


Topics in Applied Physics
Volume 115

Topics in Applied Physics is part of the SpringerLink service. For all customers with standing
orders for Topics in Applied Physics we offer the full text in electronic form via SpringerLink
free of charge. Please contact your librarian who can receive a password for free access to the full
articles by registration at:

springerlink.com → Orders

If you do not have a standing order you can nevertheless browse through the table of contents of
the volumes and the abstracts of each article at:

springerlink.com → Browse Publications



Topics in Applied Physics

Topics in Applied Physics is a well-established series of review books, each of which presents a com-
prehensive survey of a selected topic within the broad area of applied physics. Edited and written by
leading research scientists in the field concerned, each volume contains review contributions covering
the various aspects of the topic. Together these provide an overview of the state of the art in the re-
spective field, extending from an introduction to the subject right up to the frontiers of contemporary
research.
Topics in Applied Physics is addressed to all scientists at universities and in industry who wish to
obtain an overview and to keep abreast of advances in applied physics. The series also provides easy
but comprehensive access to the fields for newcomers starting research.
Contributions are specially commissioned. The Managing Editors are open to any suggestions for
topics coming from the community of applied physicists no matter what the field and encourage
prospective editors to approach them with ideas.

Managing Editor

Dr. Claus E. Ascheron
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
Germany
Email: claus.ascheron@springer.com

Assistant Editor

Adelheid H. Duhm
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
Germany
Email: adelheid.duhm@springer.com



Marco Fanciulli (Ed.)

Electron Spin Resonance
and Related Phenomena
in Low-Dimensional Structures

With 97 Figures



Prof. Dr. Marco Fanciulli
University of Milano-Bicocca
Department of Material Science
20125 Milano, Italy
and
CNR-INFM MDM National Laboratory
Via C. Olivetti, 2
20041 Agrate Brianza MI, Italy
E-mail: marco.fanciulli@mdm.infm.it

Topics in Applied Physics ISSN 0303-4216

ISBN 978-3-540-79364-9 e-ISBN 978-3-540-79365-6

DOI 10.1007/978-3-540-79365-6

Library of Congress Control Number: 2008944295

c© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on mi-
crofilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permis-
sion for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German
Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

Production: VTEX
Cover concept: eStudio Calamar Steinen
Cover design: SPI Publisher Services

SPIN: 12216970 57/3180/VTEX
Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Foreword

The spin degree-of-freedom is offering a wide range of intriguing opportu-
nities both in fundamental as well as in applied solid-state physics. When
combined with the rich and fertile physics of low-dimensional semiconduct-
ing structures and with the possibility to change, for example, carrier density,
electric fields or coupling to other quantum systems in a controlled way, an
extremely exciting and interesting research field is opened. Most commer-
cial electronic devices are based on spin-independent charge transport. In
the last two decades, however, scientists have been focusing on the ambitious
objective of exploiting the spin degree-of-freedom of the electron to achieve
novel functionalities. Ferromagnetic semiconductors, spin transistors, single-
spin manipulations or spin-torque MRAMs (magnetoresistive random access
memories) are some of the hot topics. The importance of spin phenomena
for new applications was recognized by the Royal Swedish Academy of Sci-
ences by awarding the 2007 Nobel Prize in Physics jointly to Albert Fert
and Peter Grünberg “for the discovery of giant magnetoresistance”. This ef-
fect originates from spin-dependent scattering phenomena in a two-terminal
ferromagnetic–paramagnetic–ferromagnetic junction leading to a new type
of magnetic memory. The Hall effect and its applications remain fertile re-
search areas. The spin Hall effect, in analogy with the conventional Hall
effect, occurs in paramagnetic systems as a result of spin-orbit interaction.
The predicted generation of a pure spin current transverse to an applied elec-
tric field even in the absence of applied magnetic fields has been observed in
semiconductors more than 30 years after its prediction, providing an impor-
tant method to produce spin-polarized currents in nanoelectronic devices.
After the Nobel Prize discoveries of the quantum Hall effect (QHE) and of
the fractional quantum Hall effect (FQHE), electron-spin resonance or other
spin-related phenomena, like skyrmion excitations and spontaneous spin po-
larization, have been observed in low-dimensional structures both in the QHE
regimes and in 1- and 0-dimensional structures. In particular, the interaction
of the electron spin with nuclear spins has been studied in a systematic way.
Many of the theoretical ideas in spin physics are used for the interpretation
of new phenomena in interacting double layers where a pseudospin char-
acterizes the two layers. Since the pioneering works on quantum electronic
transport, the importance of disorder and correlation in low-dimensional sys-
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tems has been deeply investigated and understood. Two phenomena due to
the breaking of symmetry in semiconductor heterostructures and correlation
in spin-polarized systems have been observed. The first one is related to
the dependence of the spin-coherence length on the direction of polarization
(parallel or perpendicular to the semiconductor interfaces) in a quantum-well
structure. The other one is the observation of a positive magnetoresistance
when a magnetic field is applied parallel to the plane of a purely 2D electron
gas, a result attributed to correlation in low-dimensional spin-polarized sys-
tems. The advances in nanotechnology led also to the possibility of detecting
and manipulating a single spin embedded in quantum dots with phenomena
like spin-blockade and Kondo physics. Spin-dependent electronic transport
in ultrascaled electronics devices is also an important means to exploit fur-
ther the ingenuities of modern microelectronics. Single-atom electronics has
been already observed and charge-transport manipulation using the spin de-
gree of freedom is being actively pursued by different research teams. The
electron spin also provides the ideal two-level system necessary for quantum
bits (qubits), the building blocks of quantum information processors (QIP).
Electron and nuclear spins in low-dimensional semiconductor structures in
which detection and manipulation are feasible, are key elements for the de-
velopment of a QIP. This is an ambitious objective that requires significant
advances in nanotechnology as well as a deep understanding of other impor-
tant parameters related to the spin such as coherence. This book collects a
series of review articles written by experts in the field dedicated to most of
the intriguing and exciting topics outlined above.

Stuttgart, Klaus von Klitzing
January 2009
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Preface

The idea of this book was formulated during an exciting and stimulating
workshop on “Electron spin resonance and related phenomena in low dimen-
sional structures” that I organized in Sanremo (Italy) in the spring of 2006.
During three days, we had the pleasure to listen to the key-note lecture by
Nobel Laureate Klaus von Klitzing and to eighteen talks from leading experts
in the field from Europe, the United States, Canada, Japan, and Australia.
Young researchers also had the opportunity to present their work during a
poster session. The main topics addressed during the workshop were electron
spin resonance in III–V heterostructures and quantum dots, spin detection
and manipulation in silicon and silicon–germanium nanostructures, spin co-
herence, and spin in semiconducting nanostructures for quantum information
processing.

In this book, some of the contributions given at the workshop as well as
some additional reviews provided by other experts have been collected into
three sections dealing with III–V heterostructures, quantum dots and quan-
tum wires, silicon-based nanostructures, and quantum information process-
ing. Theoretical as well as experimental aspects are presented and discussed
for each topic. The fundamental aspects as well as the implications for ap-
plications of spin detection and manipulation in low dimensional structures
represent an intriguing and exciting research area in contemporary condensed
matter physics.

In summary, this volume reflects the most important contributions given
at the International Workshop on “Electron spin resonance and related phe-
nomena in low dimensional structures”, which took place at the Villa Nobel
in Sanremo (IM), Italy, from March 6 to March 8, 2006, and additional re-
view articles from leading experts in the field. It is a pleasure to acknowledge
and gratefully thank all the people and the institutions that supported the
Workshop, on one hand, and, on the other, those who contributed to this
volume. The Workshop was funded by the Provincia di Imperia which also
made available the beautiful and inspirational Villa Nobel, and by Fondazione
Carige, Comune di Sanremo, Casinò di Sanremo, and Sanremo Promotion.
The staff of Villa Nobel and of the Sanremo Promotion Agency was very
helpful in handling the logistics related to the Workshop. I shall also thank
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the staff of the CNR-INFM MDM National Laboratory for their help in the
workshop organization.

Agrate Brianza (Milano),
May 2009 Marco Fanciulli
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Abstract. Resistively detected electron-spin resonance and electron nuclear
double resonance spectra have been acquired in the lowest electronic subband
of a remotely Si-doped 400-nm wide GaAs/AlAs digital parabolic quantum
well in high parallel and perpendicular magnetic fields at temperatures in the
0.5–10K range. The temperature dependences of the g-factor, ESR linewidth,
line amplitude and nuclear-spin relaxation times, acquired in the two different
orientations, are compared to data obtained previously in a 30-nm GaAs
quantum well with similar electron density and mobility.

1 Introduction

In a parabolic quantum well (PQW) formed by an AlAs/GaAs digital super-
lattice, the aluminum fraction in the center of the well is zero but increases
along the growth direction toward each barrier, yielding a parabolic conduc-
tion electron potential V (z) = (az)2. Such quantum structures have several
interesting properties that might prove advantageous for spin-based devices.
For example, it has been shown that the electron density in the PQW can
be shifted substantially at relatively modest gate voltage [1]. Because the
Landé g-factors in GaAs and AlAs are −0.44 and 1.99, respectively [2, 3], the
g-factor in the electron system is gate controllable over a wide range [1]. The
g-factor is also tunable by varying the electron density, temperature, or well-
width [4, 5]. Furthermore, g is expected to depend on the angle θ between
the growth direction (z) and applied magnetic field (B). A θ = 0◦ → 90◦

rotation in a sufficiently strong magnetic field causes the two-dimensional
electron system (2DES) of the wide PQW to evolve into a quasi-3DES.

Here, we employ resistively detected ESR (RDESR) and electron nu-
clear double resonance (RDENDOR) to study a remotely Si-doped 400-nm
wide GaAs/AlAs digital PQW in high parallel (θ = 90◦) and perpendicu-
lar (θ = 0◦) fields. The temperature dependences of the g-factor, linewidth
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in Low-Dimensional Structures, Topics Appl. Physics 115, 1–13 (2009)
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and amplitude are compared to those measured in a 30-nm GaAs QW with
similar density and mobility. Furthermore, the possibility to achieve dynamic
nuclear polarization (DNP) by simultaneously saturating the electron-spin
resonance line while slowly ramping down the applied magnetic field will be
demonstrated in the two orientations. The subsequent decay of the Over-
hauser shift following the DNP downsweep provides a means to determine
the overall nuclear-spin relaxation time. The temperature dependence of the
nuclear-spin relaxation time is reported for a strong parallel field as well as
two different values of θ at the Landau level filling factor ν = 1.

2 Theory

In a PQW with V (z) = (az)2, application of a strong B field along the z-axis
yields the energy spectrum of a 2DES, where

Ei,n(θ = 0◦) = Ei + (n+ 1/2)h̄ωc (1)

is the energy of the nth Landau level of the ith subband, ωc = eB/m and
m is the effective mass. When a high inplane field is applied such that ωc �
a(2/m)1/2, the spectrum becomes equivalent to that of a 3DES:

En(θ = 90◦) = (n+ 1/2)h̄ωc + h̄2k2
x/2m. (2)

The evolution of the system eigenstates, as the sample is rotated in the high
magnetic field, should be reflected in the electronic g-factor and hyperfine
contact interaction [6]. In the perpendicular field, electrons in each subband
of the 2DES sample different g-factors across the entire PQW structure on a
timescale much shorter than one electron Larmor period. According to a basic
tenet of quantum mechanics, the g-factor of an electron in the ith subband
can be calculated from

gi =
∫ +We/2

−We/2

g(z)
∣∣φi(z)

∣∣2 dz, (3)

where We is the effective well width and φi(z) is the subband wavefunction.
As in the simple particle-in-a-box, higher i subbands will have increased
probability density away from the center of the PQW where the Al fraction is
higher. Thus, due to the dependence of the g-factor on the Al fraction, [1] the
magnitude of g is expected to decrease with increasing i. Figure 1a presents
a calculation of g for the first seven subbands of the parabolic well shown
in Fig. 1b. The g-factor, resonance linewidth, and nuclear-spin relaxation
time are all expected to vary with tilt angle due to changes in the electronic
quantum states and hyperfine couplings as the systems evolves from a 2DES
to a quasi-3DES.

The following expression for the nuclear spin-lattice relaxation time in
the vicinity of the 2DES at odd-integer filling factors has appeared in the
literature [7].
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Fig. 1. (a) Potential
energy and electronic
energies in the 400-nm
PQW studied here, and
the total electron density
of the 7 filled subbands at
zero field. (b) Calculation
of the g-factor for the
i = 1 → 7 subbands and
the average (dashed line)

1
T1n

= γ2
nγ

2
eη

2
∣∣φ(z)

∣∣4D↑D↓, (4)

where D↑ (D↓) are the density of spin-up (-down) states at the Fermi level
and η is the Bloch correction factor. The equation is an adaptation of the
Korringa formula for metals [8] in the limit where kT is much less than the
Landau level broadening. The relaxation rate exhibits the familiar 1/T1n ∝ T
dependence observed in normal metals. The dependence of the relaxation rate
on the electronic wavefunction and density of states at the Fermi level sug-
gests that the spin relaxation should also be highly sensitive to the tilt angle
and filling factor. In principle, the nuclear-spin relaxation could be affected by
many-body interactions in the electron system. Measurements of T1n by resis-
tively detected nuclear magnetic resonance (RDNMR) in ultrahigh-mobility
GaAs quantum wells at filling factors 0.895 ≤ ν ≤ 0.84 deviated strongly
from Korringa-like T1n ∝ T−1 behavior in the 25–100mK range [9], possi-
bly due to fluctuations associated with the Goldstone mode of the skyrmion
crystal [10]. However, in another study of the temperature dependence of
T1n under similar conditions and similar high sample mobility [11], qualita-
tive agreement with (4) was observed. Thus, the role of many-body effects
in the nuclear-spin relaxation remains unclear. It should be noted that the
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wide parabolic well studied here has significantly lower mobility than in the
narrow GaAs quantum wells studied by RDNMR.

3 Experiment

Resistively detected ESR experiments were performed on a 400-nm wide
AlAs/GaAs digital PQW, where the average Al mole fraction is 0.0 at the
center and 0.29 in the layers adjacent to the Al0.31Ga0.69As barriers. Elec-
trons were introduced by remote silicon δ-doping. A detailed experimental
characterization and theoretical analysis of the transport properties in this
particular sample has been previously published (sample AG662) [6]. The
density and mobility prior to optical illumination with an LED was mea-
sured to be 1.5 × 1011 cm−2 and 1.2 × 105 cm2/V s, respectively. Illumination
at ≈1.6K for 60 s by an LED 1 cm from the sample increased these values
to 3.5 × 1011 cm−2 and 2.4 × 105 cm2/V s. The resistance activation energy
at high perpendicular field was found to be 1.9 ± 0.1K at ν = 1. For com-
parison purposes, we will also present data acquired previously in a 30-nm
wide GaAs multiple QW sample (consisting of 24 wells) with Al0.1Ga0.9As
barriers. The mobility and density of this sample are 0.44 × 106 cm2/V s and
6.9 × 1010 cm−2 per layer. Both samples were patterned by photolithography
into a standard Hall bar geometry. The ESR spectra were acquired via the
resonant microwave-induced resistance change, ΔRxx. The details of the in-
strumentation and measurement procedure are described in [12]. NMR spec-
tra were acquired indirectly via radio-frequency swept RDENDOR, where
the perturbation of the steady-state RDESR signal at constant B field is
measured as the radio-frequency field is swept through NMR resonance. Ad-
ditional details of this technique are presented in [13].

4 Results

The field dependence of Rxx in the parallel and perpendicular orientations of
the 400-nm wide PQW is shown in Fig. 2. In the parallel field, the transition to
a quasi-3DES can be observed as the magnetic length l0 becomes comparable
to the well width, We. This is observed as the final oscillation of Rxx at
B ≈ 1 T. When We � l0, magnetic confinement dominates and the density
of states approximates to that of a 3DES at high field. Under these conditions
the electron Zeeman energy is expected to be broadened due to the spatial
variation of g. In the perpendicular orientation, Rxx(B) resembles that of an
ordinary 2DES in which resistance minima are observed as the Fermi energy is
swept through the minima in the density of states. The experimental studies
in this orientation will focus on ν = 1 where the lower-energy spin state of the
lowest Landau level is completely filled, while the upper spin state is empty.
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Fig. 2. Longitudinal re-
sistance traces at 1.5 K
in the two orthogonal
field orientations of the
400-nm PQW. The as-
terisk marks the onset
of depopulation of the
lowest Landau level with
increasing field

In our previous work [14] we reported the g-factor anisotropy in the
400-nm PQW (sample AG662). The g-factor is close to that of bulk GaAs, in-
dicating that the ESR signal arises mainly from i = 1 electrons localized near
the center of the PQW where the Al fraction is small. A −5% monotonic de-
crease in g was observed when the sample was rotated from θ = 0 → 90◦. The
g(θ) dependence in the 400-nm PQW is distinctly different than in the two
previous experimental reports of g anisotropy in narrow GaAs/AlxGax−1As
QWs [15, 16]. As explained in [15], the observed g anisotropy reflects two
opposing terms: the nonparabolicity of the bulk GaAs conduction band and
the diamagnetic correction in the parallel field. Our data suggest that the
diamagnetic correction to the g-factor, Δg ∝ −Δz2 sin2 θ, where Δz is the
spatial extent of the wavefunction, dominates the change in the g anisotropy
in the wide PQW. While the anisotropy due to the spin-orbit Bychkov–
Rashba field cannot be completely ruled out, in principle it should be absent
in the GaAs/AlAs PQW due to the bulk inversion symmetry and mirror-plane
symmetry of the structure [17]. The time-resolved photoluminescence polar-
ization measurements of [16] showed no g anisotropy for We > 12-nm, while
in an electrically detected ESR study of a 15-nm wide QW [15], g slightly
decreased with increasing θ at ν = 1 for small tilt angles. The latter is similar
to the behavior exhibited in our 400-nm PQW. However, with increasing θ,
the tilt-angle dependences of the two samples are quite different. For all Lan-
dau levels of the 15-nm QW, g increases sharply with increasing θ, an effect
attributed to nonparabolicity of the bulk GaAs conduction band, while in
the 400-nm PQW, g decreases monotonically over the 0 → 90◦ range.

As is evident in Fig. 3, the temperature dependence of g in the 400-nm
PQW in the parallel field is opposite to that of the 2DES in the 30-nm QW
at ν = 1. In addition, a slight broadening of the ESR line was observed with
increasing θ in the PQW. These observations, taken together with the fact
that g in the PQW is close to that of bulk GaAs, suggest that the thickness
of the detected layer of electrons within the wide PQW increases slightly
with temperature, probably due to population of the i > 1 subbands. In the
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Fig. 3. (a, c) Tempera-
ture dependences of the
RDESR linewidth and
g-factor in the 400-nm
GaAs/AlAs PQW in a
6.5 T parallel (θ = 90◦)
field. (b) Temperature
dependence of g in the
30-nm GaAs QW at
5.5 T (θ = 60◦)

narrow QW, the opposite trend is observed: g increases while the linewidth
decreases (data not shown).

In Fig. 4 we present the temperature dependence of the RDESR signal
amplitudes in the θ = 0◦ and 90◦ (with ν = 1) orientations. The temperature
dependence at ν = 1 in the 30-nm GaAs QW is also presented for comparison.
The appearance of a sharp maximum, with the signal vanishing as T → 0,
is consistent with the simple resonance heating model proposed in [12]. The
temperature dependence of ΔRxx in the PQW is much more pronounced in
the perpendicular orientation, resembling the temperature dependence in the
30-nm square QW. In the parallel orientation of the PQW, the signal was
only weakly temperature dependent, and could be detected at temperatures
as high as 10K. These results suggest a qualitatively different mechanism for
the RDESR in the quasi-3DES state.

In GaAs quantum wells, it is well known that the RDESR lineshape may
be strongly affected by the effects of DNP; the enhancement of the nuclear
polarization (〈Îz 〉/I) due to the combined effects of electron-spin resonance
saturation and electron–nuclear crossrelaxation via the flip-flop terms in the
Fermi contact interaction (i.e. Î−Ŝ+ + Î+Ŝ−). For electrons in a conduction
band described by s-type Bloch functions, the secular part of the Hamiltonian
due to the coupling with a large number of nuclei can be expressed as:
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Fig. 4. Temperature de-
pendence of the RDESR
amplitude in the 400-nm
GaAs/AlAs PQW (bot-
tom) and 30-nm GaAs
square QW at 5.5 T
(top)

Ĥ = geμBBnŜz, (5)

where

Bn = bn

∫ +We/2

We/2

〈Îz 〉
∣∣φ(z)

∣∣2 dz (6)

is the local nuclear hyperfine field associated with the enhanced Zeeman order
on each isotope within the well and bn is the hyperfine coupling constant of
the given isotope. The total Bn field experienced by the electrons is the
sum of the fields due to each isotope: Btot

n = B75
n + B71

n + B69
n . Due to

the relative signs of ge and γn (the nuclear gyromagnetic ratio) for all three
isotopes in GaAs (as well as 27Al), Btot

n adds constructively to the applied
field, thereby increasing the Zeeman splitting of the electron-spin system.
Thus, the application of resonant microwaves yields a DNP enhancement
of Bn which shifts the ESR line out of resonance and reduces the electron
spin saturation. A steady state is reached wherein the rate of polarization is
balanced by the rate of nuclear-spin relaxation. A sufficiently slow magnetic
field downsweep starting on the high-field side of the resonance line, while
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Fig. 5. Dynamic nuclear
polarization in the 400-
nm PQW in a high par-
allel field as a function of
the field downsweep rate,
as indicated

applying the CW microwave field will produce a continuous increase in Bn,
thereby “pinning” the ESR to the applied field [7, 12, 18]. However, if the field
sweep is too rapid, the pinning condition cannot be sustained. The pinning
effect can be used to enhance the nuclear field in contact with the 2DES
appreciably, but it has not been previously demonstrated in a quasi-3DES.

Figure 5 demonstrates the pinning effect in the 400-nm PQW in a parallel
field as a function of the downsweep rate. Note that as the sweep rate is de-
creased from 490 to 50mT/min, the amplitude of the RDESR peak increases,
but does not broaden significantly. This same phenomenon, for which there is
currently no explanation, was also noted in the 30-nm GaAs QW (at ν = 1)
[13]. Only at the two lowest sweep rates is any appreciable pinning observed.
The ability to pin the ESR resonance to the applied field requires the rate
of increase in Bn due to dynamic nuclear polarization, which is determined
by the electron–nuclear crossrelaxation rate, to keep up with the rate of re-
duction of the applied field. The observation that the ESR can be pinned
only at the reduced sweep rates, compared to the pinning effect observed in
perpendicular field, is a strong indication that the electron–nuclear crossre-
laxation rate is reduced in the parallel field, either due to a reduction in the
contact interaction or change in the spectral density of the fluctuations in
the hyperfine coupling. Such a conclusion is supported by the nuclear-spin
relaxation time measurements shown in Fig. 6a.

The ability to spin polarize the nuclei in the QW by field-pinned DNP
provides a convenient method for measuring the time constant τn for the
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decay of Bn [7]. Following a DNP downsweep to initially polarize the nuclei,
the microwaves are switched off, and the decay of the ESR line position is
followed by successive rapid upsweeps of the field. Although the observed
decay appears to be monoexponential, it should be recognized that τn does
not correspond to the nuclear spin-lattice relaxation time of a single isotope.
Neglecting spin diffusion, the Bn is expected to have the following functional
form:

Bn(t) =
∫ ∣∣φ(z)

∣∣2 ∑
i

bin
[〈
Îi
z

〉eq(1 − e−t/T i
1
)

+
〈
Îi
z

〉◦e−t/T i
1
]
dz, (7)

where the summation extends over each isotope, and T i
1 and 〈Îi

z 〉 ◦ (the initial
DNP-enhanced Zeeman order) both depend on the distance z from the center
of the well. As shown in Fig. 6a, adherence to the Korringa law is observed
at ν = 1 for both θ = 0◦ and 44◦, but the slope with respect to 1/T is
reduced upon tilting the sample. However, in the parallel orientation, the
decay rate was temperature independent in the 1.5–5.0K range, suggesting
that one or more other background mechanisms for nuclear-spin relaxation
(e.g., dipole–dipole, quadrupolar, spin-diffusion) dominate the relaxation in
the quasi-3DES. One could speculate that this is due to the reduction in the

Fig. 6. (a) Temperature dependence of T1n at 0◦ (circles), 44◦ (squares) and 90◦

(diamonds). The data at 0◦ and 44◦ were acquired at a filling factor ν = 1 using
microwave frequencies of 27.14 and 35.59 GHz, respectively. The data acquired at
90◦ was recorded at 36.65 GHz, a frequency that was selected to maximize the
sensitivity. (b) Landau level filling factor dependence of the Bn decay constant,
τn, at T = 1.5 K, and two different tilt angles: θ = 0◦ (circles) and 44◦ (squares).
Data acquired in the down- and upsweeps are displayed as open and filled symbols,
respectively
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Fig. 7. RF swept RDENDOR transitions observed at filling factor ν = 1 in the
400-nm wide GaAs/AlAs digital parabolic QW sample at θ = 16◦ by continuous-
wave microwave excitation of ESR at a steady-state nuclear field of 38 mT while
sweeping the RF field at a rate of kHz/s with a frequency step size of 1 kHz

extent of the wavefunction, Δz, such that fewer nuclei are contacted in the
high parallel field. In any case, the relaxation data are consistent with Fig. 5
where pinning is observed at only the lowest sweep rates.

Figure 6b presents the filling factor dependence of τn around ν = 1 at
two different orientations. The filling-factor dependence closely resembles that
observed around ν = 1 and ν = 3 in narrow GaAs quantum wells [7, 12] and
is consistent with Korringa-like relaxation.

Finally, we note that in principle the relative amplitude of the 27Al RDEN-
DOR signal (with respect to 75As, for example) could be used to evaluate
the extent of the electronic delocalization in a GaAs/AlAs PQW superlat-
tice, since the variation of the Al content across the well is known. Figure 7
presents the 69Ga, 71Ga, and 75As RDENDOR spectra recorded at the ν = 1
resistance minimum by sweeping the radio frequency through each resonance
line while the ESR transition is irradiated at fixed B. In this variation of the
RDENDOR method, the steady-state Bn field is perturbed as the RF field is
swept through the nuclear-spin resonance condition, resulting in a sudden in-
crease in microwave absorption that is registered as a sharp increase in Rxx.
Following passage through NMR resonance, DNP resumes, Bn is restored,
and Rxx returns to its preresonant value [13]. The RDENDOR linewidths
of the three isotopes were found to be 21, 22, and 30 kHz, respectively. The
substantial line broadening is most likely a consequence of inhomogeneous
electric quadrupole interactions associated with the residual strain in the
digital AlAs/GaAs superlattice and/or band-bending effects. The relative
signal amplitudes reflect differences in the local nuclear field associated with
each isotope. In the case of the 75As resonance, the onset of a splitting is
apparent. Repeated attempts to observe a 27Al were unsuccessful, even after
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averaging 16 scans, despite the >20:1 signal-to-noise ratio obtained on the
other three isotopes after only one scan.

5 Conclusions

To summarize, we have detected the ESR of conduction electrons in a PQW
in both the perpendicular and parallel high magnetic fields. The amplitude of
the ESR signal was much smaller in the parallel orientation and the linewidth
was greater by about a factor of 2. The temperature dependence of the re-
sistance change due to ESR at ν = 1 was much more pronounced in the per-
pendicular orientation, resembling the temperature dependence observed in
a 30-nm square quantum well at ν = 1. In the parallel orientation, the signal
was only weakly temperature dependent, and could be detected at temper-
atures as high as 10K. The g-factor was found to be nearly independent of
temperature in both orientations, indicating that the charge distribution does
not change much in the 0.5–10K range. A monotonic decrease in g by 5%
could be induced by rotating the sample from 0◦ → 90◦ as the system evolves
from a 2DES to the equivalent of a 3DES at high field. The g(θ) dependence
in the 400-nm PQW is distinctly different from the two previous experimental
reports of g anisotropy in narrow GaAs/AlxGax−1As QWs. However, at all
angles, the observed g-factor is close to that of bulk GaAs, indicating that the
ESR signal arises mainly from electrons localized near the center of the PQW
where the Al fraction is small. At zero field, seven subbands are occupied, but
at high field, only the lowest subband is occupied. Thus, only this subband,
which is resolved energetically from the higher subbands, contributes to the
resonant microwave photoresistance signal. The observed g-factor is close to
the i = 1 g-factor predicted by (3).

The 2DES and quasi-3DES are perhaps most clearly distinguished on the
basis of the temperature dependence of the nuclear spin-lattice relaxation
times. In the 3DES, a temperature independent decay constant of 900 s was
observed, while in the 2DES, the relaxation time was substantially shorter
(150–200 s) over the temperature range studied, and in addition, the Korringa
law was observed. Differences in the nuclear-spin relaxation behavior are
attributed to differences in the energy spectrum, density of states, electron–
electron interactions, and hyperfine contact couplings.

The absence of an 27Al RDENDOR signal, despite high signal-to-noise
ratios for detection of the other isotopes, is consistent with the g-factor data.
A likely explanation for these observations is as follows: in the wide PQW,
the detected signal is derived primarily from the central part of the PQW
structure where the mobility of the conduction channel is highest. Thus, the
g(θ) dependence in the wide PQW appears to be dominated by the transport
characteristics of the 3DES in this sample rather than nonparabolicity effects.
The increased broadening of the ESR line observed in the parallel field is
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consistent with an inhomogeneous distribution of g factors along the z-axis
of the wide PQW.
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Abstract. Recent experimental and theoretical progress as regards the full
manipulation of electron spins in quantum dot systems is reviewed. In order
to realize coherent single-spin manipulation, we propose quantum-dot devices
with an integrated high-frequency line designed to generate an ac magnetic
field. We also discuss in detail the electric dipole spin resonance realized with
a slanting Zeeman field. After discussions of the exchange coupling between
the two electron spins in a double quantum-dot system, we present current
spectra of a hybrid vertical-lateral double quantum-dot device.

1 Introduction

The rapidly developing young fields of spin electronics (or spintronics) and
quantum information science have led to a strong interest in the ability to
probe and coherently manipulate electron spins. In particular, a single elec-
tron spin 1/2 confined in a solid-state environment such as a quantum dot,
has been put forward as a natural quantum two-level system for implementing
quantum bits (qubits).

Semiconductor quantum dots (QDs) are man-made structures that can
confine conduction electrons in semiconductors with a nanometer-size vol-
ume. We can precisely control various QD parameters, for example, dot size,
potential barrier height/width, and potential symmetry, by designing the de-
vice layout using advanced nanofabrication techniques or by controlling the
gate voltages statically and dynamically. The electrons can be controlled and
monitored individually, starting from zero [1, 2]. The potentially long spin-
coherence time in quantum dots [3] is another driving force behind the study
of spin qubits. Of the numerous proposals for systems that realize “qubit”
assemblies, the Loss and DiVincenzo proposal [4] has stimulated continuing
experimental efforts to realize universal unitary gate operations, which com-
prise single-qubit rotation and a two-qubit CNOT gate, using electron spins.

M. Fanciulli (Ed.): Electron Spin Resonance and Related Phenomena
in Low-Dimensional Structures, Topics Appl. Physics 115, 15–34 (2009)
c© Springer-Verlag Berlin Heidelberg 2009



16 Yasuhiro Tokura et al.

This chapter reviews our recent experimental and theoretical progress
as regards the full manipulation of electron spins in quantum-dot systems.
For related recent reviews, please see [5, 6]. In Sect. 2, we discuss single-
spin manipulation. Electron-spin resonance (ESR) is an established method
for controlling electron spins. However, in the context of quantum comput-
ing, we need individual access to single spins. For that purpose, we discuss
quantum-dot devices with an integrated high-frequency line designed to gen-
erate an ac magnetic field near the quantum dot. An electron spin is generally
very weakly coupled to its environment compared with an electron charge.
The result is that the coherence time for electron spins is much longer than
those for electron charges. On the other hand, electron-spin- (especially single
electron-spin) based systems are much harder to control than charge-based
systems. Therefore, we suggest an alternative method, namely electric-dipole
spin resonance, and we detail our proposal, which uses a slanting Zeeman
field.

In Sect. 3, we discuss the exchange coupling between the two electron
spins in a double quantum-dot system. Using the Hund–Mulliken approxi-
mation, we derived a general expression for the exchange coupling constant
J for (asymmetric) double quantum dots. We also present current spectra
of a hybrid vertical-lateral double quantum dot device. The electron number
in each dot and the tunnel coupling can be controlled precisely. Section 4
provides our conclusions and the future outlook.

2 Single-Spin Manipulation

Single electron-spin resonance (SESR) plays a key role in realizing electron-
spin-qubit rotation. It must be time controlled and selective for each spin.
The SESR Hamiltonian is

HESR = gμB

(
B0Sz +BESR sin(2πνt)Sx

)
(1)

=
1
2
εzσz +

1
2
εx sin(2πνt)σx, (2)

where Sx,z = 1
2σx,z are electron-spin operators, which are expressed with

the Pauli electron-spin matrices. εz = gμBB0 is the Zeeman energy induced
by a uniform magnetic field B0 with g the effective g-factor and μB = eh̄

2m

the Bohr magneton. h̄ = h
2π , e and m are a reduced Planck’s constant, the

elementary charge, and the mass of an electron, respectively. In the following,
we focus on arguing the manipulation of electron spins in a semiconductor
material, GaAs. Although the bulk g-factor of GaAs is g = −0.44, the value
is different when the electrons are confined in quantum wells or QDs [7]. The
experimentally evaluated |g| value has reported values of 0.37 [8], 0.27–0.29
[9, 10], and 0.16 [11] for two-dimensional QDs confined with surface gates,
and 0.25 [12] for a vertical QD. Here, we use a representative value for the
effective g-factor |g| of 0.3. The oscillating magnetic field, BESR determines
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εx ≡ gμBBESR. When the microwave (mw) frequency ν is chosen to be in
resonance with the Zeeman energy; εz = hν, the dynamics of the spin becomes
the rotation around the x-axis with the frequency fx ≡ εx/(2h) [13]. The
time necessary for the electron spin, initially in the spin-up state, and being
driven to the spin-down state (π operation), is Tπ = 1/(2fx) = h/εx, which is
Tπ ∼ 240 ns/BESR (mT) for GaAs QD. When such an electron spin, initially
in the spin-up state, is influenced by BESR for a period Tπ/2 (π/2 operation),
the final state is a linear superposition state of spin up and spin down. The
characteristic time for the decay of such a coherent superposition is T2, which
is a crucial parameter for quantum computing. Although the electron-spin
coherence time T2 of GaAs is still a big issue, a coherence time for two-
electron spin states in coupled quantum dots exceeding 1μs was recently
observed using spin-echo techniques on a two-electron system [14]. Therefore,
a BESR of more than 1mT seems desirable for coherent SESR.

SESR has not yet been detected in semiconductor QDs. (Recently, an
ESR scheme for one of the two electrons in a coupled QD system has been
demonstrated [15].) With SESR it is difficult to introduce a high-frequency
(∼10GHz) selective magnetic field at a QD in a cryogenic (100mK) setup.
It is also difficult to apply an ESR field with a conventional method us-
ing waveguides and microwave cavities because of high-frequency radiation,
which heats the spin qubit limiting the operating temperature to 1K. One
viable approach consists of producing a local ESR field using an onchip mw
coil or resonator. A second viable approach is to rotate spin that is cou-
pled to an electric dipole driven with an ac electric field (electric dipole spin
resonance).

2.1 Oscillating Magnetic Field

Here, we review an onchip mw coil and resonator designed to generate a local
ac magnetic field BESR (∼ mT) in order to realize SESR in GaAs quantum-
dot devices. The ac magnetic field is induced by an ac current driven through
a metal line in the vicinity of the dot as shown in Fig. 1a [16]. A current
of several mA is required to generate a magnetic field at the dot. We use
semirigid and flexible coaxial cables to bring the microwave signal (10MHz–
50GHz) to the sample. The coaxial line is connected to the onchip ac line via

Fig. 1. Scanning elec-
tron microscope (SEM)
pictures of (a) ac mag-
netic field generator
around a vertical QD
[16] and (b) one design
of an onchip coil
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Fig. 2. Three designs for onchip mw circuits: (a) single line, (b) onchip coil,
(c) onchip resonator. The dark regions are metallic pads and the circles indicate
the areas where the electric and magnetic fields are calculated

a 50-Ω impedance-matched coplanar waveguide and Au bonding wires. We
measure the electron transport through the dot for various ac currents and
find evidence for the presence of an ac electric field in the form of photon-
assisted tunneling (PAT) and current rectification [12]. We have been unable
to detect any effect of the ac magnetic field on SESR, probably because the ac
magnetic field at the spin position is too weak due to impedance mismatch.

We now propose a new design for a metal line to generate an ac magnetic
field of more than 1 mT [17]. The onchip high-frequency line designs are
shown in Fig. 2. All the patterns are designed to produce a magnetic field
perpendicular to the surface and to have QDs very near the surface. (a) is the
first trial of a single line pattern (half-turn coil), where impedance matching
is taken into account. (b) is the onchip coil. A different design for a coil
fabricated on GaAs is shown in Fig. 1b. (c) is a previously proposed onchip
resonator [18, 19] that we modified so that it had a node at the edge. The
resonance frequency was adjusted to around 20GHz.

We performed high-frequency (20GHz) electromagnetic simulations using
the three device designs shown in Fig. 2. The thickness of the pattern was set
at 1 μm. The inplane component of the ac electric field and the perpendicular
component of the ac magnetic field are shown in Fig. 3 as a function of the
distance from a QD located at the center of the circles in Fig. 2. The electric
field induces PAT and the magnetic field causes ESR. The excitation is 1V
at the input port and the output port is ideally grounded. The other metallic
pads shown in the design are also grounded. The inplane component of the
ac magnetic field is negligible. The onchip resonator can produce the largest
magnetic field and it produces a larger electric field than the onchip coil
pattern. The single line pattern produces the largest electric field.

Can we maintain a low temperature if a mA current causes Joule heating?
The resonant frequency of 20GHz corresponds to a magnetic field of about
4.8T and energy equivalent to 1 K. The electron temperature should be less
than 1K to detect the electron spin imparted by the tunneling current to the
lead [9]. The dilution refrigerator that we use has a cooling power of 1 mW
at 300mK, which is equal to the total power dissipated by an impedance-
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Fig. 3. Evaluation of electric and magnetic fields from onchip mw circuits. Left : in-
plane component of ac electric field, right : perpendicular component of ac magnetic
field at 20 GHz

matched (50Ω) oscillating current of about 4 mA. A coaxial cable from the
source at room temperature is thermally contacted at 4K and is connected to
a superconducting coaxial cable and then a short copper cable to the sample.
The corresponding input power to the sample is 0 dBm (=1 mW) and the
input voltage is 220mV. Since the estimated cable loss is 4 dB, the necessary
input power from the source is +4 dBm. Assuming a mw line resistance of 15Ω
at 20GHz, which is estimated from a typical value of DC residual resistance
and a surface skin depth, the power dissipated in the sample is about 240μW.
From Fig. 3, we expect BESR ∼ 220 mV

1 V ×1.8 ∼ 0.4mT for an onchip resonator.
Koppens and coworkers [15] reports that BESR = 0.59mT at 1mA, while
the coil (stripline) design is different and the frequency (200MHz) is much
smaller.

2.2 Slanting Zeeman Field

Although the electric field does not usually affect the spin states, it couples
strongly to the orbital states (electric dipole). Therefore, if we can “mix”
the spin and orbital degrees of freedom in a controlled way, we can manipu-
late the spin caused by the electric field effectively. Spin-orbit (SO) coupling
is one of the candidates for mixing the spin and orbital states. Electrical
control of the effective g-factor has been demonstrated in an AlxGa1−xAs
parabolic quantum well, where a parabolic spatial change in the Al con-
centration introduces an inhomogenous g-factor [20]. This method is useful
for addressing individual spins caused by fine electric gates with a uniform
magnetic field, however, the system itself does not mix the spin and or-
bital states in the lowest approximation. By exploiting strong anisotropies
in the effective g-factor tensor ĝ, the electron spins at a GaAs/AlGaAs
semiconductor heterostructure can by manipulated by GHz-frequency con-
trol of the gate voltage (g-tensor modulation resonance g-TMR) [21]. The
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Hamiltonian is expressed by Hg-TMR = μBS · ĝ(V (t)) · B. Recently, elec-
tric dipole spin resonance (EDSR) caused by various SO coupling mecha-
nisms was argued for the electrons in a parabolic quantum well [22, 23].
The SO interaction Hamiltonian for a two-dimensional electron system is
HSO = HD + HR, where the Dresselhaus term HD = αD(σxkx − σyky) and
the Rashba term HR = αR(σxky − σykx), where αD, αR characterize the SO
interactions and kx/y indicates two-dimensional kinetic momenta. The in-
plane (time-dependent) electric field has finite coupling to the electron spin,
subject to a magnetic field. Another EDSR scheme consists of a QD con-
taining a single electron facilitated with two gates to create an alternating
electric field [24]. The estimated effective oscillating field is 1 mT for an elec-
tric field of 102 V/cm for GaAs quantum dots. The strained semiconductor
film enables spin manipulation even without a magnetic field [25].

An alternative method recently proposed by our group, is to modulate a
QD electric field in a nonuniform magnetic field [26]. This scheme eliminates
the need for SO coupling, as opposed to earlier work on electron-spin con-
trol based on g-tensor modulation [21], and on electric fields [22–24]. Instead,
ESR is achieved by applying microwave gate voltage pulses, and letting the
electron position in a QD oscillate in a static slanting Zeeman field. Note
the analogy with the Stern–Gerlach experiment, where the spin and orbital
degrees of freedom are coupled by employing an inhomogenous magnetic
field. The spatial oscillation of the electron within the QD involves the hy-
bridization of orbital states, as depicted schematically in Fig. 4a for the two
lowest orbital states, n = 1, 2. This effectively provides the electron spin with
the necessary time-dependent transverse magnetic field. We find that we can
achieve an effective ESR magnetic field of 1.5mT per millivolt of gate voltage
modulation and a slanting magnetic field of the order of 1T/μm.

Fig. 4. (a) Schematic representation of how a spatial oscillation between wavefunc-
tions |+〉 and |−〉 involves the hybridization of multiple orbital states. (b) Energy
spectrum of a quantum dot (QD) with two orbital levels (level spacing Δ2,1) and
constant Zeeman energy ε0z with/without a magnetic field gradient bSL. The low-
est levels, |G± 〉, constitute a qubit. |E± 〉 are excited states, which are energetically
separated from |G± 〉 and are neglected in the qubit dynamics
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Fig. 5. Model of a one-dimensional (1D) QD in a slanting Zeeman field. Ferro-
magnetic gate electrodes (dark gray) are located at either end of the dot and are
magnetically polarized in the plus/minus x-direction, creating a magnetic-field gra-
dient bSL. A uniform magnetic field B0 is applied in the z-direction. The spin in
the dot is controlled by applying an oscillating voltage Vac between the two gates

A possible realization of the system is presented in Fig. 5. A quasi-1D
conductor such as a carbon nanotube, [27] semiconductor nanowire, or gate-
defined quantum wire, is gated by ferromagnetic electrodes that define both
the tunnel barriers of the QD and the slanting magnetic field. In this config-
uration, the magnetic field is given by B = bSLzix + (B0 + bSLx)iz, where
B0 is the external uniform magnetic field parallel to the z-axis and bSL is the
z-direction gradient of the field parallel to the x-axis. The middle point of the
QD corresponds to z = 0. We assume a true 1D system or two-dimensional
(2D) QD formed at a heterostructure with an electron strongly confined in
the x-direction. Therefore, the inhomogeneous term along the z-axis, bSLxiz,
can be eliminated (which was present so that B obeyed Maxwell’s equations).
A magnetic field gradient bSL of more than 1 T/μm can be obtained with a
standard micromagnet material [28, 29].4

We now derive the effective Hamiltonian of the hybrid spin qubit, tak-
ing into account the corrections to the slanting form. To that end, we start
with a time-independent Hamiltonian that describes the dynamics of a single
electron confined in a 2D QD in the absence of a high-frequency electric field

H = H0 +Wσx, (3)

H0 = E0 − h̄2

2m∗
(
∂2

y + ∂2
z

)
+ V (y, z) − gμB

2
B0σz, (4)

W = −gμB

2
bSLz, (5)

where m∗ is the electron effective mass and σ = (σx, σy, σz) the Pauli spin
matrices. In general, the vector potential originating from the slanting field
may couple to the orbital motion and modify the QD wavefunctions (a uni-
form inplane field B0 does not couple). Here, this effect can be neglected if we
assume relatively strong lateral confinement V (y, z). The eigenvalues of H0

are εpnσ = εpn + 1
2gμBB0σ with eigenfunctions 〈y, z|p, n, σ〉 = φpn(y, z)ψσ,

4 Very recently, EDSR signals had been observed in a series double QD with slanting
field by a Co micromagnet [30].
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where n = 1, 2, . . . , σ = ±1 and ψσ is the spinor. We only consider the sym-
metric confinement potential: V (y, z) = V (y, −z) and the index p = e (o)
implies the even (odd) parity of the wavefunction φpn(y, z) with respect
to the change of the sign z. The ground-state wavefunction has even par-
ity, φe1(y, z). The Hamiltonian matrix (3) expanded with the eigenvalues
of H0 can be block-diagonalized with the two subsets of the eigenstates:
[|e, n,+1〉, |o, n, −1〉] and [|e, n, −1〉, |o, n,+1〉]. The ground states of these
blocks constitute our “qubit”,

H|Gσ〉 = EGσ |Gσ〉, (6)

|Gσ〉 = Ce,1,σ |e, 1, σ〉 +
∑

p=e/o,k

Cp,k,σp |p, k, σp〉, (7)

where σp = σ for p = e and σp = −σ for p = o. We assumed that the
spin excitation energy (Zeeman energy ε0z ≡ gμBB0) is smaller than the
orbital excitation energy: ε0z < min{εo1, εe2} − εe1. The eigenenergy EGσ and
coefficients of eigenfunctions Cp,n,σp are obtained by perturbation theory. For
a weak perturbation of W , |Ce,1,σ | ∼ 1 and the obtained qubit is nearly the
same as a “pure” spin qubit |e, 1, σ〉. The “qubit” energy levels are separated
by εz ≡ EG+1 − EG−1, which is slightly smaller than the raw Zeeman energy,
ε0z as shown in Fig. 4b.

The inplane electric field, eE(t) · z, couples the states |G +1〉 and |G −1〉,
but has no effect on the diagonal part 〈Gσ|z|Gσ〉 = 0. The leading ESR
component is obtained by

εx sin(2πνt) ≡ 2〈G +1|eE(t) · z|G −1〉

= 2e
Vac

L
sin(2πνt)〈e1|z|o1〉(Co,1,σ + Co,1,−σ), (8)

where Vac is the applied high-frequency voltage between the gate electrodes,
L is the gate separation shown in Fig. 5 and ν is the mw frequency. In
the lowest-order perturbation, Co,1,σ = 〈e1|W |o1〉

εe1−εo1+ε0zσ . Thus, the effective ESR
Hamiltonian (1) is obtained. It should be noted that addressing an individual
qubit is easy since the ESR field is very local and can be reproduced for
each dot. In the analysis, we used the material parameters of GaAs and a
confinement energy of the order of 1meV, which corresponds to 〈e1|z|o1〉 ∼
24 nm [26]. The corresponding ESR magnetic field is about 1.5mT at a 1mV
modulation amplitude, L = 0.8μm, hence an electric field of 12.5V/cm,
and bSL ∼ 1 T/μm. The electric field required to achieve a 1-mT oscillating
field using micromagnets is about ten times smaller than that using the SO
interaction [24].

Acoustic phonon scattering can cause orbital relaxation between the
“qubit” states, since we hybridize the spin and orbital degrees of freedom.
The timescale characterizing the electron spin, initially in the up state, to
decay into the down state is T1 [3, 9]. We estimated T1 ∼ 2.1 ms at B0 = 2 T,
which is dominated by transverse piezoelectric scattering [26]. Since the de-
phasing effect without relaxation is negligible, the coherence time T2 is 2T1.
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The quality factor Q is estimated by dividing T2 by the time required for π
operation: Tπ, which is of the order of 104.

3 Two-Spin Interaction

To realize the necessary unitary operations for the quantum computation al-
gorithm, controlled-NOT (CNOT) or a swap operation is essential for the two
qubits. Following the original proposal of [4], we rely on the exchange interac-
tion allowed from the finite tunnel coupling between two quantum dots. The
low-energy spin dynamics is described by an isotropic Heisenberg interaction

HS = JSR · SL + gμBB0 · (SR + SL), (9)

where Sν (ν = R/L) represents a localized electron spin in the left (L) or right
(R) quantum dot. Therefore, an estimation of the exchange coupling J is vital
to the two-spin qubit operation. There have been several reports on the esti-
mation of J [6, 31–33]. The estimation of J in symmetric double dots with a
Gaussian confinement potential and a magnetic field was done in [31, 32] and
was generalized to an asymmetric system in [33]. More detailed evaluation
of J with various tunneling barrier shapes was done in [6]. We discuss the gen-
eral low-energy properties of the double quantum-dot system using a Hund–
Mulliken approximation with the notations of Burkard et al. [33]. We focused
particularly on the situation when the two dots are not equivalent [33] or when
there is a finite energy offset between the two dots [34]. We fabricated a hy-
brid vertical-lateral double-dot device, consisting of laterally coupled vertical
quantum dots in a few-electron regime and measured its electric properties.

3.1 Formulation

We study two electron states in closely located quantum dots (L) and (R).
When there is no tunneling between these two dots, the two-electron ground
state consists either of each dot being occupied by one electron with spin
up or down or one of the two dots being occupied by two electrons in the
spin singlet state (if the magnetic field is not very strong). If the tunnel-
ing is turned on but is not very strong compared with the single-particle
energy-level spacing of each dot, only the ground-state wavefunctions are rel-
evant and are weakly perturbed. Starting from the approximate ground-state
wavefunctions localized to two local minima ν = L and R, we obtain two or-
thonormalized wavefunctions φν(r) using the overlap integral S [34]. In the
following discussions, we consider a zero magnetic field (B0 = 0) or an inplane
magnetic field and these wavefunctions are real.5 With these wavefunctions,
the Hamiltonian H = T + C can be formulated as in the Hubbard model.
5 The effect of a magnetic field perpendicular to the tunneling direction has been
studied in detail in [6, 31–33] using various model potentials.
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The kinetic term is T =
∑

σ

∑
ν ενa

†
νσaνσ +

∑
σ(ta†

LσaRσ + H.C.), where
εν ≡ 〈ν|h|ν〉 and t ≡ 〈ν|h|ν̄〉 using a single-particle Hamiltonian h. The
interaction term is C = 1

2

∑
σσ′

∑
ν,ν′,ν′ ′,ν′ ′ ′ 〈νν′ |V |ν′ ′ν′ ′ ′ 〉a†

νσa
†
ν′σ′aν′ ′ ′σ′aν′ ′σ,

where the Coulomb matrix elements are

〈νν′ |V |ν′ ′ν′ ′ ′ 〉 =
∫

dr dr φν(r)φν′ (r′)V (r, r′)φν′ ′ (r)φν′ ′ ′ (r′)

= 〈ν′ν|V |ν′ ′ ′ν′ ′ 〉
= 〈νν′ ′ ′ |V |ν′ ′ν′ 〉. (10)

We used the symmetry of the (screened) Coulomb interaction kernel V (r, r′) =
V (r′, r) and the realness of the wavefunctions for the last two equations. We
name several Coulomb matrix elements to clarify the following discussions,
the intradot Coulomb interaction energies: 〈νν|V |νν〉 ≡ Uν , the interdot
Coulomb interaction energy: 〈νν̄|V |νν̄〉 ≡ Vinter, the exchange energy in the
tunnel barrier 〈νν̄|V |ν̄ν〉 ≡ Vx, and the remaining energies 〈νν|V |νν̄〉 ≡ Wν

[35]. The naming of the intradot/interdot Coulomb interaction is physically
accurate solely for the limit of the vanishing overlap integral S. In general,
Uν > Vinter > Vx, Wν > 0, and for the two equivalent dots, UL = UR and
WL = WR.

We then construct a six-dimensional two-particle Hilbert space with

|Sa〉 =
1√
2

(
a†
L↑a

†
R↓ − a†

L↓a
†
R↑
)

|0〉,

|Sb〉 =
1√
2

(
a†
L↑a

†
L↓ + a†

R↑a
†
R↓
)

|0〉,

|Sc〉 =
1√
2

(
a†
L↑a

†
L↓ − a†

R↑a
†
R↓
)

|0〉,
∣∣T 1

〉
= a†

L↑a
†
R↑ |0〉,

∣∣T 0
〉

=
1√
2

(
a†
L↑a

†
R↓ + a†

L↓a
†
R↑
)

|0〉,
∣∣T−1

〉
= a†

L↓a
†
R↓ |0〉,

where the vacuum |0〉 is two empty dots. If the Coulomb interaction is not
very strong and the degeneracy of the lowest empty levels is lifted, two dots
with filled shells could be assumed as |0〉. We took account of a single level (for
example, s-orbital) in each dot and neglected excited levels (p-orbitals). The
above six-dimensional Hilbert space is not sufficient when the offset |εL −εR| is
comparable to single-dot singlet-triplet energy separation, Vintra,s−p −Vx,s−p,
where Vintra,s−p and Vx,s−p are the intradot Coulomb energy and the exchange
energy between s- and p-orbitals, respectively. We obtain the matrix elements
of the Hamiltonian H with these states. For example, 〈Sa|C|Sa〉 = Vinter +
Vx > 〈T 0|C|T 0〉 = Vinter − Vx, where the inequality can be understood by
noting that electrons with parallel spin avoid each other and gain Coulomb
energy 2Vx (exchange energy) because of the Pauli exclusion principle. The
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eigenenergies of the triplet states |T±1,0〉 are degenerate when there is no
magnetic field, given by

ET = εL + εR + Vinter − Vx. (11)

The eigenenergies of singlet states, ES0 < ES1 < ES2, are obtained from the
Hamiltonian matrix,

Hs = ET +
1
2
UH + 2Vx +

⎛
⎝ − 1

2UH 2tH δW
2tH 1

2UH F
δW F 1

2UH − 2Vx

⎞
⎠ , (12)

where we defined F ≡ εL − εR +(UL − UR)/2, tH ≡ t+(WL +WR)/2, δW ≡
WL − WR, UH ≡ (UL + UR)/2 − Vinter. An example of the numerical results
is shown in Fig. 6.

First, we consider F = 0 when the singlet ground state is the largest.
Please note that for the asymmetric dot, the condition of F = 0 deviates from
the one-electron zero-offset condition εL = εR. We have ES0 = ET + 2Vx +
1
2 (UH −

√
U2

H + (4tH)2)+bδW 2, to the lowest order in δW , where the small pa-
rameter b is positive for tH � UH. The exchange coupling energy J is defined
by the energy difference between the triplet and the singlet ground states:

J |F=0 ≡ ET − ES0 =
1
2
(√

U2
H + (4tH)2 − UH

)
− 2Vx − bδW 2, (13)

which reduces to a familiar form J = 4t2H/UH − 2Vx with tH � UH and for
symmetric dots [31, 33]. If δW = 0, the wavefunction of the singlet ground
state is

|ΨS0〉 =
1√

1 + φ2

(
|Sa〉 − φ|Sb〉

)
, (14)

where φ ≡ J |F=0/2tH. With increasing |F |, the ground-state energy of the
singlet state decreases monotonically. When |F | ∼ UH, the lowest two-spin

Fig. 6. Solution of (12)
evaluated numerically,
for Vinter/UH = 0.67,
Vx/UH = 0.01, TH/UH =
0.1, δW/UH = 0. The en-
ergies of the spin singlet
states are measured from
that of the spin triplet
state
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singlet states S0 and S1 anticross with a separation of ∼ 2
√

2tH, as shown in
Fig. 6. We can have a simple expression in the limit of large energy offsets,
F → ∞. The energy of the ground state is ES0 ∼ 2εR + UR and that of the
first excited singlet is ES1 = ET + 2Vx − 4tHδW/F + {4t2H(UH − 2δW ) +
UHδW

2}/F 2. Therefore, the energy difference between the excited singlet
and the ground triplet states is

JS1−T ≡ ES1 − ET = 2Vx − 4tHδW
F

+
4t2H(UH − δW ) + UHδW

2

F 2
. (15)

The exchange energy 2Vx can be obtained by measuring JS1−T in the limit
of large |F | unless the other two electron states originating from the single-
particle excited states of each dot cross over [36]. When the asymmetry is
absent (δW = 0), the energy splitting JS1−T reduces to 2Vx with F−2. We
suggest that JS1−T is related to the critical magnetic field as regards the
sudden increase in leakage current in spin-blockaded quantum dots [36–38].
The inplane magnetic field dominantly lifts the triplet-state degeneracy, and
when one of the triplet levels crosses over the S1 level, nuclear-spin-mediated
spin-transition (flip-flop type) is allowed and the current starts to flow. In this
system, the source–drain voltage controls the offset F , and we may determine
δW or other parameters.

We can use the local two electron spin-singlet basis instead of |S2〉, |S3〉,
|SR〉 = a†

R↑a
†
R↓ |0〉,

|SL〉 = a†
L↑a

†
L↓ |0〉.

Then, using the basis (|S1〉, |SR〉, |SL〉), the Hamiltonian (12) becomes,

Hs = ET +
1
2
UH + 2Vx +

⎛
⎜⎝

− 1
2UH

2tH+δW√
2

2tH−δW√
2

2tH+δW√
2

1
2UH − F − Vx Vx

2tH−δW√
2

Vx
1
2UH + F − Vx

⎞
⎟⎠ .

(16)

The two-spin singlet states |S1〉 and |SR〉 come into resonance when F = UH −
Vx (see the first and the second diagonal elements). Therefore, near this value
of F , we can neglect the effect of |SL〉 and we obtain the two lowest eigenen-
ergies simply by using the upper 2 × 2 matrix of (16). The result is E0,1 =
ET + 2Vx − 1

2 (ε ±
√
ε2 + 2(2tH − δW )2), where we defined the energy offset

from the resonance ε ≡ F − (UH −Vx) [38]. This result is not accurate for the
asymptotic regime, namely for ε or F → ∞. In this approximation, the energy
split between the first excited spin singlet state and the spin triplet state is

ES1 − ET = 2Vx +
1

2F
(2tH − δW )2, (17)

where, in contrast to (15), the F−1 term persists even for the symmetric case
(δW = 0). The difference between these two approaches is depicted in Fig. 7
in a log–log plot. As can be seen, the 1/F 2 dependence is missing for the
approximation curve.
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Fig. 7. Log–log plot
of the eigenenergies
evaluated numerically,
for Vinter/UH = 0.67,
Vx/UH = 0.01, tH/UH =
0.01, δW/UH = −0.001.
The energies of the spin
singlet states are mea-
sured from that of the
spin triplet state +2Vx

Fig. 8. Schematic of
the hybrid vertical-lateral
double-dot device

3.2 Hybrid Double Dots

The value of the exchange coupling J was determined in an ellipsoidal quan-
tum dot [39] by measuring the cotunneling current for various magnetic fields
and in lateral double dots with various offset energies in the very weak tun-
neling regime [14]. The latter utilizes the pulse sequence to the gates and
finite inhomogeneous nuclear fields. The measurement of J in the sequential
tunneling and cotunneling regimes in series double quantum dots has been
proposed [40]. However, there are two difficulties with the series dot config-
urations. The first is that except for the ‘triple point’ where the energies of
three states (NL, NR), (NL + 1, NR), (NL, NR + 1), are the same, the current
is strongly suppressed. Here, (NL, NR) represents the occupancy of NL (NR)
electrons in the left (right) dot. The second is that the finite source–drain
voltage may affect the energy offset εL − εR, and nonlinear spectroscopy as
discussed in [40] cannot determine J accurately.

As shown in Fig. 8, we measured Coulomb oscillations in a unique hybrid
vertical-lateral double-dot device, which consists of two laterally coupled ver-
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Fig. 9. Differential conductance dIsd/dVsd vs. Vsd and VsL (VsR) measured for the
left dot with VsR = −1.4 V and center gate voltage Vc = −1.3 V (a) and the right
dot with VsR = −2.4 V and Vc = −0.6 V (b)

tical dots with four split gates [41, 42]. Two of the gates (side gates) are used
to tune the electron number in each dot independently, and the remaining two
gates (center gates) are used to tune the interdot tunnel coupling. Current
Isd flows in the vertical direction through the two dots connected in parallel
when source–drain voltage Vsd is applied. The measurements were performed
in a dilution refrigerator at a base temperature of 20mK employing a dc mea-
surement system. The electron temperature is about 110mK estimated from
the width of the Coulomb oscillation peaks. The maximum applied voltage
is 5mV and the current is about 5 nA. The power dissipated into the device,
∼25 pW, is much smaller than the cooling power of our refrigerator. We mea-
sured the nonlinear I–V characteristics of the left and right dots. Figure 9a
(b) shows grayscale plots of the differential conductance dIsd/dVsd of the left
(right) dot as a function of Vsd and the left (right) side gate voltages VsL(sR) at
the right (left) side gate voltage VsR(sL) = −1.4 (−2.4)V and the center gate
voltage Vc = −1.3 (−0.6)V. Several Coulomb diamonds are clearly observed.
When the left and right side gate voltages became smaller than ∼ −2 V, we
were no longer able to observe Coulomb diamond, and confirmed that the
electron numbers in the two dots are counted one by one starting from zero.

A grayscale plot of the Coulomb oscillations as a function of VsL and
VsR at Vc = −1.2 (−0.5) V and Vsd = 8μV is shown in Fig. 10a (b). As
shown in Fig. 10a, the Coulomb oscillation peaks changing the number of
electrons in the left dot (vertical lines) and those changing electrons in the
right dot (horizontal lines) cross perpendicularly. Thus, the two dots do not
couple when there are few electrons in each dot. When Vc increases to −0.5 V,
diagonal gaps, or “anticrossings” appear at the Coulomb oscillation vertices
resulting in a hexagonal stability diagram [43] as shown in Fig. 10b. These
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Fig. 10. Linear conductance vs. VsL and VsR measured for Vc = −1.2 V (a) and
−0.5 V (b)

Fig. 11. Charging diagram at a fixed center gate voltage Vc = −0.55 V and Vsd =
8 μV (a) and Vsd = −300 μV (b). The line of the excited molecular state is observed
in the band region of finite conductance from the (5, 3) state to the (6, 4) state

anticrossings result from both quantum-mechanical tunnel coupling and the
interdot Coulomb interaction.

When the offset between the levels of the two dots changes, the mole-
cular levels anticross with the minimum energy separation 2t between the
two levels. A grayscale plot of the differential conductance (dIsd/dVsL +
dIsd/dVsR)/

√
2 at Vc = −0.55 V and Vsd = 8 μV (−300 μV) is shown in

Fig. 11a (b). In this region, where (NL, NR) transits from (5, 3) to (6, 4),
the line of the excited state clearly shows the antibonding states. The esti-
mated tunnel coupling energy is 120μeV. This tunnel coupling energy can
be controlled by controlling Vc and the magnetic field.
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Fig. 12. Schematic of coupled 1D dots with
ferromagnetic electrodes magnetized in an-
tiparallel configuration. A uniform magnetic
field is applied in parallel to the wire

3.3 Double QD with Slanting Zeeman Field

Here, we present a realization of a two-qubit gate based on the two cou-
pled dots discussed in Sect. 2.2 in series with an alternately magnetized
electrode as shown in Fig. 12. Although it has been pointed out that an
inhomogeneous magnetic field introduces swap errors [44, 45], we show that
correct swap operation is possible in our system. The two-qubit Hamiltonian
is H =

∑
ν=L,R H0ν + HT + HV, where H0ν is the single-dot Hamiltonian

(see (1)) ν = L,R (ac field is off, εx = 0 and with intradot Coulomb interac-
tion U), HT represents the tunneling between the dots, and HV represents
the interdot interaction Vinter. We assume that the two dots are nominally
the same and there are no offsets and we disregard the other Coulomb matrix
elements, Vx and Wν . By projecting the Hamiltonian onto the qubits, we find

H0ν =
εz
2

∑
σ

σc†
νσcνσ + Unν↑nν↓, (18)

HT =
∑

σ

[
tσc

†
LσcRσ + sσc

†
LσcR−σ + H.C.

]
, (19)

HV = Vinter

∑
σσ′

nLσnRσ′ , (20)

where cνσ annihilates an electron of pseudospin σ in dot ν. A spin-dependent
tunneling term tσ and a tunneling term with spin-flip sσ emerge, which
are defined by tσ = C2

e,1,σte1,e1 − Co,1,−σCo,1,−σto1,o1 + 2Ce,2,σte1,e2, sσ =
(Co,1,σ − Co,1,−σ)te1,o1, where tpn,p′n′ represents the tunneling amplitude
from level (pn) in dot L to level (p′n′) in dot R. We used the symmetry
of the coefficients CL

o,n,σ = −CR
o,n,σ since the magnetization of the magnets is

staggered (Fig. 12), and we neglected the index L/R. The relevant lowest four
eigenenergies and their eigenfunctions are obtained by the effective exchange
Hamiltonian using local spin operators:

HS = J‖SLzSRz + J⊥(SLxSRx + SLySRy)
+ εz(SLz + SRz), (21)

where J‖ =
2(t2↑+t2↓)

UH
− 4s2

σUH

U2
H−ε2z

, J⊥ = 4t↑t↓
UH

, εz = εz(1 − 2s2
σ

U2
H−ε2z

), and
UH ≡ U − Vinter. In contrast to the isotropic Heisenberg coupling of spins
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(see (9)), the exchange-coupling energy becomes anisotropic. It is well known
that the SO interaction makes the exchange Hamiltonian anisotropic [46].
Unlike the SO case, where the antisymmetric term (SL × SR) dominates,
the dominant anisotropic correction of HS in a slanting field is the sym-
metric term. Nevertheless, CNOT operation can be accomplished by this
anisotropic exchange Hamiltonian simply by replacing the J of the Heisen-
berg Hamiltonian with J‖, and single-qubit operation (SESR) can be achieved
by replacing εz with εz, as shown in [45, 46].

4 Conclusion

In this chapter we reviewed our progress on spin manipulation in semicon-
ductor quantum dots. A high-frequency local ac magnetic field can be ob-
tained by using an onchip resonator. As seen in Fig. 2, the design cannot
address individual qubits because it is still very large and in practice, two
or more quantum dots could be accommodated. The proposed single ESR
scheme with a slanting Zeeman field can realize an ESR field up to 1.5mT
per millivolt gate modulation. Addressing individual qubits is easy since the
ESR field is very local and can be reproduced for each dot. Combining the
onchip resonator with a magnetic field gradient generated by a micromagnet
in each dot would be another way to obtain individual access to an ensemble
of qubits.

The exchange interaction between two electrons is estimated for an asym-
metric double dot in a zero magnetic field. The contribution of exchange
energy in the tunnel barrier Vx can be estimated by the energy difference be-
tween the excited singlet and triplet ground states under large energy offset
conditions. The hybrid vertical-lateral double-dot device can accommodate
electrons one by one by controlling the side gates, and the tunnel coupling
is precisely controlled by the center gates. Hence, the exchange coupling pa-
rameter J between the two electron spins in the two dots can be temporally
controlled, enabling two spins to be swapped [4].
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Abstract. Since its development in the late 1940s, nuclear magnetic reso-
nance (NMR) has emerged as a powerful technique for probing the local field
distribution in liquid and solid matter as well as providing important infor-
mation on spin and vortex dynamics. While significant progress has been
achieved in NMR spectroscopy, conventional inductively detected NMR re-
mains essentially a bulk technique that proves to be extremely difficult to
scale down to systems of very small sizes. For the most part, NMR remains
limited to systems with a total number of nuclear spins present in the sam-
ple exceeding ∼1016, hence prohibiting the NMR detection in a wide variety
of systems. Recent advances in the engineering, design and fabrication of
meso- and nanoscaled materials have resulted in an experimental measure-
ment gap where conventional NMR techniques cannot be utilized because of
the “too few spins” problem. For example, a GaAs/AlGaAs semiconductor
heterostructure interface ∼30 nm wide has less than 1015 nuclear spins, a
quantum dot ∼106–1010 spins and a single carbon nanotube 103 spins. The
very few nuclei available in these systems makes traditional NMR measure-
ments extremely difficult, if not totally impossible, unless the NMR detection
scheme could be redefined in an entirely new way.

One appealing alternative to the conventional inductive NMR exists and
makes it possible to obtain the nucleus’ point-of-view in GaAs-based semi-
conductors through a resistive detection. This approach seems promising to
tackle a broader class of problems in systems of small sizes such as mesoscopic
quantum dots and other nanostructures. We shall review here the state-of-
the-art in the field of resistively detected NMR, and discuss recent advances
such as the relaxation-time experiments and the development of pulsed tech-
niques. Finally, we discuss how resistively detected NMR might be pushed
towards the bottom so as to obtain a complete nucleus’ point-of-view of the
nanoscale with “very little spins”.

M. Fanciulli (Ed.): Electron Spin Resonance and Related Phenomena
in Low-Dimensional Structures, Topics Appl. Physics 115, 35–50 (2009)
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1 Nuclear Magnetic Resonances with ‘Too Few Spins’

1.1 The ‘Too Few Spins’ Problem

The Conventional NMR of Bloch and Purcell

Since its development in the late 1940s independently by Bloch [1] and Pur-
cell [2], nuclear magnetic resonance (NMR) has emerged as a complete spec-
troscopic tool that uses the nuclear spin to probe the local field distribution
in liquid and solid matter as well as providing important information on spin
and vortex dynamics. In fact, NMR has by now become so routine that it is
used to tackle problems ranging from protein folding to the vortices in high-
Tc materials, as well as brain imaging and quantum computing. The rapid
development of the NMR technique in the 1950s to its wide range of known
applications has crowned NMR as a true champion technique with seemingly
endless possibilities, for as long as one can find matter with nonzero nuclear
spins. Still, all the way at the bottom of the scale, where materials are cur-
rently being engineered and patterned into systems and devices with micro-
and nanoscopic size, the opposite could not be more true, for the ‘too few
spins’ problem must first be overcome before NMR can reveal any useful
information.

In conventional NMR, an antenna is used to resonantly drive the nuclei
at the Larmor frequency of the nuclear species under investigation. The nu-
clear magnetic resonance is then detected in the same electromagnetic device
through its effect on the quality factor of the resonant circuit driving the nu-
clear system. Modern techniques use pulse sequences to detect the resonance
in a similar way through the induction of a macroscopic current in the an-
tenna after having disturbed the nuclei from equilibrium with a train-of-pulse.
The energy involved here between the state of the nuclei in equilibrium before
the disturbance, and that created after the pulse is, nevertheless, extremely
small, and can be estimated to ∼1010 eV for the ∼1022 protons contained in
a 1 cc volume of water, for example. As a consequence, the voltage induced
across the antenna by the buildup of these ∼1022 protons is approximately
∼0.1 volt. While this is clearly macroscopic and in the observable range, the
technique of nuclear detection by an electromagnetic device remains unfortu-
nately extremely hard to scale down to systems with far fewer nuclear spins
owing to the detection limits of the very small voltage induced in the NMR
coil, typically in the μV range. As a general guideline, with today’s available
state-of-the-art radio-frequency (RF) electronics, conventional NMR remains
limited to measuring bulk systems containing more than ∼1016 nuclear spins
and has little hope to be improved over the several orders of magnitudes
needed to reach the meso- or nanoscopic limit.
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NMR for Nanostructured Materials

The recent advances in the design of nanostructured materials and devices
have created an experimental measurement gap where conventional NMR is
most often impossible because of the ‘too few spin’ problem. As examples,
a typical GaAs/AlGaAs single semiconductor heterostructure ∼30 nm wide
has less than ∼1015 nuclear spins available to NMR, a quantum dot ∼106 to
1010, and a single carbon nanotube less than ∼103 nuclear spins (for 13C).
Several techniques have been devised throughout the years to obtain NMR
information on smaller systems, yet they often require narrow constraints
in the chosen system, or temperature region where the experiments can be
performed. For instance, the physics of the fractional quantum Hall regime
where many-body quantum phenomena such as fractionalized charge excita-
tions and quantum statistics occur, and the physics of coherent manipulation
and detection of quantum states, all call for a noninvasive way to obtain NMR
information at temperatures very near the absolute zero, T ∼ 50mK or less.
Furthermore, since the NMR sensitivity of an electromagnetic device cannot
be improved by the several orders of magnitudes needed for nanostructures,
the NMR detection scheme has to be redefined altogether; one possible so-
lution to the problem might come from the hyperfine interaction that exists
between the electronic and nuclear spin degree-of-freedom.

1.2 Electrons as an In-Situ Detector of the NMR

Electrical Detection of the NMR in GaAs/AlGaAs in 1988

In the last section, we discussed how an extremely large number of nuclei
are required for detecting the NMR inductively in an electromagnetic device.
Despite this, several other schemes have been employed in the past that to
some degree have gone around the problem and allow the probing of much
smaller samples. These include, for example, the recent advances in magnetic
resonance force microscopy [3], dynamical nuclear pumping of the nuclei via
optical techniques [4], the all-optical NMR techniques [5], and the so-called
resistively detected NMR [6] that make use of the particularly strong hyper-
fine coupling existing at GaAs/AlGaAs semiconductor interfaces to obtain a
signal. While all of these techniques can extend the reach of NMR to systems
with smaller number of spins, the latter technique is particularly appealing
for a wide variety of problems involving nanostructures in GaAs, for it makes
use of the electrons as an in-situ detector of the NMR.

Historically, electrical detection of the NMR was clearly demonstrated
in 1988 in a seminal experiment conducted by a team led by K. von Klitz-
ing [6]. In this experiment, the nuclear magnetic resonance of a GaAs/AlGaAs
heterostructure was electrically detected for the first time. In their experi-
ment, depicted in Fig. 1, the magnetoresistivity of the two-dimensional elec-
tron gas confined at the interface, ρxx, was recorded at low temperatures
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Fig. 1. First electrical detection of the NMR in a GaAs/AlGaAs heterostructure.
The magnetoresistivity, ρxx, is shown at near-complete filling of the third Landau
level by electrons under continuous microwave radiation (GHz) and radio-frequency
(MHz) radiation. The solid trace is for an upsweep in magnetic field, and the other
traces for a downsweep. The measurements for the NMR signal of the 75As nucleus
are shown at four different radio-frequencies ranging from 38 to 40 MHz, with the
inset showing the linear dependance in field, as expected from the Larmor frequency.
After Dobers et al. [6]

(T ∼ 300mK) under continuous microwave (∼ GHz) and radio-frequency ra-
diation (∼ MHz) while the magnetic field was slowly swept across the NMR
resonance of frequency νnmr = γH0, where γ = 7.29MHz/T for the I = 3

2
nuclei of 75As. Here, the suffix xx in ρxx refers to the longitudinal element
of the resistivity tensor ρij (for a two-dimensional electron sheet) as opposed
to ρxy, the Hall resistivity (or Hall voltage divided by the current). At the
magnetic field corresponding to the NMR frequency, νNMR, a small but siz-
able change in magnetoresistivity δρxx was observed, which demonstrated
unambiguously that the nuclear resonance can be detected by means of re-
sistivity only. In this scheme, the newly redefined NMR “detector” is the
electrons in situ and it does not rely on the total number of nuclear spins of
the sample, but rather on the subtle hyperfine interaction AI · S that exists
between the electron (S) and the nuclear spin (I).

The Strong Overhauser Field of GaAs/AlGaAs

In GaAs, the hyperfine interaction that couples the electronic and nuclear
spins is particularly strong, and is at the origin of the electrical detection of
the NMR signal. In the case of a two-dimensional electron gas confined at a
semiconductor interface and in the presence of an applied magnetic field, H0,
the electronic Zeeman energy can be written as Ez = g�μB(H0+BN)Sz, where
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BN = A 〈Iz 〉/g�μB is known as the Overhauser shift, A the hyperfine constant
and 〈Iz 〉 is the z-component of the nuclear-spin polarization, and g� the
effective electronic g-factor. If the nuclear spins were to be fully polarized, the
Overhauser BN in bulk GaAs would be as high as ∼10T, which is exceedingly
large. At the ultralow temperatures, T ∼ 10 mK, where experiments can be
performed by using commercially available dilution refrigerators, the thermal
nuclear-spin polarization, which obeys Boltzmann statistics, is approximately
∼6% in a 10T magnetic field. Hence, at these temperatures, the hyperfine
interaction represents a significant fraction of the total Zeeman energy of the
electron gas and can be tuned by modifying the nuclear spin polarization by
means of a small resonant radio-frequency field.

In resistive NMR, an RF field is applied at a frequency matching the
NMR frequency, which has the effect of depolarizing the nuclear spins, or in
NMR jargon, to saturate the nuclear magnetization. This results in a decrease
of BN, thus modifying the electronic Zeeman energy by δEz. Provided that
this small change in Zeeman energy provokes a modification of the transport
properties of the in-situ electrons, the resonance can then be picked up resis-
tively. This has been shown to be the case for the electrons confined at GaAs
semiconductor interfaces in the integer and fractional quantum Hall regime
[6, 7], in quantum point contacts [8], in the Wigner crystal regime at very
high magnetic fields [9] and recently in vertical quantum dots as well [10].

Nuclear-Spin-Dependent Transport in the Quantum Hall Regime

Much of the success of resistively detected NMR lies deep in the physics of
the integer and fractional quantum Hall regime. When the temperature of a
two-dimensional electron gas is lowered such that kBT � Δ, with Δ being
the relevant energy gap of a fractional quantum Hall state and of order of
a few degrees kelvin, and when a strong magnetic field is applied, the elec-
tronic system can exhibit new quantum properties where a fermion can be
transformed into bosons, quantum numbers can take exact fractional values,
and the quantum statistics upon adiabatic exchange of these particles can be
fractional (anyons). These phenomena arise as a consequence of the electronic
orbital degree-of-freedom being quantized into a discrete ladder of energy lev-
els, the so-called Landau levels, and of electron–electron interaction. When
the Fermi energy of the two-dimensional electron gas (which can be tuned by
the magnetic field and/or a gate voltage) lies at, or very near an odd number
of Landau levels, the transport properties are sensitive to small change in
the spin-flip energy since in the so-called ‘thermally activated regime’ the
resistance is given by an exponential function of the quantum Hall energy
gap, Rxx ∼ e

−Δ
2kBT , where the energy gap Δ = Ez + Eexch is the sum of Zee-

man energy, which depends on BN the Overhauser field, and of the exchange
energy Eexch arising from electron–electron interaction. Figure 2 shows an
example of a resistively detected NMR signal for an experiment performed
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Fig. 2. Left : Cartoon depicting a resistively detected NMR experiment. An NMR
coil is wrapped around a GaAs/AlGaAs sample contacted electrically with current
(I) and voltage leads (V ). A radio-frequency field, H1 cos(ωt) ∼ μT, is radiated
on the sample through a coil matching the NMR frequency, and a large static
magnetic field H0 is applied perpendicularly to the two-dimensional electron gas
(2DEG). Right : the data show an example of resistively detected NMR for a single
quantum well. The experiment is performed by measuring extremely accurately the
resistance, Rxx, and sweeping the frequency of the RF field continuously. Data after
Gervais et al. (unpublished)

at ∼15T and at temperatures T ∼ 35mK corresponding to a Fermi level ly-
ing at near-complete filling of the first Landau level. The resistively detected
lineshape can be well fitted by a Lorentzian, although various deviations from
this standard form have been observed previously. The signal strength is typ-
ically in the few per cent range, δRxx/Rxx ∼ 5%, but often much smaller [7].
A cartoon of the experiment is also depicted in Fig. 2. An NMR coil is
wrapped around the sample and a RF field H1 is applied in the plane of the
2DEG, while a strong static field H0 is applied perpendicularly to it. In this
continuous-wave version, the experiment is in fact quite simple: the resistance
is monitored very accurately through a four-terminal measurement using a
quasi-dc lockin technique with proper preamplification at room temperature
while the frequency of the RF field is slowly swept across the resonance.

2 Recent Advances
in GaAs/AlGaAs Semiconductor Quantum Wells

2.1 Resistively Detected NMR Lineshapes in GaAs/AlGaAs

Resistive NMR Lineshapes

Understanding the lineshape requires knowledge of the electronic transport
upon a change in nuclear field δBN at the specific filling factors investigated.
The conventional wisdom of resistive NMR states that a change in the nu-
clear Overhauser field δBN will incur a change in the electronic resistance
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δRxx owing to a change in the electronic Zeeman gap in odd Landau levels.
One would therefore expect, upon complete or partial saturation of the nu-
clear magnetization, a Lorentzian lineshape very similar to those observed
in previous works (see [7] for example, or Fig. 2). This lineshape can be
understood by a change in resistance δRxx ∝ g�μBδBN

2kBT in the regime where

g�μBδBN � 2kBT (true in most cases) where Rxx ∼ e
−Δ

2kBT can be linearized,
and from homogeneous broadening of the line. With the exception of the
first Landau level, and to our knowledge, all resistively detected NMR ex-
periments in GaAs/AlGaAs have produced Lorentzian lineshapes when the
nuclear magnetization was slowly saturated by a RF field, i.e., with an expo-
sure time τexp at a given frequency of order or greater than T1, the nuclear
spin-lattice relaxation time.

This conventional wisdom is, nevertheless, being challenged in the first
Landau level by the puzzling observation of a ‘dispersive-like’ lineshape near
ν ∼ 1 by the Grenoble group [7]. This has since been observed by the Caltech
group [13] and recently in the high-field electron solid phase [12]. The data
from these experiments are shown in Fig. 3, panels A, B, C, and D.

The dispersive-like nature of the lineshape is, nonetheless, puzzling, and
its underlying nature is not understood. Desrat et al. [7] speculated that
the dispersive-like lineshape may originate from the localization of skyrmions
into a crystal [14] predicted to occur near ν ∼ 1. While appealing, this ad
hoc explanation is, nevertheless, hard to reconcile with the observation of

Fig. 3. Dispersive-like lineshape observed near filling factor ν ∼ 1 by the Grenoble
(panel A) [7] and Caltech groups (panel B) [13], and in the high-field electron solid
phases, where ν � 2

9
or ν < 1

5
(panels C and D) [12]
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similar lineshapes in the high-field electron solid regime [12], ν < 2
9 and B �

30 T, where skyrmionic excitations seem most unlikely. Recently, Tracy et al.
[13] suggested that the lineshape may originate from an interesting interplay
between nuclear spin and thermal properties [13], yet it does remain unclear
why this lineshape would appear only at certain filling factor regions, and only
in the first Landau level. It is worthwhile mentioning that the typical signal of
dispersive-like lineshapes is very strong, and often observed to be as large as
ΔRxx

Rxx
> 40%, while typical Lorentzian signals away from ν = 1 are typically

of less than a per cent. This certainly suggests that the intricate relationship
between nuclear spins and transport is not totally understood, and that two
mechanisms may be at play here to generate this unusual lineshape. Future
work is certainly needed to elucidate this phenomenon.

Skyrmions in the Ground State of Quantum Hall

The resistively detected NMR technique has opened up a new door to probe
the two-dimensional electrons confined in GaAs-based structures where the
hyperfine field is particularly strong. In a recent new development, this tech-
nique has been employed to perform NMR relaxation-time experiments in
pristine, ultrahigh-quality single-layer quantum wells, where there are pre-
dictions for nontrivial skyrmionic spin excitations [15]. This picture is con-
sistent with previous NMR experiments performed on a “stack” of quantum
wells grown by molecular beam epitaxy [4], and with tilted transport mea-
surements [16]. In particular, the new NMR relaxation time data [12] may
have provided evidence for the formation of the so-called skyrmion crystal
[14, 17].

In his seminal work on nuclear matter more than forty years ago, Skyrme
showed that baryons emerge mathematically as a static solution of a meson
field described by the so-called Skyrme Lagrangian [18]. His work provided
the foundation for the quantum theory of solitons, and more recently found
an interesting and a priori surprising connection to the physics of electrons
confined to a two-dimensional plane. When only the lowest of Landau lev-
els is almost completely occupied, the elementary excitations of the system
become large topologically stable spin textures known as skyrmions [15]. It
was further proposed that at T = 0 skyrmions would localize on a square lat-
tice [14]. This ground state represents a new type of magnetic ordering that
possesses long-range orientation and positional order, and is the solid-state
analog of the skyrmion crystal state that is used to describe dense nuclear
matter using Skyrme’s topological excitation model. At filling factor ν = 1,
where ν is defined by the ratio of the electronic density n to the magnetic
flux density, ν = n

B/Φ = nh
eB , the quantized Hall state is ferromagnetic. For

sufficiently small Zeeman-to-Coulomb energy ratio η = Ez/Ec = g�μBB
e2/εlB

,

where g� is the electronic g-factor and lB =
√
h̄/eB is the magnetic length,

Sondhi et al. showed that the low-lying excitations are not single spin-flips,
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but rather a smooth distortion of the spin field in which several spins (4–30)
participate [15]. These skyrmions are topologically stable, charged ±e, and
gapped excitations that are the result of an energy tradeoff where a higher
Zeeman cost is paid for the profit of lowering the exchange energy between
neighboring spins. The inset of the right panel of Fig. 3 shows the topology
of a quantum Hall skyrmion, with the surface indicating the localized charge
density with respect to the quantum Hall liquid state. One hallmark of the
Skyrme crystal state, i.e., a lattice state of localized skyrmions, is the possible
existence of a spin-wave gapless Goldstone mode that would efficiently and
collectively couple the crystalline skyrmionic state to the nuclear-spin degree-
of-freedom. In fact, earlier predictions by Côté et al. [17] estimated that the
formation of a Skyrme crystal state would generate a three-fold enhance-
ment of the nuclear-spin relaxation rate when compared to similar relaxation
process from a spin-polarized two-dimensional Fermi gas. This three-fold en-
hancement in the relaxation rate of the nuclear spin can be directly tested by
measuring the spin-lattice relaxation time T1 by means of resistively detected
NMR in single, ultrahigh-quality, and pristine quantum wells.

2.2 Spin-Lattice Relaxation-Time Measurements

The spin-lattice relaxation time T1 can also be extracted using resistively
detected NMR. Our technique has been designed to keep constant throughout
the measurement the RF heating of the electrons as it arises from the RF
field H1 cos(ωt). This ensures that the resistance is modified only by the
hyperfine-coupled nuclei, and not the sample temperature. To achieve this,
we monitor the time dependence of the resistance of the 2DEG at constant
field H0 and temperature T under a zero and nonzero effective RF field for
the nuclei. Figure 4 shows an example of such a measurement. An RF field
with frequency f1 is applied onresonance and Rxx is monitored until a steady
state is reached, and where the nuclear magnetization is partially saturated.
This is shown in Fig. 4, right panel, at time t < 0. At the time t ∼ 1000 s, the
frequency is moved offresonance from f2 to f1 so that the nuclei effectively
do not ‘see’ an H1 field. As a result, the resistance undergoes a free decay
to its original state as the nuclear magnetization M relaxes in a time T1 to
its thermal equilibrium value, M0. The time dependence of Rxx(t) is found
to fit very well a single exponential of the form Rxx(t) = α + βe−t/T ′

1 (solid
line in Fig. 4). We define T ′

1 as the characteristic relaxation time of Rxx

and α, β are coefficients that determine the on- and offresonance resistance
values. In the case where the resistance is given by Rxx ∼ e

−Δ
2kBT , and for

which the resistance can be linearized with δRxx ∝ g�μBδBN
2kBT , which is valid

when T > 30mK, and when the nuclei are only partially saturated, i.e.,
g�μBδBN � 2kBT . In this case, T ′

1 � T1 to a very good approximation since
BN ∝ M.
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Fig. 4. Left : Resistively detected NMR spectrum for 75As near ν ∼ 1 at T ∼ 30 mK.
The arrows indicate the “onresonance” (f1) and “offresonance” (f2) frequencies
used to determine T1. Right : resistance versus time at frequencies f2 and f1. The
solid line is a fit to an exponential recovery with a single relaxation time. After
Gervais et al. [12]

T1 and the Evidence for a Skyrmion Crystal

The extracted rates 1/T1 measured by the Grenoble group [7] in a single
GaAs/AlGaAs heterostructure are shown in the left panel of Fig. 5 at vari-
ous magnetic fields, together with the corresponding magnetoresistance (solid
line). The data show a clear enhancement of the nuclear-spin relaxation rates
1/T1 when the first Landau level is almost completely filled, i.e., near ν ∼ 1.
Subsequent experiments in even higher quality samples have revealed similar
behavior, showing that the nuclear spin-lattice relaxation rate is maximal
whenever Rxx → 0 [12]. This is particularly interesting since in the quan-
tum Hall regime the vanishing of the resistance is a consequence of the two-
dimensional properties of the electron gases and of the localization of elec-
tronic states. So, the data here suggest the nuclear-spin relaxation induced
predominantly by these localized states, rather than by those remaining elec-
tronic states contributing to the conductivity. At a more quantitative level,
the relaxation rates also show a ∼102 enhancement, which is consistent with
the three-fold increase estimated by Côté et al. [17]. Overall, this data pro-
vides experimental evidence for the formation of a magnetic phase of localized
skyrmions in the first Landau level, and relaxing the nuclear spins through
the a spin-wave collective mode of the Skyrme crystal.
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T1 in the Electron Solid Phases of GaAs/AlGaAs

At sufficiently high magnetic fields, the series composite fermions fractional
quantum Hall states emanating from ν = 1

4 eventually yields to an electron
solid phase interrupted by fractional quantum Hall liquid at ν = 1

5 (see Fig. 3
panel D). This electron solid is thought to be a Wigner crystal state with large
quantum correlation. We expect, in this regime where the applied magnetic
field is ∼30 T or more for an electronic density ∼1.5 × 1011 cm−2 (as for the
sample used in Fig. 5) the electrons to be fully polarized, and hence being a
weak mechanism for nuclear-spin relaxation.

The spin-lattice relaxation rate (1/T1) in this regime is given in the right
panel of Fig. 6 versus the filling factor. The relaxation time associated with
these rates are found to be long, ranging from ∼350 s to 1000 s, and approxi-
mately a factor of 102 longer than near ν ∼ 1 in the same sample. Performing
the T1 measurements at a minimum or maximum of the dispersive-like line-
shape yields no dramatic differences in the relaxation time, showing that the
nuclei at different frequencies are indeed subjected to similar magnetic fluc-
tuations and relaxation mechanism. No systematic dependence of the spin-
lattice relaxation rate is observed on the filling factor in the range investigated

Fig. 5. Left : Magnetoresistance Rxx versus the magnetic field at T ∼ 50 mK of a
GaAs/AlGaAs heterostructure (solid line). The numbers on the plot indicate some
filling factors ν of interest (in terms of Landau levels). The solid dots are nuclear
spin-lattice relaxation rate 1/T1 measurements that shows a strong enhancement
near ν ∼ 1. Data after Desrat et al. [7]. Right : Spin-lattice relaxation rate at filling
factor ν = 0.84 (diamond), 0.86 (filled circles) and 0.895 (empty circles) and plotted
as a function of the electronic resistance, Rxx, and T ranging from ∼20 to 100 mK.
The data suggest maximal relaxation of the nuclei when Rxx → 0, i.e., when the
electronic states are fully localized. The inset shows the spin topology of a two-
dimensional quantum Hall skyrmion that might be at the origin of the nuclear-spin
relaxation observed near ν ∼ 1. Data after Gervais et al. [7, 12] and skyrmion
topology courtesy of René Côté
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Fig. 6. Left : resistively detected nuclear-spin relaxation time in the electron solid
phases of GaAs/AlGaAs. Right : nuclear-spin relaxation rates as a function of the
filling factor in between ν = 2

9
and ν = 1

5
. After Gervais et al. [12]

between ν = 2
9 and ν = 1

5 , and hence no dependence on Rxx, which ranged
from 0.75 kΩ to 100s of kΩ. This suggests that the nuclear-spin relaxation is
entirely independent of the two-dimensional electron gas in this regime. The
lack of sensitivity of (1/T1) to Rxx and ν in the high-field electron solid phase
is in sharp contrast with our result near ν ∼ 1 where a linear dependence
of (1/T1) with decreasing Rxx was found [12]. In particular, the much faster
rates observed in the limit Rxx → 0 when a well-developed quantum Hall
state occurred is not observed in the electron solid regime.

3 Towards a Complete NMR Probe
of Quantum Structures

3.1 NMR in Quantum Electronic Structures of GaAs/AlGaAs

The two examples discussed above show that the hyperfine coupling can be
efficiently exploited in GaAs-based semiconductors to gain new knowledge
on the fundamental properties of electronic matter at low temperatures, and
also has a high potential of application in the field of quantum information
processing. Of particular interest is that the “all-electrical” NMR technique
allows us to probe systems with small sizes, and that it might be possible to
bring it down even further. But are there limitations to the technique and
how far down can we reach?

The prospects of reaching the nanoscale in several devices with resistive
NMR seems good. In fact, for GaAs-based devices, resistive NMR is primarily
limited by the electrical contacts so that NMR information can be recorded
electrically. While small Hall bar geometry can be patterned and contacted
to a size of about ∼100 nm, smaller contacted devices, nevertheless, remain
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difficult to fabricate. Still, the challenges imposed by the requirements of the
contacts might be overcome by fabricating smaller gated devices patterned
by e-beam techniques, where the device itself is effectively smaller than the
source–drain contacts used to flow the electrical current. To this end, a team
in Japan led by Tarucha has recently demonstrated the first electrical de-
tection of the NMR in quantum dots [10], so it appears within the realm of
the possible to scale it down even further and to make it a complete analyt-
ical tool of nanostructures. The development of highly sensitive readout and
noise-reduction techniques might also allow for the probing of other systems
where the hyperfine field is not as strong. In fact, for as long as a structure
can be electrically contacted, and for which there is a hyperfine field, it is in
principle possible to resistively detect the NMR, although the signal strength
is highly dependent on the strength of the hyperfine interaction itself.

3.2 NMR on a Chip:
Quantum Coherent Control
of the Nuclear Spins at the Nanoscale

The recent advances in quantum information processing have generated a
high level of interest for the experimental realization of a scalable quantum
computer capable of tasks impossible by classical physics, or in a much more
efficient algorithm that exploits the powerful nature of quantum mechanics.
Yet, one of the greatest challenges of quantum computation in a solid-state
device remains the ability to gain coherent control over the quantum states
of the device for a time sufficiently long so that logic operation can be per-
formed. The modern challenge is therefore to ‘quantum engineer’ new tech-
nologically relevant materials and devices relying on basic principles totally
distinct from modern electronics. Several candidates have been proposed for
quantum computing or storage such as, for example, the charge and spin
qubits of coupled semiconductor quantum dots (see [19], for example) or the
quantum box [20]. Yet, in spite of the high level of excitement and recent
progress made in the study of these new-generation devices, there remain
significant difficulties in keeping the system quantum-mechanically coherent
over times long enough to implement realistic computational algorithms. For
instance, the coherence times have been determined to range from ∼ μs for
the “quantronium device” [20] to ∼ ns for coupled quantum dots [19]. One
interesting alternative to electrons as an information carrier is the nuclear
spin of GaAs [21], which is much more resilient to its environment, and for
which the quantum coherence between spins is in the ms range. Recently,
a team in Japan has taken this approach one step further, and has succeeded
in the detection and control of multiple quantum coherences of the nuclear
spins in GaAs by using a newly developed pulsed resistive NMR technique
‘on the chip’ [11]. This result could pave the way toward the implementation
of the Grover quantum search engine [22] in a semiconductor device.
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4 Concluding Remarks

Since its beginning, NMR has provided a powerful analytical tool to study
a wide range of systems and problems from biology, chemistry or solid-state
physics. While the conventional NMR approach has proven to be very suc-
cessful for bulk matter, it remains, nevertheless, extremely difficult to scale
it down to systems of nanoscopic size. As a relatively new and exciting devel-
opment, the GaAs-based nanostructures and their parent heterostructures
are now providing us with a template to study NMR on systems with as
few as ∼107 nuclear spins, about ten orders of magnitude smaller than with
conventional detection schemes. The technique itself has already shed some
light on the fundamental aspects of many-body quantum physics and shows
high promise in its application to quantum devices and computing. An im-
portant question, however, remains: is resistive NMR simply a special case
mostly applicable to GaAs-based semiconductors, or a completely new tool
to tackle nanoscience and nanotechnologies from the nucleus’ point-of-view?
The answer, which only future studies will reveal, is most likely lying in
the middle. Should resistive NMR be applicable to a much broader class of
materials and compounds, it would certainly extend its reach toward the
nanoscale where most bulk magnetic resonance techniques do not apply, yet
the progress achieved so far in the GaAs-based materials certainly warrants
further investigations aimed at elucidating quantum phenomena at the limits
of the nanoscale, ultralow temperatures, and with ‘too few spins’.
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Abstract. Electron spins in semiconductor quantum dots are considered as
elementary building blocks for a new class of devices. Here, we address both
static and dynamic properties of such electron spins that are confined in
singly charged (In,Ga)As/GaAs self-assembled quantum dots. In particular,
we discuss first the g-factor tensor and then turn to the creation of spin
coherence. We also discuss how long this spin coherence is maintained against
scattering resulting in spin relaxation.

1 Introduction

Recently, the coherent dynamics of elementary excitations in semiconductor
heterostructures has attracted considerable interest for applications in quan-
tum information processing such as cryptography or computing. This field
has been originally worked on in atomic quantum optics and nuclear magnetic
resonance, for which it is easy to identify well-defined two-level systems that
can be used as carriers of quantum information (the so-called quantum bits
or, in short, qubits) that are well separated from the environment. There-
fore, it was a natural development that the quantum information activities
started to flourish in these fields due to the superior coherence properties
of the elementary excitations such as atomic levels or nuclear spins. Quite a
few proof-of-principle activities have been done, such as demonstration of few
qubit entanglement, quantum-gate operation and design of simple quantum
processors. However, currently these approaches appear to be limited due to
the lack of scalability towards large numbers of involved qubits.

The potential to reach this goal has been attributed to semiconductor
physics, due to the proven level of system integration in conventional elec-
tronics. Therefore, the underlying ideas and concepts have been transferred
to semiconductors, even though it was clear, for example, that it is much more
complicated to identify well-isolated two-level systems, by which coherence
and therefore quantum information can be retained for long enough times.
This has consequently directed interest toward semiconductor quantum dots
because of their discrete energy-level structure, due to which they bear some
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resemblance to atoms found in nature. The limitations of this analogy have
been, however, clearly worked out in the meantime.

This ‘artificial atom’ analogy has been studied a lot by optical spec-
troscopy, for which self-assembled quantum-dots structures are very well
suited due to their high quantum efficiency. For example, at cryogenic tem-
peratures the linewidth of the radiative decay of electron–hole pairs (excitons)
confined in quantum dots is limited by the radiative decay time TX

1 , corre-
sponding to widths of a few μeV. But at elevated temperatures the interaction
with higher-lying confined states in the dots and with continuum states of
the dot environment becomes so important that the linewidth reaches a few
meV. Further, recent studies have also shown that the simple exponential de-
cay laws that give a perfect description of radiative decays in atomic physics
can typically not be applied for quantum dots. Only for strictly resonant ex-
citation of the transition between the valence and conduction band ground
states at low temperatures may a two-level scheme be used.

On the other hand, from ultrafast optical spectroscopy it has been well
established that the coherent manipulation of the excitons that are created by
this type of excitation can in principle be done on a subpicosecond timescale,
and therefore attraction was caught first by charge excitations. This has to
be compared to the coherence time TX

2 . Long coherence times are required
for performing a sufficient number of quantum manipulations before destruc-
tion of coherence occurs. The decoherence of charges such as electrons and
holes typically occurs very fast in semiconductors, but charge-neutral com-
plexes such as excitons show longer coherence. Nonlinear optical studies on
quantum-dot excitons have rendered TX

2 -values in the ns range, which are
ultimately limited by the radiative lifetime. This time might be extended,
for example, by suppression of spontaneous emission that would require a
tailoring of the photonic environment in which the quantum dots are located
by a photonic crystal, for example, requiring sophisticated nanopatterning
technology. This patterning itself could be, however, a source of decoherence.
Alternately, by application of electric fields the electron and hole overlap may
be reduced, but it is not clear yet whether the field variation can be done
adiabatically. In any case it seems hard to increase the TX

1 and TX
2 times by

more than an order of magnitude. The coherence time span might therefore
be too short for quantum computing but could turn out to be sufficient for
application in quantum communication, requiring a rather limited number
of involved qubits. Further, when quantum dots are coupled to molecules, as
required for quantum-gate application, the coherence time may be reduced as
compared to the quantum-dot case, setting further limitations on their use.

Therefore, the interest has moved to spin excitations in semiconduc-
tors [1–3], in particular, because already for bulk semiconductors very long
electron-spin coherence times T S

2 have been determined [4]. Further, it has
been shown that the spin-relaxation mechanisms that are effective in higher-
dimensional systems are strongly suppressed in quantum dots. For electrons,
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for example, only the spin-orbit coupling and the interaction with the back-
ground of nuclei is effective, while for holes the interaction with the nuclei is
also suppressed.

The interest in quantum-dot spins was enhanced further by the demon-
stration of very long electron spin-relaxation lifetimes, T S

1 , in the milliseconds
range [5, 6]. This has raised hopes that T2, which may theoretically last as
long as 2T1 [7], could be similarly long, with encouraging indications to that
effect found lately [8].

In this chapter we give some insight into the current status of coher-
ent optical manipulation of electron spins in self-assembled (In,Ga)As/GaAs
quantum dots. In Sect. 2 we describe the samples as well as the experimental
techniques used for studying them. Section 3 addresses the electron g-factor.
In Sect. 4 we describe how the spins can be oriented efficiently by coherent
optical excitation, and in Sect. 5 we describe measurements of the spin co-
herence and all-optical manipulation of the spins. The chapter is concluded
by a summary and an outlook on future work.

2 Experiment

The experiments were performed on self-assembled (In,Ga)As/GaAs QDs,
which for our studies were fabricated by molecular beam epitaxy on a (001)-
oriented GaAs substrate. Here, we use the generic term (In,Ga)As for the
quantum-dot material as the precise composition is unknown. To obtain
strong enough light–matter interaction, the sample contained 20 quantum-
dot layers separated by 60-nm wide barriers. The layer dot density is about
1010 cm−2. For an average occupation by a single electron per dot, the struc-
tures were n-modulation doped 20 nm below each layer with a Si-dopant
density roughly equal to the dot density. The as-grown sample shows ground-
state emission at wavelengths around 1.2μm, which is outside of the sensitiv-
ity range of silicon detectors. Therefore, it was thermally annealed for 30 s at
945◦C so that its emission occurs around 1.396 eV, as seen from the lumines-
cence spectrum in Fig. 1. This range is easily accessible for Si detectors. The
full width at half-maximum of the emission is about 10meV, demonstrat-
ing a rather good homogeneity, achieved through the annealing step. Further
optical properties of these dots can be found in [9, 10].

Most of the experiments reported here were performed with the sample
immersed in liquid helium at a temperature T = 2 K. The sample cham-
ber was placed between the coils of an optical split-coil magneto-cryostat
for fields up to B = 10T. For reference, we define the sample growth di-
rection as the z-axis. The orientation of the sample could be varied relative
to the magnetic-field direction. Experiments were performed for longitudinal
(Faraday geometry) or transverse (Voigt geometry) magnetic-field orienta-
tion relative to the sample growth direction. In addition, the sample could
be rotated about the growth axis.



54 A. Greilich et al.

Fig. 1. Photoluminescence spectrum of the studied (In,Ga)As/GaAs quantum-
dot sample. The filled trace gives the spectrum of the excitation laser used in the
Faraday-rotation experiments, which could be tuned across the inhomogeneously
broadened emission band. The symbols give the electron g-factor across this band,
for which the right scale is relevant

For optical excitation, a Ti-sapphire laser emitting pulses with a duration
of ∼1.5 ps (full width at half-maximum of ∼1meV) was used, striking the
sample along the z-axis. The laser repetition rate was 75.6MHz, correspond-
ing to a period TR = 13.2 ns between the pulses. The laser pulse separation
could be increased to multiples of TR by a pulse-picker system. The emission
energy was tuned to be in resonance with the ground-state transition in the
charged quantum dots (see Fig. 1).

This laser system was used for implementation of two different optical
techniques for studying the electron-spin dynamics, both based on time-
resolved pump-probe Faraday-rotation methods [11, 12]. The first technique
exploits an intense circularly polarized pump pulse for inducing circular
dichroism of the quantum dots by optical orientation of carrier spins. The
second technique, optically induced linear dichroism, exploits a linearly po-
larized pump beam that results in optical alignment of excitons in the quan-
tum dots. In both cases, the optical anisotropies due to the pump pulses
were analyzed by measuring the rotation angle of the polarization plane of
a linearly polarized probe pulse of rather weak intensity. For detecting the
rotation angle of the linearly polarized probe beam, a homodyne technique
based on phase-sensitive balanced detection was used. The pump beam hits
the sample at time zero, and the probe beam could be delayed relative to the
pump beam by a delay line.

3 Electron g-Factor

The open circles in Fig. 1 show the variation of the electron g-factor across
the inhomogeneously broadened emission of the quantum-dot ensemble. To
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measure it, the energy of the exciting laser was shifted across the emission
band with details of the g-factor determination to be found below. The mag-
netic field was oriented perpendicular to the heterostructure growth direction
[001] along the [1–10] crystal direction (the y-direction). The g-factor mod-
ulus decreases with increasing emission energy from 0.57 on the low-energy
side to less than 0.50 on the high-energy side, and therefore shows a variation
of about 7.5% about its mean value.

The g-factor of conduction-band electrons typically differs considerably
from its value of g0 = 2 for free electrons or for electrons in atoms. The
reason is the strong spin-orbit interaction in semiconductors, leading to a
strong mixing of bands. If one makes the assumption that the main effect of
the confinement in quantum dots is an increase of the bandgap Eg between
conduction and valence band, but neglects all other effects such as changes
of crystal anisotropies, of spin-orbit splittings, etc., the deviation from the
free-electron g-factor, as determined from k · p theory, can be estimated by
using the form for the g-factor in bulk [13]:

ge = g0 − 4m0P
2

3h̄2

Δ

Eg(Eg +Δ)
. (1)

Here, m0 is the free-electron mass, and P is the matrix element describing the
coupling between valence and conduction band.Δ is the spin-orbit splitting of
the valence-band ground state. For GaAs- or InAs-based semiconductors the
coupling matrix element and the splitting are so large that the g-factor even
becomes negative, for example −0.44 in GaAs bulk at cryogenic temperatures.

From our measurements we do not obtain direct access to the sign of
the g-factor, but the systematic variation across the emission band allows
us to determine it indirectly. Increasing emission energy corresponds to an
increase of the bandgap, leading to a reduction of the right-hand side of (1).
The decrease of the g-factor modulus with increasing emission energy can
then be only explained if the g-factor is negative.

There is another striking difference between the g-factors of a free electron
and a crystal electron. Due to the crystallographic anisotropy it is no longer
a scalar quantity in general, but has to be described by a tensor of second
order. In crystals with cubic symmetry this tensor can be reduced to a scalar,
but for nanostructures this cannot be done in any case. Still, for GaAs-based
quantum wells, for example, the conduction-band g-factor can often be taken
as isotropic as the carrier orbitals are formed from s-type atomic orbitals. For
self-assembled quantum dots this approximation can no longer be used.

An example of this behavior is shown in Fig. 2, for which the magnetic-
field orientation was varied in the quantum-dot plane. The full circles give the
electron g-factor at B = 5T. For comparison also the g-factor of the exciton
is shown there by the full triangles. For both, a remarkable anisotropy is seen,
even though the quantum dots appear to be rather well circularly shaped in
electron-microscopy images.
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Fig. 2. (Color online)
Inplane angular depen-
dence of the electron
(circles) and exciton
(triangles) g-factors ob-
tained from the circular
dichroism experiments.
Red lines are fits to data
as described in text.
B = 5 T. Angle zero
corresponds to field ori-
entation along the x-axis
that is defined by the
[110] crystal axis

The anisotropy can be well described by a pattern with two-fold symme-
try axis. Therefore, for an arbitrary direction, characterized by the angle α
relative to the x-axis, the electron g-factor can be written as√

g2
e,x cos2 α+ g2

e,y sin2 α = ge⊥, (2)

where ge,x and ge,y are the g-factors along the x- and y-axes, [110] and [1−10],
respectively. The solid lines in Fig. 2 are fits to the data using (2). From these
fits we obtain ge,x = 0.57 and ge,y = 0.54 for the electron. This corresponds
to a relative variation of 2.7% around the mean value.

We have also done measurements of the electron g-factor with the mag-
netic field aligned along the heterostructure growth direction, exploiting lin-
ear dichroism in the Faraday-rotation measurements. From these studies (not
shown here) we obtain a g-factor of the electron along z of −0.61, which is
about 10% larger than the average g-factor in the dot plane.

4 Creation of Spin Coherence by Spin Initialization

For addressing the electron-spin coherence, the quantum-dot sample was
studied by Faraday-rotation spectroscopy. The pump beam was circularly
polarized and directed along the heterostructure growth direction. Since it
was resonant with the ground state, it can inject an electron and a hole into
the conduction- and valence-band ground states of the quantum dots. These
carriers will have a well-defined spin orientation due to the optical selec-
tion rules. For example, for σ+ (σ−)-excitation the electron will have a spin
projection along z, Sz = −1/2 (Sz = +1/2), while the total angular momen-
tum of the hole (being the sum of the orbital moment and the spin) will be
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Jz = +3/2 (Jz = −3/2). Injection of such an electron–hole combination will
of course only be possible if it is in accord with the Pauli principle, since
there is already an electron in the quantum dot due to the doping whose spin
orientation has to be opposite to that of the optically injected electron.

The resulting spin imbalance leads to a net spin polarization along z.
If one assumes a spin polarization in the ensemble, such that for example,
the quantum dots contain more electrons with spin-up (Sz = +1/2 in state
| ↑ 〉) than with spin-down (Sz = −1/2 in state | ↓ 〉) this will be reflected
by the transmitted probe beam (propagating under a slight angle relative
to z, to avoid interference with the pump). Its linear polarization can be de-
composed into two countercircularly polarized components of equal weight.
Due to the spin imbalance, the interaction of the σ+-polarized part will be
smaller than that of the σ−-polarized part, leading to different propagation
speeds. Combining the two components behind the sample again will there-
fore result again in linear polarization, but due to the different propagation
times a phase shift has occurred, reflected by a rotation of the polarization
angle.

This is the description for a static situation. In the following case the car-
rier spins are injected in a transient fashion, as after some time the electron–
hole pair will recombine radiatively. In addition, a static magnetic field is
applied normal to the spin orientation so that the carrier spins precess about
this field, which is oriented along x. Due to the spin precession the spin
polarization also oscillates, which can be mapped through the oscillating
rotation angle of the probe beam’s polarization. An example of the exper-
imental data that can be obtained in this way is given in Fig. 3a showing
the Faraday-rotation signal of the (In,Ga)As/GaAs quantum dots versus the
delay between pump and probe for different magnetic fields. Pronounced
electron-spin quantum beats are observed with some additional modulation
at high B.

In quantum-mechanical language the precession corresponds to a quan-
tum beating between two spin-split levels. For the electron, for example, the
two Zeeman-split spin eigenstates in transverse magnetic field are spin par-
allel and spin antiparallel to the magnetic field, i.e., the spin points either
along the +x or the −x direction. Using the Sz states as basis, these states
can be written as: | ±x〉 = (| ↑ 〉 ± | ↓ 〉)/

√
2, reflecting the zero spin polarization

along z. Illuminating with a laser pulse that is short enough so that its spec-
tral width covers the energy separation between the split states, can excite a
superposition of the two split states. The time evolution of this superposition
shows oscillations with a frequency corresponding to the splitting.

The modulations of the beats at strong applied fields is seen only at short
delay times not exceeding 400 ps. This time corresponds to the lifetime of
electron–hole pairs, as determined from time-resolved photoluminescence. As
can be seen from the signal at weak fields, for longer delays the Faraday-
rotation signal contains oscillations with only a single frequency component,
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Fig. 3. (a) Faraday-rotation traces of n-doped (In,Ga)As/GaAs quantum dots
vs. delay between pump and probe at different magnetic fields. The pump power
was ∼10 mW. (b) Field dependencies of the electron precession frequency. (c) Spin
dephasing time T �

2 versus B. The line is a 1/B-fit to the data

which are exponentially damped. The lifetime of these beats is as long as
4 ns at B = 0.5T, for example, exceeding essentially the lifetime of optically
excited carriers. Therefore, these long-lived oscillations can be attributed to
residual electrons in the dots. The modulation at early delays apparently
arises from interference of the long-lived oscillation with an oscillation related
to optically excited carriers, and the two oscillation frequencies lie close to
each other, so that the observed beating behavior occurs.
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Three features are to be noted for the appearance of the oscillations:

• We have first analyzed the long-lived precession component by the form:

exp
(

− t

T �
2

)
cos(Ωet), (3)

where T �
2 is the dephasing time and Ωe is the electron precession frequency

given by the spin-splitting Ωe = ge,xμBB/h̄ with the Bohr magneton μB.
ge,x is the electron g-factor along the field. From the field dependence of
the precession frequency the g-factor can therefore be determined, and
this was the technique that was applied to gain the data shown in Sect. 2.
Figure 3b shows the field dependence of the precession frequency Ωe ob-
tained from fitting our data (the circles), which are in agreement with a
linear dependence on B, as expected from the equation above. Note that
in general deviations from such a linear behavior might also occur if the
magnetic field is able to modify the band structure, leading to a change of
the g-factor. This might be the case in particular for holes, but less so for
electrons. From a B-linear fit (the black solid line in Fig. 3b) we obtain
|ge⊥ | = 0.57.

• The spin beats become increasingly damped with increasing magnetic
field, corresponding to a reduction of the ensemble spin dephasing time
T �

2 , plotted in Fig. 3c. The damping arises from variations Δge of the
electron g-factor within the quantum dot ensemble, which are translated
into a spread of the precession frequency: δΩe = ΔgeμBB/h̄. The electron
spins become oriented at the moment of pump pulse arrival, after which
they start to precess about the field. Due to the varying frequency the
precession of the electrons runs out of phase with increasing delay, so that
the coherent signal is reduced. Note, however, that this is a destructive-
interference effect from the ensemble, but does not mean that the coher-
ence of each individual spin in a QD is lost.
Obviously this frequency spread increases linearly with increasing mag-
netic field, which in the time domain (as measured by T �

2 ) leads to a
dependence inversely proportional to the magnetic field. Therefore the
dephasing can be described by [T �

2 (B)]−1 = [T �
2 (0)]−1 + ΔgeμBB/

√
2h̄.

The solid line in Fig. 3c shows a 1/B-fit to the T �
2 data, by which a g-

factor variation Δge = 0.004 is extracted, which is only about 0.7% of
the mean value. This variation appears to be surprisingly small given the
fact that we address an inhomogeneously broadened ensemble consisting
of millions of dots. However, one has to keep in mind that we select by our
laser pulse a rather narrow energy range of about 1meV of quantum-dot
exciton energies.
From the data one can also conclude that T �

2 (0) exceeds 6 ns in the limit
of zero magnetic field, for which the g-factor variations nolonger play a
role. The zero-field dephasing is mainly caused by electron-spin preces-
sion about the frozen magnetic field of the nuclei [14]. The net nuclear
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orientation varies from dot to dot, and it is these variations that lead to
ensemble spin dephasing.

• The additional modulation of the quantum beats at high fields is observ-
able only during about 400 ps. Therefore, it can be assigned to photoex-
cited carriers, which show a precession with a frequency close to that
of the electron. This results in the beating from interference of the two
signals. From the data in Fig. 2 we know that the exciton has a similar
g-factor as the electron, and therefore we attribute these short-lived beats
to the exciton spin precession in quantum dots that do not contain a res-
ident electron. This precession persists only during the radiative decay of
the excitons, which is in good accord with the beat lifetime (see above).
From the ratio of the amplitudes of the electron and exciton beats we can
estimate the ratio of charge-neutral and single-charged quantum dots. In
this way, we find that out of the dots containing fewer than 2 electrons
about 75% contain a single electron, while 25% contain no residual charge.
Dots with more than 2 electrons do not show a considerable spectroscopic
response in resonant Faraday rotation due to Pauli blocking.

Next, after this analysis of the static g-factor properties, we want to ad-
dress why spin precession is observed at all. At least in high magnetic fields,
for which the spin splitting is quite large compared to the thermal energy,
the system should be in equilibrium before photoexcitation. This means that
the spin is either parallel or antiparallel to the magnetic field. Through the
optical excitation we are apparently able to rotate the electron spin by 90◦,
so that precession can occur. To obtain some insight into the underlying
mechanism, additional information is needed:

Figure 4a shows FR signals at B = 1T for different pump powers. The
corresponding FR amplitudes are plotted in Fig. 4b versus the laser pulse
area Θ, which is defined as Θ = 2

∫
[dE(t)] dt/h̄ in dimensionless units with

the dipole matrix element d for the transition from the valence to the con-
duction band. For pulses of constant duration, but varying power, as used
here, Θ is proportional to the square root of excitation power, and it is
given in arbitrary units in Fig. 4b. The Faraday-rotation amplitude shows
a nonmonotonic behavior with increasing pulse area. It rises first to reach a
maximum, then drops to about 60%. Thereafter, it shows another strongly
damped oscillation.

This behavior is similar to the one known from Rabi oscillations of the
Bloch vector, whose z-component describes the electron–hole population
[15, 16]. The laser pulse drives coherently this population, leading to coher-
ent oscillations as function of the pulse area Θ. For Θ = 0 (no pulse) it does
not change the population, while for Θ = π the system inverted, leading to
electron–hole pair population in an undoped quantum dot. For Θ = 2π the
Bloch vector is rotated by 360◦ and so on. To observe periodic oscillations,
damping has to be suppressed, that is, the system has to be homogeneous and
the driving laser pulse has to be shorter than any decoherence times. In our
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Fig. 4. (a) Short-delay closeup of the Faraday-rotation signal at B = 1 T for
different pump powers. (b) Faraday-rotation amplitude versus laser pulse area Θ.
The line is a guide to the eye

case, the Faraday-rotation amplitude becomes maximum when applying a π-
pulse as pump, and it becomes minimum for a 2π-pulse. The damping of the
oscillations most likely is due to ensemble inhomogeneities of quantum-dot
properties such as the dipole moment d [17].

With these observations at hand we can understand the origin of the
observed spin coherence. For that purpose we first discuss charge-neutral
dots. Resonant optical pulses with σ− polarization create a superposition
state of vacuum and exciton:

cos
(
Θ

2

)
|0〉 − i sin

(
Θ

2

)
|↑⇓〉, (4)

where |0〉 describes the de-excited semiconductor. The hole-spin orientations
Jh,z = ±3/2 are symbolized by the arrows ⇑ and ⇓, respectively. The electron
and spins are reversed in the exciton for σ+-excitation. The exciton compo-
nent precesses in magnetic field for a time, which cannot last longer than
the exciton lifetime. In the ensemble, the precession might be visible only for
shorter times, if the coherence of the states is destroyed by spin scattering
of either electron or hole. The strength of the contribution to the ensem-
ble Faraday-rotation signal is given by the square of the exciton coefficient
sin2(Θ/2).
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Let us turn now to singly charged quantum dots, for which the reso-
nant excitation can lead to the excitation of trions. Let us assume that the
de-excited quantum-dot state is given by an electron with arbitrary spin ori-
entation:

α| ↑ 〉 + β| ↓ 〉, (5)

with |α2| + |β|2 = 1. As seen above, a σ−-polarized laser pulse ‘tries to place’
an exciton with spin configuration | ↑ ⇓ 〉 in the quantum dot. This action is,
however, restricted by the Pauli principle, due to which the optically excited
electron must have a spin orientation opposite to the resident one. Therefore,
the pulse excites only the second component of the initial electron state.

In consequence, a coherent superposition state of an electron and trion is
created:

α| ↑ 〉 + β cos
(
Θ

2

)
| ↓ 〉 − iβ sin

(
Θ

2

)
|↓ ↑ ⇓ 〉, (6)

which consist of two electrons forming a spin singlet and a hole in state |⇓〉.
Here, we assume again that decoherence does not occur, i.e., the pulse length
is much shorter than the radiative decay and the carrier spin-relaxation times.
One sees that the electron–hole population oscillates with the pulse area Θ.
The excitation is most efficient for Θ = π, for example, and for simplicity we
restrict ourselves to this case, which then gives the superposition state:

α| ↑ 〉 − iβ|↓↑⇓〉. (7)

After some time the electron–hole pair will relax, leaving the resident electron
in the quantum dot. This occurs on the mean timescale given by the radiative
lifetime. Taking the ensemble average will wipe out any contribution from the
last summand to the Faraday rotation signal. If before recombination hole
spin-relaxation occurs, the situation will not be changed, as the ensemble
average will again nullify the contribution from the second part.

The efficiency of this protocol is obviously determined by the quality of
the suppression of the pure | ↓ 〉-component that in effect reduces the electron-
spin polarization along z. The probability to excite it is given by cos2(Θ/2),
or vice versa, the probability of avoiding it is 1−cos2(Θ/2) = sin2(Θ/2). Since
the Faraday-rotation signal is proportional to the electron-spin polarization,
we expect a dependence proportional to sin2(Θ/2), neglecting any damping.
This is reflected by the observed Rabi oscillations in Fig. 4.

Let us consider the problem more quantitatively: By variation of the
area Θ not only the electron and trion state populations are changed pe-
riodically with period Θ = 2π, but also the orientation of electron and
trion spins S and J are controlled. The electron-spin polarization is de-
scribed by a spin vector S = (Sx, Sy, Sz) defined by: Sx = Re(αβ∗),
Sy = −Im(αβ∗), Sz = (1/2)(|α|2 − |β|2). Similarly, one can introduce the spin
vector, J = (Jx, Jy, Jz), which represents the polarization of the trion, |ψ̄〉 =
ᾱ|↑↓⇑〉 + β̄|↑↓⇓〉. The spin vectors S and J represent 6 of the 16 components
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Fig. 5. (a) and (c):
Reorientation of the
electron-spin polariza-
tion by application of a
resonant optical pulse of
varying area as denoted.
Calculations have been
done for two different
initial values of spin po-
larization, S0

x and S0
z .

(b) and (d): Electron-
spin polarization compo-
nents versus pulse area Θ

of the four-level density matrix, and their dynamics is given by density matrix
equations of motion [18].

The electron-spin vector evolution as a function of Θ is shown in Fig. 5
for two initial orientations: one is parallel to the magnetic field and the other
exemplifies an arbitrary direction. A short σ+-polarized pulse excites the
initial electron-spin state, α|↑〉 + β| ↓ 〉, into an electron–trion superposition
state α cos(Θ/2)| ↑ 〉 + β|↓〉 − iα sin(Θ/2)|↑ ↓ ⇑ 〉. The light-induced change of
the Sz component, |Sz − S0

z | = |α|2 sin2(Θ/2) varies with the |↑〉 state pop-
ulation, and independently of the initial conditions it reaches a maximum
for Θ = (2n + 1)π-pulses, for which the Sx and Sy components vanish. In
particular, Sz([2n + 1]π) = −0.25 for S0

z = 0 [25]. Unlike the Sz compo-
nent, the electron spin swings between its initial direction (S0

x, S
0
y , S

0
z ) and

the direction (−S0
x, −S0

y , S
0
z ) with a period of 4π. This is because the Sx,y

components that are proportional to cos(Θ/2) components describe the co-
herence of the electron-spin state and vary both with the phase of the spin
wave function.

The control of spin dynamics by an optical pulse allows for a fast spin
alignment. In a quantum-dot ensemble, a small-area pulse, Θ � 1, induces
a coherent spin polarization proportional to Θ [19]. With increasing Θ, the
total spin polarization oscillates with a period 2π, as does the Sz component
of each individual spin in the ensemble, explaining the Faraday-rotation am-
plitude oscillations in Fig. 4. The long trion lifetimes in our quantum dots
could enable realization of a regime in which a pulse of rather low power,
but long duration can be used to reach a large pulse area without decoher-
ence due to radiative decay. Further, the Sx and Sy components change sign
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with period 2π. This implies that 2nπ-pulses can be used for refocusing the
precessing spins, similar to spin-echo techniques [20].

Let us turn now to the spin dynamics after initialization by a short pulse.
Then the offdiagonal component of the density matrix, describing electron–
trion coherence, is decoupled from the electron and trion spin vectors, which
are governed independently by two vector equations [9]:

dJ

dt
= [Ωh × J ] − J

τh
s

− J

τr
,

(8)
dS

dt
=
[
(Ωe + ΩN ) × S

]
+

(Ĵ ẑ)ẑ
τr

,

where Ωe,h ‖ ex and ΩN = geμBBN/h̄ is the electron precession frequency
in an effective nuclear magnetic field, BN. In the second equation we do not
include the electron spin-relaxation time, τ e

s , explicitly. At low temperatures,
τ e
s is of the order of μs and is mainly determined by fluctuations of the nuclear

field ΩN in a single quantum dot [5, 6, 10, 14, 21]. This timescale is irrelevant
to our problem. The spin relaxation of the hole in the trion, τh

s , is caused by
phonon-assisted processes and at low temperatures may be as long as τ e

s [22,
23].

Solving (8) we obtain the time evolution of the spin vectors S and J . After
trion recombination (t � τr), the amplitude of the long-lived electron-spin
polarization excited by a (2n+ 1)π-pulse is given by

Sz(t) = Re
{(

Sz(0) +
0.5Jz(0)/τr

γT + i(ωe +Ωh)
+

0.5Jz(0)/τr
γT + i(ωe − Ωh)

)
exp(iωet)

}
,

(9)

where Sz(0) and Jz(0) are the electron and trion spin polarizations created
by the pulse. ωe = Ωe +ΩN,x. γT = 1/τr +1/τh

s is the total trion decoherence
rate. If the radiative relaxation is fast τr � τh

s , Ω
−1
e,h, the induced spin polar-

ization Sz(t) is nullified on average by trion relaxation, as Sz(0) = −Jz(0).
In contrast, if the spin precession is fast, Ωe,h � τ−1

r , the electron-spin po-
larization is maintained after trion decay [24, 25]. This is the situation in our
experiment.

For an ensemble of quantum dots, the electron-spin polarization is ob-
tained by averaging (8) over the distribution of g-factors and nuclear config-
urations. At low B, the random nuclear magnetic field becomes more impor-
tant for the electron-spin dephasing than for g-factor dispersion, leading to
dephasing during several nanoseconds [14]. As discussed, the rotation of the
linear probe polarization is due to the difference in scattering of its σ+ and σ−

polarized components by one of the transitions |↑〉 → |↑↓⇑〉 and |↓〉 → |↑↓⇓〉.
The scattering efficiency is proportional to the population difference of the
states involved in these transitions Δn+ = n↑ − n⇑ or Δn− = n↓ − n⇓. The
Faraday-rotation angle is φ(t) ∼ (Δn+ − Δn−)/2 = Sz(t) − Jz(t). Figure 6
shows the Faraday-rotation signal after a σ+-polarized excitation pulse, cal-
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Fig. 6. Calculated
time dependence of
pump-probe Faraday-
rotation signal of n-
doped quantum dots
excited by a σ+ polar-
ized pulse. τr = 400 ps,
τh
s = 170 ps, |ge| = 0.57,

and Δge = 0.004

culated with input parameters corresponding to the experimental situation.
At B = 7T, the Faraday rotation shows modulated beats resulting from
interference of the electron and exciton precessions.

5 Electron-Spin Coherence

For quantum information applications, the details of the electron-spin dy-
namics need to be understood. In particular, the timescales during which the
coherence of a spin state is retained have to be addressed. Phenomenologi-
cally, the spin dynamics can be described by two times, the longitudinal spin
relaxation time T1 and the transverse spin relaxation time T2. In a simple
picture these timescales can be understood in the following way. A “longi-
tudinal” magnetic field leads to a spin splitting. The T1 time then describes
the timescale on which the relaxation of a spin from the upper into the lower
state occurs. If the spin is, on the other hand, oriented normal to the mag-
netic field, it precesses about this field. In this case, the T2 time describes
the time during which the precession is going on in a unperturbed way un-
til the first scattering followed by a phase-change precession occurs. It is
this latter timescale that is the relevant quantity for quantum information
processing.

In the previous section we had introduced an additional time constant T �
2

to describe the decay of the ensemble coherent signal, called dephasing. As
we had pointed out, the origin of this fast decay in the ns range may lie in
ensemble inhomogeneities that lead to a strong variation of the precession
frequency. These variations are dominant at strong enough fields. Toward
zero field the spin-coherence lifetime is limited by dot-to-dot variations of
the nuclear fluctuation fields about which each electron precesses. Besides
such momentary inhomogeneities, T �

2 might in general also be limited by
variations of the experimental conditions during the measurement time, such
as signal integration times that are much longer than the time during which
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the conditions can be kept stable. This is the typical case for single quantum-
dot measurements, for which one has to perform an experiment many times
in order to get a statistically significant result.

Generally, the dephasing time is much shorter than T2. Note, however,
that dephasing does not lead to a destruction of the coherence of an individ-
ual spin. But it does mask the duration of the single-spin coherence due to
the rapid loss of coherence among the phases of the spins. Theoretically, the
single-spin coherence time may be as long as twice the spin-relaxation time,
which is on the scale of milliseconds [5], as recent experiments have demon-
strated. The true spin-coherence time may be obtained by sophisticated spin-
echo techniques [26], which typically are quite laborious. In general, a less
complicated and robust measurements scheme would be highly desirable, by
which also the spin coherence could be preserved so that ultimately many
of the operations critical to the processing of quantum information, includ-
ing initialization, manipulation, and readout of a coherent spin state, would
become possible.

To address this point, we look again at Faraday-rotation traces, recorded
similar to the ones presented before. Before we had shown the traces only for
positive delays between probe and pump. Now we take a look also at negative
delays. This is done for three different magnetic fields in Fig. 7, lower panel.
At B = 0 T a strongly damped oscillation is seen at positive delays that
occurs solely after the pump pulse arrival at t = 0. This signal arises from
the exciton contribution of the charge-neutral quantum dots in the ensemble.
In magnetic fields of 1 and 6T, long-lived electron-spin quantum beats appear
at positive delays, as discussed before. Surprisingly, under these conditions
strong spin beats with a frequency corresponding to the electron precession
are observed also at negative delays in nonzero magnetic field. The amplitude
of these quantum beats increases when approaching zero delay t = 0. Spin
beats at negative delay have been reported for experimental situations in
which the decay time exceeds the time interval between the pump pulses:
T ∗

2 ≥ TR [3]. This is clearly not the case here, where the Faraday-rotation
signal has fully vanished after 1.2 ns at B = 6T, so that T ∗

2 < TR. The rise
time of the signal at the negative-delay side is the same as the decay time on
the positive-delay side, suggesting that the negative-delay signal also can be
traced to electron-spin precession.

The upper panel shows the signal when scanning the delay over a larger
range in time, in which four pump pulses, separated by 13.2 ns from each
other, are located. At each pump arrival electron-spin coherence is created,
which after a few ns is quickly dephased. Before each pump arrival the coher-
ent signal from electrons appears again. This negative-delay precession can
occur only if the coherence of the electron spin in each single dot prevails
for much longer times than the time interval TR between the laser pump
pulses, in contrast to the ensemble spin dephasing. Leaving the origin of the
coherent signal appearance aside for a moment, this opens a pathway towards
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Fig. 7. Lower panel :
Pump-probe Faraday-
rotation signal versus de-
lay measured at different
magnetic fields on singly
charged (In,Ga)As/GaAs
quantum dots. The
pump power density is
60 W/cm2, the probe
density is 20 W/cm2.
Upper panel : Faraday-
rotation signal recorded
for a longer delay range in
which four pump pulses
were located

measuring the spin-coherence time T2: When increasing the pump pulse sep-
aration continuously, we end up in a range comparable to the T2 times in
which coherence is continuously reduced, which should reduce the amplitude
of the signal on the negative-delay side. Finally, if the pump-pulse separation
is increased far above the average coherence time, this signal should vanish
completely.

Corresponding data at B = 6T measured for two pump densities differing
by a factor of two are given in Fig. 8, showing the Faraday-rotation amplitude
on the negative-delay side shortly before the next pump arrival as a function
of TR. The repetition period, TR, was increased from 13.2 up to 990 ns by
means of a laser pulse picker. A significant Faraday-rotation signal can be
measured even for the longest pulse interval of a μs. Technically it would be
possible to go to even larger TR, but the repetition rate of the experiment
is also strongly reduced in the measurement, leading to weak signal strength
and therefore complicating the experiment. From the data we see, however,
that a drop of Faraday-rotation amplitude occurs, meaning that we scan a
range that must be comparable with T2.

In order to understand why the single quantum-dot coherence time can
be seen at all in an ensemble measurement, let us consider excitation of
a single quantum dot by a periodic π-pulse train of circularly polarized
light. The first impact of the pulse train is a synchronization of electron-
spin precession. To discuss this effect we define the degree of spin syn-
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Fig. 8. Faraday-rotation amplitude at negative delay as function of time interval
between pump pulses. The experimental data were measured at B = 6 T for two
pump densities of 12 and 6 W/cm2 shown in the inset by the red and blue arrows.
T = 6 K. The solid lines show the theoretical dependencies described by (22), which
contained as a single fit parameter T2 = 3.0 μs. In the inset the Faraday-rotation
amplitude measured at TR = 264 ns is shown as a function of pump density. The
solid line shows the theoretical dependence described by (22). The comparison
of experiment and theory allows us to determine the pump density, which corre-
sponds to the π-pulse (shown by the black arrow). The theoretical dependence of
the Faraday-rotation amplitude on TR calculated for π-pulse excitation is shown by
the dashed line

chronization by P (ωe) = 2|Sz(ωe)|. Here, Sz(ωe) is the z-projection of the
electron spin at the moment of pulse arrival. If the pulse period, TR, is
equal to an integer number, N , times the electron-spin precession period
in a transverse magnetic field, 2π/ωe, such a train of π-pulses leads to al-
most complete electron-spin alignment along the light-propagation direc-
tion [25] (as above). The degree of spin synchronization reaches its largest
value Pπ = exp(−TR/T2)/[2 − exp(−TR/T2)], corresponding to almost 100%
synchronization, because for excitation with a high repetition rate (as in ex-
periments) TR � T2 so that exp(−TR/T2) ≈ 1.

An ensemble contains quantum dots whose precession frequencies fulfill
the following relation that we term the phase-synchronization condition:

ωe = 2πN/TR ≡ NΩ. (10)

Since the electron-spin precession frequency is typically much larger than the
laser repetition rate for not too small magnetic fields, multiple quantum-dot
subsets satisfy the condition (10) for different N within the whole ensemble,
as in addition the precession frequencies are widely distributed. This is illus-
trated by Fig. 9, where panel A sketches the precession for N = K and K+1,
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Fig. 9. Phase synchronization of electron-spin precession by a train of π-pulses
of circularly polarized light. The top panel shows the train of σ+-polarized laser
pulses with repetition period TR. The train synchronizes the electron-spin preces-
sion in quantum dots where the precession frequency is a multiple of (2π/TR):
ωe = N(2π/TR). In these quantum dots, the spins are aligned at the moment
of the pulse arrival: each spin is opposite to the light-propagation direction. The
two middle panels show the phase synchronization for two spins with precession
frequencies differing by 2π/TR: N = K and N = K + 1 (K is a large integer).
The bottom panel shows a time evolution of the average spin polarization Sz(t),
resulting from a constructive interference of the phase-synchronized quantum-dot
subsets. (B) Spectrum of phase-synchronized electron-spin precession modes en-
veloped by the density of precession frequencies ρ(ωe) in a quantum-dot ensemble.
Only those electron spins that are synchronized by the pulse train give a contribu-
tion to the spectrum, consisting of sharp peaks at the frequencies ωe = N(2π/TR)
(N = . . . , K − 1, K, K + 1, . . .) which satisfy the phase-synchronization condi-
tion (10)

and panel B gives the spectrum of phase-synchronized precession modes. The
number of synchronized subsets, ΔN , can be estimated from the broadening
of the electron-spin precession frequencies by: ΔN ∼ γ/Ω. It increases lin-
early with magnetic field, B, and pulse period, TR. The spins in each subset
precess between the pump pulses with frequency NΩ, starting with an initial
phase that is the same for all subsets. Their contribution to the spin polariza-
tion of the ensemble at a time t after the pulse is given by −0.5 cos(NΩ · t).
As sketched in Fig. 9, the sum of oscillating terms from all subsets leads to a
constructive interference of their contributions when the next pulse arrives.
The rest of the quantum dots do not contribute to the average electron-spin
polarization Sz(t) at times t � T ∗

2 , due to dephasing. The synchronized spins
therefore move on a background of dephased electrons, which, however, also
still precess individually.

The average spin polarization can be written as Sz(t) = −0.5Ω ×∑∞
N=− ∞ cos(NΩ · t)ρ(NΩ), where ρ(ωe) is the density of the quantum-dot

precession frequencies within the laser excitation profile. Assuming that this
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density has a Lorentzian shape3 ρ(ωe) = (γ/π)(1/[(ωe −ωe)2 +γ2]), centered
around the average frequency ωe, we obtain:

Sz(t) ≈ β cosh{β[1 − 2 mod(t, TR)]} − sinhβ
β sinhβ

cos(ωet), (11)

where β = γTR/2 and mod(x, y) = x−y[x/y] is the modul function, with [x/y]
defined as integer division. The resulting time dependence of Sz(t) (Fig. 9A)
explains the appearance of Faraday-rotation signal at negative delays.

Obviously, π-pulse excitation is not critical for the electron-spin phase
synchronization by the circularly polarized light pulse train. Resonant pulses
of arbitrary intensity create a coherent superposition of the trion and electron
state in a quantum dot, leading to a long-lived coherence of resident electron
spins, because the coherence is not affected by the radiative decay of the trion
component. Each pulse of σ+-polarized light changes the electron-spin projec-
tion along the light-propagation direction byΔSz = −(1−2|Sz(t → tn)|)W/2,
where tn = nTR is the time of the nth pulse arrival, and W = sin2(Θ/2) with
Θ being the pulse area [9, 27]. Consequently, a train of these pulses orients the
electron spin opposite to the light-propagation direction, and it also increases
the degree of electron-spin synchronization P . Application of Θ = π-pulses
(corresponding to W = 1) leads to a 99% degree of electron-spin synchroniza-
tion already after a dozen of pulses. However, if the electron-spin coherence
time is long enough (T2 � TR), an extended train of pulses leads to a high
degree of spin synchronization even for Θ � 1 (W ≈ Θ2/4).

Let us consider the problem in more detail: An infinite train of circu-
larly polarized light pulses propagating along the z-direction in a transverse
magnetic field parallel to the x-axis, leads to a periodic time-dependent dis-
tribution of electron-spin polarization, Sz,y(t + TR) = Sz,y(t), in a single
quantum dot. If the pulse duration Δt is much shorter than the trion radia-
tive decay time, the electron and hole spin relaxation times and the electron
and hole precession times, the creation of spin polarization can be separated
in two well-defined processes, as discussed in the previous section [9]. The
first one is the electron excitation into a coherent superposition state of elec-
tron and trion. The second one describes the radiative decay of the trion
component in this superposition into the electron precessing in the trans-
verse magnetic field [9, 25, 27]. As a result, the electron-spin polarization in
high magnetic fields, ωeτr � 1, is controlled by the electron-spin generation
during the pump pulse and its later precession with a slow decay. This leads
to the following time dependence of the electron-spin polarization after the
3 We chose a Lorentzian profile for the quantum-dot precession frequencies in the

consideration because it leads to the closed form for Sz(t) in (11). Generally, our
numerical calculations do not show any of qualitative or quantitative differences
for the both Gaussian or Lorentzian profiles as long as the distribution ρ(ωe) is
smoothly going to zero on the scale of its width.
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initialization pulse:

Sz(t) =
[
S0

z (tn) cos(ωet) + S0
y(tn) sin(ωet)

]
exp(−t/T2),

(12)
Sy(t) =

[
S0

y(tn) cos(ωet) − S0
z (tn) sin(ωet)

]
exp(−t/T2),

where S0
z,y(tn) are the electron-spin polarizations created in the quantum

dot by the nth pulse. A pulse of σ+ circular helicity creates the following
polarization components:

S0
z (tn) = S−

z

[
1 − sin2(Θ/2)/2

]
− sin2(Θ/2)/4,

(13)
S0

y(tn) = S−
y cos(Θ/2),

where Θ is the pulse area and S−
z,y = Sz,y(t → tn) are the z- and y-

projections of the electron-spin polarization shortly before the pulse arrival.
Equations (12) and (13) allow us to connect the spin polarizations before the
nth and the(n+ 1)th pulses. These relationships can be written as:

S−
z (tn+1) =

{[
−W

4
+ S−

z (tn)
(

1 − W

2

)]
cos(ωeTR)

+ ν
√

1 − WS−
y (tn) sin(ωeTR)

}
e−TR/T2 ,

(14)
S−

y (tn+1) =
{[

W

4
− S−

z (tn)
(

1 − W

2

)]
sin(ωeTR)

+ ν
√

1 − WS−
y (tn) cos(ωeTR)

}
e−TR/T2 ,

where W = sin2(Θ/2) and ν = sign[cos(Θ/2)]. The steady-state value of
these amplitudes, Sz,y(ωe), is found by the transition n → ∞:

Sz(ωe) = −W e−TR/T2
cos(ωeTR) − Cν

W

2Δ(ωe)
,

(15)
Sy(ωe) = W e−TR/T2

sin(ωeTR)
2Δ(ωe)

,

where Cν
W = ν

√
1 − W e−TR/T2 and the denominator Δ(ωe) is given by

Δ(ωe) = 2 − e−TR/T2(2 − W ) cos(ωeTR)
+ Cν

W

[
(2 − W )e−TR/T2 − 2 cos(ωeTR)

]
. (16)

Δ(ωe) almost vanishes at the frequencies satisfying the phase-synchronization
condition of (10). As a result, the distribution of spin polarization synchro-
nized by the train of pulses, Sz(ωe), consists of sharp peaks at frequencies
ωe = NΩ. Near the peaks, at small TR/T2 and Θ, the spectrum is given by

Sz(ωe) = − 1
2

(W/2TR)(W/2TR + 1/T2)
(W/2TR + 1/T2)2 + (ωe − NΩ)2

. (17)
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In the case of π-pulse excitation (W = 1) the distribution of spin polarization
takes the form:

Sz(ωe) =
1
2

· e−TR/T2 cos(2πωe/Ω)
e−TR/T2 cos(2πωe/Ω) − 2

. (18)

One can see that in this case Sz(ωe) has maxima, each with a width equal to
the separation between them.

It is convenient to introduce the time-dependent electron-spin polarization
vector in a single quantum dot as Sωe(t) = Sz(t) + iSy(t). Substituting (15)
into (12), we obtain the time dependence of Sωe(t) in the time interval tn ≤
t < tn+1:

Sωe(t) = −W e−t/T2
e−iωet − Cν

W e−iωe(t−TR)

2Δ(ωe)
. (19)

The electron-spin polarization for an ensemble of QDs is obtained by av-
eraging over the density of electron-spin precession frequencies ρ(ωe). In
this case the average electron-spin polarization are Sz(t) = Re[S(t)] and
Sy(t) = Im[S(t)], where S(t) =

∫
dωe ρ(ωe)Sωe(t). The integral can be writ-

ten as

S(t) = Aν
W (t)M(t), (20)

and can be expressed by the Faraday-rotation amplitude Aν
W (t) and the sum

of poles in the complex plane:

M(t) = −Ω

2

∞∑
N=− ∞

ρ(NΩt)e−iNΩt. (21)

The sum over the quantum-dot subsets for which the electron-spin preces-
sion is phase synchronized in (21) leads to the constructive interference in the
Faraday rotation signal at negative delay. It is remarkable that this interfer-
ence does not depend on the excitation intensity. The simplified expression for
the average electron-spin polarization in (11), which is equal to Re[M(t)], can
be obtained using Sz(ωe) = −0.5Ω

∑
N δ(ωe − ΩN). The Faraday-rotation

amplitude Aν
W (t) is given by:

Aν
W (t) = W

e−t/T2e−Γt[1 − Cν
W eΓ (2t−TR)]√

[4 − (W − 2)2e−2TR/T2 ][1 − (Cν
W )2]

, (22)

with an additional dephasing rate that is connected to the broadening of the
phase-synchronized spectrum by

Γ =
1
T2

+
1
TR

ln
2 − Cν

W (W − 2)e−TR/T2
√

[4 − (W − 2)2e−2TR/T2 ][1 − (Cν
W )2]

2 + 2ν
√

1 − W − W
.

(23)
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Equation (22) shows that the excitation intensity controls the time depen-
dence of the Faraday-rotation amplitude. Let us use these results to analyze
the data further.

The dependence of the Faraday-rotation amplitude at negative delay time
on the laser pulse repetition period TR, does not generally allow for a di-
rect measurement of the single quantum-dot coherence time. An increase
of TR also modifies the steady-state value of the electron-spin polarization
at the moment of the pulse arrival, as one can see from (15). In particu-
lar, at small W it will strongly reduce the Faraday-rotation amplitude. The
Faraday-rotation amplitude dependence on the pump density measured for
TR = 264 ns shows a nonmonotonic behavior (inset of Fig. 8 in manuscript),
which is connected to the complex dependence of the Faraday-rotation am-
plitude on the pulse area. Additional decoherence mechanisms decrease the
Faraday-rotation amplitude in experiment at high pump densities beyond a
2π-pulse, as one can see in the inset of Fig. 8. It is worthwhile to note here
that in the case of π-pulse excitation, the Faraday-rotation amplitude can be
approximated by: exp[−(2 + 1

2
√

3+3
)TR

T2
] for TR < T2, and it is described by a

simple exponential form exp(−2TR/T2) at TR � T2.
Therefore, the degree of synchronization is given by P (ωe) = 2|Sz(ωe)|:

P (ωe) =
(W/2TR)(W/2TR + 1/T2)

(W/2TR + 1/T2)2 + (ωe − NΩ)2
. (24)

One sees that: (i) a train of pulses synchronizes the spin precession of
quantum-dot electrons with precession frequencies in a narrow range of width
W/2TR +1/T2 around the phase-synchronization condition, (ii) the electron-
spin synchronization still reaches 100% if W/2TR � 1/T2.

When Θ = π, (18) gives the degree of the electron-spin synchronization
as:

Pπ(ωe) =
e−TR/T2 |cos(2πωe/Ω)|

2 − e−TR/T2 cos(2πωe/Ω)
, (25)

corresponding to the maximum degree of spin synchronization, Pπ, for elec-
trons matching the phase-synchronization condition. Obviously, π-pulses syn-
chronize the electron-spin precession in a broad range of frequencies with
width ∼Ω, which is about the gap between neighboring phase-synchronization
condition frequencies.

The effect of the pump density (namely of the pump area) on the distri-
bution of the spin-polarization synchronized by and with the pulse train at
the moment of the pulse arrival (t = tn) for Θ = 0.4π, π and 1.6π, is shown
in Figs. 10A–C. Calculations were done for TR = 13.2 ns (red) and 52.8 ns
(blue). The density of the electron-spin precession modes is shown by the
black line, which gives the envelop of the spin-polarization distribution. The
quasidiscrete structure of the distribution created by the pulse train is the
most important feature, which allows us to measure the long spin-coherence
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Fig. 10. Spectra of phase-synchronized electron-spin precession modes created by
a train of circularly polarized pulses, −Sz(tn), calculated for the pulse area Θ =
0.4π, π, and 1.6π, respectively. The spectra have been calculated for two pump-
pulse repetition periods: TR = 13.2 ns (red) and 52.8 ns (blue). At low pumping
intensity (panel A) the pulse train synchronizes electron-spin precession in a very
narrow frequency range near the phase-synchronization condition: ωe = N(2π/TR).
The π-pulses (panel B) widen the range of synchronized precession frequencies.
In addition, the electron spins with opposite polarization at frequencies between
the phase-synchronization condition become significantly synchronized. The degree
of synchronization for these spins decreases at Θ > π (panel C). (D) Negative-
delay Faraday-rotation amplitude dependence on pump-pulse repetition period TR

calculated for the same three pulse areas. The amplitude is normalized to its value
at TR = 264 ns. All calculations have been done for a magnetic field of B = 2 T
with ge = |0.57|, Δge = 0.005 and T2 = 3.0 μs

time of a single quantum dot on an ensemble: A continuous density of spin-
precession modes would always cause fast dephasing with a time inversely
proportional to the total width of the frequency distribution: T ∗

2 = h̄/γ.
Only the gaps in the density of precession modes facilitate the constructive
interference at negative delay times in Fig. 7. These gaps are created by mode
locking of the electron spins with the periodic laser emission.

The broadening of the quasidiscrete spectra around the phase-synchro-
nization condition is significantly smaller than γ. Nevertheless, it leads to
dephasing. The calculations show that the dephasing rate of the quantum-dot
ensemble can be written as Γpump+1/T2, where the additional dephasing rate
Γ depends on T2, W , and TR as seen from (23). In the present limit of TR �
T2, (23) gives Γ ≈ W/2TR + 1/T2 and Γ ≈ ln(2 +

√
3)/TR + 1/T2 for W � 1
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and W = 1, respectively. Γ is obviously smaller for weak excitation pulses.
These results are consistent with the fact that the dephasing is inversely
proportional to the broadening of the phase-matched precession modes.

Figure 10D shows the decay of the normalized Faraday-rotation ampli-
tudes as a function of pulse repetition time TR, calculated using (22). The
decay depends on the pulse area and is minimized for a π-pulse. The decay
rate for pulses with areas deviating from π are equal for Θ = π−α and π+α.
We have fitted the experimental dependence of the Faraday-rotation ampli-
tude on TR (Fig. 8) and its dependence on pump density (inset in Fig. 8)
by (22). The factor two difference in pumping intensities used for recording
the data labeled 1 and 2 leads to a significant restriction of the T2 value in
Fig. 8. The fit allows us to determine a pump density corresponding to the
π-pulse and a single quantum-dot coherence time T2 = 3.0 ± 0.3 μs, which
is four orders of magnitude longer than the ensemble dephasing time T �

2 =
0.4 ns at 6 T.

The Faraday-rotation amplitude does not reach its largest value at π-
pulse pumping (see inset of Fig. 8). This is because the train of π-pulses
synchronizes the spin precession for a broad distribution of precession fre-
quencies and not only for the ωe satisfying the phase-synchronization con-
dition. For example, in the quantum dots with ωe = (N + 1/2)Ω the spin-
synchronization degree is 1/3. However, the Sz projection of electron spin
in these quantum dots is opposite to that for quantum dots that satisfy the
phase-synchronization condition (ωe = NΩ), as seen in Fig. 10B. This leads
to cancelation effects in the total Faraday-rotation amplitude of the quantum-
dot ensemble. In contrast, one can see in Fig. 10C that pulses with an area
Θ > π are not so efficient in synchronizing the electron-spin precession in
quantum dots that do not satisfy the phase-synchronization condition. This
diminishes the “negative” contribution of such quantum dots to the electron-
spin polarization and increases the Faraday-rotation amplitude. Generally,
the rise of the excitation intensity from zero to π-pulses increases the num-
ber of quantum dots contributing to the Faraday-rotation signal at negative
delays.

After having shown that a specific protocol for a laser pulse sequence
can be used for selecting a subset of synchronized quantum dots with the
single-dot dephasing time, we turn to testing the degree of control that can
be achieved by such sequences. For that purpose each pump is split into two
pulses with a fixed delay TD < TR between them. The results of measure-
ments for TD = 1.84 ns are plotted in Fig. 11A. Both pumps were circularly
copolarized and had the same intensities. When the quantum dots are ex-
posed to only one of the two pumps (the two upper traces), the Faraday-
rotation signals are identical except for a shift by TD. The signal changes
drastically under excitation by the two pulse train (the lower trace): Around
the arrival of pump 1 the same Faraday-rotation response is observed as
before in the one-pump experiment. Also, around the pump 2 qualitatively
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the same Faraday-rotation pattern is observed with considerably larger am-
plitude. Therefore, the coherent response of the synchronized quantum-dot
ensemble can be amplified by the second laser pulse. Even more remarkable
are the echo-like responses showing up in the Faraday-rotation signal before
the first and after the second pump pulse. They have a symmetric shape with
the same decay and rise times T ∗

2 . The temporal separation between them is
a multiple of TD. Note that these Faraday-rotation bursts show no additional
modulation of the Faraday-rotation traces as seen at positive delay times
when the pump is applied. This is in agreement with the assignment of the
modulation to the photogenerated carriers [9].

Apparently, the electron spins in the quantum-dot subensemble, which is
synchronized with the laser repetition rate, have been clocked by introduc-
ing a second frequency that is determined by the laser-pulse separation. The
clocking results in multiple bursts in the Faraday-rotation response. This be-
havior can be explained by our theoretical model: The echo-like signal has
the same origin as the Faraday-rotation revival in the single-pump experi-
ment, which is constructive interference of the Faraday-rotation amplitudes
from quantum-dot subsets with phase-synchronized electron-spin precession.
We have calculated the distribution of electron-spin polarization created by
a train of π-pulses in the two-pump experiment, using a technique similar to
the one described above for the single-pump experiment. The resultant time
dependence of the Faraday-rotation signal reproduces well the experimental
burst signals (Fig. 11B).

Considering the above mode-locking mechanism in an ensemble of quan-
tum dots with inhomogeneously broadened precession frequencies raises the
question as to what properties should a quantum-dot ensemble have for their
use in various quantum coherent devices. In general, quantum-dot ensembles
in which spin states are only homogeneously broadened would be optimal for
quantum information processing. Moreover, precise tailoring of properties
such as the electron g-factor should be possible. However, fabrication of such
ensembles cannot be foreseen based on current state-of-the-art techniques,
which always lead to sizeable inhomogeneities. Under these circumstances, a
sizable distribution of the electron g-factor is good for mode locking, as the
phase-synchronization condition is fulfilled by many quantum-dot subsets,
leading to strong spectroscopic response. Further, it gives some flexibility
when changing, for example, the laser protocol (e.g., wavelength, pulse du-
ration and repetition rate) by which the quantum dots are addressed, and
therefore changing the phase-synchronization condition, as the ensemble in-
volves other quantum-dot subsets for which the single-dot coherency can be
recovered. However, a very broad distribution of electron g-factors would
lead to a very fast dephasing in the ensemble, making it difficult to observe
the Faraday rotation both after and before pulse arrival. In this case, the
phase synchronization can be exploited only during a very short period of
time.
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Fig. 11. Control of the electron-spin synchronization by two trains of pump pulses
with TR = 13.2 ns shifted in time by TD = 1.84 ns. (A) Experimental Faraday-
rotation signal measured for separate action of the first or the second pump (the
two upper curves) and for joint action of both pumps (the bottom curve). The pumps
were copolarized (σ+). (B) Theoretical modeling of the spin-echo-like signals in the
two-pulse experiment with the parameters: Θ = π and γ = 3.2 GHz

6 Summary

In summary, we have performed detailed studies of the electron g-factor in
quantum dots. The spin is described by a complex g-factor tensor with pro-
nounced anisotropies. With this knowledge we have addressed the coherent
manipulation of the spin. We have shown first a very efficient technique by
which the spin can be oriented (initialized) by circularly polarized laser pulses.
By such pulses the spin orientation can be controlled. We have then shown
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that the electron can be phase synchronized with the periodic laser protocol.
As a first tradeoff this technique allowed an electron-spin coherence time of
3 μs at cryogenic temperatures. We have then succeeded with a first demon-
stration that this method also allows a far-reaching coherent control of the
spins: A two-pulse protocol allowed us to clock the electron spin such that
periodic bursts appear in the Faraday-rotation signal.

This result shows that the deficits that are typically attributed to quantum-
dot spin ensembles may be overcome when combining them with elaborated
laser excitation protocols, with all the related advantages due to the robust-
ness of the phase synchronization of the quantum-dot ensemble: (i) a strong
detection signal with relatively small noise; (ii) changes of external parame-
ters like repetition rate and magnetic field strength can be accommodated
for in the phase-synchronization condition due to the broad distribution of
electron-spin precession frequencies in the ensemble and the large number of
involved quantum dots. This should be elaborated further in future studies.
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Abstract. In this chapter, we review the experimental efforts that focus
on the measurement of single-electron spins in two particular Si-based semi-
conductor nanostructure systems. First, we describe experiments in a real
transistor structure (i.e., a submicrometer commercial Si field effect tran-
sistor) in which the source/drain channel is used to electrically detect the
spin states of an adjacent single paramagnetic spin center. This transistor
structure is similar to a number of proposed spin-based qubit architectures
that can be used as a potential quantum information processor. Second, we
describe the effort to fabricate similar devices in specially designed semicon-
ductor structures that promise greater control over electron spin, the ability
to entangle two spins, and to eventually build a scalable quantum processor.
In these engineered structures, quantum dots are created by metallic gates
patterned over a 2D electron gas in a strained silicon-germanium heterostruc-
ture. In addition to the discussion of fabrication issues, we also show examples
of single-electron-spin measurements in the few-electron regime of quantum
dots.

1 Introduction

Isolated electron spins in low-temperature semiconductors are now recog-
nized to have considerable potential for storing and manipulating quantum
information. One of the attractions of a spin in a semiconductor is its very
long decoherence time. The tunable spin-orbital coupling and the ability to
control the electron wavefunctions in semiconductors allow gate operations
on the spins. Another advantage is that they can be embedded into transistor
structures, a premise that lends itself to the large-scale integration necessary
for a quantum information processor. The extensive collection of chipmaking
techniques, accumulated over decades, is expected to be extremely invaluable
for building such a scalable processor. Possible applications of the quantum
information processing devices including encryption and secure communi-
cations are recognized to be important to a modern society. While a fully
functional factorization engine needs at least 1000 quantum logic bits, com-
munication devices such as a quantum repeater require only 3 quantum logic
gates [1].

M. Fanciulli (Ed.): Electron Spin Resonance and Related Phenomena
in Low-Dimensional Structures, Topics Appl. Physics 115, 81–100 (2009)
c© Springer-Verlag Berlin Heidelberg 2009
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Amongst various semiconductor materials, silicon is recognized to be a
leading candidate for this purpose [2]. Electron spins in Si are endowed with
the particular properties that would make them useful as qubits. The most
important property is the safe preservation of quantum-mechanical phase in-
formation. It has been demonstrated experimentally that isotopically pure
Si materials can have extremely long phase-coherence times, many orders
of magnitude longer than that for group III–V semiconductors [3]. The pri-
mary mechanism for electron-spin decoherence of electron-spin states is their
interaction with nuclear spins. If the nuclear spins sense, in any way, the
relative up and down orientation of the electron spin, they become entan-
gled with the electron-spin Zeeman levels, destroying the quantum coher-
ence. It is fortunate that silicon is 95 per cent nuclear-spin free, and that
germanium is 92 per cent nuclear-spin free. They are both subject to addi-
tional isotopic purification. Isotopically pure epitaxial Si28 is 99.9 per cent
nuclear-spin free, and is commercially available, while the III–V semiconduc-
tors have no spin-zero nuclei. In addition, Si can be embedded in strained
silicon-germanium heterostructures. In strained SiGe structures, spin-orbital
coupling is tunable, which makes gate operations on an individual spin pos-
sible [4].

Several schemes for measuring the electron spin in compound semicon-
ductor structures have been proposed for quantum information processing
[4–6]. In order to physically implement any of the proposals, it is essential to
measure the state of a single spin. Diverse ideas for electrical detection of the
state of an isolated spin have been discussed, however, all of them present
significant experimental challenges.

In this chapter, we review the experimental efforts that focus on the mea-
surement of single-electron spins in two particular Si-based semiconductor
nanostructure systems. First, we will describe experiments in a real transis-
tor structure (i.e., a submicrometer commercial Si field effect transistor) in
which the source/drain channel is used to electrically detect the spin states of
an adjacent single paramagnetic spin center. This transistor structure is sim-
ilar to a number of proposed spin-based qubit architectures that can be used
as a potential quantum information processor. Secondly, we will describe the
effort to fabricate similar devices in specially designed semiconductor struc-
tures that promise greater control over electron spin, the ability to entangle
two spins, and to eventually build a scalable quantum processor. In these
engineered structures, quantum dots are created by metallic gates patterned
over a 2D electron gas in a strained silicon-germanium heterostructure. As
has been mentioned, SiGe is expected to be a superior material compared
to III–V semiconductors for scalable quantum information processors. In ad-
dition to the discussion of fabrication issues, we will also show examples
of single-electron-spin measurements in the few-electron regime of quantum
dots.
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2 Measurements of a Single Spin in the SiO2

of a Submicrometer Si Field Effect Transistor

For the single-spin measurements, a sequence of submicrometer n-channel
Si field effect transistors (FETs) have been used. It is well known from the
extensive literature of magnetic-resonance studies that there exist structural
paramagnetic defects near the Si/SiO2 interface. For a small device, it is
possible that there is only one isolated trap state that is both within the
tunneling distance of the channel, and with an energy that is close to the
Fermi level.

Figure 1a shows a microscope picture of a typical Si FET sample used
for the single-spin measurements. It shows a line of devices on the left, and
a magnified view of a single device on the right. The device has a channel
size of length 300 nm by width 270 nm. Figures 1b and c sketch a simplified
version of such a device that represents the two charged states of the trap
in the experimental system. In a FET, the conductivity of a “channel” from
the drain to the source is controlled by a voltage applied to the gate.

For the FET device, the signature of a single trap state is the current
switching between two discrete states, known as the random telegraph signal
(RTS). Over the years, observations of RTS, have been reported in a variety
of mesoscopic electronic systems. It has now been commonly accepted that
the RTS is an unequivocal signature of capture and emission of one electron

Fig. 1. (a) Microscope picture of a typical Si field effect transistor device used for
the single-spin measurements. It shows a line of devices on the left, and a magnified
view of one device on the right. The light squares are the contact surfaces. The
device has a channel length of 300 nm and a channel width of 270 nm. (b) The two
charge states of a trap in the SiO2 of the device located in the close proximity of
the channel
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by a single trap state.1 In particular, the pioneering work of Ralls et al. [8]
demonstrated that, for a MOSFET, when the Fermi level of the conducting
channel is in the proximity of the trap energy level, the electron from the
channel can tunnel on and off the trap. Changes in the trap charge state
directly affect the Coulomb scattering rate for carriers, thus producing jumps
in electrical current. For small-size devices at low temperatures, there is often
only one defect within kBT of the Fermi level. Therefore, the electrical signal
is insensitive to the other traps. The traps in a FET are normally very stable
defects, as the measurements are reproducible over many thermal cycles from
room temperature to cryogenic temperatures.

2.1 Statistical Measurements

In the rich literature of RTS, work has focused predominantly on the elec-
trical properties of the trap in the absence of a magnetic field. The essential
ingredient for detecting a single spin-flip is to convert the spin orientation
of the trap to an electric charge. Here, by analyzing the change of statis-
tics of the RTS in the magnetic field, we show that the RTS is an effective
measurement to probe the spin state of the trap [9].

In the single-spin measurement experiments, the channel current can be
recorded by a fast dynamic signal analyzer or by a high-frequency lockin
amplifier. In Fig. 2a the channel current is recorded over a narrow gate volt-
age ramped from 720mV to 760mV, swept in a 10-ms time interval. Actu-
ally, 80 per cent of the transistors that we tested had no such trap states
at all. In those cases, we can apply a high-voltage spike to the gate to in-
duce a paramagnetic defect, with hot electrons, for study. Superimposed on
the monotonically increasing background source/drain current is stochastic
switching between two discrete values of channel current. This switching is
the above-mentioned well-known RTS, which is a hallmark of the capture
and emission of one electron by a single trap state. The well-defined RTS
evolution demonstrates that over the 720mV to 760mV range, the trap is
energetically well isolated from other traps. A filled trap implies electrostatic
repulsion that diminishes the channel current. At high gate voltages (near
point C in Fig. 2a) the Fermi level, EF, is well above the trap level, ET.
Thus, the trap is almost always filled, repelling electrons and allowing less
current to flow in the source/drain channel. In contrast, at low gate voltages
(near point A in Fig. 2a), when EF is well below ET, the trap is empty most
of the time and the high current state is more probable. At the midpoint,
when EF = ET (near point B in Fig. 2a), the probability for the trap filling
is about 50 per cent. Thus, the source/drain current senses the two charge
states of the trap.

In this experiment the FET channel is basically a very sensitive electrom-
eter. A fast dynamic analyzer allows one to collect the data in real time with
1 For a comprehensive review, see [7].
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Fig. 2. (a) The channel current is measured as a function of the gate voltage with a
constant scanning rate of about mV/ms, at 4.2 K before and after the electric stress.
The evolution of the change in trap-filling probability can be seen after the stress.
(b) The energy diagram of the single trap and FET channel bath for the points A,
B, and C of curve displayed in (a). Here, the singly occupied state should actually
be downshifted by the Coulomb correlation energy, U , not shown for simplicity

a maximum rate of several hundred kHz. The frequency of the tunneling from
the channel to the trap for this particular sample is about 20 kHz. Thus, the
charge sensitivity of the small FET channel is of the order of 10−4 e/(Hz)1/2.
The rapid tunneling rate also allows us to obtain excellent statistics of the
trap-filling probability in a short period of time, which is necessary for de-
tecting the small change in statistical distribution at ESR (discussed later).

Here, we would like to describe briefly how one can compute the RTS sta-
tistics through a simple and reliable method using histograms. Figure 3 shows
the histograms for varying gate voltages. For each gate voltage, the histogram
for the channel current shows two Gaussian distributions, corresponding to
the two current levels. Without any noise, a histogram should consist of two
discrete lines positioned at the two discrete levels. White noise spreads out
the two lines to two overlapping Gaussian distributions. Figure 3 shows that
the left peak grows while the right peak diminishes for increasing gate volt-
age. This is consistent with the fact that the defect is gradually charged. The
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Fig. 3. (a) Channel current as a function of time for varying gate voltages at
4.2 K. The data is displayed only for 5 ms. From top to bottom, Vg is 690, 697, 701,
706 and 719 mV. (b) Histograms of RTS. Each histogram consists of two Gaussian
distributions, corresponding to the two current levels. As Vg goes up, the peak for
the low-current state dominates over the other one

ratio of the lifetimes on the high and low current states is the ratio of the
area under the left peak to the area under the right peak. A routine can
be used to automatically fit the histogram with two Gaussian distributions.
Then, the area under each peak can be obtained easily.

The Zeeman shift of the single trap can be readily identified by studying
the trap energy shift of the 50:50 trap-filling-probability point (where the
Fermi Level EF lines up with the trap energy ET) as a function of magnetic
field. Figure 4a shows the Zeeman shift of this 50:50 trap-filling energy as a
function of an inplane magnetic field. The trap energy shift was inferred from
the gate voltage shift [9].

Based on the sign of the Zeeman shift, we show that the charging tran-
sition transfers from a single-charge state, 1e, to a double-charge state, 2e;
i.e., the charging is 1 to 2 rather than 0 to 1. In the energy diagram, Fig. 4b,
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Fig. 4. (a) At the 50:50 trap-filling-probability point, the Fermi level matches the
available defect energy level. The positive Zeeman shift of the trap energy versus
magnetic field implies a 1e to 2e transition in the defect, rather than a 0e to 1e
transition. (b) The Zeeman-split trap level relative to the FET channel Fermi level.
The Fermi level would have to shift toward the upper Zeeman level to reach 50:50
occupation probability. (The singly occupied state should actually be downshifted
by the Coulomb correlation energy, U , not shown.) (c) If the spin flips, the lower
Zeeman level can become filled, producing the doubly occupied trap

the empty trap is modeled as an unpaired electron (e.g., a dangling bond)
that occupies the level ET (the central dashed line). In the presence of the
magnetic field B, the single-electron state undergoes Zeeman splitting indi-
cated by the two solid lines at energies ET ± 1/2EZ. At low temperatures
and high fields, only the lower spin state is occupied. If the Fermi level is
raised, an additional electron from the channel can tunnel into the upper
spin state in Fig. 4b, forming a two-electron singlet state (e.g., a lone pair).
Thus, the Fermi energy required for forming the two-electron state would
increase when B is increased, as suggested by Fig. 4a. In contrast, an ini-
tially “spinless” empty trap would fill the lower Zeeman level, producing the
opposite field dependence (i.e., the required Fermi energy decreases with in-
creasing B), contrary to observation. Therefore, the initial empty trap begins
in a 1e paramagnetic state (S = 1/2) (high current state) while the filled trap
(lower current state) is a 2e singlet state (S = 0).

The same statistical measurement approach can also be used to study the
2e singlet to 2e triplet transition. In the case when there is more than one
orbital available in the trap, there is also a possibility of forming a triplet
two-particle state. For sufficiently strong magnetic fields, the triplet energy
will become lower than the singlet discussed above. For a singlet state, the
trapping probability increases as B increases. In contrast, for the triplet state,
the trapping probability decreases as B increases. In fact, such a signature
has been seen for a couple of devices when they were cooled to cryogenic
temperatures rapidly. The consequence of such a transition has been realized
recently at high magnetic fields in a similar MOSFET system [10].
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2.2 Detection of Electron-Spin Resonance (ESR) of a Single Spin

To perform gate operations of spin rotations, many existing techniques for
magnetic spin resonance can, in principle, be used. However, it has generally
been accepted that qubits should be represented as individual spins. So in
order to manipulate individual spin qubits, one has to be able to at least
monitor the electron-spin resonance (ESR) of a single spin. In recent years,
there have been several examples [11–14] of detection of magnetic resonance
on single-electron spins in solids. Spin resonance of the nitrogen-vacancy de-
fect center in diamond was detected optically [11, 12]. Spin precession of a
localized electron spin on a surface has been detected by scanning tunneling
microscopy [13, 14].

To create spin resonance of the paramagnetic trap, microwave radiation
from 16 to 26GHz, is delivered by semirigid coaxial cable, to a coaxial-to-
waveguide converter, inside a cryostat. For higher frequencies, 26.5 to 50GHz,
a rectangular waveguide is used as the transmission line. In both cases, the
sample is mounted on an endplate of the waveguide where the magnetic-field
component is maximum while the electric-field component is nearly zero.
Eliminating the electric component of the microwave is critical for the mea-
surement. The photoconductivity of the sample is normally minimized to
a few per cent. An excessive amount of microwave electric field can cause
spurious effects [15, 16].

Our ESR detection scheme is based on the changing balance between the
two source/drain current states of the transistor, when the Larmor preces-
sion frequency produces spin-flips. In effect, this is transistor-current-detected
ESR. Following the paramagnetic trap model, described by the energy-band
diagram in Fig. 4b, one can imagine that when the microwave frequency is
Ez/h (i.e., at spin resonance), the spin state can be flipped, as in Fig. 4c.
When the paramagnetic spin flips, the lower Zeeman level becomes avail-
able for trapping an additional electron. The trapping event increases the
average source/drain current. A rate equation analysis of this trap/channel
configuration can be used to calculate the ESR-induced change in trap-filling
probability [17]. To detect the ESR microwave-induced change, we measure
channel current at a fixed microwave frequency for 300ms, during which there
are about a few thousand RTS switching events, giving good statistics for the
RTS.

Figure 5a represents a fragment of such a trace over a 10-ms time interval.
To complete the current versus magnetic field dependence, full 300-ms traces
are taken at 150–250 different magnetic fields. Since the signals are sometimes
noisy, a systematic statistical procedure was used to measure the trap charge
state, as described in the last section. A histogram of the source/drain current
data versus time, as shown in Fig. 3 is used to measure the statistics of
both the empty and filled trap states represented by the two peaks. For
the perfect case of two discrete states, one expects two delta functions in
the histogram. The broadening of the peaks in Fig. 3 is caused by noise.
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Fig. 5. (a) Top: the raw random telegraph data displayed for a time interval of
10 ms. Bottom: an algorithm for detection of abrupt changes is used on the raw
data to reconstructed two-level RTS. This procedure reduces the statistical errors
due to noise. (b) The change in trap-occupancy probability versus magnetic field
for a fixed microwave frequency. The dip represents the electron-spin resonance

The charge-trapping probability ratio is proportional to the area ratio of the
two peaks. For certain traps, whose charge produces only a small change in
source/drain channel current, an additional step is taken to avoid noise errors.
A more sophisticated algorithm [18], for detection of abrupt step changes, is
executed numerically. As an example, the top of Fig. 5a is the raw random
telegraph signal, containing noise. The bottom of Fig. 5a shows the noiseless
two-state switching, reconstructed by the algorithm.

Figure 5b presents the ESR detection results for the single paramagnetic
trap at a microwave frequency of 45.1GHz. The error bars (about 1 per cent)
in the figure indicate the standard deviation in a 300-ms dataset averaged
over 4 adjacent magnetic fields. In Fig. 4a, an ESR peak in average current is
centered around 16,025G. Averaging blocks of 4 adjacent magnetic fields, the
signal-to-noise ratio is greater than 4:1, and the ESR feature is reproducible
in different runs, and for different traps, in different samples. The key to
positively identify the single-trap ESR is from the change of RTS statistics
rather than from device electrical conductance as it can drift with time and
can be changed due to spurious effects [15, 16] induced by both electric and
magnetic field components of the microwave. We find that the ESR signal
is most pronounced in the range of gate voltages corresponding to a para-
magnetic (nearly empty) trap (i.e., between points B and C in Fig. 2a). This
is consistent with our assignment of filled and empty trap states. The ESR
signature is only found at temperatures below about 1K. At those temper-
atures, the electron magnetic moment is substantially polarized, and in any
case, microwave heating limits the temperature. From the RTS Boltzmann
occupation probability as a function of voltage, we find the effective tem-
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Fig. 6. The tunneling frequency is plotted as a function of magnetic field. While
the rate of tunneling into the trap is substantially modified at ESR, the rate of
tunneling out is unaffected by the ESR

perature rises to about 1 K when a moderate microwave power of 0.1mW
is applied to the sample, even though the bath temperature still remains at
about 0.4 K [9].

Similar runs have been carried out at other frequencies and in various
samples [19]. A g-factor of 2.02 ± 0.015 is obtained. Since conduction elec-
trons always have g ≤ 2, and paramagnetic centers in SiO2 always have
g ≥ 2, our results indicate a paramagnetic center in the oxide, or at the
SiO2/Si interface. Our observed g-value is somewhat larger than that for
some known paramagnetic centers near the interface.2 A Pb center is known
to have a g-factor of 2.006 along the 〈100〉 direction, while the E’ center is
expected to have g = 2.0005. One possibility is that we are looking at a center
that has a different local structure from these two typical examples. Another
possibility is that the low-density conduction channel electrons might have
slight ferromagnetic ordering, giving rise to a local field that slightly increases
the apparent g-factor of the trap. We found that the large Rabi frequency
produces nonlinear effects. At lower radio powers the trapping probability
increases at ESR, and a peak is expected [17]. However, at higher powers,
the ESR-induced signal inverts, leading to a decrease in trapping probability,
as plotted in Fig. 5b.

We also see a nonlinear ESR response in the tunneling dynamics. In Fig. 6,
the tunneling frequency is plotted as a function of field. While the rate of
tunneling into the trap is substantially modified (about 10 per cent change) at

2 See for example [20].
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ESR, the rate of tunneling out is unaffected by the ESR. This observation is
consistent with the fact that the 2e state is a singlet that should be insensitive
to the spin-flip by ESR.

The detection of ESR of a single-spin trap was also reported by another
group at a much higher temperature [21]. In their experiment, data was
collected over a long period of time (∼ days) for a magnetic field scan at a
fixed frequency.

2.3 Single-Shot Measurement

Although our group has been the first to electrically measure electron-spin
resonance on a single semiconductor spin, due to the tiny difference in en-
ergy between the two spin states (limited by the low frequency in common
commercial microwave generators) and the electronic heating generated by
the continuous microwave radiation, the spin-orientation information was
obtained by repeated measurements and thermal averaging. However, the
method of spin orientation to charge conversion used for the ESR detection
is completely compatible with single-shot read out (i.e., measuring two or-
thogonal spin states of the trap without repetition), required for quantum
computation. The Fermi level can be adjusted so that it lies between the
upper and lower Zeeman levels as illustrated in Fig. 4. At low temperatures
and high B fields, if the lower Zeeman level is occupied by one electron, as
in Fig. 4b, it cannot accept any additional electrons from the Fermi level. If
only the upper Zeeman level is occupied, as in Fig. 4c, then an additional
electron can be transferred from the Fermi sea to the lower Zeeman level.
The distinction between two trapped charges, 2e, versus one trapped charge,
1e, can be sensed by the FET channel (i.e., the electrometer). For a practical
quantum computer, the heating can be avoided by using microwave-free spin
rotation for the single-qubit gates [1]. A similar spin-to-charge conversion
scheme was, in fact, used to detect the spin orientation of a single spin in a
GaAs quantum dot by a single tunneling event [22].

3 Fabrication and Characterization
of Electrostatically Confined Quantum-Dot Structures
in Si/SiGe Heterostructures

Although the single-spin measurements described in the previous section,
were done on a structure that closely resembles nearly all proposed spin-
based qubit architectures, the device uses a randomly positioned defect as
its electron trap. It has been the goal of the community to fabricate similar
devices in specially designed semiconductor structures that promise greater
control over electron spin with the ability to entangle two spins, and to even-
tually build a scalable quantum processor.
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Significant effort has been directed toward the development of electro-
statically defined quantum dots as potential elements for quantum computa-
tion information. While a high level of control and sophistication has been
achieved in current GaAs/AlGaAs-based structures [22–24], silicon-based
heterostructures are expected to have the distinct advantage of possessing
extremely long electron phase-coherence lifetimes, which can be attributed
to the small spin-orbit interaction and the low natural abundance of iso-
topes with nuclear spin. Means of control in lateral quantum-dot devices is
often exercised through the use of Schottky barrier top gates in which metal
electrodes patterned on the semiconductor surface capacitively couple to the
2DEG. By applying a bias on the gates one can selectively deplete the charge
carriers in the 2DEG directly below, and in the vicinity of the gates thereby
controlling current flow.

Over the last several years attempts were made to create mesoscopic de-
vices on strained Si/SiGe heterostructures by directly mimicking the ex-
isting geometries and fabrication processes that have been employed on
GaAs/AlGaAs-based heterostructures. The success was often limited due to
the high level of leakage current and/or the incomplete depletion of the 2DEG
by Schottky gates on strained Si/SiGe. Several innovative approaches have
recently been introduced as means of circumventing these obstacles. For ex-
ample, Bo et al. [28] and Klein et al. [29] have fabricated quantum dots (QDs)
by using atomic force microscope lithography and electron-beam lithography
on Si/SiGe heterostructures, respectively. In their devices, trenches are cre-
ated by the lithography, and the isolated two-dimensional electron regions
are used as gates to control a QD surrounded by the trenches. Sakr et al.
[30] of the UCLA group, has fabricated a laterally confined quantum-dot
structure that is integrated with a charge readout channel using a strained Si
layer on strain-relaxed SiGe buffer layers. In this structure, a new approach
has been developed to embed leakage-secluded metallic side gates in etched
groves that provide stronger gate to quantum-dot coupling. Devices with dif-
ferent sizes show reproducible single-electron charging effects and are stable
over an extended period of time for dots of 30–150 electrons. The discrete
electronic occupation of the quantum dots can be effectively detected using
the adjacent quantum point-contact electrometer.

3.1 Demonstration of a One-Electron Quantum Dot

As a result of the continuous technical improvement of the nanofabrication
techniques as well as the quality of epitaxial materials, the UCLA group has
recently fabricated another generation of devices that show unprecedented
high quality in terms of device stability and degree of gate control. The second
generation of devices used a low-temperature thermal oxidation process to
grow a very thin oxide layer (about 3 nm) making use of the cap layer of
the epitaxial wafer. The incorporation of this unconventional insulating layer
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Fig. 7. (a) Scanning electron micrograph and electrode layout of the quantum-
dot structure. (b) Stability plot of the differential conductance in a grayscale as
a function of the source–drain voltage, Vsd, and the plunger gate voltage, Vg, at
0.4 K, completed in about 2 h

suppressed the gate leakage current to less than 0.1 pA at typical operation
voltages.

Figure 7 shows two coupled quantum dots that are each defined by 4 gates.
The layout of the device is adapted from what has been used successfully in
GaAs/AlGaAs materials. As a result of the low leakage current the effective
electron temperature is in equilibrium with the bath temperature and the
conduction peaks are much narrower than that for the earlier-generation de-
vices. Consequently, the stability diagram (i.e., dI/dV vs. Vsd vs. Vg shown
in Fig. 7) reveals even the excited-state energy levels. More importantly, the
insulating layer allowed us to pattern strongly coupled surface gates that were
able to squeeze the number of electrons in the dot down to zero for the first
time in SiGe-based quantum-dot devices. The complete absence of electrons
in the dot at high gate voltages was verified by two well-established tech-
niques. First, at high gate voltage there is no conductivity at sufficiently high
source–drain bias. Second, the lowering of the tunneling barriers produced no
additional conduction peaks. With the new generation of devices we can now
vary the number of electrons in each dot precisely from 0 to 5 and change the
effective interaction of the two dots. The stability plot measures the charging
energy and the dot size. We found a charging energy of about 20meV for
the last observable Coulomb diamond. A dot diameter of about 20 nm can
be deduced from this large charging energy.

With this new generation of structure, the spin splitting is also clearly
visible in the stability diagram at high fields, as shown in Figs. 8a and b.
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Fig. 8. The stability diagram at (a) B = 0 T and (b) at B = 8 T, the spin splitting
is clearly visible as labeled by the two arrows

Fig. 9. Several succes-
sive traces of channel
current as a function of
gate voltage under the
same conditions. Slight
shifts in peak positions
can be seen for different
scans indicating long-
term electric instability

Despite these encouraging developments, the surface gates on an oxide can
often produce unexpected charges in the vicinity of the dots that alter the
confinement potential and produce 1/f noise that affect the long-term elec-
tronic stability. For example, Fig. 9 shows several successive scans of channel
current as a function of gate voltage under the same conditions. Slight shifts
in peak positions can be seen for different scans. The fuzziness of the bound-
ary lines in the stability diagram in Fig. 8 is another manifestation of the
electric instability. This slight shift can make a pump/probe study, like that
performed in GaAs systems, impossible. We also noticed that for the multiple
gates, a couple of gates were dominant in the formation of the dot. We believe
the un-ionized donor impurities can play important roles on small scales for
the depletion-mode quantum dots.
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In order to further utilize these Si devices for quantum information
processing experiments including precise pulse-controlled spin logic and high-
bandwidth readouts, the electrostatic environment has to be stable during the
period of experiments. Towards this end, both Berer et al. [31] and Slinker
et al. [32] have successfully used evaporated Pd on strained Si/SiGe as Schot-
tky gates. Despite these hopeful results, it is recognized that further improve-
ment of the effectiveness of the Schottky gates is needed to gain ultimate
control in the few-electron regime.

In a more recent development, Scott et al. of the UCLA group came
up with a new innovation that can produce high-quality Schottky gates for
strained Si/SiGe heterojunctions, capable of depleting the high-mobility two-
dimensional electrons locally, possessing superb leakage properties. We found
that gold sputtered in Ar plasma forms an excellent Schottky gate. The sur-
face gate depletes the underlying electrons at a small negative bias, which
demonstrates that there are small numbers of surface states. The sputtered
gold gates always showed dramatically less leakage current as compared to the
evaporated gates [25]. In fact, the leakage current was at least five orders of
magnitude lower compared to Au gates deposited by evaporation. We believe
the surprisingly effective sputtered Au gates is a result of the interdiffusion
of gold and SiGe atoms initiated by the energetic plasma gas. The Schottky
barrier is likely a gold silicide compound, similar to the well-known platinum
silicide, which is now used reliably with CCD camera production. To imple-
ment the sputtered Au process as surface gates at submicrometer scales, we
have developed a so-called dual-layer process, which combines sputtering and
evaporation and is compatible with standard electron-beam lithography. Be-
cause this technique is relatively simple and enables the formation of devices
with conventional surface gates, it may be more readily incorporated into
components for qubit applications.

3.2 Characterization of the Spin-Transition Sequence

With the MOSFET-like quantum-dot devices, we have performed an exper-
iment to determine the spin transitions in the few-electron regime since the
information is critical to design logic operations as well as readout steps. The
energy of the conduction peaks (i.e., the Coulomb-blockade peaks) is mea-
sured as a function of the inplane magnetic field. The peak position depends
on the magnetic field, B, through the Zeeman term, −gμB[Sz(N+1)−Sz(N)].
The reason to apply an inplane field rather than a normal field is that we
are interested mainly in the spin characteristics of the trap and would like to
minimize the effects due to the orbital motion of electrons in the quantum
dot. The field dependence gives information about the z-component of the
quantum-dot spin. The negative slope of the line in the peak position vs. field
curve indicates that the spin is added parallel to B. The energy shift can be
readily calculated from the gate-voltage shift using the ratio of the horizonal
to vertical scale in the stability diagram. We have discovered an unexpected
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Fig. 10. (a) The channel current as a function of gate voltage at a fixed magnetic
field. The transitions between different charge states have been labeled. (b) The
Coulomb-blockade peak for the 1e to 2e transition as a function of the inplane
magnetic field

spin-transition sequence as the number of electrons changed from 1 to 3. The
total spins of the dot were found to be S(N = 1) = 1/2, S(N = 2) = 1, and
S(N = 3) = 3/2. This sequence is very different from that in a GaAs quan-
tum dot, which was expected to have a 1/2 to 0 to 1/2 order. We believe the
unusual configuration is most likely due to the electron–electron correlations
in the dot [26]. Because of the large effective electron mass, the interaction
energy becomes larger than that of the single-electron level spacing. So, the
electrons prefer to occupy the high-energy levels to gain the exchange en-
ergy. Similar observations of high-spin states have been reported earlier in an
etched Si dot fabricated from a Si-on-insulator wafer [27].

3.3 Single-Shot Measurement

As discussed earlier, for a practical operation of readout, one has to complete
the measurement in a single attempt with high reliability. More specifically,
one has to be able to measure two orthogonal spin states of the trap without
repetition (i.e., single-shot). We would like to describe here schematically the
procedures for such a measurement in the quantum-dot case.

The spin in the quantum dot is initially prepared in the “ground” (spin-
up) state. This initialization can be done by first raising the Fermi level
between the two spin states such that the spin-up state of the empty dot
can be filled. The Fermi level is then raised slightly above the spin-down
state. Since it takes a large charging energy to add the second electron, the
down-spin state is guaranteed to be empty as shown in Fig. 11a. Instead of
applying continuous microwave radiation, one can apply a short pulse that
puts the trapped spin into a superposition of spin-up and spin-down states,
as in Fig. 11b. This step is equivalent to a single qubit rotation. Next, one
can apply a voltage to the gate to shift the Zeeman doublet to the config-
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Fig. 11. Schematics for single-shot spin-state readout: (a) The spin-state initial-
ization, (b) The spin state is prepared in a superposition by a microwave pulse, and
(c) The state is then measured by detecting (or not detecting) the current jump in
the QPC signal

uration shown in Fig. 11c. The spin-down state tunnels out (provided the
spin-relaxation time T1 exceeds the trapped-electron dwell time), while tun-
neling of the spin-up state is prohibited by the exclusion principle for a singlet
state. Thus, the transport current will exhibit a jump, which can be associ-
ated with the spin-down state. What happen, if the electron is a superposition
of spin-up and spin-down states? In this case, repetitive measurements us-
ing the same pulsewidth can obtain the superposition coefficients α and β.
A systematic measurement as a function of the pulsewidth will provide one
with the Rabi oscillation frequency that will precisely calibrate the gate oper-
ation timing. Inducement and control of coherent coupling between different
qubits is a central issue in any architecture for quantum information process-
ing. We would like to point out that the true quantum measurement described
here is fundamentally different from the ensemble measurement that was al-
ready performed successfully in the GaAs quantum-dot system [33], where
a probing current is passed through the dot. We believe that the capability
to conduct the true quantum measurements of a single-spin state will be a
major advancement in science and a significant step towards the physical
implementation of spin-based quantum information processing.
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4 Concluding Remarks

In conclusion, the research of individual-spin-based quantum information
processing in Si materials has made remarkable progress in the last several
years. The advancement can be summarized in two areas. First, manipulation
and detection of an individual single-electron spin is now becoming reality
by successfully implementing spin to charge conversion. Secondly, continuous
effort and technological progress now allow us access to the few- and single-
electron spin regimes in strained Si/SiGe epitaxial structures, which was not
possible only a few years ago. The quality and stability of the engineered
quantum-dot structures in strained SiGe are now catching up to the more
mature GaAs-based quantum-dot structures. We believe that quantum infor-
mation processing based on the individual electron spins in Si has distinct
advantages over other competing physical systems, and will have a bright
future through sustained research and development efforts.
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Abstract. Silicon quantum devices have progressed rapidly over the past
decade, driven by recent interest in spintronics and quantum computing. Spin
coherence has emerged as a leading indicator of suitable devices for quantum
applications. In particular, the technique of electron-spin resonance (ESR)
has proven powerful and flexible for probing both the magnitude and the
nature of spin scattering, when compared to theoretical predictions. Here, we
provide a short review of silicon quantum devices, focusing on silicon/silicon-
germanium quantum wells. Our review touches on the fabrication and litho-
graphy of devices including quantum dots, and the development of Schottky
top gates, which have recently enabled the formation of few-electron quan-
tum dots with integrated charge sensors. We discuss recent proposals for
quantum-dot quantum computing, as well as spin- and valley-scattering ef-
fects, which may limit device performance. Recent ESR studies suggest that
spin scattering in high-mobility Si/SiGe two-dimensional electron gases may
be dominated by the D’yakonov and Perel’ mechanism arising from Bychkov–
Rashba spin-orbit coupling. These results rely on theoretical predictions for
the dependence of the coherence time T ∗

2 on the orientation of an external
applied magnetic field. Here, we perform ESR experiments on a series of
samples fabricated by different methods, including samples recently used to
obtain few-electron quantum dots. While we observe some similarities with
recent experiments, we find that for five out of six samples, the angular de-
pendence of T ∗

2 was far larger than the theoretical predictions. We discuss
possible causes for this discrepancy, but conclude that the theoretical under-
standing of these samples is not yet complete.

M. Fanciulli (Ed.): Electron Spin Resonance and Related Phenomena
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1 Introduction

Quantum devices are presently an area of intense activity. This is due in part
to novel computing opportunities offered by quantum computing and quan-
tum information more generally, and in part by the need to control quantum
effects in classical devices. It also underscores a new era of technology, in
which it has become possible to control the fundamental quantum degrees-
of-freedom of microscopic objects, even within the confines of a solid-state
matrix. Electron spins form an excellent basis for quantum devices, since they
may be isolated in quantum dots, artificial or natural, and in principle they
can be transported to distant locations through quantum channels. The spin
variable can be controlled through either electric or magnetic fields [1].

The main challenge for spintronics applications is to manipulate and mea-
sure spins, while simultaneously isolating them from their environment. The
degradation of spin information is known as decoherence. In the semiclassical
spin field effect transistor (SFET) [2], decoherence leads to diminished func-
tionality of the device, while for spin qubits, decoherence leads to comput-
ing errors [3]. Decoherence properties may depend on fundamental materials
properties, growth conditions, temperature, or any number of environmental
variables. The study of decoherence properties of spins has a long and ven-
erable history in solid-state physics, and a number of powerful probe tech-
niques have been established. Pre-eminent among these is spin resonance,
for example electron-spin resonance (ESR) [4] or nuclear magnetic resonance
(NMR) [5]. Many variations on these techniques have been developed. Quan-
tum devices provide a challenge for such bulk techniques, since the number of
active electrons may be very few. In this case, electrically detected ESR tech-
niques (ED-ESR) play an important role [6]. In the limit of single-electron
devices, completely new methods are required, based on single-spin manipu-
lation and readout [7–14].

While many recent advances in quantum devices have occurred in the
GaAs materials system, silicon occupies a unique position. On the one hand,
the materials environment of silicon has the distinction of having the small-
est spin-orbit coupling of any currently practical semiconducting material,
due to its high position in the periodic table. Additionally, the predominant
isotope of silicon is 28Si, with nuclear spin zero. Modulation doping, isotopic
purification, and clean heterostructures therefore hold the prospect of an en-
vironment with very low decoherence. On the other hand, Si quantum wells
are clad by SiGe barriers, and therefore are intrinsically strained, leading
to growth and fabrication challenges. Moreover, as an indirect-bandgap ma-
terial, the conduction-band structure of silicon is fundamentally more com-
plicated than that of direct-gap materials, leading to decoherence and spin
manipulation challenges associated with multiple conduction valleys.

In this chapter, we review the decoherence properties of electron spins
in silicon structures, with a focus on materials appropriate for few-electron
quantum devices. While it is likely that single-electron measurements similar
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to those in GaAs will be available in the near future, it is also urgent to under-
stand the dominant decoherence sources in transport experiments involving
many electrons. Below, we review the current status of silicon quantum de-
vices, particularly those of importance for spin electronics (spintronics) and
quantum computing. In addition to spin physics, we consider the special be-
havior of silicon devices related to valley physics. We also review the current
status of ESR experiments in Si/SiGe quantum wells.

Many factors can affect transport in silicon devices, including variable
germanium content in the quantum well and the barriers, use of oxide ma-
terials as barriers, proximity of modulation-doping layers and their impurity
ions, presence of dopants in the quantum well, width of the quantum well,
and roughness of the interfaces. It is therefore important to test current the-
ories of scattering in a variety of devices and samples. In the second half
of this chapter, we present preliminary data obtained from several different
samples that have been recently used in the fabrication of quantum devices,
including quantum point contacts and few-electron quantum dots. Based on
transport data through these devices, we deduce that they are of very high
quality. However, the samples are not of the same origin as those used in
many recent ESR experiments. We find that while some of the samples show
similar ESR behavior as previous experiments, others show differences that
cannot be fully explained by existing theories. We conclude that the current
understanding of Si structures, especially those of importance for quantum
devices, is not yet complete.

2 Silicon Quantum Devices

Many high-performance devices in silicon, from microchips to qubits, are fab-
ricated in two-dimensional structures, including inversion layers and quantum
wells. Inversion layers have traditionally been of the greatest importance for
commercial electronics, taking the form of metal oxide semiconductor field
effect transistors (MOSFETs), with the active region an inversion layer at
the silicon/silicon-dioxide interface. Because of their industrial importance,
inversion layers have been extensively studied. A great wealth of knowledge
about such structures and the devices formed on them can be found in the
review paper of Ando, Fowler and Stern [15], and other texts [16].

Silicon quantum devices can be made using oxidation fabrication tech-
niques, frequently in combination with silicon-on-insulator (SOI) structures.
Much research in silicon single-electron transistors (SETs) has focused on
high-temperature quantum dots [17–19]. However, a burst of activity on low-
temperature quantum devices, with an emphasis on qubit development, has
broadened the direction of recent fundamental research. This work covers
a range of topics, including Coulomb-blockade effects [20], single-electron
memories [21], control of electron density by top gates [22], and fine tuning
of tunnel barrier resistances [23]. The resulting devices have attained a high
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degree of sophistication, leading to quantum dots strongly coupled to charge
sensors [24], triple dots [25], spin effects in coupled dots [26], and single-hole
transfer devices [27].

Several variations on the MOSFET design have arisen, in some cases
yielding better performance for quantum devices. Of particular interest is the
doped SiO2/Si/SiO2 quantum well. Devices fabricated in such structures in-
clude double-dot charge qubits with strongly coupled charge sensors [28]. The
quality of the quantum wells may be very high, enabling electrically detected
electron-spin resonance with enough resolution to detect valley splitting [29].
(Further discussion is given below.) However, low-temperature mobilities in
these structures are typically of the order of 104 cm2/V s or lower [29]. More-
over, rough interfaces associated with oxide barriers may have a detrimental
effect on electronic properties, especially in ultrathin quantum wells [30], and
the electrostatic potentials from ionized dopants in the quantum well may
interfere with device operation [31].

There are pros and cons in utilizing Si/SiO2 interfaces for quantum de-
vices. Silicon quantum dots created by oxidation may be extremely stable [32].
There has, nonetheless, been concern about ubiquitous defects at the interface
between crystalline and noncrystalline materials [33–37]. In the very best ox-
ide/silicon interfaces, defect densities can be very low indeed, suggesting that
the challenges are not insurmountable. The preceding summary of Si/SiO2

materials and devices is not meant to be exhaustive, since these structures
are not the focus of the present work. For a more thorough treatment, we
direct the reader elsewhere [15, 16, 38].

The Si/SiGe heterostructure is the main focus of this chapter. To form a
two-dimensional electron gas (2DEG), a narrow silicon layer is clad within
strain-relaxed SiGe barriers, causing tensile strain in the silicon [39]. Simi-
larly, a hole gas is formed in a SiGe quantum well clad within silicon barriers.
A review of growth issues in silicon/germanium materials is given in [40].

Highly doped Si/SiGe quantum wells have been successfully used to cre-
ate quantum dots and double dots, both in p-type [41–43] and n-type [44, 45]
materials. However, modulation doping can also be achieved in Si/SiGe
heterostructures. The resulting structures are analogous to the epitaxial
GaAs/AlGaAs structures, which have been utilized in a range of quantum
devices of sufficient quality to form spin qubits [7–14]. One main difference be-
tween Si- and GaAs-based devices is strain, which occurs in the Si structures.
Modulation-doped field effect transistors (MODFETs) or high electron mo-
bility transistors (HEMTs) are expected to provide a factor of three improve-
ment in mobilities over MOSFETs at room temperature [39], and even more
improvement at low temperatures. Since the mid-1990s, silicon MODFETs
have been optimized to provide mobilities in excess of 600,000 cm2/V s [39,
46–50]. For qubit devices, which do not utilize transport, there is no conclu-
sive data that high mobilities correlate with desirable properties for quantum
computing. However, existing qubits in GaAs utilize ultahigh-mobility mate-
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rials [7–9, 11], and it is anticipated that the same materials issues that reduce
the mobility, such as remote impurities, or scattering centers in the quantum
well or oxide interface, could also adversely affect qubit performance. In SiGe
MODFETs, the primary scattering centers in ultrahigh-mobility materials
are remote ionized impurities in the doping layer [39, 51, 52]. However, other
scattering centers include rough interfaces in the quantum well, which arise
from misfit dislocation formed during strained growth, even when no thread-
ing dislocations are present in the quantum well [40].

Quantum devices in silicon/silicon-germanium quantum wells have been
reviewed in [53]. To form quantum dots in Si/SiGe quantum wells, lateral con-
finement can be produced by physical means, using lithographic and etching
techniques to carve up the 2DEG [54, 55]. A more versatile technique uses
nanoscale metallic gates to electrostatically deplete the 2DEG, analogous to
techniques used in GaAs devices [56]. Optimally, these finger gates are fab-
ricated on the surface of the heterostructure directly above the 2DEG, at
a separation of about 50 nm. A primary challenge for creating top gates in
silicon arises from the presence of leakage paths [57], which may result from
threading dislocations, deep pits, or other morphological features associated
with strained growth [58]. The leakage mechanisms may also vary for dif-
ferent growth methods [59]. Dislocations are generally harmful for electrical
properties in the 2DEG. Fortunately, optimization of growth methods has
shown that the number of defects can be minimized in the active layer. Since
the absence of leakage is a prerequisite for good quantum devices, this area of
research progressed rather slowly for several years, until the aforementioned
difficulties were resolved.

One possibility for eliminating leakage is to avoid top gates altogether, by
replacing them with side gates. The side gates are formed within the same
2DEG as the active device, but they are electrically isolated by means of
reactive ion etching [60–62], in analogy with SOI-based devices. The etching
provides confinement in one direction, allowing the formation of quantum
wires [58, 63–65]. In combination with electrostatic gates, this technique en-
ables electrical control of the tunnel barriers, which may be used to form
quantum point contacts [66] and quantum dots [57, 62, 67, 68]. However,
some drawbacks of side gating are large gate widths (compared with top
gates), resulting in reduced gate density, and increased gate distance, which
limits the fine tuning of gate-defined device features. A possible solution to
this problem is to utilize metal gates fabricated within the etch trench [69].
This avoids the problem of leakage, while aligning the gates more closely with
the quantum dot.

Difficulties in forming Schottky top gates have recently been overcome.
Starting in the 1990s, it was shown that Schottky gates could modulate elec-
tron densities in 2DEGs [70, 71]. It is now possible to fabricate top-gated
quantum dots by a number of different methods, including heterostructure
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optimization [72, 73], etching the surface to remove near-surface highly doped
regions [74].

Top-gated Si/SiGe quantum dots formed in 2DEGs have now been devel-
oped to the point that quantum effects such as Fano and Kondo resonances
are now observed [73]. Top gates can also be used to create quantum point
contacts [59, 66, 75–78]. Such point contacts have recently been used to enable
spectroscopy of valley states in Si/SiGe 2DEGs [79].

An interesting recent approach to Si/SiGe heterostructure growth may
provide an alternative route to forming robust Schottky gates. In [80] and
[81], quantum wells were formed by strain-sharing growth methods, on top of
an SOI substrate. In such structures, dislocations are entirely absent, since
the structure is thinner than the critical thickness for dislocation formation.
Strain sharing is accomplished by underetching the membrane, floating it
off the substrate, and redepositing it on a new substrate. Transport measure-
ments demonstrate the presence of a 2DEG. Such alternative growth methods
may result in structures that are free of the types of roughness and defects
that accompany conventional strained growths.

3 Spins and Valleys

Much of the recent interest in silicon quantum devices was initiated by the
quantum-dot spin qubit proposal by Loss and Di Vincenzo [82]. (Recent
progress is reviewed in [83].) Kane [84] has discussed the advantages of work-
ing in silicon, and further innovations of using donor nuclear-spin qubits have
been presented [85–89]. A similar donor-bound approach can be extended
to electron-spin qubits [90–93]. Vrijen et al. [94] have made a further exten-
sion to silicon-germanium heterostructures. Schemes have also been proposed
for electron-spin-based quantum computation in silicon-germanium quantum
dots [95, 96].

Spin-decoherence mechanisms are of fundamental importance for spin-
based quantum devices, and more generally for spintronics [1]. Silicon is an
excellent model system for studies of decoherence, and electron spins in sili-
con have long coherence times [97], making them particularly attractive for
applications. When nuclear spins are present, the electron phase-relaxation
time TM for phosphorus-bound donor electrons is dominated by spectral dif-
fusion due to flip-flops of the host nuclear spins [98]. However, the isotopic
purification of silicon’s naturally abundant, spin-zero nuclear isotope 28Si
leads to orders of magnitude improvement. In the latter case, the electron-
spin decoherence time T2 has been measured to be as long as 14ms at 7K,
and extrapolates to of the order of 60 ms for an isolated spin [99]. While it has
so far been possible to detect spin resonance in specialized silicon structures
[100], and while spin coherence has been observed in quantum dots [73], there
have not yet been reports of spin qubits in silicon quantum devices.
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An important distinction between silicon and GaAs quantum devices is
the low-lying valley structure of their conduction bands. As an indirect-gap
semiconductor, bulk silicon exhibits six degenerate valleys, which may com-
pete with spin as a quantum variable for quantum computing applications
[53, 101]. The valley degree-of-freedom is very important in low-temperature,
quantum devices, leading to a recent resurgence of interest in the subject of
valley splitting.

In a silicon inversion layer or quantum well, only two valleys will be pop-
ulated [the ±z valleys, for silicon (001)]. The degeneracy of these valleys
is broken in the presence of a sharp quantum-well interface. The value of
this valley splitting, and its importance for experiments has been the sub-
ject of interest for many years, beginning with the surface scattering theory of
Sham and Nakayama [102], the “electric breakthrough” theory of Ohkawa and
Uemura [103–105], and other formulations [106–109]. More recently, tight-
binding methods [110–113] and effective-mass theories [101, 113, 114] have
provided new insights.

A crucial question is whether valley splitting is large enough to allow
a workable spin-qubit Hilbert space. A number of experimental papers have
measured valley splitting as a function of magnetic field [29, 115–122], finding
surprisingly small values of the splitting, which would not enable spin qubits.
However, the significance of atomic steps due to quantum wells grown on
miscut substrates, or, more generally, in the presence of interfacial roughness
has recently been shown to cause a large reduction of the valley splitting
[79, 114, 123–125]. Lateral confinement lifts this suppression, allowing valley
splitting to approach its theoretical upper bound [79]. Valley splitting is also
found to approach the theoretical upper bound in SiO2/Si/SiO2 quantum
wells [29, 30, 126]. In this case, because of the narrow quantum wells and
the sharp potential barriers, the valley splitting reaches very large values, on
the order of 20meV. Because of the dependence of valley splitting on lateral
confinement, quantum devices like quantum point contacts have become an
important new tool in the study of valley splitting [75, 76, 79].

4 ESR in Silicon Quantum Wells

While for qubit applications one must be concerned with spin relaxation of
localized spins, the transport of spin information over long distances is im-
portant for many spintronics applications. Interestingly, the mechanisms for
spin relaxation of electrons with extended wavefunctions are quite different
than those of localized electrons. Delocalized electrons undergo momentum
scattering. D’yakonov and Perel’ (DP) pointed out in the early 1970s that
such scattering of electrons gives rise to spin relaxation in the presence of
spin-orbit coupling [127]. This DP mechanism dominates spin relaxation at
low temperatures in two-dimensional electron gases in GaAs heterostructures
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[128]. It also dominates the field-independent part of the relaxation at inter-
mediate temperatures in bulk GaAs [129, 130]. In addition to the advantage
of naturally abundant nuclear spin-zero isotopes, noted above, silicon also
has much weaker spin-orbit coupling than GaAs, and the DP mechanism
is therefore not as significant. Nevertheless, it is expected to dominate the
relaxation in two-dimensional electron gases in Si 2DEGs.

There have been a number of studies of electron-spin coherence in Si/SiGe
2DEGs over the last decade, as well as measurements on related X-valley sys-
tems [131, 132]. A principle measurement technique is ED-ESR [133], which
is of importance because of the reduced number of spins in the 2DEG com-
pared with bulk. The signal in this case is obtained from conductivity mea-
surements, and arises mainly from the reduction of spin polarization, rather
than electron heating [134]. ED-ESR can be extended to provide information
on valley splitting as well, in which case it is known as EVR [79]. Sharp ESR
resonances in Si/SiGe 2DEGs also allow for standard microwave absorption
measurements of as few as 109 spins [135–137].

Early ESR measurements demonstrated the importance of potential fluc-
tuations caused by ionized donors in the doping layer [135–137], which are
also thought to play a leading role in limiting the mobility in these devices
[39, 51, 52]. Indeed, mobility calculations, based on an ESR density of states
analysis of the potential fluctuations, provide good agreement with experi-
mental values [138].

The ESR data exhibit anisotropy with respect to the magnetic-field di-
rection in both the linewidth (dephasing time) and the electron g-factor [133,
139, 140]. This behavior suggests Bychkov–Rashba spin-orbit coupling as an
origin for DP-mediated spin relaxation. Wilamowski and coworkers have pro-
posed an additional modulation of the spin-orbit coupling and the ESR signal,
originating from the motional narrowing due to cyclotron motion [141, 142].
The anisotropy is also affected by the germanium content in the quantum well
[143, 144] and the electric current [145], providing a mechanism for g-factor
tuning in these systems.

ESR measurements provide several crucial estimates of device parameters
in the Si/SiGe quantum well. Wilamowski et al. obtain the Bychkov–Rashba
spin-orbit coupling parameter α = 0.55 × 10−12 eV cm [139, 140]. Graeff et
al. obtain the anisotropic g-factors g‖ = 2.0007 and g⊥ = 1.9999 for the
2DEG charge density of n = 4 × 1011 cm−2. Pulsed measurements suggest
spin coherence (T2) times up to 3 μs [146]. The latter may be enhanced by
confinement effects [144]. The longitudinal spin relaxation time is strongly
enhanced by inplane magnetic fields, giving T1 on the order of 1ms in a
3.55T field [134].

In the remainder of this chapter we revisit the issue of linewidth anisotropy.
We specifically consider several of the same heterostructures that were used
to fabricate quantum devices [57, 62, 72, 73, 79]. We provide a comprehensive
treatment of six different samples, using transport measurements to extract
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Table 1. Sample parameters and measurements of six Si1−xGex/Si/Si1−xGex

quantum wells. The first section of the table contains growth parameters: quantum-
well width, germanium composition of the barriers (x), dopant offset distance,
doping-layer thickness, spacer-layer thickness, and capping-layer thickness. The
next section contains results from Hall transport measurements: 2DEG charge den-
sity (ne), mobility (μ) and momentum relaxation time (τp). The last three columns
contain ESR results: T ∗

2 is derived from (1), using g = 2.00 for all samples, A(15◦) is
the anisotropy parameter corresponding to the magnetic-field orientation θ = 15◦,
as described in (3), and b is the fitted quadratic coefficient of the anisotropy, from (4)
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ibm-01 8.0 0.30 14 1 14 3.5 4.0 37,300 4.3 0.6 1.0 1.6

uw-030827 10 0.35 15 22 35 10 4.8 90,000 9.7 0.1 4.7 38

uw-030903 10 0.25 13 17 35 10 4.3 86,700 9.4 0.2 2.1 13

uw-031121 10 0.30 20 6 60 20 5.4 38,000 5.0 0.1 2.0 25

uw-031124 10 0.30 20 26 40 20 4.7 63,200 6.9 0.1 2.0 18

uw-031203 10 0.30 60 6 60 20 2.6 17,100 1.8 0.5 2.3 10

the electron density and scattering time. We use ESR to measure T ∗
2 and to

provide an indication of the spin-decoherence mechanism. A detailed study
indicates that the dominant decoherence mechanism is strongly dependent on
the orientation of the magnetic field – so much so that it is inconsistent with
mechanisms described in the papers described above. Our main conclusions
are presented in Table 1.

5 Samples

The Si/SiGe heterostructures were grown by ultrahigh-vacuum chemical va-
por deposition at the University of Wisconsin-Madison and at IBM-Watson
[48]. The 2DEG sits near the top of a strained Si layer grown on a strain-
relaxed Si1−xGex buffer layer, as shown in Fig. 1a of [57]. Above the 2DEG
is a Si1−xGex offset layer, followed by a phosphorus-doped dopant layer, and
then a Si1−xGex spacer layer capped with Si at the surface. Table 1 contains
the heterostructure details for each sample.

Hall measurements were performed on each sample. The Hall bars were
fabricated by etching and Ohmic contacts were made to the 2DEG by Au/Sb
metal evaporation and annealing at 400◦C for 10 min. The Hall data were
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Fig. 1. Electrons in the quantum well move in the presence of a modulation-
doping field. As a consequence of relativity, they then experience an effective inplane
magnetic field HR, known as the Rashba field, in addition to an external magnetic
field B0, which is oriented at angle θ from the normal direction

used to extract the electron density and mobility. From the mobility we de-
rived the momentum relaxation time τp = m∗

eμ/e, an important parameter
in spin relaxation via spin-orbit and related interactions. The parameters re-
ported in Table 1 have been corrected for a small parallel conduction path
using the method of Kane et al.,1 and in each case this correction was smaller
than 1% [147].

6 ESR Measurements

Electron-spin resonance data were acquired with a Bruker ESP300E X-band
spectrometer, using an Oxford Instruments ESR900 continuous-flow cryostat
to maintain a sample temperature of 4.2K. Magnetic-field calibration and
tracking was done with an ER035M NMR Gaussmeter. The power depen-
dence was checked to ensure the experiments were performed at low enough
power that the peak width did not depend on the power level.

The ESR spectra for all samples were measured as a function of the ori-
entation of the applied magnetic field, given by the angle θ between the
magnetic field and the growth direction of the sample, as shown in Fig. 1.
Figures 2a and c describe two-dimensional maps of the ESR intensity as a
function of magnetic field and orientation angle for two selected samples. The
peak-to-peak ESR linewidths ΔHpp were extracted by fitting the lineshapes
to the derivative of a Lorentzian, as shown in the insets of Figs. 2b and d.
The linewidths exhibit a pronounced dependence on the orientation angle θ,
as shown in Figs. 2b and d. The minimal ESR linewidths (at θ = 0) and

1 The unchanging slope of the transverse resistance shows that the conductivity of
the parallel conduction path is much less than the conductivity of the 2DEG. This
limit is consistent with Kane’s analysis, allowing us to extract the 2DEG mobility
and electron density as well as the conductivity of the parallel conduction path.
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Fig. 2. Orientation map of the ESR signal from (a) sample uw-031203 and (c) sam-
ple ibm-01. The color scale describes the peak intensity. The angle on the vertical
axis is explained in Fig. 1. Lorentzian fits to the peak width are shown in (b) and
(d) for the same two samples (see inset), as a function of the field angle

the observed linewidth anisotropies are summarized in Table 1, based on the
analysis described below.2

7 Decoherence Analysis

The ESR linewidth ΔHpp is directly related to the coherence time T ∗
2 through

the expression [4]

ΔHpp =
2√
3

h̄

gμB

(
1
T ∗

2

)
, (1)

2 In many ESR data sets, including the inset of Fig. 2b, there is a small peak near
3341 G, in the region of Landé g-factor, g ≈ 2.0. The peak shows no orientational
dependence, and it is wider than the 2DEG peak. Because the peak is almost
perfectly equidistant between two 42 G split phosphorous peaks (not shown in the
figure), we deduce that it arises from electrons in the dopant layer, which are shared
among clusters of phosphorous nuclei. For example, see [148], especially Figs. 15
and 16.
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where g is the Landé g-factor and μB is the Bohr magneton. It has been
proposed [141] that the orientational dependence of T ∗

2 (and thus of ΔHpp)
in similar 2DEG structures results from a D’yakonov–Perel’ spin relaxation
mechanism due to fluctuating Rashba fields [127]. There is an electric field
perpendicular to the plane of the 2DEG, due to ionized donors in the dop-
ing layer, or other interface effects. As a consequence of relativity, mobile
electrons in the quantum well then experience an effective magnetic field
in the plane of the 2DEG called the Rashba field HR. (See Fig. 1.) Two-
dimensional scattering processes therefore induce a fluctuating field ΔHR in
the 2DEG plane. When the external magnetic field B0 is perpendicular to
the 2DEG (θ = 0), the fluctuating ΔHR is perpendicular to B0. However,
when B0 is tilted with respect to the 2DEG (θ �= 0), a component of the
fluctuating field appears along B0, resulting in an orientational dependence
of T ∗

2 . In general, there may be other contributions to the linewidth, due
to inhomogeneous broadening or other decoherence mechanisms, so that the
spin-coherence time T ∗

2 may be written as

1
T ∗

2

=
1
T2R

+
1
T ′

2

,

where 1/T2R is the Rashba contribution, and 1/T ′
2 includes all other contri-

butions.
Two groups have derived expressions for T2R in the limit ωcτp cos θ � 1.

Both results can be written in similar fashion as
1
T2R

= α2k2
Fτp

[
η

1 + (ωc cos θ)2τ2
p

sin2 θ

+
1/2

1 + (ωL − ωc cos θ)2τ2
p

(
cos2 θ + 1

)]
. (2)

The coefficient η = 1/2 was obtained in [141], while η = 2 was obtained in
[149]. The Rashba coefficient α is defined in the Rashba Hamiltonian H =
α(σ ×kF)·n̂, where σ are the Pauli spin matrices, kF is the Fermi wavevector
of the electron, ωc = eB/m∗

e is the cyclotron frequency, and ωL = gμBH/h̄ is
the Larmor spin precession frequency [141]. The limit ωcτp cos θ � 1 implies
that (2) is valid only for small angles θ.

If 1/T2R is the dominant term in 1/T ∗
2 , then (2) can be normalized to give

the anisotropy parameter A(θ), which depends on the momentum scattering
time τp, but not the Rashba parameter α:3

3 The presumed origin of the Rashba field in these samples is from asymmetries
occurring in the heterostructure, which lead to internal electric fields. There are
four main types of asymmetries: (a) bulk inversion asymmetry (BIA) associated
with the crystal lattice of the growth material [150], (b) structural inversion asym-
metry (SIA) arising from explicit asymmetries in the heterostructure (e.g., dopants
on the top, not the bottom) [150], (c) native interface asymmetry (NIA) arising
from chemical bonds at the interface [151], and (d) fluctuations in the dopant con-
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Fig. 3. Normalized experimental peak widths are presented as a function of the
magnetic-field orientation θ, for all six samples. The corresponding theoretical pre-
dictions for the anisotropy parameter A(θ) in (3) are shown as lines, using η = 1/2

A(θ) ≡ ΔHpp(θ)
ΔHpp(0)

=
1/T ∗

2 (θ)
1/T ∗

2 (0)

=
[
1 + (ωL − ωc)2τ2

p

]

×
[

η sin2 θ

1 + (ωc cos θ)2τ2
p

+
(cos2 θ + 1)/2

1 + (ωL − ωc cos θ)2τ2
p

]
. (3)

8 Results

In Fig. 3, we show the renormalized linewidths for all six samples, along with
the theoretical results for A(θ). In five of these six cases, the experimental
anisotropies at small angles clearly differ substantially from the theoretical
predictions. We can quantify this difference as follows. Since (3) applies for
small θ, we can perform a Taylor expansion to give

A(θ) = 1 + b θ2 (θ � π/2), (4)

where the quadratic coefficient b is a measure of how quickly the anisotropy
increases with angle θ. For each sample, b can be determined experimentally

centration [152]. Neither (a) nor (c) are present in Si/SiGe heterostructures [153],
leaving (b) and (d) as the possible sources of perpendicular electric fields. It is most
likely that SIA arises from modulation doping fields, which can also lead to local
fluctuations in the charge density (d).
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Fig. 4. The quadratic coefficient b of the anisotropy parameter A(θ), from (3)
and (4), obtained by fitting to the experimental data near the origin, and expressed
as a function of the momentum scatting time τp. The lines show the theoretical
predictions for η = 2 (dashed line) and η = 1/2 (solid line)

by fitting the data. A plot of b as a function of the momentum relaxation
time τp is given in Fig. 4, and the results are also listed in Table 1. For all six
samples, the quadratic coefficients b differ substantially from the theoretical
predictions, considering both proposed values of η. Even more striking, the
maximum theoretical value of b for any value of τp is about 2 rad−2. This value
is nearly an order of magnitude smaller than the experimental observations
for five of the six samples.

As Fig. 4 demonstrates, the semiclassical expression for 1/T2R in (2) does
not account for the observed behavior of 1/T ∗

2 in our samples. Various mech-
anisms could be contributing to the linewidth, through the component 1/T ′

2.
In this case, 1/T ′

2 would necessarily contain an angular dependence, other-
wise the functional form of the anisotropy would be unchanged, leaving b
unaffected. The observed discrepancy must therefore involve an angular de-
pendence. Since bulk silicon possesses a crystallographic inversion symmetry,
orientationally dependent mechanisms [141, 154] originating from the anti-
symmetric Dresselhaus term in the Hamiltonian [155], should not contribute
to the linewidth.

There are several possible explanations for the observed anisotropy. In a
recent paper, it was shown that in addition to the magnetic excitation mech-
anism, a microwave electric field may also excite ESR, as mediated by the
spin-orbit coupling in a AlAs quantum well [132]. This contribution could
provide an anomalous orientational dependence, since it depends only on the
inplane component of the E-field. However, the same mechanism has not
yet been observed in Si quantum wells, where the spin-orbit coupling is very
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small. In our experiments, we were careful to place samples only at the zero-
field nodes of the resonating cavity, so related effects would be minimized.
Further, sample IBM-1 shows dramatically different orientational dependence
from the other samples, yet the measurement procedure was the same for all
samples. Thus, electric-field effects seem an unlikely explanation for the di-
vergent examples of broadening observed here. It is also possible that the
unexpected behavior arises from the angular dependence of the inhomoge-
neous broadening. One could test this hypothesis by means of pulsed EPR
experiments, which measure T2 instead of T ∗

2 , thus removing the sensitivity
to inhomogeneous broadening. The latter can arise from static dipole–dipole
interactions with 29Si nuclei. Interactions with residual 29Si nuclei can also
be eliminated by growing quantum wells with isotopically purified 28Si.

9 Conclusions

In this chapter, we have reviewed the current state of silicon quantum devices
and silicon ESR in 2DEGs. We have also presented results of ESR and trans-
port measurements in a number of 2DEGs used in recent quantum-device
experiments. Specifically, we have analyzed the orientational dependence of
the ESR linewidths. In one of our samples, we observed a dependence similar
to recent observations in other groups. However, for five other samples, we
observe an orientation-dependent spin decoherence with an anisotropy larger
than the predictions of any current theory.

As discussed in the first half of this chapter, silicon quantum devices have
advanced dramatically over the past decade, and are increasingly used in
spintronics and related valley-based applications. Recent progress has demon-
strated that quantum effects thought to be difficult to observe in silicon can
in fact be realized, and one hopes that this will be a springboard for future
work.
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1. I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and ap-
plications. Rev. Mod. Phys. 76, 323–410 (2004) 102, 106

2. S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl.
Phys. Lett. 56, 665–667 (1990) 102



116 J.L. Truitt et al.

3. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Infor-
mation (Cambridge University Press, Cambridge, 2000) 102

4. C. Poole, Electron Spin Resonance, 2nd edn. (Dover, Minneola, 1996)
102, 111

5. C.P. Slichter, Principles of Magnetic Resonance, 2nd edn. (Springer,
Berlin, 1978) 102

6. D. Stein, K. von Klitzing, G. Weimann, Electron spin resonance
on GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 51, 130–133
(1983) 102

7. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jul-
lian, Y. Feng, Z. Wasilewski, Addition spectrum of a lateral dot from
Coulomb and spin blockade spectroscopy. Phys. Rev. B 61, R16315–
R16318 (2000) 102, 104, 105

8. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, S. Tarucha, Al-
lowed and forbidden transitions in artificial hydrogen and helium atoms.
Nature 419, 278–281 (2002) 102, 104, 105

9. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp,
L.M.K. Vandersypen, L.P. Kouwenhoven, Single-shot read-out of an in-
dividual electron spin in a quantum dot. Nature 430, 431 (2004) 102,
104, 105

10. F.H.L. Koppens, J.A. Folk, J.M. Elzerman, R. Hanson, L.H. Willems
van Beveren, I.T. Vink, H.P. Tranitz, W. Wegscheider, L.P. Kouwen-
hoven, L.M.K. Vandersypen, Control and detection of singlet-triplet
mixing in a random nuclear field. Science 309, 1346–1350 (2005) 102,
104

11. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby,
M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent ma-
nipulation of coupled electron spins in semiconductor quantum dots.
Science 309, 2180–2184 (2005) 102, 104, 105

12. A.C. Johnson, J.R. Petta, J.M. Taylor, A. Yacoby, M.D. Lukin,
C.M. Marcus, M.P. Hanson, A.C. Gossard, Triplet-singlet spin relax-
ation via nuclei in a double quantum dot. Nature 435, 925–928 (2005)
102, 104

13. R. Hanson, L.H. Willems van Beveren, I.T. Vink, J.M. Elzerman,
W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, L.M.K. Vander-
sypen, Single-shot readout of electron spin states in a quantum dot
using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)
102, 104

14. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack,
T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Driven coherent
oscillations of a single electron spin in a quantum dot. Nature 442,
766–771 (2006) 102, 104

15. T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional
systems. Rev. Mod. Phys. 54, 437–672 (1982) 103, 104



Si/SiGe Quantum Devices, Quantum Wells, and Electron Spin Coherence 117

16. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York,
1981) 103, 104

17. Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwdate,
Y. Nakajima, S. Horiguchi, K. Murase, M. Tabe, Fabrication technique
for Si single-electron transistor operating at room temperature. Elec-
tron. Lett. 31, 136–137 (1995) 103

18. L. Guo, E. Leobandung, L. Zhuang, S.Y. Chou, Fabrication and charac-
terization of room temperature silicon single electron memory. J. Vac.
Sci. Technol. B 15, 2840–2843 (1997) 103

19. S.K. Ray, L.K. Bera, C.K. Maiti, S. John, S.K. Banerjee, Elec-
trical characteristics of plasma oxidized Si1−x−yGexCy metal–oxide–
semiconductor capacitors. Appl. Phys. Lett. 72, 1250–1252 (1998) 103

20. D. Ali, H. Ahmed, Coulomb blockade in a silicon tunnel junction device.
Appl. Phys. Lett. 64, 2119–2120 (1994) 103

21. L. Guo, E. Leobandung, S.Y. Chou, A silicon single-electron transistor
memory operating at room temperature. Science 275, 649–651 (1997)
103

22. M. Khoury, M.J. Rack, A. Gunther, D.K. Ferry, Spectroscopy of a sili-
con quantum dot. Appl. Phys. Lett. 74, 1576–1578 (1999) 103

23. K.-S. Park, S.-J. Kim, I.-B. Baek, W.-H. Lee, J.-S. Kang, Y.-B. Jo,
S.D. Lee, C.-K. Lee, J.-B. Choi, J.-H. Kim, K.-H. Park, W.-J. Cho,
M.-G. Jang, S.-J. Lee, SOI single-electron transistor with low RC delay
for logic cells and SET/FET hybrid ICs. IEEE Trans. Nanotechnol. 4,
242–248 (2005) 103

24. E.G. Emiroglu, D.G. Hasko, D.A. Williams, Isolated double quantum
dot capacitively coupled to a single quantum dot single-electron tran-
sistor in silicon. Appl. Phys. Lett. 83, 3942–3944 (2003) 104

25. S.D. Lee, K.S. Park, J.W. Park, J.B. Choi, S.-R.E. Yang, K.-H. Yoo,
J. Kim, S.I. Park, K.T. Kim, Single-electron spectroscopy in a coupled
triple-dot system: Role of interdot electron-electron interactions. Phys.
Rev. B 62, R7735–R7738 (2000) 104

26. S.D. Lee, S.J. Shin, S.J. Choi, J.J. Lee, J.B. Choi, S. Park, S.-R.E. Yang,
S.J. Lee, T.H. Zyung, Si-based Coulomb blockade device for spin qubit
logic gate. Appl. Phys. Lett. 89, 023111 (2006) 104

27. A. Fujiwara, Y. Takahashi, Manipulation of elementary charge in a sil-
icon charge-coupled device. Nature 410, 560–562 (2001) 104

28. J. Gorman, D.G. Hasko, D.A. Williams, Charge-qubit operation of an
isolated double quantum dot. Appl. Phys. Lett. 95, 090502 (2005) 104

29. K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, Y. Hirayama, Val-
ley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96,
236801 (2006) 104, 107

30. T. Ouisse, D.K. Maude, S. Horiguchi, Y. Ono, Y. Takahashi, K. Murase,
S. Cristoloveanu, Subband structure and anomalous valley splitting in
ultra-thin silicon-on-insulator MOSFET’s. Physica B 249–251, 731–734
(1998) 104, 107



118 J.L. Truitt et al.

31. R. Augke, W. Eberhardt, C. Single, F.E. Prins, D.A. Wharam,
D.P. Kern, Doped silicon single electron transistors with single island
characteristics. Appl. Phys. Lett. 76, 2065–2067 (2000) 104

32. N.M. Zimmerman, W.H. Huber, A. Fujiwara, Y. Takahashi, Excellent
charge offset stability in a Si-based single-electron tunneling transistor.
Appl. Phys. Lett. 79, 3188–3190 (2001) 104

33. J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, D.A. An-
toniadia, Conductance oscillations periodic in the density of a one-
dimensional electron gas. Phys. Rev. Lett. 62, 583–586 (1989) 104

34. R.A. Smith, H. Ahmed, Gate controlled Coulomb blockade effects in
the conduction of a silicon quantum wire. J. Appl. Phys. 81, 2699–2703
(1997) 104

35. L.P. Rokhinson, L.J. Guo, S.Y. Chou, D.C. Tsui, Double-dot charge
transport in Si single-electron/hole transistors. Appl. Phys. Lett. 76,
1591–1593 (2000) 104

36. B.H. Choi, Y.S. Yu, D.H. Kim, S.H. Son, K.H. Cho, S.W. Hwang,
D. Ahn, B.-G. Park, Double-dot-like charge transport through a small
size silicon single electron transistor. Physica E 13, 946–949 (2002) 104

37. K.H. Cho, B.H. Choi, S.H. Son, S.W. Hwang, D. Ahn, B.-G. Park,
B. Naser, J.-F. Lin, J.P. Bird, Evidence of double layer quantum dot
formation in a silicon-on-insulator nanowire transistor. Appl. Phys. Lett.
86, 043101 (2005) 104

38. Y. Ono, A. Fujiwara, K. Nishiguchi, H. Inokawa, Y. Takahashi, Manipu-
lation and detection of single electrons for future information processing.
J. Appl. Phys. 97, 031101 (2005) 104
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76. D. Többen, D.A. Wharam, G. Abstreiter, J.P. Kotthaus, F. Schäffler,
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Electrical Detection
of Electron-Spin Resonance
in Two-Dimensional Systems

Junya Matsunami and Tohru Okamoto
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Tokyo 113-0033, Japan

Abstract. We report electrically detected electron-spin resonance (ESR)
measurements in a high-mobility two-dimensional electron system formed in
a Si/SiGe heterostructure. Firstly, we clarify the origin of the ESR-induced
resistivity change by optimizing the configuration among the Landau levels
and the chemical potential. The observed decrease in the longitudinal resis-
tivity shows that the primary cause is a change in the chemical potential, not
a rise in the electron temperature. Heat flow in steady state under resonance
conditions is also discussed. Secondly, we demonstrate a novel analysis of
the resistivity change to deduce the spin-relaxation times. The longitudinal
spin-relaxation time T1 is obtained to be of the order of 1ms in an inplane
magnetic field of 3.55T. The suppression of the effect of the Rashba fields
due to high-frequency spin precession qualitatively explains the very long T1.

1 Mechanism of Electrical Detection

Detection of electron-spin resonance (ESR) can be broadly classified into two
categories: (1) spectroscopic detection and (2) electrical detection. Electrical
detection is preferable especially for measurements in low-dimensional sys-
tems because the magnitude of the resistivity change does not scale with
the size of the system. Electrical detection has further advantages of its ap-
plicability to wide frequency and temperature ranges. Moreover, electrically
detected ESR can be a novel tool to probe the relation between the spin
polarization and electrical conduction.

For electrical detection of ESR, the resistivity must be sensitive to the
spin-flip. Stein et al. demonstrated that electrical detection is indeed possi-
ble in quantum Hall systems [1]. They performed measurements at the odd
Landau level (LL) filling factors ν, and observed the ESR signal as a posi-
tive change Δρxx in the longitudinal resistivity ρxx. Following the pioneering
work, electrically detected ESR measurements have been performed inten-
sively in quantum Hall systems formed in GaAs/AlGaAs heterostructures.
The measurements have so far revealed, for example, the electron g-factor
from the resonance field [2, 3] and the dynamic nuclear-spin polarization
from the shift of the resonance field [4, 5]. However, for all its importance,

M. Fanciulli (Ed.): Electron Spin Resonance and Related Phenomena
in Low-Dimensional Structures, Topics Appl. Physics 115, 129–140 (2009)
c© Springer-Verlag Berlin Heidelberg 2009
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the mechanism of electrical detection remained unclear. In this section, we
determine it from measurements in a “specific” LL configuration [6].

We performed electrically detected ESR measurements in a high-mobility
Si/SiGe heterostructure sample. Four-probe ac resistivity measurements were
performed for a Hall bar sample The ESR signal Δρxx was observed during
the magnetic field sweep in the presence of continuous 100GHz millimeter-
wave radiation. The sample was mounted inside an oversized waveguide
inserted into a pumped 3He refrigerator. By rotating the waveguide in a
Helmholtz magnet, we changed the angle of the two-dimensional (2D) plane
with respect to the magnetic field without changing the millimeter-wave con-
figuration in the waveguide.

We first describe the “standard” LL configuration used in previous stud-
ies. In 2D systems subject to a strong perpendicular magnetic field, the kinetic
energy of carriers is quantized into discrete LLs separated by the cyclotron
gap h̄ωc (ωc = eB⊥/m

∗). Each LL is further split by the Zeeman splitting
energy EZ = |g∗ |μBBtot. Here, Btot and B⊥ are the total and perpendicu-
lar magnetic field, and m∗ and g∗ are electron effective mass and g-factor,
respectively. When EZ > h̄ωc and ν = odd, the equilibrium chemical po-
tential μ is located between spin-split LLs with the same orbital index as
illustrated in Fig. 1a. Electrons and holes cause dissipation when they are
thermally activated between the spin-split LLs. For low enough temperature,
ρxx increases with the number of thermally activated carriers and shows an
Arrhenius temperature dependence;

ρxx � R0exp
{

−(E↓,n − μ↓)/kBTe

}
+R1exp

{
−(μ↑ − E↑,n)/kBTe

}
. (1)

Here, LLs and their energy are labeled by their spin index (↑, ↓) and or-
bital index n. As can be seen from (1), ρxx is very sensitive to the chemical
potential μ↓ (μ↑) for spin-down (spin-up) electrons as well as the electron
temperature Te.

Fig. 1. (a) ESR excita-
tion process and (b) the
observed ESR signal in
the standard LL configu-
ration [6]



Electrical Detection of Electron Spin Resonance 131

Fig. 2. Effect of the
chemical-potential shift
(a) for the standard
LL configuration and
(b) the specific LL con-
figuration

Figure 1b shows positive Δρxx observed in the Si/SiGe heterostructure
sample at EZ < h̄ωc and ν = 21 [6]. As illustrated in Fig. 1a, in this situation
ESR excitation occurs from the filled LL(↑, 0) to the empty LL(↓, 0). There
are two effects that can cause positive Δρxx. First, since the spin population
is changed by the spin-flip, μ↓ increases while μ↑ decreases from their equi-
librium value μ, as illustrated in Fig. 2a. Since μ↓ and μ↑ get closer to E↓,0

and E↑,0, respectively, ρxx increases. Secondly, Te increases by the resonant-
energy absorption of the 2D electron system (2DES). This can also be the
cause of the positive Δρxx. Indeed, positive Δρxx observed in GaAs/AlGaAs
heterostructures have been discussed in terms of electron heating [7]. Since
these two effects can both cause positive Δρxx, it has been difficult to deter-
mine the origin in the standard LL configuration.

To overcome the difficulty, we located μ below a spin-down LL and above
a spin-up LL as illustrated in Fig. 2b. In this case, by their upward and
downward shift from μ, μ↓ and μ↑ get away from their nearest LLs and ρxx

decreases. Hence, the effect of the shift in μ↓ and μ↑ can be distinguished
from the electron heating effect, in contrast to the case of the standard LL
configuration.

Figure 3a illustrates the “specific” LL configuration adopted in our mea-
surements [6]. Thermally excited holes in LL(↓, 0) and electrons in LL(↑, 2)
cause finite ρxx. For the ESR excitation to occur, there must be more spin-up
LLs than spin-down LLs below μ. To meet this requirement, we located not
only LL(↑, 0) but also LL(↑, 1) below LL(↓, 0) by increasing EZ/h̄ωc. Since

1 Note that the twofold valley degeneracy gv = 2 remains in 2DESs formed in
Si (001) quantum wells. At ν = 2, μ lies between the spin-split LLs with n = 0 as
in the case of ν = 1 in GaAs/AlGaAs heterostructures.
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Fig. 3. (a) ESR-induced
carrier dynamics and
(b) the observed ESR
signal in the specific LL
configuration [6]

EZ and h̄ωc are proportional to Btot and B⊥, respectively, we can control the
ratio EZ/h̄ωc = (|g∗ |m∗/2m0)(Btot/B⊥) by tilting the sample in a magnetic
field. Although EZ < h̄ωc for Btot/B⊥ = 1, the hierarchy between EZ and
h̄ωc can be inverted by increasing Btot/B⊥ if we choose a host material with
relatively large |g∗ |m∗ such as Si. The realization of the specific LL config-
uration was confirmed by the Btot/B⊥ dependence of Shubnikov–de Haas
oscillations.

As shown in Fig. 3b, the ESR signal was observed as negative Δρxx in the
specific LL configuration. Negative Δρxx cannot be caused by electron heat-
ing because ∂ρxx/∂T is positive. To explain it, we discuss the ESR-induced
carrier dynamics shown in Fig. 3a. Since the orbital index n does not change
during the spin-flip, the photoexcitation occurs mainly from the filled LL(↑, 1)
to the empty LL(↓, 1). When the longitudinal spin-relaxation time T1 is much
longer than the electron–lattice relaxation time τe−l, photoexcited electrons
in LL(↓, 1) and holes in LL(↑, 1) relax to LL(↓, 0) and LL(↑, 2), respectively.
The total number of conduction carriers is reduced by the recombination of
photoexcited carriers with thermally activated carriers. The negative Δρxx

can be understood as a consequence of the upward and downward shift of μ↓
and μ↑. We consider that the effect of the chemical potential shift dominates
in Δρxx as far as T1 � τe−l.

To discuss heat flow in the steady state, we show a generalized schematic
diagram in Fig. 4. A similar heat-bath model has been proposed to under-
stand the nuclear-spin relaxation in solid 3He systems where exchange motion
of atoms caused by the quantum effect dominates the nuclear magnetism.2

We consider that the Zeeman energy can flow to the lattice mainly via the
2D orbital motion of electrons because T1 of electrons bound to donors in
bulk silicon is extremely long [9, 10]. As discussed in Sect. 2, the Rashba in-
teraction couples the Zeeman system to the orbital system in a 2DES formed
in an asymmetric potential well although it is not strong in silicon 2DESs
[11]. The electron–electron interaction conserves the Zeeman energy, while it

2 For a review, see [8].
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Fig. 4. Schematic heat-flow diagram

is expected to contribute to thermalization in the orbital system. Assuming
that T1 is much longer than τe−l, the ESR absorption increases the Zeeman
energy without a significant increase in the temperature of the orbital system.

2 Determination of Spin-Relaxation Times

One of the most representative applications of ESR is the determination of
spin-relaxation times. This has recently become increasingly important espe-
cially in the context of spintronics applications, to which long spin-relaxation
times are critical [12].3 To attain long spin-relaxation times, Si appears to
be a suitable host material. For its weak spin-orbit and electron–nuclear spin
interactions, electron spin in Si is strongly isolated from the surroundings.
Silicon has the further advantage that knowledge and resources accumulated
in the traditional silicon electronics can be fully exploited. Recently, both T1

and T2 of the order of μs were reported in ESR measurements made on 2DESs
formed in Si quantum wells [14–16]. The measurements were restricted to the
frequency of 9.4GHz (corresponding to the resonance field of B � 0.34 T) be-
cause they were made with X-band ESR spectrometers. To present a clear
guideline for device applications, methodological breakthroughs are highly
desired to measure spin-relaxation times in a wide measurement environ-
ment. In this section we demonstrate a novel analysis of electrically detected
ESR signals to obtain spin-relaxation times [6]. By applying it to the high-
mobility Si/SiGe heterostructure sample in a strong magnetic field, we show
that longitudinal spin relaxation is strongly suppressed by the combination
of high-frequency spin precession and weak orbital scattering.

We begin by introducing the strong dependence of the resistivity ρ on the
spin polarization P in silicon 2DESs, which here plays a key role. Since the
3 For a review, see [13].
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first report of a metal–insulator transition at zero magnetic field in a high-
mobility Si-MOSFET (metal oxide semiconductor field effect transistor) [17],
transport properties of silicon 2DESs have been actively studied for the last
decade.4 It is well known that strong positive inplane magnetoresistance is
observed in silicon 2DESs [19–21]. Because the magnetic field B‖ applied
parallel to the 2D plane does not directly affect the 2D orbital motion of
electrons, the observed positive B‖ dependence of ρ is attributed to the spin
polarization of 2DESs [22].

Figure 5a shows negative Δρ observed in the inplane magnetic field con-
figuration. Electron heating cannot cause negative Δρ because ∂ρ/∂T is posi-
tive.5 As illustrated in Fig. 5b, the photoexcited carriers are expected to relax
their energy immediately to the lattice without spin relaxation, as in the spe-
cific LL configuration discussed in Sect. 1. By the upward (downward) shift
of μ↓ (μ↑), the spin polarization P is reduced. The negative Δρ is understood
as a consequence of the reduction ΔP of P because ∂ρ/∂P is positive.

We directly obtain ΔP from Δρ by Δρ = (∂ρ/∂P )ΔP . The relation
between ρ and P can be calibrated by using the inplane magnetoresistance
ρ(B‖) in the absence of radiation. Figure 5c shows an example. Thanks to
the constant density of states for the inplane magnetic-field configuration
(B⊥ = 0), P is given as a function of B‖ and T . Calculations yield

P =
kBTe

EF
ln
[
1 + e(μ+EZ)/kBTe

1 + eμ/kBTe

]
, (2)

where

μ = kBTe ln
[

−1 − e−EZ/kBTe

+
√

(1 − e−EZ/kBTe)2 + 4e(EF−EZ)/kBTe

]
(3)

is the equilibrium chemical potential for spin-down electrons, EZ = g∗μBB‖
is the Zeeman splitting energy, and EF = 2πh̄2Ns/gvm

∗ is the Fermi energy
at the full spin polarization (Ns is the 2D electron concentration).6 The upper
horizontal axis of Fig. 5c shows P calculated from (2) and (3) for Te = 0. The
magnetoresistance shows a sharp kink at the full spin polarization (P = 1),
ensuring that the increase in ρ is caused mainly by the spin polarization. By
using obtained ∂ρ/∂P , Δρ is transformed into ΔP , as shown in the right
vertical axis of Fig. 5a.

To derive T1 and T2 from the B‖ dependence of ΔP , we consider the
balance between spin excitation and relaxation in the steady state under
4 For a review, see [18].
5 The metallic T dependence of ρ survives in a strong B‖ in 2DESs formed in
high-mobility Si quantum wells, while it is suppressed by B‖ in 2DESs in Si-MOS
structures and 2D hole systems in GaAs/AlGaAs heterostructures [21].
6 In the calculation, the enhancements of |g∗ | and m∗ due to the carrier-correlation
effect [22, 23] are taken into account. For Te = 0, (2) and (3) give P = EZ/EF and
μ = (EF − EZ)/2.
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Fig. 5. (a) Observed ESR signal (solid line) and the result of fitting by (7) (dashed
line, shifted in vertical direction for clarity) in the inplane magnetic-field configura-
tion. Right vertical axis shows the transformation of Δρ into ΔP . (b) ESR-induced
carrier dynamics in an inplane magnetic field [6]. (c) Inplane magnetoresistance
observed in the Si/SiGe heterostructure sample. Upper horizontal axis shows P
calculated from (2) and (3). (d), (e) Spin-relaxation times T2 and T1 vs. Ns ob-
tained in the inplane magnetic field of 3.55 T [6]

continuous-wave excitation. For this purpose, it is convenient to define a co-
ordinate system (x′, y′, z) rotating about the z-axis (taken along the external
magnetic field B‖) at the frequency ω of the oscillating magnetic field. In
the rotating frame the oscillating magnetic field can be expressed as a static
magnetic field B1 along the x′-axis, and B‖ shrinks to B‖ − ω/γ, where γ is
the gyromagnetic ratio. The value of B1 can be roughly estimated from its re-
lationship B1 ∼ E1nSi/c to the amplitude of the oscillating electric field E1,
where nSi is the refractive index of silicon and c is the speed of light. We
obtain E1 from electron cyclotron resonance absorption measurements made
in a perpendicular static magnetic field [24]. For example, B1 = 0.8 μT for a
millimeter-wave output power of 19mW. Assuming that spin relaxation can
be simply characterized by two parameters T1 and T2, the time evolution of
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the magnetization M is described by the Bloch equations as follows [25];

dMx′

dt
= (γB‖ − ω)My′ − Mx′

T2
, (4)

dMy′

dt
= γB1Mz − (γB‖ − ω)Mx′ − My′

T2
, (5)

dMz

dt
= −γB1My′ − Mz − M0

T1
. (6)

Here, M0 is the equilibrium value of Mz and (Mz − M0)/M0 is identified
with ΔP/P . By solving (4)–(6) for the steady state (dM/dt = 0) under
weak excitation ((Mz − M0)/M0 � 1), the B‖ dependence of ΔP is related
to T1 and T2 as

ΔP

P
=
Mz − M0

M0
= − γ2B2

1T1T2

1 + (ω − γB‖)2T 2
2

. (7)

The dashed line in Fig. 5a shows the result of fitting by (7). The observed
ESR signals have Lorentzian lineshapes and are well fitted by (7). As can be
seen from (7), T1 and T2 can be obtained from the amplitude and linewidth of
the ESR signals, respectively. Figures 5d and e show the obtained T1 and T2

as a function of Ns. In the experimental range of T and Ns, T1 was estimated
to be of the order of 1 ms, whereas T2 was about 10 ns. No significant T
dependence was found in T1 and T2 in the range of 2 to 6K.

The obtained values of T1 and T2 sharply contrast with those reported
in earlier measurements on lower-mobility Si quantum wells in low magnetic
fields (B � 0.34T), in which both T1 and T2 were found to be of the order of
μs [14–16]. The values T1 ∼ 1ms obtained here are by far the longest values
ever reported for 2D systems as far as we know. The very long T1 indicates
that longitudinal spin relaxation is strongly suppressed in the high-mobility
silicon 2DES under a strong magnetic field.

Spin relaxation in 2DESs formed in Si/SiGe heterostructures is consid-
ered to be caused chiefly by the Rashba fields, which arise from the asym-
metry of quantum-well structures [15, 16, 26]. As illustrated in Fig. 6, the Si
quantum well is sandwiched between positively charged Sb ions in the doped
layer and negatively charged accepters in the p-type substrate. Electrons feel
an effective electric field Eeff perpendicular to the 2D plane. In the coor-
dinate system moving along with the electrons, the perpendicular electric
field is transformed into effective magnetic fields BR = αkF × Eeff distrib-
uted isotropically in the 2D plane, which are the so-called Rashba fields [27].
Here, kF is the Fermi wavevector of electrons. In Si 2DESs, the Rashba para-
meter α is three orders of magnitude smaller than that in 2D systems based
on III–V semiconductors [11].

Spin relaxation due to the Rashba fields can be treated by following the
standard procedures given in a textbook [25]. The relaxation terms Mx′/T2,
My′/T2, and (Mz − M0)/T1 in the Bloch equations (4)–(6) are reproduced
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Fig. 6. Band diagram of the Si/SiGe heterostructure

by considering the Rashba perturbation Hamiltonian to second order. The
spin-relaxation rates 1/T1 and 1/T2 are written as

1
T1

= γ2

∫ ∞

− ∞
G(t) cos(ωLt) dt, (8)

1
T2

= γ2

∫ ∞

− ∞
G(t) dt+

1
2T1

, (9)

where

G(t) = Bi
R(t)Bi

R(0) (i = x, z) (10)

is the correlation function of the Rashba fields and ωL = γB‖ is the Larmor
frequency (x-axis is taken in the 2D plane). We can see from (8) and (9)
that 1/T1 and 1/T2 are given by the Fourier transform of G(t) at frequencies
ωL and 0, respectively. This is because the static z-component of BR causes
spin precession to be faster or slower, while the x-component oscillating at
ωL (static in the rotating frame) causes a change in the longitudinal spin
component.

Since the Rashba fields change their direction as electrons are scattered,
G(t) decays monotonically with time. The decay time τc of G(t) is roughly
estimated7 from the momentum scattering time τm = m∗/Nse

2ρ. The lon-
gitudinal spin-relaxation rate 1/T1, which is given by the Fourier transform
of G(t) at ωL, decreases with increasing ωL. Figure 7 depicts how longitudi-
nal spin relaxation is suppressed by spin precession. When spin precession is
slower than the decay of G(t) (ωLτc � 1), the suppression is weak. This is
consistent with the fact that T1 and T2 of the same order have been reported
in previous works on lower-mobility Si/SiGe samples in low magnetic fields
where ωLτc ∼ 1 [14–16]. Under high-frequency spin precession ωLτc � 1, on

7 For the accurate estimation of τc, e–e scattering, which does not contribute to
the momentum scattering time, should also be considered [13].
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Fig. 7. G(t) cos(ωLt) as a
function of time for ωLτc =
0.2 (dashed line) and 5 (solid
line)

the other hand, most of the contribution from the integrand in (8) canceled
out by the oscillations of cos(ωLt), and longitudinal spin relaxation is strongly
suppressed. This qualitatively explains the large T1/T2 ∼ 105 obtained in the
high-mobility sample located in a high magnetic field. We consider that high-
frequency spin precession, together with weak orbital scattering, results in the
extremely long T1 of ∼1 ms.

To derive explicit expressions for T1 and T2, we need to assume an actual
expression for G(t). When Bi

R (i = x, z) randomly take two discrete values
±BR, G(t) shows a single exponential decay G(t) = G(0)exp(−|t|/τc). In this
case the suppression is given by T1/T2 = 1 + ωL

2τc
2 [25, 26]. However, the

above assumption cannot be a good approximation for high-mobility 2DESs,
in which the dominant scattering mechanism is the small-angle scattering
caused by remote ionized dopants. To discuss the issue quantitatively, further
systematic studies are required both experimentally and theoretically.

In the presence of B⊥, an additional term cos(ωct) is multiplied to the
integrands of (8) and (9) because BR change their direction periodically
at frequency ωc by the cyclotron motion of electrons. It is interesting to
ask how spin relaxation is described in quantum Hall systems, in which the
cyclotron motion is quantized by the strong B⊥. Although there have been
several theoretical works concerning this point [28–30], so far T1 has not been
measured in quantum Hall systems. Determination of T1 in the quantum
Hall regime is in principle possible by applying the analysis presented in this
chapter. This is an issue for further studies.
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Quantitative Treatment of Decoherence
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Abstract. We review several approaches to define and quantify decoherence.
We find that a measure based on a norm of deviation of the density matrix
is appropriate for quantifying decoherence for quantum registers. For a semi-
conductor double quantum-dot charge qubit, evaluation of this measure is
presented. For a general class of decoherence processes, including those oc-
curring in semiconductor qubits, we establish that this measure is additive:
It scales linearly with the number of qubits in the quantum register.

1 Introduction

Decoherence [1–19] is an important physical phenomenon occurring in-
evitably in most experiments dealing with quantum objects. It is usually
defined as a process whereby the physical system of interest interacts with
the environment or other larger system with complex structure and, because
of this interaction, changes its evolution from unperturbed, coherent internal
dynamics. In some sense, the information about the initial and subsequent
states of system undergoing decoherence is leaking into the outer world: The
system is no longer described by a wavefunction, but rather by the statistical
density matrix [20–24]. The quantum-wavefunction description only applies
to the total system, including the environmental modes, which has many
more degrees-of-freedom. Because of the importance of quantum coherence
for quantum information processing [25–66], quantitative characterization of
decoherence has become an active research field with many open problems.

Since quantum information processing requires maintaining high levels of
coherence, emphasis has recently shifted from large-time system dynamics at
experimentally better studied coherence-decay timescales to almost perfectly
coherent dynamics at much shorter times. Many quantum systems proposed
as candidates for qubits (quantum bits) for practical realizations of quan-
tum computing require quantitative evaluation of their coherence. In other
words, a single measure characterizing decoherence is desirable for compari-
son of different qubit designs and their optimization. Besides the evaluation
of single-qubit performance one also has to analyze scaling of decoherence
as the register size (the number of qubits involved) increases. Direct quan-
titative calculations of decoherence of even few-qubit quantum registers are

M. Fanciulli (Ed.): Electron Spin Resonance and Related Phenomena
in Low-Dimensional Structures, Topics Appl. Physics 115, 141–167 (2009)
c© Springer-Verlag Berlin Heidelberg 2009
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not feasible. Therefore, a practical approach has been to explore quantitative
single-parameter measures of decoherence [67], develop techniques to calcu-
late such measures at least approximately for realistic one- and two-qubit
systems [68, 69], and then establish scaling (additivity [70, 71]) for multi-
qubit quantum systems.

In Sect. 2, we outline different approaches to define and quantify decoher-
ence. We argue that a measure based on a properly defined norm of deviation
of the density matrix is appropriate for quantifying decoherence in quantum
registers. For a semiconductor double quantum-dot qubit, evaluation of this
measure is reviewed in Sect. 3. For a general class of decoherence processes,
including those occurring in semiconductor qubits considered in Sect. 3, we
argue, in Sect. 4, that this measure is additive. Thus, the level of quantum
noise scales linearly with the number of qubits.

2 Measures of Decoherence

In this section, we consider briefly several approaches to quantifying the de-
gree of decoherence due to interactions with the environment. In Sect. 2.1, we
discuss the approach based on the asymptotic relaxation timescales. The en-
tropy and idempotency-defect measures are reviewed in Sect. 2.2. The fidelity
measure of decoherence is considered in Sect. 2.3. In Sect. 2.4, we review our
results on the operator norm measures of decoherence. Section 2.5 discusses
an approach to eliminate the initial-state dependence of the decoherence mea-
sures.

2.1 Relaxation Timescales

Decoherence of quantum systems is frequently characterized by the asymp-
totic rates at which they reach thermal equilibrium at temperature T . One
of the reasons for focusing on relaxation rates is that long-time behavior is
relatively easy to observe in ensemble experiments. Markovian approxima-
tion schemes typically yield an exponential approach to the limiting values
of the density matrix elements for large times [21–23]. For a two-state sys-
tem, this defines the timescales T1 and T2, associated, respectively, with the
approach by the diagonal (thermalization) and offdiagonal (dephasing, de-
coherence) density-matrix elements to their limiting values. More generally,
for large times we approximate deviations from stationary values of diagonal
and offdiagonal density matrix elements as

ρkk(t) − ρkk(∞) ∝ e−t/Tkk , (1)
ρjk(t) ∝ e−t/Tjk (j �= k). (2)

The shortest time among Tkk is often identified as T1. Similarly, T2 can be
defined as the shortest time among Tn �=m. These definitions yield the char-
acteristic times of thermalization and decoherence (dephasing).
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For candidate systems for quantum computing realizations, noise effects
are commonly reduced by working at very low temperatures and making their
structure features nanosize for strong quantization. Then, for the decoherence
and thermalization times we have, T2 � T1, e.g., [21]. Therefore, the decoher-
ence time is a more crucial parameter for quantum computing considerations.
The timescale T2 is compared to the “clock” times of quantum control, i.e.,
the quantum gate functions, Tg, in order to ensure the fault-tolerant error
correction criterion Tg/T2 ≤ O(10−4), e.g., [66].

The disadvantages of this type of analysis are that the exponential be-
havior of the density matrix elements in the energy basis is applicable only
for large times, whereas for quantum computing applications, the short-time
behavior is usually relevant [18]. Moreover, while the energy basis is natural
for large times, the choice of the preferred basis is not obvious for short and
intermediate times [18, 72]. Therefore, the timescales T1 and T2 have limited
applicability in evaluating quantum computing scalability.

2.2 Quantum Entropy

An alternative approach is to calculate the entropy [20] of the system,

S(t) = −Tr(ρ ln ρ), (3)

or the idempotency defect, also termed the first-order entropy [73–75],

s(t) = 1 − Tr
(
ρ2
)
. (4)

Both expressions are basis independent, have a minimum at pure states and
effectively describe the degree of the state’s “purity.” Any deviation from
a pure state leads to the deviation from the minimal values, 0, for both
measures,

Spure state(t) = spure state(t) = 0. (5)

2.3 Fidelity

Writing the total Hamiltonian as follows,

H = HS +HB +HI, (6)

where HS is the term describing internal system dynamics, HB governs the
evolution of the environment, and HI describes system–environment interac-
tion, let us now define the fidelity [76, 77],

F (t) = TrS
[
ρideal(t)ρ(t)

]
. (7)

Here, the trace is over the system degrees-of-freedom, and ρideal(t) represents
the pure-state evolution of the system under HS only, without interaction
with the environment (HI = 0). In general, the Hamiltonian term HS govern-
ing the system dynamics can be time dependent. For the sake of simplicity
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throughout this review we restrict our analysis to constant HS, since approx-
imate evaluation of decoherence can be done [64] for qubits controlled by
constant Hamiltonian. In this case

ρideal(t) = e−iHStρ(0)eiHSt. (8)

More sophisticated scenarios with qubits evolving under time-dependent HS

were considered in [78–80].
The fidelity provides a certain measure of decoherence in terms of the dif-

ference between the “real,” environmentally influenced, ρ(t), evolution and
the “free” evolution, ρideal(t). It will attain its maximal value, 1, only pro-
vided ρ(t) = ρideal(t). This property relies on the fact the ρideal(t) remains a
projection operator (pure state) for all times t ≥ 0.

As an illustrative example consider a two-level system decaying from the
excited to the ground state, when there is no internal system dynamics,

ρideal(t) =
(

0 0
0 1

)
, (9)

ρ(t) =
(

1 − e−Γt 0
0 e−Γt

)
, (10)

and the fidelity is a monotonic function of time,

F (t) = e−Γt. (11)

Note that the requirement that ρideal(t) is a pure-state (projection opera-
tor), excludes, in particular, any T > 0 thermalized state as the initial system
state. For example, let us consider the application of the fidelity measure for
the infinite-temperature initial state of our two-level system. We have

ρ(0) = ρideal(t) =
(

1/2 0
0 1/2

)
, (12)

which is not a projection operator. The spontaneous-decay density matrix is
then

ρ(t) =
(

1 − (e−Γt/2) 0
0 e−Γt/2

)
. (13)

The fidelity remains constant

F (t) = 1/2, (14)

and it does not provide any information on the time dependence of the decay
process.
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2.4 Norm of Deviation

In this subsection we consider the operator norms [81] that measure the devi-
ation of the system from the ideal state, to quantify the degree of decoherence
as proposed in [67]. Such measures do not require the initial density matrix
to be pure-state. We define the deviation according to

σ(t) ≡ ρ(t) − ρideal(t). (15)

We can use, for instance, the eigenvalue norm,

‖σ‖λ = max
i

|λi|, (16)

or the trace norm,

‖σ‖Tr =
∑

i

|λi|, (17)

etc., where λi are the eigenvalues of the deviation operator (15). A more
precise definition of the eigenvalue norm for a linear operator, A, is [81]

‖A‖ = sup
ϕ�=0

[
〈ϕ|A†A|ϕ〉

〈ϕ|ϕ〉

]1/2

. (18)

Since density operators are bounded, their norms, as well as the norm of the
deviation, can always be evaluated. Furthermore, since the density operators
are Hermitian, this definition obviously reduces to the eigenvalue norm (16).
We also note that ‖A‖ = 0 implies that A = 0.

The calculation of these norms is sometimes simplified by the observation
that σ(t) is traceless. Specifically, for two-level systems, we get

‖σ‖λ =
√

|σ00|2 + |σ01|2 =
1
2

‖σ‖Tr. (19)

For our example of the two-level system undergoing spontaneous decay, the
norm is

‖σ‖λ = 1 − e−Γt. (20)

2.5 Arbitrary Initial States

The measures considered in the preceding subsections quantify decoherence
of a system provided its initial state is given. However, this is not always the
case. In quantum computing, it is impractical to keep track of all the possible
initial states for each quantum register, that might be needed for implement-
ing a particular quantum algorithm. Furthermore, even the preparation of
the initial state can introduce additional noise. Therefore, for evaluation of
fault tolerance (scalability), it will be necessary to obtain an upper-bound
estimate of decoherence for an arbitrary initial state.

To characterize decoherence for an arbitrary initial state, pure or mixed,
we proposed [67] to use the maximal norm, D, which is determined as an
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operator norm maximized over all initial density matrices. It is defined as
the worst case scenario error,

D(t) = sup
ρ(0)

(∥∥σ(t, ρ(0)
)∥∥

λ

)
. (21)

For realistic two-level systems coupled to various types of environmental
modes, the expressions of the maximal norm are surprisingly elegant and
compact. They are usually monotonic and contain no oscillations due to the
internal system dynamics, as, for example, are the results obtained for semi-
conductor quantum-dot qubits considered in the next section.

In summary, we have considered several approaches to quantifying deco-
herence: relaxation times, entropy and fidelity measures, and norms of de-
viation, and we defined the maximal measure that is not dependent on the
initial state, and that will be later shown to be additive; see Sect. 4.

3 Decoherence of Double Quantum-Dot Charge Qubits

As a representative example, let us review evaluation of decoherence for
semiconductor quantum dots. Quantum devices based on solid-state nanos-
tructures have been among the major candidates for large-scale quantum
computation because they can draw on existing advances in nanotechnology
and materials processing [82]. Several designs of semiconductor quantum bits
(qubits) were proposed [27, 28, 37, 41–44, 83–85]. In particular, the encoding
of quantum information into spatial degrees of freedom of electrons placed in
a quantum dot was considered in [41–44, 85]. A relatively fast decay of coher-
ence of electron states in ordinary quantum dots, e.g., [26], can be partially
suppressed by encoding quantum information in a subspace of electron states
in specially designed arrays of quantum dots (artificial crystals), proposed in
[86]. Actually, under certain conditions even double-dot systems in semicon-
ductors can be relatively well protected against decoherence caused by their
interactions with phonons and electromagnetic fields [38]. This observation
was confirmed in recent experiments [45], which demonstrated coherent quan-
tum oscillations of an electron in a double-dot structure.

Several designs of double-dot qubits have been explored in recent experi-
ments [46–50] carried out at temperatures ranging from tens to hundreds of
mK. The temperature dependence of relaxation rates in Si charge qubits was
studied theoretically in [51, 52]. Recently, it has been pointed out [68] that in
the zero-temperature limit and for conventional double-dot structures higher-
order processes in electron–phonon interactions dominate decoherence.

In this section, we consider the acoustic phonon bath as the main source
of decoherence for the considered type of qubit, which is supported by theo-
retical and experimental evidence, e.g., [38, 46]. Decoherence due to different
sources, e.g., due to trapping center defects [87, 88], can play an important
role in other situations.
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In the next subsection, we outline the structure of double-dot qubits.
Sections 3.2 and 3.3 are devoted to the consideration of the electron–phonon
interaction for two realistic cases: In Sect. 3.2 we analyze the piezoacoustic in-
teraction in crystals with zincblende lattice and with parabolic quantum dot
confinement potential. Double dots with prevalence of piezointeraction have
been fabricated [45] in gated GaAs/AlGaAs heterostructures. In Sect. 3.3 we
study the deformation interaction with acoustic phonons in “quantum dots”
formed by double impurities in semiconductors with inversion symmetry of
elementary lattice cell. Experiments with the latter type of double-dot sys-
tems have been reported in [47, 48]. Finally, Sects. 3.4–3.7 present illustrative
calculations of the noise level for selected quantum gates.

3.1 Model

We consider a double-dot structure sketched in Fig. 1. It consists of two
quantum dots coupled to each other via a tunneling barrier and containing
a single electron hopping between the dots. We limit our consideration to
double-dot structures in which the energy required to transfer to the upper
levels is much higher than the lattice temperature and energy spacing between
the two lowest levels.

The electron is considered to be in a superposition of two basis states, |0〉
and |1〉,

ψ = αψ0 + βψ1. (22)

The states that define the “logical” basis are not the physical ground and
first excited state of the double-dot system. Instead, ψ0 (the “0” state of the
qubit) is chosen to be localized at the first quantum dot and, to a zeroth-order
approximation, be similar to the ground state of that dot if it were isolated.
Similarly, ψ1 (the “1” state) resembles the ground state of the second dot (if it
were isolated). This assumes that the dots are sufficiently (but not necessarily
exactly) symmetric. We denote the coordinates of the potential minima of the
dots (dot centers) as vectors R0 and R1, respectively. The distance between
the dot centers is

Fig. 1. Electron in a
double-well potential
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L ≡ |L| ≡ |R1 − R0|. (23)

The Hamiltonian of an electron within a phonon environment is given by

H = He +Hp +Hep. (24)

The electron term is

He = − 1
2
εA(t)σx − 1

2
εP(t)σz, (25)

where σx and σz are Pauli matrices, whereas εA(t) and εP(t) can be time
dependent, as determined by unitary single-qubit quantum gate functions
that are carried out. They can be controlled externally by adjusting the
potential on the control electrodes (gates) surrounding the double-dot system.
For constant εA and εP, the energy splitting between the electron energy
levels is

ε =
√
ε2A + ε2P. (26)

The Hamiltonian of the phonon bath is described by

Hp =
∑
q,λ

h̄ωq b
†
q,λbq,λ, (27)

where b†
q,λ and bq,λ are, respectively, the creation and annihilation opera-

tors of phonons characterized by the wavevector q and polarization λ. We
approximately assume isotropic acoustic phonons, with a linear dispersion,

ωq = sq, (28)

where s is the speed of sound in the semiconductor material. In the next
subsection we show that the electron–phonon interaction can be derived in
the form

Hep =
∑
q,λ

σz

(
gq,λb

†
q,λ + g∗

q,λbq,λ

)
, (29)

with the coupling constants gq,λ determined by the architecture of the double
dot and the properties of the material crystal structure.

3.2 Piezoelectric Interaction

The derivation in this subsection follows [68, 69]. The piezoacoustic electron–
phonon interaction [89] is described by

Hep = i
∑
q,λ

(
h̄

2ρsqV

)1/2

Mλ(q)F (q)
(
bq + b†

−q

)
. (30)

Here, ρ is the density of the semiconductor material, V is the volume of
semiconductor, and for the matrix element Mλ(q), one can derive
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Mλ(q) =
1

2q2
∑
ijk

(ξiqj + ξjqi)qkMijk. (31)

In this expression, ξj are the polarization vector components for polariza-
tion λ, while Mijk express the electric field as a linear response to the stress,

Ek =
∑
ij

MijkSij . (32)

For a crystal with a zincblende lattice, exemplified by GaAs, the tensor Mijk

has only those components nonzero for which all three indexes i, j, k are
different; furthermore, all these components are equal Mijk = M . Thus, we
have

Mλ(q) =
M

q2
(ξ1q2q3 + ξ2q1q3 + ξ3q1q2). (33)

The form factor F (q) accounting for the fact that the electrons in the
quantum-dot geometry are not plane waves, is

F (q) =
∑
j,k

c†
jck

∫
d3r φ∗

j (r)φk(r)e−iq·r, (34)

where ck, c†
j are annihilation and creation operators of the basis states k, j =

0, 1. For gate-engineered quantum dots, we consider the ground states in each
dot to have an approximately Gaussian shape

φj(r) =
1

a3/2π3/4
e− |r−Rj |2/2a2

, (35)

where 2a is a characteristic size of the dots.
We assume that the distance between the dots, L, is sufficiently large

compared to a, to ensure that the different dot wavefunctions do not overlap
significantly,∣∣∣∣

∫
d3r φ∗

j (r)φk(r)e−iq·r
∣∣∣∣ � 1, for j �= k. (36)

This implies that the coupling leading to tunneling between the dots is small,
as is the case for the recently studied experimental structures [45–48], where
the splitting due to tunneling, measured by εA, was below 20 μeV, while the
electron quantization energy in each dot was at least several meV.

For j = k, we obtain∫
d3r φ∗

j (r)φj(r)e−iq·r =
1

a3π3/2

∫
d3r e− |r−Rj |2/a2

e−iq·r

= e−iq·Rj e−a2q2/4. (37)

The resulting form factor is

F (q) = e−a2q2/4e−iq·R(c†
0c0e

iq·L/2 + c†
1c1e

−iq·L/2
)
, (38)
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where R = (R0 + R1)/2. Finally, we get

F (q) = e−a2q2/4e−iq·R[cos(q · L/2)I + i sin(q · L/2)σz

]
, (39)

where I is the identity operator. Only the second term in (39), which is not
proportional to I, represents an interaction affecting the qubit states. It leads
to a Hamiltonian term of the form (29), with coupling constants

gq,λ = −
(

h̄

2ρqsV

)1/2

Me−a2q2/4−iq·R

×(ξ1e2e3 + ξ2e1e3 + ξ3e1e2) sin(q · L/2), (40)

where ek = qk/q.

3.3 Deformation Interaction

Deformation coupling with acoustic phonons [89] is described by

Hep = Ξ
∑
q,λ

(
h̄

2ρqsV

)1/2

qF (q)
(
b†
q,λ + b−q,λ

)
, (41)

where Ξ is a material-dependent constant termed the “deformation poten-
tial.”

Here, we consider a particular double-dot-like nanostructure that has been
the focus of recent experiments, due to advances in its fabrication [47, 48]
by controlled single-ion implantation: A double-impurity Si structure with
hydrogen-like electron confinement potentials at both impurities (P atoms).
We consider a hydrogen-like impurity state,

φi(r) =
1

a3/2π1/2
e− |r−Ri |/a, (42)

where a is the effective Bohr radius. The form factor in this case is given by
the following formula,

F (q) =
e−iq·R

[1 + (a2q2)/4]2
[
cos(q · L/2)I + i sin(q · L/2)σz

]
. (43)

The interaction can then be expressed in the form (29), but with different
coupling constants,

gq = iΞq
(

h̄

2ρqsV

)1/2 e−iq·R

[1 + (a2q2)/4]2
sin(q · L/2). (44)

We note that (40) and (44) were obtained within the framework of the
effective-mass approximation, which is well justified for the group III–V semi-
conductors, e.g., GaAs. For semiconductors with conduction-band degenera-
cies near the band minima, including the group IV semiconductor Si, the
expression (44) can be viewed as representing the averaged behavior of a
rapidly oscillating coupling constant vs. the phonon wavevector, as shown in
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[90] in other contexts. These oscillations result from intervalley interference
effects, but in our case they can be ignored. Indeed, in all our later cal-
culations, specifically, (53) and (70) below, the squares of the intermediate
expressions for the coupling constants enter in integrals over all the spec-
trum of the three-dimensional phonon modes. Therefore, we do not expect
the results to be significantly modified by rapid oscillations introduced by
the band-structure degeneracies.

3.4 Error Estimates During Gate Functions

In general, the ideal qubit evolution governed by the Hamiltonian term (25)
is time dependent. Decoherence estimates for some solid-state systems with
certain shapes of time dependence of the system Hamiltonian were reported
recently [78–80]. However, such calculations are rather complicated. Actually,
there is no need to consider all possible time-dependent controls of a qubit
to evaluate its performance. All single-qubit rotations that are required for
quantum algorithms can be successfully implemented by using two constant-
Hamiltonian gates, e.g., amplitude rotation and phase shift [64]. To perform
both of these gates one can keep the Hamiltonian term (25) constant during
the implementation of each gate, adjusting the parameters εA and εP as
appropriate for each gate and for the idling qubit in between gate functions.

In the following subsections we give specific examples: In Sect. 3.5, we
will consider decoherence during the implementation of the NOT gate (an
amplitude gate). A π-phase shift gate is considered in Sect. 3.6. Then, in
Sect. 3.7 we discuss the overall noise level estimate for a qubit subject to
gate control.

3.5 Relaxation During the NOT Gate

The quantum NOT gate is a unitary operator that transforms the states |0〉
and |1〉 into each other. Any superposition of |0〉 and |1〉 transforms accord-
ingly,

NOT
(
x|0〉 + y|1〉

)
= y|0〉 + x|1〉. (45)

The NOT gate can be implemented by properly choosing εA and εP in the
Hamiltonian term (25). Specifically, with constant

εA = ε (46)

and

εP = 0, (47)

the “ideal” NOT gate function is carried out, with these interaction parame-
ters, over the time interval Tg = τ ,

τ =
πh̄

ε
. (48)
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The dominant source of quantum noise for the double-dot qubit subject
to the NOT-gate type coupling, is relaxation involving energy exchange with
the phonon bath (i.e., emission and absorption of phonons). In this case it is
more convenient to study the evolution of the density matrix in the energy
basis, {|+〉, |−〉}, which for this symmetric case is

| ± 〉 =
(

|0〉 ± |1〉
)/√

2. (49)

Then, assuming that the time interval of interest is [0, τ ], the qubit density
matrix can be expressed [22] as follows (with “th” for thermal),

ρ(t) =

(
ρth
++ +

[
ρ++(0) − ρth

++

]
e−Γt ρ+−(0)e−(Γ/2−iε/h̄)t

ρ−+(0)e−(Γ/2+iε/h̄)t ρth
− − +

[
ρ− −(0) − ρth

− −
]
e−Γt

)
.

(50)

This is the standard Markovian approximation for the evolution of the den-
sity matrix. For large times, this evolution would result in the thermal state,
with the offdiagonal density matrix elements decaying to zero, while the diag-
onal ones approach the thermal values proportional to the Boltzmann factors
corresponding to the energies ±ε/2. However, we are only interested in such
evolution for a short time interval, τ , of a NOT gate. The rate parameter Γ
is the sum [22] of the phonon emission rate, W e, and absorption rate, W a,

Γ = W e +W a. (51)

The probability for the absorption of a phonon due to excitation from the
ground state to the upper level is

wλ =
2π
h̄

∣∣〈f |Hep|i〉
∣∣2δ(ε − h̄sq), (52)

where |i〉 is the initial state with the extra phonon with energy h̄sq and |f〉 is
the final state, q is the wavevector, and λ is the phonon polarization. Thus,
we have to calculate

W a =
∑
q,λ

wλ =
V

(2π)3
∑

λ

∫
d3q wλ. (53)

For the interaction (29) one can derive

wλ =
2π
h̄

|gq,λ|2N thδ(ε − h̄sq), (54)

where

N th =
1

exp(h̄sq/kBT ) − 1
(55)

is the phonon occupation number at temperature T , and kB is the Boltzmann
constant.

For the piezoacoustic interaction, the coupling constant in (40) depends
on the polarization. For longitudinal phonons, the polarization vector has
Cartesian components, expressed in terms of the spherical-coordinate angles,
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ξ
‖
1 = e1 = sin θ cosφ, ξ

‖
2 = e2 = sin θ sinφ, ξ

‖
3 = e3 = cos θ, (56)

where ej = qj/q. For transverse phonons, it is convenient to define the two
polarization vectors ξ⊥1

i and ξ⊥2
i to have

ξ⊥1
1 = sinφ, ξ⊥1

2 = − cosφ, ξ⊥1
3 = 0, (57)

ξ⊥2
1 = − cos θ cosφ, ξ⊥2

2 = − cos θ sinφ, ξ⊥2
3 = sin θ. (58)

Then, for longitudinal phonons, one obtains [69]

w‖ =
π

ρsV q
M2e−a2q2/4

× 9 sin4 θ cos2 θ sin2 φ cos2 φ sin2(qL cos θ/2). (59)

For transverse phonons, one gets

w⊥1 =
π

ρsV q
M2e−a2q2/4

(
−2 sin θ cos2 θ sinφ cosφ

+ sin3 θ cosφ sinφ
)2 sin2(qL cos θ/2), (60)

w⊥2 =
π

ρsV q
M2e−a2q2/4

(
−2 sin θ cos θ cos2 φ

+ sin θ cos θ sin2 φ
)2 sin2(qL cos θ/2). (61)

By combining these contributions and substituting them in (53), we get the
probability of absorption of a phonon for all polarizations,

W a
piezo =

M2

20πρs2h̄L5k4

exp
(

− a2k2

2

)
exp

(
h̄sk
kBT

)
− 1

×
{
(kL)5 + 5kL

[
2(kL)2 − 21

]
cos(kL)

+ 15
[
7 − 3(kL)2

]
sin(kL)

}
, (62)

where

k =
ε

h̄s
(63)

is the wavevector of the absorbed phonon.
For the deformation interaction (44), one can obtain the following result,

w =
πΞ2

ρsV

q

[1 + (a2q2)/4]4
sin2(q · L/2)δ(ε − h̄sq). (64)

The total probability for a phonon absorption is

W a
deform =

Ξ2

4πρs2h̄
k3

(1 + a2k2/4)4
1 − sin(kL)/(kL)

exp
(

h̄sk
kBT

)
− 1

. (65)

Finally, the expressions for the phonon emission rates, W e, can be ob-
tained by multiplying the above expressions, (62) and (65), by (Nth +1)/Nth.



154 Leonid Fedichkin and Vladimir Privman

3.6 Dephasing During a Phase Gate

The π gate is a unitary operator that does not change the absolute values of
the probability amplitudes of a qubit in the superposition of the |0〉 and |1〉
basis states. It changes the relative phase between the probability amplitudes.
Specifically, any superposition of |0〉 and |1〉 transforms according to

Π
(
x|0〉 + y|1〉

)
= x|0〉 − y|1〉. (66)

Over a time interval τ , the π gate can be carried out with constant interaction
parameters,

εA = 0 (67)

and

εP = ε =
πh̄

τ
. (68)

In [68], double-dot qubit dynamics during implementation of phase gates
was considered. The relaxation dynamics is suppressed during the π gate,
because there is no tunneling between the dots. Quantum noise then results
due to pure dephasing, i.e., via the decay of the offdiagonal qubit density
matrix elements, while the diagonal density matrix elements remain constant.
In the regime of pure dephasing, the qubit density matrix can be represented
as [72, 91]

ρ(t) =

⎛
⎝ ρ00(0) ρ01(0)e−B2(t)+iεt/h̄

ρ10(0)e−B2(t)−iεt/h̄ ρ11(0)

⎞
⎠ , (69)

with the spectral function,

B2(t) =
8
h̄2

∑
q,λ

|gq,λ|2
ω2

q

sin2 ωqt

2
coth

h̄ωq

2kBT

=
V

h̄2π3

∫
d3q

∑
λ

|gq,λ|2
q2s2

sin2 qst

2
coth

h̄qs

2kBT
. (70)

For the piezoelectric interaction, the coupling constant gq,λ was obtained
in (40), and the expression for the spectral function takes the form

B2
piezo(t) =

M2

2π3h̄ρs3

∫ ∞

0

q2 dq
∫ π

0

sin θ dθ
∫ 2π

0

dϕ

×
∑

λ

(ξλ
1 e2e3 + ξλ

2 e1e3 + ξλ
3 e1e2)

2

q3
exp

(
−a2q2/2

)

× sin2(qL cos θ) sin2 qst

2
coth

h̄qs

2kBT
, (71)

see (56)–(58). For the deformation interaction, we have the coupling con-
stant (44), and the expression for the spectral function is given by
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B2
deform(t) =

Ξ2

π2h̄ρs3

∫ ∞

0

q2 dq
∫ π

0

sin θ dθ

× sin2(qL cos θ)
q(1 + (a2q2)/4)4

sin2 qst

2
coth

h̄qs

2kBT
. (72)

3.7 Qubit Error Estimates

The qubit error measure, D, is obtained from the density matrix deviation
from the “ideal” evolution by using the operator norm approach [67] reviewed
in Sect. 2.5. After lengthy intermediate calculations one gets [68] relatively
simple expressions for the error during the NOT gate,

DNOT =
1 − e−Γτ

1 + e−ε/kBT
, (73)

and the π gate,

Dπ =
1
2
[
1 − e−B2(τ)

]
. (74)

A realistic noise estimate could be taken as the worst-case scenario, i.e.,
the maximum of these two expressions for error per gate cycle. The expres-
sions (73) and (74) were used to calculate the error rate for the double-
dot qubit in GaAs and double-impurity qubit in Si. The parameters used
were chosen to correspond to the experimentally realized structures, [45–48],
and are summarized in Table 1. The calculated error measures are presented
in Figs. 2 and 3. The gate time τ selected for the reported calculations,
6 × 10−11 s, is a representative value consistent with typical experimental
conditions. In fact, decreasing the gating time does not lead to smaller quan-
tum noise in this case because the energy gap of the driven qubit is ∼1/τ . If
the gap is made too large, other excitations will play a role in decoherence,
for instance, optical phonons. The timescale chosen here is within an optimal
range, as discussed in [68].

Table 1. Qubit parameters

Parameter GaAs double-dot qubit Si double-impurity qubit

ρ, kg/m3 5.31 × 103 2.33 × 103

s, m/s 5.14 × 103 9.0 × 103

Ξ, eV 3.3 –

e14, C/m2 – 0.16

κ – 12.8

M , eV/m – ee14/(ε0κ)

L, nm 50 50

a, nm 25 3
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Fig. 2. Estimates of
the error measure per
cycle, D, due to the
piezoelectric interaction
in GaAs double dot,
shown as a function
of the temperature, T .
The cycle time τ was
6 × 10−11 s

Fig. 3. Estimate of error
rate per cycle, D, due
to deformation phonon
interaction for a double
phosphorus impurity in
Si, shown as a function
of the temperature, T .
The cycle time τ was
6 × 10−11 s. The relax-
ation rate for this range
of the parameter values
is negligibly small and
respective values of D
are not shown

In summary, we derived expressions for the error measure for double-dot
and double-impurity qubits. The results, presented in Figs. 2 and 3, suggest
that pure dephasing dominates at low temperatures. As the temperature
increases beyond about 1K, the effect of relaxation becomes comparable and
ultimately dominant.

The error measure values found, are 1.5 or more orders of magnitude
larger than the “traditional” fault-tolerance thresholds for multiqubit quan-
tum computation, which range from O(10−4) down to O(10−6) [53, 54, 62, 65,
92, 93]. However, recent developments have yielded less strict requirements
for the error rate [94–96], optimistically, as large as O(10−2). Furthermore,
there are several approaches to decrease decoherence effects by pulsed control
[97–106], some recently tested experimentally in multispin NMR [107, 108].
Other ideas rely on the fact that instead of the bulk material, the qubit could
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be manufactured in a one- or two-dimensional nanostructure [109, 110], the
latter being already available experimentally [111], which would affect the
phonon spectrum and lower decoherence effects.

4 Additivity of Decoherence Measures

In the study of decoherence of several-qubit systems, additional physical ef-
fects should be taken into account. Specifically, one has to consider the degree
to which noisy environments of different qubits are correlated [91, 112]. In
addition to acting as a source of the quantum noise, the correlated bath can
induce an effective interaction, namely, create entanglement, between the
qubits immersed in it [110, 113–115]. Furthermore, if all constituent qubits
are effectively immersed in the same bath, then there are ways to reduce
decoherence for this group of qubits without error-correction algorithms, by
encoding the state of one logical qubit in a decoherence-free subspace of the
states of several physical qubits [86, 91, 116–118]. In this section, we will
consider several-qubit quantum registers and, as the “worst-case scenario”
assume that the qubits experience uncorrelated noise, i.e., each is coupled to
a separate bath. Since analytical calculations for several qubits are not fea-
sible, we seek “additivity” properties that will allow us to estimate the error
measure for the register from the error measures of the constituent qubits.

It is important to emphasize that loss of quantum coherence results in a
loss of various two- and several-qubit entanglements in the system. The high-
est order (multiqubit) entanglements are “encoded” in the far-offdiagonal
elements of the multiqubit register density matrix, and therefore these quan-
tum correlations will decay at least as fast as the products of the decay
factors for the qubits involved, as exemplified by several explicit calculations
[119–122]. This observation leads to the conclusion that, for large times, the
rates of decay of coherence of the qubits will be additive.

However, here we seek a different result: one valid not in the regime of the
asymptotic large-time decay of quantum coherence, but for relatively short
times, τ , of quantum gate functions, when the noise level, namely the value
of the measure D(τ) for each qubit, is relatively small. In this regime, we will
establish [70] in this section, that, even for strongly entangled qubits – which
is important for the utilization of the power of quantum computation – the
error measures D of the individual qubits in a quantum register are additive.
Thus, the error measure for a register made of similar qubits, scales up lin-
early with their number, consistent with other theoretical and experimental
observations [76, 107, 108].

In Sect. 4.1, we revisit the noise measure via the maximal deviation norm
and discuss some of its properties. In Sect. 4.2, we introduce the diamond
norm that is used as an auxiliary tool in the proof of additivity. We then
establish an approximate upper bound for D(t) for a register of several weakly
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interacting but possibly strongly entangled qubits, and cite work that further
refines the additivity properties for typical qubit realizations.

4.1 The Maximal Deviation Norm

To characterize decoherence for an arbitrary initial state, pure or mixed, we
use the maximal norm, D, which was defined (21) in Sect. 2.5 as an op-
erator norm maximized over all the possible initial density matrices. One
can show that 0 ≤ D(t) ≤ 1. This measure of decoherence will typically in-
crease monotonically from zero at t = 0, saturating at large times at a value
D(∞) ≤ 1. The definition of the maximal decoherence measure D(t) looks
rather complicated for a general multiqubit system. However, it can be evalu-
ated in closed form for short times, appropriate for quantum computing, for a
single-qubit (two-state) system. We then establish an approximate additivity
that allows us to estimate D(t) for several-qubit systems as well.

In the superoperator notation the evolution of the reduced density oper-
ator of the system (7) and the one for the ideal density matrix (8) can be
formally expressed [62–64] in the following way

ρ(t) = T (t)ρ(0), (75)

ρ(i)(t) = T (i)(t)ρ(0), (76)

where T , T (i) are linear superoperators. In this notation the deviation can
be expressed as

σ(t) =
[
T (t) − T (i)(t)

]
ρ(0). (77)

The initial density matrix can always be written in the following form,

ρ(0) =
∑

j

pj |ψj 〉〈ψj |, (78)

where
∑

j pj = 1 and 0 ≤ pj ≤ 1. Here, the set of the wavefunctions |ψj 〉 is
not assumed to have any orthogonality properties. Then, we get

σ
(
t, ρ(0)

)
=
∑

j

pj

[
T (t) − T (i)(t)

]
|ψj 〉〈ψj |. (79)

The deviation norm can thus be bounded,∥∥σ(t, ρ(0)
)∥∥

λ
≤
∥∥[T (t) − T (i)(t)

]
|φ〉〈φ|

∥∥
λ
. (80)

Here, |φ〉 is defined according to∥∥[T − T (i)
]

|φ〉〈φ|
∥∥

λ
= max

j

∥∥[T − T (i)
]

|ψj 〉〈ψj |
∥∥

λ
. (81)

It transpires that for any initial density operator that is a statistical mixture,
one can always find a density operator that is pure-state, |φ〉 〈φ|, such that

‖σ(t, ρ(0))‖λ ≤ ‖σ(t, |φ〉〈φ|)‖λ. Therefore, evaluation of the supremum over
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the initial density operators in order to find D(t), see (21), can be done over
only pure-state density operators, ρ(0).

Let us consider strategies of evaluating D(t) for a single qubit. We can
parameterize ρ(0) as

ρ(0) = U

(
P 0
0 1 − P

)
U †, (82)

where 0 ≤ P ≤ 1, and U is an arbitrary 2 × 2 unitary matrix,

U =

(
ei(α+γ) cos θ ei(α−γ) sin θ

−ei(γ−α) sin θ e−i(α+γ) cos θ

)
. (83)

Then, one should find a supremum of the norm of deviation (16) over all the
possible real parameters P , α, γ and θ. As shown above, it suffices to consider
the density operator in the form of a projector and put P = 1. Thus, one
should search for the maximum over the remaining three real parameters α,
γ and θ.

Another parametrization of the pure-state density operators, ρ(0) =
|φ〉〈φ|, is to express an arbitrary wavefunction |φ〉 =

∑
j(aj + ibj)|j〉 in some

convenient orthonormal basis |j〉, where j = 1, . . . , N . For a two-level system,

ρ(0) =

(
a2
1 + b21 (a1 + ib1)(a2 − ib2)

(a1 − ib1)(a2 + ib2) a2
2 + b22

)
, (84)

where the four real parameters a1,2, b1,2 satisfy a2
1 + b21 + a2

2 + b22 = 1, so
that the maximization is again over three independent real numbers. The
final expressions (73) and (74) for D(t), for our selected single-qubit systems
considered in Sect. 3, are actually quite compact and tractable.

In quantum computing, the error rates can be significantly reduced by us-
ing several physical qubits to encode each logical qubit [86, 116, 117]. There-
fore, even before active quantum error correction is incorporated [53–61],
evaluation of decoherence of several qubits is an important, but formidable
task. Thus, our aim is to prove the approximate additivity of Dq(t), includ-
ing the case of the initially strongly entangled qubits, labeled by q, whose
dynamics is governed by

H =
∑

q

Hq =
∑

q

(HSq +HBq +HIq), (85)

where HSq is the Hamiltonian of the qth qubit itself, HBq is the Hamil-
tonian of the environment of the qth qubit, and HIq is the corresponding
qubit–environment interaction. In the next subsection we consider a more
complicated (for actual evaluation) diamond norm [62–64], K(t), as an aux-
iliary quantity used to establish the additivity of the more easily calculable
operator norm D(t).
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4.2 Upper Bound for Measure of Decoherence

The establishment of the upper-bound estimate for the maximal deviation
norm of a multiqubit system, involves several steps. We derive a bound for
this norm in terms of the recently introduced (in the context of quantum
computing) [62–64] diamond norm,K(t). Actually, for single qubits, in several
models the diamond norm can be expressed via the corresponding maximal
deviation norm. At the same time, the diamond norm for the whole quantum
system is bounded by the sum of the norms of the constituent qubits by using
a specific stability property of the diamond norm. The use of the diamond
norm was proposed in [62–64],

K(t) =
∥∥T − T (i)

∥∥
� = sup

�

∥∥{[T − T (i)
]

⊗ I
}
�
∥∥

Tr
. (86)

The superoperators T , T (i) characterize the actual and ideal evolutions ac-
cording to (75) and (76). Here, I is the identity superoperator in a Hilbert
space G whose dimension is the same as that of the corresponding space of
the superoperators T and T (i), and � is an arbitrary density operator in the
product space of twice the number of qubits.

The diamond norm has an important stability property, proved in [62–64],

‖B1 ⊗ B2‖ � = ‖B1‖ � ‖B2‖ �. (87)

Note that (87) is a property of the superoperators rather than that of the
operators.

Consider a composite system consisting of the two subsystems S1, S2,
with the noninteracting Hamiltonian

HS1S2 = HS1 +HS2 . (88)

The evolution superoperator of the system will be

TS1S2 = TS1 ⊗ TS2 , (89)

and the ideal one

T
(i)
S1S2

= T
(i)
S1

⊗ T
(i)
S2
. (90)

The diamond measure for the system can be expressed as

KS1S2 =
∥∥TS1S2 − T

(i)
S1S2

∥∥
� =

∥∥(TS1
− T

(i)
S1

)
TS2

+ T
(i)
S1

⊗
(
TS2

− T
(i)
S2

)∥∥
�

≤
∥∥(TS1

− T
(i)
S1

)
⊗ TS2

∥∥
� +

∥∥T (i)
S1

⊗
(
TS2 − T

(i)
S2

)∥∥
�. (91)

By using the stability property (87), we get

KS1S2 ≤
∥∥(TS1 − T

(i)
S1

)
⊗ TS2

∥∥
� +

∥∥T (i)
S1

⊗
(
TS2 − T

(i)
S2

)∥∥
�

=
∥∥TS1 − T

(i)
S1

∥∥
� ‖TS2

∥∥
� +

∥∥T (i)
S1

∥∥
�

∥∥TS2 − T
(i)
S2

∥∥
�

=
∥∥TS1 − T

(i)
S1

∥∥
� +

∥∥TS2 − T
(i)
S2

∥∥
� = KS1 +KS2 . (92)



Quantitative Treatment of Decoherence 161

The inequality

K ≤
∑

q

Kq, (93)

for the diamond norm K(t) has thus been obtained. Let us emphasize that
the subsystems can be initially entangled. This property is particularly useful
for quantum computing, the power of which is based on qubit entanglement.
However, even in the simplest case of the diamond norm of one qubit, the
calculations are extremely cumbersome. Therefore, the use of the measure
D(t) is preferable for actual calculations.

For short times, of quantum gate functions, we can use (93) as an approx-
imate inequality for order-of-magnitude estimates of decoherence measures,
even when the qubits are interacting. Indeed, for short times, the interaction
effects will not modify the quantities entering both sides significantly. The
key point is that while the interaction effects are small, this inequality can
be used for strongly entangled qubits.

The two deviation-operator norms considered are related by the following
inequality

‖σ‖λ ≤ 1
2

‖σ‖Tr ≤ 1. (94)

Here, the left-hand side follows from

Trσ =
∑

j

λj = 0. (95)

Therefore, the �th eigenvalue of the deviation operator σ that has the maxi-
mum absolute value, λ� = λmax, can be expressed as

λ� = −
∑
j �=�

λj . (96)

Thus, we have

‖σ‖λ =
1
2
(
2|λ�|

)
≤ 1

2

(
|λ�| +

∑
j �=�

|λj |
)

=
1
2

(∑
j

|λj |
)

=
1
2

‖σ‖Tr. (97)

The right-hand side of (94) then also follows, because any density matrix has
trace norm 1,

‖σ‖Tr =
∥∥ρ − ρ(i)

∥∥
Tr

≤ ‖ρ‖Tr +
∥∥ρ(i)

∥∥
Tr

= 2. (98)

From the relation (98) it follows that

K(t) ≤ 2. (99)

By taking the supremum of both sides of the relation (97) we get

D(t) = sup
ρ(0)

‖σ‖λ ≤ 1
2

sup
ρ(0)

‖σ‖Tr ≤ 1
2
K(t), (100)
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where the last step involves technical derivation details [70] not reproduced
here. In fact, for a single qubit, calculations for typical models [70] give

Dq(t) =
1
2
Kq(t). (101)

Since D is generally bounded by (or equal to) K/2, it follows that the mul-
tiqubit norm D is approximately bounded from above by the sum of the
single-qubit norms even for the initially entangled qubits,

D(t) ≤ 1
2
K(t) ≤ 1

2

∑
q

Kq(t) =
∑

q

Dq(t), (102)

where q labels the qubits.
For specific models of decoherence of the type encountered in Sect. 3,

as well as those formulated for general studies of short-time decoherence
[67], a stronger property has been demonstrated [70], namely that the noise
measures are actually equal, for low levels of noise,

D(t) =
∑

q

Dq(t) + o
(∑

q

Dq(t)
)
. (103)

In summary, in this section we considered the maximal operator norm
suitable for evaluation of decoherence for a quantum register consisting of
qubits immersed in noisy environments. We established the additivity prop-
erty of this measure of decoherence for multiqubit registers at short times,
for which the level of quantum noise is low, and the qubit–qubit interaction
effects are small, but without any limitation on the initial entanglement of
the qubit register.
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Abstract. We review an ongoing effort to demonstrate technologies required
for quantum computing with phosphorus donors in silicon. The main aspect
of our research is to achieve control over charge and spin states of individual
dopant atoms. This work has required the development of new techniques for
engineering silicon nanodevices at the atomic level. We follow an approach
for implanting single phosphorus ions into silicon substrates with integrated
p–i–n detectors. Configuring our devices with radio-frequency single-electron
transistors (RF-SETs) allows for charge sensing at low temperatures. In this
context, we perform measurements of single-electron charge transfer between
individual phosphorus donors. In a parallel effort, we employ nanoscale Schot-
tky contacts for populating and depopulating individual dopant atoms. Of
particular interest is coherent manipulation of single-electron charge and spin
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states on individual dopant atoms. Charge manipulation between coupled
donor states may be achieved by either external microwave pumping or intrin-
sic tunnel coupling. Spin manipulation, on the other hand, involves magnetic
resonance. In this context, we pursue electrically detected spin resonance in
phosphorus-doped devices with a decreasing number of dopant atoms.

1 Quantum Computing with Phosphorus in Silicon

The use of single dopant atoms for encoding quantum information in the solid
state was pioneered by Kane in his original proposal for nuclear-spin-based
quantum computing using single phosphorus donors in silicon [1]. The basic
ingredient of the Kane proposal is to incorporate 31P donors with nuclear
spin 1/2 into a 28Si host with zero nuclear spin. As such, each 31P nucleus
forms a two-level spin system in a background of zero nuclear spin. However,
each 31P donor is associated with a localized electron, which is used both
to tune the nuclear magnetic resonance through hyperfine splitting, mediate
the coupling between neighboring nuclear spins through exchange interaction,
and for readout of 31P nuclear spins through the electronic charge state.

Since the original Kane scheme, a number of different donor-based qubit
systems have been proposed. In particular, schemes that utilize the electronic
spin states of single donors are attractive. Detailed scalable strategies for such
electron-spin qubits have recently been put forward [4]. A less complicated

Fig. 1. (a) Original Kane proposal of encoding qubits on the nuclear spin of single
phosphorus donors [1]. The concept features so-called A- and J-gates to electri-
cally tune both hyperfine and exchange coupling. Coherent manipulation may be
achieved through magnetic resonance. (b) Proposed scheme for charge-based single-
donor quantum computing [2, 3]. Here, the qubit is encoded on the wavefunction of
a single electron on a donor pair. Coherent behavior relies on the intrinsic tunnel
coupling between the two donor states
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Fig. 2. Electronic levels of the
phosphorus donor as observed
by far-infrared spectroscopy [5].
Intervalley mixing gives rise to
splitting of the 1s ground state
into singlet (A1), triplet (T2),
and doublet (E) superpositions of
the six degenerate valleys

scheme that relies on electronic charge rather than spin states was previously
proposed for quantum computing with single dopant atoms in silicon [2, 3].
This approach relies on the coherent tunnel coupling of a donor pair occupied
by a single electron, where the qubit is encoded in the occupancy of each
donor state.

1.1 Electronic Donor States of Phosphorus in Silicon

The basic properties of electronic donor states are of outmost importance for
qubits based on individual dopant atoms. For phosphorus donors in silicon, a
great deal is known from both experimental studies and different theoretical
treatments pioneered by Kohn and Luttinger in the 1950s [5, 6]. Identifying
the different levels is complicated by mixing of the six degenerate conduction
band valleys in silicon due to the subatomic variation of the donor poten-
tial. This mixing gives rise to splitting of the hydrogen-like levels, lifting the
six-fold valley degeneracy of the silicon conduction band. In the context of
quantum computing, it is a big advantage that phosphorus donors have a
nondegenerate ground-state with valley splitting of more than 10meV to the
degenerate triplet and doublet states. As such, it represents an ideal spin
qubit in the sense that it has a nondegenerate orbital ground-state well sepa-
rated from both the excited states as well as the conduction-band continuum.

1.2 Coupled Pairs of Phosphorus Donors as Charge Qubits

The proposed architecture for charge qubits based on single dopant atoms
relies on the dynamics of a single electron on a pair of phosphorus donors
in silicon, the so-called P+

2 molecule [2, 3]. The concept of this system as a
controllable two-level system relates to the so-called double quantum dots in
gallium arsenide, recently reviewed by van der Wiel et al. [7]. In both systems,
coherent behavior is achieved through tunnel coupling of two localized elec-
tronic states, tunable via an external electric field. In double quantum dots,
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Fig. 3. Tuning of the single-
electron ground and excited states
with electric field for a tunnel cou-
pled donor pair. The electric field
works to localize the states on each
donor, whereas the tunnel coupling
gives rise to anticrossing with split-
ting into symmetric and antisym-
metric states

these states are confined electrostatically, and until recently only as ground
states of many-electron systems. The P+

2 molecule on the other hand, repre-
sents a single-electron system governed by coherent tunnel coupling between
the two donors. In the case of coupling much weaker than ionization and exci-
tation energies, the ground and first excited states are simply superpositions
of each single-donor ground state. The Hamiltonian of this two-level system
in the basis of left and right donor states is given by

H =

(
E0 + eVLR −Δ/2

−Δ/2 E0 − eVLR

)
, (1)

with single-donor ionization energy E0, electrostatic potential difference
eVLR, and coupling strength Δ. The eigenstates may be expressed in terms
of a characteristic detuning angle θ = tan−1(Δ/eVLR) as

|0〉 = cos(θ/2)|L〉 + sin(θ/2)|R〉,
|1〉 = sin(θ/2)|L〉 − cos(θ/2)|R〉,

(2)

with corresponding energy eigenvalues E = ∓
√
Δ2 + (eVLR)2/2. As indi-

cated in Fig. 3, Δ describes the energy splitting between symmetric and an-
tisymmetric states at the degeneracy point where the tunnel coupling gives
rise to anticrossing behavior.

Coherent Manipulation

There are two basic schemes for coherent manipulation of charge qubits based
on the P+

2 molecule in silicon, both recently demonstrated for double quantum
dots [8, 9]. The first approach relies on resonant pumping of the ground to
excited state transition by a microwave field. Strong enough pumping will
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lead to coherent evolution in terms of Rabi oscillations between the two P+
2

eigenstates [10]. The second approach is to initialize the P+
2 molecule in a

localized donor state by an electric field, then move to the anticrossing where
it no longer represents an eigenstate. Before decohering, the P+

2 molecule will
then undergo coherent Ramsey oscillations between the two localized states
on each phosphorus donor [2].

The feasibility of achieving coherent manipulation of P+
2 charge states

depends mainly on the coupling strength in term of the Δ parameter com-
pared to the dominating decoherence mechanisms, i.e., charge fluctuations
and coupling to phonons. A crude estimate may be deduced as a hydrogenic
approximation by scaling the result for H+

2 in vacuum

Δ = 2E0

(
1 +

R

aB

)
e−R/aB (3)

for donor separation R and Bohr radius aB = 2.5 nm for silicon. Much more
accurate values are obtained for a full six-valley effective-mass treatment
in the Kohn–Luttinger formalism [10, 11]. Such calculations show a strong
dependence on the exact lattice configuration with a remarkable oscillatory
behavior. Both approaches agree on an overall exponential dependence on
donor separation with an order of magnitude scaling in approximately 5.8 nm.
As a consequence, the exact lattice configuration has a huge impact on the
coupling strength and hence on the dynamics of a given P+

2 charge qubit.

2 Controlled Single-Ion Implantation

Our experimental work relies on a unique technology for single-ion implanta-
tion to configure MOS-based silicon nanodevices with a well-known number
of dopant atoms. An active substrate allows for detection of low-energy phos-
phorus ions, and nanopatterned implantation masks enables us to position
such atoms to within 20 nm.

2.1 Single-Ion Detection with Integrated p–i–n Diodes

In a recent report, we show how silicon substrates configured as p–i–n detec-
tors may be used for single-ion implantation of shallow phosphorus atoms [12].
Our integrated p–i–n detectors are configured with on n-type backplane and
two p-type frontside electrodes. The detectors are characterized to yield 100%
charge-collection efficiency in a 10-μm central region terminated by 5 nm of
high-quality oxide. After optimizing our system in terms of signal-to-noise
ratio, we have achieved detection of single 14 keV phosphorus ions with 98%
confidence, meaning that 98% of all ion impacts will result in a signal well
resolved over the noise threshold.
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Fig. 4. Single-ion im-
plantation scheme using
integrated p–i–n detec-
tors and a nanopat-
terned aperture mask.
Electron–hole pairs gen-
erated by each ion im-
pact are picked up by
the detector electrodes
under strong reverse
biasing. The resulting
microsecond charge
transient is amplified
in order to monitor each
phosphorus ion impact

Integration with Nanofabrication

Some effort has gone into integrating our single-ion implantation technology
with general nanofabrication based on electron-beam lithography [13]. For
positioning, we make use of nanopatterned implantation masks with litho-
graphically defined apertures of 15–20 nm diameter in 150-nm thick PMMA
layers. The integrity of such masks is checked, both on detectors with no
apertures and others with hundreds of apertures. The actual experimental
devices are implanted through single apertures, or pairs of apertures sep-
arated by 50 nm. After implantation, a rapid thermal anneal at 1000◦C is
carried out in order to remove damage and activate the phosphorus donors.
The resulting positional accuracy is estimated to better than 20 nm, consider-
ing aperture size, straggle of the implanted ions, and diffusion during thermal
treatment.

3 Charge Sensing with Superconducting RF-SETs

In order to perform measurements of single-electron charge and spin states
in our atomically doped silicon devices, we make use of superconducting RF-
SETs. The particular type of SET used in our experiments is based on a small
island with overlapping tunnel junctions formed by aluminum double-angle
evaporation with an intermediate oxidation step. Such RF-SETs have already
been established as extremely sensitive and fast charge sensors approaching
quantum-limited detection [14, 15].
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3.1 Layout and Performance of RF-SET Measurements

The RF-SET measurements are performed as reflectometry on a resonant
tank circuit consisting of a surface-mount inductor, the onchip parasitic ca-
pacitance, and the impedance represented by the SET itself. The tank circuit
as well as bias-tees and several filters are mounted at millikelvin temperature
in a dilution refrigerator with a 40-dB low-temperature HEMT preamplifier

Fig. 5. (a) Experimental layout for RF reflectometry on resonant tank circuit
formed by surface-mount inductor, onchip parasitic capacitance, and where the
SET impedance represents a variable damping. (b) Reflected signal in color scale
showing Coulomb diamonds of superconducting SET with extremely sensitive dou-
ble Josephson quasiparticle peaks (DJQP). (c) Tuning of the tank circuit resonance
from zero bias (black) to finite bias (red). (d) Signal-to-noise ratio of side bands
under 100-kHz gate modulation yields a charge sensitivity of 10 μe/

√
Hz
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(300–400MHz) at liquid helium temperature as illustrated in Fig. 5a. Re-
flectance measurements are performed by coupling in a carrier signal while
amplifying the reflected signal and demodulating the response by mixing the
two signals at room temperature.

The tank circuit works to match the 50–150 kΩ impedance of the SET to
the 50-Ω impedance of the connected RF circuitry. The measured reflectance
simply indicates how poorly the combined tank circuit is matched to 50Ω,
and is particularly sensitive at resonance. The resonance frequency of the
tank circuit is determined by the inductance and parasitic capacitance alone
as

ω0 =
1√

LCP

, (4)

while the impedance of the SET simply works to damp the resonance, thereby
changing the Q-value of the resonator.

An example of Coulomb diamonds for one of our superconducting SETs
is shown in Fig. 5b as reflected RF signal versus both gate and bias voltage.
Figure 5c shows the corresponding change in the tank circuit resonance as
the differential resistance of the SET changes from high to low. One feature
of particular interest is the Josephson quasiparticle peak (DJQP) where the
response is extremely sensitive in both gate and bias voltage [16]. This peak
is due to a particular sequential tunneling process involving three quasiparti-
cles, correlated through the Josephson coupling [17]. For charge sensing, the
optimal sensitivity is achieved when operating at the edge of the DJQP in
gate voltage. The charge sensitivity is measured by adding a gate modulation
that induces fractions of an electron on the island as illustrated in Fig. 5d.
Typical sensitivity values for our superconducting RF-SETs are in the range
5–15μe/

√
Hz.

Charge Transfer in Atomically Doped Devices

Our ongoing research concentrates on RF-SET detected single-electron trans-
fer in atomically doped silicon devices. A series of experiments is carried out
to resolve some of the important energy- and timescales for qubits based on
individual phosphorus donors. These experiments include both time-resolved
measurements of single-electron transfer as well as spectroscopy by means
of microwave-induced resonant transfer. Here, the spectroscopy may present
new knowledge about the energy levels of such donor-based molecular struc-
tures, whereas the time-resolved studies may yield information about the rel-
evant relaxation times for such quantum systems. Common for both types of
experiment is that they are the first to address the relevant coupling strengths
(coherent and incoherent) for charge qubits based on phosphorus donor pairs
in silicon.
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Fig. 6. (a) PtSi formed by thermal reaction of 25 nm Pt with a silicon substrate.
(b) Device layout for studies of tunneling between nanoscale Schottky contacts and
individual dopant atoms. (c) Simplified 1D potential landscape between the Schot-
tky contact and SET with triangular Schottky barrier (0.6–0.8 eV) and possible
localized states in terms of shallow donors and deep traps at the oxide interface

4 Initialization and Readout with Schottky Contacts

One challenging aspect of quantum computing with individual dopant atoms
is the initialization of single-electron charge and spin states. For charge qubits
based on phosphorus donor pairs, it is of particular importance to prepare the
single-electron occupancy of the P+

2 molecule. For this purpose, we employ a
scheme for populating and depopulating individual dopant atoms by means
of nanoscale Schottky contacts. Apart from charge initialization, there could
also be scope for using such tunneling events for readout of single-electron
spins on individual dopant atoms.

4.1 Contacting Atomically Doped Devices

Standard contacts achieved by heavy doping are not ideal for atomic devices,
because of the random dopants that are introduced in the vicinity of the im-
planted regions [18]. Another scheme for contacting nanoscale silicon devices
is the use of transition-metal silicide compounds. In particular, PtSi has been
suggested in the context of Schottky barrier MOSFETs with nanoscale chan-
nel lengths [19]. In our devices PtSi Schottky contacts are used to populate
and depopulate individual phosphorus donors.

We form our PtSi contacts by reaction of a 25-nm platinum layer deposited
directly onto the silicon substrate after HF etching, where a lithographic pat-
tern is used for both etching and metal lift-off. The silicide is formed during
a 350◦C forming-gas anneal, known to yield a stoichiometric compound with
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Fig. 7. Resonant change
in photocurrent as a
function of applied mag-
netic field for, (a) a bulk
doped sample and, (b) a
sample with 50 donors
implanted. Microwaves in
the X-band were applied.
Visible in (a) are the two
Si:P hyperfine split reso-
nances as well as a central
line arising from strongly
exchange coupled donor
pairs. Trace (b) shows an
additional feature around
346 mT that is attributed
to the Pb defect, a Si
dangling bond near the
interface

few defects [20]. The process takes place by diffusion of silicon into platinum
rather than the other way around. Together with the high stability of the
one-to-one stoichiometric silicide, this results in a noncritical process that
introduces very few defects into the silicon substrate. By integrating this
process with our single-ion implantation and aluminum SETs, we are able to
study single-electron tunneling in atomically doped devices with nanoscale
Schottky contacts (Fig. 6b).

In our experiments, we use the potential of the Schottky contact itself to
induce single-electron transfer, as detected by a nearby RF-SET. The concept
is illustrated by the potential landscape in Fig. 6c. A series of experiments are
carried out to study the dynamical response of such single-electron transfer
events. By resolving the relevant energy- and timescales, we wish to deduce
the origin as either shallow donor states or interface-bound states.

5 Magnetic Resonance in Nanoscale Implanted Devices

To extend the above work to manipulation of a small number of electron
spins, we have combined nanoscale devices with the electrical detection of
magnetic resonance (EDMR). In EDMR, the electrical current through a
semiconducting sample is monitored as electron-spin resonance (ESR) is in-
duced. Due to spin-dependent transport processes, the current through the
sample changes when the resonant conditions are satisfied, allowing sensitive
detection of the magnetic resonance.
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Fig. 8. (a) Schematic side view of
the devices used for EDMR. Two
degenerately doped leads connect
to a sample region with ∼ 50 im-
planted donors. (b) SEM top view
of the device after implantation
and before annealing, showing
the diffused contacts (light) and
the implanted extensions (dark).
(c) SEM of the gap (100 ×
100 nm2) into which the dilute im-
plant was performed

As an example, a bulk-doped wafer with phosphorus content 1017 cm−3

was contacted by degenerately doped ohmic contacts. Photoconductivity
measurements were performed at 5 K by monitoring the current change with
a lockin amplifier at magnetic field modulation (∼1 kHz). Figure 7a shows
the change in conductivity for the bulk-doped wafer as a function of applied
magnetic field. Clearly visible are the two hyperfine phosphorus resonances,
separated by 4.2mT, as well as a central resonance associated with pairs of
strongly exchange coupled phosphorus donors. The relative change in pho-
tocurrent for this sample was ∼3 × 10−6 at resonance. In contrast to conven-
tional ESR, where the signal intensity is directly proportional to the number
of phosphorus atoms in the sample, the resonant current change observed
here also depends on the recombination dynamics as well as on the sample
geometry and cannot be used as easily to determine the number of donors
involved.

To more quantitatively determine the influence of the smaller number
of donors on the spin-dependent transport, we use a similar approach to
that outlined above. For these studies, devices with a well-known number of
phosphorus atoms were fabricated via ion implantation into highly resistive
Si substrates. Highly doped source and drain leads were defined as small as
100 nm in width with a 100-nm gap. Into this gap 50 ±7 phosphorus donors
were implanted, as determined from the size of the PMMA aperture and the
implant dose. A schematic of the device and SEM images of the implanted
regions are shown in Fig. 8.
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Figure 7b shows an example of the EDMR spectra obtained for these
samples [21]. Here, the hyperfine-split phosphorus resonance is visible on the
high magnetic field side. However, a large resonance obscures the low-field
phosphorus resonance. This additional resonance can be identified from its g-
factor as the Pb defect at the Si/SiO2 interface [22]. The differences in relative
intensities of the phosphorus and Pb resonances in Figs. 7a and b most likely
arise from the stronger restriction of the current to the interface region in
the ion-implanted device. Furthermore, different annealing procedures will
lead to varying interface defect densities, manifested also as higher absolute
photoconductivity in the bulk sample.

In the present samples, the current path is restricted only by the lower
resistance through the implanted leads, and as a result a fraction of the
photocurrent is able to flow around the gap region. To ensure that the signal
observed was not due to the straggle at the edge of the implanted leads,
additional devices were fabricated using arsenic as the donor for both the
leads and ohmic contacts. These devices show that the maximum number of
donors that we detect is less than 100.

To improve the signal, and reduce the effect of these shunt currents, geo-
metrical restriction of the current paths would allow the current to be com-
pletely confined to the gap region, which should lead to larger relative cur-
rent changes on resonance. This may be achieved for example by using silicon
nanowires etched into SOI material.

Summary and Outlook

To summarize, nanoscale devices have been fabricated containing as few as 50
phosphorus donors in a nondegenerately doped region between degenerately
doped source and drain leads. These donors were shown to influence the
photocurrent flowing through the device when performing ESR.

Finally, it is important to note that EDMR also can be used as a tool to
investigate the coherent manipulation of donor electrons. Recent work has
demonstrated the ability to electrically detect coherent Rabi oscillations of
an ensemble of phosphorus donors in silicon by pulsed EDMR [23, 24]. A
combination of such pulsed magnetic resonance techniques with single-donor
devices could be an interesting alternative route for experiments concerning
detection of single-donor spin states.
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Electron Spin as a Spectrometer
of Nuclear-Spin Noise and Other Fluctuations
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Abstract. This chapter establishes the relationship between low-frequency
noise and coherence decay of localized spins in semiconductors, as measured
by a number of different pulse spin resonance sequences. A general relation-
ship between an arbitrary noise spectral function and spin phase relaxation
is derived, allowing microscopic calculations of electron spin-echo decay due
to the magnetic noise produced by interacting nuclear spins. The electron–
nuclear spin Hamiltonian is reviewed, including isotropic and anisotropic
hyperfine interactions, internuclear dipolar interactions, and the effective
nuclear–nuclear coupling mediated by the electron-spin hyperfine interaction.
A microscopic calculation of the nuclear-spin noise spectrum arising due to
nuclear–nuclear dipolar flip-flops is presented. We compare our explicit nu-
merical results to electron spin-echo decay experiments of phosphorus impu-
rities embedded in natural and in nuclear-spin-enriched silicon.

1 Introduction

Although the study of electron-spin dynamics using pulse electron-spin reso-
nance is an established research field [1], many theoretical questions regard-
ing the microscopic mechanisms for reversible and irreversible decay of spin
coherence remain open. Recently, the quest toward scalable quantum compu-
tation using electron spins [2, 3] gave new impetus to pulse spin resonance,
and sparked major experimental progress toward control and detection of
individual electron spins in the solid-state environment [4–8].

The microscopic understanding of the mechanisms leading to electron-
spin energy and phase relaxation, and the question of how to control these
processes is central to the research effort in spin-based quantum computa-
tion. The goal of theory is to achieve microscopic understanding so that spin
coherence can be controlled either from a materials perspective (i.e., choos-
ing the best nanostructure for spin manipulation and dynamics) or from the
design of efficient pulse sequences that reach substantial coherence enhance-
ment without a high overhead in the number of pulses and energy deposition.
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(The latter is particularly important in the context of low-temperature ex-
periments where undesired heating from the microwave excitations must be
avoided).

One has to be careful in order to distinguish the timescales characterizing
electron-spin coherence. It is customary to introduce three timescales, T1,
T ∗

2 , and T2. For localized electron spins, these timescales usually differ by
many orders of magnitude, because each is dominated by a different physical
process. T1 is the 1/e decay time for the spin magnetization along the external
magnetic-field direction. As an example, T1 of a phosphorus donor impurity in
silicon is of the order of a thousand seconds at low temperatures and moderate
magnetic fields (T = 4 K and B = 0.3T) [9]. These long T1s are explained
by noting that the spin-orbit interaction produces a small admixture of spin-
up/down states; the electron–phonon interaction couples these admixtures
leading to 1

T1
∝ B5 at low temperatures [10–12]. T1 is generally long because

a spin-flip in a magnetic field requires energy exchange with the lattice via
phonon emission. The timescales T ∗

2 and T2 are instead related to phase
relaxation, and hence do not require transmission of energy to the lattice.
Here, T ∗

2 is the 1/e decay time of the precessing magnetization in a free
induction decay (FID) experiment (π/2–t–measure, where π/2 denotes a spin
rotation around the x-axis). Hence, T ∗

2 is the decay time of the total inplane
magnetization of an ensemble of spins separated in space or time (e.g., a
group of impurities separated in space, or the time-averaged magnetization
of a single spin, as discussed in Sect. 2.3 below). For a phosphorus impurity in
natural silicon, T ∗

2 ≈ 20 ns due to the distribution of frozen hyperfine fields,
that are time independent within the measurement window of the experiment.
The T ∗

2 decay is reversible, because the ensemble inplane magnetization is
almost completely recovered by applying a spin-echo pulse sequence. In this
review we define T2 as the 1/e decay time of a Hahn echo (π/2–τ–π–τ–
echo). The irreversible decoherence time T2 is caused by uncontrolled time-
dependent fluctuations within each time interval τ . For a phosphorus impurity
in natural silicon, we have T2 ≈ 0.3ms [13], four orders of magnitude longer
than T ∗

2 .
The discussion above clearly indicates that the resulting coherence times

are critically dependent on the particular pulse sequence chosen to probe spin
dynamics. In Sect. 2 we show that spin coherence can be directly related to
the spectrum of electron-spin phase fluctuations and a filter function appro-
priate for the particular pulse sequence. The phase of a precessing electron
spin is a sensitive probe of magnetic fluctuations. This gives us the opportu-
nity to turn the problem around and view pulse electron-spin resonance as a
powerful tool enabling the study of low-frequency magnetic fluctuations aris-
ing from complex many-body spin dynamics in the environment surrounding
the electron spin.

A particularly strong source of magnetic noise arises due to the presence of
nuclear spins in the sample. It is in fact no surprise that the dominant mech-
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anism for nuclear spin-echo [14] and electron spin-echo decay [15, 13] has long
been related to the presence of nonresonant nuclear-spin species fluctuating
nearby the resonant spin. Nevertheless, the theoretical understanding of these
experiments was traditionally centered on phenomenological approaches [16–
18], whereby the electron phase is described as a Markovian stochastic process
with free parameters that can be fitted to experiment (this type of process
has been traditionally denoted spectral diffusion, since the spin resonance
frequency fluctuates along the resonance spectrum in a similar way to how a
Brownian particle diffuses in real space).

Recently, we embarked on an effort aimed at understanding the mecha-
nism of electron-spin decoherence due to nuclear spins from a fully micro-
scopic point of view. In [19] we developed a semiclassical model for electron
spin-echo decay based on the assumption that the relevant nuclear-spin dy-
namics results from pair “flip-flops”, where the spin of two nuclei located close
to each other is exchanged due to their mutual dipolar interaction (Fig. 1).
The flip-flop processes lead to fluctuations in the nuclear spin hyperfine field
seen by the localized electron (e.g., a donor impurity or a quantum dot in
a semiconductor). The semiclassical theory is based on the assumption that
each flip-flop can be described by a random telegraph noise process (a phe-
nomenological assumption), but with relaxation parameters that can be de-
rived theoretically from a microscopic theory based on the nuclear-spin dipo-
lar evolution. Therefore, this theory describes the irreversible decay of the
effective hyperfine field produced by a pair of nuclear spins on the electron

Fig. 1. The electron spin of a donor impurity in silicon is sensitive to the magnetic
noise produced by nuclear spins within its wavefunction. When two 29Si isotopes
are close to each other, their nuclear-spin states may flip-flop due to their mutual
dipolar interaction. These flip-flop events produce time-dependent fluctuations in
the electron’s hyperfine field, leading to phase relaxation and spin-echo decay
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spin. Comparison with experiment [13, 20–23] suggested reasonable order-
of-magnitude agreement for the 1/e echo decay time (within a factor of 3)
but poor qualitative agreement for the time dependence of the echo envelope.
The next step was to develop a full quantum theory for the nuclear-spin dy-
namics affecting the electron spin. In [24] a cluster expansion method was
developed to calculate echo decay due to the closed-system dynamics of a
group of dipolar coupled nuclear spins, without any stochastic assumption
about the nuclear-spin dynamics. At lowest order in this cluster expansion
the qualitative and quantitative agreement with experimental data was quite
good.

In Sect. 4 we develop a fully microscopic theory for the nuclear-spin noise
spectrum arising due to pair flip-flops induced by the internuclear dipolar
interaction. This allows us to give an elegant and simple derivation of the
lowest-order cluster expansion results of [24] and to interpret these results
from the point of view of nonequilibrium statistical mechanics. The full noise
spectrum is expressed as a sum of delta-function contributions correspond-
ing to isolated pair flip-flop transitions. We then show that irreversibility
can be incorporated into the pair flip-flop processes by adding broadening to
these sharp transitions, in a mean-field-like approach. Using the method of
moments we are able to calculate these broadenings exactly (at infinite tem-
perature). We show explicit numerical results for the noise spectrum affecting
a donor impurity in silicon and compare the improved theory with echo-decay
experiments in natural [21] and nuclear-spin-enriched samples [22].

2 Noise, Relaxation, and Decoherence

When the coupling between the spin qubit and the environment is weak, we
may write a linearized effective Hamiltonian of the form

H(t) =
1
2
γBσz +

1
2

∑
q=x,y,z

η̂q(t)σq, (1)

where B ‖ ẑ is a static (time-independent) magnetic field, γ is a gyromagnetic
ratio in units of (sG)−1 (we set h̄ = 1 so that energy has units of frequency),
σq for q = x, y, z are the Pauli matrices describing qubit observables and
η̂q(t) represents the environmental (bath) degrees of freedom.

2.1 The Bloch–Wangsness–Redfield Master Equation

In order to describe the long-time dynamics we may take the limit t → ∞.
Such an approximation is appropriate provided t � τc, where τc is a typ-
ical correlation time for bath fluctuations (later we will define τc properly
and relax the long-time approximation). In this case, spin dynamics can be
described by the Bloch–Wangsness–Redfield theory. The average values of
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the Pauli operator satisfy a Master equation (for a derivation see Sect. 5.11
of [26])

d
dt

〈σ〉 = γB × 〈σ〉 − 1
T1

〈σz 〉ẑ − 1
T2x

〈σx〉x̂ − 1
T2y

〈σy 〉ŷ, (2)

with
1
T1

=
π

2

∑
q=x,y

[
S̃q(+γB) + S̃q(−γB)

]
, (3)

1
T2x

=
π

2
[
S̃y(+γB) + S̃y(−γB)

]
+ πS̃z(0), (4)

1
T2y

=
π

2
[
S̃x(+γB) + S̃x(−γB)

]
+ πS̃z(0). (5)

Here, the noise spectrum is defined as

S̃q(ω) =
1
2π

∫ ∞

− ∞
eiωt

〈
η̂q(t)η̂q(0)

〉
dt. (6)

In (3)–(5) we assume 〈η̂q(t)η̂q′ (0)〉 = 0 for q �= q′. These equations are the
generalization of Fermi’s golden rule for coherent evolution. From (2) we
may show that the coherence amplitude | 〈σ+〉| = | 〈σx + iσy 〉 |/2 in a FID
experiment decays exponentially with a rate given by

1
T ∗

2

=
1
2

(
1
T2x

+
1
T2y

)
=

1
2T1

+ πS̃z(0). (7)

In contrast, T1 is the timescale for 〈σz 〉 to approach equilibrium, i.e., T1 is
the energy relaxation time. According to (7) we have T ∗

2 ≤ 2T1. Note that T1

depends on the noise spectrum only at frequencies +γB and −γB, a state-
ment of energy conservation. Positive frequency noise can be interpreted as
processes where the qubit decays from ↑ to ↓ and the environment absorbs an
energy quantum γB, while negative frequency noise refers to qubit excitation
(from ↓ to ↑) when the environment emits a quantum γB. The correlation
time τc can be loosely defined as the inverse cutoff for S̃q(ω), i.e., for ω � 1/τc
we may approximate S̃q(ω) ≈ 0.

The Master equation [see (2)] leads to a simple exponential time depen-
dence for all qubit observables. Actually this is not true in many cases of
interest, including the case of a phosphorus impurity in silicon where this ap-
proximation fails completely (for Si:P the observed free induction decay is ap-
proximately exp[−(t/T ∗

2 )2], while the echo can be fitted to exp[−(2τ/T2)2.3]).
The problem lies in the fact that the t → ∞ assumption averages out finite
frequency fluctuations; note that T ∗

2 differs from T1 only via static noise [S̃z(0)
in (7)]. A large number of pulse spin-resonance experiments are sensitive to
finite frequencies only, the most notable example being the spin echo, which
is able to remove S̃z(0) completely. Therefore, one must develop a theory for
coherent evolution that includes finite frequency fluctuations.
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We may develop a theory for spin coherence that takes into account
low-frequency fluctuations in the semiclassical regime h̄ω � kBT , when
S̃z(−ω) = e−h̄ω/kBT S̃z(ω) ≈ S̃z(ω). This is equivalent to assuming Sz(t) =
〈η̂z(t)η̂z(0)〉 ≈ 〈η̂z(0)η̂z(t)〉 = Sz(−t), or that η̂z commutes at different times.
In practice, the semiclassical approximation allows us to map η̂z into a clas-
sical stochastic process.

To obtain analytical results we must further specialize to the pure dephas-
ing limit η̂q = 0 for q = x, y and we must assume η̂z is distributed according
to Gaussian statistics. For many realistic problems the pure dephasing limit
turns out to be a good approximation to describe phase relaxation. A com-
mon situation is that the neglected components S̃x,y(ω) are much smaller
than S̃z(ω) for positive frequencies much smaller than the qubit energy split-
ting. For example, in the case of a localized electron spin in a semiconductor,
S̃x,y(ω) ∝ ω5 due to the combination of the spin-orbit and electron–phonon
interactions [12]. As a result, S̃x,y(ω) � S̃z(ω) as ω → 0. The Gaussian
approximation is described below.

2.2 Finite Frequency Phase Fluctuations and Coherence Decay
in the Semiclassical-Gaussian Approximation

In many cases of interest, the environmental variable η̂z is a sum over several
dynamical degrees-of-freedom, and measurement outcomes for the operator
η̂z may assume a continuum of values between −∞ and +∞.1 In those sit-
uations we can often resort to the central limit theorem that states that the
statistics for outcomes η′ follows a Gaussian distribution,

P
[
η̂z(t) = η′] =

1√
2πΔ2

exp
(

− η′ 2

2Δ2

)
, (8)

with a stationary (time-independent) variance given by Δ2 = 〈η̂2
z(t)〉. Here,

〈A〉 = Tr{ρ̂BA} is a thermal average taken over all bath degrees-of-freedom
(ρ̂B ∝ e− HB/kBT is the canonical density matrix for the bath). We also assume
〈η̂z(t)〉 = 0, since any constant drift in the noise can be incorporated in the
effective B field.

Our problem is greatly simplified if we relate the operator η̂z to a Gaussian
stochastic process η′(t) in the following way. For each time t, η′(t) corresponds
to a classical random variable, that can be interpreted as the outcome of
measurements performed by the qubit on the environment. This allows us take
averages over the bath states using (8). Note that the statement “Gaussian”
noise refers specifically to the distribution of noise amplitudes, that is not
necessarily related to the spectrum of fluctuations (see below).

1 An important exception is the observation of individual random telegraph noise
fluctuators in nanostructures (in this case η̂ = ±η′ assumes only two discrete val-
ues). This results in important non-Gaussian features in qubit evolution.
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Our simplified effective Hamiltonian leads to the following evolution op-
erator [recall that we set η̂x,y ≡ 0 in (1)]

Uη(t, 0) = e−i
∫ t

0
dt′ H(t′) = e− i

2 σz [Bt+
∫ t

0
η′(t′) dt′] = e− i

2 σz [Bt+Xη(t)], (9)

where we define

Xη(t) =
∫ t

0

η′(t′) dt′. (10)

Here, the subscript η emphasizes that this operator is a functional of the tra-
jectory η′(t′). The effect of the distribution of trajectories η′ can be described
by assuming the qubit evolves according to the density matrix2

ρ(t) =
∑

η

pη Uη(t, 0)ρ0U †
η(t, 0), (11)

where pη denotes the appropriate weight probability for each environmental
trajectory and ρ0 is the t = 0 density matrix for the qubit. The coherence
envelope at time t averaged over all possible noise trajectories is then〈〈

σ+(t)
〉〉

= Tr
{
σ+ρ(t)

}
=
∑

η

pηTr
{

U †
η(t, 0)σ+Uη(t, 0)ρ0

}

= eiBt
∑

η

pηeiXη(t)Tr{σ+ρ0}

=
〈
eiXη(t)

〉
eiBtTr{σ+ρ0}, (12)

where we used the identity eiασzσ+e−iασz = e2iασ+. Here, the double average
〈〈· 〉〉 denotes a quantum-mechanical average over the qubit basis plus an en-
semble average over the noise trajectories η′(t). We can evaluate the coherence
amplitude explicitly by noting that the random variable X(t) =

∫ t

0
η′(t′) dt′

is also described by a Gaussian distribution, but with a time-dependent vari-
ance given by σt = 〈X2(t)〉. Therefore, we have

〈
eiXη(t)

〉
=
∫ ∞

− ∞

1√
2πσt

e
− X2

2σ2
t eiX = e− 1

2 σ2
t , (13)

with σt given by

σ2
t =

∫ t

0

dt1
∫ t

0

dt2
〈
η′(t1)η′(t2)

〉

= 2
∫ t

0

dt1
∫ t1

0

dt2
〈
η′(t1)η′(t2)

〉

= 2
∫ t

0

dt′
∫ t−t′/2

t′/2

dT
〈
η′(T + t′/2)η′(T − t′/2)

〉

2 This assumption is equivalent to the Kraus representation in the theory of open
quantum systems.
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= 2
∫ t

0

(t − t′)S(t′) dt′. (14)

Here, we introduced the time-dependent correlation function S(t′) = 〈η′(T +
t′/2)η′(T − t′/2)〉 = 〈η(t′)η(0)〉, that is independent of a time translation T
by virtue of the stationarity assumption.

It is straightforward to generalize (13) and (14) for echo decay. Instead of
free evolution (denoted free induction decay in magnetic resonance), consider
the Hahn echo given by the sequence π/2–τ–π–τ–echo. Here, the notation
“π/2” denotes a perfect, instantaneous 90◦ spin rotation around the x-axis
(described by the operator e− i

4 πσx). The notation “−τ−” means the spin
is allowed to evolve freely for a time interval τ . “π” denotes a 180◦ spin
rotation around the x-axis, also referred as a “π-pulse” (this is described by
the operator e− i

2 πσx = −iσx). The initial π/2 pulse prepares the qubit in
the state ρ0 = |y+〉〈y+|, after which it is allowed to evolve freely for time τ ,
when the π-pulse is applied. After this pulse the qubit is allowed to evolve for
a time interval τ again, after which the coherence echo is recorded. Hence,
the evolution operator is given by

UHahn(2τ) = U (2τ, τ)(−iσx)U (τ, 0). (15)

The same procedure leading to (14) is now repeated in order to calculate the
magnitude of the Hahn echo envelope at t = 2τ . The quantum average is
given by〈

σ+(2τ)
〉

= Tr
{

U †(τ, 0)(iσx)U †(2τ, τ)σ+U (2τ, τ)(−iσx)U (τ, 0)ρ0

}

= Tr
{

U †(τ, 0)σxei
∫ 2τ

τ
dt′[B+η′(t′)]

σ+σxU (τ, 0)ρ0

}

= Tr
{

ei
∫ 2τ

τ
dt′[B+η′(t′)]U †(τ, 0)σ− U (τ, 0)ρ0

}

= ei
∫ 2τ

τ
dt′[B+η′(t′)]e−i

∫ τ

0
dt′[B+η′(t′)]Tr{σ−ρ0}. (16)

Therefore, the double average can be conveniently written as
〈〈
σ+(2τ)

〉〉
= e−iB

∫ 2τ

0
s(t′)dt′〈

e−i
∫ 2τ

0
s(t′)η′(t′) dt′〉

Tr{σ−ρ0}, (17)

with the introduction of an auxiliary echo function s(t). For Hahn echo s(t) =
1 if 0 ≤ t < τ and s(t) = −1 if t > τ . Note that the first term in (17) is
exactly equal to one, because the Hahn echo is able to completely refocus a
constant magnetic field. It is convenient to introduce the noise spectrum in
(17) via S(t) =

∫
e−iωtS̃(ω) dω in order to get the following expression for

the coherence envelope
∣∣〈〈σ+(t)

〉〉∣∣ = exp
[

−
∫ ∞

− ∞
dωS̃(ω)F (t, ω)

]
. (18)

Here, we define a filter function that depends on the echo sequence s(t′),
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F (t, ω) =
∫ t

0

dt′s(t′)
∫ t′

0

dt′ ′s(t′ ′) cos
[
ω(t′ − t′ ′)

]
. (19)

For free induction decay [s(t) ≡ 1] we have

FFID(t, ω) =
1
2

sin2 (ωt/2)
(ω/2)2

. (20)

Note that in the limit t → ∞ (20) becomes πδ(ω)t, recovering the Bloch–
Wangsness–Redfield result (7). The filter function for the Hahn echo becomes

FHahn(2τ, ω) =
1
2

sin4 (ωτ/2)
(ω/4)2

. (21)

Note that FHahn(2τ, 0) = 0. The Hahn echo filters out terms proportional
to S̃(0) in qubit evolution, this is equivalent to the well-known removal of
inhomogeneous broadening by the echo. Any spin-resonance sequence con-
taining instantaneous π/2 or π-pulses (not necessarily equally spaced) can be
mapped into an appropriate filter function F (t, ω). An important example is
the class of Carr–Purcell sequences that can be used to enhance coherence.

General Results for the Short-Time Behavior

The short-time behavior can be derived quite generally when the time-
dependent correlation function S(t) is analytic at t = 0. In the semiclassical
approximation S(t) = S(−t), so an expansion about t = 0 leads to

S(t) =
〈
η′(t)η′(0)

〉
=
∫ ∞

− ∞
dω e−iωtS̃(ω)

=
∞∑

n=0

(−1)n

(2n)!
M2nt

2n, (22)

with the 2nth moment of the noise spectrum defined as

M2n =
∫ ∞

− ∞
dω S̃(ω)w2n. (23)

Hence, if S(t) is analytic at t = 0, we must have M2n < ∞ for all n, i.e., the
noise spectrum has a well-defined high-frequency cutoff [e.g., S(ω) ∼ e−ω/Λ

at high frequency]. It is important to keep in mind that the assumption of
analyticity at t = 0 is actually quite restrictive. Physically, only M0 < ∞ is
required, so that S(0) < ∞ (this is the noise power or mean square deviation
for η′). Important examples where S(t) is not analytic at t = 0 include the
Gauss–Markov model described below [see (26)].

If the t = 0 expansion exists we may immediately obtain the short-time
behaviors for the free induction decay and Hahn echo:

〈〈
σ+(t)

〉〉
FID

= e−
∫

dω S̃(ω) 1
2

sin2 (ωt/2)
(ω/2)2 ≈ e− 1

2 M0t2+ 1
24 M2t4 , (24)
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〈〈
σ+(2τ)

〉〉
Hahn

= e−
∫

dω S̃(ω) 1
2

sin4 (ωτ/2)
(ω/4)2 ≈ e− 1

2 M2τ4+ 1
12 M4τ6

. (25)

The short-time behavior described by (24) and (25) is universal for noise
spectra possessing a high-frequency cutoff. Note the striking difference in time
dependence: For free induction decay the coherence behaves as ∼e−t2 , while
for a Hahn echo we have ∼e−τ4

. This happens because the Hahn echo is
independent of the mean square deviation M0 = S(0).

Example: The Gauss–Markov Model

The simplest model of Brownian motion assumes a phenomenological corre-
lation function that decays exponentially in time,

S(t) = Δ2exp
(

−|t|/τc
)
, (26)

where τc is a correlation time that describes the “memory” of the environmen-
tal noise.3 This model is useful, e.g., in liquid-state NMR in order to calculate
the linewidths of a molecule diffusing across an inhomogeneous magnetic field.
In that case, Δ becomes the typical field inhomogeneity, while the “speed” for
diffusion is of the order of Δ/τc. The resulting environmental noise spectrum
[Fourier transform of (26)] is a Lorentzian, given by

S̃(ω) =
Δ2τc
π

1
(ωτc)2 + 1

. (27)

We start by discussing free induction decay. Using (17) and (26) with
s(t′) = 1, we get∣∣〈〈σ+(t)

〉〉∣∣
FID

= exp
{

−Δ2τ2
c

[
t/τc +

(
e−t/τc − 1

)]}
. (28)

For t � τc, (28) leads to
∣∣〈〈σ+(t)

〉〉∣∣
FID

≈ e−Δ2τct. (29)

In this regime, the correlation function (26) can be approximated by a delta
function, and the decay is a simple exponential signaling that a Master
equation approach is appropriate [see (2)]. The coherence time is given by
T ∗

2 = 1/(Δ2τc). Interestingly, as τc → 0 withΔ finite, T ∗
2 → ∞. This phenom-

enon is known as motional narrowing, inspired by the motion of molecules
in a field gradient. The faster the molecule is diffusing, the narrower is its
resonance line. Now, we look at the low-frequency noise limit, t � τc. This
leads to∣∣〈〈σ+(t)

〉〉∣∣
FID

≈ e− 1
2 Δ2t2 ≡ e−(t/T ∗

2 )2 . (30)

3 Many authors use the terminology “Markovian dynamics” to denote evolution
without memory, i.e., the limit τc → 0 in (26). This limit can be taken by setting
Δ → ∞ with Γ ≡ Δ2τc held finite. In that case we have S(t) → 2Γδ(t) resulting
in a “white noise” spectrum and 〈σ+〉 ∝ e−Γt.
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In contrast to (29), the decay differs from a simple exponential and is inde-
pendent of τc. This result is equivalent to an average over an ensemble of
qubits at any specific time t (in other words, the linewidth Δ/

√
2 and de-

phasing time T ∗
2 =

√
2/Δ are a consequence of inhomogeneous broadening).

Therefore, the coherence decay is completely independent of the environmen-
tal kinetics. As we shall see below, this decay is to a large extent reversible
by the Hahn echo.

The Hahn echo decay is calculated from (18), (21), and (27) leading to〈〈
σ+(2τ)

〉〉
Hahn

= exp
{

−Δ2τ2
c

[
2τ/τc − 3 + 4e−τ/τc − e−2τ/τc

]}
. (31)

For τ � τc we again have motional narrowing, 〈〈σ+(2τ)〉〉Hahn ≈ e−Δ2τc2τ ,
a result identical to FID [see (29)] if we set t = 2τ . This occurs because the
noise trajectories are completely uncorrelated before and after the π-pulse
that plays no role in this limit. For τ � τc we get

〈〈
σ+(2τ)

〉〉
Hahn

≈ e− 1
24 (Δτc)

2( 2τ
τc

)3 ≈ e−( 2τ
T2

)3 . (32)

In drastic contrast to free induction decay, (32) depends crucially on the ki-
netic variable τc. The timescale T2 for 1/e decay of Hahn echo4 is considerably
longer than T ∗

2 when Δ � τc.

A Train of Hahn Echoes:
The Carr–Purcell Sequence and Coherence Control

Consider the sequence π/2–[τ–π–τ–echo]repeat. It consists of the application
of a π-pulse every odd multiple of τ , with the observation of an echo at even
multiples of τ , i.e., at t = 2nτ for n integer.5 In the limit τ � τc the nth
echo envelope can be approximated by a product of n Hahn echoes,

〈〈
σ+(2nτ)

〉〉
CP

≈
〈〈
σ+(2τ)

〉〉n

Hahn
≈ e− 2nτ

T2
( 2τ

T2
)2 ≡ e

− 2nτ

Teff
2 , (33)

with T eff
2 ≡ T2[T2/(2τ)]2. As τ is decreased below T2 the effective coherence

time T eff
2 increases proportional to 1/τ2. Therefore, a train of Hahn echoes

can be used to control decoherence. Rewriting (33) with t ≡ 2nτ we get
T eff

2 = (2n)2/3T2, showing that the scaling of the enhanced coherence time
with the number of π-pulses is sublinear. The train of π-pulses spaced by
τ � τc effectively averages out the noise, because within τ much shorter
than τc the noise appears to be time independent.
4 In the electron-spin resonance literature the 1/e decay time of a Hahn echo is
often denoted TM. Here, we follow the spintronics terminology and use T2 for the
1/e decay of Hahn echo, and T ∗

2 for 1/e decay of FID in the low-frequency regime.
5 One can make the Carr–Purcell sequence robust against pulse errors by alter-
nating the phase of the π-pulses, see, e.g., the Carr–Purcell–Meiboom–Gill se-
quence [26].
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Loss of Visibility Due to High-Frequency Noise

In order to understand the role of high-frequency noise, consider the model
Lorentzian noise spectrum peaked at frequency Ω with a broadening given
by 1/τd,

S̃L(ω) =
Δ2τd
π

1
(ω − Ω)2τ2

d + 1
. (34)

Using (18) and (20) and assuming Ω � 1/τd we get

∣∣〈〈σ+(t)
〉〉∣∣

L
≈ exp

[
−2

(
Δ

Ω

)2(
1 − e−t/τd cosΩt

)]
. (35)

Therefore, high-frequency noise leads to loss of visibility for the coherence
oscillations. The loss of visibility is initially oscillatory, but decays exponen-
tially to a fixed contrast for t � τd. For comparison, consider a Gaussian
noise spectrum,

S̃G(ω) =
Δ2

√
2πσ2

exp
[

− (ω − Ω)2

2σ2

]
. (36)

For Ω � σ we get

∣∣〈〈σ+(t)
〉〉∣∣

G
≈ exp

[
−2

(
Δ

Ω

)2(
1 − e− 1

2 σ2t2 cosΩt
)]
. (37)

Note that the difference between (35) and (37) lies in the time dependence of
the approach to a fixed contrast. Deviations from Lorentzian behavior may
be assigned to nonexponential decays of the coherence envelope. Although
(35) and (37) were calculated for free induction decay, it is also a good ap-
proximation for Hahn echoes in the limit Ω � 1/τ .

2.3 Single-Spin Measurement Versus Ensemble Experiments:
Different Coherence Times?

Recently, single-shot detection of the spin of a single electron in a GaAs quan-
tum dot was demonstrated [5], and the Hahn echo decay of the singlet–triplet
transition in a double quantum dot was measured [8]. Also, spin resonance
of a single spin center in the Si/SiO2 interface was detected through time-
averaged current fluctuations [6]. These state-of-the-art experiments should
be contrasted with the traditional spin-resonance measurements where the
microwave excitation of a sample containing a large number of localized spins
is probed. Naturally the following question arises: Are the coherence times
extracted from ensemble experiments any different from those obtained in
single-spin experiments?

The answer to this question is related to the ergodicity of the environment
producing noise, i.e., whether time averages are equal to ensemble averages.
Even when single-shot readout of a quantum degree of freedom is possible,
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Fig. 2. (a) A traditional spin-resonance experiment probes the coherent evolution
of an ensemble of spatially separated spins. The spins can be separated into differ-
ent “packets” with similar resonance frequencies, each packet with linewidth 2/T2.
A free induction decay measurement is sensitive to the broadened linewidth 2/T ∗

2 .
A spin echo is needed in order to reveal the intrinsic linewidth 2/T2. (b) A similar
situation applies to single-spin experiments subject to low-frequency noise, because
each time ensemble may have a different resonance frequency

one must repeat each measurement several times, in order to obtain good
average values for the observables. For example, measurements of the state
of a single spin yields two possible outcomes and one must time average an
ensemble of identical qubit evolutions in order to obtain an average value that
reflects the correct outcome probabilities (in [5], each average value resulted
from ∼600 readout traces). The presence of phase fluctuation with correlation
time τc smaller than the typical averaging time implies spin precession with
distinct frequencies for readout traces separated in time. This may lead to
strong free induction decay (low T ∗

2 ) in a single-shot readout measurement,
see Fig. 2. This was indeed observed in the double-dot experiments of Petta
et al. [8].

The free induction decay time T ∗
2 in ensemble experiments may be quite

different from single-spin experiments. This is because the spatial separation
of spins adds several new contributions to zero-frequency noise. These include
spatially inhomogeneous magnetic fields, g-factors, and strains. Nevertheless,
the Hahn-echo decay time T2 is not affected by zero-frequency noise. If the
mechanisms for finite-frequency noise do not vary appreciably for spatially
separated spins, and the environment affecting each individual spin is ergodic,
the spin-echo decay time T2 should be similar for a single spin or a collection
of spatially separated spins.
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The Gaussian theory of decoherence described here is appropriate for er-
godic environments. It would be very interesting to explore model systems
both experimentally and theoretically in order to search for detectable non-
ergodic effects in coherent evolution.

3 Electron-Spin Evolution Due to Nuclear Spins:
Isotropic and Anisotropic Hyperfine Interactions,
Internuclear Couplings
and the Secular Approximation

A localized electron spin coupled to a lattice of interacting nuclear spins
provides a suitable model system for the microscopic description of environ-
mental fluctuations affecting coherent evolution. Here, we describe a model
Hamiltonian appropriate for localized electron spins in semiconductors, and
discuss some truncations that can be made in a moderate magnetic field
(typically larger than the inhomogeneous broadening linewidth, B > 0.1T).
We will discuss the secular approximation that allows an effective decoupling
between electron- and nuclear-spin degrees-of-freedom, making the problem
more tractable [the final result is summarized by (54) and (55) below].

3.1 The Electron–Nuclear Spin Hamiltonian

The full Hamiltonian for a single electron interacting with N nuclear spins is
given by [26]

H = HeZ + HnZ + Hen + H ′
en + Hnn. (38)

Here, the Zeeman energies for electron and nuclear spins are, respectively,

HeZ =
1
2
γeBσz (39)

HnZ = −γnB
∑

i

Iiz, (40)

where σ = (σx, σy, σz) is the Pauli matrix vector representing the electron
spin, and Ii = (Iix, Iiy, Iiz) is the nuclear-spin operator for a nucleus located
at position Ri with respect to the center of the electron wavefunction. For
B = 1T we have γeB ∼ 1011 Hz and γnB ∼ 108 Hz, note the drastic difference
in Zeeman energy scale. The e–n coupling takes place due to isotropic and
anisotropic hyperfine interactions. The isotropic hyperfine interaction is given
by

Hen =
1
2

∑
i

Aiso
i Ii · σ, (41)

with contact hyperfine interaction
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Aiso
i =

8π
3
γe0γnh̄

∣∣Ψ(Ri)
∣∣2, (42)

where γe0 = e/(mec) = 1.76 × 107 (sG)−1 is the gyromagnetic ratio for a
free electron and Ψ(r) is the electron’s wavefunction. Typical values of Aiso

i

varies from Aiso
i ∼ 107 Hz for Ri = 0 (at the center of a donor impurity

wavefunction) to Aiso
i ∼ 0 for Ri much larger than the impurity Bohr radius.

The anisotropic hyperfine interaction reads

H ′
en =

1
2

∑
i

Ii · A′
i · σ, (43)

with the anisotropic hyperfine tensor given by

(A′
i)lm = γe0γnh̄

∫
d3r

∣∣Ψ(r − Ri)
∣∣2
(

2r
2r + r0

)(
3xlxm

r5
− δlm

r3

)
, (44)

where r0 = e2/(mec
2) is the classical electron radius. Note that (41) and (43)

are first-order perturbative corrections in the electron coordinate r. Finally,
the nuclear–nuclear dipolar coupling reads

Hnn = γ2
nh̄

∑
i<j

[
Ii · Ij

R3
ij

− 3(Ii · Rij)(Ij · Rij)
R5

ij

]
, (45)

where Rij = Ri − Rj is the distance between two nuclei. The typical energy
scale for (45) is a few kHz for nearest neighbors in a crystal.

The full Hamiltonian equation (38) is a formidable many-body problem.
It is particularly hard to study because of the lack of symmetry. In order to
study theoretically the quantum dynamics of an electron subject to a large
number of nuclear spins we need to truncate (38). Here, we discuss some
simplifications appropriate for B > 0.1 T, a condition typically satisfied in
several experiments. The first approximation arises when we note that the
electron Zeeman energy is typically 103 times larger than the nuclear Zee-
man energy. For B > 100 G the former is much larger than Aiso

i , therefore the
electron spin cannot be “flipped” by the action of the hyperfine interaction.
In other words, “real” e–n flip-flop transitions get inhibited at these fields
(however, virtual transitions induced by second-order processes such as H2

en

do produce visible effects, as discussed in Sect. 3.3). This consideration al-
lows us to approximate the isotropic hyperfine interaction to a diagonal form
(secular approximation),

Hen ≈ 1
2
σz

∑
i

Aiso
i Iiz. (46)

The anisotropic hyperfine interaction contains a similar diagonal contribu-
tion in addition to pseudosecular terms of the form σzIi±. These terms lead
to important echo modulations of the order of ∼(A′

i/γnB)2 ∼ 0.1–1 for mod-
erate magnetic fields (B ∼ 0.1–1T). To derive these terms, assume b̂ as the
direction of the magnetic field and substitute σ → σz b̂ in (43). The result is
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H ′
en ≈ 1

2
σz

∑
i

(
A′

i‖Iiz +A′
i⊥Ii+ +A′ ∗

i⊥Ii−
)
, (47)

where

A′
i‖ = ẑ · A′

i · b̂, (48)

A′
i⊥ =

1
2
[
x̂ · A′

i · b̂+ iŷ · A′
i · b̂

]
. (49)

For some lattice sites (closer to the center of the donor impurity) A′
i⊥ is a

reasonable fraction of the nuclear-spin Zeeman energy (even for B ∼ 1Tesla),
and as a consequence the precession axis of these nuclear spins will depend
on the state of the electron, producing strong modulations in the nuclear-
spin-echo signal [27, 28]. For the electron-spin equation (47) produces small
modulations observed at the shortest timescales in the echo-decay envelope
[22]. Finally, we may truncate (45) neglecting terms that do not conserve
nuclear-spin Zeeman energy,

Hnn ≈
∑
i<j

bij(Ii+Ij− + Ii−Ij+ − 4IizIjz), (50)

with

bij = − 1
4
γ2
nh̄

1 − 3 cos2 θij

R3
ij

. (51)

Here, θij is the angle formed by the applied B field and the vector Rij linking
the two nuclear spins i, j. This leads to an important orientation dependence
of coherence times.

3.2 Electron–Nuclear-Spin Evolution
in the Secular Approximation

In the secular approximation [see (46)–(50)] the electron–nuclear-spin Hamil-
tonian is block-diagonal,

H = H+|⇑〉〈⇑| + H− |⇓〉〈⇓|, (52)

where | ⇑〉 〈 ⇑ | and | ⇓〉〈⇓ | are projectors in the electron spin-up and -down
subspaces, respectively. Here, H± contains only nuclear-spin operators and
is given by

H± = Hnn − γnB
∑

i

Iiz ± 1
2
γeB

± 1
2

∑
i

[
AiIiz +A′

iIi+ +A′ ∗
i Ii−

]
, (53)

where Ai ≡ Aiso
i + A′

i‖ and A′
i ≡ A′

i⊥. Accordingly, the evolution operator
becomes U (t) = U+(t)| ⇑〉〈⇑ | + U−(t)| ⇓〉〈⇓ |, with U±(t) = e−itH± . We can
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write an explicit expression for the coherences as a function of the evolution
operators U±(t) provided the initial density matrix can be written in product
form, ρ0 = ρ0e ⊗ ρ0n. The free induction decay is given by〈

σ+(t)
〉
FID

= TrnTre

{
U †σ+Uρ0e ⊗ ρ0n

}
= Trn

{
U †

+U−ρ0n

}
Tre{σ+ρ0e}, (54)

where we used the fact that U †σ+U = U †
+U−σ+, and σ+ = | ⇑〉 〈 ⇓ |. For the

Hahn echo, we use U (τ)σxU (τ) as our evolution operator, to get〈
σ+(2τ)

〉
Hahn

= Trn

{
U †

− U †
+U− U+ρ0n

}
Tre{σ−ρ0e}. (55)

Equations (54) and (55) are exact in the secular approximation, and make
explicit the dependence of the electron’s coherence envelope in the nuclear-
spin Hamiltonian evolution.

Inhomogeneous Broadening
Due to the Isotropic Hyperfine Interaction

The diagonal model

H± = −γnB
∑

i

Iiz ± 1
2
γeB ± 1

2

∑
i

AiIiz (56)

is easily solved exactly for nuclear spins initially in a product state. Assume
the electron spin is pointing in the +y direction, and the nuclear-spin states
are distributed randomly, each nuclei with equal probability of pointing up
or down. The free induction decay amplitude becomes

〈
σ+(t)

〉
FID

=
i
2
Trn

{
U †

+U−
}

=
i
2
eiγeBt

∏
j

1
2
[
e

i
2 Ajt + e−i i

2 Ajt
]

=
i
2
eiγeBt

∑
ξ1=±1,...

1
2N

e
i
2 t
∑

j
Ajξj

≈ i
2
eiγeBte− 1

8 t2
∑

j
A2

j , (57)

where in the last line we assumed N → ∞ with each individual Ai → 0
so that the hyperfine field can be approximated by a continuous Gaussian
distribution. The free induction decay rate or inhomogeneously broadened
linewidth is given by 1

T ∗
2

∼ Arms =
√∑

j A
2
j . This fast decay rate should be

compared to the Hahn echo: From (55) we see that 〈σ+(2τ)〉Hahn = −i/2,
the Hahn echo never decays. In fact, from (55) we can easily prove that the
class of Hamiltonians of the form (52) satisfying [H+, H−] = 0 have time-
independent Hahn echoes given by Tr{σ−ρ0e} [29].
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3.3 Beyond the Secular Approximation:
Nuclear–Nuclear Interactions
Mediated by the Electron-Spin Hyperfine Interaction

In the sections above we showed that the secular approximation allows us
to decouple electron-spin dynamics from nuclear-spin dynamics completely.
This approximation clearly does not hold at low magnetic fields, and the
problem becomes considerably more complicated. The study of electron-spin
evolution subject to the full isotropic hyperfine interaction has attracted a
great deal of attention lately [29–32], particularly because of a series of free
induction decay experiments probing electron-spin dynamics in quantum dots
in the low magnetic field regime [33–38]. In the author’s opinion the most
successful theoretical approach so far in the description of these experiments
is to treat the collective nuclear spin field classically by taking averages over
its direction and magnitude [30]. Here, we shall not discuss the interesting
effects occurring at low fields. Instead, we will focus on the following question:
What is the threshold field Bth for the secular approximation to hold? For
intermediate B > Bth (not satisfying B � Bth), how can the nonsecular
terms be incorporated in a block-diagonal Hamiltonian of the form (52)?

In order to answer these questions, let’s consider the Hamiltonian

H = H0 + V , (58)

H0 =
1
2
(γe + γn)Bσz +

1
2
σz

∑
j

AjIjz, (59)

V =
1
2

∑
j

Aj(σ+Ij− + σ−Ij+), (60)

where H0 and V denote the secular and nonsecular contributions, respectively.
Here, we remove the nuclear Zeeman energy by transforming to the rotating
frame precessing at γnB. From (60) we may be tempted to assume that flip-
flop processes involving an electron and a nuclear spin (e.g., ⇑↓ → ⇓↑) are
forbidden by energy conservation at fields γeB � Ai. However, the situation
is much more complex because higher-order “virtual” processes such as V 2 =
AiAjIi+Ij−σ+σ− + · · · preserve the electron-spin polarization and hence may
have a small energy cost (of the order of Ai − Aj for Ai ∼ Aj). As we show
below, these processes actually lead to a long-range effective coupling between
nuclear spins, similar to the RKKY interaction between nuclear spins in a
metal. We will show this using the original self-consistent approach of Shenvi
et al.

Let |ψ+〉 be a “+” eigenstate of the Hamiltonian equation (58), i.e., |ψ+〉
has primarily electron spin-up character. Without loss of generality, |ψ+〉 can
be written as∣∣ψ+

〉
=
∣∣⇑, ψ+

⇑
〉

+
∣∣⇓, ψ+

⇓
〉
. (61)
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Because the perturbation V flips the polarization of the electron, the action
of H on the electron spin-up and electron spin-down subspaces yields the two
simultaneous equations,

H0

∣∣⇑, ψ+
⇑
〉

+ V
∣∣⇓, ψ+

⇓
〉

= E+

∣∣⇑, ψ+
⇑
〉
, (62)

H0

∣∣⇓, ψ+
⇓
〉

+ V
∣∣⇑, ψ+

⇑
〉

= E+

∣∣⇓, ψ+
⇓
〉
. (63)

Equation (63) can be solved for |⇓, ψ+
⇓ 〉 and the resulting expression inserted

into (62) yields

H0

∣∣⇑, ψ+
⇑
〉

+ V 1
E+ − H0

V
∣∣⇑, ψ+

⇑
〉

= E+

∣∣⇑, ψ+
⇑
〉
. (64)

In the presence of an energy gap between the spin-up and spin-down states
(this is certainly true at high magnetic fields satisfying B >

∑
Aj/γe), the

operator 1/(E+ − H0) is always well defined [39]. Because the left-hand side
of (64) depends on E+, it is not a true Schrödinger equation; to obtain E+

exactly, (64) must be solved self-consistently. However, if we use E+ ≈ (γe +
γn)B/2, then we can obtain an effective Hamiltonian from (64). The effective
Hamiltonian in the electron spin-up subspace is

H+
eff = H0 + V +

eff , (65)

V +
eff =

1
4

∑
j,k

AjAkIj−
1

(γe + γn)B + 1
2

∑
j AjIjz

Ik+. (66)

We obtain a similar, but not identical, effective Hamiltonian for the spin-down
subspace (note the transposition of the I− and I+ operators),

H −
eff = H0 + V −

eff , (67)

V −
eff = − 1

4

∑
j,k

AjAkIj+
1

(γe − γn)B + 1
2

∑
j AjIjz

Ik−. (68)

Equations (66) and (68) show that the overall coupling between nuclei does
indeed decrease at high fields, because the operator 1/(E − H0) scales ap-
proximately as 1/B. However, the energy cost for flip-flopping two nuclei j
and k is proportional to Aj − Ak. Thus, if Aj and Ak are close in value, the
nuclei can flip-flop even at high fields. Equations (66) and (68) were later
derived using an alternative canonical transformation approach [40].

We may expand (66) and (68) in powers of
∑

j AjIjz/(γeB), so that for
the unpolarized case we have approximately

Veff ≈ 1
2
σz

∑
j,k

AjAk

2(γe + γn)B
Ij+Ik−. (69)

This effective Hamiltonian is of the secular type (52), and satisfies the sym-
metry condition [H+, H−] = 0. Therefore, a Hahn echo is able to refocus
this interaction completely: The effective interaction for hyperfine-mediated
coupling alone [see (69)] does not lead to Hahn-echo decay.
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Shenvi et al. performed exact numerical calculations of electron spin-echo
dynamics in clusters of N = 13 nuclear spins, including the full isotropic hy-
perfine interaction [29]. The Hahn-echo envelope was found to decay abruptly
to a loss of contrast given by

∣∣〈σ+(2τ)
〉∣∣ ≈ 1

2
−

∑
j A

2
j

[(γe + γn)B]2
. (70)

This shows that the threshold field for neglecting the nonsecular isotropic hy-
perfine interaction in the Hahn echo is given by the inhomogeneously broad-
ened linewidth, Bth =

√∑
j A

2
j/γe ∼ 10–100G (for a donor impurity in

silicon, Bth is ≈1G for natural samples and ≈10G for 29Si-enriched sam-
ples).

Recently, Yao et al. [40] and Deng et al. [32] showed that the electron-
mediated internuclear coupling may be observed as a magnetic-field depen-
dence of the free induction decay time in small quantum dots. There is cur-
rently an interesting debate on the correct form of the time dependence
for FID decay. Yao et al. derived the FID decay from (69) and obtained

〈σ+(t)〉 ∼ e−t2 , while Deng et al. carried out a full many-body calculation to
argue that FID scales as a power law according to 〈σ+(t)〉 ∼ 1/t2.

4 Microscopic Calculation
of the Nuclear-Spin Noise Spectrum
and Electron-Spin Decoherence

In this section we discuss low-frequency noise due to interacting nuclear spins.
For simplicity, we assume only isotropic hyperfine interaction. The inclusion
of anisotropic hyperfine interaction is considerably more complicated, but can
be seen to lead to echo modulations (at frequencies close to γnB ∼ 108 s−1

per Tesla). In the next section we provide explicit numerical calculations
for the case of a phosphorus impurity in silicon and compare our results to
experiments.

We only consider the dipolar interaction between nuclear spins, neglecting
other contributions to internuclear coupling such as the electron-mediated in-
teraction (69). For calculations of Hahn echo at large B fields (B > 0.1T),
this is perfectly appropriate because, as discussed above, the neglected non-
secular contributions lead only to a small loss of visibility. It is important
to emphasize that the nonsecular contributions result in a nuclear-spin noise
spectrum that is dependent on the electron-spin state (back action), hence
(18) can not be used.
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4.1 Nuclear-Spin Noise

Using the approximations (46) and (50) we can write the electron–nuclear
Hamiltonian in a form similar to (1). In the electron-spin Hilbert space, we
assume an effective time-dependent Hamiltonian of the form

He
eff =

1
2
γeBσz +

1
2
σz

∑
i

AiIiz(t), (71)

with Ai ≡ Aiso
i . Nuclear-spin noise is in turn determined by the effective

Hamiltonian

Hn
eff =

∑
i<j

Hn
ij , (72)

Hij = γnB(Iiz + Ijz) + bij(Ii+Ij− + Ii−Ij+ − 4IizIjz)

+
1
2
(AiIiz +AjIjz), (73)

where we decoupled the electron spin from the nuclear spins by assuming the-
nuclear-spin wavefunction evolves in the electron spin-up subspace (σz → 1).
An equally valid choice is to assume σz → −1. It turns out that this choice
does not matter within the pair approximation described below. We will
check this by noting that the final answer is unchanged under the operation
Ai → −Ai for all i.6

For now we assume the nuclear spins are unpolarized (T = ∞) so
that 〈

∑
i AiIiz 〉 = 0. This approximation will be relaxed below. The time-

dependent correlation function for nuclear spins is given by

S(t) =

〈∑
i

AiIiz(t)
∑

j

AjIjz(0)

〉

=
∑

i

A2
i

〈
Iiz(t)Iiz(0)

〉
+

∑
i,j(�=i)

AiAj

〈
Iiz(t)Ijz(0)

〉
. (74)

We now invoke a “pair approximation” by assuming
〈
Iiz(t)Iiz(0)

〉
≈

∑
j(�=i)

〈
Iiz(t)Iiz(0)

〉
ij
, (75)

〈
Iiz(t)Ijz(0)

〉
≈
〈
Iiz(t)Ijz(0)

〉
ij
, (76)

where 〈 · 〉ij denotes a thermal average restricted to the ij Hilbert space. The
operator Iiz(t) is in the Heisenberg representation defined by the two-particle

6 As we shall see below, this approximation leads to identical results as the lowest-
order cluster expansion developed in [24]. However, interesting interference effects
arise when this approximation is not valid. The cluster-expansion method beyond
lowest order [25] takes account of the full electron–nuclear evolution, therefore it
can be used to study these effects.
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Hamiltonian equation (73). Plugging (75) and (76) in (74) and reordering
terms we get

S(t) ≈
∑
i<j

〈
η̂ij(t)η̂ij(0)

〉
ij
, (77)

with

η̂ij = AiIiz +AjIjz. (78)

The same derivation could be given for finite temperature, when the thermal
average of the hyperfine field is nonzero. The result is identical to (77) except
for the substitution η̂ij → δη̂ij = η̂ij − 〈η̂ij 〉. Using the definition of the noise
spectrum [see (6)] and expanding the correlator in the energy eigenstates of
the pair Hamiltonian (73) we get

S̃ij(ω) =
∑
α,β

pα

∣∣〈α|δη̂ij |β〉
∣∣2δ(ω − Eβα), (79)

with Eβα = Eβ − Eα the energy difference between the energy eigenstates
|α〉, |β〉, and pα the (thermal) occupation of state α. Therefore, the noise
spectrum is a sum over all possible transition frequencies induced by the op-
erator η̂ij . For nuclear spin 1/2 the ij Hamiltonian has the following eigenen-
ergies and eigenstates (see Fig. 3)

E↑ ↑ = γnB − bij + aij , (80)

E+ = bij +
√
b2ij +Δ2

ij , (81)

E− = bij −
√
b2ij +Δ2

ij , (82)

E↓ ↓ = −γnB − bij − aij , (83)

|+〉 = cos
θ

2
|↑↓〉 + sin

θ

2
|↓ ↑ 〉, (84)

Fig. 3. Energy levels for two nuclear
spins coupled through the dipolar in-
teraction. The flip-flop mechanism cor-
responds to transitions between the
states |+〉 and |−〉, which are admix-
tures of | ↑ ↓ 〉 and | ↓ ↑ 〉 states. The
anisotropic hyperfine interaction cou-
ples states differing by ∼γnB in energy
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| − 〉 = − sin
θ

2
|↑↓ 〉 + cos

θ

2
|↓ ↑ 〉, (85)

with

aij =
1
4
(Ai +Aj), (86)

Δij =
1
4
(Ai − Aj), (87)

cos θ =
Δij√

b2ij +Δ2
ij

, (88)

sin θ =
bij√

b2ij +Δ2
ij

. (89)

Using (84) and (85) the transition matrix element is easily found to be

〈−|η̂ij |+〉 = −4Δij sin
θ

2
cos

θ

2
= −2Δij sin θ. (90)

The transition frequency is simply the difference between (81) and (82),

E+− = 2
√
b2ij +Δ2

ij . (91)

The resulting noise spectrum is therefore

S̃ij(ω) =
(
Arms

ij

)2
δ(ω)

+ 4
b2ijΔ

2
ij

b2ij +Δ2
ij

[
p+δ(ω + E+−) + p−δ(ω − E+−)

]
, (92)

with a static contribution given by

(
Arms

ij

)2 = 4

[
(p↑ ↑ + p↓ ↓)a2

ij + (p+ + p−)
Δ4

ij

b2ij +Δ2
ij

]

−4

⎡
⎣(p↑ ↑ − p↓ ↓)aij + (p+ − p−)

Δ2
ij√

b2ij +Δ2
ij

⎤
⎦

2

. (93)

The free induction decay due to this noise spectrum can be easily calcu-
lated using (18) and the filter function (20),

〈〈
σ+(t)

〉〉
= exp

[
− 1

2

∑
i<j

(
Arms

ij

)2
t2
]

× exp
[

−2
∑
i<j

(p+ + p−)
b2ijΔ

2
ij

b2ij +Δ2
ij

t2sinc2
(√

b2ij +Δ2
ijt
)]
,

(94)

where sinc(x) = sin (x)/x. As expected, the FID decay is usually dominated
by the zero-frequency noise amplitude Arms

ij [see (93)]. The dipolar-induced
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decay may be visible provided Arms
ij is much smaller than the finite-frequency

noise amplitudes. For example, this is the case if the nuclear spins are polar-
ized, since we have Arms

ij = 0 exactly when p↓ ↓ = 1 in (93).
The Hahn-echo decay envelope is derived after integration with the filter

function (21),

〈〈
σ+(2τ)

〉〉
= exp

[
−8

∑
i<j

(p+ + p−)b2ijΔ
2
ijτ

4sinc4
(√

b2ij +Δ2
ijτ

)]
. (95)

At T → ∞ (p+ = p− = 1/4) (95) is identical to the echo decay obtained
by two completely different methods, viz. the lowest-order cluster expansion
[see (20) in [24]] and the quasiparticle excitation model [see (18) in [40]]. As
expected, (95) is independent of zero-frequency noise, and is exactly equal to
1 when either bij = 0 or Δij = 0, or when the nuclear spins are polarized
(p+ = p− = 0).

By expanding the exponent in (94) and (95) in powers of time, we find
that only even powers are present. The short-time behavior for FID is ∼e−t2 ,
while for Hahn echo ∼e−τ4

[this is a manifestation of the general result
(24) and (25)]. This short-time approximation is valid for times much smaller
than the inverse cutoff of the noise spectrum. It was found that the short-
time expression e−τ4

is a good approximation for GaAs quantum dots [40]
but not for Si:P impurities [24].

4.2 Mean Field Theory of Noise Broadening:
Quasiparticle Lifetimes

We showed that the noise spectrum due to flip-flop transitions in the Hilbert
space formed by two nuclear spins i, j is a linear combination of delta func-
tions. We may extend this pair approximation to clusters larger than two,
and the number of delta functions will grow exponentially with cluster size
[This can be done by systematically increasing the size of the Hilbert space
beyond a single pair i, j in (75) and (76).] These delta functions can be in-
terpreted as well-defined transitions between nuclear-spin excitations with
infinite lifetime.7 The delta functions for transitions involving more than two
nuclear spins do not necessarily occur at frequencies close to the pair flip-
flop frequency E+−. But on top of adding additional delta function peaks,
the many-body interactions are expected to produce lifetime broadening for
these sharp transitions, see Fig. 4. Below, we develop a simple mean field
theory whose purpose is to estimate the magnitude of this broadening.

We can add broadening to the delta functions in a mean-field fashion by
using the method of moments, which is applicable at infinite temperature (no
7 In [40] Yao et al. derive a similar quasiparticle picture via direct calculation of the
time-dependent correlation function for the electron spin. However, the authors did
not calculate the quasiparticle lifetimes. The noise spectrum is a natural starting
point for developing a theory for quasiparticle lifetime broadening, as we show here.
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Fig. 4. An isolated pair of nuclear spins with infinite lifetime will produce a sharp
peak in the noise spectrum. The role of the many-body interactions with other
nuclear spins is to broaden this peak and smooth out the noise spectrum for the
collective nuclear-spin excitations. Here, we calculate the line broadening for each
pair flip-flop transition using a procedure similar to van Vleck’s method of moments

nuclear-spin polarization, i.e., kBT � γnB). In this limit, the noise spectrum
is written as

S̃ij(ω) =
∑
α,β

1
2N

∣∣〈α|η̂ij |β〉
∣∣2δ(ω − Eβα), (96)

where here α, β denote exact many-body eigenstates of the system of N -
coupled nuclear spins. The nth moment

∫
ωnS̃(ω) dω can be calculated ex-

actly using the invariance of the trace.8 Consider the zeroth moment,∫ ∞

− ∞
S̃ij(ω) dω =

1
2N

∑
α,β

〈α|η̂ij |β〉〈β|η̂ij |α〉

=
1

2N
Tr
{
η̂2

ij

}
=

1
4
(
A2

i +A2
j

)
. (97)

Accordingly, the second moment is given by∫ ∞

− ∞
ω2S̃ij(ω) dω = − 1

2N
Tr
{[

Hn
eff , η̂ij

]2}

=
1
2
A2

i

∑
k �=i

b2ik − b2ijAiAj +
1
2
A2

j

∑
k �=j

b2jk. (98)

Note that (97) and (98) are exact at infinite temperature.

8 A similar method was used in the semiclassical theory of spectral diffusion in
order to calculate the flip-flop rates for pairs of nuclear spins [19].
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The mean field approximation employed here assumes each delta function
in the noise spectrum is represented by a Gaussian function normalized to
one.9 The noise spectrum becomes

S̃ij(ω) ≈
∑
α,β

1
4

| 〈α|η̂ij |β〉|2 1√
2πσ2

αβ

exp
[

− (ω − Eαβ)2

2σ2
αβ

]
, (99)

and the second moment is∫ ∞

− ∞
ω2S̃ij(ω) dω ≈

∑
α,β

1
4

∣∣〈α|η̂ij |β〉
∣∣2(σ2

αβ + E2
αβ

)
. (100)

We now calculate the broadenings σαβ by equating (100) with (98). This pro-
cedure can be carried out exactly, since the noise spectrum has two identical
peaks (Fig. 4) at frequencies ±E+−. The broadening is found to be

σ2
+− =

b2ij +Δ2
ij

4Δ2
ijb

2
ij

∑
k �=i,j

(
b2ikA

2
i + b2jkA

2
j

)
. (101)

When Δij < ∼bij , the broadening becomes of the same order of magnitude
as van Vleck’s second moment for the dipolar interaction (equal to 9

∑
k b

2
ik

[26]). For Δij � bij we have σ+− ∼ Δij , and σ+−/E+− ∼ 1. This type
of excitation is of high frequency and short lifetime, showing fast decay to
a small loss of contrast as described by (37). Physically, the broadenings
describe the diffusion of localized nuclear-spin excitations (deviations from
thermal equilibrium) over length scales greater than the pair distance.

By adding broadenings to the delta functions in (92) we are able to plot
a smooth noise spectrum, and study the relative contributions of a large
number of nuclear spins as a function of a continuous frequency. The modified
equation (92) summed over all nuclear pair contributions reads

S̃(ω) = 4
∑
i<j

b2ijΔ
2
ij

b2ij +Δ2
ij

⎧⎪⎨
⎪⎩p+

e
− (ω−E+−)2

2σ2
+−√

2πσ2
+−

+ p−
e

− (ω+E+−)2

2σ2
+−√

2πσ2
+−

⎫⎪⎬
⎪⎭

+
∑
i<j

(
Arms

ij

)2
δ(ω). (102)

9 We can verify this assumption by calculating the skewness (fourth moment di-
vided by three times the second moment squared). For a perfect Gaussian the skew-
ness is exactly one. We carried out this calculation and showed that for Δij < ∼bij

the skewness is very close to one. On the other hand, for Δij � bij the skewness be-
comes large, and a better approximation is a Lorentzian with a cutoff at the wings.
Nevertheless, by inspecting (95) we note that nuclear-spin pairs with Δij � bij give
a much weaker contribution to echo decay than pairs with Δij ∼ bij . Therefore,
this Gaussian fit is precisely valid for most important pairs. As discussed in (35)
and (37) the difference between a Gaussian and a Lorentzian fit lies in the time de-

pendence of the decay of coherence modulations; This is ∼e−σ2t2/2 for a Gaussian
and ∼e−t/τd for a Lorentzian.



Electron Spin as a Spectrometer of Nuclear-Spin Noise 209

For studies of echo decay we may drop the delta function contribution at
zero frequency. Note that the first part of (102) gives an additional zero-
frequency contribution that is the limit ω → 0 of the broadened spectrum.
We emphasize that lifetime broadening was introduced to describe the ef-
fective irreversibility of an infinite nuclear-spin bath. But we should keep in
mind that another important effect of the many-body interactions is to add
additional peaks to the noise spectrum. Each of these peaks will have their
own finite lifetime.

5 Electron Spin-Echo Decay
of a Phosphorus Impurity in Silicon:
Comparison with Experiment

In this section we apply our theory to a phosphorus donor impurity in bulk
silicon. We consider both natural samples (f = 4.67% 29Si nuclear spins)
and isotopically enriched samples (f = 99.23% 29Si nuclear spins). We show
explicit numerical calculations of the nuclear-spin noise spectrum resulting
from dipolar nuclear–nuclear couplings, predict the Hahn-echo envelope and
compare our results with the experimental data of Tyryshkin et al. [21] and
Abe et al. [22].

5.1 Effective-Mass Model for a Phosphorus Impurity in Silicon

Here, the donor impurity is described within effective-mass theory by a Kohn–
Luttinger wavefunction [41],

Ψ(r) =
1√
6

6∑
j=1

Fj(r)uj(r)eikj ·r, (103)

kj = 0.85
2π
aSi

k̂j , k̂j ∈ {x̂, −x̂, ŷ, −ŷ, ẑ, −ẑ}, (104)

F1,2(r) =
exp

[
−
√

x2

(nb)2 + y2+z2

(na)2

]
√
π(na)2(nb)

, (105)

with envelope functions Fj describing the effective-mass anisotropies. Here,
n = (0.029 eV/Ei)1/2 with Ei being the ionization energy of the impurity
(Ei = 0.044 eV for the phosphorus impurity, hence n = 0.81 in our case),
aSi = 5.43 Å the lattice parameter for Si, a = 25.09 Å and b = 14.43 Å
characteristic lengths for Si hydrogenic impurities [42]. Moreover, we will use
experimentally measured values for the charge density on each Si lattice site
|u(Ri)|2 = η ≈ 186 [41]. Hence, the isotropic hyperfine interaction is given
by



210 Rogerio de Sousa

Aiso
i =

16π
9
γe0γnη

[
F1(Ri) cos (k0Xi)

+ F3(Ri) cos (k0Yi) + F5(Ri) cos (k0Zi)
]2
, (106)

with the Si conduction-band minimum at k0 = (0.85)2π/aSi, gyromagnetic
ratios for 29Si nuclear spins γn = 5.31 × 103 (sG)−1, and the free electron
γe0 = 1.76 × 107 (sG)−1. It is instructive to check the experimental validity
of (106) by calculating the inhomogeneous linewidth ∼1/(γe0T

∗
2 ). A simple

statistical theory [see (57)] leads to
〈
(ω/γe0 − B)2

〉
=

f

(2γe0)2
∑

Ri �=0

(
Aiso

i

)2
. (107)

For natural silicon (nuclear-spin fraction f = 0.0467) our calculated root
mean square linewidth is equal to 0.89G. On the other hand, a simple spin-
resonance scan leads to 2.5 G/2

√
2 ln 2 = 1.06G [42]. Therefore, the simple

model employed here is able to explain 84% of the experimental hyperfine
linewidth. This is the level of agreement that we should expect when com-
paring our theory for echo decay with experiment.

5.2 Explicit Calculations of the Nuclear-Spin Noise Spectrum
and Electron Spin-Echo Decay of a Phosphorus Impurity
in Silicon

The nuclear-spin noise spectrum is calculated from (102) by excluding the
δ(ω) contribution. For each pair i, j we calculate the transition frequency (91)
and broadening (101) using the derived microscopic values of the hyperfine
interaction [see (106)] and the dipolar interaction

bij = − 1
4
γ2
nh̄

1 − 3 cos2 θij

R3
ij

. (108)

For silicon, the sites i, j lie in a diamond lattice with parameter aSi = 5.43 Å.
We wrote a computer program that sums over lattice sites Ri within r0 of the
center of the donor. Each site Ri is then summed with all sites Rj within r′

0

of Ri (excluding double counting). After numerical tests we concluded that
the values r0 = 200 Å and r′

0 = 10 Å were high enough to guarantee conver-
gence (increasing r0 and r′

0 changes the calculations by a negligible amount).
Our explicit numerical calculations for the echo decay without broadening
[see (95)] reproduced the equivalent calculation of Witzel et al. [24] with no
visible deviation. For kBT � γnB we may assume that the nuclear spins are
completely unpolarized (the experimental data was taken at T = 4K and
B = 0.3 T [21]). We account for the isotopic fraction f (ratio of sites con-
taining nuclear spin 1/2) using a simple averaging method. For example, the
pair populations are set as p+ = p− = f2/4, and the broadening σ2

+− ∝ f
[note

∑
k b

2
ij in (101)].
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Fig. 5. Nuclear-spin noise affecting the electron-spin phase. We show the noise
spectrum for several magnetic-field orientation angles θ with respect to the (001)
direction. As θ is increased from zero, a broad peak develops at a frequency close
to the dipolar splitting between nearest neighbors in the lattice. In this case, the
noise spectrum is clearly nonmonotonous, and cannot be described by a Markovian
model. The spin-echo envelope is a frequency integral of the noise spectrum weighted
by a filter function

Figure 5 shows the nuclear-spin noise spectrum for natural Si at four dif-
ferent magnetic-field orientation angles θ with respect to the crystal direction
(001). Here, θ = 0◦ corresponds to B ‖ (001), while θ = 90◦ corresponds to
B ‖ (110). For θ away from zero the noise spectrum is characterized by a
broad peak at which the flip-flop transition frequencies E+− accumulate. The
fact that the spectrum is nonmonotonic implies important non-Markovian be-
havior for electron-spin dynamics (recall that a Markovian noise spectrum is
defined as a sum of Lorentzians, hence it is always monotonic). Interestingly,
for θ close to zero and at low frequencies (ω < 5 × 103 s−1), the spectrum
appears to be similar to a Lorentzian peaked at ω = 0. However, one can
not fit a Lorentzian up to high frequencies because the asymptotic behavior
deviates significantly from 1/ω2.

The Hahn echo is obtained by integrating the noise spectrum multiplied by
the filter function (21) up to a frequency cutoff Λ (we used Λ = 106–107 s−1,
and df ∼ 1–10 s−1 in our numerical calculations). The result is shown in
Fig. 6 for two different orientations. We show calculations of the echo with-
out broadening [see (95), identical to the result shown in [24]] and for the
echo with broadening, that is obtained through direct integration of the noise
spectrum shown in Fig. 5. Note that the two theories are in close agreement
here because for low nuclear-spin density (f = 0.0467) the broadenings are
generally much smaller than the transition frequencies E+−, at least for the
important pairs causing spectral diffusion. Recall that our theory does not
account for the anisotropic hyperfine interactions. Therefore, our theoretical
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Fig. 6. Electron-spin echo decay of a phosphorus impurity in natural silicon (4.67%
29Si nuclear spins) for two different magnetic-field orientations. We show experimen-
tal data from [21] together with theoretical calculations without flip-flop broadening
(identical to [24]) and with flip-flop broadening. The latter is calculated by directly
integrating the noise spectrum shown in Fig. 5 with the appropriate filter function

Fig. 7. Electron-spin-
echo decay of a phos-
phorus impurity in iso-
topically enriched silicon
(99.23% of 29Si). Experi-
mental data from [22]

results should be compared to the monotonic envelope enclosing the experi-
mental data points.10 The echo modulations due to the anisotropic hyperfine
interaction is clearly visible at short times in the experimental data shown
in Fig. 6. These oscillations produce a loss of contrast of about 10% in the
short-time regime. Apart from this effect, the agreement between theory and
experiment is quite good.
10 We thank Dr. A.M. Tyryshkin for pointing this out to us.



Electron Spin as a Spectrometer of Nuclear-Spin Noise 213

Fig. 8. Orientation dependence of the 1/e echo-decay time T2. θ is the angle
between the applied magnetic field and the crystallographic (001) direction, so that
θ = 90◦ is along the (110) direction. We show experimental data for natural Si [21]
and for isotopically enriched Si [22]. The theoretical calculations shown are without
broadening. For natural Si, the experimental data was corrected for a θ-independent
instantaneous diffusion decay, see [21]. Because of this the theoretical T2s are lower
than the experimental T2s reported in [21], in contrast to what is observed in Fig. 6

Figure 7 shows echo-decay results for isotopically enriched samples (f =
99.23%). The experimental data is from Abe et al. [22]. Note that here the
echo modulations are very evident, the loss of contrast reaches ∼100%. The
monotonic envelope on top of the experimental data is in reasonable agree-
ment with the theory without broadening. However, the theory with broad-
ening decays significantly faster. The difference between both theories in-
creases for increasing f . This suggests that the mean-field theory proposed
in Sect. 4.2 overestimates the broadening. We expect that a more sophisti-
cated many-body calculation may account for this discrepancy.

Figure 8 shows the dependence of the 1/e echo decay time (T2) with
the magnetic-field angle. The shortest value of T2 is obtained when B is
along the (111) direction (θ = 54.74◦). In this case, none of the nearest-
neighbor pairs have zero dipolar couplings. Only pairs i, j with Rij parallel
to the (100), (010), and (001) directions have their dipolar interaction turned
off by the magic angle [θij = 54.74◦ implies cos θij = 1/

√
3 and bij = 0,

see (108)]. On the other hand, for B ‖ (001), T2 is longer by a factor of
three. This occurs because the nearest-neighbor pairs, that usually give the
strongest contribution to echo decay, are forming a magic angle with respect
to B ‖ (001).11

11 The nearest neighbors for each site i are located at Rij = 1
4
aSi(1, 1, 1),

1
4
aSi(−1, −1, 1), 1

4
aSi(−1, 1, −1), and 1

4
aSi(1, −1, −1).
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We now discuss the time dependence of the echo envelope. The echo decay
without broadening fits well to the expression

〈
σ+(2τ)

〉
= e−( 2τ

T2
)2.3

(109)

for a wide range of 2τ centered around T2 and for all values of f (for
a log–log plot, see Fig. 9 of [25]). Tyryshkin et al. [21] studied the time
dependence of the natural-silicon experimental data by fitting the expres-
sion vE(2τ) = e−2τ/T ′

2e−(2τ/T2)
n

. Here, T ′
2 was interpreted as arising from

a combination of spin-flip processes and the instantaneous diffusion mech-
anism, due to the finite concentration of donors. Tyryshkin et al. reported
T ′

2 = 1.1 ms and exponent n = 2.4 ±0.1 for all sample orientation angles be-
tween 20◦ ≤ θ ≤ 90◦. For θ = 10◦ they found n = 2.6 ±0.1, while for θ = 0◦

n = 3.0 ± 0.2. The time dependence at angles close to the (001) direction
is yet to be explained theoretically. At natural abundance (f = 0.0467) the
theory with broadening and the theory without broadening have similar time
dependences. However, as f increases the time dependence of the broadened
theory deviates significantly from the theory without broadening. As an ex-
ample, for f = 0.9923 and θ = 50◦ the broadened theory shows a crossover
from e−τ3.3

at short τ < 3 μs to e−τ1.7
for τ > 3 μs. This indicates that

adding broadening to the nuclear-spin excitations leads to observable effects
in the time dependence of electron-spin coherence. Unfortunately, the echo
modulations are too strong in isotopically enriched samples (Fig. 7). This
makes the precise experimental determination of the time dependence of the
echo envelope quite difficult.

Equation (109) allows us to extract scaling of the 1/e decay time T2 with
the nuclear-spin fraction f . Note that in the theory without broadening f
appears as a prefactor in the exponent due to p+ +p− = f2/4. Therefore, we
have simply

T2 ∝ f−2/2.3 = f−0.87. (110)

Abe et al. [43] measured T2 for seven isotopically engineered samples with f
ranging from 0.2–100%. Their study shows that T2 must scale between f−0.86

and f−0.89, in good agreement with (110).
It is interesting to study the number and location of nuclear spins con-

tributing to the noise spectrum. Figure 9 shows the contribution due to pairs
inside shells concentric at the donor center (for natural silicon and θ = 50◦).
The contribution for r0 < 50 Å is quite small, but extends over a wide fre-
quency spectrum. These nuclear spins are said to form a “frozen core”, be-
cause their noise amplitude is suppressed due to the strong difference in
hyperfine fields affecting sites i, j. The frozen core of a Si:P donor has about
3 × 104 nuclear spins. This frozen-core effect plays an important role in other
contexts as well such as optical spectroscopy experiments [44]. The nuclear-
spin noise theory developed here allows a quantitative description of this
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Fig. 9. Contribution of nuclear spins located at concentric shells around the donor
(natural Si, θ = 50◦). Nuclear pairs closer to the center (r0 < 50 Å) have their
fluctuation amplitude suppressed by the strong hyperfine field difference between
sites i, j, forming a frozen core. The largest contribution is due to pairs located at
50 Å < r0 < 100 Å

effect.12 From Fig. 9 it is evident that a significant fraction of the finite-
frequency noise power comes from the large number of nuclear spins located
between 50 Å and 100 Å off the donor center (about ∼2 × 105 nuclear spins).
These pairs are satisfying a quasiresonance condition Δij ∼ bij .

6 Conclusions and Outlook for the Future

In this chapter we describe a general theory for coherent evolution of an
electron spin subject to time-dependent fluctuations along its quantization
axis. Within the Gaussian approximation the electron-spin transverse mag-
netization can be expressed as a frequency integral over the magnetic noise
spectrum multiplied by an appropriate filter function. The filter function
depends on the particular pulse sequence used to probe spin coherence, dif-
fering substantially at low frequencies for free induction decay (FID) and
Hahn echo.

We described a model Hamiltonian for a single-electron spin coupled to a
lattice of interacting nuclear spins. For moderate magnetic fields (B > 0.1 T)
the model may be truncated to a secular Hamiltonian, with nonsecular ef-
fects incorporated into an effective indirect interaction between nuclear spins.
12 In order to understand the frozen-core effect from our analytical expression for
the noise spectrum, assume Ai � Aj and Δij � bij in (101). In this case we have
σ+− ∼ Ai. From (102) the noise amplitude becomes ∼b2

ij/Ai, which is much smaller
than bij .
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The latter is completely refocused by a Hahn echo, with higher-order effects
leading to a small loss of visibility for the echo envelope.

We applied the general relationship between noise and decoherence to the
case of a localized electron spin in isotopically engineered silicon, where the
magnetic noise is mainly due to the dipolar fluctuation of spin-1/2 lattice
nuclei. The nuclear-spin noise spectrum was calculated from a pair flip-flop
model, resulting in a linear combination of sharp transitions (delta functions).
The echo decay due to these sharp transitions is identical to the one derived
by the lowest-order cluster expansion [24]. Next, we showed how to obtain
a smooth noise spectrum by adding broadening to these transitions using a
mean-field approach. The resulting noise spectrum was found to be strongly
nonmonotonic, hence qualitatively different from the usual Lorentzian spec-
trum of a Gauss–Markov model. This structured noise spectrum is able to
explain the non-Markovian dynamics (∼e−τ2.3

) observed in electron spin-
echo experiments for phosphorus-doped silicon. We compared the theories
with and without broadening to two sets of experimental data, for natural
and isotopically enriched silicon. The agreement was quite good for natural
silicon, but not as good for 29Si-enriched samples.

It is interesting to compare our results to the family of non-Gaussian
phenomenological theories proposed a long time ago by Klauder and Ander-
son [16]. These authors classified spectral diffusion behavior in two groups,
depending on the nature of the interactions causing magnetic noise. In “T1

samples” the magnetic noise is caused by nonresonant spins fluctuating in-
dividually (e.g., due to phonon emission). Magnetic noise in “T2 samples”
is instead caused by the mutual interaction of the nonresonant spins. (For
example, a nuclear-spin bath weakly coupled to the lattice is a “T2 sample”
because the longitudinal nuclear-spin relaxation time is much longer than the
transverse relaxation time.) Klauder and Anderson showed that echo-decay
behavior in a variety of T1 samples could be described by a Markovian theory
by making assumptions about the general shape of the distribution of fluctu-
ations at any given time. While a Gauss–Markov model leads to echo decay
of the form ∼e−τ3

, a Lorentz–Markov model leads to e−τ2
behavior, and in-

termediate non-Gaussian distributions result in e−τn

with n between two and
three. Later, Zhidomirov and Salikhov [45] showed that similar behavior can
be obtained in T1 samples composed of a dilute distribution of magnetic im-
purities fluctuating according to a random telegraph noise model (Markovian
with a non-Gaussian distribution).

Nevertheless, the problem of echo-decay behavior in “T2 samples” re-
mained open. It was found empirically by many authors (see [13] and refer-
ences therein) that echo-decay behavior in “T2 samples” is usually well fitted
to the expression ∼e−τ2

, and the Lorentz–Markov model of Klauder and An-
derson was often invoked as a phenomenological explanation. Here, we show
that this behavior can be derived microscopically from a Gaussian model that
takes into account the non-Markovian evolution of the coupled nuclear-spin
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bath. The resulting behavior found by us [e−τ2.3
] is not due to a short-time

approximation [the short-time behavior for each pair is actually given by
e−τ4

, see (95)]. In order to explain these experiments we must consider the
collective long-time evolution of a large number of nuclear spins [note that the

characteristic frequency of fluctuation for a pair flip-flop E+− = 2
√
b2ij +Δ2

ij

gets renormalized to values much larger than the dipolar interaction bij when
the nuclear spins are subject to strong hyperfine inhomogeneities Δij =
(Ai − Aj)/4].

This theoretical explanation opens the way to novel microscopic interpre-
tations of pulse electron-spin resonance experiments, where the electron spin
may be viewed as a spectrometer of low-frequency magnetic noise due to a
large number of nuclear spins or other magnetic moments. For example, a
recent experiment [46] demonstrated that the silicon/silicon-oxide interface
plays a major role in determining the spin-echo decay of antimony impurities
implanted close to the interface. Recently, an interpretation of these results
based on a model of magnetic 1/f noise due to dangling bonds at the amor-
phous interface was proposed [47]. Fitting this model to the experimental
data established that the density of paramagnetic dangling bonds causing
magnetic noise (1014 cm−2) is much larger than previously anticipated on
the basis of experiments probing dangling-bond spin resonance directly.

There are many open questions that deserve further investigation. First,
what is the contribution of higher-order nuclear-spin transitions to the noise
spectrum? This question may be answered by going beyond the simple pair
flip-flop model assumed here, in a similar fashion as the cluster expansion
developed in [24], or using an alternative linked cluster expansion for the
spin Green’s function [48]. Another interesting open question is the design of
optimal sequences for suppressing the effects of nuclear-spin noise in electron-
spin evolution, as was done for the random telegraph noise model in [49]. This
is particularly important in the context of spin-based quantum computation.
The efficiency of a Carr–Purcell sequence in suppressing the electron-spin
coherence decay due to a nuclear-spin bath was considered in the framework
of a semiclassical model (see [50], where the role of nuclear spins greater than
1/2 was also considered) as well as using a cluster-expansion approach [51].
Recently, it was shown that the conditional evolution of the nuclear-spin bath
driven by different electron-spin states can be used to control nuclear-spin
dynamics for recovering part of the electron-spin coherence [52]. The reversal
of the electron-mediated internuclear coupling [see (69)] by a Hahn echo is
the simplest example of this back-action effect. We will certainly see many
other interesting developments in the near future.
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Abstract. Within the framework of the envelope function approximation we
have computed – without adjustable parameters and with a reduced com-
putational effort due to analytical expression of relevant Hamiltonian terms
– the energy levels of the shallow P impurity in silicon and the hyperfine
and superhyperfine splitting of the ground state. We have studied the depen-
dence of these quantities on the applied external electric field along the [001]
direction. Our results reproduce correctly the experimental splitting of the
impurity ground states detected at zero electric field and provide reliable pre-
dictions for values of the field where experimental data are lacking. Further,
we have studied the effect of confinement of a shallow state of a P atom at
the center of a spherical Si-nanocrystal embedded in a SiO2 matrix. In our
simulations the valley–orbit interaction of a realistically screened Coulomb
potential and of the core potential are included exactly, within the numerical
accuracy due to the use of a finite basis set, while band-anisotropy effects are
taken into account within the effective-mass approximation.

The building of a quantum computer, i.e., a computer where information
processing obeys the laws of quantum mechanics, is one of the most intrigu-
ing and challenging task of 20th-century solid-state physics. The realization
of this device will allow computations that, at present, exceed the capabil-
ity of classical computers [1–4]: simulation of quantum systems, the prime
factorization that has an important application in cryptography or efficient
database access. An important factor, related to the evaluation of a tech-
nology leading to a device capable of quantum information processing, is
the scalability. The year 1998 is an important date for quantum computing,
since two milestone papers were published concerning the design of scalable
solid-state devices that can be used for quantum computation. In fact, in this
year, D. Loss and D.P. DiVincenzo [3] proposed to store a quantum bit in the
spin of an electron confined in a quantum dot. In the same year B.E. Kane
envisaged the scheme of a quantum computer [4] in which the quantum bits
are nuclear spins of 31P impurities atoms at substitutional sites in silicon.
In the latter scheme, the interaction between the nuclear spins at different
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impurities sites is mediated by the electronic orbital of the impurity that, for
shallow donors like P atoms in silicon (Si:P), extends for a few nanometers
around the guest atom. Within this scheme simple quantum-bit manipula-
tion as well as qubit–qubit interaction are achieved by an external electric
field. An alternative scheme, exploiting the properties of impurities in silicon,
has recently been proposed [5, 6]. In this scheme, the quantum information,
embodied in electron spins bound to deep donors, is coupled via optically
induced electronic excitation.

Kane’s proposal [4, 7] has driven increasing interest in the field of shal-
low impurities, and a number of theoretical studies that try to compute the
properties of such a system were published in recent years [8–16]. Theoretical
works are essentially divided into two categories: first-principles simulations,
performed within the density functional theory, are allowed to study the effect
of confinement in Si dots of small size, and numerical calculation by using the
envelope function approximation to study extended systems where the use of
ab initio techniques is prevented by the prohibitive computational cost (at
least for the preset state-of-the-art classical computers). In the first category,
we mention the calculation of electronic properties of clusters of small size
[17], systematically investigated by Ossicini’s group [18–20], and the first-
principles calculation of the hyperfine splitting in P-doped Si nanocrystal
of small size (1 nm was the maximum radius considered) by Melnikov and
Chelikowsky [14].

The computation of shallow impurity states can be conveniently per-
formed by means of the envelope function approximation. However, to sim-
ulate in a realistic way the ground-state energy of the shallow states and its
dependence on external field, it is necessary to include in the calculation the
following quantities: I) band-structure effects of the host material, i.e., the
band anisotropy of silicon near the conduction-band minima, II) the valley–
orbit interaction (VO) [21], i.e., the fact that the impurity potential couples
electronic states of different degenerate conduction-band minima (valleys) in
crystalline silicon; III) the central cell correction, i.e., the difference between
the “true” potential of the impurity and the screened Coulomb potential that
is used to approximate the impurity potential. The latter is a hydrogen-like
potential that is usually employed in the computation of shallow states since
it exactly reproduces the “true” impurity Coulomb tail far from the impurity
site. The difference between the true impurity potential and the hydrogen-
like potential is expected to be significant only within the Wigner–Seitz cell
surrounding the impurity and for this reason it is called the central-cell cor-
rection [22, 23].

An essential feature to realize the qubit as proposed by Kane’s quantum
computer is the capability of tuning with an electric field the hyperfine split-
ting caused by the interaction between the P nuclear spin and the electron
spin of the hydrogen-like impurity state. For shallow donors, the hyperfine
splitting is mainly due to the isotropic contact or Fermi interaction, propor-
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tional to the square modulus of the impurity wavefunction evaluated at the
nuclear impurity site [24].

Kane proposed to manipulate via external electric fields the electronic
wavefunction, therefore controlling the hyperfine splitting, and, for two
qubits, the exchange interaction. In this context it is of paramount impor-
tance to determine what is the maximum electric field that can be applied to
the system and that leaves the electron in the shallow state still bound to the
donor atom. This critical electric field was recently determined theoretically
for uniform electric field in bulk Si:P and found to be Ecr ∼ 2.5 MV/m [25].

Within the envelope function approximation, different attempts have ap-
peared in the literature [8–11] to compute P-impurity states in bulk Si or Si
nanocrystals, the majority neglect valley–orbit interaction, while a few take
it into account in an approximate [16] or a phenomenological way [15]. With
the exception of [25, 26], we have not found in the literature any work that
has taken into account in a reliable way valley–orbit interaction with central-
cell correction to compute the electronic properties of shallow impurities in
an external electric field. Following [25], we will show that to reproduce cor-
rectly the ground state of Si:P one has to include in the computation of the
valley–orbit interaction, the central-cell corrections contribution due to im-
purity core electrons, a quantity that, to the best of our knowledge, nobody
has taken into account before [25] in this type of calculations. By means of
the envelope function of the conduction band and of a Gaussian basis set, we
compute the electronic states of Si:P. In our calculation we take into account
the band anisotropy within the effective-mass approximation, and we com-
pute exactly, within the numerical accuracy due to the use of a finite basis
set, the valley–orbit interaction of a realistically screened Coulomb potential,
of the core potential, and of the electric field [25] or of the confinement poten-
tial approximated by a spherical well. In this chapter we present theoretical
results for the energy levels of the shallow P impurity in silicon crystal as well
as the hyperfine splitting of the ground state. We have studied the depen-
dence of these quantities on the applied external electric field along the [001]
direction. Our results reproduce correctly the experimental splitting of the
impurity ground states detected at zero electric field. For increasing electric
field, in contrast with what can be expected (on the basis of previous results)
[15, 16] the main effect is not the spectrum narrowing of the 1s manifold,
but the mixing of s- and p-like states. The mixing dominates the behavior of
the impurity states energy at high electric field. The work is completed by a
section where we applied our technique to compute the effect of confinement
of a shallow electron in a spherical Si nanocrystal doped with one P atom.

1 Shallow Impurities in an External Field

In the limit of diluted concentration, the Hamiltonian, H, of a substitutional
impurity in an external field vext(r) reads
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H ≡ H0 + Vimp + vext(r), (1)

where Vimp is the donor-impurity potential and includes all the effects due
to the presence of the guest atoms in the crystals, H0 is the periodic Hamil-
tonian of the host crystal of which we are able to solve the Schrödinger equa-
tion H0φi,k = εi(k)φi,k and determine the Bloch eigenfunction φi,k(r) =
eik·rui,k(r) and eigenvalues εi(k). These data can be easily obtained, e.g., by
the density function plane-wave pseudopotential technique, as was done in
[25, 26] and in the present work. Our target is to find the eigenenergies and
eigenfunction Ψ of H.

1.1 Envelope Function Approximation

For shallow states, where the extra electron is weakly bound to the impurity
ion, it is convenient to solve the Schrödinger equation introducing the one-
band approximation [22]

Ψ(r) =
∑
k

F (k)eik·ruk(r), (2)

where the summation is extended to all k-states of the conduction band (here-
after we will omit the conduction-band index since there is no possibility of
confusion). F is called the envelope function and can be approximated by the
summation of functions Fi highly localized in reciprocal space (since they are
the Fourier transforms of highly delocalized shallow wavefunctions in real
space) around the conduction-band minima (CBM) ki [22]

F (k) �
∑

ki ∈CBM

Fi(k − ki). (3)

This is equivalent to assuming that the eigenfunction of (1) (strictly an enve-
lope function, the sum of the Fourier transform of Fi(k)) is so diffuse that one
need only consider very close values of k to the ki.1 In reciprocal space, due
to localization, the overlap between wavefunctions of two different minima
can be usually safely neglected.

Within this approximation one assumes that only the wavefunctions uk

of the conduction band with energy close to the conduction-band minima
contribute to the expansion of the impurity wavefunction (for which one
can safely put uk � uki). This assumption allows one to neglect the band
structure and approximate the conduction band near the minimum by a
quadratic form p·M−1

i ·p where p is the momentum operator, and M−1
i is the

inverse mass tensor at the ith conduction-band minima with wavevector ki.
By taking the expectation value of the Hamiltonian 〈Ψ |H − E|Ψ〉 = 0,

one obtains a Shindo–Nara-like equation [27]:

1 This is one of the fundamental approximations of the effective-mass theory. This
statement is the multivalley equivalent of approximation (2) as stated in [23], pp. 67.
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∑
i,j

∫
drF ∗

i (r)
[(

p · M−1
i · p − E

)
δi,j

+ e−i(ki −kj)·ru∗
ki

(r)
(
Vimp(r) + vext(r)

)
ukj (r)

]
Fj(r) = 0, (4)

where E is the energy computed relative to the conduction-band minima and
Fi(r) is the Fourier transform of Fi(k). One can easily show that, with this
definition, the wavefunction in real space can be written as

Ψ(r) �
∑

i∈CBM

eiki ·ruc,ki(r)Fi(r), (5)

where the summation index i labels all the equivalent conduction-band min-
ima (CBM) and ki the corresponding wavevector (hereafter we will omit the
conduction-band index since there is no possibility of confusion). The func-
tions uki have the periodicity of the host crystal. We expand their product
in (4) in Fourier series

u∗
ki

(r)ukj (r) =
∑
G

Ci,j(G)eiG·r, (6)

where G denote the reciprocal-lattice vectors.
For i �= j, the second term in the square bracket in (4) gives the intervalley

coupling due to the impurity potential (and to the external potential if it is
present). It is convenient to divide this potential into two contributions

Vimp(r) = −ε−1 e
2

r
+ΔVcell(r). (7)

The first term in the right-hand side is the Coulomb potential of a hydrogen-
like impurity screened by the dielectric constant of the host crystal, ε, while
the second term, ΔVcell(r), represents the difference between the potential of
the impurity (when the Coulomb tail is subtracted) and the potential of the
bulk Si atom.

1.2 The Central-Cell Correction

In the present work, to compute ΔVcell, we have neglected the difference of
the valence density between Si:P and bulk Si, as well as the atomic relaxation
of the neighbor shells surrounding the impurity, and we have approximated
the central-cell correction

ΔVcell(r) � ΔVcc(r) ≡ V core
P (r) − V core

Si (r), (8)

with the difference between the (short-range) potential of (filled-shell) core
electrons of Si and P atoms. The core correction potential, ΔVcc, has spherical
symmetry, and it vanishes rapidly outside the core radius as soon as the core
density becomes negligible. No dielectric screening is necessary for this term
since the potential is short range.
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1.3 Numerical Basis Set

In our calculation we have expanded the envelope functions Fi(r) on a
Gaussian basis set:

e−αr2
rlYl,m, (9)

where the spherical harmonics Yl,m describe the angular dependence of the
impurity wavefunction. The core correction term involves a radial integral
that can be easily computed numerically with small computational effort due
to the short range of the potential. However, this term can be computed
analytically by fitting the core density with an appropriate function. With
the exception of the short-range core term (see (8)) computationally inex-
pensive, by using the Gaussian basis set we can compute all matrix elements
in an analytical form (i.e., in terms of elementary or special functions) with
a considerable reduction of computational effort [28]. By using the Gaussian
basis set, we can compute in real space the term involving the potential
Vimp without assuming that the potential has no Fourier components outside
the Brillouin zone, as is commonly done in standard effective-mass theory
calculation.2 In the expansion of the envelope function we include spherical
harmonics up to f states (l = 3). The Gaussian parameters are chosen ac-
cording to the formula: α = α0δ

n
α, where n = −9, −8, . . . , 8, 9; α0 = 0.005a−2

B ;
and δα = 1.85 (where aB is the Bohr radius of hydrogen atom). In total, we
use about ∼1800 basis functions. This ensures an accurate convergence of our
results at zero field and at nonvanishing fields for states that are localized at
the impurity.

This basis set is particularly useful in the case when an uniform electric
field is applied to the system. In fact, the use of a localized basis to expand
the impurity wavefunction allows us to avoid the problem of computation of
the matrix element of uniform electric field, that in the case of a plane-wave
basis set can be solved only by recasting the Schrödinger equation in terms
of a Berry phase [29, 30].

2 Phosphorous Impurity in Silicon

We applied the method presented in [25] to study the Stark effect of shallow
states of diluted phosphorous impurities in silicon [25]. Our results are com-
pared with experimental data, available at zero electric field. We will discuss
the behavior of the shallow states as a function of a uniform electric field
and in particular the physical mechanism responsible for the ionization of
the ground states at a critical field Ecr, that according to the prediction of
[25] is approximately 2.5 MV/m.
2 See, e.g., approximation (1) in [23], pp. 67. We recommend this book to the reader
interested in a clear and detailed discussion of the approximations used in standard
envelope function theory.
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2.1 Bulk Ingredients

The electronic band structure of a silicon crystal displays six conduction-
band minima (valleys) located along the [001] and equivalent directions at a
distance k0 ∼ 0.84 2π

aL
from the Brillouin zone center (aL denote the lattice

parameter of Si). The expansion of the conduction-band energy of Si up to the
quadratic term for the conduction-band minima along the e [001] direction
reads (effective-mass approximation):

ε(k) = ε(k1) +
h̄2

2mT

(
k2

x + k2
y

)
+

h̄2

2mL
(kz − k0)2. (10)

Similar expressions are used for the other conduction-band minima located at
equivalent directions. At the conduction-band minima of silicon, the effective-
mass tensor is highly anisotropic, i.e., the experimental value of the longitu-
dinal effective mass mL = 0.916me differs significatively from the value of
the transverse effective mass mT = 0.191me.

In our calculation we use an ε that depends on the wavevector according
to the parameterization given in [31], where the dependence of ε as a function
of the wavevector is obtained by fitting first-principles calculation of bulk Si,
while the only experimental parameter used is the high-frequency dielectric
constant ε∞ ≡ ε(k = 0) = 11.4.

In our calculation we use the experimental values for the high-frequency
dielectric constant, ε∞, and the effective masses of bulk silicon, mT and mL,
because they are known with high precision. However, it is important to
underline that, for the method described in [25] and used here, it is not nec-
essary to use experimental data for the input of the calculation, since one can
also use first-principles calculations to obtain the same parameters: in solids
where ε∞, or M−1

i , or both parameters, are not measured (or the measured
value is not accurate enough), these constants can be reliably computed by
density functional theory.3

All other bulk Si quantities used to solve (4) are obtained by first prin-
ciples. We compute ΔVcc by the atomic density functional, Ci,j and other
Si bulk parameters by plane-wave pseudopotentials techniques [32]. In our
calculation we include, as usual [33], only the Ci,j(G) with G = 0 terms.
Obviously Ci,i(0) = 1, the value of the other G = 0 coefficients we com-
puted are displayed in Table 1, and compared with previous values taken
from literature.

3 Theoretical Results: Si:P

First, we assess the reliability of our results by comparing them with exper-
imental data, available at zero field. If VO is neglected, the ground states
3 Note that, if all ingredients are computed by first principles, the method exposed
here is parameter free.
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Table 1. Coefficients of the Fourier expansion of different valleys of the periodic
part of Block’s states

Cki,kj This work R. Resta [33]

kx, −kx −0.2713 −0.181

kx, ky 0.3602 0.407

of a substitutional impurity in Si is six-fold degenerate. The VO interaction
removes this degeneracy mixing of these six 1s states to obtain, according to
the symmetry of the system, a singlet (A1), a doublet (E), and a triplet (T2)
state. Our computed splitting of these states reproduce well the experimen-
tal data at zero electric field. The lower-energy modes (the 1s manifold) are
(experimental data from [22] are in parenthesis): A1 = −41.7 (−45.5)meV,
E = −30.1 (−32.6) meV, T2 = −32.3 (−33.8)meV. A result obtained without
any adjustable parameters.

3.1 The Core-Correction Contribution

We stress the importance of including the core-correction term ΔVcc, that
gives the correct scattering of the shallow wavefunction with the core states
of the impurity. In fact, neglecting the ΔVcc contribution and considering the
intervalley coupling due only to the screened Coulomb potential, we found
that the A1 ground state has an energy that is considerably lower (less than
∼−120meV) than the core corrected one, while we find very similar results
(with differences within ∼2 meV) for E and T2 states. The importance of
including the ΔVcc seems not to have been noticed before [25] despite the
extensive published theoretical work on the energy of shallow states in Si:P.
We attribute this rather surprising fact to three different causes. The first
cause is that the intervalley coupling is frequently neglected: in this case the
resulting ground-state energy is equal to 31.2meV [34], it is sixfold degener-
ate (since the six valleys are not interacting), and the theoretical result does
not reproduce the experimental splitting of s states, nor takes into account
other physical phenomena such as the multivalley interferences that are of
paramount importance for quantum computation. The second cause is that
the intervalley coupling is included in an approximate or in a phenomeno-
logical way (i.e., by using experimental parameters), in the latter case an
adjustable parameter is used to reproduce the energy of the ground state or
the experimental splitting of the 1s-manifold, as was done, e.g., in [15]: in this
case the use of an experimental constant gives no insight into the microscopic
mechanisms responsible for the splitting of the 1s-manifold. The third cause
is that the VO coupling, due to the Coulomb potential, was included in the
Hamiltonian, but the ground-state energy was computed with a wavefunc-
tion with only a few variational parameters (as in [21] where two variational
parameters were used, or [35] where the variational parameters are three):
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in this case the agreement between theory and experiment must be consid-
ered fortuitous, on the basis of results of [25]. It is due to the cancelation
of two independent and non-negligible effects: neglecting a significant part
of the Hamiltonian (the contribution to valley–orbit interaction due to the
central-cell correction) combined with the use of a few-parameter variational
wavefunction that always gives an upper limit of the ground states and that
produces in this case a considerable overestimation of the true ground-state
energy associated to the approximated Hamiltonian.

3.2 Stark Effect

We applied the method of [25] to study the Stark effect of shallow states of
diluted phosphorous impurities in silicon [25]. When a uniform electric field E
is applied the corresponding external potential reads (electron charge −|e|):

vext(r) = −|e| E · r. (11)

Note that the potential associated to a uniform electric field tends to −∞
when the electron moves in the direction of the electric field far away from the
impurity nucleus. In this region of space, where the tail of the nucleus poten-
tial produces negligible effects the electron presents a free motion uniformly
accelerated moving from the impurity into the direction of the electric field.
In this free-electron region it is possible to find a solution of the Schrödinger
equation with energy arbitrarily low due to the fact that the potential tends
to −∞. In the following, as is usual, the term “ground state” denotes the
state of lower energy among all bounded states, i.e., those with wavefunction
localized close to the impurity.

In the top panel of Fig. 1 we display our results for the computed lower 32
impurity levels (denoted with solid lines) as a function of a uniform electric
field applied along the [001] direction. In the bottom panel of the figure we
display the square modulus of ground-state wavefunctions (corresponding to
the energy level of the top panel) computed at the impurity site (‖Ψ(0)‖2),
i.e., a quantity proportional to the hyperfine splitting. Following the common
practice, we choose the crystal site of phosphorous atom as the origin of the
Cartesian axis reference frame.

According to the results displayed in Fig. 1, the 1s-manifold, resulting
from the coupling of 1s states by the intervalleys interaction, displays a small
dependence on the electric field, at least up to 2–2.5MV/m when the energy of
this manifold becomes comparable with that of the p-like states. The energy of
the ground state (A1) decreases with increasing electric field, and the effect
of the spectrum narrowing of the 1s manifold, resulting from the coupling
of 1s states by the intervalleys interaction, is quite small at least up to 2–
2.5MV/m when the energy of this manifold becomes comparable with that
of the p-like states. The electric field lifts the degeneracy of the doublet E
state and (partially) of the triplet T2 state; an effect that, on the energy scale
of Fig. 1, becomes appreciable at 1.5–2MV/m.
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Fig. 1. Top panel: solid
lines denote the lower
energy levels of Si:P as a
function of uniform elec-
tric field directed along
(001); a dashed line de-
notes the minimum energy
of the barrier surround-
ing the impurity. Bottom
panel : the square modulus
of the ground-state wave-
functions (dotted line)
computed at the impurity
site (and normalized to
the zero-field result)

The mixing of s- p-like states dominates the behavior of impurity states at
higher electric fields. When the electric field is increased, before the narrowing
of the 1s spectrum becomes significant, the singlet energy level – s-like state,
corresponding to the ground state up to Ecr ∼ 2.45MV/m – and a (almost)
doublet energy level that originates from a zero-field 2p0-like state, become
almost degenerate. This gives a mixing of the two states and for fields larger
than Ecr the ground state becomes a p-like state (almost) doubly degenerate.
Since the 1s and 2p0 states have the same magnetic quantum number m = 0
their energy levels display anticrossing behavior [36] at Ecr, as can be noticed
by looking at the inset of Fig. 2.

To understand the physical mechanisms involved we have plotted in Fig. 2
the wavefunctions of these states along the z-axis (top and middle panel), and
the energy barrier (bottom panel) separating the states localized near the
impurity (located at the origin of the horizontal axis) from the free-electron
region (in the right part of the figure). In the inset we display the states with
lower energy at a value of the electric field near to Ecr. The energy scale and
the field scale are magnified with respect to the data of Fig. 1 to make visible
to the reader the (anti)crossing behavior of the three lowest-energy levels.
In Fig. 3 we show the two-dimensional contour plot of the square modulus
of the ground-state wavefunction at zero field. From the figure, the reader
can notice the sharp peak at the impurity site. The square modulus of the
ground-state wavefunction displays a sharp peak at the impurity also for
nonvanishing values of the electric field up to Ecr (see top panel of Fig. 1).
In the following discussion we refer to the field range of the inset in Fig. 1.
At Ecr the first excited state (in red) is a “pure” 2p0-like state and it is
mainly localized outside the barrier at z ∼ 18 nm, a value that corresponds
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Fig. 2. Square modulus of the wavefunction (solid lines) and of the envelope func-
tion (

∑
i

‖Fi(z)‖2, dashed lines) of the three lowest-energy levels (in black, red and
green) of Si:P (top and middle panel with different vertical scales) and the sum of
electric field and screened Coulomb potential (bottom panel) as a function of the
Cartesian coordinate z. The rapid oscillatory behaviors are fingerprints of multi-
valley interference. E = (0, 0, 2.45)MV/m. Vertical dotted line correspond to (the
saddle point at) the minimum of the energy barrier surrounding the impurity. Inset :
the same as top panel of Fig. 1 on a magnified scale and on a selected range close
to the critical field

approximately to the top of the red “hill”. Comparing the position of the
wavefunction peak with the potential profile in the bottom of Fig. 2 one
can easily understand that this state (red line) corresponds to an ionized
state since it is in the space region of the free particles. For values of the
electric field lower than Ecr, the ground state is 1s-like and it is located at
the impurity site within the potential barrier (bound state), while the second
excited states (green line) shows a behavior similar to the first excited states.
At Ecr the two latter states mix and the states are localized partially either
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Fig. 3. Contour plot in the [001] plane (passing trough the origin) of the square
modulus of the envelope function (

∑
i

‖Fi(z)‖2) of the ground state of Si:P (zero
electric field)

within the potential barrier, or outside the potential barrier in the free-space
region, as can be noticed by looking to the middle panel of Fig. 2. For values
of the electric field larger than Ecr, the ground (black line) state is 2p0-like,
and it is localized outside the energy barrier. Thus, the ground state at Ecr

becomes ionized by tunneling through the energy barrier, and the value of the
hyperfine splitting decreases abruptly at E = Ecr. It is well known that the
envelope function approximation can correctly predict only the magnitude
of the hyperfine splitting [37], however, this fact would not affect the above
results that are determined by the energies of the states, and we expect
that the small discrepancies between the calculated A1 state energy and the
experimental value at zero field, will only shift Ecr by a fraction of MV/m.

3.3 Electric-Field Dependence of Superhyperfine Constants

In Kane’s proposal, the electric field is used not only to manipulate a single
qubit, but also to allow the shallow wavefunction of an impurity to interact
with another impurity nucleus located at a certain distance from the first.
For this reason, it is important to know how the ground-state wavefunction
is modified by an electric field not only at the impurity site, but also at other
nuclear sites. To deal with a directly measurable quantity we consider the
Fermi contact superhyperfine constant, obtained by electron–nuclear double
resonance (ENDOR) measurements [38], and more recently by electron spin-
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Table 2. SHF interaction of A-shell (in MHz) for Si:P at different value of (001)
directed electric field (in MV/m)

Field 0 0.5 1 1.5 2

(0, 0, 4) 5.238 5.253 5.251 5.230 5.180

(0, 0, 4̄) 5.238 5.206 5.158 5.090 4.995

(4, 0, 0) 5.238 5.232 5.213 5.179 5.122

echo envelope modulation (ESEEM) [39], that is proportional to the square
modulus of the envelope function computed at the impurity site or at sites
of shell atoms surrounding the impurity.4

To study the dependence of the superhyperfine splitting (SHF) on the
uniform electric field we consider here only the A(0, 0, 4) shell that presents
the larger SHF at zero field. This shell corresponds to the six Si atoms at
(±aL, 0, 0), (0, ±aL, 0) (0, 0, ±aL). These atoms are equivalent at zero electric
field and they present the same SHF, but this degeneracy is lifted when a
uniform electric field is applied along the (001) direction.

Our results for the SHF interaction of the A-shell at zero field5 is a =
5.238MHz to be compared with the experimental value a = 5.962MHz [38].
Other theoretical results taken from the literature are: a = 2.963MHz ob-
tained by Overhof and Gerstmann [12] by first principles, a = 5.848MHz ob-
tained by Ivery and Mieher [41] by a multiband approach, and a = 8.414MHz
[41] that the same authors obtained by a traditional envelope function cal-
culation.

In Table 2 we report our results for the SHF interaction of all nonequiv-
alent positions of the A shell and for different values of an electric field
along the [001] direction. The SHF interaction constants show both linear
and quadratic field dependence and, more remarkably, the effect of the elec-
tric field can be detected already at low fields, around 0.5–1.0MV/m, where a
relative change of about 4% – within the accuracy of ENDOR measurements
– has been predicted. From the table the reader can see that the SHF, at
the atomic site of the shell with negative or null z, will have a reduction of
the wave density as expected (the field is pointing to positive z). For small
electric fields the wavefunction density increases for the atomic site of the
shell placed along the [001] direction, while at higher electric fields there is a
general reduction of the wavefunction density, also at the (004) site, due to
an increased delocalization along the electric-field direction.6

4 At a Si29 nucleus (placed at rα), the wavefunction density is given by |ψ(rα)|2 =

−0.7615 × 10−2aα Å
−3

where aα is expressed in MHz [38].
5 Since, by definition, the pseudopotential technique does not reproduce the correct
wavefunction density of bulk Si at the nucleus site, we use the experimental value
‖uki(0)‖2 = 178 (see [40]).
6 We found a similar effect of the electric field also for SHF interaction constants of
other shells [28]. In general, our results agree with the experimental data and have
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4 Confinement Effects

In the previous sections we have studied how it is possible to manipulate the
wavefunction of shallow electron states by means of a uniform electric field.
However, there are other ways to modify the wavefunction of the shallow state
in bulk silicon. One of them is the confinement of the electron by means of a
potential barrier. An example of a potential barrier that may be suitable for
quantum computing applications is obtained by the conduction-band offset
of the interface formed between bulk silicon and silicon dioxide (SiO2). The
bottom of the conduction band of SiO2 is a few eV higher that the bottom of
the conduction band of Si. Since the energy of shallow electrons is a few tens
of meV, the shallow electron experiences a potential barrier at the Si/SiO2

interface that prevents it penetrating into the SiO2 layer. This situation is
experienced by those P atoms located close to the Si/SiO2 interface in MOS-
FETs (one-side confinement) or in FIN-FETs (three-side confinement). The
influence of the barrier at the Si/SiO2 interface on the energy levels of P
in silicon has been investigated previously in MOSFETs [42]. Here, we con-
centrate on the full confinement obtained in Si nanoclusters embedded in a
SiO2 matrix. Further, with the present technology it is possible to practically
realize these devices, since Si nanostructures embedded in a SiO2 matrix can
be tailored (at least in principle) to the desired shape by oxidation of bulk Si.

To investigate the effect of confinement on the shallow levels we consider
a phosphorous impurity placed at the center of a Si nanocrystal embedded in
a SiO2 matrix. We assume that the nanocrystal has a spherical shape with
radius R. The shallow electron experiences the impurity potential Vimp and
the confinement potential that can be approximated by a spherical well

vext(r) =
{

0, if r ≤ R,
V0, if r > R.

(12)

In our simulation we assume that M−1
i does not depend on the radius R, and

we chose for the barrier heigh (i.e., for the confinement potential) the value
V0 = 3.2 eV, that corresponds to the experimental value of the conduction-
band offset at the Si/SiO2 interface [43]. By inserting (12) into (4) we have
computed the shallow states of Si nanocrystal doped with one P at the center.
In Fig. 4 we have plotted our results for the lower-energy levels as a function of

an accuracy at least comparable with other theoretical results, with the exception of
the first shell (denoted with E (1, 1, 1)). Compared to the first-principles approach
of [12], our results overestimate the experimental data. We attribute this to the
effect of relaxation of nearest-neighbor atoms to the impurity, neglected in the
present calculation and expected to be important in this case. This would explain
also the discrepancy of our results with the experimental hyperfine splitting (that,
however, is far better than standard EMT). However, by the method of [25] one
can easily compute the superhyperfine splitting of the shells far from the impurity
atom, i.e., well above the range considered by Overhof and Gerstmann in their ab
initio calculation [12].
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Fig. 4. Open circles,
open diamonds, and open
squares denote the calcu-
lated energy level of the
1s manifold for the A1

(ground state), T2, and E
states respectively, while
stars denote the p levels.
Continuous lines are a
guide for the eye

Fig. 5. Energy levels of
the 1s manifold as a func-
tion of nanoparticle radius
on logarithmic scales on
both axis. Solid lines are
the linear functions pass-
ing through the R = 3 nm
data points (correspond-
ing to ∼1.1 of the hori-
zontal scale) with slope
determined by the value
α = 2.5

the nanoparticle radius. As expected, the confinement of the electron within
the nanoparticle produces an increase of the energy of the shallow state, a fact
that can be simply predicted on the basis of the indetermination principle:
since ΔxΔpx ∼ h the confinement of the electron in a nanostructure of size
d in one dimension gives a kinetic energy increase of the order of h̄2

2m∗ ( 2π
d )2.

However, for nanoparticles of small size, when the radius of the nanocrys-
tal becomes comparable to the donor Bohr radius, it is expected that the
envelope function approximation breaks down: on the one hand the kinetic
energy is so high that it exceeds the conduction-band minima, so that the
electron is no longer bound to the P atom, but rather it can move in the
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whole nanocrystal, and the effective mass is expected to approach the elec-
tron mass rather than to coincide with the bulk effective mass. On the other
hand, if the electron is confined in a structure of linear dimension d in real
space, the corresponding wavefunction in reciprocal space (i.e., the Fourier
transform of the wavefunction in real space) is expected to be significant
in a region of size 2π

d . If we take d = 3nm as the linear dimension of the
confinement region where the shallow wavefunction is spread in real space,
we obtain that the wavefunction in k-space is delocalized in a region that
is about 1

10 of the dimension of the reciprocal lattice vector of bulk Si. As
a consequence, since the shallow wavefunction extends significantly in the
first Brillouin zone, we do not expect that the shallow wavefunctions can be
described by the superposition of localized functions in the reciprocal space
around the conduction-band minima as assumed in (3).

We have investigated the dependence of the energy level En (where n
labels the A1, T2 and E states) of the 1s manifold as a function of the radius
of the Si nanocrystal R; we assume that En(R) can be described by a simple
power law of the type ∝ 1/Rα. Obviously En(R) should approach the bulk
value, En(bulk), in the limit R → ∞. In Fig. 5 we display our results for the
1s manifold energy levels as a function of R on a logarithmic scale for both
axis. With this choice of scale the parameter α is given by the slope of the
data (i.e., α corresponds to minus the derivative of the function ln[En(R) −
En(bulk)] with respect to the variable ln(R)). We can notice from Fig. 5 that
the parameter α is not a constant in the range of radius investigated and a
more complex functional dependence would be needed to fit our data, a result
already pointed out in [26]. Since we are interested in the limit of small R,
we have fitted the data points at R = 3nm (that corresponds to ∼1.1 in the
abscissa) with straight lines (displayed in Fig. 5 as dashed lines), the slope of
these lines corresponding to α = 2.5. As can be noticed from the figure, the
approximation α = 2.5 can fit quite well the theoretical data, at least up to
R = 4nm.

The effect of confinement on the hyperfine splitting can be seen in Fig. 6
where we report our results for the hyperfine splitting as a function of
nanocrystal size and compare the results with the experimental data taken
from the work of Fujii et al. [44]. Our results are in good agreement with ex-
perimental data. The effect of confinement is clearly seen in the increase of the
hyperfine splitting when the radius is reduced, thus suggesting that the con-
finements in nanostructures can be used to increase the hyperfine splitting.
From the figure, it is evident that the effect of confinement on the hyperfine
splitting can be well described by the theoretical approach outlined here, at
least for nanocrystals with R ≥ 2–3 nm. For the reasons described above, we
expect that this size corresponds to the smaller radius of the nanocrystal for
which the envelope function approximation, adopted here, is still valid.

The dependence of the hyperfine splitting on the nanocrystal radius was
studied in [14] by Melnikov and Chelikowsky who computed the hyperfine
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Fig. 6. Hyperfine split-
ting as a function of
nanoparticle diameter.
Full diamonds denote
experimental values ob-
tained by M. Fujii and
coworkers [44], open cir-
cles theoretical results
(dashed line is a guide for
the eyes)

splitting of Si crystals of different size with one P at the center; the maximum
radius considered in their work is about one nanometer. They found that
the hyperfine splitting ∝1/Rα, with α = 1.5. By using the theoretical data
displayed in Fig. 6 we have obtained the value α = 2, as reported in [26],
where the technique previously described to study the dependence of the
energy on R has been applied to compute the parameter α describing the
dependence of hyperfine splitting on R (the interested reader can refer to the
latter work for details of the fitting procedure).

5 Conclusions

We have developed a robust and fast7 method based on a Gaussian basis set
for the computation of shallow states in semiconductors without adjustable
parameters that includes, in a nonperturbative way, the valley–orbit coupling
and the interaction with the core states of the impurity. Our results reproduce
(within a few meV) the experimental splitting of the 1s manifold of Si:P at
zero external electric field and provide reliable predictions of the properties
of the system when a uniform electric field is present. We have computed the
effect of confinement on shallow states of P dopant by computing the impurity
energy level and the hyperfine splitting in spherical Si nanocrystals of different
radii showing that our technique is capable of reproducing quantitatively the
experimental trends.
7 All the calculations for this work were performed on a PC with a Pentium IV
2.80 GHz processor.
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Abstract. The manipulation and quantification of the effects produced by
an rf field in a mesoscopic structure are fundamental issues in view of devel-
oping single-spin-based qubits. Here, we review the experiments on electron
transport in quantum dots under microwave irradiation. The electromagnetic
vector potential provides excitation of electrons in the leads and in the quan-
tum dot, and an electromotive potential at the leads. The combinations of
the two effects go under the name of photon-assisted tunneling. In the present
review, the theory of photon-assisted tunneling, based on the Tien–Gordon
model applied to the Coulomb-blockade regime of a quantum dot is outlined.
An expression for the dc current flowing through the dot in response to a mi-
crowave signal is calculated. Then, a classification of different experiments,
organized following the different processes adopted to create the dot is pre-
sented. Measurements of GaAs split-gate-defined single and double quantum
dots as well as lithographically defined SET based on Si/SiGe technology are
considered. Finally, recent experiments on a Si/SiO2 commercial flash mem-
ory microwave irradiated up to 40 GHz are illustrated, without and with a
static magnetic field up to 12 T.

1 Introduction

Quantum dots are fundamental components of several quantum information
processing schemes [1, 2]. Their capability to confine electrons into nanomet-
ric volumes makes quantum dots natural candidates to host charge and spin
qubits [3–5]. In quantum dots the energy spectrum is discrete [6] so the elec-
tronic states can be coupled by an electromagnetic field. Electron-spin qubits
are based on Zeeman-state doublets, coupled by microwave irradiation at
the resonance frequency. The microwave irradiation drives spin resonance
and manipulation with pulses of appropriate duration [7]. It may also acti-
vate electron transport in the dot via inelastic tunneling due to exchanges
of energy between electrons and microwave field (photon-assisted tunneling,
PAT). An rf electromagnetic radiation coupled to a quantum dot induces
several effects: temperature increasing of the electronic subsystem, resistiv-
ity fluctuations due to nonresonant background [9, 10], microwave frequency
oscillations of the energy levels into the leads due to magnetic ac coupling
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[11–15], photoionization of confined electrons [16], electron-state excitations
in the leads due to single and multiple photon absorption [14, 15] and cou-
pling of spin states with different angular momentum [7, 8]. Only the latter
is relevant for quantum information processing, while the others have to be
eliminated or minimized. Investigation and control of microwave-irradiated
quantum dots should lead to an improvement of nanodevice architecture [17].
Photon-assisted tunneling in quantum dots, observed for the first time in 1994
by Kouwenhoven and coworkers in GaAs split-gate quantum-dot samples [14,
15] and later in double dots [18], is one of the most important effects. Anal-
ogous results have been obtained in GaAs samples by Von Klitzing et al.
[19], and by Williams et al. [20] in 2004 in a lithographically defined single-
electron transistor (SET) based on Si/SiGe technology. Recently, we observed
photon-assisted tunneling in a commercial Si/SiO2 flash memory, realized by
STMicroelectronics, which behaves as a quantum dot at cryogenic tempera-
ture. The most complete literature refers to GaAs quantum dots, where the
energy levels are split by applying a magnetic field of more than 0.5–1T,
which fully polarizes electron spins at milli-Kelvin temperatures. Here, we
further develop the photon-assisted tunneling of spin-polarized electrons at
12T in a standard technology ultrascaled flash memory that behaves as a 0D
quantum dot embedded into a silicon nanowire. The present review is orga-
nized as follows: Sect. 2 illustrates the theory of photon-assisted tunneling
(PAT) based on the Tien–Gordon model applied to the Coulomb-blockade
regime of a (0D) quantum dot. The other sections review the experiments
depending on the host semiconductor used to create the dot. Such a classifi-
cation corresponds also to the different processes adopted to create the dot.
Section 3 reports on the experiments performed on GaAs split-gate-defined
quantum dots. Section 4 reports on the experiment on a lithographically
defined SET in Si/SiGe technology. Finally, Sect. 5 illustrates the main re-
sults obtained using a Si/SiO2 commercial flash memory where subthreshold
discrete levels are provided by a single donor with energy levels below the
conduction-band edge. In such a system the study of photon-assisted tun-
neling of unpolarized electrons has been extended to spin-polarized electrons
through nondegenerate energy levels, by means of a 12T static magnetic field.

2 Theory of Photon-Assisted Tunneling
in Quantum Dots

Photon-assisted tunneling of quasiparticles was observed for the first time
in a superconducting diode [21] and it was quantitatively modeled by Tien
and Gordon [22]. There, the current through a barrier was examined under
microwave irradiation. Tien and Gordon developed a general approach to
predict the effect of a harmonic electric potential on the tunneling of single
particles that has successfully been applied by Kouwenhoven and coworkers
to tunneling of electrons through quantum dots [14, 15]. Indeed, the current
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through a quantum dot is expressed as the balance of tunneling through its
energy levels in the forward and backward directions. In the first section
the Hamiltonian formalism of PAT is described. Such a formalism leads to
the tunnel rate under microwave irradiation. The second section describes
how the modified tunnel rates apply to the Coulomb blockade in quantum
dots. The third describes the ratio between the quantities involved in the
effect in realistic experimental conditions.

Hamiltonian Formalism of Tunneling under Microwave Irradiation

The model of Tien and Gordon assumes that the electric-field potential
V cosωt due to the microwave field has to be linearly added to the generic
single-electron unperturbed Hamiltonian H0 of the system under investiga-
tion. The unperturbed Hamiltonian has eigenfunctions

Ψ(x, y, z, t) = f(x, y, z)e−iEt/h̄, (1)

where E is the eigenvalue associated to Ψ . The new Hamiltonian

H = H0 + eV cosωt (2)

has modified eigenfunctions

Ψ(x, y, z, t) = f(x, y, z)e−iEt/h̄

(
+∞∑

− ∞
Bne−inωt

)
, (3)

where Bn are generic coefficients to be determined, since the perturbation can
not change the spatial distribution of the wavefunction. The substitution of
the new generic eigenfunction into the time-dependent Schroedinger equation
ih̄ψ̇ = Hψ imposes the relationship between the coefficients Bn [22]:

2nBn = α(Bn+1 +Bn−1), (4)

where α = eV/h̄ω. The solution of such an equation is given in terms of the
nth-order Bessel function of the first kind Jn

Bn = Jn(α). (5)

The eigenfunction is therefore

Ψ(x, y, z, t) = f(x, y, z)e−iEt/h̄

(
+∞∑

− ∞
Jn(α)e−inωt

)
. (6)

The tunnel rate in absence of applied field is

Γ (ΔF ) =
(
G/e2

)
ΔF/

(
1 − e−βΔF

)
, (7)

where β = 1/kT , G is the characteristic conductance of the barrier, and F the
Helmholtz free energy (thermodynamical potential at constant temperature
F = U − TS + μN). The tunnel rate changes as a function of the photon
energy as [14, 15]
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Γ̃ (ΔF ) =
+∞∑

− ∞
J2

n(α)Γ (ΔF ± nh̄ω). (8)

The generalized tunnel rate (8) must be used to calculate the current IDS

through quantum dots under microwave irradiation. The effect of the oscil-
lating field on the tunnel rate directly reflects on the current through the
dot. Following the generalized expression (7), the current will contain energy
components at E,E ± h̄ω, E ± 2h̄ω, etc. These are called sidebands. The
calculus of the current through the dot is presented in the next section.

Tunneling in Quantum Dots under Microwave Irradiation

Let’s consider a single dot connected via tunnel barriers to two electrodes
and capacitively coupled to the gate. Such a system can be modeled by an
electrostatic equivalent circuit where the dot is connected to the leads A and
B through the impedances ZA and ZB, and coupled to the gate through a
capacitance CG, as shown Fig. 1. ZA and ZB have ordinarily a very high real
component (hundreds of kΩ), while CA,B are comparable with CG.

The total charge in the dot ne, where n is the number of electrons, is due
to the positive charge QA at the barrier A, the negative charge −QB at the
barrier B, and the negative charge −QG at the gate. The dot contains an
integer number of electrons ne = QA − QB − QG due to the capacitors CA,
CB, and CG. Kirchhoff’s law gives:

QA =
CA

CΣ

(
ne − (CB + CG)VDS + CGVG

)
, (9)

QB = − CB

CΣ

(
ne+ CAVDS + CGVG

)
, (10)

QG = −CG

CΣ

(
ne+ CAVDS − (CA + CB)VG

)
, (11)

where CΣ = CA + CB + CG, VG is the gate voltage and VDS is the drain–
source voltage. The total drain–source current IDS is the difference between
the probability per unit time that one electron flows from A into the dot, and
the probability that one electron flows back to the electrode in the opposite
direction, times the unit charge. We call the first process ndot → ndot + 1 to

Fig. 1. Equivalent circuit of a single quantum dot
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indicate that the total charge goes from QA to QA − e, and ndot ← ndot − 1
so the charge changes again from QA to QA − e. Each tunneling event of the
kind ndot → ndot + 1 causes a change of charge:

ΔQA = −CA

CΣ
e, ΔQB =

CB

CΣ
e, ΔQG =

CG

CΣ
e, (12)

so the total change of the free energy ΔF is

ΔF =
(ne)2

2CΣ
− ((n+ 1)e)2

2CΣ
− VDSΔQA + VGΔQG, (13)

which gives

ΔF =
e

CΣ

(
(CA − CΣ)VDS + CGVG − (n+ 1)e

)
. (14)

The current through the dot consists of the algebraic sum of the positive
current due to the tunneling events in the forward direction that temporarily
increases the electronic occupation of the dot by one unit, and the negative
current that decreases the population by a unit. The tunnel rate is weighted
by two factors: first, the Fermi distribution associated to the energy levels
of the leads; second, the probability of the occupation of the energy levels of
the dot, governed by the grand partition function. The tunneling probability
is associated to a particular distribution of N electrons in k levels where
N > k. The total number of distinct configurations of identical particles

(
N
k

)
.

χ indicates the generic distribution of the electrons in the levels. In order to
calculate the explicit expression of IDS, we need to calculate the tunnel rates
through the left and right barriers Γ in

i,j and Γ out
i,j , where i = l, r and j refers

to the jth energy level Ej . They are

Γ in
i,j = Γi,j

∑
n

J2
n(αi)f

(
Ej − CG

CΣ
eVg − nhν + eVDSW, Ti

)
, (15)

Γ out
i,j = Γi,j

∑
n

J2
n(αi)

(
1 − f

(
Ej − CG

CΣ
eVg − nhν + eVDSW, Ti

))
, (16)

where f(E, Ti) is the Fermi distribution, Γi,j is the tunnel rate through the
barrier i at the energy Ej , and Ti is the temperature in the ith lead. The
total current through the dot can be calculated through an arbitrary barrier.
Here, we consider the left barrier.

IDS = e
∑

χ

∑
empty j

PN,χΓ
in
l,j − e

∑
χ

∑
full j

PN+1,χΓ
out
l,j , (17)

where the probabilities PN,χ are calculated by using the master equation
method.
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Typical Regimes of Operation

The relevant quantities in the photon-assisted tunneling mechanisms are the
energy separation ΔE of the levels in the dot, the charging energy ΔUC, the
energy fluctuation associated to the temperature kT , the voltage fluctuation
due to the microwave field into the leads eVAC, and finally the photon en-
ergy hν. The ratio between such quantities is made explicit throughout the
text. Some experiments have been carried out in single dots and some in
double dots, giving a richer number of possible bias conditions. Commonly,
the energies involved are related as follows:

ΔUC � eVAC ≈ ΔE ≥ hν � kT. (18)

In such conditions the two possible mechanisms that rule the photon-assisted
tunneling in a dot with N electrons are presented in [23, 24] and sketched
in Fig. 2. The first (top panel of Fig. 2) gives photon-assisted tunneling
when the separation between the ground state of the dot at energy E0 and
the Fermi energy corresponds to nhν. The corresponding current peaks are
called sideband peaks. The second mechanism occurs when the excited state
E1 is aligned with the Fermi energy of the leads (bottom panel of Fig. 2).
E1 is the first excited energy level of the dot (without the charging energy
contribution). For such a mechanism it is sufficient that the photon energy
nhν exceeds, without necessarily matching, the energy E1 − E0. In analogy
to photoionization, the electron at energy E0 leaves the dot so the Coulomb
blockade of the second electron is removed and the current through the energy
level E1 is allowed. At sufficiently high power the voltage fluctuation VAC lets
the current flow by the latter mechanism for a relevant fraction of time.

Fig. 2. Two principal tunneling mechanisms responsible for extra peaks due to
PAT [24]. Top panel : formation of sideband peaks due to the matching of the
ground-state E0 and the Fermi energy of the leads with the photon energy. Bottom
panel : tunneling trough the excited state E1, allowed by PAT, provided the electron
in the ground state absorbs a photon energy sufficient to leave the dot
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3 Experimental Results
in III–V Heterostructure Quantum Dots

Experimental Setup

In the literature several experiments related to III–V quantum dots have been
reported in [14–18, 24, 25]. The experiments reported by [14, 15, 18, 24], were
carried out in a dilution refrigerator. A coaxial cable allows the microwave
field to reach the sample. The coaxial line was divided in three sections.
From room temperature to the 1-K pot, a 0.085-in semirigid Be–Cu coaxial
cable was used, while from the 1-K pot to the mixing chamber, a 0.085-in
semirigid stainless-steel coaxial cable was used. From the mixing chamber
to the sample, various types of low-attenuation semirigid or flexible coaxial
cable were adapted. The coaxial cable was capacitively coupled (typically
through a 10-pF capacitor) usually to the center gate, which is capacitively
coupled to both dots. The incident power generates a microwave-frequency
oscillating potential across the center barrier. The experiments reported by
Fujisawa and Tarucha in [16] in both single and double dots were carried
out in a 3He refrigerator. The microwave was applied to the sample via the
capacitive coupling of the coaxial cable to the center of the Schottky gate by
a coplanar waveguide.

Single Dots

The first experiment on PAT in quantum dots was reported in [14, 15]. In such
an experiment the energy hν was about 80 μeV, while the charging energy
was of the order of 450 μeV. The peak width ΓFWMH was of the same order as
the photon energy hν. Under such conditions, they measured the IDS current
versus the gate voltage VG at zero bias and its change by applying a small
bias. The zero-bias experiment is shown in Fig. 3, where a nonzero current
due to the microwave field in the forward and reverse directions appears. The
microwave irradiation, randomly distributed in the proximity of the device,
causes two effects at the same time: one is the excitation of the electrons
in the leads to higher-energy multiples of hν from the Fermi energy of the
reservoir; the second effect is the sinusoidal modulation of the energy levels
in the device, which can be simplified in two different ac couplings to the
two leads, namely αSVAC and αDVAC. If the two couplings are equal, no
current inversion is expected by sweeping the energy level of the dot. In
their experiment such condition never applied. In particular, Fig. 3 shows
the completely asymmetric case, i.e., an ac field coupled to only one barrier.
Here, the dot acts as an electron pump. On one side of the peak, PAT leads
to extra positive current and on the other side to extra negative current. This
means that photons assist electron tunneling only through one barrier (that
with αiVAC �= 0), while through the other one only normal tunneling occurs.
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Fig. 3. Comparison be-
tween calculated (dashed)
and measured (solid) cur-
rents in the dot at zero
bias and for asymmetric
coupling [14, 15]

The second experiment in single quantum dots was performed by the
same group [24]. The major difference from the previous one is a different
microwave coupling, induced symmetrically via the central gate. There, the
two possible mechanisms studied by Bruder and Scholler [23] were experimen-
tally realized. The first configuration refers to the PAT through the ground
state of a dot, while the second is through the excited state. The excited
state at energy E1 is involved in transport after the removal of the electron
that occupies the ground state of the dot at energy E0. In those experiments
the photon energy hν was 110μeV, the thermal energy was kT = 18 μeV,
the energy level separation ΔE = 165μeV at a magnetic field of B = 0.84 T,
while the charging energy was ΔU = 1200μeV. The effect is observed as a
superposition of the two currents due to photon-assisted tunneling via the
ground and the excited energy levels. Each energy level provides a peak when
Ei = EF, where the subscript i ranges over 0 (ground state) and 1 (excited
state). In addition, two sidebands are present at the energies Ei ± hν. Such
an effect is shown in Fig. 4 ([24]).

Double Dots

The photon-assisted tunneling in double dots has been observed in three
regimes. The first is when

ΔEi � hν � eVDS ≈ eVAC, (19)

where the index i = 1, 2 refers to the dot 1 and 2 separately; the second when

ΔEi � eVDS � hν � eVAC, (20)

the third when
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Fig. 4. Measured cur-
rents as a function of
gate voltage for two dif-
ferent rf frequencies [24].
New resonances appear
on the right and left side
of the main one (sideband
peaks), whose positions
shift by an amount cor-
responding to the change
of photon energy

Fig. 5. Energy diagrams in a double-dot structure [18]. In order to contribute to
the total current, an electron in the first dot needs to absorb a photon. Here, the
voltage VSD is applied between the source and drain contacts so the condition for
the current to flow is that the hν equals the difference between the energy levels of
the two dots

ΔEi � eVDS � eVAC > hν. (21)

The scheme of the second and the third cases is depicted in Fig. 5.
In the first configuration the Fermi energies of the two reservoirs are very

close if compared to the energy spacing in each dot, and to the photon energy.
In this case it is possible [16] to stop the current flowing by a misalignment
between the energy levels of the two dots. Under microwave irradiation it is
possible to tune the energy levels of the dots so that their energy difference
corresponds to hν. The electron of the lowest-energy level is excited to the
highest one in the other dot and it is replaced by an electron of the reservoir.
Such a mechanism allows the current to flow.

In Fig. 6 is shown the effect when a small bias is applied. There, a satellite
peak appears in the proximity of the main one caused by the alignment of the
energy levels EL and ER of the two dots. The satellite peak consists of the
current observed for those left and right gate voltages VGL and VGR such that
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Fig. 6. Drain-current profiles in the
so-called 0D–0D configuration with mi-
crowave (first and second panel from
the top) and without microwave (bot-
tom panel) [16]. The satellite peak ap-
pears as a consequence of microwave
irradiation for left and right gate volt-
ages VGL and VGR such that EL −ER =
hν

EL − ER = hν. The same configuration has been exploited by Oosterkamp
and coworkers [18] where the zero-bias condition has been applied, so the
photon-induced current in the two directions is clearly observed (Fig. 7).
A second configuration has been realized by exploiting the same interdot
resonance but with a photon energy lower than the applied bias voltage eVDS

[18] and [25].
The experimental third condition where eVAC > hν has also been stud-

ied [25]. Under such strong coupling, multiple peaks appear corresponding to
nhν, as shown in Fig. 8.

4 Group IV Heterostructure Quantum Dots

Experimental Setup

The transport in a lithographically defined Si:Ge single-electron transistor
under microwave irradiation has been reported by Dovinos and Williams [20]
of the Hitachi Cambridge Laboratories. The single-island SET was fabricated
on a 30-nm Si0.9Ge0.1 layer that was phosphorus doped. The structure was
defined by electron-beam lithography. The device was cooled in a 12-mK di-
lution refrigerator. The microwave signal was carried with a semirigid coaxial
cable thermally anchored to several stages; a monopole 2mm from the de-
vice was used as a microwave emitter. Both the antenna and the device were
operated in vacuum.
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Fig. 7. Current in the double dot as a
function of the first gate voltage, with-
out (lowest curve) and with microwaves
(upper curves) as a function of the mi-
crowave frequency [18]

Fig. 8. Measured current in a strong
coupled double dot as a function of ΔE
for different microwave powers. At high
powers, multiple-photon processes can
take place, which result in extra current
peaks [25]

Experimental Results

PAT is observed when the SET behaves as an island (by well-isolated con-
ductance peaks). The zero-bias current is similar to that of [14, 15], as shown
in Fig. 9. There, the authors report IDS current fluctuations as a function of
gate voltage VG (VDS = 0, T = 20 mK).

Current flows even with no bias, provided that there is an asymmetry in
the radiation coupling at the leads. The authors study how the influence of
both frequency and power of the external rf acts on PAT. The asymmetry
of the oscillation increases with the rf frequency, while both the amplitude
and width of the oscillations increase with power. Both the peak to peak
height and the width of the oscillations are functions of the coupling factors



252 Enrico Prati et al.

Fig. 9. Drain–source current for different microwave powers at zero bias as a func-
tion of gate voltage [20]. Plots refer to different frequencies

of the device αi = eVDS/h̄ω, where i = D, S, which depend proportionally
on the square root of the external power, Prf . Both the oscillation width (de-
pending on αi maximum value) and amplitude (depending on the difference
between αi factors of the two tunnel barriers of the island) are enhanced
by increasing Prf . Nevertheless, the amount of power reaching the device
strongly depends on the antenna impedance in the cryostat and cannot be
controlled at all by the external source. The system setup, therefore, can hide
some frequency effects on the shape of the oscillation and induce a large dif-
ference between photon-assisted currents (see, for example, Fig. 9, frequency
2.828GHz where induced currents of about 400 pA at 15 μW were measured,
while in the same figure, at a frequency of 6.153GHz, values less than 70 pA
at 100 μW have been detected). It was pointed out that some current oscil-
lations at zero bias were observed even in the absence of microwave illumina-
tion. The authors attributed such effect to background blackbody radiation
of the environment. Like in [14, 15], the dot acts in the electron–photon pump
regime, due to the strong asymmetric coupling to the leads. Additional peaks
have been observed by applying a dc bias VDS �= 0 (up to −400 μV) as shown
in Fig. 10. The authors report IDS current variations at 3GHz as a function
of gate voltage for different powers. As they show in Fig. 10 a second peak
became visible, at sufficiently high microwave power, at a position that does
not depend on the applied frequency. A new current peak is a signature of a
new “tunnel channel” in the electronic transport of the device.

5 Si/SiO2 nanoFET Quantum Dots

Experimental Setup

Photon-assisted tunneling in a decanano commercial flash memory based on
Si/SiO2 standard technology has been recently studied by the authors. Ex-



Photon-Assisted Tunneling in Quantum Dots 253

Fig. 10. Drain–source
current as a function of
gate voltage for different
microwave powers and
voltage bias [20] at a
frequency of 3 GHz

perimental results are similar to those observed in devices based on the pre-
viously described technologies. The samples were commercial flash memories
based on Si/SiO2 technology provided by STMicroelectronics, with typical
n-channel dimensions of 50 nm width and 136 nm length. The effective length
was about 70 nm, as indicated by TEM analysis and simulations. In such
samples, electronic transport occurs in 1D channels at the edges of the struc-
ture [26]. A systematic test of the whole bit line gave us the possibility to
isolate samples with clearly separated current peaks, due to single dopants
diffused from the contact region into the channel. These peaks are attributed
to donors [26]. The sample was cooled in a 300-mK cryostat inserted into
a 12T superconducting magnet. The 1–40GHz radiation was supplied by a
coaxial line UT-141 beryllium in stainless steel, having a diameter of 3.5mm.
A dipole antenna was used at the end of the line to irradiate the sample,
located at a distance of about 3mm. Both the sample and the antenna were
in liquid 3He.

Experimental Results

Drain–source currents (IDS) revealed a typical single-dot Coulomb-blockade
behavior at gate voltages below 3 V, where two well-resolved (about 40mV
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voltage-spaced) current peaks were measured. Each peak corresponds to elec-
tronic transport between the source and drain reservoirs, assisted by a local-
ized state confined along the channel, associated to a single donor state [26].
At the temperature of 300 mK, transport is not thermally activated and it is
completely ruled by elastic resonant tunneling. The flash memory, therefore,
acts as a quantum dot, where conduction occurs through spatially localized
states and electrons can be Coulomb blocked by a finite charging energy. In
Fig. 11 the stability diagram of the first subthreshold peak is shown. Dif-
ferential conductance is plotted in a color scale and arbitrary units versus
gate and bias voltage, at 300 mK. Drain–source voltage VDS is varied from
−10 mV to 10mV, while the control-gate polarization is swept into a 100-mV
voltage interval. Conductance variations develop triangular sectors evidenced
by parallel black (continous) lines. Extra lines are attributed to excited states
(dashed-dot lines). Maximum values of differential conductance are evidenced
in white, while dark zones refer to minimum ones. In our experiment, the elec-
trochemical potential of only one of the reservoirs was changed. In particular,
the source was grounded, so the vertical axis of Fig. 11 corresponds to the
electrochemical potential of the drain, μD.

At zero bias, by tuning the gate voltage we found the first conduction
peak at 2.39V. Such a point corresponds to the alignment of the quantum-dot
energy level E0 with μD, when VDS = 0. For other control gate voltages our
dot is Coulomb blocked. For VDS �= 0, conduction occurs in a V-shaped region
as outlined in the (eVDS, ΔECG) plane, whose edges have slopes (white lines)
depending on the coupling capacitances between the dot and the external
leads [6]. The coupling factor γ is 0.12.

We studied the effect of radiation on the conductance of the device in
the absence of bias at different frequencies and for rf powers ranging from

Fig. 11. Stability diagram of
the first conductance peak. On
the horizontal axis the gate volt-
age is expressed in terms of
the barrier energy of the res-
onant state, E0, calculated on
the basis of the coupling factor
γ = dE0/dVCG [19]. Through-
out the text ΔECG = 0 meV cor-
responds to 2.7 V. Excited-state
lines (red) are also visible, at a
distance of approximately 3 meV
from the ground state
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Fig. 12. Source–drain
current dependence on
microwave field power.
As found by other au-
thors [14, 15, 20] dif-
ferent couplings at the
leads cause an asymmet-
ric shape. The maximum
currents follow a square-
root trend (inset)

−20 dBm to −6 dBm. In Fig. 12 a set of experimental IDS (VCG) character-
istics of the first conductance peak is shown. Measurements were performed
at a base temperature of 300mK. Assisted by the microwave field, current
flows even if no bias is applied. The shape of current oscillations depends on
the asymmetry of the coupling between source and drain reservoirs with the
microwave field. Current peaks increase both in amplitude and width as a
function of power Prf , while they do not significantly depend on frequency.
As in the cases discussed in the previous sections [20] the absolute power in
the sample region is unknown and may change by several orders of magnitude
as a function of frequency. Indeed, the electromagnetic environment of the
sample depends strongly on the impedence load of the end of the coaxial line
that terminates in the 3He pot. In the inset of Fig. 12 a plot of the maximum
peak current as a function of the microwave power is shown. Experimental
data are well fitted by the function c

√
Prf (continuous red line) as measured

also by Dovinos and Williams [20].
The same kind of experiment was performed when a static magnetic field

was applied parallel to the conduction channel and its intensity was varied
between 0T and 12T. In Fig. 13 the IDS(VCG) curves at rf powers ranging
from 0.16 to 2.5 mW are compared at 0 T and 12 T. In the high microwave
power regime (eVAC ≥ ΔE), i.e. Prf ≥ 0 dBm new tunnel channels, associ-
ated to excited states are accessible, even with no bias applied. At 12T we
can assume complete spin polarization of both electrons in the leads and in
the dot. In fact, at 300mK the thermal broadening kT corresponds to about
75μeV, that is, at 12T, kT � ΔEZeeman. For a g-factor of 2 ΔEZeeman is
equal to 1.375meV. At such intense magnetic field the Zeeman splitting is
comparable with the energy separation of the ground level E0 and the ex-
cited level E1 of the donor. Figure 13 shows two effects induced by strong
magnetic field. The first consists of the current suppression due to the squeez-
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Fig. 13. Source–drain
current dependence on
microwave field power
with and without a static
magnetic field

ing of the localized electron wavefunction (see for example the I–V curves
measured at rf powers below 0 dBm). The second one is the disappearance
of multiple peaks visible without the field and ascribed to different donor
excited states involved in tunneling. A spectroscopic quantitative analysis of
the donor energy spectrum that takes into account the nature of the dopant
site and the band structure of the gated silicon goes beyond the scope of
this review. We observe that the application of an rf field of sufficiently high
power may recover the tunneling current suppressed at 12T (see the I–V at
4 dBm) and finally emphasize that electron transport at 12T is fully spin po-
larized and that tunneling may occur only through Zeeman-resolved energy
levels according to the spin orientation.

6 Conclusions

In the present review we have presented and discussed data and theoretical
predictions for the photon-assisted tunneling of unpolarized and polarized
electrons in GaAs, Si:SiGe and Si/SiO2 quantum dots. The latter were ob-
tained by the localized energy levels of a donor placed along the channel of a
flash memory, in one of the edges of the sample, where the conductance occurs
(nanowires) [26]. Photon-assisted tunneling is observed whenever a microwave
field feeds a nanodevice where conduction occurs via elastic tunneling. Such
a phenomenon can be exploited for fundamental studies in solid-state physics
at the atomic scale, but it represents at the same time a problem for the de-
velopment of quantum information processing devices. It is particularly clear
that whenever single-spin manipulation is pursued, the photon-assisted cur-
rent parallel to the ordinary elastic spin-dependent tunneling can overcome



Photon-Assisted Tunneling in Quantum Dots 257

and screen the latter. A possible solution is given by single-photon guns, ca-
pable of providing a small number of photons per unit time. On the other
hand, such a mechanism can be an opportunity for technology, because of its
capability of adding new degrees-of-freedom to the system. Spin is involved
in the tunneling, as demonstrated by the experiments presented in Sect. 5.
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