating the question should ignore the right answer to his own
question. The result was that the right answers given by the horse went down to
virtually zero. Pfungst’s test highlighted the fact that Hans did not master mathe-
matical concepts, but rather that the horse, whenever a question was asked, had an
incredible ability to “detect” the breath, posture, and facial expression of the person
asking the question and knowing the right answer. When Hans started tapping his
hoof on the ground to provide an answer, the slight tension appearing on the face of
the interviewer allowed Hans to stop whenever the answer was satisfactory.

Hans’ case emphasized the importance of fine-tuning the psychological experi-
ments on animals coupled with the need of developing much more rigorous
research methods. The first convincing examples of animals that owned genuine
numerical skills date back to the 1950s, with the studies conducted by a psychol-
ogist called Francis Mechner. In Mechner’s experimental setting, mice were
deprived of food for a short period of time before entering a cage containing two
levers (A and B). In order to get the food, the mouse had to pull lever A for a given
number of times (n) before pulling lever B. If the mouse pulled lever B before
pulling A the right n number of times, it would not receive any food and it would
also receive a slight electrical shock. By changing n, Mechner wanted to prove that
mice were able to change their behaviour and, as a matter of fact, the average
number of times that the mice pulled lever A was strongly correlated to the required
minimum number (n). In other words, if the experiment required the mice to pull
lever A four times before pulling lever B, over time the mice learnt to pull lever A
“more or less” four times before pulling B. It is important to note that the animals
never learnt to pull A exactly four times before B, but rather they tended to
overestimate n by pulling the lever four, five, or six times. Similarly, the mice
involved in an experiment requiring them to pull lever A eight times before B,
learnt to pull it almost eight times (Mechner 1958). A decade later, Platt and
Johnson (1971) achieved the same results on numbers (n) between 4 and 24.
Nevertheless, despite the coherence of the outcomes of the two studies, a general
remark ought to be made: how can we be sure that the mice “answered” on the basis
of the number of times they pulled the lever and not because of other factors, such
as the time spent pulling the lever or the total energy consumed?

A couple of years after the publication of his first study, Mechner and his
colleague Laurence Guevrekian tried to answer this difficult question by developing
a series of experiments in which mice were exposed to a situation of water
deprivation. Mechner proved that the thirstier the mice were, the faster they pulled
the levers. Therefore, the time interval between the first pulling of lever A and the
pulling of lever B decreased as the mice got thirstier. Nevertheless, despite the
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faster pulling pace, the mice that had learnt to pull A four times kept doing so. This
fact led the researcher to the conclusion that time was not affecting their actions: the
mice were making an estimation of the right number. Similarly, in a control test
where mice had to wait a specific amount of time to pull B after pulling A, water
deprivation did not affect the final results (Mechner and Guevrekian 1962).

Starting from these early experiments, other authors tried to carry out new
studies where different species were tested from a visual, auditory, tactile, and
kinaesthetic perspective, with the aim of understanding whether the numerical
performances of animals were due to an abstract conception of numerosity or to
other perception skills that depended, in some way or another, on the presentation
modality. Following this rationale, Fernandes and Church (1982) developed an
interesting experiment on mice that required them to distinguish sequences of 2 or 4
sounds. Once again, the mice had to enter a cage with two levers, one related to “2”
and the other to “4”. To be sure that the animal chose one lever only on the basis of
numerical parameters, the researchers placed great care in deciding the stimuli
associated to each number (2 and 4), systematically assessing the duration of each
sound, the time interval between sounds, the rhythm of the sequence, and the total
sound energy. After two years, Church and his colleague Meck decided to address
the same question but with a different methodology. They trained a group of mice to
pull a lever when two sounds were heard and another lever in the case of eight
sounds (Meck and Church 1984). In the first stage of this experiment, Meck and
Church exposed the mice exclusively to stimuli that had a perfectly correlated
relationship as regards number and duration: the first sequence had two sounds and
lasted for 2 s, while the second one had eight sounds and lasted for 8 s. The mice
therefore learned how to associate these two sequences to two different levers. They
were then exposed to new sequences: in the first session, the number of the
sequence was the same (4) but the duration varied between 2 and 8 s. In another
session, instead, the duration of the sequence was the same (4 s), while the number
of sounds changed between two and eight. The results proved that mice were able
to generalise the associations learnt during the preliminary stage of the experiment
both as regards the duration of the sequence and the number of sounds.

In a different experiment, the sounds were replaced by light flashes: under these
new experimental conditions, the mice had to pull a first lever when exposed to two
flashes and a second lever when exposed to four flashes. Despite needing much
more time in the preliminary stage of the experiment to establish the association
between these actions compared to the previous experiment, the animals performed
correctly, proving that they had a representation of numbers that did not depend on
a specific presentation modality.

Encouraged by these results, the researchers performed a test of number
recognition on mice by switching between visual, auditory, and tactile presentation
modalities (Fig. 2.1).

In this case, the mice initially underwent a recognition test of sequences of 2 or 4
sounds. Then, they were immediately tested by using visual stimuli (sequences of
flash lights). By comparing these mice with those belonging to a control group, the
researchers noticed that, in the first group of mice, the lever associated to two
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sounds was also associated to 2 flashes, while in the control group the two levers
were often mixed up. Meck and Church believed that the difference observed in the
two groups depended on the fact that the first group of mice successfully applied the
distinction learnt through auditory stimuli to the visual stimuli. Later on they proved
the same also by exchanging auditory stimuli with tactile ones, achieving the same
outcomes (in this test, the stimuli containing 4 sounds were replaced by 4 electric
shocks).

Some researchers have however questioned the outcomes of these experiments.
For example, Davis and Albert (1987) performed a test on a group of mice to
understand if they could differentiate between sequences composed of 3 following
sounds and 2 or 4 sounds. The same mice were then exposed to stimuli of 2, 3, or 4
flashes. In this experiment, the authors did not notice a transfer from visual to
auditory stimuli of the ability related to the distinction of numerosity. Davis and
Perusse (1988) came to the same conclusion, stating that, despite the fact that
animals had learnt to distinguish different numerosities upon hard training, they did
so only as a last-resort solution, i.e. when they were deprived of all other kinds of
information. For example, when a mouse had to perform an action and had the
possibility to decide whether to distinguish between numerosities or, on the con-
trary, assess the area of a specific surface, the animal decided to assess the area of
the surface, thus ignoring numerosity. Furthermore, as far as the experiment by
Meck and Church is concerned, the researchers put forward the idea that mice took
their decisions according to the quantity of energy contained by the stimuli. In this
way, the stimuli containing two sounds (that had less sound energy compared to the
stimuli containing 4 sounds) were associated to the stimuli of 2 flashes, which
contained less light energy compared to the stimuli of 4 flashes.

Fig. 2.1 Mice’s answers in
the experiment developed by
Meck and Church (Meck and
Church 1984)
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For all these reasons, we may come to the conclusion that the results of these
early experiments are questionable: some of them show that animals can transfer
their numerical skills from one modality to the other, while others show on the
contrary that such transfer does not happen. What is clear, though, is that the tasks
assigned to animals require a certain amount of training to be mastered. Before
succeeding, the animals have to undergo hundreds of training sessions. It is
therefore to assume that, despite animals can distinguish between different
numerosities when forced to do so, their natural behaviour is completely different.
Research papers have shown that numerical discrimination tasks based on spon-
taneous preferences record worse performances by animals compared to those made
following strict training procedures (Hauser and Spelke 2004). This fact could mean
that numerosity is not a feature that animals use as a natural element. Nevertheless,
this hypothesis stands against the evolutionary arguments that contend that the
representation of numerosity is a selective trait existing in animals in a more or less
rudimentary form. Several studies have highlighted behaviours in the wild where
quantification mechanisms seem to be in place, for example when animals search
for food or fight.

A good example of this is the experiment performed by Karen McComb and
colleagues (McComb et al. 1994), which showed that lions living in the wild—in
the Serengeti National Park in Tanzania—moved aggressively towards a place
where food was available only when they knew that they were more numerous than
their possible enemies, whose roars were played by using taped recordings, while
they avoided moving there in the case their pride was the smallest one. This
experiment showed that lions have the ability of comparing the number of roars
heard with the number of lions belonging to their pride. Therefore, lions seemed
able to make abstract representations of numbers, independently of the presentation
modality or the features of the stimuli to which they are exposed. The same was
recorded also in male chimpanzees, who normally attack other neighbouring groups
only if their cartload is bigger enough to provide muscle power to their attack
(Wilson et al. 2001).

Unfortunately, the tests of spontaneous choice must deal with an important
theoretical limit that hinders the comparison with the studies based on training
procedures: if a choice between two numerical stimuli is an index of the capacity to
distinguish numerosities, the lack of a choice does not directly imply the lack of this
skill. For example, an animal may decide that it is better to pick a group of 4
oranges compared to a group of 3, but at the same time the same animal may decide
to go for a group of 9 oranges instead of a group of 10, despite owning all cognitive
structures needed to distinguish 9 from 10. Despite all these facts, the observation
of spontaneous choices has advantages compared to laboratory training procedures,
such as the possibility to postulate hypotheses on the natural environment where
these skills are used, leading to assumptions on the evolutionary importance of
having a number sense and on the animals’ actual use of these skills in their natural
environment.
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2.1.2 Birds and Mammals

Several studies have tried to emphasize how birds may use the concept of number
in their daily lives. An example is represented by coots that, according to a specific
study, use the concept of number when deciding whether they should lay one more
egg or not, establishing a comparison between the number of laid eggs and the
number of eggs belonging to other brood parasite birds (Lyon 2003). The study was
made by observing the coot in its natural habitat and it showed that these birds are
able to use a calculation strategy to take out the eggs belonging to other birds from
their nests, while at the same time keeping the number of eggs necessary to
maximize their fitness. One of the earliest researchers that noticed the numerical
skills of birds was German zoologist Otto Koehler. In mid-20th century, he proved
that birds master excellent skills in comparing the size of two groups presented to
them at the same time, as well as in remembering the number of the objects
belonging to a sequence.

In one of his experiments, Koehler trained a crow to recognize the number of
dots present on a piece of cardboard, which was the same as the number placed on a
box containing food. The researcher proved that crows could make a distinction
between 2, 3, 4, 5, and 6 dots. In another experiment, in order to get some food,
jackdaws had to open boxes that contained up to four or five units of food. The
boxes where placed randomly to avoid animals using non-numerical parameters to
make their choice (such as the length of the row of boxes that had to be opened) and
each and every one of them contained 0 to 2 units of food. In this way, animals had
to base their choice on the number of units they had already taken (Devlin 2005).

Following a similar methodology, Emmerton and Delius (1993) tested some
pigeons to evaluate their ability to distinguish groups of dots that differed only by
one unit, such as 1 vs. 2, 2 vs. 3, 3 vs. 4, and so on. The results of this experiment
showed that they could tell them apart up to the group 6 vs. 7. A few years later,
Emmertong and some colleagues decided to make another experiment with a dif-
ferent modality (Emmerton et al. 1997). In a preliminary training stage, pigeons
learned how to distinguish two different types of stimuli and associate them to a
lever. The stimuli containing one or two elements were associated to lever A, while
those containing 6 or 7 were associated to lever B. During the test, pigeons were
exposed to groups composed of 3, 4, or 5 elements (groups of dots) and the birds
had to react using the same levers. Both experiments emphasized that pigeons could
apply the discrimination they had learnt also to stimuli that they had never
encountered.

One more evidence of the numerical skills possessed by birds was provided by
the research by Irene Pepperberg (2006), who trained a parrot to repeat the number
of objects showed to him, a task that does not only require the ability to distinguish
and discriminate between numerosities, but also to associate each number to a vocal
response. Furthermore, many bird species display their numerical skills when
counting the repetitions of each note in their songs. The songs of birds contain
indeed stereotyped sound sequences and the dialectal varieties of these songs differ
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in the number of times that notes are repeated (Marler and Tamura 1962). The
correct number of repetitions of notes is learnt and passed on to the next generation
through continuous exposure. Therefore, even though several aspects of the song
typical to a bird may be genetically determined, it seems that birds can estimate the
length of each sound that they produce. A similar concept of understanding of
ordinal numbers in birds was found also in chicks, in an experiment divided into
four stages and performed by Rosa Rugani and colleagues (Rugani et al. 2007). In
the first stage of the experiment, chicks were trained to peck the third, fourth, and
sixth group of stimuli in a series of ten identical groups. In the following stages, the
order of the groups changed, to avoid chicks using spatial parameters in their
decisions. Despite this change, chicks successfully identified the position of the
right group, proving that they did not rely on spatial indicators, but rather on an
internal ordinal order that allowed them to identify the disk containing food among
all possible alternatives. Regarding the numerical skills in mammals, several studies
focussed on the discrimination skills in dolphins.

For example, Annette Kilian and colleagues (Kilian et al. 2003) performed a
research inquiring the numerical cognition of water mammals, asking a Tursiops
truncates dolphin to distinguish between two groups composed of respectively five
and two items (Fig. 2.2).

Once again, to be sure that objects were distinguished solely on the basis of
numerical parameters and not because of their shape or the generic disposition of
the group, these items had different shapes and their position kept changing. The
conclusion was that dolphins could identify the most numerous group even when
faced with configurations that they had never met in training, showing that their
choices were exclusively based on the assessment of numerical elements. A couple
of years later, the same research group decided to investigate the possibility that
dolphins had specialisation mechanisms at a hemispherical level that played a role
in the processing of numerical information. In this experiment, two groups of
stimuli with different numerosities were placed in the dolphins’ tank, controlling the

Fig. 2.2 Representation of
the experimental setting used
to train dolphins. On the right,
a detail of the stimuli used
(Kilian et al. 2003)
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shape and position of these two groups. In the first test, dolphins had to distinguish
groups of 2 vs. 5 objects and the results proved that the animals could solve the task
when the numerical stimulus was analysed through the right eye. In the following
test, non-numerical parameters such as the shape and position of the stimuli were
not controlled, and the researchers evaluated the performances of animals in dis-
tinguishing two numerical groups: 2 vs. 5 and 3 vs. 4. The results showed that
dolphins could distinguish 2 vs. 5 both with the right and left eye, but in the case of
3 vs. 4 dolphins recorded better performances when the stimuli were analysed with
the right eye. These data led the researchers to the conclusion that, because of the
anatomical features of the optic tracts of dolphins, the left hemisphere of water
mammals has specialised in distinguishing numerosities (Kilian et al. 2005).

Furthermore, it was proved that dolphins can make assessments based on the
ordinal features of numbers. A group composed of Kelly Jaakkola and colleagues
(Jaakkola et al. 2005) trained some dolphins using food rewards in order to make
them choose the group containing the lowest quantity of stimuli between two
options. Once learnt, the same rule was successfully applied to new configurations
of stimuli that presented numerosities never experienced during training, hence
showing that dolphins have cognitive structures suited to the recognition and rep-
resentation of numerosities on an ordinal scale.

Despite a majority of studies investigating the existence of numerical skills in
mammals and birds, there is also a study carried out by Claudia Uller and col-
leagues (Uller et al. 2003) that tried to find numerical discrimination abilities in
red-backed salamanders (Plethodon cinereus), a surprising goal taking into account
the evolutionary gap existing between this species and the others. In their experi-
ment, the researchers placed the salamanders in a corridor with two boxes con-
taining different quantities of food rewards, i.e. fruit flies, at the opposite ends of the
corridor. The authors noticed that the salamanders always went towards the box
containing the higher number of fruit flies, both in the cases 3 vs. 2 and 2 vs. 1.

On the contrary, this discrimination ability was not recorded in the 3 vs. 4 and 4
vs. 6 cases. Nevertheless, it is possible to question this study. As a matter of fact,
when living creatures are used as stimuli (a common practice in ethological studies
that use conspecific stimuli or potential preys), the amount of movement recorded in
the stimulus-group can provide a direct indication of its size, hence helping in
deciding which group is bigger. This is even more the case for salamanders, since
their visual system reacts almost exclusively to movement (Robins et al. 1998). In
the case of Uller’s study, it is likely that one or more flies were moving and
therefore the probability that movement could be perceived by the salamander in
the box with three flies was bigger than in the group with two flies. These studies
require procedures that can control perception factors. Only this kind of control
would make it possible to make a general distinction between studies based on a
generic discrimination ability of quantities and studies useful to highlight specific
numerical discrimination abilities, in other words studies that might provide evi-
dence of a real numerical calculation system in animals and do not leave any doubts
on the fact that subjects could use other variables. Furthermore, according to some
authors, it is not justified to talk about numerical cognition if the numerical
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representation involved cannot be added, subtracted, or at least ordered (Gallistel
and Gelman 2000). Currently, the majority of studies dealing with this issue are
almost exclusively those on the numerical skills of non-human primates.

2.2 Numerical Cognition in Primates

The most extensive research on the numerical skills of animals deals with primates
and, taking into account their affinity to species such as humans, their performances
have led to several comparisons to the behaviours seen both in children and adults.
Stemming from the idea outlined by Gallistel and Gelman (2000), a fundamental
experiment that aimed at evaluating whether chimpanzees could put numerosities in
the right order was the one performed by Brannon and Terrace (1998). In their
experiment, two rhesus monkeys were assessed according to their ability to put
pairs of numbers in the right order when they were displayed on a monitor. These
number pairs contained numbers from 1 to 9 and they were presented to them only
after undergoing training sessions that taught them to put configurations containing
1 to 4 items in the right order. In order to ensure that animals reacted to
numerosities and not to other non-numerical parameters, the researchers used a
wide range of stimuli, trying to minimise non-numerical parameters. Furthermore,
to establish a genuine test that could assess numerical ordinal skills, the monkeys
were not rewarded in tests containing new numerical values, while they received a
reward during the initial experimental tests containing two numerosities between 1
and 4. Initially, the monkeys learnt to touch groups containing from 1 to 4 units
displayed on a monitor, going from the smaller to the bigger one. In a second stage,
they were showed new groups (never displayed in the training stage), which con-
tained 5 to 9 items. The results emphasized that monkeys, by generalising the
concepts learnt during the previous experiments and applying them to the new
situations they faced, were able to put the new images in the right order, touching at
first the groups containing fewer elements and then those containing more, pro-
viding a first proof of their ability to make a representation of the numerosity of
stimuli and the possibility to put them in a specific order. Nevertheless, even
Brannon and Terrace (2000) noticed that, when asked to put the images in the
opposite order (from the bigger to the smaller one), the animals were not able to
generalise the concepts learned and successfully perform the task.

Similarly, the monkeys encountered the same difficulties when they were asked
to put the images in a non-monotonous arbitrary order (for example, 4−1−3−2).
Even after going through long and hard training sessions, they never learnt to react
to an arbitrary order, despite the fact that they had no problem in putting the images
in the right increasing order. To explain this fact, the authors put forward two
possible explanations: either the increasing order is a concept so powerful in ani-
mals that it cannot be inhibited, or a non-monotonous order is too difficult because
it requires the ability of identifying each single number before providing a reply. As
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a matter of fact, putting images in the right increasing order does not necessarily
require the knowledge that a group contains 1 unit, 2 units, and so on.

The ability to recognise which set contains fewer elements than all the other
groups, etc. is all it is needed. On the contrary, to put images in the right position in
a 4−1−3−2 order, animals must recognise the cardinal features of each element. It
is possible to overcome this issue by presenting monkeys with sequences of three
numbers: in this way, the cardinality of numbers would not represent a problem and
the animals could simply define each number as “the biggest”, “the smallest”, or
“the number that is not the biggest nor the smallest”. Unfortunately, the authors did
not perform this kind of test on their monkeys.

Subsequently, Jordan and Brannon (2006) trained some rhesus macaques to
“point” on a monitor the set of objects that was most similar to the numerosity of a
reference sample showed to the animals at the beginning of the experiment. By
recording reaction times and success rates, it was proved that macaques could solve
this task, despite the fact that the variables time/accuracy are strongly affected by
the “proportionality” law. According to this law, the level of confusion between two
numbers (or two numerosities) recorded by the percentage of right answers in
comparison tasks depends exclusively on the quotient of these two numbers. The
closest to 1 the ratio between the numbers is, the likelier the two numbers will be
confused by the subject. It is worth noticing, though, that this observation must not
be valid when the formats of numbers are not controlled. For example, in the two
pairs of numbers (10, 15) and (30, 40), the distance between the two numbers is
bigger in the second group (40 − 30 > 15 − 10), but at the same time the quotient
between the two numbers tends more towards 1 in the first group (1 < 40/30
= 4/3 < 15/10 = 3/2). The proportionality law therefore states the importance of
format: once the distance between two numbers is established, their quotient tends
more to 1, as the two numbers grow bigger.

The fact that proportionality law is often called Weber’s law (or law of Weberian
behaviour) without providing reasons for doing so has led many to mix up the two
concepts. According to Weber’s law, the distance separating one stimulus from the
following distinguishable one (with a success rate of 75%) is proportional to the
value of the reference stimulus. The concept can be expressed in the following
mathematical terms: in a pair of stimuli with numerosity (N, N*a), the propor-
tionality law states that the distinguishing rate of these values does not depend on
N, but only on “a”, and it may be expressed by the formula:

p N; N�að Þ ¼ p að Þ

On the contrary, according to Weber’s law, the starting value is not (a), but
rather an established performance threshold (75% of correct answers) that should be
reached. Therefore, for a stimulus N, the performance level p0 is reached when it is
possible to distinguish one stimulus from the other. In the stimulus NW, the value
of W depends on the performance level (p0). If we postulate a level of (p0) = W and
that (a) > (N, Na) may be prolonged in a continuous and decreasing function of (a),
the two laws are equivalent. All numerosity assessments are therefore based on two
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principles that seem to play an important role both in animals and (as we will
explore in the next chapter) in children and adults: the principle of “distance effect”
and the “size effect” (also known as “magnitude”).

Following the first principle, two numerical quantities are easier to distinguish
when the distance between them increases. Therefore, it is easier to distinguish a
group of two elements from a group of five, compared to a group of four elements
from a group of five. The second principle, the “size effect”, instead states that,
when the distance between two numbers is the same, it is more difficult to distin-
guish them as they grow. Therefore, it is more difficult to determine which group is
bigger when looking to two groups containing ten and eleven elements compared to
two and three elements, despite the fact that the distance between the first and the
second group is always equal to one.

As far as the mathematical addition skills of monkeys are concerned, one of the
earliest experiments in this field was performed by primatologists Guy Woodruff
and David Premack of the University of Pennsylvania, who became famous in 1978
with an article bearing the provocative title Does the chimpanzee have a theory of
mind? that aimed at showing that chimpanzees could solve different problems by
inferring scopes and intentions, laying the foundations of what was subsequently
called the “Theory of Mind”.

In one of their experiments that focussed on the possibility that chimpanzees
mastered numerical skills, Woodruff and Premack (1981) asked chimpanzees to
choose (by offering them food rewards) the item that was physically more similar to
a third object, from a group of two objects. After this preparatory stage, the subjects
were shown a glass half-filled with a blue liquid and asked to decide between two
options: half apple or three quarters of an apple. The chimpanzees mostly chose the
half apple, basing their decision on the conceptual similarity between the half-filled
glass and the half apple, showing that they understood the concept of numerical
fractions. To prove that their decision was based on the fraction that represented a
numerical quantity and not on the volume of the glass filled with coloured liquid,
the researchers asked the chimpanzees to perform an even more abstract task,
showing that these animals could actually mentally combine two fractions.

In this second experiment, the sample stimulus was represented by a quarter of
an apple and a half-filled glass, while the choice was between a full disk and
three-quarters of a disk. In this case, the animals mainly chose the latter option, thus
correctly solving the mathematical operation ¼ + ½ = ¾. Later studies came to
similar conclusions. An example is the experiment performed by Duane Rumbaugh
and colleagues (Rumbaugh et al. 1987), where apes were put in front of four
containers grouped in two and filled with chocolates. When the apes had to choose
between the two groups of containers, in the majority of cases, they picked the
group where the sum of the chocolates contained in the containers gave the highest
total number of chocolates. The positive performances increased when the distance
between the total number of chocolates in the two groups was bigger: the more the
sum differed, the better the apes succeeded in their task. These results have been
confirmed by an experiment performed by Sulkowski and Hauser (2001), who
wanted to investigate the abilities of monkeys and apes in subtracting quantities of
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food. The authors used rhesus macaques raised in captivity to perform only one
test, in order to avoid the possibility that the training stage for this test could lead
the animals to the development of knowledge that they could use in the following
stages of the experiment. In the test, the monkeys observed the researchers take out
0 or 1 plum from a group of 1−3 plums contained in a box. Then, the researchers
left the room, leaving the monkeys to decide which box to pick. After 11 different
tests, the authors noticed that the monkeys always picked the box containing the
highest number of plums, even if this choice required them to pick the box that
originally contained the lowest number of plums.

A similar methodology to that used by Sulkowski and Hauser was subsequently
employed to evaluate the skills of chimpanzees in spontaneous mathematical
additions (Beran and Beran 2004). Also in this case, the animals observed a
researcher place one banana after the other into two identical boxes, without the ape
seeing the total quantity of fruit in the boxes. In this way, if chimpanzees wanted to
pick the box with the highest number of bananas, they had to perform a process of
mathematical addition on the elements that they saw were placed in the box. Thanks
to this simple procedure, it was proved that chimpanzees are able to perform
spontaneous additions with small numerosities (1 banana vs. 2, 2 vs. 3, and 3 vs. 4)
and bigger numerosities, in the latter case provided that the distance between the
two groups is big enough (e.g. 5 bananas vs. 10, or 6 vs. 10).

In a more study by Hanus and Call (2007) that involved all four species of great
apes, it was proved that they are able to pick the most numerous group both in the
case of simultaneous spontaneous choice tests (when two groups are presented at
the same time) and in tests where stimuli are presented successively. Furthermore, it
was shown that the best index of the ability to distinguish groups was, one again,
the ratio between quantities: as the ratio between two sets grew higher and hence
the distance between the sets got smaller, the level of positive performance
decreased. Contrary to this methodology, many studies on the spontaneous
numerical skills of primates often use a research paradigm based on the cognitive
studies performed on pre-verbal aged children, using the so called principle of
“unattended expectation” (which we will address in the following chapter) that is de
facto founded on the gap existing between the knowledge of test subjects and the
reality they face.

For example, Jonathan Flombaum and colleagues (Flombaum et al. 2005) used
this methodology to investigate the spontaneous calculation abilities in rhesus
macaques. The researchers presented the animals with a box. They then proceeded
to put some lemons into the box, adding them one by one. During the test, the entire
content of the box was hidden behind a screen that was lowered only at a later
stage, showing the result of the expected addition (or another incorrect result). In
this test, the apes (not trained) stared more intensively at the box when the results
differed “sufficiently” from the expected sum (8 and 4 are substantially different for
apes, while the same is not true for 4 and 6). When facing a situation where the
principles of numerical addition were violated, the staring time was longer com-
pared to that of mathematically correct situations. Similar results were achieved
with another primate, the tamarin (Uller et al. 2001), as well as four different species
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of prosimians (Santos et al. 2005). Subsequently, Cantlon and Brannon (2006) used
the same experimental paradigm altering the presentation of the stimuli presented,
which took place through a computer animation. In this case, animals were placed
in front of a screen where images containing groups of points were shown. After a
short break, the animals were shown a new group of elements and then, finally, two
other images were shown: one containing a numerosity that was equal to the
addition presented and the other containing a wrong answer. Each session was
made up of 250 tests and several sums were presented (1 + 1 = 2, 4 or 8;
2 + 2 = 2, 4 or 8; 4 + 4 = 2, 4 or 8, up to all possible combinations of summands
of the numbers 2, 4, 8, 12 and 16). To be sure that the animals picked the right
answer only on the basis of numerical parameters and not other factors (density of
the stimulus, surface of the points), the researchers presented the same sum by often
changing the density of the stimulus. Furthermore, it was noticed that monkeys did
not fail at their task even when the surface of points (contrary to numerical sums)
was equal to the wrong sum. The only factor influencing the level of performance
was the format of numbers presented: the level of performance concerning the
addition 1 + 1 was statistically better than the one recorded for 2 + 2.

From several perspectives, therefore, the numerical skills of monkeys and apes
resemble the abilities of numerical assessment recorded in humans. The main dif-
ference is of course the fact that humans can count with precision by using symbols
that identify numbers. Starting from this consideration, some authors decided to
embark on the ambitious project of teaching these symbols to chimpanzees. One of
the earliest experiments in this sense was performed by Biro and Matsuzawa
(2001), who trained a chimpanzee to associate Arabic numerals to a series of points
displayed on a monitor. The experiment was divided into three stages. In the first
stage, a group of dots and two Arabic numerals were displayed on the monitor,
asking the animal to touch the Arabic numeral that identified correctly the quantity
of dots displayed. In the second stage, which reflected the same concepts of the
previous one, an Arabic numeral was displayed, followed by two groups of dots. In
this case, the animal had to touch the group of dots that corresponded to the Arabic
numeral. Finally, in the last stage, two Arabic numerals were displayed and the
animal had to touch the two stimuli starting from the smaller one. The outcomes of
this experiment showed that chimpanzees could solve mathematical tasks that
required both a notion of cardinal numbers (the ability to associate the numerical
symbol 3 to the category of elements involving three units) and ordinal features (the
ability to identify the biggest element). Several studies reached the same conclu-
sions. Among them, there is the extraordinary research made by Boysen and
Berntson (1989) on a female chimpanzee called Sheba. The researchers trained
Sheba to associate numerosities with Arabic numerals. In the first part of the
experiment, they presented Sheba with oranges on a non-simultaneous basis (i.e.
the oranges were not visible at the same time). Sheba’s task was to indicate how
many oranges she saw, pointing to the corresponding number. In the second stage
of the experiment, Sheba did not find oranges in the boxes, but rather Arabic
numerals. Despite this fact, she was able to provide the right answer to the addition
required by the test. In the second version of this experiment the researchers
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provided Sheba with a bunch of cards, on which the numbers from 1 to 9 were
printed. In this case, Sheba had to associate each card to a group of items containing
1 to 9 objects. Also in this case, the animal succeeded in her task and, in addition to
this, she was able to perform simple additions presented by using symbols. When
the researchers showed her the cards representing the number 2 and 3, Sheba could
answer by pointing to the card identifying the number 5. Considering the fact that
the animal could easily perform this task already in the earliest stages of the test, the
authors succeeded indeed in proving that for Sheba mathematical additions were
not more difficult than the simple action of enumerating objects.

In conclusion, the studies outlined above seem to question the idea that the
representative system at the basis of numerical skills is exclusively human.
Nevertheless, as surprising as it might seem, it does not mean that chimpanzees,
monkeys, apes, mice, dolphins, and birds have the same numerical competences of
humans. As we have seen in the case of Sheba, the ability to associate Arabic
numerals to the right numerosities is a long and difficult process that requires years
of training and, even in this case, results are never completely correct and the right
answers come in quite limited number.

As we will see in the next paragraph, the results obtained even in few-month-old
children are much more encouraging.

2.3 Numerical Cognition in Children

In the previous paragraph, we outlined some of the evidence corroborating the exis-
tence of a representation of “numerosity” in animals. Starting from these considera-
tions, it seems more than plausible to assume that humans are also equipped with a
similar system to make representations of quantities. Nevertheless, humans possess
arithmetical abilities that go well beyond the rudimental knowledge of animals. With
the exception of some individuals affected by specific disorders, the majority of
human beings can perceive, express, explain and use the difference between two
quantities, whatever these are. On the contrary, as we have outlined, animals struggle
to understand lower levels of difference: for example, 8 can be easily distinguished
from 16, but we are not sure that the difference between 8 and 10 is even perceived.
Therefore, a good question would be: is our arithmetical knowledge related in some
way to the systemused by animals?Dowe have a shared system?And if so,when does
this system appear and when do humans learn how to use it?

For a long time, people have supported the idea that children come into this
world without any prior knowledge. This hypothesis was considered particularly
true for mathematical concepts, since these are quite complex and require an
appropriate cognitive development in order to be acquired. Historically, Jean Piaget
(1952) was the strongest supporter of this approach. Piaget contended that the
acquisition of the concept of number develops through stages that occur in parallel
with a process of reinforcement of the structures related to logics. In particular,
Piaget believed that the cognitive development of new-borns and children follows a
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series of stages that leads to the establishment of successive structures. These stages
are: 1) the sense-motoric stage (0−2 years), where new-borns interpret the sur-
rounding world by using their senses and actions; 2) the preparatory stage
(2−7 years), which represents a pre-functional stage of intuitive reasoning (i.e.
reasoning is driven by perceptive intuition); 3) the concrete operations stage
(8−11 years), where children can cancel the effect of a concrete action through their
reasoning; 4) the formal operations stage (starting from 12 years), where the logical
reasoning through abstract propositions, hypotheses, and ideas replaces the rea-
soning based on concrete objects that characterised the previous stages. Hence,
according to the Piaget’s constructivist perspective, the acquisition of the concept of
number gradually develops over time, from the time of birth to the adult age, one
stage after the other, thanks to the interaction between the individual and the
surrounding environment.

In particular, in the first stage, children only have a general and intuitive perception
of the concept of number; in the second stage they understand the problem and try to
combine logics with the still powerful influence of perceptive illusions; in the third
stage, finally, they build an awareness of quantities that is kept independently from
their physical disposition; in the fourth stage, after discovering the invariability of
quantities, children recognise them as something simple and patent, completely
detached from any operation or form of reasoning. In a nutshell, children acquire a real
form of representation of numbers when they are able to overcome the hurdle rep-
resented by the conservation of quantities, something that according to Piaget happens
at the age of 7−8 years, when they reach the concrete operations stage.

Piaget’s goal was to demonstrate that the establishment of the concept of number
does not depend on language (which simply reveals the figurative and static aspects
of reasoning), but on the inner action that becomes reversible: in other words, that
the concept of number depends on the operational aspects of reasoning that have the
scope of performing an action in the world and, through this, understand it.
Exercising reasoning requires, according to Piaget, that the conservation of some-
thing is assumed as conditio sine qua non. For example, it is impossible to dwell on
the spatial relations between objects without assuming that these objects keep
existing, or reasoning about their weight and length without assuming that their
features are permanent. At the same time, Piaget contended that numbers become
understandable only when they always keep their essence, independently from the
disposition of the units that make them up. This is the reason why the French
researcher studied the genesis of numbers in children by resorting to conservation
tasks. For example, one of these tasks involved the use of two vases (of identical or
different shape) that were gradually filled with some pearls. The content of one vase
was then transferred to the other. Piaget noticed that the two-way and mutual
relationship between the content of the two vases (which met the wish of the
researcher of having a practical form of enumeration) was not sufficient to ensure
that children could understand the principle of conservation. As a matter of fact, by
relying solely on their perceptive skills, children always indicated the vase where
pearls reached the highest level as the vase containing the biggest amount of pearls.
Only at the age of seven children started making a correlation between the real
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equivalence suggested by the comparison procedure and the clear variations of the
space occupied by objects. Because of the results of this experiment, Piaget said
that it was impossible to find evidence of numerical representation in new-borns.

However, other researchers went against the position taken by Piaget, putting
forward the idea that there was a predisposition related to the concept of “quantity”
in children since the earliest days of their lives. In 1980, the American psycholo-
gists Starkey and Cooper resorted to an experiment centred on the “attention spans”
showed by children when faced with something new, in order to understand what
they found so surprising and worthy of attention. In their experiment, Starkey and
Cooper showed to 4-month-old children pictures containing 2−3 dots for a certain
number of times and in succession. Then, they showed them a test image containing
2 or 3 dots. By doing so, Starkey and Cooper proved that, when the numerosity of
the image changed (in comparison to the image showed at the beginning of the
experiment), the children paid much more attention to the stimulus compared to
when the numerosity was the same (Starkey and Cooper 1980).

A couple of years later, Antell and Keating (1983) achieved the same results by
following the same experimental protocol but performing the tests on new-borns. In
their experiment, four-day-old children were initially shown two cards displaying
two black dots, unevenly distributed as regards length and density, until estab-
lishing a “habit”; then, the same children were shown a card with three black dots.
At this point, it was noticed that new-borns stared at the new card for a time that
was more or less 2.5 s longer compared to the other cards. The same happened
when the card with three dots was shown before the one with two. This fact did not
occur when the new-borns were shown cards containing bigger numerosities (4−6
points). Nevertheless, the authors interpreted these results as a proof of the exis-
tence of numerical competences prior to linguistic and counting skills.

At this point, a fair criticism would be that the knowledge observed in children in
these experiments does not relate to the concept of number but rather to the concept
of numerosity, i.e. the sense related to the size of a group. Nevertheless, this fact does
not diminish the importance of this discovery. After all, it is obvious that new-born
babies are not able neither to talk nor use linguistic labels to refer to numbers.
Nevertheless, even before these experiments, the majority of theories postulated that
a sense of the concept of numerosity was developed only after children had learnt to
count (and could hence use language). These tests, combined with more systematic
ones that we will describe later, prove the contrary, highlighting that even prior to
language and counting children are aware of the concept of numerosity.

What could be seriously questioned is the methodological validity of these early
studies. The experiments outlined above lack a form of control test on non-numerical
parameters. For example, in the experiment by Starkey and Cooper, the authors
presented children with non-aligned points, correlating their number to the length
and density of the stimulus, but at the same time—without changing the format of
numbers—the quantity of matter (i.e. the sum of the area of each dot) increased
according to the increase in numerosity. The same goes for the experiment by Antell
and Keating, which followed the same experimental protocol. When addressing this
criticism, several authors asked whether the positive results were genuinely due to
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the perception of numerosity or rather to other parameters. From this point of view,
we could focus our attention on the experiment by Clearfield and Mix (1999), where
researchers—after an initial training stage in which children were shown 2 or 3 dots
—tested the reaction of children to new stimuli as far as numerosity was involved,
but similar to the previous ones as far as quantity of matter.

In this test, children showed more interest when there was a change in the quantity
of matter (with unchanged numerosity), while on the contrary they were completely
indifferent to the changes in numerosity when the quantity of matter remained
unchanged. In conclusion, Clearfield and Mix emphasized that the data coming from
some experiments did not establish beyond all doubts that what drove the reaction of
children was indeed numerosity or quantity of matter, suggesting that numerosity is
not a salient and easily perceivable feature for children. Nevertheless, three years
after his first experiment, Prentice Starkey and colleagues (Starkey et al. 1983)—
who were more and more convinced that the representation of numerosity took place
in an early stage of development—proved that the number sense in children is not
limited to what children see, but that their quantity representation is indipendent
from the modality and shared by the visual and auditory system.

By using the paradigm of visual preference, the researchers performed an
experiment where two pictures were displayed on a screen: the first one contained
two objects, the second one three. Then, an auditory stimulus was introduced (a
sequence of two or three drum beats) and it was shown that seven-month-old chil-
dren paid more attention to the image with the same number of objects as the number
of drum beats they had just heard in the sound sequence. The correlation between
auditory sense and visual preference was confirmed also with the quantity of “three”.
Similar results were achieved with another research methodology by the French
psychologist Ranka Bijeljac-Babic and colleagues (Bijeljac-Babic et al. 1993), who
based their studies on the suction reflex of new-borns. Babies were given an artificial
teat connected to a device that could detect the suction pressure exerted by the baby
and played pre-recorded sounds. Starting from the assumption that when the interest
of the baby increased, they would have sucked more energetically (and the contrary
in the case of a decrease in interest), it was emphasized that the passage from one
sound to the other raised the interest of children only when the number of the sounds
changed. Several experiments were made to replicate these results in negative terms.
For example, David Moore and colleagues (Moore et al. 1987) achieved the opposite
result in their experiment: their babies stared longer at the slides containing a dif-
ferent number of objects than the number of sounds heard.

In fact, the discrepancy among the data obtained can easily be justified with the
substantial methodological differences between the experiments. For example, in
Starkey’s test the preference shown by children was not immediately clear but
appeared only after a certain number of assigned tasks. Moore and colleagues,
instead, let the children take a long break between the first and second series of tasks,
which could have influenced the answers of babies when they were about to discover
the correspondence between the auditory and visual stimuli. Therefore, it is likely
that without the break the two experiments would have achieved the same results.
Aware of the possibility of alternative explanations, Starkey and some colleagues
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performed an experiment that trained babies to recognise a specific numerosity
through the visual presentation of different images (containing the same number of
items). Then, the researchers played for the babies a sequence of 2 or 3 noises and, at
the same time, hid the images behind a screen. The outcomes of this experiment
proved that babies paid more attention to a situation in which the number of noises
was equal to the number of items that they had seen during training (Starkey et al.
1990). Furthermore, the ability to draw intermodal comparisons of small
numerosities already at the early age of 7 months has been confirmed by another
study by Tessey Kobayashi and colleagues (Kobayashi et al. 2005).

Moreover, starting from 2000, some studies have been carried out in order to
investigate big numerosities. An example is the experiment performed by Xu and
Spelke (2000) in which six-month-old babies were shown, in a preliminary stage of
the test, a series of images containing 8 or 16 dots with changing format and
disposition. Subsequently, the same babies were shown new images containing new
numerosities (16 dots if in the preliminary stage they had seen 8, and 8 if they had
seen 16) and their format was calculated to make sure that the quantity of matter did
not change in relation to the images shown in the preliminary stage. In this
experiment, the babies stared for a longer time and with more attention only at a
new numerosity. Xu and Spelke reproduced this experimental protocol in another
test with numerosities nearer to each other, such as 8 dots vs. 12 dots, noticing that
six-month-old babies did not pay so much attention in this case.

As we have previously noticed when addressing numerical abilities in animals,
the quotient (ratio) between two numbers represents the crucial factor when pre-
dicting the possibility of distinguishing two numerosities. When faced with similar
experimental settings, six-month-old babies were able to distinguish 16 dots from
32, but mixed up 16 with 24. Children are hence able to distinguish bigger
numerosities on the condition that their quotient is big enough. By focussing on
older children (nine-month-old), Xu and Arriaga (2007) showed that, contrary to
what happened in six-month-old babies, they could distinguish numerosities in a
2:3 ratio. These outcomes were confirmed by a research on auditory modalities
performed by Lipton and Spelke (2003). In their experiment, the researchers
showed that six-month-old babies are able to distinguish the numerosities 8 and 16
(ratio 1:2) but that they are not able to distinguish the numerosities 8 and 12 (ratio
2:3). On the contrary, at the age of nine months, children could distinguish 8 and
12, but not 8 and 10 (ratio 4:5). The extreme similarities of these performances with
those observed in visual experiments can lead to the conclusion that children use the
same abstract representation of numerosity in both cases.

These results reveal the existence in new-borns of an approximate numerical
system that gets more accurate over the first few months of life, developing at an
earlier stage than the learning of exact symbolic competences, and they also
highlight an important change occurring between the age of 6 and 9 months (the
period when linguistic understanding starts taking shape). This fact can be deducted
from a study performed by Wood and Spelke (2005) in which six-month-old babies
were not able to recognise the difference between a sequence of 4 jumps vs. 6 jumps
made by a doll, while the difference was recognisable by nine-month-old children.
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2.3.1 Karen Wynn’s Dolls

The most striking demonstration that children can indeed perform simple operations
of addition and subtraction was made by the American researcher Karen Wynn
(Wynn 1990; 1992) through a series of experiments that exploited, also in this case,
the ability of children to recognise physically impossible events by staring at them
more intensively: children normally follow the objects presented to them and adapt
their attention whenever new objects are added or subtracted. In her experiment,
five-month-old babies looked at a doll theatre equipped with a screen that could be
rolled up and down. The theatre was initially empty, then the researcher placed a
doll in it. The screen was then rolled down, hiding the scene, and a second doll was
introduced. At this point, the screen was removed and the children were presented
with two dolls. The sequence was repeated several times, but in some instances the
dolls shown to the children represented impossible results (for example, 1 + 1 = 3
or 1 + 1 = 1). In these cases, the children stared at the scene for a longer time
compared to when two dolls were shown. Wynn achieved the same results also after
that the experimental procedure was changed in order to test the children’s skills in
understanding subtractions (Fig. 2.3).

In the second experiment, two dolls were initially shown on the screen and then
one of them was taken out (2−1). Also in this case, the impossible result
(2 − 1 = 2) entailed a longer staring time compared to the right result (2 − 1 = 1).

Therefore, despite the fact that in this experiment the right number of objects
was the main driver of the babies’ behaviour rather than an approximate distinction
(e.g. one doll vs. several dolls), in both tested conditions Wynn came to the con-
clusion that, at the end of the experiment, there was a higher level of interest by
babies only when the final result presented a numerical oddity. It is important
emphasizing that this experiment, which aimed at showing that children could make
simple arithmetical calculations, led to the development of at least three possible
theories that tried to explain the observed behaviours. The first one, outlined by
Wynn herself, supported the idea of the existence of an abstract representation of
numerosity that allows children to have a representation of each quantity and
perform on these quantities mental operations.

A second explanation was put forward by Alan Leslie and colleagues (Leslie
et al. 1998) and by Tony Simon (1999), taking inspiration from the theory of
“object files”. According to this theory, an object is identified by using “files” that
allow us to follow objects in their movement and link them to different perceptions,
spread over time and space. Children, therefore, have a form of inborn physical
understanding that has the duty of providing the idea of the permanence of objects
(even when they are momentarily hidden). Babies follow indeed the objects pre-
sented to them and adapt their attention accordingly when new objects are added or
taken. Furthermore, according to the object files theory, babies can infer some kind
of numerical information starting from the physical features of the objects’ tra-
jectories: in this way, when two objects are presented to them one after the other,
they do not pay the same attention in the case that the two objects are hidden behind
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the same screen or behind two different screens. In the latter case, babies know that
behind the screens there are two objects, while in the former case they expect that
there is only one object (Spelke et al. 1995). The number of files simultaneously
available is limited to 4 and this explains why it is impossible to follow simulta-
neously more than 4 moving objects belonging to the same group. This is the reason

2. Screen comes up1. First object is placed on stage

3. Second object is added

5. Screen drops...

5. Screen drops...

Revealing 2 objects

Revealing 1 objects

Possible outcome: 1+1=2

Impossible outcome: 1+1=1

4. Hand leaves empty

Initial sequence: 1+1

Fig. 2.3 Representation of the procedural stages of the experiment where right and wrong
arithmetical additions are shown to five-month-old babies (Wynn 1992)
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why after adding 3 or 4 objects, it is impossible to add another item, because
otherwise children would lose access to numerosity, due to lack of other files
(Feigenson et al. 2002).

Starting from files, it is hence possible to infer the numerosity of groups of objects
(e.g. two groups of objects can be compared using a term-to-term correspondence
between files) andmake simple operations, but they do not allow the representation of
numerosity. According to Simon (1999), the babies involved in Wynn’s experiment
did indeed use the files’ system to follow the objects on the scene, and activating an
additional file to follow the new object. In this way, babies seemed sensitive to
numerositywithout having a clear representation of it. It is useful though to emphasize
that this limit is not incurred in experiments performed with separable objects.

An example is the study carried out by Wynn and colleagues (Wynn et al. 2002),
where videos depicting different groups of dots were displayed on a screen to a group
of children. In the first stage of the experiment, two (or 4) groups of 3 dots moved
independently on the screen. Then, children were tested with two stimuli: 2 groups of
4 dots or 4 groups of 2 dots. In both cases, the stimuli had the same number of dots and,
therefore, theywere identical with the exception of the number of groups presented. In
the end, children were able to distinguish the two different kinds of stimulus, showing
that they did not encounter difficulties in dealing with numerosities when the calcu-
lation passages were not directly associated to specific objects.

Finally, the third theory was developed by Cohen and Marks (2002), who inter-
preted the data obtained byWynn as the result of a “low profile” process, i.e. the proof
of the preference of babies for the latest stimuli presented to them. According to the
two researchers, babies stared for a longer time to the result “1” in the setting “1 + 1=2
vs. 1” not because they were surprised, but rather because they had seen one doll at the
beginning of the experiment and therefore they were attracted to it when it reappeared
on the scene. Similarly, babies preferred watching two dolls in the setting “2 − 1 = 1
vs. 2” because at the beginning of the experiment they had seen two dolls. To check
their hypotheses, Cohen and Marks made an experiment that followed the experi-
mental protocol developed byWynnbut presented possible results of 0, 1, 2, or 3 dolls.
In this experiment the authors reached the same results of Wynn in the case of 1 and 2
dolls (the babies stared for a longer time at 1 in the case of “1 + 1” andmore at 2 in the
case of “2 − 1”), nevertheless the same result was not obtained for 0 and 3. It is though
necessary to highlight some procedural features that question the soundness of these
results. The experiment by Cohen and Marks, in fact, multiplies the experimental
conditions and the preliminary tests, so much so that it is plausible to believe that
babies were tired even before starting the test. Furthermore, the tests providing
numerical coherent results were very few (almost 25%).

Despite the criticism outlined above, Wynn’s hypothesis was supported by
several experiments that showed the existence in children of a representation system
of numerosities not only in the case of small quantities, but also in the case of
bigger numerosities. McCrink and Wynn (2004) performed an experiment where
five-month-old babies underwent a test of approximate addition and subtraction
with numerosities 5 + 5 and 10 − 5. In this test, some objects were presented to the
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babies by keeping them once again behind a screen and by changing format, in
order to avoid children getting interested in physical indexes (for example, the
format of dots, the quantity of matter, etc.). Once the objects were hidden behind
the screen, the researchers added new objects (addition), or hid some of these
objects behind the screen (subtraction). In both cases, when the screen was lowered
and the two results were presented (5 and 10), it was noticed that children paid more
attention when the result was incorrect.

Stanislas Dehaene and his colleagues (Piazza et al. 2004) are the authors who
delivered the most striking demonstration of the continuity of representation from
smaller to bigger numerosities. By using the recording of the correlated event
potentials, the researchers tested babies of an age comprised between 94 and
124 days both on big numerosities (4, 8, and 12) and small numerosities (2 and 3).
In particular, in the first stage of the experiment, the babies were shown an initial
image containing from 2 to 5 stimuli that lasted for 1500 ms and, after establishing
this habit, they were presented with a second image containing a new numerosity.
To be sure that the children’s answers were based on the numerosity of stimuli and
not on other parameters, all non-numerical parameters were kept under strict con-
trol, such as the lightness of stimuli or their total occupied area. In this way, three
pairs of numerosities got tested: big numerosities with a big distance (4 vs. 12), big
numerosities with a small distance (4 vs. 8), and small numerosities (2 vs. 3). In the
second stage of the experiment, the numerosities were presented using auditory
stimuli in place of the visual ones used previously.

The data obtained by analysing the brain activities in babies showed the same
effect for all series of tests, performed using auditory and visual stimuli, and pre-
sented both in sequence or simultaneously on small and big numerosities. The results
emphasized that babies made numerical representations of a high level of abstraction
for all different formats of stimuli and without any difference between small and big
numerosities. Therefore, contrary to what was proven by other behavioural data
(Feigenson et al. 2004), the results obtained by Dehaene suggest that children have
access to numerical representations both for smaller and bigger numerosities.

Yet, how can the divergence from behavioural results be explained? According
to Lisa Feigenson, an explanation can be found in the fact that, for stimuli relating
to smaller numerosities, babies focus more on other features of the stimuli, such as
the quantity of matter. Despite the fact that babies are able to make abstractions
related to numerosity, these do not have a behavioural effect. According to this
interpretation, Feigenson showed that in some experimental settings, numerosity
may become a salient feature for babies even in small quantities such as 2 or 3
(Feigenson 2005). Obviously, this does not mean that there is not a development in
the accuracy of numerical representations in children: it has indeed been proven that
six-month-old babies are able to distinguish two distant numerosities with a ratio of
2 (such as 8 and 16, 16 and 32), but fail with a ratio of 1.5 (8 and 12, 16 and 24).
Nine-month-old babies instead have the ability to distinguish 8 and 12, but fail at
doing so with nearer numerosities (8 and 10).
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Elizabeth Brannon (2002) provided another evidence of the fact that children have
competences related to the recognition of numerosities and counting already after the
first year of life. In an experiment that used the habit paradigm, Brannon showed that
starting from 11 months, babies understand the concept of ordinal numbers, since
they can understand the difference between numerosities put in increasing or
decreasing order. In her experiment, 9-month-old and 11-month-old babies were
shown images depicting groups of dots in increasing or decreasing order. Then, a test
sequence presenting a new (either increasing or decreasing) numerosity was intro-
duced. In 9-month-old babies, Brannon did not notice any kind of particular reaction
to the two sequences, while in the group of 11-month-old babies she recorded an
increased interest in the case of the sequence presented in a new order.

2.4 The Approximate Number System

In spite of the criticism presented to the studies outlined above and the fact that the
theoretical debate is still on-going, the research in this field paved the way to a new
generation of studies on numerical cognition that provided deeply interesting
insights. In particular, authors such as Stanislas Dehaene and Brian Butterworth
launched new models of numerical cognition that tried to provide an answer to the
ancient debate nature vs. culture, inborn vs. learnt, aiming at conciliating Piaget’s
ideas with the most recent experimental data. Their combination was made possible
by understanding numerical competence as something affected both by culture and
linguistic learning, as Piaget contended, and characterised by some inborn skills, as
recent experiments emphasized. Dehaene, for example, developed a model were
two different systems of numerical representation are postulated: an approximate
analogical system that allows for an approximate and inaccurate counting of
numerical quantities, and an accurate and symbolic system.

The former system is culture- and language-independent and is made possible by
an organ in the brain that is designed to perceive and make a representation of
numerical quantities, features that link it to the pro-arithmetical skills shown by
new-borns and animals. On the contrary, the latter system depends on culture and
the learning of symbols and rules, hence it is strictly connected to language,
becoming a typical feature of adults. Dehaene postulated that humans are equipped
with a “mathematical sense” that they share with other animal species, an instinct
that represents the expression of the functioning of a “mental organ”, a set of
cerebral wires that belongs also to other species and works as a form of approximate
counting device. This “device” allows us to perceive, memorise, and compare
numerical quantities (Dehaene 1992). According to the accumulator system intro-
duced by Meck and Church (1984) to account for the arithmetical skills of mice,
each object is represented by the central nervous system as an impulse.
Subsequently, the cognitive system accumulates the impulses produced after seeing
each stimulus, transferring the information to the long-term memory, which is
tasked with the general labelling of impulses.
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To better understand how the accumulator works, it is useful to mention the water
reservoir metaphor described by Dehaene (1997). According to the French neuro-
scientist, we must imagine that each countable unit is represented by a quantity of
water that is added to a reservoir. By taking stock of the water level in the reservoir, it
is possible to compare the different sizes of reservoirs. At the same time, additions or
subtractions are possible by simply adding or taking out water. The accumulator
works by recording events; a “drop of water” for each event. In this way, different
levels represent different numbers. Nevertheless, since this system cannot represent
accurately the exact level of impulses, its functioning is affected by the distance
effect and the size effect. In fact, the lower the difference between two sets is, the
harder it is to compare them (distance effect). At the same time, the bigger the size of
the sets, the harder it is to distinguish them (size effect). The accumulator does not
succeed in providing accurate results because it cannot accurately represent the level
of impulses. Nevertheless, compared to other mechanisms such as object files, the
accumulator allows for the comparison of very big numerosities, provided that there
is enough numerical distance between the two analysed groups.

The accumulator it refers to the technical concept of numerosity, i.e. the simple
perceptual estimation of different sets of objects and the ability to understand
whether two sets of objects are equal or not. This ability has been found both in
infants and animals and it is called ‘protonumerical skill’ or ‘pre-numerical skill’.

Starting from these considerations, over the last two decades, neuroscientists like
Dehaene and many others developmental psychologists carried out a series of
studies with the aim of finding the ‘anti-Piagetian’ empirical proof that human
beings are born with a ‘number sense’.

As Dehaene explains in the preface to the second edition of his book, The
Number sense:

Fifteen years have elapsed since I proposed my number sense hypothesis — the peculiar
idea that we owe our mathematical intuitions to an inherited capacity that we share with
other animals, namely, the rapid perception of approximate numbers of objects. How does
such a preposterous notion hold up after fifteen years of intense scrutiny? Surprisingly well,
I would say. Number sense is now recognized as one of the major domains of human and
animal competence, and its brain mechanisms are constantly being dissected in increasing
detail. (Dehaene 2011, p. 237).

Conversely accumulator, the second system is based on symbols and it is lan-
guage- and culture-dependent; it is typical of adults; and it is founded on the ability
of counting, therefore on a numerical system and on all arithmetical operations.

The awareness of the cultural nature of exact arithmetic is due, according to
Dehaene (2011) to the ‘courage’ and talent of some anthropologists and linguists
‘who took the pains to travel great distances in order to investigate the mathematical
competence of remote cultures’ in which there is a minimal mathematical vocab-
ulary that in most cases only includes the words for ‘one’, ‘two’, ‘three’, ‘a lot’. In
the second chapter, I will present the main ideas on this topic.
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Chapter 3
The System 2

Abstract We think that the numbers are accurate, that tells us the truth, and that are
not exposed to any interpretation. Consequently, the numbers are merely numbers,
regardless of the context in which they occur, regardless of the culture of single
population. However, in recent years there have been some studies that go against
this conception of common sense. This chapter considers the role of language,
focusing in particular on studies of Munduruku and Chinese numerical cognition.

Keywords Language and numbers � Number representation � Culture
Ethnomathematics

3.1 Numbers and Colours

Everyone believes that numbers are accurate, truthful, and cannot be interpreted.
Therefore numbers are for many just numbers, no matter the context or the culture
of the population using them. Nevertheless, there is evidence that goes against this
common sense approach. Even in their plainest use, numbers acquire different
meanings, particularly as far as the words used to identify them are concerned. For
example, there are clear differences between the use of numbers in schools and their
use in daily life problems, such as mathematical issues encountered at the super-
market. These differences are due to the fact that problems apparently similar in
nature can be perceived or tackled differently when they appear in different contexts
(Lave 1988; Nunes et al. 1993). It could seem logical that there is a substantial
difference between the use of numbers in “pure calculations” (such as performing
the mental calculation 180:3 = 60) and the use of numbers in modalities with clear
significants (as for poetic calligraphy or in slogans using numbers). If numbers may
look like elements that are relatively language-independent in the first scenario, in
the second one it is clear that they strongly depend upon it. In other words, numbers
acquire another meaning when there are good reasons to mull over them, when they
have an important meaning (such as the amount of calories or profits).
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These considerations lead us to the conclusion that numbers are, at the end of the
day, quite similar to words. They are full of meaning and we think about them
similarly to how we think about other items. After this introduction, in this chapter
we will deal with the significant influences that some languages have on the
learning of mathematics. Our goal is not to justify different mathematical skills by
resorting to cultural arguments and cultural differences, but rather to highlight the
differences that can exist between cultural groups in the learning of mathematics
and show that there are relevant cultural aspects worthy of attention in this dis-
cussion. In fact, for many years, the dominating idea (particularly in linguistics) has
been that categories do not exist in the external world, nor have a perception basis:
reality has been considered as an indefinite continuum and the fact that humans tend
to categorise elements is ultimately nothing more than a convention stemming from
the learning process. Initially, philosophers assumed that names could be given only
to things that humans could see and, according to a questionable modus tollens, if a
dictionary did not contain a certain term, the corresponding object was not per-
ceivable. The names used to designate colours became immediately the privileged
battlefield for competing linguistic theories: the relationship existing between
“perceptions-language” has been debated for more than 80 years. Edward Sapir put
forward the idea of linguistic relativity, which was then developed in the 1950s by
Benjamin Whorf. The main argument supported by this theory is that language
affects or at least shapes reasoning and cognition. In particular, Whorf contended
that there is no systematic or universal way to categorise data, but rather linguistic
factors that affect the way in which humans make cut-offs of nature, organise
concepts, and ascribe a meaning to them (Whorf 1956). This happens at different
levels, as the following example shows. In Greenland, the Inuit people speaks a
language that allows them to identify more than twenty different types of snow,
while in Italy we just have one word for snow. This could lead us to the conclusion
that, by having more than twenty different ways to identify snow, the perception of
children that have grown up in such an environment is quite different to that of
Italian children. In a snow-covered environment, Inuit children would identify
different categories of snow where others would just see a pristine white surface.
According to a second idea, the influence of language is perceivable at a higher
level, i.e. at the level of conceptual categories. As Inuits do, Italians could also
perceive the difference between two types of snow, a difference related to two
different words. The problem is that Italians categorise all their perceptions related
to snow under the same concept and therefore the two types of snow seem
equivalent to them. Whatever type of snow they see, they interpret it in the same
way, inferring the same information. On the contrary, Inuits infer from the same
event a series of different expectations (how the snow will react when walking on it,
how much it will last before melting, at which temperature it will melt, etc.). It is
also possible to imagine a scenario where concepts are acquired independently of
language. This is the idea supported by Stevan Pinker. In his work “The language
instinct”, Pinkler disputes ideas such as “Inuits in Greenland have thirty words to
name different kinds of snow while we only have one” or “Inuits can recognise
thirty different snow qualities, we cannot!” statements that often appear in academic
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papers and journals, highlighting in a methodical and systematic way that having at
disposal a wide range of words is a common feature of all languages spoken in
continental climate regions (for example, Maoris in New Zealand can distinguish
different nuances of red). Pinker contends that language is merely a tool to convey
one’s ideas and understand others’. The richness of vocabulary of continental
languages to identify snow simply reflects the stronger need to communicate ideas
related to this issue for these populations compared to other cultures.

As it is well known, the relativist stance has been criticised by Berlin and Kay
(1969), who—commenting about the terms used to identify colours—contended the
existence of a universal vocabulary that does not depend on the language used. To
confirm their theory, the authors studied almost twenty languages, noticing that
beyond a superficial difference, there are recurring patterns among languages:
possible colour categories are limited (from 2 to 11 basic colours) and the estab-
lishment of colour names—in line with this non-linguistic category—follows a set
of strict limitations. Following this research, other studies on the categorisation of
colours were carried out by comparing very different cultures and languages: for
example, the study on categorisation involving Americans and the Dani people of
Java (Rosch-Heider 1972), and the studies focusing on American English and
Japanese (Uchikawa and Boynton 1987) or on English, Russian, and Setswana
(Davies and Corbett 1997).

The WCS (World Color Survey), a study performed on almost 110 languages,
came to three conclusions: (1) there are some substantial trans linguistic groups
(categories) that gravitate around some privileged points of the colour spectrum,
(2) these privileged points are similar both in the oral languages of non-developed
communities and the written languages of developed societies, and (3) these
privileged points are placed in proximity to the colours named red, yellow, green,
blue, purple, brown, orange, pink, black, white, and grey (Kay and Regier 2003).
How is it possible to explain that colours are perceived as the same even if different
languages are used? According to linguists such as Chomsky or Pinker, all humans
share the same mentality, i.e. a “language of the mind” that connects the processing
of information at neuronal level and spoken language, therefore the deep structure
of grammar is not only universal but also inborn. Hence, at a conceptual level, the
effect of language will always be to drive the attention towards the environment
rather than towards other factors.

By talking about colours instead of numbers, we do not want to create more
confusion, but rather emphasise that the case of colours is often indicated as the best
and most symbolic example of a persistent feature of physical objects. Frege, for
example, in Foundations wrote that numbers and colours have similarities (for
example, both are objective), but in the end only colour represents a perceivable
property of objects. The German philosopher contended that a specific colour
belongs to a surface regardless of our judgment, while a number belongs to an
object according to how we consider the object at hand and, therefore, only in
relative terms. In addition to this, numbers also differ from colours under a much
more obvious aspect than Frege’s arguments: when we talk about colours we talk
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about blue, red, and yellow, coloured objects, or combinations of colours (e.g.
orange or pink). On the contrary, talking about numbers does not mean talking
about 5, 20, and 45, numbered items or some combinations of numbers.
Furthermore, the number of discernable colours is limited (humans are able to
distinguish up to ten million colours associated with the light streams produced by
light sources and 7.5 million colours in the case of reflected light), while numbers
are virtually infinite. Frege’s considerations underlined the fact that if numbers were
mere mental representations, we should drastically limit their domain, because our
ability of representation is limited and the existence of infinite numbers is thus
impossible. Furthermore, Frege fretted that if thoughts were private and belonged
only to their authors as much as representations belong only to those who make
them, then two people with different thoughts on the simplest arithmetical truth
would not fall in contradiction. In other words, his doubts could be summed up by
the question: different minds, same numbers?

At the same time, competent counterparts can easily convey the truths of the
theory of numbers that they detain thanks to the explicitly infinite nature of the
mathematical language. But what would happen if these counterparts did not have
such a rich and articulated language as ours? In this case, could a numerical system
worthy of the name even exist? These are the questions that Peter Gordon tried to
answer. This professor of bio-behavioural sciences at the Columbia University of
New York decided to travel to the Brazilian Amazon Rainforest in order to study
the Pirahã population, whose language lacks almost completely names for numbers
and whose system is axed on the categories “one-two-many” (Gordon 2004). The
author wished to experimentally verify the extraordinary observations made by
another linguist and anthropologist, Dan Everett, professor of phonetics at the
University of Manchester, who lived for decades among the Pirahã and hosted
Gordon himself.

In a study that stirred strong reactions in the scientific world, Gordon started his
analysis by verifying that the only available names for numbers to the Pirahã
population were the equivalents to “one”, “two”, and “many”, with the term “one”
that should be considered as “almost one”, the term “two” as “a little bit more than
one” or “few”, and all remaining numbers that fell into the category identified by
the word “many”. Once this fact was established, he discovered that the words for 1
and 2 were polysemic and could be loosely used to quantify different situations.
Furthermore, there was a striking phonetic similarity between the words used to
identify “one”: hói and “two”: hoí. Gordon proceeded to test some individuals
belonging to the tribe, proving their inability to accurately use fingers to indicate
small quantities. For example, they could not group together familiar objects (small
sticks or nuts) to replicate the sets created by the researcher, or use counting
strategies based on unit repetition. When faced with tasks requiring the replication
of combinations of continuous series of a small number of familiar objects or with
simple tasks involving the reconstruction of series that required visual memory or
spatial orientation skills, the individuals tested by Gordon achieved performances in
line with the limits set by the almost complete lack of numerical language in their
culture: they were successful for the first three numbers, while their performances
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deteriorated with numbers over 3. Therefore, the skills linked to counting up to
three items were stable. Hence, Gordon contended that his results soundly con-
firmed the Whorfian hypothesis that thoughts are affected by language and the
words used to convey ideas. As the author explained, one can have a sense of “three
items” without having a word to express it, but cannot have a sense of “four or more
items” without having words to express it.

After publishing the results of his research in the journal Science, Gordon was
criticised from two points of view. Surprisingly enough, the first criticism came
from Everett. The linguist rejected the idea that these results obtained on the field
confirmed a simple stance of linguistic determinism. He believed that it was the
Pirahã’s culture in general that presented a series of substantial peculiarities. Everett
contended that the Pirahã’s linguistic culture is limited to non-abstract arguments
that relate to an immediate experience. This limitation explained the high number of
surprising elements in Pirahã’s grammar and culture, such as the absence of legends
about the creation of the world, the simplest familiar system in the world, the
absence of enumeration forms and concepts of calculation, the absence of terms to
denote colours, the absence of all quantification terms, etc. (Everett 2005). In other
words, Dan Everett believed that the Pirahã “could not count because they did not
want to”.

The second critical observation was presented by several researchers and was
addressed both to Everett and Gordon. In particular, the two authors were criticised
for willingly ignoring the methodological question in assessing contexts of use for
quantification and enumeration operations and their possible social inutility. Going
into details, critics meant that it was difficult to obtain reliable results on the general
“Pirahã enumeration” when the preliminary tests on the possible existence of a
numerical calculation system had involved only two individuals. Furthermore, the
main research tests were submitted to seven individuals (six men and one woman)
from two different villages and “most of the data came from four of these men that
were particularly willing to participate in the research” (Gordon 2004, p. 497).
Therefore, Gordon’s results, which were “driven” by Everett, in addition to
reservations on their representativeness, must only be seen as a selected sample and
cannot be deemed as indicative.

3.2 Ethnomathematics Studies

As for colour names, also mathematics should have a basic mathematical vocab-
ulary that includes the words for “one”, “two”, and “many”. Some languages do not
have other names for numbers. For instance, an Australian aboriginal population,
the Walpiris, combines the terms “one” and “two” to create enough combinations to
enumerate sets containing up to 4 items (Dehaene 1997). The same goes for some
tribes in the Torres district (Northern Australia), where indigenous people use the
words “urapun” and “okosa” to identify “one” and “two”, and the expressions
“okosa-urapun” (i.e. 2 + 1) and “urapun-urapun” (2 + 2) to designate three and
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four. Furthermore, they use the word “ras” which means “a lot” (Ifrah 1994). The
same features can be found in Africa (the Bushmen of Southern Africa, the Zulu
people and the Pygmies of Central Africa), in South America (the Botucodus in
Brazil, and the indigenous population of the Tierra del Fuego), and in Sri Lanka
(the Veddas). Even if a base 2 numeral system allows for the creation of infinite
numbers, it is clear that this procedure entails problems when big quantities are
involved. Yet, ancient objects that have been found and date back to more than
20,000 years ago prove that our ancestors were already able to make accurate
calculations with big quantities. Researchers have indeed found bones presenting
regular cuts or signs grouped together in unordered sequences. These objects were
used as counting support to keep track of the population, keep a record of weapons
and cloths, applying the principle of one-to-one relation between two sets con-
taining the same numerosity. Hence the question: did these practices precede or
follow the establishment of a rich vocabulary to designate numbers?

Obviously, it is extremely difficult to answer this question if we think about
prehistoric times, nevertheless it is possible to obtain interesting insights by taking a
look to the studies on existing populations that have a limited numerical vocabu-
lary. The languages spoken by these populations, which often are under the threat
of extinction, can offer a rare opportunity to establish the width and limitations of
non-verbal arithmetical skills. Since their earliest missions on African soil, Western
observers have collected several information and data on the presence or absence of
numbers in groups belonging to populations seen as primitive and, therefore, more
similar to ancient human communities. On the basis of these fragmented obser-
vations, made primarily by administrators, missionaries, and traders, ethnographers
have developed partial inquiries that focused on wider groups or tribal groups
sharing a language or living in the same region, but did not include fieldwork.
These comparative data, processed mainly on a second-hand basis, have never-
theless played an important role in the formulation of general anthropological
theories on the evolution and generalisation of human societies. These theories were
based on the opposition between primitive populations and developed societies, on
the opposition between a logical mindset and a pre-logical mindset, on a rudi-
mentary processing or a non-processing of numbers by “primitive” populations
(Squillacciotti 1996), establishing in this way a “ranking” of human communities
where those at the bottom were those who mastered only a strongly limited amount
of numerals (i.e. only one), which entailed a limited capacity and, virtually, a total
lack of interest for quantification and enumeration (Tylor 1871; Levy-Bruhl 1912).
Even Karl Menninger’s abridgement on the cultural history of numbers, despite its
encyclopaedic value, is entirely based on this primitivist hypothesis of an alleged
prelogical mindset (Menninger 1957). Menninger’s work was later replaced by the
monumental encyclopaedia on the universal history of numbers by Giorgio Ifrah
(1994). Yet, if we consider the issues tackled, even Ifrah’s work—which has been
translated into several languages—is mainly based on the work by Levy-Bruhl on
mental functions in primitive societies (Levy-Bruhl 1912). What stands at the core
of this primitivism that is still so in vogue? Firstly, the most basic or simplest
systems have a direct relation with nature. Ifrah perfectly illustrates this concept
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when he contends that “primitive” populations consider numbers as something that
can be felt, perceived, learnt, as much as a smell, colour, noise or the presence of
another individual or item belonging to the external world can be felt. In other
words, these “savages” pay attention only to the changes in the environment within
their field of vision, according to a direct relation subject-object. Their ability to
understand abstract numbers is therefore limited to what their natural skills allow
them to recognise “at first glance” (Ifrah 1994, p. 29). This fact would explain why
several populations stopped at the famous sequence: “one, two, three, many”.
Starting from this, evolution would take place following three stages, with the first
stage allowing to clarify the confusion created by a numerous and undetermined
quantity, thanks to the use of a certain number of practical methods based on the
one-to-one relationship (couples of stones, small sticks, fingers or body parts). The
second stage is marked by the use of names of body parts to enumerate concepts
that are “insensitively half-abstract and half-concrete”, without reaching a
full-fledged status of “names for numbers”. Then, in the third stage, once the name
of the number has been created and adopted, it becomes as useful as the item it
represented in the beginning, until eventually the relationship between the two
elements completely disappears. One of the evidence that highlight this concrete
idea (which incidentally represents a reference point in several school relations and
expositions) is the fact that professional anthropologists have long ago lost interest
in the enumeration systems, the learning of number chain, the representation of
numbers, and the calculation procedures in their own right.

An exception is represented by the studies by some “Africanists” on the sym-
bolism of numbers in West Africa that account for the privileged place that some
numbers enjoy in the cosmology of these populations (Nicolas 1968) or the sense
and function of numbers associated to males and females (Fainzang 1985). Not
even these authors, though, prove the ubiquity of numerical systems in these
groups, despite emphasizing the coherence that the systematic combinations of
these peoples have with the representations of individuals on the one side, and the
social spaces that define them on the other.

In North Region of Cameroon, for example, children are assigned a name-number
in relation to their birth and sex even before receiving nicknames (Collard 1973). The
different combinations and replacement possibilities that anomalies and accident in
life can entail (a change of the order because of the premature death of an older sibling
and the possible inversion of the correspondence between the order of birth and order
of age) represent specialised manipulations on the order of numbers which, most
likely, tend to be disregarded by researchers focussing only on the formal enumeration
of numbers in societies. Some researchers took an interest in the question of currency
in these societies. Examples are the study by Robert Gray (1960) on the “goat cur-
rency” of the Sonko people, the studies by Maurice Godelier (1969) on the “salt
currency” in the Bornja people, the analysis by Michel Panoff (1980) on precious
objects and payment means in Oceania. These studies had the common goal of
assessing the concept of currency in these populations, launching a debate on the
conditions of circulation that became so useful in tackling the concrete-abstract
question related to numerical systems in societies lacking written traditions.
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From this perspective, Daniel De Coppet (1968) carried out interesting research
in the Solomon Islands, showing that the local population did not measure surfaces
such as those of forests, sky, and sea. On the contrary, this population measured
vertical and horizontal lengths using a unit called “brasse” (breaststroke), identified
by the distance going from the extremity of the right thumb to the extremity of the
left thumb. This unit was used to measure items such as houses, gardens, fishing
nets, etc., but also pearl necklaces, a tenured currency in the country and therefore
“brasse” units are used for exchanges in the most important events of the daily lives
of individuals, tribes, and villages. One “brasse” currency unit is divided into
twenty-four lengths, from right to left, that borrow the names of anatomical parts or
ornaments that adorn the men’s arms. Therefore, the ability of this population to
manipulate numbers and the richness of their numerical system cannot be ignored.
If we limited our inquiry to a simple verbal enumeration of a succession of names of
numbers that would reach only up to “eight” and would be translated as “many”, we
would not notice that we are dealing with a specific indigenous mindset related to
totality and multiplicity, and that the stress given to the first 9 numbers—due to
their symbolic value—does not prevent them from manipulating sequences repre-
sented by the 50 pearls of their currency or the group of 24 subdivisions that make
up a concrete measurement unit.

Jadran Mimica (1988) performed a similar study on the Iqwayas, a tribe living in
Papua New Guinea. Iqwayas enumerate numbers orally while representing them
figuratively and gesturally. Only the first four numbers are identified by specific
terms, but it is possible to count up to big numbers with the use of fingers and toes.
The system works on a 20 base (represented by all fingers and toes), with an
auxiliary 5 base (represented by the fingers of one hand). All fingers and toes
represent 20 and are equal to one “man”. At the same time, each finger can also
identify an individual and, therefore, each finger may represent 20, allowing the
entire human body to represent the number 400. This implies that big numbers can
be counted following a calculation process that works thanks to the “use of one
finger to represent a set of fingers”. Furthermore, it implies also that the physical
presence of another individual is not necessary for each multiplication. Finally, it
implies also that counting is an abstract process, even despite the fact that for the
individual counting on his fingers it represents a physical process with a
figurative-gestural nature, because for each new exponentiation of the base, he
refers to a virtual or absent new individual.

In addition to this, other populations have developed an ingenious procedure to
evaluate and memorise big quantities without using specific words and objects. The
island inhabitants of the district of Torres (Dehaene 1997), for example, can count
up to 33 items by indicating in accurate order the different parts of their body: they
start with the pinkie on their right hand (1) and move towards the thumb (5), then
they move to the wrist (6), elbow (7), shoulders (8) and torso (9). At this point, they
move to the left arm, following the same order. Once they have reached the pinkie
on their left hand (17), they move with a similar trajectory from the small toe on
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their left foot (18) to the small toe on their right foot (33) going through their ankles
(23, 28), knees (24, 27) and hips (25, 26). Obviously, the names of the body parts
do not represent a numerical code, but they are used as formulations to translate
quantities. The first rudimentary words to indicate numbers, arbitrary symbols
designating quantities, have certainly appeared as an abstraction of these proce-
dures. Each quantity was unambiguously associated to a body part and by uttering
the name of this body part it was possible to identify a quantity. “Tail” or
“shoulders” obtained a numerical meaning (7 and 8) and evocated immediately the
quantities associated to them, without referring to the gestures one had to do to
point at them. Therefore, they obtained an abstract meaning, despite the fact that the
initial formulation related to the origin of their meaning and it was concrete, since it
recalled an actual body part.

These studies testify therefore the existence of more or less advanced numerical
systems even in societies considered as “primitive”. In some cases, theoretical
repercussions are exaggerated. An example of this is provided by Mimica, who
broadens his monograph by addressing the concept of infinity encountered in the
culture at the centre of his studies, even putting forward the idea of comparing it to
Cantor’s theory on transfinite ordinal numbers.

3.2.1 The Mundurukú People

To broaden the studies on the existing relationship between language and arith-
metic, Pierre Pica, Cathy Lemer, Veronique Izard and Stanislas Dehaene (Pica et al.
2004) decided to study the Mundurukú people, a population living in an autono-
mous territory of the Para state in Brazil, whose language belongs to the Tupi
family and has names for identifying the numbers from 1 to 5. Some Mundurukú
are more or less able to speak Portuguese and children are educated up to an age of
10 years in their mother tongue, while from 10 to 14 years their education takes
place in Portuguese.

However, not all children attend school, and the lessons are often very rudi-
mentary and taught by young professors belonging to the local community.
Therefore, the level of bilingualism is uneven: in general, elderly people, women
and children are monolingual, while adults have some knowledge of Portuguese.
Similarly, as far as numbers are concerned, several locals know the sequences of
numbers in Portuguese even if they never use them in their daily lives. The research
team performed a series of quite sophisticated tests on 55 people belonging to the
Mundurukú population.

The first test aimed at testing the level of numerical vocabulary knowledge. The
subjects were divided into different groups, according to their level of exposure to
numerical systems different from the monolingual indigenous system. Two groups
of strictly monolingual and uneducated adults and children were compared to
groups of adults and children partially bilingual and educated. Furthermore, con-
trary to the experiments performed by Everett and Gordon, a control group was
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established by involving French adults. In the test, Mundurukú were presented with
stimuli containing 1 to 15 dots, casually scattered over a surface, and asked to
indicate how many dots they could see. In order to make sure that participants were
responding on the basis of the numerosity presented to them and not on other
low-level variables, each numerosity made of 1 to 15 dots was presented twice,
performing different controls on non-numerical parameters. In the first series of
tests, the extensive variables (total lightness and total occupied space) were equal
for all numerosities, while in the second series of tests, intensive variables were
levelled (format of the dots and space among them). In both situations, no variations
were recorded, with the exception of the lack of a word to identify “five” among
young people. Over 5, it was usual to hear expressions such as a little (adesu), a lot
(ade), or a certain quantity (buru maku), all using approximate quantification labels.

Furthermore, Mundurukú used several other expressions such as “more than one
hand”, “two hands”, “some big toes”, and also long labels such as “all fingers on
one hand” or “even some more” (to provide an answer to the case of 13 dots). The
use of a succession of numbers to enumerate accurate quantities did not represent a
familiar action for Mundurukú. Even if some individuals, when explicitly asked to
count the objects presented, strived to use a numerical sequence by using their
fingers and toes, the majority of them spoke out numbers without counting. These
data confirm the fact that Mundurukú select their oral answers on the basis of a
knowledge of an approximate number rather than an accurate counting procedure.
With the exception of 1 and 2 dots, all numerals are used in relation with a wide
range of approximate quantities rather than an accurate number. For example, the
word used to identify five, which can be translated as one “hand” or one “fist”, was
used to identify 5 as well as 6, 7, 8, or 9 dots. Therefore, if it is true that the
concepts related to numbers are visible only when numerals are available, it would
be fair to expect that Mundurukú have strong difficulties in processing big numbers
(Fig. 3.1).

Fig. 3.1 How Mundurukú
call numerosities (Pica et al.
2004)
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Researchers have tested this conclusion with two targeted tests: one required
Mundurukú to compare sets of dots, while the other asked them to add and compare
sets of dots. In the comparison tests, subjects were simultaneously presented with
two sets placed one next to the other: the one on the left was black, the one on the
right was red. They were then asked which set contained the biggest number of
dots. It must be noticed that 50% of times, the biggest set was placed on the left,
while in the other cases it was placed on the right. In addition to this, the ratio
between the two numerosities was changed: as we know, this ratio determines the
level of difficulty of the comparison (R = 1,2; 1,3; 1,5; or 2,0). For each R-value,
three couples of numerosities of different formats were used (small: 20–30 dots;
medium: 30–60 dots; big: 40–80 dots). The answers provided by the test subjects
(70.5% of correct answers) did not show substantial discrepancies among the
groups. This led to the conclusion that the level of bilingualism and education of
subjects did not affect their level of performance.

In the control group composed of Western people, the numerical comparison
performances were affected by the distance effect: performances improved
according to the ratio between the numerosities under scrutiny, both when the
stimuli were presented as sets of items or as symbols with Arabic numerals. The
same effect was observed among Mundurukú: their performances deteriorated when
the ratio between the two numerosities under comparison went down from 2 to 1.5,
1.3, or 1.2. Reaction times were also affected by the distance effect: they were faster
when two distant numerosities were involved rather than in the case of two near
numerosities. The value obtained by Mundurukú was 0.17, only a little bit slower
compared to the 0.12 recorded by the control group. Subsequently, the researchers
tested the Mundurukú’ abilities in approximate operations with big numbers by
assigning them an approximate addition task.

At the beginning of this test, an empty jar was shown to the subjects. The jar was
presented in vertical position, suggesting that the content would not have fallen.
Two sets of dots fell into the jar from the upper part of the screen. The two sets of
dots never appeared simultaneously but always followed each other (each set
moved for a time of 5 s). Then, a third set of dots appeared on the right side of the
jar. At the end of the entire sequence, the participants had to decide if there were
more dots inside or outside the jar (Fig. 3.2).

To keep under control the non-numerical parameters, the researchers resorted to
the same procedures used in comparison tasks: the ratio between the sets n1 + n2
and n3 were changed. In the first three tasks, the ratio was 4, while in successive
tests ratios of 1.3, 1.5 and 2.0 were presented (16 tasks for each ratio, numerosities
between 30 and 80, and the two parts of the addition always had a ratio of 2:1, 1:1 o
1:2). All groups, including those of monolingual adults and children, recorded good
performances (80.7% of correct answers), both for the sets used in tests with
intensive and extensive parameters (89.5 and 81.80% of correct answers respec-
tively). Even if the performance level was different between the two series of
stimuli, it must be noticed that the same differences recorded among Mundurukú
were recorded also in the control group composed of Western people (Fig. 3.3).
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Mundurukú therefore did not seem to have any difficulty in adding and com-
paring approximate quantities. On the contrary, they seemed able to provide the
same level of accuracy of the Western control group. Furthermore, they were also
able to make mental representations of big numbers (up to 80), numbers well above
those that they could enumerate. In addition, they did not mix up numbers with
other variables such as the format or density of dots. They spontaneously

Fig. 3.2 Representation of the experimental setting for comparison tasks: two sets of dots fall into
empty jars

Fig. 3.3 Answers provided by Mundurukú and the control group (Izard et al. 2008)
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implemented the concept of addition, subtraction, and comparison to the less distant
representations. The same was recorded in monolingual adults and small children
that had never learnt formal arithmetic, showing that an advanced numerical
competence (if only in an approximate form) can exist without a well-developed
numerical vocabulary.

In a later experiment, the same researchers evaluated the hypothesis that
Mundurukú could behave as the Western children involved in Feigenson’s research
(Feigenson et al. 2004). As we have explained in the previous chapter, the data
collected by Feigenson in 10- and 12-month-old children showed that approximate
numerical representations could not be compared among them nor be translated
from one format to the other. In general, in Feigenson’s experiment, whenever one
of the two sets contained more than 4 elements, children failed at their task. These
results led to the conclusion that children could make an analogical representation
of quantities when objects appeared, but they were not able to make the same
representations when there were too many objects involved. The author contended
that the acquisition of a numerical vocabulary or the practice of counting became at
that point a paramount factor to perform this kind of manipulation.

As in the case of children, also Mundurukú do not practice counting, neither in
their mother tongue nor in Portuguese. Therefore, also in their case, when elements
are added one by one and the total number of objects is hidden to them, they should
not be able to access a numerosity that goes beyond four elements. To test this
hypothesis, Pica and colleagues designed a comparison test in which two sets were
hidden. At the beginning of each test, the researchers showed the subjects two
empty jars. Then, a first set of dots fell in the jar on the left. Subsequently, the jar
disappeared and a second set of dots fell in the jar on the right. In order to prevent
subjects from using non-numerical parameters to formulate their answers, two
series of stimuli were created, following the experimental procedures of the pre-
vious experiments. In the first series, the intensive parameters were the same
between all numerosities, while in the second series the extensive parameters were
levelled. The dots appeared both simultaneously (simultaneous presentation) and
falling one after the other in the jar (sequential presentation), using couples of
numerosities in a 1:2 ratio. As far as sequential tasks were concerned, the falling
frequency of the dots in the jar was stable and the total time of presentation
increased, as the numerosity got bigger.

The data collected referred to 47 Mundurukú subjects divided in 5 groups:
monolingual adults unable to count in Portuguese (8), monolingual adults able to
count in Portuguese (16), bilingual adults able to count in Portuguese (6), children
unable to count in Portuguese (7), and children able to count in Portuguese (10) The
results highlighted a higher level of performance when the numerosities were
distant as far as their ratio was concerned, a fact recorded among all the groups. The
participants that could count in Portuguese, though, had better performances than
those who did not, in particular in the sequential tasks (probably due to the fact that
they counted the dots while falling). The most significant data for our inquiry refer
to the group of participants that could not count (8 adults and 7 children): if
Mundurukú behaved as Feigenson’s children, they should have failed in sequential
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tasks. On the other hand, had they used indifferentially their approximate number
sense to solve these tasks, the results in both cases should have been the same level
of performance. The analysis made by Pica shows an effect on the type of per-
formance (correct answers rate: 78% for the stimuli presented simultaneously, 68%
for those presented sequentially).

These results suggest then that Mundurukú and children use different repre-
sentations according to the fact that sets are presented sequentially or simultane-
ously. Yet, contrary to Feigenson’s children that answered randomly in the case of
big sets presented sequentially, Mundurukú provided good answers for all
numerosities in all types of presentation. This suggests that there is a different effect
at play in the two cases: in children, the effect leads to an inability to go from a
representation in the form of an attention indicator to an analogical representation,
while in Mundurukú it seems more likely that the observed effect reflects different
accuracy levels of numerical representations for sets presented simultaneously or
sequentially.

Confirming this hypothesis would require a study on a control group composed
of Western subjects, to assess whether they show substantial difficulties when sets
are presented sequentially. Nevertheless, it is likely that the accuracy of numerical
representations is affected by the pace of the sequential presentation: when elements
are presented very fast, it can be assumed that subjects use a mechanism similar to
the accumulator described by Charles Gallistel.

On the contrary, when elements are presented one by one and at slow pace, this
mechanism proves useless and successive additions become necessary: the esti-
mated total will then be less accurate than the one provided by the accumulator at a
faster presentation pace. The hypothesis of a “sense of approximate number”
contends that when oral or written symbols are not available, a number is repre-
sented only approximately, with an internal uncertainty that increases along with
the increase in the number (Weber’s law): after 3 or 4, this system can only perceive
a negligible difference between a precise number n and the following number n + 1.
If Mundurukú, as it seems, have this non-verbal and inaccurate way of representing
numbers, they should fail in all tasks requiring the processing of precise numbers.

To test this last hypothesis, researchers used a task of precise subtraction. At the
beginning of the test, an empty jar was shown. Then, some dots fell from the upper
part of the screen into the jar. After a brief period of time, some other dots fell from
the jar, disappearing from the screen (movement duration for each set: 2 s, time
between the two movements: 6 s). The numerosity presented was between 1 and 8
and the result between 0 and 2. The Mundurukú subjects had to answer by choosing
the correct result among three alternatives (0, 1, or 2 remaining points). In a second
version of this test, where an oral answer was requested, participants had to verbally
describe the content of the jar at the end of the video (it must be noticed that zero
does not exist for Mundurukú, but the participants spontaneously said sentences
such as “nothing has left”). The results showed that the performance level was
slightly better in the bilingual and educated groups (particularly when more than 5
dots were shown). At the same time, all Mundurukú groups’ performance level was
clearly worse compared to the one recorded by the Western control group, whose
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performance was not minimally affected by the number format. Nevertheless, the
failure of Mundurukú in this exact subtraction task was not due to a low level of
education, since Mundurukú had great performances (almost perfect) when the
numerosities presented were under 4. Their success with smaller numbers reflects
the use of a preverbal code or a parallel identification system of objects similar to
the one used by children and apes. Concretely, in the exact task presented,
Mundurukú still used approximate representations subject to Weber’s law, while
the Western control group solved it by using exact calculations.

In a nutshell, Western cultures have put forward the idea that new concepts arise
when children learn to use numerical vocabulary. Nevertheless, by simply studying
children, it is hard to evaluate the limits of the role of cultural learning (in particular,
the importance of a gradual familiarisation with the names of numbers) and cerebral
maturation, regardless of the surrounding environment. The studies on Mundurukú
make a clear distinction among these factors. Mundurukú are able to access
numerosities by going beyond their vocabulary constraints and are aware of the
fundamental laws that govern the evolution of the cardinal features of sets (union
and addition, separation and subtraction, order of numerosities). In approximate
arithmetical tasks, when they were asked to roughly estimate the results of oper-
ations, the behaviour of indigenous people was similar to those of Western adults.
On the contrary, when asked to perform arithmetical tasks that required an exact
result, they kept providing approximate answers.

At the same time, they are able to evaluate the exact difference between two sets
of objects when the circumstances allow them to verify if the elements of these sets
have a biunivocal correspondence. They do not lack the abstract concept of perfect
equality, even if they cannot always apply this concept in specific contexts.
Mundurukú own an approximate number sense and use this knowledge on a wide
range of numerosities. As for tasks involving big numerosities, the behaviour of this
population is affected by the same distance effect recorded in Western adults,
children, and animals.

These conclusions are in line with the projection of the representation model of
numerosities on an internal continuum, both in the case of the comparison of
numerosities, their addition, or subtraction. The internal Weber’s fraction w, the
main parameter in the model that measures the level of inaccuracy of numerical
representations, is around 0.17 among Mundurukú in the comparison tests, similar
to the usual result recorded in Western subjects (in Pica’s study w = 0.12). All these
results therefore provide new evidence that corroborate the hypothesis linked to the
existence of a “number sense”, a language-independent skill universally shared
among humans of all societies, children, and several animal species.

The fact that Mundurukú can compare big quantities presented sequentially
points to the fact that they use the same representation system of approximate
numerosities without considering the format of the numbers involved. The obser-
vations on Mundurukú, who have a limited vocabulary but own all the cognitive
systems needed to develop a language, suggest that Chomsky’s hypothesis that
there is a bond between numerical competences and language requires at least a
couple of adjustments (Chomsky 1957). First of all, it must be admitted that there is
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a non-verbal representation of near numbers and a genuinely conceptual compe-
tence for learning and manipulating approximate numerical quantities. This com-
petence seems to be language-independent, since it has been found in Mundurukú,
new-borns, and several animal species. Its existence was not explicitly recognised
by Chomsky, who showed little interest in the origins of arithmetical skills in
humans. Nevertheless, the hypothesis of a “number sense” (a set of cerebral wires
that allow humans to understand the cardinal features of a set of objects and the fact
that these features are not affected or do not change according to the operations
applied to this set) is in line with the explanation model developed by Chomsky,
which states that human cognitive skills are based on specialised inborn systems.
The studies presented above also suggest that the ability to manipulate exact big
numbers is characteristic of few cultures, such as ours, which have at their disposal
a wide vocabulary for exact numbers and syntactical rules to combine them and
create an infinity of number names. This aspect is compatible with Chomsky’s
hypothesis that states that the combination features of language play a pivotal role
in the establishment of arithmetic.

Nevertheless, the bond between language and exact calculation is certainly less
important than what Chomsky suggests. Without counting, which requires a fast
enumeration of a succession of numbers, it is impossible to successfully complete
the majority of exact arithmetical tasks. If Mundurukú are allowed to use alternative
strategies to evaluate the exact equality of two sets of objects (e.g. let them verify
the correspondence of the elements of the two sets one by one), they can distinguish
even big numerosities that differ only by one unit.

The effect of language in the exact subtraction task that we presented is therefore
related to a difference in performance—to use another differentiation made by
Chomsky—in other words, the factors that determine the ability to succeed in the
task rather than a genuine difference in conceptual skills. The successful resolution
of the task does not depend only on the control of the concept of exact number (an
abstract arithmetical competence that Mundurukú showed to own), but also on
other factors that Chomsky would categorise as “external”, such as the ability to
count effectively.

Finally, the results achieved contradict Gordon’s conclusion that supported
Whorf’s hypothesis and the idea of a new linguistic determinism by saying that
numerical concepts in the Pirahã population were “incomparable” to ours (Gordon
2004). Starting from the assumption that the individuals belonging to the Pirahã
population and interviewed by Gordon were equipped with the same conceptual
heritage of Mundurukú, we can postulate that these individuals failed in the
numerosity task presented by the author because he failed in developing an
experimental setting suited to testing the real skills of the subjects involved in his
experiment. In the light of what we currently know and of the low number of Pirahã
participants in the tests performed by Gordon, his hypothesis seems irrational and
too simple as much as the one contending that their numerical cognition is radically
different from ours.

54 3 The System 2



3.3 Western and Eastern Societies

Establishing a possible comparison between West and East using these specific
labels is a questionable exercise: without more clarity on the meaning of the term
“West”, the word may become misleading, since it literally identifies the entire
Western hemisphere and hence a wide geographical area inhabited by different
ethnic groups. The same goes for the term “East”. At a glance, the complex Western
cultural system can be boiled down to its double cultural matrix: the first one is
represented by Greek philosophy, the mother of Western philosophy par excel-
lence, guided by the trio composed by Socrates/Plato/Aristotle; while the second
matrix is rooted in the Judaeo-Christian religion. The constructive combination of
Aristotelian philosophy and Christian religion, which is strongly focussed on
individualism, left a clear mark on Western civilisation, defining a mentality that
focus on the idea of the individual, both as part of the society and independent
subject, in a sort of “insulated perfectionism” harmonised to Aristotle’s “Golden
Mean”. This idea stands in stark opposition to the Eastern mindset, which focuses
more on social organisation rather than individuals.

China, the “radiant sun” that shines on the civilisation of South-East Asia, has at
the core of its culture the Tao and the ying-yang complementarity, which combined
with Confucianism and Buddhism defines its cultural DNA. In the Eastern world,
cardinal virtues are summed up by the concepts of ren and li. It is difficult to
provide a precise translation of these terms: ren can be translated as benevolence,
kindness, selfless human love; li represents honesty and a proper behaviour. In
others words, li shapes the interpersonal channels through which ren flows from
one individual to the other. In Chinese philosophy there is no clear division between
black and white, not even in the interpenetrating colours of the ying-yang circle that
symbolise the Tao. The focal point of the Tao emphasizes that contrasting couples
are not in opposition and do not mutually exclude each other, but rather comple-
ment and mutually include the other part. Everything can be interpreted according
to different shades by following multiform and non-Aristotelian logics.

On the one side, the Aristotelian bivalent logics pinpoints the way Western
cultures conceive the world (Euclidean geometry, the first structured language in the
history of mathematics, is a genuine embodiment of the Aristotelian bivalent logics
model), while on the other, the foundations of reality are based on the Confucian
methods of transmission of Tao and the book I Ching (“Classic of changes”, the
fundamental text to understand Chinese metaphysics and the reasoning schemes that
were developed over the years in the history of Chinese mathematics).

As far as mathematical language is concerned, researchers have always been
fascinated by a very peculiar characteristic of the Chinese language, which is how
words are built together and how this system is perfectly compatible with counting.
This system is often named as a surprising example that showcases the way in
which culture can positively affect numerical cognition (Butterworth 1999).

In Chinese, the names corresponding to the first nine numbers (yi, èr, san, si, wu,
liù, qi, ba, jiu) are combined with multipliers such as 10 (shi), 100 (bai), 1000
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(qian) and 10000 (wàn) to build numbers, following a rigorous 10 base
breakdown-rule. According to these rules, 327 is pronounced san bai èr shi qi.

More concretely, in Chinese (and in other East Asian languages such as Japanese,
derived fromOld Chinese), the words used for calculations strictly follow the decimal
logic, contrary to what happens in European languages such as French, English, or
Italian. Children learning to count in France or Great Britain find themselves in the
position of deciphering “unknown” numerical terms such as “eleven”, “twelve”, or
“twenty”. They are “unknown” because the logical formation of these words is not so
evident, since there is no evidence that “eleven”means “ten plus one”. In Chinese, on
the contrary, “eleven”means “ten-one”, “twelve”means “ten-two” (shi-er), “twenty”
means “two-ten” (er-shi), etc. These terms are therefore easily understandable and
learnable, since they use numerals already known and follow to the letter the decimal
logic onwhich the numerical position notation system is based. DavidGeary summed
it up by saying that thanks to the coherence of numbers in Eastern Asia, children tend
tomake fewer calculationmistakes, learn the concepts of calculation and number at an
early age, make fewer mistakes in solving arithmetical problems, and understand
basic arithmetical concepts—such as those used in trade—much earlier than their
American or European counterparts (Geary 1994, p. 244).

Another feature of the Chinese language that is deemed to have an important
impact of numerical cognition is the relative speed of pronunciation of Chinese
numerals, since it seems to increase the impact of numbers on memory, strength-
ening the mental calculation skills (Geary et al. 1993; Chen and Stevenson 1988;
Stigler 1984). Then, there is the important fact that Chinese is a tonal language (in
Mandarin, the five existing tones can basically be described as 1: constant, 2: rising,
3: dipping tone, alternatively falling and rising, 4: falling, and finally 5: neutral).
This means that all words—numbers included—are sung more than they are spoken
and tones help in determining the meaning. Chinese words used to identify the
numbers from one to ten correspond to different tones that help in distinguishing
them: one = first tone, two = fourth tone, three = first tone, four = fourth tone,
five = third tone, six = fourth tone, etc. When uttered one after the other, they
create melodic patterns that help memorisation.

It is worth noting that even as far as ordinal numbers in English and French are
concerned, children must learn a completely new set of terms such as “first”,
“second”, “third”, etc., before they can determine which place is occupied by an
item in a set of objects. In Chinese, on the contrary, the formation of ordinal
adjectives is extremely simple, since they are created always in the same way and
through a straightforward logical process: one simply adds the prefix di in front of
the number. “The first one” reads di-yi (yi meaning “one”), “the second one” reads
di-er (er meaning “two”) and so on. The Chinese language therefore does not
complicate excessively a concept that, at the end of the day, is quite simple.

Furthermore, Chinese is a language in which measurement terms are systemat-
ically used when enumerating or identifying objects. In Italian, people use mea-
surement terms only sporadically, for example when people say “cup” in the
expression “a cup of coffee”. On the contrary, in Chinese, it is impossible to avoid
using measurement terms. For example, if one wishes to say “two roads” in
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Chinese, it is necessary to add a measurement term: “two + measurement term +
roads” (liang tiao lu). In this example, the measurement term means “long and
sinuous”. In Chinese, one cannot say “five books”, a measurement term must be
placed between the number and the name: “five + measurement term + books” (wu
ben shu), which means something similar to five publications of books. This lin-
guistic feature leads to three observations. First of all, children learn measurement
terms while starting counting items in the real world; measurement terms are
therefore an important element in the development of the ability of enumerating
items in the real world, even if they might seem of secondary importance.
Furthermore, it is possible to assume that the possibility to omit measurement terms
—making enumeration a little bit harder—emphasizes the fact that people tirelessly
count things. Finally, they highlight some characteristics of the enumerated ele-
ments, moving the attention to the “length” of roads, the “flatness” of boards, or the
“honesty” of people. This could seem completely unrelated to numbers as entities.
Nevertheless, since the distinctive features of real-world objects are directly
embedded in the enumeration process—through the trio number + measurement
term + object—measurement terms help in highlighting the meaning of numbers in
a specific context. Finally, it must be noticed that also in its written form, Chinese is
intrinsically numerical. For example, the character identifying a “rock”, shi, is made
up of five traits that must be drawn in a strict order: one, two, three, four, five.

Even Chinese vocabularies are organised on a numerical basis, according to the
number of traits that make up a specific character or radical (radicals are the basic
elements of characters). When looking for a character, it is necessary to count the
number of its traits. A similar reasoning can be followed for classic mathematical
concepts such as variables, the key concept of algebra and generalisation processes
(another key element of algebra). The concepts of “unknown numbers”, variables
and more generally that of parameter are, broadly speaking, quite difficult to
understand. Yet, by analysing the Jiuzhang Suanshu text, which is considered the
reference ancient text in Chinese algebra, it is clear that since ancient times Chinese
ignored the necessity of deductive argumentation and their mathematics was not
based on the severity of a well-organised logical technique such as among the
Greeks, but rather on the practical use of mathematics by citizens in economic and
agricultural contexts. The result was that mathematics was presented as a group of
terms developed by following a spontaneous and natural “technical grammar”
rather than as harmonic set of knowledge. In the Jiuzhang Suanshu, solution pro-
cedures (shu) follow a procedural structure that exploits the data presented in the
text of the problem and express specific quantities and numerical values. For
example, in the problem I.9:ì, it is assumed that someone has the quantities 1/2; 2/3,
3/4, 4/5. The question is: how much can you obtain by putting all together? The
distinctive elements that characterise the resolution methods proposed are mainly
inferred from the textual object represented by a simple list of operations that make
up the entire procedure (Kline 1972), where known terms such as “numerator”,
“denominator”, “multiply…” can be found (Chemla 2007). Therefore, even if the
resolution procedures are basically arithmetical and numerical in nature, the text
clearly emphasizes the search for general algorithms that can be applied in different
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problems that partially refer to concrete and specific situations. The use of arith-
metical operations (multiply, divide…) and the use of terms such as “the multiplier
to breakdown”, “simplify to reunite”, “homogenise”, “equal to establish a com-
munication”, show the demonstrative value of the resolution methods of ancient
China, which represent strategic objectives in the search for constants in different
calculation procedures: from this perspective, expressions such as “make them
equal” and “make them homogenous” can provide concrete indications of algebraic
manipulation. To sum up, even if some structural characteristics of Chinese have
not been yet object of thorough inquiries, they can affect significantly the devel-
opment of numerical cognition.

Even if numerical cognition is not as language-dependent as previously thought
by Piaget, it seems to be accessible under linguistic form at least in its “exact”
part. In this case, the differences between languages and, broadly speaking, cultures
play a direct and undeniable role.

3.4 The Role of Language

Children learn to say “one”, “two”, “three”, etc. thanks to the act of counting, which
allows them to label each object. Children hence learn the sequence of natural num-
bers as a nursery rhyme that mechanically communicates the passing of time: 3 is the
number that comes before 4 and follows 2. Nevertheless, children need much more
time to understand that the last word of this temporal sequence may have another
meaning, i.e. the cardinal number that indicates how many objects there are in a set.
The majority of children cannot understand this principle before the age of 3. When
one asks them “how many objects are there?”, they systematically answer with a
different number than the one they have just enumerated by counting. Borrowing the
observationmade by psychologist Karen Fuson “the situation described by numbers is
not evident at all” (Fuson 1988, p. 3). At the age of 3, children start recognising the
numerosities 1, 2 and 3; when they understand the numerosity 4, they find out how the
entire list of whole numbers is structured and de facto learn how to recognise all
numerosities. In the end, it is their linguistic competence that allows them to go
beyond the original non-verbal representations. Without language, many strategies
would be impossible, such as those requiring the use of verbal memory, in particular
counting and mental calculation. Therefore, oral or written enumeration mobilises a
linguistic-verbal system that involves a series of vocabulary and combination rules.
Numerical systems are conventional systems that rest on two major principles:
(1) lexicalisation, an elementary process that associates a cardinal number to a name;
(2) the use of syntax and combination rules (addition and multiplication), which
allows for the creation of an infinite number of complex denominations that do not
correspond to specific cardinal numbers. Despite some irrelevant local divergence,
several languages use a 10 base system in their numerical systems, where each whole
natural number has a name and, mutually, the names of numbers are unambiguous.
Some authors, led by Noam Chomsky, have identified recursion as the fundamental
component driving the development of numerical systems (Hauser et al. 2002).
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Recursion is a procedure that recalls a structure established starting from a structure of
the same type: in the spoken language, examples of sentences with recursive structure
are those containing linked subordinates (e.g. the book that Pietro [that is my friend]
gave to me). From a syntactical perspective, language is recursive (an example is the
following rule on nominal groups that describes how to add an adjective: NOMINAL
GROUP = ADJECTIVE + NOMINALGROUP, where the addition can bemade an
x number of times, since the result will always be a valid nominal group) and the same
goes for natural numbers (a whole number N is associated with N + 1). In mathe-
matics, some functions are built in recursive manner, such as successions where the
term Un is identified by taking a previous term U n-1. Among recursive structures,
there is a category of simpler structures, which are those obtained through repetitions.
Repeating a procedure means applying it more times successively. Natural whole
numbers are an example of structures obtained through repetition: all numbers can be
obtained by adding one unit to the previous one. In some languages, the name of
numbers is constructed on the principle of recursion and the name of big numbers
contains often the name of smaller numbers. Themost striking example is provided by
Asian languages (as we have seen in the previous paragraph, in Chinese all numbers
are named following always the same rule). The invention that increased the efficiency
of numerical notation was the establishment of the principle of position value.
A system of numerical notation follows the principle of position value when the
quantity represented by a numeral varies according to its position in a number. Three
identical numerals therefore can refer to three different sizes in the number 222: two
hundreds, two tens, and two units. In a notation system with position value, there is
always a privileged number called base. The concept of base was developed already
by Babylonians and it establishes an efficient combination rule. In other terms, the
base is the number from which names are repeated following rules that govern their
combination. On the side of the 10-base system, times and angles are measured in a
60-base system.Also 20-base systems, used in ancient times by theMayas andAztecs,
have survived in some counting systems and languages, such as Danish, French and
German, where some numbers are expressed as multipliers of twenty (e.g. quatre-
vingts, i.e. “four times twenty”, which means 80 in French). Therefore, regardless of
the base, in almost all languages, basic numerical words can be combined following
the principle of recursion and accurate syntactical rules, in order to precisely and
non-ambiguously build all thinkable numbers.
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Chapter 4
Dissociations Between System 1
and System 2

Abstract Calculation ability represents an extremely complex cognitive process. It
has been understood to represent a multifactor skill, including verbal, spatial,
memory, and executive function abilities. In this chapter, we will deal with it by
calculation disturbances are analyzed. Specifically, evidence from brain-damaged
patients indicates that deficits in mathematics can follow injury to either cerebral
hemisphere, but that the nature of the impairment will differ depending upon the
locus of the cerebral insult.

Keywords Acalculia � Developmental dyscalculia � Turner syndrome
Double dissociation

4.1 Calculation Disorders

The loss of the ability to perform calculation tasks due to brain disorders is called
“acalculia” or “acquired dyscalculia”. Acalculia is often mentioned in neurological
studies and in neuropsychological research, but targeted analyses of this disorder
are quite rare. Psychological and neuropsychological cognition evaluations tend to
include tests of calculation skills, but it is quite hard to find a specific exam
targeting acalculia in scientific literature. Historically speaking, before the recent
development of cognitive neuropsychology, scientific papers often referred to
calculation disorders, even though many of these cases were interpreted as a con-
sequence of language deficits (aphasia). Lewandowskey and Stadelmann, for
example, published the first detailed report of a patient suffering from calculation
disorders already in 1908 (Lewandowskey and Stadelman 1908). The patient
showed strong difficulties in mental and written calculations as a consequence of a
brain lesion. The authors identified difficulties in the reading of arithmetical sym-
bols, despite the patient being able to correctly solve arithmetical operations. This
paper represents an important point of reference in the development of the concept
of acalculia, because for the first time calculation disorders were considered as
something different, unrelated to language disorders.
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The first researcher to use the term acalculia was Salomon Henschen (1925),
defining it as a specific deficit independent from other types of disorders, even if
this term was used to refer to all kinds of problems related to the use of numbers.
Henschen examined 305 clinical cases in academic literature where calculation
disorders related to brain damage were reported. Among these cases, he found
patients presenting calculation disorders without vocabulary problems, hence cor-
roborating the hypothesis that there was a specialised anatomical sub layer devoted
to arithmetical operations that was separated—even if located in proximity—to the
areas devoted to language and musical skills (he pointed to the third frontal gyrus as
the centre responsible for number pronunciation, the angular cerebral gyrus and the
intraparietal sulcus as the areas of the brain responsible for number reading, and the
angular gyrus for number writing). Hans Berger (1926) took up his ideas and
further developed them, introducing the division between primary and secondary
acalculia.

Primary or “pure” acalculia corresponded to the loss of numerical concepts and
the inability to understand or perform arithmetical operations, while secondary
acalculia referred to calculation imperfections due to other cognitive disorders (e.g.
memory, language, etc.). Later on, the distinction became more important, because
researchers generally agreed on the fact that calculation disorders were related to
other cognitive disorders, such as aphasia, alexia, and dysgraphia. The dispute
hence hinged on the possible existence of primary acalculia, because several
authors questioned its existence as self-standing cognitive disorder (Collington
et al. 1977; Goldstein 1948). In 1976, Alexander Luria (Luria 1976) pointed out the
difference between optical acalculia (visual-perceptive), frontal acalculia, and pri-
mary acalculia, emphasizing the fact that calculation disorders could be caused by
differed brain disorders. The author contended that calculation disorders were not
homogeneous and, consequently, that it was reasonable to differentiate between
different subgroups of acalculia. Several categorisation attempts were proposed
(Grafman 1988; Luria 1973) and different error models were described in patients
with damages to the right and left hemisphere (Rosselli and Ardila 1989). Similarly,
Henry Hecaen and colleagues (Hecaen et al. 1961) classified different forms of
acalculia on the basis of their main features, differentiating calculation from the
processing of numbers and putting forward a new classification model, later
adopted by Geary (Geary et al. 2000). On the basis of a study performed on 183
patients, Geary identified three main types of calculation disorders:

(1) dyslexia and dysgraphia for numbers;
(2) spatial acalculia;
(3) anarithmetria (primary acalculia).

Dyslexia and dysgraphia for numbers entailed patent calculation problems.
These issues might or might not be related to the same disorders for words. Spatial
acalculia referred to a spatial organisation disorder, which implied the inability to
correctly apply the rules to place written numerals in the right order and position
(often leading to numerical inversions). Anarithmetria (also known as primary
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acalculia) entailed fundamental calculation disorders. Patients affected by anarith-
metria are completely unable to understand quantities, struggle in the use of cal-
culation syntactical rules, and have problems in the understanding of arithmetical
symbols. Nevertheless, these patients can count out loud and perform certain tasks
linked to numerical calculation (for example, the use of multiplication tables). They
can also have numerical knowledge, despite being unable to compare numbers
(quantity estimations) (Ardila and Rosselli 1995).

Conversely, it is quite difficult to find pure examples of anarithmetria in aca-
demic literature. Often enough, patients (as in previous cases) presented a general
cognitive deterioration and, therefore, anarithmetria was easily related to other
neurological and neuropsychological disorders.

Hecaen himself described cases of combination of anarithmetia and dysgraphia
for numbers. In a sample of 73 patients affected by anarithmetia, the authors noticed
that 62% suffered also from aphasia, 61% made construction mistakes, 54% had
visual disorders, 50% had general cognitive disorders, 39% had alexia problems
and 33% had oculomotor disorders.

There was a certain degree of overlap of these subtypes of acalculia and the
author postulated that calculation skills represented a complex type of cognition
that required the involvement of several cognitive skills.

Boller and Grafman (Boller and Grafman 1983) postulated that calculation skills
could be damaged as a result of different types of disorder. Calculation skills could
be affected by (1) the inability to understand the name of numbers, (2) visual-spatial
disorders that inhibit the spatial organisation of numbers and the mechanical aspects
of operations, (3) the inability to remember mathematical factors and use them
properly, (4) the inability to have mathematical thoughts and follow basic func-
tioning rules.

Brain damage can therefore entail limited disorders related to specific arith-
metical functions without causing additional calculation disorders (e.g. a specific
disorder in arithmetical procedures). The first studies inquiring the similarities
between the characteristics of mathematical disorders in childhood and symptoms
of adults with acalculia (or acquired dyscalculia) were carried out at the beginning
of the 19th century. According to the DSM-IV (American Psychiatric Association),
Specific Calculation Disorder (or Dyscalculia) is diagnosed when children obtain
lower marks in standardised mathematical tests compared to the expected results for
their age, intellectual level, and education.

Specific learning disorders in mathematical operations are not so uncommon
among children. These disorders are recorded also without clear signs of linguistic
difficulties or with normal IQs. It has been estimated that almost 6% of school
children have some kind of difficulties with mathematics, with a 70% incidence
among males (Badian 1983). Nevertheless, the research has not yet been able to
provide a common method to analyse the typologies and causes of the difficulties
related to calculation disorders. As in the case of acalculia, several categorisation
models have been presented also for dyscalculia. The earliest example dates back to
1967 and was developed by Johnson and Myklebust (Johnson and Myklebust
1967). These authors analytically identified different types of calculation difficulties
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in their patients, such as establishing a one-by-one correspondence between ele-
ments, being unable to recognise the relationship between a symbol and a quantity,
being unable to associate auditory symbols (name of numbers) with visual symbols;
being unable to learn the cardinal and ordinal system of enumeration and counting;
being unable to understand the principle of quantity conservation, being unable to
perform arithmetical operations, and finally being unable to understand the meaning
of the symbols used in operations. According to the authors, mathematical disorders
rarely appear in their purest form, while they are normally associated with other
specific developmental disorders, such as reading, motor, or attention disorders.

Starting from this detailed list of difficulties in calculation disorders, manifold
definitions of developmental dyscalculia have been formulated in academic litera-
ture, referring to specific hypotheses of cognitive disabilities. Robert Cohn (1971),
for example, defined dyscalculia as a retardation in numerical skills development,
characterised by the inability to recognise numbers, remember basic operations
(multiplication tables) and keep numbers in the right order during calculations.
Nathlie Badian (1983) took the categories put forward by Hecaen (alexia and/or
agraphia for numbers; spatial acalculia, anarithmetia) as a starting point and added a
fourth category: attentional-sequential dyscalculia, which entails difficulties in
performing additions and subtractions, remembering multiplication tables, and
remembering carry-overs and commas. Also Christine Temple (1991) distinguished
three types of dyscalculia:

(1) Numerical dyslexia, a disorder characterised by difficulties in acquiring lexical
procedures both in the systems needed to understand numbers and make
calculations.

(2) Procedural dyscalculia, which—contrary to numeral dyslexia—is typical of
children who struggle to learn the procedures needed for calculations, despite
the fact that they do not have problems in reading and writing numbers.

(3) Dyscalculia for arithmetic facts. In this case, despite owning a good ability in
processing numbers and perform calculations, children struggle to learn the
numerical facts within the calculation system, making so called “border mis-
takes” (mixing up multiplication tables, e.g. 6 � 3 = 21) or “skidding mis-
takes” (writing one wrong digit in the answer, e.g. 4 � 3 = 11).

Temple’s studies described the possible types of developmental dyscalculia by
characterising them according to the causes and neuropsychological preconditions
of the disorder. Nevertheless, it is worth noting that not even today is there a shared
modality among researchers to analyse the causes of the difficulties implied by
calculation disorders. Generally speaking, dyscalculia is always associated to
dyslexia (Temple reported the case of a patient suffering from phonological dys-
lexia and dyscalculia in multiplications). Nevertheless, in a study performed on
children affected by dyscalculia, Geary, Hamson and Hoord (Geary et al. 2000)
highlighted that there is a difference among subjects affected by dyslexic dyscal-
culia and those affected by a form of dyscalculia not associated to dyslexia. In their
experiment, when faced with additions, children with dyslexia often counted on

64 4 Dissociations Between System 1 and System 2



their fingers to find the right result, while children without dyslexia never used this
strategy and always tried to recall in their memory the addition tables they needed.
This fact was explained by putting forward the idea that when children suffer from a
form of dyslexia associated with dyscalculia, they do not have the possibility to
represent numbers verbally and therefore avoid searching in their memory a result
that is simply impossible to remember for them. On the contrary, children without
dyslexia do not have memorisation problems related to multiplying tables. It is
therefore likely that their disorder is due to a representation problem related to
quantities. In this case, the strategy of counting on fingers makes no sense.

Geary’s research supported the hypothesis of a hierarchy in strategy learning.
Initially, children use a procedure called counting all, counting addends on their
fingers by raising them one after the other (to add up 4 and 3 they lift four fingers,
then three, and then they count the total). At the end of the first school year, they
start using a strategy called counting on: they start counting from the highest
addend and add the smallest one, one unit at a time. The ultimate strategy requires
them to look at their fingers without counting and find the answer. Counting on
fingers in arithmetic therefore represents an important development stage of
numerical cognition, so much so that Fayol, Borrouillet and Marinthe (Fayol et al.
1998) have proved, in an experiment on a sample of 200 normal children, that the
level of ability of 5-year-old children in finger counting is a far better index of their
arithmetical performance at 8 years than their IQs.

The high number of theories and models outlined so far suggest that even the
definition of dyscalculia is not always univocal. What is puzzling is that often the
neuropsychological models presented to study single cases of known cerebral
damages are also used to define the characteristics of dyscalculia as a specific
learning disorder developed by children while growing up. These classifications
have provided a wide framework of possible manifestations of this disorder, but
they merely play a descriptive role.

Only after formulating cognitive models that describe the processing of numbers
and calculation, the functional meaning of each observed disorder pattern becomes
fully understandable.

4.1.1 Calculation Disorders and Cognitive Models

Michael McCloskey, Alfonso Caramazza and Annamaria Basili (McCloskey et al.
1985) developed one of the earliest cognitive models of numerical processing and
calculation. In it, the authors generally considered the cognitive mechanisms that
lead to the understanding and production of Arabic and verbal numerals, as well as
the execution of simple calculations. According to their model, the mental repre-
sentation of numerical knowledge is independent from other cognitive systems and
structured in three modules with different functions: (1) the system for number
understanding and production (divided in the different codes in which numerals are
encoded: verbal, Arabic, etc.), (2) the calculation system (divided, once again, in
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recovery systems for arithmetical facts and calculation procedures), and (3) the
production mechanisms, the output of the calculation system, i.e. numerical
answers.

This implies that the understanding of numbers and their production are two
processes independent of each other. The units tasked with the processing of
numbers in different formats are independent as well, both in the understanding and
the production of numbers. The recognising/understanding system is composed of a
series of independent mechanisms, for example those used to process numbers as
the Arabic numeral “8”, the visual and verbal number “EIGHT” and the auditory
and verbal number “eight”. Also the production system has a complex internal
structure that comprises mechanisms responsible for the production of the Arabic
numeral “8”, the oral production of “eight” and the written word-number “EIGHT”,
mechanisms that work independently of each other. Let’s see an example of the use
of this model to represent the solution of a simple arithmetical problem: “8 � 3” or
“eight times three”.

(1) The problem is presented:

(a) in Arabic numerals and mathematical symbols: 8 � 3;
(b) in written or oral form: “eight times three”.

(2) The problem is correctly understood by using the appropriate understanding
mechanism (decoding of numerals or words) and is converted into an abstract
semantic code.

(3) The abstract representation is used to access the calculation mechanism:
arithmetical facts or procedures/algorithms.

(4) The calculation mechanism employed provides an abstract semantic
representation.

(5) The representation is sent back to one of the two production mechanisms and is
expressed in:

(a) Arabic numerals and mathematical symbols: 24;
(b) written or spoken words: twenty-four.

Among the lexical components for understanding and producing verbal num-
bers, the model differentiates between phonological processing mechanisms for
spoken words and graphemic processing mechanisms for written words. The model
does not postulate a phonological-graphemic difference for the processing of syntax
and it is believed that the same syntactical mechanisms are used for processing
spoken and written verbal numbers (Fig. 4.1).

A salient feature of this model is that it foresees possible alterations and dis-
orders in the processing of numerical information. This model has been entirely
developed to reunite different neuropsychological studies that highlighted alter-
ations of each aspect linked to numerical and calculation processing (McCloskey
et al. 1991). Several studies have pointed to the decoupling of understanding and
production mechanisms. Benson and Denckla (1969), for example, reported the
case of a man with a damage to the left hemisphere: the subject was able to choose
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the right answer in a list of possible options when a number was spoken, hence
showing that he could understand numbers in different presentation modalities
(visual and auditory).

Nevertheless, when the patient had to produce a number, his performance
deteriorated significantly until failing to solve even simple arithmetical tasks. At the
same time, he made obvious mistakes both in writing and reading numbers. Ferro
and Botelho (1980) instead described the case of two patients (AL and MA), who
presented selective disorders in the understanding of arithmetical symbols. When
they were presented with written arithmetical problems, both patients made mis-
takes in the operation. For example, AL answered 12 when he was presented with
the addition 3 + 4. The interesting fact is that both patients were successful in
processing numbers and gave the right result when the operation was presented
orally to them, since they did not have problems in understanding the words “plus”
or “times”.

Similarly, the patient VO of Michael McCloskey and colleagues (McCloskey
et al. 1985) showed full understanding of numbers and calculations presented
verbally and in the form of Arabic numerals, succeeding in indicating without
difficulties the largest number between two alternatives and the number repre-
senting the right answer to an operation, but on the contrary in the tasks that
required number production skills to answer a stimulus, his performances were
strongly compromised. The patient made blatant mistakes in solving mental and
written calculations, writing spoken numbers, and reading numbers out loud,
showing a decoupling between the ability to understand numbers (intact) and
produce numbers (damaged). As far as comprehension is concerned, the authors
reported the case of patients presenting a double decoupling of verbal and
numerical codes. In a test requiring the ability to identify the largest number

Fig. 4.1 The modular model developed by McCloskey et al. (1985)
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between two alternatives presented visually, the patient H.Y. did not struggle in
identifying the largest number when Arabic numerals were presented (e.g. 8–5;
27305–27350), but he answered randomly when numbers were presented as words
(EIGHT-FIVE, etc.). Conversely, patient K. presented the opposite behaviour: he
did not have problems with numbers presented as words and provided random
answers when numbers were presented as numerals.

This double decoupling has also been confirmed by other studies. For example,
patient S.F. of Lisa Cipollotti (Cipollotti et al. 1995) could read correctly 95% of
numbers (from 1 to 7 numerals) written as numerical words, but only 45% of the
same numbers written as Arabic numerals. Similar problems, despite a much more
severe disorder than in the previous case, were presented by patient BAL (Cipollotti
et al. 1995). BAL could read correctly the words corresponding to the numbers
from one to nine, but gave wrong answers when the same numbers were presented
as Arabic numerals.

On their part, Clark and Campbell (Clark and Campbell 1991) put forward a
different hypothesis to the modular model. They believed that the different asso-
ciation, semantic and linguistic mechanisms involved in calculation processes are
so deeply interconnected that the modular model seems unlikely. This theory, also
known as “theory of complex encoding”, postulates an equipotential explanation
between the different functions. In other words, according to the authors, calcula-
tions cannot be broken down into functional and/or anatomical categories. This
model outlined a non-modular architecture where multiple numerical codes are
triggered one after the other during the processing of numbers and arithmetical
tasks. According to this hypothesis, the numerical codes include phonological,
graphemic, visual, semantic, lexical, articular, imaginative, and analogical repre-
sentations. Numbers automatically activate a wide network of associations and, in
the context of a specific task, include both relevant and irrelevant information. For
example, when subjects are asked to quickly solve simple additions or multipli-
cations, the mistakes they make reveal the excess of influences: mistakes are nor-
mally due to the recovery of “similar” numbers from an associative or semantic
point of view (e.g. 3 � 6 = 21), or for computing a wrong arithmetical operation
associated to the problem (e.g. 3 � 6 = 9).

The theory of complex encoding tries to provide a simplified theory compared to
the modular model. This theory has the merit of having simple theoretical foun-
dations that explain several phenomena observed in clinical and laboratory works.
Unfortunately, this is not true on a deeper level: this model is too generic and it has
the disadvantage, in Popper’s terms, of not being falsifiable. The need to go back to
a modular conception adapted, if adapted to the hypotheses of complex encoding,
was heeded by Stanislas Dehaene, who developed a triple-code model that iden-
tified three categories of mental representations where numbers could be manipu-
lated (Dehaene 1992; Dehaene and Cohen 1995). This model aims at better defining
the numerical part of the processing tasks, postulating that three cardinal repre-
sentations are sufficient. The first mental representation category is the visual format
(Arabic) of numerals. At this representation level, there is an ordered list of
numerical entities (e.g. 12 is encoded as <1> <2>). The second category is given by
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the verbal structure in which numbers are ordered as sequences of syntactically
organised words. At this representation level, the number “twelve” is encoded as
“Ten[1] Units [2]”. In these first two categories, no semantic information is stored,
while it is provided by the third and last category of the model, the analogic
representation. At this level, a connection is made between the quantity or asso-
ciated size of a specific number and other numerical quantities. Neuropsychological
experiments were carried out to prove the efficiency of this model. The most famous
case is described by Dehaene and Cohen (Dehaene and Cohen 1991) and refers to
patient NAU, who had a diffused lesion to the left hemisphere and presented
moderate disorders in the spoken language. Furthermore, he could not read nor
write. In a test on word categories, the only words he could read and write were
numbers. Furthermore, despite not being able to write letters when they were
spoken to him, he was able to write 7, 43, 198, and 1985 to answer the stimuli 7, 42,
193 and 1865 (it must be noticed that written numbers are not so distant from the
spoken stimuli). In particular, what seemed relevant in the performance of patient
NAU is that he succeeded only in approximation tasks: he could easily identify
false results in additions (e.g. 2 + 2 = 9), but he even accepted results that differed
from the real result for just few units (2 + 2 = 5) (Fig. 4.2).

When asked to repeat a sequence of numerals, such as (6, 7, 9, 8), the patient
was only able enumerate the list for few minutes. In addition to this, he could not
tell if a number was near to the ones presented in the list (for example, 5), but if he
was presented with a distant number (e.g. 2), he could tell that the number did not
belong to the list. The performances of patient NAU were therefore sensitive to the
numerical distance between stimuli: stimuli that were too near became undistin-
guishable. For NAU, numbers were not accurate as they are for normal people and
each numeral recalled just a vague impression of quantity.

A dyslexic patient described by Laurent Cohen and colleagues (Cohen et al.
1994) presented a similar behaviour. In this case, despite the patient strongly

Fig. 4.2 Dehaene’s triple-code model
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struggling with reading numbers out loud, he was able to count numbers with one
or two digits. Furthermore, when complex yet familiar numbers were presented to
him, such as famous historical dates or postal codes, the patient could understand
their right meaning.

In conclusion, we can state that providing the proper solution to a numerical
problem requires verbal, spatial, and conceptual skills that, very likely, require the
active involvement of several cerebral structures. Nevertheless, the neuronal
mechanisms involved in number recognition seem to be different to those involved
in solving arithmetical problems. A patient may indeed struggle with number
recognition and, simultaneously, easily solve arithmetical operations. Therefore, in
the following paragraphs, we will investigate how brain-imaging techniques can
help identify the areas in the brain devoted to the processing of arithmetical tasks.

4.2 Experimental Evidence

Considering the substantial progress made over the last years by neuroscience, it
was obvious that neurobiologists and neuroscientists would focus their attention on
mathematics, particularly on the production and understanding of numbers seen as
activities deeply anchored in the brain. Despite the lack of an unequivocal and
unambiguous interpretation of experimental data and evidence, there is no doubt
that the efforts made in neuroscientific research represent a new and innovative
chapter in the study of numerical cognition. Neuroscientists always build their
conclusions on what they consider a corpus of convincing evidence obtained
through a series of reliable experiments.

The majority of these tests are based on functional imaging studies analysing
brain activity during mathematical tasks. The use of non-invasive techniques for the
monitoring of brain activity such as PET (Positron Emission Tomography) and
fMRI (Functional Magnetic Resonance Imaging) has indeed allowed for the
observation of changes in brain activity when performing different activities, like
quantifying stimuli, performing simple operations, recognising numerals and
translating them in internal quantities, or detecting the location and extension of
brain damages related to calculation skills.

In 1985, Roland and Friberg, two forerunners in the use of imagery in the study
on calculation, used PET to record the activation of a wide frontal-parietal region
while the subject mentally performed a sequence of subtractions. Roland and
Friberg, whose ambitions went beyond the localisation of calculation skills, con-
tended that they had found the basis of human symbolic reasoning in this region
(Roland and Friberg 1985). Ten years later, when brain-imaging techniques had
developed even more, becoming easier to use and less invasive, the cerebral region
where PET studies (Ghatan et al. 1998; Jong et al. 1996) had recorded activation
was also analysed with a Functional Magnetic Resonance (Burbaud et al. 1995;
Burbaud et al. 1999; Rueckert et al. 1996), confirming the earliest results.
Nevertheless, these authors also used a series of complex cognitive tasks that, in
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addition to numerical encoding, required the involvement of other cognitive
mechanisms to identify the stimuli in their studies. These early studies did not have
the merit of specifying the role played by each cerebral region in the identified
functional network, but they provided inspiration for a second generation of
researchers that tried to define a controlled task that could single out the cognitive
process under investigation. Simultaneously, the development of image acquisition
and statistical analysis techniques promoted the establishment of richer experi-
mental protocols that could compare different experimental settings. The earliest
studies, in line with the neuropsychological observations made by Gerstman,
Hecaen and Henschen, emphasized the involvement of the parietal lobe in
numerical tasks. Recent results instead pointed to the horizontal part of the HIPS
parietal lobe (i.e. “horizontal part of the intraparietal sulcus” located at −44 −48 47
right, 41 −47 48 left).

At the beginning of 2000, a series of studies (where cerebral activations linked to
different arithmetical operations were measured and compared) confirmed that
HIPS is more active when calculations are performed rather than when numerals
(Burdaud et al. 1999; Chocon et al. 1999; Pesenti et al. 2000) or letters (Simon et al.
2002) are simply read, while it is even more active when two calculations are
involved (Menon et al. 2000). Furthermore, among different arithmetical opera-
tions, it seems that the activation is stronger in the case of subtraction rather than in
the case of simple comparisons (Chocon et al. 1999) or multiplications (Chocon
et al. 1999; Lee 2000). As far as additions are concerned, the HIPS seems more
active in approximation tasks rather than exact ones (Dehaene et al. 1999).
Similarly, Manuela Piazza and colleagues (Piazza et al. 2002) proved that HIPS is
activated not only by symbolic tasks, but also by those where it is necessary to
estimate the numerosity of groups of dots. All these data confirm the higher level of
activation of HIPS when a task involves the manipulation of quantities (subtraction,
addition, numerosity approximation and estimation) and numerical comparisons
(Chocon et al. 1999; Pesenti et al. 2000).

Comparison tasks provide instead the perfect opportunity to observe in detail the
parameters affecting activation. In an fMRI study, Philippe Pinel (Pinel et al. 2001)
observed that the activation of HIPS was affected by the distance effect: in other
words, HIPS was more active when the numbers under comparison were nearer.

The author aimed at proving that only numerical distance had an effect on the
activation of HIPS. In particular, the activation level was the same when stimuli
were presented as Arabic numerals or in the form of written words. In a 1998 study,
Naccache and Dehaene (Dehaene et al. 1998; Naccache and Dehaene 2001;
Dehaene 2011; Dehaene et al. 2003) proved that reading Arabic numerals imme-
diately recalls the associated quantity, even when numerals are presented only
briefly and subtly. The subjects tested in their study had to classify numbers (“the
objectives”, all clearly visible) establishing if they were larger or smaller than 5.
The subjects were not aware of the fact that before each objective they were
subliminally presented with other numerical stimuli (“the baits”). The answer times
of subjects were faster when the two numbers were associated to the same answer
(both numbers larger or smaller than 5) and this was recorded with all the
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modalities used as objective or bait (numerals or words). At the same time, the data
obtained through fMRI highlighted a lower HIPS activation when the bait and the
objective were numerically identical, while the activation was stronger when they
were different.

Obviously, since subjects in these experiments were exposed to different para-
digms that entailed various tasks, non-numerical counterarguments can be pre-
sented: it is always possible to try finding an explanation to results by referring to
general mechanisms related to attention or the planning and execution of tasks.
Evelyn Eger and colleagues (Eger et al. 2003) tried to avoid this trap by measuring
the cerebral activity during the execution of a task requiring to identify the objective
(for example, identify the number 2 in a sequence of numbers presented one after
the other on the screen), noting that subjects solved this task both with numbers and
letters (visually presented on the screen or read out loud by an auditory stimulus)
and colours (a coloured rectangle on the screen or the name of a colour presented in
auditory form). The three tasks had the same difficulty level and involved both the
attention and execution skills of subjects. By comparing the HIPS activation levels
for numbers with those for letters and colours, the authors systematically and
exclusively identified two symmetrical regions of the HIPS located in the same
areas as those highlighted by previous studies. These results hence prove that the
activation curve of this cerebral area is independent of the presentation modality of
stimuli and identifies the cerebral areas that abstractly encode numbers in the HIPS
of the two hemispheres. As we have seen, there are studies that describe a bilateral
activation in the intraparietal sulcus. How do these bilateral activations work? Do
these regions play an indispensable role in encoding numerical quantities? Do they
work in combination or are they independent of each other?

Experimental data on patients suffering from a detachment of the corpus cal-
losum show that the two hemispheres can solve comparison tasks independently
(Gazzaniga and Hillyard 1971; Gazzaniga and Smylie 1984; Seymor et al. 1994;
Cohen and Dehaene 1996). As a matter of fact, when a numeral is presented for a
brief period of time in the field of vision of each hemisphere in patients without the
corpus callosum, the perception and processing of stimuli are exclusively per-
formed by the contralateral hemisphere. When numerals were presented to the left
hemisphere, the patients behaved normally: the left hemisphere could solve
numerical tasks autonomously. On the contrary, when numerals were presented to
the right hemisphere, patients struggled to read them and their productions got near
to the exact results without being entirely correct: the patients nevertheless kept the
ability of making comparisons between numbers.

In this case, patients behaved as “approximate patients”. To explain these data it
was postulated that the right hemisphere is indeed responsible for the encoding of
quantities, but rather approximately (Piazza et al. 2004). In conclusion, it can be
deducted that both hemispheres can make representations of the quantities associ-
ated to numbers, even if the left hemisphere is better at managing exact numbers
than the right hemisphere.

In the light of all this, what is still up for discussion is the role played by the right
hemisphere in the selection of the exact answer. Some neuropsychological studies
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do not support the idea that the right hemisphere is responsible for this task. The
previous hypotheses contended that manipulation skills on quantities can resist
cerebral damages, because their alteration requires lesions affecting bilaterally both
intraparietal sulci.

It is indeed unusual to find cases of patients suffering from disorders in the
processing of quantities due to unilateral damages in academic literature. Up to
now, only four cases have been recorded. The first patient with substantial disorders
in tasks requiring the ability to process numbers bigger than 4 (Cipollotti et al.
1991) even with non-symbolic stimuli, presented a unilateral lesion in the left
frontal parietal area. The second patient presented an unilateral lesion in the right
lower parietal region (Dehaene and Cohen 1997). The third patient (Delazer and
Bencke 1997) presented an unilateral lesion in the left parietal cortex. Finally, the
fourth patient (Lemer et al. 2003) suffered a lesion limited to the left part of the
parietal lobe in the intraparietal area. By examining these patients, it could be
concluded that only the dominant hemisphere is necessary to solve quantitative
tasks on numbers. Nevertheless, this observation must be verified through the study
of patients with unilateral lesions (sometimes these lesions involve a large part of
the left hemisphere) who are unable to perform tasks that represented a problem
also for the above-mentioned patients (Deahene and Cohen 1991; van Harskamp
et al. 2002). This fact could be explained by postulating that the patients of the first
group were more strongly affected by lesions and even apparently healthy regions
had lost some of their functionality.

This phenomenon can be caused by the decoupling of healthy and injured
regions or by metastases (metastasis effect: a remote influence by a lesion; examples
are hypometabolism in an apparently healthy region). In addition to the case of
patient NAU described above, in academic literature there are cases of other
patients that lost the ability to perform exact calculations after a more or less
extended lesion to the left hemisphere (Dehaene and Cohen 1997; Grafman et al.
1989; Cohen et al. 1994; Warrington 1982; Pesenti et al. 1994). Besides, the same
performance level was also recorded after a lesion to the corpus callosum, partic-
ularly when stimuli were presented to the right hemisphere (Gazzaniga and Hillard
1971; Gazzaniga and Smylie 1984; Cohen and Dehaene 1996; Seymour et al.
1994). In these patients, the two hemispheres worked independently and the per-
formances of the right hemisphere were similar to those of the patient that had lost
all functionalities of the left hemisphere.

In a study performed in 2003 by Cathy Lemer and colleagues (Lemer et al.
2003), the researchers developed a list of tasks in which approximation patients
presented characteristic disorders. For example, after a frontal and temporal lesion
of the left hemisphere, their patient BRI struggled with arithmetic. The tests
revealed that he struggled the most with multiplications and divisions, while he did
not have particular difficulties with additions and subtractions.

The few mistakes made by BRI in additions and subtractions concerned bigger
numbers and his answers were always near to the right result. After these tests
related to arithmetical operations, the authors performed other tests on BRI: firstly,
a test of exact and approximate addition, where he struggled the most with exact
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problems with big numbers; then an estimation test on groups of dots, where the
patient’s performances did not reveal particular issues; finally, a comparison and
addition test concerning groups of dots, where the patient’s performances were
quite similar to those of a control group (with the exception of a general delay due
to his executive commands). BRI was therefore able to solve concrete and
approximate arithmetical problems. He could also perform tasks of addition and
subtraction with symbolic stimuli, but only approximately. On the other hand, BRI
was not able to manage quantities in multiplications and divisions. In the cases
described above, a “distance effect” was visible also in tasks where usually, in
normal subjects, this effect did not appear.

This was due to the fact that these patients systematically use an analogical code
of quantity to solve numerical tasks, a system that shows limitations in its accuracy
(in the case of mister NAU, there were no problems in distinguishing distant
numbers such as 4 and 9, while 4 and 5 were mixed; on the other hand, BRI did not
have particular problems in comparison tasks, even in the case of small numbers).
The answer accuracy varies according to the patient. There are even patients that
have completely lost the sense of quantity. This is the case of LEC, a patient
described in the same paper reporting the case of BRI. After a lesion to the left
intraparietal area, LEC struggled with arithmetic. In a classic test of elementary
operations, LEC showed disorders in the case of subtractions and divisions. The
mistakes made (e.g. 7–1 = 8; 9–1 = 9) pointed to a limited understanding of the
concept of subtraction. His performances were good in exact and approximate
addition tasks, but he stated that he could solve these tasks following the same
procedures, i.e. by using addition tables that allowed him to calculate the exact
result. On the contrary, the tasks related to groups of dots emphasized the extension
of his disorders. When asked to compare two groups of points, LEC answered
randomly.

Generally speaking, comparison tasks implied more difficulties for LEC, who
had problems also when comparing numbers between 20 and 100 written as Arabic
numerals.

Other patients presented the same selective disorder in subtractions as LEC
(Dagenbach and McCloskey 1992). An example is JG, a patient analysed by
Delazer and Benke (Delazer and Benke 1997), who was able to perform multi-
plications (8% of error rate on elementary facts), but was at the same time unable to
understand the meaning of numbers and operations. Also Dehaene and Cohen
(Dehaene and Cohen 1997) presented the case of a patient (MAR), who was able to
do multiplications but could not compare or estimate the result of an operation or
find the middle point of a numerical segment. Finally, Margarete Delazer and
colleagues have reported the case of a patient with similar disorders to those pre-
sented by LEC (Delazer et al. 2005): this patient could perform multiplications and
additions, but struggled with subtractions. In general, his performances were very
low in all tasks requiring a systematic processing of quantities (bisection of
numerical intervals, approximation, estimation, placing numbers of a physical line).
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4.3 Calculations and Genetics

In the previous pages, we outlined experimental evidence of the numerical quantity,
non-verbal representation system. Furthermore, it was highlighted that this
system—which develops quite early—can be seen as the foundation on which
arithmetical competences are built. Over the last years, this research activity trig-
gered a new series of studies focussed on the investigation of the development of
these competences in children with atypical development patterns. The discovery in
2001 that the mutation of a single gene (FOXP2) could have an impact on language
learning paved the way to this kind of studies (Laing et al. 2001). The localisation
of FOXP2 was linked to the discovery of a particular linguistic disordered identified
in one family (called KE): half of its members presented a grammar deficit that was
particularly visible in the use of linguistic features signalling number, gender, and
time. All the members affected by this disorder presented the mutation of gene
FOXP2 in chromosome 7, while the members of the family immune to linguistic
disorders did not have this mutation. Nevertheless, the consequences due to the
mutation of FOXP2 were particularly complex to study, because these genes are
involved in several functions and their role is not exclusively linked to language
learning. Today, we know for sure that FOXP2 governs the activities of other genes
and, consequently, affects the development of several organs. For example, it
controls the production of a protein (forkhead protein) that plays a fundamental role
in the development of proper motor and coordination abilities, as well as in the
production of verbal and non-verbal rhythmic sequences. Nevertheless, it is
believed that a better understanding of its role might lead to an improvement in the
comprehension of the variability of cognitive functions in normal individuals as
well as linguistic disorders in subjects with disorders.

The same goes for the study related to the exact and approximate numerical
system in atypical development patterns. Annette Karmiloff-Smith (1998) rightly
highlighted that the studies exploring the field of numerical cognition should not
solely take into account the final result of development and all possible disorders,
but rather focus on the inquiry and understanding of the development patterns of the
different cognitive processes involved. From this point of view, by focusing on a
homogeneous neurobiological phenotype, the study of genetic conditions can
provide the possibility to evaluate arithmetical competences in the perspective
suggested by Karmiloff-Smith. Furthermore, issues of dyscalculia have often been
reported in association with genetic disorders such as Williams syndrome, Down
syndrome, fragile X or Turner syndrome.

Williams syndrome (WS) is a very rare genetic disorder that occurs in one on
20,000 births. The genetic causes of this disorder are due to the micro deletion of
the elastin gene in the chromosome 7. The clinical picture of the subjects affected
by WS is characterised by a dysfunction of several organs and systems: they suffer
from cardiovascular, renal and auditory problems. Furthermore, they present
visual-motor and visual-constructive difficulties (they are not able to manipulate
single spatial pieces of information and place them in a coherent context), while
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their linguistic abilities seem unaffected. When talking to subjects with WS, the first
impression is that they are eager talkers, but after a deeper exam it becomes clear
that it is not true. Their presumed linguistic ability is simply due to a good
phonological memory that helps them to learn sounds, words, or sentences that are
mainly copied. These subjects therefore often know many words, even uncommon
and sophisticated ones, but they do not master them with full semantic competence
and often their disorders are of pragmatic nature. In several studies, subjects
affected by WS have been compared with individuals affected by Down syndrome.
Sarah Paterson and colleagues (Paterson et al. 1999; Paterson 2001) did so in their
studies on numerical cognition, proving that Williams children have excellent
approximation skills and can perceive quantities already at an early age. On the
contrary, these skills are not recorded in children affected by Down syndrome. The
most interesting aspect of these studies is that in older children and adults, the
situation seems to be the opposite and better approximation performances are
recorded in Down subjects compared to people affected by WS.

These results would corroborate once again the importance of studying
numerical competences in a dynamic and non-static approach to the disorder. The
problem of numerosity comparison was also addressed by performing experiments
on children and adults with Down and Williams syndrome, putting them in com-
parison with a control group of mental age peers (Paterson et al. 2006). The subjects
with WS behaved with less accuracy than those with Down syndrome and did not
show a good distance effect in relation to their reaction times. The data pointed to
some anomalies in the knowledge of the number line, a hypothesis corroborated by
the observation of a consolidated ability of numerosity comparison already at the
age of 5 in a control group of children with typical development, and a low level of
similar ability in a group of children with WS of an average age of 7. Other authors
showed interest in the ability of assessing the magnitude of different numerosities in
this population and proved that the subjects struggled in making representations of
magnitude: the magnitude judgment abilities of children with WS did not change
from school to adult age, contrary to what happened in children with typical
development, where a clear improvement was recorded from pre-scholar age, to
scholar age and adult age (Ansari 2003). There are also interesting studies that
evaluated the skills on exact numerical systems, in particular counting skills and the
learning of the principle of cardinality.

The data show that children with WS could enumerate sequences of small
numbers while counting without making mistakes, while on the other hand they
struggled with the principle of cardinality (Ansari et al. 2003). When asked “how
many…?” they answered correctly less than 50% of times, showing that counting
skills cannot predict the acquisition of the principle of cardinality in children with
atypical development. Furthermore, they presented substantial difficulties in adult
age as well: in particular, while the enumeration from 1 to 20 was learnt without
substantial problems, several difficulties were recorded when counting from 25 to
35. These data pointed to the fact that these people learn counting as a form of
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nursery rhyme that does not require the acquisition of the concept of numerical line
(Paterson et al. 2006). Children and adults with WS presented also reading diffi-
culties for numbers with several digits (in particular, they made many lexical and
syntactical mistakes), contrary to adults with Down syndrome, who showed to have
a good competence of the transcoding process (Paterson et al. 2006).

The mentioned studies on Williams syndrome are quite interesting because they
show that numerical competences can change during the development of the sub-
jects. These data show that the relations between language and number are not
defined once and for all, but they are in continuous evolution during development.
A different pattern is visible in children with Down syndrome.

In their early years, these children show several difficulties in the perception of
changes in numerosity compared to their peers, while older children and adults have
a better ability in exact numerical tasks compared to children with WS of the same
mental age (Paterson et al. 2006). This is an important aspect because it goes
against what could be expected: if numerical skills were strictly linked to language
and language were preserved in WS patients, we would expect better competences
in these subjects rather than in those with Down syndrome. This observation is due
to the fact that numerical competences related to exact systems do not depend solely
on linguistic skills, but also on other abilities, in primis visual and spatial ones.

Furthermore, promising studies were performed on patients with Turner
syndrome (Turner 1938), a genetic disease due to the presence of only one X
chromosome. The disease affects one girl on 2,000, for a total of almost 3% of all
female new-borns. The physical phenotype of Turner syndrome is well known and
implies a small size, ovarian failure, and an abnormal development of the pubis
accompanied by internal anomalies (e.g. hearth malformations). Contrary to the
physical phenotype, the effects of the lack of one X chromosome on brain devel-
opment are less known. Neuropsychological studies show that the cognitive profile
of patients with Turner syndrome is characterised by a decoupling between
insufficient non-verbal skills paired with normal verbal skills that often are even
well above the average (Temple and Carney 1996). Even if the cognitive profile
varies from one patient to the other, some disorders (visual- and spatial deficits,
calculation and memory deficits) seem to be recurrent in subjects affected by Turner
syndrome. The association of a visual- and spatial- disorder with dyscalculia is the
potential effect of a close relationship between visual- and spatial- cerebral repre-
sentations and numerical representations (Fisher et al. 2003), pointing towards a
“spatial” dyscalculia related to an abnormal development of numerical represen-
tation. Among patients affected by Turner syndrome, 75% struggle with mathe-
matics, in particular with subtraction, operations with big numbers, and subitization.
These difficulties related to mathematics can be found at all ages and across all
social statuses (Temple and Marriot 1998).

In a study carried out by Nicolas Molko and colleagues (Molko et al. 2003) to
investigate Turner syndrome, in the majority of cases patients presented calculation
disorders, despite their excellent verbal IQ. By comparing the data of 14 subjects
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with Turner syndrome (TS) with those of 14 normal subjects (control group), the
author reached the conclusion that the subjects with TS had significantly worse
results than the control group in Warrington’s arithmetical test. The average correct
answer rate was of 41.1% (vs. 60.1% in the control group). In general, in numerical
tasks related to large numbers, subjects with TS were slower and made more
mistakes than the control group. A similar pattern was observed in the exact esti-
mation of numbers (with an error rate up to 20.5%). On the contrary, the control
group did not show a substantial difference in the test for exact and approximate
calculation, neither in reaction times nor in error rates. Nevertheless, the format had
a significant effect: when the number grew bigger, the answers slowed down by
231 ms, reaching an error rate higher by up to 9% compared to smaller numbers.

The data collected by Molko and colleagues through the use of fMRI to study the
functional activation and the morphology of the intraparietal sulcus deserve a
particular mention. The morphological analysis showed an abnormal length and
depth of the right intraparietal sulcus that reflected an anatomical disorder of this
cerebral region in subjects affected by TS. The data collected with the use of fMRI
emphasized an abnormal modulation of the intraparietal activation according to the
format of the number: in exact calculation tests, when the format increased, normal
subjects recorded a bilateral increase in the activation of intraparietal sulcus. On the
contrary, in the subjects affected by TS, there was no change in the activation level
of the same regions. The format effect in exact calculation is due to an increasing
difficulty in recalling the corresponding arithmetical facts in the memory and,
therefore, to an increase in the use of alternative strategies that involve quantity
manipulation (Lefevre et al. 1996). The analysis of the activation in cerebral areas
during exact and approximate calculations with small numbers also pointed to an
abnormal model of parietal activation even for simple functions. In normal subjects,
there was a stronger bilateral activation of the intraparietal sulcus for approximate
tasks compared to exact tasks. This is in line with the hypothesis that small
arithmetical calculations (2 + 3) are recalled from memory and do not require the
manipulation of quantities (Stanescu-Cosson et al. 2000). In subjects affected by
TS, on the contrary, there was no difference between exact and approximate cal-
culations: these subjects did not solve these operations by fetching the results
directly from their memory, but rather they used the same strategies employed for
approximate calculations. Summing up, the evidence collected through the use of
fMRI showed that, despite a partial compensation, arithmetical difficulties in sub-
jects affected by TS do not only affect calculations with bigger numbers, but also
basic arithmetical knowledge that involves numbers smaller than five (Fig. 4.3).

The insufficient use of the intraparietal sulcus in subjects affected by TS seems to
be the direct cause of their arithmetical difficulties and it suggests a lack in their
selection and/or execution processes. This fact has also been reported in subjects
with fragile X syndrome (Rivera et al. 2002). These results therefore lead to the
conclusion that the explanation of these problems has to be found in a biological
disorder, since what is missing is the classic “elementary sense” of numbers.
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4.4 Numbers and Space

In this book, the possible close relationship between space processing and number
processing has often been highlighted. Even in the past, mathematical and spatial
skills were often put in relationship: back in 1880, Galton was the first to openly
refer to the “shape of numbers”, hinting to the answers provided by 80 subjects to
describe what they could “see” when they watched, heard, or conceived a number
(Galton 1880).

The earliest encoding models of numerical quantities were direct products of the
accumulator model developed to represent the duration of time (Gibbon 1977). The
idea that there is a shared format to represent numbers and the duration of time
represents an idea still cherished today, because it establishes a bond between
numerosities and an internal magnitude (Walsh 2003). The most recent models on
numerosities bring together all these ideas in the basic concept of “internal
numerical line” (Dehaene 2011; Gallistel and Gelman 2000; Dehaene 2003).

According to this model, numbers (and numerosities) are represented on a
mental line, with 1 standing on the left, 2 on its right, 3 on its right, and so on. To
decide which number is larger between two alternatives, we start by placing them
on our mental line and then we verify which one is standing more to the right.
Numbers are not homogenously spread along this line. The more we move to the
right in our mental line, the nearer the numbers stand (Zorzi et al. 2002) (Fig. 4.4).

Therefore, the metaphor of the mental numerical line described above is an
adjusted format to describe the features of analogical, non-verbal representation
skills: a practical tool to dwell upon these representations and understand their
estimates. Interestingly enough, a certain number of evidence in neuropsychology
suggest that the numerical line metaphor can go beyond its limits, providing
important insights to understand the processing of numbers and space.

Some people develop explicit associations between numbers and space (Seron
et al. 1992): for them, numbers stand on a line, on a curve, in a table, or follow

Fig. 4.3 Anatomy of the intraparietal sulcus in approximate calculations and exact calculations in
normal subjects and subjects affected by TS (Molko et al. 2003)
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complex three-dimensional shapes (in a phenomenon known with the name of
synaesthesia). Even “normal” subjects, though, can develop specific inferences
between numbers and space. One of these effects is the so-called SNARC effect
(Spatial Numerical Association of Response Codes), which unconsciously associ-
ates small numbers with the left part of the body and big numbers with the right
(Dehaene et al. 1993).

A classic task to understand if we are affected by the SNARC effect requires to
classify a number as even or odd by pushing a button either with our right or our
left hand. In this test, numbers from 1 to 9 are presented one by one on a screen and
subjects normally answer faster for numbers from 1 to 4 when they must press the
button with their left hand, while from 6 to 9 they are faster with their right hand.
The subjects hence respond as if numerals were categorised in smaller and bigger
entities, despite the fact that the experimental task did not appeal to this notion of
quantity.

In this way, the observations made on “normal” subjects are in line with those
made on synesthetic subjects, indicating that it is possible to move one’s attention
on their mental numerical line. Some people even visualise their own body on the
line. The numerical line of people affected by synaesthesia, just like the one of
normal subjects, is an object that is external to the body and whose orientation and
position are independent of the disposition of the body.

In the case of “normal” subjects, the orientation of this line is affected by culture:
Iranians, for example, are used to writing from right to left and they will have a
SNARC effect opposite to that of Western people. The interesting question is
understanding whether spatial associations are an exclusive feature of numbers or
whether they relate also to sequentially ordered non-numerical stimuli, such as the
letters of the alphabet, the days of the week, musical notes, etc.

Wim Gevers proved in his study that the letters of the alphabet and the months of
the year are also affected by the SNARC effect (Gevers et al. 2003), while musical
notes can present the SMARC effect (Spatial Musical Association of Response
Codes) (Rusconi et al. 2006) (Fig. 4.5).

The most striking demonstration of the equality in the processing of numbers
and space, though, was provided by Marco Zorzi, Konstantinos Priftis and Carlo
Umiltà (Zorzi et al. 2002). In their study, the researchers asked patients affected by

Fig. 4.4 The mental
numerical line (Galton 1880)
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neglect (an attention deficit disorder for the space located to the left and due to a
trauma to the right parietal lobe that causes strange behaviours in patients, such as
shaving only the right part of the face or eating only the right part of a portion of
food, etc.) to indicate the middle point (bisectional numerical task) of a numerical
segment. In general, the patients affected by neglect indicated a middle point that
was placed much more to the right than the actual middle.

The same happened with numerical tasks: for an interval of numbers going from
11 to 19, the middle number for them was 17. The important fact in this study is
that the same deviation recorded in bisectional numerical tasks was found in
bisectional tasks of physical segments. If asked to point to the middle point of a line
drawn on a piece of paper, these patients always point to a place standing too much
to the right, making an error that is proportional to the total length of the line. These
data prove that the same mechanism originally devoted to the orientation of
attention in space is used to solve tasks of numerical bisection.

Laura Zamarian and colleagues (Zamarian et al. 2007) have found the same
bisectional mistake of numerical intervals towards the right in patients affected by
neglect in the case of two-digit numbers. Furthermore, it is interesting to note that
some studies have proved a decoupling of the performances of patients with neglect
in the case of bisectional numerical tasks and equality judgment. In these experi-
ments, patients made mistakes moving too much to the right in numerical bisections
and showed clear examples of the SNARC effect (Cappelletti and Cipolotti 2006;
Priftis et al. 2006), suggesting that patients with unilateral left neglect can
semantically process Arabic numerals.

It must be noted that a research has found a disorder qualitatively similar to the
one described in patients with neglect in numerical bisectional tasks also in patients
affected by schizophrenia (Cavézian et al. 2007), corroborating the idea that the
spatial representation of numbers is a dynamic process. Furthermore, it was proved
that the abilities of spatial exploration on the left side in patients with neglect can be
improved by recurring to therapy treatments with prisms (Rossetti et al. 2004).

The positive effects of prisms in therapies aimed at reducing spatial mistakes has
also been highlighted in a study on “normal” subjects (Loftus et al. 2008), who
were asked to estimate if the numerical distance from a central number was bigger

Fig. 4.5 Visualisation of the SNARC effect
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on the right or on the left of a trio of numbers (for example, 16, 36, and 55). This
experiment indicated that subjects overestimated the length of numbers placed on
the left of the central number, falling victim of the so-called pseudo neglect phe-
nomenon (Jewell and McCourt 2000).

The numerical line is therefore not a simply useful tool to sum up the properties
of a non-verbal representation of numbers, but it represents the explanation model
for phenomena that treat equally the processing of numbers and space. As a matter
of fact, the relation between the representations of number and space is evident also
in neurologically normal subjects, as shown by an experiment by Martin Fischer
(2001), who asked subjects to indicate the middle point of numerical sequences
made up of a series of small numbers (e.g. 111, 222, etc.) and large numbers (e.g.
888, 999) in bisectional tasks. The results highlighted that the subjects moved the
centre of the sequences of small numbers to the left and the centre of the sequences
of large numbers to the right. The same results were later replicated by Calabria e
Rossetti (Calabria and Rossetti 2005) and by Maria Dolores de Hevia, Girelli and
Vallar (de Hevia et al. 2006).

Summing up, the “distance effect”, the “magnitude effect”, the “SNARC effect”,
and spatial performances in numerical bisectional tasks in patients with neglect and
normal subjects have all proved the existence of a mental numerical line as a
preferred representation form used by humans to process and elaborate numerical
information. What is still unclear is how these numerical representations are wired
at a cerebral level. On the one side, there are the neurons dealing with numerical
quantities, while on the other, those dealing with space. Considering this, it is likely
that the neuronal cell codes used by these neurons are equivalent and that there are
mechanisms designed to translate one code into the other. Nevertheless, how do
these two equivalent codes manifest themselves in the brain?

One possible answer is that the very same neurons are active in both types of
representation, i.e. networks of neurons establish dynamic systems whose charac-
teristics are determined by the wiring features of neurons (axons and dendrites
length, myelination, synapsis density, electrical properties of each cell). In the case
of numbers and space, the two postulated codes are functionally equivalent and they
would be triggered to represent the same neurons. Philippe Pinel and colleagues
(Pinel et al. 2004) have reported a partial overlapping activation for two numerical
(numerical comparison) and spatial (physical format comparison) tasks.

These data suggest that the neuronal cells responsible for the encoding of
numbers and space partially correspond.
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Part II
The Transition from System 1 to

System 2



Chapter 5
Possible Explanations

5.1 Subitizing

The first part of this book emphasised several experiments proving how humans
resort to two systems of numerical representation: one is inborn and approximative,
while the other is culture-influenced, language-dependent, and lies at the basis of
exact knowledge. Nevertheless, it is still unclear how these two systems interact
with each other to provide an accurate representation of natural numbers. In other
words, the seminal question of whether mathematics has developed starting from
the approximative system or rather from the precise system remains unanswered.

In some of his works, Stanislas Dehaene supported the idea that both systems are
necessary to develop precise arithmetic computation, but that the approximative
system is more rudimental, because it contains the basic components of the concept
of number. For example, in a work written in partnership with Feigenson, he
observed that: “two distinct core systems of numerical representations are present in
human infants and in other animal species (…) These systems account for our basic
numerical intuitions, and serve as the foundation for the more sophisticated
numerical concepts that are uniquely human” (Feigenson et al. 2004, p. 307).

More recently, the same idea was presented in the following passage:

The linguistic and core-knowledge hypotheses are not necessarily mutually exclusive.
Linguistic symbols may play a role, possibly transiently, in the scaffolding process by
which core systems are orchestrated and integrated (10, 15). Furthermore, mathematics
encompasses multiple domains, and it seems possible that only some of them may depend
on language. For instance, geometry and topology arguably call primarily upon visuospatial
skills whereas algebra, with its nested structures akin to natural language syntax, might
putatively build upon language skills. (Amalric and Dehaene 2016, p. 1)

Nevertheless, in other works, Dehaene contended that the approximative
quantity system is the only basic mathematical system, i.e. the one on which all
human mathematical representations are built, since it provides humans with the

© The Author(s) 2018
M. Graziano, Dual-Process Theories of Numerical Cognition,
SpringerBriefs in Philosophy, https://doi.org/10.1007/978-3-319-96797-4_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96797-4_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96797-4_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96797-4_5&amp;domain=pdf


basic vehicle needed to learn the use of numerical symbols. When writing about the
accumulator, he states that the approximative system is the fundamental one,
because it lies at the basis of our arithmetical abilities (Molko et al. 2004, p. 45).
Assuming that this is true, what is the relationship between the accumulator and the
development of mathematical knowledge? In other words, which cognitive
resources allow humans to overcome the genetically codified approximation
mechanisms of their brains and learn the strict rules of exact arithmetic?

In the search for an answer to this question, in his book The Number Sense,
Dehaene lists a long series of experiments aimed at showing how our computational
skills use different resources to provide a representation of the first three positive
integers; one, two, three.

The author contends that humans do not count numbers up to three, but that they
immediately perceive their presence because their brains identify these quantities
effortlessly and without the use of computational resources (Dehaene 1997). This
conclusion comes from the experiments carried out by Mandler and Shebo (1982),
where subjects had to determine as fast as possible the quantities related to some
items presented on a monitor. The data collected showed that reaction times
increased linearly by approximately 300 ms only for the items with a numerosity
comprised between 4 and 6, while for the items related to a numerosity between 1
and 3 reaction times were very short. On the other hand, when the numerosity
exceeded 7, reaction times were more or less constant, while the accuracy of answers
dropped. According to the authors, these results indicated that, when faced with
small numerosities (from 1 to 3 or 1 to 4), humans do not count items one by one, but
they immediately recognise the numerosity; their perception of quantity is instan-
taneous. For numbers from 4 to 6, reaction times constantly increased by 300 ms; the
time needed to process (and therefore count) each and every number. For numbers
bigger than 7, reaction times kept unchanged, while the error rate spiked (Fig. 5.1).

The technical term used by the authors to identify this process is subitizing, a
term coined from the Latin word subitus and used to indicate the swift and accurate
processing of numerosity in the case of sets composed of maximum 6 items.

Even today, subitizing is a disputed and contested process.
There are authors, such as Mandler and Shebo, who believe that it is the

immediate perception of spatial configurations that allows for the representation of
1 as a point, 2 as a line, 3 as a triangular shape, while 4 is subitized only when it is

Fig. 5.1 Reaction times for
different numbers of items
(Mandler and Shebo 1982)
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visualised as a usual configuration, such as a square or a triangle with a point at its
centre. Beyond 4, the variability of configurations increases, making an immediate
recognition completely impossible (Mandler and Shebo 1982).

To corroborate this hypothesis, the results of the study of Trick and Pylyshyn
(1993) proved that subitizing is stronger when items are clearly distinguishable
from the background, while it is weaker when distinguishing the items requires a lot
of attention, such as when counting letters “O” in a group composed of “Q”s. Trick
and Pylyshyn also provided a different explanation to the causes of subitizing.
According to them, subitizing and enumeration are two consequences of the way in
which the human visual system is built. When processing a scene, the visual system
works in two stages: a parallel stage (pre-attentive processing) and a periodic stage
(attentive processing). Furthermore, they highlighted that the spatial distribution of
items affects subitizing only partially, on the condition that the items are clearly
identifiable (Atkinson et al. 1976), contrary to what happens with sets of items that
have to be counted. The authors inferred that subitizing depends on pre-attentive
processing, while enumeration requires attentive processing. During pre-attentive
processing, spatial markers called FINSTs (FINgers of INSTanciation) are associ-
ated to items. The term subitizing, hence, is structural and corresponds to the
number of FINSTs that can be associated to different entities in the visual field. To
establish the cardinality of a set of items, subjects simply evaluate the number of
activated FINSTs, without paying attention to the items (Pylyshyn 1998).

When the number of items exceeds the number of FINSTs available or when the
positions of the items are not clearly distinguishable, the subjects resort to enu-
meration. Adults have only 4 FINSTs at their disposal and therefore subitizing is
limited to sets of a maximum of 4 items. Unfortunately, the authors do not explain
why adults do not have 5 or 8 FINSTs, but they simply suggest that the number of
FINSTs might increase with age and vary according to every single individual,
despite the fact that there are no studies supporting this hypothesis.

Gallistel and Gelman (1992) put forward an even more radical explanation,
contending that subitizing is a very swift computation based on non-verbal markers,
i.e. an inborn and pre-verbal counting skill. The authors hypothesised that humans
have an enumeration system similar to the one used by animals, which is very fast,
but inaccurate. This conclusion—that subitizing is indeed an enumeration process
—comes from the variable reaction times in the cases of numbers from 1 to 4, but
also from the sharp increase in reaction times when the items went from 1 to 2 and
from 2 to 3. Furthermore, features such as the regularity of the sets and concen-
tricity do influence subitizing, showing that the presence of subitizable groups
depends on the physical features of the set. According to the arrangement of items,
a small set can be perceived as a single group and therefore lead to one attention
focus, or it can be perceived as of composed of several groups and therefore
different subgroups. As a matter of fact, when items are arranged irregularly, dif-
ferent sub-groups emerge because of the Gestalt proximity principle, which iden-
tifies the items nearer to each other as belonging to the same group. On the contrary,
when items are arranged regularly, no sub-groups are identified, moving the
attention focus to the whole group.
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Raphaëlle Lépine and colleagues (Lépine et al. 2003) proved that adults and
children of 10 years of age faced with sets containing 1 to 8 points with changing
arrangements had slower reaction times when faced with irregular sets (Fig. 5.2).

Nevertheless, it is important to highlight that for sets with a subitizable size,
regularity had a stronger effect on those containing 4 items compared to those with
3 items (for obvious reasons, the regularity principle does not apply in sets with 1 or
2 items). Furthermore, items had to be located in clearly distinguishable positions to
be swiftly subitizable.

The fact that the distinguishing process differs between sets with small and big
numerosities from a qualitative perspective was also proved by recent psychological
and physical experiments (cfr. Revkin et al 2008; Piazza et al 2011). By taking into
account the outcomes of these studies, it is possible to contend that subitizing small
numbers is a process based on a cognitive mechanism that is different to the simple
estimation of other quantities (accumulator) and, therefore, that small numbers are
not represented as approximate numerical quantities.

Nevertheless, contrary to what Dehaene assumed at the beginning of his research
on numerical cognition, subitizing is not an effortlessly “pre-attentive” process, but
rather a process requiring attention (Dehaene 2011). As the author admits in the last
part of the second edition of Number Sense:

I must confess, however, that there is one point where I got it wrong. [..]I described “subitizing,”
or the remarkable capacity that we all have to iden- tify 1, 2, or 3 items at a glance. I was correct
in suggesting that we all can “subitize” with- out counting—a whole stream of novel publi-
cations has confirmed this point with a variety ofmethods. However, I was wrong in suggesting
that subitizing is essentially a form of “precise approximation.” (Dehaene 2011, pp. 256–257)

Further on:

How subitizing actually works remains something of a mystery. One interesting clue,
however, is that contrary to what we once thought, it is not independent of our attention.
Subjectively, subitizing seems to be automatic: One glance at a set seems enough to effort-
lessly recognize that it contains 1, 2 or 3 objects. This is an illusion, however. [..]Far from
being “pre-attentive” and effortless, subitizing requires attention. We can select a small
number of items, and even track them through time and space, but this taxes our attention. So
how does subitizing work? Current research suggests that we have 3 or 4 memory slots
where we can temporarily stock a pointer to virtually any mental representation. This
memory store is called “working memory”—a transient supply that keeps the objects of
thought on-line for a brief moment. [..] There is nothing in the approximate number system
to support a system of exact arithmetic with discrete numbers. (Dehaene 2011, pp. 259–260)

In conclusion, there is still some controversy around the interpretations put
forward by several authors. First of all, the fact that subitizing depends on the

Fig. 5.2 Examples of 4-point
sets irregularly and regularly
arranged
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numerosity of the items or, on the contrary, on other factors related to perception,
such as the area covered by the items or the duration of the stimuli. According to
Feigenson, Carey and Spelke (2002), the general configuration of the stimulus
affects the process of subitizing more than the number of items shown. Therefore, it
is still unclear whether the majority of empirical evidence linked to subitizing can
be better explained by perception factors that are not related to numerical cognition.
Secondly, the attention issue cannot be overlooked. The mere fact that subitizing
requires “attention” entails that its codification principle is radically different to the
way in which numbers are codified on an approximative numerical line. The dis-
tinguishing feature of subitizing is that it provides a “discrete” estimation for each
number between 1 and 3, while the approximative system cannot provide a discrete
arithmetic system with accurate numbers.

It is worth noting, though, that attention and accuracy seem to be features
belonging to system 2, where mathematically literate humans spontaneously start
counting numerosities and where symbolic representations play a pivotal role. This
topic will be tackled in the next paragraph.

5.2 Conceptual and Procedural Knowledge

Several authors (cfr. Butterworth 1999; Geary 1994; Gelman 1993) have repeatedly
put forward the idea that arithmetic computation represents a “privileged” disci-
pline, i.e. a domain where evolution favoured some skills, in that they became
particularly easy to acquire and early developable. For example, children can
understand at an early age the qualitative effects of addition and subtraction, even
before mastering proper arithmetic procedures.

Nevertheless, this idea has its opponents, who tend to prefer the “exposition fre-
quency” hypothesis, which states that some skills are developed early because the
environment provides a large number of opportunities of observation and imitation. For
example, Fuson (1988) put forward the idea that children infer the concepts at the basis
of proper procedures from their counting activities and the observation of others.
Contrary to the privileged domain hypothesis, the exposition frequency hypothesis
contends that even before developing a proper conceptual knowledge, children develop
procedural skills in the domains that provide sufficient opportunities of observation and
imitation (i.e. simple actions aimed at solving selected types of problems).

It goes without saying that the issue of the relationship between conceptual and
procedural skills is a particularly interesting one. Furthermore, a deeper look into
the interactions between these two types of knowledge could contribute to a better
understanding of the mechanisms underlying numerical cognition. It is not by
chance that several researchers have tried to investigate the relationships between
conceptual and procedural knowledge by focussing on some arithmetic operations
such as simple additions, and additions and subtractions with multiple digits.

As far as simple additions go, the skills developed by children require the
understanding that each number is represented once and only once, and that the
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order of the addition does not affect the final result (commutative property). Several
studies investigated the relationship between this conceptual knowledge and the use
of the “min” strategy based on the commutative property. For example, Baroody
and Gannon (1984) analysed this relationship in nursery school children.

To evaluate the understanding of the commutative property, the authors pre-
sented children with some fast computation tasks such as 4 + 2 and 2 + 4. The
children were asked if the two operations led to the same result. In another vari-
ations of this task, after having children answer the addition 6 + 4, they were asked
whether 4 + 6 gave the same result or not. From this experiment, the authors came
to the conclusion that children can understand the commutative property even
before using the “min” strategy. In another study, Siegler and Crowley (1994) asked
5-year-old children to use procedures in line with or going against the principles of
addition (the sum strategy, the “min” strategy and a wrong procedure, where one of
the two operands was provided twice). Children that had never used the “min”
procedure correctly identified the procedure as right (as the sum), but rejected the
wrong procedure. As in the previous example, these studies led the authors to the
conclusion that children understand the principles at the basis of addition even
before using its procedures.

Another area that provided fruitful results for the research on the relationship
between conceptual and procedural knowledge is the study on quantification pro-
cesses. According to Halford (1993), it is impossible to develop the concept of
number without quantification; quantification being the procedure that allows for
the assignment of numerical values to sets, the evaluation of the effects of format in
different sets or the understanding of the complex relationship existing among
numbers. Therefore, according to the author, quantification plays a basic role in the
identification of the numerosity of a set of items.

Among enumeration processes, researchers focussed mainly on the one that has
often been considered at the basis of all other arithmetic computation tasks.
Enumeration is indeed a verification test that empirically checks the validity of a
reasoning process, for example when conservation tasks are involved or in the case of
arithmetic tasks (Groen and Parkman 1972; Svenson 1975). It is important to high-
light that the majority of researchers believe in the existence of a natural inborn
tendency to identify discrete quantities (Briars and Siegler 1984; Fuson 1988;
Gallistel and Gelman 1992; Gelman and Gallistel 1978; Resnick 1986; Wynn 1990),
even though not all of them ascribe the same importance to inborn and practical skills.
As far as enumeration in childhood is concerned, two opposed schools of thought can
be identified: the “principle-first” theory, and the “principle-later” theory.

The “principle-later” theory states that principles are progressively (and gradu-
ally) extrapolated from the repeated practice of enumeration, which is acquired
through imitation (Briars and Siegler 1984; Fuson 1988; Fuson and Hall 1983).
Initially, enumeration starts as a purposeless activity, a routine, while over time
children discover its bonds with cardinality (Fuson 1988; Wynn 1990). This con-
cept does not go against the idea that children have an inborn sensitivity towards
numbers that provides the basis on which arithmetic learning is built, but it does not
account for its backbone. On the contrary, the “principle-first” theory states that the
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principles that govern enumeration are inborn and therefore that children master
them even before starting enumerating, allowing them to recognise enumeration as
a sensible operation that can be acquired and controlled. Gelman and Gallistel
(1978) identified 5 principles:

(1) the one-one principle: when counting items in a set, each item is associate to
one and only one number name;

(2) the stable-order principle: the list of number names is an ordered list, a fixed
sequence;

(3) the cardinal principle: the last number name used equals the total number of
items in the set;

(4) the abstraction principle: the heterogeneity (vs. the homogeneity) of the items
in the set does not affect the counting procedure;

(5) the order-irrelevance principle: the order in which the items in the set are
counted does not affect the total number of items in the set.

According to this model, children have a tacit knowledge of counting principles,
similar to the tacit knowledge of the grammar of a language (Chomsky 1957). This
knowledge allows children to recognise the procedures that are correct, exactly as
the knowledge of grammar allows them to recognise the correct sentences in a
language, even if they have never heard them (Gelman and Greeno 1989).
Furthermore, the authors highlighted that another parallel can be drawn between
linguistic and mathematical knowledge: exactly as grammar provides the possibility
to produce an infinite number of new sentences (generative grammar), the
knowledge of principles allows for counting strategies adaptable to different tasks.
Hence, when counting with number names, it is necessary to use them in an ordered
list (stable-order principle): according to this definition, any list (even “one”, “two”,
“six”, “three”, “eight”) can lead to a successful result. Furthermore, a successful
result does not require the use of number names: the labels used can be non-verbal
(e.g. fingers or different parts of the body that represent numerosities, the basis of
counting). Therefore, according to Gallistel and Gelman (1992) the skills needed
for counting are not linguistic and they are accessible to both animals and children.

All principles identified by Gelman and Gallistel have been tested on children.
Gelman and Meck (1983) have studied how 3–4-year-old children understand the
“one-one principle” and the “order-irrelevance principle” by asking them to eval-
uate the counting procedures carried out by a puppet. These authors focussed in
particular on the tests in which the puppet counted the items correctly, but without
following a standard order from the left to the right. Even if several children had
never witnessed a counting procedure, the majority of them estimated that it was
correct, showing that they were ready to accept starting counting from any item and
not necessarily from the one placed further on the left.

These studies suggest that the order-irrelevance principle is accessible to chil-
dren at an early age. Furthermore, even children that have not been initiated to
verbal numerical chains tend to use a number of labels that equals the number of
items that have to be counted (for example, when faced with two-item sets, children
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could say “two, five”), in line with the one-one principle (Gelman and Gallistel
1978). These studies were strongly criticised. Briars and Siegler (1984) did not
achieve the same results of Gelman and Meck in 3-year-old children, but only in
5-year-old children. Gelman and Meck (1986) justified this difference by saying
that in Briars and Siegler’s study, children had to evaluate how conventional the
counting procedure was and not how accurate it was.

A study carried out by Baroody (1984) highlighted another issue with the early
understanding of the order-irrelevance principle, showing that children believe that
counting in different orders can lead to different results. Nevertheless, Gelman,
Meck and Herking (Gelman et al 1986) replied by saying that in Baroody’s
experiment, children gave two different results because they considered the ques-
tion of the researcher (e.g. “if we change the order, which result do we get?”) as an
indicator of the fact that their first answer (the result of counting) was wrong.

Another principle identified by Gelman and colleagues that was harshly com-
mented and criticised is the cardinal principle. According to Fuson and Hall (1983),
the fact that in Gelman’s experiment children repeated the last number name used
and understood the eventual mistake made by the puppet was due to simple imi-
tation. Fuson and Hall carried out an experiment in which they asked children to
count the items in a set and then asked them “how many items are there?”. Their
study showed that children did not answer with a number name, but they rather
started counting again. Furthermore, their answers were different if the question was
related to a specific class of items (“how many flowers are there?”) and they did not
spontaneously count the items when they had to provide a precise answer.
Nevertheless, other experiments carried out by different researchers did not come to
the same outcomes.

Finally, as far as the abstraction principle is concerned, several experiments
showed that children can count the animate or inanimate items of a heterogeneous
set already at an early age (Fuson, Pergament and Lyons 1985; Gelman and Tucker
1975), even in the case of actions or sounds (Wynn 1990). These experiments
showed that children own an abstraction principle, despite the fact that Shipley and
Shepperson contested this conclusion (Shipley and Shepperson 1990). The two
researchers tried to prove that counting performance depended on the physical
features of items. For example, children often encountered difficulties when
counting different types of items or different colours in the same set. Nevertheless,
the complexity level of counting required by these experiments seemed to go well
beyond the simple act of counting: as a matter of fact, counting the items belonging
to a category requires a higher level of abstraction (e.g. being able to distinguish
categories and rank items in different categories) compared to the simple act of
counting items.

Therefore, one question remains unanswered: how can children initially
endowed with a non-verbal system of quantity representation eventually acquire the
concept of integer numbers? Susan Carey (2001) tried to answer this important
question by developing a theory called “bootstrapping”.
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5.2.1 The Theory of Bootstrapping

The theory of bootstrapping developed by American psychologist Susan Carey
suggests a new stance on cognitive development that has the potential of over-
coming the constraints found in Piaget’s theory.

The first part of this book explained how Piaget’s multi-stage theory postulated
the existence of broad and pervasive cognitive structures that allowed the subject to
process different contents (i.e. “generics for domains”), hence leading to a cate-
gorisation of children based on their development stages. Nevertheless, after a long
series of experiments carried out both by development psychologists and experts of
numerical cognition (cfr. Dehaene 2011), it was concluded that reasoning abilities
and skills in children are subject to a higher level of variability and heterogeneity
than what was envisaged by Piaget’s theory.

Carey’s approach stands in direct opposition to Piaget’s idea that there are
general cognitive structures and general changes for each domain, while supporting
the idea of “domain-specific” cognitive structures and changes that deal with dif-
ferent contents. With her approach, the researcher shifts the focus from intellectual
operations—which are pivotal in Piaget’s theory—to the content of reasoning, i.e.
the concept and conceptual networks in which different types of knowledge are
framed (Carey 2009a).

A question arises: how do we learn concepts?
According to Susan Carey “Concepts are individuated on the basis of two kinds

of considerations: their reference to different entities in the world and their role in
distinct mental systems of inferential relations” (Carey 2004, p. 60).

There are indeed some concepts that are not instantly perceivable (e.g. scientific
notions such as quarks or microbes) and that can only be acquired through the
vehicle provided by language. Nevertheless, there are concepts that children master
even without specific training. For example, Carey cites an experiment carried out
by Hespos and Spelke in 2004 that provided data proving the existence of universal
concepts (Hespos and Spelke 2004).

The two authors focussed on the comparison of the English and Korean lan-
guages: in Korean, two different words are used to identify a short or a long contact
between items, whereas there is only one word for contact in English. Korean
children seem to effortlessly understand and use this distinction. Hespos and Spelke
proved that even 5-month-old babies are sensitive to the difference between short
and long contacts, even though they ignore the meaning of the words short and
long: after watching the researcher put two items together for a short time, babies
showed renewed interest when faced with items that were matched for a longer
time, and vice versa. Furthermore, the authors asked a group of English-speaking
adults to evaluate the similarity between the two types of contact: contrary to
babies, their earliest judgment was that there was no difference between them.
Nevertheless, after thinking about it, the English-speaking adults also noticed a
difference between short and long contacts: during interviews after the experiment,
a good number of them flagged the difference to the researchers.
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In this experiment, therefore, the effect of language is that of shifting the sub-
ject’s attention to the aspects linked to the environment, rather than other aspects.
The existence of a similar mechanism was also postulated by the psycholinguist
Asifa Majid and colleagues (Majid et al. 2004). In a paper published in 2004, the
authors described different mechanisms that could account for the learning process
of new concepts that went beyond non-verbal representations. The first mechanism
is shown by the ability to learn new words, which rearranges conceptual categories.
For example, when one acquires specific knowledge in a specific field, the concepts
used become structured, easier to process, and easier to predict. In maths, concepts
that are simple and similar are often grouped together under the umbrella of a
higher abstract concept: in this way, the concept of group can be applied to various
objects, integers, matrixes, or sets of functions.

The second mechanism is linked to the detection of correspondences by children
or adults. When learning new words, children notice that different concepts are
grouped under the same word, a phenomenon that allows them to compare different
situations and detect new regular patterns. Through this mechanism, language shifts
the attention of the subject to the comparison of different situations, allowing for the
learning of high-level relationships between different concepts and going beyond
the scope of pre-existent concepts.

Carey’s theory of bootstrapping on number learning is related to a similar kind
of explanation mechanism. According to it, children are initially endowed with a
non-verbal system of quantity representation and, starting from it, they develop an
understanding of numbers and integers. By comparing their representation of small
quantities with the first words of the number list (one, two, three…), children learn
the principles upon which the list is built and apply them to all numbers in the list.
In so doing, they learn that each number in the list corresponds to a specific quantity
and that each quantity is created by taking the previous one and adding 1 to it.

Nevertheless, according to the theory, the total level of abstraction is higher than
the one described by Majid: as a matter of fact, children analyse the relationships
existing between nearby numerosities not because they share a name, but rather
because all names of numerosities belong to the same linguistic object (an ordered
list of number names). According to Carey, children in this stage develop the
concept of exact number that defines numerosities. In this way, the theory of
bootstrapping explains how concepts can be developed starting from the basic
language of rudimentary representations.

Following this reasoning, language plays an important role in numerical cog-
nition, because it links the different types of non-verbal representation of numbers.
Right after birth, children have two systems to represent numerosities, but none
perfectly matches integers. The first one is an approximative representation system
that allows them to understand big numerosities, despite the fact that they mix up
nearby numerosities such as 15 and 16. The second one is a system limited to small
numerosities that allows for an exact representation of 1, 2 and 3. At the age of one
year, children struggle to link these two systems and therefore, while they are able
to compare 2 to 3 and 4 to 8, they are not able to compare 2 to 4 (Xu 2003). In this
case, as in bootstrapping, language allows them to overcome the original non-verbal
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representations. The mere fact of mastering a language requires humans to develop
a substantial amount of cognitive resources that are beyond the reach of animals.
Without language, many strategies are simply impossible, such as all those
requiring a memory of verbal work and, in particular, memory related to numerical
cognition, counting, and mental computation tasks.

Three main theses stand at the basis of Susan Carey’s knowledge acquisition
theory, including the acquisition of number-related knowledge. The first one is
“discontinuity”, which postulates that children during their development learn new
concepts that change their ability to express themselves. As Jacob Beck
highlighted:

while many two year olds can recite a portion of the count list (‘‘One, two, three, …”), they
don’t seem to know what the words in the list mean. If asked for n pennies from a pile, or to
point to the card with n fish, they will respond with a random number of pennies or point to
a random card. Moreover, their failures consist of more than ignorance of language. […]
Carey concludes that two year olds lack the representational resources to think about the
integers. Four year olds, by contrast, have those resources; they succeed on the
point-to-a-card and give-me-n tasks. When children first memorize the count list, it serves
as a mere placeholder structure. It encodes serial order (‘‘three” comes after ‘‘two,” which
comes after ‘‘one”), but the nature of that order is not defined for the children. It’s as though
they were say- ing ‘‘eeny, meeny, miny, mo.” Nevertheless, Carey maintains that this
placeholder structure plays a crucial role in explaining how children acquire integer con-
cepts, and that similar placeholder structures play an essential role in other episodes of
concept learning. (Beck 2017, p. 111)

Placeholders play therefore a pivotal role in generating conceptual discontinu-
ities and represent the second basic thesis. According to Carey, without proper
cognitive structures for placeholders, it is impossible to develop new networks of
concepts. To support this idea, Carey provides the example of the populations
living in social environments without a wide numerical vocabulary, where the
development of new networks of concepts is impossible because they never become
cardinal-principle knowers (Carey 2009b).

The gaps of conceptual discontinuity are filled by the learning process of
bootstrapping (third thesis), which is fed by placeholders but has a wider scope
thanks to the influence of education and learning. Through the learning process of
bootstrapping, children learn numerical concepts such as “three”, “seven”, and
“ten”. Therefore, according to Carey:

children at this stage have learned to use their object file systems to place models stored in
long-term memory in one-to-one correspon- dence with objects in the world, and to
associate such states of one-to-one correspondence with the first four number words. So
they know that there is ‘‘one” object when the object is in one-to-one correspondence with a
model of a sin- gleton in long-term memory {i}; that there are ‘‘two” objects when the
objects are in one-to-one correspondence with a model of a pair of individuals in long-term
memory {j, k}; and so on, up to four (the upper bound of the object file sys- tem). Carey
calls children at this stage ‘‘subset-knowers” and calls the system they use ‘‘enriched
parallel individuation.” Finally, by three-and-a-half or four years of age, children assign
meanings to the remainder of the terms in their count list. (Beck 2017, p. 111)
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Nevertheless, this model has its detractors. One of the first researchers to criticise
bootstrapping was Jerry Fodor, who repeatedly voiced his concern about the pos-
sibility that Carey’s theory did not in fact explain how individuals improved their
abilities to express themselves (cfr. Fodor 2008). Fodor contended that the strongest
limitation of the bootstrapping theory lies in the “circularity” of this model. For
example, according to Fodor, postulating that placeholders are vehicles for learning
new contents also means postulating that children already have concepts with those
exact contents. It is obvious that a conceptual domain (target domain) can be
enriched starting from a familiar domain (source domain), but by doing so it is
necessary to postulate that individuals already possess the concepts of a familiar
domain.

For example, the concept of “electric wires” could be understood starting from
the familiar domain “hydraulic system”, but only on the condition that we have the
conceptual resources to specify the properties of hydraulic systems. Fodor believes
that Carey’s theory features this kind of circular loop, which is also visible in her
explanation of how children learn the list of natural numbers. Fodor’s claim can be
understood even better in an example provided by Rey (2014), who focussed on the
role played by the concept of “successor” in the boostrapping theory. Carey writes
that it: “supports the induction that any two successive numerals will refer to sets
such that the numeral further along the list picks out a set that is one greater than
that earlier in the list” (Carey 2009a, p. 477). Nevertheless, Rey contends that: “But
here ‘is one greater than’ expresses the very concept of SUCCESSOR whose
acquisition Carey is trying to explain. In the first place, one can ask how this
concept even occurs to the child.” (Rey 2014, p. 117).

In general, Rey believes that the child must already have the concept
SUCCESSOR to entertain the analogy that he takes Carey to credit with generating
that concept.

Rey criticised the bootstrapping theory also from another angle, related to the
way in which children interpret placeholders. In Carey’s theory, children always
interpret them in a natural and correct fashion. But why should they? Could chil-
dren not interpret placeholders unnaturally or improperly?

Similar arguments were formulated by psychologist Lance J. Rips and col-
leagues, who criticised the bootstrapping theory in a work published in 2008 (Rips
et al. 2008) stating that:

“This idea (one word forward [in the count list] equals one more individual) captures the
successor principle.” Notice, though, that Principle (3) depends on the concept of the next
count word, which we have referred to as “s(n),” for any count term “n” (if “n” is “five,” “s
(n)” is “six”; if “n” is “ninety,” “s(n)” is “ninety-one”; etc.). For these purposes, simple
counting won’t do as a guide to “s(n),” as simple counting uses a finite list of elements. For
example, if a child’s count list stops at “nine,” then Principle (3) can extend the
numeral-cardinality connection through nine. In order to capture all the natural numbers,
however, Principle (3) requires advanced counting: an appreciation of the full numeral
system. But at this point the trouble with the counting hypothesis comes clearly into view,
for at the point at which children are supposed to infer Principle (3)—at a little over 4 years
of age—they have not yet mas- tered advanced counting. There is nothing that determines

100 5 Possible Explanations



for such a number learner which function or sequence specifies the natural number words
(i.e., the function that appears as “s(n)” in Principle [3]). (Rips et al. 2008, pp. 631–632)

Further on:

Suppose, for example, that the count system that the child is learning is not one for the
natural numbers but, instead, for arithmetic modulo 10, so that adding 1 to 0 produces 1,…,
and adding 1 to 8 produces 9, but adding 1 to 9 produces 0, and so on in a cyclical pattern.
In this case, Principle (3) is still a valid generalization of (2) if we interpret “s(n)” as the
next numeral in the modular cycle, but then what has been learned is not the natural
numbers. The generalization in (3) can seduce you if you think of the child as interpreting it
(after a year of struggle) as “Aha, I finally get it! The next number in the count sequence
denotes the size of sets that have one more thing.” But “next number in the count sequence”
isn’t an innocent expression since the issue is, in part, how children figure out from (2) that
the next number is given by the successor function for the numerals corresponding to the
natural numbers and not to a different sequence (e.g., the numbers mod 10 or mod 38 or
mod 983). (Rips et al. 2008, p. 632)

These extracts show that Rips and colleagues hastily combine the two problems
highlighted by Fodor and Rey (circularity and interpretation deviation). Generally
speaking, these are two separated issues. In the case of interpretation deviation, it is
important to understand why, when children say “seven”, they are able to confirm
their hypothesis and not the competing ones. In the case of circularity, instead, the
core of the issue relates to why, when children say “seven”, they refer exactly to
seven as an entity.

In any case, the bootstrapping theory does not provide an answer to any of these
points. The overall conclusion from the critics moved against Susan Carey’s theory
is that mathematics is not a domain as any other and, therefore, that it is necessary
to develop a theory to explain the transition from knowledge of the object domain
to the mathematical domain. According to the American philosopher George
Lakoff, this task is performed by “conceptual metaphors”, cognitive mechanisms
that allow individuals to reason on a set of objects as if they were other objects. In
this way, metaphors are not figures of speech, but real reasoning mechanisms. As
Lakoff and Núñez write:

“conceptual metaphor” has a technical meaning: It is a grounded, inference-preserving
cross-domain mapping-a neural mechanism that allows us to use the inferential structure of
one conceptual domain (say, geometry) to reason about another (say, arithmetic). Such
conceptual metaphors allow us to apply what we know about one branch of mathematics in
order to reason about another branch. (Lakoff and Núñez 2000, p. 6)

Before analysing the way in which Lakoff and Rafael Núñez channelled their
ideas in a research paradigm on mathematical concepts through the use of the
technical concept of “conceptual metaphor”, it is useful and almost necessary to
provide an overview of the works carried out by Lakoff in the field of cognitive
semantics, the domain were the term “conceptual metaphor” was coined.
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5.3 Concepts and Cognitive Semantics

Cognitive psychologists have always considered concepts as “reservoirs” where
objects sharing common traits or features are stored, but they also have always
wondered how humans are able to identify a “common element” in a heterogeneous
group of items. Jerome Bruner (1968) postulated that a concept comes to life when
two or more objects or events are grouped or ranked together; these items are then
distinguished from the others on the basis of some trait or feature. According to
Bruner, concepts depend basically on categorisation activities, i.e. finding simi-
larities in things that may be perceived as different and grouping them in object
classes.

The earliest lab studies on the issue assumed the existence of “perception
transparency”, which suggests that perception directly detects the common traits of
different stimuli. Nevertheless, the hypothesis that concepts simply derive from
perceivable stimuli was rejected by Ludwig Wittgenstein (1953), who made the
example of the word “game”, which includes activities and materials that are
extremely different, making it difficult to identify perceivable common traits.

Rejecting the idea that concepts are merely lists of characteristics, Eleanor Rosch
(1975) put forward the “prototype theory”, which postulates that the meaning given
to a huge number of words at a cognitive level could be linked to a prototype, i.e.
the representation of an archetype. For example, the prototype associated to the
word “bird” could be a sparrow rather than a bat, the prototype associated to “tree”
could be an oak rather than a palm (even though things would be different for
someone born on a tropical island). It takes less time to verify whether a sparrow is
a bird than verifying whether a duck is a bird.

In their endeavour to reject the idea that the meanings of linguistic items cor-
respond to independent entities, cognitive psychologists try to describe meanings as
cognitive contents. In this way, the study of meanings is embedded in the study of
the mental processes that build these contents. The classic division made by tra-
ditional linguistics—based on necessary and sufficient conditions—is therefore
completely replaced by the use of cognitive structures (conceptual and perceptive)
such as prototypes, domains, frames, and—in particular—conceptual metaphors.

The concept of domain was thoroughly studied by Langacker (1987), who
focussed in particular on the meaning of the word “Monday”. According to the
author, “Monday” can be explained only in the wider context of “week” (someone
who is not familiar with the concept of a “7-day week” would not understand
“Monday”). Furthermore, the concept of week can only be understood in the
framework of a recurring cycle of day and night. Langacker defines “7-day week”
as the semantic domain that allows for the understanding of the term “Monday”,
while the “day-night” cycle is the semantic domain used to understand “week”.

The rule that applies to lexical terms also applies to morphological and syn-
tactical categories: they as well can be understood in relationship to relevant
domains (e.g. the domain to understand the past tense in grammar is time). Time,
the tridimensional space and other sensory experiences (e.g. temperature, colour,
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taste, and tone) are defined by the author as basic domains, concepts that cannot be
broken into simpler cognitive structures. Some linguistic labels can simultaneously
belong to several different domains; “golf balls”, for example, gives an idea in terms
of shape, but also of its colour, size, material, etc. Furthermore, there are primary
and secondary domains: salt, in its domestic connotation, is associated primarily to
food, while only secondarily to the chemical compound. On the other hand, sodium
chloride (which refers to the same element) is associated primarily to the chemical
compound.

George Lakoff (1987) provided a more complex example of a term that refers
simultaneously to several domains: the word “mother”. According to the author, the
term covers five domains, namely:

(1) the genetic domain: a mother is a female who gives her genetic material to a
child;

(2) the birth domain: a mother is a female who gives birth to a child;
(3) the nurturance domain: a mother is a female who nurtures a child;
(4) the genealogical domain: a mother is the closest female ancestor to a child;
(5) the marital domain: a mother is the wife of the father.

By comparing these domains to their homologues for “father”:

(1) the genetic domain: a father is a male who gives his genetic material to a child;
(2) the responsibility domain: a father is responsible for the financial wealth of a

child (and mother);
(3) the authority domain: a father is responsible for the good behaviour of a child;
(4) the genealogical domain: a father is the closest male ancestor to a child;
(5) the marital domain: a father is the husband of a mother of a child.

Through this comparison, Lakoff comes to the conclusion that the meaning of
father does not differ to that of mother just because of the gender trait, but that these
terms are only comparable in few limited domains (genetic, genealogical, and
marital), while the others only exist in the concept of father (authority and
responsibility).

Nevertheless, Langacker himself highlights that his concept of domain largely
overlaps with what other researchers have defined as frame, script, scheme, and
model. The language used is often confusing, because different authors use different
terms to refer to the same concept, while sometimes the same author changes the
term in different papers. For example, the concept of frame is often associated to a
knowledge network that links multiple domains, while on the other hand script is
mostly used to refer to the temporal sequencing and the causal relations that link
events and states in certain action frames. Charles Fillmore (1985) had the merit of
introducing frames in the debate on cognitive semantics, providing examples of a
phenomenon in which words cannot be individually defined, but rather find
meaning in correlated sematic fields. The starting assumption of Fillmore was that
specific terms, expressions, and grammatical choices are associated to specific
frames in our memory and, therefore, the presence of a linguistic structure in an
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appropriate context triggers a specific frame in the mind of the recipient, giving
access to new linguistic material associated to the same frame.

Let us dig into the concept of frame by taking into consideration Lakoff’s
reasoning on the word “mother”. The five domains that specify the word are not a
random set of domains, but rather a structured set, a frame related to the word
mother. According to this frame, a mother is a female that has sexual intercourse
with a father, falls pregnant, gives birth, devotes time to raising a child, and remains
married with the father of her child. Clearly, this description reflects only a highly
idealised of the concept, since it does not take into account the numerous deviations
from this model (e.g. divorce, separation from bed and board, adopted children,
single mothers, etc.). In conclusion, frames structure our social and conceptual life.
They represent cognitive processes that define words without a clear correspon-
dence to reality. The meaning of “Monday” could not be explained by a theory that
combines, for example, the symbol of this word with an entity of reality that
represents its content. According to Fillmore, the existence of “Monday” is there-
fore neither objective nor subjective, but it rather belongs to the reality order
defined by the creative ability that all humans share because of their basic
structures.

From this perspective, it is clear that the difference between logical theories and
the cognitive approach lies in their study object: while logics tackles the relation-
ships between language and reality, cognitive science aims at assessing the mental
models that cognitive agents develop after being exposed to specific stimuli, such as
linguistic inputs. From the point of view of cognitive science, conceptualisation and
—generally speaking—the production and understanding of even the simplest
utterance are characterised by the central role of creative processes (prototypes,
schemes, scripts, frames, metaphors, etc.). This is due to the fact that our thought
mainly works unconsciously, swiftly, and automatically.

Since the majority of knowledge is “hidden”, the biggest challenge is to bring it
to the surface. According to George Lakoff and Mark Johnson (1980; 1999), the
most successful methodology in doing so lays in the use of conceptual metaphors.
Human thought is developed starting from “images” that can be visual, auditory,
olfactive, gustative, tactile, kinaestathic, or organic, hence explaining why we often
use metaphors and figures of speech when we speak. They help us interpret the
inputs coming from the outside world: metaphors deal with imagination, because
they are “neural connections made through the co-triggering” of two domains, one
belonging to the cerebral areas devoted to the processing of sensomotoric experi-
ences, the other belonging to the cerebral areas that process the subjective expe-
rience. Conceptualisation kicks off from these universal metaphors (called “primary
metaphors”), leading to the more or less conscious processing of different meta-
phors (e.g. time is conceptualised through the guiding metaphor that the past is
“behind us”, the present is “on us”, and the future is “ahead of us”).

The linguistic “exploitation” of metaphors is only the tip of a massive functional
iceberg, where sensory processes and cognitive functions are less divided and
independent in their latest stages than what was previously thought. It is not by
chance that metaphors—because of their nature of bridge-builders between
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subjective experience and thought—are the linguistic and conceptual vehicles that
best convey this complexity compared to other linguistic phenomena.

Some authors even say that metaphors should be treated as something not only
pertaining to the study scope of linguistics.

The American philosopher John Searle (1979) is of this opinion. When dwelling
about the meaning of sentences such as “Sally is a block of ice”, he said that—if
analysed word by word—the sentence was semantically peculiar, since an inani-
mate item such as ice could not have been predicted from an animate entity such as
Sally. The sentence is acceptable only on the condition that the listener/reader goes
beyond the literally meaning of words, understanding the metaphoric meaning of
the sentence. To do so, listeners/readers must combine their linguistic skills with
pragmatic skills. Searle made a distinction between semantic and pragmatic tasks:
the former ones deal with literal and purely linguistic meaning, the latter ones deal
with the context and the meaning that the sender wishes to convey. Hence,
according to Searle’s interpretation, understanding metaphoric sentences requires
three stages: recognising that the literal meaning (expressed meaning) of the word is
insufficient, rejecting this meaning, and looking for a new and different meaning
(the intended meaning that makes the sentence meaningful).

David Edward Cooper (1986) strongly criticised Searle’s approach by pointing
to at least four issues that should be clarified. First of all, the supposed deviance of
metaphors implied that all speakers of a certain language could “dismantle” the
metaphor in all metaphoric expressions, restoring its full grammatical meaning.
Nevertheless, replacing a metaphoric expression with an equivalent that is not a
metaphor is often hard or even impossible. Secondly, it is highly counter-intuitive
to claim that metaphors, a widely spread linguistic mechanism, can be explained as
an exception to the rule. Furthermore, the wide dissemination of metaphors goes
against the deviance hypothesis: as an endemic trend, metaphors would become the
rule, not the exception. Finally, there is the issue of bona fide communicators
intentionally producing grammarly deviant sentences only because of the wish of
having recipients mobilising all sorts of interpretation abilities to understand their
intended meaning.

Since the publishing of Metaphors we live by (Lakoff and Johnson 1980) and the
development of a cognitive approach to metaphors, metaphors have not been
considered as a violation of linguistic rules. The new model postulated that meta-
phors were a vehicle that made possible the conceptual representation of the more
abstract areas of experience by expressing them in concrete and familiar terms. In
other words, metaphors give substance to conceptual knowledge by transferring
knowledge from a known and concrete domain to an unknown and abstract one.
The theory that Lakoff gradually built in partnership with philosopher Mark
Johnson (Lakoff and Johnson 1980, 1987) postulates that metaphors surround us in
our dailylifes not only through language, their main vehicle, but especially through
our thoughts and actions. Let us take the sentence “our relationship has hit a
dead-end street”: in this sentence, love is seen as a journey and the relationship has
reached a dead point, the two lovers cannot follow the street they wanted to explore
and therefore have to choose whether it is better to go back or break the relationship
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in mutual agreement. This principle allows us to understand the conceptual domain
of love by using the terms of a journey: the metaphor uses the understanding of a
domain of experience (journey) to understand a more abstract domain (love). This is
not a grammatical principle and it cannot be found in a vocabulary, but it is rather
linked to the conceptual system underlying language.

From a technical perspective, metaphors can be defined as maps that connect a
source domain to a target domain. This map is made of ontological correspondences
that semantically connect entities in the source domain (in the case of love: lovers,
their scopes, and struggles) to entities in the target domain (in the case of journey:
travellers, vehicles, destinations, etc.). This map is therefore a collection of
one-to-one relationships.

Maps are usually expressed with a propositional structure, for example “love is a
journey”, but they are not clauses. Confusing maps with their structures means
falling into the trap of thinking that—according to this theory—metaphors are
clauses: they are not, they are simple maps, collections of conceptual correspon-
dences. Other examples of concepts directly shaped from experience and providing
source domains to conceptual metaphors are the concepts of “object”, “substance”
and “container” (an example of the container metaphor is “the ship is coming into
view”) (Lakoff e Johnson 1980).

Lakoff and Johnson (1999) state that our conceptual system evokes a “container
structure” on a variety of concepts that have nothing to do with containers. This
happens because there are several concepts linked to experience—such as con-
tainers—that have such a clear and easily understandable structure that can be used
to understand concepts that are less clear and intuitive. Sentences such as “to be in”,
“to live in a society”, “to be there in 5 min”, “to be in heat” are examples of
metaphors linked to containers (time or emotional statuses are containers).

The most commonly used metaphors in the domain of emotions are related to
emotions expressed as fluids in containers (Lakoff and Johnson 1980). In any
container, the content cannot grow infinitely: there is a limit that once reached
implies a change. In metaphors, the stronger the emotion, the bigger the volume of
the container. There are metaphors linked to the idea of an elastic container that
changes its physical status under pressure (“filled with pride”, “filled with anger”,
etc.). The idea of getting filled suits emotions such as anger or pride, perhaps
because the perceivable behaviour of the subject involved offers a strong experi-
ence. At the same time, this idea is also linked to bursts of anger and pride: even a
flexible container has a limit and, when reached, it bursts open, often damaging
itself.

There are other metaphors that relate to the possibility that containers are full
and, therefore, overflow: “to be overwhelmed with love”, “to shower somebody
with love”, “to be filled with joy”. These expressions are often used to express
affection, love, joy, which has indeed its specific version in the general metaphor
“emotions as fluids in containers”. In fact, joy is not expressed in terms of tem-
perature (as is often the case for strong emotions), but rather in terms of movement
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of the fluid, using words such as “sparkling”, “bubbling”, which relate to something
more dynamic (e.g. “to be always so happy and sparkling”).

Other metaphors focus on the qualitative feature of what containers hold,
stressing its purity. These metaphors relate to positive emotions and often contain
adjectives that emphasize their positivity: “my feelings are pure”. Joy is described
using terms linked to a container by referring to the fact that the quantity of the
liquid is very high and the container is full, overflowing, almost bursting. This fact
leads humans to believe that joy is not common—our hearts cannot always be filled
with joy—which makes the container metaphor an expression that highlights the
uniqueness of this fact.

Thanks to Lakoff and Johnson’s studies, metaphors become vehicles that make
possible to provide a meaning and understand the world through language, giving
humans a tool to organise their day-to-day conceptual reality.

5.3.1 Conceptual Metaphors and Mathematics

Among daily conceptual activities, there are also those related to quantity and—
generally speaking—ideas such as “basic spatial relations, groupings, small quan-
tities, motion, distributions of things in space, changes, bodily orientations, basic
manipulations of objects (e.g., rotating and stretching), iterated actions, and so on.”
(Lakoff and Núñez 2000, p. 28).

For this reason, the book “Where Mathematics Comes From. How the Embodied
Mind Brings Mathematics Into Being” (Lakoff and Núñez 2000) by Lakoff and
Rafael Núñez, an expert in the teaching of mathematics, tried to apply the per-
spective given by conceptual metaphors to the domain of mathematics.

The authors contend that what makes mathematics a non-arbitrary discipline
despite the fact of being created by humans—or more specifically, by their brains—
is that it “uses the basic conceptual mechanisms of the embodied human mind as it
has evolved in the real world” (Lakoff and Núñez 2000, p. 9).

The embodied paradigm—which lays the foundations of so-called second gen-
eration cognitive sciences—represents a radical change compared to first generation
cognitive sciences, because it does not see the human mind as a mere processor of
symbols (computationalism). By applying this new paradigm, the studies on cog-
nition and learning moved from a perspective focussed on the abstract aspects of
thought, which were governed by formal rules and were independent of cultural
factors, to a perspective where the mind is rooted in the body, decentralised,
action-oriented, holistic, culture-depended, deeply connected to biological princi-
ples. The guiding principle is that smart behaviour is an expression of biological
bodies that act in their material and cultural environment, becoming drivers of its
change (the key words of this new paradigm are “located”, “diffused”, “social”, and
“embodied”, cfr. Hutchins 1996; Lave 1988; Varela et al. 1992).

According to the authors, by applying the embodied paradigm to mathematics, it
is possible for the first time in history to account for the beauty and depth of
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mathematics, whereas previously the majority of the cognitive structures of math-
ematics were simply unknown. As they underline several times in their book:

it is only with these recent advances in cognitive science that a deep and grounded
mathematical idea analysis becomes possible. Insights of the sort we will be giving
throughout this book were not even imaginable in the days of the old cognitive science of
the disembodied mind, developed in the 1960s and early 1970s. In those days, thought was
taken to be the manipulation of purely abstract symbols and all concepts were seen as
literal-free of all biological constraints and of discoveries about the brain. Thought, then,
was taken by many to be a form of symbolic logic (Lakoff and Núñez 2000, p. 5).

Lakoff and Núñez share the same starting assumptions of Dehaene in his
Number Sense, i.e. the existence of an inborn-approximative form of mathematics
in humans (and animals) that allow for subitizing numerosities under 4.
Nevertheless, in Lakoff and Núñez, subitizing does not exhaust the arithmetical
abilities of humans, who use counting to go beyond subitizing and achieve a certain
degree of accuracy and reliability in their activities. Counting involves the fol-
lowing cognitive capacities:

(a) Grouping capacity.
(b) Ordering capacity.
(c) Pairing capacity.
(d) Memory capacity.
(e) Exhaustion-detection capacity.
(f) Cardinal-number assignment.
(g) Independent-order capacity.

Furthermore, the following skills are needed to count beyond 4:

(h) Combinatorial-grouping capacity.
(i) Symbolising capacity.

On the other hand, going beyond counting implies a conceptualisation ability
that requires a much wider skill set and shares some traits with other conceptual-
isation tasks, such as the development of conceptual metaphors and the ability to
make metaphorical blends. These skills allow to break the limits of subitizing and
counting, leading to the understanding of arithmetic with natural numbers. It should
nonetheless be noted that there are two types of conceptual metaphors that humans
employ to venture in the domain of mathematical concepts: grounding metaphors
and linking metaphors. The former are metaphors that allow humans to transpose
daily experiences (e.g. putting the batteries in an object) into abstract concepts such
as addition. The latter, instead, are metaphors that allow humans to link arithmetic
tasks to other fields of mathematics. In the words of the authors (Lakoff and Núñez
2000, p. 53):

(1) Grounding metaphors yield basic, directly grounded ideas. Examples: addition as
adding objects to a collection, subtraction as taking objects away from a collection, sets
as containers, members of a set as objects in a container. These usually require little
instruction.
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(2) Linking metaphors yield sophisticated ideas, sometimes called abstract Examples:
numbers as points on a line, geometrical figures as algebraic equations, operations on
classes as algebraic operations. These require a significant amount of explicit
instruction.

One of the main ways in which conceptual metaphors play their pivotal role is
by maintaining an image schema structure. Image schemas are topology-based and
guiding structures that define spatial inferences. They are regular, dynamic, and
repeat action patterns that order sequences, perceptions, and concepts. They derive
from the physical experience of movement, object handling, and perceptive inter-
actions (nota bene, perception should not be intended as the passive detection of
experiences, but rather as an active process, including building, modelling, and
ordering items). Among the image schemas available in mathematics, a major role
is played by “container” schemas, which are based on the following inferential
laws: the law of excluded middle, modus pones, modus tollens and hypothetical
syllogism. Other important image schemas in mathematics are “source-path-goal”,
“above”, “under”, “contact”, “support”. The authors postulate that several basic
mathematical concepts are built by combining these schemas.

By maintaining the image schema structure, grounding metaphors allow for the
conceptualisation of numbers as sets, providing yet another logic structure to the
broad concept of number. Grounding metaphors therefore enrich the notions of
inborn arithmetic, keeping at the same time its properties. There are four grounding
metaphors that are universal and do not depend on culture. These are:

(a) Arithmetic as object collection.

This metaphor goes from tangible objects (source domain) to numbers (target
domain) and allows humans to perform additions and subtractions. As detailed by
the authors, the metaphoric map is composed of the following elements (Lakoff and
Núñez 2000, p. 55):

(a) the source domain of object collection (based on our commonest experiences with
grouping objects),

(b) the target domain of arithmetic structured nonmetaphorically by subitizing and
counting); and

(c) a mapping across the domains (based on our experience subitizing and counting
objects in groups).

To perform multiplications and divisions, what is needed is a “metaphorical
blend”, a simultaneous activation of the metaphor and two domains (source and
target), because these are complex tasks from a cognitive perspective. When
humans perform these operations, they need to refer simultaneously both to num-
bers and object collections, for a repeated amount of times.

(b) Arithmetic as object construction.

This metaphor allows humans to understand fractions as parts of an object. As in
the previous case, through the metaphorical blend, the scope of this metaphor can
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be broadened in two ways: merging/dividing and performing repeated additions and
subtractions.

(c) Numbers are physical segments.

With this metaphor, natural numbers, the number zero and complex positive
fractions (rational numbers) are defined in terms of tangible segments. As specified
by the authors:

The oldest land still often used) method for designing buildings or physically laying out
dimensions on the ground is to use a measuring stick or string taken as a unit. These are
physical versions of what in geometry arc called line segments. We will refer to them as
“physical segments.” A distance can be measured by placing physical segments of unit
length end-to-end and counting them. In the simplest case, the physical segments are body
parts: fingers, hands, forearms, arms, feet, and so on. When we put physical segments
end-to-end, the result is another physical segment, which may be a real or envisioned
tracing of a line in space. (Lakoff and Núñez 2000, p. 68)

Through the “metaphorical blend”, the opposite procedure to the one previously
described is possible (having a segment corresponding to a number), in order to
create irrational numbers.

(d) Arithmetic as motion along a path.

This metaphor forces humans to imagine numbers as dynamic elements that go
from one point to another on a straight line. The starting point of the motion is
located on one extremity of the line; the destination point is on the other. This
metaphor is used by the authors to introduce negative numbers, the points placed on
the other side of the extremity where positive numbers are.

The four grounding metaphors are universal and they are naturally inferred from
experience. They widen the domain of inborn arithmetic, which can be subitized,
broadening the mathematical knowledge beyond natural numbers and venturing in
the domains of other numbers. Nevertheless, what is still unclear is how the creation
of these metaphors from random connections that get stabilised by repetition can
lead to something so universal and globally shared. In other words, while the role
played by metaphors in the creation of concepts may provide an interesting insight
into how new concepts are created, it is still unclear what drives humans to create
metaphors. A sound theory on concepts should meet the criteria highlighted by the
authors (realism, evidence convergence, generality), but it seems that these refer to
something that goes beyond the creation process of metaphors.

To conclude, also in this case (as Fodor flagged in Susan Carey’s theory) there is
a difficult “circularity” issue to address. Let us take the example of the “container”
image schema. The authors postulate that this schema includes (in the sense that no
deductive process is needed to come to a conclusion) logical expressions that can be
inferred from the following statements (Lakoff and Núñez 2000, p. 31):

1. Given two Container schemas A and B and an object X, if A is in B and X is in A, then
X is in B.
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2. Given two Container schemas A and B and an object Y, if A is in B and Y is outside of R,
then Y is outside of A.

These are self-evident statements that can be pictured as follows (Lakoff and
Núñez 2000, p. 32):

The authors postulated that humans conceptualise physical containers as cog-
nitive containers, i.e. subjects can see or use schemas through concrete objects.
Cognitive containers become similar to Venn diagrams (cfr. description of Fig. 2.1,
Lakoff and Núñez 2000), which are though concepts and mathematical techniques
belonging to the 19th century, developed well before cognitive containers. For this
reason, other authors (cfr. Lolli 2004) suspect that, in this case, the container
schema is not used to explain a mathematical concept, but rather the other way
around and, therefore, the container schema uses the mathematical concept of the
end of the 19th century to explain how the actual concept of container works.

The doubts become even stronger considering that metaphors introduce objects
in a target domain that, however, already exists and is well defined as a domain. For
example, the authors contend that metaphors are useful to understand and perform
tasks that are more difficult than the simple act of counting (they are used to
introduce the concept of number). Nevertheless, counting requires the under-
standing of the concept of number (cardinal and ordinal alike). The same goes for
the grounding metaphor “numbers as object collections”, where addition and other
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actual tasks in the source domain require arithmetic abilities (e.g. the representation
of a basis requires “the creation of subgroups”. But these can be created only
starting from a mathematical criterion).

The latter remark is highly interesting considering that Lakoff and Núñez estab-
lished that metaphorical structures are important because they allow humans to
understand the most obscure sides of mathematics thanks to the explanation of
abstract concepts through the use of much more concrete concepts. Nevertheless, in
the example mentioned above, the opposite seems to be true. It seems that concrete
concepts (containers) can be understood only starting from much more abstract
concepts (Venn diagrams). There are several other examples in mathematics and
physics where the abstract concepts allow humans to understand and better clarify
other concepts; just think of howmuch the concept of ideal gas helps in understanding
the concept of real gas. In fact, the same happens in Lakoff and Núñez’s book, when
they repeatedly employ the concept of “metaphorical blends”, a concept that is much
more abstract than the one of grounding metaphor (it is not by chance that it is never
specified whether they are “embodied” too, since they involve different domains and
overlap at several levels). The same goes even for the grounding metaphor “arith-
metic as object collection” and “classes as containers”; in both cases, the authors do
not specify how the target domains of “integers” and “classes” are established.

Summing up, despite several studies proving over the years that the core of
Lakoff and Núñez’s theory is not a mere abstract construction, but is rather based on
neurological and psychological evidence and, hence, that metaphors truly play a
paramount role in some understanding processes (cfr. Gibbs 2005; Dodge and
Lakoff 2005; Gallese and Lakoff 2005), the idea of “conceptual metaphor” was
strongly criticised, focussing in particular on the conceptual correspondence
between different domains and the processing of the elements in these domains (as
well as their level of specificity). According to several authors (cfr. Casadei 1999,
2003; Glucksberg and Keysar 1993; Ortony 1993; Sperber and Wilson 2006;
Wilson and Carston 2006), the main limitation of conceptual metaphors is the
so-called “conceptual reductionism” put forward by Lakoff, consisting in ignoring
the role of language in the conceptualisation processes related to the processing and
structuring of the “process of thought”, while focussing only on the issues related to
mental metaphors.

The different critics of the theory share the concern that understanding what
conceptualising through metaphors means is important, because if conceptualising
means “creating concepts”, then assessing the theoretical reasoning related to this
knowledge-building mechanism is also important. It goes indeed without saying
that humans have only one tool at their disposal to transcend the limits of their
knowledge and understand what it is still unknown to them: use what they know.
From this perspective, metaphors are important because they describe the reality we
are about to discover by using what we already know. Nevertheless, it is logical that
metaphors do not completely deplete the toolbox at our disposal when we wish to
learn something new. For example, equally efficient techniques are induction,
hybridisation, analogy, metonymy, abduction, etc. This is especially true for
mathematical concepts (cfr. Cellucci 2013), where the content available up to a
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certain moment and ready to be used and applied to what is still unknown can easily
have nothing to do with metaphors.

Lakoff and Núñez couple conceptual metaphors (universal) with other
knowledge-building mechanisms (cultural), which—once combined—allow for the
modelling of some aspects of reality. The authors’ aim is to recognise the potential
of language and culture to provide non-universal metaphors that provide inputs to
explain the stability of mathematics. The use of these cultural metaphors explains
the non-monolithic structure and organisation of mathematics in its disciplines,
which can keep an internal coherence despite being opposed one to the other.
Cultural metaphors of this kind are (Lakoff and Núñez 2000, p. 358):

1. The essence of a subject matter is to be given by a small set of axioms.
2. Mathematical reasoning is a form of mathematical calculation, which allows all

mathematical truths to be calculated using mathematical logic).
3. All respectable subject matters can and must have secure foundations on which

everything in the subject matter is built.

The mistake lies in interpreting literally what is a simple cultural idea created
outside the mathematical domain and inside a specific cultural and historical
framework. According to the authors, this was the mistake made by all three
schools belonging to the so called “Movement for the Foundations of
Mathematics”, which uselessly strived to infer all mathematical truths from the
axioms of logics. The disastrous consequence of all this was that:

The Foundations movement itself collapsed. None of these ideas has stood the test of time
within mathematics. All three have been found to be mathematically untenable. But they all
shaped the structure of mathematics itself not just how it was done but its very content. One
cannot even imagine contemporary mathematics without these ideas. (Lakoff and Núñez
2000, p. 358)

The foundational schools failed in their task because their ideas had nothing to
do with the structure of the universe. Their concepts were not “built into the brain
structure of all human beings, as basic numeration is. And they are not cognitive
universals. They are, rather, products of human culture and human history” (Lakoff
and Núñez 2000, p. 358).

An embodied mathematics based on conceptual metaphors is therefore the only
available solution to avoid the mistakes made by the foundationalists. It is the only
theory that avoids these mistakes because it is built on the cognitive mechanisms
that are at the basis of our knowledge. Nevertheless, as outlined in this paragraph,
conceptual metaphors cannot solve all problems and, above all, do not explain how
the cognitivist approach can overcome the limits that the two authors identified in
the foundationalist approach. This is the topic that we will address in the following
paragraph.
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5.4 Intuitionism and Cognitive Sciences

As previously stated, Lakoff and Núñez do not directly address the philosophical
question related to foundationalist schools, but they simply challenge their “abso-
lute” character, which aimed at inferring all mathematical truths from logic. Delving
into the details, the authors obviously recognise that their endeavour aims at finding
an answer to the question of the origins of mathematics, which has always been at
the centre of the interest and discussion of philosophers.

Nevertheless, their answer tries to reject the ideas of the “philosophical envi-
ronment” theory, by postulating that its “Romantic Conception of Mathematics”
should be replaced by embodied mathematics. Therefore, following Lakoff and
Núñez’s ideas to the letter, the approaches highlighted by foundationalist schools
during the previous century should be considered as completely inappropriate and
obsolete. Nevertheless, this is not the case. In fact, all approaches (formalism,
logicism, and intuitionism) are an inescapable point of reference when framing the
new studies on the philosophy of mathematics. Several authors contended that the
main issue of the philosophy of mathematics was and still is the “foundation of
mathematics”, meaning its “metaphysical, epistemic, and mathematical” founda-
tions (Shapiro 2004, p. 37). This may be the reason why some cognitive scientists
—and not only those more philosophy-oriented (e.g. Lakoff and Núñez)—joined
the debate on foundationalist approaches. The same goes for Stanislas Dehaene,
who directly challenged the foundational schools by taking the side of intuitionism.
In his words:

Among the available theories on the nature of mathematics, intuitionism seems to me to
provide the best account of the relations between arithmetic and the human brain. The
discoveries of the last few years in the psychology of arithmetic have brought new argu-
ments to support the intuitionist view that neither Kant nor Poincaré could have known.
These empirical results tend to confirm Poincaré’s postulate that number belongs to the
“natural objects of thought,” the innate categories according to which we apprehend the
world.” (Dehaene 2011, pp. 226–27).

Taking into account the studies that confirmed that children are born with
mechanisms allowing them to identify objects and extract numerosities from small
sets, and that animals as well have this “inborn” and language-independent number
sense, the French neuroscientists defines his research activity as a “Kantian research
agenda” that aims at understanding how the intuitions that are at the basis of
experience are possible, on which neuronal structures they are based, and how these
intuitions can be modified through education and learning (Dehaene and Brannon
2011). In the words of the author:

from grid cells to number neurons, the richness and variety of the mechanisms used by
animals and humans, including infants, to represent the dimensions of space, time and
number is bewildering and suggests evolutionary processes and neural mechanisms which
may universally give rise to Kantian intuitions (Dehaene and Brannon 2011, p. iX).

Following a huge number of studies, Dehaene contends to have enough argu-
ments to launch an ambitious reformulation of all the questions that traditionally
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were tackled in the field of the philosophy of mathematics, taking into account the
current debate in cognitive sciences and starting from a sound Kantian philo-
sophical basis (Graziano 2015).

Nevertheless, by doing so, he ends up making patent mistakes, such as taking
Kant’s “a priori knowledge” as “inborn knowledge”, which is present in subjects
since their birth and represents a “potential” ready to be developed on the condition
that suitable environmental conditions exist.

From this perspective, “inborn” is used as synonym for “immutable”, which
leads Dehaene in misunderstanding it for “a priori”. Differently to Kant’s “a priori”
knowledge, Dehaene’s inborn knowledge is not experience-independent. In fact, it
can be acquired by formulating hypotheses based on assumptions that can be
inferred from experience and the plausibility of these assumptions and conclusions
can be evaluated by comparing them to experience. Furthermore, this knowledge is
not immutable; future exceptions are possible, maybe due to very slow changes
governed by evolutionary laws. They are not even intrinsically necessary, but rather
contingent, since they could be (in)compatible with future data. Finally, they are not
certain, since there is no guarantee that in future there will not be counterexamples.

In addition to this, saying that knowledge is “a priori” in Kantian sense means
providing a logic statement and not a description. In other words, it does not mean
that knowledge is independently perceivable from a specific experience. It is not a
statement related to the functioning of reality. On the opposite, it suggests that
knowledge logically precedes the possibility that every experience is as it is. In
Kant, “a priori” is synonym for “transcendental” and deals with the possibility of an
experience, not its more or less detailed description.

Dehaene’s view on inborn knowledge differs both from Kant’s ideas and the
character of absolute perfection of mathematics as an absolutely certain a priori
knowledge. In a Kantian perspective, intuition is the only source of certain
knowledge-based mathematics, because this knowledge has not been processed
through conceptual mediation, it has not become a “judgment”. On the contrary,
Dehaene’s intuitive mathematics is not infallible, because it is not an absolutely
certain a priori knowledge. In fact, it has a narrower connotation, far from infallible,
and subject to the psychological laws such as the distance and size effects.

These considerations should clarify that Dehaene’s positions—which he con-
siders part of a “Kantian research agenda”—are quite different from Kant’s
philosophical ideas. Furthermore, they differ also from the ideas of another author
he often quotes in The Number Sense, i.e. Poincaré. Also Poincaré uses “intuition”
differently from Dehaene (Graziano 2013). As he writes:

We have then many kinds of intuition; first, the appeal to the senses and the imagination;
next, generalization by induction, copied, so to speak, from the procedures of the experi-
mental sciences; finally, we have the intuition of pure number, whence arose the second of
the axioms just enunciated, which is able to create the real mathematical reasoning.
(Poincaré 1907, p. 20)

According to Poincaré, only the intuition of pure numbers is certain, because
they are the statement of a property of intelligence. Therefore, when Dehaene states
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that he shares Poincaré’s intuitionism (comparing it to his early notion of subitiz-
ing), he does not consider that Poincaré uses it as a demonstration tool and not only
as a number generator. As a matter of fact, despite starting from an intuitionist
perspective, Poincaré philosophical stance includes without any doubts some for-
malisation elements.

Taking a look to Poincaré’s famous passage “Thus logic and intuition have each
their necessary role. Each is indispensable. Logic, which alone can give certainty, is
the instrument of demonstration; intuition is the instrument of invention” (Poincaré
1907, p. 23), it is possible to notice that it only summarises a very important
argument of his essay The value of science, in which he dwells upon the dialectic
existing between sensitive intuition and analytical procedures, which Poincaré calls
verifications and which are based on syllogism, replacement and nominal definition.
It was precisely because of these remarks that the positions of Poincaré were
defined as belonging to a kind of semi- or pre-intuitionism.

Because of the remarks on Poincaré’s concept of intuition, some authors put
forward the idea that Dehaene rather shares the starting assumption formulated by
the founder of intuitionist mathematics, i.e. Brouwer (Longo 2005). Dehaene seems
indeed to share the explicitly non-linguistic character of Brouwer’s mathematics, in
other words the belief that language does not play a role in building mathematical
concepts, because mathematics is based on a free and creative activity of humans
founded on the intuition of time. Brouwer contends that mathematics is a mental
construction based on the “Primordial Intuition”, which makes individuals aware of
the different components of time, i.e. two discrete entities, one present and one past.

In other words, when PI occurs, the consciousness retains two neighbouring
elements that are different but unified. The two elements are not identical, but they
do form a single unit that Brouwer calls “twoity”. It is worth noting that when
dealing with PI, individuals are affected by the action of consciousness, which is
described by Brouwer in different ways, not so much as an event but rather as a
phenomenon or a process. Primordial intuition can be endlessly repeated; it depends
only on the free will of the subject, thereby producing sequences of increasingly
complex mental objects simply as repetition of the primordial act. With a twoity, it
is possible to build a threeity; with a threeity it is possible to build another con-
struction, and so on. Therefore, according to Brouwer, all numbers—ordinal, nat-
ural and other—are constructions obtained from reiterations of PI: “This intuition of
two-oneness, this ur-intuition of mathematics, creates not only the numbers one and
two, but also all finite ordinal numbers” (Brouwer 1912, p. 12).

Therefore, according to Brouwer, the mental construction made by individuals
starting from the Primordial Intuition precedes the linguistic description.

This separation of the language of mathematics from mathematics is the subject
of the First Act Of Intuitionism:

Completely separating mathematics from mathematical language and hence from the
phenomena of language described by theoretical logic, recognizing that intuitionistic
mathematics is an essentially languageless activity of the mind having its origin in the
perception of a move of time. This perception of a move of time may be described as the
falling apart of a life moment into two distinct things, one of which gives way to the other,
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but is retained by memory. If the twoity thus born is divested of all quality, it passes into the
empty form of the common substratum of all twoities. And it is this common substratum,
this empty form, which is the basic intuition of mathematics. (Brouwer 1981, pp. 4–5)

Without going into the details of the role of language, it seems indeed true that
Dehaene provides neurophysiological evidence to Brouwer’s ideas, because he
gives experimental support to the fact that natural numbers are rooted in our brains
and mathematics can be performed without language.

Nevertheless, according to Dehaene, alinguisticity is at the basis of elementary
and approximative mathematics, which humans share with other animals. So,
despite both authors sharing the need for a non-language based mathematics, for
Brouwer it is something that deals with the whole mathematics, while for Dehaene
it deals only with approximative mathematics, hence accessible also to animals,
newborns, and all the people who do not have a wide vocabulary for numbers.
According to Brouwer, the concept of mathematics is much broader than
Dehaene’s, because it includes all mental construction processes, conscious and
unconscious, since Brouwers believes that all mental abilities are PI-based. In these
terms, it is easy to decouple Brouwer’s concept of pure mathematics—which
corresponds to Dehaene’s formal mathematics—from general mathematical abili-
ties, which are the equivalent of our general cognitive skills.

In Dehaene’s opinion, exact mathematics is symbolism, hence language, i.e.
everything that in Brouwer’s opinion should be avoided because it is strictly linked
to outward-looking activities. Contrary to Dehaene, Brouwer believes that language
does not ensure exact mathematics: according to him, mathematics, its truth and
accuracy are to be found in the mental act.

The two authors also have a different opinion on the role of space and body.
Dehaene strongly focusses on the bodily component of mathematical knowledge,
while Brouwer contended that the body only plays an ancillary role (he even
rejected its role in principle, starting from his mystical definition of pursue of
happiness). Dehaene supported the fundamental role played by the body because he
strongly trusted the data obtained in the study on non-Western populations that had
a very limited mathematical vocabulary (cfr. Chapter 2). It is therefore clear that an
intuitionist stance à la Brouwer strongly clashes with the second-generation
embodied cognitive sciences heralded by Dehaene. Generally speaking, it is easy to
say that Brouwer and Dehaene do not only have similarities, but rather strong
differences.

To conclude, it is possible to say that the repeated “philosophical blunders” of
Dehaene are due to the use of the term “intuition”, which plays an important role in
mathematics but is still a highly polysemic term that acquires different meanings
according to the context in which it is used (as it also happens with the term
“metaphorical”). For example, a clear distinction can be drawn between the concept
of intuition in mathematical praxis and the same concept in the building and
development of mathematics.

Among the different traditional meanings given to “intuition”, there is without
any doubt also the one related to an immediate, direct, and inferential
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mediation-free form of knowledge. This is the meaning that most attracts Dehaene,
which pushes him to say that even mathematicians in the first stages of their work
have claimed to possess a direct perception of mathematical relations. They say that
in their most creative moments, which some describe as “illuminations”, they do
not reason voluntarily, nor think in words, nor perform long formal calculations”
(Dehaene 2011, p. 136).

Nevertheless, it is well known that this approach to intuition had to face the
pitiless criticism of Dieudonné, who stated that:

the intuition of the whole is a great mystification, because no one I know has insight in the
true sense of intuition, that is, immediate knowledge of whole numbers greater than ten.
Consequently, to say that you have intuition of integers greater than ten is a big fraud”
(Dieudonné 1981, p. 23).

Dehaene seems to escape Dieudonné’s criticism because, while accepting the
idea that intuition is immediate, direct, non-linguistic knowledge, he compares this
concept of intuition to his idea of subitizing which, as we have seen, is only valid
for the first three positive integers and that after three proves to be fallible and
subject to the distance effect and size effect.

Some academics of the philosophy of mathematics share Dehaene’s position and
contend that intuition is basically fallible, even if it is at the basis of all reasoning
and therefore necessary from a cognitive point of view. Robert Hanna is an
example:

Ninth, intuition is fallible, which is to say that it is always possible for an intuition to be
wrong. Neither the authoritativeness of intuition nor its cognitive indispensability implies
that it cannot be mistaken. Unfortunately for creatures with minds like ours, it is built into
the cognitivist existential predicament (see Sect. 6.4) that the world might be otherwise
than I take it to be, no matter how intrinsically compelling the evidence for my belief is. It is
plausible to hold, given the authoritativeness of intuition together with its cognitive
indispensability, that an intuition that S provides reliable evidence for the intuiting subject’s
belief that necessarily S. But even assuming this, an intuition that S cannot provide an
epistemic guarantee that necessarily S. (Hanna 2006, p. 172)

Nevertheless, admitting the fallibility of intuition does not solve all problems; it
rather creates an additional issue compared to an infallible and immediate intuition.
If intuition is fallible, how can one know if intuition S is right or wrong? Intuition
does not provide an answer, because it is fallible, and hence only reasoning can
help. Nevertheless, if reasoning starts from a fallible form of intuition, how can one
know if this principle is right or wrong? Once again, a circularity issue arises and an
infinite loop is created.
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Chapter 6
Dual Process Theories for Calculus

Abstract The dual process theories are popular in many domains of psychology,
such as reasoning, decision making, social cognition, cognitive development,
clinical psychology, and cognitive neuroscience. In the last chapter, this theoretical
approach is applied, for the first time, to the studies on numerical cognition with the
aim of review the results brought about by psychological and neuroscientific studies
conducted on numerical cognition and laying the foundations of a new potential
philosophical explanation on mathematical knowledge.

Keywords Dual process theories � Maddy scientific naturalism
Liberal naturalism � Evolution

6.1 Biological Evolution and Cultural Evolution

The previous chapter outlined the reasons why it is fair to say that Dehaene and the
other cognitive scientists that tried to find a form of continuity between the natural
approximative system (system 1) and the exact cognitive system (system 2) failed
in their endeavour. Despite the fact that the discovery of an inborn, biologically
based, and animal-human shared form of mathematics might seem a convincing
argument from a neuroscientific point of view—even more so by taking into
consideration the cognitive architecture at its basis—this concept unfortunately
exclusively applies to the concept of “numerosity”, not to the concept of “number”.

The term numerosity refers to the mere perceptive evaluation of different sets of
items and the reasonable ability to compare them with bigger or smaller sets; in
other words it refers simply to non-symbolic cardinality. On the other hand, in
mathematics, numbers represent abstract entities with specific features (e.g. com-
pleteness for real numbers). Furthermore, they are represented by specific oral or
written symbols and they can be used for computation. According to their features,
they can be classified as natural, real, imaginary, negative, whole, rational, irra-
tional, complex, etc. While growing up, humans learn how to use numbers through
symbols in their various forms and in relation to other cognitive skills.
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The core of the issue is that in order to learn the concept of number, it is necessary
to have a word or symbol that refers to this concept. As it is widely known, in
philosophy, Aristotle was the first to present this thesis by suggesting that
we perceive numbers through the denial of the continuous [Ó d
aqihlo1 < airhamoleha > sη apo/arei sot rtmevot1] (DA, 425a 19). Franco Lo
Piparo, an Italian philosopher of language, rightly pointed out that the translation of
the term apo/ari1 with “denial” tempered the reference made by Aristotle to the
language-based nature of the negation of continuous. In the words of the author:

It should not be seen as the ‘elimination’ of something but as a linguistic act that states that
something is different: a ̓po ́uari1 comes from a ̓po ́uηli, which means ‘I say no’, ‘I say that
this is not that’. A number, because of its ‘multiplicity of units’, represents discontinuous
entities perceivable following a cognitive operation that, describing the units used to
identify them, differentiate them. A number therefore requires a linguistic negation act. (Lo
Piparo 2014, p. 186)

To clarify even more this concept, Lo Piparo presents also the difference made
by Aristotle between “unit” and “point”:

To highlight even more the linguistic ontology of a number, Aristotle stresses the impor-
tance of avoiding confusion between unit and point. While a unit is a result of a linguistic
operation (“the negation of continuity”), a point is a physical sign of a concrete act. “A
point and every division and whatever is indivisible in this way is made clear like a
privation” (De An., 430b 20–21). In other words: a point is the product of a subtraction
from a physically wellDefault—Interventionistdelimited entity. This does not necessarily
require a linguistic intervention. A point exists in the frame of a physical space, while a unit
exists merely at a cognitive-linguistic level. (Lo Piparo 2014, p. 187)

Therefore, following Lo Piparo’s reasoning (and his reference to Aristotle), units
are the linguistic operations needed to develop quantification abilities, which lay at
the basis of all other arithmetical concepts. It is hence through language that
humans learn how to label an infinite amount of numbers, use symbols and dis-
tinguish between quantities. Consequently, the structure of mathematics becomes
more abstract and refined. The establishment of an oral and written symbolic
system, the ability to label an infinite amount of different numbers and to process
continuous quantities as discrete, coupled with the possibility of inventing rules
useful for arithmetic computation, are all products of cultural evolution.

Cultural evolution is subject to a much faster development pace than biological
evolution, because it does not require cumulative genetic mutations selected
through the passage from one generation to the other. It exploits the individual
learning abilities allowed by the brains structure and the ability to convey knowl-
edge to others by using symbolic language.

Nevertheless, contrary to the cultural evolution of mathematics, the biological
evolution of our brains virtually halted after the emergence of the Homo Sapiens,
approximately 100,000 years ago. As a result, cultural objects such as words and
numbers are nowadays processed by biological systems originally designed for
other tasks. This is the reason why humans are so inclined to approximation and
struggle so much in learning the multiplication table by heart or computation with
fractions. It is as if our brains refused to yield to these objects that go “against

124 6 Dual Process Theories for Calculus



nature”. This is also the reason why the mathematical objects that have a structure
that suits our brains architecture seem so intuitive and easily recognisable (Dehaene
2011).

According to this perspective, humans are genetically much more similar to their
closest relatives, primates, and therefore their sharing a good number of the basic
cognitive tools at their disposal does not come as a surprise. Nevertheless, besides
these common tools, humans own a wide network of complex cognitive skills that
are unique and include symbolic communication, advanced reasoning abilities, or
the ability to develop technologic tools and use them.

However, it would be a mistake to oppose cultural evolution and biological
evolution, since the former is an enhancement and development of the latter. This is
due to the fact that for the majority of their evolutionary history, humans have had
to face problems similar to those of other creatures and they have had to struggle to
survive and adapt to the surrounding environment as much all the other creatures.
Later, thanks to cultural evolution, the situation changed, allowing individuals to
invest less energy into the mere task of surviving. Nevertheless, in order to survive,
humans still had to control their environment and try to enhance it (Cellucci 2013).

According to this hypothesis that postulates the existence of a continuum
between cultural and biological evolution, in order to interpret cultural phenomena
it is necessary to refer to the bio-cognitive conditions at their basis. Following this
reasoning, interpretation models must be developed taking into account the
knowledge coming from different disciplines, hence creating a continuum of
knowledge, with biology on top of the list of the contributing disciplines. The
cultural nature that characterises humans has to be seen as the product of our natural
evolutionary history. In a nutshell: humans and human knowledge are just one
(rather big) part of nature.

It is worth highlighting that supporting the continuum hypothesis does not mean
saying that cultural evolution is a form of biological evolution. Despite the fact that
biological evolution shaped organisms in order to overcome similar struggles to
those that they had to face and overcome in an ancient past, the existing envi-
ronment forces individuals to face new challenges that they cannot always over-
come by using the tools provided by biological evolution, therefore exploiting the
powerful tools that only cultural evolution can offer. The continuum hypothesis that
postulates bio-cognitive constraints to cultural knowledge does not affect the con-
tent of knowledge. In the case of mathematics, humans have developed mathe-
matical skills that are not simply fit for the purposes of specific tasks (as it is the
case of non-human animals), but also more generic tasks.

Cultural and biological evolution are compatible, but do not overlap and,
therefore, in order to allow for an exchange between these two entities, it is nec-
essary to find a common ground, an intermediate level, which is provided by the
“mind”. Introducing the concept of mind in our discussion implies claiming that the
creation, transmission, and evolution of knowledge has to be explained through the
study of mental processes. We can understand the features characterising the Homo
Sapiens as a species—as well as the structural and functional differences that it
presents compared to other animal species—by describing the nature of our mind,
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as well as exploring the mechanisms underlying the cognitive processes that allow
us to perceive measurements and spatial, temporal, and numerical sizes, providing
us with the knowledge about the world that we need in order to act.

Nevertheless, we should be cautious as not to mix up the concept of mind and
the processes taking place in the “dark” of our heads; in other words our brains’
information processing architecture. Talking about the mind from this perspective
means dwelling upon all processes actually taking place in the body, including the
shape that the mind takes because of the influences of the social relationships that it
creates. Therefore, the question “What is the mind?” has to be tackled by answering
the question “How does the mind work?”, therefore starting from the identification
of all mechanisms that make up the mind and allow it to work.

6.2 Fast and Automatic Versus Slow and Reflective

Starting from the 1970s, several authors (cfr. Evans 2007; Johnson-Laird 2006;
Kahneman 2003; Kahneman and Frederick 2002; Sloman 1996; Stanovich 2004)
developed—each with his own perspective—different versions of a theory that
could be classified under the umbrella of the “dual process theory”, which postu-
lated a clear distinction between the cognitive processes that our mind performs
swiftly, automatically, and unconsciously, and those that on the other hand require a
slow, deliberative, and conscious processing.

Historically, the triggering observation of “dual process” theories was that a
series of psychological tests revealed a repeated clash between logical and
non-logical processes in the choice behaviour of test subjects tasked with a series of
deductive reasoning exercises (Evans 1977). The famous Wason’s test represents
the most known example of this kind of event (1966).

In its original form, this test required the participants to select the cards that
provided the right answer to an indicative or descriptive rule (which expressed a
relationship between two states) such as “if p then q” from a deck. The participants
were instructed to follow the rules of the test and were provided with four two-side
printed cards showing, on one side, the information about the presence/absence of
the first item (p or non—p), and on the other the information about the presence/
absence of a consequence (q or non—q). The cards were then placed on a table with
one face up (showing A, D, 3, 7). Then, the subjects were asked to identify the
cards that they needed to turn in order to verify whether the rule “If one card shows
A on one side, then 3 is printed on the other side” was true or false.
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The task at hand required the subjects to understand that the rule is false when A
is accompanied by a number other than 3 on the other side. Hence, they had to turn
the cards (A and 7), to verify whether this was not the case, forgetting about D and
3. Conversely, Wason’s test outcomes showed that subjects tended to look for a
corroboration of the rule rather than working the other way around, following an
inefficient strategy. According to the results, only 10% of the participants provided
the right answer (Evans 1989; Evans et al. 1993; Griggs and Cox 1983).

Despite the criticism put forward against different versions of this test over the
last 40 years (Evans 2007; Oaksford and Chater 2007; Singley and Anderson
1989), it still represents the standard test for those wishing to study the limitations
of subjects in providing a logically correct answer in the case of modus tollens (if p
then q; non q then non p, cfr. Evans et al 1993). An interpretation of the apparently
mixed outcomes of Wason’s selection test was provided by Wason himself and
Evans (1975) only few years after the first test. The authors claimed that the
participants initially selected the cards following a primitive “matching bias”
approach, due to the focus that some subjects placed on some elements openly
mentioned in the conditioned statement. The authors came to the conclusion that the
matching bias was an unconscious process that influenced the subjects’ first reac-
tion, while the motivations given to justify the choice were the product of a post hoc
rationalisation process. This fact led the authors to use for the first time the terms of
“type 1” and “type 2” processing to refer respectively to the first unconscious
process and the second conscious and rational process.

Even though these remarks paved the way to the “dual process” theories, the
discussion stalled for more than 20 years. Only after the publishing of a new book
by Evans and David Over (1996) and an essay by Steven Sloman (1996) that
referred to the article of Wason and Evans, was it possible to restart the conver-
sation about this subject.

From a chronological perspective, the “dual process” theory by Evans and Over
is the oldest one and, probably, also the one that best justifies the empirical data
collected by the studies of psychology of reasoning. The authors start from the
assumption that there is a distinction between an efficient answer-oriented process
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and the rationalisation process, which is typical when the belief-bias plays a sub-
stantial role. This distinction was firstly introduced in the article written by Wason
and Evans in 1975. As it is well known, belief-bias become apparent when, in
reasoning acts (e.g. syllogistic reasoning), old beliefs push subjects to provide
answers that go against logics (examples of this effect are provided in the article
written by Wason and Evans).

The belief bias is therefore, according to the authors, the proof that there are two
types of reasoning processes: one that is influenced by the beliefs acquired in the
past, the other evaluating the validity of logical arguments. The first system is
defined “heuristic system” by the authors because despite its efficiency in providing
good answers, it is still based on imperfect processes that often lead to mistakes.
The second system is called “analytical system” and, contrary to the first one, it is
able to analyse the elements of a statement and a decision by following logical
rules, providing mostly right answers from a normative perspective.

Evans’ approach seems therefore to have changed compared to the article written
20 years earlier with Wason. In his previous article, Evans stated that the second
system was the only mechanism responsible for rationalisation, while in the book
written with Over, the second system is merely a cognitive mechanism that ensures
the conformity with the rules of logics. A similar change is noticeable also in the
first system, which went from being a process that generally led to systemic errors,
to an efficient mechanism that drives the majority of our actions, meeting the
non-secondary objective of reducing the cognitive burden of some tasks.

It is also true that recognising the efficiency of heuristic mechanisms does not
hinder the authors from stating their preference for the analytical processes that can
provide normative correct answers. Nevertheless, despite this clear preference, the
authors do recognise that the heuristic system also has its logics, introducing a
distinction between the two types of rationality (rationality 1 vs. rationality 2) that
are linked to each system. The authors do not mention the possible correlations
between the two systems. Evans and Over limit themselves to criticising an
hypothetical sequential model where heuristic techniques always precede analytical
processes, admitting that there is also a “return possibility” between the two pro-
cesses and hence a potential interaction between them (this aspect was thoroughly
addressed and explained by Evans in a recent version of his book, cfr. Evans 2007).

Also in Sloman’s theory, the references to type 1 and type 2 systems identified
by Wason and Evans disappear. In this case, the author decided to use the terms
“associative system” and “rule-based system” to distinguish between the two dif-
ferent cognitive processes. Nevertheless, he stated that:

Both systems seem to try, at least some of the time, to generate a response. The rule-based
system can suppress the response of the associative system in the sense that it can overrule it.
However, the associative system always has its opinion heard and, because of its speed and
efficiency, often precedes and thus neutralizes the rule-based response. (Sloman 2002, p. 391)

Sloman’s work had a strong impact on the academic world and it supported the
popularisation of the dual process approach. Nevertheless, Sloman focused on a
field of study much more limited than the one dealing with dual system approaches,
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since the author was only interested in the analysis of reasoning and judgment and
did not wish to address important topics such as the link between the architecture
underlying both systems and the evolutionary debate (the same constraint can be
found in other studies, such as those by Kahneman and Frederich (2002), who
started from the analysis of some lab experiments that postulated that the heuristic
system was inferior to the analytical system, because the former one is often
associated to errors while the latter provides normative correct answers). Contrary
to Sloman, the first researchers that did address the relationship between the dual
process theory and evolution were Keith Stanovich and his partner Rich West
(Stanovich and West 1997, 1998, 2003), who contended that evolution did not
necessarily provide adaptation advantages, because the current environment in
which humans live is completely different to the one in which evolution took place.
This is the reason why the procedures related to the first system can often lead to a
cognitive bias, particularly when focussing on abstract and decontextualised forms
of reasoning. Nevertheless, contrary to animals, humans have a second system that
allows individuals to pursue their objectives, even when these are not in line with
those set by evolution. To specify the two systems, Stanovich coined the terms
System 1 and System 2, which are the terms most used in academic literature.
System 1 is described as a universal form of cognition, shared by humans and
animals, with not only one system operating, but rather a set of subsystems (called
TASS, The Autonomous Set of Systems), which work with a certain degree of
autonomy. Because of the fact that System 1 is made of different subsystems, it can
manage a high amount of information by processing it in parallel, an ability lacking
to System 2.

The newest system (System 2) is from an evolutionary perspective an exclu-
sively human system and, according to Stanovich, it is linked to intelligence.
Despite its slow functioning, this system allows for abstract and hypothetical
thinking, something that System 1 cannot do. Nevertheless, according to the author,
despite System 1 is present both in humans and animals, it works differently when
System 2 is present. Stanovich (2004) postulated that the knowledge that can be
inferred through reasoning thanks to System 2 can also be “installed” in the
implicit-automatic processing mechanisms of System 1 through the repetition of
actions.

According to Evans and Frankish (2009), these three theories were developed
independently. The only common element that they share is that they all postulate
the existence of two different processes for performing specific tasks, based on two
different procedures that lead to different and sometimes even contradicting results.
As we have seen, the authors coined different names to label these two types of
thinking. Others put forward a distinction between the two types of processes
without postulating their underlying cognitive systems. The differences of all these
descriptions are summed up in the tables below, taken from an article published by
Evans in 2008 (Fig. 6.1).

The two tables developed by Evans (2008) show that not all authors agree on the
features of the two systems. Nevertheless, the features postulated by all theories—
despite focusing on different aspects of the same phenomenon—aim at the same
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Fig. 6.1 Characteristics and features attributed to System 1 and System 2 by different authors
(Evans 2008)
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purpose, i.e. emphasising the difference existing between the two procedures that
we have at our disposal to discover ourselves and the world surrounding us.

Going into details, despite the fact that the idea that System 2 is based on rules is
in line with the proposals of the majority of dual process experts, the same cannot
be said about the fact that Sloman claims that System 1 is associative. According to
Evans, this is particularly true for the theories that oppose heuristic system and
systemic (or analytical) processing, describing it as something different to asso-
ciative processing.

Generally speaking, the recurrent themes tackled by academics deal with the fact
that the processes of System 1 are concrete, contextualised, or related to a specific
domain,while on the contrary the processes ofSystem2are abstract, decontextualised,
or related to a general domain.

Yet, defining System 2 as abstract and decontextualised could sound as a
paradox when these features are considered in relationship to the other features
usually attributed to this system, such as the fact that it is slow, sequential, explicit,
and rule-based. These features cannot be limited exclusively to abstract forms of
reasoning (Sloman 2002; Verschueren et al 2005). It would probably be fairer to
admit that, despite the fact that abstract reasoning requires the use of System 2,
concrete contexts do not hinder its implementation. Furthermore, without consid-
ering the personal favourite theory among those outlined, it is clear that the concept
of System 2 is much wider than the one of logic reasoning as inhibitor of pragmatic
influences (due to System 1) and the ability to perform hypothetical thoughts
through assumptions and mental simulations (this is probably the reason why the
majority of dual process experts tend to use general terms such as “analytical” or
“systematic” when describing the second system).

Similar problems also arise with the definition of System 1 as a simple mental
process that works automatically and without placing a burden on the working
memory. Indeed, there are different types of this kind of implicit processes (which
work for perception, attention, language processing, and so on).

6.3 Parallel-Competitive Versus Default-Interventionist

Despite the fact that dual process theories can count on strong empirical evidence
coming from different disciplines of psychology, the concept of two cognition
systems as defined by the idea of System 1 and 2 in the current literature is probably
wrong, even though it is the concept with the strongest apparent appeal and a point of
reference for all experts, as highlighted by Evans (2012). For example, it is probably
wrong to consider System 1 a single and old system shared with other animals.

Similarly, it is probably wrong to consider System 2 the conscious mind, where
all slow and sequential thinking takes place. Going into details, Evans (2012)
identified five fallacies related to dual process theories:
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(1) All dual process theories are essentially the same;
(2) There are just two systems underlying Type 1 and Type 2 processing;
(3) Type 1 processes are responsible for cognitive biases; type 2 processes are

responsible for normatively correct responding;
(4) Type 1 processing is contextualised, while type 2 processing is abstract;
(5) Fast processing indicates the use of type 1 rather than type 2 processes.

Generally speaking, going beyond the constraints of these vague theoretical
terms, an important development for dual process and dual system theories was
represented by the input offered by neuroscience over the last few years. From this
perspective, the identification of reflexive (System 1) and reflective (System 2)
cognitive processing represented a very important step. These two types of pro-
cessing were identified by cognitive neuroscientist Lieberman (2003), who attributed
them to two neurological systems called System X and System C. Lieberman
described the former as a system composed by the amygdale, basal ganglia, and the
lateral temporal cortex. These cerebral regions were known to be involved in con-
ditioning and associative learning and the author refers to them to explain the social
cognitive processes usually described as automatic or implicit. Secondly, Lieberman
refers to System C as responsible for explicit learning and the inhibitory operating
control, contending that this system is composed by the anterior cingulate cortex, the
prefrontal cortex, and the medial-temporal lobe (including the hippocampus).

The idea that our brain is composed of different parts, each devoted to different
tasks or at least sequentially involved in the processing of an answer, does not shed
light on whether and how the different cerebral regions interact with each other.
According to Evans (2007), the academic literature provides examples of two
modalities of interaction, which led to at least two different models. The first one is
called “parallel-competitive” and postulates that System 1 and System 2 provide two
different types of knowledge (implicit and explicit) competing with each other when
providing an answer.

The second model is called “default-interventionist” and postulates instead that
System 1 is always active, hence offering a gross and cost-effective processing tool to
provide a preliminary answer, while System 2 is purposefully activated on the basis of
the information provided bySystem1.According toEvans, three factors determine the
involvement of System 2 and the possibility of changing the default answer provided
by System 1: education, general intelligence, time available. The stronger the focus
attributed by education on the necessity of finding a logical answer, the bigger the
intelligence of subjects and the higher the time needed to provide an answer. In this
case, the analytical systemmay (and shall) get involved in order to change the answer
givenby the heuristic system. In addition toEvans’ theory,Stanovich andKahneman’s
theories also fall within the category of “default-interventionist” theories, while on the
other hand Sloman’s theory belongs to the “parallel-competitive” family.

To begin with, Evans and Stanovich (2013) defined parallel-competitive and
default-interventionist types of designs as follows:

S. A. Sloman (1996; Barbey and Sloman, 2007)… proposed an architecture that has a
parallel-competitive form. That is, Sloman’s theories and others of similar structure (e.g.,

132 6 Dual Process Theories for Calculus



Smith and De Coster 2000) assume that Type 1 and 2 processing proceed in parallel, each
having their say with conflict resolved if necessary. In contrast, our own theories (in
common with others, most notably that of Kahneman and Frederick 2002; see also,
Kahneman, 2011) are default-interventionist in structure (a term originally coined by Evans
2007). Default-interventionist theories assume that fast Type 1 processing generates intu-
itive default responses on which subsequent reflective Type 2 processing may or may not
intervene. (Evans and Stanovich 2013, p. 227)

In the case of “Default-interventionist” models, System 1 works much faster and
gives intuitive and environmentally sound answers that guide behaviour. Yet, in
some instances, the answers are not fit for purpose and System 2 can replace them
with more reflexive answers. A graphical representation of a stylised and simplified
default-interventionist model is provided by the following figure (Fig. 6.2):

On the contrary, in “Parallel-competitive” models, System 1 and System 2 work
continuously, they do not stop, and they also work simultaneously rather than
sequentially, competing for the answer. A simple graphical representation of the
features of a “parallel-competitive” model can be as follows (Fig. 6.3):

There is another theory not previously mentioned that belongs to the family of
“parallel-competitive” models and could be useful in our reasoning; the theory
developed by social psychologist Seymour Epstein (Epstein 1994; Epstein et al 1996;
Epstein and Pacini 1999), which is quite peculiar in describing the functioning of
System 1 and System 2 by introducing the idea of two competing processing styles.

Epstein is one of the few (or even the only one) that highlighted the
experience-based nature of System 1 (putting it in opposition to a module-based
approach), which might reflect an implicit learning process stored in parallel
functional neuronal networks (Dijksterhuis and Smith 2005; Smith and De Coster
2000). His theory is known under the acronym “CEST” (Cognitive Experimental
Self Theory) and assumes the existence of two systems, a cognitive-empirical one
and a rational one. The former is described as the oldest one from an evolutionary
point of view, with clear reference to animal cognition, while the latter is the newest
one and it is typically human. Furthermore, each system has access to different
types of knowledge. After assessing different cognitive studies and after carrying
out several experimental (and psychometric) studies, Epstein came to the

Fig. 6.2 Default-interventionist model

Fig. 6.3 Parallel-competitive
model
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conclusion that the deliberative and analytical conscious system—that can rea-
sonably be called rational system—works in opposition to the experience-based
system, which is limited to the processing of non-verbal information (such as the
emotional exponential processing caused by verbal inputs). Epstein contends that,
during their evolution, higher organisms replaced instincts with a cognitive system
that guides their behaviour on the basis of past experiences and lessons learnt. This
system works differently to the one that has been developed much later and uses
symbols and logical inferences to solve problems.

Obviously, we should not fall into the trap (as Epstein seems to do) of mixing up
the theories postulating two thinking “modalities” or styles with theories postulating
two different “types” of processes based on different cognitive systems. Only the
latter can be considered dual process theories, while the others are quite widespread
in psychology, particularly social psychology. “Types” are indeed related to the
cognitive architecture, while “modalities” can be related to differences in person-
ality, culture, and so on.

This kind of confusion and other forms of easy criticism could be avoided by
looking for some “key” features that loosely define the two systems without going
too much into detail and without being too vague or inconsistent. These key fea-
tures can be identified following a hint given by the philosopher of the mind Pietro
Perconti, who tried to define common sense (Perconti 2015). According to him,
there are salient traits that play a role in distinguishing two levels of common sense;
a deep level and a superficial one. These traits are: representation format, reference,
resistance to change, and universality. The author presents them in the following
format (Fig. 6.4):

DEEP LEVEL SUPERFICIAL 

LEVEL 

REPRESENTATION 
FORMAT 

Procedural schemas Propositions and 
judgments 

Metaphorical frames 
based on 
imaginative bodily 
representations 
Basic adaptive 
behaviour 

REFERENCE Efficacy Truthfulness and 
justifications 

RESISTENCE TO CHANGE Unchangeable 
through 
propositional 
knowledge 

Modifiable 

UNIVERSALITY Universal and based 
on human biology 

Sensitive to cultural 
variations 

Fig. 6.4 Salient traits of the deep and superficial level of common sense (Perconti 2015)
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According to Perconti, the deep level (which we might call System 1) hosts the
kind of knowledge that allows subjects (either humans or animals) to fit to their
environment. This level is naturally inclined to action. On the contrary, the
superficial level hosts events recorded in the consciousness and presenting features
associated to operating processes and higher conscious control.

Thanks to this distinction, Perconti is able to better match the deep level with all
automatic cerebral processes (hence without excluding numerous different types of
implicit processes related to perception, attention, language processing, and so on).
This type of world-related knowledge cannot be recalled as explicit knowledge, but it
can directly affect behaviour. Furthermore, it does not exclude habits and automatic
behaviouralmodels that in the past had required a conscious effort (type 2) but through
practice and experience have become patterns that are deeply rooted in the deep level.

According to Perconti, the deep level can indeed be seen as the kind of non-
conceptual knowledge that, contrary to the content of propositions and judgments, is
made up by procedural schemas. The concept of schema used by the author is taken
from Kant and it represents the “rule” used to create mental representations. Perconti
highlights that “A schema does not replace something else, but it represents a pro-
cedure to produce the representations needed” (Perconti 2015, pp. 60–61).

The famous passage of Kant’s Critique of Pure Reason mentioned by Perconti is
the following:

Thus, if I place five points in a row…. this is an image of the number five. On the contrary,
if I only think a number in general, which could be five or a hundred, this thinking is more
the representation of a method of representing a multitude (e.g., a thousand) in accordance
with a certain concept than the image itself, which in this case I could survey and compare
with the concept only with difficulty. Now this representation of a general procedure of the
imagination for providing a concept with its image is what I call the schema for this
concept. (Kant 1998, p. 273)

Kantian schemas are not contents of thought, but rather procedures to create
contents and articulate them in classes. To clarify even more the concept of schema,
Perconti draws an analogy with arrow signs: arrow signs do not convey information
on the kind of item to which they point, they merely indicate the path that you need
to follow to find it. Schemas are therefore a structured set of “instructions” to meet a
target.

Contrary to schemas, pictures are proper mental representations, they equal to
the act of thinking about facts, true or false representations. In his famous propo-
sition number 2.1 in the Tractatus, Wittgenstein states “We picture facts to our-
selves”, while number 2.11 reads “A picture presents a situation in logical space”.
Summing up, Wittgenstein will never stop claiming that thinking and talking means
producing pictures (Wittgenstein 1961).

Another author that seems to truly share Wittgenstein’s line of thought about the
role of pictures and icons is Peirce. When talking about mathematical knowledge
(exact mathematical knowledge, of course), he states that this kind of knowledge is
not a simple contentless formal game filled with empty formulae that must be
interpreted, but it is rather the product of icons of possible reality status. In his
words:
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Thus, an algebraic formula is an icon, rendered such by the rules of commutation, asso-
ciation, and distribution of the symbols. It may seem at first glance that it is an arbitrary
classification to call an algebraic expression an icon; that it might as well, or better, be
regarded as a compound conventional sign. But it is not so. For a great distinguishing
property of the icon is that by the direct observation of it other truths concerning its object
can be discovered than those which suffice to determine its construction. Thus, by means of
two photographs a map can be drawn, etc. Given a conventional or other general sign of an
object, to deduce any other truth than that which it explicitly signifies, it is necessary, in all
cases, to replace that sign by an icon. This capacity of revealing unexpected truth is
precisely that wherein the utility of algebraical formulae consists, so that the iconic char-
acter is the prevailing one. (Peirce 1931, 2.279)

Further on:

In fact, every algebraical equation is an icon, in so far as it exhibits, by means of the
algebraical signs (which are not themselves icons), the relations of the quantities concerned.
(Peirce 1931, 2.282)

Icons are therefore an interesting phenomenon in the study of the relationships
between language and reasoning, because the mere possibility of identifying a bond
between signifier and meaning supports the idea that language reflects reasoning,
which in turn reflects reality. In addition to this, icons allow us to step away from
the subjectivity of linguistic signs, i.e. the fact that the association of signifier and
meaning is not justified, but rather conventional. In opposition to this idea, Peirce
highlights that, despite being overlooked and considered of secondary importance,
icons play an influential role in the structuring of linguistic codes.

Nevertheless, despite the importance of icons as pillars of linguistic concepts, at a
mathematical level—even when concepts are represented as icons—they cannot be
fully considered mathematical concepts. In mathematics, icons are abstractions and,
as such, they are not entities made of matter or energy. In a nutshell: many direct
experiences can lead to a mathematical concept, but the mathematical concept is not
any of these experiences. Let’s take this example as a case in point: “Donald is on the
fourth step of a set of stairs. If he climbs three steps up, to which step will he get?”

Children will have no particular problem in analysing this problem and they will
soon find out how to solve it. If they have a set of stairs nearby, they could solve it
with a direct action, moving up the stairs and checking the final position of the
subject after following the instructions. Nevertheless, this only applies to examples
such as the one outlined above, in which the problem is a procedure rather than a
true mathematical concept.

As a matter of fact, children start struggling when they deal with mathematical
problems that cannot be solved with a direct action, cases in which the problems are
expressed and coded by symbols, decoupled from first-hand reality, such as:

4 þ 3 ¼ 7

Symbolic mathematical writing represents the end point, i.e. the product of an
awareness-building and learning process, not the starting point to discover and
master the mathematical concept of “addition”.
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The solution that can be reached by climbing the stairs allows children to access
the signifiers that help in solving the problem without wasting time and energy
performing other actions. In these cases, the direct process makes the problem
easily solvable and manageable, leading to satisfying results both at understanding
the concepts at hand and the ability to perform actions, because it creates a bond
between languages that is more related to motory experience.

Nevertheless, these mathematical concepts are basically “ideal” and they are
usually presented to children without referring to reality, but focussing on the
possible relationships between objects or sets that are formally defined. The ideal
character of mathematics implies that, particularly in schools, mathematical con-
cepts are mainly built as wordy descriptions, in order to come to the most advanced
form of mathematical concept that is represented by the “definition”. From this
point of view, mathematics is a language made up of technical terms and symbols
that structure its discourse in a precise and severe manner. In order to “perform”
mathematics, children must be introduced to this technical language, characterised
by a severely codified formality that—contrary to natural language—is not learnt
spontaneously while growing up. Therefore, it is not so unusual that children do not
understand the utility and meaning of symbols and syntactical rules used to connect
signifiers and meanings and end up hating mathematics.

The characters of “abstraction” and “idealisation” that define mathematics as a
rigid (and even hated) discipline pushed several philosophers to see mathematical
objects as absolutely certain and defined objects, since mathematical propositions
(the product of a process that goes beyond reality) were considered as a set of
truths, certain and undisputable truths. This assumption stems from the idea that
while a physical hypothesis might be verified through an accurate laboratory test
and its interpretation, mathematical truths are established through demonstrations
based on axiomatic methods. This procedure should then provide mathematical
propositions with the highest degree of reliability possible for human kind (Jaffe
1997). As a matter of fact, while in physics nothing is 100% certain, in mathematics
—thanks to the axiomatic method—everything is certain for eternity (Jaffe 1997).
These remarks on the concept of absolutely certain truths have been contested over
the years (cfr. Hamming 1980; Leary 2000). Yet, the fact that mathematics does not
have the absolute certain character of reliability that was postulated in the previous
century, does not jeopardise the fact that it has an objective content (its content is
indeed not made up of absolutely certain truths, but rather of plausible statements in
line with current scientific knowledge, cfr. Cellucci 2017). As Solomon Feferman
stated, mathematics is the paradigm of certain and well-understood knowledge, a
coherent set of truths soundly bonded together, but not unchangeable (Feferman
1998).

It is useful to recall that our guiding principle is the one outlined by Perconti and
shown in Fig. 6.4. Recognising mathematics as a paradigm of knowledge developed
over time, but potentially changeable, makes it indeed a privileged domain of
cultural evolution and, therefore, sensitive to time variations. Cultural evolution
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follows a pace that is totally different to the one of biological evolution. Even though
humans are what they are because of biological evolution, they are like this also
because cultural evolution provided them with cultural, social, and technological
outcomes that define modern societies. By abiding by the limits established by
biological evolution, cultural innovations (contrary to genetic mutations that are
random, cfr. Gould 2002) often follow a well-defined direction and they are deter-
mined by the conscious intervention of individuals. This does not mean that they are
always positive for the subjects or groups exploiting them and, indeed, natural
selection sometimes “interferes” with the entire process and makes some noxious
cultural traits disappear.

Starting from these assumptions, it is easy to point out that the mathematics
outlined by Dehaene (and other cognitive scientists) has a much more limited
scope, which merely involves the processes related to the estimation of numerosity,
a term that refers to the sense of number and in particular to the sense of a size of
sets, not of numbers. Dehaene’s experiments only shed light on the existence of a
natural, inborn, biologically founded form of mathematics shared by humans and
animals, active also in children during their prelinguistic stage. According to this
theory, natural selection and nature shaped animals and living creatures in such a
way that they could perform actions and natural mathematical computation oper-
ations aimed at promoting their survival. In other words, the concept of mathe-
matics expressed by Dehaene is similar to the concept of deep level of common
sense described by Perconti, since the notion of numerosity refers only to the
non-symbolic cardinality that allows animals (all animals) to adopt basic adaptive
behaviours in a chaotic and irregular physical world. Besides, all knowledge,
including mathematical knowledge, is part of a natural adaptation process to the
surrounding environment. Yet, contrary to numerosity, in mathematics numbers are
abstract entities represented by specific written and oral symbols that can be used to
perform computational tasks.

As the ethologist John Bonner (1980) clarified, the difference between the two
types of “information” can be noticed because of the fact that the cultural dimension
depends from possible choices. Behaviour is cultural when (a) there is a number of
possibilities at its basis, (b) it is the product of conscious choices, (c) these choices
are shared by a specific group, (d) it is socially (rather than genetically) conveyed
through imitation or proper procedures of teaching/learning. All these conditions
require a low level of or almost zero genetic determination of the behaviour. The
more behaviour is genetically determined, the less space there is for cultural
information, and the other way around.

This will and possibility are not present in animals and, therefore, this difference
creates a discontinuity. Obviously, it does not represent a biological discontinuity,
but rather a discontinuity due to the fact that humans are the only creatures in nature
that are subject to biological and cultural evolution.

To sum up, (system 2) mathematics can be considered as an artefact that was
created in relation to the very fast pace of cultural development, a fact that clearly
shows the “double nature” of humans (Tomasello 1999). This will be the topic
tackled in the following paragraph.
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6.4 “No Nature, One Nature, Two Natures”

Philosophers see mathematics as the queen of all scientific disciplines. It has
specific features that make it unique. Chemistry, physics, and biology study reality
from different points of view, while mathematics mainly deals with abstract entities
(whatever abstract means) such as numbers and sets (and many more), setting it
apart from the other fields of knowledge.

According to this dominant point of view, the reflection upon mathematics
requires a specialised discipline (philosophy of mathematics) that follows a specific
methodology (the unavoidable deductive logics—essence of demonstration tests—
and axioms) and, as stated by Dummett, that represents “the easiest part of phi-
losophy” from a certain point of view, because many general problems tackled by
other study fields of philosophy can be found in the philosophy of mathematics in a
purer or particularly simplified form. Therefore, Dummett asks “If you cannot solve
these problems, what philosophical problems can you hope to solve?” (Dummett
1998).

At the basis of Dummett’s optimism, there is the conviction that—contrary to
what happens in other disciplines that infer their concepts from experience,
observation, and scientific theories—mathematics does not follow the same pro-
cedure. It does not require inputs from experience, since it is an exclusive product
of thought. In this way, Dummett postulates a “division of work” between phi-
losophy and science, implicitly recalling the Diltheyan distinction between
Erklaren and Verstehen, giving legitimacy to the dichotomy of knowledge proce-
dures. According to Dummett, knowing the meaning of a mathematical expression
means knowing how to prove or demonstrate the expression. On the contrary, an
empiric expression such as “It is raining” is simply linked to the knowledge related
to the ability of recognising situations where perception allows us to come to the
conclusion that it is raining.

This point of view hence recognises two possibility domains that can lead to the
knowledge of the world. On the one hand, the domain of Pure Reason, tasked with
the control of the logical consistency and correctness of reasoning, while on the
other hand, there is the domain of Facts, tasked with the experimental control of the
truth of empirical statements.

Nevertheless, Western philosophy questioned the soundness of both knowledge
domains, up to the point that today several philosophers explicitly contest the
existence of Pure Reason (just think about logics experts such as Gödel, language
philosophers such as Wittgensten, or science philosophers such as Poppers; all
promoters of this line of thinking).

On the other hand, scientists recognise that Facts have simply proved that they
are just facts that could be different or presented in other ways (Heisenberg and his
uncertainty relations, which are linked to Bohr’s complementary principle). Yet,
between philosophy and science, science has been the one to suffer the most from
this unbridled crisis of certain knowledge (crisis of reason, weak thought,
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groundless knowledge, invented reality: these are only some of the labels used to
designate the recurrent symptoms of several philosophical theses).

As Gadamer stated, “By the Seventeenth Century, what we now call philosophy
is in a different situation. The philosophy has become a need of legitimating
towards school science as it had never happened before” (Gadamer 1976, p. 13). On
his side, Wittgenstein contends that “The totality of true propositions is the whole
of natural science (or all of the natural sciences)” (Wittgenstein 1961, 4.11). Since
philosophy does not belong to the natural sciences family, it does not have anything
to dwell upon.

The abandonment of the idea of a First Philosophy, foreign to scientific inquiry
and superior to it, finds its most radical expression in Quine’s philosophical thesis
called “Naturalism”:

Naturalism: abandonment of the goal of a first philosophy. It sees natural science as an
inquiry into reality, fallible and corrigible but not answerable to any supra-scientific tri-
bunal, and not in need of any justification beyond observation and the
hypothetical-deductive method. (Quine 1981, p. 72)

Quine’s Naturalism (also known by the name of scientific Naturalism or radical
Naturalism) hence implies a recognition of the fact that reality must be specified and
described in the framework of science, not that of philosophy.

Following a simplistic approach, we can sum up Quine’s Naturalism by saying
that scientific theories are the only tool that can provide legit justification to the
beliefs we build about reality. From this point of view, naturalist scientists should
not dwell upon establishing epistemic rules, but rather limit their inquiries to a
descriptive study of the causal process that takes humans from sensory stimulation
to the establishment of beliefs.

Quine’s Naturalism was followed by other forms of Naturalism, also in math-
ematics (cfr. Putnam 1971; Armstrong 1997; Weir 2005; Burgess and Rosen 1997,
2005). All these theories take the name of Naturalism, despite the fact that all of
them take strongly different perspectives as their starting point. Among the most
prominent thinkers of mathematical Naturalism, the American philosopher
Penelope Maddy represents an important point of reference. In her case, she
decided to build her form of Naturalism on sound cognitive foundations.

Taking inspiration from Quine’s idea (even though she did not stay completely
loyal to his spirit), Maddy defended a Naturalist (and Platonist) approach to
mathematics, despite changing her stance over time. Yet, because of the particular
field on which her studies focussed, soon enough she found herself forced to
account for the entities tackled by the philosophers of mathematics, which at first
sight cannot be linked to the entities postulated by natural sciences (in her specific
case, the abstract entities of mathematics).

This is the so called “placement problem”, i.e. the need to explain which place
these entities have in the natural world. Maddy (1990) provided an answer to this
specific question by supporting the idea of a mathematical Platonism (called
“set-theoretic realism”) and using a so called “indispensability argument” to justify
the realism of mathematical entities, i.e. an argument that contends that the
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objective existence of abstract entities is an integral part of the best explanation
available to us. Nevertheless, justifying Platonism meant opening up to mathe-
matical intuition skills, which were strongly criticised by gnosiology from a nat-
uralistic point of view. Maddy tried to solve the issue by supporting the idea that
mathematical intuition is not only similar to sensory intuition, as Godel said, but
also represents a proper perception skill, i.e. the perception of medium size sets
containing physical objects, which are established in the brain (Maddy 1990). In
this instance, the strategy followed by Maddy is a “second naturalistic strategy”, i.e.
a reductionist strategy, according to which these properties are ontologically
identical, or dominant, to acceptable scientific properties. In her words:

We perceive sets of physical objects much as we perceive the objects themselves. Both
abilities develop gradually as the course of child-hood experience interacts with evolu-
tionarily conditioned brain structures. The neurophysiologic changes that constitute this
development also produce a range of extremely general belief about these sorts of things,
about the space-occupying character of physical objects, for example, and the combinability
of sets. (Maddy 1989, p. 1140)

The following year, in her book Realism in mathematics, Maddy refers specif-
ically to the discoveries recently made by neuroscience and experimental psy-
chology, in order to shed some light on the analogy between the intuition of sets
and the perception of objects.

By recalling the discoveries of neurophysiologist Donald Hebb (1980)—who
proved that neurons do not only perform immediate perceptive actions but, on the
contrary, also send mutual electric stimuli well after the end of a sensory stimulus,
creating so called “neural assemblies” (groups of neurons connected)—Maddy
considers that these neural assemblies are the neurophysiologic correspondent of
her idea of “physical object”. In other words, the author claimed that, in order to
create neural assemblies that could perceive an object, e.g. a “triangle”, a subjects
needs neural assemblies that identify angles, which can create assemblies that can
identify a triangle from a specific perspective, which can lead to the creation of a
perspective that combines all previous perspectives, finally connecting these
assemblies to one single object. Maddy is convinced that these observations fully
corroborate the theories put forward by Piaget, which related to the creation of
concepts by children, from a neurophysiologic point of view.

In the same book, she writes:

This expectation is substantiated by the experiments of Jean Piaget and his colleagues. The
child’s ability to acquire perceptual beliefs about physical objects, as judged from beha-
viour, develops between the ages of one and eighteen months. At the beginning of this
period, the child’s world is a welter of isolated incidents. (Maddy 1990, p. 54)

The author is hence claiming that the same neurons that are triggered by the
repeated perception of an object from different perspectives keep firing signals to
the others, establishing a neural assembly that works as “object detector”. Starting
from these considerations, particularly in relation to Piaget’s seriation and corre-
spondence experiments, Maddy postulates a similar procedure for the creation of
the concept of set. In her words:
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In this way, even an extremely complicated set would have spatial-temporal location, as
long as it has physical things in its transitive closure. And any number of different sets
would be located in the same place; for example, the set of the set of three eggs and the set
of two hands is located in the same place as the set of the set of two eggs and the set of the
other egg and the two hands. (Maddy 1990, p. 59)

Later on, Maddy (2005, 2007, 2011) denied that the indispensability argument
could justify the existence of mathematical objects, taking a step back from Quine’s
Naturalism and defining it too restrictive towards mathematics, since it did not
considered purely intramathematics acceptability standards as scientifically
admissible. In Second Philosopher, Maddy supports indeed the idea of a pragmatic
method developed by the mathematician community, trusting their judgment and
ability to control the establishment of the theories belonging to their field of study.
In Second Philosopher, despite keeping the starting point of Quine’s Naturalism
(and therefore the superiority of empirical sciences on the other forms of knowl-
edge), the author indeed takes some distance from Quine’s orthodoxy, realising that
mathematics is embedded in empirical sciences and that it is therefore better to take
into account the “whole mathematical practice”, including the parts that do not
directly belong to pure contemporary mathematics (Maddy 2005).

Despite these notable changes in perspective, also in Second Philosopher,
Maddy uses the term “science” to refer to “cognitive sciences”, with the difference
that Piaget’s studies are replaced by the neuroscientific discoveries made by
Dehaene and Spelke on numerical cognition. Maddy emphasises that neuroscien-
tific studies have provided interesting new and detailed inputs to the naturalistic
research on mathematical entities, and that these studies have provided outcomes
that diverge to the arguments she outlined in Realism in Mathematics. Nevertheless,
the interpretation given by Maddy of these experiments is quite odd, since she
considers them supporting evidence to the role played by the set theory in math-
ematics. The result is that Maddy succeeds in highlighting some cognitive invari-
able factors that, according to her Platonist interpretation of set theory, correspond
to basic properties of the objects tackled by this theory.

This is not enough to provide a plausible epistemology to mathematics, since the
role played by set theory in mathematics depends on the whole theory. Furthermore,
as Parsons (2007) highlighted, even assuming that it is admissible to come to a
conclusion from the description of perceptive phenomena that would be at the basis
of elementary numbers, there would still be the problem that the mathematical
theories applied to this description and those used in psychology and neuroscience
can both still be used without referring to set theory. Therefore:

It is just not plausible that the formulation in terms of set theory reflects the nature of things
to the degree that Maddy’s view presupposes. (Parsons 2007, p. 211)

In the light of Parsons’ remarks, it seems that the problem lies in the fact that an
empirical justification cannot be given to the passage from empirically founded
elementary mathematical beliefs to the processes on which mathematical theories
are based, despite this being of crucial importance for the establishment of math-
ematics. This is where Maddy’s scientific Naturalism fails. Besides, following the
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strong belief in the good faith of the mathematician community, Maddy ends up
contradicting the main thesis of scientific Naturalism, which establishes the
admissibility of a thesis considering exclusively its scientific utility for natural
sciences.

Scientific Naturalists see natural sciences as the model to which all other sci-
ences and even philosophy should adapt to be legitimated in their
knowledge-building activity. Despite its character of legitimate criteria as far as its
inspiring principles are concerned, this approach shows strong limitations when
dealing with mathematical concepts. Several authors (cfr. Field 1989) believe that
mathematical concepts such as those of number, set, etc. are so disconnected from
the field of natural science that they cannot find space in it, and the fact that they
cannot be addressed by natural science should suggest deleting them from the
philosophical-scientific dictionary and replacing them with terms and concepts that
have a stronger presence on a material level.

Luckily, over the last few years, a much less radical form of Naturalism com-
pared to the scientific and eliminativist one is taking shape, the so-called moderate
(or liberal) Naturalism. This form of Naturalism share what we may call the
“founding thesis” of Naturalism, i.e. the use of laws, explanation models, and
entities that exist in nature and do not belong to the supernatural world (religious or
mystic beliefs, demiurges, gods, etc.). In addition to this, liberal naturalists share
with scientific naturalists the idea that natural science represents the default model
to which all other sciences should abide by in order to be legitimated in their
knowledge-building activity.

Even though both approaches believe in the superiority of natural science and the
use of the experimental data that it provides, they do differ on the role that philos-
ophy should play. In liberal Naturalism, the cornerstone is the compatibility (rather
than continuity) of philosophy and science, with a strong anti-reductionist character,
particularly in relation to the topic of normativity. The supporter of a liberal form of
Naturalism believes that scientific inputs are of paramount importance to philosophy
and that philosophical formulations should take into account the discoveries of
natural science, nevertheless he does not accept the continuity thesis of Quine’s
scientific Naturalism, because he claims that philosophy differs from science in its
method, object study, and study goals (De Caro and Macarthur 2010).

Only by taking into account this fact is it possible to overcome the clear division
—unavoidable in scientific Naturalism—between phenomena belonging purely to
the physical world and those referring to other fields of human experience,
recovering concepts (such as normativity, number, intentionality, free will) that
cannot be connected to the physical world and providing them with dignity by
asserting their belonging to the natural world, without recurring to metaphysical
explanations.

But how can the normative and causal levels be reconciled, considering the usual
importance attributed to causality in natural sciences? John McDowell tried to reply
to this question with a theory that fully embodies the compromise solution sup-
ported by liberal naturalists. According to McDowell, the specificity of humans lies

6.4 “No Nature, One Nature, Two Natures” 143



in their “second nature” (De Caro and Macarthur 2010). Taking inspiration from the
concept of “space of reasons” of Wildrif Sellars, McDowell claims that the best way
to explain some human behavioural traits is to refer not only to the “causes” that
govern body movements, but also (and in particular) to the “reasons” of an action.
Great care should be paid to the concept of “reasons”, which should not be con-
sidered abstract and independent entities from human experience, but rather one of
its components (humans’ “second nature”).

In this case, McDowell’s liberal Naturalism meets the first precondition (which
could be defined ontological) that made Maddy’s scientific Naturalism crumble, i.e.
the incursion among possible explanations of all kinds of entities needed to explain
a fact, without pre-established constraints. From this perspective, there are no
problems in accepting the existence of mathematical entities (and the truthfulness or
falsehood of their judgment), on the condition that these entities are needed to
explain important aspects of our thought and do not represent supernatural entities
that violate the laws of nature. In the specific case of mathematical entities, it is
important to avoid a “representation mistake” and assert once and for all the
truthfulness of what’s real according to our symbolic and mathematical beliefs. To
clarify more the issue of mathematical entities, two different notions of existence
are needed, and liberal Naturalism does not struggle in providing them with a clear
explanation. This double concept of existence draws a line between r-existence and
l-existence. To use the previous terminology, r-existence is the l-existence in the
ordinary sense of the term. L-existence means belonging to a specific interpretation
domain. It represents an existence with a linguistic nature and the objects that l-exist
have an identity thanks to some linguistic criteria. To establish whether something
l-exists, it is necessary to identify the object in the logic space of the discourses in
which it is mentioned (Perconti 2003, p. 10).

Hence, liberal Naturalism (as proposed by McDowell and all other researchers
that took inspiration from this form of Naturalism) does not struggle in accepting
conceptual analysis (the second precondition, which has a methodological nature)
as a legitimate inquiry method when this is useful to explain specific phenomena,
on the condition that this method is not incompatible with natural science studies,
such as neuroscientific inquiries. If this is true, then, normativity is not incompatible
with descriptive and causal inquiries, which logically means that it is compatible
with them.

Claiming that humans, differently from physical systems and animals (because
of the lack of language), enjoy a “second nature” means, in conclusion, accepting as
good epistemic practices also those that are compatible with the cognitive modal-
ities that humans do have (first nature). This remark is true for all products of
cognition, and therefore also for mathematics. In conclusion, we can indeed claim
that, during its evolution, mathematical knowledge was affected by the brain as
much as for the brain. It was influenced by the brain because the history of
mathematics is linked to more and more advanced cerebral invention capacities that
allowed for the development of new enumeration systems and arithmetical
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procedures. It was influenced for the brain because only the inventions that were
most suited to the cognitive and mnemonic capacities of humans and could increase
the computation abilities of humanity were culturally transmitted to the following
generation.
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