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Preface
In 1988, Tsallis began to study a new form of entropy, called the Tsallis entropy, and 
in subsequent years, he developed the whole theory, which can be rightly referred to 
as the Tsallis entropy theory. This theory has since been applied to a wide spectrum 
of areas in physics and chemistry, and new topics applying this entropy are emerging 
each year. In the area of water engineering, the past few years have witnessed a range 
of applications of the Tsallis entropy. The literature shows the theory has enormous 
potential.

Currently, there seems to be no book on the Tsallis entropy for water engineering 
readership. Therefore, there exists a need for a book that deals with basic concepts 
of the Tsallis entropy theory and applications of these concepts to a range of water 
engineering problems. This book is an attempt to cater to this need.

The subject matter of the book is divided into 14 chapters organized in 4 sections. 
Section I, comprising two chapters, deals with preliminaries. Chapter 1 discusses the 
Tsallis entropy theory for both discrete and continuous variables. It then goes on to 
discuss the properties of the Tsallis entropy, partial Tsallis entropy, and constrained 
Tsallis entropy. The chapter is concluded with a discussion of generalized entropies. 
Frequency analysis constitutes the subject matter of Chapter 2. Beginning with a dis-
cussion of the procedure for deriving probability distributions, it goes on to present 
maximum entropy–based distributions with regular moments as constraints, the use 
of m-expectation, and choosing expectation value.

Section II consists of six chapters dealing with some aspects of hydraulics. 
 One-dimensional velocity distributions are discussed in Chapter 3, which presents 
velocity distributions based on different constraints or the specification of informa-
tion. It also discusses the relation between mean velocity and maximum velocity, 
simplification of the velocity distribution, and estimation of mean velocity. Chapter 4 
presents two-dimensional velocity distributions using the Chiu coordinate system 
and the generalized framework. It deals with different characteristics of the velocity 
distribution.

Chapter 5 discusses sediment concentration. Starting with a discussion of the 
methods for determining sediment concentration, it presents a step-by-step  procedure 
for the derivation of entropy-based suspended sediment concentration and the 
 characteristics of the derived distribution. Chapter 6 treats the subject of sediment 
discharge in three ways. First, it considers velocity as entropy based but not sediment 
concentration. The second considers sediment concentration as entropy-based but not 
entropy-based velocity. The third considers both velocity and sediment concentration 
as entropy-based. The sediment concentration in debris flow is presented in Chapter 7. 
It presents a step-by-step methodology for determining the debris flow concentration 
and concludes with the treatment of reparameterization and equilibrium debris flow 
concentration. Chapter 8 deals with the stage–discharge rating curve. It first discusses 
errors and randomness in rating curves and forms thereof. It then discusses the deriva-
tion of rating curves, reparameterization, relation between maximum discharge and 
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xvi Preface

drainage area, relation between mean discharge and drainage area, relation between 
entropy parameter and drainage area, and extension of rating curves.

Hydrology is the subject of Section III, which comprises four chapters. Chapter 9 
discusses precipitation variability and deals with intensity entropy, apportionment 
entropy, entropy scaling, hydrological zoning, and the assessment of water resources 
availability. Infiltration is discussed in Chapter 10, which presents the derivation of 
six infiltration equations, including the equations of Horton, Kostiakov, Philip, Green 
and Ampt, Overton, and Holtan. Chapter 11 is on soil moisture. Providing a short 
introduction to soil moisture profiles and their estimation, it presents the derivation 
of soil moisture profiles for wetting, drying, and mixed phases and the variation of 
soil moisture in time. Chapter 12 deals with flow duration curves. Discussing first 
the use and construction of flow duration curves, it presents a step-by-step procedure 
for deriving flow duration curves, reparameterization, mean flow and ratio of mean 
to maximum flow, prediction of flow duration curves for ungagged sites, forecasting 
of flow duration curve, and variation of entropy with time scale.

The concluding Section IV is on water resources engineering; it contains two 
chapters. Eco-index constitutes the subject matter of Chapter 13, containing indica-
tors of hydrologic alteration (IHA), probability distributions of IHA parameters, and 
computation of nonsatisfaction eco-level and eco-index. Chapter 14 discusses mea-
sures of redundancy for water distribution networks. Presenting the optimization of 
water distribution networks, it deals with reliability, the Tsallis entropy, redundancy 
measures, the development of redundancy measures under different conditions, and 
the relation between redundancy and reliability.

Vijay P. Singh
College Station, Texas

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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3

1 Introduction to Tsallis 
Entropy Theory

The concept of entropy originated in thermodynamics and has a history of over a 
century and half dating back to Clausius in 1850. In 1870, Boltzmann developed 
a statistical definition of entropy and hence connected it to statistical mechanics. The 
concept of entropy was further advanced by Gibbs in thermodynamics and by von 
Neumann in quantum mechanics. Outside of the world of physics, it is Shannon who 
developed, in the late 1940s, the mathematical foundation of entropy and connected 
it to information. The informational entropy is now frequently called Shannon 
entropy or sometimes called Boltzmann–Gibbs–Shannon entropy. Kullback and 
Leibler (1951) developed the principle of minimum cross entropy (POMCE) and 
in the late 1950s Jaynes (1957a,b) developed the principle of maximum entropy 
(POME). Koutsoyiannis (2013, 2014) has given an excellent historical perspective 
on entropy. The Shannon entropy, POME, and POMCE constitute the entropy theory 
that has witnessed a wide spectrum of applications in virtually every field of science 
and engineering and social and economic sciences, and each year new applications 
continue to be reported (Singh, 2013, 2014, 2015). A review of entropy applications 
in hydrological and earth sciences is given in Singh (1997, 2010, 2011).

In 1988, Tsallis postulated a generalization of the Boltzmann–Gibbs–Shannon 
entropy, now popularly called the Tsallis entropy, and discussed its mathematical 
properties. The definition and properties of the Tsallis entropy constitute the Tsallis 
entropy theory. In physics, the Tsallis entropy has received tremendous attention 
(Tsallis, 2001). Recently, this entropy has been applied to a number of geophysi-
cal, hydrological, and hydraulic processes. Because of its interesting properties, it 
is expected to receive increasing attention in water engineering in the years ahead. 
This chapter introduces the Tsallis entropy and presents its properties that are of 
particular interest in environmental and water engineering.

1.1 DEFINITION OF TSALLIS ENTROPY

First, it is useful to define the Boltzmann–Gibbs–Shannon entropy (henceforth, 
 simply Shannon entropy). For a discrete random variable X = {xi, i = 1, 2, …, N} that 
has a probability distribution P = {pi, i = 1, 2, …, N} [pi is the probability of X = xi], 
the Shannon entropy Hs can be defined as

 

H k p ps i i

i

N

= -
=

å log
1

 (1.1)
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4 Introduction to Tsallis Entropy Theory in Water Engineering

where k is a conventional positive constant and is often taken as unity and log is taken 
to the base of 2, e or 10, and accordingly, the unit of entropy becomes bit, nat, or docit.

Scaling pi to pi
m , where m is any real number, Tsallis (1988) postulated

 

H k
p

m

k

m
p pm

i
m

i

N

i i
m

i

N

=
-

-
=

-
-éë ùû

=

=

å å
1

1 1
1

1

 (1.2)

where
Hm is the Tsallis entropy
k is often taken as unity

For m → 1, the Tsallis entropy reduces to the Shannon entropy. Quantity m is often 
referred to as nonextensivity index or Tsallis entropy index or simply entropy index. 
Entropy index m characterizes the degree of nonlinearity and is related to the micro-
scopic dynamics of the system. The value of m can be positive or negative. The Tsallis 
entropy is often referred to as nonextensive statistic, m-statistic, or Tsallis statistic. 
Tsallis (2002) noted that superextensivity, extensivity, and subextensivity occur when 
m < 1, m = 1, or m > 1, respectively. For m ≥ 0, m < 1 corresponds to the rare events and 
m > 1 corresponds to frequent events (Tsallis, 1998; Niven, 2004) pointing to the stretch-
ing or compressing of the entropy curve to lower or higher maximum entropy positions.

From an informational perspective, the information gain from the occurrence of 
any event i is a power function and can be expressed as

 

DI
m

p pi i
m

i

i

N

=
-

-( ) =-

=
å1

1
1 11

1

,  (1.3)

where
ΔIi is the gain in information from an event i that occurs with probability pi

m is any real number
N is the number of events

Equation 1.3 is a generalization of the Shannon gain function describing the infor-
mation from an event expressed in logarithmic terms. For N events, the average or 
expected gain function is the weighted average of Equation 1.3

 

H E I p
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 (1.4)

where Hm is designated as the Tsallis entropy or m-entropy.
In a similar manner, the information gain for the Shannon entropy, ΔHsi, can be 

written as

 DH psi i= - log  (1.5)
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5Introduction to Tsallis Entropy Theory

Therefore,

 

H H p ps si

i

N

i i

i

N

= = -
= =

å å
1 1

log  (1.6)

If random variable X is nonnegative continuous with a probability density function 
(PDF), f(x), then the Shannon entropy can be written as

 

H X H f k f x f x dxs s( ) ( ) ( ) log ( )= = -
¥

ò
0

 (1.7)

Likewise, the Tsallis entropy can be expressed (Koutsoyiannis, 2005a,b,c) as

 

H X H f
k

m
f x f x dx

k

m
f xm m

m m( ) ( ) { ( ) [ ( )] } [ ( )]= =
-

- =
-

-
ì
í
ï

îï
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ò ò1 1
1

0 0

ýý
ï

þï
dx  (1.8)

Frequently, k is taken as 1. From now onward, subscript m will be deleted and Hm 
will be simply denoted by H.

A plot of H/k versus p for m = −1, −0.5, 0, 0.5, 1, and 2 is given in Figure 1.1. For 
m < 0, the Tsallis entropy is concave and for m > 0 it becomes convex. For m = 0, 
H = k(N − 1) for all pi. For m = 1, it converges to the Shannon entropy. For all cases, 
the Tsallis entropy decreases as m increases.

0
0

0.2

0.4

0.6

0.8

1H
/k

1.2

1.4

1.6

1.8

2

0.2
p

m = –1
m = –0.5
m = 0
m = 0.5
m = 1
m = 2

0.4 0.6 0.8 1

FIGURE 1.1 Plot of H/k for N = 2 for m = −1, −0.5, 0, 0.5, 1, and 2.
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6 Introduction to Tsallis Entropy Theory in Water Engineering

Example 1.1

Plot the gain function defined by the Tsallis entropy for different values of 
 probability: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Take k as 1, and m as 
−1, 0, 1, and 2. What do you conclude from this plot?

Solution

Using Equation 1.3 the gain function is computed, as shown in Table 1.1. Figure 1.2 
shows the gain function for m = −1, 0, m = 1, and 2. It is seen from the figure that 
the gain in information decreases with the increase in the probability value regard-
less of the value of m. For increasing value of m, the gain diminishes for the same 

TABLE 1.1
Computation of Gain Function

p

∆i 

m = −1 m = 0 m = 1 m = 2

0.1 49.50 9.00 2.30 0.90

0.2 12.00 4.00 1.61 0.80

0.3 5.06 2.33 1.20 0.70

0.4 2.63 1.50 0.92 0.60

0.5 1.50 1.00 0.69 0.50

0.6 0.89 0.67 0.51 0.40

0.7 0.52 0.43 0.36 0.30

0.8 0.28 0.25 0.22 0.20

0.9 0.12 0.11 0.11 0.10

1 0.00 0.00 0.00 0.00

0
0

0.2

0.4

0.6

0.8

1

1.2

ΔI

1.4

1.6

1.8

2

0.2 0.4 0.6 0.8 1

m= –1
m= 0
m= 1
m= 2

p

FIGURE 1.2 Gain function for m = −1, 0, 1, and 2. 
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7Introduction to Tsallis Entropy Theory

probability value. For m = 1, the Tsallis entropy converges to the Shannon entropy. 
The two gain functions are shown in Figure 1.3. The Tsallis gain function has a 
much longer tail showing very low values of gain as the probability increases.

Example 1.2

Consider a two-state variable taking on values x1 and x2. Assume that p(x1) = 0.0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Note that p(x2) = 1 − p(x1). Compute 
and plot the Tsallis entropy. Take m as 1.5 and 2.0. What do you conclude from 
the plot?

Solution

The Tsallis entropy is given by Equation 1.2. Let a = p(x1). For any given value of p, 
one can write the Tsallis entropies H1 and H2, respectively, for x1 and x2 as

 H
k

m
a am

1
1

1
1=

-
- -( )

 H
k

m
a a m

2
1

1
1 1 1=

-
- - - -( )[ ( ) ]

Then, the Tsallis entropy is

 H H H= +1 2

where each component is a weighted gain function. Thus, the Tsallis entropy is com-
puted as shown in Table 1.2. The computed Tsallis entropy for k = 1 and m = 1.5 and 
2 is shown in Figure 1.4. The Tsallis entropy plot shows a little skewness from the 
Shannon entropy and also predicts the maximum entropy at p(x) = 0.5. It also can be 
observed that the Tsallis entropy value decreases with an increase in the value of m.

0.2 0.4 0.6 0.8

Tsallis entropy
Shannon entropy

p
10

0

ΔI

1

2

3

4

5

6

8

9

10

7

FIGURE 1.3 Comparison of the Shannon and Tsallis gain functions. 
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8 Introduction to Tsallis Entropy Theory in Water Engineering

1.2  DERIVATION OF SHANNON ENTROPY 
FROM TSALLIS ENTROPY

It may be useful to show that the Tsallis entropy is a generalization of the Shannon 
entropy. One can express

 p p m pi
m

i i= -exp[( ) ln ]1  (1.9)

0
0

0.1

0.2

0.3

0.5

0.6

0.7

H

0.4

0.2 0.4 0.6 0.8 1

m = 1.5
m = 2

p

FIGURE 1.4 Tsallis entropy for k = 1 and m = 1.5, 2.0.

TABLE 1.2
Computation of the Tsallis Entropy for k = 1, m = 1.5, and m = 2

p(x) 1 − p(x) 

m = 1.5 m = 2.0 

H1 H2 H = H1 + H2 H1 H2 H = H1 + H2

0 1 0 0 0 0 0 0

0.1 0.9 0.137 0.092 0.229 0.090 0.090 0.180

0.2 0.8 0.221 0.169 0.390 0.160 0.160 0.320

0.3 0.7 0.271 0.229 0.500 0.210 0.210 0.420

0.4 0.6 0.294 0.270 0.565 0.240 0.240 0.480

0.5 0.5 0.293 0.293 0.586 0.250 0.250 0.500

0.6 0.4 0.270 0.294 0.565 0.240 0.240 0.480

0.7 0.3 0.229 0.271 0.500 0.210 0.210 0.420

0.8 0.2 0.169 0.221 0.390 0.160 0.160 0.320

0.9 0.1 0.092 0.137 0.229 0.090 0.090 0.180

1 0 0 0 0 0 0 0
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9Introduction to Tsallis Entropy Theory

The Tsallis entropy given by Equation 1.2 can be written as

 

H
k

m
p m pi i

i

N

=
-

- -
ì
í
ï

îï

ü
ý
ï

þï=
å1

1 1
1

exp[( ) ln ]  (1.10)

It must now be shown that when m tends to unity

 
H k

p m p

mm

i i
i

N

=
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=å
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exp[( ) ln ]

1

1
1 1

1
 (1.11)

leads to the Shannon entropy given by Equation 1.1.
Now, consider L’Hospital’s rule for the division of two arbitrary functions f(a) 

and g(a):

 
lim

( )
( )

, lim ( ) , lim ( )
a b a b a b

f a

g a
g a g a

® ® ®
= ¥ = ¥if or or0 0  (1.12)

where b is some value and may even approach infinity. For example,

 

lim ( ) lim
m m
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i

N

i

i

N
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= -
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è
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ø
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1 1

1 1 0  (1.13)

 
lim ( ) lim( )
m m

g m m
® ®

= - =
1 1

1 0  (1.14)

Now

 

f m p m pi i

i

N

( ) exp[( ) ln ]= - -
=

å1 1
1

 (1.15)

or

 

¢ = - - = -
= =

å åf m p p m p p pi i i

i

N

i
m

i

i

N

( ) ln exp[( ) ln ] ln1
1 1

 (1.16)

 g m m( ) = -1  (1.17)

 ¢ =g m( ) 1  (1.18)
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10 Introduction to Tsallis Entropy Theory in Water Engineering

Therefore, taking the limit on Equation 1.11,

 

lim lim
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( )
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m m m m

i
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i
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p p p plim ln ln  (1.19)

which is the Shannon entropy.

1.3 PROPERTIES OF TSALLIS ENTROPY

Following Tsallis (1988, 2004), some interesting and useful properties of the Tsallis 
entropy are briefly summarized here.

1.3.1 m-Entropy

Analogous to surprise or unexpectedness defined in the Shannon entropy, the 
m- surprise or m-unexpectedness is defined as logm(1/pi). Hence, the m-entropy can 
be defined as

 
H E

p
m

i

=
é

ë
ê

ù

û
úlog

1
 (1.20)

which coincides with the Tsallis entropy:

 

H E
p

m
i
m

= -
-

é

ë
ê

ù

û
ú
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 (1.21)

in which E is the expectation. Recalling the definition

 

lim log
n

nw

n
w

®

-é

ë
ê

ù

û
ú =

0

1
 (1.22)

where
n is any number
w is any variable

Then, Equation 1.21 is the same as Equation 1.20. For small values of n, wn will 
behave as log w. A plot of function (wn − 1)/n is shown in Figure 1.5 that shows its 
approximation by the logarithmic function.
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11Introduction to Tsallis Entropy Theory

1.3.2 MaxiMuM ValuE

Equation 1.2 attains an extreme value for all values of m when all pi are equal, that is, 
pi = 1/N. For m > 0, it attains a maximum value and for m < 0, it attains a minimum 
value. The extremum of H becomes

 
H k

N

m

m

= -
-

-1 1
1

 (1.23)

If m = 1, applying L’Hopsital’s rule to Equation 1.23 or 1.22, one gets

 H k N= ln  (1.24)

which is the Boltzmann entropy, HB. Plotting H/k versus N using Equation 1.23, as 
shown in Figure 1.6, it is seen that H diverges for m < 1. The Tsallis entropy, given 

1
0
5

10
15
20
25
30
35
40
45
50

m = –1
m = –0.5
m = 0
m = 0.5
m = 1
m = 2

H
/k

3 5 7
N

9

FIGURE 1.6 Plot of H/k versus N for m = −1, −0.5, 0, 0.5, 1, 2 when all pi are equal (from 
Equation 1.18). 

0
0
1
2
3
4
5
6
7
8
9

10

log(w)

n = 3
n = 2
n = 1
n = 0.5
n = 0

(w
n –

1)
/n

2 4 6 8
w

10

FIGURE 1.5 Plot of function (wn − 1)/n versus w for various values of n.
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12 Introduction to Tsallis Entropy Theory in Water Engineering

by Equation 1.23, diverges if m < 1, is maximum for m > 1 and is minimum for 
m < 1, and is k(N − 1) for all equal pi. Interestingly, for any value of m, the entropy 
extreme can be expressed in terms of the entropy for m = 1 as follows. For m = 1, 
Equation 1.24 can be written as N = exp(H/k). Substituting it into Equation 1.23, 
the result is

 

H

k

m H k

m
m B= - -

-
exp[( ) ]1 1

1
/

 (1.25)

1.3.3 ConCaVity

Consider two probability distributions P = {pi, i = 1, 2, …, N} and Q = {qi, i = 1, 2, …, N} 
corresponding to a unique set of N possibilities. Then, an intermediate probability 
distribution G = {gi, i = 1, 2, …, N} can be defined for a real a such that 0 < a < 1 as

 g ap a qi i i= + -( )1  (1.26)

for all i. It can be shown that for m > 0,

 H G aH P a H Q[ ] [ ] ( ) [ ]³ + -1   (1.27)

and for m < 0,

 H G aH P a H Q[ ] [ ] ( ) [ ]£ + -1   (1.28)

Functional H(G) ≥ 0 if m > 0 and is hence concave; H(G) = 0 if m = 0; and H(G) ≤ 0 
if m < 0 and is, therefore, convex. These inequalities, given by Equations 1.27 and 
1.28, are true for m ≠ 0 and pi = qi, ∀ i.

Example 1.3

Consider N = 3, m = 3, and P = {0.2,0.4,0.4} and G = {0.1, 0.3, 0.6} and a = 0.3. 
Compute H(P) and H(G), and then show if Equation 1.27 holds. If m = −0.5, then 
show if Equation 1.28 holds.

Solution

 H E I p
m

p
m

p pm i i i
m

i

N

i i
m

i

N

= =
-

-( )é
ëê

ù
ûú

=
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-éë ùû
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=

-

=
å[ ]D

1
1

1
1

1
11

1

1

1
åå

Given a = 0.3, from Equation 1.26, Q can be computed as

 q
g ap

a
i

i i=
-
-( )1
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q1

0 1 0 3 0 2
1 0 3

0 06=
- ´

-
=

. . .
.

.

 
q2

0 3 0 3 0 4
1 0 3

0 26=
- ´

-
=

. . .
.

.

 
q3

0 6 0 3 0 4
1 0 3

0 68=
- ´

-
=

. . .
.

.

When m = 3,

 H P( ) [( . . ) ( . . ) ( . . )] .=
-

- + - + - =
1

3 1
0 2 0 2 0 4 0 4 0 4 0 4 0 4323 3 3

 H Q( ) [( . . ) ( . . ) ( . . )] .=
-

- + - + - =
1

3 1
0 06 0 06 0 26 0 26 0 68 0 68 0 3303 3

 H G( ) [( . . ) ( . . ) ( . . )] .=
-

- + - + - =
1

3 1
0 1 0 1 0 3 0 3 0 6 0 6 0 3783 3 3

 H G aH P a H Q[ ] [ ] ( ) [ ] . . ( . ) . .³ + - = ´ + - ´ =1 0 3 0 432 1 0 3 0 330 0 361

Equation 1.27 holds.

When m = −0.5

 H P( )
.

[( . . ) ( . . ) ( . . )] .. . .=
- -

- + - + - =- - -1
0 5 1

0 2 0 2 0 4 0 4 0 4 0 4 20 5 0 5 0 5 9932

 H Q( )
.

[( . . ) ( . . ) ( . .. . .=
- -

- + - + -- - -1
0 5 1

0 06 0 06 0 26 0 26 0 68 0 680 5 0 5 0 55 4 242)] .=

 H G( )
.

[( . . ) ( . . ) ( . . )] .. . .=
- -

- + - + - =- - -1
0 5 1

0 1 0 1 0 3 0 3 0 6 0 6 30 5 0 5 0 5 5519

 H G aH P a H Q[ ] [ ] ( ) [ ] . . ( . ) . .£ + - = ´ + - =1 0 3 2 932 1 0 3 4 242 3 849

Equation 1.28 holds.

1.3.4 additiVity

Let there be two independent systems A and B with ensembles of configurational 
possibilities EA = {1, 2, …, N} with probability distribution P p i NA

i
A= ={ , , , , }1 2 …  

and configurational possibilities EB = {1, 2, …, M} with probability distribution 
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14 Introduction to Tsallis Entropy Theory in Water Engineering

P p j MB
j
B= ={ , , , , }.1 2 …  Then, one needs to deal with the union of two systems 

A ∪ B and their corresponding ensembles of possibilities EA ∪ B = {(1,1), (1,2), …, 

(i, j), …, (N, M)}. If pij
A BÈ  represents the corresponding probabilities then by virtue 

of  indepen dence the joint probability will be equal to the product of individual 

 probabilities, that is p p pij
A B

i
A

j
BÈ =  or pij(A + B) = pi(A)pj(B) for all i and j. Hence, 
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 (1.29)

Taking the logarithms of Equation 1.29, one obtains
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Each term of Equation 1.30 is now considered. The left side of Equation 1.30 can be 
written in terms of the Tsallis entropy as 
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(1.31)

Similarly, terms on the right side of Equation 1.31 can be written as
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log log
( )

( )
p

m p

m
j
B m

j

M j
B m

i

N

( )
é

ë
ê
ê

ù

û
ú
ú

= -
- - ( )é

ëê
ù
ûú

-

ì

í
ï

å
å =

1
1 1

1
1ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï

= - -log[ ( ) ]1 1m H B  (1.33)

Equation 1.31 is equal to the sum of Equations 1.32 and 1.33:

 log[ ( ) ] log[ ( ) ] log[ ( ) ]1 1 1 1 1 1- - = - - + - -Èm H m H m HA B A B  (1.34)
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15Introduction to Tsallis Entropy Theory

Equation 1.34 can be recast as

 1 1 1 1 1 1- - = - - - -È( ) [ ( ) ][ ( ) ]m H m H m HA B A B  (1.35)

Equation 1.35 can be simplified as

 1 1 1 1 1 1 2- - = - - - - + -È( ) [ ( ) ( ) ( ) ]m H m H m H m H HA B A B A B  (1.36)

Equation 1.36 reduces to

 H H H m H HA B A B A BÈ = + - -[( ) ]1  (1.37)

Equation 1.37 is often expressed as 

 H A B H A H B m H A H B( ) ( ) ( ) ( ) ( ) ( )+ = + + -1  (1.38)

Equation 1.38 can also be expressed as 

 

log[ ( ) ( )] log[ ( ) ( )] log[ ( ) ( )]1 1
1

1 1
1

1 1+ - +
-

= + -
-

+ + -m H A B

m

m H A

m

m H B

11- m
 (1.39)

 

In the limit as m → 1, Equation 1.38 can be written as the sum of marginal entropies

 H H H H A B H A H BA B A BÈ = + = +or ( , ) ( ) ( )  (1.40)

Equations 1.37 through 1.39 describe the additivity property. This property can be 
extended to any number of systems. In all cases, H ≥ 0 (nonnegativity property). 
If systems A and B are correlated, then 
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for all (i, j). One may define mutual information or transinformation S as
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Considering Equation 1.42, T(pij) = 0 for all m, if X and Y are independent, and 
Equation 1.42 will reduce to Equation 1.38. For correlated X and Y, T(pij) < 0 for 
m = 1, and T(pij) = 0 for m = 0. For arbitrary values of m, it will be sensitive to pij; it 
can take on negative or positive values for both m < 1 and m > 1 with no particular 
regularity and can exhibit more than one extremum. 
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16 Introduction to Tsallis Entropy Theory in Water Engineering

Example 1.4

Consider a system A that has two states with probabilities pA
1 0 4= .  and pA

2 0 6= . .

Consider another system designated as B with two states having probabilities 
pB

1 0 3= .  and pB
1 0 7= . . Both systems are independent. Compute the joint Tsallis 

entropy of the two systems. Take m = 3. Also compute the Shannon entropy.

Solution

For system A, p pA A
1 2,  and p pA A

1 2 1 0+ = . . Therefore, 

 HA =
-

- + - =
1

3 1
0 4 0 4 0 6 0 6 0 363 3[( . . ) ( . . )] .

 HB =
-

- + - =
1

3 1
0 3 0 3 0 7 0 7 0 3153 3[( . . ) ( . . )] .

 H A B( ) . . ( ) . . .+ = + - - ´ ´ =0 36 0 315 3 1 0 36 0 315 0 448

The joint Shannon entropy can be computed as follows:

 HA = - + =[ . log . . log . ] .0 4 0 4 0 6 0 6 0 9712 2

 HB = - + =[ . log . . log . ] .0 3 0 3 0 7 0 7 0 8812 2

 H A B( ) . . .+ = + =0 971 0 881 1 852

In this case, the Shannon entropy is much larger than the Tsallis entropy because 
m is much greater than unity.

1.3.5 CoMposibility

The entropy H(A + B) of a system comprising two subsystems A and B can be com-
puted from the entropies of subsystems, H(A) and H(B), and the entropy index m.

1.3.6 intEraCting subsystEMs

Consider a set of N possibilities arbitrarily separated into two subsystems with N1 

and N2 possibilities, where N = N1 + N2. Defining P pN i
i

N

1

1

1
=

=å  and P pN j
j

N

2

2

1
=

=å ,
 

P P pN N k
k

N

1 2 1
1

+ = =
=å . It can be shown that 

 H P H P P P H p P P H p PN N N N
m

i N N
m

j N( ) ( , ) ({ }) ({ })= + +1 2 1 1 2 2| |  (1.43)
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17Introduction to Tsallis Entropy Theory

where { }p Pi N| 1
 and { }p Pj N| 2

 are the conditional probabilities. Note that p pi
m

i>  for 

m < 1 and p pi
m

i<  for m > 1. Hence, m < 1 corresponds to rare events and m > 1 

frequent events (Tsallis, 2001). This property can be extended to any number R of 

interacting subsystems: N N j
j

R
=

=å 1
. Then, defining w p j Nj i

i

N

j

j

= =
=å 1

1 2, , , ,… , 

wj
j

N
=

=å 1
1

, Equation 1.43 can be generalized as

 

H p H w w H p wi j j
m

i j

j

R

({ }) ({ }) ({ })= +
=

å |
1

 (1.44)

Here, pj = wj.

Example 1.5

Consider a set of five possibilities, pi = {0.1, 0.15, 0.2, 0.25, 0.3}, separated into 
two subsets N1 = 3, pN1 0 1 0 15 0 2= { . , . , . }, and N2 = 2, pN2 0 25 0 3= { . , . }. Compute 
the Tsallis entropy for this system. Then, use Equation 1.43 to compute the Tsallis 
entropy and show that both ways the entropy is the same. 

Solution

First, the Tsallis entropy can be computed as

 

H PN( ) [( . . ) ( . . ) ( . . ) ( . . )=
-

- + - + - + -
1

3 1
0 1 0 1 0 15 0 15 0 2 0 2 0 25 0 253 3 3 3 ++ -

=

( . . )]

.

0 4 0 4

0 473

3

or consider as two subsystems as

 
P pN i

i

N

1

1

1

0 1 0 15 0 2 0 45= = + + =
=

å . . . .

 

P pN j

j

N

2

2

1

0 25 0 3 0 55= = + =
=

å . . .

 

H p Pi N({ })
.

.
.

.
.

.
.

| 1

1
3 1

0 1
0 45

0 1
0 45

0 1
0 45

0 1
3

=
-

- æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

+ -
00 45

0 1
0 45

0 1
0 45

3 3

.
.

.
.

.
æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

+ - æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ïï

þï

= 0 432.
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H p Pi N({ })
.
.

.

.
.

.
| 2

1
3 1

0 25
0 55

0 25
0 55

0 3
0 55

0
3

=
-

- æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

+ -
..

.
.

3
0 55

0 372
3

æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ï

þï
=

Thus, using Equation 1.43,

 

H P H P P P H p P P H p PN N N N
m

i N N
m

j N( ) ( , ) ({ }) ({ })

. .

= + +

= +

1 2 1 1 2 2

0 371 0 4

| |

55 0 432 0 55 0 372 0 4733 3´ + ´ =. . . .

It shows that the entropy computed from Equation 1.43 is the same as given by 
the definition.

1.3.7 othEr FEaturEs

Many complex systems exhibit a power like behavior and they may be in station-
ary but nonequilibrium states. This may often be the case for geomorphological 
systems. The Tsallis statistics (Tsallis, 2004) is particularly useful for describing 
such systems. This statistics exhibits three interesting features (Ferri et al., 2010). 
First, the PDFs, based on the Tsallis entropy, that describe metastable or stationary 
systems are proportional to what is called m-exponential defined as

 exp ( ) [ ( ) ] /( )
m

mx m x- = - - -a a1 1 1 1  (1.45)

in which m and α are constants. Figure 1.7 shows a plot of Equation 1.45 for different 
values of α and m. In the limit m → 1, m-exponential becomes the ordinary exponen-
tial, that is exp1(x) = exp(x). Further, if m → 1 and x = y2 then expm(−αx) becomes an 
m-Gaussian. 

The inverse of m-exponential is referred to as m-logarithm defined as

 
ln ( ) , ln ( ) ln( ), ln [exp ( )] exp[ln ( )]m

m

m m mx
x

m
x x x x= -

-
= = =

-1

1
1

1
1  (1.46)

Stationary systems are characterized by nonextensivity index m = mstat. Figure 1.8 
shows a plot of Equation 1.46 for different values of m.

Second, stationary states show m-exponential sensitivity to initial conditions or 
weak chaos with a parameter m = msens. This means that small differences between 
adjacent states grow in an m-exponential fashion. Third, microscopic variables 
decrease m-exponentially with a parameter m = mrel.

In this manner, a stationary or metastable system can be characterized by a triplet 
of m values, often referred to as the Tsallis m-triplet, that is (mstat, msens, mrel) ≠ (1, 1, 1), 
in which mstat > 1, msens < 1, and mrel < 1 (Ferri et al., 2010). Ausloos and Petroni 
(2007) and Petroni and Ausloos (2007) reported the values of mstat for daily variation 
of the El Nino Southern Oscillation (ENSO) index.
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FIGURE 1.7 m-Exponential for various m values with (a) a = −1 and (b) a = 1.
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1.4 MODIFICATION OF TSALLIS ENTROPY

Yamano (2001a) provided a modification of the Tsallis entropy. It may be worth 
recalling that the Shannon entropy function is uniquely determined not because 
of the definition of the mean value of information but because of the additivity of 
the uncertainty of information that the source contains. Considering the amount of 
information as the m-logarithmic function of probability

 I p p xm m( ) ln ( )= -  (1.47) 

where 

 
ln ( )

( ( ) ) ( )
m

m m

p x
p x

m

p x

m
= -

-
= -

-

- -1 11
1

1
1

 (1.48)

Function Im(p) is a monotonically decreasing function and so is –ln p. The unit of 
measurement in this case is nat, not bit. In the limit, as m tends to 1, the information 
content becomes –ln p.

Taking the normalized m-average (or escort average) of the information content 
or entropy, one obtains

 

-
=

-

-
=

=

=

=

å
å

åp x p x

p x

p x

m p x

m
i m i

i

N

m
i

i

N

m
i

i

N

m
i

i

( ) ln ( )

( )

( )

( ) ( )

1

1

1
1

1
11

N mH X

å
= ( )  (1.49)

 

which is the modified form of the Tsallis entropy and is obtained by dividing the 

Tsallis entropy by factor p xm
i

i

N
( ).

=å 1

Example 1.6

Let N = 3 and p(xi) = {0.2, 0.3, 0.5}. Compute the m-average entropy and ordinary 
entropy.

Solution

Let m = 3, the m-average entropy is computed as

 H Xm( )
( . . . )

( )( . . . )
.=

- + +
- + +

=
1 0 2 0 3 0 5
3 1 0 2 0 3 0 5

2 625
3 3 3

3 3 3

and the ordinary entropy is

 
H X( )

( )
[( . . ) ( . . ) ( . . )] .=

-
- + - + - =

1
3 1

0 2 0 2 0 3 0 3 0 5 0 5 0 423 3 3
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where the factor

 
p x

H X
H X

m
i

i

N

m

( ) ( . . . ) .
( )
( )

=
å = + + = =

1

3 3 30 2 0 3 0 5 0 16

Yamano (2001b) discussed the properties of the modified Tsallis entropy, which are 
briefly presented in the following. For two random variables X and Y, their joint 
entropy can be expressed as

 

H X Y
p x y

m p x y
m

m

x y

m

x y

( , )
( , )

( ) ( , )

,

,

=
-

-

å
å

1

1
 (1.50)

and a nonadditive conditional entropy Hm(Y|x) can be written as

 

( ( ) / [ ( ) ( )])

( )
[ ( ) ( )]

p x m H Y x

p x
m H Y X

m
i m

i

N

m
i

i

N m

1 1
1 11

1

- -
= + -=

=

å
å

|
| --1  (1.51)

The mutual information Tm(Y; X) can now be defined in the usual way as common 
information between X and Y, which is equal to the reduction in uncertainty in one 
variable due to the knowledge of another variable:

 
T Y X H Y H Y X

H X H Y H X Y m H X H Y
m m m

m m m m m( ; ) ( ) ( )
( ) ( ) ( , ) ( ) ( ) ( )= - = + - + -

|
1

1++ -( ) ( )m H Xm1 
(1.52)

This will converge to the usual mutual information or transinformation in the 
 additive limit m tending to 1. Following Yamano (2001b), the following relations 
hold for X, Y, and Z random variables:

 1. H X Y H X H Y X m H X H Y Xm m m m m( ; ) ( ) ( ) ( ) ( ) ( )= + + -| |1  (1.53)

 2. H X X X m H X X H X X Xm n m i m i i

i

n

( , , , ) [ ( ) ( , , )] ( , , )1 2 1 1 1 1

1

1 1… … …= + - - -

=
å |  (1.54)

 3. H X X X m H X X H Xm n m i m i

i

n

( , , , ) [ ( ) ( , , )] ( )1 2 1 1

1

1 1… …£ + - -

=
å  (1.55)

 4. T X Y H X m H Y H X Ym m m m( ; ) ( ) [ ( ) ( ) ( )= - + -1 1 ] |  (1.56)

  The mutual information becomes symmetric in X and Y:

 T X Y T Y X H X H Y H X Ym m m m m( , ) ( , ) ( ) ( ) ( , )= = + -  (1.57)
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 5. [ ( ) ( )] ( )

( , ) ( , ) ( ){ ( ) ( ,

1 1

1

+ -

= - + -

m H X H Y X

H Y Z X H Z Y X m H X H Y

m m

m m m m

|

| | ZZ X H X Y H Z Y X Zm m| |) ( , ) ( , ) }-
 (1.58)

  It is seen that mutual information becomes symmetric in X and Y. In the limit 
m tending to 1, these relations reduce to the ones satisfied by the Shannon 
entropy.

 6. The Kullback–Leibler (KL) cross entropy between two distributions p(x) 
and q(x) can be written in a Tsallis entropy sense as 

 

D p x q x
q x q x

q x

p x p x
m

m
i m i

i

N

m
i

i

N

i m i
[ ( ), ( )]

( ) ln ( )

( )

( ) ln ( )
= -=

=

å
å
1

1

ii

N

m
i

i

N
p x

=

=

å
å

1

1
( )

 (1.59)

  The KL cross entropy satisfies

 
D p x q x

m

m
m[ ( ), ( )]

( )

( )

³ >
< <

ì
í
î

0 0

0
 (1.60)

  and equals 0 if p(x) = q(x).
 7. The generalized mutual information can be defined in terms of the general-

ized KL cross entropy as

 

T X Y D P x y P x P y

m p x y p x p y p x y

m m( , ) [ ( , ) ( ) ( )]

( ) ( , )( ( ) ( ) / ( ,

=

=
- -

|

/1 1 1 )))

( , )

,

,

x y

m

m

x y
p x y

å
å

-é
ëê

ù
ûú

1

 (1.61)

1.5 MAXIMIZATION

Consider a case where H given by Equation 1.2 is to be maximized subject to the 
following constraints:

 

Pi

i

N

=
=

å 1
1

 (1.62)

and

 

p x xi i

i

N

=
å =

1

 (1.63)
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where {xi} and x  are real numbers. Following the method of the Lagrange  multipliers, 

the Lagrange function can be defined as

 

L H p p x xi

i

N

i i

i

N

= + -
é

ë
ê
ê

ù

û
ú
ú

+ -
é

ë
ê
ê

ù

û
ú
ú= =

å ål l0

1

1

1

1  (1.64)

where λ0 and λ1 are the Lagrange multipliers. Following Tsallis (1988), Equation 1.64 
can be recast as

 

L H p m p x m xi i i

i

N

i

N

= + + - - + -
==

åål l l l l l0 0 1

11

0 0 11 1( ) [ ( ) ]  (1.65)

It may be noted that the term within brackets on the right side of Equation 1.65 
does not influence the maximization of entropy. Therefore, for entropy maximizing 
Equation 1.65 can simply be written as

 

L H p m p xi i i

i

N

i

N

= + + -
==

åål l l0 0 1

11

1( )  (1.66)

Differentiating L in Equation 1.66 with respect to pi and equating to zero for all i, 
one obtains

 
p

m x

Z
i

i
m

= - - -[ ( ) ] /( )1 11
1 1l

 (1.67)

where Z is the partition function defined as 

 

Z m xi
m

i

N

= - - -

=
å[ ( ) ] /( )1 11

1 1

1

l  (1.68)

If m tends to one, Equation 1.67 reduces

 
p

Z
xi i= -1

1exp( )l  (1.69)

in which

 

Z xi

i

N

= -
=

åexp( )l1

1

 (1.70)
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Equation 1.67 expresses a power law distribution (Tsallis et al., 1998; Evans et al., 
2000). This suggests that one way to obtain a power distribution is to extremize the 

Tsallis entropy with the constraint: p x xi i
m m

i

N
=

=å 1
, instead of x . This distribution 

is plotted in Figure 1.9 for m = 0, 1, 1.5, 2, 3; the x-axis is taken as λ1xi and the y-axis 
is taken as Zpi. For m = 1, this leads to an exponential distribution. For m > 1, it shows 
a cutoff at λ1xi = 1/(m − 1), where the slope is 0 for m < 2, −1 for m = 2, and −∞ for 
m > 2 and diverges for λ1xi tending to −∞. For m < 1, the distribution diverges at 
λ1xi  = −1/(1 − m) and vanishes when λ1xi tends to +∞. 

1.6 PARTIAL TSALLIS ENTROPY

Let Hi denote the Tsallis entropy for the ith system state whose probability is pi. 
Then, the Tsallis entropy for the system can be expressed as

 

H H H p H H pi

i

N

i

i

N

i i= = =
= =

å å
1 1

( ), ( )  (1.71)

The partial Tsallis entropy can be defined as (Niven, 2004)

 
H p p

p p

m
i i

m
m i

i i
m

= - = -
-

ln
1

 (1.72)
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FIGURE 1.9 Plot of distribution given by Equation 1.67 parameterized by m. 
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Recall the m-logarithmic function:

 
ln ,m

m

p
p

m
p= -

-
>

-1 1
1

0  (1.73)

In the limit, as m → 1,

 ln lnm p p®  (1.74)

The partial Tsallis entropy is plotted in Figure 1.10 for various values of m. Also 
 plotted is the partial Shannon entropy. It is interesting to note that Hi is bounded by 
two endpoint minima at Hi(0) = 0 and Hi(1) = 0 and has the maximum at 

 
max ( ) [ ]/( ) /( ) /( )H H m

m
m mi i

m m m m= =
-

-- - -1 1 1 1 11
1

 (1.75)

Equation 1.75 shows that the maximum Tsallis entropy depends on the entropy 
index m and is independent of state, but its position can vary. In the case of the 
Shannon partial entropy, the position is fixed. Further, it implies that it does not 
accommodate the local effect of constraints. It may be noted that Hi(m = 0) = 
1 − pi, which is a linear relation; Hi(m → ∞) = 0 in the limit m → 1, Hi reduces to 
the Shannon entropy.

For m ≤ 0, Figure 1.11 shows that the Tsallis partial entropy does not have a real-
valued extremum and tends to infinity as pi → 0 for −1 < m < 0 and/or over some 
finite range of pi for −∞ < m < 1 The Tsallis partial entropy is nonnegative but the 
constrained partial Shannon entropy may not be.
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FIGURE 1.10 Partial Tsallis entropy for m = 0.5, 1, and 2. The curve of m = 1 is equivalent 
to the partial Shannon entropy.
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1.7 CONSTRAINED TSALLIS ENTROPY

For defining the constrained Tsallis entropy, the Lagrange function L is constructed 
for entropy maximizing. To that end, constraints are defined as the normalizing con-
straint given by Equation 1.62 and the general constraint given by

 

p g x g xi i

i

N

i( ) ( )
=

å =
1

 (1.76)

Now the Lagrangian function L can be written as
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For entropy maximization, the Lagrangian function can simply be written as 

 

L
m

p p p p gi i
m

i j i ji

i

N

j

N

i

N

i

N

=
-

-( ) - -
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åååå1
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1111
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Differentiation of Equation 1.78 with respect to pi yields

 

dL

dp m
mp g

i
i
m

j ji

j

n

= =
-

-( ) - --

=
å0

1
1

1 1
0

1

l l  (1.79)

0
0

0.5

1

1.5

2

2.5H
i

3

3.5

4

4.5

5

m = –2
m = –1
m = –0.5
m = 0

0.2 0.4 0.6 0.8 1
p

FIGURE 1.11 Partial Tsallis entropy for m = 0, −0.5, −1, and −2.
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Equation 1.79 yields the maximum entropy-based probability distribution denoted 
by pi

* :
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From Equation 1.80, the zeroth Lagrange multiplier λ0 can be expressed as 
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Substituting Equation 1.81 in Equation 1.78, one obtains

 

L
m

p p
m

mp m gi i
m

i
m

j ji

j

n

=
-

-( ) -
-

- - -
é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

î

-

=
å1

1
1

1
1 11

1

*( ) ( ) l
ïï

ü
ý
ï

þï

-

=

= = =

å

å å å

i

N

i

i

N

j

j

n

i ji

i

N

p p g

1

1 1 1

´ l  (1.82)

Equation 1.82 simplifies to
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Equation 1.83 is the constrained Lagrange function. Sometimes, this is also referred 
to as constrained Tsallis entropy:
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Therefore, the partial constrained Tsallis entropy is given as

 
H p p

m
mp p pi

C
i

m
i i

m( , )* *( )=
-

-éë ùû
-1

1
1  (1.85)

Figures 1.12 and 1.13 plot the constrained Tsallis entropy for various values of 
m and pi.
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1.8 GENERALIZED RELATIVE ENTROPIES

Relative entropy plays an important role in comparing two distributions. Let the 
two distributions be P: {pi, i = 1, 2, …, N} and R: {ri, i = 1, 2, …, N}. Two types 
of  generalized relative entropies have been defined in nonextensive statistical 
 mechanics. One is of Bregman (1967) type described by Naudts (2004):
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FIGURE 1.12 Constrained Tsallis entropy for various values of pi (m = 1).
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FIGURE 1.13 Constrained Tsallis entropy for various values of m (pi = 0.8).
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and the other of Csiszar (1972) type described by Tsallis (1998):
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Here, R = {ri, i = 1, 2, …, N} is the prior or reference probability distribution. It may 
be noted that the first type of relative entropy is associated with ordinary expecta-
tion and the second type with the normalized expectation value. Both entropies are 
nonnegative.

In the limit m → 1, both relative entropies Jm[P|R] and Km[P|R] reduce to the KL 
cross entropy defined as
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Equation 1.88 is often written in the differential form as
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Abe and Bagci (2005) have shown that physically Jm[P|R] and Km[P|R] are essen-
tially free energy differences. It can be shown that Jm[P|R] is convex in P but not 
in R, whereas Km[P|R] is convex in both P and R. Furthermore, like the KL relative 
entropy, Km[P|R] is composable but Jm[P|R] is not. To illustrate it, consider a com-
posite system (A, B) where the joint probability distribution can be factorized as 
pij(A, B) = p(1)i(A)p(2)j(B) and rij(A, B) = r(1)i(A) r(2)j(B). Then one can write
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However, such a relation does not exist for Jm[P|R].
The POMCE (Shore and Johnson, 1980) supports Km[P|R] but not Jm[P|R]. The 

relative entropy H[P|R] satisfying POMCE will have the following form:
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where h(x) is some function [x = pi/ri]. Function h(x) exists for Km[P|R] and can be 
written as
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However, it does not seem feasible to cast Jm[P|R] in the form of Equation 1.91. 
This suggests that POMCE supports the normalized m-expectation value but not the 
 ordinary expectation value. 
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2 Probability Distributions

The Tsallis entropy has found only limited application in hydrological frequency 
 analysis. This may partly be due to the complexity in analytically deriving prob-
ability distributions by the Tsallis entropy maximizing when more than one con-
straint is specified. In a seminal work, Koutsoyiannis (2004a,b, 2005a,b) was 
probably the first to derive different distributions using the Tsallis entropy and 
showed applications of some of them to extreme rainfall analysis. Since then, 
some distributions and their applications have been reported in the hydrologi-
cal literature. Much of the discussion in this chapter is drawn from the work of 
Koutsoyiannis and his associates (Koutsoyiannis, 2005a,b, 2006; Papalexiou and 
Koutsoyiannis, 2012, 2013). The objective of this chapter is to discuss the pro-
cedure for deriving probability distributions for hydrological frequency analysis 
using the Tsallis entropy.

2.1  PROCEDURE FOR DERIVING A PROBABILITY 
DISTRIBUTION

Derivation of a probability distribution using the Tsallis entropy entails (1)  defining 
the Tsallis entropy, (2) specifying constraints, (3) maximizing the entropy using the 
method of Lagrange multipliers, (4) obtaining the probability distribution, (5) deter-
mining the Lagrange multipliers in terms of the specified constraints, and (6) 
 determining the maximum entropy as well as the properties of the distribution.

2.1.1 dEFining tsallis Entropy

In this discussion, the continuous version of the Tsallis entropy is employed, 
 meaning random variables are assumed continuous. Then, the Tsallis entropy H can 
be  written as

 

H f x
f x

m
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m

= -
-

¥ -

ò ( )
[ ( )]

0

11
1

 (2.1)

where
x is a specific value of random variable X
f(x) is the probability density function (PDF) of X
m is the entropy index
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2.1.2 spECiFiCation oF Constraints

It should be noted that for any PDF, f(x), of a random variable X, the total probability 
must equal one, that is,

 

f x dx( ) =
¥

ò 1
0

 (2.2)

Equation 2.2 is, in a true sense, not a constraint but is often referred to as normaliza-
tion or natural constraint.

In the Tsallis entropy formalism, constraints are specified in two ways. The first 
way is to specify the constraints in terms of regular moments. The second way is to 
specify the constraints in terms of m-expectations, where m is the Tsallis entropy 
index. Both methods are illustrated for deriving a probability distribution using 
 simple constraints in order to keep the algebra easily tractable.

Empirical observations contain the information that we are looking for and we 
have to find a way to extract and express that information. Constraints encode the 
information or summarize the knowledge that can be garnered from empirical 
 observations or theoretical considerations.

Tsallis et al. (1998) discussed the role of constraints in the context of the Tsallis 
entropy formalism. Papalexiou and Koutsoyiannis (2012) provided an excellent 
 discussion on the rationale for choosing different types of constraints in hydrol-
ogy. Entropy maximizing shows that there is a unique correspondence between a 
 probability distribution and the constraints that lead to it. Therefore, choosing appro-
priate constraints is extremely important in the entropy formalism.

At the outset, it is important to determine or at least have a good idea as to the 
type of probability distribution that will best represent the empirical hydrological 
data, such as rainfall, runoff, temperature, extreme low flows, extreme high flows, 
 sediment yield, and so on. Once an idea about the distribution shape is gathered, the 
issue of constraints is addressed.

Clearly, there can be a large, if not an infinite, number of constraints that can 
perhaps summarize the information on the random variable. The question then 
arises: How should the appropriate constraints be chosen? First, constraints should 
be simple but simplicity is subjective, and therefore, quantitative criteria are needed. 
Second, constraints should be as few as absolutely needed.

When empirical data suggest, without any consideration of entropy, a particular 
shape of probability distribution, it is important to keep in mind that these data 
represent only a small part of the past. Therefore, any inference on the random vari-
able characteristics may vary in the future, especially because of looming climate 
change, global warming, and land use change. This suggests that constraints should 
be defined such that they are more or less preserved in the future. It may be noted 
that some constraints, especially lower-order moments, such as mean and variance, 
are less susceptible to change than are others, especially higher-order moments, such 
as kurtosis.
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When defining constraints, it would be desirable to express them in terms of the 
laws of conservation of mass, momentum, and energy. However, water resources 
and hydrological processes are complicated and do not often lend themselves to 
allow for defining constraints in this manner except for very simple cases. For exam-
ple in case of groundwater flow, it is possible to express constraints in terms of mass 
conservation and Darcy’s law when solving very simple problems. Likewise, for the 
movement of soil moisture, infiltration, velocity distribution, and suspended sedi-
ment concentration, mass conservation can be used as a constraint. However, for a 
majority of cases, constraints need to be inferred keeping the empirical evidence 
with respect to the probability distribution shape in mind.

If the observed data show that the random variable can be described by a bell-
shaped distribution then all that is needed is the mean and variance. That means 
these constitute the constraints. Likewise, if the distribution is heavy tailed or light 
tailed, then appropriate constraints need to be specified accordingly. However, few 
hydrological processes follow a normal distribution. Of course, most hydrological 
variables are nonnegative and with the nonnegative condition imposed, the resulting 
distribution would be truncated normal, if the empirical data suggested a normal 
distribution. The Tsallis entropy maximizing leads to a symmetric bell-shaped dis-
tribution with power-type tails. If the mean is zero, then this becomes the Tsallis 
distribution. For nonzero mean, this is the Pearson-type VII distribution. A majority 
of hydrological and environmental processes exhibit a rich variety of asymmetries. 
Examples are rainfall extreme corresponding to small time intervals, flow maxima, 
flow minima, extreme temperatures, extreme winds, among others.

Constraints can be defined in terms of moments as

 

C g x f x dx g x i Mi i i= = =
¥

ò ( ) ( ) ( ), , , ,
0

1 2 …  (2.3)

where
gi(x) is some function of x
Ci is the ith constraint
M is the number of constraints

If g0(x) = 1, then Equation 2.3 reduces to Equation 2.2. If g1(x) = x, then the constraint 
becomes mean.

Mean, a measure of central tendency, is one of the most frequently specified 
constraints

 

E X xf x dx[ ] ( )= =
¥

òm
0

 (2.4)

which is approximated by the sample mean denoted as x where over bar denotes sample 
average. If the random variable takes on only nonnegative values, then geometric mean, 
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denoted as μG, which is smaller than the arithmetic mean, is another useful constraint 
for hydrological processes. For a sample size N, an estimate of μG can be defined as
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Taking the logarithm of both sides of Equation 2.5, a constraint for entropy maxi-
mizing can be expressed as

 E X G[ln ] ln= m  (2.6)

This constraint would be useful when empirical data are positively skewed or even 
heavy tailed. The logarithm of geometric mean, because of its logarithmic character, 
is likely to be preserved in the future.

The second moment or variance, a measure of dispersion about the central 
 tendency or mean, is also expressed as a constraint

 

s2 2

0

=
¥

ò x f x dx( )  (2.7)

Here, the expected value, μ, is already subtracted from the x values. Papalexiou and 
Koutsoyiannis (2012) reasoned that if the second moment is preserved then its square 
root, the standard deviation, is even more likely to be preserved and more robust to 
outliers. This reasoning can be extended to lower-order fractional moments.

Recalling for the logarithmic function,

 
lim ln
a

ax

a
x

®

- =
0

1
 (2.8)

where a is an arbitrary exponent or power. For small values of a, it can be argued that 
xa would behave like ln(x). Therefore, it may be deemed logical to allow the order 
of the moment to remain unspecified so that even fractional values of order can be 
accommodated. Thus, a moment of order r, Mr, as a constraint can be expressed as

 

M E X x f x dxr
r r= =

¥

ò[ ] ( )
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 (2.9)

Further, recalling the limiting definition of the exponential function:

 
exp( ) lim( )x bxa
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where b is any arbitrary quantity. One can then define by taking the logarithm of 
Equation 2.10:

 
x

bx

b
b
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= +ln( )1
 (2.11)

For b = 0, Equation 2.11 becomes a power xa as
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Now the regular moments, designated as p-moments of order r, can be generalized as

 

M E X
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px f x dxp
r
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ln( ) ( )  (2.13)

This is one generalization among many that can be constructed. Papalexiou and 
Koutsoyiannis (2012) provided a rationale for this generalization as follows: (1) 
p-moments are simple and for p = 0 they reduce to regular moments. (2) Their basis 
is the xp

r  function that has the desirable properties of ln x function and therefore 
are appropriate for positively skewed random variables. (3) The p-moments lead to 
 flexible power-type distributions, including the Pareto (for m = 1) and Tsallis (m = 2) 
distributions. (4) These moments are no more arbitrary than generalized entropy 
measures. (5) These moments lead to distributions that represent many hydrological 
processes as well.

It should be noted that the entropy index m may be different, depending on the way 
the constraints are introduced: (1) in a regular way and (2) in a non-normalized way:
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or (3) in normalized way:
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In a similar way, constraints can be defined for the discrete case. The third way is 
like the escort probability way. The escort probabilities are defined as
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From Equation 2.16, the following inverse relation stems:
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Figure 2.1 shows the escort probabilities for N = 2.

2.1.3 Entropy MaxiMizing

In order to derive the least-biased PDF f(x), the Tsallis entropy is maximized in 
accordance with the principle of maximum entropy (Jaynes, 1957a,b), subject to 
specified constraints. For entropy maximizing, the method of Lagrange multipliers 

0
0

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p i

0.2

0.2 0.4 0.6
pi

0.8 1

m = 0
m = 0.5
m = 1
m = 2
m = 5

FIGURE 2.1 Escort probabilities for N = 2.
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is employed. Therefore, the Lagrangian function L, with the use of constraints given 
by Equations 2.2 and 2.3, can be expressed as

 

L f x
f x

m
dx

m
f x dx

m

= -
-

+ -
-

æ
è
ç

ö
ø
÷ -

é

ë
ê
ê

ù

û
ú
ú

¥ - ¥

ò ò( )
[ ( )]

( )
0

1

0

0

1
1

1
1

1l

++ -
é

ë
ê
ê

ù

û
ú
ú

¥

=
òåli i i

i

M

g x f x dx g x( ) ( ) ( )
01

 (2.19)

where λi, i = 0, 1, 2, …, M, are the Lagrange multipliers. Note that −1/(m − 1) is added 
to the zeroth Lagrange multiplier for simplifying the algebra a little bit. Differentiating 
Equation 2.19 with respect to f(x) and equating the derivative to zero, we obtain
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2.1.4 probability distribution

Equation 2.20 yields the least-biased probability distribution of X:
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The cumulative distribution function F(x) is obtained by integrating Equation 2.21 as
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The properties of the probability distribution can be described for a general value of 
m, once functions gi(x) are known and M is given.

2.1.5 dEtErMination oF thE lagrangE MultipliErs

Equation 2.21 has M unknown Lagrange multipliers that can be determined with the 
use of Equations 2.2 and 2.3. Substituting Equation 2.21 in Equations 2.2 and 2.3, 
one gets, respectively,
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Equations 2.23 and 2.24 can be solved numerically for the unknown Lagrange mul-
tipliers λi, i = 1, 2, …, M. It may be noted that λ0, with the use of Equation 2.23, can 
be expressed as a function of the other Lagrange multipliers and is, therefore, not an 
unknown multiplier.

2.1.6 MaxiMuM Entropy

Substitution of Equation 2.21 in Equation 2.1 leads to the maximum Tsallis entropy:
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2.2  MAXIMUM ENTROPY–BASED DISTRIBUTIONS 
WITH REGULAR MOMENTS AS CONSTRAINTS

2.2.1 MEan as a Constraint

Now the mean constraint is defined as
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where µ1 is the mean of X and it is approximated by the sample mean x.
In order to obtain the least-biased f(x), subject to Equations 2.2 and 2.26, 

Equation 2.1 can be maximized for m > 0 using the method of Lagrange multipliers. 
To that end, the Lagrangian function L can be written as
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where λ0 and λ1 are the Lagrange multipliers. Differentiating L with respect to f(x) 
and equating the derivative to zero, one obtains
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Defining k = (1 − m)/m (Koutsoyiannis, 2005a) and αi = mλi,i = 0,1, Equation 2.28 
can be written as

 f x k k xk k( ) ( ) [ ( )]/ /= + + +- - - -1 11 1
0 1

1 1a a  (2.29)

Equation 2.29 is the Tsallis entropy–based PDF of power type.
The Lagrange multipliers, λi, i = 0, 1, and consequently αi = mλi, i = 0, 1 can 

be  determined using Equations 2.2 and 2.26. Substituting Equation 2.29 in 
Equation 2.2, one obtains
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 a a1
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Now, inserting Equation 2.29 in Equation 2.26, one gets
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Integration of Equation 2.33 by parts yields
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Equations 2.31 and 2.34 can be utilized to determine α0 and α1. It may be noted that one 
can also determine the other Lagrange multiplier by inserting Equation 2.31 or 2.32 in 
Equation 2.29 and the resulting function in Equation 2.26 and then integrating.

Inserting Equation 2.31 in Equation 2.29, the PDF becomes

 f x k k k k k kk k k k( ) ( ) ( ) [ ( ) ( )/ / / /= + + + + +- - - - - - - -1 1 1 1 11 1
0

1 1 1 1
0

1 1a a xx]  (2.35)

Equation 2.35 can be simplified by defining

 b a= + + - -[( )( )] /1 1 0
1 1k k k  (2.36)
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Equation 2.35, with the use of Equation 2.36, becomes
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Equation 2.37 is a two-parameter generalized Pareto distribution.
Let
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Equation 2.37 then becomes
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Equation 2.39 is a two-parameter Pareto distribution.
If k tends to 0, Equation 2.39 leads to an exponential distribution:
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2.2.2 MEan and VarianCE as Constraints

The first and second moments constitute the mean and variance constraints, which 
can be, respectively, defined by Equations 2.26 and 2.7 as

 

x f x dx E x2

0

2
2( ) ( )

¥

ò = = m  (2.41)

where µ2 is the second moment about the mean. In order to obtain the least-biased 
f(x), subject to Equations 2.2, 2.26, and 2.41, Equation 2.1 is maximized for m > 0 
using the method of Lagrange multipliers as before. The Lagrangian function L can 
be written as
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Differentiating L with respect to f(x) and equating the derivative to zero, one obtains
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Using the definition of k = (1 − m)/m and αi = mλi, i = 0, 1, 2, Equation 2.43 is written as

 f x k k x xk k( ) ( ) [ ( )]/ /= + + + +- - - -1 11 1
0 1 2

2 1 1a a a  (2.44)

Equation 2.44 is, again, the PDF of power type. The Lagrange multipliers, λi, i = 0, 
1, 2, and consequently αi = mλi, i = 0, 1, 2 can be estimated using Equations 2.2, 
2.26, and 2.41.

For purposes of comparison, Koutsoyiannis (2005a,b) proposed a form similar to 
Equation 2.44 as

 f x k x xc k c( ) [ ( )] /= + + - - -1 0 1
1 1 11 2a a  (2.45)

where c1 and c2 are shape parameters. Thus, Equation 2.45 has four parameters: scale 
parameter α1 and shape parameters k and c1 and c2. Note that α0 is not a parameter, 
because it is a constant based on the satisfaction of Equation 2.2.

Using appropriate transformations of random variable X and limiting values of 
shape parameters, Koutsoyiannis (2005a) showed that Equation  2.45 would lead to 
several exponential and power-type probability distributions as given in the following.

 1. Random variable X c2 would have beta prime (also referred to as beta of the 
second kind) distribution (Evans et al., 2000). Then the distribution of X 
would be referred to as power-transformed Beta Prime (PBP): Beta prime 
(c1 = 1) (Figure 2.2),

 f x k k x xk k c( ) ( ) ( )/= + + - + -1 0 1
1 12a a  (2.46)

 2. PBP-L1 (k → 0) (Figure 2.3),

 f x x xc c( ) exp( )= - - -a a0 1
11 2  (2.47)

 3. PBP-L2 (k → ∞, kα0 → k0, kα1 → k1) (Figure 2.4),

 
f x
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k k x
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c( ) =
+ +
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1

1

0 11
 (2.48)

 4. Gamma (k → 0, c1 → 1) (Figure 2.5),

 f x x xc( ) exp( )= - - -a a0 1
12  (2.49)
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 5. Weibull (k → 0, c2 = c1) (Figure 2.6),

 f x x xc c( ) exp( )= - - -a a0 1
11 1  (2.50)

 6. Pareto (c2 = c1 = 1) (Figure 2.7),

 f x k k x k k( ) ( ) ( )/= + + - +1 0 1
1a a  (2.51)
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FIGURE 2.2 PBP distribution.
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FIGURE 2.3 PBP-L1 distribution.
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Following Koutsoyiannis (2005a), for the Tsallis entropy, if λ2 = 0, the Pareto distri-
bution is the result:
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where F* = 1 − F(x), F(x) is the cumulative probability distribution function.
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FIGURE 2.4 PBP-L2 distribution.
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FIGURE 2.5 Gamma distribution.
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Example 2.1

Plot the entropy-based PDFs versus the random variable for several values of the 
coefficient of variation and do the same if the variable is standardized. Take the 
mean value as 1.

Solution

For different values of coefficient of variation (σ/μ = 0.1, 0.5, 1, 1.5, and 5), the sec-
ond constraint obtained from Equation 2.41 becomes 0.01, 0.25, 1, 1.25, and 25. 
By substituting Equation 2.43 into Equations 2.26 and 2.41, the Lagrange multipli-
ers can be computed. Thus, the PDFs can be obtained, as shown in Figure 2.8. For 
standardized variable (x − μ)/σ, the PDF is computed in the same way, as plotted 
in Figure 2.9.
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FIGURE 2.6 Weibull distribution.
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FIGURE 2.7 Pareto distribution.
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Example 2.2

Plot the values of random variable or quantile versus the return period [1–100,000] 
for various values of the coefficient of variation. 

Solution

Consider random variable as computed in Example 2.1 in which μ = 1 and σ/μ = 
0.1, 0.5, 1, 1.5, and 5. The return period T is computed as 1/[1 − F(x)] and plotted 
in Figure 2.10, where F(x) is the cumulative distribution of Example 2.1.
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FIGURE 2.8 Probability density function.
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FIGURE 2.9 Probability density function.
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Example 2.3

Plot the maximum Tsallis entropy, using Equation 2.45, for various values of c1 for 
specified values of k. Take mean as 1 and the coefficient of variation as 1.5 and 
c2 = 1. Also plot on the same graph c1 versus k. Plot maximum entropy versus the 
coefficient of variation [0.01–100]; m = 1 will lead to truncated normal, m = 1 to 
Pareto and m < 1 to Pareto.

Solution

Let c2 = 1, the Tsallis entropy is computed by inputting Equation 2.45 into 
Equation 2.1:
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With μ = 1 and σ/μ = 1.5, for various values of c1 = 1, 1.5, 2, and 3, the entropy is 
computed and plotted in Figure 2.11.
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FIGURE 2.10 Quantile versus return period.
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2.2.3 VarianCE as a Constraint

Let the constraints be defined by Equation 2.2 and
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Then, the Lagrangian function L can be expressed as
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Differentiating Equation 2.55 with respect to f(x), one gets
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This yields
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FIGURE 2.11 Tsallis entropy for c2 = 1.
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Substituting Equation 2.57 in Equation 2.2, one obtains

 

m

m
m x dxm-

é
ëê

ù
ûú

=
+ - -

-¥

¥

ò1
1

1 1 2
0

1
2 1 1

l
l[ ( )( )] /( )/

 (2.58)

Substituting Equation 2.57 in Equation 2.26, the PDF becomes
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where Z is the partition function defined as
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Beck (2000) has shown that the integral in Equation 2.59 exists for 1 ≤ m < 3 and it 
integrates to
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in which B(·;·) is the beta function defined as
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where Γ(⋅) is the gamma function of (·). If k = (1/m − 1) ≥ 2 is an integer, the partition 
function can be further evaluated as
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Figure 2.12 sketches the PDF with unit variance for k = 1/(m − 1) = 3, 4, …, 20. As k 
changes to smaller values, the PDF would exhibit a transition from almost Gaussian 
to a stretched one.
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2.3 USE OF m-EXPECTATION

The m-expectation for a random variable X can be defined as
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Now the Tsallis entropy is maximized, subject to Equations 2.2 and 2.64, using the 
method of Lagrange multipliers. The Lagrange multiplier L is constructed as
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Differentiating Equation 2.65 with respect to f(x) and equating the derivative to 0, 
one obtains
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FIGURE 2.12 Probability density function.
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The Lagrange parameters λ0 and λ1 are determined with the use of Equations 2.2 and 
2.64. Substituting Equation 2.67 in Equation 2.2, the result is
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Inserting Equation 2.67 in Equation 2.64, one obtains
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Equations 2.68 and 2.69 can be solved to obtain the Lagrange multipliers λ0 and λ1.
Inserting Equation 2.68 in Equation 2.67, the probability distribution becomes
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Equation 2.70 is the Tsallis distribution that is a power law. Thus, when a phe-
nomenon exhibits a power-law behavior then it is logical to maximize the Tsallis 
entropy that can accommodate this type of behavior. There are many geophysical 
phenomena, such as recurrence intervals between floods, braided gravel hydraulic 
conductivity, wind patterns, and riverbed patterns, to name but a few, that exhibit a 
power-law type behavior. In the limit m → 1, Equation 2.70 reduces to the conven-
tional exponential distribution.

An m-exponential function is defined as

 exp ( ) [ ( ) ] /( )
m m

x mx e m x= = + - -1 1 1 1  (2.71)

With the use of Equation 2.71, Equation 2.70 can be written as
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2.4 CHOOSING EXPECTATION VALUE

Abe and Bagci (2005) dealt with the choice of expectation value by examin-
ing the entropies associated with two kinds of expectation: non-normalized 
and normalized. Following Bashkirov (2004), consider a Lagrange function L. 
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Two operations, namely translation (T) and dilatation (D), under which function L 
is invariant, are performed. The generators, corresponding to these operations, 
can be expressed as
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Since L is invariant when subjected to these operations, one can write
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This is now applied to the Tsallis entropy indexed by m.

2.4.1 ordinary ExpECtation

The Lagrangian function to be maximized, subject to Equations 2.2 and 2.26, can 
be written as
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where λ0 and λ1 are the Lagrange multipliers. Applying Equation 2.75 to Equation 
2.77, the result is
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This yields

 
l l0

1
1

1
=

-
--m

m
p xi

m
i  (2.79)

© 2016 by Taylor & Francis Group, LLC

  



54 Introduction to Tsallis Entropy Theory in Water Engineering

Now applying Equation 2.76 to Equation 2.77, one obtains
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Equation 2.80 can be written in terms of the Tsallis entropy as
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Equations 2.79 and 2.81 are solved for pi. Equating Equation 2.79 to Equation 2.81, 
one gets
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Equation 2.82 is simplified sometimes as follows:
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With the use of the definition of H, Equation 2.83 can be cast as
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(2.84)

That is, Equation 2.84 can now be expressed as
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where
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2.4.2 norMalizEd m-ExpECtation
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where
Pi is often referred to as the escort distribution associated with the basic distribu-

tion pi

X denotes a physical random variable with its specific value xi

Note the ordinary expectation value x  is denoted as

 

x p xi i

i

N

=
=

å
1

 (2.89)

Following the same procedure as earlier, the Lagrange function becomes

 

L
m

p p
x p

p
i
m

i

N

i

i

N
i i

m

i

N

=
-

-
é

ë
ê
ê

ù

û
ú
ú

- -
æ

è
çç

ö

ø
÷÷ -

= =

=å å å1
1

1 1
1

0

1

1
1l l

ii
m

i

N mx

=å
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

 (2.90)

Here, xm denotes the m-expectation of X defined by Equation 2.87. Applying 

Equations 2.75 and 2.76 to Equation 2.90, the result is
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Equations 2.91 and 2.92 lead to

 
p

Z
m x xi i m

m

= - - -( )é
ë

ù
û

-1
1 1 1

1 1

( ) *

/( )

l  (2.93)

where

 

Z m H m x xm
m

i m

m

i

N

= + - = - - -( )é
ë

ù
û

-
-

=
å[ ( ) ] ( )/( )

*

/( )

1 1 1 11 1
1

1 1

1

l  (2.94)

Abe and Bagci (2005) have shown an interesting property of the expectation 
definitions:
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2.4.3 usE oF m-ExpECtation

Let the Tsallis entropy be defined as
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Let the constraints be defined as Equation 2.2 and
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Optimization of Equation 2.97 with constraints given by Equations 2.98 and 2.2 
yields for m > 1
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and for m < 1
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provided x < σ[(3 − m)/(1 − m)]1/2 and 0 otherwise. Prato and Tsallis (1999) have derived 
this result. For m → 0, we obtain
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Special cases: m < 5/3(m ≥ 5/3) corresponds to a finite (or infinite) second moment 

x
m

2 . For m < 1, there is a cutoff; for m > 1, there is a 1/|x|2/(m−1) tail at |x| ≥ σ. 

For m < 5/3, the second moment is finite given as
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m → ∞: uniform distribution
m → 2: Cauchy–Lorentz distribution
m → 3: completely flat distribution
m ≥ 3: no distribution, that is Equation 2.67 cannot be satisfied
m → 1: Gaussian distribution

Escort distribution
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For m > 1, this is given as
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and for m < 1
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if x < σ[(3 − m)/(1 − m)]1/2 and 0 otherwise (cutoff is maintained even if m ≤ 0). 
For m < 3 (and not only for m < 5/3), Pm(x) has a finite second moment. For m < 5/3, 
the escort distribution is Gaussian ∝ exp{−[m(5 − 3m)/2(3 − m)]x2/(σ2N)}, where 
N = number of particles.
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3 One-Dimensional 
Velocity Distributions

Fundamental to determining flow discharge, scour around bridge piers, erosion 
and sediment transport, pollutant transport, energy and momentum distribution 
coefficients, hydraulic geometry, watershed runoff, and river behavior is velocity 
distribution. Consider, for example, discharge measurements that involve velocity 
sampling. In order for these measurements to be simple and efficient, the number 
of velocity samples to be taken must be sufficiently small so that sampling may be 
accomplished quickly and within the time frame of the particular flow and velocity 
regime being investigated. Translating a small number of velocity samples into the 
cross-sectional mean velocity requires a velocity distribution equation. In wide open 
channels, velocity increases monotonically from the channel bed toward the water 
surface and can be approximately considered as one-dimensional. The objective of 
this chapter is to present velocity distributions in one dimension in open channels 
using the Tsallis entropy.

3.1 PRELIMINARIES

Flow in an open channel at a given time and location can be laminar, turbulent, 
or mixed (transitional). The flow in open channels on alluvial sand beds as well as 
gravel beds is generally hydraulically rough, and therefore, turbulent flow prevails 
for most natural conditions. If the flow is laminar, then the velocity can be defined 
accurately. However, in turbulent flow, the velocity vector fluctuates both spatially 
and temporally and velocity is not stationary.

Velocity distributions have been derived using either experimental or determin-
istic hydrodynamic methods. The velocity distributions popular in hydraulics are 
the Prandtl–von Karman universal velocity distribution and power law velocity 
distribution (Karim and Kennedy, 1987). Limitations of these velocity distributions 
have been discussed by Chiu (1987), Singh (1996), among others. The Prandtl–von 
Karman universal velocity distribution was initially developed for pipe flow (von 
Karman, 1935) and was then applied to wide open channels (Vanoni, 1941). The 
universal velocity distribution does not predict the velocity near the bottom well, 
especially in sediment-laden flows (Einstein and Chien, 1955), and is also found 
to be inaccurate near the water surface. The power law velocity distribution was 
first developed for smooth pipes (Blasius, 1913) and then expanded to open chan-
nel flow (Sarma et al., 1983). This distribution is simple to apply but its  accuracy 
is limited.

The velocity of flow in an open channel cross section varies along a vertical from 
zero at the bed to a maximum value that may or may not occur at the water surface. 
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At any point or in any cross section, the flow velocity varies with time, but this time 
variation does not follow a particular pattern and depends on the water and sedi-
ment influx. Chiu and his associates (Chiu and Chiou, 1986; Chiu, 1987, 1988, 1989, 
1995; Chiu and Murray, 1992; Chiu and Said, 1995; Chiu and Tung, 2002; Chiu and 
Chen, 2003; Chiu et al., 2005) assumed that the time-averaged velocity at any point 
is a random variable and, therefore, has a probability distribution. This assumption 
has since been employed by a number of investigators for determining distributions 
of flow velocity and pollutant transport (Barbe et al., 1991; Xia, 1997; Araujo and 
Chaudhry, 1998; Choo, 2000; Chen and Chiu, 2004). Chiu (1987) was the first to 
derive a velocity distribution using the Shannon entropy (Shannon, 1948) and the 
principle of maximum entropy (POME) (Jaynes, 1957a,b) and discuss the uncer-
tainty associated with the distribution. The Chiu distribution has been found to be 
more accurate than the power law and universal velocity distributions, has the advan-
tage that it satisfactorily predicts the velocity near the bed, and can be employed for 
optimum velocity sampling.

On the other hand, Singh and Luo (2009, 2011), Luo and Singh (2011), and Cui 
and Singh (2013) employed the Tsallis entropy (Tsallis, 1988), a generalization 
of the Shannon entropy, to derive the velocity distribution. The Tsallis entropy–
based velocity distribution has been shown to have an advantage over the Shannon 
entropy–based distribution. However, in these entropy-based velocity distributions, 
the cumulative probability distribution has been assumed to be linear, meaning the 
velocity is equally likely along the vertical from the channel bed to the water surface. 
This assumption is fundamental to the derivation of velocity distributions but has not 
been adequately scrutinized (Cui and Singh, 2012). Further, this assumption is weak 
and may partly explain the reason that these velocity distributions do not accurately 
describe the velocity near the channel bed.

3.2 ONE-DIMENSIONAL VELOCITY DISTRIBUTIONS

The procedure for deriving the velocity distribution entails the following steps: 
(1)  formulation of a hypothesis for cumulative distribution of velocity as a func-
tion of flow depth, (2) defining the Tsallis entropy, (3) specification of constraints, 
(4)  maximization of entropy, (5) entropy of velocity distribution, and (6) determina-
tion of Lagrange multipliers. Each step is discussed in the following.

3.2.1 hypothEsis

The time-averaged velocity in a channel cross section is considered as a random 
variable under the premise that between 0 and channel depth D all values of flow 
depth y (0 ≤ y ≤ D) are equally likely. This also means that all values of velocity u 
between zero and maximum are equally likely. In reality, this may not be necessarily 
true for all channel cross-sections (Cui and Singh, 2012). The probability of velocity 
being equal to or less than a given value u is assumed to be y/D; thus, the cumula-
tive probability distribution of velocity F(u) = P(velocity ≤ u), P = probability, can be 
expressed in terms of flow depth as
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where
y is the distance from the bed
D is the water depth

Differentiation of F(u) in Equation 3.1 yields the probability density function (PDF) 
of u, f(u), as
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The term dF(u) = f(u)du = F(u + du) − F(u) denotes the probability of velocity between 
u and u + du. Equation 3.1 constitutes the fundamental hypothesis that is employed 
for deriving velocity distributions in this chapter.

3.2.2 tsallis Entropy

The objective is to determine the PDF of u, f(u). This is accomplished by maximizing 
the Tsallis entropy of velocity, H(u). If velocity is treated as a discrete random vari-
able taking on n values, then H(u) can be defined as
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where
p(ui) is the probability of u = ui, i = 1, 2, …, n
m is a real number

Equation 3.3 expresses a measure of uncertainty about p(u) or the average informa-
tion content of sampled u. For continuous nonnegative velocity (u = uD, y = D),
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where umax is the maximum velocity.
Maximizing H(u) is equivalent to maximizing f(u){1 − [ f(u)]m−1}. In order to 

maximize H(u), certain constraints need to be satisfied. If {1 −  [ f(u)]m−1}/(m − 1) 
is considered as a measure of uncertainty, then Equation 3.4 represents the average 
uncertainty of u or f(u). More the uncertainty more the ignorance and more informa-
tion will be needed to characterize u. In this sense, information and uncertainty are 
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related. Thus, the key in Equation 3.4 is to derive the least-biased PDF f(u), subject 
to given information on u. This means that the resulting distribution is least biased 
toward information not given and takes full advantage of the given information.

3.2.3 spECiFiCation oF Constraints

Constraints can be specified in different ways, but whatever the way, they should be 
simple. The first constraint, C1, is the total probability:
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In actuality, C1 is not a constraint, for f(u) must always satisfy the total probability. 
Nevertheless, it is treated as a constraint for the sake of discussion.

Flow in open channels satisfies the laws of conservation of mass, momentum, and 
energy. These laws constitute additional constraints that entropy maximization is 
subjected to. The mass conservation constraint can be written as
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The momentum conservation constraint can be written as
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The energy conservation constraint can be written as
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where
um is the mean velocity
α and β are energy and momentum distribution coefficients

It may be interesting to note that in this case the momentum conservation constraint 
corresponds to the second moment of velocity about the mean velocity or variance 
and the energy conservation constraint corresponds to the third moment of velocity 
about the mean velocity and in turn skewness.

3.2.4 MaxiMization oF Entropy

Jaynes (1957a,b) formulated the principle of maximum entropy (POME), accord-
ing to which the PDF can be obtained by maximizing the uncertainty expressed by 
entropy, subject to given constraints. The probability so derived will be least biased 
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toward the information that is not given about velocity. To maximize the entropy 
given by Equation 3.3, subject to the specified constraint equations (Equations 3.5 
through 3.8), the Lagrange multiplier method is employed. For the method of 
Lagrange multipliers, for m > 0, the Lagrangian function L is constructed as
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(3.9)

where λi, i = 0, 1, 2, 3, are the Lagrange multipliers. Equation 3.9 can be written as
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Differentiating Equation 3.9 or 3.10 with respect to f(u) and equating the derivative 
to zero, one obtains the velocity PDF:
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For simplicity, let λ* = 1/(m − 1) + λ0. Then, Equation 3.11 can be cast as
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Equation 3.12 defines the general PDF of velocity.
One can also determine the PDF of dimensionless velocity obtained by dividing 

velocity by shear velocity as (u/u*), where u* is the shear velocity. Chiu (1987) noted 
that the probability distribution function can be described as
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where f(u) is given by Equation 3.12. Equation 3.13 has the same parameters as 
Equation 3.12.
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3.2.5 dEtErMination oF lagrangE MultipliErs

Equation 3.12 contains unknown Lagrange parameters λ* and λi, i = 0, 1, 2, 3. 
Inserting Equation 3.12 in Equations 3.5 through 3.8 leads to a system of four equa-
tions that can be solved numerically for λi, i = 0, 1, 2, 3.

3.2.6 Entropy oF VEloCity distribution

Substitution of Equation 3.12 in Equation 3.3 yields the maximum entropy as
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3.2.7 gEnEral VEloCity distribution

Substitution of Equation 3.12 in Equation 3.2 yields the velocity distribution as
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where C is a constant of integration evaluated using u = 0 at y = 0. An analyti-
cal solution of Equation 3.15 is not tractable. Equation 3.15 has four parameters: 
Lagrange multipliers λi, i = 0, 1, 2, and 3, that can be estimated using constraint 
equations (Equations 3.5 through 3.8). However, the method of parameter estima-
tion for the general velocity distribution becomes cumbersome and hence will not be 
presented here. Therefore, velocity distributions are derived for simple cases.

3.3  ONE-DIMENSIONAL NO-CONSTRAINT 
VELOCITY DISTRIBUTION

In this case, there are no physical constraints, that is, λ1 = λ2 = λ3 = 0, and the only con-
straint is the total probability equation (Equation 3.5). Then Equation 3.12 becomes
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where C is a constant. The velocity distribution from Equation 3.15 becomes

 
u

y

CD
=  (3.17)

© 2016 by Taylor & Francis Group, LLC

  



67One-Dimensional Velocity Distributions

The value of C can be obtained by substituting Equation 3.16 in Equation 3.5 and 
solving
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Equating Equation 3.18 to Equation 3.16, the result is
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Thus, the velocity distribution is given as
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Entropy of this velocity distribution can be expressed as
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Example 3.1

Consider a 5 m wide open channel with a flow depth of 0.75 m. The velocity at 
the surface is about 0.5 m/s. Plot the velocity as a function of flow depth, assum-
ing zero velocity at the bottom. What is the average flow velocity? Comment on 
this velocity distribution. How realistic is it?

Solution

According to the mass conservation expressed by Equation 3.6 in which um is the 
average velocity and umax is the maximum velocity at the water surface. The veloc-
ity distribution is expressed as

 
u u

y
D

y
D

y
= = = ´max .

.
0 5

0 75
m/s

Substituting u in the mass conservation equation and solving for um

 
u

u
m = = =max .

.
2

0 5
2

0 25 m/s

The velocity distribution is shown in Figure 3.1.
The velocity distribution, shown in Figure 3.1, is linear, that is, the flow velocity 

increases linearly from a value of zero at the channel bed to a maximum of 0.5 m/s 
at the water surface. In real world, the velocity distribution is significantly  different 
from being linear.
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Example 3.2

A set of experimental velocity measurements is given in Table 3.1. Compute the 
distribution of velocity for this data set using Equation 3.20 and comment on 
the goodness of this distribution. Also, compute the value of Lagrange multiplier.

Solution

For the given data, the maximum velocity umax = 7.113 ft/s observed at surface. 
Thus, according to Equation 3.20, the distribution of velocity can be obtained from
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y
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FIGURE 3.1 Velocity as a function of depth.

TABLE 3.1
Velocity Distribution (From Einstein and Chien’s [1955] Experiment)

y (ft) Observed u (ft/s) Computed u (ft/s) y (ft) Observed u (ft/s) Computed u (ft/s) 

0 0 0 0.04 4.831 2.371

0.01 2.221 0.593 0.04 5.075 2.371

0.01 2.497 0.593 0.05 5.298 2.964

0.01 2.72 0.593 0.05 5.522 2.964

0.01 2.858 0.593 0.06 5.806 3.557

0.01 2.964 0.593 0.07 6.09 4.149

0.02 3.329 1.186 0.08 6.293 4.742

0.02 3.573 1.186 0.09 6.516 5.335

0.02 3.898 1.186 0.1 6.699 5.928

0.03 4.519 1.778 0.12 7.113 7.113

Source: Einstein, H.A. and Chien, N., Effects of heavy sediment concentration near the bed on velocity 
and sediment distribution, Report No. 8, M.R.D. Sediment Series, U.S. Army Corps of Engineers, 
Omaha, Nebraska, August 1955.
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Thus, the velocity is computed from the previous equation, as given in Table 3.1. 
The mean velocity estimated is um = uD/2 = 7.113/2 = 3.51 ft/s, which is smaller 
than observed um of 4.39 ft/s. The computed as well as observed velocity distribu-
tions are plotted in Figure 3.2. Since Equation 3.20 is derived without any physical 
constraint, it is a linear distribution. However, the observed data do not exhibit a 
linear increase along the flow depth. This suggests that additional constraints are 
needed for obtaining a more accurate velocity distribution.

3.4  ONE-DIMENSIONAL ONE-CONSTRAINT 
VELOCITY DISTRIBUTION

For this case, λ2 = λ3 = 0 in Equation 3.12, and the physical constraint is the mass 
conservation constraint given in Equation 3.6. Equation 3.12 then reduces to
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Chiu (1987) expressed the probability distribution function of dimensionless velocity 
(u/umax) as
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where f(u) is given by Equation 3.22 that has the same parameters as does f(u/umax) 
given by Equation 3.23.
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FIGURE 3.2 Velocity distribution for the data set given in Table 3.1.
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3.4.1 dEtErMination oF thE lagrangE MultipliErs

The probability distribution of velocity, given by Equation 3.22, has two  parameters 
λ1 and λ*, which can be determined using Equations 3.5 and 3.6. Substituting 
Equation 3.22 into Equation 3.5, one obtains
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On integration, Equation 3.24 yields
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Inserting Equation 3.22 in Equation 3.6 one gets
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Integrating by parts, the solution of Equation 3.26 follows
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Equations 3.25 and 3.27 can be used to numerically solve for λ* and λ1.

3.4.2 VEloCity distribution

In order to relate the entropy-based probability distribution to space domain, 
Equation 3.22 is inserted in Equation 3.1 and then is integrated with respect to u using 
the condition that F(u) = 0 when u = 0. To that end, Equation 3.22 is integrated first:
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Rearranging Equation 3.28, the relation between velocity and its cumulative 
 probability is obtained as
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Equation 3.29 specifies velocity at a specified probability and can be called as veloc-
ity quantile–probability relation.

Substituting Equation 3.22 in Equation 3.2, one can write

 

m

m
u

D

dy

du

m
- +é

ëê
ù
ûú

=
-

1 1
1

1 1

( * )
/( )

l l  (3.30)

Integrating both sides of Equation 3.30, one obtains
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Now the velocity distribution can be obtained as a function of y as
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which is the same as Equation 3.29 where F(u) = y/D.
For simplicity, let m/(m − 1) be denoted as k, Equation 3.33 can be written as
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Equation 3.34 is a Tsallis entropy–based velocity distribution for the flow in a wide 
open channel in which the velocity varies nonlinearly with the vertical distance from 
the channel bed.
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Example 3.3

For the velocity measurements in Table 3.1, compute the values of the Lagrange 
multipliers and the entropy value.

Solution

It is known from the given data that umax = 7.113 ft/s and um = 4.391 ft/s. The Lagrange 
multipliers are computed by solving Equations 3.25 and 3.27 numerically. For dif-
ferent m values, λ1 and λ* are computed and are listed in Table 3.2. Entropy can 
be computed from
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and is given in Table 3.2.

Example 3.4

Compute the Lagrange multipliers for different m values (1/4, 1/3, 2/3, 3/4, 1.25, 
3/2, 2.0, 3.0) for four sets of mean and maximum values of velocity given (ft/s) 
as umax = 9.194, um = 7.303; umax = 11.42, um = 8.7; umax = 0.535, um = 0.412; and 
umax = 1.046, um = 0.890.

Solution

The Lagrange multipliers are computed for different m values, as shown in Table 3.3.

Example 3.5

For various values of m, compute the dimensionless velocity density function and 
plot it.

Solution

With Lagrange multipliers computed in Example 3.4, the dimensionless velocity 
density function can be computed from

TABLE 3.2
Computation of Lagrange Multipliers

m λ1 λ* H  

2/3 0.389 0.473 6.272

3/4 0.184 0.301 5.479

1.5 0.054 0.122 1.761

2 0.014 0.231 0.854

3 −0.012 0.010 0.514

4 0.001 0.001 0.332
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This is shown in Figure 3.3. When m is smaller than 2, the PDF decreases as 
dimensionless velocity increases. For m equal to or larger than 2, it increases with 
dimensionless velocity. It is ensured that the area underlying each curve equals 1.

Example 3.6

For the velocity measurements given in Table 3.1, compute the velocity distribu-
tion and compare it with the observed distribution.

TABLE 3.3
Parameters of Tsallis Entropy–Based Velocity Distribution 
(Maximum and Mean Velocities Are in ft/s)

m 

umax = 9.194, 
um = 7.303 

umax = 11.42, 
um = 8.7 

umax = 0.535, 
um = 0.412 

umax = 1.046, 
um = 0.890 

λ1 λ* λ1 λ* λ1 λ* λ1 λ*

1/4 0.672 −6.473 0.528 −6.489 1.190 −0.680 1.636 −1.742

1/3 0.746 −7.354 0.576 −7.289 1.675 −0.984 2.173 −2.345

2/3 0.712 −8.839 0.527 −8.644 4.109 −3.140 4.281 −5.429

3/4 −0.665 9.499 −0.483 9.255 4.861 −4.333 4.799 −6.787

1.25 −0.864 3.218 0.672 −3.214 −10.804 −2.271 12.125 −4.532

3/2 −0.273 0.505 −0.224 0.783 −15.026 0.638 −6.868 1.515

2.00 0.084 −0.167 0.049 −0.106 22.585 −2.303 7.696 −2.113

3.00 0.032 0.012 0.031 0.076 1.367 0.382 4.223 1.452

0
0
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9

10
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f (
u/
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u/umax

FIGURE 3.3 Probability density function of dimensionless velocity for different values of 
m for data given in Table 3.1.
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Solution

The velocity distribution is computed using Equation 3.33 for different m values 
and is plotted in Figure 3.4. The Lagrange multipliers have already been computed 
for these data as given in Table 3.2. It can be seen from the figure that the velocity 
distribution obtained for m = 2/3 or m = 3/4 fails to capture the observed veloc-
ity distribution pattern and the velocity distribution is best fitted with m = 3 and 
m = 4. However, when m = 3, the computation of parameters is much simpler 
than when m = 4. Thus, m = 3 is preferred.

3.3.3 rEparaMEtErization

Reparameterization reduces the computational difficulty and facilitates comparison 
of different velocity distributions (Chiu, 1988). In a manner similar to that in Chiu 
(1988), a dimensionless parameter G can be defined as
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With the use of parameter G, the relationship between f(0) and f(umax) can be 
shown as
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Thus, G can be used as an index of the velocity distribution. Equation 3.36 shows 
that if G = 0, f(0) = f(umax) and the PDF of velocity would tend to be uniform. If G = 1, 
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FIGURE 3.4 Velocity distribution for different values of m for data set given in Table 3.2.
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f(0) > 0 and f(umax) would tend to infinity. This means that the PDF would be highly 
nonuniform.

When u = umax and F(u) = 1, Equation 3.29 becomes
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Dividing Equation 3.29 by umax and then using Equation 3.35, the dimensionless 
velocity equation is obtained as
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Substituting u = u0 = 0, at y = 0, Equation 3.38 reduces to
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Rearranging Equation 3.39, one obtains
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Now, Equation 3.38 can be simplified with the use of Equation 3.40 as
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Equation 3.41 shows that for a given m value, the velocity distribution can be obtained 
with only one parameter G. Figure 3.5 shows a family of dimensionless velocity 
 distributions for different G values for a fixed m = 3. It is seen from the figure that 
a bigger G value tends to slow the increase in velocity from the channel bed to the 
water surface. For a lower value of G, the velocity distribution tends to linearize and 
for a higher value it tends to nonlinearize. The velocity distribution is, therefore, 
highly sensitive to G.
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Example 3.7

For the velocity measurements in Table 3.1, compute the value of parameter G 
and then compute the dimensionless velocity distribution and compare it with the 
observed velocity distribution.

Solution

From Table 3.2, it is seen that for m = 3, λ1 = −0.012 and λ* = 0.010. Then,
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Thus, using Equation 3.41, the velocity distribution can be computed and plotted 
as shown in Figure 3.6. The computed velocity is first overestimated and then 
underestimated.

3.4.4 Entropy

The maximum entropy can be obtained by substituting Equation 3.22 in Equation 3.4 as

 
H

m m
u=

-
- +1

1
1

1( * )l l  (3.42)

The entropy of velocity distribution, given by Equation 3.42, is expressed in terms 
of given information. It can also be derived in terms of dimensionless parameter G. 
First, the Lagrange multipliers λ* and λ1 are expressed in terms of G. By rearranging 
Equation 3.35, λ* can be expressed as
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FIGURE 3.5 Dimensionless velocity distributions for different G values for a fixed m = 3.
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Now, multiplying Equation 3.25 by u u m m
max max

/( )( * )/ l l+ -
1

1  on both sides, we obtain
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Then, eliminating λ* in Equation 3.44, with the use of Equation 3.43 one can write λ1 as

 
l1

1 11
1 1= -æ

è
ç

ö
ø
÷ - - æ

è
ç

ö
ø
÷

-
- - -

-m

m
G

u

G

m
m m m

m

[ ( ) ]/( ) ( ) max  (3.45)

Now substituting Equations 3.43 and 3.45 into Equation 3.42, the entropy can be 
computed in terms of parameter G instead of the Lagrange multipliers as
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(3.46)
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FIGURE 3.6 Velocity distribution with parameter G (obs. = observed and comp. = computed).
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It can be seen from Equation 3.46 that for known umax and u u= mean, the maximum 

entropy can be determined from parameter G and for the G value between 0 and 1, 
the maximum entropy monotonically increases with increasing G. Since entropy 
varies for different combinations of maximum and mean velocities, it is more conve-
nient to use G as an index for the entropy of a given data set. When a high value of 
G is obtained, it will imply a larger value of entropy and vice versa. This means that 
the probability distribution will be more uncertain for greater G values than for 
smaller G values.

Example 3.8

For um = 2.25 m/s, umax = 5.0 m/s, and m = 3, compute entropy and plot maximum 
entropy as a function of G.

Solution

For u = 2 25. m/s and umax = 5.0 m/s, the entropy value is computed using Equation 
3.46 for various G values that are plotted in Figure 3.7. The maximum entropy 
decreases with increasing G value.

Example 3.9

For the velocity measurements in Table 3.1, compute the entropy value in two 
different ways and compare them.

Solution

For m = 3, the Lagrange multipliers λ1 = −0.012 and λ* = 0.010 are given in 
Table 3.2. Then, the Tsallis entropy is computed as

0
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FIGURE 3.7 Maximum entropy as a function of G.
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Using G = 0.895 from Example 3.7,
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Both entropy values are quite close each other.

Example 3.10

For various combinations of um and umax, given in Table 3.4, compute the Lagrange 
multiplier λ1 and H. Then, plot H as a function of umax and establish a relation 
between H and λ1, using a simple regression. Similarly, establish a relation between 
H and umax, using regression analysis. Plot both figures on the same graph. What 
can be concluded from the plot?

Solution

For given uD and um in Table 3.4, λ1 is solved from Equation 3.27 and H is com-
puted from Equation 3.42 as listed in Table 3.5.

Figure 3.8 gives the relation between entropy and umax as well as the relation between 
entropy and λ1, and these relations are obtained by regression analysis. Entropy has 
a positive relation with umax and a negative relation with λ1. Parameter λ1 can be 
considered as a hydraulic parameter and can be used to characterize and classify 
open channel flows under the effect of coarseness of bed material and sediment 
concentration. The data points in Figure 3.8 at lower values of λ1 and hence higher 

TABLE 3.4
Mean and Maximum Velocity Values

uD (ft/s) um (ft/s) Data Source uD (ft/s) um (ft/s) Data Source 

1.755 1.352 Iran 8.246 6.430 Einstein

2.073 1.450 Iran 8.474 6.640 Einstein

3.432 2.920 Iran 8.810 6.550 Einstein

5.485 4.480 Iran 9.194 7.303 Einstein

7.591 6.050 Einstein 10.415 7.160 Einstein

7.940 6.130 Einstein 11.420 8.700 Einstein

8.021 6.190 Einstein
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values of entropy represent flows over coarser channel bed and/or with higher levels 
of sediment concentration. A considerably wide range of λ1 in the clear water flows 
manifests the marked trend of λ1 to decrease with the coarseness of bed material. 
For sediment-laden flows, data points reflect the effect of both the coarseness of bed 
material and the sediment concentration.

TABLE 3.5
Computed λ1 and H for Data in Table 3.4

uD (ft/s) um (ft/s) λ1 H 

1.755 1.352 2.01 0.18

2.073 1.45 1.83 0.57

3.432 2.92 1.98 0.52

5.485 4.48 0.81 1.31

7.591 6.05 0.79 1.89

7.94 6.13 0.68 2.08

8.021 6.19 0.63 2.10

8.246 6.43 0.66 2.08

8.474 6.64 0.68 2.14

8.81 6.55 0.52 2.39

9.194 7.303 0.68 2.18

10.415 7.16 0.33 2.90

11.42 8.7 0.49 2.70

0.0
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FIGURE 3.8 Relation of H(u) to uD and λ1 (based on data given in Table 3.4).
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3.5  RELATION BETWEEN MEAN VELOCITY 
AND MAXIMUM VELOCITY

The relationship between the mean velocity and the maximum velocity has been 
examined by Chiu (1995) and Xia (1997). If the numerical relationship between 
these two velocities can be established, then the mean velocity can be obtained using 
this relationship since the maximum velocity is measurable. The ratio between these 
two velocities is found to be constant for a given river reach. For 13 sets of velocity 
data, given in Table 3.4, representing different flow profiles (Einstein and Chien, 
1955 and Iran data), the mean and maximum velocities obey a linear relationship 
with a very high R2, as shown in Figure 3.9.

Following Chiu (1988), a relationship between the mean velocity and the maxi-
mum velocity can be established. To obtain an analytical solution of the mean veloc-
ity, Equation 3.41 can be integrated over the whole cross-sectional area (or depth):
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Equation 3.47 can be recast as
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(3.48)
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FIGURE 3.9 Mean and maximum velocity values.
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In Equation 3.48, G should be computed first from its definition (Equation 3.35) in 
terms of the Lagrange multipliers that are themselves obtained from Equations 3.25 
and 3.27 with known mean and maximum velocity values. In this manner, the rela-
tion between the ratio of mean velocity to maximum velocity and the Lagrange mul-
tipliers can be transformed into a relationship with parameter G, which is plotted in 
Figure 3.10 with field data collected from Iranian rivers and Italian rivers. Applying 
polynomial regression, Cui and Singh (2013) obtained a numerical solution of Ψ(G) as

 Y( ) . . .G G G= - +0 554 0 077 0 5682  (3.49)

Table 3.6 compares the values of G computed from Equations 3.35 and 3.49. It is seen 
that the mean difference is about 0.003. Thus, it is reasonable to use Equation 3.49 
instead of Equation 3.35 involving the Lagrange multipliers.

Example 3.11

Show Equation 3.49 on a graph. How good is this equation?

Solution

With given uD(umax) and um, the Lagrange multipliers can be solved from 
Equations 3.25 and 3.27. Then, parameter G is obtained from Equation 3.35 with 
computed λ1 and λ*. For example,
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FIGURE 3.10 Relationship between G and um/umax.
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G′ is the one computed from the relationship expressed by Equation 3.49. By solv-
ing (1.352/1.755) = 0.554G2 − 0.077G + 0.568, G′ = 0.669 is obtained.

The relationship between G and um/umax from Equation 3.49 is examined in 
Figure 3.10. The solid line is the G′ from Equation 3.49 and dotted line is the one 
obtained directly from the Lagrange multipliers. It is seen that Equation 3.49 fits the 
G values obtained from the Lagrange multipliers well with r2 of 0.977. 

3.6 SIMPLIFICATION OF VELOCITY DISTRIBUTION

With a fixed value of m = 3, the velocity distribution equation (Equation 3.41) can be 
simplified by using parameter G as
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Mathematically, equation (1 − G)3/2 is always smaller than 1, since the G value 
is smaller than 1. Using an expansion method, (1 − G)3/2 can be approximated by 
−0.5 ln G. Then Equation 3.50 can be simplified as
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TABLE 3.6
Computation of Entropy Parameter G

uD(ft/s) um Data Source λ1 λ* G G′ 

1.755 1.352 Iran 0.217 0.166 0.697 0.669

2.073 1.450 Iran 0.261 0.398 0.576 0.549

3.432 2.920 Iran 0.177 0.180 0.772 0.764

5.485 4.480 Iran 0.314 0.553 0.757 0.729

7.591 6.050 Einstein 0.086 0.263 0.713 0.706

7.940 6.130 Einstein 0.273 0.933 0.699 0.672

8.021 6.190 Einstein 0.188 0.714 0.679 0.671

8.246 6.430 Einstein 0.317 1.174 0.690 0.683

8.474 6.640 Einstein 0.407 1.373 0.715 0.688

8.810 6.550 Einstein 0.113 0.572 0.635 0.628

9.194 7.303 Einstein 0.146 0.549 0.710 0.702

10.415 7.160 Einstein 0.075 0.633 0.552 0.526

11.420 8.700 Einstein 0.216 1.140 0.684 0.657
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Example 3.12

Compute the velocity distribution using Equation 3.51 for the data listed in 
Table 3.1 and compare it with the observed distribution.

Solution

The velocity distribution of this data set is obtained with a value of G of 0.895 and an 
entropy value as 0.514. Such a high value of G represents that the maximum entropy 
obtains a high value within the possible range, which implies that the  velocity is dis-
tributed most likely as uniform under the given maximum and mean velocity values. 
Figure 3.12 compares the velocity distribution from Equation 3.51 with observations. 
It is seen from the figure that the bed-affected region for this data set is very small, 
only about 0.01 ft, where the velocity increases slowly due to the high shear stress. 
Figure 3.11 shows a good agreement between computed and observed velocity val-
ues. The computed curve increases from the channel bed to the water surface across 
the observation set, even satisfactory in the region near channel bed.

3.7 ESTIMATION OF MEAN VELOCITY

Equation 3.49 can be used to compute the G value for cross sections with known 
maximum and mean velocities. On the other hand, Equation 3.49 can be used to 
compute the mean velocity with known G values since the G value is supposed to be 
approximately constant for a given cross section.

Example 3.13

Compute the values of mean velocity for the following values of maximum veloc-
ity obtained from Santa Lucia gauge, where G = 0.761 is given (Table 3.7).
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FIGURE 3.11 Velocity distribution from Equation 3.51.
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Solution

For given maximum velocities and G value, the mean velocity is computed using 
Equation 3.49. The computed mean velocity is plotted against observations in 
Figure 3.12. It is seen from the figure that the computed mean velocity from 
Equation 3.49 fits observations well. When computed values are regressed against 
the observed values, the regression line has a slope of 0.926 and r2 is as high as 
0.958. However, the deviation grows with increasing mean velocity value, which 
can be seen from the figure that the data points are more spread for larger values 
of mean velocity than for smaller ones.

TABLE 3.7
Maximum Velocity Observed from Santa Lucia Gauge

umax (m/s) um (m/s) umax (m/s) um (m/s) umax (m/s) um (m/s) 

0.088 0.047 2.243 1.648 2.437 1.873

0.269 0.182 0.129 0.067 0.107 0.052

1.208 0.948 0.495 0.324 0.482 0.315

1.467 1.072 0.644 0.401 0.735 0.497

1.773 1.135 1.155 0.736 1.022 0.672

1.631 1.179 2.194 1.497 1.678 1.151

2.760 1.478
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FIGURE 3.12 Estimated mean velocity from Equation 3.49.

© 2016 by Taylor & Francis Group, LLC

  



86 Introduction to Tsallis Entropy Theory in Water Engineering

REFERENCES

Araujo, J. and Chaudhry, F. (1998). Experimental evaluation of 2-D entropy model for 
 open-channel flow. Journal of Hydraulic Engineering, 124(10), 1064–1067.

Barbe, D.E., Cruise, J.F., and Singh, V.P. (1991). Solution of 3-constraint entropy-based veloc-
ity distribution. Journal of Hydraulic Engineering, 117(10), 1389–1396.

Blasius, H. (1913). Das¨ Ahnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forsch. 
Arb. Ing., 134.

Chen, Y.C. and Chiu, C.L. (2004). A fast method of flood discharge estimation. Hydrological 
Processes, 18, 1671–1683.

Chiu, C.-L. (1987). Entropy and probability concepts in hydraulics. Journal of Hydraulic 
Engineering, ASCE, 113(5), 583–600.

Chiu, C.-L. (1988). Entropy and 2-D velocity distribution in open channels. Journal of 
Hydraulic Engineering, ASCE, 114(7), 738–755.

Chiu, C.-L. (1989). Velocity distribution in open channel flows. Journal of Hydraulic 
Engineering, ASCE, 115(5), 576–594.

Chiu, C.L. (1995). Maximum and mean velocity and entropy in open channel flow. Journal of 
Hydraulic Engineering, ASCE, 121(1), 26–35.

Chiu, C.L. and Chen, Y.C. (2003). An efficient method of discharge estimation based on prob-
ability concept. Journal of Hydraulic Research, IAHR, 41(6), 589–596.

Chiu, C.-L. and Chiou, J.-D. (1986). Structure of 3-D flow and shear in open channels. Journal 
of Hydraulic Engineering, ASCE, 109(11), 1424–1440.

Chiu, C.L., Hsu, S.M., and Tung, N.C. (2005). Efficient methods of discharge measurements 
in rivers and streams based on the probability concept. Hydrological Processes, 19, 
3935–3946.

Chiu, C.L. and Murray, D.W. (1992). Variation of velocity distribution along nonuniform 
open-channel flow. Journal of Hydraulic Engineering, 118(7), 989–1001.

Chiu, C.-L. and Said, A.A. (1995). Maximum and mean velocities in open-channel flow. 
Journal of Hydraulic Engineering, ASCE, 121(1), 26–35.

Chiu, C.L. and Tung, N.C. (2002). Maximum velocity and regularities in open-channel flow. 
Journal of Hydraulic Engineering, 128(8), 803.

Choo, T.H. (2000). An efficient method of the suspended sediment-discharge measurement 
using entropy concept. Water Engineering Research, 1(2), 95–105.

Cui, H. and Singh, V.P. (2012). On the cumulative distribution function for entropy-based 
hydrologic modeling. Transactions of ASABE, 55(2), 429–438.

Cui, H. and Singh, V.P. (2013). Two-dimensional velocity distribution in open channels using 
the Tsallis entropy. Journal of Hydrologic Engineering, 18(3), 331–339.

Einstein, H.A. and Chien, N. (1955). Effects of heavy sediment concentration near the bed on 
velocity and sediment distribution. Report No. 8, M.R.D. Sediment Series, U.S. Army 
Corps of Engineers, Omaha, Nebraska, August.

Jaynes, E.T. (1957a). Information theory and statistical mechanics, I. Physical Reviews, 106, 
620–630.

Jaynes, E.T. (1957b). Information theory and statistical mechanics, II. Physical Reviews, 108, 
171–190.

Karim, M.-F. and Kennedy, J.F. (1987). Velocity and sediment concentration profiles in river 
flows. Journal of Hydraulic Engineering, ASCE, 113(2), 159–178.

Luo, H. and Singh, V.P. (2011). Entropy theory for two-dimensional velocity distribution. 
Journal of Hydrologic Engineering, 16(4), 303–315.

Sarma, K.V.N., Lakshminarayana, P., and Rao, N.S.L. (1983). Velocity distribution in smooth 
rectangular open channels. Journal of Hydraulic Engineering, ASCE, 109(2), 270–289.

Shannon, C.E. (1948). The mathematical theory of communications, I and II. Bell System 
Technical Journal, 27, 379–423.

© 2016 by Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281987%29113%3A2%28159%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281989%29115%3A5%28576%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281989%29115%3A5%28576%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fhyp.5857
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281991%29117%3A10%281389%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281983%29109%3A2%28270%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F00221680309506891
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281995%29121%3A1%2826%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fhyp.1476
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fhyp.1476
http://www.crcnetbase.com/action/showLinks?crossref=10.1103%2FPhysRev.108.171
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281988%29114%3A7%28738%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281983%29109%3A11%281424%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281988%29114%3A7%28738%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281983%29109%3A11%281424%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281998%29124%3A10%281064%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%29HE.1943-5584.0000610
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281995%29121%3A1%2826%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%29HE.1943-5584.0000319
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281995%29121%3A1%2826%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281992%29118%3A7%28989%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1103%2FPhysRev.106.620
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fj.1538-7305.1948.tb01338.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fj.1538-7305.1948.tb01338.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%282002%29128%3A8%28803%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281987%29113%3A5%28583%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281987%29113%3A5%28583%29
http://www.crcnetbase.com/action/showLinks?crossref=10.13031%2F2013.41384


87One-Dimensional Velocity Distributions

Singh, V.P. (1996). Kinematic Wave Modeling in Water Resources: Surface Water Hydrology. 
John Wiley, New York.

Singh, V.P. and Luo, H. (2009). Derivation of velocity distribution using entropy. Proceedings 
of IAHR Congress, Vancouver, British Columbia, Canada, pp. 31–38.

Singh, V.P. and Luo, H. (2011). Entropy theory for distribution of one-dimensional velocity in 
open channels. Journal of Hydrologic Engineering, 16(9), 725–735.

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical 
Physics, 52, 479–487.

Vanoni, V.A. (1941). Velocity distribution in open channels. Civil Engineering, 11(6), 356–357.
von Karman, T. (1935). Some aspects of the turbulent problem. Mechanical Engineering, 

57(7), 407–412.
Xia, R. (1997). Relation between mean and maximum velocities in a natural river. Journal of 

Hydraulic Engineering, 123(8), 720–723. 

© 2016 by Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281997%29123%3A8%28720%29
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01016429
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01016429
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%29HE.1943-5584.0000363
http://www.crcnetbase.com/action/showLinks?crossref=10.1061%2F%28ASCE%290733-9429%281997%29123%3A8%28720%29


89

4 Two-Dimensional 
Velocity Distributions

In natural open channels, velocity varies in two directions, and therefore, the  velocity 
distribution should be considered in two dimensions. The existing velocity distribu-
tion laws and equations that are described in the 1-D case are, however, applicable 
only to wide channels in which velocity is assumed to increase monotonically in the 
vertical direction from the channel bed to the water surface. They cannot be regarded 
as general or universal laws governing velocity distributions in open  channels. The 
objective of this chapter is to present the derivation of 2-D velocity distributions 
using the Tsallis entropy.

4.1 PRELIMINARIES

In natural open channels, velocity varies in both vertical (y) and transverse (x) direc-
tions. In the transverse direction, the velocity is near zero at the boundaries and is 
maximum somewhere in the middle of the channel but not necessarily in the center. 
In the vertical direction, the velocity increases from 0 at the channel boundary to the 
maximum at or below the water surface near the channel center. The phenomenon 
in which the velocity reaches the maximum value below the water surface is called 
dip phenomenon.

The occurrence of maximum velocity below the water surface is an important 
feature of open-channel flow. Therefore, a 2-D analysis and modeling of velocity 
distribution is needed to be able to deal with the geometry of isovels (lines of equal 
velocity) in a cross section. Classical laws like the power law and the Prandtl–von 
Karman universal velocity distribution are 1-D distributions that are satisfactory for 
wide rectangular channels in which the variation in velocity is dominant in the verti-
cal direction.

Another characteristic that distinguishes the 2-D velocity distribution is the dip 
phenomenon, which was reported more than a century ago by Stearns (1883) and 
Murphy (1904). The dip phenomenon is caused by secondary currents (Nezu and 
Nakagawa 1993) that result in the circulation in the transverse channel cross section. 
In the velocity field, the longitudinal flow component is called primary flow and the 
secondary motion transports the low-momentum fluids from the near-bank region to 
the center and the high-momentum fluids from the free surface toward the bed. Yang 
et al. (2004) investigated the mechanism of dip phenomenon in relation to secondary 
currents in open-channel flow. In their study, a dip-modified log-law for the velocity 
distribution in smooth uniform open channel was developed. This modified velocity 
distribution was capable of describing the dip phenomenon and is applicable to the 
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velocity profile in the region from near the bed to just below the free surface and 
transversely from the centerline to the near-wall region of the channel. From experi-
ments, they showed that the location of the maximum velocity was related to the 
lateral portion of the measured velocity profile. It was concluded that the dip may 
even occur in a very wide channel, not on the centerline but in the sidewall region. 
Absi (2011) derived an ordinary differential equation for velocity distribution using a 
simple dip-modified log-wake law and found his approach to yield improved velocity 
predictions for arbitrary open-channel flow.

4.2 2-D VELOCITY DISTRIBUTIONS

The entropy theory permits the development of an efficient method to describe 
velocity in both one and two dimensions. The 2-D velocity distribution should be 
valid regardless of the location of maximum velocity. It should allow deriving equa-
tions for the location (on a vertical) of mean velocity in a channel cross section and 
derive other equations that can be used to provide additional descriptions of velocity 
distribution.

Plastino and Plastino (1999), among others, have discussed the advantages of the 
Tsallis entropy. Luo and Singh (2011) and Cui and Singh (2013) employed the Tsallis 
entropy to derive the 2-D velocity distribution. The Tsallis entropy (Tsallis, 1988), 
H(u), of velocity, u, can be expressed as

 

H u
m

f u f u dum

u

( ) ( ){ [ ( )] }
max

=
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- -ò1
1

1 1

0

 (4.1)

where
m is the entropy index
f(u) is the probability density function (PDF)
umax is the maximum velocity

The 2-D velocity distributions have been derived by two methods: (1) using cur-
vilinear coordinates (Chiu, 1988) and (2) regular coordinates (Marini et al., 2011). 
Both methods are discussed using the Tsallis entropy. The procedure for deriving a 
2-D velocity distribution using the Tsallis entropy comprises the following steps: (1) 
setting up a coordinate system, (2) hypothesizing cumulative probability distribu-
tion function (CDF) of velocity, (3) specification of constraints, (4) determination of 
entropy, (5) derivation of velocity distribution, and (6) determination of parameters.

4.3  ONE-CONSTRAINT VELOCITY DISTRIBUTION 
USING THE CHIU COORDINATE SYSTEM

Using the coordinate system of Chiu (1988), Luo and Singh (2011) employed the 
Tsallis entropy. The Tsallis entropy–based approach of Luo and Singh (2011) was 
either superior or comparable to Chiu’s distribution for the data sets used for testing. 
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However, due to the complexity of the coordinate system and a large number of 
parameters involved, application of the velocity distribution with the Chiu  coordinate 
system may be limited.

4.3.1 2-d CoordinatEs

In an open channel that is not “wide,” the (time-averaged) velocity varies in both the 
vertical (y) and transverse (z) directions (Chiu, 1988). The isovels curve up toward 
the water surface under the influence of the two sides of the channel, among other 
factors. For modeling the velocity distribution, it is, therefore, logical to first trans-
form the Cartesian y- and z-coordinates into another coordinate system, say, the 
r–s coordinate system, in which r has a unique, one-to-one relation with a value 
of velocity, and s (coordinate) curves are their orthogonal trajectories, as shown in 
Figure 4.1. The idea of using the r–s coordinates is similar to that of using the cylin-
drical coordinates in studying flows in a pipe. The time-averaged velocity u that 
varies from 0 to umax is assigned to the r value varying from r0 to rmax. The time-
averaged velocity (u) is almost zero along an isovel that has an r value equal to r0, 
which has a small value representing the channel bed (including the bottom and 
sides). In addition, u is umax, the maximum value of u, at r equal to rmax, which may 
occur on or below the water surface. The velocity u increases monotonically with the 
spatial coordinate r from r0 to rmax, although it may not increase monotonically with 
y, the elevation from the channel bed.

Referring to Figure 4.1, Chiu and Lin (1983) and Chiu and Chiou (1986) repre-
sented different features of isovels in a channel cross section as

 r Y Z Z Yi
i= - - +( ) exp( )1 1b b  (4.2)

with its orthogonal trajectories as
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It is noted that s takes on the negative sign only when y > D + h and h < 0. In other 
cases, s takes on the positive sign. Term Bi for i equal to either 1 or 2 is the trans-
verse distance on the water surface between the y-axis and either the left or the right 
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bank of a channel cross section; z is the coordinate in the transverse direction; y 
is the coordinate in the vertical direction (y is selected such that it passes through 
the point of maximum velocity); h, δy, δi, and βi are the coefficients characterizing 
the isovel geometry. Coefficient h may vary from a negative value—D to a posi-
tive value up to +∞. When greater than zero, h does not have any special physical 
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Dr
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(b)
δyChannel bed (r = r0)
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z
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FIGURE 4.1 Velocity distribution and curvilinear coordinate system: (a) h > 0 and (b) h < 0.
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93Two-Dimensional Velocity Distributions

meaning; it is simply a coefficient instrumental in shaping the pattern of isovels 
shown in Figure 4.1a, in which umax occurs on the water surface. However, when 
h is less than or equal to zero, its magnitude |h| represents the actual depth to umax 
below the water surface, as shown in Figure 4.1b. These figures also show the coor-
dinates chosen, along with other variables that appear in the preceding equation. 
If the magnitude of h is very large, isovels are parallel horizontal lines such that 
velocity varies only with y and r approaches y/D. Such a situation tends to occur in 
wide channels.

For a particular vertical along the y-axis where z = 0 and δy = 0, Equation 4.2 
gives

 
r Y Y

y

D h

y

D h
= - =

+
-

+
æ
è
ç

ö
ø
÷exp( ) exp1 1  (4.6)

Quantities δy and δi are usually small (especially for a rectangular channel) and r0 = 0. 
For estimating flow velocity during high floods, it can be assumed that Equation 4.6, 
written for the vertical where the maximum velocity occurs (z = 0), holds.

If h < 0, rmax and umax occur at y = D + h, so that rmax = 1 from Equation 4.2. Then, 
Equation 4.6 gives
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If h ≥ 0, rmax and umax occur at the water surface where y = D and
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Then, using Equations 4.6 and 4.8, one obtains
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4.3.2  ForMulation oF a hypothEsis on CuMulatiVE 
probability distribution

Chiu (1987, 1989) expressed the cumulative probability distribution (CDF) of  velocity 
in a channel cross section in terms of the cylindrical coordinate system as
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From Equation 4.10 and the definition of PDF follows:
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4.3.3 spECiFiCation oF Constraints

The constraints can be defined variously but for illustrative purposes they are simply 
defined as
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where u  is the cross-sectional mean velocity.

4.3.4 Entropy MaxiMizing

Following Jaynes (1957a,b), the least-biased estimation of f(u) can be obtained by 
maximizing the entropy subject to the specified constraints. Using the Lagrange 
multipliers, the Lagrangian function, subjected to Equations 4.12 and 4.13, can be 
written as
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where λ0 and λ1 are the Lagrange multipliers. Now, differentiating Equation 4.14 
with respect to f(u), the velocity PDF is obtained as
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Let λ* = (1/(m−1)) + λ0 be replaced with λ*. Then, Equation 4.15 can be recast as
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Equation 4.16 expresses the entropy-based probability distribution of velocity.
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4.3.5 VEloCity distribution

Combining the PDF of u (Equation 4.16) with Equation 4.10, one obtains the velocity 
distribution as
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Equation 4.17 is in terms of the r-coordinate and has two unknown parameters λ1 
and λ* and exponent m which need to be determined. Figure 4.2 shows the velocity 
distribution for Tiber River, Italy, at two different verticals for different m values. 
The velocity observations are given in Table 4.A.1.

4.3.6 dEtErMination oF paraMEtErs

Based on the analysis of both field and experimental velocity data, the feasible range 
of m has been found to be between 0 and 2. Figure 4.2 shows the velocity distribu-
tion at two different verticals in a cross section of Tiber River, Italy, for different m 
values. It can be seen that the velocity distribution changes a little with the variation 
of m under the coordinate transformation; this means that the velocity distribution 
is not highly sensitive to exponent m within the feasible range. In other words, the 
velocity curves derived from different m values do not have significant differences 
between each other. Furthermore, it was found that for fixing m = 2, parameters λ1 
and λ* have simple analytical expressions as shown later.

Following the same procedure as in Chapter 3, one can write for m = 2
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Integration of Equations 4.18 and 4.19 yields, respectively,
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FIGURE 4.2 Velocity distribution of (a) vertical no. 4, Tiber River and (b) vertical no. 5, 
Tiber River.
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Therefore, parameters λ1 and λ* have a simple analytical solution:
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With umax and um known from observations, parameters λ1 and λ* can be obtained 
from Equations 4.22 and 4.23.

Example 4.1

Twelve sets of observed mean and maximum velocity data collected from straight 
rectangular reaches of Ghamasiab River in western Iran are listed in Table 4.1. 
Compute the Lagrange multipliers for the velocity data sets.

Solution

The Lagrange multipliers can be computed from Equations 4.22 and 4.23. For 
example, taking umax = 0.524 m/s and um = 0.348 m/s, one gets
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Thus, the Lagrange multipliers for other sets are computed in the same way and 
listed in Table 4.2.

TABLE 4.1
Observed Maximum and Mean 
Velocity from Ghamasiab River

Run No. umax (m/s) um (m/s) 

A0-1 0.524 0.348

A0-2 0.491 0.335

A0-3 0.358 0.308

A0-4 0.421 0.323

A1-1 0.582 0.421

A1-2 0.578 0.424

A1-3 0.575 0.345

A1-4 0.607 0.378

A2-1 1.071 0.708

A2-2 0.885 0.584

A2-3 0.774 0.516

A2-4 0.682 0.493
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4.3.7 dEFining an Entropy paraMEtEr

It is possible to simplify the velocity distribution equation by introducing a new 
dimensionless parameter M that can be defined as

 M u= l1
2
max  (4.24)

The mathematical range of M is in the interval (0, 12). For most rivers in the United 
States, the maximum velocity is 25%–50% larger than the mean, so the M values 
for these rivers are between 4 and 7.2. The M value can play an important part in 
understanding and controlling open-channel flows and hence as a new key hydraulic 
parameter. Parameter M combines mean and maximum velocities and in turn the 
influence of the Lagrange multiplier λ1. It also serves to succinctly express a range 
of flow characteristics.

Example 4.2

Compute the values of M for data sets listed in Table 4.1.

Solution

Using Equation 4.24, the entropy parameter M can be computed as

 M u= = ´ =l1
2 214 346 0 524 3 939max . . .

The PDF of u, f(u), can also be expressed in terms of M as
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TABLE 4.2
Computation of Lagrange Multipliers

Run No. λ1 λ* 

A0-1 14.346 −2.914

A0-2 18.146 −8.922

A0-3 67.476 −139.811

A0-4 36.184 −46.939

A1-1 15.827 −5.925

A1-2 16.779 −7.454

A1-3 7.259 6.338

A1-4 7.995 4.978

A2-1 3.370 5.390

A2-2 4.899 5.386

A2-3 6.677 4.585

A2-4 11.500 −0.459
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The PDF of dimensionless velocity f(u/umax) can also be expressed with M as a 
parameter:
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Equation 4.26 shows that the probability density of dimensionless velocity u/umax 
follows a simple linear relationship, and the slope of the line is determined by 
parameter M. Figure 4.3 plots the function f(u/umax) for various M values.

Example 4.3

Compute the PDF of u/umax.

Solution

It can be seen from Equation 4.26 that the PDF of dimensionless velocity is defined 
by entropy parameter M. For different M values, the PDF of u/umax is obtained from 
Equation 4.26 and plotted in Figure 4.3. It is seen from the figure that when M equals 
0, the PDF is constant at 1 for any velocity; thus, it is a uniform distribution. As 
M value increases, the PDF gets skewed and the slope increases with the M value.

4.3.8 MaxiMuM Entropy

Substitution of Equations 4.24 and 4.25 in Equation 4.1 gives, respectively, the 
 maximum entropy of velocity and dimensionless velocity u/umax as
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FIGURE 4.3 Parameter M and probability density of dimensionless velocity f(u/umax).
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where w = u/umax. Equation 4.27 shows that the maximum entropy increases with 
increasing maximum velocity.

Example 4.4

Compute the maximum entropy for the data in Table 4.3.

Solution

Using Equation 4.27, the maximum entropy can be obtained as shown in Table 4.4. 
As an illustration,

 
H u

M
u

( )
.
.

.
max

= -
+

= -
+
´

= -1
48
48

1
48 3 939
48 0 524

1 525
2 2

Equation 4.27 shows that the maximum entropy is determined by parameter M. 
The maximum entropy of dimensionless velocity computed using Equation 4.27 
is plotted in Figure 4.4 for various M values, and a unique relation is observed. 
It is seen that H(u) decreases with the increase in M in its feasible range. Entropy 

TABLE 4.3
Computation of M Values

Run No. M Run No. M 

A0-1 3.939 A1-3 2.400

A0-2 4.375 A1-4 2.946

A0-3 8.648 A2-1 3.866

A0-4 6.413 A2-2 3.837

A1-1 5.361 A2-3 4.000

A1-2 5.606 A2-4 5.349

© 2016 by Taylor & Francis Group, LLC
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has the largest value at M = 0, which corresponds to the result from Figure 4.3, 
where the PDF is uniform for M = 0. It may, however, be noted that the value 
of entropy must be positive, and therefore, the value of entropy reported in the 
table can be taken with respect to a selected benchmark so all values of entropy 
are positive.

4.3.9 VEloCity distribution in tErMs oF paraMEtEr M

Replacing the two parameters in the velocity distribution of Equation 4.17 with 
parameter M, the velocity distribution equation becomes
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TABLE 4.4
Computed Values of Maximum Entropy

Run No. H Run No. H 

A0-1 −1.525 A1-3 −0.948

A0-2 −1.849 A1-4 −0.945

A0-3 −6.146 A2-1 −0.224

A0-4 −3.411 A2-2 −0.477

A1-1 −1.747 A2-3 −0.723

A1-2 −1.863 A2-4 −1.340

0
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FIGURE 4.4 Maximum entropy with various M.
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Therefore, the dimensionless velocity can be expressed as
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The cross-sectional mean M can be used to compute the velocity distribution that can 
be compared with observed data in Figure 4.3.

Example 4.5

Compute and plot the dimensionless velocity distribution for various values of M 
with h/D = −0.4 and 0.05.

Solution

When h/D = −0.4, umax occurs at y/D = 0.6 and (r − r0)/(rmax − r0) is given by Equation 
4.7. Thus, the dimensionless velocity is computed from
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When h/D = 0.05, umax occurs at water surface and (r − r0)/(rmax − r0) is given by 
Equation 4.9. Now the dimensionless velocity is estimated from
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Figure 4.5 shows the velocity distribution curve changes gradually according to 
the change in parameter M, but not so dramatically; during the reasonable math-
ematical range of M, profiles with different M values tend to the same shape. For 
h < 0, the intersection of velocity profiles with different M values is determined by 
h/D. The differences focus on the region close to the channel bottom.

Example 4.6

Estimate the velocity distribution of Tiber River for the data given in Appendix A 
using the M value and plot it.

Solution

For given umax = 2.72 m/s and um = 2.20 m/s, the Lagrange multipliers are deter-
mined first
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Thus, M u= =l1
2 7 412max .

As given h = −2.7, umax occurs at D + h = 3.61 m, and Equation 4.7 is used. By 
inputting Equation 4.7 into Equation 4.30, the velocity for each location can be 
determined as in the previous example. The velocity estimated for no. 5 vertical 
line (the centerline) and no. 4 vertical line is plotted in Figure 4.6.
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FIGURE 4.5 (b) Dimensionless velocity distributions with various M values at (a) h/d = −0.4 
and (b) h/D = 0.05.
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FIGURE 4.6 Velocity distribution.
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4.3.10 ConstruCtion oF isoVEls

For a given cross section, isovels can be constructed following the steps shown in 
Example 4.7.

Example 4.7

Construct the isovels of the velocity estimated from Example 4.6 with n = 0.015, 
B = 20.8 m, D = 6.31 m, h = −2.7 m and umax = 2.72 m/s, um = 2.20 m/s.

Solution

For z = (−20.8, 20.8) and y = (0, 6.31), we first transfer z and y into Z and Y using 
Equations 4.4 and 4.5 with Bi = 20.8 m, D = 6.31 m, and h = −7.2 m using the 
given information. Then, (z, y) coordinates are meshed with the 2-D plane and 
changed into the isovel coordinate r using Equation 4.2, where βi is assumed to 
be 1. With the M value computed from Example 4.6, the velocity distribution is 
estimated for each r value using Equation 4.30. Thus, for each combined value of 
(z, y) a corresponding velocity value is estimated. Therefore, the contour plot of 
(z, y, u) is obtained, as shown in Figure 4.7.

4.3.11 MEan VEloCity

In open-channel hydraulics, the mean velocity is needed in the governing equations 
for the transport of mass, momentum, and energy through a channel cross section. In 
comparison with mean velocity, the maximum velocity in a channel cross section has 
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FIGURE 4.7 Cross-sectional velocity distribution for a section in Tiber River, Italy.
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not been considered important enough to receive special attention until Chiu (1991) 
explored the relationship between the mean velocity and the maximum  velocity 
using the entropy parameter Mc, which can be expressed as
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It is considered worthwhile to make special efforts for measurement, analysis and 
modeling of maximum velocity, and determining the relation of maximum velocity 
to the mean velocity (Chiu and Said, 1994). On the other hand, based on the defini-
tion of M and its relationship with the two Lagrange multipliers, it is found that
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 (4.32)

The relation found based on the Tsallis-based 2-D velocity distribution follows a 
 linear distribution with M. The ratio of mean and maximum velocity is plotted against 
various M values for the Tsallis entropy–based velocity distribution in Figure 4.8.

Example 4.8

Compute the mean velocity for data given in Example 4.1.

Solution

Following Equation 4.32, the mean velocity can be computed from
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which is the same as the observed value (Table 4.5).
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4.3.12 loCation oF MEan VEloCity

On an isovel where r = rm and u = um, Equation 4.30 becomes

 

u

u M
M

r r

r r

M M

M
m m

max max

( )= -
-

æ

è
ç

ö

ø
÷ + -é

ë
ê

ù

û
ú - -2 4

16
4
2

0

0

2
1

2

 (4.33)

Combining Equations 4.33 and 4.32, the location of mean velocity can be obtained as
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Example 4.9

Compute the location of mean velocity.

Solution

For M varying from 0 to 12, the location of mean velocity can be determined from 
Equation 4.34 and is plotted in Figure 4.9. For example, when M = 1
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TABLE 4.5
Estimation of Mean Velocity from Parameter M

Run No. umax(m/s) Observed um(m/s) Estimated um(m/s) 

A0-1 0.524 0.348 0.348

A0-2 0.491 0.335 0.335

A0-3 0.358 0.308 0.308

A0-4 0.421 0.323 0.323

A1-1 0.582 0.421 0.421

A1-2 0.578 0.424 0.424

A1-3 0.575 0.345 0.345

A1-4 0.607 0.378 0.378

A2-1 1.071 0.708 0.708

A2-2 0.885 0.584 0.584

A2-3 0.774 0.516 0.516

A2-4 0.682 0.493 0.493
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4.4 VELOCITY DISTRIBUTION USING GENERAL FRAMEWORK

To reduce the many parameters in the curvilinear coordinate system, Marini et al. 
(2011) developed a new method for deriving 2-D velocity distribution using the 
Shannon entropy, where the CDF was hypothesized using the x–y coordinates and 
was continuous and differentiable. The 2-D velocity distribution, so developed, has 
been shown to have an advantage over Chiu’s velocity distribution. However, the 
velocity with lower values is not captured accurately.

4.4.1 CuMulatiVE distribution FunCtion

An idealized rectangular channel is shown in Figure 4.10, which is the half size of 
the cross section. The coordinate is set in this way such that (0, 0) represents the cen-
ter of the channel bed, y represents the depth from the channel bed, and x represents 
the distance from the center. Thus, y is always positive and is measured from the 
channel bed (y = 0) up, while x increases positively toward the right bank and takes 
on negative values in the left half of the cross section. Since the velocity is assumed 
to be 0 at the boundary, the velocity isovel I(0) = {x = B or y = 0}. For the maximum 
velocity that is assumed to occur at the axis passing through the center of the water 
surface, the isovel I(umax) = {x = 0 and y = D − h}, h is the distance to the maximum 
velocity below the water surface. For the rest of the points within the flow cross 
 section, velocity isovels monotonically increase from 0 to umax.

The velocity is shown to be monotonically increasing from isovel I(0) to isovel I(umax). 
Thus, the cumulative distribution function will have a value of 0 at I(0) and a value of 1 
at I(umax). With the relation between the x (transverse) and y (vertical) coordinates and 
isovel I(u), the cumulative distribution function can be expressed in the space domain. 
Thus, the CDF needs to be 0 at x = B or y = 0, which corresponds to I(0), and needs to 
be 1 at x = 0 and y = D, which corresponds to I(umax). Here, D is the flow depth. Cui and 
Singh (2012) have shown that a nonlinear cumulative distribution function of the type
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FIGURE 4.9 (rm − r0)/(rmax − r0) versus M.
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is satisfactory for the probabilistic description of 2-D velocity distribution in open 
channels. In Equation 4.35, a and b are both shape parameters and are related to the 
width-depth ratio.

4.4.2 2-d VEloCity distribution

With the hypothesis on the cumulative distribution function expressed by Equation 
4.35, the next step is to compute velocity profiles using the entropy-based PDF given 
by Equation 4.16. To that end, consider the PDF in 2-D domain as (x, y), where y 
represents the depth from the channel bed and x represents the transverse distance 
from the centerline. Following Marini et al. (2011), since u is a function of x and y, 
f(u) can be written as f(u(x, y)). Since f(u) is the derivative of the cumulative distribu-
tion function F(u), taking the partial derivatives of F(u) with respect to x and y, the 
following two equations are obtained:
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FIGURE 4.10 Idealized rectangular cross section.
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Now defining a new variable
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and taking partial derivatives of w with respect to x and y, one obtains
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Comparing Equations 4.39 and 4.40 with Equations 4.36 and 4.37, the relationship 
between F(u) and w can be written as
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Equations 4.41 and 4.42 can be seen as a system of linear differential equations that 
can be integrated using the Leibniz rule:
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Since the point with coordinates (0, 0) lies in the middle of channel floor, which 
has the  velocity u = 0, w(0, 0) on the right-hand side of Equation 4.43 equals 
[((m − 1)/m)λ*]m/(m − 1) from Equation 4.38. Hence, the right-hand side of Equation 4.43 
now becomes
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The definite integral on the left-hand side of Equation 4.43 can be calculated at a 
generic point of coordinates, say ( , ),x y  which is identified by means of a polygonal 
curve that starts from the origin of axes (0, 0), passing through the point ( , )x 0  and 
ends at (x y, ). The cumulative distribution function F(u) is constantly 0 at point (0, 0) 
to ( x, 0). Thus, using Equations 4.39 and 4.40, the integral of Equation 4.43 yields
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Replacing the left side of Equation 4.43 with Equation 4.45 and the right side with 
Equation 4.44, w(x, y) can be obtained as
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Substituting the definition of w from Equation 4.38 into Equation 4.46, the velocity 
distribution function is obtained as
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Equation 4.47 is the 2-D velocity distribution equation based on the Tsallis entropy.
It is interesting to note that Equation 4.47 reduces to 1-D velocity distribution:
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with the CDF hypothesized as F(u) = y/D (Cui, 2011). Equation 4.48 can also be 
derived directly (Cui, 2011).

Example 4.10

Determine the 2-D velocity distribution using the general framework for data 
listed in Table 4.6.

Solution

It can be seen from the table that the cross section is 25.58 m wide from center 
to the left bank and 16.47 m wide from center to the right bank with a depth of 
6.15 m at the center. umax = 3.36 m/s occurred at y = 6.09 m and um = 2.206 m/s 
from observations. Thus, following the steps from Chapter 3, for different m  values, 
the Lagrange multipliers are computed, as given in Table 4.7.

Thus, the velocity distribution can be determined from Equation 4.47 with fit-
ted a = 0.2 and b = 1. Figure 4.11 plots the dimensionless velocity distribution of 
centerline for various m values.

4.4.3 diMEnsionlEss paraMEtEr g

As defined in the case of 1-D velocity distribution (Cui, 2011) in Chapter 3, the 
dimensionless entropy parameter G can also be used as follows:
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TABLE 4.6
2-D Velocity Profile Obtained from Tiber River, Italy
z (m) Depth (m) u obs. (m/s) z (m) Depth (m) u obs. (m/s) 

−25.58 0 0 0 0.06 3.36

−18.86 0 0.83 0 0.2 3.16

−18.86 0.06 0.83 0 1 3.20

−18.86 0.2 0.74 0 2 3.28

−18.86 1 0.64 0 3 2.91

−18.86 2 1.15 0 4 2.78

−18.86 3 0.96 0 5 2.32

−18.86 3.9 0.74 0 5.8 2.03

−18.86 4.1 0.71 0 6 1.86

−18.86 4.25 0.00 0 6.15 0.00

−14.66 0 1.21 3.78 0 3.16

−14.66 0.06 1.21 3.78 0.06 3.16

−14.66 0.2 1.21 3.78 0.2 3.11

−14.66 1 1.18 3.78 1 3.28

−14.66 2 1.56 3.78 2 3.20

−14.66 3 1.09 3.78 2.88 2.61

−14.66 3.8 0.83 3.78 3.88 2.57

−14.66 4 0.71 3.78 4.88 2.53

−14.66 4.15 0.00 3.78 5.7 2.03

−10.46 0 2.06 3.78 5.94 1.86

−10.46 0.06 2.06 3.78 6.09 0.00

−10.46 0.2 2.34 7.34 0 2.36

−10.46 1 2.31 7.34 0.06 2.36

−10.46 1.93 2.44 7.34 0.2 2.61

−10.46 2.88 2.19 7.34 1 2.70

−10.46 3.88 2.06 7.34 2 2.74

−10.46 4.28 1.65 7.34 2.93 2.61

−10.46 4.48 1.59 7.34 3.88 2.53

−10.46 4.63 0.00 7.34 4.88 2.32

−6.29 0 2.99 7.34 5.38 0.98

−6.29 0.06 2.99 7.34 5.7 1.19

−6.29 0.2 2.66 7.34 5.85 0.00

−6.29 0.8 2.82 10.49 0 1.78

−6.29 1.71 2.66 10.49 0.06 1.78

−6.29 3 2.61 10.49 0.2 1.44

−6.29 4 2.36 10.49 1 2.15

−6.29 5 1.95 10.49 2 2.32

−6.29 5.2 1.60 10.49 3 2.57

−6.29 5.45 1.46 10.49 3.5 2.32

−6.29 5.6 0.00 10.49 4.6 1.95

10.49 5 1.61

10.49 5.7 0.00

16.47 0 0
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 (4.49)

Note that in Equation 4.49 the Lagrange multiplier λ1 has dimensions [T/L] and λ* is 
dimensionless; accordingly, G is dimensionless. Parameter G is found to be related 
to the ratio of mean and maximum velocity and a quadratic relation is obtained from 
observed mean and maximum velocity values as (Cui, 2011):
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u
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Now with the use of entropy parameter G, the general velocity distribution equation 
(Equation 4.47) can be developed using the same steps as presented in Chapter 3. From 
Equation 4.47, the maximum velocity, where y = D, F(umax) = 1, can be obtained as
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 (4.51)

TABLE 4.7
Lagrange Multipliers Computed for Various m Values

M 1.5 2 3 4 6 

λ1 0.101 0.055 0.016 0.005 0.001

λ* 0.464 0.5028 0.1064 0.027 0.0013

0.5
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0.2

0.3

Obs. u0.4

0.5

0.6

0.7

y/
D
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0.9

1
m = 1.5

m = 2

m = 3

m = 4

m = 5

0.6 0.7 0.8
 u/umax

0.9 1

FIGURE 4.11 Dimensionless velocity distribution for various m values.
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Dividing Equation 4.47 by Equation 4.51 and using Equation 4.49, one obtains
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Substituting u = u0 = 0, at y = 0, Equation 4.52 reduces to
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Rearranging Equation 4.53, one obtains
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Using the right side of Equation 4.54, Equation 4.52 can be written as

 

u

u G
G G F um m m m m m

max

/( ) /( ) ( )/( [( ) ( ( ) ) ( )] )= - - - + - -- - -1
1

1 1 1 11 1 1  (4.55)

Equation 4.55 is the general 2-D velocity distribution equation in terms of parameter 
G and maximum velocity.

Example 4.11

Determine the velocity distribution for the data in Table 4.6.

Solution

The Lagrange multiplier values are given in Table 4.7. For given umax = 3.36 m/s 
and um = 2.206 m/s, parameter G is estimated by solving Equation 4.50, which 
gives G = 0.336. Thus, the velocity distribution can be computed from Equation 
4.55 for each vertical line. The velocity profiles at x = 0 m, 7.34 m, and −18.86 m 
are plotted in Figure 4.12.

It can be seen from Figure 4.12 that the velocity can be divided into three portions. 
In the first region from the channel bed to some depth of about 0.2 m, the velocity 
distribution on each vertical line increases slowly. Then it starts to increase faster to 
the maximum velocity, which is the second region. Thereafter, the velocity decreases 
from the maximum to some value at the water surface, where the rate of decrease is 
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similar to the rate of increase in the second region. It can be concluded that the slow 
increase in the first region is caused by the resistance due to the bed shear stress, so 
that beyond the bed effective region the velocity grows faster. In the third portion, it 
is the secondary currents that retard the velocity from growing to the water surface.

The highlighted point is the maximum velocity observed from each vertical. The 
computed values capture the point well. Comparing the curves in Figure 4.12, it is 
found that the farther away from the centerline the location of the maximum velocity 
is occurring lower, which is in accord with the analysis of Yang et al. (2004). Overall, 
the estimated values fit the observed values reasonably well with the coefficient of 
determination between computed and observed values as high as 0.977.

4.4.4 VEloCity Entropy

With entropy-based probability distribution obtained from Equation 4.15, the 
 maximum entropy can be expressed by substituting Equation 4.15 in Equation 4.1 as
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The Lagrange multipliers from Equation 4.22 to 4.23 can be replaced by  parameter G 
using the same steps as presented in Chapter 3. Then, the entropy can be computed 
in terms of parameter G instead of the Lagrange multipliers as
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(4.57)

which is the same as derived by Cui (2011). However, because the velocity distri-
bution is 2-D, the value of G will be different from that corresponding to 1-D case. 
Equation 4.57 is a measure of uncertainty associated with the 2-D velocity distribution.

0.00
0

1

2

3

4
obs. u at x = 0 m
obs. u at x = 7.34 m
obs. u at x = –18.86 m
est. u

y(
m

)
5

6

7

0.50 1.00 1.50 2.00
u(m/s)

2.50 3.00 3.50

FIGURE 4.12 Velocity distribution observed in Tiber River.
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Example 4.12

Compute the entropy value for Example 4.11.

Solution

For m = 3, λ1 = 0.016, λ* = 0.106, and G = 0.336 are obtained in Example 4.11. 
Therefore,
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Equation 4.57 implies that the value of maximum entropy increases with entropy 
parameter G, which implies that the velocity distribution with larger G values 
tends to be more uniformly distributed. Though not quite obvious, it is found 
from Cui and Singh (2012) that the flow with larger G values results in smaller 
Reynolds number (Re). The velocity is distributed more possibly uniformly and 
entropy tends to be bigger when Re is small than when Re is large.

4.4.5 loCation oF MaxiMuM VEloCity

The maximum velocity over the cross section occurs some distance below the water 
surface near the center in natural open channels. Due to the transverse change in the 
velocity distribution, the distribution along each vertical is different and the location 
of the maximum velocity along each vertical may also differ. It has been stated that 
the depth of maximum velocity is mainly related to the lateral position of velocity pro-
files in natural channels (Yang et al., 2004). The flow near the wall is more affected by 
the boundary shear and vegetation if any than near the center area and is dominated 
by secondary currents. To determine the location of the maximum velocity below the 
water surface, one may begin with the consideration of bed shear stress as

 

t r re= - =
¶
¶ =

gS D h
u

y
f

y

( ) 0

0

 (4.58)

where
Sf is the friction slope
ε0 is the momentum transfer coefficient at the channel bed, which is equal to the 

kinematic viscosity of the fluid
∂u/∂y can be computed from Equation 4.52
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Thus,
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It is seen from Equation 4.59 that the possible factors impacting the shear stress are 
the dimensionless parameter G and the cumulative density function F(u), which may 
further impact the location of maximum velocity. Figure 4.13 plots the measured depth 
of maximum velocity below the water surface versus the entropy parameter G, from 
which it can be seen that the dip phenomenon is more likely to occur when the G value 
is bigger than 0.5 and the larger the G is the lower the maximum velocity may locate.

In order to be able to describe the change in depth, the cumulative distribution 
function needs to be modified as
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where h is a variable, representing the distance of the maximum velocity from the 
water surface along each line and c is a parameter that ensures the CDF to be within 
the range between 0 and 1. The flow depth D in Equation 4.35 is changed to be D(x) 
so that it can represent the real geometry of the channel boundaries, since natural 
channels are not ideally rectangular shaped. Then, with the use of Equations 4.58 
and 4.60, Equation 4.59 changes to
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 (4.61)
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FIGURE 4.13 Location of maximum velocity.
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Recall the Darcy–Weisbach equation

 

u

u fd*
= 8

 (4.62)

where fd is the Darcy friction factor and the shear velocity is defined as u* .= t r/  
Thus, the shear stress can be written as
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Substituting Equations 4.61 and 4.63 into Equation 4.58 with m = 3, one obtains
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Dividing both sides of Equation 4.64 by fd, we obtain
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It is noted that the left side is the inverse of the Reynold number. Thus,

 

1 1 16
3

1 1 1
2

0 1 2
2 2

R D h

a

Gf
G G

x

Be d

=
-

- - - - æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

-

( )
[( ) ( )]/e

n

//3

 (4.66)

Moving (D – h) to the left side of equation, one obtains
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Thus, the location of maximum velocity turns out to be

 

h D
f

a

G
G G

x

Bd

= - - - - - æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

-e
n
0 1 2

2 2 3

16
3

1 1 1Re [( ) ( )]/

/

 (4.68)

For x = 0, Equation 4.68 reduces to

 
h D

f

a

G
G G

d

= - - - --e
n
0 1 216

3
1 1Re [( ) ( )]/  (4.69)

which represents the location of the maximum velocity at the centerline.
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Equation 4.68 yields the depth of maximum velocity of the whole cross section. 
Figure 4.14 shows the computed location of maximum velocity h/D on several verti-
cals for field data from Italian rivers. The estimated h/D represents the mean value of 
observed values. It can be seen from Figure 4.14 that the maximum velocity occurs 
further below the water surface as x increases, where it is more affected by the bound-
ary shear, and at the boundary it may possibly be as low as the channel bed. Results 
for the Ponte Felcino are higher than the estimated values with a standard deviation 
as 0.157, while results from other two sections are similar to the estimated values.

Figure 4.15 plots the relationship between the location of maximum velocity and 
parameter G at the centerline of the Iranian rivers using Equation 4.69. The h–G 
relationship curve is only valid when the dip phenomenon occurs, but does not pro-
vide the probability of the dip phenomeon and fails to describe when maximum 
velocity occurs at the water surface.
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FIGURE 4.14 Location of maximum velocity across the bank.
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FIGURE 4.15 Computed location of maximum velocity at centerline.
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4.4.6 ConstruCtion oF isoVEls

The procedure for construction of isovels is similar to that explained in Example 4.7. 
The difference is that the (x, y) coordinates no longer need to be transferred 
to the r coordinate first. In Example 4.7, the velocity value is one-to-one correlated to 
the r value and linked to the (x, y) coordinates. Here, the velocity can be computed 
directly for each location described with (x, y).

Example 4.13

Construct the isovels for the velocity obtained from Tiber River in Table 4.6.

Solution

For given 2-D velocity distribution listed in Table 4.6, with umax = 3.36 m/s and 
um = 2.206 m/s, we first compute G = 0.336 as in Example 4.11. Then, using F(u) of 
Equation 4.60 with the modification of flow depth D(x) and the location of maxi-
mum velocity h, the velocity distribution is obtained from Equation 4.55, as shown 
in Example 4.11. Thus, there will be one velocity value associated with each (x, y). 
At last, meshing the grid of (x, y) coordinates and using the contour plot on (x, y, u), 
the isovels are plotted, as shown in Figure 4.16.

Although the velocity is not computed from point to point, the overall trend of 
 isovels provides a qualitative idea. The location and value of the maximum velocity 
and the boundary condition were correctly determined. Compared to observations, 
the computed isovels are more uniformly distributed, because the entropy-based 
velocity distribution is the distribution with the maximum entropy, which tends 
toward the uniform distribution under given constraints.
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FIGURE 4.16 Velocity isovels for Tiber River.
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4.A APPENDIX A

TABLE 4.A.1
Velocity Observations at Pointe Nuovo at Tiber River, Italy, June 3, 1997

Vertical 1 Vertical 2 Vertical 3 Vertical 4 

y (m) u (m/s) y (m) u (m/s) y (m) u (m/s) y (m) u (m/s) 

4.71 0.52 6.31 0.99 6.21 1.54 6.09 1.98

4.65 0.52 6.25 0.99 6.15 1.54 6.03 1.98

4.35 0.63 5.95 1.25 5.85 1.74 5.73 2.15

3.65 0.92 5.25 1.51 5.15 1.87 5.03 2.32

2.65 1.02 4.25 1.81 4.15 2.13 4.06 2.34

1.85 0.97 3.25 1.83 3.15 2.08 3.09 2.48

1.15 0.74 1.25 1.65 2.18 2.06 2.09 2.32

0.45 0.67 0.45 0.97 1.18 1.92 1.09 1.97

0.15 0.34 0.15 0.81 0.48 1.47 0.39 1.78

0.00 0.00 0.00 0.00 0.15 1.28 0.15 1.37

0.00 0.00 0.00 0.00

Vertical 5 Vertical 6 Vertical 7 Vertical 8 Vertical 9 

y (m) u (m/s) y (m) u (m/s) y (m) u (m/s) y (m) u (m/s) y (m) u (m/s) 

6.07 2.66 5.89 2.37 5.76 1.97 5.66 1.42 5.36 0.88

6.01 2.66 5.83 2.37 5.70 1.97 5.60 1.42 5.30 0.88

5.71 2.58 1.89 2.41 5.4 2.03 5.30 1.40 5.00 0.87

5.04 2.61 0.89 1.91 4.7 1.98 4.6 1.63 4.30 1.16

4.07 2.66 0.39 1.53 3.7 2.39 3.6 1.97 3.30 1.49

3.13 2.72 0.15 1.49 2.7 2.22 2.6 1.92 2.30 1.71

2.13 2.61 0.00 0.00 1.9 2.37 1.8 1.81 1.30 1.19

1.10 2.32 1.2 2.06 1.1 1.73 0.40 0.91

0.37 1.92 0.5 1.51 0.5 1.36 0.15 0.80

0.15 1.47 0.15 1.42 0.15 0.71 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

Vertical D (m) Maximum u (m/s) h (m) z (m) 

1 4.71 1.02 2.7 −20.2

2 6.31 1.83 2.7 −2.64

3 6.21 2.13 2.7 −11.44

4 6.09 2.48 2.7 −6.24

5 6.07 2.72 2.7 0.0

6 5.89 2.41 2.7 6.24

7 5.76 2.39 2.7 11.44

8 5.66 1.97 2.7 15.60

9 5.36 1.72 2.7 19.76

Note: y is the vertical distance (m) of each sampled point from the channel bed; u is the observed velocity 
(m/s); D is the water depth (m) along the vertical; maximum u is the maximum sampled velocity (m/s) 
along the vertical; h is the vertical distance (m) below the water surface where the maximum velocity 
occurs; z is the horizontal distance from the vertical where the maximum velocity is sampled.
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4.B APPENDIX B

TABLE 4.B.1
Values of M Based on the Data of Italy’s Rivers

umax(m/s) um(m/s) λ1 λv M 

0.38 0.27 36.08 −1.59 2.679

1 0.77 6.55 −1.27 3.912

1.36 1.11 4.12 −1.33 4.090

1.36 1.06 3.60 −0.98 4.028 February 13, 1985 Pro

1.33 1.00 3.38 −0.75 3.361 M (Chiu) 1.945

1.57 1.11 2.02 −0.31 2.483

1.8 1.32 1.73 −0.44 3.012

1.71 1.19 1.60 −0.20 2.259

1.17 0.89 4.56 −0.96 3.600

1.18 0.93 4.03 −1.27 4.393

1.08 0.87 6.31 −1.55 4.787

0.56 0.40 14.94 −0.89 2.509

Mean 3.509

0.80 0.56 7.97 −0.65 2.538

1.26 0.86 2.85 −0.20 2.121

1.35 1.02 3.33 −0.77 3.449

1.42 1.10 3.30 −0.93 4.015 March 27, 1991 Pro

1.44 1.17 3.64 −1.24 4.018 M (Chiu) 1.945

1.49 1.17 3.13 −0.98 4.281

1.80 1.29 1.58 −0.31 2.606

1.80 1.41 2.08 −0.76 4.119

1.44 1.10 3.13 −0.86 3.822

1.37 1.04 3.31 −0.80 3.561

1.32 0.89 2.41 −0.08 1.920

1.07 0.79 4.09 −0.83 3.162

0.56 0.35 8.62 1.13 1.030

Mean 3.203

1.02 0.63 2.71 0.58 1.077

1.83 1.18 1.04 0.14 1.445

2.13 1.60 1.33 −0.48 3.401 June 3, 1997 Tiber

2.48 1.88 1.01 −0.44 3.559 M (Chiu) 2.005

2.72 2.20 1.00 −0.63 4.849

2.41 1.73 0.90 −0.25 2.694

2.39 1.81 1.08 −0.46 3.542

1.97 1.40 1.30 −0.27 2.553

1.71 0.99 0.65 0.62 0.635

Mean 2.640

0.86 0.63 7.55 −0.92 2.995

1.81 1.03 0.51 0.65 0.537

(Continued)
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5 Suspended Sediment 
Concentration

Concentration of suspended sediment is of fundamental importance in  environmental 
management, assessment of best management practices, water quality evalua-
tion, reservoir ecosystem integrity, and fluvial hydraulics (Stewart et al., 1976a,b). 
Assuming time-averaged sediment concentration along a vertical as a random vari-
able, this chapter discusses suspended sediment concentration profiles based on the 
Tsallis entropy and their analogy with a random walk model. The sediment concen-
tration profiles so obtained are parsimonious as well as reasonably accurate.

5.1  METHODS FOR DETERMINING SEDIMENT 
CONCENTRATION

Sediment carries away chemicals adsorbed on soil particles and thus pollutes the 
environment. Since sediment occurs widely and in large volumes, it is a major pollut-
ant. Determination of erosion and sediment transport is vital for the development of 
pollution abatement measures (Stewart et al., 1976a,b). Fundamental to determining 
sediment discharge and load are the velocity distribution and sediment concentra-
tion, as illustrated by Einstein (1950), who determined suspended sediment dis-
charge by integrating the product of local sediment concentration and flow  velocity 
over the zone of suspension.

Concentration of suspended sediment depends on particle size, settling velocity, 
fluid density, sediment density, and turbulent stress. Depending on the consideration 
of these factors, approaches to predicting suspended sediment concentration can be 
classified as (1) empirical, (2) hydraulic, and (3) entropy based. Empirical approaches 
to sediment concentration are of either exponential or power type (Singh, 1996) 
or linear (Simons and Senturk, 1992). Examples of popular hydraulic approaches 
include the O’Brien–Christiansen equation (O’Brien, 1933; Christiansen, 1935) that 
employs the exchange theory; Rouse equation (Rouse, 1937) that is based on the 
theory of turbulence; the Lane–Kalinske equation (Lane and Kalinske, 1941) that 
also uses the exchange theory; Einstein equation (Einstein, 1950) that is based on the 
bed load theory; the Ackers–White equation (Ackers and White, 1973) that employs 
the stream power concept of Bagnold (1966) and dimensional analysis; the Yang 
 equation (Yang, 1973) that combines the unit stream power and dimensional  analysis; 
the Chang–Simons–Richardson equation (Chang et al., 1967); and the Molinas and 
Wu equation (Molinas and Wu, 2001) that employs energy balance. Methods for 
determining flow velocity have been discussed in Chapters 3 and 4.

Entropy-based approaches to sediment concentration are based on the Shannon 
entropy theory or the Tsallis entropy theory. Chiu et al. (2000) and Choo (2000) 
employed the Shannon entropy and showed that the entropy-based equations 
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predicted sediment concentration better than did empirical or hydraulics-based 
 equations. Luo  and Singh (2011) and Cui and Singh (2013, 2014) used the 
Tsallis entropy for deriving sediment concentration profiles and showed that the 
Tsallis entropy had an advantage over the Shannon entropy.

Classical methods of determining sediment concentration start from the mecha-
nism of suspended sediment transport that occurs in turbulent flow, where turbulent 
velocity fluctuations in the vertical direction transport sediment upward. An equilib-
rium distribution of suspended sediment concentration develops due to the balance 
between turbulent diffusion of grains upward and gravitational settling of the grains 
downward. There are no vertical changes in the sediment concentration profile in 
the flow direction, if there are no changes in channel boundaries (Sturm, 2010). The 
equality between turbulent flux and gravitational settling flux leads to the following 
differential equation that governs the sediment concentration distribution

 
- =e ws s

dc

dy
c  (5.1)

where
c is the sediment concentration at a given point y
y is the vertical distance measured from the channel bed
εs is the diffusion coefficient for sediment transfer
ωs is the settling velocity of sediment particle

Since c decreases with increasing y, dc/dy is negative in Equation 5.1. The diffusion 
coefficient is not constant in alluvial channel flow, particularly near the bed where tur-
bulence characteristics change with distance above the bed. Thus, εs is often estimated 
as βε, where β is the coefficient of proportionality and ε is the turbulent eddy viscosity.

The settling velocity, also called the fall velocity, ωs, plays an important role in 
distinguishing suspended sediment load and bed load. It is related to the particle 
size and shape, submerged specific weight, viscosity of water, and sediment con-
centration. In the laminar settling region, where the Reynolds number is smaller 
than 1, by solving the Navier–Stokes equations without inertia terms, Stokes (1851) 
derived the well-known Stokes law for the settling velocity of spherical particles and 
determined the drag force thereon. However, sediment particles in natural rivers are 
usually irregular shaped and have rough surfaces whose settling velocity is different 
from that of spherical particles. Rubey (1933) derived a formula for settling velocity 
of natural sediment particles. However, van Rijn (1984) suggested using the Stokes 
law for computing the velocity of sediment particles smaller than 0.1 mm and using 
Zanke’s (1977) formula for particles of size from 0.1 to 1 mm; he also derived a for-
mula for particles larger than 1 mm.

5.1.1 rousE Equation

The Rouse equation (Rouse, 1937) for determination of sediment concentration 
results from Equation 5.1. A classical model is derived from this equation with the 
use of the Prandtl–von Karman logarithmic velocity equation and linear shear stress 
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distribution assumption. From the Prandtl–von Karman universal velocity distribu-
tion (see Chow, 1959), the gradient of the velocity distribution can be computed as

 

du

dy

u

y
= *

k
 (5.2)

where
u is the velocity at a point y along the vertical from the bed
κ is the von Karman universal constant

u* is the shear velocity defined as u* = t r0 /  in which τ0 is the bed shear stress 

and ρ is the mass density of water

The vertical shear stress distribution in steady, uniform open-channel flow can be 
considered as linear:

 
t t= -

0
0

0

( )y y

y
 (5.3)

where
τ is the shear stress at y
τ0 is the shear stress at the bed at y = 0
y0 is the depth of uniform flow

The shear stress τ also equals

 
t re= du

dy
 (5.4)

Recalling that u* = t r0 /  and substituting Equations 5.2 and 5.3 into Equation 5.4, 

εs = βε can be obtained as

 
e bks u

y

y
y y= -* ( )

0
0  (5.5)

Substituting Equation 5.5 for εs in Equation 5.1 and integrating, the result is the 
Rouse equation for concentration c at a distance y from the bed:
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 (5.6)

in which ca is the reference concentration at a distance y = a, which is arbitrarily 
taken as 0.05y0 above the bed, and R0 is referred to as the Rouse number, which is 
defined as R0 = ωs/(βκu*). The Rouse number is a measure of the relative contribution 
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of settling velocity and turbulent stress. The reference concentration defined in the 
Rouse equation (5.6) compares the concentration at any distance with that at a refer-
ence level. Equation 5.6 does not account for bed load transport. The Rouse equation 
has been compared favorably with observed suspended sediment concentration dis-
tribution but it is not valid for sediment concentration near the channel bed or water 
surface (Simons and Senturk, 1992).

5.1.2 Chang–siMons–riChardson Equation

Applying the velocity distribution over the flow depth D, we can write

 

du

dy

u

y

D y

D
= -*

k
 (5.7)

Chang et al. (1967) derived a sediment concentration equation as
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The value of b can be computed as

 
b J

n s

= -
- -

t t
g g

0

1( )( ) tan f
 (5.11)

where
J = 10
n is the porosity of the bed material
ϕ is the angle of repose of the submerged bed material
γ is the weight density of water
γs is the weight density of sediment
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The difference between Equations 5.8 and 5.6 arises from the use of  different veloc-
ity distributions and consequent velocity gradients.

5.1.3 o’briEn–ChristiansEn Equation

Using the exchange theory entailing the continuous exchange of sediment  particles 
across any arbitrary layer in steady and uniform flow, O’Brien (1933) and Christiansen 
(1935) derived a sediment concentration equation:
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where ca is the sediment concentration with fall velocity w at level y = a above 
the bed. Equation 5.12 states that the concentration is the greatest at the bottom 
and smallest at the water surface. For determining c, the variation of εs must be 
prescribed.

5.1.4 lanE–KalinsKE Equation

Assuming that term εs is equal to the kinematic eddy viscosity or the diffusion coef-
ficient for momentum (εm) which is the same as ε defined earlier, that is, εs = εm, Lane 
and Kalinske (1941) derived
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where
w denotes the fall velocity of the representative grain size (e.g., sediment diameter 

d35 or d50) which in reality varies with y
a is the value of y at which c = ca

D is the flow depth

5.1.5 Chiu Equation

Instead of using the Prandtl–von Karman velocity distribution, Chiu (2000) employed 
the Shannon entropy–based velocity distribution (Chiu, 1987, 1988, 1989). Following 
the same method as earlier, integrating Equation 5.1 he obtained

 

c

c

y

D

e
y

D
M

z

0

1

1 1
=

-

+ -

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

¢

( )
 (5.14)

© 2016 by Taylor & Francis Group, LLC

  



130 Introduction to Tsallis Entropy Theory in Water Engineering

where

¢ = - -

z
u e

u M
s

Mw
b

max( )

*

1
2

ωs is the settling velocity
β is the coefficient relating to the viscosity
u* is the shear velocity
umax is the maximum velocity along the vertical or for the cross section
D is the flow depth
M is the entropy parameter defined in Chiu’s (1988) velocity distribution, which 

equals λ1umax, where λ1 is the Lagrange multiplier used to maximize the 
Shannon entropy

In order to better account for shear stress, Chiu et al. (2000) refined Equation 5.14 for 
 sediment concentration as
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ξ is the variable that increases with velocity u
e is the exponential base
ξmax is the maximum value of ξ where umax occurs
h is the distance from the flow surface at which the flow velocity is maximum
hξ is the scale parameter of ξ

However, one of the disadvantages of Equation 5.15 is that it contains a large number 
of parameters and its practical use is therefore limited. It may be recalled that the 
basis of sediment concentration distributions, given by Equations 5.6, 5.8, 5.14, and 
5.15, is Equation 5.1. These equations differ from one another in the use of different 
velocity distributions.

5.1.6 Choo Equation

Skipping Equation 5.1, Choo (2000) developed a full Shannon entropy–based 
method for modeling sediment concentration. Considering time-averaged sediment 
concentration along a vertical as a random variable, Choo (2000) maximized the 
Shannon entropy and obtained the least-biased probability distribution of sediment 
concentration, and then using a linear hypothesis on the cumulative distribution of 
concentration he derived a sediment concentration profile as
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where
N' = λ1c0 is a parameter
λ1 is the Lagrange multiplier introduced when maximizing entropy
c0 is the sediment concentration at the bed y = 0
k = c0/cD in which cD is the sediment concentration at the water surface y = D, 

which can be considered as 0

When k ≈ ∞, Equation 5.16 reduces to
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Equation 5.17 is fully entropy-based sediment concentration distribution (Choo, 2000).

5.1.7 suMMation

Although the Rouse equation provides a simple way to compute the sediment concen-
tration distribution, it is based on the Prandtl–von Karman velocity distribution and has 
been found to poorly predict sediment concentration (Chiu et al., 2000; Choo, 2000). 
This may be because the Prandtl–von Karman velocity distribution does not predict the 
velocity near the bottom well, especially in sediment-laden flows (Einstein and Chien, 
1955). The method (Equation 5.8) by Chang et al. (1967) has too many parameters and is 
not convenient to use in practice. Chiu’s (2000) method has been shown to better predict 
the concentration than the Rouse equation; however, as can be seen from Equation 5.15, 
the Chiu equation contains too many parameters that are not convenient to determine. 
Equation 5.17 by Choo (2000) has been found to predict the sediment concentration 
along the vertical more accurately than does the Rouse equation (Equation 5.6) and the 
Chiu equation (Equation 5.15). However, the linear cumulative distribution function 
(CDF) hypothesis employed to derive Equation 5.16 has not been verified; hence, the 
validation of the sediment concentration profile is less than complete.

5.2  DERIVATION OF ENTROPY-BASED SUSPENDED 
SEDIMENT CONCENTRATION

Derivation of the vertical distribution of suspended sediment concentration using the 
Tsallis entropy comprises the following steps: (1) definition of the Tsallis entropy, 
(2) specification of constraints, (3) maximization of entropy, (4) hypothesizing the 
cumulative probability distribution function (CDF) of sediment concentration, 
(5) derivation of sediment concentration, (6) determination of distribution parameters, 
and (7) determination of the maximum entropy. Each of these steps is now discussed.
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5.2.1 tsallis Entropy

Consider the time-averaged sediment concentration C along a vertical from the bed 
as a random variable. Unlike the velocity in open channels, suspended sediment 
 concentration has its maximum value (c0) at the channel bed and decreases with 
increasing distance above the channel bed. If the sediment concentration is assumed 
0 at the water surface, then C varies from c0 to 0. Therefore, the Tsallis entropy 
(Tsallis, 1988) of the time-averaged sediment concentration can be written as
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where
H(C) is the Tsallis entropy of the time-averaged sediment concentration C at a 

specified point or elevation
c is a specific value of random variable C
c0 is the maximum sediment concentration of the profile
f(c) is the probability density function (PDF) of C
m is a real number

The objective is to obtain the least-biased probability distribution f(c), which can 
be done by maximizing the entropy, subject to specified information expressed as 
constraints obtained from observations.

5.2.2 Constraints

If some information on the sediment concentration is known from empirical obser-
vations or theory, then it can be codified in the form of what is called constraints. 
In this discussion, two constraints are applied: one arises from the satisfaction of the 
total probability theorem and the other is obtained from the conservation of mass of 
sediment (continuity equation). These are stated as
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where c  or cm is the mean suspended sediment concentration in the vertical flow 
profile, which equals Qs/Q, where Qs is the suspended sediment discharge, and Q is 
the flow discharge. Thus, Equation 5.20 is equivalent to satisfying the condition that 
C must be distributed so that cQ Qs= . In actuality, Equation 5.19 is not a constraint, 
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for all PDFs must satisfy the total probability theorem. Essentially what is being 
assumed here is that some information about the mean concentration is known. 
Specification of constraints determines the type of PDF but for practical usefulness 
they should be as few and simple as possible (Singh, 2011).

5.2.3 MaxiMization oF Entropy

According to the principle of maximum entropy (POME) (Jaynes, 1957a,b), the least-
biased PDF of sediment concentration can be obtained by maximizing the uncertainty 
expressed by entropy, subject to given constraints. The maximization of entropy given 
by Equation 5.18 can be achieved by using the method of Lagrange multipliers, subject 
to Equations 5.19 and 5.20. To that end, the Lagrangian function L can be written as
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in which λ0 and λ1 are the Lagrange multipliers. Differentiating Equation 5.21 with 
respect to f(c) and equating the derivative to zero, the result is the PDF, which can 
be expressed as
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Let
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Equation 5.22, with the use of Equation 5.23, reduces to
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Equation 5.24 is the least-biased entropy-based PDF of sediment concentration, 
which is fundamental to determining the sediment concentration distribution.

5.2.4 CuMulatiVE distribution FunCtion

In order to determine the sediment concentration distribution in terms of vertical 
distance y from the bed, a CDF, F(c), of sediment concentration is hypothesized as
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where η is a parameter related to sediment particle characteristics (Cui and Singh, 
2012), which can be computed by fitting Equation 5.25 to observations using the least 
square method. Equation 5.25 shows that F(c) is 1 at the channel bed, where y = 0, and 
is 0 at the water surface, where y = D. The validity of Equation 5.25 can be seen from 
Figures 5.1 and 5.2 for both experimental and field data. The η value does not equal 1 for 
either of the two cases, suggesting that cumulative distribution hypothesis is not linear.
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FIGURE 5.1 Validation of cumulative distribution function for Run S10 of Einstein and 
Chien’s (1955) data (obs. = observation, est. = estimation, and σ2 = variance).
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FIGURE 5.2 Validation of cumulative distribution function or data collected from the 
Mississippi.

© 2016 by Taylor & Francis Group, LLC

  



135Suspended Sediment Concentration

5.2.5 sEdiMEnt ConCEntration

Combining the entropy-based PDF (Equation 5.24) with the CDF (Equation 5.25), 
the result is
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From Equation 5.26, one obtains the sediment concentration distribution as
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Equation 5.27 is the Tsallis entropy–based sediment concentration distribution.

5.2.6 dEtErMination oF thE lagrangE paraMEtErs

Equation 5.27 contains three parameters, λ*, λ1, and m. The Lagrange multipliers 
λ* and λ1 can be determined using constraint equations (Equations 5.19 and 5.20). 
Substitution of Equation 5.24 in Equation 5.19 yields
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Integration of Equation 5.28 leads to
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Likewise, substitution of Equation 5.24 in Equation 5.20 yields
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Equation 5.30 can be integrated by parts as
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or
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Equations 5.29 and 5.32 constitute a system of two nonlinear equations having two 
unknown parameters λ* and λ1. However, as the value of m increases, the diffi-
culty of solving these nonlinear equations increases significantly. Similar to velocity 
distribution discussed in Chapters 3 and 4, Cui and Singh (2014) found a value of 
m = 3 as a good balance between convenience and accuracy.

Example 5.1

A set of data on sediment concentration is given in Table 5.1. Compute the PDF 
of sediment concentration for these data and plot it. Also, show the computed 
Lagrange parameters.

Solution

For given c0 = 58 g/L and c = 31.05 g/L, the Lagrange multipliers are obtained by 
solving Equations 5.29 and 5.32 that yield λ1 = 1.346 and λ* = 80.14. Then, the 
PDF of sediment concentration is obtained from
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and is plotted in Figure 5.3.

TABLE 5.1
Observed Sediment Concentration 
Data from Experimental Run S1 of 
Einstein and Chien (1955)

y (mm) c (g/L) 

5.4 58

6.0 54

6.6 49.7

7.2 44.3

8.4 32.6

10.2 20.7

12.6 11.1

15.6 6.01

18.6 3.05
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However, a simpler way to estimate the Lagrange multipliers is by introduc-
ing a dimensionless parameter N as a function of maximum concentration and the 
Lagrange multipliers as
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Equation 5.33 simplifies computation and helps with analysis. It can be noted that 
the Lagrange multiplier λ1 is of the dimensions of [L/g], which is the inverse of the 
dimensions of c0, and λ* is dimensionless, thus N is also dimensionless. It can then 
be stated that the Lagrange multipliers are related to the maximum concentration as
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The sediment concentration distribution in Equation 5.27 can now be simplified. 
The maximum sediment concentration c0 occurs at the bed; thus, substituting y = 0 
into Equation 5.27 one obtains
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FIGURE 5.3 Probability density function of sediment concentration.

© 2016 by Taylor & Francis Group, LLC

  



138 Introduction to Tsallis Entropy Theory in Water Engineering

The non dimensional sediment concentration (c/c0) can now be written as
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Replacing the Lagrange multipliers with parameter N with the use of Equations 5.33 
and 5.34, the dimensionless sediment concentration is obtained as
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If m = 3, Equation 5.38 reduces to
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where F(c) is given by Equation 5.25. The sediment concentration can be obtained 
with only parameter N.

Example 5.2

Compute sediment concentration for data in Table 5.1. What is the best value of 
entropy index?

Solution

With Lagrange multipliers computed from Example 5.1, the entropy index can be 
obtained from
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Thus, sediment concentration is now computed from
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With F(c) = 1−(y/D)0.5, the concentration distribution is plotted in Figure 5.4.
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Following Chiu (1988) and Cui and Singh (2014), the entropy index is used as an 
index for characterizing the pattern of distribution. To that end, the mean sediment 
concentration is derived as
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where A is the cross-sectional area. The ratio of sediment concentration to the maxi-
mum sediment concentration can be written by dividing Equation 5.40 as
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Equation 5.41 shows the relationship between mean and maximum sediment con-
centration values as a function of entropy index N. Using empirical observations, 
the Lagrange multipliers are first computed by solving Equations 5.29 and 5.31, 
then the N value is obtained by Equation 5.33. By plotting the empirical observa-
tions of the mean over the maximum concentration values and the corresponding 
N values, Cui and Singh (2014) derived an explicit function by regression as
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FIGURE 5.4 Sediment concentration distributions for Run S1 of Einstein and Chien’s 
(1955) data.
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Example 5.3

A number of mean and maximum sediment concentration values are shown in 
Table 5.2. Compute and tabulate the values of N and plot Equation 5.42.

Solution

For given mean and maximum sediment concentration values, parameter N is 
computed from the Lagrange multipliers following Example 5.2, and its values are 
tabulated in Table 5.2.

Then, the relationship between the ratio of mean and maximum sediment concen-
tration with N given in Equation 5.42 is plotted in Figure 5.5.

TABLE 5.2
Mean and Maximum Sediment 
Concentration and n Values

c0 c
 

c
c0  

n 

81.6 27.2 0.333 0.378

122.1 66.6 0.545 1.145

82.6 36.9 0.447 0.682

360.3 136.4 0.379 0.423

144 81.0 0.563 1.15

58 15.8 0.272 0.15

204.6 50.8 0.249 0.1

352 85.8 0.244 0.09

386 86.7 0.225 0.05

64.5 33.3 0.517 0.85

152 80.3 0.529 0.9
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FIGURE 5.5 Regression of mean/maximum sediment concentration by parameter N.
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Equation 5.42, shown in Figure 5.5, has a coefficient of determination as 0.99. 
Thus, N can be used for deriving sediment concentration distribution instead of solv-
ing nonlinear equations for λ1 and λ*. Once entropy index N is determined, the mean 
concentration can be determined from Equation 5.42 for a given maximum con-
centration value. If Equation 5.42 can be validated, then the whole vertical profile 
of sediment concentration can be easily obtained from Equation 5.39 based on the 
Tsallis entropy approach.

Example 5.4

Compute the Lagrange parameters for the data listed in Table 5.3 (Coleman, 1981) 
and sediment concentration.

Solution

For given data c0 = 230 g/L and c = 52.5 g/L, the Lagrange multipliers are obtained 
by solving Equations 5.29 and 5.32 that yield λ1 = 0.515 and λ* = 89.12. Then,
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The sediment concentration is now computed from Equation 5.39 with η = 0.1 and 
is plotted in Figure 5.6.

5.2.7 Entropy oF sEdiMEnt ConCEntration

Substituting Equation 5.24 into Equation 5.18 and then integrating, the result is the 
Tsallis entropy of sediment concentration as

 
H

m m
c=

-
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1
1
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TABLE 5.3
Observed Sediment Concentration Data

Y (mm) c (g/L) y (mm) c (g/L) 

6 230 69 26

12 120 91 16

18 82 122 7.6

24 61 137 4

30 48 152 2

46 33 162 1.1

Source: Coleman, N.L., J. Hydr. Res., 19(3), 211, 1981.
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Replacing the Lagrange multipliers with N using Equations 5.33 and 5.34, the entropy 
for the sediment concentration can be written as
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It can be seen from Equation 5.44 that for a given set of data, with known c0 and c , 

the entropy value is monotonically increasing with N. Thus, N, as an index of the 
concentration distribution pattern, yields the entropy value of the given distribution, 
which is always higher for bigger N and lower for smaller N. This means that the 
probability distribution will have more uncertainty or uniformity for greater N  values 
than for smaller N values.

Example 5.5

Compute maximum entropy for data used in Examples 5.1 and 5.4.

Solution

For data in Example 5.1,
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FIGURE 5.6 Sediment concentration distribution for Coleman’s data.
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For data in Example 5.4,
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5.2.8 EstiMation oF MEan sEdiMEnt ConCEntration

The dimensionless entropy index N is an index characterizing the distribution of 
sediment concentration. Once N is known, the vertical distribution of sediment con-
centration can be obtained. One significant use of N is to estimate the mean sediment 
concentration. As shown in Equation 5.42, the ratio of the mean and maximum sedi-
ment concentration values follows a quadratic function of N. With known maximum 
sediment concentration, the mean value is computed using Equation 5.42.

Example 5.6

Estimate the mean sediment concentration for given maximum sediment concen-
tration and entropy index N listed in Table 5.4. Plot the estimated mean sediment 
concentration against the observed value.

TABLE 5.4
Maximum Sediment Concentration and Entropy Parameter n

Maximum (g/L) n Observed Mean (g/L) Estimated Mean (g/L) 

58 0.412 31.051 33.252

121 0.383 54.308 55.257

150.5 0.390 70.620 62.805

194 0.400 97.166 74.169

328 0.392 156.470 125.649

28 0.408 14.642 12.715

64.5 0.387 29.834 26.842

83.4 0.384 37.850 29.326

152 0.378 66.251 54.285

216 0.380 95.268 85.836

31.4 0.437 19.349 18.096

204.6 0.357 77.267 62.924

352 0.361 136.741 101.123

386 0.357 145.879 118.897

601 0.371 249.375 185.686

618 0.376 265.437 217.735
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Solution

The mean sediment concentration can be estimated using Equation 5.42. For 
example,

 

c c N N= + -

= + ´ - ´

0
20 176 0 5083 0 1561

58 0 176 0 5083 0 412 0 1561

( . . . )

( . . . . 00 412 33 2522. ) .= g/L

that is comparable to the observed value of 31.051 g/L. The rest of mean sediment 
concentration values are computed in the same way and are tabulated in Table 5.4 
and plotted in Figure 5.7.

Figure 5.7 shows that the estimated mean sediment concentration is a little bit 
smaller than the observed mean concentration as the slope of the straight line is 
smaller than 1:1. However, the coefficient of determination (R2 = 1-residual sum of 
squares/total sum of squares) is higher than 0.99, thus showing the adequacy of this 
method.

5.2.9 CoMparison with othEr ConCEntration distributions

Example 5.8

Compare entropy-based distribution with other concentration distributions.

Solution

The sediment concentration using the Tsallis entropy is the same as in Examples 5.2 
and 5.4, and thus, it will not be repeated here.
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FIGURE 5.7 Comparison of computed and observed mean sediment concentration.
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For given a = 0.002 mm and ca = 400 g/L and R0 = 1.741, using Equation 5.6 the 
 sediment concentration with the Rouse equation is computed from
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To use Equation 5.15, z′ needs to be computed first. For given ωs = 0.004 ft/s, 
umax = 7.13 ft/s, u* = 0.342 ft/s, and M = 0.68
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and the sediment concentration is computed from
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For Choo’s method with N′ = 5.647, using Equation 5.17, the sediment concentration 
can be estimated from
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The values of sediment concentration determined by all the previous methods are 
plotted in Figure 5.8.

It is seen from Figure 5.8 that the last three entropy-based methods (Equations 
5.15, 5.17, and 5.36) lead to much smaller error than does the Rouse equation on aver-
age, which demonstrates the disadvantage of using the Rouse equation (Equation 5.6). 
The Rouse equation yields much lower values than observed values from the water 
surface down to 0.007 m in Figure 5.8 and the curve is farthest apart from observa-
tions in comparison with other equations. It can also be seen that Choo’s method 
(Equation 5.17) and the Tsallis entropy–based equation (Equation 5.37) yield similar 
results that are closer to observations than other methods.

5.3 HYDRAULIC METHOD

Let there be a 3-D fluid medium in which flow is unsteady and nonuniform, that is, the 
velocity u is varying in all three directions x, y, and z as well as in time t, u(x, y, z; t). 
Here, x represents the horizontal direction, y the vertical direction, and z the transverse 
direction. It is assumed that sediment is released into a channel from a single source. 
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It has been shown (Chiu, 1967, 1987) that the movement of sediment particles fol-
lows a “random walk.” Then the position the sediment particle occupies during its 
movement can be considered as a random variable having a PDF, f(x, y, z); the PDF 
describes the random walk. This suggests that there is potential for employing entropy 
in dealing with sediment movement. In order to simplify the probabilistic treatment 
of sediment movement using the entropy theory, it is assumed that the flow is steady 
(i.e., u is independent of t.) and so is sediment movement and that the PDF does not 
vary in the longitudinal (x) and transverse (z) directions; thus, f(x, y, z) = f(y) and y can 
be taken as the distance the particle travels. The objective is to derive the sediment 
concentration distribution using the Tsallis entropy that requires the derivation of 
PDF f(y). The methodology for deriving suspended sediment concentration distribu-
tion using the Tsallis entropy is the same as earlier.

5.3.1 probability distribution oF traVEl distanCE oF sEdiMEnt

Let the flow depth in the channel be denoted by D. Then 0 ≤ y ≤ D. The Tsallis 
entropy for y or f(y), H[ f(y)] or H(y) can be written as
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where m is the Tsallis entropy index. The PDF of y is derived by maximizing the 
Tsallis entropy subject to the following constraints:
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FIGURE 5.8 Comparison for different methods for Run S13 of Einstein and Chien’s (1955).
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where E is the expectation operator and y  is the mean value of y. For maximizing 
the Tsallis entropy given by Equation 5.45, subject to Equations 5.45 and 5.46, the 
method of Lagrange multipliers is employed here, where the Lagrangian L can be 
written as
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in which λ0 and λ1 are the Lagrange multipliers. Differentiating Equation 4.47 with 
respect to f and equating the derivative to zero yield the maximum Tsallis entropy–
based PDF of y:

 f y m m ym m( ) [ ( )( )]/( ) /( )= - - +- -1 1
0 1

1 11 1 l l  (5.49)

The Tsallis entropy of Equation 5.49 can be written as
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The Lagrange multipliers λ0 and λ1 are now determined using Equations 5.45 and 5.46.
Substituting Equation 5.49 in Equation 5.46 yields

 

1
1 1 1

1 1
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0 1
1 1

m
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è
ç
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/( )
/( )[ ( )( ]l l  (5.51)

Equation 5.51 simplifies to

 [ ( ) ] [ ( )( )]/( ) /( ) /( )1 1 1 10
1

0 1
1 1

1- - - - - + =- - -m m D mm m m m m ml l l l  (5.52)

Substituting Equation 5.49 into Equation 5.47 results in

 

y
m
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mD
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© 2016 by Taylor & Francis Group, LLC

  



148 Introduction to Tsallis Entropy Theory in Water Engineering

Upon integrating by parts, the solution of Equation 5.53 is found to be
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Equations 5.51 and 5.53 are solved simultaneously to determine the Lagrange multi-
pliers λ0 and λ1. Their analytical solution is not tractable but the numerical solution 
is relatively straightforward.

It is seen that for given D and y, the values of Lagrange multipliers depend on 
the value of m used, as shown for sample D = 0.044 m and y  = 0.022 m in Table 
5.5. It can be seen from the table that λ1 becomes small and less effective when m 
becomes large. With increasing m, λ0 also becomes smaller. These values suggest 
that it is important that an appropriate value of m is selected. It may now be interest-
ing to examine the sensitivity of f(y) to m, as shown in Figure 5.9. It is observed from 
the figure that f(y) is not highly sensitive to m between 0.5 ≤ m ≤ 0.75, but outside 
of this interval, it becomes highly sensitive. A plot of the entropy of travel distance 
as a function of the zeroth Lagrange multiplier for various values of λ1 in Figure 
5.10 shows that Tsallis entropy increases as λ0 increases. This discussion shows that 
the Lagrange parameters play a fundamental role in the entropy-based derivations. 
It may, therefore, be desirable to derive the physical meaning of the Lagrange multi-
pliers with the use of the random walk hypothesis.

5.3.2  dEtErMination oF distribution paraMEtErs 
FroM thE randoM walK hypothEsis

If the movement of sediment particles follows a “random walk,” then it can be shown 
that the PDF, f(x, y, z), describing the random walk at time t after the release of par-
ticles follows a parabolic diffusion equation in which the gradient of the diffusion 
coefficient varies in the vertical direction (Chiu, 1967, 1987). If it is assumed that the 

TABLE 5.5
Lagrange Multipliers Computed for Date Set 
Given Sample of D = 0.044 m and y  = 0.022 m

m Value λ0 λ1 

m = 1/2 2.374 −0.176

m = 2/3 1.967 0.331

m = 3/4 2.176 0.441

m = 2 1.783 0.123

m = 3 0.528 −0.316

m = 4 0.332 0.0004
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momentum transfer coefficient in the vertical direction, εy, is constant and is equal 
to the depth-averaged value denoted as ey  and the vertical component of the fluid 
velocity uy is approximately equal to the negative of the depth-averaged settling 
velocity vs, then the PDF of sediment particle movement can be shown to follow the 
Euler ordinary differential equation that is linear. However, empirical data show that 

0
0

0.2

0.4

0.6

0.8 m = 1/2
m = 2/3
m = 3/4
m = 2
m = 3

f(y
)

1

1.2

1.4

1.6

0.2 0.4 0.6
y/D

0.8 1

FIGURE 5.9 Plot of f(y) for various m values.
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H
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λ1=0.1
λ1=1

λ1=3

λ1=5

FIGURE 5.10 Plot of Tsallis entropy versus zeroth Lagrange multiplier for various values 
of λ1 for m = 3.
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the PDF of y is nonlinear. Therefore, it is hypothesized that the sediment particle 
 movement follows a nonlinear ordinary differential equation as

 
e es s

ndf y

dy
v f y

( )
( )[ ( )]+ + =0 0  (5.55)

where ε0 is a constant, perhaps equal to a constant value of the diffusion coefficient 
gradient, εs is the depth-averaged value of the diffusion coefficient εy, and n > 0. 
If n = 1, Equation 5.55 reduces to the Euler equation.

The solution of Equation 5.55, using the initial condition: at y = 0, f(y) = f0, 
follows
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 (5.56)

The initial value f0 needs to be specified. Let a n
vs

s

= - +
( )

( )
.1 0e

e
 Then, Equation 

5.56 can be written as

 f y f ayn n( ) [ ] /( )= -- + -
0

1 1 1  (5.57)

The Tsallis entropy of Equation 5.57 can be written as
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Now, comparing Equation 5.49 with Equation 5.57, it is seen that

 m n- = - +1 1  (5.59)

 
l0 0

11
1

1=
-

-éë ùû
-

m
mf n  (5.60)

 
l1

1
=

-
m

m
a  (5.61)

Equations 5.58 through 5.60 are physically based, and therefore, the Lagrange 
multipliers of Equation 5.49 have physical meaning but these relationships need 
to be verified, however. The relations between the Lagrange multipliers and f0 
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and a are computed in Table 5.6, based on the relations stated in Equations 5.58 
through 5.60. Using parameters computed in this manner, f(y) is plotted against 
y/D in Figure 5.11.

5.3.3 dEtErMination oF initial ValuE oF pdF, f0

Now we derive f0 and y in terms of physically measurable quantities. Substituting 

Equation 5.57 into Equation 5.46, one obtains

 

f ay dyn n
D

0
1 1 1

0

1- + - +
-éë ùû =ò

/( )
 (5.62)

TABLE 5.6
Lagrange Multipliers Relating to f0 and a

m Value λ0 λ1 n f0 A 

m = 1/2 2.374 −0.176 1.50 0.547 −0.375

m = 2/3 1.967 0.331 1.33 0.491 −0.296

m = 3/4 2.176 0.441 1.25 0.489 −0.234

m = 2 1.783 0.123 0.00 −0.392 0

m = 3 0.528 −0.316 −1.00 −0.032 −6

m = 4 0.332 0.0004 −2.00 0.003 −24

0
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FIGURE 5.11 Plot of f(y) versus y for different values of n using the relations from Equation 
5.58 to 5.60.
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Integration of Equation 5.62 yields

 
f f aD a
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n n n n
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1 2 1 2
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- +

( )/( ) ( )
 (5.63)

Equation 5.63 defines f0 in terms of a and n. A plot of f0 versus a for various values of 
n in Figure 5.12 shows that f0 increases with increasing a. Fundamental to determin-
ing parameter a is the determination of diffusion coefficient.

Now the average value of y is defined. Substituting Equation 5.57 in Equation 
5.47, one gets
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Solution of Equation 5.64 by parts leads to
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(5.65)

This expresses y  in terms of physically measurable quantities.

5.3.4 dEtErMination oF diFFusion CoEFFiCiEnt

The diffusion coefficient εs is related to the average (ey ) of the values of the  momentum 
transfer coefficient in the y-direction, εy, as

0
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FIGURE 5.12 Plot of f0 versus a for various values of n[D = 0.044 m and y  = 0.022 m].
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e bes y=  (5.66)

where
β is a parameter

ey  is the depth-averaged value of εy , which is obtained from

 
t re= y

du

dy
 (5.67)

The use of Equation 5.67 requires the knowledge of velocity derivative. Singh and 
Hao (2011) and Cui and Singh (2012) obtained the velocity distribution using the 
Tsallis entropy, which can be written as
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where
q is the entropy index that may be different from the entropy index m of 

Equation 5.45
α0 and α1 are the Lagrange multipliers

The derivative of velocity is now obtained as
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The shear stress τ is derived as follows. Consider a wide channel of depth D having 
a slope S. The shear stress is maximum at the channel bed (y = 0) and equals τ0 = 
ρgDS and decreases monotonically with increasing y and becomes zero at the water 
surface. If τ is assumed to be a random variable, then it has a PDF f(τ). Now, let τ(y) 
be the shear stress at y. At any distance greater than y, the shear stress is less than 
τ. It can be intuitively stated that the probability of shear stress less than or equal to 
τ can be expressed as (D − y)/D or the cumulative distribution of τ in terms of y is

 
F

D y

D
( )t = -

 (5.70)

Then, the PDF of τ can be expressed as
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Note that f(τ) is yet to be determined. By definition,
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 (5.72)

The PDF f(τ) can be determined by maximizing the Tsallis entropy
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where r is the Tsallis entropy index, which may be different from entropy indices m 
and q defined earlier. Using the method of Lagrange multipliers, Equation 5.73 is 
maximized, subject to Equation 5.72, as
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where γ0 is the Lagrange multiplier. Differentiating Equation 5.74 with respect to f(τ) 
and equating the derivative yield
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Substitution of Equation 5.75 in Equation 5.72 yields

 
f ( )t

t
= 1

0

 (5.76)

which is a uniform distribution.
Substitution of Equation 5.76 in Equation 5.71 leads to
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Equation 5.77 results in
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D
= -æ

è
ç

ö
ø
÷0 1  (5.78)

If the flow is assumed steady uniform and one-dimensional, then Equation 5.78 can 
be obtained from the use of the momentum conservation equation or equation of 
motion in deterministic hydraulics.
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5.3.5 sEdiMEnt ConCEntration distribution

Now we derive the sediment concentration distribution. Let C(y) be the sediment con-
centration at distance y from the bed, and let there be N sediment particles of a given 
size with settling velocity vs between y = 0 and y = D. The quantity f(y)dy denotes the 
probability that a sediment particle is between positions y and y + dy. Then, Nf(y)dy 
denotes the number of particles between y and y + dy. If N is taken to represent the 
volume (or weight) of sediment particles of the specified size then Nf(y) will denote 
the sediment concentration by volume (or weight). Depending on the way f(y) is speci-
fied, the vertical distribution of sediment concentration can be expressed in two ways.

5.3.6 tsallis Entropy–basEd sEdiMEnt ConCEntration distribution

Using Equation 5.49, C(y) can be expressed as

 C y Nf y Nm m ym m( ) ( ) [ ( )( )]/( ) /( )= = - - +- -1 1
0 1

1 11 1 l l  (5.79)

From Equation 5.79, the initial sediment concentration can be expressed as

 C C y Nf y Nm mm m
0

1 1
0

1 10 0 1 1= = = = = - -- -( ) ( ) [ ( ) ]/( ) /( )l  (5.80)

However, the PDF of C and its entropy still need to be determined.
Sediment concentration monotonically decreases from the channel bed to the 

water surface. If C is assumed to be a random variable then the probability of sedi-
ment concentration less than or equal to C can be expressed as
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where CD is the sediment concentration at the water surface y = D. Then the PDF of 
C can be inferred from Equation 5.81 as
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From Equation 5.79, dC/dy can be expressed as
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Inserting Equation 5.83 in Equation 5.82, one gets
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where
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l
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It may be advantageous to define f(C) at y = 0. To that end, from Equation 5.79,
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Inserting Equation 5.86 in Equation 5.82, one obtains
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The value of f(C) at y = 0 is obtained from Equation 5.74 as
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Using Equation 5.84, the Tsallis entropy of the sediment concentration distribution 
can be written as
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With the use of Equation 5.84, the values of C0 and CD can be obtained by using the 
normalizing constraint and the mean constraint. Using the normalizing constraint,
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Equation 5.90 yields
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Since C0 is much larger than CD, Equation 5.91 can be approximated as
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Now using the mean constraint,
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Equation 5.93 can be utilized to determine the mean constraint value or if this is 
known then CD can be determined. Approximately,
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To estimate the sediment concentration, integration of Equation 5.86, which should 
satisfy the assumption of Equation 5.81, leads to

 

F C f C dC C dC
m

C
y

D
C

C

m

C

C

m

D D

( ) ( )= = =
-

= -ò ò - -y y2 11
1

1  (5.95)

Thus, the sediment concentration distribution is obtained as
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It may be interesting to compare this distribution with the one that can be derived 
using the random walk model.

5.3.7 randoM walK ModEl-basEd distribution

The procedure here is analogous to that for the Tsallis entropy-based method dis-
cussed earlier. In a manner of Equation 5.79, one can write Equation 5.57 as
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Differentiating Equation 5.97 with respect to y yields
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Substituting Equation 5.98 in Equation 5.83, the PDF of C is obtained as
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Now the Tsallis entropy of Equation 5.99 can be expressed as
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where s denotes the Tsallis entropy index whose value can be different from the 
value of m. Equation 5.99 can be utilized to determine C0 and CD using the normal-
izing constraint and the mean constraint. Using Equation 5.99 in the normalizing 
constraint,
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Since C0 ≫ CD, Equation 5.101 can be approximated as
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Using Equation 5.99 in the mean constraint,
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Equations 5.102 and 5.103 give C0 and CD. Equation 5.103 can be approximated as
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To estimate the sediment concentration, one integrates Equation 5.99 that should 
satisfy the assumption of Equation 5.84,
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Thus,
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Comparing Equation 5.96 with Equation 5.106, one gets

 m n= -2  (5.107)

 
aDN m1 1- =

y
 (5.108)

Example 5.9

Experimental data on sediment concentration observed by Einstein and Chien 
(1955) for experiment S-16 are given in Table 5.7. For Einstein and Chien’s data, for 
example, experiment S-16, both C0 = 618 g/L and C = 265.44 g/L are given. 
Determine parameters m and ψ by solving Equations 5.90 and 5.91 and parame-
ters n and a by solving Equations 5.98 and 5.100.

Solution

Parameters m and ψ are computed by solving Equations 5.90 and 5.91 with given 
C0 = 265.44 g/L and C = 618 g/L that yield m = 1.877 and ψ = 0.023. Similarly, 
parameters a and n are computed by solving Equations 5.98 and 5.100 that yield 
n = 0.123 and a = 0.375. It is found that Equation 5.106 (m = 2 – n = 0.023) holds 
in this case.

Example 5.10

Field data on sediment concentration collected on the Atrisco Feeder Canal near 
Bernalillo, New Mexico (S5 Rio Grande), are given in Table 5.8. The Atrisco 
Feeder Canal is about 17.7 m (58 ft) wide, and the average depth is approxi-
mately 0.52 m (1.70 ft). The collected sediment concentration is tabulated in 
Table 5.8, where C0 = 51 g/L and C  = 17.02 g/L. Determine parameters m and ψ 
by solving Equations 5.91 and 5.92 and parameters n and a by solving Equations 
5.107 and 5.108.

TABLE 5.7
Experimental Data for Experiment S-16

y (m) c (g/L) y (m) c (g/L) 

0.004 618 0.018 146.7

0.005 621 0.023 90.6

0.006 563 0.027 58.5

0.007 464.5 0.032 38.4

0.009 358 0.038 24.8

0.012 260 0.044 16.48

0.015 190.7
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Solution

Parameters ψ and m are computed by solving Equations 5.94 and 5.95 that yield 
m = 1.501 and ψ = 0.0699, while parameters a and n are computed by solving 
Equations 5.102 and 5.104 that yield n = 0.499 and a = 0.449. The relationship 
between parameters stated in Equation 5.106 also holds in this case.

Example 5.11

With parameters computed in Example 5.9 for experimental data (S-16), compute 
sediment concentration using both the Tsallis entropy and random walk methods 
and plot it.

Solution

Figure 5.13 plots the sediment concentration determined for both methods for a 
sample data of experiment S-16. Both methods satisfactorily agree with observa-
tions. The difference between two methods is less than 0.005 g/L, which is not even 
visible in the figure. Results show that the sediment concentration estimated from 
the Tsallis entropy is found to be equivalent to that from the random walk model.

TABLE 5.8
Field Data Collected from Atrisco Feeder Canal

y (m) c (g/L) y (m) c (g/L) 

0.553 3.75 0.256 18.375

0.490 4.5625 0.165 20

0.433 5.625 0.108 25.5625

0.370 7.25 0.046 51
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FIGURE 5.13 Sediment concentration determined for both methods for data of experi-
ment S-16.
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Example 5.12

With parameters computed in Example 5.10 for field data, compute sediment con-
centration using both the Tsallis entropy and random walk methods and plot it.

Solution

Figure 5.14 plots the sediment concentration estimated for both methods for 
field data S5. Both methods satisfactorily agree with observations. The difference 
between the two methods is less than 0.001 g/L, which is not visible in the figure. 
Results show that the sediment concentration estimated from Tsallis entropy is 
found to be equivalent to that from the random walk model.
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6 Suspended Sediment 
Discharge

Sediment is one of the largest carriers of contaminants and is one of the most 
 important issues in environmental hydraulics. It is, therefore, not surprising that 
sediment transport has received considerable attention for over a century. Watershed 
management, river training works, reservoir sedimentation, design of a variety of 
hydraulic works, and pollutant transport require calculation of sediment discharge 
or yield. Sediment discharge is computed by employing different combinations of 
different methods of computing channel cross-sectional velocity and suspended 
sediment concentration distribution. The velocity may be computed empirically 
or using the entropy theory, and the same is true of the sediment concentration. 
The objective of this chapter is to discuss the computation of suspended sediment 
discharge using different combinations of velocity and sediment concentration 
distributions.

6.1 PRELIMINARIES

Flow in natural channels often contains sediment, and some rivers carry huge 
quantities of sediment. Yellow River in China and Kosi River in India are two of 
the largest sediment carrying rivers in the world. There are 13 large rivers in the 
world that transport sediment more than 108 tons per year (Chien and Wan, 2003). 
Rivers with high sediment content complicate flood control and aggravate reservoir 
sedimentation.

Einstein (1950) divided the total sediment discharge into bed load discharge and 
suspended sediment discharge based on the position and characteristics of particle 
movement and summed the two parts to estimate the total sediment discharge. It is 
widely known that the majority of rivers throughout the world transport more sus-
pended sediment than bed load. Too much suspended sediment may lead to reservoir 
deposition, scouring, and siltation in the downstream channel, which may upset the 
balance between flow and sediment concentration. Therefore, the estimation of sus-
pended sediment transport is vital for the design of hydraulic structures influencing 
or controlling the sediment discharge regime and for the estimation of average rate 
of erosion in a basin.

The suspended sediment discharge can be obtained from flow discharge and sus-
pended sediment concentration, while flow discharge can be determined with the use 
of velocity distribution. There are many different methods of determining the veloc-
ity distribution and sediment concentration, such as entropy based, hydraulics based, 
and empirical. Different methods for velocity distribution have been reviewed by 
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Luo and Singh (2011) and compared by Cui and Singh (2013), and different methods 
for sediment concentration have been discussed by Cui (2011).

6.2 SEDIMENT DISCHARGE

The suspended sediment discharge can be computed by integrating sediment 
 concentration and velocity over the cross section as

 
Q cudAs = ò  (6.1)

where
A is the cross-sectional area (which is a function of flow depth)
dA is the elemental cross-sectional area
Qs is the sediment discharge
c is the sediment concentration at depth y
u is the velocity at depth y

Equation 6.1 can be simplified by using mean sediment concentration and mean 
velocity as

 Q cuAs =  (6.2)

where
c  is the mean sediment concentration over the flow cross-sectional area
u  is the mean velocity of the channel cross section

In Equation 6.1, the velocity distribution u(y) and sediment concentration distribution 
c(y) can be obtained empirically as well as using entropy theory. That is suspended 
sediment discharge can be derived using different combinations of entropy-based 
and empirical methods of velocity distribution and sediment concentration distribu-
tion. Hydraulics-based methods of velocity distribution will not be considered in this 
chapter.

One empirical velocity distribution and one entropy-based velocity distribution 
are considered, that are the Prandtl–von Karman universal law (von Karman, 1935; 
Chiu, 1987, 1989) and Cui and Singh’s (2013, 2014) Tsallis (1988) entropy-based 
velocity distribution. One empirical sediment concentration distribution and one 
entropy-based method are considered to compute the suspended sediment discharge. 
These include the empirical (partly) Rouse equation (Rouse, 1937) and Tsallis 
entropy–based (Cui, 2011; Cui and Singh, 2012) sediment concentration equation.

6.2.1 prandtl–Von KarMan VEloCity distribution

The Prandtl–von Karman universal velocity distribution for open-channel flow can 
be expressed as
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u

u y

y
= * ln

k 0

 (6.3)

where
u is the velocity at a vertical depth y above the channel bed
u* represents the shear velocity
κ is the von Karman universal constant
y0 is the depth of the shear velocity

Using the Shannon entropy, Singh (2011) derived an expression for y0 as
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÷÷ »  (6.4)

where uD is the velocity at depth y = D. The shear velocity u* can be computed with 
known channel characteristics as

 
u gDS* =  (6.5)

where
g is the acceleration due to gravity
D is the flow depth
S is the friction slope that is approximated by the channel slope for uniform flow

The von Karman universal constant κ has a value of 0.4 for clear water and a value 
as low as 0.2 for heavily sediment-laden water.

6.2.2 tsallis Entropy–basEd VEloCity distribution

Using the Tsallis entropy and the principle of maximum entropy, Cui and Singh 
(2013) derived a 2-D velocity distribution as
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where
η is the exponent in the cumulative distribution function defined by Cui and Singh 

(2012)
m is the exponent defined in the Tsallis entropy definition (or entropy parameter) 

and was recommended as 3 by Cui and Singh (2013)
G is a dimensionless parameter expressed as

 
G

u

u
=

+
l

l l
1

1

max

max *
 (6.7)
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Similar to the entropy parameter m, G can be used as an index of the uniformity 
of the velocity distribution and is related to the relationship between the mean and 
maximum velocity as
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(6.8)

Cui and Singh (2013) simplified the ratio of the mean and maximum velocity using 
a polynomial regression as

 

u

u
G G

max

. . .= - +0 554 0 077 0 5682  (6.9)

which showed good agreement with observed values. With records of mean and 
maximum velocity for a given cross section, the dimensionless parameter G can 
be easily determined without solving nonlinear equations for Lagrange multipli-
ers λ1 and λ*. Thus, the velocity distribution (Equation 6.6) for fixed m = 3 can be 
reduced to
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 (6.10)

Equation 6.10 is used to compute the sediment discharge with G computed using 
Equation 6.9. This method is discussed in more detail in Chapter 4.

6.2.3 rousE Equation

The Rouse equation (Rouse, 1937), derived from the Prandtl–von Karman logarith-
mic velocity equation and linear shear stress distribution, can be written as

 

c

c

D y

y

a

D aa

R

= -
-

æ

è
ç

ö

ø
÷

( )
( )

0

 (6.11)

where
ca is the reference concentration of sediment with settling velocity ωs at a distance 

y = a, which is arbitrarily taken as 0.05y0 above the bed, y0 is the depth of the 
shear velocity defined in the Prandtl–von Karman velocity distribution

D is the flow depth
R0 is referred to as the Rouse number, which is defined as R0 = ωs/(βκu*), where 

ωs is the settling velocity, β is the coefficient of proportionality, κ is the von 
Karman constant, and u* is the shear velocity
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6.2.4 tsallis Entropy–basEd sEdiMEnt ConCEntration

Applying the Tsallis entropy, Cui (2011) derived a sediment concentration equation as

 

c

c N
N F c N

0

2 31
1

1 1 0 5 0 5= - - + -( (( . ln ) ( ) . ln ) )/  (6.12)

where
F(c) is the cumulative distribution function
N is a dimensionless parameter defined as

 
N

c

c
=

+
l

l l
1 0

1 0 *
 (6.13)

where λ1 and λ* are the Lagrange multipliers in the probability density function of 
sediment concentration. As shown by Cui (2011), N can be computed from the rela-
tion between the mean and maximum sediment concentration values as

 

c

c
N N

0

20 554 0 077 0 568= - +. . .  (6.14)

With N computed from Equation 6.14 instead of Equation 6.13 involving λ1 and λ*, 
the suspended sediment concentration can be computed using Equation 6.12.

6.3 SUSPENDED SEDIMENT DISCHARGE

The suspended sediment discharge can be computed by using different combinations 
of velocity and sediment concentration distributions. These include three different 
combinations: (1) Tsallis entropy–based velocity and concentration distributions, 
(2)  Tsallis entropy–based sediment concentration distribution and Prandtl–von 
Karman velocity distribution, and (3) Tsallis entropy–based velocity distribution and 
Rouse sediment concentration equation.

6.3.1  tsallis Entropy–basEd VEloCity distribution and 
sEdiMEnt ConCEntration distribution

The Tsallis entropy–based velocity distribution (Cui and Singh, 2013) given by 
Equation 6.10 and sediment concentration (Cui, 2011) given by Equation 6.12 are 
substituted into Equation 6.1 to obtain the suspended sediment discharge per unit 
width (designated as 1) as
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where qs
1 is Qs per unit width for case 1. To get an explicit solution of Equation 6.15 is 

difficult; however, it can be simplified with the use of mean values. The first term in 
the integration can be replaced by mean sediment concentration given by Equation 
6.14, and the second term can be replaced by mean velocity given by Equation 6.9, 
such that Equation 6.15 reduces to

 q Du c G G N Ns
1

0
2 20 554 0 777 0 568 0 554 0 777 0 568= - + - +max ( . . . )( . . . )  (6.16)

Equation 6.16 provides a simple method to compute sediment discharge and is 
seen to be equivalent to Equation 6.2 with mean velocity and mean sediment con-
centration represented by Equations 6.9 and 6.14. Entropy-based parameters G and 
N are fixed for each channel cross section (Cui, 2011). Thus, once these entropy 
parameters have been obtained for some known cross section, with observed 
maximum velocity and sediment concentration, the sediment discharge can be 
obtained with ease.

Example 6.1

Compute sediment discharge for experimental data set S1 observed by Einstein 
and Chien (1955), using the Tsallis entropy–based velocity distribution and sedi-
ment concentration distribution.

Solution

Given umax and um, G is obtained as 0.525 following the example from Chapter 2. 
Given c0 and cm, N is obtained as 0.05 from Chapter 5. Thus, the sediment dis-
charge (g/L) can be computed for the first case from Equation 6.16 as

 

q Du c G G N Ns
1

0
2 20 554 0 777 0 568 0 554 0 777 0 568

0

= - + - +

=
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.117 6 416 58 0 554 0 525 0 777 0 525 0 5682( ) . ( ) ( )( . . . . .ft ft/s g/L´ ´ ´ - ´ + ))
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.

´ ´ - ´ +

=

0 554 0 05 0 777 0 05 0 568

1 828

2

6.3.2  prandtl–Von KarMan VEloCity distribution and 
tsallis Entropy–basEd sEdiMEnt ConCEntration distribution

The sediment discharge was derived from the Tsallis entropy–based sediment con-
centration derived by Cui (2011) in conjunction with the Prandtl–von Karman veloc-
ity distribution. Substituting Equations 6.3 and 6.12 into Equation 6.1, one obtains 
the sediment discharge per unit width as
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The sediment discharge equation (Equation 6.17) can be simplified by replacing 
the first term in the integration with the mean sediment concentration equation 
(Equation 6.14) as

 

q
u c

N N
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y
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D

2 0 2

0
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0 554 0 077 0 568= - + ò* ( . . . ) ln
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 (6.18)

Integration over y leads to

 
q

u c
N N D D ys

2 0 2
00 554 0 077 0 568= - + -* ( . . . )[ ln ln ]

k
 (6.19)

With entropy parameter N obtained and the universal constant κ, sediment discharge 
can be computed when shear velocity and maximum sediment concentration are given.

Example 6.2

Compute sediment discharge using Prandtl–von Karman velocity distribution and 
Tsallis entropy–based sediment concentration distribution for the data given in 
Table 6.1.

Solution

For additional information on velocity given in Table 6.1, κ = 0.305, y0 = 0.001 
ft, D = 0.17 ft, c0 = 58 g/m3, and u* = 0.378 ft/s, is given. Using N = 0.05 from 
Example 6.1, sediment discharge (g/s) is computed as

 

q
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N N D D ys
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554 0 05 0 777 0 05 0 568 0 17 0 17 0 001

2 0

2´ - ´ + -

= g/s

TABLE 6.1
Statistics for Velocity and Sediment 
Concentration for Experimental Run S1

Variable Value 

u* 0.378 ft/s

umax 6.416 ft/s

um 4.377 ft/s

c0 58 g/L

cm 31.05 g/L

Q 1.713 g/s
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6.3.3  tsallis Entropy–basEd VEloCity Equation 
and rousE sEdiMEnt ConCEntration Equation

Substituting the Tsallis entropy–based velocity equation (Equation 6.10) and the 
Rouse equation (Equation 6.11) into Equation 6.1, the specific sediment discharge 
(discharge per unit width) is obtained as
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Replacing the second part in integral by the mean velocity given by Equation 6.9, 
Equation 6.20 reduces to
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The integration in the second part of Equation 6.21 can be computed numerically.

Example 6.3

Compute sediment discharge using the Tsallis entropy–based velocity equation 
and the Rouse sediment concentration equation for the data used in Example 6.1.

Solution

For this example, the solution is not explicit, and numerical integration is needed. 
The sediment discharge (g/s) is computed as
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6.3.4 CoMparison

For 15 sets of experimental sediment concentration measurements collected in a 
laboratory by Einstein and Chien (1955) from the sediment-laden flow, sediment 
discharge is computed for each combination model, as plotted in Figure 6.1. It can 
be seen from the figure that sediment discharge estimated by both the Tsallis 
entropy methods leads to the smallest errors. The accuracy of the second method 
using the empirical method for the velocity part is higher than that of the third one 
using empirical methods for sediment concentration. This shows that the sediment 
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173Suspended Sediment Discharge

concentration computed using the Rouse equation has more impact than the velocity 
distribution computed by the Prandtl–von Karman equation. However, a correction 
factor may be needed for better estimation since all the methods underestimate sedi-
ment discharge.

6.4 MODIFICATION FOR SEDIMENT DISCHARGE

A correction factor ω can be introduced to reduce the bias in computed sediment 
discharge. The correction factor can be computed by the least square method and 
should be consistent for each cross section and is summarized in Table 6.2. A higher 
correction factor implies less accuracy of the computed values.
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FIGURE 6.1 Comparison of sediment discharge computed by three methods with observed 
sediment discharge.

TABLE 6.2
Correction Factor for Two Methods

Qs1 1.16

Qs2 1.24

Qs3 2.29

Source: Einstein, H.A. and Chien, N., Effects of heavy 
sediment concentration near the bed on velocity 
and sediment distribution, MRD Series Report 
No.8, University of California at Berkeley and 
Missouri River Division, U.S. Army Corps of 
Engineers, Omaha, NE, 1955.

© 2016 by Taylor & Francis Group, LLC

  



174 Introduction to Tsallis Entropy Theory in Water Engineering

The computed sediment discharge values, corrected with the use of the 
 correction factor, become closer to the observed values, and the error is reduced 
by more than 60%. Figure 6.2 shows that the computed sediment discharge after 
correction is much closer to the 1:1 line than earlier, and the points are distributed 
both above and below the line for every method. Comparing with other methods, 
the fully entropy-based sediment discharge after correction is the closest to the 
observed values.
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7 Sediment Concentration 
in Debris Flow

A debris flow commonly comprises more than 50% sediment by volume and the sedi-
ment particles may range in size from clay to boulders several meters in diameter (Major 
and Pierson, 1992). Thus, it is a dense, poorly sorted, solid–fluid mixture. In mountain-
ous regions, prolonged heavy rainfall occurring over saturated hillslopes, earthquakes, 
and human activities are the main causes of debris flow. In debris flow, debris or rocks 
concentrate at the head of flow and move downslope with high concentration and strong 
destructive force. As they continue to flow downhill and through channels, with the 
addition of water, sand, mud, trees, boulders, and other material, they increase in vol-
ume and sediment concentration. Debris flows have a strong erosive force, grow during 
the movement of gathering debris eroded from the torrent bed or banks, and are capable 
of transporting huge volumes of sediment. Because of their power, these flows destroy 
whatever comes in their way; that is, they kill people and animals; decimate roads, 
bridges, railway tracks, homes and other property; and fill reservoirs.

Debris flow is caused in three ways: (1) the gully bed material is mobilized or the sedi-
ment particles from the gully bed are entrained by water runoff; (2) a natural dam formed 
by a landslide fails; and (3) a landside block is liquefied. The discussion in this chapter 
is restricted to the first way. Sediment concentration and sediment particle size are two 
fundamental factors that govern debris flow and its characteristics (Egashira et al., 2001; 
Takahashi, 1978). Of typical concern associated with debris flow are the formation, 
movement, and deposition of debris; delineation of flood zones; damage assessment; 
amongst others. To address these concerns, the equilibrium sediment concentration and 
its vertical distribution are needed. Debris flows, involving mixtures of debris and water, 
exhibit characteristics that are different from those of water flow or sediment-laden 
river flow. Although a physically based hydraulic model can be constructed for model-
ing debris flow, uncertainties in debris flow variables and parameters of such a model 
may, however, limit its potential. Lien and Tsai (2003) employed the Shannon entropy 
(Shannon, 1948) for debris flow modeling. This chapter employs the Tsallis entropy for 
the determination of sediment concentration distribution in debris flow.

7.1 NOTATION AND DEFINITION

Consider a debris flow over an erodible bed, as shown in Figure 7.1. It is assumed 
that the flow is steady and uniform, where the depth of flow is h0, and the sediment 
concentration decreases monotonically from a maximum value of cm at the chan-
nel bottom to an arbitrary value of ch at the water surface. Let c(y) be the sediment 
concentration at a vertical distance y (0 ≤ y ≤ h0) from the channel bed. The sedi-
ment concentration is defined as the volume of sediment divided by the volume of 
fluid–sediment mixture and is dimensionless. Thus, it is expressed as a fraction or in 
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percent by volume. For application of the Tsallis entropy, it is assumed that the time-
averaged sediment concentration C is a random variable.

7.2  METHODOLOGY FOR THE DETERMINATION OF 
DEBRIS FLOW CONCENTRATION

Determination of debris flow concentration using the entropy theory (Singh and Cui, 
2015) entails (1) definition of the Tsallis entropy, (2) specification of constraints, 
(3) maximization of entropy, (4) determination of the Lagrange multipliers, (5) deter-
mination of probability density function (PDF) and maximum entropy, (6) cumulative 
probability distribution function (CDF) hypothesis, and (7) sediment concentration 
distribution. Each of these components is now discussed.

7.2.1 dEFinition oF tsallis Entropy

Let the concentration C in debris flow be the random variable with PDF, f(c). Then, 
the Tsallis entropy (Tsallis, 1988) of C, H(C), can be expressed as
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where
c, ch ≤ c ≤ cm, is the value of random variable C
cm is the maximum value of C or concentration at the bed
ch is the concentration at the water surface
m is the entropy index
H is the entropy of f(c) or C
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C(y)

Cm

h0

Cm

Ch
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FIGURE 7.1 Steady uniform debris flow.
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Equation 7.1 is a measure of the uncertainty of variable C. The quantity f(c)dc 
defines the probability of sediment concentration occurring between c and c + dc. 
The objective is to derive f(c), which is accomplished by maximizing H, subject 
to specified constraints, in accordance with the principle of maximum entropy 
(POME) (Jaynes, 1957).

7.2.2 spECiFiCation oF Constraints

Since f(c) is a PDF, it must satisfy

 

f c dc
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c

h

m

( ) =ò 1  (7.2)

which is a statement of the total probability theorem. One of the simplest con-
straints is the mean or equilibrium sediment concentration by volume, denoted as 
c  or cD. The mean value may be known or obtained from observations and can be 
expressed as
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In order to keep the algebra simple, additional constraints are not employed.

7.2.3 MaxiMization oF Entropy

The entropy H of C, given by Equation 7.1, can be maximized, subject to Equations 
7.2 and 7.3, in accordance with POME, by employing the method of Lagrange mul-
tipliers. To that end, the Lagrangian function L is expressed as
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where λ0 and λ1 are the Lagrange multipliers. Differentiating Equation 7.4 with 
respect to f, recalling the Euler–Lagrange calculus of variation, while noting f as 
variable and C as parameter, and equating the derivative to zero, one obtains

 

¶
¶

= Þ
-

- - - =-L

f m
mf c cm0

1
1

1 01
0 1[ ( ) ] l l  (7.5)

© 2016 by Taylor & Francis Group, LLC

  



180 Introduction to Tsallis Entropy Theory in Water Engineering

Equation 7.5 leads to
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Equation 7.6 is the POME-based least-biased PDF of sediment or debris flow con-
centration C.

7.2.4 dEtErMination oF lagrangE MultipliErs

Equation 7.6 has unknown λ0 and λ1 that can be determined with the use of Equations 
7.2 and 7.3. The Lagrange multiplier λ1 is associated with mean concentration and λ0 
with the total probability. These multipliers have opposite signs, with λ1 being posi-
tive and λ0 being negative. Substitution of Equation 7.6 in Equation 7.2 yields
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Integration of Equation 7.7 yields
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Likewise, substitution of Equation 7.6 in Equation 7.3 yields
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Equation 7.9 can be integrated by parts as
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(7.10)

Equations 7.8 and 7.10 can be solved numerically for λ0 and λ1 for specified values 
of c , cm, ch, and m.

© 2016 by Taylor & Francis Group, LLC

  



181Sediment Concentration in Debris Flow

7.2.5  dEtErMination oF probability dEnsity FunCtion 
and MaxiMuM Entropy

Integrating Equation 7.6 from ch to c, we obtain the CDF of C, F(c), as
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(7.11)

If the debris flow at the water surface is negligible, that is, ch = 0, then Equation 7.11 
becomes
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Now the maximum entropy of C is obtained by inserting Equation 7.6 in Equation 7.1:
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(7.13)

Equation 7.13 is expressed in terms of the Lagrange multiplier λ1, the lower limit of 
concentration ch, and the upper limit of concentration cm.

Example 7.1

Compute and plot f(c) as a function of λ1 and m. Take m = 2 and λ1 = 0.1, 1.0, 5.0, 
and 10.0. Assume ch = 0 and cm = 1.

Solution

For different values of λ1, f(c) is computed using Equation 7.6 as given in Table 7.1 
and is shown in Figure 7.2. It is seen that when λ1 = 0.1, f(c) tends to be uniform 
with f(c = 0) = 1.0. When λ1 = 10, f(c) approaches 0 quickly. Figure 7.2 plots the 
PDF of C.

Then, for different values of m (=1/2, 2/3, 3/4, 2, and 3), f(c) is computed using 
Equation 7.6 with λ1 = 0.5 as given in Table 7.2 and shown in Figure 7.3. It is seen 
that when m is between 0.5 ≤ m ≤ 0.75, f(c) is not highly sensitive to m.
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Example 7.2

Compute and plot f(c) as a function of λ1. Take m = 2 and λ1 = 0.1, 1.0, 5.0, and 
10.0. Assume ch = 0 and cm = 1.

Solution

For different values of λ1, f(c) is computed using Equation 7.12 with m = 2, as 
shown in Table 7.2 and Figure 7.3. For λ1 = 0.1, F(c) becomes linear (Table 7.3).

TABLE 7.1
Values of f(c) for Different Values of λ1

Values of f(c) with m = 2

c λ1 = 0.1 λ1 = 1 λ1 = 5 λ1 = 10 

0 1.000 1.212 1.327 1.375

0.1 1.000 1.171 1.265 1.308

0.2 1.000 1.129 1.200 1.237

0.3 1.000 1.084 1.131 1.162

0.4 1.000 1.038 1.058 1.082

0.5 1.000 0.990 0.980 0.995

0.6 1.000 0.939 0.894 0.900

0.7 1.000 0.885 0.800 0.794

0.8 1.000 0.828 0.693 0.671

0.9 1.000 0.767 0.566 0.520

1 1.000 0.700 0.400 0.300

0
0.0
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0.6

0.8f (
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FIGURE 7.2 Plot of f(c) as a function of λ1 and m = 2.
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Example 7.3

Compute and plot F(c) for different values of m = 1/2, 2/3, 3/4, 2, and 3. Assume 
λ1 = 0.5, ch = 0, and cm = 1.

Solution

For different values of m, F(c) is computed using Equation 7.12, as given in Table 7.4 
and as shown in Figure 7.5. It is seen that when m is between 0.5 ≤ m ≤ 0.75, F(c) 
is not sensitive to m.

00
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m=3

0.4 0.6
c

0.8 1

λ1=0.5

FIGURE 7.3 Plot of f(c) as a function of m.

TABLE 7.2
Values of f(c) for Different Values of m

Values of m = 2 with λ1 = 0.5

c m = 1/2 m = 2/3 m = 3/4 m = 2 m = 3 

0 1.100 1.152 1.206 1.333 1.514

0.1 1.078 1.118 1.159 1.267 1.436

0.2 1.057 1.086 1.114 1.200 1.354

0.3 1.037 1.054 1.072 1.133 1.267

0.4 1.017 1.024 1.031 1.067 1.173

0.5 0.998 0.995 0.992 1.000 1.071

0.6 0.979 0.967 0.955 0.933 0.958

0.7 0.961 0.941 0.920 0.867 0.829

0.8 0.943 0.915 0.887 0.800 0.677

0.9 0.926 0.890 0.854 0.733 0.479

1 0.909 0.866 0.824 0.667 0.000
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Example 7.4

Compute and plot λ0 as a function of λ1 and for various values of m. Assume ch = 0 
and cm = 1. Take m = 1/2, 2/3, 3/4, 2, and 3.

Solution

The values of λ0 are computed using Equation 7.8 as
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TABLE 7.3
Values of F(c) for Different Values of λ1

Values of F(c) with m = 2

c λ1 = 0.1 λ1 = 1 λ1 = 5 λ1 = 10 

0 0.000 0.000 0.000 0.000

0.1 0.105 0.130 0.164 0.175

0.2 0.208 0.253 0.314 0.333

0.3 0.311 0.370 0.450 0.475

0.4 0.413 0.480 0.571 0.600

0.5 0.513 0.583 0.679 0.708

0.6 0.613 0.680 0.771 0.800

0.7 0.711 0.770 0.850 0.875

0.8 0.808 0.853 0.914 0.933

0.9 0.905 0.930 0.964 0.975

1.0 1.000 1.000 1.000 1.000
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FIGURE 7.4 Plot of F(c) as a function of λ1 and m = 2.
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This equation is solved by trial and error for various values of m = 1/2, 2/3, 3/4, 2, 
and 3, and the values λ0 so obtained are given in Table 7.4 and shown in Figure 7.6.

Example 7.5

Compute and plot H(C) as a function of λ0 and for various λ1 values. Assume ch = 0 
and cm = 1. Take m = 2 and λ1 = 0.1, 1.0, 3.0, and 5.0.

0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F(
c)

0.2 0.4 0.6
c

0.8

m=1/2
m=2/3
m=3/4
m=2
m=3

λ1=0.5

1

FIGURE 7.5 Plot of F(c) as a function of m.

TABLE 7.4
Values of F(c) for Different Values of m

Values of F(c) with λ1 = 0.5

c m = 1/2 m = 2/3 m = 3/4 m = 2 m = 3 

0 0.000 0.000 0.000 0.000 0.000

0.1 0.122 0.123 0.123 0.130 0.146

0.2 0.238 0.239 0.240 0.253 0.284

0.3 0.349 0.350 0.351 0.370 0.414

0.4 0.455 0.456 0.458 0.480 0.535

0.5 0.556 0.557 0.559 0.583 0.646

0.6 0.652 0.654 0.656 0.680 0.747

0.7 0.745 0.746 0.748 0.770 0.836

0.8 0.833 0.834 0.836 0.853 0.911

0.9 0.918 0.919 0.920 0.930 0.968

1.0 1.000 1.000 1.001 1.000 1.000
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Solution

For different values of λ1, H(C) is computed using Equation 7.13, as given in Table 7.6 
and shown in Figure 7.7. The Tsallis entropy value increases with λ0 (Table 7.6).

7.2.6 CuMulatiVE probability distribution hypothEsis

It is hypothesized that the probability of debris flow concentration being less than or 
equal to a given value c can be expressed as (h0 − y)/h0. Then the cumulative distribu-
tion function of C, F(c), in terms of flow depth can be written as

 
F c

h y

h

y

h
( ) = - = -0

0 0

1  (7.14)

0
–1.4

–1.2

–1.0

–0.8

λ 0
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–0.0

0.2 0.4 0.6
λ1

0.8 1

m = 1/2
m = 2/3
m = 3/4
m = 2
m = 3

FIGURE 7.6 Plot of λ0 as a function of λ1 for various values of m.

TABLE 7.5
Values of λ0 for Different Values of m

Values of λ0

λ1 m = 1/2 m = 2/3 m = 3/4 m = 2 m = 3 

1 0.000 0.000 0.000 0.000 0.000

2 −0.898 −0.871 −0.812 −0.566 −0.333

3 −0.923 −0.894 −0.829 −0.541 −0.285

4 −0.962 −0.925 −0.851 −0.514 −0.246

5 −1.011 −0.961 −0.874 −0.488 −0.213

6 −1.067 −1.003 −0.900 −0.461 −0.183

7 −1.124 −1.051 −0.927 −0.434 −0.156

8 −1.181 −1.105 −0.956 −0.406 −0.130

9 −1.236 −1.167 −0.986 −0.378 −0.106

10 −1.287 −1.239 −1.017 −0.350 −0.082
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Equating Equation 7.14 to the CDF derived as Equation 7.11, we obtain
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FIGURE 7.7 Plot of H(C) as a function of λ0 for various values of λ1.

TABLE 7.6
Values of H(c) for Different Values of λ1

Values of H(c)

λ0 λ1 = 0.1 λ1 = 0.3 λ1 = 0.5 λ1 = 1 

1 2.365 1.924 1.646 1.333

2 1.876 1.570 1.387 1.197

3 1.532 1.329 1.217 1.109

4 1.301 1.175 1.112 1.057

5 1.155 1.084 1.052 1.029

6 1.070 1.034 1.021 1.021

7 1.026 1.011 1.007 1.029

8 1.007 1.003 1.002 1.057

9 1.001 1.000 1.002 1.109

10 1.000 1.000 1.007 1.197
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7.2.7 sEdiMEnt ConCEntration distribution

Let λ* = (1/(m − 1)) − λ1. Then, Equation 7.15 can be written as
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If ch = 0, Equation 7.16 reduces to
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Equation 7.17 is the debris flow concentration distribution defined in terms of flow depth.

7.3 REPARAMETERIZATION

The debris flow concentration distribution can be simplified by using a dimension-
less entropy parameter defined as
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Dividing Equation 7.17 by cm, we obtain
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Since λ* /λ1cm = 1 − (1/μ) from Equation 7.18, Equation 7.19 can be recast as
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If ch = 0 at y = h0, Equation 7.20 reduces to
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Equation 7.21 suggests that
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Substituting Equation 7.22 into Equation 7.20, the dimensionless sediment concen-
tration distribution with ch = 0 becomes
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Equation 7.23 expresses the debris flow concentration distribution as a function of 
vertical distance y.

Example 7.6

Plot Equation 7.23 for μ = −10 to +1.

Solution

The dimensionless debris flow concentration distribution c/cm is plotted as a func-
tion of y/h0, as shown in Figure 7.8. The distribution is not sensitive to μ beyond 
the range (−10, 1). As μ tends to zero, c/cm decreases linearly with y/h0. This sug-
gests that parameter μ can be regarded as a measure of the uniformity of sediment 
concentration distribution.

7.4 EQUILIBRIUM DEBRIS FLOW CONCENTRATION

Now the dimensionless equilibrium sediment concentration can be derived. Inserting 
Equation 7.23 in Equation 7.3 and integrating with the condition that C = cm at y = 0 
and C = ch at h = h0, we obtain
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FIGURE 7.8 Plot of y/h0 versus c/cm for various values of μ.

© 2016 by Taylor & Francis Group, LLC

  



190 Introduction to Tsallis Entropy Theory in Water Engineering

Example 7.7

Compute and plot cD/cm as a function of μ for different values of m.

Solution

For m = 1/2, 2/3, 3/4, 2, and 3, cD/cm is computed using Equation 7.24, as shown 
in Table 7.7 and Figure 7.9.

It can be seen from the figure that the value of cD/cm monotonically increases 
with increasing μ and it is not sensitive to μ beyond the range (−5, 1). When m > 1, 

TABLE 7.7
Values of cD/cm for Different Values of m

μ m = 1/2 m = 2/3 m = 3/4 m = 2 m = 3 

−5 0.193 0.143 0.093 −0.046 −0.377

−4.5 0.206 0.154 0.102 0.018 −0.247

−4 0.220 0.167 0.113 0.085 −0.120

−3.5 0.237 0.182 0.126 0.156 0.004

−3 0.257 0.200 0.143 0.230 0.125

−2.5 0.280 0.222 0.164 0.308 0.243

−2 0.308 0.250 0.192 0.389 0.358

−1.5 0.341 0.286 0.231 0.474 0.470

−1 0.381 0.333 0.286 0.562 0.579

−0.5 0.432 0.400 0.368 0.654 0.685

0.01 0.502 0.503 0.503 0.749 0.788

0.5 0.619 0.667 0.714 0.848 0.888

1 0.985 0.990 0.995 0.950 0.985

–50.0

0.2

0.4
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1.2

m = 3
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c D
/c

m

–4 –3 –2 –1
µ

0 1

FIGURE 7.9 Plot of cD/cm as a function of μ for various values of m.
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191Sediment Concentration in Debris Flow

cD/cm is highly sensitive to μ and increases from 0 to 1 rapidly. When m < 1, cD/cm 
increases slowly from 0.1 to 0.5 until μ becomes equal to 0, and then it rapidly 
goes to 1.

Takahashi (1978) theoretically derived a relation for computing the equilibrium 
sediment concentration of debris flow occurring due to the mobilization of bed 
particles by water. His relation can be expressed as

 
cD

s

=
- -

r q
r r f q

tan
( )(tan tan )

 (7.25)

where
θ is the angle of inclination of the channel bed from the horizontal
ϕ is the angle of internal friction
ρs is the density of sediment
ρ is the density of water

Although Equation 7.25 has been widely used for calculating the equilibrium sedi-
ment concentration cD at the forefront part of debris flow, in a steady uniform state 
it yields unrealistic results in some cases.

Example 7.8

Compute cD when tan ϕ = 0.756, tan θ = 0.466 (θ = 25°), ρs = 2.6 g/cm3, and ρ = 
1 g/cm3 (Lien and Tsai, 2003).

Solution

Substituting the given values in Equation 7.25, one obtains

 
cD =

´
- ´ -

= »
1 0 466

2 6 1 0 756 0 466
1 004 1 0

.
( . ) ( . . )

. .

This value implies that cD may be greater than unity that obviously is unrealistic, 
for flow cannot occur when the sediment concentration is that high.

Example 7.9

Compute and plot cD/cm as a function of tan θ (%) [ϕ = 0.06.] for the data observed 
by Takahashi (1978), as tabulated in Table 7.8. Take cm = 0.756, ρs = 2.6 g/cm3. Plot 
the cD/cm as a function of μ in the same plot for comparison.

Solution

The values of cD/cm are computed using Equation 7.25, as given in Table 7.9 and 
shown in Figure 7.10. The value of cD/cm computed from Equation 7.24 is plotted 
for μ changing from −4 to 2 as well in Figure 7.10.

It is seen that the estimation using the Tsallis entropy with m = 3 fits the obser-
vations with r2 = 0.873, higher than that (r2 = 0.828) of Equation 7.25. It suggests 
that entropy parameter μ is related to the inclination of the channel bed from the 
horizontal.
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TABLE 7.8
Observed cD/cm with tan θ
tan θ (%) cD/cm tan θ (%) cD/cm 

23.08 0.15 30.58 0.65

23.08 0.25 36.54 0.66

12.31 0.20 36.35 0.69

15.96 0.21 36.35 0.76

15.77 0.28 40.38 0.76

23.08 0.43 40.58 0.80

26.92 0.52 40.58 0.82

30.77 0.56 46.73 0.83

30.58 0.58 46.73 0.81

30.58 0.61 46.73 0.78

TABLE 7.9
cD/cm Is Computed from Equation 7.25

tan θ (%) cD/cm tan θ (%) cD/cm 

5 0.059 35 0.689

10 0.114 40 0.864

15 0.189 45 1.059

20 0.284 50 1.274

25 0.399 55 1.509

30 0.534 60 1.764

10 20 30 40
tan θ (%)

50 600
0.00
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0.40

c D
/c

m

0.60

0.80

1.00

1.20
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Takahashi (1978)
Estimation Equation 7.24
Estimation Equation 7.25

–4 –3 –2 –1 0
µ

1 2

FIGURE 7.10 Plot of cD/cm as a function of tan θ (%) [ϕ = 0.06].
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From flume experiments, Ou and Mizuyama (1994) developed an empirical 
relation for global sediment concentration using the channel bed slope as the 
principal factor:

 
c

c
DT

m

=
+

4 3
1 4 3

1 5

1 5

. (tan )
. (tan )

.

.

q
q

 (7.26)

where cDT is the average global sediment concentration of debris flow. This equa-
tion has been found to yield reasonable values of concentration even at higher 
channel bed slopes.

Example 7.10

Compute and plot cDT as a function of tan θ (%) [ϕ = 0.06] for various values of cm. 
Take cm = 0.5, 0.6, 0.7, 0.8, and 0.9.

Solution

For various values of cm, cDT is computed using Equation 7.26, as given in 
Table 7.10, and Figure 7.11 plots cDT as a function of tan θ (%) [ϕ = 0.06] for vari-
ous values of cm.

Example 7.11

Compute and plot cD/cm as a function of tan θ (%) [ϕ = 0.06] using Equation 7.26. 
Plot cD/cm as a function of μ in the same plot for comparison.

Solution

The values of cD/cm are computed using Equation 7.26, as given in Table 7.11 and 
shown in Figure 7.12. The value of cD/cm computed from Equation 7.24 is plotted 
for μ changing from −4 to 2 as shown in Figure 7.12.

Using the concept developed by Bagnold (1954) and experimental data of 
Takahashi (1978) and Ou and Mizuyama (1994), Lien and Tsai (2000) derived an 

TABLE 7.10
Values of cDt as a Function of tan θ (%) [ϕ = 0.06] 
for Various Values of cm

tan θ cm = 0.5 cm = 0.6 cm = 0.7 cm = 0.8 cm = 0.9 

0 0.000 0.000 0.000 0.000 0.000

10 0.127 0.126 0.124 0.123 0.121

20 0.323 0.312 0.303 0.294 0.286

30 0.522 0.496 0.473 0.451 0.432

40 0.705 0.658 0.618 0.582 0.550

50 0.864 0.795 0.736 0.686 0.642

60 1.000 0.909 0.833 0.769 0.714
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FIGURE 7.11 Plot of cDT as a function of tan θ (%) [ϕ = 0.06].
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FIGURE 7.12 Plot of cD/cm as a function of tan θ (%) [ϕ = 0.06].

TABLE 7.11
cD/cm Is Computed from Equation 7.26

tan θ (%) cD/cm tan θ (%) cD/cm 

5 0.049 35 0.520

10 0.139 40 0.583

15 0.224 45 0.641

20 0.305 50 0.695

25 0.381 55 0.744

30 0.453 60 0.789
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equilibrium sediment concentration equation for simulating the forefront part as well 
as the global average of debris flow. Lien and Tsai (2003) further modified this equa-
tion as follows.

Because of the balance in particle exchange between debris flow and channel 
bed at the dynamic equilibrium condition, the sediment concentration in debris 
flow tends to attain saturation. Under this condition, the effective shear stress in 
debris flow that acts on sediment particles resting on the channel bed is balanced 
by the critical shear stress of the particles. This means that sediment particles are 
in incipient motion. One can then express

 T F c- =tana t  (7.27)

where

 T c c ghs D= - +[( ) ] sinr r q0  (7.28)

 F gc hs D= -( ) cosr r q0  (7.29)

where
tan α is the dynamic friction coefficient varying from 0.32 to 0.75
T is the particle shear stress
F is the normal stress
τc is the critical stress for the incipient motion of grains in the channel bed

Example 7.12

 Compute and plot F, T, and τc as functions of tan θ. Let h0 = 1 m, ρs = 2.6 g/cm3.

Solution

The average sediment concentration cD is computed using Equation 7.25, and sub-
stituting in Equations 7.28 and 7.29, F and T are computed. Then, τc is computed 
using Equation 7.27, as given in Table 7.12 and shown in Figure 7.13 that plots F, T, 
and τc as functions of θ.

For the incipient motion of uniformly sized bed material, Shields (1936) 
expressed the internal friction ψ as

 
y

t
r r

=
-

c

s sgd( )
 (7.30)

where
ψ is called the Shields parameter, representing the angle of inclination of chan-

nel bed from the horizontal
τc is the shear stress
ds is the particle diameter
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If the flow is fully developed, ψ yielded by Equation 7.30 ranges from 0.04 to 0.06. 
Inserting Equations 7.28 and 7.29 in Equation 7.27, one obtains

 t r r q r r q ac s D s Dc c gh gc h= - + - -[( ) ] sin ( ) cos tan0 0  (7.31)

Equating to Equation 7.30, one obtains

 t r r q r r q a y r rc s D s D s sc c gh gc h gd= - + - - = -[( ) ] sin ( ) cos tan ( )0 0  (7.32)

By rearranging Equation 7.32, the equilibrium sediment concentration can be 
expressed as

 

c
c

D

m

= + + ± + + -
1
2

1 1 42[( ) ( ) ]c b c b a  (7.33)
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FIGURE 7.13 Plot of F, T, and τc as functions of θ.

TABLE 7.12
Values of F, t, and τc as Functions of θ
tan θ (%) t F τc 

0 0.000 0.000 0.000

10 1.991 1.632 0.963

20 4.671 3.616 2.393

30 8.158 5.635 4.608

40 11.938 6.712 7.709

50 15.126 6.387 11.103

60 17.578 5.244 14.275
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where

 
c

r q
r r a q

=
- -

tan
( )(tan tan )cm s

 (7.34)

and

 
b

h
q a q

=
-cm cos (tan tan )

 (7.35)

where η is a parameter obtained experimentally and tan α is the dynamic friction 
coefficient shown in Equation 7.27. If tan θ = tan α, the equilibrium concentration 
is then given by

 

c
c

D

m s

=
+ -

1
1 1h r r r q[( ) ]( sin )/ /

 (7.36)

Example 7.12

Take η = 0.04. Compute and plot cD/cm versus tan θ (%) using Equation 7.33.

Solution

cD/cm is computed using Equation 7.33 and χ and β are computed using 
Equations 7.34 and 7.35 for different values of tan θ (%), as shown in Table 7.13 
and Figure 7.14.

Example 7.13

Compute and plot cD/cm versus tan θ (%) using Equation 7.36. Take η = 0.04.

Solution

The values of cD/cm are computed using Equation 7.36 for different values of tan θ 
(%), as given in Table 7.14 and shown in Figure 7.15.

TABLE 7.13
cD/cm, χ, and β for Different Values of tan θ (%)

tan θ χ β cD/cm 

0 0.000 0.084 0.000

10 0.156 0.100 0.140

20 0.385 0.125 0.324

30 0.752 0.167 0.548

40 1.438 0.248 0.738

50 3.180 0.455 0.837

60 16.534 2.057 0.884
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FIGURE 7.14 Plot of cD/cm versus tan θ (%) using Equation 7.31.

TABLE 7.14
Values of cD/cm for Various Values of tan θ (%)

tan θ (%) cD/cm tan θ (%) cD/cm

5 0.064 35 0.617

10 0.138 40 0.699

15 0.225 45 0.763

20 0.323 50 0.806

25 0.424 55 0.820

30 0.524 60 0.803
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FIGURE 7.15 Plot of cD/cm versus tan θ (%) using Equation 7.36.
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It can be seen from Figure 7.14 that the estimated cD/cm using Equation 7.36 
is slightly lower than the observed value when θ is larger than 30°. However, 
the  estimation using Equation 7.36 has an r2 = 0.880, slightly larger than the 
entropy method (Equation 7.24 of r2 = 0.873). There are two values observed at 
tan θ = 23.08% that fall far apart from the whole data trend in Figure 7.15. If these 
are considered as outliers, then r2 increases to 0.949 for the entropy method and to 
0.946 for Equation 7.36.
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8 Stage–Discharge Relation

The stage–discharge relation, often called the rating curve, is employed for myriad 
purposes, including the determination of discharge for a prescribed stage in natural 
and engineered channels; calibration of physically based hydraulic and hydrological 
models; catchment routing; evaluation of flood inundation and floodplain mapping; 
constructing continuous records of discharge, sediment discharge, or sediment con-
centration; construction of pollutant graphs; estimation of storage variation; hydrau-
lic design; and damage assessment (Singh, 1993). There are different types of rating 
curves, such as stage–discharge relation, sediment rating curve (Kazama et  al., 
2005), pollutant rating curve, and drainage basin rating curve. Since rating curves 
are of similar form from an algebraic viewpoint, fundamental to most rating curves 
is the estimation of discharge. The rating curves employed in practice are either of 
parabolic or of power form. Parameters of these curves are determined either graphi-
cally or using least-square, maximum likelihood, pseudo-maximum likelihood, or 
segmentation method (Petersen-Overlier and Reitan, 2005). The objective of this 
chapter is to present the derivation of rating curves using the Tsallis entropy. The 
entropy theory permits a probabilistic characterization of the rating curve and hence 
the probability density function (PDF) of discharge underlying the curve. It also 
permits a quantitative assessment of the uncertainty of discharge obtained from the 
rating curve.

8.1 METHODS FOR THE CONSTRUCTION OF RATING CURVES

There are several methods for deriving a rating curve that can be classified as graphi-
cal, hydraulic, artificial intelligence, and statistical.

8.1.1 graphiCal MEthod

The graphical method involves plotting observed discharge and stage data on a graph 
paper and fitting an equation to the data collected, and it is commonly used to con-
struct rating curves.

8.1.2 hydrauliC MEthod

The hydraulic method uses dimensional analysis or the mass and momentum con-
servation equations. Baiamonte and Ferro (2007) derived a stage–discharge relation 
from flume measurements on a sloping channel using dimensional analysis and the 
concept of self-similarity. Liao and Knight (2007) suggested three formulae for rat-
ing curves for prismatic channels. Petersen-Overlier (2004) used nonlinear regres-
sion and Jones formula to account for hysteresis due to unsteady flow. The U.S. 

© 2016 by Taylor & Francis Group, LLC



202 Introduction to Tsallis Entropy Theory in Water Engineering

Geological Survey (USGS) used a simplified hydraulic approach for estimating peak 
discharge in the absence of direct measurements, such as during floods. Discharge 
is determined from a 1-D flow model based on Manning’s roughness, measurements 
of channel geometry, and water surface elevation (Rantz, 1982). A similar method 
involves step-backwater surface models and Manning’s n for defining the shape of 
rating curves for stages where no measurements are made (Bailey and Ray, 1966). 
Indirect methods of discharge estimates entail extrapolation on estimated empirical 
roughness coefficients that can significantly vary (Jarrett, 1984).

Hydraulic models rely on empirical roughness parameterization for a specific 
flow condition, do not express roughness as a function of stage, and may, therefore, 
not accurately generate the complete rating curve. Kean and Smith (2005) developed 
a hydraulic method for generating curves for geomorphologically stable channels in 
which channel roughness is determined from field measurements of channel geom-
etry; the physical roughness of the bed, banks and floodplains; and vegetation den-
sity on the banks and floodplain. They obtained accurate discharge estimates at two 
USGS gaging stations on White Water River, Kansas, United States, which provided.

8.1.3 artiFiCial intElligEnCE MEthods

Artificial intelligence techniques have recently been employed for constructing 
rating curves. These include artificial neural network (ANN), genetic algorithm 
(GA), gene expression (GE), gene expression programming (GEP), and fuzzy logic. 
Bhattacharya and Solomatine (2000) used an ANN; Jain and Chalisgaonkar (2000) 
employed a three-layered forward ANN; Sudheer and Jain (2003) used an ANN with 
radial basis functions; Sahoo and Ray (2006) applied feed forward and back propa-
gation and radial basis function ANNs; and Habib and Meselhe (2006) used ANNs 
and regression analysis to derive rating curves. Deka and Chandramouli (2003) com-
pared an ANN, a modularized ANN, a conventional rating curve method, and a 
neuro-fuzzy method for deriving rating curves. Bhattacharya and Solomatine (2005) 
found ANNs and model tree 5 (M5) to be more accurate for constructing rating 
curves.

Guven and Aytek (2009) used GA for Schuylkill River at Berne, Pennsylvania. 
Lohani et al. (2006) employed the Takagi-Sugano (T5) fuzzy inference system for 
deriving rating curves for Narmada River in India. Ghimire and Reddy (2010) com-
pared GA and M5 with GEP, multiple linear regression, and conventional stage–
discharge relationship method. Azamathulla et al. (2011) compared GEP with GP, 
ANN, and two conventional methods. Sivapragasam and Muttil (2005) employed 
a support vector machine (SVM) for extrapolating rating curves that were tested at 
three gaging stations in Washington and found SVM to be better than the widely 
used logarithmic method, a higher-order polynomial, and ANN.

8.2 ERRORS IN RATING CURVES

A rating curve is often taken as a fixed curve, at least for a certain period. The rat-
ing curve may change with time and may not account for hysteresis in flow, and 
therefore, kinematic rating curves are not capable of representing looped conditions. 
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Hence, the field rating curve may not be accurate in determining streamflow when 
the stream bed profile and side slope characteristics change. It is prone to errors 
due to a number of factors: (1) errors in discharge measurements (Sauer and Meyer, 
1992); (2) selection of a stable river cross-section; (3) maintenance of the stable 
cross-section; (4) abrupt changes in controls and submergence of controls causing 
irregularities in the slope of the stage–discharge relation; (5) variation in discharge 
for a given stage due to variations in slope, velocity, or channel conditions; (6) lack 
of permanent control; and (7) existence of more than one control for high and low 
flows (Yoo and Park, 2010). Using measurements containing errors and outliers, Sefe 
(1996) derived a single routing curve for Ukavaiigo River at Mehembo, Botswana. 
Hershey (1995) investigated errors in discharge due to errors in velocity and depth 
measurements.

8.3 FORMS OF RATING CURVES

A rating curve at a gaging station on a channel dominated by friction is normally 
expressed in power form (Kennedy, 1964) as

 Q a y y cb= - +( )0  (8.1)

where
Q is the discharge (L3/T, e.g. ft3/s or m3/s)
y is the stage or height of water surface (L, e.g. ft or m)
y0 is the height (L) when discharge is negligible and is usually taken as a constant 

value or is sometimes used as a fitting parameter
b is the exponent
a (L3−b/T) and c (L3/T) are parameters; here L is the length dimension and T is 

the time dimension

Equation 8.1 specializes into three popular forms that are commonly employed 
(Corbett, 1962). The three forms have been popularly used and stem from river mor-
phological characteristics (Singh, 1996).

Type 1: In this case, y0 = 0 and c = 0. Equation 8.1 then becomes

 Q ayb=  (8.2)

or in logarithmic form

 log log logQ a b y= +  (8.3)

Type 2: In this case, c = 0. Equation 8.1 then becomes

 Q a y y b= -( )0  (8.4)
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or in logarithmic form

 log log log( )Q a b y y= + - 0  (8.5)

Type 3: In this case, y0 = 0. Equation 8.1 then becomes

 Q ay cb= +  (8.6)

or in logarithmic form

 log( ) log logQ c a b y- = +  (8.7)

It should be noted that the values of parameters a, b, and c will vary from one relation 
to another. In the hydraulic literature, Equations 8.2 through 8.6 have been applied.

8.4 RANDOMNESS IN RATING CURVE

In order to account for the change in control from low flow to high flow, a segmenta-
tion method has been used to construct a rating curve (Overlier, 2006), suggesting 
an element of randomness in the stage–discharge curve. Hence, it may be reasonable 
to argue that temporally averaged discharge can be treated as a random variable. 
Although significant temporal variability in discharge has been recognized, ade-
quate effort has not been made to account for its probabilistic characteristics when 
establishing rating curves and to quantify uncertainty in a rating curve. One way to 
accomplish the twin objectives of defining the probability distribution of discharge 
and the uncertainty of a rating curve is to use the entropy theory.

The entropy theory has advantages over other methods: (1) it accounts for the 
information available on the rating curve, such as moments (mean, variance, etc.) of 
discharge. These moments are more stable in time than individual measurements. 
(2) It quantifies the information or uncertainty associated with the curve. (3) It pro-
vides a tool for data sampling or to determine the number of measurements needed 
to determine a robust rating curve. (4) It obviates the need for estimating the rating 
curve parameters empirically or by curve fitting. (5) The parameters estimated by 
the entropy theory are expressed in terms of the specified constraints and have there-
fore physical meaning. Singh (2010a) derived the stage–discharge relation using the 
Shannon entropy (Shannon, 1948) and tested it with field data. Singh et al. (2014) 
employed the Tsallis entropy for deriving rating curves.

8.5 DERIVATION OF RATING CURVES

It is assumed that temporally averaged discharge Q is a random variable with a 
PDF denoted as f(Q). The procedure for deriving rating curves with the use of the 
Tsallis entropy comprises (1) definition of the Tsallis entropy, (2) specification of 
constraints, (3) maximization of entropy in concert with the principle of maximum 
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entropy (POME), (4) derivation of the probability distribution of discharge, (5) deter-
mination of Lagrange multipliers, (6) maximum entropy, and (7) derivation of the 
rating curve. Each of these steps is discussed in what follows.

8.5.1 dEFinition oF tsallis Entropy

The Tsallis entropy (Tsallis, 1988) of discharge, Q, or of f(Q), denoted as H(Q), can 
be expressed as

 

H Q H f Q
m

f Q f Q dQ
Q

Q

m

D

( ) [ ( )] ( ){ [ ( )] }= =
-

-ò -1
1

1

0

1  (8.8)

where
m is the entropy index
Q0 and QD represent the lower and upper limits of discharge for integration

Equation 8.8 expresses a measure of uncertainty about f(Q) measured by 
{1 − [ f(Q)]m−1/(m − 1)} or the average information content of sampled Q. Therefore, 
f(Q) needs to be derived first, which involves maximizing H(Q), subject to specified 
constraints. In order to determine the f(Q) that is least biased toward what is not 
known and most biased toward what is known (with regard to discharge) the POME, 
developed by Jaynes (1957, 1982), is invoked. POME requires the specification of 
certain information on discharge, encoded in terms of what is termed constraints and 
leads to the most appropriate probability distribution that has the maximum entropy 
or uncertainty.

8.5.2 spECiFiCation oF Constraints

For deriving the stage–discharge relation, simple constraints can be specified, which 
are the total probability law written as

 

C f Q dQ
Q

QD

1 1

0

= =ò ( )  (8.9)

and

 

C Qf Q dQ Q
Q

QD

2

0

= =ò ( )  (8.10)

Equation 8.9 is the first constraint defining the total probability law, C1, which must 
always be satisfied by the PDF of discharge, and Equation 8.10 is the second con-
straint C2 that defines the mean discharge.
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8.5.3 MaxiMization oF Entropy

In order to obtain the least-biased PDF of Q, f(Q), the Tsallis entropy, given by 
Equation 8.8, is maximized following POME, subject to Equations 8.9 and 8.10. 
To that end, the method of Lagrange multipliers is employed (Singh, 1998). The 
Lagrangian function, L, then becomes
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Differentiating Equation 8.11 with respect to f(Q) recalling the calculus of variation, 
one obtains
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8.5.4 probability distribution oF disChargE

Equating the derivative in Equation 8.12 to 0, one obtains the entropy-based PDF of 
Q as
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It is interesting to note that at Q = 0, f(Q) becomes
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For purposes of simplification, let

 
l l* =

-
-

1
1

0
m

 (8.15)
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With the use of Equation 8.15, Equation 8.13 can be cast as
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The cumulative probability distribution function (CDF) of Q can be obtained by 
integrating Equation 8.16 from Q0 to Q as
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If Q0 = 0, Equation 8.17 reduces to
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Equation 8.17 can also be written for Q explicitly as
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and Equation 8.18 as
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Equations 8.19 and 8.20 are quantile–probability relationships.

8.5.5 dEtErMination oF lagrangE MultipliErs

The PDF, given by Equation 8.13, has two unknown Lagrange multipliers λ0 and λ1 
that can be determined using Equations 8.9 and 8.10. Substituting Equation 8.13 in 
Equation 8.9, one obtains
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The solution of Equation 8.21 can be written as
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Likewise, substitution of Equation 8.13 in Equation 8.10 yields
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Integration of Equation 8.23 yields
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Equations 8.22 and 8.24 can, with the use of Equation 8.15, be recast, respectively, as
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Equations 8.25 and 8.26 are implicit in the Lagrange multipliers λ* (or λ0) and λ1 but 
can be solved numerically.

Example 8.1

The stage–discharge values for gaging station 08079600 on Brazos River, Texas, 
are given in Table 8.1. Determine the Lagrange multipliers λ0, λ*, and λ1 for differ-
ent values of m.

Solution

From Table 8.1, the mean discharge Q is found to be 1.620 m3/s and maximum 
discharge is 13.188 m3/s. Substituting these values into Equations 8.25 and 8.26, 
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the Lagrange multipliers can be solved for different m values, which are given 
in Table 8.2. It is seen that λ* varies from −0.23 to 0.23, while λ1 is less than 0.1 
except for m = 2/3.

8.5.6 MaxiMuM Entropy

The maximum Tsallis entropy or uncertainty of discharge can be obtained by substi-
tuting Equation 8.13 in Equation 8.8:
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TABLE 8.2
Computation of Lagrange Multipliers

m Values λ* λ1 

m = 2/3 0.228 0.103

m = 3/4 0.138 0.033

m = 1.5 0.231 −0.010

m = 2 0.006 0.002

m = 3 −0.232 −0.001

m = 4 −0.223 0.001

TABLE 8.1
Observed Stage–Discharge Values for Gaging Station 08079600

Stage (m) Discharge (m3/s) Stage (m) Discharge (m3/s) 

0.046 0.172 0.170 0.614

0.062 0.195 0.182 0.722

0.068 0.795 0.197 0.741

0.074 0.270 0.247 1.500

0.077 0.225 0.265 1.409

0.083 0.156 0.274 0.971

0.096 0.328 0.281 1.721

0.102 0.158 0.296 1.027

0.120 0.391 0.302 0.996

0.130 0.325 0.315 3.170

0.130 0.130 0.392 2.001

0.145 0.450 0.419 3.170

0.154 0.504 0.530 4.528

0.160 0.563 0.648 7.584

0.163 0.606 0.752 13.188
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8.5.7 hypothEsis on CuMulatiVE probability distribution oF disChargE

The goal is to express Q in terms of flow depth, y. To that end, let the maximum 
stage (channel flow depth) be denoted as D. It is then assumed that all values of 
stage y measured from the bed to any point between 0 and D are equally likely. 
This assumption is not highly unlikely since at different times different values of 
stage do occur and this is also consistent with the Laplacian principle of insufficient 
reason. Then, it may be hypothesized that the cumulative probability distribution of 
discharge is the ratio of the stage to the point where discharge is to be considered 
and the stage up to the maximum water surface. The probability of discharge being 
equal to or less than a given value of Q is y/D; at any stage (measured from the bed) 
less than a given value, y, the discharge is less than a given value, say Q; thus, the 
cumulative distribution function of discharge, F(Q) = P (discharge ≤ a given value 
of Q), P = probability, is expressed as

 
F Q

y

D
( ) =  (8.28)

Equation 8.28 constitutes the fundamental hypothesis for deriving the stage– 
discharge relation using entropy. In Equation 8.28 on the left side the argument of 
function F is variable Q, whereas on the right side the variable is y. The CDF of Q is 
not linear in terms of Q, unless Q and y are linearly related. Of course, it is plausible 
that F(Q) might have a different form. A similar hypothesis has also been employed 
when using the entropy theory for deriving infiltration equations by Singh (2010b,c), 
soil moisture profiles by Singh (2010d), and velocity distributions by Chiu (1987).

The PDF is obtained by differentiating Equation 8.25 with respect to Q:
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The f(Q) dQ = F(Q + dQ) − F(Q) term denotes the probability of discharge being 
between Q and Q + dQ.

8.5.8 dEriVation oF rating CurVE

Substituting Equation 8.13 in Equation 8.29, one gets
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Using the limits when y = y0, Q = Q0, integration of Equation 8.30 results in the rat-
ing curve:
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Equation 8.31 can be considered as a generalized rating curve.
If Q0 = 0, then Equation 8.31 reduces to
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Equation 8.32 can be considered in the form of

 Q c a y d b= - +( )  (8.33)

where
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Example 8.2

Construct the rating curve for different values of entropy index m for the stage–dis-
charge values given in Table 8.1 and determine an appropriate value of m. Choose 
the entropy index m from the range of 0.5–4.

Solution

To determine the entropy index m, the rating curve is calculated for different m 
values for the gaging station, as plotted in Figure 8.1. The Lagrange multipliers 
are already computed in Example 8.1. It is seen from the figure that m affects the 
rate of increase in the rating curve. Generally, for larger m values, the rating curve 
becomes higher and increases faster. However, m = 3 fits the observations best. 
The rating curve estimated by m = 3 or 4 gives similar accuracy for stage less than 
1 m, but as stage becomes higher, m = 3 is significantly better than m = 4. The root 
mean square (RMS) values are 13.22, 9.83, 6.45, 0.49, and 24.37 m3/s, for m = 0.5, 
1.5, 2.5, 3, and 4, respectively. Thus, m = 3 seems appropriate.

Example 8.3

Construct the rating curve with entropy index m = 3.0 for data given in Table 8.1. 
Also, construct the 95% confidence bands.
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Solution

The Lagrange multipliers for entropy index m = 3.0 are solved for as in Example 
8.1 and shown in Table 8.2, which are λ* = −0.232 and λ* = −0.001. Then, the 
rating curve is computed using Equation 8.32, as shown in Figure 8.2. By referring 
to the probability of a parameter being in an interval, the 95% confidence intervals 
of Q in [Qlow, Qup] are computed from repeated simulations. Then, the confidence 
interval is calculated from the cumulative distribution of parameters conditioned 
on the observed data, so that P(Qlow ≤ Q ≤ Qup) = 0.95.

Example 8.4

Determine parameters of the rating curve with m = 3 for the stage–discharge data 
in Table 8.1.
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FIGURE 8.1 Rating curve of station 08079600 on Brazos River, Texas.
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FIGURE 8.2 Rating curve of station 08079600 on Brazos River.

© 2016 by Taylor & Francis Group, LLC

  



213Stage–Discharge Relation

Solution

The Lagrange multipliers are computed by solving nonlinear equations (Equations 
8.25 and 8.26) for given mean and maximum discharge values and the computed 
values are given in Table 8.2. With the computed Lagrange multipliers, rating 
curve parameters are computed from Equations 8.34 through 8.37. It can be seen 
from Equation 8.35 that the b value is only determined by the m value; thus, 
b = 0.667 is fixed as m = 3. The average values of rating curve parameters for 
gaging station 08079600 on Brazos River are a = 0.448, b = 0.667, c = 4.634, and 
d = 33.32, respectively.

8.6 REPARAMETERIZATION

It may be convenient to reparameterize by grouping the Lagrange multipliers so that 
the resulting rating curve has only one parameter. To that end, let
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When Q = Qmax, F(Qmax) = 1 and Equation 8.19 with Qmin = 0 yields
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Dividing Equation 8.20 by Qmax, the result is

 

Q

Q Q Q

m

m

m

m
F Q

m

m

m m

max max max

/( )

* ( ) *= -
-

- - + -é
ëê

ù
ûú

ì -l

l l
l l

1 1
1

1
1

1
1 1

íí
ï

îï

ü
ý
ï

þï

= - - -æ
è
ç

ö
ø
÷ +

-

-

( )/

max

/( )

*

*
( ) *

m m

m

Q

m

m
F Q

1

1
1

1 1

1
1 1l

l l
l l mm m

m m

/( )

( )/

-

-
ì
í
ï

îï

ü
ý
ï

þï

æ

è

ç
ç

ö

ø

÷
÷

1

1

 (8.40)

Noting from Equation 8.38 that λ* /λ1Qmax = 1 − (1/M), which when substituted in 
Equation 8.40 yields
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It is noted that when Q = Qmin = 0, F(Q) = 0. Thus, Equation 8.41 reduces to
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Rearranging Equation 8.42, one gets
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Interestingly, Equation 8.43 expresses M as a function of Qmax for a given entropy 
index m and if m is determined to be 3, it can be recast as
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Equation 8.44 shows that M under the assumption that Qmin = 0 should be bounded by 
1.0. However, M computed from the Lagrange multipliers will be larger than 1 as long 
as λ* is positive. The values of M computed from Equations 8.38 and 8.43 may be dif-
ferent. Equation 8.41 can be simplified by inserting the right side of Equation 8.43 as
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Substituting Equation 8.28 in Equation 8.45, the result is
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In Equation 8.45, the Lagrange multipliers are replaced with entropy parameter M, 
and hence, the flow discharge can be determined from Equation 8.46 with only 
parameter, M. Parameter M can be used as an index of the uniformity of the prob-
ability distribution of discharge, which is related to the maximum discharge.

Singh et al. (2014) plotted the M value against the maximum discharge on a log–
log paper, as shown in Figure 8.3. It can be seen from the figure that though the 
maximum discharge varies from 0 to 1600 m3/s, the M value is bounded between 
1 and 1.1, except for one outlier of 1.5. They found a linear relationship between M 
and maximum flow, which using regression was written as

 log( ) . log( ) .maxM Q= - +0 047 0 1294  (8.47)

with a coefficient of determination of 0.715.
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Example 8.5

For 13 USGS gaging stations, Singh et al. (2014) computed rating curves and pro-
vided values of M computed using Equation 8.47 as well as from the Lagrange 
multipliers. The two sets of M values are given in Table 8.3. Plot the two sets of 
the M values against each other and comment.

1
0.1

1

10

M

10 100 1,000 10,000
Qmax (m3/s)

FIGURE 8.3 Relationship between entropy index M and maximum discharge.

TABLE 8.3
Computed M from Two Methods

Station Location M M* 

8079600 Justiceburg 1.0813 0.8503

8080500 Aspermont 1.0039 0.9932

8082000 Salt-FK 1.0036 0.9873

8082500 Seymour 1.0052 0.9820

8083100 Clear-FK 1.4992 0.4936

8088000 South Bend 1.0067 0.9882

8090800 Dennis 1.0010 0.9946

8089000 Palo Pinto 1.0014 0.9878

8096500 Waco 1.0013 0.9970

8098290 Highbank 1.0004 0.9978

8111500 Hempstead 1.0003 0.9984

8114000 Richmond 1.0002 0.9982

8116650 Rosharon 1.0002 0.9981

Average 1.0465 0.9436

© 2016 by Taylor & Francis Group, LLC

  



216 Introduction to Tsallis Entropy Theory in Water Engineering

Solution

The M values computed from the Lagrange multipliers are given in Table 8.3. The 
M values, denoted as M*, are obtained from the known values of Qmax using 
Equation 8.47, as shown in Table 8.3. The values of M and M* are compared in 
Figure 8.3. It can be seen that M* has a larger range than does M. The M* values 
are lower with an average value of 0.944 than the M values with an average value 
of 1.047. The M* values are lower than 1, while the M values are larger than 1. 
Either M or M* is not uniformly distributed inside its range, but M is clustered 
between 1 and 1.01 while M* between 0.8 and 1.

Example 8.6

Validate the regression of M on Qmax obtained from Brazos River, whose param-
eters for Trinity River, Pearl River, Tennessee River, and Pee Dee river basins are 
shown in Table 8.3. The values of the Lagrange multipliers for the flow data of 
these rivers are given in Table 8.4.

Solution

Figure 8.4 shows the regression of M on Qmax obtained from Brazos River and 
other river basins. The value of Qmax from the various rivers varies from 0.2 to 
20,000 m3/s, but the M value still remains within the range of 1 and 2.5, and the M 
value for the Red River is the only one exceeding 2. It can be seen from Figure 8.4 
that the regression equation (Equation 8.47) is generally valid. The observations 
from Trinity River, Pearl River, and Pee Dee River fall exactly on the regression 
line. Thus, it suggests that though the regression is obtained using the data from 
Brazos River, it is generally valid for other river basins also.

Example 8.7

Construct the rating curves using entropy parameter M for station 08082500 on 
the Brazos River and show how well it compares with observed flow values.

TABLE 8.4
Lagrange Multipliers for Flow Data from Trinity 
River, Pearl River, Tennessee River, and Pee Dee 
River Basins

River Station Qmax M λ1 λ* 

Pee Dee River 02135000 155 1.05 89.9 699

Pear River 02489000 160 1.011 89 167

Tennessee River 03592718 8.03 1.748 5.71 34.4

Mississippi River 07010000 17,376 1.000 8311 24,040

Red River 07300000 0.184 2.39 0.123 7.248

Trinity River 08047000 26.6 1.225 19.2 115
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Solution

The rating curve is determined either from Equation 8.31 with the known Lagrange 
multipliers or from Equation 8.33 with the known rating curve parameters. 
Figure 8.5 shows the agreement between predicted rating curves and observed 
curves for station 08080500. The predicted rating curve increases from 0 to 
exactly the observed maximum discharge value, and mimics the flow pattern of 
the station. The rating curve is also determined using entropy parameter M defined 
by Equation 8.38. For station 08082500, with known values of Qmean and Qmax, M 
is obtained as 1.005 from either solving for Lagrange multipliers or using relation 
to the ratio between Qmean and Qmax defined by Equation 8.38. Then the rating 
curve is plotted against the observed values in Figure 8.6. The estimated rating 
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FIGURE 8.4 Relation between M and Qmax for other rivers.
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curve is shifted from the observed values, due to the assumption of Qmin = 0 at 
y = 0 for deriving Equations 8.45 and 8.46). Therefore, correction may be needed 
to avoid the shift by manually fixing Qmin at the observed stage rather than taking 
y = 0. After the correction, the modified rating curve fits observation well with 
an RMS value of 0.08 m3/s. This suggests that the use of entropy parameter M is 
equivalent to the use of the Lagrange multiplier method.

8.7  RELATION BETWEEN MAXIMUM DISCHARGE 
AND DRAINAGE AREA

Thirteen stream gaging stations located on Brazos River, Texas, are selected from 
the USGS website. Table 8.5 tabulates the drainage area, maximum discharge, and 
mean discharge for these stations. The relationship between the drainage area and 
maximum discharge can be plotted, as shown in Figure 8.6, and can be expressed as

 Q Amax
..= 0 0007 1 229  (8.48)

where
Qmax is in m3/s
A is in km2

8.8  RELATION BETWEEN MEAN DISCHARGE 
AND DRAINAGE AREA

The relation between mean discharge and drainage area given in Table 8.5, as shown 
in Figure 8.7, can be expressed as

 Q Amean = ´ -9 10 5 1 234.  (8.49)
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FIGURE 8.6 Relation between maximum discharge and drainage area.
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8.9  RELATION BETWEEN ENTROPY PARAMETER 
AND DRAINAGE AREA

The relation between the entropy parameter M given in Table 8.3 and the drainage 
area given in Table 8.5 is plotted in Figure 8.8. Thus, the relationship between M and 
drainage area can be expressed as

 M A= -1 9716 0 061. .  (8.50)

TABLE 8.5
Drainage Area and Maximum Discharge for Different Stations

Station Location 
Drainage 

Area (km2) Qmax (m3/s) Qmean (m3/s) 

08079600 Justiceburg 3,797 13 2

08080500 Aspermont 22,782 371 32

08082000 Salt-FK 13,287 198 32

08082500 Seymour 40,243 140 26

08083100 Clear-FK 591 2 0.3

08088000 South Bend 58,723 213 17

08090800 Dennis 65,364 467 63

08089000 Palo Pinto 61,670 207 80

08096500 Waco 76,558 838 47

08098290 Highbank 78,829 1129 128

08111500 Hempstead 113,649 1605 293

08114000 Richmond 116,827 1407 306

08116650 Rosharon 117,428 1344 313
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FIGURE 8.7 Relation between mean discharge and drainage area.

© 2016 by Taylor & Francis Group, LLC

  



220 Introduction to Tsallis Entropy Theory in Water Engineering

Example 8.8

The stage–discharge data for a gaging station 0811150 where the drainage area 
is 113,649 km2 is given in Table 8.5. Compute the rating curve using the relation 
given by Equations 8.48 and 8.49 as if the station is ungaged.

Solution

Based on the power relationship between discharge and drainage area, the rating 
curve of station 08111500 having a drainage area of 113,649 km2 is estimated. 
The mean and maximum discharge values are computed using regression equa-
tions (Equations 8.48 and 8.49) as 156 m3/s and 1456 m3/s, respectively, and the 
estimated values are slightly smaller than observed values shown in Table 8.5. 
However, the estimated differences are acceptable. With the estimated mean and 
maximum discharge values, rating curves are computed, as shown in Figure 8.9. It 
can be seen that the estimated rating curve is in close agreement with the observed 
curve and the RMS value is only 35.69 m3/s, which is slightly larger than the value 
computed when observed discharge values are used, which is 34.31 m3/s.

Example 8.9

Determine the rating curve for station 08111500 with a drainage area of 113,649 km2 
with the use of entropy parameter M determined from the drainage area.

Solution

With the given drainage area, the value of M is obtained as 0.969 from the power 
relationship shown in Figure 8.9. Then, the rating curve is determined using 
Equations 8.45 and 8.46, as plotted in Figure 8.10. The rating curve so determined 
has a shift from the observed curve, so a correction may be made by fixing Qmin at 
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FIGURE 8.8 Relation between entropy parameter M and drainage area.
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the observed minimum stage. It can be seen from the figure that the rating curve 
determined after the correction fits the observations well. The RMS decreases to 
34.78 m3/s, which is closer to that when observed values are used for determining 
the rating curve.

8.10 EXTENSION OF RATING CURVE

Often, it is necessary to extend the rating curve for new observed discharges that are 
beyond the highest measured values (Torsten et al., 2002; Sivapragasam and Muttil, 
2005). For a gaging station 08108250, the rating curve is extended from a stage of 
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FIGURE 8.10 Rating curve estimated using M for station 08111500.
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0.5 m to a stage of 0.8 m, as shown in Figure 8.11, where the measured discharge is 
higher than 6 m3/s. The figure shows that the estimated discharges fit the extended 
rating curve well and all predicted discharge values fall within the 95% confidence 
interval. For ungaged station 08111500, where the rating curve is predicted using 
the relationship between the discharge and the drainage area, the rating curve is 
extended from a stage of 12 m to a stage of 15 m, as shown in Figure 8.12. The 
extended rating curve for this ungaged site is not as good as the one for the gaged 
site. Nevertheless, the observed values between 1500 and 2000 m3/s are within the 
upper 95% confidence interval, while the discharge exceeding 2000 m3/s falls out-
side the interval and produces a larger variance.
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9 Precipitation Variability

Precipitation is the primary determinant for the assessment of potential availability 
of water resources in an area or country. Although precipitation is cyclic in nature, its 
distribution in both space and time is highly erratic, leading to unevenly distributed 
water resources. The uncertainty (or disorder) in the occurrence of precipitation, 
especially intensity, amount, and duration, in time and space is one of the primary 
constraints to the development and use of water resources. When developing a basin 
wide, regional, or nationwide strategy for water resources development as well as for 
meeting current and future water demands, the uncertainty in precipitation occur-
rence over a given area (e.g., basin, region, or country) can be the determining factor 
in making a decision on the priorities for area-wide development or demarcating the 
boundaries to establish the feasibility and necessity of development. Development 
and management of water resources require not only the aggregate precipitation but 
also its variability. The stability of water supply increases with decreasing spatial 
variability of precipitation. On the other hand, the less temporally variable the pre-
cipitation is, the more dependable the water supply is. When evaluating the avail-
ability of water resources in a watershed or investigating the relative availability of 
local or regional water resources, the temporal variability of precipitation becomes 
a major concern. The uncertainty or disorder of a precipitation variable can be cal-
culated using entropy, provided the probability distribution function of the precipita-
tion variable under consideration is known. This chapter discusses the use of Tsallis 
entropy for the evaluation of precipitation variability.

9.1  ENTROPY AS A MEASURE OF PRECIPITATION 
UNCERTAINTY

From the standpoint of evaluating the availability of water resources, precipitation 
characteristics of interest are intensity, amount, and duration of occurrence. Entropy 
can be employed to determine the uncertainty associated with any of these char-
acteristics. If pi > 0 is the probability of the ith precipitation event (e.g., amount, 
intensity, or duration), then the Tsallis entropy Sm (Tsallis, 1988) can be expressed as

 

S
m

p pm i i
m

i

N

=
-

-( )-

=
å1

1
1 1

1

 (9.1)

where
N > 1 is the number of events
m is the Tsallis entropy parameter
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9.2 INTENSITY ENTROPY

Let the total amount of precipitation over a certain period of time (say day, week, or 
month) or simply precipitation intensity (amount per unit time) be a random variable. 
Then, its probability distribution can be derived from data and its entropy can be 
calculated. The entropy so obtained is referred to as “intensity entropy (IE).” IE can 
be evaluated as follows (Maruyama et al., 2005):

 1. Obtain precipitation data available at a rain gauge. If data are available for 
M years and intensity is defined on a monthly basis, then the number of 
monthly intensity values would be 12 × M = N. All monthly precipitation 
data of the M-year record are considered as one data set without any con-
sideration of sequence or chronology.

 2. Split the whole range of precipitation values into n classes at an equal 
interval.

 3. Count the number of values or frequency Mi in each class i, i = 1, 2, …, n.
 4. Calculate the relative frequency fi = Mi/N, i = 1, 2, …, n, for each class i. The 

relative frequency is the probability mass associated with the class interval. 
This yields the probability mass function in discrete form. Dividing the 
relative frequency or probability mass by the width of the class interval one 
obtains the probability density function (PDF). This is done for each class 
interval, and thus, the PDF is obtained in discrete form for the precipitation 
intensity data.

 5. Calculate the IE in terms of the relative frequencies obtained in the preced-
ing step as
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 (9.2)

  where
n is the number of classes
N is the number of values of all classes
fi is the relative frequency for class i

The IE defined over a semi-infinite range of 0 ≤ IE < ∞, is a measure to decipher 
the disorder of precipitation intensity. Less disordered intensity is measured by 
smaller IE, pointing to a more skewed distribution of the frequency of precipitation. 
On the contrary, more highly disordered intensities result in larger IE, extending 
over a wider range of monthly precipitation intensity. It is, however, noted that the 
PDF of precipitation intensity is always defined over a positive abscissa, including 
its zero origin, due to the nonnegativity of precipitation. It then follows that an 
increase in IE results in an increase in the expected value of precipitation, flatten-
ing the graph of the function. This suggests that IE is positively correlated with the 
expected amount of precipitation and can, therefore, be an alternative to the aggre-
gate amount of precipitation.
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Example 9.1

Consider monthly precipitation data for climate division 4 in Texas and determine 
its probability distribution. Indicate the mean precipitation value for the distribu-
tion. Collect and employ precipitation series from the Full Network Estimated 
Precipitation FNEP (http://climatexas.tamu.edu/). Office of State Climatologist, 
Texas A&M University, College Station, Texas. The climate division 4 (East Texas) 
has data for a period of 118 years from 1895 to 2013.

Solution

Monthly precipitation data are available for 119 years. The total number of monthly 
values is 12 × 119 = 1428. The empirical discrete frequencies are then computed, 
as shown in Table 9.1. Thus, the empirical distribution is obtained, as graphed 
in Figure 9.1. Also shown is the fitted PDF p(x) = f(x), where x is the monthly 
 precipitation value. The fitted PDF is a gamma distribution whose parameters are 
α = 4.523 and β = 1.004, given as

 
f x x e x e xk x x( )

( )
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/ in.n x ri i
i

n
, where 

ri is the relative frequency. The overall mean monthly precipitation is µ = 3.80 in., 
with a standard deviation σ = 2.08 in. and a coefficient of variation CV = σ/μ = 0.55.

Example 9.2

Consider precipitation data for each month separately. Then, compute monthly 
precipitation intensity probability distributions. Indicate the mean precipitation 
value for the distribution. Also compute the entropy for each month.

TABLE 9.1
Frequency Distribution Table for Climate Division 4 in Texas

Class Interval (in.) Frequency 
Relative 

Frequency 
Probability Density 

Function (Data) 
Probability Density 

(Computed) 

0.00–1.48 152 0.107 0.072 0.099

1.48–2.96 413 0.289 0.195 0.212

2.96–4.45 412 0.289 0.195 0.278

4.45–5.93 234 0.164 0.110 0.225

5.93–7.42 123 0.086 0.058 0.112

7.42–8.90 65 0.046 0.031 0.034

8.90–10.38 14 0.010 0.007 0.006

10.38–11.86 10 0.007 0.005 0.001

11.86–13.34 3 0.002 0.001 0.000

13.34–14.80 1 0.001 0.000 0.000
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Solutions

Frequency distributions for all 12 months are computed separately in the same 
way as in Example 9.1. For four sample months of January, April, August, and 
October, empirical and fitted distributions are shown in Figures 9.2 through 9.5. 
The gamma distribution is fitted to the empirical frequency distributions with 
parameters indicated in plots.

For each month, the mean values (in.) are given as follows:

The IE computed for each month of the year and all months using monthly precipita-
tion data of the climatic region 4 (East Texas) for the period 1895–2013 is given in 
the following:

The monthly precipitation IE is plotted in Figure 9.6.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Avg. 3.76 3.59 3.82 4.25 4.73 3.90 3.33 2.79 3.36 3.74 4.03 4.34

St. Dev. 1.96 1.59 1.67 2.10 2.31 2.17 1.72 1.65 1.85 2.70 2.35 1.98

CV 0.52 0.44 0.44 0.49 0.49 0.56 0.52 0.59 0.55 0.72 0.58 0.46

Skew 0.56 0.23 0.51 0.81 0.63 0.62 0.99 1.70 1.10 1.40 1.28 0.54

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec All 
0.46 0.44 0.44 0.46 0.46 0.47 0.43 0.42 0.44 0.46 0.46 0.45 0.45

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

Gamma (4.523, 1.004)

5 10
Monthly precipitation (in.)

FIGURE 9.1 Empirical and fitted frequency distribution functions for monthly precipitation.
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Example 9.3

Compute the IE of monthly precipitation for climate division 4 in Texas and plot 
it against skewness.

Solution

The monthly IE values computed in Example 9.2 show that a smaller IE value 
corresponds to a more skewed distribution and a higher IE value occurs for a less 
skewed distribution, as seen from Figure 9.7. It can also be seen that a positive 
correlation exists between IE and precipitation intensity. The value of IE is 0.54 for 
the climate division 4 (East Texas).

9.3 APPORTIONMENT ENTROPY OF TEMPORAL PRECIPITATION

The temporal distribution of precipitation or apportionment is important for assessing 
the availability of water resources. Since the temporally occurring values are ran-
dom, the Tsallis entropy can be used to measure its uncertainty. For given precipita-
tion data, frequencies of occurrence of discrete precipitation amounts spread over a 
given period can be determined and then can entropy (Maruyama and Kawachi, 1998).

Consider a historical precipitation time series N years long. Let rij be the  aggregate 
precipitation during the ith time interval in the year. If the interval is 1 day, then 

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

January

Gamma (3.699, 1.018)

2 4 6
Monthly precipitation (in.)

8 10

FIGURE 9.2 Empirical and fitted frequency distribution functions of precipitation for the 
month of January.
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rij represents daily precipitation on the ith day in the jth year; here, i = 1, 2, …, 365; 
j = 1, 2, …, N. If the time interval is 1 month then rij represents the precipitation 
amount in the ith month in the jth year, and i = 1, 2, …, 12. To keep symbols simple, 
we can omit subscript j. For example daily precipitation values on January 1 and 
on December 31 for the same year can be expressed as r1 and r365, respectively. 
The aggregate precipitation during the year (annual precipitation), R, can then be 
expressed by the summation of ri from i = 1 to i = 365 as

 

R ri

i

=
=

å
1

365

 (9.3)

where the value of ri may be zero for some days and is finite for other days.
A precipitation series of r1, r2, …, rn can thus be regarded as accumulated occur-

rences of unit rains for the 1, 2, …, nth days, respectively, and ri divided by the sample 
value of R defines the probability pi:
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FIGURE 9.3 Empirical and fitted frequency distribution functions of precipitation for the 
month of April.
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This is the occurrence probability for the precipitation amount on the ith day, and 
therefore, its distribution represents the probabilistic characteristic of the over-a-year 
temporal apportionment of annual precipitation, that is of uncertainty of precipita-
tion occurrence. In a similar manner, the probability distribution of precipitation can 
be defined for other time intervals, such as a week, 2 weeks, 1 month, or a season.

Substitution of Equation 9.4 into the Tsallis entropy equation (Equation 9.1) yields 
the value of entropy:
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 (9.5)

Equation 9.5 implies that the value of H is independent of the sequential or chrono-
logical order of ri in the series. It is also seen that H takes on a zero value when R 
falls only on 1 day of the year and a maximum value when R/n falls equally every 
day throughout the year, that is, the closer the entropy H approaches its maximum 
value, the more uniform the precipitation apportionment is (i.e., the less temporally 
variable the precipitation is). H can, thus, be regarded as a measure of precipitation 
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FIGURE 9.4 Empirical and fitted frequency distribution functions of precipitation for the 
month of August.
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FIGURE 9.6 Month-wise precipitation intensity entropy. Computation is based on the pre-
cipitation data of climatic division 4 (East Texas) for the period of 1895–2013.

0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

October

2 4 6 8
Monthly precipitation (in.)

10 12

Gamma (1.899, 1.970)

FIGURE 9.5 Empirical and fitted frequency distribution functions of precipitation for the 
month of October.

© 2016 by Taylor & Francis Group, LLC

  



235Precipitation Variability

variability in a scalar sense. When yearly precipitation series for M years is available 
at the same rain gauge, a better estimate of the annual entropy can be obtained by 
averaging the entropy values as

 

H
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H j
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 (9.6)

where
H is the average entropy of the M-year record
Hj is the entropy of the jth year precipitation

9.3.1 apportionMEnt FroM EMpiriCal data

Apportionment entropy (AE) can be computed in two ways. First, for precipitation 
data in a given year, ri is the precipitation for the ith day during the year. For example 
for January 1, r1 is the sum of precipitation values that occurred on January 1 of that 
year. The same applies to other days. The frequency of precipitation occurrence on 
the ith day is expressed by Equation 9.4. In this manner, the temporal apportionment 
of precipitation within the year is computed. Then, yearly values are summed, and 
the average value is computed using Equation 9.6.

Second, if precipitation data are available for several years, then ri is the accumu-
lated precipitation for the ith day for the whole period. Suppose 50 years of daily pre-
cipitation values are available then for January 1, r1 is the sum of 50 precipitation values 
that occurred on January 1 of each year of the 50-year record. In that case, R will be the 
sum of 50-year precipitation. The same applies to other days. The frequency of precipi-
tation occurrence on the ith day is expressed by Equation 9.4. In this manner, the tem-
poral apportionment of precipitation within the year is computed for the entire record.
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FIGURE 9.7 Relation between intensity entropy and skewness of monthly precipitation PDF.
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236 Introduction to Tsallis Entropy Theory in Water Engineering

9.3.2 apportionMEnt by randoM ExpEriMEntation

If yearly precipitation data are available but monthly or other short time interval data 
are not, then these data can be generated by random experimentation. In this manner, 
one can determine the throughout-the-year precipitation variability or disaggregate 
annual precipitation corresponding to a given time interval, such as daily. The ran-
dom experiment, consisting of a number of trials, where each trial is considered in a 
probabilistic sense, can be conducted as follows.

If the annual precipitation for a given year is R, say R = 1000 mm, then the experi-
ment may consist of 1000 trials. The value of R is rounded off to the next nearest 
integer. Each trial contains 365 days, January 1 to December 31. From each trial one 
day is randomly selected, that means that any day of the year has the same probabil-
ity of being selected. The selected day is assigned a value of precipitation of 1 mm. 
Let us suppose that January 3 happens to be selected during this trial, then it will 
be assigned a precipitation value of 1 mm. Similarly, the next trial is performed and 
a day is selected randomly. The selected day will again be assigned a precipitation 
value of 1 mm. In this manner, 1000 trials are made, and the total amount of precipi-
tation associated with the selected days will be 1000 mm. If a particular day happens 
to be randomly selected 10 times, then it will be assigned a precipitation value of 
10 mm (which is the sum of 10 selections). The days not selected will be assigned a 
zero value. When the precipitation values, thus generated, are plotted against days, 
the result will be the precipitation series for the year. The same can be done for other 
years. In this manner, the entire precipitation time series can be constructed by sim-
ply knowing yearly values.

9.3.3  CalCulation oF prECipitation apportionMEnt Entropy 
and isoEntropy linEs

The precipitation series with a 1-day resolution can be considered to describe the 
throughout-the-year precipitation distribution. The sequence of observed daily 
precipitation values in a year is described by a probability distribution of pre-
cipitation occurrence, and the Tsallis entropy value is obtained. The entropy is 
computed for all available yearly precipitation sequences. Then, an average of the 
entropies obtained over the years of interest is considered as the average annual 
entropy. The average annual entropy values, thus obtained, for the rain gauges 
scattered throughout the area are employed to construct an isoentropy map that 
delineates precipitation variability. Entropy can be considered as a measure of 
precipitation variability.

Example 9.4

Consider precipitation records in the state of Texas, that is, long-term monthly 
precipitation data set from the Full Network Estimated Precipitation (FNEP), which 
has been created as an alternative to the National Climatic Data Center (NCDC) 
data set. The data set is developed statewide for individual climate divisions 
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237Precipitation Variability

(http://climatexas.tamu.edu/). There are 10 climate divisions in the state of Texas: 
1 = High Plains, 2 = Low Rolling Plains, 3 = North Central, 4 = East Texas, 
5  = Trans Pecos, 6 = Edwards Plateau, 7 = South Central, 8 = Upper Coast, 
9 = Southern, 10 = Lower Valley. Data considered for each of the divisions are 
monthly precipitation values (in inches) over a period of 1895–2013. Compute 
yearly precipitation amounts for each climate division for the entire period of 
record. Also, compute the average yearly precipitation for the entire record. 
Using monthly precipitation values, compute the entropy of each climate divi-
sion for each year. Compute the mean, standard deviation, and CV of monthly 
precipitation, considering only those months when it rained. Also, compute the 
standard deviation and CV of yearly entropy. Plot yearly precipitation as well as 
yearly entropy.

Solution

Ten climate divisions, having records from 1895 to 2013, are selected. These cli-
mate divisions, along with their average annual precipitation amounts, are given 
in Table 9.2. The mean, standard deviation, and CV of monthly precipitation are 
computed, considering only those months when it rained. In this manner, these 
statistics are computed for each year and then they are averaged for the whole 
record, as shown in Table 9.3. Using monthly precipitation values, the Tsallis 
entropy is computed for each climate division for each year. To that end, the prob-
ability of precipitation in the ith month is computed by taking the ratio of monthly 
precipitation to yearly precipitation. This leads to the probability distribution of 
monthly precipitation apportionment. Using these probability values, the yearly 
entropy is computed, as shown in Table 9.4. Then, the average entropy for the 
period of record is computed using these yearly entropy values. Also, the standard 
deviation and CV of yearly entropy are computed, as shown in Table 9.4. Yearly 
precipitation as well as yearly entropy is plotted. Now, the standard deviation and 
CV of yearly entropy are computed, as shown in Table 9.4. Also, minimum and 
maximum entropy values are shown in Table 9.4 and Figure 9.8.

TABLE 9.2
Precipitation Amounts for Climate Divisions in the State of Texas

Climate Divisions in Texas (TX) 
Average Yearly 

Precipitation (in.) Std. Dev. (in.) 
Coefficient 
of Variation 

TX-01 High Plains 18.97 4.40 0.23

TX-02 Low Rolling 
Plains

23.48 5.45 0.23

TX-03 North Central 33.46 6.86 0.21

TX-04 East Texas 45.63 8.30 0.18

TX-05 Trans Pecos 12.33 3.76 0.30

TX-06 Edwards Plateau 25.02 6.16 0.25

TX-07 South Central 32.70 8.11 0.25

TX-08 Upper Coast 46.13 10.38 0.23

TX-09 Southern 23.24 6.20 0.27

TX-10 Lower Valley 23.55 5.94 0.25
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238 Introduction to Tsallis Entropy Theory in Water Engineering

Example 9.5

Conduct a random experiment for monthly precipitation apportionment and then 
do the same calculations as in Example 9.4. Now, compare the two cases and 
comment on the results. Place entropy values obtained in two ways on the Brazos 
River basin map. What do these two maps show?

Solution

Now, we perform an experiment by generating random monthly precipitation val-
ues for each of the 10 climate divisions in the state of Texas over a 119-year period. 
The mean, standard deviation, and CV of monthly precipitation are computed. 

TABLE 9.3
Mean Monthly Precipitation in Each Climate Division

Climate Division 
Average Monthly 
Precipitation (in.) 

Std. Dev. Monthly 
Precipitation CV 

TX-01 High Plains 1.580 1.341 0.848

TX-02 Low Rolling Plains 1.957 1.583 0.809

TX-03 North Central 2.788 1.851 0.664

TX-04 East Texas 3.803 2.081 0.547

TX-05 Trans Pecos 1.027 1.003 0.977

TX-06 Edwards Plateau 2.085 1.603 0.769

TX-07 South Central 2.725 1.967 0.722

TX-08 Upper Coast 3.844 2.465 0.641

TX-09 Southern 1.936 1.641 0.848

TX-10 Lower Valley 1.962 1.908 0.972

TABLE 9.4
Average Yearly Entropy and Its Standard Deviation of Each 
Climate Division

Climate Division 
Average 
Entropy Std. Dev. 

Min Tsallis 
Entropy 

Max Tsallis’ 
Entropy 

TX-01 High Plains 0.55 0.031 0.499 0.626

TX-02 Low Rolling Plains 0.56 0.030 0.499 0.630

TX-03 North Central 0.56 0.025 0.511 0.612

TX-04 East Texas 0.54 0.023 0.499 0.599

TX-05 Trans Pecos 0.53 0.028 0.475 0.614

TX-06 Edwards Plateau 0.56 0.026 0.503 0.613

TX-07 South Central 0.55 0.028 0.486 0.615

TX-08 Upper Coast 0.54 0.026 0.490 0.602

TX-09 Southern 0.55 0.031 0.454 0.614

TX-10 Lower Valley 0.54 0.035 0.462 0.632
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In this manner, these statistics for each year are obtained and then they are aver-
aged for the whole record, as given in Table 9.5 and Figure 9.9. Then, we calculate 
precipitation apportionment and compute entropy as in Example 9.4, using the 
Tsallis entropy. The average entropy of each climate division is determined, and 
the standard deviation and CV of yearly entropy are computed, and the minimum 
and maximum values of yearly entropy are obtained, as shown in Table 9.6.
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FIGURE 9.8 Yearly minimum and maximum values of the Tsallis entropy (Min, Minimum; 
Max, Maximum).

TABLE 9.5
Mean, Standard Deviation and Coefficient of Variation 
of Monthly Random Precipitation

Climate Division 
Average Monthly 
Precipitation (in.) 

Std. Dev. Monthly 
Precipitation (in.) CV 

TX-01 High Plains 4.496 2.545 0.566

TX-02 Low Rolling Plains 5.563 3.170 0.570

TX-03 North Central 6.122 3.462 0.565

TX-04 East Texas 6.973 4.020 0.577

TX-05 Trans Pecos 2.704 1.595 0.590

TX-06 Edwards Plateau 4.582 2.571 0.561

TX-07 South Central 6.607 3.895 0.589

TX-08 Upper Coast 7.495 4.318 0.576

TX-09 Southern 6.232 4.079 0.654

TX-10 Lower Valley 8.962 5.159 0.576

Note: Std. dev.,  Standard deviation.
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240 Introduction to Tsallis Entropy Theory in Water Engineering

Now, comparing the two cases, it is seen that the entropy calculated with the random 
experiment is larger than that for the first case using actual values. The reason is that in 
the second case the experiment is random, wherein the frequency of occurrence of pre-
cipitation tends to be uniform. This also explains the case of average entropy and yearly 
entropy. Due to random sampling, the standard derivation is less for the second case.

For precipitation in the case of random experiment, the mean is less and the 
 standard derivation is also less than that in the first case. This is because random 
sampling will spread the distribution of the amount of precipitation uniformly during 

TABLE 9.6
Average Entropy, Standard Deviation, and Values of Minimum 
and Maximum Entropy of Each Climate Division

Climate Division 
Average Tsallis 

Entropy 
Std. Dev. 

Tsallis Entropy 
Min Tsallis 

Entropy 
Max Tsallis 

Entropy 

TX-01 High Plains 0.536 0.022 0.490 0.595

TX-02 Low Rolling Plains 0.536 0.023 0.493 0.587

TX-03 North Central 0.533 0.022 0.493 0.573

TX-04 East Texas 0.535 0.024 0.491 0.579

TX-05 Trans Pecos 0.534 0.024 0.491 0.591

TX-06 Edwards Plateau 0.539 0.023 0.493 0.583

TX-07 South Central 0.531 0.023 0.492 0.582

TX-08 Upper Coast 0.535 0.025 0.489 0.588

TX-09 Southern 0.532 0.026 0.488 0.595

TX-10 Lower Valley 0.535 0.025 0.493 0.597
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FIGURE 9.9 Maximum and minimum yearly Tsallis entropy values for the climate divi-
sions based on random precipitation data.
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241Precipitation Variability

the record and thus will decrease the mean. For the same reason, the standard deriva-
tion is less which means the data are “smooth” or uniform during the record. In other 
words, random sampling of precipitation during the record can decrease the mean 
and standard derivation of precipitation, decrease the standard deviation of entropy, 
and increase the entropy (including average entropy and yearly entropy).

Now, entropy values obtained in two ways are mapped for the state of Texas, as 
shown in Figures 9.10 and 9.11.
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FIGURE 9.10 Entropy of precipitation from observations for climate divisions in Texas. 
The climatic divisions in Texas are as follows: 1, High Plains; 2, Low Rolling Plains; 3, North 
Central; 4, East Texas; 5, Trans Pecos; 6, Edwards Plateau; 7, South Central; 8, Upper Coast; 
9, Southern; 10, Lower Valley.
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FIGURE 9.11 Entropy of precipitation from random experimentation for the climate divi-
sions in Texas. The climatic regions in Texas are as follows: 1, High Plains; 2, Low Rolling 
Plains; 3, North Central; 4, East Texas; 5, Trans Pecos; 6, Edwards Plateau; 7, South Central; 
8, Upper Coast; 9, Southern; 10, Lower Valley.
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242 Introduction to Tsallis Entropy Theory in Water Engineering

Example 9.6

Using the results from Example 9.4, construct a map of isoentropy lines for the 
climate division in Texas and comment on the information obtained from the map. 
Also, construct an isohyetal map. What does this map reflect? Also construct a 
map of the CV. What does this map reflect? Taken together, what do these three 
maps convey? Which map should be preferred and why?

Solution

The isoentropy map is constructed, as shown in Figure 9.12, in which entropy indi-
cates significant zones over the whole state of Texas and can delineate a plausible 
climatic map that qualitatively explains precipitation variability. The distribution of 
averaged annual precipitation, delineated by isohyetal lines, is given in Figure 9.13. 
This map indicates the spatial variability of mean precipitation. The distribution of 
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FIGURE 9.12 Isoentropy lines for the state of Texas.
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FIGURE 9.13 Isohyets of annual rainfall (in.) for the state of Texas.

© 2016 by Taylor & Francis Group, LLC
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averaged annual precipitation can be related to the zones delineated by isoentropy 
lines. The potential availability of water resources can be assessed or categorized by 
isoentropy lines. The spatial distribution of the CV of monthly precipitation is shown 
in Figure 9.14. The CV of monthly precipitation at each rain gauge is computed in the 
same way as entropy. The average monthly value of precipitation is obtained for each 
rain gauge for each year. Then, CV is computed for each year. Summing the CV val-
ues obtained for each year and  dividing the sum by the number of years of record, the 
annually averaged CV value is obtained for each climate division. As compared with 
the entropy-based map, the values of CV show a similar pattern, as shown in Figure 
9.12 and one can make a clear classification of the region. As a result, it does have 
a clear match with the climate division map. Taken together, the entropy can delin-
eate a plausible climatic map that qualitatively explains precipitation variability. The 
isoentropy map is preferred, since it shows significant zones over the state of Texas.

9.4 ENTROPY SCALING

The Tsallis entropy can be computed for different timescales t, including t ∈ {1, 2, 7, 
15, 30, 60, 120, 240, 360 days}. Data of daily precipitation from the College Station 
Easterwood Airport for a period of 1960–2013 are used to compute the Tsallis 
entropy with m = 3. Results are presented in Table 9.7 and graphed in Figure 9.15. 
Then, entropy scaling is applied to the 10 climate divisions in Texas using the times-
cales of 1, 2, 3, and 6 months, as presented in Table 9.7 and Figure 9.16.
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FIGURE 9.14 Coefficient of variation for the state of Texas.

TABLE 9.7
Entropy Scaling Using Tsallis Entropy

1 D 2 D 7 D 15 D 30 D 60 D 90 D 120 D 240 D 360 D

0.15 0.23 0.41 0.47 0.49 0.49 0.49 0.49 0.49 0.49

D, days.
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244 Introduction to Tsallis Entropy Theory in Water Engineering

9.5 DETERMINATION OF WATER RESOURCES AVAILABILITY

Development and management of water resources require not only the knowledge of 
aggregate precipitation but also its space–time variability. For evaluating the avail-
ability of water resources in a watershed and development of a basin-wide strategy 
for water resources development, the temporal variability of precipitation is a major 
determinant. Further, the uncertainty associated with the temporal distribution of 
precipitation or apportionment is also important. Both precipitation IE and AE have 
been discussed, and now the objective is to use these entropies for assessing the 
availability of water resources in a given region.

9.5.1 prECipitation data

For assessing the water resources availability in a region, the first step is to determine 
the availability of precipitation data. To that end, all rain gauges for the area under 
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FIGURE 9.15 Plot of the Tsallis entropy scaling values with m = 3.
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consideration are selected. Daily precipitation data for these gauges are obtained. 
If some yearly precipitation values (M) measured at these gauges have missing val-
ues due to the failure of recording and/or some gauges have extremely short duration 
of data acquisition, then these precipitation series may be omitted from analysis. For 
a reliable estimation of entropy H and mean entropy H  at any rain gauge, precipita-
tion series and rain gauges should be screened, based on two criteria: (a) Any yearly 
precipitation series to be selected must have a complete set of daily precipitation 
data, thus having 365 and 366 consecutive data for the common and leap years, 
respectively. (b) Any rain gauge to be selected must have at least 10 years or pref-
erably more than 10 years of precipitation observations. (This may vary from one 
watershed or country to another.) The gauges must satisfy the criterion (a). Criterion 
(b) requiring M ≥ 10 is based on the acceptance that the meteorological data con-
secutively observed over 10 years or more can be used for the description of quasi-
averaged yearly meteorology (Maruyama and Kawachi, 1998).
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9.5.2 CatEgorization oF watEr rEsourCEs aVailability

Of interest is the relation of entropy to precipitation. A diagram of averaged annual 
entropy on the ordinate and averaged annual precipitation on the abscissa shows 
that the average annual entropy and the average annual precipitation are less mutu-
ally related, with a small correlation coefficient (see Figure 9.17). This suggests that 
besides the aggregate precipitation, its temporal apportionment can be a significant 
aspect of precipitation data. When coupled, entropy and precipitation on a yearly 
basis become a measure of the throughout-the-year potential availability of water 
resources (Kawachi et al., 2001). To explain it qualitatively, the whole plotted area 
can be divided into, say, four parts, each delineated with two intersecting lines that 
pass through the means of the respective two variables. Then, in terms of water 
resources availability, the respective quadrants, I, II, III, and IV, can be compara-
tively categorized. This is explained using an example of the Texas  climate divisions.

Example 9.7

Using the values obtained from Example 9.2, plot average annual entropy against 
average annual precipitation or precipitation on a rectangular paper. Then, divide 
the plot into four parts based on the lines issuing from the mean annual precipitation 
and the mean entropy. What do you conclude from each part? Should the water-
shed be divided into more than four parts and if so then what should those parts be?

Solution

The average annual entropy is plotted against average annual precipitation, 
as shown in Figure 9.17. The first and third quadrants seem less represented. 
However, from the second and fourth quadrants we can note a similar trend, 
as the average yearly Tsallis entropy tends to decrease, while the average yearly 
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precipitation increases. This also indicates that regions with less precipitation have 
higher variability, suggesting that water needs to be managed properly. As a rec-
ommendation, we suggest that water needs to be stored for future use through a 
wise groundwater management strategy. On the other hand, one can infer that the 
available water resources are reliable in regions with high precipitation patterns.

9.5.3 assEssMEnt oF watEr rEsourCEs aVailability

Let the total amount of precipitation over a month or simply monthly precipita-
tion (or intensity) be a random variable. Then, its probability distribution can be 
derived from data. The entropy is then obtained, and it is referred to as IE. The 
ratio of monthly precipitation to the sum of monthly precipitation values over a year 
(i.e., to annual precipitation) can also be considered as a random variable. These 
relative precipitation intensities over a year reflect the probabilistic characteristics of 
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precipitation occurrence in the year. Since these ratios comprise precipitation appor-
tionment rates for all months in the year, the entropy so calculated is called the AE.

The potential water resources availability (PWRA) in an area can be assessed in 
terms of disorder in intensity and over-a-year apportionment of monthly precipita-
tion. The disorder can be measured by the two entropies mentioned earlier, IE and 
AE. These entropies can be standardized and pairs of standardized IE and AE for 
different locations of rain gauges can be plotted. Then, simple clustering can be con-
sidered for delineating PWRA distributed over an area of interest and for classifying 
regional attributes of PWRA (Maruyama et al., 2005). Figures 9.18 and 9.19 depict 
the variability of IE and AE across different climate divisions in Texas. They reflect 
the uncertainty as to the availability of water resources.
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10 Infiltration

Infiltration is fundamental to determining the runoff hydrograph, soil moisture and 
groundwater recharge, irrigation efficiency, life span of pavements, and leaching 
of nutrients. In hydrology, irrigation engineering, watershed management, and soil 
science, a number of infiltration equations have been developed, some of which are 
now commonly applied in hydrologic modeling and have been included in popular 
watershed hydrology models (Singh, 1989, 1995; Singh and Frevert, 2002a,b, 2006; 
Singh and Woolhiser, 2002). Some of the commonly used equations (Singh and 
Yu, 1990) are Green and Ampt (1911), Kostiakov (1932), Horton (1938), Philip two-
term (Philip, 1957), Holtan (1961), and Overton (1964). These equations represent 
the potential or capacity rate of infiltration at a point. The objective of this chapter 
is to present the derivation of some popular infiltration equations using the Tsallis 
entropy theory.

10.1 PRELIMINARIES

In this chapter, infiltration rate will imply capacity or potential rate that is the 
maximum rate at which water enters the soil under no restriction on the supply of 
water. Clearly, the actual rate of infiltration is less than or equal to the potential 
rate, depending on the availability of water. It is known that infiltration is a func-
tion of antecedent soil moisture, soil characteristics, vegetation, land use, climatic 
characteristics, land slope, and supply of water or rainfall. Some of these factors 
vary in space, some vary in time, and some vary in both space and time. Soil 
characteristics vary significantly from one place to another, and antecedent soil 
moisture, which defines the initial infiltration, also significantly varies spatially. 
The infiltration parameters determined using point measurements are point val-
ues, or at best reflect average values. Although large spatial variability in infil-
tration is recognized, little effort has been made to account for its probabilistic 
characteristics, except for a few watershed models, as for example the BASINS 
(formerly Stanford Watershed Model) (Crawford and Linsley, 1966; Donigian and 
Imhoff, 2006). Crawford and Linsley (1966) were probably the first to consider 
spatial variations in infiltration capacity; from empirical data reported in the lit-
erature (Burgy and Luthin, 1956), they found large variations in infiltration capac-
ity even in relatively homogeneous soils (uniform Yolo silt loam) and over small 
areas (40 ft × 20 ft). Considering infiltration capacity as a random variable, they 
expressed the cumulative probability distribution function of infiltration capacity 
as a  function of area.
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10.2 FORMULATION OF ENTROPY THEORY

Let the infiltration capacity (or infiltrability), as a function of time t, be defined as I(t). 
It is assumed that the soil is dry, and water is applied to the dry soil with no limita-
tion to the supply of water. At the beginning, infiltration will be maximum, and as 
time progresses, the infiltration capacity declines and may reach a steady or constant 
rate or even approach zero. The constant rate is often called the drainage rate. This 
capacity of infiltration is the potential rate and will be equal to or greater than the 
actual rate, depending on the supply of water. Since the infiltration capacity may 
significantly vary from one place to another, it is assumed that the spatially averaged 
infiltration capacity I(t) is a random variable and would therefore have a probability 
density function (PDF). It is recognized that this assumption needs to be verified or 
may even be tenuous but even if it is weakly true it would not greatly mar the useful-
ness of the entropy theory.

Consider a discrete form of infiltration capacity I with probability distribution P. 
The infiltration capacity can take on N values with each value corresponding to a dif-
ferent time, I = {Ii, i = 1, 2,..., N}, occurring with probabilities P = {pi, i = 1, 2,..., N}. 
The Tsallis entropy (Tsallis, 1988, 2002, 2004), denoted by H, can be written as
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where
k is a measure that keeps the units of H consistent and is often taken as unity
pi = p(Ii)
m is any real number

Exponent m influences the variability of H of I with the probability. The quantity 
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1

- -
-

p mi

m

/  is a measure of the uncertainty in pi of Ii.
If the infiltration capacity is defined as a continuous random variable with a PDF 

defined as f(I), then the Tsallis entropy, H(I), can be expressed as
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where
IU and IL are, respectively, the upper and lower limits of integration for I
H describes the expected value of {1 − [ f(I)]m − 1}/(m − 1)

Considering {1 − [ f(I)]m − 1}/(m − 1) as a measure of uncertainty, Equation 10.2 defines 
the average uncertainty associated with f(I) and in turn with I. More uncertain I is, 
more information will be needed to characterize it. The key here is to derive the 
least-biased f(I).
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10.3  METHODOLOGY FOR THE DERIVATION 
OF INFILTRATION EQUATIONS

The method for deriving infiltration equations using the entropy theory comprises 
the following parts (Singh, 2013): (1) application of principle of maximum entropy 
(POME), (2) specification of information on infiltration rate in terms of constraints, 
(3)  maximization of entropy in accordance with POME, (4) derivation of the probabil-
ity distribution of infiltration rate and its entropy, (5) formulation of continuity equation, 
(6) statement of cumulative distribution hypothesis, (7) relation between cumulative 
infiltration and infiltration rate, and (8) derivation of infiltration rate. The Tsallis entropy 
is already defined, and the remainder of these parts is outlined in what follows.

10.3.1 prinCiplE oF MaxiMuM Entropy

The principle of maximum entropy formulated by Jaynes (1957a,b, 1982) says that 
the least-biased probability distribution of I, f(I), will be the one that will maximize 
H(I) given by Equation 10.1 or 10.2, subject to the given information on I expressed 
as constraints. In other words, if no information other than the given constraints 
is available, then the probability distribution should be selected such that it is least 
biased toward what is not known. Such a probability distribution is yielded by the 
maximization of the Tsallis entropy. Thus, one of the key points is to define con-
straints on I, for f(I) depends on these constraints.

10.3.2 spECiFiCation oF Constraints

Information on I(t) can be obtained using the knowledge of soil physics and experi-
mental or field observations. For a given soil, one frequently measures infiltration 
and then characterizes the soil infiltration and more particularly the time capacity 
rate of infiltration or infiltration curve for the soil under the condition that water 
supply is not a limiting factor. If infiltration capacity rate observations are avail-
able, then information on the infiltration capacity rate can be expressed in terms of 
 constraints, Cr, r = 0, 1, 2, …, n, as
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where
gr(I), r = 1, 2, …, n, represent some functions of I
n denotes the number of constraints

g Ir ( ) is the expectation of gr(I)
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The constraints are analogous to moments. For example, if r = 1, and g1(I) = I, then 
Equation 10.4 would correspond to the mean infiltration capacity rate; likewise, for 
r = 2, and g I I I2

2( ) ( ) ,= -  Equation 10.4 would denote the variance of I. For most 
infiltration equations used in hydrology, more than two constraints are not needed. 
The role of constraints cannot be overemphasized. The type of probability distribu-
tion that one obtains by maximizing the entropy depends on the type of constraints 
one defines. Thus, there is a one-to-one correspondence between the PDF and its 
constraints. In the case of deriving a specific infiltration equation, the problem 
becomes tricky, since its PDF is not known a priori. Hence, trial and error seems to 
be the only option in the beginning.

10.3.3 MaxiMization oF tsallis Entropy

In order to obtain the least-biased f(I), the entropy given by Equation 10.2 is maxi-
mized, subject to Equations 10.3 and 10.4, and one simple way to achieve maximiza-
tion is the use of the method of Lagrange multipliers. To that end, the Lagrangian 
function, L, can be expressed (Singh, 1998) as
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where λr, r = 0, 1, 2, …, n, are the Lagrange multipliers. Recalling the Euler–Lagrange 
equation of calculus of variation, the least-biased f(I) is obtained by maximizing L, 
noting that f is variable and I is parameter. Thus, differentiating Equation 10.5 and 
equating the derivative to zero, one gets
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10.3.4 dEriVation oF probability distribution and MaxiMuM Entropy

Solution of Equation 10.6 leads to the PDF of I in terms of the given constraints:
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The Lagrange multipliers, λrs, can be determined with the use of Equations 10.3 and 
10.4. Equation 10.7 is the entropy-based PDF of infiltration rate of power type. The 
cumulative probability distribution function of I, F(I), can be written as
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Substituting Equation 10.7 in Equation 10.2, one obtains the maximum entropy of 
f(I) or I:
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Equations 10.2 through 10.4, 10.7, and 10.9 constitute the building blocks of the 
entropy theory of infiltration, which is now illustrated by deriving six popular 
 infiltration equations as examples (Singh, 2010).

10.3.5 ForMulation oF Continuity Equation

Consider a dry soil element, as shown in Figure 10.1, to which water is supplied 
without any limitation. The water infiltrates the soil element at a capacity rate of I(t) 
and exits it at a rate of Ic(t). The soil will have a maximum soil moisture retention 
capacity denoted by S. For a dry soil S will be equal to the soil porosity multiplied 
by the soil elemental volume minus the volume of pore spaces occupied by roots, 
earthworms, or other objects. The soil elemental volume is computed by choosing an 
appropriate length of the element that depends on the soil type under consideration. 

s

Ic(t)

I(t)

FIGURE 10.1 Soil element with infiltration. I(t), rate of infiltration; Ic(t), rate of infiltration 
exiting the element; S, soil moisture retention capacity.
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In general it is taken as the crop root zone depth that may be about 100 cm or about 
3 ft. In a dry soil with no macropores, the maximum amount of water retained will 
be the same as the cumulative infiltration J; that is, 0 ≤ J ≤ S. If W is the amount of 
pore space available for infiltration of water at any time, then W + J = S.

The continuity equation for a soil element can now be expressed as follows (Singh 
and Yu, 1990):

 

dJ

dt
I t I tc= -( ) ( )  (10.10)

One can also express the continuity equation (Equation 10.10) as
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Strictly speaking Ic varies in time but for the discussion in this chapter, it is assumed 
constant for two reasons, that is Ic(t) = Ic. First, the infiltration equations considered 
here assume a constant value of Ic. Second, the measurements of Ic varying in time 
are usually not available.

10.3.6 CuMulatiVE probability distribution hypothEsis

It is hypothesized that the cumulative probability distribution of infiltration F(I) can 
be defined as the ratio of soil moisture potential (W) to the maximum soil moisture 
retention (S):
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Term W defines the volume of pore space available for infiltration, that is S minus 
the volume of water infiltrated J. Thus, F(I) can also be defined as one minus the 
ratio of the cumulative infiltration to the maximum potential cumulative infiltration 
or maximum soil moisture retention, S:
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The hypothesis expressed by Equation 10.13 needs to be validated using field data or 
experimental observations. Differentiation of Equation 10.13 yields
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where f(I) is the PDF of I(t), which is determined using the entropy theory.
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10.3.7 rElation bEtwEEn CuMulatiVE inFiltration and inFiltration ratE

Substitution of Equation 10.8 in Equation 10.14 and then integration result in
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Equation 10.15 expresses the relation between cumulative infiltration and infiltration 
capacity rate, and can be integrated. In a way, this equation describes what can be 
considered as infiltration rating curve. The explicit form of this relation depends on 
the form of gr(I), r = 1, 2, ..., n.

10.3.8 dEriVation oF inFiltration Equation

Noting dJ(t)/dt, differentiation of J(t) from Equation 10.15 will lead to a general 
expression for I(t) which is what is desired. This suggests that the key to deriving an 
infiltration equation is to derive its associated PDF whose derivation depends on the 
constraints specific to that infiltration equation. Application of the entropy theory 
is illustrated by deriving six popular infiltration equations, including the Horton, 
Kostiakov, Philip, Green–Ampt, Overton, and Holtan equations.

10.4 HORTON EQUATION

In the Horton equation, the initial infiltration capacity rate is denoted as I0 and the 
steady or constant rate denoted as Ic. Thus, I(t) will vary from Ic to I0. The simplest 
constraint that f(I) must satisfy is as follows:
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Applying POME and using the method of Lagrange multipliers (Singh, 1998), one 
obtains the Lagrangian function L as
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where λ0 is the zeroth Lagrange multiplier. Differentiating Equation 10.17 with 
respect to f and keeping in mind that I is a parameter here, not a variable, and equat-
ing the derivative to zero, one gets
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Equation 10.18 yields

 
f I

m

m m

m

( )
/( )

= -
-

+é
ëê

ù
ûú

ì
í
î

ü
ý
þ

-
1 1

1
0

1 1

l  (10.19)

Equation 10.19 is the Tsallis entropy-based PDF and contains one unknown param-
eter: the zeroth Lagrange multiplier.

For simplicity, let l l* ( ( ))= + -0 1 1/ m  and A m m m= - -[(( ) ) *] ./( )1 1 1/ l  Equation 
10.19 can be expressed as
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Substituting Equation 10.20 in Equation 10.16, one obtains
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Equation 10.21 gives the Lagrange multiplier λ0 as
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Substitution of Equation 10.22 in Equation 10.20 yields
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Equation 10.23 is the PDF of infiltration rate from the Horton equation, which is 
uniform and depends only on the initial and steady infiltration capacity rates. The 
cumulative distribution function of I would be linear, expressed as
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Combining Equations 10.14 and 10.23, one obtains
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Integrating Equation 10.25, one obtains
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Equation 10.26 can be recast as
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Solution of Equation 10.27 yields the cumulative infiltration as
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Differentiating Equation 10.28 with respect to t and recalling the continuity equation 
(Equation 10.10), one obtains the infiltration rate as
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which is the Horton equation. Recall that
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Derivation of Equation 10.29 shows that the Horton equation requires no constraint 
other than the total probability theorem, which is not a constraint in a true sense, for all 
probability distributions must satisfy it. Parameter k is expressed as the ratio of the max-
imum soil moisture retention and the initial infiltration capacity rate minus the steady-
state infiltration rate. It has the dimension of time and indicates the time that it takes for 
the infiltrated water to fill the maximum moisture retention space, if the capacity rate of 
infiltration were the initial infiltration rate (i.e., the maximum infiltration rate) minus the 
steady rate, or the initial excess infiltration capacity rate. Infiltration observations, under 
the condition of no limit on water supply, provide initial and steady infiltration capacity 
rates and for a given soil with the knowledge of its porosity and its column height the 
value of S (the maximum soil moisture retention) can be obtained. Thus, parameter k 
can be computed using Equation 10.30 without calibration. This also provides a physi-
cal interpretation of parameter k, which can be interpreted as average travel time.

The entropy of the probability distribution underlying the Horton equation or the 
infiltration rate can be expressed as
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For m = 2, Equation 10.31 becomes
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Equation 10.31 states that the uncertainty of f(I), or for that matter I, depends on the 
initial value of I, I0, and steady rate Ic. This equation consists of two parts: (I0 − Ic) 
and (I0 − Ic)1−m. An important implication is that for a given soil the uncertainty of 
the Horton equation m > 1 is maximum when it is dry because that is when the initial 
infiltration will be maximum and as a result the first part will be much greater than 
the second part and hence the difference between these two parts will be greater, 
translating into greater entropy. This difference and hence entropy reduces as soil 
becomes wetter. This means that when sampling infiltration, greater care should be 
exercised in the beginning of infiltration and less toward the tail. This also means 
that infiltration observations should be more closely spaced temporally in the begin-
ning but the time interval between observations can be increased with the progress 
of infiltration.

Example 10.1

Data on field experiments on infiltration in Troupe sand in the Georgia Coastal 
Plain have been reported by Rawls et  al. (1976) in a report published by the 
Agriculture Research Service of the U.S. Department of Agriculture. Characteristics 
of infiltration observations are as follows (Table 10.1): D = the duration of the 
experiment = 123 min; tc = the time to approximately reach a constant rate of 

TABLE 10.1
Experimental Field Observations on Infiltration in Troupe Sand

Time from 
Start of Rain Infiltration Rate 

Time from 
Start of 

Rain Infiltration Rate 

Time from 
Start of 

Rain Infiltration Rate 

(min) (in./h) (cm/h) (min) (in./h) (cm/h) (min) (in./h) (cm/h) 

5 6.25 (at 
6 min)

15.87 35 1.734 4.40 65 1.785 4.53

10 1.690 4.29 40 1.751 4.45 70 1.845 4.69

15 1.653 4.20 45 1.755 4.47 75 1.744 4.43

20 1.879 4.78 50 1.785 4.53 80 1.843 4.68

25 1.888 4.80 55 1.763 4.47 85 1.720 4.39

30 1.724 4.38 60 1.756 4.46 90 1.630 4.14

Source: After Rawls, W. et al., Calibration of selected infiltration equations for the Georgia plain, ARS-
S-113, U.S. Department of Agriculture, Agricultural Research Service, New Orleans, LA, 1976.
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infiltration = 110 min; Ic is the constant (steady) rate of infiltration at the end of infil-
tration experiment = 4.40 cm/h; I0 is the initial infiltration capacity rate given a 
few minutes later than the start of infiltration (t = 0) = 11.60 cm/h; S = 3.12 cm. 
Compute the infiltration rate using the Horton equation. Show the parameter val-
ues. Also, compute the Horton equation parameter values using the least square 
method and compute infiltration rate. Then, compare the computed infiltration 
rates with observed values.

Solution

The Horton equation has three parameters Ic, I0, and k as shown in Equation 
10.29. For the entropy theory, parameters Ic and I0 are obtained from observations 
and the value of S is also obtained from observations where it is the difference 
between the maximum soil moisture minus the initial soil moisture. Using these 
observed values of Ic, I0, and S, parameter k is computed using Equation 10.30. 
Thus, no calibration is done to obtain parameters Ic, I0, and k. The three param-
eters are also obtained using the least square method in which the sum of squares 
of deviations between observed and computed infiltration rates is minimized. The 
Horton parameters obtained by calibration and entropy method are: k = 0.43 h, 
I0 = 11.6 cm/h, Ic = 4.4 cm/h; and least square method: k = 0.38 h, I0 = 12.44 cm/h, 
Ic = 4.52 cm/h. With parameter values so obtained, the Horton equation is applied 
to the observed data set, and the infiltration rates computed using these two meth-
ods and observed capacity rates are shown in Figure 10.2. The infiltration capacity 
rates obtained using the calibrated parameter values are in close agreement with 
observed values.
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FIGURE 10.2 Comparison of infiltration rates computed using the Horton equation with 
parameters determined using entropy theory and by least square method with observed infil-
tration rates for Trope sand.
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10.5 KOSTIAKOV EQUATION

Let the constraints be defined as Equation 10.3 and
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where Ic is some small value equal to steady infiltration but tending to 0. Using 
POME and the method of Lagrange multipliers, the Lagrange function L becomes
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Differentiating Equation 10.34 with respect to f and equating the derivative to 0, one 
obtains
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Solution of Equation 10.35 yields f(I) as

 
f I

m

m

m
I m

m

( ) ( )( )
/( )

= + - +é
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1 1
0 1

2 1
1 1

l l  (10.36)

Let λ* = λ0 + (1/(m − 1)), A = ((m − 1)/m)λ*, and B = ((m − 1)/m)λ1. Introducing these 
quantities in Equation 10.36, one obtains

 f I A BI m m( ) [ ]( ) /( )= + - - -2 1 1 1  (10.37)

If it is assumed that A = 0 and m = 2, then

 
f I

B

I
( ) = 2  (10.38)

Equation 10.36 will satisfy the total probability given by Equation 10.3 if B = Ic. This 
means that λ1 = mIc/(m − 1). If m = 2, then λ1 = 2Ic.

Combining Equation 10.38 with Equation 10.14, the result with limits on I from 
I to ∞ and on J from J to 0 is

 

I S

I
Jc =  (10.39)
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Recalling that I = dJ/dt, Equation 10.39 can be expressed as

 

dJ

dt

I S

J
J I S tc

c= Þ = ( ) . .2 0 5 0 5  (10.40)

Integration of Equation 10.38 yields

 J I S tc= ( ) . .2 0 5 0 5  (10.41)

Differentiating Equation 10.41, one obtains the rate of infiltration:

 
I I S tc= -1

2
2 0 5 0 5( ) . .  (10.42)

Equation 10.41 can be recast as

 J at= 0 5.  (10.43)

and Equation 10.44 as

 I t at( ) . .= -0 5 0 5  (10.44)

which is the Kostiakov equation with a as parameter expressed as

 a I Sc= 2  (10.45)

Thus, parameter a has physical meaning that is twice the product of steady infiltration 
rate (Ic) and maximum soil moisture retention (S) both of which can be determined 
for a given soil. This means that parameter a can be obtained from observations 
and does not need to be calibrated.

The PDF of infiltration rate given by the Kostiakov equation can be expressed as

 
f I

I

I
c( ) = 2  (10.46)

Substituting Equation 10.46 in Equation 10.2 and with m = 2, the entropy of the 
Kostiakov equation can be written as

 
H

Ic

= -1
1

3
 (10.47)

Example 10.2

Using the data given in Table 10.1, compute the infiltration rate using the Kostiakov 
equation. Show the parameter values. Also, compute the Kostiakov  equation param-
eter values using the least square method and compute the infiltration rate. Then, 
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compare the computed infiltration rates with observed values. Characteristics of infil-
tration observations are as in Example 10.1, but the value of S in this case is 12.14 cm.

Solution

This equation has only one parameter a, which is obtained by the least square 
method as well as directly from observations using Equation 10.45 due to the 
entropy theory, as for entropy: a = 10.34 and b = −0.5; and for least square method: 
a = 5.31 and b = −0.31. Figure 10.3 compares observed infiltration rates and the 
rates computed using the entropy theory and calibration for data set IV. It may be 
noted that the value of parameter a as estimated for the entropy theory may be 
less than accurate, for the value of S as given in the data does not match the accu-
mulated infiltration, that is the value of S is significantly less than the accumulated 
infiltration at the time when the rate of infiltration became almost constant.

10.6 PHILIP TWO-TERM EQUATION

Let the infiltration rate be defined as i = I − a, where a is some constant value. Let 
the constraints be defined by Equation 10.3 with limits as a to ∞, and

 

i f i di E i im m m
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FIGURE 10.3 Comparison of infiltration rates computed using the Kostiakov with param-
eters determined using entropy theory and by least square method with observed infiltration 
rates for Troupe sand.
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Using POME and the method of Lagrange multipliers, the Lagrangian function L is
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Differentiating Equation 10.49 with respect to f and equating the derivative to 0, 
one gets

 

¶
¶

Þ =
-

- - -
ì
í
ï

îï

ü
ý
ï

þï
+- -

¥

òL

f m
f i m f i di dm m

a

0
1

1
1 11 1

0[ [ ( )] ( )[ ( )] ] l ii i di
a

m

a

¥

- -

¥

ò ò
é

ë
ê
ê

ù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

l1
2 1( )

 

(10.50)

Solution of Equation 10.50 yields f(i) as

 f i c di m m( ) [ ]( ) /( )= + - - -2 1 1 1  (10.51)

where
c = ((m − 1)/m)λ*
d = ((m − 1)/m)λ1

λ* = (1/(m − 1)) + λ0

Equation 10.51 is the PDF of infiltration rate given by the Philip equation. If c is 
assumed zero, and m = 2, then

 f i di( ) = -2  (10.52)

Substituting Equation 10.50 in Equation 10.3, one gets

 

di di d a a
a

-

¥

ò = Þ = =2
11 2; l  (10.53)

Combining Equation 10.52 with Equation 10.14, and integrating with limits on i 
from i equal to ∞ and on J from J equal to 0 the result is

 

aS

i
J=  (10.54)
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Recalling that i = dJ/dt, Equation 10.54 can be expressed as

 

dJ

dt

aS

J
J aS t= Þ = ( ) . .2 0 5 0 5  (10.55)

Differentiating Equation 10.55, one obtains the rate of infiltration:

 
i aS t= -1

2
2 0 5 0 5( ) . .  (10.56)

Equation 10.56 can be written in original terms as

 I t a aS t a bt b aS( ) . ( ) , . ( ). . . .= + = + =- -0 5 2 0 5 20 5 0 5 0 5 0 5  (10.57)

which is the Philip two-term equation with a and b as parameters. Parameter a is 
analogous to steady infiltration rate (or saturated hydraulic conductivity or a fraction 
thereof) and can be obtained without having any calibration. In general, a is between 
0.5 and 0.7 of Ic. Parameter b can be expressed in terms of a and maximum soil mois-
ture retention S and can be obtained from observations, as shown by Equation 10.57. 
Thus, parameters a and b have physical meaning and need no calibration.

Using Equation 10.53 in Equation 10.2, one obtains the entropy of infiltration rate 
by the Philip equation:

 
H

a
= -1

1
3

 (10.58)

Example 10.3

Using the data given in Table 10.1, compute the infiltration rate using the Philip 
two-term equation. Show the parameter values. Also, compute the Philip equa-
tion parameter values using the least square method and compute infiltration rate. 
Then, compare the computed infiltration rate with observed values. Characteristics 
of infiltration observations are as in Example 10.1, but the value of S in this case 
12.14 cm.

Solution

The Philip equation has two parameters a and Ic as shown in Equation 10.57. 
These parameters are estimated by the least square method and from  observations 
using Equation 10.57 for the entropy theory and their values are as follows: for the 
entropy method: a = 2.20 and b = 3.65; and for the least square method: a = 2.53 
and b = 2.72. Figure 10.4 compares observed infiltration capacity rate and the 
capacity rates computed using the entropy theory and least square method. The 
figure shows that the entropy theory overestimates infiltration rate for the entire 
duration of the experiment, and the calibration method underestimates up to 
about 62 min and overestimates for the remainder of the duration of the experi-
ment. Considering that there is no calibration for the entropy theory, it compares 
reasonably well with the least square method.
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10.7 GREEN–AMPT EQUATION

Let the constraints be defined by Equation 10.3 with limits as b to c where b would 
tend to ∞, and c to Ic, and
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Using POME and the method of Lagrange multipliers, the Lagrangian function L is
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Differentiating Equation 10.60 with respect to f and equating the derivative to 0, 
one gets
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FIGURE 10.4 Comparison of infiltration rates computed using the Philip two-term equa-
tion with parameters determined using entropy theory and by least square method with 
observed infiltration rates for Troupe sand.
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Equation 10.61 yields f(I) as
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Let a = ((m − 1)/m)λ*, b = ((m − 1)/m)λ1, λ* = (1/(m − 1)) + λ0. Equation 10.62 becomes

 f I a b I Ic
m m( ) [ ( ) ]( ) /( )= + - - - -2 1 1 1  (10.63)

Taking a = 0 and m = 2, Equation 10.63 reduces to

 
f I

b

I Ic

( )
( )

=
- 2  (10.64)

In order for f(I) to satisfy Equation 10.3, b = Ic or λ1 = mI/(m − 1). If m = 2, then

 
f I

I

I I
c

c

( )
( )

=
- 2  (10.65)

Equation 10.65 is the PDF of infiltration rate due to the Green–Ampt equation. 
It should, however, be noted that this density function is valid only for 2Ic ≤ I < ∞, 
not for the entire first quadrant.

Combining Equation 10.65 with Equation 10.14, the result is

 

I dI

I I S

dJ

dI
c

c( )-
= -2

1
 (10.66)

Integrating with limits for I from I to ∞ and for J from J to 0,

 

I

I I

J

S
c

c( )-
= -  (10.67)

Recalling that I = dJ/dt, Equation 10.67 can be expressed as

 

dJ

dt

SI

J
Ic

c= +  (10.68)
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Solution of Equation 10.68, with the condition that t = 0, J = 0, is
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Equation 10.69 can be expressed as
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where

 a SIc=  (10.71)

Equation 10.70 is the Green–Ampt equation in which parameter Ic is the steady-
state rate of infiltration and can be interpreted as equal to saturated hydraulic con-
ductivity. Parameter S equals the product of the capillary suction at the wetting 
front and the initial moisture deficit and can be interpreted as the maximum soil 
moisture retention and S = a/Ic. Since Ic and S can be obtained from observations, 
a = SIc can also be obtained from observations. In the hydrologic literature, S is 
interpreted as equal to the product of the capillary suction at the wetting front 
and the initial moisture deficit (Singh, 1989). The entropy theory provides another 
interpretation of parameter S and hence the G–A parameters can be estimated 
without calibration.

Entropy of infiltration rate given by the Green–Ampt equation can be written by 
substituting Equation 10.65 in Equation 10.2 as

 
H

Ic

= -1
1

3
 (10.72)

Example 10.4

Using the data given in Table 10.1, compute the infiltration rate using the Green–
Ampt equation. Show the parameter values. Also, compute the Green–Ampt 
equation parameter values using the least square method and compute infiltra-
tion rate. Then, compare the computed infiltration rate with observed values. 
Characteristics of infiltration observations are as in Example 10.1, but the value of 
S in this case is 2.59 cm.

Solution

The G–A equation has two parameters a and S as shown in Equation 10.70. These 
parameters are estimated by calibration and from observations using Equation 
10.71 for the entropy theory, and their values are as follows: for the entropy 
method: Ic = 4.4  cm/h, I0 × S = 11.4  cm/h; and for the least square method: 
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Ic = 4.1 cm/h and I0 × S = 4.1 cm/h. Figure 10.5 compares observed infiltration 
capacity rates and the capacity rates computed using the entropy theory and the 
least square method. The figure shows that the entropy theory consistently overes-
timates and the least square method underestimates infiltration up to about 62 min 
and then it overestimates. However, considering that there was no calibration of 
parameters, the performance is within error bounds that can be reduced.

10.8 OVERTON MODEL

Let the constraints be defined by Equation 10.3 and
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where i = I − Ic. Using POME and the method of Lagrange multipliers, the Lagrangian 
function L is

 

L
m

f i f i di f i di i

i

m

i

=
-

- + -
é

ë

ê
ê

ù

û

ú
ú

+ò ò- -1
1

1 1
0

1
0

0

1
0

0 0

( ){ [ ( )] } ( )l l .. ( ) . ( )( )5 1 0 5 1

0

0

m m

i

f i di i- - --
é

ë

ê
ê

ù

û

ú
úò

 

(10.74)

04

5

6

7

8

9

10

In
�l

tr
at

io
n 

ra
te

 (c
m

/h
)

11

12

13

Observed
Entropy
Calibrated

20 40 60 80
Time (min)

100 120 140

FIGURE 10.5 Comparison of infiltration rates computed using the Green–Ampt equation 
with parameters determined using entropy theory and by least square method with observed 
infiltration rates for Troupe sand.
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Differentiating Equation 10.74 with respect to f and equating the derivative to 0, one 
gets
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Solution of Equation 10.75 yields f(i) as
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Let λ* = λ0 + (1/(m − 1)), A = ((m − 1)/m)λ*, B = ((m − 1)/m)λ1. Equation 10.76 becomes

 f i A Bi m m( ) [ ]. ( ) /( )= + - - -0 5 1 1 1  (10.77)

Assuming A = 0 and m = 2, Equation 10.77 becomes

 f i Bi( ) .= -0 5
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Inserting Equation 10.78 in Equation 10.76
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Equation 10.79 can be cast as
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Equation 10.80 is the PDF of infiltration rate by the Overton model.
Substituting Equation 10.80 in Equation 10.13, one obtains
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Integration of Equation 10.81 yields
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Recalling the continuity equation (Equation 10.10), Equation 10.82 with limits on t 
from t to tc and on J from J to Jc (constant) gives
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Differentiating Equation 10.83 leads to
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Let

 ( )I I aSc0
2- =  (10.85)

Equation 10.84 becomes

 
I t I aI t tc c c( ) sec ( )= -é

ë
ù
û

2
 (10.86)

Equation 10.86 is the Overton model where tc is the time to steady-state infiltration 
rate Ic; this time may be much smaller than the duration of the infiltration experiment 
or observations and can be obtained from observations. Parameter a is expressed as 
( )I I aSc0

2- =  in which I0 is the initial infiltration capacity. Thus, parameters of the 
Overton equation can be obtained from observations and calibration of these param-
eters may not be needed.

Using Equation 10.80 in Equation 10.2, one obtains the entropy of infiltration rate 
given by the Overton equation:
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 (10.87)

Example 10.5

Using the data given in Table 10.1, compute the infiltration rate using the Overton 
equation. Show the parameter values. Also, compute the Overton equation 
parameter values using the least square method and compute infiltration rate. 
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Then, compare the computed infiltration rate with observed values. Characteristics 
of infiltration observations are as in Example 10.1, but the value of S in this 
case 11.21 cm.

Solution

The Overton equation has actually three parameters a, Ic and tc, as shown in 
Equation 10.86. These parameters are estimated by calibration and from obser-
vations using Equation 10.85 for the entropy theory, and their parameter val-
ues are as follows: Ic = 4.38 cm/h and a = 0.06; for the least square method: 
Ic = 4.34 cm/h, a = 0.06. Figure 10.6 compares observed infiltration rates and 
the rates computed using the entropy theory and the least square method. 
The figure shows that the entropy theory consistently overestimates infiltration 
capacity rate and the least square method underestimates between t = 20 min 
and t = 62 min, and then overestimates. Considering that there was no calibra-
tion for the entropy theory, it compares reasonably well with the least square 
method. Reducing the value of a through S and Ic would lead to improved infil-
tration estimates.

10.9 HOLTAN MODEL

Analogous to the Horton equation, let i define the excess infiltration rate (I − Ic) 
 varying from 0 to i0 where i0 = I0 − Ic. Then, the constraints can be defined by 
Equations 10.3 and 10.73 (with proper infiltration rate in mind). Using POME and 
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FIGURE 10.6 Comparison of infiltration rates computed using the Overton equation with 
parameters determined using entropy theory and by the least square method with observed 
infiltration rates for Troupe sand.
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the method of Lagrange multipliers, f(i) is obtained as Equation 10.76 and eventually 
Equation 10.79:

 f i A Bi n n m m( ) [ ](( )/ )( ) /( )= + - - -1 1 1 1  (10.88)

where
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Let m = 2. Equation 10.88 becomes

 f i A Bi n n( ) [ ](( )/ )= + -1  (10.90)

If A = 0, then Equation 10.90 can be recast as

 f i Bi n n( ) (( )/ )= -1  (10.91)

Substituting Equation 10.91 in Equation 10.3 yields

 
B

n i n= 1

0
1( ) /  (10.92)

Equation 10.91, in concert with Equation 10.92, is the PDF of infiltration rate from 
the Holtan equation.

Substituting Equation 10.88 in Equation 10.14, one obtains

 dJ Sbi din n= - -(( )/ )1  (10.93)

Integration of Equation 10.93 yields

 S J Sbni n- = 1/  (10.94)

Equation 10.94 can be expressed as

 ( ) ( )nbS S J dJ dtn n- =-  (10.95)

Integrating Equation 10.95, one obtains
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Differentiation of Equation 10.96 with respect to t and simplification yield

 i a S a n tn n n= - -- -[ ( ) ] /( )1 11  (10.97)

where

 
a

i

Sn= 0  (10.98)

Equation 10.97 can be written in original terms as
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Equation 10.99 is the Holtan equation with parameter a given by Equation 10.98 and
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with
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Parameters a and n can be obtained from observations as Equations 10.100 and 10.101 
show and calibration may therefore not be needed. Thus, n can also be expressed in 
terms of physically measurable quantities. Through simulation, Singh (2010) found 
parameter n to be 1.5.

Substituting Equation 10.91 in Equation 10.2 yields

 
H

n I Ic

= +
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1
1

2 0( )( )
 (10.102)

Example 10.6

Using the data given in Table 10.1, compute the infiltration rate using the 
Holtan equation. Show the parameter values. Also, compute the Holtan 
 equation parameter values using the least square method and compute infiltra-
tion rate. Then, compare the computed infiltration rate with observed values. 
Characteristics of infiltration observations are as in Example 10.1, but the value 
of S in this case 3.12 cm.

Solution

The Holtan equation has three parameters a, Ic and n, as shown in Equation 
10.99. These parameters are estimated by calibration and from observations 
using Equation 10.99 for the entropy theory, and their values are as follows: for 
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the entropy method: Ic = 4.40 cm/h, a = 1.30, and n = 1.5; and for the least square 
method: Ic = 4.26 cm/h, a = 1.21, and n = 1.5. Figure 10.7 compares observed 
infiltration capacity rate and the capacity rates computed using the entropy 
 theory and the least square method. The figure shows that both the entropy the-
ory and the least square method are comparable up to t = 62 min, first underes-
timating and then overestimating infiltration a little bit, whereas the least square 
method first overestimates and then underestimates. In this case, the entropy 
theory does not yield not as good estimates as does the least square method. 
However, considering that there is no calibration of parameters, the theory per-
forms remarkably well. Reducing the value of a through S and Ic would lead to 
improved infiltration estimates.
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11 Movement of Soil 
Moisture

Soil moisture occupies a central position in the hydrological cycle,  interfacing between 
land surface hydrological processes and atmospheric processes, on one hand and 
between land surface processes and lithosphere (groundwater zone), on the other 
hand. The zone of soil moisture (also called vadose zone) is often called the gate-
keeper in hydrology. Soil moisture is fundamental to analysis and evaluation of 
droughts; estimation of soil erosion and sediment yield; determination of infiltration, 
evapotranspiration, and generation of runoff; irrigation scheduling and management; 
maintaining salt balance and reducing water logging; tactical military encamp-
ment and mobility; sustaining ecological health; and spread of bacterial and viral 
activities. Because of its ubiquitous use, recent years have witnessed a considerable 
emphasis on measurement of soil moisture using, as for example, neutron probes, 
TDR probes, and satellite and other remote sensing techniques. In the case of remote 
sensing, soil moisture estimates are obtained within a depth of no more than 5 cm 
(Ulaby et al., 1996) and modeling methods are needed to estimate the entire soil 
moisture profile. The objective of this chapter is to discuss the construction of soil 
moisture using the Tsallis entropy.

11.1 SOIL MOISTURE ZONE

The porous medium below the land surface can be divided into two zones: one 
between the water table and the land surface, and the other below the water table. 
The water table is defined as the surface on which the fluid pressure in the pores 
of the medium is exactly atmospheric. This means that the hydraulic head at any 
point on the water table must equal the elevation of the water table at that point. The 
porous medium below the water table is saturated, that is the pores are filled with 
water, and can be referred to as ground water or saturated geologic zone. As shown 
in Figure 11.1, the porous medium above the water table is often divided into three 
zones: (1) capillary fringe, (2) intermediate zone, and (3) soil moisture zone (also 
called rootzone).

There exists a narrow zone immediately above the water table, called capillary 
zone or fringe, where the porous medium is tension-saturated but the pressure head 
is negative. This zone is also called tension-saturated zone. This pressure is the air 
entry pressure or bubbling pressure. The medium above the capillary fringe is called 
unsaturated zone or vadose zone or zone of aeration. In this zone, pores are partially 
filled with water, and partially filled with air. This means that water in the soil pores 
is under surface tension forces and thus the pressure will be negative. In this zone, 
both the moisture content (θ) and the hydraulic conductivity (K) are functions of 
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278 Introduction to Tsallis Entropy Theory in Water Engineering

the pressure head (ψ). Furthermore, the θ–ψ relationship is hysteretic and the same 
is true of the K–ψ relationship. This means that these relationships during wetting 
are somewhat different from those during drying. From an agricultural standpoint, 
the vadose zone can be further divided into two zones. The zone below the land sur-
face is the zone in which agricultural crops grow and it may thus be called root zone. 
This is also referred to as soil moisture zone. Below this zone is intermediate zone or 
percolation zone or transmission zone.

11.2 SOIL MOISTURE PHASES

When water is applied to the land surface either artificially by irrigation or naturally 
by rainfall, the movement of moisture upon entry at the surface depends on the dura-
tion for which water is applied at the surface and the moisture existing beforehand. 
The soil surface first gets saturated at the surface and the depth of saturation moves 
downward until it reaches the water table. This is called the wetting phase. Above 
the saturation front the soil is saturated and below the front the soil is unsaturated. 
In this phase, the distribution of soil moisture monotonically decreases from the 
surface to the water table or up to a point of concern.

When the supply of water is cut off, the downward movement of moisture contin-
ues and the soil starts draining resulting in drying. This is called the drying phase. 
Above the drying front from the soil is unsaturated and below it the soil is satu-
rated. In this case, the distribution of moisture monotonically increases downward. 
Between the wetting and drying phases there exists a situation where the distribution 
of moisture monotonically increases downward up to a point (zone one) but then 

Groundwater

Vadose

Soil moisture

Intermediate

Capillary

FIGURE 11.1 Subsurface zones below the land surface: vadose zone (soil moisture, inter-
mediate, and capillary) and groundwater zone.
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279Movement of Soil Moisture

decreases downward (zone two). In this case, one can divide the unsaturated zone 
into these two zones. These three cases or phases are shown in Figure 11.2. This 
chapter presents the derivation of the one-dimensional distribution of soil moisture 
under three phases.

11.3 ESTIMATION OF SOIL MOISTURE PROFILE

The soil moisture profile using near-surface soil moisture observations has been 
estimated using a range of approaches (Schmugge et al., 1980) that can be classi-
fied into four groups. The first group includes theoretical (Russo, 1988) approaches 
that include solution of equations governing flow of water in soils. The solution, of 
course, requires the knowledge of soil hydraulic characteristics, including a hydrau-
lic conductivity function and a water retention function that needs to be determined. 
Thus, in this sense this becomes an inverse problem.

Approaches in the second group are probabilistic wherein the soil structure is 
hypothesized to evolve from a random fragmentation process. Assouline et al. (1998) 
have presented a conceptual model using a probabilistic approach in which the frag-
mentation process leads to the determination of the soil particle size distribution. 
Particle volumes are converted into pore volumes using a power function. Then, 
a capillarity equation is employed to obtain an expression for the water retention 
curve. Or et al. (2000) developed a stochastic model coupling the probabilistic nature 
of pore-space distributions with physically based soil deformations employing the 
Fokker–Planck equation. They addressed three features of pore space evolution: 
reduction of total porosity, reduction of mean pore radius, and changes in the vari-
ance of pore size distribution. This model permits computation of temporal variation 
of near-surface soil hydraulic properties. Pachepsky et al. (2006) and Al-Hamdan 
and Cruise (2010) used the Shannon entropy, whereas Singh (2010) used the Tsallis 
entropy for describing the movement of soil moisture. The entropy theory permits a 
probabilistic description of soil moisture. Pachepsky et al. (2006) also compared and 
evaluated different soil water models using information measures.

Just after rainfall (wet)
Long time after rainfall (dry)
Short time after rainfall

Water content (θ)

So
il 

de
pt

h 
(z

)

FIGURE 11.2 Moisture distributions in three phases.
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Approaches in the third group are based on the water balance equation (Singh, 
1989), that incorporates soil moisture as output in the water balance (De Troch et al., 
1996). This approach entails modeling infiltration, including redistribution and rein-
filtration (Melone et al., 2006). In recent years, soil moisture observations have been 
assimilated into hydrological models (Das and Mohanty, 2006) and integrating soil 
moisture observations with hydrological models seems a more promising approach 
(Kostov and Jackson, 1993).

The fourth group includes approaches that are based on regression (Arya et al., 
1983). These approaches are curve fitting, relating near-surface soil moisture obser-
vations to wetting and drying separately at specific locations. For shallow depths, 
Arya et al. (1983), Bruckler et al. (1988), Srivastava et al. (1997), among others, found 
regression techniques to yield satisfactory estimates, but the development of regres-
sion relations needs sufficient observations at each location and that these relations 
cannot be transferred to other locations.

In the inverse approaches (Kostov and Jackson, 1993), remotely sensed bright-
ness temperature is employed for estimating soil moisture (Kostov and Jackson, 
1993; Jackson, 1994). Intelligence techniques are based on artificial neural networks 
(Koekkoek and Booltink, 1999; Jain et al., 2004), genetic algorithms, fuzzy logic, 
artificial intelligence, and the like. Using a priori information on the hydrological 
properties of soils, soil moisture content is determined at different depths. Methods 
of determination include correlations between surface soil moisture and that at lower 
layers (Kondratyev et al., 1977), or energy-based methods with radiative properties 
of soil at different soil moisture states (Reutov and Shutko, 1986), or models using 
hydrostatic principles (Jackson et al., 1987).

11.4 SOIL MOISTURE AS A RANDOM VARIABLE

In the stochastic approach, the soil moisture content is considered as a random vari-
able. Let there be a soil column of length L. The moisture in this soil column can 
vary from a very low value Θ0 to soil porosity n. Let the effective saturation θ be 
defined as

 
q = -

-
Q Q

Q
0

0n
 (11.1)

where
Θ is the moisture content
Θ0 is the initial moisture content or the moisture content that cannot be extracted 

by plants
n is the porosity

From now onward, soil moisture content will be denoted by θ. The effective satura-
tion at any point in space varies in time. It is assumed that at any value of z between 
0 and L, and all values of θ are equally likely. Thus, the effective saturation is consid-
ered as a random variable with a probability density function (PDF) as f(θ).
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281Movement of Soil Moisture

11.5  METHODOLOGY FOR DERIVING SOIL MOISTURE 
DISTRIBUTION USING TSALLIS ENTROPY

The procedure for deriving soil moisture profiles using entropy comprises four parts 
(Singh, 2010): (1) Tsallis entropy, (2) principle of maximum entropy (POME), (3) 
specification of constraints for the maximization of the Tsallis entropy in accord 
with POME, (4) maximization of entropy, and (5) soil moisture profiles for different 
phases. Each part is now discussed.

11.5.1 tsallis Entropy

The Tsallis entropy (Tsallis, 1988), H, can be expressed as
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where
f(θ) is the PDF of θ
m is a real number
a and b are limits of θ

H describes the uncertainty associated with f(θ). Quantity {1 − [ f(θ)]m−1}/(m − 1) is 
a measure of uncertainty of f(θ) or θ and H(θ) expresses the mean uncertainty of θ.

11.5.2 prinCiplE oF MaxiMuM Entropy

The principle of maximum entropy formulated by Jaynes (1958) says that the least-
biased probability distribution of θ, f(θ), will be the one that maximizes Equation 
11.2, subject to the given information on θ expressed as constraints.

11.5.3 spECiFiCation oF Constraints

Information on θ(z) can be expressed as constraints that can be defined as

 

f d
a

b

( )q q =ò 1  (11.3)
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where gr(θ), r = 1, 2, …, n, represent some functions of θ. For example, r = 1, Equation 
11.4 would correspond to the mean effective saturation; likewise, r = 2 would denote the 
variance of θ. For most moisture profiles, more than two constraints may not be needed.
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11.5.4 MaxiMization oF tsallis Entropy

The entropy given by Equation 11.2, subject to Equations 11.3 and 11.4, can be 
 maximized using the method of Lagrange multipliers, which would lead to the prob-
ability distribution of θ in terms of the given constraints:
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where λrs are the Lagrange multipliers that can be determined with the use of 
Equations 11.3 and 11.4. Now the entropy theory is applied to the derivation of soil 
moisture profiles for three phases: wetting, drying, and mixed.

11.5.5 soil MoisturE proFilE For wEtting phasE

This phase occurs during and immediately after rainfall and is designated as wet 
case. The moisture content is highest near the surface and decreases downward. It is 
hypothesized that
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where F(θ) is the cumulative probability distribution (CDF). In order to derive the 
moisture content profile using the entropy theory, the following constraints are 
defined:
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where θL and θu are the values of effective saturation at z = L and z = 0, respectively.
Applying POME and the method of Lagrange multipliers, one gets the Lagrangian 

function La:
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Differentiating Equation 11.9 with respect to f(θ) and equating the derivative to 0, 
one obtains
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The maximum entropy becomes
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Let l l* /= + -0 1 1m . Then, Equation 11.10 becomes
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where λ0 and λ1 are the Lagrange multipliers that can be determined using Equations 
11.7 and 11.8. Equation 11.12 is the PDF of soil moisture content. Substitution of 
Equation 11.12 in Equation 11.7 yields
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This results in
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Substituting Equation 11.12 in Equation 11.8, one gets
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Equation 11.15 leads to
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Equations 11.14 and 11.16 contain two unknowns λ* and λ1 and can be solved 
numerically.

Coupling Equations 11.12 and 11.6
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Integrating Equation 11.17 from θ = θu to θ, and z = 0 to z, one gets
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or
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Equation 11.19 describes the moisture profile as a function of z for the wetting phase, 
where the maximum soil moisture occurs at the surface and the moisture decreases 
downward.

If θL = 0, Equation 11.14 simplifies to
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Likewise, Equation 11.16 simplifies to
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Example 11.1

Compute and plot the soil moisture profile as a function of z for two wet cases: 
1 (θu = 0.86) and case 2 (θu = 0.46) for different values of parameter m for 
given θu, λ1, λ*. For computing and plotting, consider the following scenarios: (1) 
θu = 0.86, λ1 = 2, λ* = 3, m = (3/4)–2; (2) θu = 0.86, λ1 = 1–8, λ* = 1.48, m = 3/4; 
(3) θu = 0.46, λ1 = −1 to −6, λ* = 3.19, m = 3/4; (4) θu = 0.86, λ1 = 2.10, λ* = 1–10, 
m = 3/4; (5) θu = 0.46, λ1 = 2.61, λ* = 1–3.2, m = 3/4; and (6) θu = 0.46, θm = 0.30, 
λ1, λ*, m = (3/4)–2.
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Solution

Soil moisture profiles as a function of z for the wet case are computed using 
Equation 11.19. For different values of the m parameter, λ1 = 2.0, and λ* = 3, the 
soil moisture profiles are shown in Figure 11.3. This figure shows that the moisture 
profile is quite sensitive to m. It seems that m = 3/4 would be more realistic.

For different values of, λ1, and λ* = 1.48, and m = 3/4, the soil moisture pro-
files are shown in Figure 11.4. This figure shows that the moisture profile is quite 
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FIGURE 11.3 Soil moisture profile as a function of z for wet case 1 for different values of 
the m parameter.
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sensitive to λ1. Figure 11.5 shows that soil moisture profile moves slowly for larger 
values of λ1 and more rapidly for smaller values of λ1. It is seen from Figure 11.6 
that the soil moisture profile is quite sensitive to the Lagrange multiplier λ* and the 
 sensitivity increases with decreasing value of λ*. Figure 11.7 also shows similar sen-
sitivity to λ*. The depth profile does not seem sensitive to the value of m, as shown 
in Figures 11.8 and 11.9.
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11.5.6 MoisturE proFilE For drying phasE

In this phase, the lowest moisture occurs at z = 0 and highest at z = L. Therefore, it 
is hypothesized that

 
F

z

L
f

L

dz

d
( ) , ( )q q

q
= = 1

 (11.22)

14

12

10

8

D
ep

th
 (c

m
) 6

4

2
λ* ~ ∞

λ* = 1

λ1 = – 2 .61

λ* = 2
λ* = 2.5
λ* = 2.8
λ* = 3.0
λ* = 3.2

0
0.00 0.10 0.20 0.30

E�ective saturation
0.40 0.50

m = 3/4
θu = 0.45

FIGURE 11.7 Soil moisture profiles for different values of λ* (wet case 2).

14

12

10

D
ep

th
 (c

m
)

8

6

4

2

0
0.00 0.10

θu = 0.46 θm = 0.3
λ1

3/4 –2.61 3.19
4.44
3.35

–2.15
1.42
0.38

6.34
7.19

–9.13
11.43
17.26

5/4
4/3
3/2
5/3
2

λ*m
θL = 0

0.20
Effective saturation

0.30 0.40 0.50

m = 3/4
m = 5/4
m = 4/3
m = 3/2
m = 5/3
m = 2

FIGURE 11.8 Soil moisture profiles for different values of m (wet case 1).

© 2016 by Taylor & Francis Group, LLC

  



288 Introduction to Tsallis Entropy Theory in Water Engineering

The constraints for this case can be expressed as
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The entropy-based probability distribution f(θ) becomes the same as Equation 11.12. 
Substituting Equation 11.23 in Equation 11.12, one obtains
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Substituting Equation 11.12 in Equation 11.24, one obtains
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Equations 11.25 and 11.26 can be employed to determine λ0 and λ1.
If θu = 0, Equations 11.25 and 11.26 simplify to

 
( * ) ( *)/( ) /( )

/( )

l l q l l+ = +
-

æ
è
ç

ö
ø
÷

- -
-

1
1 1

1

1

1
L

m m m m
m m

m

m
 (11.27)

 

1 1 1 1
2 11

1

1
1

1
2l

q l l q
l

m

m

m

m

m m

L L
m m-æ

è
ç

ö
ø
÷ +é

ë
ù
û - -

-
æ
è
ç

ö
-

-
/( )

/( )( * )
øø
÷

-æ
è
ç

ö
ø
÷

+ -

-

- - - -

m

m

m m

L
m m m m

1
1

1
2 1 1 2 1 1

/( )

( )/( )( * ) ( *)
( )/( )

l l q léé
ë

ù
û

= q  (11.28)

Substitution of Equation 11.12 in Equation 11.22 yields
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Solution of Equation 11.29 can be expressed as
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Equation 11.30 yields the soil moisture profile as a function of z.

Example 11.2

Compute and plot the soil moisture profile as a function of z for two drying cases: 
1 (θu = 0) and 2 (θu = 0.45) for different values of parameter m for given θu, λ1, 
λ*. For computing and plotting consider the following cases: (1) θu = 0.0, λ1 = 3, 
λ* = 2, m = 3/4–2; (2) θu = 0.45, λ1 = 0.5–1.7, λ* = 1.69, m = 3/4; (3) θu = 0.0, 
λ1 = −1 to −30, λ* = 2.96, m = 3/4; (4) θu = 0.45, λ1 = 1.14, λ* = 0.5–1.8, m = 3/4; 
(5) θu = 0.0, λ1 = 1.55, λ* = 1–4, m = 3/4; (6) θu = 0.45, θm = 0.64, θL = 0.89, λ1, λ*, 
m = 3/4–2; and (7) θu = 0.0, θm = 0.21, θL = 0.25, λ1, λ*, m = 3/4–2.

Solution

Soil moisture profiles as a function of z for the dry case are computed using 
Equation 11.30. For different values of the m parameter and λ1 = 3 and λ* = 2, 
the profiles are shown in Figure 11.10. This figure shows the variation of the effec-
tive saturation for various values of m for given θu, λ1, λ*. The moisture profile is 
quite sensitive to m. It seems that m = 3/4 would be more realistic. Figure 11.11 
shows that soil moisture profile is quite sensitive to the Lagrange multiplier λ1 
and the sensitivity increases with decreasing λ1. Figure 11.12 also shows a similar 
behavior of soil moisture movement. Figure 11.13 shows that soil moisture pro-
file is highly sensitive to λ* with increasing sensitivity to decreasing λ*. A similar 
behavior of soil moisture profile is observed in Figure 11.14. Both Figures 11.15 and 
11.16 exhibit that the soil moisture profile is relatively insensitive to m.
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11.5.7 MoisturE proFilEs For MixEd phasE

This case can be considered to consist of two parts. For part I, 0 ≤ z ≤ d, the PDF of 
θ, f(θ), is the same as in case 2 with the proviso that θu ≤ θ ≤ θd, and θ = θd at z = d. It 
may therefore be noted that
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For part I, the moisture profile becomes
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The Lagrange multipliers can be determined using the constraints given by Equations 
11.23 and 11.24. Substituting Equation 11.12 in Equation 11.23, one gets
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Equation 11.34 yields
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Substitution of Equation 11.12 in Equation 11.24 yields
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This can be solved as before.
For part II, d ≤ z ≤ L. The moisture profile can be expressed as
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This leads to
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Example 11.3

Compute and plot the soil moisture profile as a function of z for two mixed cases: 
1 and 2 for different values of parameter m for given θu, θd, θL, λ1, λ*: (1) θu = 0.20, 
θd = 0.46, θL = 0.0, m = 3/4–2 and corresponding values of λ1 and λ*; and (2) 
θu = 0.13, θd = 0.78, θL = 0.10, m = 5/4–2 and corresponding values of λ1 and λ*.

Solution

Figures 11.17 and 11.18 show that soil moisture profiles are not sensitive to the 
m value. This means that any value of m between 0.75 and 2.00 would be adequate.

11.6 SOIL MOISTURE PROFILE IN TIME

In order to determine the soil moisture profile as a function of time, the boundary 
condition needs to be specified. The same applies to the constraints. The mean value 
of θ can be calculated as follows (Al-Hamdan and Cruise, 2010):
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where θ0 is the initial soil moisture, and w is the applied water to the soil surface that 
can be computed using the water balance as
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 w w w P R ETi i i= - + + --5 1 5 D  (11.42)

where all quantities are measured in units of depth, subscript i denotes the ith time, 
w is the water depth applied to the soil within a time step, w5 is the water content 
(in units of depth) for the 5 cm deep surface that can be measured by remote sensing, 
P is the amount of precipitation (in units of depth), ET is the amount of evapotrans-
piration (in units of depth), and ΔR is the difference between the amount of runoff 
 leaving a particular grid cell and the amount entering that grid cell (in units of depth).

Parameters θu, θL, and q need to be characterized. Also need to be characterized 
are θ0 and n. The depth d also needs to be determined, which can be done using an 
infiltration model or a kinematic wave model requiring only the value of soil mois-
ture at the soil surface (z = 0). Following Singh (1997) and Singh and Joseph (1994), 
the wetting front depth zf can be given as

 
z

K
tf

u

=
q

 (11.43)

where
K is the hydraulic conductivity (treated as parameter)
t is time

For each time step, d = zf.

Example 11.4

Using a soil tray 152 cm long, 122 cm wide, and 78 cm deep, Melone et al. (2006) 
conducted experiments on loamy soil and sandy clay loam. Beneath the bottom 
of the soil column, a 7 cm deep gravel layer was created to allow for the outflow 
of percolated water. Experiments were conducted on a uniform soil moisture con-
tent and under uniform rainfall. For sandy clay loam soil, rainfall = 2.4 cm/h for 
8 h, K = 2.1 cm/h, n = 0.485, w = accumulated rainfall, θ0 = 0.043, ET = 0, and 
no lateral runoff. The time step was as follows: Δt = 1 h. Therefore, w = 2.4, 4.8 
(= 2.4 + 2.4), 7.2, 9.6, 12, 14.4, 16.8, and 19.2 cm at t = 1, 2, 3, 4, 5, 6, 7, and 8 h, 
respectively. The value of L = 55 cm = the effective soil column depth during the 
rainfall event. After the rainfall event, w = 19.2 cm during the time of redistribu-
tion of soil moisture, assuming no deep percolation. Compute the values of the 
Lagrange multipliers for the experimental data and then compute the soil moisture 
content at different depths and compare with observed values.

Solution

First, the Lagrange multipliers are computed using Equations 11.14 and 11.16. This is 
done numerically, and parameter values are as shown in Table 11.2. Computed soil 
moisture values for all four cases are shown in Table 11.1. Also shown are the relative 
errors in computed values. Computed values of soil moisture are plotted in Figure 
11.19. Parameters were obtained by fitting soil moisture profile equations to experi-
mental data sets discussed earlier. The parameter values are given in Table 11.2.
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TABLE 11.1
Experimental Data for Wet Case

Soil Moisture Experiment 1

Depth (cm) θ (Observed) θ (Computed) Relative Error 

15 0.860 0.860 0.000

25 0.803 0.700 0.128

35 0.509 0.460 0.096

45 0.000 0.000 0.000

Source: Melone, F. et al., Hydrol. Process., 20, 439, 2006.

TABLE 11.2
Parameter Estimation for Four Sets of Data

Θu Θm ΘL λ1 λ* m Data Source 

0.860 0.543 0.000 −1.388 3.585 3/4 Experiment 1

Source: After Melone, F. et al., Hydrol. Process., 20, 439, 2006.
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FIGURE 11.19 Soil moisture profile for soil moisture experiment 1.
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The soil moisture profile computed using Equation 11.19 with m = 0.75 compared 
well with the observed profile for experimental data set 1 as shown in Figure 11.19. In 
the middle portion, the computed moisture is higher than the observed value.

Example 11.5

For a dry case soil moisture, data are given in Table 11.3. Compute the values 
of the Lagrange multipliers for the experimental data and then compute the soil 
moisture content at different depths and compare with observed values.

Solution

First, the Lagrange multipliers are computed using Equations 11.25 and 11.26. This 
is done numerically, and parameter values are as shown in Table 11.4. Computed 
soil moisture values are shown in Table 11.3. Also shown are the relative errors in 
computed values. Computed values of soil moisture are plotted in Figure 11.20. 
Parameters are obtained by fitting soil moisture profile equations to experimental 
data sets discussed earlier. The parameter values are given in Table 11.4.

Example 11.6

For a mixed case, soil moisture data are given in Table 11.5. Compute the values 
of the Lagrange multipliers for the experimental data and then compute the soil 
moisture content at different depths and compare with observed values.

Solution

First, the Lagrange multipliers are computed using Equations 11.35 and 11.36 for 
the first phase and Equations 11.37 and 11.39 for the second phase. This is done 
numerically, and parameter values are as shown in Table 11.6. Computed soil 

TABLE 11.3
Experimental Soil Moisture Data for a Dry Case

Soil Moisture Experiment 1 for Dry Case

Depth (cm) θ (Observed) θ (Computed) Relative Error (%) 

10 0.130 0.130 0.000

15 0.175 0.180 −0.029

20 0.220 0.240 −0.091

25 0.293 0.300 −0.024

35 0.650 0.480 0.262

45 0.775 0.770 0.006

TABLE 11.4
Parameter Estimation for Experimental Data for Dry Case

θL θM ΘU λ1 λ* M K Data Source 

0.775 0.374 0.130 1.584 2.050 3/4 −3 Soil experiment 1
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FIGURE 11.20 Soil moisture profile for soil experiment 1 for dry case.

TABLE 11.6
Parameter Estimation for a Mixed Case

ΘU ΘM_i Θd λ1 λ* m K Data Source 

0.351 0.364 0.417 −28.375 8.989 3/4 −3 Soil experiment 1

Θd ΘM_ii ΘL λ1 λ* m K 

0.417 0.340 0.337 104.621 34.621 3/4 −3

TABLE 11.5
Soil Moisture Experimental Data

Soil Moisture Experiment for a Mixed Case

Depth (cm) θ (Observed) θ (Computed) Relative Error 

10 0.351 0.351 0.00

20 0.417 0.417 0.00

30 0.341 0.346 −0.01

45 0.338 0.338 0.00

60 0.337 0.337 0.00
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moisture values are shown in Table 11.5. Also shown are the relative errors in 
computed values. Computed values of soil moisture are plotted in Figure 11.21. 
Parameters were obtained by fitting soil moisture profile equations to experimen-
tal data sets discussed earlier. The parameter values are given in Table 11.6.
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12 Flow Duration Curve

The flow duration curve (FDC) is employed for the prediction of distribution of 
future flows, forecasting of future recurrence frequencies, comparison of  watersheds, 
 construction of load duration curves, and determination of low flow thresholds. 
Usually, the FDC is constructed empirically for a given set of flow data and the FDC 
so constructed is found to vary from one year to the other and from one gaging sta-
tion to another within the same watershed. The objective of this chapter is to present 
the derivation of FDC using the Tsallis entropy. The entropy-based derivation per-
mits a probabilistic characterization of the FDC and hence a quantitative assessment 
of its uncertainty.

12.1 DEFINITION OF FLOW DURATION CURVE

For a gaging station, an FDC is a plot of streamflow values from high to low against 
the percent of time these values are either equaled or exceeded. The plot consid-
ers the full range of flows and is constructed over a specified period of time scaled 
between 0% and 100%. The time interval for constructing an FDC depends on 
the need, but daily average discharge values are usually used; sometimes weekly, 
monthly, or seasonally averaged values can also be used. However, averaging over 
longer time intervals obscures details of the variations in flow and the effect of vary-
ing time interval is not the same for all streams. The difference between an FDC 
based on daily discharge values and that based on monthly values can be as high 
as 35%, as noted by Foster (1934). For large streams where flow from day to day is 
almost uniform, weekly FDC may be almost the same as daily FDC, whereas for 
flashy streams with sudden floods lasting for a few hours in a day, daily and weekly 
FDCs will be greatly different.

12.2 USE OF FLOW DURATION CURVE

FDCs are constructed using the entire range of flow conditions for any given stream. 
If the FDC of a stream is based upon long-term flow, then it can be employed for 
predicting the distribution of future flows for water supply (Mitchell, 1957), hydro-
power (Hickox and Wassenauer, 1933), sediment load (Miller, 1951), and pollutant 
load (Searcy, 1959). It can also be utilized to compare watersheds and hence their 
clustering, construct load duration curves for total maximum daily loads (TMDLs) 
(U.S. EPA, 2007), forecast future recurrence frequencies, determine the low-flow 
threshold for defining droughts, and construct power duration curves.
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12.3 CONSTRUCTION OF FLOW DURATION CURVE

FDCs are generally constructed empirically. A typical semilog FDC exhibits a 
 sigmoidal shape, curving upward near the flow duration of 0 and downward at a fre-
quency near 100%, with nearly a constant slope in between, as shown in Figure 12.1. 
The overall slope of an FDC is an indication of streamflow variability at the gage, 
reflecting, in turn, the integrated effect of watershed characteristics. For practical 
applications, U.S. EPA (2007) classified the flow region into five different classes: 
0%–10% interval for high flows, 10%–40% for moist conditions, 40%–60% for mid-
range conditions, 60%–90% for dry conditions, and 90%–100% for low flows, as 
shown in Figure 12.2.
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FIGURE 12.2 Flow regime classified into five classes.
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12.4 DERIVATION OF FLOW DURATION CURVE

It is assumed that temporally averaged discharge Q is a random variable, varying 
from a minimum value Qmin to a maximum value Qmax, with a probability density 
function (PDF) denoted as f(Q). The time interval for which the discharge is averaged 
depends on the purpose of constructing an FDC but frequently it is taken as 1 day. 
The procedure for deriving the FDC entails essentially the following main steps 
(Singh et al., 2014): (1) defining the Tsallis entropy, (2) specification of constraints, 
(3) optimization of the Tsallis entropy using the method of Lagrange multipliers, 
(4) derivation of the probability distribution of discharge, (5) and determination of 
the Lagrange multipliers, (6) hypothesizing the cumulative distribution of discharge 
in terms of time, and (7) derivation of FDC. Each of these steps is now discussed.

12.4.1 dEFining tsallis Entropy

If discharge values are available as a discrete series, the Tsallis entropy (Tsallis, 
1988), denoted as H, takes on the form

 

H Q H P
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p Q p Qi i
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( ) [ ] ( ) [ ( )]= =
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=
å1

1
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 (12.1)

where
p(Qi) = pi is the probability that Q = Qi, P = {pi , i = 1, 2, ..., N} is the probability 

distribution of Q
N is the number of values that Q takes on between its maximum (Qmax) and 

 minimum (Qmin)

Equation 12.1 expresses a measure of uncertainty about p(Qi) measured by 

{[ [ ( )] ] ( )}1 11- --p Q mi
m /  or the average information content of sampled Q.

Since Q is often represented as a continuous series, the Tsallis entropy for 
 discharge Q ∈ (Qmin, Qmax) can be defined in continuous form as
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= =
-

-{ }ò -1
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where
m is the entropy index
f(Q) is the PDF of discharge

Equation 12.2 expresses a measure of uncertainty about f(Q) measured by 
{[1 − [ f(Q)]m−1]/(m − 1)} or the average information content of sampled Q. The con-
tinuous form of the Tsallis entropy will be utilized in the discussion that  follows. 
First, f(Q) must be derived, which can be accomplished by maximizing H(Q), 
 subject to specified constraints.
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12.4.2 spECiFiCation oF Constraints

In order to determine the f(Q) that is least biased toward what is not known and most 
biased toward what is known (with regard to discharge), the principle of maximum 
entropy (POME), developed by Jaynes (1957, 1982), is invoked. POME requires 
the specification of certain information on discharge, expressed in terms of what is 
called constraints and leads to the most appropriate probability distribution that has 
the maximum entropy or uncertainty.

Since f(Q) is a PDF, it must satisfy

 

C f Q dQ
Q

Q

1 1= =ò ( )

min

max

 (12.3)

For purposes of simplicity, it is assumed that all that is known about discharge is the 
mean value that can be expressed as
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Equation 12.3 is easy to use from a practical standpoint. The mean discharge is a 
relatively stable quantity and its value can be obtained directly from measurements.

12.4.3  MaxiMization oF tsallis Entropy 
and probability distribution

For maximizing the Tsallis entropy defined by Equation 12.2, the method of 
Lagrange multipliers can be employed. To that end, the Lagrangian function can be 
constructed using Equations 12.2 through 12.4 as

 

L
m

f Q f Q dQ f Q dQ Qf
m

Q

Q

=
-

-{ } - -
é

ë

ê
ê

ù

û

ú
ú

-
-

ò1
1

1 1
1

0 1( ) [ ( )] ( )

min

max

l l (( )

min

max

min

max

Q dQ Q
Q

Q

Q

Q

òò -
é

ë

ê
ê

ù

û

ú
ú 

(12.5)

Differentiating Equation 12.5 with respect to f(Q) and equating the derivative to 0, 
one obtains
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12.4.4 dEriVation oF disChargE pdF

Equation 12.6 yields the entropy-based PDF of Q as
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It is interesting to note that at Q = 0, f(Q) becomes
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For purposes of simplification, let
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With the use of Equation 12.8, the PDF given by Equation 12.6 can be expressed as
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The cumulative probability distribution function (CDF) of Q can be obtained by 
integrating Equation 12.7 from Qmin to Q as
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If Qmin = 0, Equation 12.10 reduces to
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12.4.5 MaxiMuM Entropy

The maximum Tsallis entropy or uncertainty of discharge can be obtained by substi-
tuting Equation 12.10 in Equation 12.1:
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12.4.6 dEtErMination oF thE lagrangE MultipliErs

The PDF of Q has two unknown Lagrange multipliers λ0 (or λ*) and λ1 that can be 
determined using Equations 12.3 and 12.4. Substituting Equation 12.10 in Equation 
12.3, one obtains
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Solution of Equation 12.14 can be written as
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Likewise, substitution of Equation 12.7 in Equation 12.4 yields
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Integration of Equation 12.16 results in
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Equations 12.15 and 12.17 can be cast, respectively, as
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Equations 12.18 and 12.19 are implicit in the Lagrange multipliers λ0 (or λ*) and 
λ1 and do not have an explicit closed form solution but can be solved numerically 
 without any difficulty.

Example 12.1

A set of values of mean discharge and maximum discharge for a specified site on 
the Pee Dee River are given in Table 12.1. Determine the Lagrange multipliers. 
Plot λ* versus mean discharge, and plot λ1 versus maximum discharge. Also, plot 
λ* versus λ1 for values of maximum discharge as well as for mean discharge.

Solution

The Lagrange multipliers are computed using Equations 12.18 and 12.19. The value 
of m is taken as 3. The Lagrange multiplier λ* is plotted against mean discharge in 
Figure 12.3 that shows the variation of λ* with mean discharge for different values 
of λ1 and Figure 12.4 shows the variation of λ1 with maximum discharge. It can 
be seen from the figures that the Lagrange multipliers retain the same sign. For 
positive values, λ* decreases with increasing Qmean and λ1 decreases with increas-
ing Qmax, while for negative values their behavior is opposite. Comparing the two 
figures it is seen from that λ* has a wider distribution than λ1; further, λ1 drops 
quickly under the value of 0.1. The relations between the two Lagrange multipli-
ers for different values of maximum discharge and mean discharge are shown 
in Figures 12.5 and 12.6. In both figures, λ* increases with λ1 but with different 
slopes. The slope is milder for Qmean = 10 m3/s and 100 m3/s but much faster for 
500 m3/s and 1000 m3/s. The Lagrange multiplier λ* also increases with Qmean or 
Qmax. For constant λ1, λ* is larger for higher Qmean or Qmax.

The Lagrange multipliers are computed by solving Equations 12.18 and 12.19 that 
involve Qmean and Qmax. Singh et al. (2014) computed for a number of river basins the 
Lagrange multipliers, whose histograms are plotted in Figures 12.7 and 12.8. It can 
be seen from Figure 12.8 that the value of λ1 is highly concentrated within the values 
between 0 and 0.025, whereas λ

*
 is distributed widely. The mean values for all basins 

obtained for λ1 and λ
*
 are, respectively, 0.012 and 0.175, with standard deviations of 

0.051 and 0.167.

12.4.7 hypothEsis on CuMulatiVE distribution FunCtion oF disChargE

In order to derive the FDC, it is assumed that all temporally averaged values of 
discharge Q measured at the gaging station under consideration between Qmin and 
Qmax are equally likely. In reality, this is not highly unlikely because at differ-
ent times different values of discharge do occur and each value is equally likely. 
Then, the cumulative probability distribution of discharge can be expressed as 
one minus the percent time (or the ratio of time to the period of time under con-
sideration, say 365 days for daily discharge). The probability of discharge being 
equal to or less than a given value of Q, or the cumulative probability distribution 
function of discharge (CDF), F(Q) = P (discharge ≤ a given value of Q), P = prob-
ability, can be expressed as
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TABLE 12.1
Maximum and Mean Discharges for Station 
02131000 on the Pee Dee River

Qmax (m3/s) Qmean (m3/s) Qmax (m3/s) Qmean (m3/s) 

1854 310 1024 350

979 159 1970 410

484 173 2827 402

954 214 1203 440

974 301 532 149

1435 310 957 327

1254 338 1296 432

852 233 1797 489

1930 401 835 193

1353 383 869 217

724 238 2694 385

597 178 569 205

1740 290 1316 325

1124 281 1412 466

1684 239 1449 498

894 207 1010 247

608 177 1322 518

849 230 906 303

1463 443 1047 289

815 244 824 345

1961 569 928 329

1288 300 1220 435

1092 335 634 174

1511 319 611 214

1330 316 504 114

1740 457 441 91

1593 268 2759 471

733 158 1058 201

1039 251 889 282

911 284 543 190

886 222 1039 285

1339 354 543 132

1302 412 705 227

2043 505 1474 346

993 334 487 160

2363 472 594 184

645 255
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where
t time (say in days)
τ is dimensionless time
T is the duration under consideration (say, 365 days)

It should be noted that on the left side the argument of function F in Equation 12.20 
is variable Q, whereas on the right side the variable is τ. The CDF of Q is not linear 
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FIGURE 12.3 Relation between Lagrange multiplier λ* and Qmean for different values of λ1.
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FIGURE 12.4 Relation between Lagrange multiplier λ1 and Qmax for different values of λ*.
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in terms of Q, unless Q and τ are linearly related. It may also be noted that a similar 
hypothesis has been employed in the hydrologic literature.

12.4.8 Flow duration CurVE

Equating Equations 12.20 through 12.11, Q can be explicitly written as
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0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1 0.2
λ1

λ *

0.3 0.4

Qmean=10m3/s
Qmean=50m3/s
Qmean=100m3/s
Qmean=300m3/s

FIGURE 12.6 Relation between Lagrange multipliers λ* and λ1 for different values of Qmean.

© 2016 by Taylor & Francis Group, LLC

  



313Flow Duration Curve

Likewise, equating Equations 12.20 through 12.12, Q can be written as
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Equations 12.21 and 12.22 are discharge quantile–probability relationships. The 
value of entropy index m > 0, but the question arises as to what the value of m is or 
should be. This is illustrated using an example.
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Example 12.2

Considering the flow data given in Table 12.2 for the Pee Dee River for year 2006, 
construct FDCs for m = 4/3, 2, 5/2, 3, 13/4, and 4. Determine which value of m 
best corresponds to the observed FDC?

Solution

The Lagrange multipliers are computed using Equations 12.18 and 12.19. Then, 
the FDC is determined for m = 4/3, 2, 5/2, 3, 13/4, and 4, as shown in Figure 12.9. 
It is seen from the figure that the high discharge part of the FDC is closer to the 
observations for m = 5/2, 3, and 13/4, while the low discharge part of the FDC 
is closer to the observations for m = 4. The estimated sum of squared errors for 
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FIGURE 12.9 FDC of year 2006 for different m values.

TABLE 12.2
FDC for Year 2006 Observed at Station 02131000

Flow Duration Interval (%) Flow Flow Duration Interval (%) Flow 

0 19,500 55 10,900

5 17,400 60 10,500

11 16,200 66 10,200

16 14,400 71 9,730

22 13,400 77 9,310

27 12,600 82 9,120

33 12,300 88 8,770

38 11,900 93 8,470

44 11,500 99 8,040

49 11,200 100 7,760
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the FDC corresponding to m = 4/3, 2, 5/2, 3, 13/4, and 4, respectively, is 65.57, 
48.39, 31.71, 12.52, 17.33, and 21.24 m3/s. Thus, m = 3 can be selected for this 
data set and it is plausible that this value of m may be satisfactory for other data 
sets as well.

12.5 REPARAMETERIZATION

It is possible to simplify the derived FDC using a dimensionless parameter M defined as

 

M
Q

Q
Q

M

M
=

-
=

-
l

l l

l

l
1

1 1 1
max

max
max

*

*
( )

or  (12.23)

Considering Qmin = 0, the ratio of f(0) to f(Qmax) using Equation 12.10 can be expressed 
in terms of M given by Equation 12.23 as
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Equation 12.24 defines M and shows that if M = 0, f(0) = f(Qmax) and the distribution 
of discharge would tend to be uniform. On the contrary, if M = 1, f(0) = 0, and f(Qmax) 
would tend to infinity, which means that the probability distribution of discharge 
would be highly nonuniform. Thus, M can be used as an index of the uniformity of 
the probability distribution of discharge.

When discharge tends to reach Qmax, F(Qmax) = 1 and Equation 12.21 with Qmin 
considered as 0 yields
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Dividing Equation 12.20 by Qmax, one obtains
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Note from Equation 12.23 that
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When Equation 12.27 is substituted in Equation 12.26, the result is given as follows:
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Substituting Q = 0, at F(Q) = 0 Equation 12.28 reduces to
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Rearranging Equation 12.29, one obtains
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Inserting Equation 12.30, Equation 12.28 can be simplified as
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In Equation 12.31, the Lagrange multipliers are replaced with M and hence the FDC 
can be determined with only one parameter, M.

Example 12.3

Compute the FDC for data in Table 12.1. Also, compute the 95% confidence intervals.

Solution

First, with m = 3, Lagrange multipliers are solved for from Equations 12.18 
and 12.19, which give λ1 = −0.50, and λ* = 0.585. Thus, M = 0.99 is obtained 
using Equation 12.23. Then, flow discharge is calculated using Equation 12.31, 
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as shown in Figure 12.10. Referring to the probability of a parameter being in 
an interval, the 95% confidence intervals of Q from [Qlow, Qup] are computed 
from repeated simulations. Then the confidence interval is obtained from the 
cumulative distribution of parameters conditioned on the observed data, so that 
P(Qlow ≤ Q ≤ Qup) = 0.95. The Tsallis entropy–based flow duration fits the obser-
vations closely but has about 9% error in estimation as compared with maximum 
observed values.

12.6 MEAN FLOW AND RATIO OF MEAN TO MAXIMUM FLOW

The mean flow can be determined by taking the first moment of Equation 12.10 as
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Now the ratio between the mean flow to the maximum flow can be expressed as a 
function of parameter M as
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FIGURE 12.10 FDCs computed for station 02131000.
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Equation 12.33 can be cast as

 

Q

Q
M

max

( )= Y  (12.34)

In Equation 12.34, the right-hand side depends only on M. In order to establish this 
relationship, the M value can be computed from Equation 12.23 by solving for the 
Lagrange multipliers with the use of Equations 12.18 and 12.19. Singh et al. (2014) 
computed the M values from annual mean and maximum discharge for recent 5 years 
collected from 13 gaging stations of Pee Dee River and plotted Equation 12.34, as 
shown in Figure 12.11. The figure shows that M is linearly related to the ratio between 
the mean flow and maximum flows, which using regression can be written as
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Q

Q
= -2 246 4 891. .

max

 (12.35)

which has a coefficient of determination of 0.9972.
To determine the FDC for a given year, the first step is to compute the M value 

from the given values of mean and maximum discharges. It is noted that Equation 
12.30 is derived by assuming Qmin = 0, however, Qmin may not be small enough to be 
neglected. Thus, the modified discharge using Q′ = Q − Qmin is preferred to compute M. 
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FIGURE 12.11 Relationship between M and the ratio of mean to maximum discharge.
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Then, the M value is computed using Equation 12.30 for each year of record and then 
the mean, standard deviation, and coefficient of variance of the computed values 
are calculated. Singh et al. (2014) computed the M values from Equation 12.30 and 
found it to have different ranges for each station and a histogram of M is plotted 
for each station, as shown in Figure 12.12 for a sample station; the histogram var-
ies from one station to another but seems to fit the normal distribution in all cases. 
In general, M varies from 0.2 to 1.6 and its standard deviation is around 0.2–0.4. 
Combining the values of five stations, a histogram of the M values is plotted, as 
shown in Figure 12.13. Again, parameter M seems to follow a bell-shaped distribu-
tion, with a mean value of 0.798 and a standard deviation of 0.493. The average 
values of M are also plotted against the drainage area, but the relationship is weak. 
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Example 12.4

Consider the mean and maximum values of discharge for the gaging station for 
different years as given in Table 12.3. Using Equation 12.35, compute the M value. 
Then, for given mean value compute the maximum discharge and compare it with 
the observed discharge.

Solution

With given mean and maximum values, M is computed from Equation 12.35 and 
is given in Table 12.3. Then Q′max is computed from Qmean with the M value and 
tabulated in Table 12.3. The relative error of estimated maximum value from the 
observed values is less than 0.009.

Example 12.5

Considering an average value of M as 0.8, compute the FDC for data in Table 12.1 
and compare the curve with the observed curve. How well the two FDCs match?

Solution

With M estimated as 0.8, the FDC is computed from Equation 12.31 and plotted 
in Figure 12.14. It is seen from the figure that using M = 0.8, the estimated flow is 

TABLE 12.3
Mean and Maximum Values for Different Years

Year Qmax (m3/s) Qmin (m3/s) Qmean (m3/s) M Q’max (m3/s) 

1991 35,700 1460 8,733 1.036 35,315

1992 46,700 1860 18,297 0.366 47,596

1993 32,000 1680 10,692 0.611 31,983

1994 37,000 1300 10,220 0.880 36,593

1995 29,100 1380 12,198 0.257 30,002

1996 32,800 1660 11,642 0.520 32,987

1997 43,100 1180 15,363 0.513 43,367

1998 22,400 743 6,155 0.887 22,151

1999 21,600 1100 7,548 0.544 21,685

2000 17,800 767 4,033 1.129 17,659

2001 15,600 664 3,232 1.231 15,572

2002 97,500 1200 16,646 1.429 99,685

2003 37,400 1260 7,120 1.321 37,655

2004 31,400 854 9,975 0.685 31,255

2005 19,200 977 6,721 0.541 19,279

2006 36,700 653 10,087 0.887 36,293

2007 19,200 1030 4,678 1.042 18,995

2008 24,900 1390 8,007 0.667 24,807

2009 52,100 1350 12,212 1.089 51,607

2010 17,200 1160 5,658 0.634 17,167

2011 21,000 1630 6,513 0.719 20,869
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60– 114 m3/s lower than the observed value for low duration, where t/T is less than 
0.3, while for higher duration the estimated values fit the observed values well. 
Thus, the overall r2 turns out to be 0.877.

12.7  PREDICTION OF FLOW DURATION CURVE 
FOR UNGAGED SITES

It may be interesting to investigate the behavior of Qmin, Qmean, and Qmax in relation to 
drainage area. The values of mean, minimum, and maximum flows are obtained for 
each year of record. The discharge values for 13 stations show significant differences; 
for example, the mean value varies from 6 cfs [0.17 m3/s] to greater than 104 cfs [283 
m3/s]. For a sample station 02131000, histograms of Qmin, Qmean, and Qmax are plotted 
in Figures 12.15 through 12.17. Singh et al. (2014) plotted the average values of mini-
mum, mean, and peak flows against drainage area, as shown in Figures 12.18 through 
12.20 that show on the log–log plot a power relationship of Qmin, Qmean, and Qmax val-
ues with drainage area, and the power law fitted well with a coefficient of determina-
tion around 0.9. Ogden and Dawdy (2003) and Gupta et al. (2010) showed a power law 
relating peak discharge to drainage area. These power relationships are expressed as

 Q A rmin
.. , .= =0 004 0 88780 9136 2  (12.36)

 Q A rmean = =0 0218 0 94080 8785 2. , ..  (12.37)

 Q A rmax
.. , .= =0 134 0 8850 8187 2  (12.38)
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FIGURE 12.14 Flow duration estimated using M = 0.8.
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FIGURE 12.18 Relation between Qmin and drainage area (y = Qmin and x = drainage area).
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where area A is km2 and discharge is in m3/s. These relationships can be employed 
for constructing FDCs for ungagged sites, that is, sites without any information on 
historical discharge. 

Example 12.6

Compute the FDC for gaging station 02131000 with a drainage area of 2790 miles2 
(7726 km2). Assume there are no discharge records collected at this station. 

Solution

First, Qmin, Qmean, and Qmax are computed from regression Equations 12.36 through 
12.38. Then, M is computed using Equation 12.29, which equals 0.243. Thus, the 
FDC is predicted and is compared with observations as shown in Figure 12.21. 
It can be seen from the figure that the predicted FDC is in close agreement with 
the observed FDC and the RMS value is only 3.39 m3/s.

12.8 FORECASTING OF FLOW DURATION CURVE

The FDC can be forecasted ahead of time for a given station, once the entropy 
parameter has been determined. To forecast the FDC, Qmin, Qmean, and Qmax need to 
be forecasted. Since the future values of peak, minimum, and mean discharge are 
subject to uncertainty, they can only be predicted for given probability values. For 
any gaging station, the observed data can be used as past information, from which 
the distributions of Qmin, Qmean, and Qmax as well as M are obtained. The data from 
2007 to 2011 are used for forecasting. To that end, Qmin, Qmean, and Qmax of 1-, 2-, 10-, 
and 50-year recurrence intervals are computed from the given information.

Example 12.7

Compute the values of Qmin, Qmean, and Qmax for USGS station 02131000 for 1-, 2-, 
10-, and 50-year recurrence intervals. Then, forecast the FDCs.
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FIGURE 12.21 Prediction of FDC for gaging station 02131000 for year 2009.
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Solution

The Qmax values of 1-, 2-, 10-, and 50-year recurrence intervals are 441.7, 1039.2, 
1915.9, and 2732.2 m3/s, respectively. Then, the M values are computed and FDCs 
are constructed for different recurrence intervals. The predicted FDCs of 1-, 2-, 
and 10-year recurrence intervals are shown in Figure 12.22 with observations of 
2011. It can be seen from the figure that the observed FDC for year 2011 is in close 
agreement with the predicted 1-year recurrence interval FDC. 

12.9 VARIATION OF ENTROPY WITH TIME SCALE

Singh et al. (2014) computed entropy using Equation 12.2 considering the entire flow 
series for 13 gaging stations. The variation of entropy with the computation interval 
is shown for a sample station in Figure 12.23. It can be seen from the figure that the 
entropy increases with increasing time interval. However, the rate of increase is high 
during the first phase for about 15 days, but as interval increases the rate significantly 
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FIGURE 12.22 Prediction of FDC for gaging station 02131000 for year 2011.
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decreases. After about 15 days, the rate of entropy increase declines significantly and 
then entropy almost reaches a constant value. This suggests that at higher intervals, 
the flow regime becomes more complex, reflecting the reduced influence of anthro-
pogenic changes on the flow regime. The opposite is true for smaller intervals. The 
entropy of the first phase can be fitted by a power law. The exponent for the first part 
is 0.63 with a sample exponent average of 0.24. The entropy of second phase is fitted 
by a linear equation, where the slope is less than 0.0005. However, the change point 
between two phases may be different for different years, but Singh et al. (2014) found 
it to be occurring around the 15th day. Entropy of flow varies with the time interval 
of flow. In general, entropy increases with increasing time interval, eventually more 
or less a constant value. 
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13 Eco-Index

Freshwater resources are becoming increasingly limited as the population  multiplies. 
Over half of the world’s accessible runoff presently is appropriate for human use, and 
that fraction is projected to grow to 70% by 2025. A recent projection of water demand 
through 2025 indicated that ensuring sustainable water supply would become increas-
ingly challenging for large areas of the globe (Vorosmarty et al., 2000). Four hundred 
and fifty million people in thirty-one countries already face serious shortages of water. 
These shortages occur almost exclusively in developing countries, some of which are ill-
equipped to address water shortages. By the year 2025, one-third of the world’s popula-
tion is expected to face severe to chronic water shortages. Allocating water for diverse 
and often competing traditional uses, such as industry, agriculture, urban, energy, 
waste disposal, and recreation, is now even more complex due to society’s expectation 
that for their health and integrity ecosystems receive adequate attention and accommo-
dation. Freshwater and freshwater-dependent ecosystems provide a range of services 
for humans, including fish, flood protection, wildlife, etc. To maintain these services, 
water needs to be allocated to ecosystems, as it is allocated to other users. In the face 
of limited freshwater supply, there are multiple competing and conflicting demands.

With increasing concern for eco-needs, the scientific field of “eco-flows” has 
prospered in recent years with the result that there are more than 200 methods for 
their computation. These methods can be grouped into four categories: hydrological 
rules, hydraulic rating methods, habitat simulation methods, and holistic methodolo-
gies (Naiman et al., 2002; Dyson et al., 2003; Postel and Richter, 2003; Tharme, 
2003). Past studies include those based on the percentages of natural mean or median 
annual flow, percentages of total divertible annual flow allocated to wet and dry sea-
sons, and eco-flow prescriptions based on a percentage of total annual base flow plus 
a high-flow component derived as a percentage of mean annual runoff (Smakhtin 
et  al., 2004). However, such guides have no documented empirical basis and the 
temptation to adopt them may represent a risk to the future integrity and biodiversity 
of riverine ecosystems (Arthington, 1998). It is now recognized in the literature that 
the structure and function of a riverine ecosystem and many adaptations of its biota 
are dictated by the patterns of temporal variation in river flow or the “natural flow-
regime paradigm reflected by Indicators of Hydrologic Alteration” (Richter et al., 
1996; Poff et al., 1997; Stromberg, 1997; Lytle and Poff, 2004).

The objective of this chapter is to outline a Tsallis entropy-based  hydrological 
alteration assessment of biologically relevant flow regimes using gauged flow data. 
The maximum entropy ordered weighted averaging (OWA) method is used to aggre-
gate noncommensurable biologically relevant flow regimes to fit an eco-index such 
that the harnessed level of the ecosystem is reflected. The methodology can serve 
as a guide for eco-managers when allocating water resources among potential users 
and where to concentrate their attention, while mitigating the man-induced effects 
on natural flow regimes to have a sustainable development (Kim and Singh, 2014).
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13.1 INDICATORS OF HYDROLOGICAL ALTERATION

Indicators of hydrological Alteration (IHA) aim to protect a range of flows in a 
river. Richter et al. (1996) proposed 32 biologically relevant parameters, as shown 
in Table 13.1, which jointly reflect different aspects of flow variability (magnitude, 
frequency, duration, and timing of flows). These parameters are estimated from a 
natural daily flow time series at a site of interest (often times at a gaging site). The 
parameters consider intra- and inter-annual variation of hydrological regime, which 
is necessary to sustain the ecosystem. In other words, a range of flow regime is con-
sidered to define the state of the ecosystem such that hydrological requirements for 
all aquatic species are met. The ecosystem alteration is then assessed by comparing 
with the natural system that is relatively unharnessed (Richter et al., 1996).

TABLE 13.1
Hydrological Parameters Used in IHA

Group 
Regime 

Characteristics 32 Parameters
Number of 
Parameters 

Group 1: Magnitude of monthly 
water conditions

Magnitude Mean value for each calendar 
month

12

Timing

Group 2: Magnitude and 
duration of annual extreme 
water conditions

Magnitude Annual minimum/maximum of 
1-day means

10

Duration Annual minimum/maximum of 
3-day means

Annual minimum/maximum of 
7-day means

Annual minimum/maximum of 
30-day means

Annual minimum/maximum of 
90-day means

Group 3: Timing of annual 
extreme water conditions

Timing Julian date of each annual 1-day 
minimum and maximum

2

Group 4: Frequency and 
duration of high and low pulses

Frequency Number of high and low pulses 
each year

2 + 2

Duration Mean duration of high and low 
pulses

Group 5: Rate/frequency of 
consecutive water-condition 
changes

Rate of change Means of all positive differences 
between daily values

1 + 1 + 1 + 1

Means of all negative differences 
between daily values

Number of rises

Number of falls

Source: Richter, B.D. et al., Conserv. Biol., 10, 1163, 1996.
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Richter et al. (1996), Poff et al. (1997), Lytle and Poff (2004), among others, have 
emphasized why these 32 biologically relevant parameters are required to represent 
an ecosystem. However, there is a need for a tool that allows the transmission of 
technical information in a summarized format. Such package may preserve the orig-
inal meaning of data by using only the variables that best reflect the desired objec-
tive. Information on the 32 biologically relevant parameters and their values may 
not show the dependence amongst parameters and the importance of each of these 
parameters. Somehow it appears difficult to visualize the 32 parameters spatially. In 
addition, the increasing tendency of diversifying stakeholders (public participation) 
in water-related issues requires the results of technical analyses to be presented in 
a way that can be understood and shared by all stakeholders, including those with 
little technical background. Therefore, narrowing the result to a single value which 
characterizes the ecosystem may be more desirable.

13.2 PROBABILITY DISTRIBUTIONS OF IHA PARAMETERS

Each of the 32 biologically relevant hydrological parameters, proposed by Richter 
et al. (1996), can be considered as a random variable. Then, for each variable the 
least-biased probability distribution can be obtained by maximizing entropy (Singh, 
1998). Tsallis (1988) proposed a formula for entropy computation, now called as the 
Tsallis entropy Sm, which can be expressed as

 

S
m

p pm i i
m

i

n

=
-

-( )-

=
å1

1
1 1

1

 (13.1)

where
m is the Tsallis entropy index or parameter
Sm is the Tsallis entropy
p1, p2,..., pn are the values of probabilities corresponding to the specific values xi, 

i = 1, 2,..., n, of the hydrological parameter X
n is the number of values

The Tsallis entropy has been widely applied in water resources studies (Tsallis and 
Brigatti, 2004; Papalexiou and Koutsoyiannis, 2012). In this chapter we use a dis-
crete probability distribution P = {p1, p2,..., pn} for a parameter X:{xi, i = 1, 2,..., n} 
and a value of m = 2.

13.3 COMPUTATION OF NONSATISFACTION ECO-LEVEL

The nonsatisfaction level (NSL) for a “j”th parameter can be defined in absolute dif-
ference terms as

 
NSL S S jj pre post j

= - =( ) , , ,...,1 2 32  (13.2)
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The NSL can also be defined in relative difference terms as

 
NSL

S S

S
jj

pre post

pre

=
-

=, , , ,1 2 32…  (13.3)

where Spre and Spost are the Tsallis entropies for parameter “j” for pre- and postchange 
conditions, respectively. The change may be represented by a dam or levee or even 
a land use change such as urbanization. Equation 13.2 or 13.3 relates the lack of 
information about the ecosystem to the level of nonsatisfaction. In the examples dis-
cussed in this chapter, we will be using the absolute terms of NSL (Equation 13.2). 
The satisfaction level can be seen as how much the system is unharnessed. The NSL 
values are computed for all IHA parameters separately.

13.4 COMPUTATION OF ECO-INDEX

Eco-index can be computed using the steps shown in Figure 13.1. The values of the 
nonsatisfaction level of biological parameters are aggregated based on Yager’s (1999) 
finding such that the final aggregation maximizes the information associated with 

Evaluate NSL

Determine maximum entropy Determine maximum entropy

Determine Lagrange multipliersDetermine Lagrange multipliers

Determine the constraints

Pre eco alteration period Post eco alteration period

Determine the constraints

Apply POME and maximize
entropy

Apply POME and maximize
entropy

FIGURE 13.1 Evaluation of NSL.
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each NSL. The OWA operator introduced by Yager (1999) is a general type of opera-
tor that provides flexibility in the aggregation process such that the aggregated value 
is bounded between minimum and maximum values of input parameters. The OWA 
operator is defined as

 

F a a a w bn j j

j

n

( , ,..., )1 2

1

=
=

å  (13.4)

where
the computed value of NSL for each of the 32 parameters is the argument (ai)
bj is the jth largest of ai

wj are a collection of weights such that wj ∈ [0, 1] wj
j

n
=

=å 1
1

Equation 13.4 can also be written as

 

Eco-index = = =
=

åF a a F NSL NSL NSL w bj j

j

( ,..., ) ( , ,..., )1 32 1 2 32

1

32

 (13.5)

The methodology used for obtaining the OWA weighting vector is based on Lamata 
(2004). This approach, which only requires the specification of just the Orness 
value (1-Andness), generates a class of OWA weights that are called Maximum 
Entropy Operator Weighted Averaging (ME-OWA) weights. The determination of 
these weights, wl,…, w32, from a degree of optimism Orness given by the decision 
maker requires the solution of an optimization problem formulated in the follow-
ing. The objective function used for optimization is one of trying to maximize the 
dispersion or entropy of weights, which calculates the weights to be the ones that 
use as much information as possible about the values of NSL in the aggregation. 
It is assumed here that weights are considered as values of probability having the 
probability distribution W = {wi, i = 1, 2,..., n}. Then, the Tsallis entropy can be 
maximized as

maximize:
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 (13.6)

subject to the constraint defined as
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and

 

wi

i

n

=
=

å 1
1

 (13.8)

Here
n = 32
wi ∈ [0, 1]

O’Hagan (1988) suggested this approach to obtain the OWA operators with maxi-
mal entropy of the OWA weights for a given level of Orness, which he expressed as 
Equations 13.6 and 13.7 rewritten as
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The objective is to determine the values of wi by maximizing the Tsallis entropy. 
Applying the method of Lagrange multipliers, the Lagrangian function can be 
expressed as
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where λ0 and λ1 are the Lagrange multipliers. Differentiating Equation 13.10 with 
respect to wi and equating the derivative to zero yields
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Equation 13.11 yields the distribution of weights:
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The Lagrange multipliers can be determined by substituting Equation 13.12 in 
Equations 13.8 and 13.9, respectively, as
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and

 

1
1

1
1

1

1 1

1
n

n i
m

m

n i

n

m

i

n

-
- - + -

-
é
ëê

ù
ûú

ì
í
î

ü
ý
þ

=
-

=
å( ) *

( )
/( )

l l a  (13.14)

Equations 13.13 and 13.14 cannot be solved in closed form for an arbitrary value of 
m. However, for m = 2, they can be solved explicitly. Then, Equation 13.13 becomes
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and Equation 13.14 becomes
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Equation 13.16 can be simplified as
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Equations 13.16 and 13.17 can be solved for λ0 and λ1. To simplify algebra, Equation 
13.15 is recast as
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and Equation 13.17 as
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Equations 13.18 and 13.19 yield
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or
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The value of α is to be specified, as expressed by Equation 13.9. To calculate the 
OWA operator using the method of Fullér and Majlender (2001), we set the optimum 
α = 0.60 for illustrative purposes and this value is considered to calculate the OWA 
operator. Then, we get the Lagrange multipliers as

 
l* = 217

7688
 (13.23)

 
l1

279
3844

=  (13.24)

The implication of using the Orness value of 0.60 for analysis is the assumption that 
the impact of NSL of all the IHA parameters is considered in the index development 
and to avoid assigning equal weights since some of the parameters may have more 
influence on defining the underlying ecosystem.

Example 13.1

Obtain data for a river and then summarize hydrological parameters used in IHA 
for the river.

Solution

We choose a region covering three subcatchments in the Texas Gulf watershed 
(Figure 13.2): the Trinity River basin (USGS Hydrologic Unit Code HUC 1203), 
the Neches river basin (HUC 1202) and the Sabine River basin (HUC 1201). For 
the past two decades, water has become a critical resource in Texas. Along with 
ground water, surface water is the main source of water in the state. We find it rel-
evant to address surface water alteration in two of the three data bases, Sabine and 
Trinity basin, which have two major reservoirs. Although the Sabine River basin is 
relatively narrow, it sustains the Toledo Bend reservoir which is the United states’ 
fifth largest in surface area, with water normally covering an area of about 200,000 
acres and having a controlled storage capacity of 4,477,000 acre ft. The Trinity 
basin sustains the Livingstone reservoir. With 55 ft average depth, the Livingston 
reservoir has a normal capacity of 1,741,867 acre ft and covers 83,277 acres at its 
normal pool elevation of 131 ft above mean sea level. The lake drains an area of 
16,616 square miles and is reported as the largest lake constructed for water sup-
ply purposes located entirely within the Texas territory. The targeted features in 
the watershed are represented in Figure 13.2. The daily stream flow series at each 
of the two gauges are employed in the eco-index analysis as shown in Table 13.2.
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The 33 biologically relevant parameters, proposed by Richter et al. (1996), are shown 
in Table 13.3. These data can be obtained using the IHA software. In the IHA soft-
ware, parameters can be calculated using parametric (mean/standard deviation) or 
nonparametric (percentile) statistics. For most situations, nonparametric statistics 
constitute a better choice because of the skewed nature of many hydrological datasets 
(TNC, 2009). Only 12 parameters of monthly inflow are obtained from parametric 
statistics because the mean is a better representation of the  hydrological character-
istics than is the median. Annual minimum 1-day mean values at the Sabine and 
Trinity gauge stations are shown in Table 13.4.

Dam

Livingston
Reservoir on
Trinity River

Stream gauge
Lake
River 0 50 100 km

30°N

32°N

34°N
92°W94°W

Toledo Bend
Reservoir on
Sabine River

96°W98°W

FIGURE 13.2 Study area: the combined Trinity, Neches, and Sabine River basins. The 
locations of water bodies, stream gauges and dams are represented. The flow series at the 
stream gauges are employed in the eco-Index analysis.

TABLE 13.2
Stream Gauges Characteristics in the Trinity and Sabin River Basins

Name 
Primary 
Outflow 

Administrative 
Region 

Predam 
Period 

Postdam 
Period 

Stream Gauge 

ID Latitude Longitude

Toledo 
Bend

Sabine 
River

Texas/
Louisiana

1930–1969 
(40 years)

1970–2012 
(43 years)

USGS 
0806500

30.43 −94.85

Livingston Trinity 
River

Texas 1930–1969 
(40 years)

1970–2012 
(43 years)

USGS 
08028500

30.75 −93.61
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Example 13.2

Using the Tsallis entropy, derive and compute the PDFs of four IHA parameters 
(13–16) using the data in Example 13.1 and plot them.

Solution

The selected parameters 13–16 are annual minimum 1-, 3-, 7-, and 30-day means. 
As shown in Tables 13.4 through 13.7, the inflow is improved by the dams. For 
analyzing the data obtained using the IHA software, histograms are constructed to 
determine the probability density function (PDF) which best represents the hydro-
logical characteristics using a goodness fit test: the Kolmogorov–Sminrov (K–S) test 
and results are shown in Tables 13.8 through 13.11 as well as the fitting graphs that 
are presented in Figure 13.3a through c.

TABLE 13.3
Summary of IHA Parameters
IHA Parameter Group Hydrological Parameters 

1: Magnitude of monthly water conditions Mean or median value for each calendar month
Subtotal: 12 parameters (No. 1–12)

2: Magnitude and duration of annual 
extreme water conditions

Annual minima, 1-day mean
Annual minima, 3-day mean
Annual minima, 7-day mean
Annual minima, 30-day mean
Annual minima, 90-day mean
Annual maxima, 1-day mean
Annual maxima, 3-day mean
Annual maxima, 7-day mean
Annual maxima, 30-day mean
Annual maxima, 90-day mean
Number of zero-flow days
Base flow index: 7-day minimum flow/mean flow for year

Subtotal: 12 parameters (No. 13–24)
3: Timing of annual extreme water 
conditions

Julian date of each annual 1-day minimum
Julian date of each annual 1-day maximum

Subtotal: 2 parameters (No. 25–26)
4: Frequency and duration of high and 
low pulses

Number of low pulses within each water year
Mean or median duration of low pulses (days)
Number of high pulses within each water year
Mean or median duration of high pulses (days)

Subtotal: 4 parameters (No. 27–30)
5: Rate and frequency of water-condition 
changes

Rise rates: Mean or median of all positive differences 
between consecutive daily values

Fall rates: Mean or median of all negative differences 
between consecutive daily values

Number of hydrologic reversals
Subtotal: 3 parameters (No. 31–33)

Source: TNC (The Nature Conservancy), User’s manual for the Indicators of Hydrologic Alteration 
(IHA) Software, Ver 7.1, 2009.
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TABLE 13.4
Annual Minimum 1-Day Means (X) at the Toledo and Livingston Gauge Stations

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam 

Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) 

1930 9 1950 24 1970 11 1991 34 1930 7 1950 21 1970 10 1991 34

1931 7 1951 7 1971 9 1992 16 1931 4 1951 11 1971 9 1992 20

1932 8 1952 7 1972 11 1993 15 1932 15 1952 5 1972 8 1993 18

1933 20 1953 12 1973 22 1994 21 1933 11 1953 7 1973 16 1994 38

1934 8 1954 6 1974 15 1995 21 1934 5 1954 5 1974 33 1995 26

1935 17 1955 11 1975 15 1996 17 1935 21 1955 7 1975 22 1996 19

1936 8 1956 5 1976 12 1997 19 1936 8 1956 3 1976 28 1997 20

1937 12 1957 14 1977 10 1998 19 1937 7 1957 9 1977 16 1998 30

1938 10 1958 20 1978 9 1999 16 1938 10 1958 17 1978 13 1999 21

1939 6 1959 13 1979 12 2000 11 1939 6 1959 14 1979 23 2000 29

1940 15 1960 11 1980 13 2001 14 1940 11 1960 14 1980 15 2001 34

1941 29 1961 25 1981 14 2002 22 1941 31 1961 19 1981 16 2002 25

1942 22 1962 12 1982 15 2003 17 1942 21 1962 18 1982 17 2003 26

1943 10 1963 6 1983 18 2004 19 1943 11 1963 10 1983 24 2004 31

1944 13 1964 6 1984 16 2005 14 1944 13 1964 10 1984 13 2005 18

1945 23 1965 6 1985 17 2006 14 1945 22 1965 17 1985 21 2006 20

1946 28 1966 4 1986 22 2007 11 1946 24 1966 20 1986 37 2007 28

1947 11 1967 5 1987 23 2008 13 1947 20 1967 11 1987 12 2008 21

1948 9 1968 15 1988 17 2009 14 1948 13 1968 14 1988 16 2009 18

1949 21 1969 6 1989 19 2010 13 1949 11 1969 32 1989 24 2010 23

1990 22 2011 15 1990 28 2011 27

2012 13 2012 27

©
 2

0
1

6
 b

y T
aylo

r &
 F

ra
n

cis G
ro

u
p

, L
L

C

  



340
In

tro
d

u
ctio

n
 to

 Tsallis En
tro

p
y Th

eo
ry in

 W
ater En

gin
eerin

g

TABLE 13.5
Annual Minimum 3-Day Means (X) at the Toledo and Livingston Gauge Stations

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam 

Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) 

1930 9 1950 25 1970 12 1991 58 1930 7 1950 21 1970 10 1991 35

1931 7 1951 8 1971 9 1992 22 1931 4 1951 11 1971 9 1992 21

1932 8 1952 7 1972 13 1993 19 1932 15 1952 5 1972 8 1993 18

1933 21 1953 12 1973 22 1994 24 1933 11 1953 7 1973 19 1994 38

1934 8 1954 6 1974 15 1995 23 1934 5 1954 5 1974 35 1995 27

1935 18 1955 11 1975 15 1996 20 1935 24 1955 7 1975 22 1996 20

1936 8 1956 5 1976 13 1997 20 1936 8 1956 3 1976 30 1997 20

1937 13 1957 15 1977 10 1998 21 1937 7 1957 10 1977 16 1998 30

1938 10 1958 21 1978 9 1999 21 1938 11 1958 18 1978 15 1999 21

1939 6 1959 13 1979 13 2000 15 1939 6 1959 14 1979 24 2000 29

1940 15 1960 11 1980 15 2001 20 1940 11 1960 14 1980 15 2001 38

1941 33 1961 25 1981 15 2002 25 1941 33 1961 21 1981 17 2002 26

1942 22 1962 12 1982 20 2003 21 1942 23 1962 19 1982 17 2003 26

1943 11 1963 6 1983 18 2004 23 1943 11 1963 10 1983 25 2004 32

1944 13 1964 7 1984 19 2005 18 1944 13 1964 10 1984 14 2005 21

1945 24 1965 7 1985 19 2006 19 1945 22 1965 17 1985 21 2006 21

1946 28 1966 4 1986 23 2007 11 1946 25 1966 20 1986 38 2007 28

1947 12 1967 5 1987 25 2008 13 1947 21 1967 12 1987 12 2008 21

1948 9 1968 15 1988 24 2009 16 1948 13 1968 21 1988 17 2009 20

1949 22 1969 6 1989 23 2010 15 1949 12 1969 33 1989 24 2010 23

1990 24 2011 19 1990 32 2011 28

2012 14 2012 27
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TABLE 13.6
Annual Minimum 7-Day Mean at the Toledo and Livingston Gauge Stations

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam 

Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) 

1930 10 1950 27 1970 14 1991 80 1930 8 1950 22 1970 10 1991 36

1931 8 1951 8 1971 9 1992 33 1931 5 1951 11 1971 9 1992 21

1932 8 1952 7 1972 16 1993 26 1932 15 1952 6 1972 8 1993 19

1933 23 1953 13 1973 27 1994 34 1933 13 1953 7 1973 28 1994 38

1934 8 1954 6 1974 15 1995 27 1934 6 1954 5 1974 36 1995 27

1935 20 1955 12 1975 15 1996 21 1935 29 1955 7 1975 23 1996 20

1936 8 1956 5 1976 13 1997 25 1936 9 1956 3 1976 30 1997 21

1937 14 1957 16 1977 12 1998 23 1937 8 1957 10 1977 17 1998 30

1938 10 1958 22 1978 9 1999 24 1938 11 1958 19 1978 15 1999 22

1939 6 1959 15 1979 13 2000 18 1939 6 1959 14 1979 28 2000 29

1940 15 1960 13 1980 18 2001 21 1940 11 1960 15 1980 15 2001 42

1941 36 1961 26 1981 18 2002 28 1941 36 1961 22 1981 20 2002 27

1942 22 1962 13 1982 21 2003 23 1942 26 1962 23 1982 19 2003 27

1943 12 1963 6 1983 20 2004 26 1943 11 1963 10 1983 26 2004 39

1944 13 1964 7 1984 21 2005 19 1944 14 1964 10 1984 16 2005 22

1945 25 1965 7 1985 26 2006 21 1945 23 1965 18 1985 22 2006 22

1946 29 1966 4 1986 26 2007 12 1946 26 1966 21 1986 42 2007 29

1947 12 1967 5 1987 30 2008 16 1947 22 1967 12 1987 12 2008 24

1948 9 1968 16 1988 28 2009 18 1948 13 1968 26 1988 20 2009 21

1949 24 1969 7 1989 30 2010 17 1949 12 1969 36 1989 26 2010 23

1990 41 2011 20 1990 33 2011 28

2012 16 2012 28
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TABLE 13.7
Annual Minimum 30-Day Means (X) at the Toledo and Livingston Gauge Stations

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Post-Dam 

Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) Year X (m3/s) 

1930 14 1950 35 1970 19 1991 113 1930 10 1950 27 1970 10 1991 62

1931 9 1951 15 1971 14 1992 44 1931 9 1951 14 1971 10 1992 24

1932 9 1952 8 1972 32 1993 36 1932 16 1952 7 1972 9 1993 39

1933 27 1953 16 1973 100 1994 112 1933 17 1953 8 1973 81 1994 65

1934 10 1954 7 1974 28 1995 38 1934 7 1954 6 1974 38 1995 29

1935 34 1955 13 1975 23 1996 26 1935 39 1955 8 1975 28 1996 27

1936 12 1956 5 1976 25 1997 66 1936 10 1956 4 1976 34 1997 33

1937 17 1957 20 1977 31 1998 41 1937 11 1957 13 1977 18 1998 57

1938 12 1958 56 1978 16 1999 25 1938 13 1958 30 1978 15 1999 22

1939 8 1959 21 1979 41 2000 28 1939 7 1959 22 1979 37 2000 30

1940 20 1960 29 1980 28 2001 24 1940 12 1960 37 1980 18 2001 45

1941 68 1961 44 1981 26 2002 56 1941 72 1961 34 1981 22 2002 39

1942 33 1962 23 1982 28 2003 34 1942 68 1962 61 1982 20 2003 39

1943 14 1963 7 1983 33 2004 34 1943 24 1963 11 1983 28 2004 94

1944 19 1964 9 1984 37 2005 23 1944 21 1964 16 1984 24 2005 25

1945 35 1965 12 1985 45 2006 26 1945 74 1965 19 1985 25 2006 30

1946 45 1966 13 1986 58 2007 18 1946 27 1966 22 1986 54 2007 46

1947 17 1967 5 1987 37 2008 22 1947 26 1967 15 1987 18 2008 29

1948 10 1968 22 1988 31 2009 27 1948 16 1968 37 1988 24 2009 31

1949 32 1969 19 1989 36 2010 21 1949 24 1969 40 1989 27 2010 26

1990 44 2011 21 1990 40 2011 29

2012 19 2012 29
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The entropy theory allows obtaining the least-biased probability distribution by 
maximizing entropy subject to appropriate constraints. Using the Tsallis entropy, 
Koutsoyiannis (2005a,b) proposed a four-parameter distribution that fits a wide 
range of distributions (power or exponential). Assuming x as a random value of dis-
charge (m3/s), this distribution can be expressed as

 f x k a a x xc k c( ) [ ( )] /= + + - - -1 0 1
1 1 11 2  (13.25)

where
a1 is the scale parameter
c1, c2, and k are the shape parameters

TABLE 13.8
Parameter Estimates for the Tsallis Entropy-Based PDF 
of 1-Day Minimum Discharge (m3/s)

Parameters 

Sabine River Trinity River 

Predam Postdam Predam Postdam

a0 5.386 47.938 5.8500 7.69680

a1 0.008 0.129 0.0047 0.00002

c1 2.034 2.107 2.1821 3.43940

c2 2.093 8.858 2.1533 2.23800

m 0.9 0.9 0.9 0.9

M1 12.525 16.225 13.375 21.925

M2 203.275 286.175 227.125 538.275

M3 3986.925 5516.125 4590 14,438

TABLE 13.9
Parameter Estimates for the Tsallis Entropy-Based PDF 
of 3-Day Minimum Discharge (m3/s)

Parameters 

Sabine River Trinity River 

Predam Postdam Predam Postdam

a0 5.5331 111.8711 5.4297 12.9209

a1 0.0129 1.0784 0.0021 0.00002

c1 1.89792 1.94202 2.33654 3.45426

c2 2.1572 13.3082 1.9134 3.0406

M 0.9 0.9 0.9 0.9

M1 12.95 19.125 14 22.8

M2 219.35 425.625 251.85 582.15

M3 4539.05 11,798.93 5393 16,239
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The value a0 is estimated from the total probability and is therefore not a parameter. 
Parameter k = (1 − m)/m, m is the Tsallis parameter. For the solution of Equation 
13.25, it is required that k = (1 − m)/m be positive, meaning that m must be less than 
1. In this discussion, we consider m = 0.9 for solving Equation 13.25. In order to have 
an idea about the parameter values and their impact on the distribution shape, the 
sensitivity of the PDF f(x) to each of its parameters (a1, c1, and c2) is evaluated, as 
represented in Figure 13.3a through c.

Parameters c1, c2, and k can be estimated using the method of moments expressed as

 

f x dx( ) =
-¥

¥

ò 1  (13.26)

TABLE 13.10
Parameter Estimates for the Tsallis Entropy-Based PDF 
of 7-Day Minimum Discharge

Parameters 

Sabine River Trinity River 

Predam Postdam Predam Postdam

a0 5.40890 64.67070 5.38750 11.27600

a1 0.00960 1.43960 0.00270 0.00001

c1 1.92876 1.60067 2.20374 3.61610

c2 2.02960 10.96670 1.85140 2.71100

m 0.9 0.9 0.9 0.9

M1 13.68 22.93 15.03 24.28

M2 246.93 658.08 295.58 660.83

M3 5462.43 25,725.13 7011 19,658

TABLE 13.11
Parameter Estimates for the Tsallis Entropy-Based PDF 
of 30-Day Minimum Discharge

Parameters 

Sabine River Trinity River 

Predam Postdam Predam Postdam

a0 5.56100 114.96400 4.51690 9.46530

a1 0.02450 0.30660 0.00960 0.00050

c1 1.46513 2.28405 1.52875 2.64966

c2 1.84430 12.7035 1.3345 2.53960

m 0.9 0.9 0.9 0.9

M1 20.60 16.23 23.35 21.93

M2 623.15 286.18 869.65 538.28

M3 25,112.3 5516.125 44,250 14,438
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FIGURE 13.3 Sensitivity of the entropy-based density function f(x) (a) to the scale param-
eter a1 (the remaining parameters are fixed: a0 = 47.94, c1 = 2.11, c2 = 8.86); (b) to the shape 
parameter c1 (the remaining parameters are fixed: a0 = 47.94, a1 = 0.13, c2 = 8.86); and
 (Continued)
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xf x dx x M( ) = =
-¥

¥

ò 1  (13.27)

 

x f x dx x M2 2
2( ) = =

-¥

¥

ò  (13.28)

 

x f x dx x M3 3
3( ) = =

-¥

¥

ò  (13.29)

However, it is difficult to find the parameters analytically (Koutsoyiannis, 
2005a,b) by solving Equations 13.26 through 13.29. Therefore, they are deter-
mined numerically. The procedure for the estimation of parameters is suggested 
by Koutsoyiannis (2005a,b) (https://www.itia.ntua.gr/en/docinfo/641/), National 
Technical University of Athens, Department of Civil Engineering, Athens, Greece, 
Accessed June 2014. Explicitly, the procedure leading to the parameter estima-
tion can be summarized in two steps. Given a time series of streamflow, the first 
step consists in computation of the first, second, and third moments based on the 
observed data by using Equations 13.27 through 13.29. The second step is iterative 

0
0

0.04

0.08

0.12

f(
x)

0.16
c2 = 8.8
c2 = 8.7
c2 = 8.9
c2 = 9.0

10 20
Discharge (m3/s)(c)

30 40 50 60

FIGURE 13.3 (continued) (c) to the shape parameter c2 (the remaining parameters are 
fixed: a0 = 47.94, a1 = 0.13, c1 = 2.11).
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and aims to solve numerically the system of equations defined by Equation 13.30 
given Equations 13.31 through 13.33 as follows:

 
m xq

q c B c q c k c q c

B c c k c c
= + + - +

+ -
- / [( ) , ( ) ]

( , )
1 2 1 2 1

2 1 2 1

1 1
1 1

/ / /
/ / /

 (13.30)

where the beta function B is defined by

 

B t t dt( , ) ( )q t q t= -- -ò 1 1

0

1

1  (13.31)

and

 
x = *

+ *
k a

k a
1

01( )
 (13.32)

Note that constant a0 is determined by the relation:

 

1
1 1

1
1

1
0

1 1 2

1

2

1

1 2

c
k a B

c

c k

c

c
k c cæ

è
ç

ö

ø
÷ + * + -

æ

è
ç

ö

ø
÷ =- - -( ) ,/ /x  (13.33)

The objective is to retrieve the triplet (a1, c1, c2) which respects the system of equa-
tions. However, in the computation process, the use of computational software 
(e.g., MATLAB® or R) requires an input of an initial guessed triplet for parameters 
a1, c1, and c2. Following the procedure, the results are presented in the Tables 13.8 
through 13.11. Using the parameter values so determined, the probability distribu-
tion is determined, as shown in Figures 13.4 through 13.7.

Computed probability values, based on the estimated parameters for pre- and 
postdam periods, are presented in Tables 13.12 and 13.15.

Results in Tables 13.12 through 13.15 are employed for comparative analysis pre-
sented in Figure 13.8a and b.

Example 13.3

Compute the OWA operator for the data in Example 13.1.

Solution

The values of nonsatisfaction level of biological parameters are aggregated based 
on Yager’s (1999) method in which the OWA operator is computed using Equation 
13.6. The OWA operators are computed by maximizing entropy as shown in 
Tables 13.16 and 13.17 and Figures 13.9 and 13.10. The maximum entropy is 15.61 
for the Sabine River basin compared to 13.96 for the Trinity River basin.
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FIGURE 13.4 PDF of annual minimum 1-day mean discharge corresponding to predam 
period and postdam period for (a) the Sabine River and (b) the Trinity River.
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TABLE 13.12
Probability Estimates of Annual Minimum 1-Day Mean 
Discharge at the Sabine and Trinity Stream Gauge Stations

1-Day Minimum 
Discharge (m3/s) 

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam

PDF PDF PDF PDF

2 0.0190 0.0000 0.0147 0.0049

4 0.0370 0.0003 0.0310 0.0115

6 0.0498 0.0049 0.0451 0.0189

8 0.0556 0.0226 0.0550 0.0268

10 0.0549 0.0535 0.0595 0.0347

12 0.0494 0.0814 0.0588 0.0422

14 0.0411 0.0913 0.0539 0.0489

16 0.0321 0.0826 0.0464 0.0544

18 0.0238 0.0643 0.0378 0.0580

20 0.0169 0.0452 0.0293 0.0595

22 0.0115 0.0295 0.0218 0.0586

24 0.0076 0.0184 0.0156 0.0554

26 0.0049 0.0111 0.0109 0.0502

28 0.0031 0.0066 0.0073 0.0437

30 0.0019 0.0039 0.0048 0.0363

32 0.0012 0.0023 0.0031 0.0289

34 0.0007 0.0014 0.0020 0.0220

36 0.0004 0.0008 0.0013 0.0160

38 0.0003 0.0005 0.0008 0.0112

40 0.0002 0.0003 0.0005 0.0075

42 0.0001 0.0002 0.0003 0.0049

44 0.0001 0.0001 0.0002 0.0030

46 0.0000 0.0001 0.0001 0.0018

48 0.0000 0.0000 0.0001 0.0011

50 0.0000 0.0000 0.0000 0.0006

52 0.0000 0.0000 0.0000 0.0003

54 0.0000 0.0000 0.0000 0.0002

56 0.0000 0.0000 0.0000 0.0001

58 0.0000 0.0000 0.0000 0.0001

60 0.0000 0.0000 0.0000 0.0000
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TABLE 13.13
Probability Estimates of Annual Minimum 3-Day Mean 
Discharge at the Sabine and Trinity Stream Gauge Stations

3-Day Minimum 
Discharge (m3/s) 

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam

PDF PDF PDF PDF

2 0.0179 0.0000 0.0167 0.0006

4 0.0365 0.0000 0.0305 0.0023

6 0.0507 0.0016 0.0416 0.0052

8 0.0587 0.0114 0.0494 0.0094

10 0.0605 0.0332 0.0535 0.0146

12 0.0571 0.0568 0.0538 0.0206

14 0.0505 0.0701 0.0508 0.0273

16 0.0423 0.0707 0.0454 0.0342

18 0.0338 0.0628 0.0385 0.0408

20 0.0260 0.0515 0.0313 0.0464

22 0.0194 0.0403 0.0244 0.0507

24 0.0141 0.0306 0.0183 0.0530

26 0.0100 0.0228 0.0132 0.0532

28 0.0070 0.0169 0.0093 0.0511

30 0.0048 0.0125 0.0063 0.0471

32 0.0033 0.0092 0.0042 0.0417

34 0.0022 0.0068 0.0028 0.0353

36 0.0015 0.0051 0.0018 0.0287

38 0.0010 0.0038 0.0011 0.0224

40 0.0007 0.0029 0.0007 0.0167

42 0.0004 0.0022 0.0004 0.0121

44 0.0003 0.0017 0.0003 0.0084

46 0.0002 0.0013 0.0002 0.0056

48 0.0001 0.0010 0.0001 0.0037

50 0.0001 0.0008 0.0001 0.0023

52 0.0001 0.0006 0.0000 0.0014

54 0.0000 0.0005 0.0000 0.0008

56 0.0000 0.0004 0.0000 0.0005

58 0.0000 0.0003 0.0000 0.0003

60 0.0000 0.0003 0.0000 0.0002
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TABLE 13.14
Probability Estimate of Annual Minimum 7-Day Mean 
Discharge at the Sabine and Trinity River Gauge Stations

7-Day Minimum 
Discharge (m3/s)  

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam

PDF PDF PDF PDF

2 0.0180 0.0000 0.0164 0.0010

4 0.0342 0.0001 0.0287 0.0032

6 0.0464 0.0022 0.0383 0.0063

8 0.0536 0.0096 0.0449 0.0103

10 0.0558 0.0216 0.0485 0.0150

12 0.0539 0.0333 0.0491 0.0200

14 0.0490 0.0407 0.0471 0.0253

16 0.0424 0.0429 0.0432 0.0305

18 0.0351 0.0412 0.0380 0.0352

20 0.0281 0.0371 0.0322 0.0390

22 0.0218 0.0320 0.0264 0.0416

24 0.0165 0.0270 0.0210 0.0426

26 0.0122 0.0223 0.0162 0.0419

28 0.0089 0.0182 0.0123 0.0395

30 0.0063 0.0148 0.0090 0.0358

32 0.0045 0.0120 0.0065 0.0310

34 0.0031 0.0097 0.0047 0.0257

36 0.0022 0.0079 0.0033 0.0204

38 0.0015 0.0064 0.0023 0.0155

40 0.0010 0.0052 0.0015 0.0113

42 0.0007 0.0043 0.0010 0.0079

44 0.0005 0.0035 0.0007 0.0053

46 0.0003 0.0029 0.0005 0.0034

48 0.0002 0.0024 0.0003 0.0021

50 0.0001 0.0020 0.0002 0.0013

52 0.0001 0.0016 0.0001 0.0008

54 0.0001 0.0014 0.0001 0.0004

56 0.0000 0.0012 0.0001 0.0002

58 0.0000 0.0010 0.0000 0.0001

60 0.0000 0.0008 0.0000 0.0001
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TABLE 13.15
Probability Estimate of Annual Minimum 30-Day Mean 
Discharge at the Sabine and Trinity River Gauge Stations

30-Day Minimum 
Discharge (m3/s) 

Sabine/Toledo Dam Trinity/Livingston Dam 

Predam Postdam Predam Postdam

PDF PDF PDF PDF

2 0.0139 0.0000 0.0212 0.0022

4 0.0231 0.0000 0.0257 0.0063

6 0.0294 0.0013 0.0280 0.0116

8 0.0333 0.0122 0.0290 0.0174

10 0.0352 0.0420 0.0292 0.0232

12 0.0356 0.0760 0.0288 0.0286

14 0.0349 0.0906 0.0279 0.0329

16 0.0333 0.0822 0.0268 0.0358

18 0.0311 0.0625 0.0254 0.0371

20 0.0286 0.0425 0.0239 0.0367

22 0.0260 0.0270 0.0223 0.0348

24 0.0233 0.0165 0.0207 0.0316

26 0.0207 0.0099 0.0190 0.0277

28 0.0183 0.0059 0.0175 0.0234

30 0.0160 0.0035 0.0159 0.0191

32 0.0139 0.0021 0.0145 0.0152

34 0.0120 0.0012 0.0131 0.0116

36 0.0104 0.0008 0.0118 0.0087

38 0.0089 0.0005 0.0106 0.0063

40 0.0076 0.0003 0.0095 0.0045

42 0.0065 0.0002 0.0085 0.0032

44 0.0055 0.0001 0.0076 0.0022

46 0.0047 0.0001 0.0068 0.0015

48 0.0040 0.0001 0.0060 0.0010

50 0.0034 0.0000 0.0053 0.0006

52 0.0029 0.0000 0.0047 0.0004

54 0.0024 0.0000 0.0042 0.0003

56 0.0020 0.0000 0.0037 0.0002

58 0.0017 0.0000 0.0033 0.0001

60 0.0015 0.0000 0.0029 0.0001
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TABLE 13.16
OWA Operator and Entropy for the Sabine River

j wj Entropy 
Cumulative 

Entropy j wj Entropy 
Cumulative 

Entropy 

1 0.0504 1.26 1.26 17 0.031 0.31 10.45

2 0.049 0.89 2.15 18 0.030 0.69 11.13

3 0.048 0.67 2.82 19 0.029 0.57 11.71

4 0.047 0.23 3.05 20 0.027 0.71 12.42

5 0.046 0.41 3.46 21 0.026 0.29 12.71

6 0.044 1.06 4.53 22 0.025 0.75 13.46

7 0.043 0.30 4.83 23 0.024 0.31 13.77

8 0.042 0.04 4.87 24 0.023 0.27 14.04

9 0.041 0.16 5.03 25 0.021 0.32 14.36

10 0.040 1.11 6.14 26 0.020 0.32 14.68

11 0.038 1.19 7.33 27 0.019 0.06 14.74

12 0.037 0.30 7.62 28 0.018 0.04 14.77

13 0.036 0.68 8.30 29 0.017 0.28 15.05

14 0.035 0.76 9.07 30 0.015 0.44 15.50

15 0.033 0.20 9.27 31 0.014 0.30 15.79

16 0.032 0.87 10.14

TABLE 13.17
OWA Operator and Entropy for the Trinity River

j wj Entropy 
Cumulative 

Entropy j wj Entropy 
Cumulative 

Entropy 

1 0.050 0.30 0.30 17 0.031 0.96 8.82

2 0.049 0.74 1.04 18 0.030 0.60 9.42

3 0.048 1.20 2.24 19 0.029 0.83 10.25

4 0.047 0.05 2.29 20 0.027 0.82 11.07

5 0.046 1.23 3.52 21 0.026 0.73 11.80

6 0.044 0.40 3.92 22 0.025 0.32 12.13

7 0.043 0.09 4.00 23 0.024 0.26 12.39

8 0.042 0.50 4.51 24 0.023 0.18 12.57

9 0.041 0.16 4.67 25 0.021 0.56 13.12

10 0.040 0.40 5.06 26 0.020 0.46 13.59

11 0.038 0.19 5.25 27 0.019 0.13 13.72

12 0.037 0.11 5.37 28 0.018 0.25 13.97

13 0.036 0.61 5.98 29 0.017 0.31 14.28

14 0.035 0.76 6.74 30 0.015 0.37 14.65

15 0.033 0.60 7.34 31 0.014 0.30 14.95

16 0.032 0.52 7.86
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Example 13.4

Compute the eco-index for the data from Example of 13.1.

Solution

The eco-index can be computed with the computed value of NSL for each of the 
parameters represented by the argument (ai) and can be written as

 

Eco-index = = =
=

F a a a F NSL NSL NSL w bj j

j

( , ,..., ) ( , ,..., )1 2 33 1 2 32

1

322

å  (13.34)

TABLE 13.18
NSL Values for the Sabine River Station

Parameter H_pre H_post NSL 

January 0.69 0.70 0.018

February 0.69 0.73 0.043

March 0.73 0.68 0.057

April 0.58 0.73 0.150

May 0.54 0.64 0.097

June 0.63 0.60 0.023

July 0.60 0.48 0.123

August 0.35 0.74 0.390

September 0.47 0.68 0.219

October 0.54 0.55 0.007

November 0.49 0.48 0.003

December 0.57 0.67 0.097

Min1D 0.71 0.67 0.042

Max1D 0.68 0.71 0.029

Min3D 0.70 0.56 0.142

Max3D 0.69 0.70 0.014

Min7D 0.69 0.60 0.097

Max7D 0.72 0.69 0.023

Min30D 0.66 0.63 0.037

Max30D 0.71 0.69 0.018

Min90D 0.60 0.68 0.073

Max90D 0.73 0.74 0.006

JulianMin1D 0.60 0.66 0.067

JulianMax1D 0.61 0.68 0.068

NLowPls 0.61 0.67 0.056

NHighPls 0.61 0.67 0.056

DurLowPls 0.53 0.28 0.253

DurHighPls 0.66 0.40 0.253

RiseRate 0.75 0.70 0.045

FallRate 0.70 0.71 0.007

NumHydrRev 0.68 0.66 0.029
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Results of eco-index at the Sabine River and Trinity River gauge stations are shown 
in Tables 13.18 through 13.21 and the eco-index of the two gage stations is pre-
sented in Figure 13.11.

Figure 13.12a and b shows the magnitude of the alteration induced by the con-
structed dams on the natural flow regime at the Sabine and Trinity gaging stations. 
Figure 13.12a and b justifies the alteration on the natural flow regime through the 
measure of dispersion, which is the spread between the 25th and 75th percentiles, 
divided by the median.

TABLE 13.19
OWA Operator Estimated Based on the Sorted NSL Values 
for the Sabine River Station

Rank NSL_Sorted OWA Eco-Index Cumulative Eco-Index 

1 0.390 0.061 0.0239 0.0239

2 0.253 0.059 0.0150 0.0389

3 0.253 0.057 0.0145 0.0534

4 0.219 0.055 0.0121 0.0655

5 0.150 0.053 0.0080 0.0735

6 0.142 0.052 0.0073 0.0808

7 0.123 0.050 0.0061 0.0869

8 0.097 0.048 0.0046 0.0915

9 0.097 0.046 0.0044 0.0959

10 0.097 0.044 0.0042 0.1001

11 0.073 0.042 0.0031 0.1032

12 0.068 0.040 0.0027 0.1059

13 0.067 0.038 0.0025 0.1084

14 0.057 0.036 0.0020 0.1104

15 0.056 0.034 0.0019 0.1123

16 0.056 0.032 0.0018 0.1141

17 0.045 0.030 0.0014 0.1155

18 0.043 0.028 0.0012 0.1167

19 0.042 0.026 0.0011 0.1178

20 0.037 0.024 0.0009 0.1187

21 0.029 0.023 0.0007 0.1194

22 0.029 0.021 0.0006 0.1200

23 0.023 0.019 0.0004 0.1204

24 0.023 0.017 0.0004 0.1208

25 0.018 0.015 0.0003 0.1211

26 0.018 0.013 0.0002 0.1213

27 0.014 0.011 0.0002 0.1215

28 0.007 0.009 0.0001 0.1216

29 0.007 0.007 0.0000 0.1216

30 0.006 0.005 0.0000 0.1216

31 0.003 0.003 0.0000 0.1216
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TABLE 13.20
NSL Values for Trinity River Station

Parameter H_pre H_post NSL 

January 0.64 0.56 0.079

February 0.66 0.68 0.026

March 0.65 0.65 0.005

April 0.53 0.72 0.191

May 0.64 0.65 0.001

June 0.63 0.68 0.049

July 0.52 0.38 0.144

August 0.46 0.50 0.041

September 0.64 0.52 0.118

October 0.55 0.51 0.043

November 0.49 0.57 0.082

December 0.53 0.67 0.136

Min1D 0.72 0.74 0.023

Max1D 0.72 0.73 0.012

Min3D 0.72 0.75 0.022

Max3D 0.71 0.74 0.025

Min7D 0.72 0.72 0.000

Max7D 0.71 0.70 0.016

Min30D 0.68 0.68 0.001

Max30D 0.72 0.72 0.000

Min90D 0.61 0.61 0.001

Max90D 0.72 0.69 0.028

JulianMin1D 0.64 0.68 0.041

JulianMax1D 0.62 0.68 0.063

NLowPls 0.62 0.62 0.005

NHighPls 0.61 0.62 0.007

DurLowPls 0.55 0.48 0.068

DurHighPls 0.65 0.68 0.026

RiseRate 0.71 0.73 0.020

FallRate 0.72 0.72 0.005

NumHydrRev 0.73 0.72 0.015
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TABLE 13.21
OWA Operator Estimated Based on the Sorted NSL Values 
for the Trinity River Station

Parameter NSL_Sorted OWA Eco-Index 
Cumulative 
Eco-Index 

1 0.191 0.061 0.0117 0.0117

2 0.144 0.059 0.0085 0.0202

3 0.136 0.057 0.0078 0.0280

4 0.118 0.055 0.0065 0.0345

5 0.082 0.053 0.0044 0.0389

6 0.079 0.052 0.0041 0.0430

7 0.068 0.050 0.0034 0.0464

8 0.063 0.048 0.0030 0.0494

9 0.049 0.046 0.0022 0.0516

10 0.043 0.044 0.0019 0.0535

11 0.041 0.042 0.0017 0.0552

12 0.041 0.040 0.0016 0.0568

13 0.028 0.038 0.0011 0.0579

14 0.026 0.036 0.0010 0.0589

15 0.026 0.034 0.0009 0.0598

16 0.025 0.032 0.0008 0.0606

17 0.023 0.030 0.0007 0.0613

18 0.022 0.028 0.0006 0.0619

19 0.020 0.026 0.0005 0.0624

20 0.016 0.024 0.0004 0.0628

21 0.015 0.023 0.0003 0.0631

22 0.012 0.021 0.0002 0.0633

23 0.007 0.019 0.0001 0.0634

24 0.005 0.017 0.0001 0.0635

25 0.005 0.015 0.0001 0.0636

26 0.005 0.013 0.0001 0.0637

27 0.001 0.011 0.0000 0.0637

28 0.001 0.009 0.0000 0.0637

29 0.001 0.007 0.0000 0.0637

30 0.000 0.005 0.0000 0.0637

31 0.000 0.003 0.0000 0.0637
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The computed values of eco-index, presented in Figure 13.11, show that the 
Trinity River’s ecosystem is more vulnerable compared to the Sabine River. The 
eco-index of the Trinity River is almost two times lower than the value of the Sabine 
River. The point may be related to the differences in hydrological characteristics of 
the dams and the morphology of the two watersheds. In fact the storage capacity 
of the Toledo reservoir (Sabine River) is two times greater than the capacity of the 
Livingston reservoir (Trinity). This difference is quite critical, as it allows a better 
outflow control at the Sabine downstream. This can be understood by comparing the 
monthly median flow in the two rivers (Figure 13.13a and b), which show a moder-
ate decreasing trend of the postdam median flow rate of the Sabine River during the 
period May–November, while this trend looks more abrupt in the Trinity river. It 
can be inferred that the postdam conditions on the Trinity River may not have been 
regulated wisely to meet the need of the ecosystem.

This exercise shows that an information-based eco-index, which reflects the non-
satisfaction level flow regime, can guide eco-managers of Sabine and Trinity Rivers 
in a proper direction, while allocating water resources among potential users, and 
where to concentrate their attention, while mitigating the dam-induced effects and 
future alteration on sustained flow regime. In addition, these values of eco-index 
indirectly portray eventual alteration occurring in the local ecosystem particularly 
downstream. At the regional watershed scale, the relative values of this eco-index 
can show where regional eco-managers need to pay attention. Many times the pau-
city of hydrological data hinders our understanding of the state of a system. The 
entropy-based eco-index uses observed flows. Often times water resource develop-
ment activities within a river basin rely on spatial homogeneity or heterogeneity. 
Therefore, having spatial information about the ecosystem alterations and their 
influence at the subbasin level or grid scale needs attention when developing water 
resources.
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14 Redundancy Measures 
for Water Distribution 
Networks

Water distribution systems are vital for our way of life, for energy generation, for 
industries, and for waste disposal. These networks should be designed in such a 
manner that they are reliable and optimal. Fundamental to either type of optimiza-
tion is reliability, while others deal with the reliability of within water distribution 
networks. The objective of this study is to present measures of reliability of water 
distribution networks based on the Tsallis entropy.

14.1 OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

Design of a water distribution system entails competing objectives, including the 
minimization of head losses, cost, risk, and departures from specified values of 
water quantity, pressure, and quality; and the maximization of reliability (Perelman 
et  al., 2008); and is hence a multiobjective optimization problem. However, the 
design problem can be formulated as a single objective optimization problem, where 
the system capital and operational costs are minimized and at the same time the laws 
of hydraulics are satisfied and the targets of water quantity and pressure at demand 
nodes are met. Approaches to the optimization of water distribution networks have 
been either deterministic or stochastic.

14.1.1 dEtErMinistiC optiMization

Approaches to deterministic optimization are exemplified by the studies of Goulter 
and Coals (1986), Su et  al. (1987), Lansey et  al. (1989), Goulter and Bouchart 
(1990) among others that focused on reliability within an optimization frame-
work with respect to the hydraulic performance of the network under a range of 
mechanical failures and demands. In a similar vein, Ekinci and Konak (2009) 
developed an optimization strategy for water distribution networks by minimiz-
ing head losses for least cost design, whereas Eiger et al. (1994) presented a two-
stage decomposition model for optimization of water distribution networks. Todini 
(2000) used a resilience index for developing a technique for looped water distri-
bution network design.
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14.1.2 stoChastiC optiMization

Incorporating the uncertainty of nodal water demands and pipe roughness, Giustolisi 
et  al. (2009) developed a multiobjective optimization scheme with the objective 
of minimizing costs and maximizing hydraulic reliability. Kwon and Lee (2008) 
analyzed the reliability of pipe networks using probability concepts focusing on 
transient flow that can cause failure of the water distribution system. On the other 
hand, entropy theory has been applied to develop measures for water distribution 
network reliability (Singh and Oh, 2014). In a review of explorative uses of entropy, 
Templeman (1992) discussed application of entropy to water supply network analysis. 

14.1.3 Entropy-basEd optiMization

Awumah (1990) and Awumah et  al. (1990, 1991) used the Shannon entropy 
(Shannon, 1948)  to develop redundancy measures for water distribution systems. 
Xu and Jowitt (1992) remarked in a discussion of the study by Awumah et al. (1991) 
and their entropy-based measure needed further investigation. Redundancy in a 
water distribution network fundamentally means that demand points or nodes have 
alternative supply paths for water in the event that some links go out of service. In a 
redundant network, there is sufficient residual capacity to meet water flow require-
ments. Being a characteristic of the water distribution system, redundancy is related 
to its reliability. Therefore, to ensure reliability the water distribution network design 
must incorporate some amount of redundancy.

Tanyimboh and Templeman (1993a) described methods using entropy for com-
puting the most likely flows in the links of the networks with incomplete data. 
Tanyimboh and Templeman (1993b) developed an algorithm for computing the 
maximum entropy flows for single source networks. Chen and Templeman (1995) 
developed entropy-based methods for mathematical planning. Perelman and Ostfeld 
(2007) developed a cross-entropy-based algorithm for optimal design of water dis-
tribution systems. Subsequently, Perelman et al. (2008) extended the cross-entropy 
based algorithm to multiobjective optimization for water distribution systems design. 
The extended algorithm coupled the cross-entropy algorithm (Rubinstein, 1997) and 
some features of multiobjective evolutionary techniques (Fonseca and Fleming, 
1996). Shibu and Janga Reddy (2013) applied cross-entropy (Kullback and Leibler, 
1951) for optimal design of water distribution networks. Many studies have dealt 
with the reliability of overall water supply systems (Germanopoulos et  al., 1986; 
Goulter and Coals, 1986; Su et al., 1987; Beim and Hobbs, 1988; Hobbs and Beim, 
1988; Wagner et al., 1988a,b; Goulter and Bouchart, 1990).

14.2 RELIABILITY MEASURE

The need for reliability stems from uncertainties in consumer demand, fire flow 
requirements and their locations, pumping systems failure, inefficient storage, pipe 
failures and their locations, valve leakages and their locations, and reduced capacity 
due to sedimentation. Goulter (1987, 1988, 1992) argued that the shape or layout of 
a network determines the level of reliability that can be imposed on the network.
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When designing a water distribution network a critically important requirement 
is that the flow to a demand node must be carried by multiple links instead of just one 
link, and these links should be connected directly to the node. Although these links 
may carry equal or unequal proportions of flow to the demand node, Goulter and 
Coals (1986) and Walters (1988) have shown that from a reliability point of view it is 
more advantageous to carry equal proportions of flow for two reasons. First, in the 
case of unequal proportions of flow the network reliability is severely impacted if the 
link carrying the larger proportion goes out of service. Second, it is hydraulically 
inefficient. It is known that for a fixed pipe size, discharge q carried by a pipe is 
approximately proportional to the 0.54 power of the head loss hL in that pipe, that is, 
q hLµ 0 54.  or approximately hL ∝ q2. When a larger pipe fails and the flow is to be 

increased in a smaller pipe, then head loss would increase quadratically as a function 
of discharge. For example, doubling the flow would quadruple the head loss and tri-
pling the flow would increase the head loss nine fold. On the other hand, increasing 
the flow in a larger pipe would not cause the same order of head loss.

14.3 TSALLIS ENTROPY–BASED REDUNDANCY MEASURES

The Tsallis entropy, S, (Tsallis, 1988) for a discrete random variable X with  probability 
distribution P = {pi, i = 1, 2,…, N}, where pi are probabilities for X = xi, i = 1, 2, …, N, 
can be expressed as
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where
m is a real number
N is the number of values of X takes on
S describes the uncertainty associated with pi and in turn with X

If ( ) ( )1 11- --p mi
m /  is considered as a measure of uncertainty, then Equation 14.1 

represents the average uncertainty of X.

14.4 REDUNDANCY MEASURES

Let a network consist of N nodes, as shown in Figure 14.1, and let the number of 
links incident at node j be n( j). A particular link incident at node j is denoted by 
i; thus i = 1, 2, 3, …, n( j). Let the flow carried by this ith link to node j be denoted 
by qij, flow in pipe-connecting links incident on node j, or the total flow at node j by 
Qj and the fraction of flow carried by link i by Wij. Then, for a particular flow pattern, 
 fraction Wij can be denoted by
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Clearly,
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where

 

Q qj ij

i

n j

=
=

å
1

( )

 (14.4)

Term Wij defines the relative contribution of link i to flow at node j and is therefore an 
indicator of relative flow capacity of the link incident at node j. Thus, it can be con-
strued as a measure of the potential contribution of the link to the required demand 
at the node if a link failed. Thus, it enables consideration of relative flow capacities 
of links in the redundancy measure.

Now, let Q0 be the total flow in the network, which is equal to the sum of flows in 
all links in the network, that is,
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FIGURE 14.1 A water distribution network layout with N nodes.
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where N is the number of nodes in the network. It should be emphasized that Q0 is 
not the total demand in the network or the total flow supply to the network; it is usu-
ally greater than the total demand in the network.

To develop a Tsallis entropy–based redundancy measure of the network with 
N nodes, where the nodes may be considered to constitute subsystems, the Tsallis 
entropy of a node j can now be expressed in terms of Wij as
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where
K is a positive constant and is often taken as one
m is the entropy index and is a real number
Sj is an entropic measure of redundancy at node j and is local redundancy

Maximizing Sj would maximize redundancy of node j and is equivalent to maximiz-
ing entropy at node j. The maximum value of Sj is achieved when all Wijs or qij/Qjs 
are equal. This occurs when all qijs are equal.

For the entire water distribution network, redundancy is a function of redundan-
cies Sjs of individual nodes in the network. The overall network redundancy can be 
assessed using two approaches:

Approach 1: The network redundancy can be assessed by the relative importance 
of a link to its node and its importance is recognized by qij/Qj. In this case, the 
redundancy is maximized at each node. It may, however, be noted that the network 
redundancy is not a sum of nodal redundancies.

Approach 2: The network redundancy can be assessed by the relative importance of 
a link to the total flow and its importance is recognized by qij/Q0. Here the proposi-
tion is that the importance of a link relative to the local flow is not as important as 
it is to the total flow. In this case also, the network redundancy is not a sum of nodal 
redundancies. In order to acknowledge the relative importance of a link to the entire 
network, Awumah et al. (1990) suggested that qij/Qj should be replaced by qij/Q0 in 
Equation 14.6. Then, the nodal redundancy Sj* can be expressed as
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It may be noted that Sj* given by Equation 14.7 is similar to Equation 14.6. In this 
case also, the maximum value of Sj* will occur when the qij values are equal at the 
jth each node. It can also be shown that the maximum network redundancy will be 
achieved when all the qij values are equal. It may, however, be noted that
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This is because
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Therefore, in the second approach Equation 14.7 can be used in the spirit of Tsallis 
entropy or considering it via partial Tsallis entropy (Niven, 2004).

The network redundancy or reliability, SN, cannot, however, be expressed as the 
sum of local or nodal redundancies:
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where Sj* is the network redundancy using the second approach. What is important 
here is the consideration of the relative significance of links incident upon a node as 
opposed to the simple consideration of individual redundancies in the network. In 
this chapter both approaches are employed for assessing the overall network redun-
dancy. From now onward, approach two will be denoted by subscript *.

The network redundancy for N nodes is a function of redundancies of individual 
nodes, Sjs, in the network but will not be a simple summation of these nodal redun-
dancies because of the nonextensive property of the Tsallis entropy. Therefore, it is 
now important to discuss the additivity property.

14.5  ADDITIVITY PROPERTY FOR INDEPENDENT 
SYSTEMS FOR FIRST APPROACH

In order to illustrate the additivity property of the Tsallis entropy for independent 
systems, let there be three independent systems, A, B, and C, with ensembles of con-
figurational possibilities EA = {1, 2,…, i,…, M}, EB = {1, 2,…, j,…, N}, and EC = 
{1,  2,…, k,…, R}, respectively, and the corresponding probabilities as 
P p i MA

i
A= ={ , , , , },1 2 …  P p j NB

j
B= ={ , , , , },1 2 …  and P p k RC

k
C= ={ , , , , }.1 2 …  

Then, one needs to deal with A ∪ B ∪ C and the corresponding ensembles of possi-
bilities EA ∪ B ∪ C = {(1, 1, 1), (1, 2, 2),…, (i, j, k),…, (M, N, R)}. Let the corresponding 

probabilities be denoted as pijk
A B CÈ È . Because systems A, B, and C are independent, 

one can write
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Taking the logarithm of Equation 14.12, one gets
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Each term of Equation 14.13 is now considered:
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Similarly,
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Therefore,

 log[ ( ) ] log[ ( ) ] log[ ( ) ] log[ (1 1 1 1 1 1 1- - = - - + - - + - -È Èm S m S m S mA B C A B 11) ]SC

 (14.18)

Equation 14.18 can be recast as

 1 1 1 1 1 1 1 1- - = - - - - - -È È( ) [ ( ) ][ ( ) ][ ( ) ]m S m S m S m SA B C A B C  (14.19)

This can be simplified as

 1 1 1 1 1 1 1 12- - = - - - - + - - -È È( ) [ ( ) ( ) ( ) ][ ( ) ]m S m S m S m S S m SA B C A B A B C  (14.20)
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or

 

1 1 1 1 1 1 1

1

2

2

- - = - - - - - - + -

+ -

È È( ) ( ) ( ) ( ) ( )

( )

m S m S m S m S m S S

m S

A B C A B C A B

AA C B C A B CS m S S m S S S+ - - -( ) ( )1 12 3  (14.21)

Equation 14.21 exhibits a pattern and can be written as

 S S S S m S S S S S S m S S SA B C A B C A B A C B C A B CÈ È = + + - - + + + -( )[ ] ( )1 1 2
 (14.22)

Denoting A, B, and C by 1, 2, and 3, respectively, Equation 14.22 can be written in 
compact form as
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Equation 14.22 can be generalized to any number of independent systems. First, 
consider two cases. If there are two systems 1 and 2 with Tsallis entropy S1 and S2, 
then the joint entropy can be written as

 S S S m S S1 2 1 2 1 21È = + - -( )  (14.24)

or
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If there are four independent systems with Tsallis entropies as S1, S2, S3, and S4, then 
the joint entropy can be expressed as
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Equation 14.22 can be generalized to any number of independent systems. Let these 
systems be represented as A i ni , , , , .= 1 2 …  Then, the joint entropy can be written in 

compact form as
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It can be shown that the network redundancy (with N nodes) can be expressed as
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where
Sj is the redundancy of node j
N is number of nodes

In order to develop an appreciation for Equation 14.28, it will be instructive to 
expand Equation 14.28 in terms of flow quantities. The first term on the right side 
can be expressed as
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Note that the nodal redundancy is modified by the factor ( ) .Q Qj
m/ 0

The second term on the right side of Equation 14.28 will be the sum of combina-
tions of two node entropies as
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Consider only one term: −(m − 1)S1S2, which can be written as
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In a similar manner, other terms can be expanded.

14.6  ADDITIVITY PROPERTY OF TSALLIS ENTROPY FOR 
INDEPENDENT SYSTEMS FOR APPROACH TWO

In this approach, Equations 14.13 through 14.15 are valid. It may be noted that pij = qij/Q0 

and unlike in approach one, pi
i

n j
¹

=å 1
1

( )
. First, we consider three  independent sys-

tems, A, B, and C, as before. Each term of Equation 14.15 is now considered:
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where QA, QB, and QC denote, respectively, flow of systems A, B, and C; SA*, SB*, and 
SC* denote, respectively, redundancies of systems A, B, and C. Therefore,
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(14.36)

Equation 14.36 can be recast as
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One can see in Equation 14.37 a pattern emerging and hence it can be generalized 
pot any number of systems.

Now we consider two cases. If there are two systems A and B with Tsallis entropy 
SA* and SB*, then the joint Tsallis entropy–based redundancy can be written as
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Q
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 (14.38)

For generalization, let there be N systems, denoted as 1, 2, …, N. Then, Equation 
14.37 can be generalized as
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(14.39)

It can be seen that Equation 14.39 for network redundancy for approach two is sig-
nificantly different from Equation 14.28 for approach one.

14.7 TRANSMISSION OF REDUNDANCY THROUGH NETWORK

In a water distribution network, nodes are connected to one another. Failure of one 
link affects not only the node it is incident upon, but also the downstream nodes, 
because the links upstream of the node service the downstream nodes via redistribu-
tion of flows. Consider, for example Figure 14.2, which shows a simple network in 
which one node receives flow from another. In this network, node 1 has three inde-
pendent paths or links and hence has some degree of redundancy. Node 2 receives 
flow from node 1 and an independent path or link and hence has some redundancy 
due to both sources of flow. Because there is some redundancy in node 1, it may 
be transferred to node 2. Likewise, node 3 will have some redundancy due to the 
redundancy in node 2 and hence indirectly due to that in node 1. Intuitively, one can 
estimate the redundancy at node 2 by the proportion of flow coming from node 1 to 
the total flow coming into node 1. The implication here is that any remainder of flow 
at node 1 will be transmitted to the downstream node 2 and hence some to node 3. 
Thus, redundancy from node 2 will be transmitted to node 3 directly in proportion 
to the ratio of the total flow entering node 3 from node 2 to the total flow entering 
node 2. This ratio of flows defines what Awumah et al. (1991) called transmissivity. 
More precisely, transmissivity can be defined empirically as the ratio of flow through 

1 2 3

q7q5

q6q1

q4

q3

q2

FIGURE 14.2 A simple network.
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the link to the total flow into node at the upstream end of the link. In this sense, 
 redundancy in one area of the network impacts the redundancy in another.

In order to determine the propagation of redundancy in one node upstream to 
another node downstream, one can define the percentage of the redundancy at the 
upstream node that is transmitted to the downstream node and approximate it by the 
ratio of flow coming from that upstream node into the downstream node to the total 
flow entering the upstream node. Consider two nodes: upstream node k and down-
stream node j. Then the transmissivity of the connection between these two nodes 
from node k to node j can be expressed as

 

t
q

q
jk

kj

ik
i

nk
=

=å 1

 (14.40)

where
tjk is the transmissivity from node k to node j
qkj is the flow in link k incident on node j
the denominator is the sum of flows into node k

Note that flow is positive toward node k. The entropy-based measure can now be 
extended to include this consideration of transmissivity.

For approach one, the measure defined by Equation 14.6 can be expressed as

 
¢ = + ¢åS S t Sj j jk k  (14.41)

where
¢Sj is the measure of the total (global) redundancy at node j

¢Sk is the redundancy at node k

Similarly, for approach two the measure defined by Equation 14.7 can expressed as

 

¢ = + ¢åS S t Sj j jk k* * *

*

 (14.42)

where
¢Sj* is the global redundancy at j

¢Sk* is the redundancy at node k for partial Tsallis entropy

Equations 14.41 and 14.42 show that the global redundancy at node j is the sum of 
local redundancy at the node and the contribution from upstream supplies to the 
redundancy performance of that node. It should be noted that the global redundancy 
at each node depends on the global redundancy of all upstream nodes. Therefore, 
it may be necessary to apply Equation 14.40 recursively with distance or with the 
number of nodes distant from the source. In this recursive manner, redundancy of 
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a particular node due to the redundancy at all upstream nodes is included in the 
 redundancy measure of that node.

To illustrate the transmissivity concept for both approaches, consider the network 
in Figure 14.2. For approach one, the global redundancy at node 1 (using simple 
notation of the figure) can be expressed as
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For node 2,

 ¢ = + ¢S S t S2 2 21 1  (14.44)

where t21 is the transmissivity from node 1 to node 2 and is given by
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(14.46)

Similarly, for node 3

 ¢ = + ¢S S t S3 3 32 2  (14.47)

where t32 is the redundancy between nodes 2 and 3 and can be written as
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Note that transmissivities will always be less than or equal to unity.
Now for approach two, the global redundancy at node 1 (using simple notation of 

the figure) can be expressed as
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For node 2,

 ¢ = + ¢S S t S2 2 21 1* * *  (14.50)
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where t21 is the transmissivity from node 1 to node 2. The global redundancy at 
node 2 is given as
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Similarly, for node 3

 
¢ = + ¢ =S S t S t

q

Q
3 3 32 2 32

5

0
* * *  (14.52)

where t32 is the redundancy between nodes 2 and 3. Note that transmissivities will 
always be less than or equal to unity.

14.8 CONSIDERATION OF PATH DEPENDENCY

When a link connecting to a node fails, alternative paths that supply water to the 
node may originate some distance away in the immediate vicinity of the failed link. 
The number of these alternative paths significantly affects the network redundancy 
and reliability. Thus far, it has been implicitly assumed that the number of alterna-
tive paths from the source to a demand node (point) is the same as the number of 
links incident on the node. This assumption is not always realistic. The contribution 
to the redundancy at a node by one of its incident links depends therefore on both 
the percentage of flow it brings to the node but also the number of paths between the 
supply source and the node via that link. A network has redundancy because even if 
one of the links fails, some nodes may continue to operate uninterrupted. Of course, 
the redundancy would depend on the failure of a particular link and its contribution 
to flow at a given node.

The redundancy measure may incorporate the contribution of links to the node 
through what Awumah (1990) called path parameter. Let the path parameter for node 
j be aj, which is considered to be equal to the number of alternative independent paths 
between the source and node j. The number of these paths depends on the degree of 
overlap between paths. It is essential to know the number of links used by different 
paths. Thus, the total number of independent paths may be less than the total number 
of all paths. In the case of dependent paths, the effective alternative independent 
number of paths from the given number of dependent paths can be derived.

Following Awumah (1990), let the number of paths to which a link belongs define 
the degree of that link. If different paths have no common links then each link in 
these independent paths has one degree. If a link is common between two paths, then 
it has a degree of dependency of one unit. If the link is shared by three paths then it 
has a degree of dependency of two units. If the degree of link is denoted by dl then 
its degree of dependency Dl is given as

 D dl l= -1  (14.53)
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If the number of alternative dependent paths from the source to the given node is nd, 
then the effective number of independent paths can be obtained by removing depen-
dencies from the links. The required path parameter aj, which is the adjusted number 
of independent paths can be expressed for node j as
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where M is the number of links in the nd number of paths. Equation 14.54 can be 
written as
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The term within brackets is the factor that reduces the number of dependent paths 
to  the equivalent number of independent paths. For independent paths, term 

Di
l

M

=å =
1

0, and hence aj = nd.

Equation 14.54 shows that the value of aj decreases with increasing dependency. 
In the case of network in Figure 14.2, node 2 has three independent paths from the 
source wherein link between nodes 1 and 2 is common to these independent paths. 
The degree of this link is three and its degree of dependency is two. For node 2, 
the value of path parameter then becomes 3. Similarly, for node 3, there are three 
independent paths. The degree of link connecting nodes 2 and 3 is 3 and the degree 
of dependence is 2. For this node, the value of path parameter then becomes 3.18.

14.9  MODIFICATION OF REDUNDANCY MEASURE 
WITH PATH PARAMETER

The nodal redundancy measure given by Equation 14.6 can now be modified by 
including the path parameter as
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Note that the objective is to increase the basic redundancy measure if the number of 
independent paths between the source and the node is greater than one. Likewise, for 
approach two, the nodal redundancy measure can be modified as
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It may be interesting to note the usefulness of Equations 14.56 and 14.57. First, in the case 
of nodes with one incident links but having several paths through the network upstream 
of the single incident link, if the equivalent number of paths exceeds one, then aij > 0 and 
the second term will make a positive contribution to the redundancy of the node. Second, 
for nodes with two or more incident links where each link is equal to one path from the 
source to the node, the term will cease to have a significance. Third, for nodes with sev-
eral incident links so that equivalent paths through some of these links are less than one, 
aij would be less than one and the second term would be negative. Then the redundancy 
measure would less than that given by Equation 14.56 for approach one and less than that 
given by Equation 14.57 for approach two. The path parameters would still be less than 
one, since it measures total equivalent paths, not the value for a particular link.

14.10  MODIFICATION OF REDUNDANCY MEASURE 
BY AGE FACTOR

Let uij be the age factor parameter for the pipe material in link ij. This reflects the 
degree of deterioration of the pipe with age and the consequent reduction in carry-
ing capacity and its contribution to redundancy. If the Hazen–Williams formula for 
flow through pipes is used then its friction coefficient Cij reflects the characteristic 
of the pipe material as well as its age. Its value ranges from 100 to 150. For example, 
for steel and plastic pipes, it is between 140 and 150, and for bricks it is around 100. 
For cast iron pipes the C values can degrade from about 130 to 75 over a period of 
50 years. Awumah (1990) expressed

 
u C tij ij= 0 2. ln ( )  (14.58)

where t is time after installation of pipes in years.
Awumah (1990) used C = 150 as the upper reference limit and scaled down 

all  values therefrom. The reference point value for the age factor parameter from 
Equation 14.58 is ln(150) = 5.0. Dividing the parameter by 5.0 so that the age factor 
parameter for pipes with the Hazen–Williams friction coefficient Cij = 150 becomes 
unity leads to the scale factor of 0.2.

The Tsallis entropy–based redundancy Equation 14.6 can be modified for 
approach one, as
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and Equation 14.7 for approach two as
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where uij is the age factor for link ij incident on node j.
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The redundancy measure incorporating both the path parameter and the age 
 factor can be expressed by modifying Equation 14.59 as
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and modifying Equation 14.60
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14.11  MODIFICATION OF OVERALL NETWORK 
REDUNDANCY

The overall network redundancy, given by Equation 14.27 for approach one, can be 
modified by incorporating the age factor uij and path parameter aij as
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(14.63)

© 2016 by Taylor & Francis Group, LLC

  



386 Introduction to Tsallis Entropy Theory in Water Engineering

The term within brackets represents the contribution from node j to the network 
redundancy:
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The contribution from a node can be decomposed as
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Let the age factor be accommodated on a nodal basis, that is, uij = uj and

 
n j u Uj j( ) =  (14.66)

Equation 14.65 can be modified as
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Summing Equation 14.67 over the N nodes yields the overall network redundancy:
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Equation 14.68 is similar to Equation 14.63, except for the second term that includes 
Uj—the sum of age factor parameters of the links incident on node j. The second 
term is similar to the expression for useful entropy. Thus, the overall network redun-
dancy is the sum of weighted nodal useful entropies and the useful entropies among 
nodes.

For approach two, the overall network redundancy, given by Equation 14.37, is 
modified by incorporating the transmission of redundancy expressed by Equation 
14.42, path dependency by Equation 14.58 and age factor by Equation 14.60. For 
brevity, the network redundancy is expressed in terms of nodal redundancies rather 
than flows as
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(14.69)

In real world, there are distribution networks that have several source nodes to serve 
the demand nodes. The procedure for redundancy calculation will, however, remain 
the same. Since all nodes are interconnected, each node upstream of another node 
is a source node to the node downstream to it. Incident links are counted as those 
links connected to the upstream nodes, which are source nodes to the downstream 
node for which redundancy is determined. In case of multiple sources connected to 
a demand node by a single link, then this node may have multiple incident links and 
will have nonzero redundancy measure. For approach one, Equations 14.64 or 14.63 
for single or multiple links can be used for redundancy measure. Likewise, Equation 
14.68 can be employed for approach two.

Another aspect that occurs in real world is that flows in links are not fixed but vary 
with time in response to changing demands at nodes. The question arises: which flow 
pattern yields the redundancy measure. To answer this question entails defining the 
flow pattern. One may compute the redundancy measure for peak demand pattern 
or average flow pattern. The method of computation, however, remains unaltered.

Example 14.1

Following Xu and Jowitt (1992), consider three simple distribution network lay-
outs, as shown in Figure 14.3. The demand at point (node) A is one unit and that 
at node B is 10 units. In configuration 2, the demand at point B is supplied via 
node A. Compute the redundancy of the three layouts.
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(b)

Layout 2
5.5 5

A

5.5 5

B 10

A and B are demand nodes
0.5

(a)

A1

0.5 5

B 10

Layout 1

5

5.5
(c)

5.5 0.5
Layout 3

B A

1

0.5

FIGURE 14.3 Three simple distribution network layouts a, b, and c.
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Solution

Only approach one is employed here. First, layout 1 is considered. For the jth 
node
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Example 14.2

Consider five simple single node layouts as shown in Figure 14.4. Compute the 
redundancy of each layout.

Solution

For case 1: A

 

S
m

q
Q

q
Q

j
ij

j

ij

j

m

i

n j

=
-

-
æ

è
çç

ö

ø
÷÷

é

ë

ê
ê

ù

û

ú
ú

=
-

´ -
=

å1
1

1
3 1

240
240

24

1

( )
00

240
0

3
æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

=

Case 2: B

 

S
m

q
Q

q
Q

j
ij

j

ij

j

m

i

n j

=
-

-
æ

è
çç

ö

ø
÷÷

é

ë

ê
ê

ù

û

ú
ú

=
-

´ ´ -
=

å1
1

1
3 1

2
120
240

1

( )
1120
240

0 38
3

æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

= .

Case 3: C
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Case 1: A

Case 2: B

Case 3: C

Case 4: D

160 m3/h

80 m3/h

120 m3/h

120 m3/h

240 m3/h

60 m3/h 60 m3/h

120 m3/h

FIGURE 14.4 Five simple single-node water distribution layouts. (Continued)
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Case 4: D
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Case 5: E
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Example 14.3

Consider a layout as shown in Figure 14.5. The demand at the source is 2000 
m3/h. The demand at each node of the layout is specified as follows:

Note the sum of demands at nodes equals the demand at the source. Compute the 
redundancy of each layout, taking into consideration transmissivity, path param-
eter, and age factor. Consider friction factor as 115.

Node Demand (m3/h) Node Demand (m3/h) Node Demand (m3/h) 

1 2000 5 175 9 225

2 150 6 150 10 150

3 175 7 225 11 175

4 175 8 225 12 175

80 m3/h

80 m3/h

Case 5: E

80 m3/h

FIGURE 14.4 (continued) Five simple single-node water distribution layouts. 
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Solution

The network redundancy can be expressed as
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  Since the number of link incidences equals one for nodes 1, 2, 3, 4, 6, 7, 
8, 9, 10, 11, and 12, Sj = 0 in this layout. The only node with redundancy 
is node 5 for which the entropy is computed as

175 m3/h

325 m3/h 175 m3/h

400 m3/h225 m3/h550 m3/h

175 m3/h

550 m3/h225 m3/h900 m3/h

1 2 3

654

7 8 9

121110

725 m3/h

2000 m3/h

1100 m3/h

FIGURE 14.5 A water distribution network layout.
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Path parameter redundancy:
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Age factor and path parameter of redundancy are as follows:

Now, consider the age factor since the friction factor for all links is 115. Therefore, 
ln 115 = 4.7449 and u C tij ij= =0 2 0 9490. ln ( ) . .
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Example 14.4

Consider a layout as shown in Figure 14.6. For the layout, indicate the number of 
loops and compute the redundancy measure derived from local redundancy and 
from global redundancy. Show redundancy at each node and redundancy among 
nodes. Take account of transmissivity, path parameter, and age factor. Assume the 
friction factor as 140. The demand at each node is 100 (m3/h).

Solution

Transmissivity tjk from node k to node j is taken into account when computing the 
global redundancy at node j, Sj. The overall redundancy SN and global redundancy 
are now computed.
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FIGURE 14.6 A water distribution layout.
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 (3) Transmissivity
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Path parameter of redundancy is as follows:
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1 2 3 0 05
£ < < £

å = = .

  Therefore,

 

S S S m N S S m S S SN
j

j N

j j

j j N

j j j= = + - + -È È

£ £ £ < £
å å1 2 3

1

1 2

1 1 2

2 1 2 3

1

1 1( ) ( )
££ < < £

å
= + - ´ + - ´ =

j j j N1 2 3

21 20 1 3 0 45 1 3 0 05 0 50. ( ) . ( ) . .

Age factor and path redundancy are as follows:

Now consider age factor, since the friction factor for all links is 140, then ln 140 = 
4.9416. Then,

 u C tij ij= =0 2 0 9883. ln ( ) .
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 (1) Compute path parameter using a n
D

d
ij d

l
l

M

l
l

Mij

ij

ij
= -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

=

å
å

1 1

1

 
a a as s1 1 11 2 1 1

0
1

1 1
0
1

1 1 2= + = ´ -é
ëê

ù
ûú

+ ´ -é
ëê

ù
ûú

= + = (Path: S1-1 S2-, 11)

 
a a2 12 2 1

1
4

1 5= = ´ -é
ëê

ù
ûú

= . ,(Path: S1-1-2 S2-1-2)

 
a a3 23 2 1

2
6

1 33= = ´ -é
ëê

ù
ûú

= . ,(Path: S1-1-2-3 S2-1-2-3)

 (2)  S
m

u
q

a Q
j ij

ij

ij ji

n j

=
-

-
æ

è
çç

ö

ø
÷÷

é

ë

ê
ê

ù

û

ú
ú

=
å1

1
1

3

1

( )

 

S1

3 3
1

3 1
1 0 9883

250
1 300

0 9883
50

1 300
=

-
´ - ´

´
æ
è
ç

ö
ø
÷ - ´

´
æ
è
ç

ö
ø
÷

é

ë
ê
ê

. .
ùù

û
ú
ú

= 0 21.

 

S2

3
1

3 1
1 0 9883

200
1 5 200

0 35=
-

´ - ´
´

æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

=.
.

.

 

S3

3
1

3 1
1 0 9883

100
1 33 100

0 29=
-

´ - ´
´

æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

=.
.

.

 (3) 
�S

m
Q
Q

u
q

a Q
j

j
m

ij
ij

ij ji

n j

=
-

-
æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷

é

ë

ê
ê

ù

û

ú
ú

=
å1

1
1

0

3

1

( )

 

�S1

3 3
1

3 1
1

300
300

0 9883
250

1 300
0 9883

50
1

=
-

´ - æ
è
ç

ö
ø
÷ ´

´
æ
è
ç

ö
ø
÷ + ´( . .

´́
æ
è
ç

ö
ø
÷

ì
í
ï

îï

ü
ý
ï

þï

é

ë
ê
ê

ù

û
ú
ú

=
300

0 421
3

.

 

�S2

3 3
1

3 1
1

200
300

0 9883
200

1 5 200
=

-
´ - æ

è
ç

ö
ø
÷ ´

´
æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

=( .
.

00 46.

 

�S3

3 3
1

3 1
1

100
300

0 9883
100

1 33 100
=

-
´ - æ

è
ç

ö
ø
÷ ´

´
æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

( .
.

== 0 49.

© 2016 by Taylor & Francis Group, LLC

  



423Redundancy Measures for Water Distribution Networks

 (4) Determine SN

 

S S S m S S m S S SN
j

j N

j j

j j N
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£ £ £ < £ £
å å1 2 3
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S S S Sj j j j

j n

= + + = + + =
£ £
å 1 2 3

1

0 21 0 49 0 50 1 20. . . .

  Determine S Sj j

j j n

1 2

1 1 2£ < £å .

 S Sj j1 2 0 21 0 49 0 10= ´ =. . .

 S Sj j1 3 0 21 0 50 0 11= ´ =. . .

 S Sj j2 3 0 49 0 50 0 24= ´ =. . .

 

S S S S S S S Sj j

j j n

j j j j j j1 2

1 1 2

1 2 1 3 2 3 0 10 0 11 0 24 0 45
£ < £
å = + + = + + =. . . .

  Determine S S Sj j j

j j j n

1 2 3

1 1 2 3£ < < £å .

 S S Sj j j1 2 3 0 21 0 49 0 50 0 05= ´ ´ =. . . .
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S S S S S Sj j j

j j j n

j j j1 2 3

1 1 2 3

1 2 3 0 05
£ < < £

å = = .

  Therefore,

 

S S S m S S m S S SN
j

j n

j j j j j

j j j n

= = + - + -È È

£ £ £ < < £
å1 2 3

1

1 2 2 1 2 3

1 1 2 3

1 1( ) ( ) ååå
£ < £

= + - ´ + - ´ =

1 1 2

21 20 1 3 0 45 1 3 0 05 0 50

j j n

. ( ) . ( ) . .

14.12 RELATION BETWEEN REDUNDANCY AND RELIABILITY

Awumah (1990) computed parameters of Nodal Pair Reliability (NPR) and Percentage 
of Demand Supplied at adequate Pressure (PSPF) for a number of layouts, and com-
pared them with entropy-based redundancy measures. Quimpo and Shamsi (1991) 
and Wagner et  al. (1988a, b) have used NPR to calculate the probability that the 
source node and each of demand nodes are connected. The resilience of water distri-
bution systems can be assessed by the PSPF and hence one can make a statement of 
hydraulic redundancy. The relation between redundancy and NPR reliability can be 
expressed, using the data from Awumah (1990), as

 NPR S= 0 770 0 0418. exp( . )  (14.70)

where S is the network redundancy. Equation 14.70 has a coefficient of determina-
tion of 0.984, explaining more than 96% of the variability. This suggests that with 
the knowledge of entropy or redundancy, the water distribution network reliability 
can be determined.

In a similar manner, the relation between PSPF and network redundancy can be 
expressed as

 PSPF S= 48 282 0 26. exp( . )  (14.71)

Equation 14.71 has a coefficient of determination of 0.983 and explains more than 
96% variability. Since S is a common parameter between Equations 14.70 and 14.71, 
it is clear that NPR and PSPF should be strongly related, suggesting that if one type 
of reliability is known then the other type can be determined. The relation between 
NPR and PSPF can now be written as

 PSPF NPR= 0 1392 7 6046. exp( . )  (14.72)

Equation 14.72 has a coefficient of determination of 0.985 and explains more than 
97% variability. Thus, water distribution systems can be designed using either of 
these two types of reliability.
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Index

A

Additivity property, Tsallis entropy
joint entropy, 376
network redundancy, 377
nodal redundancy, 377
Tsallis entropy–based redundancy, 379–380

ANN, see Artificial neural network (ANN)
Apportionment entropy (AE)

empirical data, 235
isoentropy lines, 235
precipitation occurrence frequency, 235
random experimentation, 236

Artificial intelligence techniques, 202
Artificial neural network (ANN), 202

B

Bell-shaped distribution, 35
Boltzmann–Gibbs–Shannon entropy; see also 

Tsallis entropy
L’Hopsital’s rule, 11
Shannon entropy, 3

C

CDF, see Cumulative distribution function (CDF)
Constrained Tsallis entropy

differentiation, 26–27
equation substitution, 27
Lagrange function, 26
values, 27–28

Constraints; see also Constrained Tsallis entropy; 
Shannon entropy; Tsallis entropy

mean
entropy–based PDF, 41
integration, 41
Lagrangian function, 40
Pareto distribution, 42

variance (see Variance constraint)
Cumulative distribution function (CDF), 307, 

309, 311–312
debris flow, sediment concentration, 186–187
rating curves, 210
sediment concentration, 133–134
2-D velocity distribution

cylindrical coordinate system, 93–94
derivation, 109–111
idealized rectangular cross section, 

108–109
Cumulative probability distribution (CDF), 282

D

Debris flow, sediment concentration
CDF hypothesis, 186–187
characteristics, 177
constraints, 179
definition of Tsallis entropy, 178–179
equilibrium (see Equilibrium debris flow 

concentration)
Lagrange multipliers, 180
maximization of entropy, 179–180
reparameterization, 188–189
steady and uniform, 177–178

Deterministic optimization, 369
Dip phenomenon, 89
Drainage rate, 250
Drying phase, moisture profile

case 1, 290–291
case 2, 290, 292
constraints, 288
entropy-based probability distribution, 288
equation substitution, 288–289
hypothesis, 287–288

E

Eco-index
coefficient of dispersion

Livingston dam, 361, 365
Toledo Bend reservoir, 361, 365

computation
aggregation process, 333
arbitrary value, 335
biological parameters, 332
IHA parameters, 338
Lagrange multipliers, 334–335
ME-OWA, 333
NSL evaluation, 331–332
OWA operator, 336
parameter estimation, 343
parametric statistics, 337
PDF, 338
stream gauges characteristics, 337
Tsallis entropy, 333–334

ecosystem alteration, 330
freshwater resources, 329
habitat simulation methods, 329
holistic methodologies, 329
hydraulic rating methods, 329
hydrological rules, 329
IHA, 330–331
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monthly median flow, 364, 366
NSL values

Sabine River Station, 360–361
Trinity River Station, 361–362

OWA operator estimation, sorted NSL values, 
361, 363

Trinity vs. Sabine Rivers, 361, 364
Tsallis entropy-based hydrological alteration 

assessment, 329
El Nino Southern Oscillation (ENSO) index, 

18–19
Entropy-based optimization; see also 

Entropy-based suspended sediment 
concentration

PDF, 109
sediment concentration (see Suspended 

sediment concentration)
velocity distribution, 73
water distribution networks, 370

Entropy-based suspended sediment concentration
CDF, 133–134
constraints, 132–133
Lagrange multipliers

Coleman’s data, 141–142
entropy index, value of, 

138–139
mean/maximum sediment concentration 

and N values, 140–141
nonlinear equations, 135–136
observed data, 141
PDF (see Probability density function 

(PDF))
maximum entropy, data, 142–143
mean estimation, 143–144
POME, 133
Rouse equation, 145–146
Shannon entropy, 125–126
Tsallis entropy, 132

Entropy scaling
scaling values, 243–244
Texas climatic divisions, 243, 245
Tsallis entropy, 243

Entropy theory
drainage rate, 250
infiltration capacity, 250
probability distribution derivation, 

252–253
Equilibrium debris flow concentration

function of µ, 190–191
tan θ function

vs. cD/cm, 197–199
dynamic friction coefficient, 197
sediment concentration expression, 

196–197
values of cDT, 193–194
values of F, T and τc, 195–196
values of m, cD/cm, 191–192

F

Flow duration curve (FDC)
construction, 304
definition, 303
derivation

constraints, 306
discharge PDF, 307
hypothesis, CDF, 309, 311–312
Lagrange multipliers (see Lagrange 

multipliers)
maximum entropy, 307
probability distribution, 306
Tsallis entropy, 305

entropy variation, time scale, 325–326
forecasting, 324–325
mean and maximum flows

estimation, 320–321
gaging station, 319–320
and parameter M, 318

Pee Dee River for year 2006, 314–315
prediction, gaging station 02131000

drainage area, 321, 323
Qmin, Qmean and Qmax histograms, 321–322
year 2009, 324

reparameterization
confidence intervals, 316–317
Lagrange multipliers, 316
parameter M, 315

usage, 303
Full Network Estimated Precipitation (FNEP), 

229, 236

G

Green–Ampt equation
characteristics of infiltration, 267
infiltration rates comparison, 268
integration, 266
parameters, 267
POME and Lagrange multipliers, 265–266

H

Holtan model
integrating equations, 272–273
least square method, 273
observed infiltration rates, 274
parameters, 273
POME and Lagrange multipliers, 271–272

Horton equation
experimental field observations, 258
expression, 257–258
Georgia Coastal Plain, 258
infiltration

capacity rate, 255
rates comparison, 259
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initial and steady infiltration, 256
integration, 257
least square method, 259
POME and Lagrange multipliers, 255
porosity, 257
sampling infiltration, 258
soil moisture retention, 257
Tsallis entropy-based PDF, 256

Hydraulic method, suspended sediment 
concentration

description, 145–146
diffusion coefficient

equation of motion, 154
Lagrange multiplier, 154
momentum transfer coefficient, 152–153
shear stress, 153
Tsallis entropy, 153–154
velocity distribution, 153

distribution parameters, random walk 
hypothesis

empirical data, 149–150
Lagrange multipliers and f0, 150–151
parabolic diffusion equation, 148

random walk model–based distribution
Atrisco Feeder Canal, field data 

collection, 159, 161
derivation, 157–158
mean constraint, 158–159
sample data, experiment S-16, 159–160

travel distance, PDF (see Probability density 
function (PDF))

Tsallis entropy-based
distribution equation, 157
equation insertion, 155–156
mean constraint, 157
normalizing constraint, 156
water surface, 155

Hydraulic models, rating curves, 201–202

I

IE, see Intensity entropy (IE)
Indicators of hydrological Alteration (IHA)

computation process, 347
ecosystem alteration, 330
flow variability, 330
hydrological parameters, 330, 336–337
IHA parameters, 337–338
NSL, computation, 331–332
OWA operator, 347

and entropy for the Sabine river, 347, 
358–359

and entropy for the Trinity river, 347, 
358–359

parameter estimates, Tsallis entropy-based PDF
1-day minimum discharge, 338, 343
3-day minimum discharge, 338, 343

7-day minimum discharge, 338, 344
30-day minimum discharge, 338, 344
entropy-based density function, 338, 

345–346
PDF

annual minimum 1-day mean discharge, 
347–348

minimum 3-day mean discharge, 347, 349
minimum 7-day mean discharge, 347, 350
minimum 30-day mean discharge, 

347, 351
probability distributions, 331
probability estimates

annual minimum 1-day mean discharge, 
347, 352

1-day and 3-day minimum streamflow, 
347, 356–357

minimum 3-day mean discharge, 347, 353
minimum 7-day mean discharge, 347, 354
minimum 30-day mean discharge, 

347, 355
stream gauges characteristics and Sabin River 

basin, 336–337
Toledo and Livingston gauge stations

annual minimum 1-day mean (X), 337–339
annual minimum 3-day mean (X), 

338, 340
annual minimum 7-day mean, 338, 341
annual minimum 30-day mean (X), 

338, 342
water-related issues, 331

Infiltration
derivation, equations

constraints, 251–252
continuity equation, 253–254
cumulative and rate, 255
cumulative probability distribution 

hypothesis, 254
maximum entropy, principle, 251
probability distribution derivation, 

252–253
Tsallis entropy, 252

entropy theory, 250
homogeneous soils, 249
parameters, 249

Intensity entropy (IE)
AE, empirical data, 233
climate division 4, Texas, 229
empirical and fitted frequency distribution 

functions
for monthly precipitation, 229–230
month of April, 230, 232
month of August, 230, 233
month of January, 230–231
month of October, 230, 234

empirical distribution, 229
gamma distribution, 230
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monthly precipitation intensity probability 
distributions, 229

month-wise precipitation intensity entropy, 234
precipitation, 228
vs. skewness of monthly precipitation PDF, 

231, 235
temporal apportionment, annual 

precipitation, 233

K

Kostiakov equation
integration, 261
least square method and infiltration rate, 

261–262
POME and Lagrange multipliers, 260
steady infiltration rate, 261

Kullback–Leibler (KL) cross entropy, 3, 22

L

Lagrange multipliers
date set, 148
determination, 39–40
FDC

mean and maximum discharges, Pee Dee 
River (see Pee Dee River)

relative frequency histograms, 309, 313
m values, 113
one-dimensional one-constraint velocity 

distribution
computation, 72
determination, 70
maximum and mean velocities, 72–73

rating curves
computation, 209
equation substituting, 207
integration of equation, 208
stage–discharge values, 208–209

M

Maximum Entropy Operator Weighted Averaging 
(ME-OWA) weights, 333

Maximum entropy probability distributions
Lagrange multipliers, 38–39
mean and variance constraints

gamma distribution, 43, 45
Lagrangian function L, 42–43
Pareto, 44, 46
PBP (see Power-transformed Beta Prime 

(PBP))
PDFs vs. random variable, 46–47
quantile vs. return period, random 

variable, 47–48
Tsallis entropy, 48–49
Weibull distribution, 44, 46

mean constraint (see Constraints)
variance constraint (see Variance constraint)

Mean velocity
cross-sectional velocity distribution, 105
entropy parameter, 106
estimation, 107
observed value, 106
open-channel hydraulics, 105

Mixed phase
equation, 293–294
Lagrange multipliers, 293
moisture profile, 293
soil moisture profile, 294

N

National Climatic Data Center (NCDC), 236
Navier–Stokes equations, 126
Nonsatisfaction level (NSL), computation

absolute difference, 331–332
definition, 331–332
evaluation, 332
IHA parameters, 336
in relative difference, 332
Sabine River Station, 360–361
Trinity River Station, 362–363
urbanization, 332

Normalized m-expectation, 55–56

O

One-dimensional one-constraint 
velocity distribution; see also 
Reparameterization

entropy-based probability distribution, 70–71
entropy values

computed λ1 and H, 79–80
Lagrange multipliers, 77–78
maximum, 78–79
mean and maximum velocity, 79
parameter G, 76–77
velocity distribution, 77

Lagrange multipliers
computation, 72
determination, 70
maximum and mean velocities, 72–73

mass conservation, 69
m values, 73–74
PDF, dimensionless velocity, 73–74

One-dimensional velocity distributions
constraints, 64
entropy of, 66
evaluation, 66
hypothesis, 62–63
Lagrange multipliers, 66
POME, 64–65
Tsallis entropy, 63–64
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Overton model
continuity equation, 270
infiltration rate, 269
least square method, 270–271
observations and calibration, 270
POME and Lagrange multipliers, 268–269

P

Partial Tsallis entropy
defined, 24–25
m-logarithmic function, 25
Shannon partial entropy, 25

Path redundancy
computation, 422–424
equations, 409–414
friction factor, 409, 421

PBP, see Power-transformed Beta Prime (PBP)
PDF, see Probability density function (PDF)
Pee Dee River

Lagrange multipliers, 309, 311–312
maximum and mean discharges, 309–310
relative frequency histogram, 309, 313

Philip two-term equation
constraints, 262–263
infiltration rate computation, 265–266
integration, 263–264
POME and Lagrange multipliers, 263
steady infiltration rate, 264

POME, see Principle of maximum entropy 
(POME)

Power-transformed Beta Prime (PBP)
distribution, 44
PBP-L1, 43–44
PBP-L2 distribution, 45

Prandtl–von Karman velocity distribution
sediment discharge, 166–167
suspended sediment discharge, 170–171

Precipitation variability
average yearly entropy and standard 

deviation, 237–238
climate divisions in the State of Texas, 237
coefficient, state of Texas, 243
entropy, 227
entropy scaling, 243–245
FNEP, 236
IE (see Intensity entropy (IE))
isoentropy lines, 242
isohyets of annual rainfall, 242
mean monthly precipitation, climate division, 

237–238
NCDC, 236
standard deviation and CV, 239–240
water resources, 227
water supply stability, 227
yearly minimum and maximum values, 

Tsallis entropy, 237, 239

Principle of maximum entropy (POME), 
3, 281, 306

one-dimensional velocity distributions, 
64–65

sediment concentration, 133
Principle of minimum cross entropy (POMCE), 3
Probability density function (PDF), 305

dimensionless velocity, 73–74
discharge, derivation of, 307
Lagrange multipliers, 308
and maximum entropy

values of λ1, 181–182, 184, 187
values of m, 182–183, 185–186
water surface, 181

POME, 64, 306
vs. random variable, 46–47
sediment concentration

computation, data, 136–137
initial value, f0, 151–152
Lagrange multipliers, 137, 148–149
non dimensional equation, 138
Tsallis entropy, 146–147

Probability distributions
constraints

empirical data, 34
entropy index m, 37
escort probabilities, 37–38
hydrological processes, 35
logarithmic function, 36–37
mass conservation, momentum and 

energy, 35
mean, 35–36
types, 34
variance, 36

expectation value
normalized m-expectation, 55–56
ordinary, 53–55

Lagrange multipliers, 39–40
maximum entropy (see Maximum entropy 

probability distributions)
m-expectation

constraints, 56–57
definition, 51–52
escort distribution, 57–58

Tsallis entropy, 33

R

Rating curves
artificial intelligence techniques, 202
derivation

CDF hypothesis, 210
constraints, 205
definition of Tsallis entropy, 205
Lagrange multipliers (see Lagrange 

multipliers)
maximization of entropy, 206
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maximum entropy, 209
probability distribution, discharge, 206–207
station 08079600, Brazos River, 211–212

entropy parameter and drainage area
observed curve, 220
relationship, 219
RMS, 221
stage–discharge data, 220
station 08111500, 220

errors, 202–203
extension, 221–222
forms, 203–204
graphical method, 201
hydraulic method, 201–202
maximum discharge and drainage area, 

218–219
mean discharge and drainage area, 218–219
randomness, 204
reparameterization

computation, 215–216
entropy index M and maximum discharge, 

214–215
grouping, Lagrange multipliers, 213–214
maximum discharge and drainage area, 

217–218
station 08082500, entropy parameter M, 

216–217
Tennessee River and Pee Dee River 

basins, 216
Trinity River and Pearl River, 216

types, 201
Redundancy measure modification

age factor, 409
and path redundancy (see Path 

redundancy)
for pipe material, 384–385

distribution layouts a, b, and c, 388–392
link incidences, 395–399
overall network redundancy

age and path factor, 385–386
computation method, 387
distribution networks, 387
peak demand/average flow pattern, 387

path parameter, 404–409
computation, 409–412, 419–412
nodal redundancy, 383
positive contribution, 384

single-node water distribution layouts
case 1, 392–393
case 2, 392–393
case 3, 392–393
case 4, 394
case 5, 394
friction factor, 395

transmission of redundancy, 399–403
transmissivity, global redundancy, 415–419
water distribution network layout, 394–395

Relative entropy
expectation value, 29
joint probability distribution, 29
nonextensive statistical mechanics, 28–29
POMCE, 29–30

Reparameterization
debris flow concentration, 188
dimensionless debris flow concentration, 189
sediment concentration distribution, 189

Root mean square (RMS), 211, 218, 220–221, 324
Rootzone, 277

S

Sediment discharge
correction factor, 173–174
estimation, 165
Prandtl–von Karman velocity distribution, 

166–167
Rouse equation, 168
sediment concentration, 165–166
Tsallis entropy-based

sediment concentration, 169
velocity distribution, 167–168

velocity distribution, 165–166
Yellow River and Kosi River, 165

Shannon entropy
arbitrary functions, 9
infinity, 9–10
from Tsallis entropy, 8–9

Shields parameter, 195
Soil moisture

analysis and evaluation, 277
phases, 278–279
profile estimation, 279–280
random variable, 280
in time

constraints, 294
experimental data for wet case, 297
four sets of data, 297
Lagrange multipliers, 296
mixed case, 299–300
m values, 295
parameters, 296

zone, 277–278
Stage–discharge relation, see Rating curves
Stochastic optimization, 370
Stokes law, 126
Suspended sediment concentration

Chang–Simons–Richardson equation, 
128–129

Chiu equation, 129–130
Choo equation, 130–131
empirical approaches, 125
entropy-based approaches (see Entropy-based 

suspended sediment concentration)
Lane–Kalinske equation, 129
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O’Brien–Christiansen equation, 129
pollution, 125
Rouse equation

Prandtl–von Karman logarithmic velocity, 
126–127

reference concentration, 127–128
shear stress, 127

settling velocity, 126
turbulent flow, 126

Suspended sediment discharge
measurements, 172–173
Prandtl–von Karman velocity distribution, 

170–171
Rouse equation, 172
Tsallis entropy-based sediment concentration, 

170–171
Tsallis entropy-based velocity and 

concentration distributions, 169–170
Tsallis entropy-based velocity equation, 172

T

Tension-saturated zone, 277
Transmissivity, 379

global redundancy, 415–419
redundancy

approaches, 380
loop layout, 399–403
transmissivity concept, 381–382

Tsallis entropy, 252, 281–282
additivity

equations, 14–15
logarithms, 14
marginal entropies, 15
mutual information, 15
probability distribution, 13
Shannon entropy computation, 16

Boltzmann–Gibbs–Shannon entropy, 3
composibility, 16
computation, 8
concave and convex, 5
concavity, 12–13
definition, 3
gain function, 6–7
geomorphological systems, 18
maximization

constraints, 22–23
exponential distribution, 24
Lagrange multipliers, 23
partition function, 23
plot of distribution, 24

maximum value, 11–12
m-entropy, 10–11
m-exponential, 19
modification

KL cross entropy, 22
m-average entropy, 20–21

m-logarithmic function, 20
mutual information/transinformation, 

21–22
nonextensivity index, 4
PDF, 4–5
power function, 4
skewness, 7
stationary/metastable system, 18
subsystems interaction, 16–17

Tsallis entropy–based redundancy, 379–380
Two-dimensional (2D) velocity distributions

advantages, Tsallis entropy, 90
construction of isovels

Italy Rivers, 120, 122–123
Tiber River, 120–121

coordinate system
CDF hypothesis, 93–94
coefficient, 92
constraints, 94
curvilinear coordinate system, 92
dimensionless parameter M, 98–99
dimensionless velocity (see Velocity 

distribution)
entropy maximization, 94
Ghamasiab River, mean and maximum 

velocity, 97–98
isovel construction, 105
location of mean velocity, 107–108
maximum entropy, 99–100
preceding equation, 93
r–s coordinates, 91–92
Tiber River, 95–96
water surface, 93

cumulative distribution function, 108–109
data collection, Tiber River, 111–112
dimensionless entropy parameter G

mean and maximum velocity, 113–114
Tiber River, 113–114

dip phenomenon, 89–90
Lagrange multipliers, m values, 111, 113
location of maximum velocity

flow depth, 117–118
Italian rivers, 119
shear stress, 116–117

methods, 90
velocity entropy, 115–116

V

Variance constraint
first and second moments, 42
Gamma distribution, 45
Lagrangian function, 42–43
Pareto distribution, 46
PBP distribution, 44
PBP-L1 distribution, 44
PBP-L2 distribution, 45
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power-type probability distributions, 43
transformations, 43
Weibull distribution, 46

Velocity distribution
cross-sectional mean, 102
dimensionless, 103–104
parameters, 101–102
Tiber River, 102

Velocity distributions
estimation, mean velocity, 84–85
hydraulics, 61
limitations, 61
mean and maximum velocities

computation, entropy parameter G, 
82–83

Iranian rivers and Italian rivers, data 
collection, 82

linear relationship, 81
one-dimensional (see One-dimensional 

velocity distributions)
one-dimensional no-constraint

flow depth, 67–68
measurements, 68–69
total probability equation, 66–67

Shannon entropy, 62
simplification, 83–84
2-D (see Two-dimensional (2D) velocity 

distributions)
water surface, 61–62

Velocity quantile–probability relation, 71

W

Water distribution networks
additivity property (see Additivity property, 

Tsallis entropy)
deterministic optimization, 369
entropy-based optimization, 370
modification, redundancy measure, 383–384
path dependency, 382–383
redundancy measures

with N nodes, 371–372
Tsallis entropy, 373–374

reliability measure, 370–371
stochastic optimization, 370
transmission, redundancy

approaches, 380
transmissivity concept, 381–382

Tsallis entropy–based redundancy 
measures, 371

two stage decomposition model, 369
Water resources

assessment, 247–248
categorization, 246–247
precipitation data, 244–245

Wetting phase
CDF, 282
computing and plotting, 284
POME and Lagrange multipliers, 282–283
substitution, 283–284
surface and moisture, 284

© 2016 by Taylor & Francis Group, LLC

  


	Cit p_7:1: 
	Cit p_2:1: 
	Cit p_13:1: 
	Cit p_4:1: 
	Cit p_4:2: 
	Cit p_15:1: 
	Cit p_15:2: 
	Cit p_6:1: 
	Cit p_10:1: 
	Cit p_17:1: 
	Cit p_17:2: 
	Cit p_8:1: 
	Cit p_12:1: 
	Cit p_3:1: 
	Cit p_3:2: 
	Cit p_14:1: 
	Cit p_14:2: 
	Cit p_16:1: 
	Cit p_21:1: 
	Cit p_21:2: 
	Cit p_28:1: 
	Cit p_28:2: 
	Cit p_23:1: 
	Cit p_25:1: 
	Cit p_25:2: 
	Cit p_30:1: 
	Cit p_27:1: 
	Cit p_22:1: 
	Cit p_22:2: 
	Cit p_19:1: 
	Cit p_19:2: 
	Cit p_26:1: 
	Cit p_31:1: 
	Cit p_9:1: 
	1: 
	Cit p_6:1: 
	Cit p_3:1: 
	Cit p_14:1: 
	Cit p_14:2: 
	Cit p_7:1: 
	Cit p_15:1: 
	Cit p_12:1: 
	Cit p_8:1: 
	Cit p_2:1: 
	Cit p_13:1: 

	Cit p_1:1: 
	Cit p_5:1: 
	2: 
	Cit p_21:1: 
	Cit p_7:1: 
	Cit p_2:1: 
	Cit p_23:1: 
	Cit p_9:1: 
	Cit p_13:1: 
	Cit p_4:1: 
	Cit p_4:2: 
	Cit p_6:1: 
	Cit p_10:1: 
	Cit p_1:1: 
	Cit p_17:1: 
	Cit p_8:1: 
	Cit p_22:1: 
	Cit p_12:1: 
	Cit p_19:1: 
	Cit p_14:1: 
	Cit p_5:1: 
	Cit p_16:1: 

	Cit p_7:2: 
	Cit p_11:1: 
	Cit p_20:1: 
	Cit p_6:2: 
	Cit p_10:2: 
	Cit p_8:2: 
	Cit p_24:1: 
	Cit p_24:2: 
	Cit p_5:2: 
	Cit p_31:2: 
	3: 
	Cit p_7:1: 
	Cit p_7:2: 
	Cit p_11:1: 
	Cit p_2:1: 
	Cit p_13:1: 
	Cit p_4:1: 
	Cit p_4:2: 
	Cit p_15:1: 
	Cit p_15:2: 
	Cit p_10:1: 
	Cit p_1:1: 
	Cit p_8:1: 
	Cit p_12:1: 
	Cit p_3:1: 
	Cit p_3:2: 
	Cit p_14:1: 
	Cit p_5:1: 
	Cit p_5:2: 

	Cit p_2:2: 
	Cit p_18:1: 
	Cit p_20:2: 
	4: 
	Cit p_7:1: 
	Cit p_7:2: 
	Cit p_6:1: 
	Cit p_6:2: 
	Cit p_8:1: 
	Cit p_5:1: 
	Cit p_5:2: 

	Cit p_12:2: 
	Cit p_29:1: 
	Cit p_29:2: 
	Cit p_35:1: 
	Cit p_35:2: 
	Cit p_34:1: 
	Cit p_34:2: 
	5: 
	Cit p_3:1: 
	Cit p_3:2: 
	Cit p_7:1: 
	Cit p_7:2: 
	Cit p_5:1: 
	Cit p_2:1: 
	Cit p_2:2: 

	Cit p_13:2: 
	6: 
	Cit p_6:1: 
	Cit p_3:1: 
	Cit p_14:1: 
	Cit p_11:1: 
	Cit p_8:1: 
	Cit p_5:1: 
	Cit p_8:2: 
	Cit p_2:1: 
	Cit p_5:2: 
	Cit p_13:1: 
	Cit p_13:2: 

	Cit p_11:2: 
	Cit p_16:2: 
	7: 
	Cit p_21:1: 
	Cit p_11:1: 
	Cit p_2:1: 
	Cit p_18:1: 
	Cit p_23:1: 
	Cit p_13:1: 
	Cit p_15:1: 
	Cit p_20:1: 
	Cit p_6:1: 
	Cit p_10:1: 
	Cit p_6:2: 
	Cit p_1:1: 
	Cit p_17:1: 
	Cit p_8:1: 
	Cit p_22:1: 
	Cit p_14:1: 
	Cit p_5:1: 
	Cit p_16:1: 

	Cit p_38:1: 
	Cit p_38:2: 
	Cit p_33:1: 
	Cit p_33:2: 
	Cit p_37:1: 
	Cit p_42:1: 
	Cit p_42:2: 
	Cit p_32:1: 
	Cit p_39:1: 
	Cit p_41:1: 
	Cit p_41:2: 
	8: 
	Cit p_4:1: 
	Cit p_4:2: 
	Cit p_1:1: 
	Cit p_3:1: 

	9: 
	Cit p_4:1: 
	Cit p_1:1: 

	10: 
	Cit p_2:1: 
	Cit p_2:2: 
	Cit p_4:1: 
	Cit p_1:1: 
	Cit p_3:1: 

	11: 
	Cit p_4:1: 
	Cit p_8:1: 
	Cit p_5:1: 
	Cit p_11:1: 
	Cit p_2:1: 
	Cit p_11:2: 

	12: 
	Cit p_11:1: 
	Cit p_11:2: 
	Cit p_2:1: 
	Cit p_2:2: 
	Cit p_18:1: 
	Cit p_9:1: 
	Cit p_13:1: 
	Cit p_4:1: 
	Cit p_20:1: 
	Cit p_10:1: 
	Cit p_10:2: 
	Cit p_17:1: 
	Cit p_17:2: 
	Cit p_22:1: 
	Cit p_22:2: 
	Cit p_3:1: 
	Cit p_19:1: 
	Cit p_14:1: 
	Cit p_16:1: 

	13: 
	Cit p_21:1: 
	Cit p_7:1: 
	Cit p_2:1: 
	Cit p_18:1: 
	Cit p_9:1: 
	Cit p_13:1: 
	Cit p_15:1: 
	Cit p_15:2: 
	Cit p_20:1: 
	Cit p_10:1: 
	Cit p_10:2: 
	Cit p_17:1: 
	Cit p_8:1: 
	Cit p_12:1: 
	Cit p_3:1: 
	Cit p_19:1: 
	Cit p_19:2: 
	Cit p_14:1: 

	Cit p_27:2: 
	Cit p_39:2: 
	Cit p_36:1: 


