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Preface

There are many good epidemiology textbooks on the market, but most of these are
addressed to students of public health or people who do clinical research with epi-
demiologic methods. There is a need for a short introduction on how epidemiologic
methods are used in public health, genetic and clinical epidemiology, because health
professionals need to know basic epidemiologic methods covering etiologic as well
as prognostic factors of diseases. They need to know more about methodology than
introductory texts on public health have to offer.

In some health faculties, epidemiology is not even part of the teaching curricu-
lum. We believe this to be a serious mistake. Medical students are students of all
aspects of diseases and health. Without knowing something about epidemiology the
clinicians and other health professionals cannot read a growing part of the scien-
tific literature in any reasonably critical way and cannot navigate in the world of
“evidence-based medicine and evidence-based prevention.” Without skills in epi-
demiologic methodology they are in the hands of experts that may not only have an
interest in health.

Some health professionals may believe that only common sense is needed to
conduct epidemiological studies, but the scientific literature and the public debate
on health issues indicate that common sense is often in short supply and may not
thrive without some formal training.

Epidemiologic methods play a key role in identifying environmental, social,
and genetic determinants of diseases. Clinical epidemiology addresses the tran-
sition from disease to health or toward mortality or social or medical handicaps.
Public health epidemiology addresses the transition from being healthy to being not
healthy. Descriptive epidemiology provides the disease pattern that is needed to look
at health in a broad perspective and to set the priorities right. Epidemiology is a basic
science of medicine which addresses key questions such as “Who becomes ill?” and
“What are important prognostic factors?” Answers to such questions provide the
basis for better prevention and treatment of diseases.

Many people contributed to the writing of this book: medical students in
Denmark, students of epidemiology at the IEA EEPE summer course in Florence,
Italy, and students of public health in Los Angeles. Without technical assistance
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from Gitte Nielsen, Jenade Shelley, Nina Hohe and Pam Masangkay the book would
never have materialized.

Los Angeles, California Jørn Olsen
Odense, Denmark Kaare Christensen
Iowa City, Iowa Jeff Murray
Stockholm, Sweden Anders Ekbom
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A Short Introduction to Epidemiology

Epidemiology is an old scientific discipline that dates back to the middle of the
nineteenth century. It is a discipline that aims at identifying the determinants of
diseases and health in populations. It uses a population approach like demogra-
phy, perhaps the scientific discipline that most closely resembles epidemiology.
Epidemiology is defined by the object of research, “to identity determinants that
change the occurrence of health phenomena in human populations.”

Epidemiology is often associated with infectious diseases because an epidemic
of a disease originally referred to an unexpected rise in the incidence of infectious
diseases. Epidemiologic methods were first used to study diseases like cholera and
measles. Now all diseases or health events are studied by means of epidemiologic
methods and these methods are constantly changing to meet these new needs. Even
the term “epidemic” is used to describe an unexpected increase in the frequency of
any disease such as myocardial infarction, obesity, or asthma.

Today the discipline is used to study genetic, behavioral, and environmental
causes of infectious and non-infectious diseases. The discipline is used to evalu-
ate the effect of treatments or screening and it is the key discipline in the movement
that may have been oversold with the title “evidence-based medicine.”

Public health epidemiology uses the “healthy” population to study the transition
from being healthy to being diseased or ill. Clinical epidemiology uses the popu-
lation of patients to study predictors of cure or changes in the disease state. Both
disciplines use experimental and non-experimental methods. Experimental methods
are, however, often not applicable for ethical reasons in public health research since
we cannot induce possibly harmful exposures on healthy people to address scientific
hypotheses.

Epidemiologists have often been actors in political conflicts. Poverty, social
inequalities, unemployment, and crowding are among the main determinants of
health [1], and studying these determinants may bring epidemiologists into con-
flict with those who benefit from maintaining an unjust society. To some extent,
these internal conflicts gave rise to clinical epidemiology. Many clinicians saw a
need for using the methods developed in public health but did not like the idea of
being associated with left-wing doctors fighting tuberculosis in India or poverty in
Los Angeles. A clinical epidemiologist can study how best to treat diseases without
taking an interest in how these diseases emerged.

xi



xii A Short Introduction to Epidemiology

We believe time has come to put an end to the artificial separation.
Epidemiologists use the same set of tools and the same set of concepts whether they
study the etiology or the prognosis of disease, although the methodological prob-
lems may reflect different circumstances. It is important to give priority to studying
causal mechanisms that are amenable to intervention whether they affect prevention
or treatment.

Epidemiology is among the basic medical sciences but is not quite recognized as
such in many countries. Preventive medicine has been neglected by “patient-directed
medicine” and been referred to specialists outside the clinical world. The process of
evaluating new drugs has been left almost entirely to the pharmaceutical industry,
not only to sponsor these studies but also to conduct and analyze the results.

Health professionals have to decide on treatments, perform diagnostic proce-
dures, and give advice on prevention. This cannot be done without keeping an eye
on the scientific literature, and at present a large part of what is published in medi-
cal journals is based on epidemiologic research. The same is true for much of the
information that comes from pharmaceutical industries. Without some basic under-
standing of the limitations and sources of bias in this literature the clinician becomes
a prisoner of his/her own ignorance; an easy victim of incorrect interpretations of
data. Epidemiology may be the water that is needed in this desert of seduction.

Our intention has been to distill what is needed in the ordinary curriculum for
health professionals who received an education without being exposed to epidemi-
ologic textbooks. We present first a short introduction to the most common types
of epidemiologic studies, how they are used, and their limitations. We then pro-
vide examples of how these methods have been used in public health, genetic
epidemiology, and clinical research. Although each of these sub-disciplines has its
own set of methods, most studies rely on the same basic set of logical reasoning.
We leave out the statistical part of analyzing data and refer readers who take an
interest in this to the many textbooks on this topic. We also refer readers to other
textbooks to study the history of epidemiology [2]. Doing epidemiologic research
requires following ethical standards and good practice rules for securing confidential
data. We recommend reading the IEA guidelines on Good Epidemiologic Practice
(www.ieaweb.org).

The book is short and condensed, but people in medical professions are clever
and are trained in absorbing abstract information rapidly. Epidemiology is training
in logical thinking rather than in memorization and we hope this book will be a
pleasant journey into a mindset for later expansion and use. Keep in mind that an
important part of learning is also to be able to identify what you do not know but
should be aware of before you express your opinion.

References
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2. Holland WW, Olsen J, Florey CDV (eds.). Development of Epidemiology: Personal Reports
from Those Who Were There. Oxford University Press, Oxford, 2007.



Part I
Descriptive Epidemiology



Chapter 1
Measures of Disease Occurrence

Setting priorities in public health planning for disease prevention depends on a set of
conditions. Public health priorities should be set by the combination of how serious
diseases are (a product of their frequency and the impact they have on those affected
and society) and our ability to change their frequency or severity. This intervention
requires knowledge of how to treat and/or to prevent the disease. If we have suffi-
cient knowledge about the causes of the disease and if these causes are avoidable we
may be able to propose effective preventive programs. If we do not have that knowl-
edge research is needed, and if we know where to search for causes this research
can be specifically targeted. If the disease can be treated at a low cost and with little
risk, prevention need not be better than cure but often will be.

Clinical medicine may have a tendency to focus on rare but interesting diseases,
whereas public health should focus on the big picture taking the frequency of disease
into consideration. What are the possibilities of saving many lives, preventing ill
health and social impairments with our available resources, and how do we best use
these resources?

A number of measures are used to describe the frequency of a disease, but to
begin with we could count the number of people with the disease in the population
(the prevalence of the disease). We might also like to know how many new cases
appear over a given time period either as an estimate of the risk of getting the disease
over a given time span or as a rate, defined as new cases per time unit (the cumulative
incidence or the incidence rate). We have to accept that we only estimate the force
of morbidity, or mortality, in the population. We do not measure these parameters,
but the quality of our estimates depends on how close we come to true parameters.
When you start an investigation you want to know who the diseased are, when they
got the disease, and where they live. “Who, when, and where” questions are the first
questions you should ask.

Estimates of incidence (new cases) are needed to study the etiology of disease
and to monitor preventive efforts. Monitoring programs of the incidence of cancer
have, for example, been set up in many parts of the world and are being reported
by IARC (The International Agency for Research on Cancer) in monographs like
Cancer Incidence in Five Continents [1]. No other diseases have similar high-
quality monitoring of incidence worldwide, but several routine registration systems

3J. Olsen et al., An Introduction to Epidemiology for Health Professionals,
Springer Series on Epidemiology and Health 1, DOI 10.1007/978-1-4419-1497-2_1,
C© Springer Science+Business Media, LLC 2010



4 1 Measures of Disease Occurrence

for disease incidences exist in various parts of the world, either for total populations
or for segments of the population. Many countries monitor, for example, incidences
(new cases) of infectious diseases. Such monitoring systems rarely identify every-
body with the infection and they need not cover all to pick up epidemics (unusual
departures from average incidence rates that occur over shorter time spans). If a
stable percentage is present over some period of time major fluctuations in the inci-
dence of the disease in the population can be demonstrated. If very early markers of
an epidemic are needed surrogate measures such as sales data of certain medication
or the frequency of certain types of questions addressed to certain websites may
even be useful.

Maternal, infant, and childhood mortality have been monitored in many parts of
the world and they are often considered strong indicators of general health. Data on
mortality are generally of good quality. Mortality is well defined and is not ham-
pered by the ambiguous diagnosing that influences many disease registries where
cause-specific mortality (disease-specific mortality or diseases that were proximal
causes of the death) is measured.

Prevalence (existing cases at a given point in time) data are key in health plan-
ning. How many people do we have in our population with diabetes, multiple
sclerosis, schizophrenia, etc.? How many and what kind of treatment facilities are
needed to serve these people?

While incidence data can, in principle, be measured if we are able to define a
set of operational diagnostic criteria, it may sometimes be more difficult to define
prevalence (the number of diseased at a given point in time). For example, what
is the prevalence of cancer? People who are treated successfully for cancer do not
belong to the prevalent pool of diseased, but only time will tell whether the treatment
cured the disease or not. In like manner, do people with asthma have the disease for
the rest of their lives? Or people with epilepsy? Or people with type 2 diabetes or
migraine? And if not, when are they cured? If we have no empirical data to identify
people who leave the prevalent pool of cases, then our estimate of prevalence is
difficult to interpret and use. It is easier with measles. When the signs of infection
have disappeared and the virus can no longer be detected in the body, the person no
longer has measles.

Incidence and Prevalence

A person may either have a disease, not have a disease, or have something in
between. So when does a person become affected? In tallying diseases we need
to use a set of criteria that indicates whether the person has the disease or not. For
most diseases, we use a classification system like the International Classification
of Diseases (ICD) [2] to force people into one group or the other. Over a lifetime
each of us will get a given disease or we will not get the disease in question, but
notice that this probability has a time dimension. If you die at the age of 30, you are
less likely to suffer from a stroke in your lifetime than if you die at the age of 90.
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For that reason, we expect many more cancer cases in developing countries if life
expectancy continues to increase for these populations.

The risk of getting a disease is usually a function of time and these probabilities
are estimated from the observation of populations. By observing the occurrence of
diseases in populations over time we may be able to estimate incidence and preva-
lence of certain diseases. We use these estimates to compare disease occurrence
between populations, to follow disease occurrence over time, and also to get an idea
of disease risks for individuals in the population. To do this we will try to think
about the population the person is part of; we will take gender, age, time, ethnic
group, social conditions, place of residence, and information of other risk factors
into consideration when we provide our estimate. For the individual such an esti-
mate may be used to consider changes in behavior to modify, usually to reduce, this
risk. But notice it is an indicator of risk, not a destiny. It is a prediction with uncer-
tainty. In the end the person will either get the disease or not. If we say the person
has a 25% risk of getting the disease within the next 10 years it does not mean that
he/she will be 25% diseased. It means that among, say, 1,000 people with his/her
characteristics we will expect about 250 to develop the disease. The person in ques-
tion would like to know if he/she is among the 250 or not, but we will never be able
to provide that information. We may, however, be able to make our predictions more
informative, to make them closer to 0 or 100%. Many had hoped that the mapping
of the human genome would bring us closer to predicting disease occurrence than it
actually has except for a few specific diseases.

To estimate incidence and prevalence in a given population we need to iden-
tify the population and examine everyone in it, or a sample of them, at a given
point in time (to estimate prevalence) or during a follow-up time period (to estimate
incidence).

Assume we want to estimate the prevalence of type 1 diabetes in a city with
100,000 inhabitants. We may call them all in for a medical examination or we may
base our estimate on a sample randomly selected from that population. Random
selection implies, in its simplest form, that all members of the community have the
same probability of being sampled. We could, for example, enumerate all inhabi-
tants with a running number from 1 to 100,000. We could then select the first 10,000
random numbers and call them in for examination. Or we could draw a number at
random from 0 to 9. Assuming that the number is 7, we could examine everybody
in the population who had a running number ending with 7 (7, 17, 27, . . ., 99,997),
which would also generate a sample of 10%. Or we could select everyone who was
born on three randomly selected days in the month (say 3, 12, 28) and examine each
person born on these days, which would generate a systematic sample of approxi-
mately 10%. If we are allowed to assume that the disease occurrence is independent
of the days of birth this sample will produce results similar to what is found in a
random sample, except for the random variation that is an unavoidable part of the
selection process.

Assume that we examine 10,000 in the sample and find 50 with diabetes type 1,
a disease characterized by a deficiency in the beta cells of the endocrine pancreas
leading to a disturbance in glucose homeostasis. We would first have to develop a
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set of criteria that would define type 1 diabetes from the health examination. We
would then say that the prevalence (P) in this population is 50 and the prevalence
proportion (PP) is 50/10,000 or 0.005 or 0.5%. Should we estimate the prevalence
proportion in the city at large our best estimate would still be 0.005, but we would
know that another random sample may lead to a slightly different result due to
sampling variation, and we would take this sampling variation into consideration
when reporting. In reality, there would be many other sources of uncertainty than
just the random sampling, such as measurement errors and selection bias related to
invited people who did not come to the examination. All these uncertainties should
be included in our uncertainty interval. Unfortunately, we do not at present have
good tools to do that. A statistical estimate of 95% confidence limit will produce the
following result:

Pl,u = 0.0048,0.006

The exact interpretation of the confidence limits (CLs) may be debated, but one
interpretation is that 95 out of 100 CLs will include the true prevalence assuming all
sampling conditions are fulfilled.

In short, our estimate of the prevalence proportion (PP) is

PP = Everybody with the disease in a given population at a given point in time

Everybody in that population at that point in time

Incidence

In etiologic research we try to identify risk factors for disease occurrence and, in our
search for these risk factors, we normally take an interest in new (incident) cases.
We may, for example, like to know if the incidence of diabetes is increasing over
time or how much the incidence is higher in obese than in non-obese people. To
estimate incidence we need to observe the population we are going to study over
time. Assume that as a point of departure we use the population we studied before,
then after the initial screening we would have 10,000 – 50 = 9,950 people without
diabetes type 1. This is our population at risk; they are at risk of becoming incident
(new) cases of type 1 diabetes during follow-up. Being at risk for being diagnosed
with diabetes for the first time only means that the risk is not 0 (like it would be for
prevalent cases).

The task would now be to identify all new cases of type 1 diabetes during follow-
up in our population of 9,950 people. Ideally, we would examine everybody for
diabetes at regular and short intervals, but this is not really an option in larger
studies. We could, however, examine everybody at the end of follow-up and iden-
tify all new cases. If we have no loss to follow-up (no one died from other causes
than diabetes, and no one left our study group (our cohort)), we could then estimate
the cumulative incidence (an estimate of disease risk for a given follow-up time).
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Assume that we had a 5-year time period of follow-up with no loss to follow-up
and 10 new type 1 diabetes cases diagnosed at the examination at the end of follow-
up, our estimate of the cumulative incidence (CI) would be 10/9,950 = 0.001. That
would be our estimate of the disease risk in this population in a time period of
5 years.

Rates and Dynamic Populations

Since it is difficult to establish a fixed cohort to follow over time we usually study
dynamic (open) populations in which persons enter our study at different time peri-
ods and leave it again over time (die, or leave our study for other reasons). We
therefore have to use a measure that takes this variation in observation time into
consideration. We do it by estimating incidence rates (IR), new cases of diabetes
per time unit of observation (a measure of change in disease state as a function
of time – like speed measures the distance traveled per unit time). In the previous
cohort example we may assume we managed to follow up all 9,950 for 2 years. The
9,940 disease-free people each provide 2 observation years to our study, or 19,880
person-years, and if we assume that the 10 diseased on average provide 1 year of
observation time the IR would be 10/19,890 years = 0.0005 years–1 or 5 cases per
10,000 observation years. Again, this estimate would come with some uncertainty
especially since the number of cases is small.

Although it may be possible in a fixed cohort to follow all cohort members over
a shorter time period, it will not be possible for longer time periods. People will
leave the study area, some may die, and some will refuse to remain in the study.
These people are censored at the time they leave the study. All we know is that they
did not get the disease when we had them under observation. Whether they got the
disease after they were censored and before we ended the observation, we do not
know. If we exclude these people from the cohort we overestimate the cumulative
risk because we do not take into consideration their disease-free observation time.
If we include them and consider them not diseased, also for the time where we did
not have them under observation, we underestimate the risk if some got the disease
after the time of censoring and before we closed the observation. To take all the
observation time into consideration we have to use the incidence rate, although we
still face the problem that the censoring may not be independent of their disease risk.

In a study of a dynamic population we let participants enter and leave our study
at different points in time, as illustrated in Fig. 1.1.

In this population we have one person who gets the disease during follow-up
(person no. 6). We have four who were under observation the entire time period of
follow-up (1, 7, 9, 10). Four became members of the study group during follow-up
(moved into our city) (2, 5, 8), and four left our study group during follow-up (3, 4,
5; notice that 4 even left the study twice). The incidence rate (IR) is defined as

(all incident cases)/(all observation time in the population at risk that gave rise to the cases)
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C

C

C

D

Start of follow-up

D = disease
C = censored

End of follow-up

C

1

2

3

4

5

6

7

8

9

10

Fig. 1.1 Ten people provide the following information during follow-up

IR, in this case, is estimated by the average rate over 2 years and it would be

(1)/(2 + 1 + 0.5 + 1.0 + 0.5 + 0.5 + 2 + 1.5 + 2 + 2)years or 1/13 years or 0.077 years−1

Notice that incidence rates have a dimension, namely time–1, in this case years–1.
We could of course express the same rate in months = 1/(13 × 12) months = 0.0064
months–1, or in days, hours, or minutes for that matter. Cumulative incidence risk
(or our estimate of risk) is an estimate of a probability with a value from 0 to 1 or 0 to
100% and has no dimension (but must be understood in the context of a given time
period). We expect, for example, a smoker to have a cumulative incidence of lung
cancer of about 0.10 from when he starts smoking at the age of 20 and continues
smoking until he becomes 65 years of age. For a heavy smoker the CI may be close
to 20%.

Calculating incidence rates requires data on the onset of the disease, which may
not be known. As a surrogate the time of diagnosis is often used, or the time of
the first symptoms if these are unambiguous markers of the onset of the disease, but
often there are no clear early signs. When, for example, does autism begin? The first
symptom may have been present very early in life, but a diagnosis cannot be made
until the child has the opportunity to establish social contacts with others.

Incidence rates are measured as an average over a given time period (incidence
density) in order to get some observations to study, although a rate is often expressed
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at a given point in time in common language like the speed you read from a
speedometer in a car. If you drive 60 km/h it means that you drive at this speed
at this moment. Only if you continue with the speed (rate) for 1 h will you travel a
distance of 60 km.

Calculating Observation Time

Calculating observation time is a tedious job in large studies which is usually left for
a computer algorithm to determine after having been provided with the appropriate
dates of interest. You should, however, know what the algorithm is doing and check
for a sample of data that you get the observation times you want. Take, for example,
two women from a study on the use of antidepressive medication and subsequent
breast cancer. Assume all events take place on January 1, and then you may have
the data presented in Fig. 1.2.

born

30 years

(1985) E BC D

born 30 years

E (1995) C
(1985) (2002)

1965 1990 1995 2002 2004
1955 1985

(1990) (2002) (2004)

A

B

Fig. 1.2 Observation time
when using antidepressants
for two women. E =
exposure, starts medication;
BC = diagnosed with breast
cancer; D = dies; C =
censoring, dies in a traffic
accident

These two women (A, B) will contribute 12 + 17 years to the exposed cohort.
They would contribute to the exposed cohort within the age of 30–39 years with
10 + 7 years. If you consider that it would take a certain time period for an exposure
(the medicine) to cause a clinically recognized cancer (BC) and if you believe that
those who get breast cancer within a time period of 5 years after taking the drug
therefore have a different etiology (that they are not caused by the exposure) then
you would lag these results by allowing for 5 years of latency time. The observation
time would then be 7 + 12 years and 7 + 7 years for all and for those within 30–39
years of age, respectively.
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Prevalence, Incidence, Duration

The amount of water in a lake will be a function of the inflow of water (from rain, a
river, or other sources) and the outflow (evaporation, a canal, or other types of out-
put). The prevalence of a disease in a population will in like manner be a function of
the input (incidence) of new diseased and the output (cure or death). Schematically,
it will look like Fig. 1.3.

Input 

Incidence     

Output 

cure/death 

Prevalence

Fig. 1.3 Prevalence as a
function of incidence and
prevalence

In a time period where the incidence exceeds the rate of cure or death the preva-
lence will increase. If a cure for diabetes becomes available prevalence will decrease
if incidence remains unchanged.

Under steady-state conditions the prevalence is a function of the incidence (I) and
the duration of the disease (D). For a disease, such as diabetes type 1, the prevalence
will increase if the incidence is increasing or if the duration of the disease is increas-
ing. In many countries we see an increasing prevalence of diabetes and the reasons
could both be an increasing incidence (inflow) or a decreasing outflow (increasing
life expectancy in patients with diabetes). At least part of the increasing prevalence
is due to better treatment of patients with diabetes and thus a longer life expectancy
for these patients.

Under certain conditions (no change in incidence or disease duration over time,
no change in the age structure) an approximate formula for the link between
incidence and prevalence is

PP = IR × D

1 + IR × D
or PP/(1 − PP) = IR × D

PP = Prevalence proportion
IR = Incidence rate
D = Disease duration measured in the same time unit as the incidence rate
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Mortality and Life Expectancy

Mortality is an incidence measure. Mortality rates are incidence rates, the number of
deaths in a given population divided by the time period when we have had this popu-
lation under observation. When we estimate mortality rates we try to accept that the
question is not whether we die or not, but how old we become before we die. Under
steady-state conditions, the incidence rate (for deaths called mortality rates (MR))
will provide an estimate of the life expectancy by taking its reciprocal values 1/MR,
just like the expected disease-free time period is 1/IR under steady-state conditions
in a population with no other competing causes. Since this assumption is unrealistic
the reciprocal incidence rate is, rarely a good approximation to the average waiting
time to the onset of the disease or the life expectancy.

Disease-specific mortality is also an incidence measure, but rather than calcu-
lating all deaths in the numerator we only calculate deaths from specific diseases.
Those who die from other causes are censored; they are removed from the popula-
tion at risk. Some of these censored deaths may arise from non-independent events.
Dying from a stroke may, for example, share causes with death from coronary heart
disease.

If we have censored observations (meaning we have competing events that end
the observation before the onset of the disease itself) we often use the Kaplan–Meier
method to produce a survival curve, i.e., the probabilities of dying or surviving as a
function of time. Say we had a population of 10 people exposed to a deadly virus.
Six of them die from the virus and one dies from other causes (censored). We would
then stratify the table according to the time to the event, death, and could have the
results in Table 1.1.

When it is possible to stratify on all events at the points in time where these single
events happened, the probability of death is 1 divided by the population at risk at the
time when a death occurs. The probability of surviving is 1 minus the probability of
dying and the cumulative survival is the product of these probabilities of surviving.
The probability of surviving until day 20 is the probability of surviving to day 7 ×
day 8 × day 9 × day 10, etc. (1.0 × 0.90 × 0.89 × 0.86 × 0.83 × 0.80 × 0.75) =
0.34.

The Kaplan–Meier survival curve will look as in Fig. 1.4.

Time

Survival

7

1.0

20Fig. 1.4 Kaplan–Meier plot
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Table 1.1 Ten people followed for 20 days

Time since
exposure
in days

Population
at risk

Event
death/censoring

Probability
of death

Probability
of survival

Cumulative survival
Kaplan–Meier

Ti Ni Di Di/Ni 1 – (Di/Ni) S/t

0 10 0 1.0
7 10 Death 0.10 0.90 (1 × 0.90)
8 9 Death 0.11 0.89 0.80 = (1 × 0.90 ×

0.89)
10 8 Censoring
11 7 Death 0.14 0.86 0.68 = (1 × 0.90 ×

0.89 × 0.86)
15 6 Death 0.17 0.83 0.57 = (1 × 0.90 ×

0.89 × 0.86 ×
0.83)

18 5 Death 0.20 0.80 0.46 = (1 × 0.90 ×
0.89 × 0.86 ×
0.83 × 0.80)

20 4 Death 0.25 0.75 0.34 = (1 × 0.90 ×
0.89 × 0.86 ×
0.83 × 0.80 ×
0.75)

Notice that this method of estimating risks can also be used for events other
than death. If we studied patients with herpes zoster who take a new painkiller we
could estimate the probability of remaining in pain over time – cumulative survival
with pain. We can then calculate the probability of being relieved for the pain as
a function of time in the group of patients receiving one type of treatment versus
another type of treatment.

Case fatality is a cumulative incidence measure. It is the cumulative incidence
(or an estimate of the probability) of dying with a disease for people who have the
disease. Observation starts once the disease has been diagnosed and ends when the
patient dies. Assume you have 600 new cases of monkey pox in the Congo and 30
of them die within 6 months after the start of the infection, then the case fatality is
30/600 = 0.05 or 5%.

Life Expectancy

The usual way of calculating the life expectancy for a population in demography
is to run a simulation study. Let 100,000 babies be born and then apply existing
sex- and age-specific mortality rates to this fictitious birth cohort and see how old
they will be on average when they have all died in our computer simulation. This
life expectancy is therefore based on the present mortality experience and thus past
exposures. It is, therefore, not a prediction (or expectancy). It is only a prediction,
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or expectancy, if you assume age- and sex-specific mortality will not change over
time, but they have changed in the past; in fact, life expectancy has increased by 3
months every year for the past 160 years in some countries [3]. A better prediction
would take changes in life expectancy over time into consideration (and other types
of information as well).
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Chapter 2
Estimates of Associations

Incidence rates and prevalence proportions are used to describe the frequency of
diseases and health events in populations. They are also used to estimate an asso-
ciation between putative determinants, exposures, and a disease. Epidemiologists
often use the term exposures to describe a broad range of events, such as stress,
exposures to air pollution or occupational factors, habits of life (such as smoking),
social conditions (such as income), or static conditions (such as genetic factors).
The term, exposure, is thus used to describe all possible determinants of diseases.
We are interested in estimating if, and if so, how strongly these exposures are asso-
ciated with a disease (increase and decrease). We do that by comparing disease
frequencies in exposed and unexposed people.

In a simple situation we may observe exposed and unexposed people for a num-
ber of months (observation months), and we count newly diagnosed patients in that
time. If we assume complete follow-up for 1 year and obtain the data (N = the num-
ber of people being followed up, D = disease) of Table 2.1), then one measure of
association (under certain strong conditions an estimate of the effect of the exposure
for the disease under study) would be the relative risk, RR:

RR = 200/1,000

100/1,000
= 2.0; RR = CI+

CI−
The interpretation is that the estimated risk (CI, cumulative incidence) of getting

the disease in the year where we had all in the population under observation (no loss
to follow-up) was twice as high among the exposed as it was among the unexposed
and there could be many reasons for that.

Another measure of association is the incidence rate ratio (IRR):

Table 2.1 Follow-up study
with complete follow-up Exposure N D Observation years

+ 1,000 200 900
– 1,000 100 950

15J. Olsen et al., An Introduction to Epidemiology for Health Professionals,
Springer Series on Epidemiology and Health 1, DOI 10.1007/978-1-4419-1497-2_2,
C© Springer Science+Business Media, LLC 2010



16 2 Estimates of Associations

IRR = 200/900 years

100/950 years
= 2.01; IRR = IR+

IR−
With this measure we state that the incidence rate (IR) of developing the disease

per year (new cases per year of observation time among the population at risk) is
2.01 times higher for exposed than for unexposed. Note that this measure does not
require complete follow-up of the cohorts.

We may also take an interest in getting an absolute measure of the difference
in incidence among exposed compared with unexposed. The risk difference or
cumulative incidence difference will be obtained by subtracting the two cumulative
incidences (200/1,000 – 100/1,000) = 0.10. The rate difference will be (200/900
years – 100/950 years) = 0.117 years–1. Relative terms describe how many times
the incidence rates for unexposed is to be multiplied to obtain the incidence rate
among exposed. The differences provide estimates on an absolute scale. The risk
is increased by 10% and the average incidence rate per year is increased by 0.117
years–1.

Notice that these relative and absolute measures of association are purely descrip-
tive. They may, under certain conditions, estimate the effect of exposure, but unless
strict (and rare) conditions are fulfilled, the terminology should not promise more
than is justified. We are usually interested in effects, but we measure associations.
In fact, we are never able to measure effects, only to estimate them.

Usually we have incomplete follow-up even in a fixed cohort because some peo-
ple leave the study for a number of reasons. They may move out of the area we have
under observation (be censored), or they may die from a disease different from the
one we study (be censored). Imagine a small segment of our population follow this
pattern (D = the disease under study and C = censored observation). If we stop the
observation at t1, we may get the pattern seen in Fig. 2.1.

persons 

1 

2 

3 

4 

5 

C

D

D

t0
0.5 t

1 = 1 year 

C

Fig. 2.1 Observation time

We have two diseased in our population of five people, but only two of the five
were under observation for 1 year (1 and 5). An estimated CI of 2/5 = 0.40 may
be too low since 2 and 3 could become diseased after they left our study. A CI of
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2/3 = 0.66 would be too high – we did observe 2 and 3 for 6 months and they had
not been diagnosed with the disease of interest D up to that time. We can, however,
use all available information by estimating the incidence rate: 2/(1 + 0.5 + 0.5 +
0.5 + 1) years = 0.571 years–1.

Knowing the incidence rates makes it possible to calculate CI under certain
conditions by means of the exponential formula

CI = 1 − e−IR×�t

In this case we get 1 – e–0.571 = 0.435 (�t = 1), given the incidence rate is
constant over the time period (�t).

The risk of getting the disease over a period of 1 year is 43.5%, but this risk is
subject to substantial random variation due to small numbers.

Usually, the incidence rate will not be stable over time, especially if time is age.
In that case, we have to stratify the IRs over time intervals, �i, where they are prox-
imally constant, and the formula for using incidence rates to calculate risk becomes

CI = 1 − e−�iIRi×�i

If the disease is rare, like most cancers, the CI is close to �iIRi × �i. The risk
of getting lung cancer if you live to be 70 is approximately equal to the sum of
incidence rates for the age groups 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, and
60–69, multiplied by 10 for these age intervals.

For males (and females) the incidence rates of most cancers are close to 0 up
to the age of 30. Let us then say the incidence rates of lung cancer for males per
100,000 observation years are: 0 (0–29), 0.1 (30–39), 0.8 (40–49), 1.2 (50–59), and
3.5 (60–69). The cumulative incidence rates up to age 70 would then be: 0.1 × 10
+ 0.8 × 10 + 1.2 × 10 + 3.5 × 10 per 100,000 years = 56 per 100,000 observa-
tion years, rather close to CI = 1 – e [(0.1 × 10 + 0.8 × 10 + 1.2 × 10 + 3.5 ×
10)/100,000]:

CI = 0.0005598 or 55.98 per 100,000 observation years

Incidence rates and incidence rate ratios are what we normally have to measure
since we rarely have the opportunity to follow a closed population over time with
no censoring, and rates may often be the measure of choice.



Chapter 3
Age Standardization

When we compare disease occurrence between populations in order to estimate
effects we would like to take into consideration as many factors as possible that may
explain the difference except the exposure under study and its consequences. We
try to approach an unachievable counterfactual ideal by asking the question: What
would the disease occurrence have been had they not been exposed? In descrip-
tive presentations the aim is less ambitious, but it is common practice in routine
statistical tables to make comparisons that are at least age and sex adjusted.

Most diseases and causes of death vary with age and sex; thus crude incidence
and mortality rates should often not be compared unless the underlying age and sex
structures in the populations are similar. Age is a time clock that starts at birth
and correlates with biological changes over time and cumulative environmental
exposures. Therefore, most diseases are strongly age dependent. By adjusting for
age by using age standardization we may, to some extent, take age difference into
consideration (Table 3.1).

Table 3.1 Mortality in Greenland and Denmark. Males 1975

Greenland Denmark

Age
year

Death
Di

Observation
years

Death
per 1,000

Death
Di

Observation
years

Death
per 1,000

Ratio
Denmark/
Greenland

<1 26 429 60.6 434 35,625 12.2 5.0
1–4 4 2,044 2.0 101 1,49,186 0.7 2.9
5–14 11 7,194 1.5 175 4,01,597 0.4 3.7
15–44 37 13,572 2.7 1,494 1,076,842 1.4 1.9
45–64 35 2,949 11.9 6,166 5,52,133 11.2 1.1
65+ 47 640 73.4 19,204 2,88,834 66.5 1.1

Total 160 26,828 6.0 27,574 2,504,217 11.0 0.55

The crude overall mortality rate is seen to be higher in Denmark than in
Greenland (11 and 6 per 1,000) in spite of the fact that all age-specific mortality
rates are higher in Greenland (from 1.1 to 5.0 times higher). The explanation for this
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is that the population in Greenland is much younger than the population in Denmark
and mortality rates increase with age: The comparison is confounded by age. The
crude relative mortality rate 6/11 = 0.55 reflects both differences in mortality rates
and differences in age structure. In this case the differences in age structure and age-
specific mortality rates are so large that even the direction of association is wrong.
It is, however, a fact that only 6 males per 1,000 in Greenland died in 1975 while 11
per 1,000 died in Denmark. The risk of dying was higher in Denmark because the
population was much older than in Greenland, not because the life expectancy was
shorter in Denmark than in Greenland; in fact, life expectancy was and is longer in
Denmark than in Greenland for both males and females.

The crude mortality rate is a weighted average of age-specific mortality rates
(MR) as shown in Table 3.2. The weights (wi) are the proportions of people within
the age categories. The comparison of crude rates is age confounded because these
age-specific weights differ in the two populations.

Table 3.2 Structure of the crude mortality ratio

Greenland Denmark

Age year wi MR Sum wi MR �

<1 429/26,828 = 0.016 X 60.6 = 0.970 0.014 X 12.2 = 0.174
1–4 2,044/26,828 = 0.076 X 2.0 = 0.152 0.060 X 0.7 = 0.042
5–14 7,194/26,828 = 0.268 X 1.5 = 0.402 0.160 X 0.4 = 0.064
15–44 13,572/26,828 = 0.506 X 2.7 = 1.366 0.430 X 1.4 = 0.602
45–64 2,949/26,828 = 0.110 X 11.9 = 1.308 0.220 X 11.2 = 2.469
65+ 640/26,828 = 0.024 X 73.4 = 1.751 0.115 66.5 = 7.670

Total 1.0 6.0 1.0 11.0

When we age standardize we should use the same set of age-specific weights in
the comparison and we will use that as our definition of age standardization.

If we use an external set of weights – similar to using an age distribution in a
fictitious model population – the standardization is called direct standardization. If
we use one of the two sets of weights for the populations we want to compare we
call the standardization indirect, although this terminology is not very informative.
What is important is that data are age standardized if the age-specific mortality rates
we compare are weighted by the same set of weights. There are different weights to
select from and this choice should be made with care. Unless the relative mortality
rates are the same in all age groups, the selection of weight will affect the result
we get.

To illustrate what is done in indirect standardization, have a look at Table 3.3.
In this table, we take the observed number of deaths in the population of

Greenland (160) and estimate how many deaths we would have expected had they
had the same age-specific mortality as in Denmark. We simply take the age-specific
mortality rates from Denmark and apply these to the observation time we have in
each age group in Greenland (12.2 × 429 + 0.7 × 2,044 + 0.4 × 7,194 + 1.4 ×
13,572 + 11.2 × 2,949 + 66.5 × 640)/1,000 = 104.1. By doing that we find an
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Table 3.3 Indirect standardization using data from Table 3.1

Denmark Greenland

Age
Mortality rate per 1,000
observation years

Observation
years

Observed
number of deaths

Expected number
of deathsa

<1 year 12.2 429 26 5.2
1–4 0.7 2,044 4 1.4
5–14 0.4 7,194 11 2.9
15–44 1.4 13,572 37 19.0
45–64 11.2 2,949 35 33.0
65+ 66.5 640 47 42.6
Total 11.0 26,828 160 104.1

aIf they had the same mortality rates as in the Danish population.

expected number of deaths of 104.1 and the standardized mortality ratio (SMR) is
therefore the observed number of deaths divided by the number multiplied by 100
to produce a percent:

SMR = 160

104.1
×100 = 154

or, the mortality rate is on average 54% higher in Greenland than in Denmark. The
weights are based on the age structure in Greenland for both the observed and the
expected number of deaths, and the rates are therefore age standardized according
to our definition. Notice that the SMR depends on which set of weights we use
since the age-specific mortality rate ratios vary largely with age. They are especially
higher in Greenland than in Denmark among the young and by selecting the pop-
ulation in Greenland we give more weight to the young. The SMR is an average
measure given these conditions but it does not provide all the available informa-
tion on mortality risks in the two populations. Important information is given in the
age-specific rates. In fact, it would be misleading just to present the SMR value. It
does not provide all the information we have available; the SMR is not a sufficient
statistic.

It should also be noted that none of these comparisons take forces of selection
into consideration. Since mortality is higher in Greenland, the older Greenlanders
become, the more selected they will be. That is true in both populations, but more so
in Greenland. For this reason we underestimate the mortality rates among the oldest
in Greenland when we make comparisons with Denmark since this comparison is
probably confounded by genetic factors; the oldest Greenlanders are less genetically
frail than their Danish age-matched counterparts. They survived stronger forces of
selection than were present in Denmark at that time.



Chapter 4
Causes of Diseases

Measures of associations remind us that diseases are not random events but results
of the interplay between genes and environmental factors. We are therefore able to
prevent a number of diseases, or at least to delay their time of onset by reducing the
causes that are reducible. If we could convince smokers to stop smoking, provide
basic health care to all, make the inactive be more physically active, reduce air
pollution, eliminate the most dangerous occupational exposures, encourage people
on an unhealthy diet to eat more fruit and vegetables, and make the poor more
wealthy, we could prolong life substantially for many people. If we only did this by
taking away exposures that people like, many would feel life was prolonged even if
it was not and that is not our aim. In public health and clinical medicine we try to
add life to years as well as years to life.

Although we have established a large number of disease determinants, our pre-
dictions of disease occurrence in the future are uncertain. They are like weather
forecasts. They are better than predictions based on pure guesses, but they are often
wrong. They are better over shorter than over longer time periods. But why are they
so uncertain?

If we know the causes of a disease, why can we not be certain of their time of
onset? The answers to this question are important and have been subject to much
debate that is outside the scope of this book, but in short: Even if we know all
causes of diseases, which we do not, we do not know if these causes will be present
in the future, and even if we knew the causes there need not be a deterministic
link between the cause and the effect, and that is in conflict with a common sense
concept of causation. If we press the switch the light is on. Should that not happen,
we would check if the power supply is functioning, if the light bulb is intact, etc.
We do not believe the light failed because of chance (but chance is an explanation
we frequently rely upon in epidemiology).

Our common sense concept of causation will tell us that given all these condi-
tions are in place the light will be on when we press the switch. Although there is
a sequence of causes, the sequence is deterministic. If the electrician we asked to
repair the light said the light did not work because of bad luck we would call another
electrician. In disease causation we do not have many examples of sequences of a
deterministic link between the exposures and the disease. Whether there is a random
element in disease causation or not is not known and may never be known because
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most diseases have many causes. What we do know is that associations appear to be
probabilistic.

We would be most disappointed if the electrician we called to fix the light came
up with a statement like: “if you press the switch sometimes the light is on, but
sometimes it is not, and it may take years to happen and sometimes the light will
be on even though nobody turned on the switch.” This is, however, the kind of
explanation we often have to offer in health promotion and disease prevention. We
thus have to be more precise in explaining what we are talking about when we talk
about disease causation because we are in conflict with commonsense concepts. Our
prediction will always be uncertain because diseases have many causes and these
causes may interplay in settings that may or may not be present at the time they
can activate an onset of a disease. Our present understanding illustrates a substantial
complexity in causation of many diseases.

Mackie elegantly illustrated how we can understand this uncertainty while main-
taining our common concept of causation in his papers from the 1960s and 1970s
and his landmark book from 1974 [1]. He showed how causes sometimes may acti-
vate an effect and sometimes may not, why causes appear to be probabilistic. Hume
discussed causes in a global (“strong”) sense as necessary and sufficient. Let us
begin by explaining these global concepts.

Let E be the cause and D its effect, the disease, then the E → D path illustrates
that when we have an exposure, E, we get a disease, D, and if we have D it was
always preceded by E. We do not have many examples of causation in medicine that
follow this pattern. The necessary part of this definition is defined by this diagram:

a necessary cause:

E D

If you have the disease the cause, E, was present at some point in time before
the onset of the disease, but the cause need not lead to the disease. The examples
we know from the medical literature that follow this pattern usually stem from dis-
eases where we have defined the disease to include the cause(s) (AIDS includes
HIV infections in the definition, FAS (fetal alcohol syndrome) includes prenatal
alcohol exposure in the definition, etc.). HIV and alcohol exposure become neces-
sary causes according to this method of defining a disease. We have used a circular
argument to make our case. That is not the same as saying we are wrong but just
states that it could be wrong and we could still have generated a link that would
fulfill the causal criteria. If you define a post-Christmas depression as a depression
that follows 2 weeks after Christmas it does not mean Christmas is causing depres-
sion (although it could be the case). It would follow the diagram because it only
illustrates a sequence of events. Depressions occur throughout the year and some
will happen in the 2 weeks following Christmas due to chance alone. If we include a
certain gene mutation in our definition of a given disease, then the mutation becomes
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a necessary “cause” of the disease whether it has anything to do with the disease
or not.

A sufficient cause is a cause that is always followed by the disease, but the disease
may have other causes as well:

E D

We have only few such examples, but a lack of iron or vitamin B in the diet
(E) and anemia (D) could be such causes. A necessary and sufficient cause is
illustrated by

E → D

and here examples are few, if any. An exception might be single-gene disorders
where the disease almost always follows the presence of the “mutation” like for
PKU, cystic fibrosis, or sickle cell disease.

In fact, most of the causes we study seem to follow a pattern like this:

E D

Sometimes D follows E, but not always, and sometimes D is seen for people not
exposed to E.

Mackie showed that if we imagine causes acting together in concert (in what he
called causal fields), the individual causes would follow a probabilistic pattern in
populations that are characterized by the frequency of the other causes in the causal
field (called component causes). At least four causes are needed to generate a pattern
where none of these four causes (E1–E4) are necessary or sufficient in the “strong”
global sense. If we imagine that we have two causal fields leading to the disease,
the diagram describing the situations where none of the singular causes need to be
necessary or sufficient in themselves is presented in Fig. 4.1.

E1 (or E3) will only lead to D in the presence of E2 (or E4) and the strength of
the association between E1 (and E3) and D will depend on the frequency of E2 (and
E4) in the population we study.

Causal field 1 (E1, E2) is sufficient, but not necessary (the same for causal field 2
(E3 and E4)). Causation follows the so-called INUS principles: Component causes
are insufficient in themselves (require other component causes in the causal field).
They are necessary within the causal field (but not in a global sense). Causal fields
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1. 

D 

2.

E1 

E2 

E3 

E4 

Fig. 4.1 Four component
causes, two causal fields

are unnecessary (because there are other causal fields), but they are sufficient (if
they are complete).

This causal model is a useful working model in epidemiology whether it is actu-
ally true or not. Our criterion for usefulness is related to whether it fits observations
and explains phenomena we observe or whether it inspires new studies. It explains,
for example, that there are many different approaches in disease prevention. We may
prevent D entirely if we eliminate one cause in each of the described causal fields
(we need not eliminate all four). If causal field 2 accounts for 90% of the diseased,
eliminating E3 (or E4) would reduce disease occurrence by 90% (E1 or E2 by 10%).
There is no reason to assume that causes sum up to 100%, which follows from the
fact that component causes have to operate together to produce an effect.

Very similar ideas on causation were independently developed by Kenneth
Rothman and elegantly presented in his widely cited paper from 1976 (reprinted
in 2004) [2].

The causal field model also explains the time lag between the onset of exposure
and the disease (there is no time lag between the causal field and D, or between
Hume’s strong causes and their effects). The time from onset of, say, E1 to D will
be the time until the onset of E2 (induction time) and the time from completion of
the causal field (the start of the biological process) and until D surfaces to clinical
detection (latency time) [2].

Causal fields will often be much more complicated than those presented here,
and the causes need not operate at the same point in time or the same sequence
in time. In most cases, causes probably act in complicated sequences in time. Cell
modifications leading to cancer may require several steps to onset a disease, and
several causes could operate during this time period. Many observations indicate
that diseases should be seen in a life course perspective where different determinants
(causal fields) play a role at different stages of life.

The model explains how smoking can be a cause of lung cancer, although not all
smokers get lung cancer (in fact, only about 10%) and some get lung cancer without
having been a smoker (about 1%). Smoking acts in combination with other causes
(genetic factors, other external carcinogens) and smoking is not present in all the
causal fields leading to lung cancer. We can tell the smoker that his average lifetime
risk is 10% for getting lung cancer. If a smoker has a family history of lung cancer
or if he is also exposed to air pollution or asbestos his risk is higher. Certain genetic
factors will also put him at a higher risk, but the risk will still be far from 1.
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Many smokers will live long lives and die from other causes than lung cancer.
This is well in concordance with the fact that smoking causes lung cancer but only
conditionally with other component causes or that the induction and latency time
period may be longer than for other causes that lead to death.

It may also be of interest to note that if everyone in a population smoked 20
cigarettes per day, lung cancer might appear as a predominantly genetic disease, pos-
sibly determined by the genes that are involved in removing carcinogens in tobacco
smoke from the lungs. Epidemiologists have to use variations in exposures to exam-
ine causes. If there is no variation, we have no comparable information (information
on health outcomes among the unexposed). In fact, we have no one without any
exposure to environmental tobacco smoke, air pollution, saturated fat, etc., at least
no adult people, but we do have a variation in the levels of these exposures that
allows us to compare the heavily exposed with the less exposed.

The usual pattern of disease occurrence is more like what is presented in
Table 4.1.

Table 4.1 A component
cause Exposure Disease No disease All

+ 100 900 1,000
– 10 990 1,000

And not like in Table 4.2 (a necessary cause in the strong Hume sense).

Table 4.2 A necessary cause
Exposure Disease No disease

+ 100 900
– 0 1,000

Nor like in Table 4.3 (a sufficient cause in the strong Hume sense).

Table 4.3 A sufficient cause
Exposure Disease No disease

+ 1,000 0
– 10 1,000

And usually the associations between exposures and diseases are much smaller
than seen in Table 4.1.

When epidemiologists talk about causes of diseases, they usually think about all
the factors that increase or decrease the occurrence of diseases whether they are
removable or not. Causes therefore include genetic factors as well as exposure to,
e.g., a carcinogenic exposure. Philosophers may say that the cause of fire was the
lighting of a match and not the presence of wood. Public health workers tend to
focus on avoidable causes which would include both the removing of the wood as
well as being careful with matches. If removing the wood would have prevented
the fire that cause is as good as any other cause. We know that some ethnic groups
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have a higher incidence of prostate cancer than other ethnic groups. This is useful
information in preventive medicine if it helps in identifying preventable causes of
prostate cancer. There could, for example, be lifestyle factors or dietary habits that
differ among ethnic groups. If it is entirely related to genetic factors we may recom-
mend screening for prostate cancer in the ethnic group with a high risk if we have a
useful screening test.

In conclusion, the component causal models explain some of the anomalies that
are in conflict with common sense concepts such as (1) Why are causes not all-or-
none effects? The reason is that events have more than one cause and the causal
field has to be completed to onset an event. (2) Why do we see delayed effects?
The delayed effects come from the time it takes from onset of the exposure until
the other component causes in the causal field are in place (induction time) and
the time it takes from completion of the causal field until the disease reaches a
stage where it is detectable (latency time). (3) How can we understand strength
of association? The strength of association depends more on the occurrence of the
other component causes leading to a disease. If these other component causes are
frequent in the population the strength of association is high; if they are rare the
strength of association is low.
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Chapter 5
Descriptive Epidemiology in Public Health

Data on incidence and prevalence of diseases are needed to characterize the health
of a population. Public health organizations oversee these efforts. The public health
staff need to have a community diagnosis to set priorities. The key to this diagnosis
is incidence and prevalence of diseases and the occurrence of risk factors in the
population.

We need to monitor incidence data over time to identify changes in their occur-
rence. If the incidence is increasing and we know the causes and know how to avoid
them, prevention strategies may be applied.

Comparisons of incidences between different areas have been used with great
success to generate hypotheses on the etiology of diseases, and cancer rates vary,
for example, largely between different geographical areas. Part of the reason for
a variation could be a difference in genetic causes, but studies also show a large
variation between similar ethnic groups or within an ethnic group where one part
migrates from one country to another. For example, Japanese people have low inci-
dence rates of colon cancer in Japan, but these rates increase after some time for
those who move to high-risk areas, such as the USA. Rapid changes over time within
the same population are usually not driven by genetic factors, although they could
have a genetic component such as gene expressions depending on environmental
exposures. Several observations indicate that the association between obesity and
diabetes differs largely between ethnic groups, probably due to genetic factors that
are activated under certain lifestyle conditions.

Table 5.1 shows direct age standardized incidence rates (in this case standardized
by applying the study rate to a common set of age-specific weights (world popula-
tion)) and incidences of the cancers. Some of these cancers show large variations,
e.g., for prostate cancer. Other cancers have much less geographical variation, e.g.,
leukemia.

Descriptive data are also used to demonstrate social differences in diseases and
mortality. In the UK, e.g., occupational mortality tables have been produced for
more than a century. From the offices of Population Census and Surveys causes of
death are displayed according to occupational and social groups [2].

Table 5.2 shows cumulative incidence of symptoms of food poisoning 24 h after
having eaten the indicated food items. Due to tradition, these cumulative incidence
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Table 5.1 Rates standardized to world population,a per 1,00,000 per annum [1]

Stomach Lung Leukemia Prostate All sites Breast
Cervix
uteri

Population Male Male Male Male Male Female Female Female

Cali, Colombia 57.5 17.5 5.2 23.2 (25.25) 27.3 75.6 (25.75)
Alameda county 24.4 43.8 8.3 65.3 (26.51) 38.6 30.5 (18.78)
Birmingham, UK 25.2 73.3 5.3 18.4 (26.00) 51.1 13.6 (19.50)
Japan, Miyagi

prefecture
95.3 15.6 4.4 3.2 (21.51) 11.0 20.6 (15.04)

aRates taken from Cancer Incidence in Five Continents, Vol. II.

Table 5.2 Differences in food-specific attack rates in an outbreak of food-borne illness [3]

Persons who ate specified
food

Persons who did not eat
specified food

Ill Well Total
Attack
rate (%) Ill Well Total

Attack
rate (%)

Difference
in attack
rates

Shrimp salad 8 4 12 67 15 21 36 42 +25
Olives 19 13 32 59 5 13 18 28 +31
Fried chicken 10 33 43 23 4 2 6 67 –44
Barbecued

chicken
17 1 18 94 3 27 30 10 +84

Baked beans 12 13 25 48 12 10 22 55 –7
Potato salad 17 20 37 46 8 6 14 57 –11
Macaroni salad 9 15 24 38 15 10 25 60 –22
Root beer 23 23 46 50 0 2 2 0 +50
Bread 8 9 17 47 18 13 31 58 –11
Neapolitan

cream pie
1 2 3 33 21 21 42 50 –17

proportions (risks) are called attack rates and differences in attack rates are used
to generate hypotheses of specific food items that should be further investigated (in
this case, for example, barbecued chicken).

The World Health Organization has produced papers on the global burden of
diseases to remind us of how unequally health is distributed in the world and how
closely many of our health indicators correlate with poverty [4] (Fig. 5.1).

The public health worker needs to be familiar with more measures of disease
occurrence and the relation between these measures. Often, they will have to work
with secondary data that only approximate the information needed to make exact
calculations. They should know when these approximations are good enough for
the purpose at hand and when they are not.

In public health it is furthermore often useful to estimate the proportion of the
diseased that could be avoided if we eliminate the exposure, the attributable frac-
tion. If the exposure is a “strong” necessary cause for the disease the calculation is
simple since there will be no cases if we eliminate the exposure. We have no cases
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Fig. 5.1 Projected crude death rates per 100,000 by World Bank income groups for all ages, 2005
and 2015 [5]

of smallpox because the smallpox virus has been eradicated, at least outside a few
laboratories. In most other instances, the situation is more complicated. Assume we
have a fixed cohort like in Table 5.3.

Table 5.3 Obesity and fetal
death

Obesity N
Fetal
deaths RR

Yes 1,000 20
No 2,000 20 2.00

We could then ask ourselves how many of the 20 fetal deaths could be avoided
had the pregnant women not been obese. Unfortunately, we have no way of know-
ing that. They were obese and cannot be both obese and not obese in the same
pregnancy. That is why the argument is contrary to facts – contrafactual (we cannot
roll back the film and let them go through the same pregnancy without their obesity).
We can, however, imagine or predict what would have occurred if they had not been
obese.

What we can do is to assume that the non-obese provide an estimate of what
would be the risk for the obese had they not been obese – that is a very strong
assumption and most likely wrong to some extent. Given we make that assumption
we calculate that 20/2,000 × 1,000 = 10 fetal deaths would be expected among the
obese had they not been obese. The attributable fraction among exposed would be
that 10 out of 20 cases could be prevented ((20 – 10)/20 = 0.50 or 50%. If we spell
out how we calculated that number, it becomes
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(CI+ − CI−)1,000

CI+ × 1,000
= CI+ − CI−

CI+
and if you divide by the CI– you get

RR − 1

RR

CI = cumulative incidence; RR = relative risk.
The attributable fraction in the entire population would be 10/40 = 0.25 or 25%;

that can be calculated as

All exposed cases(RR − 1/RR)

All cases
= 20(RR − 1/RR)

40
= 0.25

In this population, we estimate that it would be possible to prevent 25% (10 out of
40) of all fetal deaths if we could get all obese to become normal weighted. Notice
that the attributable fraction in the population depends on the RR and the exposure
distribution in the population.

These calculations are meaningless and misleading unless we are confident that
the associations are causal. There could be a common etiology to obesity and fetal
death or there could be bias or other types of confounding that were not controlled in
the analysis. Attributable fractions are not measures to be used unless there is strong
evidence from many sources pointing toward causal links between the exposure
and the outcome. Obesity and fetal death is not yet a good candidate for calcu-
lating “attributable fractions,” although it has been done. We need to know much
more about this association before it becomes a candidate for this particular type of
measure.

In some textbooks you find the term etiologic fraction to mean the same as
“attributable fraction.” Some use the term etiologic fraction to mean the fraction
of people that had the disease because of the exposure. We need a causal concept
to understand the meaning of such a term. In our component causal model all com-
ponent causes in a causal field are necessary causes within this field, but we can
define the last component cause (if it is known), the one that onsets the disease, as
the cause of interest for the etiologic fraction. Notice that if the causal field consists
of stationary genetic factors and an external toxic exposure that onsets the disease,
we can emphasize this cause as we did when we said the fire was not caused by the
presence of wood but by the lighting of a match.

In this understanding, the etiologic fractions need not be of the same magnitude
as the attributable fraction. One can also imagine that the attributable fraction is 0
and the etiologic fraction is greater than 0. Assume an aggressive smoking cessation
program that works for some smokers but makes other smokers continue smoking
although they were prepared to quit the habit. If both groups are of equal size the
attributable fraction of the smoking cessation program could be 0 and the etiologic
fraction is represented by those who quit smoking because of the program. Notice,
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however, that it makes little sense to talk about the cause of a disease when several
component causes are in the field leading to the disease. They are all necessary
causes in that causal field.

Graphical Models of Causal Links

Over the years epidemiologists have used graphical presentations of the exposures,
confounders, and diseases they study. More formal rules for depicting these dia-
grams have been presented [6] and especially the directed acyclic graphs (DAGs)
play an increasingly important role in setting up the strategy for selecting variables
to be collected and for selecting the appropriate way to analyze data. The causal
links in the DAG are directed by arrows. It is acyclic since no directed paths form a
closed loop. Not all causes need to be in a DAG, but if two or more variables share
the same cause then this “parent” of the two variables should be in the DAG. A
much simplified DAG on the link between air pollution and asthma could look like
this [6]:

Sex Air pollution 

 Bronchial reaction 

 Asthma  Asthma treatment 

This diagram indicates that there is a direct link between treatment and asthma.
There are two alternative paths (back-door paths) from air pollution to asthma via
bronchial reaction, or via bronchial reaction and sex. These back-door paths need
to be controlled. We furthermore notice that if we control bronchial reaction we
open another back-door path via air pollution to sex and asthma. We call bronchial
reaction a collider in the path between air pollution and sex. Since both arrows point
toward bronchial reaction we would establish a link between air pollution and sex
since they are both causes of this bronchial reaction. A collider can therefore lead
to a misleading result if it is included improperly in the analysis. The DAG tells us
we should not just include all potential confounders in our analysis.

A simpler description of a collider could be presented by the below diagram.

We would expect no link between candidate genes for asthma and socioeco-
nomic status since genes are allocated in a randomized way at conception according
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Gene variants 
Socioeconomic

Status (SES) 

Asthma 

to Mendel’s laws. Among children with asthma you would expect an association
between these genetic factors and SES according to this diagram. Good social
conditions may lead to asthma as well as certain genetic factors; therefore these
two variables become associated in children with asthma (and to a lesser extent in
children without asthma).

An intermediate factor is in the causal pathway from the exposure to the end
point under study and should not be controlled in the analysis.

The causal links between a high fat diet and coronary heart diseases (CHD) could
be like this:

High fat diet → high se-cholesterol → CHD

Including se-cholesterol would eliminate the caused association we take an
interest in. If the association is like this:

CHD High fat diet

High se-cholesterol 

Genetic factors 

including se-cholesterol would open a back-door path from diet to genetic factors
and CHD that cannot be controlled unless the genetic factors are measured and
included in the model. Se-cholesterol is a collider between diet and genetic factors.
Had there been no link from genetic factors to CHD, controlling for se-cholesterol
would estimate the unbroken link from diet to CHD.

DAGs have been a useful tool to clarify and communicate ideas and hypothesis.
It is a tool to make predictions that can be tested and the diagram shows you how to
analyze your data. It is useful not only when a strategy for confounder adjustment is
discussed, but also for identifying selection and information bias. The drawback is
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that DAGs become very complicated in many real-life situations because the causal
structure is often complicated. Many variables are often measured by proxies (or
instrumental) variables. We may be interested in the cumulative exposure to specific
components of air pollution, but we may only have general data on the air quality
in the area where people live, for example. The use of instrumental variables adds
to the complexity of the DAG just as including forces of selection that keep eligible
people out of the study tends to make DAG difficult to interpret.

For more information on DAG the reader is referred to Chapter 12 in Rothman
et al. (2008) [7].
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Chapter 6
Descriptive Epidemiology in Genetic
Epidemiology

Occurrence Data in Genetic Epidemiology

Genetics has come to play an increasingly important role in studies of health and
disease driven both by new technologies that enable these studies (chromosome
analysis, DNA sequencing, genotyping) and by our recognition of the key role of
genes and genetic variation in disease causation. Humans have 23 pairs of chro-
mosomes made up of some 3 billion nucleotides (A, C, G, and T) of DNA. There
are over 20,000 genes scattered across the human chromosomes, most containing in
their DNA sequences the information for the amino acid sequence and time/place
of expression of a particular protein. We receive one chromosome (and one copy of
each of the genes on that chromosome) from our mother and one from our father.
Variation in the DNA sequence can result in different alleles or forms of the gene
and these individual differences are inherited according to Mendel’s laws of trans-
mission resulting in dominant, recessive, or X-linked forms of inheritance. This vari-
ation in the DNA sequence is found about once in every 1,000 nucleotides and as of
this writing more than 5 million of these variants are well characterized. The varia-
tion occurs in two common forms. The most common and studied are SNPs or single
nucleotide polymorphisms – changes in a single DNA nucleotide at a single position
(A for G, for example) that are easy to characterize and enumerate. Since we have
two copies of each chromosome, one from each parent (and each gene on those chro-
mosomes), we can define a genotype as the type of each of the two possible variants
we might have (AA, AG, or GG for an A/G containing SNP). Technology allows the
assay of anywhere from one to one million of these per person very cost effectively.
The second common form of variation is CNVs or copy number variants where
long segments of DNA may be present in zero to many copies. When these seg-
ments include genes they can result in the absence of a gene product (if both parents
contribute zero copies) to a many-fold increase above the average amount of gene
product if multiple gene copies are present. CNVs, while clearly of great biological
importance, present more challenges in analysis and are less well characterized than
SNPs as of this writing and so we will use SNPs in most examples to follow.

Many traits – from health outcomes to behavior and wealth – have a tendency
to run in families. Families share not only environmental factors (including social
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factors), but also genetic factors. Epidemiologists have traditionally looked for envi-
ronmental causes for variations in health outcomes, while geneticists have focused
on genetic factors of importance for health. The interaction between these two
research traditions has been surprisingly slow in emerging (the International Genetic
Epidemiology Society was founded in 1991), although many researchers in both
areas agree that the determinants of most health outcomes are to be found in the
interaction between genes and environment. Not only are both genes and environ-
ment etiological factors (component causes in the causal fields), but, in addition, the
effect of an environmental factor often depends on the genetic background on which
it acts, and vice versa.

Genetic factors play a central role in a broad range of monogenic diseases (i.e.,
diseases caused by mutation in one gene and inherited by Mendel’s laws) from cystic
fibrosis to Huntington’s disease and early-onset dementia. Most common diseases
(as well as most common traits like height or eye color), however, are not mono-
genic, but are more likely to be influenced by a large number of environmental
and genetic factors and their interactions. The technical development and dramatic
decline in cost have allowed genetic analyses on a minimal amount of biological
material, e.g., millions of genotypes (the genetic constitutions of the individual) can
be generated from a saliva sample or a dry spot of blood. This has been instrumen-
tal in being able to incorporate genetic information into large-scale epidemiological
studies.

In genetic epidemiology it is studied if, how, and why some health outcomes
cluster in families, so some central questions are as follows:

• Does the trait or disease under study cluster in families?
• Are there combinations of diseases that cluster in families?
• If so, what is the relative influence of genetic and environmental factors?
• What are the specific genetic variants and environmental factors influencing the

trait or disease?
• How do the environmental and genetic factors interact?

In answering these questions genetic epidemiology encounters challenges known
from both epidemiology and genetics like heterogeneity in clinical presentation and
etiology: The same disease can have a broad clinical spectrum, and the same clini-
cal features can have very different etiologies. As in other epidemiological studies
it is critical that there are well-defined criteria for the disease or trait under study.
Furthermore, if possible, genotyping should be done without knowledge of the dis-
ease and phenotyping without information on genotypes (blinding) because both the
genotyping and the phenotyping come with some measurement errors.

Clustering of Traits and Diseases in Families

There are a number of obstacles in determining the degree of familial clustering
of a disease, in particular for diseases with manifestation late in life (e.g., demen-
tia). Many family members will be too young to be at risk of having the disease,
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whereas others die before the typical time of diagnosis. Furthermore, in studies
where the participant needs to return a questionnaire and participate in interviews
about family occurrence, there is a risk that families with several affected members
are more likely to participate or be detected because these families may be particu-
larly interested in studies of familial clustering of this disease. Studies of conditions
or diseases which are diagnosed early in life, and for which population-based reli-
able register information exists, are less vulnerable to such biases, although they are
subject to Berkson’s bias (p. 131) if you study associations between diseases in the
same person. Clusters also occur by chance, and diseases will cluster in some fam-
ilies due to chance alone. The key occurrence measure of familial clustering is the
recurrence rate for different degrees of relatives to the index case, i.e., the case that
brings the family into the study. As indicated in Fig. 6.1 such recurrence risks will
be compared with the overall population frequency in the population from which
the cases were ascertained.

Risk in %
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Fig. 6.1 Recurrence risk for relatives of an index case with cleft lip and palate [1]

The risk for the relatives is given for “zero”-degree relatives, i.e., the co-twin
to a monozygotic twin (MZ) with cleft lip and palate, and similarly for first-degree
relatives (sibs including dizygotic twins (DZ), parents, and children), second-degree
relatives (grandparents, uncles, nieces, half-sibs), and third-degree relatives (e.g.,
cousins). GP indicates the risk in the general population. The risk for a first-degree
relative (4%) is 40 times the risk for a random person in the general population
(0.1%).

The recurrence risk is of interest in the clinical setting where questions are asked
such as: “I have a brother with cleft lip and palate. What is the risk that my child will
have the disease?” This kind of question is classic in traditional genetic counseling
for monogenic diseases but also of importance for multifactorial diseases which
cluster in families. The recurrence risk pattern can also provide information about
the effect of genes: whether they act additively or multiplicatively, and how big an
effect a single gene is expected to have.
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The Occurrence of Genetic Diseases

Genetic disease can be used to describe a broad range of disorders from those caused
by chromosome abnormalities or single-gene disruptions to complex multifactorial
conditions resulting from the interplay of multiple genes and environmental factors.
Single-gene disorders have a long history in public health and genetic epidemiol-
ogy. Phenylketonuria (PKU) was described by Ivar Asbjørn Følling in the 1930s
[2] as a recessive biochemical disorder of amino acid metabolism that, untreated,
leads to profound mental retardation. Robert Guthrie [3, 4] developed a cheap and
efficient test for PKU that, coupled with the recognition that an early dietary limi-
tation of phenylalanine in the diet could prevent the disease manifestations, led to
the first effective population-based newborn screening tests. The PKU model is now
widely applied throughout the developed world for a wide range of biochemical
disorders as well as hypothyroidism and hemoglobinopathies. One hemoglobin dis-
order, sickle cell anemia, was first described as a molecular disease by Linus Pauling
in 1949 [5], and in the 1950s it was recognized that carriers for this autosomal reces-
sive disease were resistant to falciparum Malaria while the affected homozygotes
had a high mortality in early childhood. A third common recessive disorder, cys-
tic fibrosis (CF) was one of the first human disorders to have its gene identified
using genome mapping technologies, and the evolution of these technologies is now
enabling the application of genetic testing as one additional method available to
the epidemiologist and clinician in evaluating the role of genetic factors in disease
etiology.

Another public health success has been the near elimination of the health con-
sequences of Rhesus blood group (Rh) incompatibility between mother and fetus.
An Rh+ fetus carried by an Rh– mother can induce an antibody response which
results in the destruction of fetal red blood cells and subsequent anemia which,
when severe, can result in death. Recognition of this genetic incompatibility led to
prenatal screening and treatment of affected infants as well as effective prevention
through the use of antiglobulins given to the mother during and following pregnancy
to prevent the induction of the antibody response which would be exacerbated in
future pregnancies.

Prenatal testing also achieved prominence on a population scale when amniocen-
tesis allowed collection of fetal cells for evaluation of chromosome anomalies such
as Trisomy 21 (Down’s syndrome). Currently such prenatal screening also includes
ultrasound evaluation of fetal organs and maternal serum testing to determine risks
for chromosomal aneuploidy and neural tube defects. In the aggregate these testing
options allow a better descriptive epidemiology and introduced new screening tools.

Single-gene and chromosomal disorders are now easy to define and describe
with high degrees of reliability. They are not limited to the pediatric age groups.
Adult onset disorders such as the autosomal dominant cardiomyopathies or long
QT syndrome have also been defined and testing has been made available. Current
major challenges are now focused on those more common yet complex disorders
that have an underlying genetic component but where cause may involve multi-
ple genes as well as environmental triggers that make the identification of specific
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risk components difficult. Disorders such as type 2 diabetes, inflammatory bowel
disease, cardiovascular disease, obesity, dementia, and others are all common, yet
complex, making genetic risk factor identification both more compelling and more
challenging. The role of the apolipoprotein E (ApoE) gene, and in particular the E4
allele, in predisposing to Alzheimer’s disease, was until a few years ago one of the
few successful factor identifications to date for a common disease of adult onset.
But recent successes in finding genetic risk factors for age-related macular degener-
ation, type 2 diabetes, breast cancer, and myocardial infarction suggest that genomic
tools enable elucidation of population-based genetic risk factors. It is critical for the
student to be aware of the ongoing developments in these areas in order to be able to
provide more effective care to patients and also to facilitate involvement of patients
in appropriate studies aimed at increasing knowledge and improving treatment. It is
an area with a rapid development of technology that stretches statistical techniques
to their limit.

Common diseases can also arise as part of the expression of single-gene
Mendelian conditions or as a complex trait as defined above. The clinician or public
health specialist needs to acknowledge the differences in mechanisms and implica-
tions for families as well as population planning. If stroke, myocardial infarction,
hypertension, cancer, or diabetes, for example, arise as part of a dominant disorder
their frequency may be much higher in an extended family than would be predicted
by the prevalence of that disorder. This uneven distribution will have implications
for presymptomatic screening in an at-risk family and for recognizing it as a source
of etiologic heterogeneity which will need to be incorporated into public health
planning. In developed countries most deaths are due to cardiovascular diseases
and cancer (about one half of all deaths from these two) with accidents, diabetes,
Alzheimer’s, and suicide making up other significant categories. Each of these,
excepting accidents, have well-recognized genetic components whose categoriza-
tion and understanding will contribute to designing better methods of prevention
and treatment.
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Chapter 7
Descriptive Epidemiology in Clinical
Epidemiology

We live in the era of evidence-based medicine where “true believers” tend to disre-
gard anything but randomized clinical trials (RCTs) even when assessing the impact
of any intervention or diagnostic procedure. However, there are several shortcom-
ings in RCTs, for instance the ability to assess long-term effects and rare outcomes.
(Randomized trials are described in Chapter 9.)

Descriptive epidemiology can sometimes be used in order to assess to what extent
an intervention has had an impact, especially with regard to long-term effects and
outcomes. However, such an approach is not without problems, and caution should
be used when minor changes in estimate of associations are used to infer causal-
ity. For instance, a slight decrease in prostate cancer mortality in some populations
during the twenty-first century, notably in the USA, has been used to “sell” the mes-
sage that prostate-specific antigen (PSA) screening and/or new therapeutic strategies
have had beneficial effects. The existence of slow growing prostate cancers that will
produce no or only mild clinical symptoms within a natural life span, combined
with differences over time in diagnostic intensity, as well as changes in the way of
reporting underlying causes of death, can at least partly explain such trends. Prostate
cancer is probably the most unsuitable of all cancer forms to assess the impact of
new interventions based on changes in incidence. This becomes evident if one com-
pares temporal trends in incidence and mortality in prostate cancer between Sweden
and Norway, two populations with very similar ethnic roots and lifestyles. There is
a 50% higher incidence of prostate cancer as well as prostate cancer mortality in
Sweden than in Norway [1].

This probably mirrors differences in the diagnostic intensity with regard to the
incidence but may also affect cause-specific mortality figures. It is hard to tell the
difference between dying from prostate cancer and dying with prostate cancer.

There are good uses of descriptive epidemiological data to evaluate an inter-
vention. The following three different examples illustrate that – one dealing with
recommendations given to the general public, the second with screening, and the
third changes in the treatment over time.
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Sudden Infant Death Syndrome (SIDS)

SIDS is defined as the sudden unexpected death of an infant aged younger than
1 year where the circumstances of death have failed to provide a sufficient alter-
native explanation. Most SIDS deaths happen within the first 8 months of life,
usually around 3–4 months. Until the 1990s young mothers, male sex, preterm
and/or low birth weight infants, and maternal smoking had been identified as
risk factors for SIDS and the incidence was around 2–3 per 1,000 live births.
A study during the late 1980S and early 1990s from New Zealand demonstrated
that sleeping in a supine position was an independent risk factor which subsequently
led to recommendations worldwide to parents to let their children sleep on their
backs, as illustrated by, for instance, the “Back to Sleep” campaign in the UK in
1991. The incidence of SIDS then declined dramatically during the next few years
(Fig. 7.1).

Fig. 7.1 Postneonatal sudden infant death syndrome (SIDS) rates in the USA and selected other
countries, 1985–1992 [2]. These rates are calculated as the number of SIDS deaths, <27 days and
<1 year of age per 1,000 live births. The 1992 SIDS rates are provisional

This drop in incidence with a 75% reduction in many different populations occur-
ring about the same time following these new recommendations indicates a causal
link, especially as changes in smoking habits, frequency of preterm deliveries, and
diagnostic procedures had not changed more than marginally during this relatively
short time period.
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Cytological Screening for Cervix Cancer

Cancer of the cervix is one of the most common cancers in women, especially
in developing countries, and is a major cause of premature death in middle-aged
and older women. The introduction of Pap smear screening in the late 1960s was
done in order to reduce morbidity and mortality of cervical cancer. Screening
will lead to detection and removal of pre-malignant (cancer in situ) lesions with
a simple surgical procedure, thus reducing both incidence and mortality of this can-
cer. Descriptive epidemiological data were used to evaluate these programs. Data
from Sweden, for instance, show a drop in the incidence of squamous cell can-
cer of the cervix starting in the late 1960s followed by a drop in the mortality
in cervix cancer 5 years later but an increase in the incidence of cancer in situ
(Fig. 7.2).

Fig. 7.2 Incidence of cancer of the cervix (ICD–7:171) [3]

These findings support a beneficial effect of this program. However, there have
been other changes which could explain these trends, such as changes in smoking
habits, sexual education, better access to health care. To further assess the screening
program the incidence data can be modeled taking into account both birth cohort
and time period effects (effects related to what happened during the time of birth or
in the calendar time of follow-up). Since the screening procedure, in Sweden as in
other countries, was primarily aimed at younger women when it was introduced in
the late 1960s, we would expect to see a decrease in birth cohorts that were offered
screening which is seen in Fig. 7.3.

The drop in incidence of cervix cancer following the introduction of the screening
is related to a decrease in incidence in the younger birth cohorts starting in the 1930s
and 1940s.
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Fig. 7.3 Change in incidence
for cervical cancer according
to age in different time period
[4]

Changes in Treatment of Juvenile Diabetes

Insulin treatment in juvenile diabetes was introduced in the late 1920s and diabetes
nephropathy emerged as a long-term complication for these patients. Close to 50%
suffer from nephropathy 20 years after starting the treatment. In the late 1960s sub-
stantial changes in the treatment of juvenile diabetes were introduced. Until then
a standard insulin regimen consisting of a single morning dose with a long-acting
insulin was the norm, sometimes combined with a short-acting insulin. In the 1970s
a more aggressive therapy became the norm with multiple doses, which increased

Fig. 7.4 Cumulative incidence of persistent albuminuria in patients with diabetes according to
duration of diabetes and calendar time of diagnosing [5]
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further in the 1980s. During the same period educational programs as well as means
for self-monitoring were added but would these new strategies have an impact on
the long-term adverse outcomes in juvenile diabetes patients?

In a study consisting of only 213 patients in a defined area in Sweden all individ-
uals with juvenile diabetes diagnosed before the age of 15 were identified from
1961 to 1980. Through the patient records the investigators were able to assess
the existence of persistent albuminuria, a pre-stage nephropathy, in all patients
(Fig. 7.4).

Figure 7.4 shows a substantial improvement over time indicating that aggressive
treatments possibly combined with more self-care decreased persistent albuminuria.

These three examples serve to illustrate that in selected instances well-conducted
descriptive epidemiological studies can be used to evaluate new interventions,
especially long-term effects and the occurrence of rare events such as SIDS.
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Chapter 8
Design Options

Common Designs Used to Estimate Associations

Epidemiologists use population experience to learn about associations between
environmental factors, lifestyles, food intake, treatments, poverty, genes, etc., and
diseases. We do that by observing and analyzing what people do to themselves or
what is being done to them related to the health problems they have. To be a student
of the occurrence of diseases as a function of different exposures is to be a student
of epidemiology. Since cause–effect relations unfold over time, both in terms of age
and calendar time, time plays a crucial role in these analyses and disease occur-
rence is best studied from the start of exposures and in the time to follow, especially
for exposures that change over time, as it can be done in a follow-up study. To
obtain information on this population experience a more cost-effective strategy can
sometimes be applied by sampling cases (rather than exposed and unexposed) and
so-called controls. This is just another way of harvesting the underlying population
experience as will be demonstrated later. Sometimes it may be possible for the epi-
demiologist to set the conditions for exposure allocation. If we set the conditions
for the exposure in order to learn about the health effects of these exposures, we
are using an experimental design by definition, often with the intention of avoiding
some of the sources of bias that threaten many observational designs. The random-
ized controlled trial is the most frequently used experimental epidemiologic design.
Within these broad groups there are many variants. Most of these designs are outside
the scope of this short introductory text.

To think about causal effects, epidemiologists often use counterfactual reasoning.
Women who use hormonal drugs to treat menopausal problems have a given occur-
rence of, e.g., cardiovascular diseases, but what would the occurrence have been had
they not taken the hormones? That is of course not observable since nobody can be
using and not be using hormones at the same time, but it is possible to imagine that
these women had not used the hormones. To estimate what the occurrence would
have been had they not taken the hormones, we unfortunately have to use a differ-
ent group of women who did not use the hormones under study. We select these
women in the hope that they will provide the expected disease occurrence for the
exposed, had they not been exposed. Whether we succeed or not in providing a valid

51J. Olsen et al., An Introduction to Epidemiology for Health Professionals,
Springer Series on Epidemiology and Health 1, DOI 10.1007/978-1-4419-1497-2_8,
C© Springer Science+Business Media, LLC 2010



52 8 Design Options

comparison group we do not and cannot know for sure. Therefore, we should not
speak lightly about causal effects but use the term associations to describe the con-
trast between disease occurrence for exposed and unexposed. If we say an exposure
is associated with a disease, it means just that – nothing more, nothing less; a given
exposure level has a disease occurrence that differs from what we see at another
exposure level, in a particular data source, and that can be so for many reasons.

When we have to decide between different design options, we cannot always
select the design we expect will provide the best possible counterfactual contrast.
Such a design would often be the randomized controlled trial, but conducting a trial
may be out of the question for ethical reasons, or it may be impractical, too costly, or
take a long time to conduct. To evaluate the possible effect of a given screening test
on long-term mortality may take decades and the screening test may be outdated
when results are available. For ethical reasons we cannot design an experimental
study to see if a given drug is fetotoxic in pregnant women, not even among women
who have already decided to terminate their pregnancy. Over time some women
will, however, use new drugs by accident or by choice, and we can and should try
to make the best possible use of the information they provide.

Many more aspects have to be taken into consideration when planning a study
than the quality of the designs, but if we compromise too much on quality we may be
better off without the study. In the long run, a collection of many low-quality studies
may cost more research money and do harm if the results are wrong. A single, large
randomized trial may be cost-effective if it is ethical and possible to do. Side effects
related to taking post-menopause hormones (HRT, hormonal replacement therapy)
is an area where a randomized trial was long overdue when it was finally done [1].

Taking limited time and funding into consideration, the discussion on study
design selection (from inexpensive to expensive) could go like this, using a study on
cell phones and brain cancer as an example.

Ecological Study

If we had national (or regional) data on mobile phone use and brain cancer, we could
quickly produce an ecological study comparing frequencies of mobile phone use or
number of mobile phones in use per 1,000 people and brain cancer incidence for
populations. We may plot these data with a time lag of 5 years because we believe
there will be some time lag between the exposure and disease onset. If an association
exists, we might find data like those plotted in Fig. 8.1.

Although such a graph may look convincing there are several considerations to
make: The graph is not based on individual level data and therefore does not relate
cancers to individual mobile phone users. We do not know if it is the mobile phone
users that develop cancer (the ecological fallacy). There are many other factors that
correlate with mobile phone use in the populations and maybe the association is
caused by these factors (confounders). Better diagnostic tools may be able to pick
up cancers that were previously undetected or detected at a later stage. These better
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Each dot 
represents a 
country or a 
region 

IR (brain cancer) 

Mobile phone use 
(% of users in the 
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amount of calls, etc.) 

Fig. 8.1 Ecological study on mobile phone use and cancer incidence rates (IR)

diagnostic facilities may well correlate in time with mobile phone use since they
both depend on the economic and technological developments.

We could conduct a cross-sectional study, a survey, or use data from an existing
large ongoing survey with data on mobile phone use and brain cancer at a given
point in time (the time of data collection). The simplest display of such a survey is
summarized in Table 8.1.

Table 8.1 A cross-sectional
study Mobile phone

users
Brain
cancer

No brain
cancer All

Yes a b N1
No c d N0

The prevalence ratio is

PR = a/N1

c/N0

Such a survey needs to be very large to provide a reasonable number of preva-
lent cases of brain cancer, and this design is a more obvious choice when both the
exposure and the disease are more frequent. If we have the data and PR shows an
association (PR>1) our concerns will be as follows:

1. We do not know the causal direction. Perhaps brain cancer leads to mobile phone
use because patients need to be in contact with their social network. Or the oppo-
site may be more likely. Brain cancer patients may isolate themselves or prefer a
more personal contact than what can be achieved over the phone. The first situ-
ation would produce a positive association, the latter a negative association and
both would be spurious and non-causal for the hypothesis of interest.

2. The causes of brain cancer may correlate with mobile phone use. We could take
these factors into account in the analyses if we knew them, but in this case we
do not.
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3. The reporting of mobile phone use may be in error (wrong or inaccurate) and
perhaps more so for brain cancer patients, although they only report present
use of the phones in a cross-sectional study. If mobile phone use has been a
widely suggested cause of brain cancer, brain cancer patients may over-report
their mobile phone use in the search for an explanation of the cancer. Further,
we compare recall from a sick brain with recall from a “normal” brain. In any
case, present use is only of interest if it correlates well with past use (during a
possible etiologic window). The exposure data we have are not from the right
time period.

4. Not all those invited will participate in surveys. If, e.g., brain cancer patients are
less likely to participate it will not in itself distort the PR, but if brain cancer cases
who are not mobile phone users more often decline to take part in the study than
brain cancer patients who use mobile phones, an elevated PR could be a result
of this selection bias. Similar selection bias could occur among the non-brain
cancer patients but then it would tend to mask an association.

Case–Control Study

The next design in line to consider could be a case–control study. We select all
cases of brain cancer in the population under study and a sample (controls) from
the population that gave rise to the cases. We now record their phone use from the
time period in which we think the carcinogenic process was activated. The simplest
data lay-out would look like Table 8.2 (as in the survey, but the recording is now
longitudinal – we try to obtain exposure data at the time period in which we believe
the carcinogenic process took place, for example 5–10 years before the onset of
cancer).

Table 8.2 A case–control
study Exposure

history Cases Controls

Yes a b
No c d

[OR = a/c

b/d
]

Depending on how controls were selected, this odds ratio (OR) could estimate the
incidence rate ratio (IRR) for brain cancer among mobile phone users compared to
non-users. If this estimate is greater than 1 it would indicate an association between
mobile phone use and brain cancer, but



Common Designs Used to Estimate Associations 55

1. Are the recalls of phone use back in time accurate and comparable for cases and
controls? One would think that brain cancer may interfere with cognitive func-
tions and thus with recall of past phone use. If cancer patients over-report phone
use in the past (perhaps they are more sensitive to having had something close
to the brain), this could explain the observation. This source of bias is a serious
problem, especially when the hypothesis is well known by the responders.

2. Selection bias could explain the association if exposed cases are more likely than
unexposed cases to accept an invitation to take part in the study, and that could
easily happen if the purpose of the study is revealed at the time of recruitment.
Although it is not possible to give exact guidelines on an acceptable proportion
of non-responders, if but more than 30% refuse to participate selection bias is of
major concern. Selection bias could, however, play a role even if the proportion
of non-responders is much lower, and there may be no selection bias even if
many more refuse to take part in the study.

3. And, as before, other potential causes of brain cancer may correlate with
phone use.

4. Further, a large source population is needed to provide a sufficient sample size
to detect a small association.

Cohort Study

Next in line would be the most straightforward design, the cohort study. Select
heavy phone users and people who do not use mobile phones and follow them over
time (years or even decades). The simplest display of such a study is presented in
Table 8.3.

Table 8.3 A cohort study

Exposed Disease
Observation
time

Yes a t1
No c t0

[IRR = a/t1
c/t0

]

If such a study shows an IRR above 1 it would speak in favor of a causal
association, but

1. Causes of brain cancer could correlate with mobile phone use and cause a
spurious association (confounding).

2. Some of the exposure and disease data may be in error, but if brain cancer diag-
nosing is made without taking phone use into consideration and phone use is
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registered before the onset of brain cancer this type of error would often lead
toward an attenuation of the IRR. And it should be possible to obtain a large
exposure contrast in countries where only part of the population uses mobile
phones.

3. Although non-participation is less of a problem in the follow-up study since par-
ticipants take part without knowing whether they will be brain cancer patients
or not, the selection may cause other problems. Older people may, for example,
be more likely to refuse taking part in the study, reducing the number of cancer
events. If only one sex or ethnic group accepts the invitation we will have no way
of knowing if our results will apply to the people we did not recruit to the study.

4. Change of habits and phone type over time complicates the analysis, especially
if we do not know which types of exposure to check for. Furthermore, there are
other sources of radio frequency exposures in the population, although not many
with such a direct exposure to the brain.

The drawback is that you have to wait for years, perhaps decades, to get an
answer. And the study has to be large with many thousands of exposed and
unexposed depending on the expected effect.

Experimental Study

If we imagine we could obtain permission and compliance to implement an experi-
mental design where we decide who will be phone users and who will not (or who
will perhaps exclusively use hands-free phones that would not expose the brain and
hand-held sets), we would flip a coin to let heads or tails decide whether the person
will be a phone user, or a non-user (in practice we will let a computer “flip a coin”
or use another method of randomization). The display of such a study, in its simplest
form, could be as in Table 8.4.

Table 8.4 A randomized
trial

Exposure Disease
Observation
time

Yes a t+
No c t0

[IRR = a/t+
c/t0

]

Should this IRR be high, it would speak quite strongly in favor of a causal asso-
ciation if all participants used mobile phones according to the protocol, but results
could still be due to chance or shortcomings in the design such as incomplete follow-
up. In general, this type of design is less bias prone than other designs if compliance
to phone use is kept according to the protocol, but the design is often expensive
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because the study needs to be large with a long follow-up time, and it is often not
feasible in practice, as in this case.

In the discussed example, the ecological design will be important since even a
small increased risk in phone use will produce many new cases because the exposure
is very frequent. If such a frequent exposure does not correlate with brain cancer
incidences in the population, the exposure is probably not a strong cause of the
disease.

In practice, non-experimental designs are important for making new “discov-
eries,” to identify new risk factors of diseases. Experimental designs are usually
reserved to evaluate established hypotheses or to evaluate new medicines before they
are released on the market. Both observational and experimental designs are “epi-
demiologic designs.” Some people have the misconception that epidemiology only
covers non-experimental designs, but the discipline is not defined by its methods but
by its subject of research.

The most important designs will be described in greater detail in the following.
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Chapter 9
Follow-Up Studies

The Non-experimental Follow-Up (Cohort) Study

If you want to study determinants (exposures) of the transition from healthy to dis-
eased or death, or from diseased to non-diseased, you have to record the sequence of
causes, treatments, and end points in time; you need to have longitudinal recordings
in most situations. If the exposure is obesity and the outcome is type 2 diabetes, you
need at least one recording of obesity in time. Obesity is defined as a body mass
index (BMI) of over 30 (a man with a weight of 95 kg and a height of 1.75 m will
have a BMI of 95/1.752 = 31.0 and thus be obese).

Having identified a certain number of obese individuals (e.g., males, 40–49 years
of age), you then follow these people for the next, say, 10 years and record the num-
ber of new cases of type 2 diabetes in the cohort. Epidemiologists use the term
cohort for a group of people who are followed over time (a cohort was originally a
term used in the Roman army for a subset of a legion). Say 10% develop diabetes
during the period of follow-up, the cumulative incidence (if 100 out of 1,000 obese
had type 2 diabetes) would then be 100/1,000 = 0.10 or 10%. Although this figure
is useful, it does not tell us whether obesity is a risk indicator of type 2 diabetes
or not. To obtain that information, you need to know what the expected cumu-
lative incidence would be had the obese not been obese. That information is not
available.

In the absence of this information, we select a group of non-obese men who we
believe have the same risk of diabetes as the obese would have had if they had not
been obese. We would at least make sure that we select unexposed with the same age
structure and follow them over the same time period and calculate their cumulative
incidence. The more precisely we are able to formulate our hypothesis, the better
we are able to select exposed and unexposed for the study. In the simplest version
of a cohort study, the data would look like what is displayed in Table 9.1.

Given these data we may then calculate the relative risk as

RR = (100/1,000)/(50/1,000) = 2.00
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Table 9.1 Type 2 diabetes in
the obese and non-obese
cohorts Obesity N Disease

Observation
years

+ 1,000 100 9,500
– 1,000 50 9,750

and the incidence rate ratio (IRR) as

IRR = (100/9,500 obs. years)/(50/9,750 obs. years) = 2.05

A relative risk may be high because the numerator is higher than the denominator
or because the denominator is much smaller than the numerator and this may be
seen as a trivial fact, but the point of departure (the numerator or the denominator)
may make a difference. If obesity is doubling a high disease risk, it may be more
serious from a public health point of view than if it was doubling a low risk of,
say, type 1 diabetes. Type 2 diabetes is much more frequent than type 1 diabetes
in most countries, and type 1 diabetes is usually a more serious disease than type 2
diabetes. A doubling of the risk of type 2 diabetes would in our example mean an
18% increase in absolute risk and a 0.2% increase of type 1 diabetes if the risk for
non-obese is 0.1% over the follow-up time period.

In order to provide information that illustrates actual risks, we may calculate
absolute measures of differences in risks and rates. The risk differences (RD) for
type 2 diabetes given in Table 9.1 would be

RD = (100/1,000) − (50/1,000) = 0.05

and the incidence rate difference (IRD)

IRD = (100/9,500 obs. years) − (50/9,750 obs. years) = 0.054 years−1

Studying Risk as a Function of BMI

This obesity example is a bit too simple for several reasons. Although there is an
arbitrarily defined cut-off level for obesity, there is another limit for being over-
weight and one for being underweight. If we think of our study as a study of fixed
cohorts we would probably like to include at least three cohorts in the study: obese,
overweight, and normal weight. We would then add at least one line to Table 9.1.
The new table could look like Table 9.2.

Using the same comparison group – those with a normal weight – we show that
the association may follow a dose–response pattern, and in a large sample we could
even describe type 2 diabetes risk as a function of much finer BMI strata. If this
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Table 9.2 The risk of diabetes in obese, overweight, and normal weight cohorts

BMI Weight N Disease RR RR

30 or greater Obese 1,000 100 2.0 1.33
25–29.9 Overweight 1,000 75 1.5 1 (reference)
18.5–24.9 Normal 1,000 50 1.0 (reference) 0.667

association is linear, we have a constant RD across each BMI unit; the cumulative
incidence increases with a constant RD for each unit change of BMI (Fig. 9.1).

CI

BMI

Fig. 9.1 Cumulative
incidence (CI) for diabetes
and BMI

Table 9.2 would follow such a structure because the risk difference is constant
from strata to strata (0.025).

If the RR increases with a constant value across each BMI level, the association
is exponential and would look like Fig. 9.2.

BMI 

3515 

CIFig. 9.2 Cumulative
incidence (CI) for diabetes at
BMI

Figure 9.2 illustrates a constant RR from one strata to the other. In Table 9.2
the RR from normal to overweight is 1.5, but from obese to overweight it is
(100/1,000)/(75/1,000) = 1.33. Had we had 112.5 diseased among the obese, the
RR from overweight to obese would also be 1.5 = (112.5/1,000)/(75/1,000) and
the dose–response curve would be exponential. Figure 9.2 illustrates an exponential
curve with an RR of 2 for each step of 5 BMI units.

If we change to logarithms of the CIs the graph between BMI and CI would again
be linear. CI increases with a fixed log RR value for each BMI level.

The log plot would look like Fig. 9.3.
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 Log CI 

BMI 

Fig. 9.3 Diabetes and BMI

Longitudinal Exposure Data

In our cohort design we measured BMI at a given point in time at which we also start
counting follow-up time regardless of the fact that their obesity or being overweight
may have started a long time ago. We identified a population at risk (free of diabetes
at baseline) and counted observation time from the starting time. To capture changes
in BMI we would need repeated (longitudinal) measures of BMI over time along
with data on the onset of type 2 diabetes. We would then have to work on incidence
rates where we calculate observation time as time being in a certain weight category.
Assume Fig. 9.4 describes one man’s BMI over time.

30 

25 

20 

3 10
time

Fig. 9.4 BMI in one person
over a time period of 10 years

This person would contribute 3 years of observation time within the normal BMI
group (BMI < 25), 7 years within the overweight group (BMI 25–29), and none
within the obese group (BMI ≥ 30) since he only reaches this level at the end of
observation time. We would have to repeat these BMI measurements over time for
all members of the cohort to calculate incidence rates within these BMI groups. If
the person displayed in Fig. 9.4 got type 2 diabetes after 7 years of follow-up time,
he would contribute to the incidence rate with 1/7 years in the overweight group and
0/3 in the normal weight group, and these measures we have to add up for everybody
in the study. The data we get would look like what you see in Table 9.3.

This would be an appropriate way to analyze the data in lack of a specific hypoth-
esis on the association between BMI and type 2 diabetes. If we had reason to expect
that there is a time lag between becoming obese and type 2 diabetes or between
a given change in weight and the disease, the calculations would be more com-
plicated. In fact, there could be numerous different ways of analyzing the data,
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Table 9.3 Incidence rates and relative incidence rates as a function of weight status

Weight
Observation
time Diseased IRR

Obese t++ D++ (D++/t++)/(D0/t0)
Overweight t+ D+ (D+/t+)/(D0/t0)
Normal weight t0 D0 1.0 reference

and we may need rather complicated statistical techniques to perform some of the
analyses.

We also need technical skills to make the groups comparable on characteris-
tics that may play a role for the risk of type 2 diabetes. Sex, age, a family history
of diabetes, diet, and physical exercise correlate with diabetes risk, and we may
need to adjust for these factors in order to come closer to estimating unconfounded
associations.

When we say the aim is to select unexposed with the same disease risk as exposed
had they not been exposed, we take into consideration that we do know something
about other risk factors that should be controlled in the analysis. Our comparisons
will not just rely on simple tabulations as those presented previously. Our com-
parisons may, for example, be made within strata defined by other risk factors.
A stratum of such a table could look like Table 9.4.

Table 9.4 Stratified analysis

Family
history Sex Age Obesity

Observation
time Disease

0 M 30–39 Yes ti+ Di+
No ti– Di–

Within this stratum we compare disease occurrence among obese and non-obese
and sum up associations from all strata to make a combined estimate or that is how
data were analyzed back in time. Now stratified analyses are unfortunately too often
replaced with statistical modeling.

Different Types of Cohort or Follow-Up Studies

At baseline, at the start of follow-up, we may be able to classify people as exposed
or unexposed. An accidental toxic exposure of short duration may leave people in a
local area exposed or unexposed. From this given point in calendar time we follow
up all subjects in our exposed and unexposed cohort. This we will call a fixed cohort.
More often the situation will be that we start our study at a given point in calendar
time and recruit eligible candidates into the study over time and move them to the
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Fig. 9.5 Observation time
according to exposure

exposed cohort when they become exposed, for example when they start taking a
new type of medicine or move into an area with heavy air pollution (Fig. 9.5).

Eligible candidates enter our cohort at different time periods. When they become
exposed we move them to the exposed cohort and start counting observation time
from the time of exposure (or later if we want to take into consideration a latency
time period). Person no. 4 will thus start accumulating observation time in the unex-
posed cohort (when he enters the cohort) and then change to the exposed cohort
during follow-up. In this cohort we have a dynamic recruitment to the exposed
cohort during follow-up; it is a cohort with open entry. It could be a cohort of
patients with diabetes where we may be interested in a specific new treatment as
the exposure. Since exposures may cause diseases long after exposure has stopped
we do not always remove people from the exposed cohort when exposure stops. If
we did a study on car accidents and mobile phone use we would, however, remove
people from the exposed cohort when they stopped using mobile phones while
driving. We have no reason to believe that a history of mobile phone use in itself
affects the risk of car accidents. Such a study would have both an open entry and an
open exit.

We could also have a situation as depicted in Fig. 9.6.
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Fig. 9.6 Observation time
according to exposure (E)

We would start counting observation time from the start of follow-up for persons
numbered 1 and 3 but not from the time of exposure (for no. 1). The reason is that we
have no complete surveillance of all possible eligible candidates for the study before
we set up our follow-up surveillance program. Person number 1 is a candidate for
the study because he did not leave the region or die before the start of follow-up.
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Some call this time from start of exposure to start of follow-up immortal observation
time because they can only enter the study if they are alive at the start of follow-up.
In like manner, we start calculating observation at age 60 if we are interested in
mortality rates from 60 years of age. If we take an interest in lung cancer risk for
people who have smoked at least 40 years, we start calculating observation time
when they have accumulated this number of exposed years.

Should we be able to identify all eligible candidates from a point dating back in
time and all end points (diseases) of interest during follow-up we may reconstruct
observation time back in time. We call such a study a historical cohort. This design
is often used in occupational epidemiology where it may be possible to identify all
factory workers in a given plant back in time, for example based upon employment
or union records.

The terms cohort study and follow-up study are often used to describe the same
type of design although some would stress that in a cohort the aim is to follow all
until they get the disease in question, die from other causes, or reach the date that
terminates the study. Following cancer incidence in a given region by setting up
a cancer registry and counting the dynamically changing population of those who
remain within the region is therefore not a cohort study. It is a follow-up study
for that region if we have the entire population under surveillance, but there is no
intention of tracking people who leave the region.

The main design feature for a follow-up or cohort study is to select exposed and
unexposed and follow disease occurrence in these groups over time. If the diseases
we take an interest in are rare or have a long induction and latency time we may not
have the time to wait for a result or the funding needed to establish a large follow-up
study. The case–control study then becomes an attractive alternative given certain
conditions are fulfilled.



Chapter 10
Case–Control Studies

A follow-up study on chronic diseases usually needs to be large with a long follow-
up period to provide a sufficient number of cases to be informative. Most of the
participants in the study will provide little information since they will remain
disease-free. A case—control sampling strategy may sometimes be possible and
it can usually be conducted at a much lower cost than a follow-up.

We should keep in mind that we are still harvesting the same population expe-
rience of disease occurrence among exposed and unexposed. This population
experience is our only source of information. We are using the changing expo-
sures in the population over time to learn about exposure–disease associations. We
only consider a more economic approach to obtaining the information we seek. To
demonstrate the basic sampling principles, we start with the follow-up study and
examine how we calculate relative measures of associations. Assume that we have
the data in Table 10.1 from a fixed cohort study with no loss to follow-up (all are
followed from the start of follow-up and until the observation period ends, or until
the onset of the disease under study).

Table 10.1 Follow-up study

Obesity N Disease
Observation
time

Yes N1 D1 t1
No N0 D0 t0

The following measures can be estimated based on the data given in Table 10.1:

RR(relativerisk) = D1/N1

D0/N0
which can also be written as OR = D1/D0

N1/N0
(10.1)

IRR(incidencerateratio) = D1/t1
D0/t0

which can also be written as OR = D1/D0

t1/t0
(10.2)

OR(odds radio) = D1/(N1 − D1)

D0/(N0 − D0)
which can also be witten as OR = D1/D0

(N1 − D1)/(N0 − D0)
(10.3)

67J. Olsen et al., An Introduction to Epidemiology for Health Professionals,
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If we have no loss to follow-up we can estimate the relative risks as the ratio
between the cumulative risks for exposed divided by the cumulative risk for the
unexposed. The incidence rate ratio is in like manner based on the two incidence
rates, and the odds ratio reflects the odds for disease occurrence among the exposed
divided by the disease odds among the unexposed. Notice that OR can also be
expressed as the exposure odds among diseased and the exposure odds at baseline
in the entire cohort (10.1) or the odds of exposure time during follow-up (OR) or
the exposure odds among non-diseased (the right-hand side of equation 10.2). The
OR (disease odds ratio) in the cohort study is seen to be similar to the exposure odds
ratio among cases and non-cases (10.3).

The rearranged right side of the equations illustrates that if we have a disease
register and the possibility to classify the exposure data retrospectively, we may
produce the same relative measures of association by selecting all cases (the right-
side numerators) and a sample of the denominators (right-side denominators). To
estimate relative risks we need controls to estimate the ratio of exposed and unex-
posed at baseline (N1/N0). To estimate IRR we need controls to estimate the ratio of
exposed and unexposed observation time (t1/t0) and to estimate OR we need con-
trols to estimate the proportion of exposed and unexposed non-diseased at the end
of follow-up (N1–D1)/(N0–D0).

Assume that a follow-up study provides the results summarized in Table 10.2.

Table 10.2 Follow-up study with observation time

Obesity N Disease Observation time

Yes 10,000 200 9,900 years
No 30,000 300 29,850 years

Then we obtain

RR = 200/10,000

300/30,000
= 2.00 (10.4)

IRR = 200/9,900

300/29,850
= 2.01 (10.5)

OR = 200/9,800

300/29,700
= 2.02 (10.6)

With access to a disease register for this population we may be able to identify
all cases in the population and by interviewing or by using stored biomarkers or
existing records to classify the diseased as exposed or unexposed in the proper time
period when the exposure may cause the disease. With the same set of cases and
three different sets of controls we can estimate RR, IRR, and OR.

We call the first type of a case–control study the case–cohort study. We select
all cases at the end of follow-up. Then we select a random sample of everybody in



Density Sampling of Controls 69

the cohort at the start of follow-up, at baseline. The size of the control sample can
be larger or smaller than the case set, but usually we select a sample of a similar
size as the number of cases, or we take 2–5 times more controls than cases. If we
can afford five times as many controls as we have cases we will in most situations
obtain almost all the available information from the underlying source population
and still record exposure data for much fewer people than if we had done a follow-up
study.

The size of the sample determines the statistical precision we achieve and in
many situations where the disease is rare, we will select all the cases we can get that
fulfill our diagnostic criteria. If costs of getting information from cases and controls
prohibit us from selecting more controls than cases, then a 1:1 design (an equal
number of cases and controls) is usually the best choice.

Case–Cohort Sampling

Assume we select one control per case and we have no sampling variation, the study
would produce results as in Table 10.3.

Table 10.3 Case–cohort
sampling Exposure Cases Controls

Yes 200 125 (10,000/40,000 × 500)
No 300 375 (30,000/40,000 × 500)
All 500 500

OR = 200/300

125/375
= 2.00

Our OR estimates the risk ratio or relative risk if we sample from the entire
cohort at baseline independently of their later disease occurrence (the case–cohort
sampling). Note that controls will include cases with the same frequency as the
cumulative incidence indicates.

Density Sampling of Controls

In order to estimate the IRR, we design a case–control study with density sampling.
The cases are the same, but controls now have to estimate the distribution of exposed
and unexposed observation time in the underlying cohort as seen from the right-side
denominator in Table 10.1. If we do not take sampling variation into consideration
we get the results in Table 10.4.
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Table 10.4 Case–control
study with density sampling
of controls

Exposure Case Controls

Yes 200 124.5 = (9,900/39,750 × 500)
No 300 375.5 = (29,850/39,750 × 500)
All 500 500

OR = 200/300

124.5/375.5
= 2.01

One way to obtain an estimate of the exposed/unexposed observation time is
to select controls at the onset of case identification. Among all in the underlying
cohort at risk of getting the disease we select controls at random at the point in
time when a case is diagnosed. Thus, observation time among those at risk, whether
they are exposed or unexposed, determines the probability of being sampled. This
sampling procedure allows controls to become cases if, after having been selected
as controls, they get the disease under study. A person may also be sampled more
than once as a control since the probability of selection is only determined by the
duration of the observation time. We will estimate IRR by calculating the odds ratio
(OR) in Table 10.1. This method will also work in case–control studies performed
in populations that are based on a dynamic cohort if we, for example, want to study
the association between a genetic marker and childhood diabetes. We may select
patients with newly diagnosed diabetes in our study region and among disease-free
children at the time of diagnosis of the cases and we select controls, but this par-
ticular study will be rather robust to design modifications. For example we could
sample controls at different time slots equally distributed over the time period of
case ascertainment. Whether we allow controls to be recruited to the case group if
they get the diagnosis under study or not is also a minor issue in this study, because
childhood diabetes is a rare disease. Deviations from the ideal design become more
critical if we study an exposure that changes over time, like infections or air pollu-
tion, or if we study a frequent disease like spontaneous abortions early in pregnancy.
The principles of density sampling are illustrated in the population of 10 people
coming in and out of our study area during the time of case–control recruitment
(Fig. 10.1).

C indicates the point in time where a participant leaves our study area, dies from
other causes, or is no longer under observation (censored). D indicates onset of the
disease under study. When person number 7 gets the disease, persons numbered 1,
2, 3, 4, and 10 belong to the population at risk and are candidates for being sampled
to the control set. When person number 3 becomes a case, persons numbered 1, 4,
5, 8, and 10 are candidates for being sampled to the control set. If person number
3 was selected as a control for case number 7 we will keep this person in the study
as both a control and a case. Since cases leave the population at risk they cannot be
selected as controls from that time.
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Fig. 10.1 Follow-up of a dynamic population

Case–Non-case Study

The third type of a case–control study we will call a case–non-case study. First, we
select all the cases. Then we sample a set of controls from the non-cases at the end
of follow-up. Without taking sampling variation into consideration, we end up with
the data as in Table 10.5 (sampling based on data in Table 10.2).

Table 10.5 A case–non-case
study Exposure Cases Controls

Yes 200 124.1 = (9,800/39,500 × 500)
No 300 375.9 = (29,700/39,500 × 500)
All 500 500

OR = 200/300

124.1/375.9
= 2.02

The exposure odds ratio equals the disease odds ratio, and odds are close to
proportions (P) when the proportions (P) are small (Odds = P/(1 − P)). From this
it follows that the disease OR is close to the RR if the disease is rare among both
exposed and unexposed (as in our example). You will find this described as the rare
disease assumption in many textbooks. The two other case–control designs need no
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rare disease assumptions as long as it is accepted that people may be selected more
than once to the study.

The case–non-case design was inspired by Stuart Mill’s methods of agreement
and disagreement in search for causes or events [1]; we try to identify causes by
looking for similarities in exposures among cases and by trying to find what sep-
arates exposures among cases from exposures among non-cases. Furthermore, the
design leads to a simple statistical analysis since we have no overlap of cases and
controls. The design does not take into consideration that being disease-free is a
question of time and can lead to misleading results. Imagine, for example, that you
study a pregnancy biomarker that changes over gestational time. If you want to see
if this biomarker is a risk factor for preterm birth you have to select controls at
the same gestational week, not women who gave birth at term (non-cases). If the
biomarker changes with gestational time, there will be a difference between cases
and non-cases, even when the biomarker does not predict preterm births.

The case–control design described in this section assumes it is possible to iden-
tify members of the population that gave rise to the cases and sample from them. We
also assume that we have a disease register that captures everyone with the disease
in a given time period.

It is not always possible to identify the population at risk within some geograph-
ical boundaries at given points in time. In many countries it is hardly ever possible.
We may have a hospital that receives all patients with a serious disease (say, type
1 diabetes) from a given catchment area. We may know the geographical borders
of this catchment area, but we may not have a list of all the people living in this
area at a given point in time that could serve as our sampling frame. If it is out of
the question to make a complete population registry for the entire population, we
may produce a small local population registry, for example by identifying all people
living within a short distance of the case person, and sample at random among these
people. We call these controls neighborhood controls. We may also use the case per-
son’s area phone number to define the “neighborhood” and at random (random digit
dialing) select a phone number within this area code that belongs to a person and
use him/her as a control. These methods may not work if we are studying exposure
related to the close neighborhood, like air pollution and socioeconomic standards.
The random digit dialing methods may be biased when having a phone, being reach-
able on the phone, or having a number of phones correlate with the exposures we
study.

Patient Controls

In many case–control studies, other patients (patients with another disease than the
disease under study) are used as controls. That works well if the exposure distribu-
tion among these patient controls is interchangeable with the exposure distribution
among proper controls (randomly sampled from the population that gave rise to the
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cases). The problem is that we do not know if this is the case, and it is probably sel-
dom fully so. It is not so if the exposures under study cause or prevent the “control”
disease. Use of other disease groups may even be biased if exposure is not causally
related to the control diseases but when the exposure under study correlates with
the probability of being diagnosed or hospitalized. If so, the exposure distribution
will not reflect the exposure distribution in the source population that gave rise to
the cases. Assume we take an interest in smoking as the exposure and use colon
cancer controls. If coffee drinking protects against colon cancer, as some studies
suggest, colon cancer patients may have a lower smoking prevalence than what is
present in the population that gave rise to our cases (proper controls should esti-
mate that prevalence). Since smoking and coffee habits often correlate we would
overestimate the risk unless we adjust for coffee intake in the analyses. Assume we
want to study if a specific infection in childhood causes type 1 diabetes and we use
children coming into the hospital with fractures as controls. If we want to study a
cause–effect association with short duration, this will not work. Infections tend to
keep children less active and may therefore prevent against accidents and injuries.
Children with asthma may not be appropriate either since infections may initiate or
worsen an asthma attack. But the design may be appropriate if we believe the infec-
tion causes type 1 diabetes with a delay of months or years. Use of patient controls
may be a useful option (and perhaps the only option) in many situations.

It may be very difficult to find a disease that for certain is neither caused nor
prevented by the exposure under study if the exposure interferes with several disease
mechanisms, such as infections or obesity. Studying the effect of a single gene may
be simpler, although a common gene variant like ApoE-4 is known to be associated
with several diseases (e.g., cardiovascular diseases and Alzheimer’s disease).

There are many variations over these basic case–control designs. They all aim at
harvesting the underlying population experience in order to estimate the association
between exposures and the disease. The most used design is the case–control study
with some type of density sampling since we rarely have the luxury of having a
well-defined cohort to sample from at baseline. If we do have such a cohort we will
often use a case–cohort design, especially if you have valuable biological material
from the entire cohort and you intend to use this cohort to study several outcomes.
A random sample from this cohort at baseline may then be used as a common set
of controls for several case series. Density sampling produces one specific set of
controls for each case series. There is, however, one caveat when sampling controls
at baseline.

If the time between sampling of the biological material and the occurrence of
the disease under study is not short, a slight modification is needed. Within this
fixed cohort sample you will not only sample among those that were at risk when
the cases were diagnosed. You will also sample people who were censored before
cases surfaced to clinical detection and you have to take that into consideration
when analyzing the data since not all were under observation for the same amount
of time due to censoring. Analyzing data using survival techniques may solve the
problem.
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Secondary Identification of the Source Population

Under ideal conditions we have a disease register that captures everybody with the
disease in a given population and we are able to sample controls from this source
population and all participants in our study. These conditions are seldom if ever
completely fulfilled. Not all with the disease are diagnosed or at least not diag-
nosed at the same stage of the disease. If we want to use a case–control design to
estimate the effect of a newly introduced screening test the results will most likely
be misleading. The aim of the screening test is usually to diagnose a disease at an
earlier stage, to bring prevalent but yet undetected patients to our attention. Until
steady-state conditions are reached, a case–control study may show screening as a
risk factor of the disease just because it moves the diagnosing forward in time.

Assume we want to study whether a given food item causes diarrhea among
tourists in Thailand. We may have to restrict our study to severe cases of diarrhea
that always (or almost always) come to medical attention, but we will have no way
of identifying all tourists in Thailand at the time of data collection. Members of the
source population have to be defined by the case series as people who would become
cases if they had the disease that brought the cases to medical attention. Clearly that
is not a simple definition to use since not only the severity of the disease plays a role,
but also access to health care from a practical and financial point of view. Designing
case–control studies under these conditions requires much experience [2] and should
be left to professional epidemiologists.

In short, the main design feature in a case–control study is the selection of cases
and a random sample from the population that gave rise to the cases. The aim is to
reconstruct the data we need to estimate the relative effect measures in the underly-
ing population. When this is done we estimate if the exposed have the same disease
risk as the unexposed, not if the exposure is more frequent among cases than among
controls. We are not comparing cases and controls but exposed and unexposed.

Case–Control Studies Using Prevalent Cases

In the described case–control designs the aim has been to provide data on factors
associated with the transmission from healthy to diseased. The aim is to identify
incident cases and reconstruct their exposure history before the onset of the disease
within the time period we believe to have causal importance. Sometimes prevalent
cases are recruited to a case–control study because recruitment of new cases may
take too long. If you want to study the determinants of multiple sclerosis (MS), you
would need a very large source population to obtain a sufficient number of incident
cases within a reasonable time period because the incidence rate in the population is
low. Since you have MS from when you are diagnosed until you die, the prevalent
pool of MS patients will be 20–40 times larger than the annual incidence, depending
upon the life expectancy of MS patients. Using prevalent cases of MS may therefore
provide the sample size you would need, but bigger is not always better and it comes
with a price to use prevalent cases as explained in the following.
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Assume you had access to a large prevalent pool of cases from a large health
survey, perhaps including records of patients with diabetes. You may want to study
whether a specific genetic polymorphism is associated with diabetes, and if this
genetic testing is expensive you might not be able to perform the test on everyone
in the survey. You may select all with diabetes and then take a random sample from
all in the survey to serve as your controls. Blood samples could then be collected
and analyzed from cases and controls. The simplest display will be as presented in
Table 10.6.

Table 10.6 A case–control
study with prevalent cases of
diabetes

Genetic
mutation Cases Controls

Yes a b
No c d

OR = a/c

b/d

This OR will estimate the prevalence proportion of diabetes among those with
the mutation divided by the prevalence proportion among those without the muta-
tion, but the problem is that we use prevalence data and prevalence is a function of
incidence and disease duration. We are studying onset of diabetes or MS and sur-
viving with diabetes or MS at the same time, and we cannot disentangle whether the
genetic variant increases the risk of getting the disease or whether it improves sur-
vival. At least we need additional data to obtain that information, and our estimates
need not reflect relative risks if the exposure is associated with disease duration. If
the exposure (a genetic variant) has prognostic implications a relative prevalence
measure is a function of both etiologic and prognostic factors. We may get unbi-
ased estimates of relative risks even when using prevalent cases if the exposures
under study have no prognostic importance. If the genetic variant increases life
expectancy for MS cases, the OR would be high, even when being unrelated to
incidence, and the naïve (and wrong) conclusion could be that the genetic variant
causes MS.

It may be difficult to recruit incidence cases if the disease has a high mortality,
especially if you need to interview the cases. Assume that you want to study whether
physical fitness prevents myocardial infarctions (MI) and you have to interview the
cases about their physical activity in the past. You cannot interview cases in the
acute phase of their MI – you have to wait until their health improves, and in this
time period the most seriously ill patients will die. Assume, for the sake of the
argument, that physical exercise has no impact on the incidence of MI (it has) but
improves the prognosis (decreases short-term mortality), then the underlying cohort
could produce data as in Table 10.7.
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Table 10.7 A cohort study on physical exercise and myocardial infarctions (MI)

Physical
exercise N MI Death

Cases for
interview

Yes 10,000 50 10 40
No 10,000 50 20 30

RR = 50/10,000

50/10,000
= 1.0

And a case–cohort study taken from this cohort among survivors would look like
Table 10.8.

Table 10.8 A case–control
study based on data on
survivors from Table 10.7

Physical
exercise Cases Controls

Yes 40 35
No 30 35
All 70 70

OR = 40/30

35/35
= 1.33

The OR apparently wrongly indicates, according to the conditions we have set,
that physical exercise increases the risk of MI. The reason is that we did not recruit
all incidence cases but only the survivors. Had we recruited all incidence cases the
table would look like Table 10.9.

Table 10.9 A case–control
study based on data from
baseline, Table 10.7

Physical
exercise Cases Controls

Yes 50 50
No 50 50
All 100 100

OR = 50/50

50/50
= 1.00

In principle we could have obtained unbiased results if we had included proxy
responders to replace the deceased MI patients, for example close relatives, but
by doing so we rely on low-quality exposure data and may get information-biased
results.
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In brief, measures of association are based upon comparisons of disease risk for
the exposed and disease risk for the unexposed. We use the underlying population
experience during a given follow-up period to obtain this information whether we
perform a follow-up study or a case–control study. In setting up a case–control study
there are different ways of sampling this population experience depending upon
which measure of association we take an interest in: a relative risk, incidence rate
ratios, or relative prevalence proportions.

When to Do a Case–Control Study?

Since case–control sampling aims at maximizing the amount of information from
the underlying population at the lowest possible cost, the case–control study is usu-
ally the design of choice if the disease under study is rare, if conditions for doing
the study are fulfilled, and if the exposure under study is not too rare. The most
important of these conditions is the ability to get valid exposure data on the puta-
tive causes of the disease. Genetic factors that are stable over time would fulfill this
criterion but if you take an interest in gene expression over time it may be differ-
ent. It is more difficult to get valid data for exposures that change over time and
especially for exposures that have to be recalled by the participants, such as dietary
data. Eating habits change over time and cannot be recalled with any kind of preci-
sion more than days or perhaps weeks back in time. It will also be difficult to recall
medicine intake back in time, unless the medicine has been used regularly over long
time periods, such as insulin. If valid records exist and are available for study, like
medical records or records of occupational exposures, these may not only replace
uncertain recalls but also provide more comparable data for cases and controls. In
a case–control study on use of mobile phones and brain cancer it will probably be
too uncertain to rely on recall of phone use back in time. The magnitude of mobile
phone use is difficult to recall and it may be impossible to obtain the same degree
of accuracy in recall (symmetry in recall) among cases and controls. The cases have
a disease that may interfere with cognitive functions and they may have incentives
to exaggerate phone use that are not present among controls. If billing records are
available from phone companies, the study may provide comparable exposure data
over time and these data may be preferable although they are incomplete or even
wrong in some situations. Billing records may lack data on incoming calls and will
not indicate how the phone was used or who used it.

A case–control study is usually much more vulnerable to selection bias related
to non-responders than a follow-up study because both the exposure and the disease
may play a role when participants decide to accept or decline the invitation to take
part in the study. Low response rates can easily make results from a case–control
study unreliable and misleading.

A population-based case–control study is a study using a source population
defined a priori by certain geographical boundaries, but if only a few of the
cases accept the invitation to participate the “population-based aspect” becomes



78 10 Case–Control Studies

misleading and it may be better to let the source population be defined by the case
series (to use a case-defined (secondary) source population).

Since sampling in a case–control study focuses upon diseased and a sample from
their source population, the population they came from, the case–control study usu-
ally focuses on a single disease but provides an open opportunity to study a set
of different exposures as putative determinants. Case–control studies are for that
reason often based on interviews using lengthy questionnaires. Genetic association
studies usually screen for a large number of gene variants. A case–control study is
a study “looking for a cause of the disease” whereas the follow-up study addresses
an exposure “looking for a disease to occur.”

A case–control study has the potential of producing information much faster than
a follow-up study, especially if there is a long induction and latency time between
the exposures and the onset of the disease. When cases and controls are recruited, the
induction and latency time is already over since you sample cases with the disease.
In a cohort study with prospective data we would have to wait for this time period
to pass and therefore the exposure has to have been present in the population long
enough for the exposures to cause the disease under study. If we want to study
whether a newly established technology causes cancer after 5–10 years of incubation
and latency time, we may, however, do better by setting up a cohort to harvest the
information as soon as it is available, since a case–control study cannot provide data
before the cases start to emerge from the exposure we take an interest in.
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Chapter 11
The Cross-Sectional Study

In a cross-sectional study, all in a given population or a random sample from this
population define the source population. The disease and its possible determinants
are all recorded at a given point in time. This introduces a temporal ambiguity in the
possible cause–effect association and for this reason most cross-sectional studies
have survey purposes that are only descriptive. We use cross-sectional studies to
estimate, e.g., the prevalence of depression or the prevalence of having shift work.
We may, however, also use the design to study stable determinants, like genetic
factors, if these factors only impact etiology and not the prognosis. Assume a cross-
sectional study gives the results stated in Table 11.1.

RP = 300/2,300

700/8,700
= 1.62

Table 11.1 A cross-sectional study on hormones and breast cancer

Breast cancer

Use of hormone replacement therapy (HRT) Yes No All

Yes 300 2,000 2,300
No 700 8,000 8,700
All 1,000 10,000 11,000

This prevalence ratio may reflect that HRT causes breast cancer or that HRT
prolongs survival (improves the prognosing of breast cancer) or that breast cancer
leads to an increased use of HRT (unlikely). And of course the association could be
caused by bias, confounding, or chance.

Cross-sectional studies (or surveys) are important in monitoring disease frequen-
cies or risk factors over time, but they play a limited role in analytical epidemiology
addressing non-genetic determinant diseases.

When estimating disease occurrence in a cross-sectional study it should be
recognized that the duration of the disease affects the probability of being sampled.
A person with pneumonia lasting 10 weeks has 10 times the probability of being in
the cross-sectional sample than a person with pneumonia lasting 1 week. Prevalence
data are length biased when we compare them with incidence data.
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Chapter 12
The Randomized Controlled Trial (RCT)

Sometimes it may be possible to set up an experimental study, especially in clini-
cal epidemiology. A new treatment may be compared with the standard treatment
using one or more features of a randomized trial. The key, and obligatory, feature
in the randomized trial is randomization, which is the allocation of two (or more)
treatments that are to be compared by letting this allocation depend on the result
of a random process like flipping a coin. By doing so, we let the selection of treat-
ment be independent of the disease characteristics and other potential confounding
factors. We obtain (in the long run) that the two groups will have the same treat-
ment results if the two treatments are equally good or equally bad and all comply
with the protocolled treatment allocation. Randomization is of crucial importance in
avoiding what is called “confounding by indication” – the indication for treatment
may confound the estimate of the treatment effect – since there are hopefully good
reasons for using one particular treatment rather than another. Randomization will,
in the long run, remove confounding, including confounding by indication and con-
founding by unknown factors. A perfectly designed and conducted randomized trial
will, if repeated over and over again, approach the true causal association between
the exposure and the disease under study. It is unfortunately much easier to design
a “perfect” RCT than to conduct one.

The second element is blinding, i.e., using unlabeled treatments that cannot be
distinguished from each other. They are packed in similar containers, look alike,
taste alike if they are going to be eaten, etc. Blinding is used to avoid differential
misclassifications of, for example, side effects or treatment effects. Double blinding
means that neither the patient nor the researcher knows which treatment has been
given. Triple blinding indicates that also the person analyzing the data is blinded
until all main results are estimated with coded values for treatment.

The outcome (estimated treatment effect) of a trial is a function of the natu-
ral history of the disease, the possible biased reporting by the patients, doctors,
and statisticians, and the possible treatment effect. Use of randomization, blinding,
and placebo (an inactive treatment) or comparison with the best available treatment
makes it possible to isolate the treatment effect. If we run a large randomized trial
where the expected natural history of the disease does not differ between the com-
pared groups and if blinding makes measurement errors similar in both groups, then
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we may be in a situation where we are entitled to say that a significant difference in
prognosis probably reflects a treatment effect, but not more than that. Unfortunately,
complete compliance to the protocol is seldom seen. People stop taking medicine
they do not believe works or they start taking something else.

Randomized controlled trials are usually based on informed consent, and the
sequence of a trial could be as in Fig. 12.1.

Identify eligible; defined by excl./incl. criteria 

Obtain informed consent 

Randomize 

Treatment arm Comparison arm

Non-compliance EENon-compliance

(E) endpoints/side effects

Fig. 12.1 Structure of an RCT

The randomized trial is a follow-up study where the exposed and unexposed
cohorts are selected from the same pool of eligible candidates. They have the dis-
ease to be treated and they are of the desired age and have other characteristics
of importance for the treatment. If they say yes to taking part in the trial (many do
not), they are then randomized to one of the two (or possibly more) arms. It is impor-
tant to make sure that the information fully explains the time they need to devote
to the study, the procedures they have to go through and possible risks associated
with the treatment. During follow-up the investigator has to record compliance to
the research protocol and often an independent monitoring committee has to follow
possible side effects and other deviations from the expected outcomes.

Data are then usually analyzed according to the principle we call intention to treat
or “as randomized so analyzed.” All comparisons are made between the randomized
groups, regardless of whether they followed the treatment or not. The reason for not
comparing those who actually followed the protocol (this analysis is called accord-
ing to protocol), is that participants made the decision to comply or not to comply
and we may lose comparability obtained at randomization by the selection bias this
may entail.
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Analyzing data according to the “intention to treat” principle is no guarantee
against bias when we try to estimate the treatment effects. It may, in fact, be a
guarantee for bias. If a large number of people do not follow the protocol then we
underestimate the treatment effects (and side effects), and if many do not comply
the comparison may be of little clinical relevance. Furthermore, intention to treat
analysis requires that we have the key endpoint data for those who left the study,
which may not always be the case.

Since a randomized trial is an intervention where we impose an exposure we
must accept the responsibilities that it entails. Randomized trials are usually not an
option if we want to study harmful exposures, like an environmental exposure or
risky lifestyle factors. In order to do a trial to compare different treatments we need
to be of the belief that these treatments may turn out to be equally good or bad. If
we believe one treatment is better than the other the trial is unethical; the principle
of equipoise is then violated.

Randomized trials usually have to be relatively large to be worth doing since
small trials do not guarantee comparability between treatment groups. Flipping a
coin 10 times only occasionally produces 50% heads and 50% tails. Flipping a coin
1,000 times will yield results much closer to this expectation.

Analyzing data from a randomized trial is similar to analyzing data from any
other follow-up study measuring relative or absolute measures of association.
Besides these measures, you will find a measure such as “numbers needed to treat
(1 divided by the difference in risk between the two groups).” A trial on folate use
to prevent neural tube defects in high-risk pregnant women showed the results given
in Table 12.1 [1].

Table 12.1 Preventing neural tube defects (NTD) by using folic acid

Exposure/folic acid Number of children
Number with neural tube
defects at birth

+ 593 6
– 602 21

Relative prevalence ratio = 6/593

21/602
= 0.29

Relative prevalence difference (RPD) = 21/602 − 6/593 = 0.025

Numbers needed to treat 1/RPD = 1/0.025 = 40

The estimates show that folate prevents a number of neural tube defects. The
prevalence proportion is about 70% lower among those who received folate than
among those who did not (the prevalence proportion drops from 0.0035 to 0.0010).
About 40 of these high-risk women (women who had a previous child with a neural
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tube defect) have to receive folate supplementation to prevent one case with a neural
tube defect to be born – a remarkable cost-effective preventive treatment since folate
is cheap and has few, if any, side effects in the doses needed to obtain a preventive
effect [1].
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Chapter 13
Analytical Epidemiology in Public Health

Since the public health epidemiologist focuses on determinants of disease or ways of
preventing diseases, an experimental study is often not an option for ethical reasons,
although it may be possible to remove an exposure in a randomized trial on, e.g.,
smoking cessation. The public health epidemiologist will need to know more about
non-experimental design options and how to use available data for research. The
public health epidemiologist will often use secondary data (data generated for a
different purpose, like death certificates, existing monitoring data of air pollution,
employment roosters), and he or she will have to be familiar with how the data were
generated and the limitations that may imply.

The public health epidemiologist should provide information on changes in mor-
bidity and mortality and be able to address changes related to unemployment,
changes in health care or rapid changes in important risk factors such as obesity,
emerging epidemics, and more. It is important to have broad and general data on
health in a population to set priorities right.

The public health epidemiologist is also expected to be able to go beyond sim-
ple vital statistics and to identify patterns in morbidity or mortality that can be
used to generate new hypotheses about possible causes of diseases. A public health
epidemiologist will know that a hypothesis also has to be evaluated within an epi-
demiologic context. Does the disease follow a pattern that at least does not contradict
the hypothesis? If you claim that mobile phone use increases a specific form of brain
cancer you would at least expect this cancer to increase over time since the exposure
is increasing rapidly over time. You will expect to see this increase to be strongest in
age groups and populations that use the phone most often once they have accumu-
lated sufficient exposure time to onset the disease. The public health epidemiologist
should also be familiar with more design options than has been described in the
previous text.

Population-based case–control sampling, for example, is difficult and vulnerable
to a variety of different sources of error and the public health epidemiologist should
know about important design alternatives like the case-crossover study [1] that in
some situations is less bias prone. The idea is simple, namely that for an exposure
that changes over time, like diet, physical exercise, and intake of medicine, individ-
ual disease experience can be used to examine associations with diseases that have
a short induction and latency time. The person may observe that migraine is more
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frequent following intake of red wine than in time periods without this exposure
(the incidence rate is higher in exposed time than in unexposed time). In the case-
crossover design we try to combine this experience from several people to make a
common estimate from a group of cases. A larger sample is needed if the disease is
rare.

The Case-Crossover Study

The case-crossover study starts with identifying cases and only cases are used (it is
a case-only study). We record whether the exposure was present shortly before the
onset of the disease and in a pre-specified reference time period. To make this less
abstract let us use data from a published study to illustrate the design.

Redelmeier and Tibshirani [2] took an interest in studying the association
between using mobile phones and car accidents. They identified drivers who had
a car accident and recorded use of mobile phones in a 10-min time period lead-
ing up to the accident and for a reference 10-min time period on a similar day of
the week before. They recorded mobile phone use if the individuals were driving
and using the mobile phone at that time. Given these data, they classified all cases
according to Table 13.1.

Table 13.1 The four possible
exposure profiles of cases Use of mobile phone

Type
Reference
10 min

Before accident
10 min

1 Yes Yes
2 Yes No
3 No Yes
4 No No

All information on risk comes from type 2 and type 3 people. A type 2 response
indicates a protective effect and a type 3 response a harmful effect of using the phone
while driving. It turns out that the estimate of RR in this simple example is obtained
by calculating the total number of type 3 cases and dividing it with the total number
of type 2 cases. We use only drivers that are discordant for the exposure in the two
time periods:

RR =
∑

type3
∑

type2

Table 13.2 shows results from the study, and the results indicate that use of
mobile phones increases the risk of accidents about fourfold.

The table shows, perhaps as expected, that young people with short driving expe-
rience have the highest relative risks of having an accident when using a mobile
phone. It was more unexpected that using hands-free sets carried as high a risk as
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Table 13.2 Relative risk of a
motor vehicle collision
following use of mobile
phones, according to selected
characteristics [2]

Characteristics
Relative risk (95%)
confidence limits

All subjects 4.3 (3.0–6.5)

Age (year)
<25 6.5 (2.2–∞)
25–39 4.4 (2.8–8.8)
40–54 3.6 (2.1–8.7)
>55 3.3 (1.5–∞)

Sex
Male 4.1 (2.8–6.4)
Female 4.8 (2.6–14.0)

Driving experience (year)
0–9 6.2 (2.8–25.0)
10–19 4.3 (2.6–10.0)
20–29 3.0 (1.7–7.0)
≥30 4.4 (2.1–17.0)

Type of mobile phone
Hand-held 3.9 (2.7–6.1)
Hands-free 5.9 (2.9–24.0)

hand-held phones. The results may even indicate that the use of hands-free sets car-
ries a higher risk, but the confidence intervals (CI) show that these estimates come
with statistical uncertainties.

By making cases their own controls we adjust for all confounders that remain
stable over the time period of study in this case up to a week (like driving skills or
genetic factors and in most cases car safety); we even obtain much better control
over these factors than in any other designs, including the randomized controlled
design, and we obtain better control of genetic factors than we could obtain in a
twin study. We are closer to the counterfactual ideal than in most other designs for
these time-stable factors. But there are also limitations. Were the driving conditions
similar at the two occasions? Perhaps the use of a mobile phone was done to inform
about delays and heavy traffic? These traffic conditions could be component causes
of the accidents rather than phone use and of course we have to make sure that the
phone calls were done before the accident and not to call for help after the accident
(reverse causation).
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Chapter 14
Analytical Epidemiology in Genetic
Epidemiology

Disentangling the Basis for Clustering in Families

The recurrence of diseases or correlation in traits can, through studies of adoptees,
twins, and half-sibs, provide information about the causes of familial clustering.
Other kinds of family studies cannot separate the effect of shared environment and
shared genes.

Adoption Studies

For logistic reasons, adoption studies are fewer and usually smaller than other fam-
ily studies. Nevertheless, adoption studies have had a substantial impact on the
nature–nurture debate for a number of traits because these studies have produced
remarkable results. Adoption studies use the fact that adoptees share genetic vari-
ants with their biological parents but not the parents’ environment, and they share
the environment to some extent, but not gene variants, with their adoptive fami-
lies. Among the most notable findings from adoption studies is Heston’s 1966 study
[1], where he showed that among 47 children who had schizophrenic mothers and
who were put up for adoption 5 developed schizophrenia, while none of the 50
control adoptees developed schizophrenia. Although the sample size is small, the
study very convincingly indicated that schizophrenia has a strong genetic compo-
nent. A strong intrauterine component could also be an explanation but twin studies
reveal much higher concordance rates in monozygotic twins compared to dizygotic
twins (see below), again suggesting genetic factors as the major factor in suscep-
tibility to schizophrenia [2]. Another intriguing finding that surprised many was a
Danish adoption study of BMI [3]. This study showed that the BMI of adoptees
correlated more with the BMI of their biological relatives than that of their adoptive
relatives, indicating a strong genetic or early life component to variation in body
composition in settings with no shortage of food supply.
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Twin Studies

In humans two types of twinning occur: monozygotic (identical) twins, who share
all their genetic material, and dizygotic (fraternal) twins, who on average share 50%
of their genes by descent like non-twin siblings. A twin study of a condition/disease
in its simplest form is based on a comparison of monozygotic and dizygotic concor-
dance rates (i.e., the probability that a twin has the condition under study given that
the co-twin has it), corresponding to the recurrence risk described on page 38–39.
A significantly higher concordance rate in monozygotic than in dizygotic twins indi-
cates that genetic factors play a role in the etiology of the disease. For continuous
traits, correlations are used instead of concordance rates. The twin study does not
identify specific genes that affect the trait but rather assesses the overall effect of
genetic factors: the degree to which differences in the phenotype are attributable to
genetic differences between people. To estimate the heritability of a trait (i.e., the
proportion of the population variance attributable to genetic variation) twin data can
be analyzed using standard biometric models. A number of recent developments in
twin methodology have taken place based on the incorporation of genotypes. This
enables twin models to estimate how much of the genetic variation is due to variation
in a specific gene. The classic twin methodology is based on genetic theory and the
fundamental idea is that a higher degree of similarity for a trait within monozygotic
twins compared to dizygotic twins is attributable to the higher degree of genetic
similarity in monozygotic twins.

Twin studies of Alzheimer’s disease (not early onset) show that a co-twin of an
affected monozygotic twin has a 60–80% risk of becoming affected, while the risk is
30–40% if the pair is dizygotic. For Parkinson’s disease the corresponding numbers
are about 5% for both monozygotic and dizygotic twins. This is compatible with a
strong genetic influence on Alzheimer’s disease while most etiological factors for
Parkinson’s disease are likely to be identified in the environment some genetic risks
for Parkinson’s disease are now known.

Twin studies are not theoretical models such as the component causal model.
Under such models it is easy to argue that all diseases are 100% genetically and
100% environmentally determined because it is hard to imagine any disease that
does not have both environmental and genetic components. However, in the practical
research process of identifying factors influencing disease occurrence in a given
setting at a given time the classic twin study is very useful. Twin studies can point
toward identifiable causes of variation in a given population, e.g., to which degree it
is likely that genetic differences between people play a major role for the occurrence
of that disease in that population, as seen in the Alzheimer’s disease occurrence
described above.

Half-Sib Studies

In countries with population registers it is possible, on a nationwide level, to iden-
tify individuals who have changed their spouse or residence (or other environmental
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factors). Information from these registers can be used to set up a study that is partic-
ularly well suited for studying nature–nurture effects on reproductive outcomes or
diseases in early childhood [4].

Interpretation of Heritability

Twin and adoption studies suggest that a wide variety of phenotypes have a genetic
component to their etiology. Note that heritability estimates are time and popula-
tion specific, i.e., the overall influence of genetic factors depends on the amount
of environmental variance in the study population and vice versa. If, for example,
more equal access to favorable living conditions and health care is introduced in a
population, this is likely to decrease the environmental variance and hence increase
the proportion of the total variation attributable to genetic factors (the heritability).
On the other hand, an increase in the environmental variance as seen in modern
societies can also provide the opportunity for genetic effects to become expressed.

A substantial heritability for a trait suggests that it may be possible to identify
specific genetic variants that influence the trait. The chance of identifying gene vari-
ants affecting a trait through genetic association or family studies depends on the
number of gene variants and the size of their effect.

Estimating effects in genetic epidemiology:

• What are the specific genetic variants and environmental factors influencing the
trait or disease?

• How do the environmental and genetic factors interact?

Exposure–Disease Associations Through Studies of Relatives

Nearly all lung cancers occur in smokers. Although overwhelming evidence exists
for the health-damaging effects of smoking from observational studies and animal
studies it could be claimed that what we observe is just an association between
smoking and lung cancer and that we do not know whether it is causal or a result of
confounding, e.g., genetic confounding. While this today may seem farfetched, one
of the leading bio-statisticians, Sir Ronald Fisher (1890–1962), actually argued that
smoking in itself did not cause lung cancer but that certain genetic variants increase
the liability to smoke as well as the liability to develop lung cancer, and he was not
alone in holding this belief at that time. Doll and Hill recognized this possibility in
their landmark paper on smoking and lung cancer from 1950 [5].

Twin studies may shed light on this hypothesis and similar (unlikely) hypothe-
ses that familial-shared environmental factors would be the basis for the association.
The informative twin pairs are discordant pairs, like in the case-crossover study (i.e.,
twin pairs where one twin is a smoker and the other is not). If the smoking–lung
cancer association is caused by genetic factors, we would not expect the smoking
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co-twin to get lung cancer more often among monozygotic twins than the non-
smoking co-twin because the two twins share all genetic factors. For dizygotic
twins we would expect a weaker association than observed in the general population
because we partly control for genetic factors (dizygotic twins share, like siblings,
about 50% of their genes). If the smoking–lung cancer association is not due to
genetic or other familial factors we will expect to see that the smoking co-twins
have the highest lung cancer risk regardless of zygosity. Studies of siblings corre-
spond genetically to studies of dizygotic twins. Sibling studies benefit from the fact
that sibships are much more common than twins. Furthermore, many twins have
infertile parents as twinning may be a result of infertility treatment they received,
although this is only a potential problem for younger cohorts of twins.

While the above example is mostly of historic interest, this design can also be
used to address some of the important contemporary topics in epidemiology: There
is evidence that an association exists between fetal growth and later life health out-
comes, such as blood pressure and cardiovascular mortality. The key question is,
however, whether fetal nourishment or other factors such as genes or socioeco-
nomic conditions cause the association. Some studies suggest that socioeconomic
confounding cannot explain the association between fetal growth and cardiovascu-
lar mortality, but there is evidence that genetic polymorphism can affect both fetal
growth and later insulin regulation. Analysis of twin pairs provides no strong evi-
dence that the smallest twin at birth later has the highest blood pressure, suggesting
that at least part of the association can be explained by familial factors including
genetic factors and the rearing environment [6].

Gene–Environment Interaction

It is difficult to imagine diseases that are not at least in part due to interactions
between genetic and environmental factors. A clear example of gene–environment
interaction is G6PD deficiency. This is an X-linked trait of the enzyme glucose-6-
phosphate dehydrogenase deficiency that facilitates energy metabolism in cells (like
red blood cells) and helps protect the cell from oxidative damage. Defects in the
enzyme that are genetically determined are extremely common (∼5% worldwide)
and can result in hemolysis and anemia if the affected are exposed to certain nutri-
tional insults such as Fava beans or pharmacologic agents including some antibiotics
and antimalarials. Thus individuals with a risk genotype are normal in the absence
of an environmental exposure. This is an example where the causal field model fits
the observation. The strength between the genetic factor and the disease depends
upon the prevalence of the dietary factors and medicine use. By avoiding these
environmental exposures we make sure the causal field is not completed.

Also the common ApoE-4 polymorphism, which has been shown to be a risk
factor for cardiovascular diseases and Alzheimer’s disease, seems to be involved
in gene–environment interaction making the ApoE-4 carrier more susceptible to
environmental exposures. For example, an increased risk of chronic brain injury
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after head trauma has been observed for individuals who carry the ApoE-4 gene
variant, compared to non-ApoE-4 carriers.

A huge challenge to gene–environment interaction studies is the multiple com-
parison problem. With approximately 20,000 genes already identified, many having
several variants, an enormous number of possible gene–environment interactions
can be studied. One reasonable strategy is testing of biologically plausible interac-
tions and replication of positive findings in large studies.

Cross-Sectional Studies of Genetic Polymorphisms

If we did not already know from vital statistics that males have substantially higher
mortality than females throughout life, we could get information about this from
a cross-sectional population-based study. We would see that in many countries the
distribution of males to females would be approximately 1:1 at birth while it is about
1:2 at age 85 and 1:4 or even 1:5 at age 100 in many settings. Similarly some genetic
variants, e.g., ApoE-4, are “weeded out” with age, indicating that they are associated
with increased mortality. Interference from such cross-sectional studies is dependent
on a stable population with little migration into the population. Remote islands will
therefore often be very well suited for such cross-sectional age-dependency studies
while immigrant countries like the USA and Australia are less suited.

Incorporation of Genetic Variables in Epidemiologic Studies

Advances in technology frequently enable new and more powerful analytic
approaches to disease causality. While it has been possible to include variability
in genes into studies of epidemiology since the discovery of the human blood group
antigens in the early 1900s, there has been a remarkable advance in using genetic
variables in the last few years as DNA sequencing and related technologies make
it feasible to study up to 1 million variants per individual on thousands of cases
and controls at practical costs. Two general options are currently available for large
epidemiologic studies. One is directly hypothesis driven and involves choosing a
modest number of variants for study when the underlying biology/physiology of
the risk alleles is already known or highly suspected. This is called the candidate
gene approach and might be used in a setting of building on a known effect such
as the role of ApoE variants in dementia or cardiovascular disease or genes such as
the N-acetyltransferases that are critical in cigarette smoke detoxification. Selecting
for study variants in genes of known biological function enables the investigator to
add a powerful new variable to the analysis and limits the problems that arise from
multiple comparisons and the attendant issue of false positive results (type 1 errors).
If we has no strong candidates or wishes to investigate the role of common vari-
ants without a prior hypothesis as to what genes those variants might be present in
one can use the genome wide association study (GWAS). In 2007 advances in both
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technology for variant detection (a range of “DNA chips”) and analytic advances in
how to address the type 1 error problem resulted in an explosion of GWAS studies
leading to the identification possible of gene variants contributing to a wide range
of common, complex disorders. The technology allows the study of up to 1 million
single nucleotide polymorphisms (SNPs) as well as 1 million copy number vari-
ants (CNVs) on a single individual for less than 500 Euros. This technology takes
advantage of the observation that common human genetic variation is located in
blocks where tens or even hundreds of variants in physical proximity on a chromo-
some each have their individual alleles inherited in a manner highly correlated with
the alleles of nearby SNPs [7]. Thus any one SNP can serve as a surrogate marker
for many others, making it practical to provide coverage of an entire genome with a
few hundred thousand SNPs and CNVs. As the cost of the assays is expected to drop
further such approaches are now a standard tool in genetic epidemiologic studies.
There are a few caveats. First, the approach is only effective when common variants
contributing to disease can be detected by virtue of their disease association. While
this is true for some single-gene disorders (cystic fibrosis, for example) as well as
complex traits (breast cancer and many others) it is not true for all disorders (PKU
and hypertension seem to be exceptions). In these disorders a genetic component
may still be very active but a large number of different alleles may be contributing
so that no common variant can be detected by association. These multiple allele dis-
orders can be solved by DNA sequencing, and while the cost of DNA sequencing
is low it remains costly enough that it is not yet in routine use for epidemiologic
studies that lack a hypothesis for a specific region to examine. Next, because of
the enormity of the multiple comparisons (a P value of <10E-7 is required to meet
Bonferroni expectations) there are many signals that may require evaluation so that
replication in independent populations for positive results is now an expectation for
any such study to be accepted. Nonetheless, GWAS studies are now a component of
most large epidemiologic efforts, and plans for obtaining material for DNA should
be a standard plan for any study in which a genetic variable might be active.
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Chapter 15
Analytical Epidemiology in Clinical
Epidemiology

Common Designs Used to Estimate Associations

In order to evaluate interventions or diagnostic procedures a randomized clinical
trial (RCT) is the most accepted way. However, there are certain limitations:

1. It may be problematic to generalize the results from an RCT into normal clinical
practice.
RCTs are normally restricted to selected patient groups, often excluding chil-
dren, pregnant women, and geriatric patients.

2. Long-term effects. RCTs are normally costly undertakings, which means that a
follow-up exceeding 1–2 years is very uncommon and side effects may well take
longer to develop.

3. Studying rare events requires very large studies. Clinical studies encompassing
more than 500 in each arm are rare, which means that events with a frequency of
1 out of 200 or less will seldom be detected in the statistical analyses.

4. Interactions with other diseases and/or other drugs, etc. Thus, in many instances
one has to use other designs in order to estimate effects or side effects.

Case-Reports and Cross-Sectional Studies

Most medical students or junior doctors will sometimes encounter a senior colleague
who will tell her/him with conviction that once upon a time he/she had a patient who
had both diseases A and B and reacted badly to drug C and consequently treatment
D will be the only appropriate choice for this patient. The senior colleague is then
inferring from a case-report, and caution is recommended. Further, results from dif-
ferent cross-sectional studies have often been interpreted without taking the time
sequence of events into consideration.

One example comes from the Third International Conference on Pernicious
Anaemia in Stockholm in August 1937. Pernicious anemia had up to then been
regarded as a malignancy with a hematological picture impossible to distinguish
from leukemia. Now it could be cured by giving patients B12. Dr. Birger Strandell,
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a Swedish internist, who had used data from the newly established regional can-
cer registry in order to assess the long-term effects following cure for pernicious
anemia, demonstrated that the patients had a very high risk for gastric cancer. He
inferred that patients with pernicious anemia were at an increased risk of gastric
cancer which had clinical implications. He even had this report accepted in the
Journal of Nordic Medicine (in Swedish with an abstract in German). However,
the next speaker was Professor Karsner from Cleveland, Ohio, who presented the
results from a study performed at his clinic [1]. It was a cross-sectional study includ-
ing more than 1,000 individuals with pernicious anemia had been diagnosed, none
of whom had gastric cancer at the time of diagnosis of pernicious anemia, and he
wrote in JAMA that there was no association between pernicious anemia and gastric
cancer. Although this was published before impact factors existed JAMA evidently
was more widely read than the Journal of Nordic Medicine, and the results from
Cleveland became the accepted truth until the end of the 1970s. We know now that
pernicious anemia can lead to gastric cancer, and cross-sectional studies that do
not take into account the temporal dimension can produce misleading results and
misguide clinical practice.

Case–Control Studies

Screening is suitable for evaluation in observational studies, and randomized clini-
cal trials will in most instances be very difficult to conduct. An RCT may provide
information produced under ideal circumstances (efficacy) that need not represent
what happens when screening becomes a routine procedure (effectiveness). The out-
come of interest is often relatively rare even in high-risk populations, and long-term
effects, often after decades, are of special interest. A good example on how to eval-
uate a possible impact of screening for colorectal cancer is a study from the Kaiser
Permanente Medical Care program published in 1992 [2].

Two hundred and sixty-one members who died of cancer of the rectum or distal
colon between 1971 and 1988 were used as cases and 868 controls were matched
on sex and age. Sigmoidoscopy performed up to 10 years before the diagnosis of
a cancer was the screening test and the authors demonstrated a 60% reduction in
mortality from rectal or distal colon cancer following screening. This reduction
in mortality could be due to other exposures such as lifestyle factors or medica-
tion. In order to study if confounding explained the results 268 subjects who had
died from colon cancer above the reach of sigmoidoscopy and 268 controls showed
no difference in the use of sigmoidoscopy between cases and controls. Finding a
similar colon cancer mortality in these two groups indicates that intervention with
sigmoidoscopy was related to this reduction in cause-specific mortality in humans
within the reach of sigmoidoscopy. Similar results have been found in randomized
trials.
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Cohort Studies

A letter to the editor in 1932 [3] made the case that the adherences following a
perforated appendix in females would affect their long-term fertility. The author
therefore recommended a liberal attitude for abdominal exploration at the suspi-
cion of appendicitis in young females. This notion was enforced by different case
series and became the accepted truth leading to a female predominance of appen-
dectomies, especially in the younger age groups. This practice was challenged for
the first time in the 1990s in a study from Sweden [4]. Close to 10,000 women sub-
jected to appendectomy under the age of 15 between 1964 and 1983 were compared
to 47,000 women who had no appendectomy before the age of 15. The authors
demonstrated that with the exception of women who had been appendectomized
with a normal appendix there was no difference in the fertility between those with a
perforated appendix and those with an appendicitis that did not perforate (Fig. 15.1).

Fig. 15.1 Age-specific rates of first birth among women who underwent appendicectomy before
age 15 and among age-matched controls according to life table analysis. Figure shows average
birth rate in a given 2-year age interval

The somewhat lower age at first birth among those with a normal appendix is not
surprising as these women probably to some extent were more sexually active at an
earlier age than the rest, leading to infections mimicking appendicitis. The publica-
tion of this study combined with better diagnostic instruments for appendicitis has
since then resulted in a more even sex distribution among the appendectomized, for
instance in 2006 there were 5,358 appendectomies in males compared to 5,039 in
females in Sweden [5].
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Randomized Clinical Trials (RCTs)

A randomized clinical trial is a cohort study. There is, however, one major com-
ponent in the random clinical trial which gives it a certain advantage to the
observational study, namely randomization.

A correctly conducted large randomized trial will reduce confounding. If the
study is large enough the distribution of potential confounders will be similar in
both arms.

However, two quality indicators of the study should always be assessed by the
reader:

1. Analyzing data according to “intention to treat” is the key. Otherwise selection
bias will be of concern.

2. Blinding of the treatment among those assessing the outcome. Otherwise the
results can be subject to differential misclassification.

In the 1980s laparoscopic cholecystectomy surgery (surgery through a scope
to remove gallbladder stones) was introduced. This new method was deemed to
be superior with regard to the postoperative period compared to open surgery. It
was therefore considered unethical as well as unnecessary to perform clinical tri-
als. Observational studies were difficult to conduct following this procedure due to
confounding by indication, i.e., confounding by the reason for using a specific type
of surgery. The first randomized clinical trial was therefore conducted as late as in
1992. Two hundred patients were included and randomization took place in the oper-
ation room after which the procedure was performed either laparoscopically or as
an open operation. Identical wound dressings were applied in both groups, and both
caretakers and patients were blinded to the type of operation. Drains were usually
removed on the first postoperative day, patient control analgesics were discontinued
at the discretion of a patient, and oral analgesia was given if necessary. The patients
were interviewed in the out-patient clinic by a research nurse who was unaware of
the operation procedure, and the wounds were checked by a surgeon in a separate
room. The authors demonstrated that a laparoscopic cholecystectomy takes longer
compared to open surgery and does not have an advantage in terms of hospital stay
or postoperative recovery. These findings were unexpected but have so far had no
impact on the patterns of operations.

In conclusion, observational studies in combination with randomized, clinical
trials are the main method to evaluate new techniques, interventions, and diagnostic
procedures. An insightful commentary in the British Medical Journal from 1994
stated the following [6]:

The view is widely held that experimental methods (randomised controlled trials) are the
‘gold standard’ for evaluation and that observational methods (cohort and case control stud-
ies) have little or no value. This ignores the limitations of randomised trials, which may
prove unnecessary, inappropriate, impossible, or inadequate. Many of the problems of con-
ducting randomised trials could often, in theory, be overcome, but the practical implications
for researchers and funding bodies mean that this is often not possible. The false conflict



References 99

between those who advocate randomised trials in all situations and those who believe obser-
vational data provide sufficient evidence needs to be replaced with mutual recognition of
the complementary roles of the two approaches. Researchers should be united in their quest
for scientific rigour in evaluation, regardless of the method used.
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Sources of Error



Chapter 16
Confounding and Bias

In Part II we described how to estimate a measure of association between an
exposure and an end point, often a disease. We are interested in “effects” but are
only able to measure associations, and we have several procedures to go through
before associations can be called “effects.” Measures of association emerge for all
possible reasons and only some of these relate to “effects.” Effect is a causal word
to be used with care.

It is difficult (in reality impossible) to avoid errors in large-scale population-
based studies. It is especially difficult if you have not made it very clear what you
want to study and which questions you want to answer. The hypotheses should be
the guiding factor in designing the study and in deciding which data you need to
collect. The hypotheses are also key when sources of error are discussed and when
you plan how best to avoid them. If possible you can present your hypothesis in the
form of a diagram, for example a DAG. In this chapter we will consider research
based on deduction. A hypothesis is put forward, data are collected to evaluate this
hypothesis, and a conclusion is reached. A growing body of literature is, however,
based on inductive inference. A large amount of data is collected without a specific
hypothesis and data are analyzed to find patterns in the data structure. These studies
often rely on powerful computer facilities and laboratory facilities without much
biological insight. “Brutal force and ignorance” may describe the new way of ana-
lyzing data. It may violate established scientific principles but sometimes produces
interesting results.

In this section of the book we will restrict our discussion to deductive studies
where the intended study design was valid. This will limit sources of error to factors
that can usually be classified as confounding, selection bias, or information bias.
Most problems can be described under these headings, but as a reader you should
be aware that different terminologies are used to describe and classify sources of
error. We will therefore focus upon when and why they occur and how they cause
bias. There is no limit to the number of mistakes that you can make in the design
phase of a study, and novel designs have to be carefully scrutinized by professional
epidemiologists and statisticians. We will leave discussions on this to the scientific
literature. We mainly consider sources of error that occur when a valid design meets
real-world problems.
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First, we should define bias, and the authorized definition [1] states

Deviation of results or inferences from the truth, or processes lead to such deviation. Any
trend in the collection, analysis, interpretation, publication, or review of data that can lead
to conclusions that are systematically different from the truth.

A study is biased if it produces results that deviate from the truth due to method
problems at any stage of research.

Some will use the term bias to include confounding – causes of the disease
under study that correlate with the exposure of interest. The dictionary’s definition
includes confounding. Others will say the confounding is not an error but related to
the fact that diseases have many causes. Heavy alcohol drinkers do have a higher
risk of lung cancer. Probably not because they drink a lot, but because they often
tend to smoke. In any case, they have a high lung cancer risk. It is only wrong if
we attribute this to their drinking habits because then we may have identified the
wrong exposure. We say that the drinking exposure is confounded by its association
with smoking habits. If they want to reduce their lung cancer risk they should stop
smoking.

Most of the measurements we make are subject to error. Recording a life time
history of dietary habits or use of mobile phones during the last 20 years based
upon a single recording is of course more error prone than recording of age or sex.
Diagnosing a disease may be easy if the disease shows clear symptoms, like measles
or bone fractures. It is more difficult to make a subtle diagnosis like attention-deficit
hyperactive disorder (ADHD) or to diagnose a slow growing cancer like myco-
sis fungoides. If we let a number of experts diagnose the same patients they will
not always agree, even if they have access to exactly the same information. This
information problem will in most cases be a source of bias we need to take into
consideration when designing the study. Usually, we will try to design our study in
a way that will allow us to know the direction of bias, perhaps even its magnitude.
Many of the weak associations we find are probably weak because exposure assess-
ment is too crude or too imprecise or our outcome measures are too unspecific.
With better data the strength of the association may be more precisely estimated at
a proper larger value.

We design our studies in the hope that those who are invited to take part in the
study will accept the invitation, but this is seldom the case. Not all will respond,
and those who do will not always remain in the study. This selection into or out of
the study group may bias our results. It is well known among those who do surveys
in order to get a representative sample of the source population that non-responders
will often make the study non-representative. If you want to estimate how many will
vote for a given political party, this prediction will be wrong when it is only based
on those who responded, and it is a standard practice to adjust for non-responding
by using all available information on the non-responders to guess how they would
have responded.

In analytical epidemiology we are rarely interested in surveys or representa-
tive samples. Surveys provide data for descriptive epidemiology. We are usually
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interested in identifying determinants of diseases or in evaluating treatments or pre-
ventive measures of diseases. Our concern is primarily devoted to how comparable
the populations are, or can be made to be, when we make inference about the deter-
minants we study. We call that the internal validity of the study and we have a set
of guidelines for evaluating this internal validity. We are of course also interested
in knowing if this information can be applied to other populations or future patients
and not only to the population used for sampling. We have no specific guidelines for
estimating this external validity. This is an area left for common sense and future
experience. The paradox is that we may have ways of calculating confidence limits
for the population we used for our study, but once the study is done our interest
shifts to other populations. This practice only makes sense if we believe that the
causal mechanisms are not time or population specific.

If you read papers on occupational epidemiology you will find terms like the
healthy worker effect. The term stems from situations where mortality in specific
occupations is compared with the mortality of the entire population. These workers
will often have a lower than average mortality, which is not surprising. To main-
tain a full-time physically demanding job, like being a bricklayer or a carpenter,
requires good health. It is not a job for those with serious physical handicaps, so
the comparison is biased. The comparison group, all in the population, does not
produce the expected mortality for workers we study had they not had the occupa-
tional exposures. It is thus a type of selection bias that is within the design sphere
and thus outside the sources of error we describe in this chapter. We will start with
confounding and present problems that are pertinent even in well-designed studies.
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Chapter 17
Confounding

A confounder is an exposure, external to our hypothesis, that biases our measure
of association unless it is controlled. When we compare our exposed population
with the unexposed comparison group the disease outcome will be different in
the two groups even if the exposed had not been exposed. The comparison is
confounded by an external factor that has to be a cause of the disease or a cor-
relate for a cause of the disease. It has to be associated with the exposure under
study without being in the causal pathway between the exposure and the disease.
For a schematic presentation of a simple alternative causal link between E and D
(E–C–D), see Fig. 17.1.

DE 

C

Fig. 17.1 Exposure (E),
disease (D), and confounder
(C)

If E is alcohol, D is lung cancer, and C is smoking, smoking would in many
situations confound the association E → D. Alcohol intake may be causally
related to smoking (probably in a more complicated way than Fig. 17.1 illus-
trates) and smoking is not part of the causal pathway we take an interest in.
Smoking and alcohol are expected to be associated because they may share com-
mon causes such as personality, peer pressure, and a genetic predisposition for
addiction. In Fig. 17.1 the E–C–D link presents a “back-door” path between E
and D.

If E is saturated fat, D is cardiovascular diseases, and C is cholesterol, then C,
or at least part of C, is not a confounder but a part of the causal path we take an
interest in (it is not just a back-door path between E and D). And the causal diagram
would be
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DE 

C 

Notice also that the association between E and C is usually not a simple bivariate
association but an association present after adjustment for other potential con-
founders. We thus take an interest in the conditional association between E and
C upon adjustment for other confounders. If we have data on both cigarette smok-
ing and inhalation they need not both confound. If all cigarette smokers inhale it is
sufficient to adjust for smoking alone.

Table 17.1 shows strong (unusual) confounding (and effect measure modifica-
tion) by sex. The female sex is a strong determinant of D, and women are much less
frequently exposed to E than men (E is an occupational exposure). We can illustrate
the association between sex and disease by stratifying our data on exposure as done
in Table 17.2.

Table 17.1 A case–control study on the association between hexachlorobenzene exposure (E) and
thyroid disease (D), stratified by sex [1]

Stratification
on sex E D Controls OR

Total + 8 472
– 43 1,313 0.52

Men + 4 422
– 1 371 3.52

Women + 4 50
– 42 942 1.79

E = exposure, D = disease.

Table 17.2 Data in
Table 17.1 stratified on
exposure

Exposure Sex D Controls OR

Total M 5 793
F 46 992 0.14

+ M 4 422
F 4 50 0.12

– M 1 371
F 42 942 0.06

You will rarely see confounding that changes the direction of the exposure–
disease association (Table 17.1). When it happens it represents what is called
Simpson’s Paradox. Usually, confounding will attenuate or exaggerate the asso-
ciation (sometimes called negative and positive confounding). A change in the
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direction of the association is unusual but possible (as in this case and in the
comparison between mortality rates in Denmark and Greenland, p. 19).

As illustrated in Fig. 17.1, we avoid confounding by eliminating the association
between E and C. The simplest way of eliminating this association is to restrict the
study to a limited segment of the population that has only one category of C. If
C is age we can restrict the study to a narrow age ban. If C is sex we can restrict
the study to males or females. If C is smoking we can perform the study among
smokers and non-smokers only. We can also design the study in such a way that no
association exists between E and C. The random allocation of E in the randomized
trial will usually have this effect. Since exposure is allocated randomly we would
expect, at least in a large trial, that the potential confounders (the determinants of the
disease we study) will be equally distributed among exposed and unexposed. We can
match the follow-up study to make exposed and unexposed comparable concerning
the distribution of sex, age, smoking, etc., or we can control for confounding in
the analyses, given we have data on confounders, for example by stratifying the
analyses as in Table 17.1 or 17.2. Only the randomized trial will, however, adjust
for unknown confounders with some degree of certainty, a degree that is reflected in
the confidence interval.

In non-experimental studies we try to capture some of these unknown con-
founders by adjusting (deconfounding) for variables that correlate with many
conditions, like sex, age, or socioeconomic status.

Confounding is a potential problem that receives much attention in most epi-
demiological studies, but it is not equally serious in all studies. If you study the
association between use of a specific component in soap and hand eczema there
may not be many correlates of this exposure that are causally linked to hand eczema
unless they are in the soap you study. If you study effects of treatment, your com-
parison between treated and untreated patients may be strongly confounded by the
severity of the disease (confounding by indication for the treatment). Assuming this
comparison is not based upon a randomization of the treatment, the two patient
groups are not expected to be comparable. Doctors are trained to select the best
possible treatment given the state of the disease, and if they succeed in selecting
the proper candidates for treatment treated patients will not be comparable with
non-treated patients. There were reasons for using this treatment for these specific
patients, an indication for the treatment (confounding by indication). This type of
confounding is a main reason for the need to study treatment effects in randomized
trials. Good clinical decision making tends to ruin our options for studying treat-
ment effects in non-randomized studies, and the better the clinicians are the more
they will confound our source population “by their valid indications for treatment.”

If we take an interest in a specific dietary component and its possible health
effects, this dietary component will usually be closely linked to other dietary com-
ponents. Say you take an interest in beta-carotene and its effect on lung cancer.
Beta-carotene in food comes in a package, like in a carrot, and beta-carotene is
just one of many components in the carrot. Therefore, eating carrots correlates with
other food components. Furthermore, people who eat carrots usually also eat other
types of vegetables. Add to this that eating carrots replaces other types of food
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items. Adjusting for all these factors may well be impossible in a non-randomized
trial. Studies have shown that eating a diet rich in beta-carotene is associated with
low lung cancer risks, but this association has not been found in randomized trials
where beta-carotene was allocated by randomization. The reason could be that the
protective effect of eating carrots was not caused by beta-carotene (ecological fal-
lacy) or that beta-carotene only has protective effects in combination with what else
is in the carrot. It is also possible, but not likely, that the randomized trials got it all
wrong which could happen if the exposure time was too short.

The use of matching in the follow-up study is a straightforward and conceptually
simple technique. In individual matching on, say, smoking you select an unexposed
with the same smoking history as your selected exposed (individual matching). In
frequency matching you sample unexposed so they have the same smoking frequen-
cies as you have in the population of exposed. Using matching in a case–control
study is quite different. Matching in a case–control study does not in itself solve
the problem of confounding. The reason is that when you match cases with controls
you change the confounder distribution among cases to make it similar to the con-
founder distribution in controls (not similar among exposed and unexposed). If the
exposure is a cause of the disease you introduce confounding even if there was no
confounding in the source population. If both the exposure and the confounders are
causally linked to the disease they will be associated when you stratify or match on
case status since it is a collider. If you use the terminology used in DAGs you will
see that E and C become associated when you stratify on D (match on D) since D is
a collider in this diagram:

E D 

C

E and C are not associated in the population. There is no arrow from C to E.
In a stratified analysis with no adjustment, except the adjustment that is part of

the matched design, you have to count how many matched sets you have that follow
the pattern indicated in Table 17.3 (matched sets with one case and one control).

Table 17.3 A matched
case–control study Exposure

Type Case Control

1 0 0
2 + 0
3 0 +
4 + +

+ = exposure, 0 = no exposure.



References 111

The matched sets of types 1 and 4 provide no indication of a causal association. In
all these sets neither the case nor the control is exposed [1] or they are both exposed
[2]. All information is given in type 2 sets (indicating a positive association between
exposure and disease) and type 3 sets (indicating a negative, protective, effect of the
exposure). Our measure of association will simply be type 2 sets divided by type 3
sets.

Any study result can always be claimed to be confounded and most study results
are probably confounded to some extent. Still, it should be realized that confounding
needs to be strong to explain away strong associations with a high risk ratio for the
disease.

Table 17.4 [2] shows the expected confounding effect by smoking if smoking
is not adjusted for. The comparison group has the smoking prevalence shown in
the table (Exp–), and all the Exp+ groups represent different levels of confounding
by smoking among the exposed and assuming no effect of the exposure. In this
table, smoking is considered a strong risk factor with relative risks of 10 and 20.
The deviations of the RR away from 1.00 are explained entirely by confounding
by smoking. As seen, smoking prevalences have to deviate substantially between
the compared groups to explain relative risks lower than 0.6 or higher than 1.5.
Confounding by smoking cannot, under the given assumptions, explain an RR lower
than 0.15 or higher than 3.08, even when no one or all smoke in the exposed group.

Table 17.4 How much confounding could smoking cause?

Exp

Non-
smokers
(1x)

Smokers
(10x)

Heavy
smokers
(20x) RR

+
+

100
80

–
20

–
–

0.15
0.43

+
+

70
60

30
35

–
5

0.57
0.78

– 50 40 10 1.00
+
+

40
30

45
50

15
20

1.22
1.43

+
+
+
+
+

20
10

–
–
–

55
60
65
25
–

25
30
35
75

100

1.65
1.86
2.08
2.69
3.08
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Chapter 18
Information Bias

Most studies are based on data that are recorded with some errors. We may be able to
record gender precisely, birth weight with some errors, birth length with more errors,
past occupational exposures with even more uncertainties, not to mention long-term
dietary habits or use of mobile phones years ago. Sometimes diseases are diagnosed
by their symptoms only, like depression. Sometimes there may be objective signs, as
for hypertension. In clinical practice, there will often be some disagreement between
groups of clinical experts when making diagnoses. In a study we may have errors in
our measurement of exposures, endpoints, and/or confounders. If these errors lead
to bias (they normally will) we call this type of bias information bias. If our mea-
surement is a categorical variable, such as a diagnostic code or a code for gender,
we talk about misclassification or misclassification bias.

In large studies we often either have to rely on existing data or have to make
clinical tests that cannot be too invasive and often have to be inexpensive with the
limited research funds available in most countries. By comparing how a given test
performs on known cases and known non-cases diagnosed with better clinical tests
(golden standard) we can quantify the amount of misclassification we may expect
in the study by estimating sensitivity and specificity (Table 18.1).

Table 18.1 Applying a study
test to known cases and
known non-cases

Known disease status

Study test Cases Non-cases

Positive a b
Negative c d
Total a+c b+d

The proportion of all diseased classified as test positives (cases) in the study
by the study test is a/(a+c). This is an estimate of the sensitivity of the test, the
probability of being test positive given the tested have the disease (P(test+|disease)).

The proportion of truly non-diseased we expect to classify as such in the study
using the study test will be d/(b+d). This measure is an estimate of the specificity of
the test, the probability of being classified as test negative given the tested do not
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have the disease (P(test–|no disease)). These estimates of sensitivity and specificity
come with some uncertainties based on who takes part in the study, which test is
used, and the sample size.

If, on the other hand, we want to estimate the probability that a positive test iden-
tifies a diseased we need to know the prevalence of the disease in that population, P.
Given this information we can construct the probabilities of falling into the table’s
four cells, and these four probabilities are presented in Table 18.2.

Table 18.2 Probability distribution for test positives and test negatives according to disease
occurrence

Test Cases Non-cases All

Positive P × sens (1 – P)(1 – spec) P̂
Negative P × (1 – sens) (1 – P)spec 1 − P̂
All P 1 – P

Sens = sensitivity; Spec = specificity; P = prevalence proportion of
having the disease; P̂ = prevalence proportion of being test positive.

From Table 18.2 it is seen that the estimated prevalence P̂ is a function of the true
prevalence, P, and the sensitivity and specificity of the test [1]:

P̂ = P × sens + (1 − P)(1 − spec)

P̂ = P × sens + 1 − spec − P+ Pspec

P̂ = 1 − spec+P(sens + spec − 1)

P = P̂ + spec − 1

sens + spec − 1

Given the information on sensitivity and specificity and the proportion of test
positives we can estimate the “true” prevalence if we want to quantify the amount
of bias caused by misclassification of the diseased by using an imperfect diagnostic
instrument.

Assume we have a study with complete follow-up and with no misclassification
as in Table 18.3.

Table 18.3 Follow-up study
with no disease
misclassification

Exp N D RR

Yes 1,000 200
No 1,000 100 200/1,000

100/1,000 = 2.0
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Table 18.4 Follow-up study
with some misclassification
of the disease status

Exp N D RR

Yes 1,000 160(200 × 0.80)
No 1,000 80(100 × 0.80) 160/1,000

80/1,000 = 2.0

If we now use a test to identify the diseased that has a sensitivity of 0.80 and a
specificity of 1.00 we could expect to get as in Table 18.4.

Notice that a relative measure of association is not biased by a low sensitivity in
this example as long as the sensitivity is the same in the groups to be compared.

Assume now that the sensitivity is 1.0 and the specificity is 0.90; if so we get
Table 18.5.

Table 18.5 Follow-up study with misclassification of the disease status

Exp N D RR

Yes 1,000 200 + 80 (800 × 0.10)
No 1,000 100 + 90 (900 × 0.10) 280/1,000

190/1,000 = 1.47

Since sensitivity and specificity are the same for exposed and unexposed we say
the misclassification is non-differential (non-differential misclassification) and as
seen in this example this type of misclassification will offer bias-relative effect esti-
mates toward 1. A general rule, as illustrated in this simple example, is that ratio
measures are less sensitive to low values of sensitivity than low values of specificity.
That need not be the case for absolute measures of association. The risk difference
in Table 18.3 is (200/1,000 – 100/1,000) = 0.10. In Table 18.4 we get (160/1,000 –
80/1,000) = 0.08. And in Table 18.5 (280/1,000 – 190/1,000) = 0.09.

If the misclassification is differential (differential misclassification), the sensitiv-
ity and/or specificity differ(s) among exposed and unexposed and bias can be in any
direction.

You will often find statements in scientific papers saying that since misclassifi-
cation of either exposure data or disease data was non-differential the measure of
association was attenuated (relative effect measures closer to 1; absolute estimates
of effect measures closer to 0). This is often overstating reality. Non-differential
misclassification will attenuate the measure of association in most realistic situa-
tions for dichotomized exposures and outcomes, but there are usually other sources
of bias that may operate in an opposite direction and the net effect may be unknown.
Bias related to non-differential misclassification will not always be toward no effect;
e.g., if the disease state is wrongly coded (exposed coded 0 and unexposed coded 1
where it should have been the opposite) this will produce non-differential misclas-
sification that biases our measure away from the null – it will in fact reverse the
measure of association. If exposures and diseases have more than two categories
non-differential misclassification can in some situations bias results away from the
null. Misclassification of confounders may bias results in any direction [2].
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In a case–control study you often identify cases from a disease register or from
medical records. Once the cases have been identified it may be possible to check
if they meet the diagnostic criteria you want them to fulfill. In cancer research it is
common practice in high-quality case–control studies to let a reference pathologist
with known and recognized expertise go through the existing medical records and
slides. Only if he/she accepts the documentation for the diagnostic criteria is the
patient admitted to the case group. The reason for this quality control is to increase
the specificity of the diagnostic procedures and to avoid the potential attenuating of
effects by including non-cases in the case group. To see how this works, assume you
have a closed population with the following data at the end of follow-up and assume
no diagnostic uncertainties (Table 18.6).

Table 18.6 Follow-up study,
no misclassification Exp N D D̄

+ 1,000 200 800
– 1,000 100 900

D = disease, D̄ = no disease.

The relative risk is 2.0
(

200/1,000
100/1,000

)
and if we sample a 1:1 case–cohort study

we will get (assuming no sampling variation and that controls reflect the exposure
distribution in the source population – 50% exposures) as in Table 18.7.

Table 18.7 Case–cohort
sampling from Table 18.6 Exp Cases Controls

+ 200 150
– 100 150
All 300 300

OR = 200/100

150/150
= 2.0

Now assume when we select the case–control study that the diagnosing is based
on diagnostic routines that have a sensitivity of 0.80 and a specificity of 0.90. The
data in our population would then look like in Table 18.8.

Table 18.8 Follow-up study, misclassification

Exp N D̂

+ 1,000 (200 × 0.80) + (800 × 0.10) = 240
– 1,000 (100 × 0.80) + (900 × 0.10) = 170
RR = 760/1,000

830/1,000 = 1.41

A case–cohort sampling would give as in Table 18.9.
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Table 18.9 Case–cohort
sampling from Table 18.8 Exp Cases Control

+ 240 205
– 170 205
All 410 410

OR = 240/170

205/205
= 1.41

If our reference pathologist could eliminate the false positive cases, our case–
control sampling would give the result as stated in Table 18.10, given no sampling
variation.

Table 18.10 Case–cohort
study, sampling from
Table 18.8, no false positives

Exp Cases Control

+ 160 120
– 80 120
All 240 240

OR = 160/80

120/120
= 2.0

and we would obtain an unbiased estimate of RR (2.0).
As a general rule you should try to reduce measurement errors as much as possi-

ble and what remains of measurement errors you should try to make non-differential.
That can sometimes be achieved by using blinding. Make sure diagnosing is made
without information on exposure status. When exposures are measured, for example
in the laboratory, blind the lab technicians to the disease status and make sure cases
and controls are analyzed in randomly balanced sets.
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Chapter 19
Selection Bias

The most common type of selection bias in case–control studies and in surveys is
caused by non-responders. Not all accept to join the study among those selected as
eligible and therefore invited.

Imagine a survey that aims at estimating the prevalence of obesity in the popu-
lation. Imagine that our random sample of the population (80% responders) shows
the results presented in Table 19.1.

Table 19.1 Cross-sectional study on obesity

N %1 %2 %3 %4

Obese 300 30 37.5 50 30
Not obese 500 50 62.5 50 70
Missing 200 20 – – –
Total 1,000 100 100 100 100

The second column, %1, shows the distribution of responders (obese and not
obese), and non-responders, %2, indicates that 37.5% are obese under the assump-
tion of no selection bias (the non-responders also include 37.5% obese). %3 shows
50% are obese under the assumption that all non-responders are obese, and %4 indi-
cates 30% are obese under the assumption that no non-responders are obese. We
may conclude that between 30 and 50% are obese in this population (maximal selec-
tion bias), and if the non-responders cause no selection bias our estimate is 37.5. If
we have some information on non-responders we may provide a better estimate of
the prevalence of obesity in the population.

In some randomized trials less than 20% accept the invitation to the study, and
in time-consuming follow-up studies often less than 50% take part in the study. In
case–control studies participation rates for cases may be high but could be low for
controls who do not have the same incentive to take part in the study. It is important
to realize that the threat to validity caused by selection bias differs between the
different study designs. The reason is that for selection to cause bias selection has to
be associated with both the exposure and the outcome. Since the outcome will not be
known at the time of invitation to the follow-up study it is impossible to decide upon

119J. Olsen et al., An Introduction to Epidemiology for Health Professionals,
Springer Series on Epidemiology and Health 1, DOI 10.1007/978-1-4419-1497-2_19,
C© Springer Science+Business Media, LLC 2010



120 19 Selection Bias

participation based on information that is not known at the time of recruitment. The
decision to take part can only be associated with the outcome, through chance or
through other variables (cause confounding). In the case–control study the situation
is different. Women who have breast cancer and have used oral contraceptives (OCs)
may be interested in taking part in a case–control study that aims at estimating breast
cancer risk among OC users. Cancer patients or controls who never used OCs may
not have the same incentive to take part in the study.

People invited to an ongoing follow-up study cannot base their acceptance on
an unknown disease they may or may not get in the future, so selection bias is
less likely and the internal validity need not be influenced by the selection if the
study is well controlled for confounding factors. However, selection may well make
the participants different from those who declined the invitation to take part in the
study and that may often lead to a lower disease risk among the participants. This is
expected because people with poor health more often refuse to take part in research
for various reasons. We may therefore expect a different set of confounders among
participants than among non-participants and we may often see less confounding in
the group that participated in the study than among all who were invited. In the ran-
domized trial, selection cannot be related to exposure except by chance. Exposures
are distributed according to randomization, and outcomes are unknown at the time
of informed consent (and before randomization) but as in an observational study
those who participated may have a different disease risk than those who refused.
Lack of compliance to the protocol during follow-up can and will, however, often
lead to selection bias of the internal comparisons in a randomized trial and in other
follow-up studies.

Selection bias in follow-up studies at baseline is mainly related to the external
validity or generalization of our study results. The question we have to ask our-
selves is whether there are differences between the population from which we have
collected our data and the population we want to generalize to, and whether these
differences are expected to modify our results. (External validity is a question about
effect measure modification.) The internal validity in a randomized trial may be
high, but the patients are usually highly selected. Will the treatment work and have
the same set of side effects for other patients?

In follow-up studies we often have to accept that participants leave the study
before follow-up ends. In many cases, this loss to follow-up may be linked to
both the exposure and the disease under study. In a study on exposures to clean-
ing agents and hand eczema, those with vulnerable skin may change jobs before
they get eczema as a response to early markers of eczema. If all susceptible persons
are removed from the exposed cohort by this self-selection a naïve analysis of data
may show the exposure to be protective. Or imagine a randomized trial for a given
pain killer. Those who remain in pain will probably be less likely to continue a treat-
ment that does not work, and compliance is expected to be lower among those who
received such treatment. Lack of compliance to the protocol is therefore expected
to be more common in the arm of the study that receives the less effective treat-
ment, and lack of compliance can eliminate some (and perhaps most) of the design
benefits achieved by the randomization.
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Loss to follow-up often increases with follow-up time, and a randomized trial is
a less attractive study option if long-term follow-up is needed. Since selection bias
during follow-up is not unlikely the “intention to treat analyses” may remain “valid”
but almost meaningless. They may provide a valid test of the null hypothesis if the
study is powered to provide such a test, but the study provides no useful estimate
of effects because the “intention to treat” correlates too little with actual treatment.
The randomization is a poor instrumental variable for actual exposure.

Selection into a follow-up study only causes selection bias (it may cause con-
founding) of the measure of association if the selection is associated with both
the exposure and the end point, which is unlikely, but compliance to the follow-
up regime becomes very important. Lack of compliance to follow-up may well be
associated with both the exposure and the outcome. Most epidemiologists would,
on the informed consent form, emphasize the importance of staying in the study if
enrolled. The advice to potential participants should in many cases be “if in doubt,
stay out.”

Selection bias at recruitment is of major concern in descriptive studies and in
case–control studies. If a survey aims at estimating the prevalence of ADHD and
not all in the random sample participate our estimate will be biased if the prevalence
of ADHD differs among the participants and the non-participants, which is likely.

In a case–control study (like in the follow-up study) our aim is to quantify an
association between an exposure and a disease. That estimate is subject to selection
bias if the selection is associated with both the exposure and the disease. Since both
the exposure and the disease may be known at the time of recruitment the decision
to accept or reject the invitation can cause selection bias. If the exposure is a genetic
variant or a biomarker of an environmental pollutant the participants will usually not
have that information when they decide to take part in the study, and such a study is
therefore less prone to selection bias.

Assume you want to study the association between the use of oral contraceptives
(OC) and breast cancer (BC) and assume that the study would look like the data in
Table 19.2 if all participated.

Table 19.2 Case–control study on the use of oral contraception (OC) and breast cancer (BC)

OC use BC Controls OR

+ 150 120
– 250 280
All 400 400 OR = 150/250

120/280 = 1.40

In most situations not all 800 will accept taking part in the interviewing. An
80% participation rate may be considered good and 50% poor, although there are no
well-accepted cut-off points since the potential bias factor depends on many other
factors.

Selection bias is likely because not everybody has the same incentive to partic-
ipate. Women with breast cancer may find the hypothesis interesting if they have
used OCs, whereas breast cancer women who never used OCs may find it a waste
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of time to take part in the study. Controls participate mainly for altruistic reasons,
and we could end up with case–control data like those presented in Table 19.3.

Table 19.3 Participants in the case–control study

OC use BC Controls OR

+ 135 96
– 185 224
All 320 320 OR = 135/185

96/224 = 1.70

Notice that we have 20% non-participants for both cases and controls and our
OR is biased toward a stronger association (from 1.40 to 1.70). The reason is that
the selection is related to both the exposure and the disease as seen in Table 19.4
where exposure- and disease-specific participation percentages are displayed.

Table 19.4 Participants in
the case–control study
presented in percent of all in
each of the four
exposure–disease cells

OC use BC (%) Controls (%)

+ 90 80
– 74 80
All 80 80

It can be shown [1] that in some situations

ORbiased = ORtrue × ORparticipation rates

1.70 = 1.40 × 90/74
80/80

The risk of selection bias can be reduced if it is acceptable to keep the detailed
hypothesis unknown to the participants. Many case–control studies address a whole
series of hypotheses at the same time, and it should be acceptable on the con-
sent form to state, for example, that the study is on lifestyle factors and drug use
as possible risk factors of breast cancer, without further details. In genetic stud-
ies involving the screening of hundreds of thousands of genes, requesting specific
informed consent is not even an option.

If the case–control study is nested within a well-described cohort it may be pos-
sible to obtain information on the combined distribution of exposures and outcomes
among the non-responders. In other situations it is advisable to get at least some
information from part of the non-responders. A sample of non-responders may be
willing to provide some data to the study although they did not accept to provide all
the information. The information you would like to have the most is information on
exposure.
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Chapter 20
Making Inference and Making Decisions

The designs described in Chapter 2 allow you to estimate associations between the
exposures under study and the corresponding health outcome. Making causal infer-
ence is a more complicated issue. No design and no statistical procedures will in
themselves allow you to make causal inference. You can only be more or less certain
about causal relations, and making causal inference rests to some extent on subjec-
tive consideration. However, the opinion of those who know the subject matter well
carries more weight than the opinion of ignorants, although the latter could be right.
History shows that the skillful more often got it right, because knowledge allows you
to identify some non-causal associations. Skills will allow you to put hypotheses to
critical tests that often will reveal associations caused by bias or confounding.

Epidemiologists use terms like risk indicators to describe simple statistical asso-
ciations that need not be causal. Being unmarried is a risk indicator of getting cancer
of the cervix, but marital status has no direct causal link to the disease. A risk factor
is a stronger term, used when we think the association could be causal but we do
not really know. We may, for example, say that having frequent sex with several
partners is a risk factor for cancer of the cervix, although we do not think that sex
in itself is a risk factor. Still, we believe that if women reduce their number of sex
partners they reduce their risk of cervical cancer because having sex occasionally
carries a risk. We now have enough information to classify certain types of human
papiloma virus transmitted by the sexual act as carcinogens because the cumula-
tive documentation for a causal effect is overwhelming. Still, causal terms are to be
used cautiously. Terms like etiologic fractions or attributable fractions should not be
used unless we think we have a causal relation. Causal conclusions usually require
substantial convincing evidence from several studies.

Some hold the naïve belief that a randomized trial will provide evidence that
allows you to make causal inference, but most randomized trials have shortcomings,
and even a perfect design will produce a conclusion based on statistical significance
testing that will be wrong 5% of the time if the exposure has no effect, if the null
hypothesis is true.

Making causal inference in public health and clinical practice is related to the
decision to act since there are no reasons to act on non-causal associations. Many
elements go into this decision process. First of all, we have to take into consideration
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the consequences of acting on a given epidemiologic result and weigh that against
the consequences of not acting. If we, for example, find that drinking eight cups of
coffee per day or more during pregnancy correlates with behavioral problems in the
offspring during childhood we may decide to warn pregnant women against such
heavy coffee consumption, although we may be far from certain that the association
is causal. We are quite certain that drinking no coffee or drinking smaller amounts of
coffee during pregnancy will cause no harm (except perhaps to the coffee producer).
If we find that eating fish or sea animals during pregnancy in the Faroe Islands may
impair brain function in the offspring, the decision process may be more difficult.
If the association is strong we should warn against eating this type of food. If the
association is weak the decision to act is more difficult. Replacing an exposure with
another may carry other health hazards and the intervention may have undesirable
cultural and economic consequences. The population should of course be informed
about our findings because the final decision to act upon the results is in their hands.

Using a precautionary principle, or giving people the benefit of the doubt, may
not always be as simple as it sounds. There are some indications that the use of
mobile phones causes health problems. Should we warn people against using these
phones? We know that human life existed before the phones were invented although
it may be hard for some to comprehend. They may carry risks when driving while
talking on a mobile phone, but, on the other hand, the phones have uses that increase
quality of life for many and they may even be used to prevent health hazards or to
get help if help is needed.

In deciding when to act, causal inference is key since the causality is a necessary
condition for prevention to work; at least that prevention will lead to changes that
include a causal link. If we reduce the number of sexual partners we reduce the
risk of HIV and cancer of the cervix because the action will eliminate some causal
links. If we had an effective vaccination program that could eliminate the causal link
between the virus and cancer then the behavioral changes would not be needed to
reduce the cancer risk but may be needed for other reasons.

B. Hill’s causal criteria [1] state what speaks in favor of a causal effect, although
none of them prove causality, either taken in isolation or in combination. In fact, Hill
never used the term criteria but preferred to talk about considerations or guidelines.
Whether criteria or guidelines, they are as follows:

1. Strength of association: The stronger the association, the more likely the associ-
ation represents causality. Most will agree that strong associations are less likely
caused by confounding than weak associations and are therefore causal candi-
dates, but strength of association provides no guarantees. Strong associations
may be a result of bias and confounding, especially in situations where the expo-
sure is part of a combined set of exposures, like when you study nicotine that
comes together with hundreds of chemicals in tobacco smoke, caffeine that is
part of coffee, or beta-carotene that is part of certain vegetables. All these “expo-
sures” correlate strongly with all other exposures in the combined package that
“carries” the potential “cause.” For a confounder to explain the association it
would need to be associated with the exposures and to be causally linked to the
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outcome. Notice that in the theory of component causes the strength of an associ-
ation is a function of the prevalence of the other component causes in the causal
field, leading to the disease. Obesity is a strong risk factor for diabetes in popula-
tions with a high genetic susceptibility to diabetes if these genetic factors are in
the same causal field as obesity. In a population with a lower prevalence of these
genetic factors the risk associated with obesity is expected to be lower.

2. Consistency: Consistency means that the association can be replicated. The idea
is that a chance finding will usually not be replicated. The search for genetic
causes of diseases has provided many associations that could not be replicated.
That is not unexpected if the prior belief is limited and many associations are
examined.

3. Specificity: A given exposure should have a specific effect according to this
criterion. Experience shows, however, that many exposures have several health
effects and there are often no biological reasons to expect only one. If an expo-
sure during organogenesis leads to a specific malformation, like cleft lip, it may,
however, raise more concern than if the exposure is related to all types of mal-
formations. In the latter case, we will be more concerned about sources of bias
related to the diagnosing of malformations or the selection of people to the study.

4. Temporality: This may be the only criterion that all would request to be fulfilled,
that the cause precedes the effect. Notice that this criterion is difficult to docu-
ment. Many diseases develop over long preclinical time spans and they could in
this time period impact exposures like dietary factors.

5. Biological gradient: This refers to a dose–response or dose–effect relation; that
an increasing dose leads to an increasing incidence of the disease. It is expected
that an increasing cumulative dose leads to an increasing cumulative incidence
based on the causal fields theory. The more times you cross a street, the more
likely it is that at some point in time you will be hit by a car (that all the compo-
nent causes that lead to an accident will be present). How an increasing intensity
of exposure leads to a higher risk is more difficult to understand unless it is
related to an increasing probability of the exposure to reach the target organ. The
dose–response relation may reflect an increasing number of de facto exposed at
higher exposure levels.

6. Plausibility: If we understand how a given exposure causes a disease we tend to
believe a causal explanation more than if we have no mechanistic explanation.
A biological/sociological theory will also make it easier to make testable pre-
dictions that can be falsified. But remember that X-rays or tobacco smoke also
caused cancer before we knew the mechanism behind this association.

7. Coherence: This criterion is linked to the criteria of plausibility and consistency.
8. Experimental evidence: If our results are supported by findings based on care-

fully controlled experiments in humans (or in animals) it speaks in favor of a
causal inference.

9. Analogy: If the association we see has been found for other similar exposures
it speaks in favor of causation. Many believe that passive smoking causes lung
cancer because the findings fit well with what we would expect from our studies
on active smoking and our dose–response estimates.
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Most experts will use all or some of these criteria when they are to summarize
results and make causal inference. None of these criteria, if fulfilled, will prove
causality taken individually or together. Such proof does not exist. Notice that crite-
ria 1, 2, and 5 deal directly with the empirical associations (epistemologic criteria).
Criteria 3, 4, 6, 7, and 9 have to do with the causality itself (ontologic criteria).

Since we will never be able to prove causality we need to take action without
such proof. In order to do that we often need to quantify the probability of the
association to be causal. The International Agency for Research on Cancer (IARC)
classifies possible carcinogenic exposures using different categories. Notice that
they use strong causal language – stronger than what we recommend – probably
to advocate action where they believe action is justified. The following text is taken
from the IARC guidelines [2]:

“Group 1 – The agent (mixture) is carcinogenic to humans.

The exposure circumstance entails exposures that are carcinogenic to humans.

This category is used when there is sufficient evidence of carcinogenicity in humans.
Exceptionally, an agent (mixture) may be placed in this category when evidence of carcino-
genicity in humans is less than sufficient but there is sufficient evidence of carcinogenicity
in experimental animals and strong evidence in exposed humans that the agent (mixture)
acts through a relevant mechanism of carcinogenicity.

Group 2

This category includes agents, mixtures and exposure circumstances for which, at one
extreme, the degree of evidence of carcinogenicity in humans is almost sufficient, as well
as those for which, at the other extreme, there are no human data but for which there is
evidence of carcinogenicity in experimental animals. Agents, mixtures and exposure cir-
cumstances are assigned to either group 2A (probably carcinogenic to humans) or group
2B (possibly carcinogenic to humans) on the basis of epidemiological and experimental
evidence of carcinogenicity and other relevant data.

Group 2A – The agent (mixture) is probably carcinogenic to humans.

The exposure circumstance entails exposures that are probably carcinogenic to humans.

This category is used when there is limited evidence of carcinogenicity in humans and suf-
ficient evidence of carcinogenicity in experimental animals and strong evidence that the
carcinogenesis is mediated by a mechanism that also operates in humans. Exceptionally, an
agent, mixture or exposure circumstance may be classified in this category solely on the
basis of limited evidence of carcinogenicity in humans.

Group 2B – The agent (mixture) is possibly carcinogenic to humans.

The exposure circumstance entails exposures that are possibly carcinogenic to humans.

This category is used for agents, mixtures and exposure circumstances for which there is
limited evidence of carcinogenicity in humans and less than sufficient evidence of carcino-
genicity in experimental animals. It may also be used when there is inadequate evidence of
carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental
animals. In some instances, an agent, mixture or exposure circumstance for which there is
inadequate evidence of carcinogenicity in humans but limited evidence of carcinogenicity
in experimental animals together with supporting evidence from other relevant data may be
placed in this group.



References 127

Group 3 – The agent (mixture or exposure circumstance) is not classifiable as to its
carcinogenicity to humans.

This category is used most commonly for agents, mixtures and exposure circumstances for
which the evidence of carcinogenicity is inadequate in humans and inadequate or limited
in experimental animals. Exceptionally, agents (mixtures) for which the evidence of car-
cinogenicity is inadequate in humans but sufficient in experimental animals may be placed
in this category when there is strong evidence that the mechanism of carcinogenicity in
experimental animals does not operate in humans.

Agents, mixtures and exposure circumstances that do not fall into any other group are also
placed in this category.

Group 4 – The agent (mixture) is probably not carcinogenic to humans.

This category is used for agents or mixtures for which there is evidence suggesting lack
of carcinogenicity in humans and in experimental animals. In some instances, agents or
mixtures for which there is inadequate evidence of carcinogenicity in humans but evi-
dence suggesting lack of carcinogenicity in experimental animals, consistently and strongly
supported by a broad range of other relevant data, may be classified in this group” [3].

These guidelines illustrate that causal inference has strong subjective elements;
words like sufficient, inadequate, limited will not be understood in the same way
by everybody, and experts will continue to disagree about the probability that a
given association reflects causality. Expert reviews or meta-analyses may reduce the
disagreement but will not eliminate it and may make it more transparent what the
disagreements are about.
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Chapter 21
Sources of Error in Public Health Epidemiology

The public health worker will need to have more detailed knowledge of sources
of bias since he/she will mainly work with non-experimental data and will have
to make decisions that may impact the health of many people in both positive and
negative ways.

Most study results are presented with a confidence interval (or confidence limits)
around a measure of association, but the calculations are done under assumptions
that will almost never be true, and confidence limits do not provide a true range of
uncertainty (or confidence) of the study result we need to take into consideration.

A true set of confidence limits should take uncontrolled confounding, selec-
tion bias, and misclassification into consideration. The public health worker often
needs to be able to perform sensitivity analyses to address questions of the type
“How much uncontrolled confounding is needed to explain away a given associ-
ation?” or “How much differential misclassification or selection bias is needed to
produce the effect estimates we obtained?” Some of the simple techniques pro-
vided in this book can be used to address questions of this type. More advanced
methods often require more detailed information and access to sophisticated
software.

Although most sources of error can be assigned to one of the types of bias and
confounding described in the chapter there are errors that fall outside these classes
of bias categories.

Regression toward the mean is one such “error” that should be known to peo-
ple working in public health and clinical epidemiology. The “error” describes the
tendency for extreme values to regress toward the mean when measurements are
repeated. Assume you measure blood pressure (BP) in a population and get this
distribution (Fig. 21.1).

If you select all those with a blood pressure above x and put them on a diet low
in salt and measure their blood pressure later you will most likely find their blood
pressure to be lower at the second reading, even if nobody followed your dietary
advice. A proportion of those selected from the extreme parts of the distribution
will regress toward the mean. The reason is that your measure of blood pressure,
B̂P, is a function of the true blood pressure (BP) plus a measurement error (could
be biological variations and random variation related to the measuring itself), ε, so
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N

x BP

Fig. 21.1 The distribution of
blood pressure (BP) in the
population

B̂P = BP + ε

These errors could be negative or positive, large and small, but according to the
theory of random measurement errors they will for all measurements sum up to
0; �ε = 0 for the entire population. When we select from extreme parts of the
distribution we oversample those with high (or low) measurement errors. When we
select from the extreme we take a biased sample and our sum of ε will be larger than
0 from the high end of the distribution and below 0 from the low end. The reason
is that our measure of blood pressure, B̂P, may be high because BP was high or
because ε was high, or both, and on average �ε will be > 0. When the participants
return for new blood pressure measurements these new measures will, according
to the rule of measurement errors, again sum up to 0. Their new blood pressure
measurements regress toward the mean of the distribution and the magnitude of
the regression will depend on the size of the measurement errors. Notice that the
measure regresses toward the mean, not to the mean.

This simple error is often found in naïve analyses of new interventions or treat-
ments done by amateurs, but it is unfortunately also seen in more serious studies
from time to time, and it is important to remember that the problem comes in
different disguises.

When lithium was first introduced as a drug to prevent bipolar disorders, the case
series showed the following typical pattern of changes in mood after being treated
with lithium as illustrated in Fig. 21.2.

The critique that followed the publication [1] pointed out that the association
could reflect regression toward the mean. If you start treatment when patients have
the highest level of variance in mood, they can only regress toward less variation.
Subsequent analyses did, however, show that the association was real. The treated
patients had a long history of large mood changes over long time periods before they
were treated with lithium.

If you do a study where the aim is to identify “predictors” of a disease, say,
cytokines related to preterm labor, your predictions will be overstated in your study
due to regression toward the mean. Part of your measure of the association is related
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Fig. 21.2 Mood variation
before and after treatment
with lithium

to chance and a new study with a different data source will most likely show lower
predictive values. The associations will regress toward no association.

Berkson Bias

The public health epidemiologist should also be familiar with Berkson bias (or
Berksonian bias) because this type of bias may also come in different disguises
[2].

Berkson demonstrated how different medical conditions could be associated
among hospital patients although they were not associated in the population. He
noted that clinicians had the impression that cholecystitis was associated with dia-
betes and the gallbladder was often removed as part of diabetes treatment for
that reason. How could such an idea come about even if the two diseases are not
associated in the population?

How this association is generated in hospital patients can be found in Berkson’s
original paper [2]. We will demonstrate that people who have two diseases (or more),
for example diabetes and cholecystitis, are more likely to be hospitalized than those
with only one of the diseases. The idea is simply that you can be hospitalized either
for one disease or for the other. Both diseases provide a cue for hospitalization.

Assume you have an elderly population of 100,000 people; 10,000 have diabetes
and 30,000 have cholecystitis. In the population 3,000 have both diseases if the
diseases are not correlated but occur together with a frequency that follows simple
probability laws. The probability of having both diseases equals the probability of
having diabetes (0.1) and the probability of having cholecystitis (0.3); 100,000 ×
0.3 × 0.1 = 3,000 with both diseases.

Let us now assume that 40% of patients with cholecystitis and 60% of diabetes
patients become hospitalized. We then expect the following to be hospitalized:
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Among the 7,000 with diabetes alone 60% will be hospitalized (4,200). Among
those with cholecystitis alone 40% are hospitalized (27,000 × 0.40 = 10,800). For
those with both diseases (3,000) we expect that they have a probability of being hos-
pitalized either for one disease or the other. The number of people being hospitalized
would then be

3,000 × 0.4 + (3,000 − 1,200) × 0.6 = 2,280

or the probability of being hospitalized for this group is 0.4 + 0.6 – 0.4 × 0.6 =
0.76.

Seventy-six percent of the 3,000 with both diseases become hospitalized, more
than the 40 or 60% of those with either one of the two diseases.

Since having more than one disease will mean a higher probability of being hos-
pitalized, these patients will constitute a larger fraction of hospital patients than they
do in the population.

Mendelian Randomization

Results from large case–control or follow-up studies have sometimes been difficult
to replicate in randomized trials. Observational studies on vitamin C, beta-carotene,
and other vitamins have shown results that could not be replicated in randomized
trials. These findings have been taken to indicate serious flaws in non-experimental
epidemiology. We have to accept that it is difficult to estimate the effect of something
that is closely correlated to many other habits that influence health without being
able to randomize the exposure.

In some cases we may be able to use nature’s own randomization process using
the design known as Mendelian randomization or Mendelian Deconfounding. The
design takes its name from Mendel’s laws stating that hereditary traits are deter-
mined by pairs of genes of maternal and paternal origin that separate and reunite
during reproduction. These pairs of genes, alleles, separate independently of other
genes (if they are not close to each other on the chromosome) during this process.
We have received the hereditary traits as part of a random process during the time
of conception and we may use this randomness when designing our study.

The Mendelian randomization principle was first discussed by Katan in 1986 [3]
at a time when it was a concern if cholesterol-lowering drugs would lead to can-
cer. Data did show a strong correlation between low cholesterol levels and cancer,
but that could be a result of reverse causation if a not yet diagnosed cancer con-
sumed cholesterol or reduced appetite. Genetic factors controlling cholesterol could
be used to solve the problem of the causal direction (Fig. 21.3).

If the causal mechanism is as in Fig. 21.3 we would expect to see an association
between genetic factors and cancer. If the association between low cholesterol and
cancer is due to reverse causation (Fig. 21.4) we will not expect to see an associa-
tion between the genetic factors and cancer, unless we stratify on cholesterol levels
(adjust for cholesterol).
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Fig. 21.3 Causal links
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cancer
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Fig. 21.5 No causal links
between genetic factors and
cancer

If the association between low cholesterol and cancer is due to confounding
(Fig. 21.5) we will not expect to see an association between the genetic factors
and cancer, unless we stratify on cholesterol levels.

The basic idea in Mendelian randomization is that we compare associations
between different genotypes and the disease [1], although we believe the causal
link of interest is given by the exposure (for example, cholesterol). For this to work
we need to have a strong causal link between the genotype and the intermediate
phenotype [2]. We call the genotype an “instrumental” variable for the phenotype
of interest. If we have no direct link from the genotype to disease [1] then the entire
genotypic effect is mediated by the phenotype [2+3]. If [1] presents a causal link, the
association we see need not be related to the exposure (the phenotype) (Fig. 21.6).

[1]

Genotype Disease

[2] 

Phenotype [3]

Fig. 21.6 Causal links
between genotype,
phenotype, and disease
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We are estimating [1] but we are interested in [3], and using that strategy is
similar to what we do in the randomized trial when we analyze data according to the
“intention to treat” principle given by the randomization. It is not the randomization
in itself that causes an effect, only the exposure that follows randomization.

By analyzing the association between the genotype and the outcome one avoids
reverse causation since the genotype was present before the cancer (was present at
the time of conception). Confounding should not be a problem because the genotype
was allocated by a random process independently of factors that may affect the
phenotype.

Even in the situation where the stated conditions are fulfilled the design may be
flawed. The genotype may influence the phenotype. Slow metabolizers of alcohol
may, for example, drink less than fast metabolizers. The genotype under study may
be in disequilibrium with other genetic factors that impact disease risk. There may
be other compensating factors that modify the effect, and the gene expression may
be modified by factors that operate early in life (epigenetic changes).

Several observational studies have shown that a low intake of a vitamin B called
folate or folic acid carries an increased risk for delivering a child with neural tube
defect (NTD). It is believed that intake of folate reduces the level of homocysteine
and could inhibit the closure of the neural tube and lead to NTD.

Two randomized trials [4] did strongly support that folate can reduce the preva-
lence at birth of NTD. These trials included people who did not receive the
preventive factor and some children were therefore born with NTDs that could have
been prevented. The randomized trial bypassed the problem that intake of folate
correlates with many other factors (especially dietary factors). These other factors
could be responsible for the preventive effect, but this confounding could also have
been avoided in a Mendelian randomization study. People with the variant of the
MTHFR gene who had high levels of homocysteine received this gene variant inde-
pendently of other genetic or lifestyle factors as part of a random process. Mothers
with the gene variant should have a higher risk of getting a child with an NTD
than other women. The gene variant in fathers should not play a direct role since
the father does not transmit homocysteine to the child during pregnancy, and these
predictions seem to be corroborated by data. Due to the randomization process we
would not expect women with the gene variant (they would not know about this) to
have exposures to folic acid that differ from women without the gene variant. Using
these principles may have replaced a randomized trial that had serious side effects
for some.
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Chapter 22
Sources of Error in Genetic Epidemiology

The effort to understand the link between genetic variants and human health
and behavior has a good theoretical background as a high heritability has been
demonstrated for a large number of traits.

However, there are a number of caveats that need to be considered when
incorporating the results of genetic tests into epidemiologic analysis.

Multiple Testing

The enormous advances in genetic technology over the last few years have made it
possible within a reasonable budget to go from studying a handful of gene variants
to as many as one million per sample on thousands of individuals. The downside of
this development is that any given study may be overwhelmed with false positive
findings due to multiple testing. Tests of a million SNPs would be expected to gen-
erate 50,000 SNPs showing P < 0.05 by chance alone. This problem is magnified
when subgroup analyses are performed as is done routinely, i.e., stratifying for sex,
age, SES, etc., without clear a priori hypotheses. New analytic approaches to adjust-
ing for multiple comparisons such as using the false discovery rate can assist in
minimizing to a reasonable number the signals that require additional investigation.
Eventually replications in well-defined, large, independent samples are central to
dealing with these challenges, and currently the replications required often involve
tens of thousands of individuals.

Not only the exposure side (genotypes) has contributed to the multiple testing
problem, but also the outcome side (health, diseases, behaviors). It can be tempting
to use the 1 million genetic markers one has obtained on a large sample of indi-
viduals to test for possible associations with the wide range of outcomes that often
are available on such cohorts. This can be meaningful for well-defined traits with
substantial heritability, but in some areas of behavioral research genetic variants are
linked to “downstream behaviors,” e.g., one type of behavior on a single occasion or
a very specific type of behavior or vaguely defined behaviors. Such “downstream”
behaviors are very likely to fluctuate over time and therefore have a much lower her-
itability than reliably constructed and validated measures such as personality type.
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It seems premature to try to link specific genetic variants to very specific behav-
iors with unknown heritability at a time when we are struggling to learn how to
interpret genetic findings on valid behavioral phenotypes that can be measured
reliably.

Population Stratification

Selection of the control group is often one of the biggest challenges in epidemi-
ologic research and also in studies of genetic variants where differences in ethnic
or racial background can create confounding in cohort and case–control studies of
unrelated individuals – the so-called population stratification. The practical impor-
tance of this potential bias has been questioned, at least in non-Hispanic white
populations of European descent where proper epidemiologic case–control meth-
ods have been used, but can be substantial in mixed populations. However, also in
studies including both northern and southern Europe, population stratification can
produce misleading results. For example, gene variants that show a north–south
gradient (e.g., ApoE-4 or genes for lactose intolerance) will seem to be associated
with height and skin color because there is also a north–south gradient in Europe
in height and skin color. Population stratification can be removed by matching on
ethnic/ancestral background, restricting studies to highly homogeneous populations
and by using family-based controls. In addition, the large numbers of markers now
being used allow for marker-based definitions of ancestry which may become far
more accurate than self-identified ancestry and can be used itself to define matches
in the case and control populations.

Laboratory Errors

Errors can occur in any area of scientific investigation, and genetics is no excep-
tion. Laboratory testing is only as reliable as the samples accurately reflect their
biological origins. Mishandling and mislabeling can result in the wrong sample
attached to the “right” data set. Sampling also may rely on accurate family histories
so that non-paternity (and in an age of egg and embryo donation, non-maternity) and
adoption must be considered and included in data collection to ensure that biologi-
cal relationships are as stated. In the wet laboratory itself there is some imprecision
of measurement that may be platform or sample dependent. When the DNA quality
or quantity is suboptimal (especially in the use of archival samples not collected
specifically for use in genotyping) the results may have some degree of inaccuracy
that can escape detection. Case and control DNA, or infant and parent DNA, may
come from different biological sources (blood spots on infants versus peripheral
blood or saliva on parents, for example), and the behavior of DNA in genotyping
assays is partly dependent on its origin and processing. In some cases of very lim-
ited DNA quantities amplification technologies may increase the amount of DNA
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available, but amplification is often non-homogeneous and can result in genotype
failures or inaccuracies (for example, allele drop-out where one variant in a geno-
type fails to amplify and the other does turning a heterozygote into an apparent
homozygote). The assays themselves may have noise in them that can result in inac-
curate scoring. There are a variety of checks that can be applied to the genotype data
to assist in using only data that are accurate but when millions of SNPs are scored on
thousands of samples some degree of error is inevitable. Checks can include ensur-
ing that Mendelian relationships fit with genotype data and that Hardy–Weinberg
equilibria (HWE) are within accepted norms (with the caveat that HWE may be
violated in case samples when the marker under study is strongly associated with
the phenotype of interest. However, control samples failing to meet HWE suggest
data errors). Occasionally Mendelian failures may be due to true allele loss in the
case of copy number variants or de novo deletion events. Finally, minimum stan-
dards for the percent of samples that genotype successfully are also usually applied
with some boundary line below which the marker is considered unusable. It is usu-
ally wise to mix cases and controls on analysis plates (currently assays are typically
done using 96, 384, or 1, 536 well plates with each well holding one person sample)
to avoid systematic errors related to plate effects. And in the end any positive results
should be validated by repeating the assay using an alternative technology, using
nearby SNPs to obtain similar results, and repeating in independent samples for true
replication.



Chapter 23
Sources of Error in Clinical Epidemiology

Within the field of clinical epidemiology bias is always a concern and the field
is plagued by studies which have not taken this into account. Lack of insights
in problems caused by confounding by indication, differential misclassification of
exposure, differential misclassification of outcome, and selection bias have resulted
in premature claims of causality. However, it is fair to say that during the last
decade there has been a growing awareness of the problems, but it is still too easy
to find many examples of a suboptimal study design where bias has led to wrong
results.

Confounding by Indication

Cholecystectomy is one of the most common surgical procedures. In Sweden there
were 30,000 such operations annually during the 1970s. The number has decreased
since then and there are now about 12,000 annually. As mentioned in Chapter 9
confounding by indication is an issue when evaluating the introduction of laparo-
scopic cholecystectomy compared to traditional surgery, as the non-complicated
cases are more likely to be subjected to a laparoscopic procedure, thus causing bias
when postoperative complications and duration of hospital stay are outcomes to be
compared.

Concerns have also been raised that this operation will have long-term nega-
tive consequences such as an increased risk for colorectal and/or pancreatic cancer
[1, 2]. Given the high numbers of such operations even a small effect would be of
interest from a public health perspective. There are underlying potential biologi-
cal mechanisms which give some credence to such a concern; a continuous flow
of bile, due to the absence of a reservoir function of the gallbladder, could be a
carcinogenic when the bile is not diluted by food intake. Moreover, a number of
case–control studies dealing with the etiology for colorectal and pancreatic cancers
published in the 1970s, 1980s, and early 1990s consistently demonstrated that a
history of cholecystectomy was associated with an increased risk for both cancer
forms.
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Furthermore, for colorectal cancer this association was most pronounced for
right-sided colonic cancer, which according to some authors further strengthened the
hypothesis since bile would be less diluted in the right side of the colon compared
to the left side, but some were aware of the potential problem of detection bias.
Abdominal symptoms from a not yet diagnosed cancer could lead to diagnostic
work-up followed by a cholecystectomy if a diseased gallbladder was found. Such
a scenario was more likely to be present for a right-sided colonic cancer than for a
left-sided which then could be the underlying explanation for the findings described
above. Most authors dealt with this problem by excluding cholecystectomies per-
formed within a year prior to a diagnosis of either colorectal or pancreatic cancer.
However, population-based register studies from Scandinavia have demonstrated
that an association between cholecystectomy and both cancer forms exists up to
5 years after operation followed by no associations. Thus, the exclusion of chole-
cystectomies 1 year after operation may not be enough. The concerns of adverse
long-term effects following the results of previous studies may be misplaced and
underline the need for collaboration between epidemiologists and clinicians.

Differential Misclassification of Outcome

Vasectomy has repeatedly been suspected as a long-term risk factor for prostate can-
cer especially in northern America. Prostate cancer is, however, a disease where the
diagnostic intensity is of major importance in descriptive epidemiology and may
also be a concern in analytical studies. One of the first studies which explored the
potential association was a case–control study where the medical history in 220 men
with prostate cancer was compared to two different control groups, 571 non-cancer
controls and 960 cancer controls using data from the hospital system [3]. Using
non-cancer controls showed a fivefold excess risk of prostate cancer and a 3.5 risk
when other cancer controls were used. The magnitude of a risk was unrelated to
time after vasectomy, but the authors pointed out that the association was stronger
among men more likely to have been under intensive medical surveillance, indicat-
ing that differential misclassification could be an issue. This was further explored
in two cohort studies, one of husbands of nurses [4] and the second in health pro-
fessionals [5], both with prostate cancer as an outcome with prospectively collected
data on vasectomies. In the first study there were 96 cases of prostate cancer and in
the second 300 cases. In both studies the authors demonstrated a significant excess
risk of 50 and 60%, respectively, also for severe cases of prostate cancer. The pres-
ence of a higher point estimate among more severe cases was used by the authors
as an argument against differential misclassification of the outcome as an explana-
tion for their results. The authors justified their hypothesis by describing potential
underlying biological mechanisms, an altered immune response for sperm antigens
and/or a diminished prostate fluid secretion as a result of a vasectomy.

However, the most likely explanation for these results is differential misclassi-
fication; prostate cancer may have been diagnosed differentially among exposed
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and unexposed. Individuals with a history of vasectomy are more likely to undergo
diagnostic procedures of the urogenital tract than others. Further credence for this
explanation is given by the result from a register-based study from Denmark [6]
where men subjected to a vasectomy showed no excess risk of prostate cancer during
follow-up, a finding which is consistent with other study results published thereafter.

Differential Misclassification of Exposure

Induced abortion and its impact on the future risk of breast cancer is an exam-
ple of another intervention where potential adverse events only can be assessed
by observational studies. There is an underlying biological rationale for such an
association. Differentiation of the breast parenchyma will start early during preg-
nancy and will be interrupted by an induced abortion and may create “fertile
soil” for a later malignant transformation. There are animal models which give
further support to such a mechanism. Differential misclassification of the expo-
sure data (induced abortions) is, however, of major concern when studying this
exposure.

The first large study of an association between induced abortion and breast cancer
was a case–control study consisting of 845 cases of breast cancer and 961 control
women from the USA with the focus of reproductive history [7]. The information
was gathered by interviews with a high participation rate both among cases and
controls. The authors demonstrated a 50% increased risk among women with a
history of induced abortion compared to those without, and the highest risk was
present among women with a history of induced abortion before the age of 18,
with a relative risk of 2.5. There was no association between a history of spon-
taneous abortion and breast cancer, which was interpreted to support the idea as
such pregnancies in most instances will not be associated with increased levels of
pregnancy hormones. The authors were aware of the potential problem of differ-
ential misclassification, i.e., that cases and controls would have a different attitude
to reveal sensitive information, such as a history of induced abortion. However,
the authors had conducted a similar case–control study with cervical cancer as an
outcome and in that study no association with abortion was found (4), which the
authors used as an argument that differential misclassification did not explain the
finding.

There was, however, reason to be concerned which was demonstrated by a Dutch
study [8]. This study had a very similar design to the US study with 918 women with
breast cancer and as many controls. The authors found a 90% increased risk among
those with a history of induced abortion, but after stratifying on areas with a Roman
Catholic population who were less likely to disclose a history of induced abor-
tion the authors demonstrated that no such association existed outside the Roman
Catholic area. Differential misclassification of exposure related to religious beliefs
emerged as the most likely explanation for an association between breast cancer
and induced abortion, a hypothesis given further credibility by the results from
Scandinavian register-based studies [9].
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Selection Bias

Randomized clinical trials have shortcomings in evaluating rare adverse events, and
observational studies are the only alternative design. Selection bias is a concern and
must be in the back of any investigator’s mind. An illustrative example is what has
happened after the introduction of anti-TNF medications 10 years ago for differ-
ent inflammation disorders such as rheumatoid arthritis and Crohn’s disease. These
compounds represent a new biological class, and concerns were raised early on that
they could adversely affect the immune system.

The first study which evaluated the risk of non-Hodgkin’s lymphomas (NHL) in
patients treated with these compounds demonstrated an excess risk for NHL follow-
ing exposure to anti-TNF medication compared to exposures to other medications
in patients with rheumatoid arthritis [10]. It is, however, a well-known fact that
rheumatoid arthritis is associated with an excess risk of NHL, and this increased
risk is strongly associated with inflammatory activity. Selection bias could therefore
be an alternative explanation as candidates for this treatment will be those who have
failed to respond to the previously available medications. These patients will conse-
quently have been exposed to higher inflammatory activity over time compared to
other patients with rheumatoid arthritis and thus have the highest risk for NHL. It
is therefore reassuring that later follow-up studies of “normal” unselected patients
with rheumatoid arthritis did not show any increased risk of NHL following expo-
sure to anti-TNF therapy compared to other patients with rheumatoid arthritis with
the same history of disease activity [11].
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Part IV
Statistics in Epidemiology

There are many good statistical textbooks on the market, and we refer readers to
some of these textbooks when they need statistical techniques to analyze data or
to interpret statistical results. This book will not provide even a short introduction
to statistics.

Most epidemiologic studies are now analyzed by using powerful statistical mod-
els that require software and computers. The ease of using these tools is, however,
troublesome unless you are familiar with the conditions these methods rest upon. We
strongly advocate that data analyses always start with simple tabulations of key vari-
ables. Looking at data stratified by the key exposures, outcomes, and confounders
will often provide the information you seek, and if results differ much from what
you get from simple tabulations after extensive computer massage you need to check
your computations carefully. Your modeled results may be true, but more often they
will not be. Model assumptions may be grossly violated or the results may be due to
coding mistakes, inappropriate handling of missing data, or other errors that may not
be easily detected in the output you get. Furthermore, most statistical models used
to analyze complex data rest on assumptions that are rarely fulfilled. Tests of vio-
lations of these assumptions are usually weak, and lack of evidence against model
assumptions is weak evidence in favor of these assumptions. This is especially true
in smaller data sets.

Statistical models rest upon assumptions on how data interact. This usually
concerns whether they interact in an additive or multiplicative way. We rarely
have reason to believe data should follow either of these two interaction patterns.
Nonetheless, if deviations from these model assumptions are small, they often work
reasonably well.

Additive Model

We talk about additive models if the absolute effect measure (e.g., rate differ-
ence) remains the same across all strata and if combined effects are obtained by
adding risks for the main factors. In the simplest form, additive data will look like
Table 23.1.
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Table 23.1 Additive model

Confounder/
modifier Exposure

Incident rate
(per 10,000
person-years)

Rate difference
(per 10,000
person-years)

– +
–

10
5 5.0

+ +
–

20
15 5.0

Note: A potential effect modifier need not be a confounder.

The absolute increase in incidence rate remains the same with 5 per 10,000
person-years when stratifying on a third variable (another determinant of the dis-
ease, a possible confounder/effect measure modifier). We conclude that different
levels of this third variable do not (in this data source) modify our estimated effect
measure (the rate difference).

If this was written in incidence rate ratio (IRR) terms, using as the reference
category those unexposed to C and E, where C is the confounder and E the exposure,
we would get the following:

(IRREC – 1) = (IRRE – 1) + (IRRC – 1)

(20/5 – 1) = (10/5 – 1) + (15/5 – 1)

(4 – 1) = (2 – 1) + (3 – 1)

Again we can see that the expected effect on the additive scale is equal to the
observed effect. There is no effect measure on the additive scale.

Multiplicative Model

Most scientific papers focus on the multiplicative model, since the effect estimates
are often relative estimates (OR, RR, or IRR). By changing just one line of results
in the table above (the additive model), we can make the associations multiplicative.
If so, the table would look like Table 23.2.

Table 23.2 Multiplicative model

Confounder/
modifier Exposure

Incidence rate
(per 10,000
person-years) IRR

– +
–

10
5 2.0

+ +
–

30
15 2.0

Note: A potential effect modifier need not be a confounder.
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The association is called multiplicative because the incidence rate ratio of the
combined exposure (E and C) is the multiplication of the incidence rate ratios or
relative risks of the single exposures.

IRREC = IRRE × IRRC
(30/5) = (10/5) × (15/5)
6 = 2 × 3

We can see that the observed effect measure is as we would expect, and therefore
there is no interaction on the multiplicative scale.

Statisticians talk about interaction when the stratum-specific effect measures dif-
fer more than we would expect – more than random variation could justify. If in
Table 23.1 we estimated the IRR we would find an interaction between the exposure
and the confounder since we were assessing the interaction on the multiplicative
scale instead of the additive scale: IRRC– = 10/5 = 2.0 and IRRC+ = 20/15 = 1.33
(2.00 is different from 1.33 – at least in a larger sample).

Similarly, if we estimate the IRD from Table 23.2 we get the following:

IRDC− = (10−5)person-years
–1 = 5person-years

–1

IRDC+ = (30−15)person-years
–1 = 15person-years

–1

The two absolute risk estimates (IRD) differ; there is an effect modification on
the additive scale. In the presented situations classification of interactions is measure
specific (and we should therefore talk about effect measure modification), since the
interaction will disappear when applying the effect measure that best describes the
data.

Data need not follow an additive model or multiplication model. The association
could, for example, be more than multiplicative as illustrated in Table 23.3:

Table 23.3 More than multiplicative association

Confounder/
modifier Exposure

Incidence rate
(per 10,000
person-years) IRR

– +
–

10
5 2.0

+ +
–

60
15 4.0

We should then present stratum-specific results rather than a combined measure.
Epidemiologists talk about effect measure modification either in the statistical sense
(as the statisticians talk about interaction) or in a biological sense. For example, two
exposures may impact the same receptor. Or one exposure may block the effect of
another if they are both metabolized by the same enzymes and the effect stems from
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their metabolites. Most complex metabolic routes are not expected to lead to simple
additive or multiplicative associations, and in general there are no strong reasons to
believe biological effects would follow any of these two models. This does not mean
they are useless. We just have to accept that they produce average measures that do
not fully provide all information.

To check how your variables interact you should start out by stratifying data.
This should be done not only in order to study effect measure modification and/or
confounding, but, perhaps most importantly, to get an idea about the data structure
and identify coding errors.

Stratification is also a powerful and easily understood method of controlling for
confounding. If you wanted to study whether the intake of carrots protects against
lung cancer you would want to make comparisons among people who have the same
expected background risk of lung cancer had the exposed not been exposed. We
know that lung cancer risk varies with sex, race, age, and smoking habits and also
with exposure to certain types of air pollution. We would like to make comparisons
within a stratum that could look like Table 23.4.

Table 23.4 One stratum in a stratified analysis

Sex Race Age Smoking
Air
pollution Carrots

Observation
time

Lung
cancer

M AI 50–54 years 10–14 cig. High Yes
No

t+
t–

a+
a–

Having done that, we would like to summarize the IRR we get from each stratum
to a common estimate given we see no interaction/effect measure modification.

Mantel–Haenszel’s formulas for analyzing stratified data [1] have served epi-
demiologists well for decades. Despite common belief that the formulas have only
historical interest we present them below. The formulas can be easily applied by
anyone using a simple hand calculator. Most often, we used logistic regression, Cox
regression, and other models because the computer will do the calculations for you.
In addition, the stratification method has limitations – especially in smaller data
sets. For example, if you have 2 sex groups, 8 age groups, and 3 air pollution levels,
the data would be divided into 2 × 8 × 3 = 48 strata. The study would need to be
large enough to provide sufficient information within all 48 strata. The following
methods will exclude strata that have no exposed or no unexposed, no diseased or
no non-diseased within each stratum. These strata with marginal zeros provide no
information to the analyses although they may provide important information for
your inference. Accepting a more complicated statistical model allows you to make
use of all data.

Imagine a follow-up study reconstructed after an incident of food poisoning.
Exposure could be exposure to ice cream. Data lay-out could be as in Table 23.5.

In the analysis the focus is upon the a cell, exposed with the disease. For this a
cell we calculate the expected value, had the combined disease experience for the
stratum been applied to all exposed in that stratum:
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Table 23.5 Stratified
analyses for Mantel–Haenszel
analysis

Stratum Exposure D D n

j +
–

aj
cj
Dj

bj
dj

Dj

nj+
nj–
nj

E(aj) = Djnj+
nj

Then we calculate the variance of the a cell and our estimate of the relative risk,
RRMH:

Var(aj) = nj + nj − DjDj

n2
j (nj − 1)

We then combine results from all strata to get a combined estimate of RR:

RRMH =
∑

aj
nj−
nj

∑
cj

nj+
nj

and the χ2 test of the difference between the disease risk among exposed versus
non-exposed is (now summarized over all strata)

χ2 = (
∑

aj − ∑
E(aj))2

∑
Var(aj)

In a study on incidence rates the table will look like Table 23.6.

Table 23.6 Stratified
analysis of rate data Stratum Exposure D Person-time

j +
–

aj
cj
Dj

tj+
tj
Tj

The expected value of the a j cell becomes

E(aj) = Djtj+
Tj

The variance of the a cell is

Var(aj) = Dj
tj+tj−

T2
j
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IRRMH =
∑ ajtj−

Tj
∑ cjtj+

Tj

and the χ2 test of the null hypothesis of no association between the exposure and
the disease is, like before,

χ2 =
(∑

aj − ∑
E(aj)

)2

∑
Var(aj)
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Chapter 24
P Values

In the past, much emphasis was put on the so-called significance testing. The investi-
gator assumed a null hypothesis stating no association between the exposure and the
disease (usually the real hypothesis would be the opposite of the null hypothesis).
Then he/she would calculate a P value. The P value would indicate the probability
of getting the data he/she found or data that were even further away from the null
hypothesis (the no-effect value), given the null hypothesis was true (and other con-
ditions). If this P value was below a given level (often <0.05) it was said that the
finding was statistically significant and the null hypothesis was rejected as a likely
explanation of the data.

There are several reasons why this practice should be abandoned. First, the inter-
pretation requires a randomized trial. For a non-randomized study we would have
to add a sentence like “If this study was randomized, then. . ..” Clearly this poses a
severe limitation on the P value interpretation in non-randomized studies to a level
where it is almost meaningless.

Second, most decisions should not be forced to follow a simple decision rule
unless it is absolutely necessary, and classifying results as significant or not sig-
nificant lends itself to such a simple decision process. Significance testing was
developed as a decision tool in mass production where it may serve a quality control
purpose well. In public health we would almost never base a decision on a simple
statistical rule, and only rarely will this be the case in the decision process following
a randomized trial, although it may be so if the randomized trial is the only evidence
we have.

We have the four outcomes of a decision based upon a P value testing a null
hypothesis (H0) in Table 24.1.

Table 24.1 Type 1 and type
2 errors H0 H0 accepted H0 rejected

True OK Type 1 error
False Type 2 error OK

As seen, two of the four outcomes are wrong. The risk of a type 1 error is set by
the significance level (often 0.05). The risk of accepting a false H0, that the effect
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of the exposure is overlooked, is a function of several conditions. The type 2 error
is high if the study is small or if the effect is small. It depends on the significance
level of testing and the sample size. The power of the study equals (1 – risk of type
2 error). The power indicates the probability of finding a true effect of a given size
and with a given sample size.

It is difficult to see why we should accept to base our decision on a P level only
and few would probably do so. P values are still computed, but more attention is
given to estimates of association and their confidence limits, although confidence
limits often indicate only part of the uncertainty related to the measure of effect.
Uncertainty is also related to residual confounding and other types of bias. Opinions
are based on the combined available evidence. Good studies carry more weight than
poor studies. Simple replication studies carry less weight than studies that bring
the hypothesis to a more critical test. When to take action furthermore depends on
the consequences of doing nothing versus doing something. There is no P value
substitute for common sense and critical thinking but brain surgery may be needed
to remove P values from epidemiologic papers. The most serious flaw in using P
values is to infer that there is no association if the P value is 0.05 or higher. Absence
of evidence is not evidence for absence of an effect! A failure to recognize this
simple fact has caused much harm to many innocent people.

Further, uncertainty is related to residual confounding and/or various types of
bias. Opinions are based upon the combined evidence available. Good studies have
more weight than poor studies. Simple replication studies carry less weight than
studies that put the hypothesis to a more critical test. When to take action further-
more depends upon the consequences of doing nothing versus doing something.
There is no substitute for common sense and critical thinking.

The multiple comparison problem is a problem related to presenting only statis-
tically significant results to the reader. If you generate a data source at random with
a large number of exposures and a disease, then test the associations between the
disease and this exposure and then calculate P values. These P values will fall on a
45◦ line as illustrated in Fig. 24.1.

The number of significant associations (that all are generated by randomness in
this example) is determined by the number of tests we perform, and since these
associations are spurious they tend not to be replicable in other studies. We would
like to avoid presenting these associations, but unfortunately, there is no simple way

P value 1.0 

0.05
ordered association 

Fig. 24.1 P value plot of
ordered associations
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of doing this. Simple correction factors, like the Bonferroni correction that approx-
imately reduces your significance level by the number of tests you perform (if you
do 10 tests your level of significance should not be 0.05 but 0.005), aims at keep-
ing the risk of producing one or more spurious significant results less than 0.05.
Unfortunately, it is seldom that simple. First of all, this is not how serious epidemi-
ologists analyze and report results. Second, the simple Bonferroni correction is often
wrong. The principles for analyzing data are to follow a specific a priori hypothe-
sis and then evaluate if your data supported the hypothesis or not. You would like to
know how much you have to adjust your prior belief in the hypothesis you had given
the data. Furthermore, when you identify an association you should try to see how
robust it is. In your analyses you will try to see if you can make the association go
away by adjusting for confounding or other sources of error. You will check if the
association is consistent in relevant strata, etc. You will of course also report non-
significant associations in your paper. Proper analyses of epidemiologic data have
nothing to do with uncritical testing for a large number of associations and only
reporting significant P values. Remember that any source of information will only
modify your prior belief in the association, to make this belief stronger or weaker.



Chapter 25
Calculating Confidence Intervals

Confidence intervals provide more information than a P value and do not in the same
way tempt readers to make simplified conclusions; ideally they provide a range of
effect measures that are “acceptable” given the data. If the null value (RR, IRR = 1;
RD, IRD = 0) is not among these, the result is statistically significant, and the
no-effect hypothesis is not a likely explanation for the data. Many would find that
this description is too vague, but a more precise description would have to take
into consideration a number of assumptions that are beyond this text. To calculate
confidence limits for the risk ratio or the relative risk (RR) we need to calculate the
variance of the log of the Mantel–Haenszel estimated relative risk.

The formula for the variance of the RRs is

Var( ln (RRMH)) =

∑ Djnj+nj−
(n2

j − ajcj)/nj
∑ ajnj−

nj

∑ cjnj+
nj

The 95% confidence limits (indicated by RRL and RRUL) will be

RRLL = eln (RRMH)−1.96
√

Var( ln (RRMH))

RRUL = eln (RRMH)+1.96
√

Var( ln (RRMH))

The value 1.96 provides a P value of 0.05 in a standard normal distribution of√
X2 values and we take the square root of the variance to get standard deviation.
The variance formula for the Mantel–Haenszel odds ratio (ORMH) is

Var( ln (ORMH)) =
∑

AjXi

2
(∑

Ai
)2

+
∑

(AiYi + BiXi)

2
(∑

Ai
∑

Bi
) +

∑
BiYi

2
(∑

Bi
)2

where Aj = (ajdj/nj), Xj = (aj+dj)/nj, Bj = (cjbj/nj), and Yj = (cj+bj)/nj.
And the two confidence limits are (like before)
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ORLL = eln (ORMH)−1.96
√

Var( ln (ORMH))

ORUL = eln (ORMH)+1.96
√

Var( ln (ORMH))

For the Mantel–Haenszel incidence rate ratio we get

Var( ln (IRRMH)) =

∑
(

Djtj + tj−
T2

j

)

(
∑ ajtj−

Tj

)(
∑ cjtj+

Tj

)

and the two confidence limits are (like before)

IRRLL = eln (IRRMH)−1.96
√

Var( ln (IRRMH))

IRRUL = eln (IRRMH)+1.96
√

Var( ln (IRRMH))

Although most confidence intervals in epidemiology have no precise meaning
they are still useful as a familiar measure of part of the uncertainty inherent in our
measures of association. They at least remind us that other effect estimates are also
acceptable explanations of the data.
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Epilogue

The laws of nature are to be discovered, not to be invented, as Pierre Louis
Maupertuis stated in the nineteenth century. These laws of nature deal with the many
different factors that impact our health. The laws are often complex and involve
many different component causes, and they will only reveal themselves when you
combine data from many people. For that reason epidemiology is a population
science.

As explained in this book, population studies (epidemiologic studies) are saddled
with problems and limitations, and do not think that all the examples provided in this
book can be generalized to all other situations. Still, epidemiologic studies are, and
will remain, the most important studies if your goals are to prevent disease, improve
health, and provide the best possible health care.

History has shown that epidemiology, with all its problems and shortcomings, has
provided much useful information that has improved our life expectancy and quality
of life [1]. It is therefore necessary for health professionals to at least have some
knowledge about the methods epidemiologists use and their limitations. Carefully
done epidemiologic studies will not only provide new and valid information but will
also identify false beliefs and misconceptions. Nothing more than common sense is
perhaps needed to do epidemiologic research, but common sense is a remarkably
rare trait that needs to be stimulated by training and education. If this book makes
you aware of what you do not know you are on your way to becoming a better
epidemiologist.
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